CVE-2021-47118

Public on

Last Modified: UTC

Description

The CVE Program describes this issue as:

In the Linux kernel, the following vulnerability has been resolved: pid: take a reference when initializing `cad_pid` During boot, kernel_init_freeable() initializes `cad_pid` to the init task's struct pid. Later on, we may change `cad_pid` via a sysctl, and when this happens proc_do_cad_pid() will increment the refcount on the new pid via get_pid(), and will decrement the refcount on the old pid via put_pid(). As we never called get_pid() when we initialized `cad_pid`, we decrement a reference we never incremented, can therefore free the init task's struct pid early. As there can be dangling references to the struct pid, we can later encounter a use-after-free (e.g. when delivering signals). This was spotted when fuzzing v5.13-rc3 with Syzkaller, but seems to have been around since the conversion of `cad_pid` to struct pid in commit 9ec52099e4b8 ("[PATCH] replace cad_pid by a struct pid") from the pre-KASAN stone age of v2.6.19. Fix this by getting a reference to the init task's struct pid when we assign it to `cad_pid`. Full KASAN splat below. ================================================================== BUG: KASAN: use-after-free in ns_of_pid include/linux/pid.h:153 [inline] BUG: KASAN: use-after-free in task_active_pid_ns+0xc0/0xc8 kernel/pid.c:509 Read of size 4 at addr ffff23794dda0004 by task syz-executor.0/273 CPU: 1 PID: 273 Comm: syz-executor.0 Not tainted 5.12.0-00001-g9aef892b2d15 #1 Hardware name: linux,dummy-virt (DT) Call trace: ns_of_pid include/linux/pid.h:153 [inline] task_active_pid_ns+0xc0/0xc8 kernel/pid.c:509 do_notify_parent+0x308/0xe60 kernel/signal.c:1950 exit_notify kernel/exit.c:682 [inline] do_exit+0x2334/0x2bd0 kernel/exit.c:845 do_group_exit+0x108/0x2c8 kernel/exit.c:922 get_signal+0x4e4/0x2a88 kernel/signal.c:2781 do_signal arch/arm64/kernel/signal.c:882 [inline] do_notify_resume+0x300/0x970 arch/arm64/kernel/signal.c:936 work_pending+0xc/0x2dc Allocated by task 0: slab_post_alloc_hook+0x50/0x5c0 mm/slab.h:516 slab_alloc_node mm/slub.c:2907 [inline] slab_alloc mm/slub.c:2915 [inline] kmem_cache_alloc+0x1f4/0x4c0 mm/slub.c:2920 alloc_pid+0xdc/0xc00 kernel/pid.c:180 copy_process+0x2794/0x5e18 kernel/fork.c:2129 kernel_clone+0x194/0x13c8 kernel/fork.c:2500 kernel_thread+0xd4/0x110 kernel/fork.c:2552 rest_init+0x44/0x4a0 init/main.c:687 arch_call_rest_init+0x1c/0x28 start_kernel+0x520/0x554 init/main.c:1064 0x0 Freed by task 270: slab_free_hook mm/slub.c:1562 [inline] slab_free_freelist_hook+0x98/0x260 mm/slub.c:1600 slab_free mm/slub.c:3161 [inline] kmem_cache_free+0x224/0x8e0 mm/slub.c:3177 put_pid.part.4+0xe0/0x1a8 kernel/pid.c:114 put_pid+0x30/0x48 kernel/pid.c:109 proc_do_cad_pid+0x190/0x1b0 kernel/sysctl.c:1401 proc_sys_call_handler+0x338/0x4b0 fs/proc/proc_sysctl.c:591 proc_sys_write+0x34/0x48 fs/proc/proc_sysctl.c:617 call_write_iter include/linux/fs.h:1977 [inline] new_sync_write+0x3ac/0x510 fs/read_write.c:518 vfs_write fs/read_write.c:605 [inline] vfs_write+0x9c4/0x1018 fs/read_write.c:585 ksys_write+0x124/0x240 fs/read_write.c:658 __do_sys_write fs/read_write.c:670 [inline] __se_sys_write fs/read_write.c:667 [inline] __arm64_sys_write+0x78/0xb0 fs/read_write.c:667 __invoke_syscall arch/arm64/kernel/syscall.c:37 [inline] invoke_syscall arch/arm64/kernel/syscall.c:49 [inline] el0_svc_common.constprop.1+0x16c/0x388 arch/arm64/kernel/syscall.c:129 do_el0_svc+0xf8/0x150 arch/arm64/kernel/syscall.c:168 el0_svc+0x28/0x38 arch/arm64/kernel/entry-common.c:416 el0_sync_handler+0x134/0x180 arch/arm64/kernel/entry-common.c:432 el0_sync+0x154/0x180 arch/arm64/kernel/entry.S:701 The buggy address belongs to the object at ffff23794dda0000 which belongs to the cache pid of size 224 The buggy address is located 4 bytes inside of 224-byte region [ff ---truncated---

Additional information

  • Bugzilla 2269856: kernel: pid: take a reference when initializing `cad_pid`
  • CWE-416: Use After Free
  • FAQ: Frequently asked questions about CVE-2021-47118

Common Vulnerability Scoring System (CVSS) Score Details

Important note

CVSS scores for open source components depend on vendor-specific factors (e.g. version or build chain). Therefore, Red Hat's score and impact rating can be different from NVD and other vendors. Red Hat remains the authoritative CVE Naming Authority (CNA) source for its products and services (see Red Hat classifications).

CVSS v3 Score Breakdown
Red HatNVD

CVSS v3 Base Score

4.1

7.8

Attack Vector

Local

Local

Attack Complexity

High

Low

Privileges Required

High

Low

User Interaction

None

None

Scope

Unchanged

Unchanged

Confidentiality Impact

None

High

Integrity Impact

None

High

Availability Impact

High

High

CVSS v3 Vector

Red Hat: CVSS:3.1/AV:L/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:H

NVD: CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H

Frequently Asked Questions

Why is Red Hat's CVSS v3 score or Impact different from other vendors?

For open source software shipped by multiple vendors, the CVSS base scores may vary for each vendor's version depending on the version they ship, how they ship it, the platform, and even how the software is compiled. This makes scoring of vulnerabilities difficult for third-party vulnerability databases such as NVD that only provide a single CVSS base score for each vulnerability. Red Hat scores reflect how a vulnerability affects our products specifically.

For more information, see https://access.redhat.com/solutions/762393.

My product is listed as "Under investigation" or "Affected", when will Red Hat release a fix for this vulnerability?

  • "Under investigation" doesn't necessarily mean that the product is affected by this vulnerability. It only means that our Analysis Team is still working on determining whether the product is affected and how it is affected.
  • "Affected" means that our Analysis Team has determined that this product is affected by this vulnerability and might release a fix to address this in the near future.

What can I do if my product is listed as "Will not fix"?

A "will not fix" status means that a fix for an affected product version is not planned or not possible due to complexity, which may create additional risk.

Available options depend mostly on the Impact of the vulnerability and the current Life Cycle phase of your product. Overall, you have the following options:
  • Upgrade to a supported product version that includes a fix for this vulnerability (recommended).
  • Apply a mitigation (if one exists).
  • Open a support case to request a prioritization of releasing a fix for this vulnerability.

What can I do if my product is listed as "Fix deferred"?

A deferred status means that a fix for an affected product version is not guaranteed due to higher-priority development work.

Available options depend mostly on the Impact of the vulnerability and the current Life Cycle phase of your product. Overall, you have the following options:
  • Apply a mitigation (if one exists).
  • Open a support case to request a prioritization of releasing a fix for this vulnerability.
  • Red Hat Engineering focuses on addressing high-priority issues based on their complexity or limited lifecycle support. Therefore, lower-priority issues will not receive immediate fixes.

What is a mitigation?

A mitigation is an action that can be taken to reduce the impact of a security vulnerability, without deploying any fixes.

I have a Red Hat product but it is not in the above list, is it affected?

The listed products were found to include one or more of the components that this vulnerability affects. These products underwent a thorough evaluation to determine their affectedness by this vulnerability. Note that layered products (such as container-based offerings) that consume affected components from any of the products listed in this table may be affected and are not represented.

Why is my security scanner reporting my product as vulnerable to this vulnerability even though my product version is fixed or not affected?

In order to maintain code stability and compatibility, Red Hat usually does not rebase packages to entirely new versions. Instead, we backport fixes and new features to an older version of the package we distribute. This can result in some security scanners that only consider the package version to report the package as vulnerable. To avoid this, we suggest that you use an approved vulnerability scanner from our Red Hat Vulnerability Scanner Certification program.

Want to get errata notifications? Sign up here.