서비스 메시

Red Hat OpenShift Service on AWS 4

서비스 메시 설치, 사용법, 릴리스 정보

초록


1장. 서비스 메시 2.x

1.1. OpenShift Service Mesh 정보

참고

1.1.1. Red Hat OpenShift Service Mesh 소개

Red Hat OpenShift Service Mesh는 애플리케이션에서 중앙 집중식 제어 지점을 생성하여 마이크로 서비스 아키텍처에서 다양한 문제에 대응합니다. 애플리케이션 코드를 변경하지 않고도 기존 분산 애플리케이션에 투명한 레이어를 추가합니다.

마이크로 서비스 아키텍처는 엔터프라이즈 애플리케이션의 작업을 모듈식 서비스로 분할하므로 확장 및 유지 관리를 더 쉽게 수행할 수 있습니다. 그러나 마이크로 서비스 아키텍처에 구축된 엔터프라이즈 애플리케이션이 크기와 복잡성이 증가함에 따라 마이크로 서비스 아키텍처의 이해 및 관리가 어려워집니다. 서비스 메시는 서비스 간 트래픽을 캡처하거나 차단하거나 다른 서비스에 대한 새 요청을 리디렉트 또는 생성하여 이러한 아키텍처의 문제에 대응할 수 있습니다.

오픈 소스 Istio project를 기반으로 하는 Service Mesh는 배포된 서비스 네트워크를 쉽게 구축할 수 있는 방법을 제공하여 검색, 로드 밸런싱, 서비스 간 인증, 실패 복구, 지표 및 모니터링을 지원합니다.

1.1.2.

Red Hat OpenShift Service Mesh는 서비스 네트워크 전반에서 여러 주요 기능을 균일하게 제공합니다.

  • 트래픽 관리 - 서비스 간 트래픽 및 API 호출 흐름을 제어하고, 호출을 더 안정적으로 만들며, 불리한 조건에서도 네트워크를 보다 견고하게 만듭니다.
  • 서비스 ID 및 보안 - 메시에서 확인 가능한 ID로 서비스를 제공하고 다양한 수준의 신뢰도를 갖춘 네트워크를 통해 전달될 때 서비스 트래픽을 보호할 수 있는 기능을 제공합니다.
  • 정책 강화- 서비스 간 상호 작용에 조직 정책을 적용하여 액세스 정책이 시행되고 리소스가 소비자 간에 공정하게 배포되도록 합니다. 애플리케이션 코드를 변경하는 것이 아니라 메시를 구성하여 정책 변경을 수행합니다.
  • Telemetry - 서비스 간의 종속성과 트래픽 속성 및 흐름을 이해하여 문제를 신속하게 식별할 수 있는 기능을 제공합니다.

1.2. 서비스 메시 릴리스 노트

1.2.1. 보다 포괄적 수용을 위한 오픈 소스 용어 교체

Red Hat은 코드, 문서, 웹 속성에서 문제가 있는 용어를 교체하기 위해 최선을 다하고 있습니다. 먼저 마스터(master), 슬레이브(slave), 블랙리스트(blacklist), 화이트리스트(whitelist) 등 네 가지 용어를 교체하고 있습니다. 이러한 변경 작업은 작업 범위가 크므로 향후 여러 릴리스에 걸쳐 점차 구현할 예정입니다. 자세한 내용은 CTO Chris Wright의 메시지를 참조하십시오.

1.2.2. 새로운 기능 및 개선 사항

이 릴리스에는 다음 구성 요소 및 개념과 관련된 개선 사항이 추가되었습니다.

1.2.2.1.

1.2.2.1.1.
구성 요소버전

Istio

1.14.5

1.22.4

Jaeger

1.39

Kiali

1.57.5

1.2.2.2.

1.2.2.2.1.
구성 요소버전

Istio

1.14.3

1.22.4

Jaeger

1.38

Kiali

1.57.3

1.2.2.2.2.

1.2.2.2.3.

1.2.2.2.4.

1.2.2.2.5.
중요

기술 프리뷰 기능은 Red Hat 프로덕션 서비스 수준 계약(SLA)에서 지원되지 않으며 기능적으로 완전하지 않을 수 있습니다. 따라서 프로덕션 환경에서 사용하는 것은 권장하지 않습니다. 이러한 기능을 사용하면 향후 제품 기능을 조기에 이용할 수 있어 개발 과정에서 고객이 기능을 테스트하고 피드백을 제공할 수 있습니다.

Red Hat 기술 프리뷰 기능의 지원 범위에 대한 자세한 내용은 기술 프리뷰 기능 지원 범위를 참조하십시오.

1.2.2.2.6.

1.2.2.2.6.1.

  apiVersion: maistra.io/v2
  kind: ServiceMeshControlPlane
  metadata:
    name: cluster-wide
    namespace: istio-system
  spec:
    version: v2.3
    techPreview:
      controlPlaneMode: ClusterScoped 1
1

  apiVersion: maistra.io/v1
  kind: ServiceMeshMemberRoll
  metadata:
    name: default
  spec:
    members:
    - '*' 1
1

1.2.2.3.

1.2.2.3.1.
구성 요소버전

Istio

1.12.9

1.20.8

Jaeger

1.39

Kiali

1.48.3

1.2.2.4.

1.2.2.4.1.
구성 요소버전

Istio

1.12.9

1.20.8

Jaeger

1.36.14

Kiali

1.48.3

1.2.2.5.

1.2.2.5.1.
구성 요소버전

Istio

1.12.9

1.20.8

Jaeger

1.36

Kiali

1.48.3

1.2.2.6.

1.2.2.6.1.
구성 요소버전

Istio

1.12.7

1.20.6

Jaeger

1.36

Kiali

1.48.2-1

1.2.2.6.2.

1.2.2.7.

1.2.2.7.1.
구성 요소버전

Istio

1.12.7

1.20.6

Jaeger

1.34.1

Kiali

1.48.2-1

1.2.2.8.

1.2.2.8.1.
구성 요소버전

Istio

1.12.7

1.20.4

Jaeger

1.34.1

Kiali

1.48.0.16

1.2.2.8.2. WasmPlugin API

1.2.2.8.3.

1.2.2.8.4.

1.2.2.8.5.

1.2.2.8.6.

1.2.2.8.7.

1.2.2.8.8. Kubernetes Gateway API
중요

기술 프리뷰 기능은 Red Hat 프로덕션 서비스 수준 계약(SLA)에서 지원되지 않으며 기능적으로 완전하지 않을 수 있습니다. 따라서 프로덕션 환경에서 사용하는 것은 권장하지 않습니다. 이러한 기능을 사용하면 향후 제품 기능을 조기에 이용할 수 있어 개발 과정에서 고객이 기능을 테스트하고 피드백을 제공할 수 있습니다.

Red Hat 기술 프리뷰 기능의 지원 범위에 대한 자세한 내용은 기술 프리뷰 기능 지원 범위를 참조하십시오.

1.2.2.8.8.1.

$ kubectl get crd gateways.gateway.networking.k8s.io || { kubectl kustomize "github.com/kubernetes-sigs/gateway-api/config/crd?ref=v0.4.0" | kubectl apply -f -; }
1.2.2.8.8.2.

spec:
  runtime:
    components:
      pilot:
        container:
          env:
            PILOT_ENABLE_GATEWAY_API: "true"
            PILOT_ENABLE_GATEWAY_API_STATUS: "true"
            # and optionally, for the deployment controller
            PILOT_ENABLE_GATEWAY_API_DEPLOYMENT_CONTROLLER: "true"

1.2.2.8.8.3.

  apiVersion: gateway.networking.k8s.io/v1alpha2
  kind: Gateway
  metadata:
    name: gateway
  spec:
    addresses:
    - value: ingress.istio-gateways.svc.cluster.local
      type: Hostname

1.2.2.9.

1.2.2.9.1.
구성 요소버전

Istio

1.9.9

1.17.5

Jaeger

1.36

Kiali

1.36.14

1.2.2.10.

1.2.2.10.1.
구성 요소버전

Istio

1.9.9

1.17.5

Jaeger

1.36

Kiali

1.24.17

1.2.2.11.

1.2.2.11.1.
구성 요소버전

Istio

1.9.9

1.17.5

Jaeger

1.36

Kiali

1.36.13

1.2.2.12.

1.2.2.12.1.
구성 요소버전

Istio

1.9.9

1.17.1

Jaeger

1.36

Kiali

1.36.12-1

1.2.2.13.

이번 Red Hat OpenShift Service Mesh 릴리스는 CVE(Common Vulnerabilities and Exposures) 및 버그 수정을 제공합니다.

1.2.2.13.1.
구성 요소버전

Istio

1.9.9

1.17.1

Jaeger

1.30.2

Kiali

1.36.12-1

1.2.2.14.

이번 Red Hat OpenShift Service Mesh 릴리스는 CVE(Common Vulnerabilities and Exposures) 및 버그 수정을 제공합니다.

1.2.2.14.1.
구성 요소버전

Istio

1.9.9

1.17.1

Jaeger

1.30.2

Kiali

1.36.10-2

1.2.2.15.

이번 Red Hat OpenShift Service Mesh 릴리스는 CVE(Common Vulnerabilities and Exposures) 및 버그 수정을 제공합니다.

1.2.2.15.1.
구성 요소버전

Istio

1.9.9

1.17.1

Jaeger

1.30.2

Kiali

1.36.9

1.2.2.16.

이번 Red Hat OpenShift Service Mesh 릴리스는 CVE(Common Vulnerabilities and Exposures) 및 버그 수정을 제공합니다.

1.2.2.16.1.
구성 요소버전

Istio

1.9.9

1.17.1

Jaeger

1.30.1

Kiali

1.36.8

1.2.2.17.

이번 Red Hat OpenShift Service Mesh 릴리스는 CVE(Common Vulnerabilities and Exposures) 및 버그 수정을 제공합니다.

1.2.2.17.1.
구성 요소버전

Istio

1.9.9

1.17.1

Jaeger

1.24.1

Kiali

1.36.7

1.2.2.17.2.

참고

절차

  1. Red Hat OpenShift Service Mesh Operator를 클릭합니다. Istio Service Mesh Control Plane 열에서 ServiceMeshControlPlane의 이름을 클릭합니다(예: basic-install).
  2. ServiceMeshControlPlane 세부 정보 만들기 페이지에서 YAML을 클릭하여 구성을 수정합니다.
  3. apiVersion: maistra.io/v2
    kind: ServiceMeshControlPlane
    spec:
      security:
          trust:
          manageNetworkPolicy: false
  4. 저장을 클릭합니다.

1.2.2.18.

1.2.2.18.1.
구성 요소버전

Istio

1.9.6

1.17.1

Jaeger

1.24.1

Kiali

1.36.5

1.2.2.18.2.

1.2.2.18.3.

1.2.2.18.4.

1.2.2.18.5.

1.2.2.18.6.

1.2.2.18.7.

1.2.2.18.8.

1.2.2.19.

1.2.2.19.1.
구성 요소버전

Istio

1.6.14

1.14.5

Jaeger

1.36

Kiali

1.24.17

1.2.2.20.

1.2.2.20.1.
구성 요소버전

Istio

1.6.14

1.14.5

Jaeger

1.36

Kiali

1.24.16-1

1.2.2.21.

이번 Red Hat OpenShift Service Mesh 릴리스는 CVE(Common Vulnerabilities and Exposures) 및 버그 수정을 제공합니다.

1.2.2.21.1.
구성 요소버전

Istio

1.6.14

1.14.5

Jaeger

1.28.0

Kiali

1.24.16-1

1.2.2.22.

이번 Red Hat OpenShift Service Mesh 릴리스는 CVE(Common Vulnerabilities and Exposures) 및 버그 수정을 제공합니다.

1.2.2.22.1.
구성 요소버전

Istio

1.6.14

1.14.5

Jaeger

1.24.1

Kiali

1.24.11

1.2.2.23.

1.2.2.24.

이번 Red Hat OpenShift Service Mesh 릴리스는 CVE(Common Vulnerabilities and Exposures)를 제공합니다.

1.2.2.24.1.

주의

apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
metadata:
  name: basic
spec:
  techPreview:
    meshConfig:
      defaultConfig:
        proxyMetadata: HTTP_STRIP_FRAGMENT_FROM_PATH_UNSAFE_IF_DISABLED: "false"

1.2.2.24.2.

apiVersion: security.istio.io/v1beta1
kind: AuthorizationPolicy
metadata:
  name: httpbin
  namespace: foo
spec:
  action: DENY
  rules:
  - from:
    - source:
        namespaces: ["dev"]
    to:
    - operation:
        hosts: [“httpbin.com”,"httpbin.com:*"]

apiVersion: security.istio.io/v1beta1
kind: AuthorizationPolicy
metadata:
  name: httpbin
  namespace: default
spec:
  action: DENY
  rules:
  - to:
    - operation:
        hosts: ["httpbin.example.com:*"]

1.2.2.25. Red Hat OpenShift Service Mesh 2.0.7 새 기능

이번 Red Hat OpenShift Service Mesh 릴리스는 CVE(Common Vulnerabilities and Exposures) 및 버그 수정을 제공합니다.

1.2.2.26. Red Hat OpenShift Dedicated 및 Microsoft Azure Red Hat OpenShift의 Red Hat OpenShift Service Mesh

Red Hat OpenShift Service Mesh는 이제 Red Hat OpenShift Dedicated 및 Microsoft Azure Red Hat OpenShift를 통해 지원됩니다.

1.2.2.27. Red Hat OpenShift Service Mesh 2.0.6 새 기능

이번 Red Hat OpenShift Service Mesh 릴리스는 CVE(Common Vulnerabilities and Exposures) 및 버그 수정을 제공합니다.

1.2.2.28. Red Hat OpenShift Service Mesh 2.0.5 새 기능

이번 Red Hat OpenShift Service Mesh 릴리스는 CVE(Common Vulnerabilities and Exposures) 및 버그 수정을 제공합니다.

1.2.2.29. Red Hat OpenShift Service Mesh 2.0.4 새 기능

이번 Red Hat OpenShift Service Mesh 릴리스는 CVE(Common Vulnerabilities and Exposures) 및 버그 수정을 제공합니다.

중요

CVE-2021-29492 및 CVE-2021-31920 문제를 해결하려면 수동 단계가 완료되어야 합니다.

1.2.2.29.1. CVE-2021-29492 및 CVE-2021-31920에서 필요한 수동 업데이트

Istio에는 경로 기반 권한 부여 규칙이 사용될 때 여러 슬래시 또는 이스케이프된 슬래시 문자(%2F 또는 %5C)가 있는 HTTP 요청 경로가 잠재적으로 Istio 권한 부여 정책을 우회할 수 있는 원격으로 악용 가능한 취약점이 포함되어 있습니다.

예를 들어 Istio 클러스터 관리자가 경로 /admin에 있는 요청을 거부하도록 권한 부여 DENY 정책을 정의한다고 가정합니다. //admin URL 경로에 전송된 요청이 권한 부여 정책에서 거부되지 않습니다.

RFC 3986에 따르면 여러 개의 슬래시가 있는 //admin 경로는 기술적으로 /admin과 다른 경로로 처리되어야 합니다. 그러나 일부 백엔드 서비스는 여러 슬래시를 단일 슬래시로 병합하여 URL 경로를 정규화하도록 선택합니다. 이로 인해 권한 부여 정책( //admin/admin과 일치하지 않음)을 우회할 수 있으며 사용자는 백엔드의 /admin 경로에 있는 리소스에 액세스할 수 있습니다. 결과적으로 이는 보안 문제로 나타날 수 있습니다.

ALLOW action + notPaths 필드 또는 DENY action + paths field 경로 필드 패턴을 사용하는 권한 부여 정책이 있는 경우 클러스터는 이 취약점의 영향을 받습니다. 이러한 패턴은 예기치 않은 정책 우회에 취약합니다.

다음과 같은 경우 클러스터는 이 취약점의 영향을 받지 않습니다.

  • 권한 부여 정책이 없습니다.
  • 권한 부여 정책은 paths 또는 notPaths 필드를 정의하지 않습니다.
  • 권한 부여 정책은 ALLOW action + paths 필드 또는 DENY action + notPaths 필드 패턴을 사용합니다. 이러한 패턴은 정책 우회 대신 예기치 않은 거부를 유발할 수 있습니다. 이러한 경우 업그레이드는 선택 사항입니다.
참고

경로 정규화를 위한 Red Hat OpenShift Service Mesh 구성 위치는 Istio 구성과 다릅니다.

1.2.2.29.2. 경로 정규화 구성 업데이트

Istio 권한 부여 정책은 HTTP 요청의 URL 경로를 기반으로 할 수 있습니다. URI 정규화라고도 하는 경로 정규화는 들어오는 요청의 경로를 수정 및 표준화하여 정규화된 경로를 표준 방식으로 처리할 수 있도록 합니다. 구문적으로 경로 정규화 후에는 다른 경로가 동일할 수 있습니다.

Istio는 권한 부여 정책에 대해 평가하고 요청을 라우팅하기 전에 요청 경로에서 다음 정규화 체계를 지원합니다.

표 1.1. 정규화 체계

옵션설명예제참고

NONE

정규화는 수행되지 않습니다. Envoy가 수신한 모든 항목은 정확히 그대로 모든 백엔드 서비스에 전달됩니다.

../%2FA../b는 권한 부여 정책에 의해 평가되고 서비스로 전송됩니다.

이 설정은 CVE-2021-31920에 취약합니다.

BASE

현재 이는 Istio의 기본 설치에 사용되는 옵션입니다. 이로 인해 Envoy 프록시에 normalize_path 옵션을 적용하며, RFC 3986에 따라 백슬래시를 슬래시로 변환하는 추가 정규화를 따릅니다.

/a/../b/b로 정규화됩니다. \da/da로 정규화됩니다.

이 설정은 CVE-2021-31920에 취약합니다.

MERGE_SLASHES

BASE 정규화 후 슬래시가 병합됩니다.

/a//b/a/b로 정규화됩니다.

CVE-2021-31920을 완화하려면 이 설정으로 업데이트합니다.

DECODE_AND_MERGE_SLASHES

기본적으로 모든 트래픽을 허용할 때 가장 엄격한 설정입니다. 이 설정은 권한 부여 정책 경로를 철저하게 테스트해야 한다는 경고와 함께 권장됩니다. 백분율로 인코딩된 슬래시 및 백슬래시 문자 (%2F, %2f, %5C%5c)는 MERGE_SLASHES 정규화 전에 / 또는 \로 디코딩됩니다.

/a%2fb/a/b로 정규화됩니다.

CVE-2021-31920을 완화하려면 이 설정으로 업데이트합니다. 이 설정은 더 안전하지만 애플리케이션이 중단될 수도 있습니다. 프로덕션에 배포하기 전에 애플리케이션을 테스트합니다.

정규화 알고리즘은 다음 순서로 수행됩니다.

  1. 백분율로 디코딩된 %2F, %2f, %5C%5c.
  2. Envoy의 normalize_path 옵션에 의해 구현된 RFC 3986 및 기타 정규화입니다.
  3. 슬래시를 병합합니다.
주의

이러한 정규화 옵션은 HTTP 표준 및 일반적인 업계 관행의 권장 사항을 나타내지만 애플리케이션은 원하는 방식으로 URL을 해석할 수 있습니다. 거부 정책을 사용할 때 애플리케이션이 작동하는 방식을 이해해야 합니다.

1.2.2.29.3. 경로 정규화 구성 예

Envoy는 백엔드 서비스의 기대치와 일치하도록 요청 경로를 표준화하여 시스템 보안에 매우 중요합니다. 다음 예제는 시스템을 구성하기 위한 참조로 사용할 수 있습니다. 정규화된 URL 경로 또는 NONE이 선택된 경우 원래 URL 경로는 다음과 같습니다.

  1. 권한 부여 정책을 확인하는 데 사용됩니다.
  2. 백엔드 애플리케이션으로 전달됩니다.

표 1.2. 구성 예

애플리케이션 조건선택…​

프록시를 사용하여 정규화를 수행합니다.

BASE,MERGE_SLASHES 또는 DECODE_AND_MERGE_SLASHES

RFC 3986을 기반으로 요청 경로를 정규화하고 슬래시를 병합하지 않습니다.

BASE

RFC 3986을 기반으로 요청 경로를 정규화하고 슬래시를 병합하지만 백분율로 인코딩된 슬래시를 디코딩하지는 않습니다.

MERGE_SLASHES

RFC 3986을 기반으로 요청 경로를 표준화하고, 백분율로 인코딩된 슬래시를 디코딩하고, 슬래시를 병합합니다.

DECODE_AND_MERGE_SLASHES

프로세스는 RFC 3986과 호환되지 않는 방식으로 요청 경로를 처리합니다.

NONE

1.2.2.29.4. 경로 정규화를 위해 SMCP 구성

Red Hat OpenShift Service Mesh에 대한 경로 정규화를 구성하려면 ServiceMeshControlPlane에서 다음을 지정합니다. 시스템 설정을 결정하는 데 도움이 되도록 구성 예제를 사용합니다.

SMCP v2 pathNormalization

spec:
  techPreview:
    global:
      pathNormalization: <option>

1.2.2.29.5. 케이스 정규화를 위한 설정

일부 환경에서는 대/소문자를 구분하지 않는 권한 부여 정책의 경로를 사용하는 것이 유용할 수 있습니다. 예를 들어 https://myurl/gethttps://myurl/GeT을 동일한 방법으로 처리합니다. 이 경우 아래에 표시된 EnvoyFilter를 사용할 수 있습니다. 이 필터는 비교에 사용되는 경로와 애플리케이션에 제공되는 경로를 모두 변경합니다.

$ oc create -f <myEnvoyFilterFile>
apiVersion: networking.istio.io/v1alpha3
kind: EnvoyFilter
metadata:
  name: ingress-case-insensitive
  namespace: istio-system
spec:
  configPatches:
  - applyTo: HTTP_FILTER
    match:
      context: GATEWAY
      listener:
        filterChain:
          filter:
            name: "envoy.filters.network.http_connection_manager"
            subFilter:
              name: "envoy.filters.http.router"
    patch:
      operation: INSERT_BEFORE
      value:
        name: envoy.lua
        typed_config:
            "@type": "type.googleapis.com/envoy.extensions.filters.http.lua.v3.Lua"
            inlineCode: |
              function envoy_on_request(request_handle)
                local path = request_handle:headers():get(":path")
                request_handle:headers():replace(":path", string.lower(path))
              end

1.2.2.30. Red Hat OpenShift Service Mesh 2.0.3의 새 기능

이번 Red Hat OpenShift Service Mesh 릴리스는 CVE(Common Vulnerabilities and Exposures) 및 버그 수정을 제공합니다.

또한 이 릴리스에는 다음과 같은 새로운 기능이 있습니다.

  • 자세한 내용은 OSSM-351을 참조하십시오.

1.2.2.31. Red Hat OpenShift Service Mesh 2.0.2 새 기능

이번 Red Hat OpenShift Service Mesh 릴리스에는 IBM Z 및 IBM Power Systems에 대한 지원이 추가되었습니다. 또한 CVE(Common Vulnerabilities and Exposures) 및 버그 수정을 제공합니다.

1.2.2.32. Red Hat OpenShift Service Mesh 2.0.1 새 기능

이번 Red Hat OpenShift Service Mesh 릴리스는 CVE(Common Vulnerabilities and Exposures) 및 버그 수정을 제공합니다.

1.2.2.33. Red Hat OpenShift Service Mesh 2.0 새 기능

또한 이 릴리스에는 다음과 같은 새로운 기능이 있습니다.

  • 네트워크를 통한 상호 컨트롤 플레인 통신을 줄임으로써 성능을 향상시킵니다.

    • Envoy의 SDS(Secret Discovery Service)에 대한 지원을 추가합니다. SDS는 Envoy 사이드 카 프록시에 시크릿을 전달하기 위한 보다 안전하고 효율적인 메커니즘입니다.
  • 잘 알려진 보안 위험이 있는 Kubernetes Secrets를 사용할 필요가 없습니다.
  • 새 인증서를 인식하기 위해 프록시를 다시 시작할 필요가 없으므로 인증서 순환 중에 성능이 향상됩니다.

    • WebAssembly 확장을 사용하여 구축된 Istio의 Telemetry v2 아키텍처에 대한 지원이 추가되었습니다. 이 새로운 아키텍처는 상당한 성능 향상을 가져왔습니다.
    • WebAssembly 확장을 기술 프리뷰 기능으로 도입합니다.

1.2.3. 기술 프리뷰

이 릴리스의 일부 기능은 현재 기술 프리뷰 단계에 있습니다. 이러한 실험적 기능은 프로덕션용이 아닙니다.

중요

기술 프리뷰 기능은 Red Hat 프로덕션 서비스 수준 계약(SLA)에서 지원되지 않으며 기능적으로 완전하지 않을 수 있습니다. 따라서 프로덕션 환경에서 사용하는 것은 권장하지 않습니다. 이러한 기능을 사용하면 향후 제품 기능을 조기에 이용할 수 있어 개발 과정에서 고객이 기능을 테스트하고 피드백을 제공할 수 있습니다.

Red Hat 기술 프리뷰 기능의 지원 범위에 대한 자세한 내용은 기술 프리뷰 기능 지원 범위를 참조하십시오.

1.2.4. 사용되지 않거나 삭제된 기능

이전 릴리스에서 사용 가능하던 일부 기능이 더 이상 사용되지 않거나 삭제되었습니다.

1.2.4.1.

  • ECDHE-ECDSA-AES128-SHA
  • ECDHE-RSA-AES128-SHA
  • AES128-GCM-SHA256
  • AES128-SHA
  • ECDHE-ECDSA-AES256-SHA
  • ECDHE-RSA-AES256-SHA
  • AES256-GCM-SHA384
  • AES256-SHA

1.2.4.2.

1.2.4.3.

1.2.4.4.

1.2.4.5. Red Hat OpenShift Service Mesh 2.0의 중단된 기능

Mixer 구성 요소는 릴리스 2.0에서 더 이상 사용되지 않으며 릴리스 2.1에서 제거될 예정입니다. Mixer를 사용한 확장 구현은 릴리스 2.0에서 계속 지원되지만, 확장은 새로운 WebAssembly 메커니즘으로 마이그레이션되어야 합니다.

다음 리소스 유형은 Red Hat OpenShift Service Mesh 2.0에서 더 이상 지원되지 않습니다.

  • Policy(authentication.istio.io/v1alpha1)은 더 이상 지원되지 않습니다. 정책 리소스의 특정 구성에 따라 동일한 효과를 달성하기 위해 여러 리소스를 구성해야 할 수 있습니다.

    • RequestAuthentication(security.istio.io/v1beta1) 사용
    • PeerAuthentication(security.istio.io/v1beta1) 사용
  • ServiceMeshPolicy(maistra.io/v1)는 더 이상 지원되지 않습니다.

  • RbacConfig(rbac.istio.io/v1alpha1)는 더 이상 지원되지 않습니다.

    • RbacConfig, ServiceRole, 및 ServiceRoleBinding을 포함하는 AuthorizationPolicy(security.istio.io/v1beta1)로 대체됩니다.
  • ServiceMeshRbacConfig(maistra.io/v1)는 더 이상 지원되지 않습니다.

  • ServiceRole(rbac.istio.io/v1alpha1)은 더 이상 지원되지 않습니다.
  • ServiceRoleBinding(rbac.istio.io/v1alpha1)은 더 이상 지원되지 않습니다.
  • Kiali에서는 loginLDAP 전략이 더 이상 사용되지 않습니다. 향후 버전에서는 OpenID 공급자를 사용한 인증을 도입할 예정입니다.

1.2.5. 확인된 문제

이러한 제한 사항은 Red Hat OpenShift Service Mesh에 있습니다.

  • Red Hat OpenShift Service Mesh는 업스트림 Istio 프로젝트에서 완전히 지원되지 않기 때문에 IPv6를 지원하지 않습니다.
  • 그래프 레이아웃 - 애플리케이션 아키텍처 및 표시할 데이터(그래프 노드 및 상호 작용 수)에 따라 Kiali 그래프의 레이아웃이 다르게 렌더링됩니다. 모든 상황에 적합하게 렌더링되는 단일 레이아웃을 만드는 것이 불가능하지는 않지만 어렵기 때문에 Kiali는 다양한 레이아웃 옵션을 제공합니다. 다른 레이아웃을 선택하려면 그래프 설정 메뉴에서 다른 레이아웃 스키마를 선택할 수 있습니다.
  • 이것은 프레임워크가 콘솔에 포함된 페이지를 표시하는 방법에 문제가 있기 때문입니다.

1.2.5.1. 서비스 메시의 알려진 문제

이는 Red Hat OpenShift Service Mesh에서 알려진 문제입니다.

  • apiVersion: networking.istio.io/v1beta1
    kind: ProxyConfig
    metadata:
      name: mesh-wide-concurrency
      namespace: <istiod-namespace>
    spec:
      concurrency: 0
  • 예를 들면 다음과 같습니다.

    api:
      namespaces:
        exclude:
        - "^istio-operator"
        - "^kube-.*"
        - "^openshift.*"
        - "^ibm.*"
        - "^kiali-operator"
  • MAISTRA-1959 2.0으로 마이그레이션 mTLS가 활성화된 경우 Prometheus 스크래핑(spec.addons.prometheus.scrapetrue로 설정)이 작동하지 않습니다. 또한 Kiali는 mTLS가 비활성화되면 관련 없는 그래프 데이터를 표시합니다.

    이 문제는 프록시 구성에서 포트 15020을 제외하여 해결할 수 있습니다. 예를 들면 다음과 같습니다.

    spec:
      proxy:
        networking:
          trafficControl:
            inbound:
              excludedPorts:
              - 15020
  • MAISTRA-1314 Red Hat OpenShift Service Mesh는 IPv6를 지원하지 않습니다.
  • MAISTRA-453 새 프로젝트를 생성하고 즉시 pod를 배포하면 사이드카 삽입이 발생하지 않습니다. pod가 생성되기 전에 Operator에서 maistra.io/member-of를 추가하지 못하므로 사이드카 삽입을 수행하려면 pod를 삭제하고 다시 생성해야 합니다.
  • MAISTRA-158 동일한 호스트 이름을 참조하는 여러 게이트웨이를 적용하면 모든 게이트웨이가 작동을 중지합니다.

1.2.5.2. Kiali의 확인된 문제

참고

Kiali의 새로운 문제는 OpenShift Service Mesh 프로젝트에서 생성되어야 하며 ComponentKiali로 설정되어야 합니다.

다음은 Kiali에서 알려진 문제입니다.

  • KIALI-2206 처음으로 Kiali 콘솔에 액세스했을 때 Kiali에 대해 캐시된 브라우저 데이터가 없는 경우 Kiali 서비스 상세 정보 페이지의 Metrics 탭에 있는 ‘Grafana에서 보기’ 링크가 잘못된 위치로 리디렉션됩니다. 이 문제가 발생하는 유일한 상황은 Kiali에 처음 액세스하는 경우입니다.
  • KIALI-507 Kiali는 Internet Explorer 11을 지원하지 않습니다. 기본 프레임워크가 Internet Explorer를 지원하지 않기 때문입니다. Kiali 콘솔에 액세스하려면 Chrome, Edge, Firefox 또는 Safari 브라우저의 두 가지 최신 버전 중 하나를 사용하십시오.

1.2.5.3.

  • Apache Spark가 지원되지 않습니다.

  • TRACING-2057 Kafka API가 Strimzi Kafka Operator 0.23.0을 지원하도록 v1beta2로 업데이트되었습니다. 그러나 이 API 버전은 AMQ Streams 1.6.3에서 지원되지 않습니다. 다음 환경의 경우 Jaeger 서비스가 업그레이드되지 않으며 새 Jaeger 서비스를 생성하거나 기존 Jaeger 서비스를 수정할 수 없습니다.

    • Jaeger Operator 채널: 1.17.x stable 또는 1.20.x stable
    • AMQ Streams Operator 채널: amq-streams-1.6.x

      이 문제를 해결하려면 AMQ Streams Operator의 서브스크립션 채널을 amq-streams-1.7.x 또는 stable로 전환합니다.

1.2.6. 해결된 문제

현재 릴리스에서 다음 문제가 해결되었습니다.

1.2.6.1. 서비스 메시의 수정된 문제

  • OSSM-449 VirtualService 및 Service로 인해 "도메인에 대한 고유한 값만 허용됩니다. 도메인 중복 항목이 허용됩니다."
  • OSSM-419 이름이 유사한 네임스페이스는 서비스 메시 멤버 역할에 네임스페이스를 정의할 수 없는 경우에도 Kiali 네임스페이스 목록에 모두 표시됩니다.
  • OSSM-296 Kiali 사용자 지정 리소스(CR)에 상태 구성을 추가할 때 Kiali configmap에 복제되지 않습니다.
  • OSSM-291 Kiali 콘솔의 애플리케이션, 서비스 및 워크로드 페이지에서 ‘필터에서 레이블 삭제’ 기능이 작동하지 않습니다.
  • OSSM-289 Kiali 콘솔에는 ‘istio-ingressgateway’ 및 ‘jaeger-query’ 서비스에 대한 서비스 세부 정보 페이지에 표시되는 추적이 없습니다. 추적은 Jaeger에 있습니다.
  • OSSM-287 Kiali 콘솔에는 그래프 서비스에 표시되는 추적이 없습니다.
  • OSSM-285 Kiali 콘솔에 액세스하려고 할 때 “Error trying to get OAuth Metadata”와 같은 오류 메시지가 표시됩니다.

    • maistra.io/owner
    • app.kubernetes.io/version

  • MAISTRA-2534 istiod에서 JWT 규칙에 지정된 발급자에 대한 JWKS를 가져오기를 시도하면 발급자 서비스가 502로 응답했습니다. 이로 인해 프록시 컨테이너가 준비되지 않아 배포가 중단되었습니다. 커뮤니티 버그 수정이 Service Mesh 2.0.7 릴리스에 포함되어 있습니다.
  • MAISTRA-2411 Operator가 ServiceMeshControlPlane에서 spec.gateways.additionaIngress를 사용하여 새 수신 게이트웨이를 생성하면 Operator는 기본 istio-ingressgateway에 대한 추가 수신 게이트웨이에 대한 NetworkPolicy를 생성하지 않습니다. 이로 인해 새 게이트웨이 경로에서 503 응답이 발생합니다.

  • MAISTRA-2401 CVE-2021-3586 servicemesh-operator: NetworkPolicy 리소스가 인그레스 리소스에 대해 포트를 잘못 지정했습니다. Red Hat OpenShift Service Mesh에 설치된 NetworkPolicy 리소스가 액세스할 수 있는 포트를 올바르게 지정하지 않았습니다. 이로 인해 모든 pod에서 이러한 리소스의 모든 포트에 액세스할 수 있었습니다. 다음 리소스에 적용되는 네트워크 정책은 영향을 받습니다.

    • Galley
    • Grafana
    • Istiod
    • Jaeger
    • Kiali
    • Prometheus
    • Sidecar injector
  • 서비스 메시의 시간이 초과되어 서비스 메시에서 네임스페이스가 지속적으로 드롭된 다음 다시 나열됩니다.
  • MAISTRA-2370 listerInformer에서 tombstones를 처리합니다. 업데이트된 캐시 코드베이스는 네임스페이스 캐시에서 집계된 캐시로 이벤트를 변환할 때 tombstones를 처리하지 않아 go 루틴에서 패닉이 발생했습니다.
  • MAISTRA-2010 AuthorizationPolicy는 request.regex.headers 필드를 지원하지 않습니다. validatingwebhook는 필드가 있는 모든 AuthorizationPolicy를 거부하며, 이를 비활성화한 경우에도 Pilot은 동일한 코드를 사용하여 유효성을 검사하려고 시도하지만 작동하지 않습니다.
  • MAISTRA-1979 2.0으로 마이그레이션 변환 Webhook는 SMCP.status를 v2에서 v1로 변환할 때 다음과 같은 중요한 필드를 삭제합니다.

    • conditions
    • components
    • observedGeneration
    • annotations

      Operator를 2.0으로 업그레이드하면 리소스의 maistra.io/v1 버전을 사용하여 SMCP 상태를 판독하는 클라이언트 툴이 중단될 수 있습니다.

      또한 oc get servicemeshcontrolplanes.v1.maistra.io를 실행할 때 READY 및 STATUS 열이 비어 있습니다.

  • ServiceMeshExtensions에 대한 MAISTRA-1947 기술 프리뷰 업데이트는 적용되지 않습니다.

  • MAISTRA-1983 2.0으로 마이그레이션 기존의 유효하지 않은 ServiceMeshControlPlane을 사용하여 2.0.0으로 업그레이드하면 쉽게 복구할 수 없습니다. ServiceMeshControlPlane 리소스의 유효하지 않은 항목으로 인해 복구할 수 없는 오류가 발생했습니다. 수정으로 오류를 복구할 수 있습니다. 유효하지 않은 리소스를 삭제하고 새 리소스로 교체하거나 리소스를 편집하여 오류를 수정할 수 있습니다. 리소스 편집에 대한 자세한 내용은 [Red Hat OpenShift Service Mesh 설치 구성]을 참조하십시오.
  • MAISTRA-1089 2.0으로 마이그레이션 비 컨트롤 플레인 네임스페이스에서 생성된 게이트웨이는 자동으로 삭제됩니다.
  • MAISTRA-858 Istio 1.1.x와 관련된 더 이상 사용하지 않는 옵션 및 구성을 설명하는 다음과 같은 Envoy 로그 메시지가 예상됩니다.

    • [2019-06-03 07:03:28.943][19][warning][misc] [external/envoy/source/common/protobuf/utility.cc:129] Using deprecated option 'envoy.api.v2.listener.Filter.config'. 이 구성은 곧 Envoy에서 삭제될 예정입니다.
    • [2019-08-12 22:12:59.001][13][warning][misc] [external/envoy/source/common/protobuf/utility.cc:174] Using deprecated option 'envoy.api.v2.Listener.use_original_dst' from file lds.proto. 이 구성은 곧 Envoy에서 삭제될 예정입니다.
  • MAISTRA-806 제거된 Istio Operator pod로 인해 메시 및 CNI가 배포되지 않습니다.

  • MAISTRA-193 citadel에 대해 상태 확인이 활성화되면 예기치 않은 콘솔 정보 메시지가 표시됩니다.
  • SMCP를 업데이트하려면 토글 제어를 클릭하는 대신 YAML 콘텐츠를 직접 편집하거나 명령줄에서 리소스를 업데이트합니다.

1.2.6.2.

  • {"level":"warn","ts":1642438880.918793,"caller":"channelz/logging.go:62","msg":"[core]grpc: Server.Serve failed to create ServerTransport: connection error: desc = \"transport: http2Server.HandleStreams received bogus greeting from client: \\\"\\\\x16\\\\x03\\\\x01\\\\x02\\\\x00\\\\x01\\\\x00\\\\x01\\\\xfc\\\\x03\\\\x03vw\\\\x1a\\\\xc9T\\\\xe7\\\\xdaCj\\\\xb7\\\\x8dK\\\\xa6\\\"\"","system":"grpc","grpc_log":true}

  • TRACING-2009 Jaeger Operator가 Strimzi Kafka Operator 0.23.0에 대한 지원을 포함하도록 업데이트되었습니다.
  • TRACING-1907 애플리케이션 네임스페이스에서 구성 맵이 누락되어 Jaeger 에이전트 사이드카 삽입이 실패했습니다. 잘못된 OwnerReference 필드 설정으로 인해 구성 맵이 자동으로 삭제되었으며 결과적으로 애플리케이션 Pod가 "ContainerCreating" 단계를 통과하지 않았습니다. 잘못된 설정이 제거되었습니다.
  • TRACING-1725 TRACING-1631에 대한 후속 조치입니다. 동일한 이름을 사용하지만 다른 네임스페이스 내에 Jaeger 프로덕션 인스턴스가 여러 개인 경우 Elasticsearch 인증서가 올바르게 조정되는지 확인하기 위한 추가 수정 사항입니다. BZ-1918920도 참조하십시오.
  • TRACING-1631 동일한 이름을 사용하지만 다른 네임스페이스 내의 여러 Jaeger 프로덕션 인스턴스로, Elasticsearch 인증서 문제를 발생시킵니다. 여러 서비스 메시가 설치되면 모든 Jaeger Elasticsearch 인스턴스에 개별 시크릿 대신 동일한 Elasticsearch 시크릿이 있어 OpenShift Elasticsearch Operator가 모든 Elasticsearch 클러스터와 통신할 수 없습니다.
  • TRACING-1300 Istio 사이드카를 사용할 때 에이전트와 수집기 간의 연결에 실패했습니다. Jaeger Operator 업데이트는 Jaeger 사이드카 에이전트와 Jaeger 수집기 간의 TLS 통신을 기본적으로 활성화했습니다.
  • TRACING-1208 Jaeger UI에 액세스할 때 인증 “500 Internal Error”입니다. OAuth를 사용하여 UI를 인증할 때 oauth-proxy 사이드카가 additionalTrustBundle로 설치할 때 정의된 사용자 정의 CA 번들을 신뢰하지 않기 때문에 500 오류가 발생합니다.
  • TRACING-1166 현재 연결이 끊긴 환경에서 Jaeger 스트리밍 전략을 사용할 수 없습니다. Kafka 클러스터가 프로비저닝 중인 경우 오류가 발생합니다. registry.redhat.io/amq7/amq-streams-kafka-24-rhel7@sha256:f9ceca004f1b7dccb3b82d9a8027961f9fe4104e0ed69752c0bdd8078b4a1076 이미지를 가져올 수 없습니다.
  • TRACING-809 Jaeger Ingester는 Kafka 2.3과 호환되지 않습니다. Jaeger Ingester의 두 개 이상의 인스턴스와 트래픽이 충분한 경우 로그에 지속적으로 리밸런싱 메시지를 생성합니다. 이는 Kafka 2.3.1에서 수정된 Kafka 2.3의 문제의 재발로 인해 발생합니다. 자세한 내용은 Jaegertracing-1819를 참조하십시오.

1.3.

Red Hat OpenShift Service Mesh는 서비스 메시에서 네트워크로 연결된 마이크로 서비스에 대해 동작 정보 및 운영 제어용 플랫폼을 제공합니다.

1.3.1. 서비스 메시 이해

서비스 메시는 분산 마이크로 서비스 아키텍처에서 애플리케이션을 구성하는 마이크로 서비스 네트워크와 이러한 마이크로 서비스 간의 상호 작용입니다. 서비스 메시의 크기와 복잡성이 증가함에 따라 이를 이해하고 관리하는 것이 어려워질 수 있습니다.

오픈 소스 Istio 프로젝트를 기반으로 하는 Red Hat OpenShift Service Mesh는 서비스 코드를 변경할 필요 없이 기존 분산 애플리케이션에 투명 계층을 추가합니다. 마이크로 서비스 간의 모든 네트워크 통신을 차단하는 메시의 관련 서비스에 특수 사이드카 프록시를 배포하여 Red Hat OpenShift Service Mesh 지원을 서비스에 추가합니다.

Red Hat OpenShift Service Mesh를 사용하면, 다음과 같은 기능을 제공하는 배포된 서비스 네트워크를 쉽게 생성할 수 있습니다.

  • 검색
  • 로드 밸런싱
  • 서비스 간 인증
  • 장애 복구
  • 지표
  • 모니터링

Red Hat OpenShift Service Mesh는 다음과 같은 보다 복잡한 운영 기능을 제공합니다:

  • A/B 테스트
  • Canary 릴리스
  • 액세스 제어
  • 엔드 투 엔드 인증

1.3.2. 서비스 메시 아키텍처

서비스 메시 기술은 네트워크 통신 수준에서 작동합니다. 즉, 서비스 메시 구성 요소는 요청을 수정하거나, 리디렉션하거나, 다른 서비스에 새 요청을 생성하여 마이크로 서비스로 들어오고 나가는 트래픽을 캡처하거나 가로챕니다.

데이터 플레인은 pod에서 애플리케이션 컨테이너와 함께 실행되며 서비스 메시의 마이크로 서비스 간 인바운드 및 아웃바운드 네트워크 통신을 가로채고 제어하는 지능형 프록시 집합입니다. 데이터 플레인은 인바운드(ingress) 및 아웃바운드(egress) 네트워크 트래픽을 가로채는 방식으로 구현됩니다. Istio 데이터 플레인은 pod의 사이드 애플리케이션 컨테이너와 함께 실행되는 Envoy 컨테이너로 구성됩니다. Envoy 컨테이너는 pod 내외의 모든 네트워크 통신을 제어하는 프록시 역할을 합니다.

  • Envoy 프록시는 데이터 플레인 트래픽과 상호 작용하는 유일한 Istio 구성 요소입니다. 서비스 간에 들어오는 모든(ingress) 및 발신(egress) 네트워크 트래픽은 프록시를 통해 이동합니다. 또한 Envoy 프록시는 메시 내에서 서비스 트래픽과 관련된 모든 메트릭을 수집합니다. Envoy 프록시는 서비스와 동일한 Pod에서 실행되는 사이드카로 배포됩니다. Envoy 프록시는 메시 게이트웨이를 구현하는 데도 사용됩니다.

    • 게이트웨이는 들어오거나 나가는 HTTP/TCP 연결을 수신하는 로드 밸런서 장치로 작동하는 프록시입니다. 게이트웨이 구성은 서비스 워크로드와 함께 실행되는 사이드카 Envoy 프록시가 아닌, 메시의 에지에서 실행되는 독립 실행형 Envoy 프록시에 적용됩니다. 게이트웨이를 사용하여 메시에 대한 인바운드 및 아웃바운드 트래픽을 관리하여 메시에 들어오거나 나가려는 트래픽을 지정할 수 있습니다.

      • Ingress 게이트웨이를 사용하면 모니터링 및 경로 규칙과 같은 기능을 클러스터로 들어오는 트래픽에 적용할 수 있습니다.
      • egress-gateway - 송신 컨트롤러라고도 하는 Egress 게이트웨이는 서비스 메시를 나가는 트래픽을 관리하는 전용 Envoy 프록시입니다. Egress Gateway를 사용하면 모니터링 및 경로 규칙과 같은 기능이 메시를 종료하는 트래픽에 적용할 수 있습니다.

컨트롤 플레인은 데이터 플레인을 구성하는 프록시를 관리하고 구성합니다. 구성에 대한 권한 있는 소스이며 액세스 제어 및 사용 정책을 관리하고 서비스 메시의 프록시에서 메트릭을 수집합니다.

  • Istio 컨트롤 플레인은 이전의 여러 컨트롤 플레인 구성 요소(Citadel, Galley, Pilot)를 단일 바이너리로 통합하는 Istiod로 구성됩니다. Istiod는 서비스 검색, 구성 및 인증서 관리를 제공합니다. 고급 라우팅 규칙을 Envoy 구성으로 변환하고 런타임 시 사이드카로 전달합니다.

    • Istiod는 CA(인증 기관) 역할을 하며 데이터 플레인에서 보안 mTLS 통신을 지원하는 인증서를 생성할 수 있습니다. 이를 위해 외부 CA를 사용할 수도 있습니다.
    • Istiod는 OpenShift 클러스터에 배포된 워크로드에 사이드카 프록시 컨테이너를 삽입하는 역할을 합니다.

Red Hat OpenShift Service Mesh는 istio-operator를 사용하여 컨트롤 플레인 설치를 관리합니다. Operator는 OpenShift 클러스터에서 공통 활동을 구현하고 자동화할 수 있는 소프트웨어입니다. 컨트롤러 역할을 하여 클러스터에서 원하는 오브젝트 상태(이 경우 Red Hat OpenShift Service Mesh 설치)를 설정하거나 변경할 수 있습니다.

또한 Red Hat OpenShift Service Mesh는 다음 Istio 추가 기능도 제품의 일부로 번들로 제공합니다.

  • Kiali - Kiali는 Red Hat OpenShift Service Mesh의 관리 콘솔입니다. 대시보드, 관찰 기능, 강력한 구성 및 유효성 검사 기능을 제공합니다. 트래픽 토폴로지를 유추하고 서비스 메시의 구조를 표시하고 메시의 상태를 표시합니다.
  • Prometheus - Red Hat OpenShift Service Mesh는 Prometheus를 사용하여 서비스의 원격 분석 정보를 저장합니다. Kiali는 Prometheus를 사용하여 메트릭, 상태 및 메시 토폴로지를 가져옵니다.
  • Jaeger는 여러 서비스 간에 단일 요청과 관련된 추적을 중앙 집중화하고 표시하는 오픈소스 추적 기능 서버입니다.
  • Grafana - Grafana는 메시 관리자에게 Istio 데이터에 대한 고급 쿼리 및 메트릭 분석 및 대시보드를 제공합니다. 선택적으로 Grafana를 사용하여 서비스 메시 메트릭을 분석할 수 있습니다.

1.3.3. Kiali 이해

Kiali는 서비스 메시의 마이크로 서비스와 해당 연결 방법을 표시하여 서비스 메시를 시각화할 수 있습니다.

1.3.3.1. Kiali 개요

Kiali는 Istio 서비스 메시를 정의하고 검증하며 관찰하는 데 도움이 됩니다. 이를 통해 토폴로지를 유추하여 서비스 메시의 구조를 이해하고 서비스 메시의 상태에 대한 정보를 제공할 수 있습니다.

Kiali는 회로 차단기, 요청 속도, 대기 시간, 트래픽 흐름 그래프와 같은 기능에 대한 가시성을 제공하는 네임스페이스의 대화형 그래프 보기를 실시간으로 제공합니다. Kiali는 애플리케이션에서 서비스 및 워크로드에 이르기까지 다양한 수준의 구성 요소에 대한 통찰력을 제공하며, 선택한 그래프 노드 또는 에지에서 상황별 정보에 대한 상호 작용과 차트를 표시할 수 있습니다. Kiali는 게이트웨이, 대상 규칙, 가상 서비스, 메시 정책 등과 같은 Istio 구성의 유효성을 확인하는 기능도 제공합니다. Kiali는 자세한 지표를 제공하며 고급 쿼리에 기본 Grafana 통합이 가능합니다. Jaeger를 Kiali 콘솔에 통합하면 분산 추적이 제공됩니다.

Kiali는 기본적으로 Red Hat OpenShift Service Mesh의 일부로 설치됩니다.

1.3.3.2. Kiali 아키텍처

Kiali는 Kiali 애플리케이션과 Kiali 콘솔이라는 두 가지 구성 요소로 구성됩니다.

  • Kiali 애플리케이션(백엔드) - 이 구성 요소는 컨테이너 애플리케이션 플랫폼에서 실행되고 서비스 메시 구성 요소와 통신하며, 데이터를 검색 및 처리하고, 이 데이터를 콘솔에 노출합니다. Kiali 애플리케이션에는 스토리지가 필요하지 않습니다. 클러스터에 애플리케이션을 배포할 때 구성은 ConfigMaps 및 시크릿에 설정됩니다.
  • Kiali 콘솔(프론트엔드) - Kiali 콘솔은 웹 애플리케이션입니다. Kiali 애플리케이션은 Kiali 콘솔을 제공하며 이를 사용자에게 표시하기 위해 데이터의 백엔드를 쿼리합니다.

또한 Kiali는 컨테이너 애플리케이션 플랫폼과 Istio에서 제공하는 외부 서비스 및 구성 요소에 따라 달라집니다.

  • Red Hat Service Mesh(Istio) - Istio는 Kiali 요구 사항입니다. Istio는 서비스 메시를 제공하고 제어하는 구성 요소입니다. Kiali와 Istio를 별도로 설치할 수 있지만 Kiali는 Istio에 따라 달라지며 Istio가 존재하지 않는 경우 작동하지 않습니다. Kiali는 Prometheus 및 클러스터 API를 통해 노출되는 Istio 데이터와 구성을 검색해야 합니다.
  • Prometheus - 전용 Prometheus 인스턴스는 Red Hat OpenShift Service Mesh 설치의 일부로 포함되어 있습니다. Istio Telemetry가 활성화되면 지표 데이터가 Prometheus에 저장됩니다. Kiali는 이 Prometheus 데이터를 사용하여 메시 토폴로지 확인, 지표 표시, 상태 계산, 가능한 문제 표시 등의 작업을 수행합니다. Kiali는 Prometheus와 직접 통신하고 Istio Telemetry에서 사용하는 데이터 스키마를 가정합니다. Prometheus는 Istio 종속성 및 Kiali에 대한 하드 종속성이며, 대부분의 Kiali 기능은 Prometheus없이 작동하지 않습니다.
  • Kiali는 클러스터 API를 쿼리하여 네임스페이스, 서비스, 배포, pod 및 기타 엔터티에 대한 정의를 검색합니다. 또한 Kiali는 다른 클러스터 엔티티 간의 관계를 해결하기 위해 쿼리를 만듭니다. 클러스터 API는 가상 서비스, 대상 규칙, 경로 규칙, 게이트웨이, 할당량 등과 같은 Istio 구성을 검색하도록 쿼리합니다.
  • Jaeger - Jaeger는 선택 사항이지만 Red Hat OpenShift Service Mesh의 일부로 설치됩니다. Istio의 분산 추적 기능을 비활성화하면 추적 데이터를 사용할 수 없습니다.
  • Grafana - Grafana는 선택 사항이지만 Red Hat OpenShift Service Mesh의 일부로 설치됩니다. 사용 가능한 경우, Kiali의 지표 페이지에 사용자를 Grafana의 동일한 지표로 안내하는 링크가 표시됩니다.

1.3.3.3. Kiali 기능

Kiali 콘솔은 Red Hat Service Mesh와 통합되어 다음 기능을 제공합니다.

  • 상태 - 애플리케이션, 서비스 또는 워크로드에 대한 문제를 빠르게 식별합니다.
  • 토폴로지 - 애플리케이션, 서비스 또는 워크로드가 Kiali 그래프를 통해 통신하는 방식을 시각화합니다.
  • 지표 - 사전 정의된 지표 대시 보드를 통해 Go, Node.js. Quarkus, Spring Boot, Thorntail, Vert.x에 대한 서비스 메시 및 애플리케이션 성능을 차트로 작성할 수 있습니다. 또한 사용자 정의 대시보드를 생성할 수도 있습니다.
  • 추적 - Jaeger와의 통합을 통해 애플리케이션을 구성하는 다양한 마이크로 서비스를 통해 요청 경로를 따를 수 있습니다.
  • 검증 - 가장 일반적인 Istio 오브젝트에 대한 고급 검증(대상 규칙, 서비스 항목, 가상 서비스 등)을 수행합니다.
  • 구성 - 마법사를 사용하거나 Kiali 콘솔의 YAML 편집기에서 직접 Istio 라우팅 구성을 생성, 업데이트 및 삭제할 수 있는 옵션입니다.

1.3.4.

사용자가 애플리케이션에서 작업을 수행할 때마다 응답을 생성하기 위해 참여하도록 다양한 서비스를 필요로 할 수 있는 아키텍처에 의해 요청이 실행됩니다. 이 요청의 경로는 분산 트랜잭션입니다.

분산 추적은 분산 트랜잭션에 있는 전체 이벤트 체인을 이해하기 위해 일반적으로 다양한 프로세스 또는 호스트에서 실행되는 다양한 작업 단위에 대한 정보를 결합하는 데 사용되는 기술입니다. 분산 추적을 통해 개발자는 대규모 서비스 지향 아키텍처에서 호출 흐름을 시각화할 수 있습니다. 직렬화, 병렬 처리 및 대기 시간 소스를 이해하는 데 유용할 수 있습니다.

추적은 시스템을 통한 데이터/실행 경로입니다. 엔드 투 엔드 추적은 하나 이상의 범위로 구성됩니다.

기간은 중첩되어 인과 관계를 모델링하도록 주문될 수 있습니다.

1.3.4.1.

  • 분산 트랜잭션 모니터링
  • 성능 및 대기 시간 최적화
  • 근본 원인 분석 수행

1.3.4.2.

    • 수동으로 또는 이미 OpenTracing과 통합된 Camel(Fuse), Spring Boot(RHOAR), MicroProfile(RHOAR/T©tail), Wildfly(EAP) 등의 다양한 기존 오픈 소스 프레임워크를 사용하여 분산 추적에 대해 애플리케이션을 조정하는 데 사용할 수 있습니다.
    • 에이전트는 조정된 애플리케이션과 동일한 호스트에 배치되어야 합니다.
    • 스토리지(데이터 저장소) - 수집기에는 영구 스토리지 백엔드가 필요합니다. 이 릴리스에서 지원되는 유일한 스토리지는 Elasticsearch입니다.
    • 쿼리(쿼리 서비스) - 쿼리는 스토리지에서 추적을 검색하는 서비스입니다.
    • 검색 페이지에서 추적을 찾고 개별 추적을 구성하는 기간의 세부 사항을 확인할 수 있습니다.

1.3.4.3.

1.3.5. 다음 단계

1.4.

1.4.1.

1.4.2.

1.4.3.

1.4.4.

1.5. 서비스 메시 및 Istio 차이점

1.5.1. Istio와 Red Hat OpenShift Service Mesh 간의 차이점

다음 기능은 서비스 메시와 Istio에서 다릅니다.

1.5.1.1. 명령줄 도구

Red Hat OpenShift Service Mesh의 명령줄 도구는 oc입니다.  Red Hat OpenShift Service Mesh는 istioctl을 지원하지 않습니다.

1.5.1.2. 설치 및 업그레이드

Red Hat OpenShift Service Mesh는 Istio 설치 프로필을 지원하지 않습니다.

Red Hat OpenShift Service Mesh는 서비스 메시의 카나리아 업그레이드를 지원하지 않습니다.

1.5.1.3. 자동 삽입

업스트림 Istio 커뮤니티 설치는 레이블을 지정한 프로젝트 내의 pod에 사이드카를 자동으로 삽입합니다.

표 1.3.

  Red Hat OpenShift Service Mesh

1.5.1.4. Istio 역할 기반 액세스 제어 기능

역할 기반 액세스 제어(RBAC)는 서비스에 대한 액세스를 제어하는 데 사용할 수 있는 메커니즘을 제공합니다. 사용자 이름별로, 또는 속성 집합을 지정하여 제목을 식별하고 그에 따라 액세스 제어를 적용할 수 있습니다.

업스트림 Istio 커뮤니티 설치에는 정확한 헤더 일치를 수행하거나, 헤더에서 와일드카드를 일치시키거나, 특정 접두사 또는 접미사가 포함된 헤더를 확인하는 옵션이 포함되어 있습니다.

Red Hat OpenShift Service Mesh는 정규식을 사용하여 요청 헤더를 일치시키는 기능을 확장합니다. 정규식이 있는 request.regex.headers의 속성 키를 지정합니다.

요청 헤더와 일치하는 업스트림 Istio 커뮤니티 예

apiVersion: security.istio.io/v1beta1
kind: AuthorizationPolicy
metadata:
  name: httpbin-usernamepolicy
spec:
  action: ALLOW
  rules:
    - when:
        - key: 'request.regex.headers[username]'
          values:
            - "allowed.*"
  selector:
    matchLabels:
      app: httpbin

1.5.1.5. OpenSSL

Red Hat OpenShift Service Mesh는 BoringSSL을 OpenSSL로 대체합니다. OpenSSL은 SSL(Secure Sockets Layer) 및 TLS(Transport Layer Security) 프로토콜의 오픈 소스 구현이 포함된 소프트웨어 라이브러리입니다. Red Hat OpenShift Service Mesh 프록시 바이너리는 기본 Red Hat Enterprise Linux 운영 체제에서 OpenSSL 라이브러리(libssl 및 libcrypto)를 동적으로 연결합니다.

1.5.1.6. 외부 워크로드

1.5.1.7.

1.5.1.8. 구성 요소 수정

  • maistra-version 레이블이 모든 리소스에 추가되었습니다.
  • 모든 Ingress 리소스가 OpenShift Route 리소스로 변환되었습니다.
  • Godebug가 모든 템플릿에서 제거됨
  • istio-multi ServiceAccount과 ClusterRoleBinding, istio-reader ClusterRole이 제거되었습니다.

1.5.1.9.

1.5.1.10. Envoy 서비스

Red Hat OpenShift Service Mesh는 QUIC 기반 서비스를 지원하지 않습니다.

1.5.1.11.

1.5.1.12.

1.5.1.13. 게이트웨이

참고

1.5.1.14.

1.5.1.15.

1.5.1.16. Istio 게이트웨이 경로

Istio 게이트웨이의 OpenShift 경로는 Red Hat OpenShift Service Mesh에서 자동으로 관리됩니다. Istio 게이트웨이가 서비스 메시 내부에서 생성, 업데이트 또는 삭제될 때마다 OpenShift 경로가 생성, 업데이트 또는 삭제됩니다.

IOR(Istio OpenShift Routing)이라는 Red Hat OpenShift Service Mesh Control Plane 구성 요소는 게이트웨이 경로를 동기화합니다. 자세한 내용은 자동 경로 생성을 참조하십시오.

1.5.1.16.1. catch-all 도메인

catch-all 도메인("*")은 지원되지 않습니다. 게이트웨이 정의에서 이 도메인이 발견되면 Red Hat OpenShift Service Mesh는 경로를 생성하지만 기본 호스트 이름을 만들기 위해 OpenShift에 의존합니다. 즉, 새로 생성된 경로는 catch-all ("*") 경로가 아니며, 대신 r<route-name>[-<project>].<suffix> 형식의 호스트 이름이 있습니다. Red Hat OpenShift Dedicated를 사용하는 경우 Red Hat OpenShift Dedicated에서 dedicated-admin 역할을 참조하십시오.

1.5.1.16.2. 하위 도메인

하위 도메인(예: "*.domain.com")이 지원됩니다.

1.5.1.16.3. TLS(Transport layer security)

TLS(Transport Layer Security)가 지원됩니다. 즉, 게이트웨이에 tls 섹션이 포함된 경우 OpenShift 경로는 TLS를 지원하도록 구성됩니다.

추가 리소스

1.5.2. 다중 테넌트 설치

업스트림 Istio는 하나의 테넌트 접근법을 사용하지만 Red Hat OpenShift Service Mesh는 클러스터 내에서 여러 개의 독립적인 컨트롤 플레인을 지원합니다. Red Hat OpenShift Service Mesh는 다중 테넌트 연산자를 사용하여 컨트롤 플레인 라이프사이클을 관리합니다.

Red Hat OpenShift Service Mesh는 기본적으로 다중 테넌트 컨트롤 플레인을 설치합니다. 서비스 메시에 액세스할 수 있는 프로젝트를 지정하고 다른 컨트롤 플레인 인스턴스에서 서비스 메시를 분리합니다.

1.5.2.1. 멀티 테넌시 대 클러스터 전체 설치

구성 요소는 더 이상 클러스터 범위의 역할 기반 액세스 제어(RBAC) 리소스 ClusterRoleBinding을 사용하지 않습니다.

ServiceMeshMemberRoll members 목록에 있는 모든 프로젝트는 컨트롤 플레인 배포와 관련된 각 서비스 계정에 대해 RoleBinding을 가지며, 각 컨트롤 플레인 배포는 해당하는 멤버 프로젝트만 감시합니다. 각 멤버 프로젝트에는 maistra.io/member-of 레이블이 추가됩니다. 여기서 member-of 값은 컨트롤 플레인 설치가 포함된 프로젝트입니다.

Red Hat OpenShift Service Mesh는 각 멤버 프로젝트를 구성하여 자체, 컨트롤 플레인 및 기타 멤버 프로젝트 간의 네트워크 액세스를 보장합니다. 자세한 내용은 OpenShift SDN 정보를 참조하십시오.

  • NetworkPolicy: Red Hat OpenShift Service Mesh는 각 멤버 프로젝트에서 NetworkPolicy 리소스를 생성하여 다른 멤버 및 컨트롤 플레인에서 모든 pod로 수신할 수 있습니다. Service Mesh에서 멤버를 제거하면 이 NetworkPolicy 리소스는 프로젝트에서 삭제됩니다.

    참고

    또한 멤버 프로젝트 전용 수신으로 제한합니다. 멤버 외 프로젝트에서 수신이 필요한 경우 해당 트래픽을 허용하기 위해 NetworkPolicy를 생성해야 합니다.

  • 다중 테넌트: Red Hat OpenShift Service Mesh는 각 멤버 프로젝트의 NetNamespace를 컨트롤 플레인 프로젝트의 NetNamespace에 결합합니다(oc adm pod-network join-projects --to control-plane-project member-project). 서비스 메시에서 멤버를 제거하면 해당 NetNamespace가 컨트롤 플레인과 분리됩니다(oc adm pod-network isolate-projects member-project 실행과 동일).
  • 서브넷: 추가 구성이 수행되지 않습니다.

1.5.2.2. 클러스터 범위 리소스

업스트림 Istio에는 의존하는 두 개의 클러스터 범위 리소스가 있습니다. MeshPolicyClusterRbacConfig 이는 다중 테넌트 클러스터와 호환되지 않으며 아래에 설명된 대로 교체되었습니다.

  • ServiceMeshPolicy는 컨트롤 플레인 전체의 인증 정책 구성을 위해 MeshPolicy를 대체합니다. 이는 컨트롤 플레인과 동일한 프로젝트에서 생성되어야 합니다.
  • ServicemeshRbacConfig는 컨트롤 플레인 전체 역할 기반 액세스 제어 구성을 위해 ClusterRbacConfig 를 대체합니다. 이는 컨트롤 플레인과 동일한 프로젝트에서 생성되어야 합니다.

1.5.3. Kiali 및 서비스 메시

  • Kiali는 기본적으로 활성화되어 있습니다.
  • Ingress는 기본적으로 활성화되어 있습니다.
  • Kiali ConfigMap이 업데이트되었습니다.
  • Kiali의 ClusterRole 설정이 업데이트되었습니다.
  • Operator 파일을 업데이트하려면 cluster-admin 권한이 있는 사용자로 제한해야 합니다.

1.5.4.

  • Ingress는 기본적으로 서비스 메시에 대해 활성화되어 있습니다.
  • Zipkin 포트 이름의 이름이 jaeger-collector-zipkin(http)으로 변경되었습니다.
  • Jaeger는 production 또는 streaming 배포 옵션을 선택할 때 기본적으로 스토리지에 Elasticsearch를 사용합니다.
  • Istio 커뮤니티 버전은 일반적인 "tracing" 경로를 제공합니다.
  • Red Hat OpenShift Service Mesh는 Envoy 프록시에 사이드카를 사용하며 Jaeger 또한 Jaeger 에이전트에 사이드카를 사용합니다. 이 두 가지 사이드카는 별도로 구성되어 있으며 서로 혼동해서는 안 됩니다. 프록시 사이드카는 Pod의 수신 및 송신 트래픽과 관련된 기간을 생성합니다. 에이전트 사이드카는 응용 프로그램에서 발송되는 기간을 수신하여 Jaeger 수집기로 보냅니다.

1.6.

1.6.1. 사전 요구 사항

  • 서브스크립션이 없는 경우 영업 담당자에게 자세한 내용을 문의하십시오.

1.6.2. 지원되는 구성

1.6.2.1.

1.6.2.2. 지원되지 않는 로깅 구성

명시적으로 지원되지 않는 경우는 다음과 같습니다.

1.6.2.3. 지원되는 네트워크 구성

Red Hat OpenShift Service Mesh는 다음과 같은 네트워크 구성을 지원합니다.

  • OpenShift-SDN

1.6.2.4.

  • 가상 머신과 같은 외부 서비스를 통합하지 않는 구성입니다.

1.6.2.5. Kiali에 대해 지원되는 구성

1.6.2.6. 분산 추적에 지원되는 구성

  • 사이드카로서의 Jaeger 에이전트는 Jaeger에 대해 지원되는 유일한 구성입니다. 다중 테넌트 설치 또는 OpenShift Dedicated에서는 데몬 세트로 Jaeger가 지원되지 않습니다.

1.6.2.7.

1.6.3. 다음 단계

1.7. Operator 설치

참고

이 기본 설치는 기본 OpenShift 설정을 기반으로 구성되며 프로덕션용으로 설계되지 않습니다. 

사전 요구 사항

  • cluster-admin 역할이 있는 계정. Red Hat OpenShift Dedicated를 사용하는 경우 dedicated-admin 역할의 계정이 있어야 합니다.

1.7.1. Operator 개요

Red Hat OpenShift Service Mesh에는 다음과 같은 네 가지 Operator가 필요합니다.

  • 오픈 소스 Elasticsearch 프로젝트를 기반으로 합니다.
  • 오픈 소스 Jaeger 프로젝트를 기반으로 합니다.
  • Kiali - 서비스 메시에 대한 가시성을 제공합니다. 단일 콘솔에서 구성을 보고, 트래픽을 모니터링하며 추적을 분석할 수 있습니다. 오픈 소스 Kiali 프로젝트를 기반으로 합니다.
  • Red Hat OpenShift Service Mesh - 애플리케이션을 구성하는 마이크로 서비스를 연결, 보안, 제어 및 관찰할 수 있습니다. Service Mesh Operator는 Service Mesh 구성 요소의 배포, 업데이트 및 삭제를 관리하는 ServiceMeshControlPlane 리소스를 정의하고 모니터링합니다. 오픈소스 Istio 프로젝트를 기반으로 합니다.
주의

Operator의 커뮤니티 버전은 설치하지 마십시오. 커뮤니티 Operator는 지원되지 않습니다.

1.7.2. Operator 설치

Red Hat OpenShift Service Mesh를 설치하려면 다음 Operator를 이 순서대로 설치합니다. 각 Operator에 대한 절차를 반복합니다.

  • OpenShift Elasticsearch
  • Kiali
  • Red Hat OpenShift Service Mesh
참고

이미 OpenShift Elasticsearch Operator를 OpenShift 로깅의 일부로 설치한 경우 OpenShift Elasticsearch Operator를 다시 설치할 필요가 없습니다.

절차

  1. Red Hat OpenShift Dedicated를 사용하는 경우 dedicated-admin 역할의 계정이 있어야 합니다.
  2. Operator 이름을 필터 상자에 입력하고 Operator의 Red Hat 버전을 선택합니다. Operator의 커뮤니티 버전은 지원되지 않습니다.
  3. 설치를 클릭합니다.
  4. 설치를 클릭합니다. 목록에서 다음 Operator에 대한 단계를 반복하기 전에 Operator가 설치될 때까지 기다립니다.

  5. 4개의 Operator를 모두 설치한 후 Operators설치된 Operators를 클릭하여 Operator가 설치되었는지 확인합니다.

1.7.3. 다음 단계

1.8. ServiceMeshControlPlane 생성

참고

이 기본 설치는 기본 OpenShift 설정을 기반으로 구성되며 프로덕션용으로 설계되지 않습니다. 이 기본 설치를 사용하여 설치를 확인한 다음 환경에 ServiceMeshControlPlane을 구성합니다.

참고

참고

Service Mesh 문서는 istio-system을 예제 프로젝트로 사용하지만, 모든 프로젝트에 서비스 메시를 배포할 수 있습니다.

1.8.1.

웹 콘솔을 사용하여 기본 ServiceMeshControlPlane을 배포할 수 있습니다.

사전 요구 사항

  • Red Hat OpenShift Service Mesh Operator가 설치되어 있어야 합니다.
  • cluster-admin 역할이 있는 계정.

절차

  1. Red Hat OpenShift Dedicated를 사용하는 경우 dedicated-admin 역할의 계정이 있어야 합니다.
  2. istio-system이라는 프로젝트를 생성합니다.

    1. 프로젝트로 이동합니다.
    2. 프로젝트 만들기를 클릭합니다.
    3. 이름 필드에 istio-system을 입력합니다. ServiceMeshControlPlane 리소스는 마이크로 서비스 및 Operator와 별도로 프로젝트에 설치해야 합니다.

    4. 생성을 클릭합니다.
  3. Operators설치된 Operator로 이동합니다.
  4. Red Hat OpenShift Service Mesh Operator를 클릭한 다음 Istio Service Mesh Control Plane을 클릭합니다.
  5. Istio Service Mesh Control Plane 탭에서 ServiceMeshControlPlane 생성을 클릭합니다.
  6. 컨트롤 플레인의 버전에 따라 Operator 버전에 관계없이 사용 가능한 기능을 결정합니다.

    나중에 ServiceMeshControlPlane 설정을 구성할 수 있습니다. 자세한 내용은 Red Hat OpenShift Service Mesh 구성을 참조하십시오.

    1. 생성을 클릭합니다. Operator는 구성 매개변수를 기반으로 pods, 서비스 및 Service Mesh Control Plane 구성 요소를 생성합니다.
  7. 컨트롤 플레인이 올바르게 설치되었는지 확인하려면 Istio Service Mesh Control Plane 탭을 클릭합니다.

    1. 새 컨트롤 플레인의 이름을 클릭합니다.
    2. 리소스 탭을 클릭하여 Operator가 생성 및 구성된 Red Hat OpenShift Service Mesh Control Plane 리소스를 확인합니다.

1.8.2.

명령줄에서 기본 ServiceMeshControlPlane을 배포할 수 있습니다.

사전 요구 사항

  • Red Hat OpenShift Service Mesh Operator가 설치되어 있어야 합니다.
  • OpenShift CLI(oc)에 액세스합니다.

절차

  1. Red Hat OpenShift Dedicated를 사용하는 경우 dedicated-admin 역할의 계정이 있어야 합니다.

    $ oc login --username=<NAMEOFUSER> https://<HOSTNAME>:6443
  2. istio-system이라는 프로젝트를 생성합니다.

    $ oc new-project istio-system
  3. 다음 예제를 사용하여 istio-installation.yaml이라는 ServiceMeshControlPlane 파일을 생성합니다.

    apiVersion: maistra.io/v2
    kind: ServiceMeshControlPlane
    metadata:
      name: basic
      namespace: istio-system
    spec:
      version: v2.3
      tracing:
        type: Jaeger
        sampling: 10000
      addons:
        jaeger:
          name: jaeger
          install:
            storage:
              type: Memory
        kiali:
          enabled: true
          name: kiali
        grafana:
          enabled: true

  4. $ oc create -n istio-system -f <istio_installation.yaml>
  5. $ oc get pods -n istio-system -w

    출력은 다음과 유사합니다.

    NAME                                   READY   STATUS    RESTARTS   AGE
    grafana-b4d59bd7-mrgbr                 2/2     Running   0          65m
    istio-egressgateway-678dc97b4c-wrjkp   1/1     Running   0          108s
    istio-ingressgateway-b45c9d54d-4qg6n   1/1     Running   0          108s
    istiod-basic-55d78bbbcd-j5556          1/1     Running   0          108s
    jaeger-67c75bd6dc-jv6k6                2/2     Running   0          65m
    kiali-6476c7656c-x5msp                 1/1     Running   0          43m
    prometheus-58954b8d6b-m5std            2/2     Running   0          66m

1.8.3.

절차

  1. Red Hat OpenShift Dedicated를 사용하는 경우 dedicated-admin 역할의 계정이 있어야 합니다.

    $ oc login https://<HOSTNAME>:6443
  2. $ oc get smcp -n istio-system

    STATUS 열이 ComponentsReady인 경우 설치가 성공적으로 완료되었습니다.

    NAME    READY   STATUS            PROFILES      VERSION   AGE
    basic   10/10   ComponentsReady   ["default"]   2.1.1     66m

1.8.4.

절차

  1. Red Hat OpenShift Dedicated를 사용하는 경우 dedicated-admin 역할의 계정이 있어야 합니다.
  2. 그림 1.1.

    • 그림 1.2.

1.8.5.

1.8.5.1.

1.8.5.2.

apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
metadata:
  name: basic
  namespace: istio-system
spec:
  version: v2.3
  security:
    identity:
      type: ThirdParty  #required setting for ROSA
  tracing:
    type: Jaeger
    sampling: 10000
  policy:
    type: Istiod
  addons:
    grafana:
      enabled: true
    jaeger:
      install:
        storage:
          type: Memory
    kiali:
      enabled: true
    prometheus:
      enabled: true
  telemetry:
    type: Istiod

1.8.5.3.

  • default
  • codeready-*
  • openshift-*
  • redhat-*

apiVersion: kiali.io/v1alpha1
kind: Kiali
metadata:
  name: kiali
  namespace: istio-system
spec:
  auth:
    strategy: openshift
  deployment:
    accessible_namespaces:   #restricted setting for ROSA
      - istio-system
    image_pull_policy: ''
    ingress_enabled: true
    namespace: istio-system

1.8.6. 추가 리소스

Red Hat OpenShift Service Mesh는 클러스터 내에서 여러 개의 독립적인 컨트롤 플레인을 지원합니다. ServiceMeshControlPlane 프로필을 사용하여 재사용 가능한 구성을 생성할 수 있습니다.

1.8.7. 다음 단계

ServiceMeshMemberRoll 리소스를 만들어 Service Mesh와 연결된 네임스페이스를 지정합니다.

1.9. 서비스 메시에 서비스 추가

Operator 및 ServiceMeshControlPlane 리소스를 설치한 후 ServiceMeshMemberRoll 리소스를 생성하고 콘텐츠가 있는 네임스페이스를 지정하여 애플리케이션, 워크로드 또는 서비스를 메시에 추가합니다.

ServiceMeshMemberRoll 리소스에 나열된 항목은 ServiceMeshControlPlane 리소스에서 관리하는 애플리케이션 및 워크플로입니다. 컨트롤 플레인(Service mesh Operator, Istiod, ServiceMeshControlPlane 포함) 및 데이터 플레인(애플리케이션 및 Envoy 프록시 포함)은 별도의 네임스페이스에 있어야 합니다.

참고

ServiceMeshMemberRoll에 네임스페이스를 추가한 후, 해당 네임스페이스의 서비스 또는 pod에 액세스하면 서비스 메시 외부의 호출기에서는 액세스할 수 없습니다.

1.9.1. Red Hat OpenShift Service Mesh 멤버 롤 생성

ServiceMeshMemberRoll에 나열된 프로젝트만 컨트롤 플레인의 영향을 받습니다. 특정 컨트롤 플레인 배포의 멤버 롤에 추가할 때까지 프로젝트는 서비스 메시에 속하지 않습니다.

ServiceMeshControlPlane과 동일한 프로젝트에서 default 라는 ServiceMeshMemberRoll 리소스를 생성해야 합니다. (예: istio-system)

1.9.1.1. 웹 콘솔에서 멤버 롤 생성

웹 콘솔에서 서비스 메시 멤버 롤에 하나 이상의 프로젝트를 추가할 수 있습니다.

사전 요구 사항

  • Red Hat OpenShift Service Mesh Operator 설치 및 검증.
  • 서비스 메시에 추가할 기존 프로젝트 목록.

절차

  1. 메시에 대한 서비스가 아직 없거나 처음부터 시작하려는 경우 애플리케이션에 대한 프로젝트를 생성합니다.

    1. 프로젝트로 이동합니다.
    2. 이름 필드에 이름을 입력합니다.
    3. 생성을 클릭합니다.
  2. Operators설치된 Operator로 이동합니다.
  3. 프로젝트 메뉴를 클릭하고 목록에서 ServiceMeshControlPlane 리소스가 배포되는 프로젝트를 선택합니다(예: istio-system).
  4. Red Hat OpenShift Service Mesh Operator를 클릭합니다.
  5. Istio Service Mesh 멤버 목록 탭을 클릭합니다.
  6. ServiceMeshMemberRoll 만들기를 클릭합니다.
  7. Members를 클릭한 다음 Value 필드에 프로젝트 이름을 입력합니다. 여러 프로젝트를 추가할 수 있지만 프로젝트는 하나ServiceMeshMemberRoll 리소스에만 속할 수 있습니다.
  8. 생성을 클릭합니다.

1.9.1.2. CLI에서 멤버 롤 생성

명령줄의 ServiceMeshMemberRoll에 프로젝트를 추가할 수 있습니다.

사전 요구 사항

  • Red Hat OpenShift Service Mesh Operator 설치 및 검증.
  • 서비스 메시에 추가할 프로젝트 목록.
  • OpenShift CLI(oc)에 액세스합니다.

절차

  1. $ oc login --username=<NAMEOFUSER> https://<HOSTNAME>:6443
  2. 메시에 대한 서비스가 아직 없거나 처음부터 시작하려는 경우 애플리케이션에 대한 프로젝트를 생성합니다.

    $ oc new-project <your-project>
  3. 프로젝트를 멤버로 추가하려면 다음 예제 YAML을 수정합니다. 여러 프로젝트를 추가할 수 있지만 프로젝트는 하나ServiceMeshMemberRoll 리소스에만 속할 수 있습니다.

    servicemeshmemberroll-default.yaml 예

    apiVersion: maistra.io/v1
    kind: ServiceMeshMemberRoll
    metadata:
      name: default
      namespace: istio-system
    spec:
      members:
        # a list of projects joined into the service mesh
        - your-project-name
        - another-project-name

  4. 다음 명령을 실행하여 istio-system 네임스페이스에 ServiceMeshMemberRoll 리소스를 업로드하고 만듭니다.

    $ oc create -n istio-system -f servicemeshmemberroll-default.yaml
  5. 다음 명령을 실행하여 ServiceMeshMemberRoll이 성공적으로 생성되었는지 확인합니다.

    $ oc get smmr -n istio-system default

    STATUS 열이 Configured인 경우 설치가 성공적으로 완료된 것입니다.

1.9.2. 서비스 메시에서 프로젝트 추가 또는 제거

웹 콘솔을 사용하여 기존 Service Mesh ServiceMeshMemberRoll 리소스에서 프로젝트를 추가하거나 제거할 수 있습니다.

  • 여러 프로젝트를 추가할 수 있지만 프로젝트는 하나ServiceMeshMemberRoll 리소스에만 속할 수 있습니다.
  • 해당 ServiceMeshControlPlane 리소스가 삭제되면 ServiceMeshMemberRoll 리소스가 삭제됩니다.

1.9.2.1. 웹 콘솔을 사용하여 멤버 롤에서 프로젝트 추가 또는 제거

사전 요구 사항

  • Red Hat OpenShift Service Mesh Operator 설치 및 검증.
  • 기존 ServiceMeshMemberRoll 리소스.
  • ServiceMeshMemberRoll 리소스를 사용한 프로젝트의 이름.
  • 메시에서 추가하거나 삭제하려는 프로젝트의 이름.

절차

  1. Operators설치된 Operator로 이동합니다.
  2. 프로젝트 메뉴를 클릭하고 목록에서 ServiceMeshControlPlane 리소스가 배포되는 프로젝트를 선택합니다(예: istio-system).
  3. Red Hat OpenShift Service Mesh Operator를 클릭합니다.
  4. Istio Service Mesh 멤버 목록 탭을 클릭합니다.
  5. default 링크를 클릭합니다.
  6. YAML 탭을 클릭합니다.
  7. YAML을 수정하여 프로젝트를 멤버로 추가하거나 제거합니다. 여러 프로젝트를 추가할 수 있지만 프로젝트는 하나ServiceMeshMemberRoll 리소스에만 속할 수 있습니다.
  8. 저장을 클릭합니다.
  9. 새로 고침을 클릭합니다.

1.9.2.2. CLI를 사용하여 멤버 롤에서 프로젝트 추가 또는 제거

명령줄을 사용하여 기존 서비스 메시 멤버 목록을 수정할 수 있습니다.

사전 요구 사항

  • Red Hat OpenShift Service Mesh Operator 설치 및 검증.
  • 기존 ServiceMeshMemberRoll 리소스.
  • ServiceMeshMemberRoll 리소스를 사용한 프로젝트의 이름.
  • 메시에서 추가하거나 삭제하려는 프로젝트의 이름.
  • OpenShift CLI(oc)에 액세스합니다.

절차

  1. ServiceMeshMemberRoll 리소스를 편집합니다.

    $ oc edit smmr -n <controlplane-namespace>
  2. YAML을 수정하여 프로젝트를 멤버로 추가하거나 제거합니다. 여러 프로젝트를 추가할 수 있지만 프로젝트는 하나ServiceMeshMemberRoll 리소스에만 속할 수 있습니다.

    servicemeshmemberroll-default.yaml 예

    apiVersion: maistra.io/v1
    kind: ServiceMeshMemberRoll
    metadata:
      name: default
      namespace: istio-system #control plane project
    spec:
      members:
        # a list of projects joined into the service mesh
        - your-project-name
        - another-project-name

1.9.3. Bookinfo 예제 애플리케이션

Bookinfo 애플리케이션은 온라인 서점의 단일 카탈로그 항목과 유사하게 한 권의 책에 대한 정보를 표시합니다. 애플리케이션은 도서 설명, 도서 세부 정보(ISBN, 페이지 수, 기타 정보), 도서 리뷰가 설명된 페이지를 표시합니다.

Bookinfo 애플리케이션은 이러한 마이크로 서비스로 구성됩니다.

  • productpage 마이크로 서비스는 detailsreviews 마이크로 서비스를 호출하여 페이지를 채웁니다.
  • details 마이크로 서비스에는 도서 정보가 포함되어 있습니다.
  • reviews 마이크로 서비스에는 도서 리뷰가 포함되어 있습니다. 이를 ratings 마이크로 서비스라고도 합니다.
  • ratings 마이크로 서비스에는 도서 리뷰와 함께 제공되는 도서 순위 정보가 포함되어 있습니다.

리뷰 마이크로 서비스의 세 가지 버전이 있습니다.

  • 버전 v1에서는 ratings 서비스를 호출하지 않습니다.
  • 버전 v2는 ratings 서비스를 호출하고 각 평가를 1~5개의 검정별로 표시합니다.
  • 버전 v3은 ratings 서비스를 호출하고 각 평가를 1~5개의 빨강별로 표시합니다.

1.9.3.1. Bookinfo 애플리케이션 설치

이 튜토리얼에서는 프로젝트를 생성하고, Bookinfo 애플리케이션을 해당 프로젝트에 배포하고, 서비스 메시에서 실행 중인 애플리케이션을 확인하여 샘플 애플리케이션을 생성하는 방법을 안내합니다.

사전 요구 사항

  • OpenShift CLI(oc)에 액세스합니다.
  • cluster-admin 역할이 있는 계정.
참고

참고

절차

  1. Red Hat OpenShift Dedicated를 사용하는 경우 dedicated-admin 역할의 계정이 있어야 합니다.
  2. 프로젝트를 클릭합니다.
  3. 프로젝트 만들기를 클릭합니다.
  4. 프로젝트 이름으로 bookinfo를 입력하고, 디스플레이 이름, 설명을 입력한 다음 생성을 클릭합니다.

    • 대신 CLI에서 이 명령을 실행하여 bookinfo 프로젝트를 생성할 수 있습니다.

      $ oc new-project bookinfo
  5. Operators설치된 Operators를 클릭합니다.
  6. 이 예제에서는 istio-system을 사용합니다.
  7. Red Hat OpenShift Service Mesh Operator를 클릭합니다.
  8. Istio Service Mesh 멤버 목록 탭을 클릭합니다.

    1. 이미 Istio Service Mesh 멤버 롤을 생성한 경우, 이름을 클릭한 다음 YAML 탭을 클릭하여 YAML 편집기를 엽니다.
    2. ServiceMeshMemberRoll을 생성하지 않은 경우 ServiceMeshMemberRoll 생성을 클릭합니다.
  9. Members를 클릭한 다음 Value 필드에 프로젝트 이름을 입력합니다.
  10. 생성을 클릭하여 업데이트된 서비스 메시 멤버 롤을 저장합니다.

    1. 또는 다음 예제를 YAML 파일에 저장합니다.

      Bookinfo ServiceMeshMemberRoll example servicemeshmemberroll-default.yaml

      apiVersion: maistra.io/v1
      kind: ServiceMeshMemberRoll
      metadata:
        name: default
      spec:
        members:
        - bookinfo

    2. 다음 명령을 실행하여 해당 파일을 업로드하고 istio-system 네임스페이스에 ServiceMeshMemberRoll 리소스를 만듭니다.

      $ oc create -n istio-system -f servicemeshmemberroll-default.yaml
  11. 다음 명령을 실행하여 ServiceMeshMemberRoll이 성공적으로 생성되었는지 확인합니다.

    $ oc get smmr -n istio-system -o wide

    STATUS 열이 Configured인 경우 설치가 성공적으로 완료된 것입니다.

    NAME      READY   STATUS       AGE   MEMBERS
    default   1/1     Configured   70s   ["bookinfo"]
  12. CLI에서 bookinfo.yaml 파일을 적용하여 'bookinfo' 프로젝트에 Bookinfo 애플리케이션을 배포합니다.

    $ oc apply -n bookinfo -f https://raw.githubusercontent.com/Maistra/istio/maistra-2.3/samples/bookinfo/platform/kube/bookinfo.yaml

    출력은 다음과 유사합니다.

    service/details created
    serviceaccount/bookinfo-details created
    deployment.apps/details-v1 created
    service/ratings created
    serviceaccount/bookinfo-ratings created
    deployment.apps/ratings-v1 created
    service/reviews created
    serviceaccount/bookinfo-reviews created
    deployment.apps/reviews-v1 created
    deployment.apps/reviews-v2 created
    deployment.apps/reviews-v3 created
    service/productpage created
    serviceaccount/bookinfo-productpage created
    deployment.apps/productpage-v1 created
  13. bookinfo-gateway.yaml 파일을 적용하여 수신 게이트웨이를 생성합니다.

    $ oc apply -n bookinfo -f https://raw.githubusercontent.com/Maistra/istio/maistra-2.3/samples/bookinfo/networking/bookinfo-gateway.yaml

    출력은 다음과 유사합니다.

    gateway.networking.istio.io/bookinfo-gateway created
    virtualservice.networking.istio.io/bookinfo created
  14. GATEWAY_URL 매개변수 값을 설정합니다.

    $ export GATEWAY_URL=$(oc -n istio-system get route istio-ingressgateway -o jsonpath='{.spec.host}')

1.9.3.2. 기본 대상 규칙 추가

Bookinfo 애플리케이션을 사용하기 전에 먼저 기본 대상 규칙을 추가해야 합니다. 상호 TLS(Transport layer security) 인증을 활성화했는지 여부에 따라 사전 구성된 YAML 파일이 두 개 있습니다.

프로세스

  1. 대상 규칙을 추가하려면 다음 명령 중 하나를 실행합니다.

    • 상호 TLS를 활성화하지 않은 경우:

      $ oc apply -n bookinfo -f https://raw.githubusercontent.com/Maistra/istio/maistra-2.3/samples/bookinfo/networking/destination-rule-all.yaml
    • 상호 TLS를 활성화한 경우:

      $ oc apply -n bookinfo -f https://raw.githubusercontent.com/Maistra/istio/maistra-2.3/samples/bookinfo/networking/destination-rule-all-mtls.yaml

      출력은 다음과 유사합니다.

      destinationrule.networking.istio.io/productpage created
      destinationrule.networking.istio.io/reviews created
      destinationrule.networking.istio.io/ratings created
      destinationrule.networking.istio.io/details created

1.9.3.3. Bookinfo 설치 확인

샘플 Bookinfo 애플리케이션이 성공적으로 배포되었는지 확인하려면 다음 단계를 수행합니다.

사전 요구 사항

  • Bookinfo 샘플 애플리케이션을 설치하는 단계를 완료합니다.

  1. 다음 명령으로 모든 pod가 준비되었는지 확인합니다.

    $ oc get pods -n bookinfo

    모든 pod의 상태는 Running이어야 합니다. 출력은 다음과 유사합니다.

    NAME                              READY   STATUS    RESTARTS   AGE
    details-v1-55b869668-jh7hb        2/2     Running   0          12m
    productpage-v1-6fc77ff794-nsl8r   2/2     Running   0          12m
    ratings-v1-7d7d8d8b56-55scn       2/2     Running   0          12m
    reviews-v1-868597db96-bdxgq       2/2     Running   0          12m
    reviews-v2-5b64f47978-cvssp       2/2     Running   0          12m
    reviews-v3-6dfd49b55b-vcwpf       2/2     Running   0          12m
  2. 다음 명령을 실행하여 제품 페이지의 URL을 검색합니다.

    echo "http://$GATEWAY_URL/productpage"
  3. 웹 브라우저에 출력을 복사하여 붙여넣어 Bookinfo 제품 페이지가 배포되었는지 확인합니다.

    1. Red Hat OpenShift Dedicated를 사용하는 경우 dedicated-admin 역할의 계정이 있어야 합니다.

1.9.3.4. Bookinfo 애플리케이션 제거

다음 단계에 따라 Bookinfo 애플리케이션을 제거하십시오.

사전 요구 사항

  • OpenShift CLI(oc)에 액세스합니다.
1.9.3.4.1. Bookinfo 프로젝트 삭제

절차

  1. 프로젝트를 클릭합니다.
  2. bookinfo 메뉴 kebab 를 클릭한 다음 프로젝트 삭제를 클릭합니다.
  3. 확인 대화 상자에 bookinfo를 입력한 다음 삭제 를 클릭합니다.

    • $ oc delete project bookinfo
1.9.3.4.2. 서비스 메시 멤버 롤에서 Bookinfo 프로젝트를 제거

절차

  1. Operators설치된 Operators를 클릭합니다.
  2. Red Hat OpenShift Service Mesh Operator에 대해 제공된 APIS에서 Istio Service Mesh 멤버 롤 링크를 클릭합니다.
  3. ServiceMeshMemberRoll 메뉴 kebab 를 클릭하고 서비스 메시 멤버 롤 편집을 선택합니다.
  4. 기본 Service Mesh 멤버 롤 YAML을 편집하고 멤버 목록에서 bookinfo를 삭제합니다.

    • $ oc -n istio-system patch --type='json' smmr default -p '[{"op": "remove", "path": "/spec/members", "value":["'"bookinfo"'"]}]'
  5. 저장을 클릭하여 서비스 메시 멤버 롤을 업데이트합니다.

1.9.4. 다음 단계

1.10. 사이드카 삽입 활성화

각 배포에 대해 자동 사이드카 삽입을 활성화해야 합니다.

1.10.1. 사전 요구 사항

1.10.2. 자동 사이드카 삽입 활성화

사전 요구 사항

절차

  1. $ oc get deployment -n <namespace>

    oc get deployment -n bookinfo ratings-v1 -o yaml
  2. 편집기에서 애플리케이션의 배포 구성 YAML 파일을 엽니다.
  3. apiVersion: apps/v1
    kind: Deployment
    metadata:
      name: ratings-v1
      namespace: bookinfo
      labels:
        app: ratings
        version: v1
    spec:
      template:
        metadata:
          annotations:
            sidecar.istio.io/inject: 'true'

  4. 앱이 포함된 프로젝트에 파일을 다시 추가합니다.

    $ oc apply -n <namespace> -f deployment.yaml

    $ oc apply -n bookinfo -f deployment-ratings-v1.yaml
  5. 리소스가 업로드되었는지 확인하려면 다음 명령을 실행합니다.

    $ oc get deployment -n <namespace> <deploymentName> -o yaml

    예를 들면 다음과 같습니다.

    $ oc get deployment -n bookinfo ratings-v1 -o yaml

1.10.3.

그림 1.3.

그림 1.4.

1.10.4.

환경 변수가 사이드카에 삽입됩니다.

예: injection-template.yaml

apiVersion: apps/v1
kind: Deployment
metadata:
  name: resource
spec:
  replicas: 7
  selector:
    matchLabels:
      app: resource
  template:
    metadata:
      annotations:
        sidecar.maistra.io/proxyEnv: "{ \"maistra_test_env\": \"env_value\", \"maistra_test_env_2\": \"env_value_2\" }"

주의

1.10.5.

배포 시 자동 사이드카 삽입을 사용하는 경우 주석을 추가하거나 수정하여 배포에서 pod 템플릿을 업데이트할 수 있습니다. 다음 명령을 실행하여 pod를 다시 배포합니다.

$ oc patch deployment/<deployment> -p '{"spec":{"template":{"metadata":{"annotations":{"kubectl.kubernetes.io/restartedAt": "'`date -Iseconds`'"}}}}}'

1.10.6. 다음 단계

환경에 맞게 Red Hat OpenShift Service Mesh 기능을 구성합니다.

1.11.

1.11.1.

1.11.1.1.

1.11.1.2.

  • 중요

1.11.2.

주의

1.11.2.1.

1.11.3.

중요

OLM(Operator Lifecycle Manager)은 클러스터에서 Operator의 설치, 업그레이드, RBAC(역할 기반 액세스 제어)를 제어합니다.

표 1.4.

   

자동

수동

1.11.4.

1.11.4.1.

1.11.4.2.

1.11.4.3.

아키텍처 변경

An error occurred
admission webhook smcp.validation.maistra.io denied the request: [support for policy.type "Mixer" and policy.Mixer options have been removed in v2.1, please use another alternative, support for telemetry.type "Mixer" and telemetry.Mixer options have been removed in v2.1, please use another alternative]”

예를 들면 다음과 같습니다.

apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
spec:
  policy:
    type: Istiod
  telemetry:
    type: Istiod
  version: v2.3

동작 변경

1.11.4.4.

사전 요구 사항

절차

  1. ServiceMeshControlPlane 리소스가 포함된 프로젝트로 전환합니다.

    $ oc project istio-system
    1. 다음 명령을 실행하여 ServiceMeshControlPlane 리소스를 v2 리소스로 확인합니다.

      $ oc get smcp -o yaml
      작은 정보

  2. 예를 들면 다음과 같습니다.

    apiVersion: maistra.io/v2
    kind: ServiceMeshControlPlane
    metadata:
      name: basic
    spec:
      version: v2.3

    1. Operators설치된 Operators를 클릭합니다.
    2. 저장을 클릭합니다.

1.11.4.5.

버전 1.1에서 2.0으로 업그레이드하려면 워크로드와 애플리케이션을 새 버전을 실행하는 Red Hat OpenShift Service Mesh의 새 인스턴스로 마이그레이션하는 수동 단계가 필요합니다.

사전 요구 사항

  • Red Hat OpenShift Service Mesh 버전 2.0 operator가 있어야 합니다. 자동 업그레이드 경로를 선택한 경우 Operator는 최신 정보를 자동으로 다운로드합니다. 하지만 Red Hat OpenShift Service Mesh 버전 2.0에서 기능을 사용하려면 몇 가지 단계를 거쳐야 합니다.
1.11.4.5.1. Red Hat OpenShift Service Mesh 업그레이드

Red Hat OpenShift Service Mesh를 업그레이드하려면 새 네임스페이스에 Red Hat OpenShift Service Mesh ServiceMeshControlPlane v2 리소스 인스턴스를 생성해야 합니다. 구성되면 이전 메시에서 새로운 서비스 메시로 마이크로 서비스 애플리케이션과 워크로드를 이동하십시오.

프로세스

  1. v1 ServiceMeshControlPlane 리소스 구성을 점검하여 유효한지 확인합니다.

    1. 다음 명령을 실행하여 ServiceMeshControlPlane 리소스를 v2 리소스로 확인합니다.

      $ oc get smcp -o yaml
    2. 유효하지 않은 필드에 대한 정보는 출력의 spec.techPreview.errored.message 필드를 확인합니다.
    3. v1 리소스에 유효하지 않은 필드가 있으면 리소스가 조정되지 않고 v2 리소스로 편집할 수 없습니다. v2 필드에 대한 모든 업데이트는 원래 v1 설정으로 덮어씁니다. 유효하지 않은 필드를 수정하려면 리소스의 v1 버전을 교체, 패치 또는 편집할 수 있습니다. 또한 수정하지 않고 리소스를 삭제할 수도 있습니다. 리소스가 수정된 후 조정할 수 있으며, v2 버전의 리소스를 수정하거나 볼 수 있습니다.
    4. 파일을 편집하여 리소스를 수정하려면 oc get를 사용하여 리소스를 검색하고, 로컬로 텍스트 파일을 편집한 다음, 편집한 파일로 리소스를 교체합니다.

      $ oc get smcp.v1.maistra.io <smcp_name> > smcp-resource.yaml
      #Edit the smcp-resource.yaml file.
      $ oc replace -f smcp-resource.yaml
    5. 패치를 사용하여 리소스를 수정하려면 oc patch를 사용합니다.

      $ oc patch smcp.v1.maistra.io <smcp_name> --type json --patch '[{"op": "replace","path":"/spec/path/to/bad/setting","value":"corrected-value"}]'
    6. 명령줄 도구로 리소스를 수정하려면 oc edit를 사용합니다.

      $ oc edit smcp.v1.maistra.io <smcp_name>
  2. ServiceMeshControlPlane 리소스가 포함된 프로젝트로 전환합니다.

    $ oc project istio-system
  3. 다음 명령을 입력하여 현재 구성을 검색할 수 있습니다. <smcp_name>은 ServiceMeshControlPlane 리소스의 메타데이터에 지정됩니다(예: basic-install 또는 full-install).

    $ oc get servicemeshcontrolplanes.v1.maistra.io <smcp_name> -o yaml > <smcp_name>.v1.yaml
  4. ServiceMeshControlPlane을 구성에 대한 정보를 시작점으로 포함하는 v2 컨트롤 플레인 버전으로 변환합니다.

    $ oc get smcp <smcp_name> -o yaml > <smcp_name>.v2.yaml
  5. 프로젝트를 생성합니다. 또는 CLI에서 이 명령을 실행할 수 있습니다.

    $ oc new-project istio-system-upgrade
  6. v2 ServiceMeshControlPlanemetadata.namespace 필드를 새 프로젝트 이름으로 업데이트합니다. 이 예제에서는 istio-system-upgrade를 사용합니다.
  7. 1.1에서 2.0으로 version 필드를 업데이트하거나 v2 ServiceMeshControlPlane에서 제거합니다.
  8. 새 네임스페이스에서 ServiceMeshControlPlane을 생성합니다. 명령줄에서 다음 명령을 실행하여 검색한 ServiceMeshControlPlane의 v2 버전을 사용하여 컨트롤 플레인을 배포합니다. 이 예제에서 ‘<smcp_name.v2>’를 파일 경로로 바꿉니다.

    $ oc create -n istio-system-upgrade -f <smcp_name>.v2.yaml

    그런 다음, 방금 입력한 프로젝트 이름을 선택합니다.

    1. Operators설치된 Operator를 클릭합니다.
    2. ServiceMeshControlPlane 만들기를 클릭합니다.
    3. YAML 보기를 선택하고, 검색한 YAML 파일의 텍스트를 필드에 붙여넣습니다. apiVersion 필드가 maistra .io/v2로 설정되어 있는지 확인하고 새 네임스페이스를 사용하도록 metadata.namespace 필드를 수정합니다(예: istio-system-upgrade).
    4. 생성을 클릭합니다.
1.11.4.5.2. 2.0 ServiceMeshControlPlane 구성

Red Hat OpenShift Service Mesh 버전 2.0에서 ServiceMeshControlPlane 리소스가 변경되었습니다. ServiceMeshControlPlane 리소스의 v2 버전을 생성한 후 새 기능을 활용하고 배포에 적합하게 수정합니다. ServiceMeshControlPlane 리소스를 수정할 때 Red Hat OpenShift Service Mesh 2.0의 사양 및 동작에 대해 다음과 같은 변경 사항을 고려하십시오. 또한 사용하는 기능에 대한 새로운 정보는 Red Hat OpenShift Service Mesh 2.0 제품 문서를 참조하십시오. v2 리소스는 Red Hat OpenShift Service Mesh 2.0 설치에 사용해야 합니다.

1.11.4.5.2.1. 아키텍처 변경

이전 버전에서 사용하는 아키텍처 단위는 Istiod로 교체되었습니다.

Mixer는 더 이상 컨트롤 플레인 구성 요소로 지원되지 않지만, Mixer 정책 및 Telemetry 플러그인은 이제 Istiod의 WASM 확장을 통해 지원됩니다. 레거시 Mixer 플러그인을 통합해야 하는 경우 정책 및 Telemetry에 대해 Mixer를 활성화할 수 있습니다.

SDS(Secret Discovery Service)는 Istiod에서 직접 사이드카에 인증서와 키를 배포하는 데 사용됩니다. Red Hat OpenShift Service Mesh 버전 1.1에서는 Citadel에 의해 시크릿이 생성되었으며, 이는 프록시가 클라이언트 인증서와 키를 검색하는 데 사용되었습니다.

1.11.4.5.2.2. 주석 변경

v2.0에서는 다음과 같은 주석이 더 이상 지원되지 않습니다.

  • sidecar.maistra.io/proxyCPULimitsidecar.istio.io/proxyCPULimit로 교체되었습니다. 워크로드에서 sidecar.maistra.io 주석을 사용 중인 경우 대신 동등한 sidecar.istio.io를 사용하도록 해당 워크로드를 수정해야 합니다.
  • sidecar.maistra.io/proxyMemoryLimitsidecar.istio.io/proxyMemoryLimit로 교체됨
  • sidecar.istio.io/discoveryAddress는 더 이상 지원되지 않습니다. 또한 기본 검색 주소는 pilot.<control_plane_namespace>.svc:15010(또는 mtls가 활성화된 경우 포트 15011)에서 istiod-<smcp_name>.<control_plane_namespace>.svc:15012로 이동했습니다.
  • 상태 포트는 더 이상 구성할 수 없으며 15021로 하드 코딩됩니다. 상태 포트를 0 으로 설정하여 준비 상태 점검을 비활성화할 수 있습니다.
  • Kubernetes 시크릿 리소스는 더 이상 사이드카에 대한 클라이언트 인증서를 배포하는 데 사용되지 않습니다. 인증서는 이제 Istiod의 SDS 서비스를 통해 배포됩니다.
1.11.4.5.2.3. 동작 변경

Red Hat OpenShift Service Mesh 2.0의 일부 기능은 이전 버전과 다르게 작동합니다.

  • 게이트웨이의 준비 상태 포트는 15020에서 15021로 이동했습니다.
  • 대상 호스트 가시성에는 VirtualService 및 ServiceEntry 리소스가 포함됩니다. 사이드카 리소스를 통해 적용된 모든 제한을 포함합니다.
  • 자동 상호 TLS는 기본적으로 활성화되어 있습니다. 프록시 간 통신은 글로벌 PeerAuthentication 정책에 관계없이 mTLS를 사용하도록 자동 구성됩니다.
  • spec.security.controlPlane.mtls 설정은 Mixer Telemetry 또는 정책에 대한 연결을 구성할 때만 사용됩니다.
1.11.4.5.2.4. 지원되지 않는 리소스에 대한 마이그레이션 세부 정보

정책(authentication.istio.io/v1alpha1)

정책 리소스의 특정 구성에 따라 동일한 효과를 달성하기 위해 여러 리소스를 구성해야 할 수 있습니다.

상호 TLS

상호 TLS 적용은 security.istio.io/v1beta1 PeerAuthentication 리소스를 사용하여 수행됩니다. 레거시 spec.peers.mtls.mode 필드는 새로운 리소스의 spec.mtls.mode 필드에 직접 매핑됩니다. 선택 기준이 spec.targets[x].name의 서비스 이름 지정에서 spec.selector.matchLabels의 레이블 선택기로 변경되었습니다. PeerAuthentication에서 레이블은 대상 목록에 이름이 지정된 서비스의 선택기와 일치해야 합니다. 모든 포트별 설정은 spec.portLevelMtls에 매핑되어야 합니다.

인증

spec.origins에 지정된 추가 인증 방법은 security.istio.io/v1beta1 RequestAuthentication 리소스에 매핑되어야 합니다. spec.selector.matchLabels는 PeerAuthentication의 동일한 필드와 유사하게 구성되어야 합니다. spec.origins.jwt 항목의 JWT 주체와 관련된 구성은 spec.rules 항목의 유사한 필드에 매핑됩니다.

  • 정책에 지정된 spec.origins[x].jwt.triggerRules는 하나 이상의 security.istio.io/v1beta1 AuthorizationPolicy 리소스에 매핑되어야 합니다. spec.selector.labels는 RequestAuthentication의 동일한 필드와 유사하게 구성되어야 합니다.
  • spec.origins[x].jwt.triggerRules.excludedPaths.excludedPaths 는 spec.action이 ALLOW로 설정된 AuthorizationPolicy에 매핑되고, spec.rules[x].to.operation.path 항목이 제외된 경로와 일치해야 합니다.
  • spec.origins[x].jwt.triggerRules.includedPathsspec.actionALLOW로 설정된 별도의 AuthorizationPolicy에 매핑되고, spec.rules[x].to.operation.path 항목이 제외된 경로와 일치하며, spec.rules.[x].from.source.requestPrincipals 항목이 정책 리소스의 specified spec.origins[x].jwt.issuer와 일치해야 합니다

ServiceMeshPolicy(maistra.io/v1)

v2 컨트롤 플레인의 경우 설치 중에 기능적으로 동일한 PeerAuthentication 리소스가 생성됩니다. 이 기능은 Red Hat OpenShift Service Mesh 버전 2.0에서 더 이상 사용되지 않습니다.

RbacConfig, ServiceRole, ServiceRoleBinding (rbac.istio.io/v1alpha1)

이러한 리소스는 security.istio.io/v1beta1 AuthorizationPolicy 리소스로 교체되었습니다.

RbacConfig 동작을 모방하려면 RbacConfig에 지정된 spec.mode에 따라 설정이 달라지는 기본 AuthorizationPolicy를 작성해야 합니다.

  • spec.modeOFF로 설정되면 AuthorizationPolicy가 요청에 적용되지 않는 한 기본 정책은 ALLOW이므로 리소스가 필요하지 않습니다.
  • spec.mode가 ON으로 설정된 경우 spec: {}를 설정합니다. 메시의 모든 서비스에 대해 AuthorizationPolicy 정책을 생성해야 합니다.
  • spec.modeON_WITH_INCLUSION으로 설정되며, 포함된 각각의 네임스페이스에 spec: {}을 사용하여 AuthorizationPolicy를 생성해야 합니다. 개별 서비스 포함은 AuthorizationPolicy에서 지원되지 않습니다. 그러나 서비스의 워크로드에 적용되는 AuthorizationPolicy가 생성되면 명시적으로 허용되지 않는 다른 모든 요청이 거부됩니다.
  • spec.modeON_WITH_EXCLUSION으로 설정된 경우 AuthorizationPolicy에서 지원되지 않습니다. 글로벌 DENY 정책을 생성할 수 있지만, 네임스페이스 또는 워크로드에 적용할 수 있는 허용된 정책이 없기 때문에 메시의 모든 워크로드에 대해 AuthorizationPolicy를 생성해야 합니다.

AuthorizationPolicy에는 ServiceRoleBinding이 제공하는 기능과 유사한 구성이 적용되는 선택기와 ServiceRole이 제공하는 기능과 유사하며 적용되어야 하는 규칙에 대한 구성이 모두 포함됩니다.

ServiceMeshRbacConfig (maistra.io/v1)

이 정책은 메시의 모든 워크로드에 적용되는 기본 권한 부여 정책이 됩니다. 특정 마이그레이션 세부 사항은 위의 RbacConfig를 참조하십시오.

1.11.4.5.2.5. Mixer 플러그인

Mixer 구성 요소는 버전 2.0에서 기본적으로 비활성화되어 있습니다. 워크로드에 Mixer 플러그인을 사용하는 경우 Mixer 구성 요소를 포함하도록 버전 2.0 ServiceMeshControlPlane을 구성해야 합니다.

Mixer 정책 구성 요소를 활성화하려면 ServiceMeshControlPlane에 다음 스니펫을 추가합니다.

spec:
  policy:
    type: Mixer

Mixer telemetry 구성 요소를 활성화하려면 ServiceMeshControlPlane에 다음 스니펫을 추가합니다.

spec:
  telemetry:
    type: Mixer

또한 레거시 mixer 플러그인은 WASM으로 마이그레이션하고 새로운 ServiceMeshExtension(maistra.io/v1alpha1) 사용자 정의 리소스를 사용하여 통합할 수 있습니다.

업스트림 Istio 배포에 포함된 내장 WASM 필터는 Red Hat OpenShift Service Mesh 2.0에서 사용할 수 없습니다.

1.11.4.5.2.6. 상호 TLS 변경

워크로드별 PeerAuthentication 정책과 함께 mTLS를 사용할 때 워크로드 정책이 네임스페이스/글로벌 정책과 다를 경우 트래픽을 허용하려면 상응하는 DestinationRule이 필요합니다.

자동 mTLS는 기본적으로 활성화되어 있지만 ServiceMeshControlPlane 리소스에서 spec.security.dataPlane.automtls를 false로 설정하여 비활성화할 수 있습니다. 자동 mTLS를 비활성화할 때 서비스 간 적절한 통신을 위해 DestinationRules가 필요할 수 있습니다. 예를 들어, 하나의 네임스페이스에 대해 PeerAuthentication을 STRICT으로 설정하면 DestinationRule이 네임스페이스의 서비스에 TLS 모드를 구성하지 않는 한 다른 네임스페이스의 서비스에 액세스하지 못할 수 있습니다.

1.11.4.5.2.6.1. 기타 mTLS 예

mTLS 비활성화: bookinfo 샘플 애플리케이션의 productpage 서비스의 경우, Red Hat OpenShift Service Mesh v1.1에 대해 다음과 같은 방식으로 정책 리소스를 구성했습니다.

정책 리소스 예

apiVersion: authentication.istio.io/v1alpha1
kind: Policy
metadata:
  name: productpage-mTLS-disable
  namespace: <namespace>
spec:
  targets:
  - name: productpage

mTLS 비활성화: bookinfo 샘플 애플리케이션의 productpage 서비스의 경우, 다음 예제를 사용하여 Red Hat OpenShift Service Mesh v2.0에 PeerAuthentication 리소스를 구성합니다.

PeerAuthentication 리소스 예

apiVersion: security.istio.io/v1beta1
kind: PeerAuthentication
metadata:
  name: productpage-mTLS-disable
  namespace: <namespace>
spec:
  mtls:
    mode: DISABLE
  selector:
    matchLabels:
      # this should match the selector for the "productpage" service
      app: productpage

mTLS 활성화: bookinfo 샘플 애플리케이션에서 productpage 서비스에 대한 JWT 인증의 경우, Red Hat OpenShift Service Mesh v1.1에 대해 다음과 같은 방식으로 정책 리소스를 구성했습니다.

정책 리소스 예

apiVersion: authentication.istio.io/v1alpha1
kind: Policy
metadata:
  name: productpage-mTLS-with-JWT
  namespace: <namespace>
spec:
  targets:
  - name: productpage
    ports:
    - number: 9000
  peers:
  - mtls:
  origins:
  - jwt:
      issuer: "https://securetoken.google.com"
      audiences:
      - "productpage"
      jwksUri: "https://www.googleapis.com/oauth2/v1/certs"
      jwtHeaders:
      - "x-goog-iap-jwt-assertion"
      triggerRules:
      - excludedPaths:
        - exact: /health_check
  principalBinding: USE_ORIGIN

mTLS 활성화: bookinfo 샘플 애플리케이션에서 productpage 서비스에 대한 JWT 인증의 경우, 다음 예제를 사용하여 Red Hat OpenShift Service Mesh v2.0에 PeerAuthentication 리소스를 구성합니다.

PeerAuthentication 리소스 예

#require mtls for productpage:9000
apiVersion: security.istio.io/v1beta1
kind: PeerAuthentication
metadata:
  name: productpage-mTLS-with-JWT
  namespace: <namespace>
spec:
  selector:
    matchLabels:
      # this should match the selector for the "productpage" service
      app: productpage
  portLevelMtls:
    9000:
      mode: STRICT
---
#JWT authentication for productpage
apiVersion: security.istio.io/v1beta1
kind: RequestAuthentication
metadata:
  name: productpage-mTLS-with-JWT
  namespace: <namespace>
spec:
  selector:
    matchLabels:
      # this should match the selector for the "productpage" service
      app: productpage
  jwtRules:
  - issuer: "https://securetoken.google.com"
    audiences:
    - "productpage"
    jwksUri: "https://www.googleapis.com/oauth2/v1/certs"
    fromHeaders:
    - name: "x-goog-iap-jwt-assertion"
---
#Require JWT token to access product page service from
#any client to all paths except /health_check
apiVersion: security.istio.io/v1beta1
kind: AuthorizationPolicy
metadata:
  name: productpage-mTLS-with-JWT
  namespace: <namespace>
spec:
  action: ALLOW
  selector:
    matchLabels:
      # this should match the selector for the "productpage" service
      app: productpage
  rules:
  - to: # require JWT token to access all other paths
      - operation:
          notPaths:
          - /health_check
    from:
      - source:
          # if using principalBinding: USE_PEER in the Policy,
          # then use principals, e.g.
          # principals:
          # - “*”
          requestPrincipals:
          - “*”
  - to: # no JWT token required to access health_check
      - operation:
          paths:
          - /health_check

1.11.4.5.3. 설정 레시피

이러한 구성 레시피를 사용하여 다음 항목을 구성할 수 있습니다.

1.11.4.5.3.1. 데이터 플레인의 상호 TLS

데이터 플레인 통신에 대한 상호 TLS는 ServiceMeshControlPlane 리소스의 spec.security.dataPlane.mtls를 통해 구성되며, 기본적으로 false입니다.

1.11.4.5.3.2. 사용자 정의 서명 키

Istiod는 서비스 프록시에서 사용하는 클라이언트 인증서 및 개인 키를 관리합니다. 기본적으로 Istiod는 서명에 자체 서명된 인증서를 사용하지만 사용자 정의 인증서와 개인 키를 구성할 수 있습니다.

1.11.4.5.3.3. 추적

추적 기능은 spec.tracing에서 구성됩니다. 현재 지원되는 유일한 추적기 유형은 Jaeger입니다. 샘플링은 0.01% 증분을 나타내는 스케일링된 정수입니다(예: 1은 0.01%, 10000은 100%). 추적 구현 및 샘플링 비율을 지정할 수 있습니다.

spec:
  tracing:
    sampling: 100 # 1%
    type: Jaeger

spec:
  addons:
    jaeger:
      name: jaeger
      install:
        storage:
          type: Memory # or Elasticsearch for production mode
          memory:
            maxTraces: 100000
          elasticsearch: # the following values only apply if storage:type:=Elasticsearch
            storage: # specific storageclass configuration for the Jaeger Elasticsearch (optional)
              size: "100G"
              storageClassName: "storageclass"
            nodeCount: 3
            redundancyPolicy: SingleRedundancy
  runtime:
    components:
      tracing.jaeger: {} # general Jaeger specific runtime configuration (optional)
      tracing.jaeger.elasticsearch: #runtime configuration for Jaeger Elasticsearch deployment (optional)
        container:
          resources:
            requests:
              memory: "1Gi"
              cpu: "500m"
            limits:
              memory: "1Gi"

Jaeger 설치는 install 필드로 사용자 지정할 수 있습니다. 리소스 제한과 같은 컨테이너 구성은 spec.runtime.components.jaeger 관련 필드에 구성됩니다. 기존 Jaeger 리소스를 사용하여 Jaeger 설치를 완전히 사용자 지정할 수 있습니다.

1.11.4.5.3.4. 시각화

spec:
  addons:
    grafana:
      enabled: true
      install: {} # customize install
    kiali:
      enabled: true
      name: kiali
      install: {} # customize install

Grafana 및 Kiali 설치는 각각의 install 필드를 통해 사용자 지정할 수 있습니다. 리소스 제한과 같은 컨테이너 사용자 정의는 spec.runtime.components.kialispec.runtime.components.grafana에서 구성됩니다. Kiali 리소스의 일부 필드(예: accessible_namespaces 목록과 Grafana, Prometheus, 추적에 대한 끝점)는 재정의됩니다. 기존 리소스를 사용하여 Kiali 설치를 완전히 사용자 지정할 수 있습니다.

1.11.4.5.3.5. 리소스 사용률 및 스케줄링

리소스는 spec.runtime.<component>에서 구성됩니다. 다음과 같은 구성 요소 이름이 지원됩니다.

구성 요소설명지원되는 버전

보안

Citadel 컨테이너

v1.0/1.1

galley

Galley 컨테이너

v1.0/1.1

pilot

Pilot/Istiod 컨테이너

v1.0/1.1/2.0

mixer

Istio-telemetry 및 istio-policy 컨테이너

v1.0/1.1

mixer.policy

Istio-policy 컨테이너

v2.0

mixer.telemetry

Istio-telemetry 컨테이너

v2.0

global.ouathproxy

다양한 애드온과 함께 사용되는 oauth-proxy 컨테이너

v1.0/1.1/2.0

sidecarInjectorWebhook

사이드카 인젝터 webhook 컨테이너

v1.0/1.1

tracing.jaeger

일반 Jaeger 컨테이너 - 일부 설정은 적용할 수 없습니다.

v1.0/1.1/2.0

tracing.jaeger.agent

Jaeger 에이전트와 관련된 설정

v1.0/1.1/2.0

tracing.jaeger.allInOne

Jaeger allInOne과 관련된 설정

v1.0/1.1/2.0

tracing.jaeger.collector

Jaeger 수집기와 관련된 설정

v1.0/1.1/2.0

tracing.jaeger.elasticsearch

Jaeger elasticsearch 배포와 관련된 설정

v1.0/1.1/2.0

tracing.jaeger.query

Jaeger 쿼리와 관련된 설정

v1.0/1.1/2.0

prometheus

prometheus 컨테이너

v1.0/1.1/2.0

kiali

v1.0/1.1/2.0

grafana

Grafana 컨테이너

v1.0/1.1/2.0

3scale

3scale 컨테이너

v1.0/1.1/2.0

wasmExtensions.cacher

WASM 확장 cacher 컨테이너

v2.0 - 기술 프리뷰

일부 구성 요소는 리소스 제한 및 스케줄링을 지원합니다.

1.11.4.5.4.

애플리케이션 워크로드를 새 메시로 이동하고 이전 인스턴스를 제거하여 업그레이드를 완료합니다.

1.11.5.

1.11.5.1.

$ oc rollout restart <deployment>

1.12. 사용자 및 프로파일 관리

1.12.1. Red Hat OpenShift Service Mesh 멤버 생성

ServiceMeshMember 리소스는 Red Hat OpenShift Service Mesh 관리자가 서비스 메시에 프로젝트를 추가할 수 있는 권한을 위임할 수 있는 방법을 제공합니다. 해당 사용자가 서비스 메시 프로젝트 또는 구성원 목록에 직접 액세스할 수 없는 경우에도 마찬가지입니다. 프로젝트 관리자가 프로젝트에서 ServiceMeshMember 리소스를 생성할 수 있는 권한을 자동으로 부여하는 동안 서비스 메시 관리자가 서비스 메시에 대한 액세스 권한을 명시적으로 부여할 때까지 ServiceMeshControlPlane를 가리킬 수 없습니다. 관리자는 mesh-user 사용자 역할을 부여하여 메시에 액세스할 수 있는 권한을 사용자에게 부여할 수 있습니다.

$ oc policy add-role-to-user -n istio-system --role-namespace istio-system mesh-user <user_name>

apiVersion: maistra.io/v1
kind: ServiceMeshMember
metadata:
  name: default
spec:
  controlPlaneRef:
    namespace: istio-system
    name: basic

관리자가 ServiceMeshControlPlane 리소스를 생성한 후 mesh-users 역할 바인딩이 자동으로 생성됩니다. 관리자는 다음 명령을 사용하여 사용자에게 역할을 추가할 수 있습니다.

$ oc policy add-role-to-user

관리자가 ServiceMeshControlPlane 리소스를 생성하기 전에 mesh-user 역할 바인딩을 생성할 수도 있습니다. 예를 들어 관리자는 ServiceMeshControlPlane 리소스와 동일한 oc apply 작업으로 이를 생성할 수 있습니다.

이 예제에서는 alice에 대한 역할 바인딩이 추가되었습니다.

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
  namespace: istio-system
  name: mesh-users
roleRef:
  apiGroup: rbac.authorization.k8s.io
  kind: Role
  name: mesh-user
subjects:
- apiGroup: rbac.authorization.k8s.io
  kind: User
  name: alice

1.12.2.

ServiceMeshControlPlane 프로필을 사용하여 재사용 가능한 구성을 생성할 수 있습니다. 개별 사용자는 생성한 프로필을 자체 구성으로 확장할 수 있습니다. 프로필은 다른 프로필의 구성 정보를 상속할 수도 있습니다. 예를 들어, 회계 팀에 대한 계정 컨트롤 플레인과 마케팅 팀에 대한 마케팅 컨트롤 플레인을 생성할 수 있습니다. 개발 템플릿과 프로덕션 템플릿을 생성하는 경우 마케팅 팀과 회계 팀의 구성원은 팀별 사용자 지정을 통해 개발 및 프로덕션 프로필을 확장할 수 있습니다.

Operator는 Red Hat OpenShift Service Mesh의 기본 설정이 포함된 default 프로필과 함께 제공됩니다.

1.12.2.1. ConfigMap 생성

사전 요구 사항

  • Service Mesh Operator 설치 및 검증.
  • cluster-admin 역할이 있는 계정. Red Hat OpenShift Dedicated를 사용하는 경우 dedicated-admin 역할의 계정이 있어야 합니다.
  • Operator 배포 위치.
  • OpenShift CLI(oc)에 액세스합니다.

절차

  1. Red Hat OpenShift Dedicated를 사용하는 경우 dedicated-admin 역할의 계정이 있어야 합니다.
  2. CLI에서 이 명령을 실행하여 openshift-operators 프로젝트에서 smcp-templates라는 ConfigMap을 생성하고 <profiles-directory>를 로컬 디스크의 ServiceMeshControlPlane 파일의 위치로 교체합니다.

    $ oc create configmap --from-file=<profiles-directory> smcp-templates -n openshift-operators
  3. ServiceMeshControlPlane에서 profiles 매개변수를 사용하여 하나 이상의 템플릿을 지정할 수 있습니다.

      apiVersion: maistra.io/v2
      kind: ServiceMeshControlPlane
      metadata:
        name: basic
      spec:
        profiles:
        - default

1.12.2.2. 올바른 네트워크 정책 설정

  • Istio가 제대로 작동하려면 서비스 메시로 들어오는 트래픽이 항상 Ingress-gateway를 통과해야 합니다.
  • 서비스 메시에 없는 별도의 네임스페이스에서 서비스 메시 외부에 서비스를 배포합니다.

1.13. 보안

서비스 메시 애플리케이션이 복잡한 마이크로 서비스를 사용하여 구성된 경우 Red Hat OpenShift Service Mesh를 사용하여 해당 서비스 간 통신 보안을 사용자 지정할 수 있습니다.

사전 준비 사항

샘플 애플리케이션은 보안 개념을 설명하는 데 도움이 됩니다.

1.13.1.

일부 프로토콜(IKE, SSH)에서는 기본 인증 모드이며, 다른 프로토콜(TLS)에서는 선택적입니다. TLS는 서비스 메시 인프라와 두 사이드카 프록시 사이에서 전적으로 처리됩니다.

기본적으로 Red Hat OpenShift Service Mesh의 mTLS가 활성화되고 허용 모드로 설정됩니다. 여기서 서비스 메시의 사이드카는 일반 텍스트 트래픽과 mTLS를 사용하여 암호화된 연결을 모두 허용합니다. 메시의 서비스가 메시 외부 서비스와 통신하는 경우 엄격한 mTLS가 해당 서비스 간의 통신을 중단할 수 있습니다. 워크로드를 서비스 메시로 마이그레이션하는 동안 허용 모드를 사용합니다. 그러면 메시, 네임스페이스 또는 애플리케이션 전반에서 엄격한 mTLS를 활성화할 수 있습니다.

ServiceMeshControlPlane 리소스의 데이터 플레인 수준에서 메시의 네임스페이스를 보호할 수 있습니다. 트래픽 암호화 연결을 사용자 지정하려면 PeerAuthenticationDestinationRule 리소스를 사용하여 애플리케이션 수준에서 네임스페이스를 구성합니다.

1.13.1.1. 서비스 메시에서 엄격한 mTLS 활성화

워크로드가 외부 서비스와 통신하지 않으면 통신 중단 없이 메시 전체에서 mTLS를 빠르게 활성화할 수 있습니다. ServiceMeshControlPlane 리소스에서 spec.security.dataPlane.mtlstrue로 설정하여 활성화할 수 있습니다. Operator는 필요한 리소스를 생성합니다.

apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
spec:
  version: v2.3
  security:
    dataPlane:
      mtls: true

절차

  1. 웹 콘솔에 로그인합니다.
  2. Operators설치된 Operators를 클릭합니다.
  3. 제공된 API에서 Service Mesh Control Plane을 클릭합니다.
  4. ServiceMeshControlPlane 리소스의 이름(예: production)을 클릭합니다.
  5. 세부 정보 페이지에서 데이터 플레인 보안보안 섹션에서 토글을 클릭합니다.
1.13.1.1.1. 특정 서비스의 수신 연결에 대해 사이드카 구성

정책을 생성하여 개별 서비스 또는 네임스페이스에 대해 mTLS를 구성할 수도 있습니다.

절차

  1. 다음 예제를 사용하여 YAML 파일을 생성합니다.

    PeerAuthentication 정책 예 policy.yaml

    apiVersion: security.istio.io/v1beta1
    kind: PeerAuthentication
    metadata:
      name: default
      namespace: <namespace>
    spec:
      mtls:
        mode: STRICT

    1. <namespace>를 서비스가 있는 네임스페이스로 바꿉니다.
  2. 다음 명령을 실행하여 서비스가 있는 네임스페이스에 리소스를 생성합니다. 방금 생성한 정책 리소스의 namespace 필드와 일치해야 합니다.

    $ oc create -n <namespace> -f <policy.yaml>
참고

자동 mTLS를 사용하지 않고 PeerAuthentication을 STRICT으로 설정하는 경우 서비스에 대한 DestinationRule 리소스를 생성해야 합니다.

1.13.1.1.2. 발신 연결에 대한 사이드카 구성

메시에서 다른 서비스로 요청을 보낼 때 mTLS를 사용하도록 서비스 메시를 구성하는 대상 규칙을 생성합니다.

절차

  1. 다음 예제를 사용하여 YAML 파일을 생성합니다.

    DestinationRule 예제 destination-rule.yaml

    apiVersion: networking.istio.io/v1alpha3
    kind: DestinationRule
    metadata:
      name: default
      namespace: <namespace>
    spec:
      host: "*.<namespace>.svc.cluster.local"
      trafficPolicy:
       tls:
        mode: ISTIO_MUTUAL

    1. <namespace>를 서비스가 있는 네임스페이스로 바꿉니다.
  2. 다음 명령을 실행하여 서비스가 있는 네임스페이스에 리소스를 생성합니다. 방금 생성한 DestinationRule 리소스의 namespace 필드와 일치해야 합니다.

    $ oc create -n <namespace> -f <destination-rule.yaml>
1.13.1.1.3. 최소 및 최대 프로토콜 버전 설정

사용자 환경에 서비스 메시의 암호화된 트래픽에 대한 특정 요구 사항이 있는 경우 ServiceMeshControlPlane 리소스에 spec.security.controlPlane.tls.minProtocolVersion 또는 spec.security.controlPlane.tls.maxProtocolVersion을 설정하여 허용되는 암호화 기능을 제어할 수 있습니다.

기본값은 TLS_AUTO이며 TLS 버전을 지정하지 않습니다.

표 1.5. 유효한 값

설명

TLS_AUTO

default

TLSv1_0

TLS 버전 1.0

TLSv1_1

TLS 버전 1.1

TLSv1_2

TLS 버전 1.2

TLSv1_3

TLS 버전 1.3

절차

  1. 웹 콘솔에 로그인합니다.
  2. Operators설치된 Operators를 클릭합니다.
  3. 제공된 API에서 Service Mesh Control Plane을 클릭합니다.
  4. ServiceMeshControlPlane 리소스의 이름(예: production)을 클릭합니다.
  5. YAML 탭을 클릭합니다.
  6. YAML 편집기에 다음 코드 조각을 삽입합니다. minProtocolVersion의 값을 TLS 버전 값으로 바꿉니다. 이 예에서 최소 TLS 버전은 TLSv1_2로 설정됩니다.

    ServiceMeshControlPlane 스니펫

    kind: ServiceMeshControlPlane
    spec:
      security:
        controlPlane:
          tls:
            minProtocolVersion: TLSv1_2

  7. 저장을 클릭합니다.
  8. 새로 고침을 클릭하여 변경 사항이 올바르게 업데이트되었는지 확인합니다.

1.13.1.2.

그림 1.5.

그림 1.6.

그림 1.7.

1.13.2. 역할 기반 액세스 제어(RBAC) 구성

RBAC(역할 기반 액세스 제어) 오브젝트에 따라 사용자 또는 서비스가 프로젝트 내에서 지정된 작업을 수행할 수 있는지가 결정됩니다. 메시의 워크로드에 대해 메시, 네임스페이스, 워크로드 전체 액세스 제어를 정의할 수 있습니다.

RBAC를 구성하려면 액세스를 구성하는 네임스페이스에 AuthorizationPolicy 리소스를 생성합니다.

예를 들어 RBAC를 사용하면 다음과 같은 정책을 생성할 수 있습니다.

  • 프로젝트 내 통신을 구성합니다.
  • 기본 네임스페이스의 모든 워크로드에 대한 전체 액세스를 허용하거나 거부합니다.
  • 수신 게이트웨이 액세스를 허용 또는 거부합니다.
  • 액세스 하려면 토큰이 필요합니다.

권한 부여 정책에는 선택기, 작업 및 규칙 목록이 포함됩니다.

  • selector 필드는 정책의 대상을 지정합니다.
  • action 필드는 요청을 허용하거나 거부할지 여부를 지정합니다.
  • rules 필드는 작업을 트리거할 시기를 지정합니다.

    • from 필드는 요청 원본에 대한 제약 조건을 지정합니다.
    • to 필드는 요청 대상 및 매개변수에 대한 제약 조건을 지정합니다.
    • when 필드는 규칙을 적용하기 위한 추가 조건을 지정합니다.

프로세스

  1. AuthorizationPolicy 리소스를 생성합니다. 다음 예제는 IP 주소가 수신 게이트웨이에 액세스하는 것을 거부하도록 ingress-policy AuthorizationPolicy를 업데이트하는 리소스를 보여줍니다.

    apiVersion: security.istio.io/v1beta1
    kind: AuthorizationPolicy
    metadata:
      name: ingress-policy
      namespace: istio-system
    spec:
      selector:
        matchLabels:
          app: istio-ingressgateway
      action: DENY
      rules:
      - from:
        - source:
          ipBlocks: ["1.2.3.4"]
  2. 리소스를 작성한 후 다음 명령어를 실행하여 네임스페이스에 리소스를 만듭니다. 네임스페이스는 AuthorizationPolicy 리소스의 metadata.namespace 필드와 일치해야 합니다.

    $ oc create -n istio-system -f <filename>

다음 단계

다른 일반적인 구성에 대해서는 다음 예제를 고려하십시오.

1.13.2.1. 프로젝트 내 통신 구성

1.13.2.1.1. 네임스페이스 외부 서비스에 대한 액세스 제한

다음 AuthorizationPolicy 리소스 예제를 사용하여 bookinfo 네임스페이스에 없는 모든 소스의 요청을 거부할 수 있습니다.

apiVersion: security.istio.io/v1beta1
kind: AuthorizationPolicy
metadata:
 name: httpbin-deny
 namespace: bookinfo
spec:
 selector:
   matchLabels:
     app: httpbin
     version: v1
 action: DENY
 rules:
 - from:
   - source:
       notNamespaces: ["bookinfo"]
1.13.2.1.2. 권한 부여 모두 허용 및 권한 부여 모두 거부(기본) 정책 만들기

다음 예제에서는 bookinfo 네임스페이스의 모든 워크로드에 액세스할 수 있는 권한 부여 모두 허용 정책을 보여줍니다.

apiVersion: security.istio.io/v1beta1
kind: AuthorizationPolicy
metadata:
  name: allow-all
  namespace: bookinfo
spec:
  action: ALLOW
  rules:
  - {}

다음 예제에서는 bookinfo 네임스페이스의 모든 워크로드에 대한 액세스를 거부하는 정책을 보여줍니다.

apiVersion: security.istio.io/v1beta1
kind: AuthorizationPolicy
metadata:
  name: deny-all
  namespace: bookinfo
spec:
  {}

1.13.2.2. 수신 게이트웨이에 대한 액세스 허용 또는 거부

IP 주소를 기반으로 허용 또는 거부 목록을 추가하도록 권한 부여 정책을 설정할 수 있습니다.

apiVersion: security.istio.io/v1beta1
kind: AuthorizationPolicy
metadata:
  name: ingress-policy
  namespace: istio-system
spec:
  selector:
    matchLabels:
      app: istio-ingressgateway
  action: ALLOW
  rules:
  - from:
    - source:
       ipBlocks: ["1.2.3.4", "5.6.7.0/24"]

1.13.2.3. JSON 웹 토큰으로 액세스 제한

JSON 웹 토큰(JWT)으로 메시에 액세스하는 항목을 제한할 수 있습니다. 인증 후 사용자 또는 서비스는 해당 토큰과 연결된 경로, 서비스에 액세스할 수 있습니다.

워크로드에서 지원하는 인증 방법을 정의하는 RequestAuthentication 리소스를 생성합니다. 다음 예제에서는 http://localhost:8080/auth/realms/master에서 발행한 JWT를 수락합니다.

apiVersion: "security.istio.io/v1beta1"
kind: "RequestAuthentication"
metadata:
  name: "jwt-example"
  namespace: bookinfo
spec:
  selector:
    matchLabels:
      app: httpbin
  jwtRules:
  - issuer: "http://localhost:8080/auth/realms/master"
    jwksUri: "http://keycloak.default.svc:8080/auth/realms/master/protocol/openid-connect/certs"

그런 다음, 동일한 네임스페이스에 AuthorizationPolicy 리소스를 생성하여, 사용자가 생성한 RequestAuthentication 리소스와 함께 작업할 수 있습니다. 다음 예제에서는 httpbin 워크로드에 요청을 보낼 때 Authorization 헤더에 JWT가 있어야 합니다.

apiVersion: "security.istio.io/v1beta1"
kind: "AuthorizationPolicy"
metadata:
  name: "frontend-ingress"
  namespace: bookinfo
spec:
  selector:
    matchLabels:
      app: httpbin
  action: DENY
  rules:
  - from:
    - source:
        notRequestPrincipals: ["*"]

1.13.3. 암호화 제품군 및 ECDH 곡선 구성

암호화 제품군 및 ECDH(Elliptic-curve Diffie–Hellman) 곡선은 서비스 메시를 보호하는 데 도움이 될 수 있습니다. 이러한 속성 중 하나가 비어 있으면 기본값이 사용됩니다.

서비스 메시에서 TLS 1.2 또는 이전 버전을 사용하는 경우 cipherSuites 설정이 적용됩니다. TLS 1.3을 사용할 때는 효과가 없습니다.

우선순위에 따라 암호화 제품군을 쉼표로 구분된 목록으로 설정합니다. 예를 들어 ecdhCurves: CurveP256, CurveP384CurveP256CurveP384보다 높은 우선순위로 설정합니다.

참고

암호화 제품군을 구성할 때 TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 또는 TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256을 포함해야 합니다. HTTP/2 지원에는 이러한 암호화 제품군 중 하나 이상이 필요합니다.

지원되는 암호화 제품군은 다음과 같습니다.

  • TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256
  • TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256
  • TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
  • TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
  • TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
  • TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
  • TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
  • TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
  • TLS_RSA_WITH_AES_128_GCM_SHA256
  • TLS_RSA_WITH_AES_256_GCM_SHA384
  • TLS_RSA_WITH_AES_128_CBC_SHA256
  • TLS_RSA_WITH_AES_128_CBC_SHA
  • TLS_RSA_WITH_AES_256_CBC_SHA
  • TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_RSA_WITH_3DES_EDE_CBC_SHA

지원되는 ECDH 곡선은 다음과 같습니다.

  • CurveP256
  • CurveP384
  • CurveP521
  • X25519

1.13.4. 외부 인증 기관 키 및 인증서 추가

기본적으로 Red Hat OpenShift Service Mesh는 자체 서명된 루트 인증서와 키를 생성하고 이를 사용하여 워크로드 인증서에 서명합니다. 사용자 정의 인증서 및 키를 사용하여 사용자 정의 루트 인증서로 워크로드 인증서에 서명할 수도 있습니다. 이 작업은 인증서와 키를 서비스 메시에 연결하는 예제를 보여줍니다.

사전 요구 사항

  • 인증서를 구성하려면 상호 TLS가 활성화된 Red Hat OpenShift Service Mesh를 설치합니다.
  • 프로덕션의 경우 인증 기관의 자체 인증서를 사용합니다.
  • 이러한 지침으로 결과를 확인하려면 Bookinfo 샘플 애플리케이션을 배포합니다.

1.13.4.1. 기존 인증서 및 키 추가

기존 서명(CA) 인증서 및 키를 사용하려면 CA 인증서, 키, 루트 인증서가 포함된 신뢰 파일 체인을 생성해야 합니다. 해당 인증서 각각에 대해 다음과 같은 정확한 파일 이름을 사용해야 합니다. CA 인증서를 ca-cert.pem, 키는 ca-key.pem이라고 합니다. ca-cert.pem을 서명하는 루트 인증서는 root-cert.pem이라고 합니다. 워크로드에서 중개 인증서를 사용하는 경우 cert-chain.pem 파일에 인증서를 지정해야 합니다.

  1. $ oc create secret generic cacerts -n istio-system --from-file=<path>/ca-cert.pem \
        --from-file=<path>/ca-key.pem --from-file=<path>/root-cert.pem \
        --from-file=<path>/cert-chain.pem
  2. 기본 rootCADir/etc/cacerts입니다. 키와 인증서가 기본 위치에 마운트된 경우 privateKey를 설정할 필요가 없습니다. 서비스 메시는 secret-mount 파일에서 인증서와 키를 읽습니다.

    apiVersion: maistra.io/v2
    kind: ServiceMeshControlPlane
    spec:
      security:
        dataPlane:
          mtls: true
        certificateAuthority:
          type: Istiod
          istiod:
            type: PrivateKey
            privateKey:
              rootCADir: /etc/cacerts
  3. $ oc -n istio-system delete pods -l 'app in (istiod,istio-ingressgateway, istio-egressgateway)'

  4. $ oc -n bookinfo delete pods --all

    출력은 다음과 유사합니다.

    pod "details-v1-6cd699df8c-j54nh" deleted
    pod "productpage-v1-5ddcb4b84f-mtmf2" deleted
    pod "ratings-v1-bdbcc68bc-kmng4" deleted
    pod "reviews-v1-754ddd7b6f-lqhsv" deleted
    pod "reviews-v2-675679877f-q67r2" deleted
    pod "reviews-v3-79d7549c7-c2gjs" deleted
  5. $ oc get pods -n bookinfo

1.13.4.2. 인증서 확인

  1. $ sleep 60
    $ oc -n bookinfo exec "$(oc -n bookinfo get pod -l app=productpage -o jsonpath={.items..metadata.name})" -c istio-proxy -- openssl s_client -showcerts -connect details:9080 > bookinfo-proxy-cert.txt
    $ sed -n '/-----BEGIN CERTIFICATE-----/{:start /-----END CERTIFICATE-----/!{N;b start};/.*/p}' bookinfo-proxy-cert.txt > certs.pem
    $ awk 'BEGIN {counter=0;} /BEGIN CERT/{counter++} { print > "proxy-cert-" counter ".pem"}' < certs.pem

  2. <path>를 인증서 경로로 교체합니다.

    $ openssl x509 -in <path>/root-cert.pem -text -noout > /tmp/root-cert.crt.txt

    $ openssl x509 -in ./proxy-cert-3.pem -text -noout > /tmp/pod-root-cert.crt.txt

    $ diff -s /tmp/root-cert.crt.txt /tmp/pod-root-cert.crt.txt

  3. <path>를 인증서 경로로 교체합니다.

    $ openssl x509 -in <path>/ca-cert.pem -text -noout > /tmp/ca-cert.crt.txt

    $ openssl x509 -in ./proxy-cert-2.pem -text -noout > /tmp/pod-cert-chain-ca.crt.txt

    $ diff -s /tmp/ca-cert.crt.txt /tmp/pod-cert-chain-ca.crt.txt

  4. 루트 인증서에서 워크로드 인증서로의 인증서 체인을 확인합니다. <path>를 인증서 경로로 교체합니다.

    $ openssl verify -CAfile <(cat <path>/ca-cert.pem <path>/root-cert.pem) ./proxy-cert-1.pem

1.13.4.3. 인증서 제거

추가한 인증서를 제거하려면 다음 단계를 따르십시오.

  1. 시크릿 cacerts를 제거합니다.

    $ oc delete secret cacerts -n istio-system
  2. ServiceMeshControlPlane 리소스에서 자체 서명된 루트 인증서로 서비스 메시를 재배포합니다.

    apiVersion: maistra.io/v2
    kind: ServiceMeshControlPlane
    spec:
      security:
        dataPlane:
          mtls: true

1.14.

1.14.1.

게이트웨이를 사용하여 메시에 대한 인바운드 및 아웃바운드 트래픽을 관리하여 메시에 들어가거나 나가려는 트래픽을 지정할 수 있습니다. 게이트웨이 구성은 서비스 워크로드와 함께 실행되는 사이드카 Envoy 프록시가 아닌, 메시의 에지에서 실행되는 독립 실행형 Envoy 프록시에 적용됩니다.

애플리케이션 계층 트래픽 라우팅(L7)을 동일한 API 리소스에 추가하는 대신, 일반 Red Hat OpenShift Service Mesh 가상 서비스를 게이트웨이에 바인딩하고 서비스 메시의 다른 데이터 플레인 트래픽처럼 게이트웨이 트래픽을 관리할 수 있습니다.

게이트웨이는 주로 수신 트래픽을 관리하는 데 사용되지만 송신 게이트웨이를 구성할 수도 있습니다. 이를 통해 외부 네트워크에 대한 액세스 권한이 있는 서비스를 제한하여 서비스 메시에 보안 제어를 추가할 수 있습니다. 게이트웨이를 사용하여 전적으로 내부 프록시를 구성할 수도 있습니다.

게이트웨이 예제

다음 예제는 외부 HTTPS 수신 트래픽에 대해 샘플 게이트웨이 구성을 보여줍니다.

apiVersion: networking.istio.io/v1alpha3
kind: Gateway
metadata:
  name: ext-host-gwy
spec:
  selector:
    istio: ingressgateway # use istio default controller
  servers:
  - port:
      number: 443
      name: https
      protocol: HTTPS
    hosts:
    - ext-host.example.com
    tls:
      mode: SIMPLE
      serverCertificate: /tmp/tls.crt
      privateKey: /tmp/tls.key

이 게이트웨이 구성으로 ext-host.example.com의 HTTPS 트래픽을 포트 443의 메시로 허용할 수 있지만 트래픽에 라우팅을 지정하지 않습니다.

라우팅을 지정하고 게이트웨이가 의도한 대로 작동하려면 게이트웨이도 가상 서비스에 바인딩해야 합니다. 다음 예와 같이 가상 서비스의 게이트웨이 필드를 사용하여 이 작업을 수행합니다.

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
  name: virtual-svc
spec:
  hosts:
  - ext-host.example.com
  gateways:
    - ext-host-gwy

그러면 외부 트래픽에 대한 라우팅 규칙으로 가상 서비스를 구성할 수 있습니다.

1.14.1.1.

참고

1.14.1.2.

사전 요구 사항

절차

  1. apiVersion: v1
    kind: Service
    metadata:
      name: istio-ingressgateway
      namespace: istio-ingress
    spec:
      type: ClusterIP
      selector:
        istio: ingressgateway
      ports:
      - name: http
        port: 80
        targetPort: 8080
      - name: https
        port: 443
        targetPort: 8443
    ---
    apiVersion: apps/v1
    kind: Deployment
    metadata:
      name: istio-ingressgateway
      namespace: istio-ingress
    spec:
      selector:
        matchLabels:
          istio: ingressgateway
      template:
        metadata:
          annotations:
            inject.istio.io/templates: gateway
          labels:
            istio: ingressgateway
            sidecar.istio.io/inject: "true" 1
        spec:
          containers:
          - name: istio-proxy
            image: auto 2
    1
    2
  2. apiVersion: rbac.authorization.k8s.io/v1
    kind: Role
    metadata:
      name: istio-ingressgateway-sds
      namespace: istio-ingress
    rules:
      - apiGroups: [""]
        resources: ["secrets"]
        verbs: ["get", "watch", "list"]
    ---
    apiVersion: rbac.authorization.k8s.io/v1
    kind: RoleBinding
    metadata:
      name: istio-ingressgateway-sds
      namespace: istio-ingress
    roleRef:
      apiGroup: rbac.authorization.k8s.io
      kind: Role
      name: istio-ingressgateway-sds
    subjects:
    - kind: ServiceAccount
      name: default
  3. apiVersion: networking.k8s.io/v1
    kind: NetworkPolicy
    metadata:
      name: gatewayingress
      namespace: istio-ingress
    spec:
      podSelector:
        matchLabels:
          istio: ingressgateway
      ingress:
        - {}
      policyTypes:
      - Ingress
  4. apiVersion: autoscaling/v2
    kind: HorizontalPodAutoscaler
    metadata:
      labels:
        istio: ingressgateway
        release: istio
      name: ingressgatewayhpa
      namespace: istio-ingress
    spec:
      maxReplicas: 5
      metrics:
      - resource:
          name: cpu
          target:
            averageUtilization: 80
            type: Utilization
        type: Resource
      minReplicas: 2
      scaleTargetRef:
        apiVersion: apps/v1
        kind: Deployment
        name: istio-ingressgateway
  5. apiVersion: policy/v1
    kind: PodDisruptionBudget
    metadata:
      labels:
        istio: ingressgateway
        release: istio
      name: ingressgatewaypdb
      namespace: istio-ingress
    spec:
      minAvailable: 1
      selector:
        matchLabels:
          istio: ingressgateway

1.14.1.3. Ingress 트래픽 관리

Red Hat OpenShift Service Mesh에서 Ingress Gateway는 모니터링, 보안 및 라우팅 규칙과 같은 기능을 클러스터에 들어오는 트래픽에 적용할 수 있도록 합니다. 서비스 메시 게이트웨이를 사용하여 서비스 메시 외부에서 서비스를 노출합니다.

1.14.1.3.1. Ingress IP 및 포트 확인

Ingress 구성은 환경에서 외부 로드 밸런서를 지원하는지 여부에 따라 달라집니다. 외부 로드 밸런서는 클러스터의 Ingress IP 및 포트에 설정됩니다. 클러스터의 IP 및 포트가 외부 로드 밸런서에 구성되어 있는지 확인하려면 다음 명령을 실행합니다.

$ oc get svc istio-ingressgateway -n istio-system

해당 명령은 네임스페이스에 있는 각 항목의 NAME, TYPE, CLUSTER-IP, EXTERNAL-IP, PORT(S), AGE를 반환합니다.

EXTERNAL-IP 값이 설정되면 해당 환경에 Ingress 게이트웨이에 사용할 수 있는 외부 로드 밸런서가 있습니다.

EXTERNAL-IP 값이 <none> 또는 영구적으로 <pending>인 경우, 해당 환경은 Ingress 게이트웨이에 외부 로드 밸런서를 제공하지 않습니다.

1.14.1.3.1.1. 로드 밸런서를 사용하여 Ingress 포트 확인

환경에 외부 로드 밸런서가 있는 경우 다음 지침을 따릅니다.

절차

  1. 다음 명령을 실행하여 Ingress IP 및 포트를 설정합니다. 이 명령은 터미널에서 변수를 설정합니다.

    $ export INGRESS_HOST=$(oc -n istio-system get service istio-ingressgateway -o jsonpath='{.status.loadBalancer.ingress[0].ip}')
  2. 다음 명령을 실행하여 Ingress 포트를 설정합니다.

    $ export INGRESS_PORT=$(oc -n istio-system get service istio-ingressgateway -o jsonpath='{.spec.ports[?(@.name=="http2")].port}')
  3. 다음 명령을 실행하여 보안 Ingress 포트를 설정합니다.

    $ export SECURE_INGRESS_PORT=$(oc -n istio-system get service istio-ingressgateway -o jsonpath='{.spec.ports[?(@.name=="https")].port}')
  4. 다음 명령을 실행하여 TCP Ingress 포트를 설정합니다.

    $ export TCP_INGRESS_PORT=$(kubectl -n istio-system get service istio-ingressgateway -o jsonpath='{.spec.ports[?(@.name=="tcp")].port}')
참고

이 경우 Ingress 게이트웨이의 EXTERNAL-IP 값은 IP 주소가 아닙니다.

이 경우 다음 명령을 사용하여 INGRESS_HOST 값을 수정합니다.

$ export INGRESS_HOST=$(oc -n istio-system get service istio-ingressgateway -o jsonpath='{.status.loadBalancer.ingress[0].hostname}')
1.14.1.3.1.2. 로드 밸런서 없이 Ingress 포트 확인

환경에 외부 로드 밸런서가 없는 경우 Ingress 포트를 확인하고 대신 노드 포트를 사용합니다.

절차

  1. Ingress 포트를 설정합니다.

    $ export INGRESS_PORT=$(oc -n istio-system get service istio-ingressgateway -o jsonpath='{.spec.ports[?(@.name=="http2")].nodePort}')
  2. 다음 명령을 실행하여 보안 Ingress 포트를 설정합니다.

    $ export SECURE_INGRESS_PORT=$(oc -n istio-system get service istio-ingressgateway -o jsonpath='{.spec.ports[?(@.name=="https")].nodePort}')
  3. 다음 명령을 실행하여 TCP Ingress 포트를 설정합니다.

    $ export TCP_INGRESS_PORT=$(kubectl -n istio-system get service istio-ingressgateway -o jsonpath='{.spec.ports[?(@.name=="tcp")].nodePort}')

1.14.1.4.

Ingress 게이트웨이는 들어오는 HTTP/TCP 연결을 수신하는 메시의 에지에서 작동하는 로드 밸런서입니다. 노출된 포트와 프로토콜을 구성하지만 트래픽 라우팅 구성은 포함하지 않습니다. Ingress 트래픽의 트래픽 라우팅은 내부 서비스 요청과 동일한 방식으로 라우팅 규칙으로 구성됩니다.

다음 단계에서는 게이트웨이를 만들고 Bookinfo 샘플 애플리케이션에서 서비스를 /productpage/login. 경로의 외부 트래픽에 노출하도록 VirtualService를 구성하는 방법을 보여줍니다.

절차

  1. 트래픽을 수락하기 위해 게이트웨이를 만듭니다.

    1. YAML 파일을 생성한 후 다음 YAML을 이 파일에 복사합니다.

      게이트웨이 예제 gateway.yaml

      apiVersion: networking.istio.io/v1alpha3
      kind: Gateway
      metadata:
        name: bookinfo-gateway
      spec:
        selector:
          istio: ingressgateway
        servers:
        - port:
            number: 80
            name: http
            protocol: HTTP
          hosts:
          - "*"

    2. YAML 파일을 적용합니다.

      $ oc apply -f gateway.yaml
  2. VirtualService 오브젝트를 생성하여 호스트 헤더를 다시 작성합니다.

    1. YAML 파일을 생성한 후 다음 YAML을 이 파일에 복사합니다.

      apiVersion: networking.istio.io/v1alpha3
      kind: VirtualService
      metadata:
        name: bookinfo
      spec:
        hosts:
        - "*"
        gateways:
        - bookinfo-gateway
        http:
        - match:
          - uri:
              exact: /productpage
          - uri:
              prefix: /static
          - uri:
              exact: /login
          - uri:
              exact: /logout
          - uri:
              prefix: /api/v1/products
          route:
          - destination:
              host: productpage
              port:
                number: 9080

    2. YAML 파일을 적용합니다.

      $ oc apply -f vs.yaml
  3. 게이트웨이 및 VirtualService가 올바르게 설정되었는지 확인합니다.

    1. 게이트웨이 URL을 설정합니다.

      export GATEWAY_URL=$(oc -n istio-system get route istio-ingressgateway -o jsonpath='{.spec.host}')
    2. 포트 번호를 설정합니다.

      export TARGET_PORT=$(oc -n istio-system get route istio-ingressgateway -o jsonpath='{.spec.port.targetPort}')
    3. 명시적으로 노출된 페이지를 테스트합니다.

      curl -s -I "$GATEWAY_URL/productpage"

      예상 결과는 200입니다.

1.14.2.

Istio 게이트웨이가 서비스 메시 내부에서 생성, 업데이트 또는 삭제될 때마다 OpenShift 경로가 생성, 업데이트 또는 삭제됩니다.

1.14.2.1.

1.14.2.2. 하위 도메인 경로 생성

다음 예제에서는 Bookinfo 샘플 애플리케이션에 게이트웨이를 생성하여 하위 도메인 경로를 생성합니다.

apiVersion: networking.istio.io/v1alpha3
kind: Gateway
metadata:
  name: gateway1
spec:
  selector:
    istio: ingressgateway
  servers:
  - port:
      number: 80
      name: http
      protocol: HTTP
    hosts:
    - www.bookinfo.com
    - bookinfo.example.com

$ oc -n istio-system get routes

예상 출력

NAME           HOST/PORT             PATH  SERVICES               PORT  TERMINATION   WILDCARD
gateway1-lvlfn bookinfo.example.com        istio-ingressgateway   <all>               None
gateway1-scqhv www.bookinfo.com            istio-ingressgateway   <all>               None

1.14.2.3.

1.14.2.4. 자동 경로 생성 비활성화

자동 경로 생성을 비활성화하면 특별한 경우가 있거나 경로를 수동으로 제어하려는 경우 보다 유연하게 경로를 제어할 수 있습니다.

1.14.2.4.1.

1.14.2.4.2.

예를 들어, 다음 리소스 스니펫을 참조하십시오.

apiVersion: maistra.io/v1alpha1
kind: ServiceMeshControlPlane
metadata:
  namespace: istio-system
spec:
  gateways:
    openshiftRoute:
      enabled: false

1.14.3.

서비스 항목은 Red Hat OpenShift Service Mesh가 내부적으로 관리하는 서비스 레지스트리에 항목을 추가합니다. 서비스 항목을 추가한 후 Envoy 프록시는 메시의 서비스인 것처럼 서비스에 트래픽을 보냅니다. 서비스 항목을 사용하면 다음을 수행할 수 있습니다.

  • 서비스 메시 외부에서 실행되는 서비스의 트래픽을 관리합니다.
  • 웹에서 소비된 API 또는 레거시 인프라의 서비스에 대한 트래픽과 같은 외부 대상의 트래픽을 리디렉션 및 전달합니다.
  • 외부 대상에 대한 재시도, 시간 초과 및 오류 삽입 정책을 정의합니다.
  • VM(가상 머신)에서 메시에 VM을 추가하여 메시 서비스를 실행합니다.
참고

Kubernetes에서 다중 클러스터 Red Hat OpenShift Service Mesh 메시를 구성하기 위해 다른 클러스터의 서비스를 메시에 추가합니다.

서비스 항목 예

apiVersion: networking.istio.io/v1alpha3
kind: ServiceEntry
metadata:
  name: svc-entry
spec:
  hosts:
  - ext-svc.example.com
  ports:
  - number: 443
    name: https
    protocol: HTTPS
  location: MESH_EXTERNAL
  resolution: DNS

완전히 한정하거나 와일드카드 접두사 도메인 이름을 사용할 수 있습니다.

메시의 다른 서비스에 대한 트래픽을 구성하는 것과 동일한 방식으로 서비스 항목에 대한 트래픽을 제어하도록 가상 서비스 및 대상 규칙을 구성할 수 있습니다. 예를 들어 다음 대상 규칙은 서비스 항목을 사용하여 구성된 ext-svc.example.com 외부 서비스에 대한 연결을 보호하기 위해 상호 TLS를 사용하도록 트래픽 경로를 구성합니다.

apiVersion: networking.istio.io/v1alpha3
kind: DestinationRule
metadata:
  name: ext-res-dr
spec:
  host: ext-svc.example.com
  trafficPolicy:
    tls:
      mode: MUTUAL
      clientCertificate: /etc/certs/myclientcert.pem
      privateKey: /etc/certs/client_private_key.pem
      caCertificates: /etc/certs/rootcacerts.pem

1.14.4.

가상 서비스가 있는 Red Hat OpenShift Service Mesh를 통해 여러 버전의 마이크로 서비스로 요청을 동적으로 라우팅할 수 있습니다. 가상 서비스를 사용하면 다음을 수행할 수 있습니다.

  • 단일 가상 서비스를 통해 여러 애플리케이션 서비스를 처리합니다. 예를 들어 메시에서 Kubernetes를 사용하는 경우 특정 네임스페이스의 모든 서비스를 처리하도록 가상 서비스를 구성할 수 있습니다.
  • 게이트웨이와 결합하여 트래픽 규칙을 구성하고 수신 및 송신 트래픽을 제어합니다.

1.14.4.1.

요청은 가상 서비스를 통해 서비스 메시 내의 서비스로 라우팅됩니다. 각 가상 서비스는 순서대로 평가되는 라우팅 규칙 세트로 구성됩니다. Red Hat OpenShift Service Mesh는 가상 서비스에 대해 주어진 각 요청을 메시 내의 실제 특정 대상에 연결합니다.

가상 서비스가 없는 Red Hat OpenShift Service Mesh는 모든 서비스 인스턴스 간에 라운드 로빈 로드 밸런싱을 사용하여 트래픽을 배포합니다. 가상 서비스에서는 하나 이상의 호스트 이름에 대한 트래픽 동작을 지정할 수 있습니다. 가상 서비스의 라우팅 규칙은 가상 서비스에 대한 트래픽을 적절한 대상으로 전송하는 방법을 Red Hat OpenShift Service Mesh에 알립니다. 경로 대상은 동일한 서비스 또는 완전히 다른 서비스 버전일 수 있습니다.

절차

  1. 예: VirtualService.yaml

    apiVersion: networking.istio.io/v1alpha3
    kind: VirtualService
    metadata:
      name: reviews
    spec:
      hosts:
      - reviews
      http:
      - match:
        - headers:
            end-user:
              exact: jason
        route:
        - destination:
            host: reviews
            subset: v2
      - route:
        - destination:
            host: reviews
            subset: v3

  2. 다음 명령을 실행하여 VirtualService.yaml을 적용합니다. 여기서 VirtualService.yaml은 파일 경로입니다.

    $ oc apply -f <VirtualService.yaml>

1.14.4.2.

매개변수설명
spec:
  hosts:

hosts 필드에는 라우팅 규칙이 적용되는 가상 서비스의 대상 주소가 나열됩니다. 이는 서비스에 요청을 보내는 데 사용되는 주소입니다. 가상 서비스 호스트 이름은 IP 주소, DNS 이름 또는 정규화된 도메인 이름으로 확인되는 짧은 이름일 수 있습니다.

spec:
  http:
  - match:

http 섹션에는 호스트 필드에 지정된 대상으로 전송된 HTTP/1.1, HTTP2, gRPC 트래픽을 라우팅하기 위한 일치 조건 및 작업을 설명하는 가상 서비스의 라우팅 규칙이 포함됩니다. 라우팅 규칙은 트래픽을 이동할 대상과 지정된 일치 조건으로 구성됩니다. 예제의 첫 번째 라우팅 규칙에는 일치 필드로 시작하는 조건이 있습니다. 이 예제에서 이 라우팅은 사용자 jason의 모든 요청에 적용됩니다. headers, end-user, exact 필드를 추가하여 적절한 요청을 선택합니다.

spec:
  http:
  - match:
    - destination:

경로 섹션의 destination 필드는 이 조건과 일치하는 트래픽에 대한 실제 대상을 지정합니다. 가상 서비스의 호스트와 달리 대상 호스트는 Red Hat OpenShift Service Mesh 서비스 레지스트리에 있는 실제 대상이어야 합니다. 프록시가 있는 메시 서비스 또는 서비스 항목을 사용하여 추가된 비 메시 서비스일 수 있습니다.

1.14.5.

대상 규칙은 가상 서비스 라우팅 규칙이 평가된 후에 적용되므로 트래픽의 실제 대상에 적용됩니다. 가상 서비스는 트래픽을 대상으로 라우팅합니다. 대상 규칙은 해당 대상의 트래픽에 발생하는 요소를 설정합니다.

기본적으로 Red Hat OpenShift Service Mesh는 풀의 각 서비스 인스턴스에서 차례대로 요청을 수신하는 라운드 로빈 로드 밸런싱 정책을 사용합니다. 또한 Red Hat OpenShift Service Mesh는 특정 서비스 또는 서비스 하위 집합에 대한 요청의 대상 규칙에 지정할 수 있는 다음과 같은 모델을 지원합니다.

  • Random: 요청은 풀의 인스턴스에 무작위로 전달됩니다.
  • Weighted: 요청은 구체적인 비율에 따라 풀의 인스턴스로 전달됩니다.
  • Least requests: 요청은 요청 수가 가장 적은 인스턴스로 전달됩니다.

대상 규칙 예

다음 예제 대상 규칙은 서로 다른 로드 밸런싱 정책을 사용하여 my-svc 대상 서비스에 대해 세 가지 다른 하위 집합을 구성합니다.

apiVersion: networking.istio.io/v1alpha3
kind: DestinationRule
metadata:
  name: my-destination-rule
spec:
  host: my-svc
  trafficPolicy:
    loadBalancer:
      simple: RANDOM
  subsets:
  - name: v1
    labels:
      version: v1
  - name: v2
    labels:
      version: v2
    trafficPolicy:
      loadBalancer:
        simple: ROUND_ROBIN
  - name: v3
    labels:
      version: v3

1.14.6.

또한 멤버 프로젝트 전용 수신으로 제한합니다. 멤버 외 프로젝트에서 수신이 필요한 경우 해당 트래픽을 허용하기 위해 NetworkPolicy를 생성해야 합니다.

1.14.6.1.

참고

사전 요구 사항

절차

  1. Red Hat OpenShift Service Mesh Operator를 클릭합니다. Istio Service Mesh Control Plane 열에서 ServiceMeshControlPlane의 이름을 클릭합니다(예: basic-install).
  2. ServiceMeshControlPlane 세부 정보 만들기 페이지에서 YAML을 클릭하여 구성을 수정합니다.
  3. apiVersion: maistra.io/v2
    kind: ServiceMeshControlPlane
    spec:
      security:
          manageNetworkPolicy: false
  4. 저장을 클릭합니다.

1.14.7.

기본적으로 Red Hat OpenShift Service Mesh는 연결된 워크로드의 모든 포트에서 트래픽을 허용하고 트래픽을 전달할 때 메시의 모든 워크로드에 도달할 수 있도록 모든 Envoy 프록시를 구성합니다. 사이드카 구성을 사용하여 다음을 수행할 수 있습니다.

  • Envoy 프록시가 수락하는 포트와 프로토콜 집합을 미세 조정합니다.
  • Envoy 프록시가 도달할 수 있는 서비스 집합을 제한합니다.
참고

서비스 메시의 성능을 최적화하려면 Envoy 프록시 구성을 제한하는 것이 좋습니다.

Bookinfo 샘플 애플리케이션에서 모든 서비스가 동일한 네임스페이스 및 컨트롤 플레인에서 실행되는 다른 서비스에 도달할 수 있도록 사이드카를 구성합니다. 이 사이드카 구성은 Red Hat OpenShift Service Mesh 정책 및 원격 분석 기능을 사용하는 데 필요합니다.

절차

  1. 다음 예제를 사용하여 YAML 파일을 생성하여 특정 네임스페이스의 모든 워크로드에 사이드카 구성을 적용하도록 지정합니다. 그렇지 않으면 workloadSelector를 사용하여 특정 워크로드를 선택합니다.

    예제 sidecar.yaml

    apiVersion: networking.istio.io/v1alpha3
    kind: Sidecar
    metadata:
      name: default
      namespace: bookinfo
    spec:
      egress:
      - hosts:
        - "./*"
        - "istio-system/*"

  2. 다음 명령을 실행하여 sidecar.yaml을 적용합니다. 여기서 sidecar.yaml은 파일의 경로입니다.

    $ oc apply -f sidecar.yaml
  3. 다음 명령을 실행하여 사이드카가 성공적으로 생성되었는지 확인합니다.

    $ oc get sidecar

1.14.8.

이 안내서는 Bookinfo 샘플 애플리케이션을 참조하여 예제 애플리케이션에 라우팅 예제를 제공합니다.

1.14.8.1.

Service Mesh Bookinfo 샘플 애플리케이션은 각각 여러 가지 버전이 있는 네 개의 마이크로 서비스로 구성됩니다. Bookinfo 샘플 애플리케이션을 설치한 후에는 reviews 마이크로 서비스의 세 가지 버전이 동시에 실행됩니다.

브라우저에서 Bookinfo 앱 /product 페이지에 액세스하여 여러 번 새로 고침하면 북 리뷰 출력에 별점이 포함된 경우도 있고 그렇지 않은 경우도 있습니다. 라우팅할 명시적인 기본 서비스 버전이 없으면 서비스 메시는 사용 가능한 모든 버전으로 차례대로 요청을 라우팅합니다.

이 튜토리얼은 모든 트래픽을 마이크로 서비스의 v1(버전 1)으로 라우팅하는 규칙을 적용하는 데 도움이 됩니다. 나중에 HTTP 요청 헤더의 값을 기반으로 트래픽을 라우팅하는 규칙을 적용할 수 있습니다.

사전 요구 사항

  • 다음 예제에서 작동하도록 Bookinfo 샘플 애플리케이션을 배포하십시오.

1.14.8.2. 가상 서비스 적용

다음 절차에서 가상 서비스는 마이크로 서비스의 기본 버전을 설정하는 가상 서비스를 적용하여 모든 트래픽을 각 마이크로 서비스의 v1로 라우팅합니다.

절차

  1. 가상 서비스를 적용합니다.

    $ oc apply -f https://raw.githubusercontent.com/Maistra/istio/maistra-2.3/samples/bookinfo/networking/virtual-service-all-v1.yaml
  2. 가상 서비스를 적용했는지 확인하려면 다음 명령을 사용하여 정의된 경로를 표시합니다.

    $ oc get virtualservices -o yaml

    이 명령은 kind: VirtualService의 리소스를 YAML 형식으로 반환합니다.

reviews 서비스 버전 1을 포함하여 서비스 메시를 Bookinfo 마이크로 서비스 v1 버전으로 라우팅하도록 구성했습니다.

1.14.8.3. 새 경로 구성 테스트

Bookinfo 앱의 /productpage를 다시 새로 고침하여 새 구성을 테스트합니다.

절차

  1. GATEWAY_URL 매개변수 값을 설정합니다. 이 변수를 사용하여 나중에 Bookinfo 제품 페이지의 URL을 찾을 수 있습니다. 이 예제에서 컨트롤 플레인 프로젝트는 istio-system입니다.

    export GATEWAY_URL=$(oc -n istio-system get route istio-ingressgateway -o jsonpath='{.spec.host}')
  2. 다음 명령을 실행하여 제품 페이지의 URL을 검색합니다.

    echo "http://$GATEWAY_URL/productpage"
  3. 브라우저에서 Bookinfo 사이트를 엽니다.

페이지의 리뷰 부분은 새로 고침 횟수와 관계없이 별점 없이 표시됩니다. 이는 리뷰 서비스의 모든 트래픽을 reviews:v1 버전으로 라우팅하도록 서비스 메시를 구성했기 때문이며, 이 서비스 버전은 별점 서비스에 액세스할 수 없습니다.

이제 서비스 메시가 트래픽을 하나의 서비스 버전으로 라우팅합니다.

1.14.8.4. 사용자 ID 기반 경로

특정 사용자의 모든 트래픽이 특정 서비스 버전으로 라우팅되도록 경로 구성을 변경합니다. 이 경우 jason이라는 사용자의 모든 트래픽은 서비스 reviews:v2로 라우팅됩니다.

서비스 메시에는 사용자 ID에 대한 특별한 기본 이해가 없습니다. 이 예제는 productpage 서비스가 모든 아웃바운드 HTTP 요청에 대한 사용자 정의 end-user 헤더를 검토 서비스에 추가한다는 사실에 의해 활성화됩니다.

절차

  1. 다음 명령을 실행하여 Bookinfo 샘플 애플리케이션에서 사용자 기반 라우팅을 활성화하도록 설정합니다.

    $ oc apply -f https://raw.githubusercontent.com/Maistra/istio/maistra-2.3/samples/bookinfo/networking/virtual-service-reviews-test-v2.yaml
  2. 다음 명령을 실행하여 규칙이 생성되었는지 확인합니다. 이 명령은 kind: VirtualService의 모든 리소스를 YAML 형식으로 반환합니다.

    $ oc get virtualservice reviews -o yaml
  3. Bookinfo 앱의 /productpage에서 암호없이 jason으로 로그인합니다.
  4. 브라우저를 새로 고침합니다. 별점은 각 리뷰 옆에 표시됩니다.
  5. 브라우저를 새로 고침합니다. 이제 별이 사라졌습니다. Jason을 제외한 모든 사용자에 대해 트래픽이 reviews:v1으로 라우팅됩니다.

사용자 ID를 기반으로 트래픽을 라우팅하도록 Bookinfo 샘플 애플리케이션을 성공적으로 구성했습니다.

1.15.

1.15.1.

  • 선택적으로 Grafana를 사용하여 서비스 메시 메트릭을 분석할 수 있습니다.

사전 요구 사항

  1. Red Hat OpenShift Dedicated를 사용하는 경우 dedicated-admin 역할의 계정이 있어야 합니다.

  1. Red Hat OpenShift Dedicated를 사용하는 경우 dedicated-admin 역할의 계정이 있어야 합니다.

    $ oc login --username=<NAMEOFUSER> https://<HOSTNAME>:6443
  2. 다음 명령을 실행합니다.

    $ oc project istio-system
  3. $ oc get routes

    출력은 다음과 유사합니다.

    NAME                    HOST/PORT                         SERVICES              PORT    TERMINATION
    bookinfo-gateway        bookinfo-gateway-yourcompany.com  istio-ingressgateway          http2
    grafana                 grafana-yourcompany.com           grafana               <all>   reencrypt/Redirect
    istio-ingressgateway    istio-ingress-yourcompany.com     istio-ingressgateway  8080
    jaeger                  jaeger-yourcompany.com            jaeger-query          <all>   reencrypt
    kiali                   kiali-yourcompany.com             kiali                 20001   reencrypt/Redirect
    prometheus              prometheus-yourcompany.com        prometheus            <all>   reencrypt/Redirect

1.15.2. Kiali 콘솔에 액세스

Kiali 콘솔에서 애플리케이션의 토폴로지, 상태 및 지표를 볼 수 있습니다. 추상 애플리케이션, 서비스 및 워크로드를 포함하여 다양한 수준에서 메시 구성 요소에 대한 인사이트를 볼 수 있습니다.

  1. 프로젝트를 클릭합니다.

1.15.3.

몇 가지의 그래프를 선택할 수 있습니다.

  • 앱 그래프는 동일한 레이블이 있는 애플리케이션에 대한 집계 워크로드를 보여줍니다.
  • 서비스 그래프는 메시의 각 서비스에 대한 노드를 표시되지만 그래프에서 모든 애플리케이션과 워크로드는 제외됩니다. 높은 수준의 보기를 제공하며 정의된 서비스에 대한 모든 트래픽을 집계합니다.
  • 버전이 지정된 앱 그래프는 애플리케이션의 각 버전에 대한 노드를 보여줍니다. 모든 애플리케이션 버전이 함께 그룹화됩니다.
  • 워크로드 그래프는 서비스 메시의 각 워크로드에 대한 노드를 표시합니다. 이 그래프는 애플리케이션 및 버전 레이블을 사용할 필요가 없습니다. 애플리케이션에서 버전 레이블을 사용하지 않는 경우 이 그래프를 사용하십시오.

지표 요약을 보려면 그래프에서 노드 또는 에지를 선택하여 요약 세부 정보 패널에 지표 세부 정보를 표시합니다.

1.15.3.1.

사전 요구 사항

  • $ curl "http://$GATEWAY_URL/productpage"

    이 명령은 애플리케이션의 productpage 마이크로 서비스에 액세스하는 사용자를 시뮬레이션합니다.

절차

1.15.3.2.

사전 요구 사항

절차

작은 정보

1.15.3.3.

사전 요구 사항

절차

1.15.4. 분산 추적

사용자가 애플리케이션에서 작업을 수행할 때마다 여러 서비스가 상호 작용해야 응답을 생성할 수 있는 요청이 실행됩니다. 이 요청의 경로는 분산 트랜잭션이라고 합니다.

1.15.4.1.

사전 요구 사항

절차

  1. Red Hat OpenShift Service Mesh Operator를 클릭합니다. Istio Service Mesh Control Plane 열에서 ServiceMeshControlPlane 리소스의 이름을 클릭합니다. (예: basic)
    1. YAML 탭을 클릭합니다.
    2. spec:
        addons:
          jaeger:
            name: distr-tracing-production

    3. 저장을 클릭합니다.
  2. 다시 로드를 클릭하여 ServiceMeshControlPlane 리소스가 올바르게 구성되었는지 확인합니다.

1.15.4.2. 샘플링 속도 조정

추적은 서비스 메시의 서비스 간 실행 경로입니다. 추적은 하나 이상의 범위로 구성됩니다. 범위는 이름, 시작 시간 및 기간이 있는 논리적 작업 단위입니다.

샘플링 속도가 높으면 클러스터 리소스와 성능이 소모되지만 문제를 디버깅할 때 유용합니다. 프로덕션에 Red Hat OpenShift Service Mesh를 배포하기 전에 값을 더 적은 비율의 추적으로 설정합니다.

기본 설치에서 spec.tracing.sampling은 추적의 100%를 샘플링하는 10000으로 설정됩니다. 예를 들면 다음과 같습니다.

  • 값을 10으로 설정하면 추적의 0.1%를 샘플링합니다.
  • 값을 500으로 설정하면 추적의 5%가 샘플링됩니다.
참고

절차

  1. 프로젝트 메뉴를 클릭하고 컨트롤 플레인을 설치한 프로젝트(예: istio-system)를 선택합니다.
  2. Red Hat OpenShift Service Mesh Operator를 클릭합니다. Istio Service Mesh Control Plane 열에서 ServiceMeshControlPlane 리소스의 이름을 클릭합니다. (예: basic)
  3. 샘플링 속도를 조정하려면 spec.tracing.sampling에 대해 다른 값을 설정합니다.

    1. YAML 탭을 클릭합니다.
    2. ServiceMeshControlPlane 리소스에서 spec.tracing.sampling의 값을 설정합니다. 다음 예에서는 100으로 설정합니다.

      Jaeger 샘플링 예

      spec:
        tracing:
          sampling: 100

    3. 저장을 클릭합니다.
  4. 다시 로드를 클릭하여 ServiceMeshControlPlane 리소스가 올바르게 구성되었는지 확인합니다.

1.15.5.

설치 프로세스는 Jaeger 콘솔에 액세스하기 위한 경로를 생성합니다.

  1. Red Hat OpenShift Dedicated를 사용하는 경우 dedicated-admin 역할의 계정이 있어야 합니다.

  1. Red Hat OpenShift Dedicated를 사용하는 경우 dedicated-admin 역할의 계정이 있어야 합니다.

    $ oc login --username=<NAMEOFUSER> https://<HOSTNAME>:6443
  2. $ export JAEGER_URL=$(oc get route -n istio-system jaeger -o jsonpath='{.spec.host}')

1.15.6.

Grafana에 액세스하려면 다음을 수행합니다.

절차

  1. 경로를 클릭합니다.
  2. Grafana 행의 위치 열에서 링크를 클릭합니다.

1.15.7.

Prometheus는 마이크로 서비스에 대한 다차원 데이터를 수집하는 데 사용할 수 있는 모니터링 및 경고 툴입니다.

절차

  1. 경로를 클릭합니다.
  2. Prometheus 행의 위치 열에서 링크를 클릭합니다.

1.16. 성능 및 확장

SMCP 설치에 성공했는지 확인한 후 SMCP 내에 정의된 설정을 사용자 환경에 맞게 수정해야 합니다.

1.16.2. 로드 테스트 결과

업스트림 Istio 커뮤니티 로드 테스트 메시는 초당 70,000개의 메시 전체 요청이 있는 1000개의 서비스와 2000개의 사이드카로 구성됩니다.

  • Istiod는 1개의 vCPU1.5GB 메모리를 사용합니다.
  • 레거시 istio-telemetry 서비스(기본적으로 Service Mesh 2.0에서 비활성화됨)는 Mixer를 사용하는 배포에 대해 초당 1,000 개의 메시 전체 요청마다 0.6 vCPU를 사용합니다. 데이터 플레인 구성 요소인 Envoy 프록시는 시스템을 통과하는 데이터를 처리합니다. 데이터 플레인과 컨트롤 플레인에는 별도의 성능 문제가 있습니다.

1.16.2.1.

Istiod는 사용자가 승인한 구성 파일 및 시스템의 현재 상태를 기반으로 사이드카 프록시를 구성합니다. Kubernetes 환경에서 CRD(Custom Resource Definitions)와 배포는 시스템의 구성 및 상태를 구성합니다. 게이트웨이 및 가상 서비스와 같은 Istio 구성 오브젝트는 사용자 인증된 구성을 제공합니다. 프록시에 대한 구성을 생성하기 위해 Istiod는 Kubernetes 환경과 사용자 인증된 구성에서 결합된 구성 및 시스템 상태를 처리합니다.

Istiod의 CPU 및 메모리 요구 사항은 구성 수와 가능한 시스템 상태에 따라 확장됩니다. CPU 사용량은 다음과 같은 요인에 따라 확장됩니다.

  • 배포 변경 비율.
  • 구성 변경 비율.
  • Istiod에 연결된 프록시 수.

그러나 이 부분은 기본적으로 수평 확장할 수 있습니다.

1.16.2.2. 데이터 플레인 성능

데이터 플레인 성능은 여러 요인에 따라 달라집니다. 예를 들면 다음과 같습니다.

  • 클라이언트 연결 수
  • 대상 요청 속도
  • 요청 크기 및 응답 크기
  • 프록시 작업자 스레드 수
  • 프로토콜
  • CPU 코어 수
  • 프록시 필터, 특히 telemetry v2 관련 필터의 수 및 유형입니다.

대기 시간, 처리량, 프록시 CPU 및 메모리 사용은 이러한 요인의 기능으로 측정됩니다.

1.16.2.2.1. CPU 및 메모리 사용

사이드카 프록시는 데이터 경로에서 추가 작업을 수행하므로 CPU와 메모리를 사용합니다.

프록시의 메모리 사용은 프록시가 보유하고 있는 총 구성 상태에 따라 달라집니다. 다수의 리스너, 클러스터 및 경로를 통해 메모리 사용량을 늘릴 수 있습니다.

프록시는 일반적으로 통과된 데이터를 버퍼링하지 않기 때문에 요청 속도는 메모리 소비에 영향을 미치지 않습니다.

1.16.2.2.2. 추가 대기 시간

Istio가 데이터 경로에 사이드카 프록시를 삽입하기 때문에 대기 시간이 중요합니다. Istio는 인증 필터, telemetry 필터 및 메타데이터 교환 필터를 프록시에 추가합니다. 모든 추가 필터는 프록시 내부의 경로 길이를 추가하고 대기 시간에 영향을 미칩니다.

Envoy 프록시는 응답이 클라이언트에 전송된 후 원시 telemetry 데이터를 수집합니다. 요청을 위해 원시 Telemetry를 수집하는 데 소요되는 시간은 해당 요청을 완료하는 데 걸리는 총 시간에 기여하지 않습니다. 그러나 작업자가 요청을 처리하느라 바쁘기 때문에 작업자는 즉시 다음 요청 처리를 시작하지 않습니다. 이 프로세스는 다음 요청의 대기열 대기 시간에 추가되며 평균 및 테일 대기 시간에 영향을 미칩니다. 실제 정확한 대기 시간은 트래픽 패턴에 따라 달라집니다.

메시 내부에서 요청은 클라이언트 측 프록시를 통과한 다음, 서버 측 프록시를 통과합니다.

1.17. 프로덕션을 위한 서비스 메시 구성

기본 설치에서 프로덕션으로 이동할 준비가 되면 프로덕션 요구 사항을 충족하도록 컨트롤 플레인, 추적 및 보안 인증서를 구성해야 합니다.

사전 요구 사항

  • Red Hat OpenShift Service Mesh를 설치 및 구성합니다.
  • 스테이징 환경에서 구성을 테스트합니다.

1.17.1. 프로덕션을 위한 ServiceMeshControlPlane 리소스 구성

Service Mesh를 테스트하기 위해 기본 ServiceMeshControlPlane 리소스를 설치한 경우 프로덕션에서 Red Hat OpenShift Service Mesh를 사용하기 전에 프로덕션 사양으로 구성해야 합니다.

기존 ServiceMeshControlPlane 리소스의 metadata.name 필드를 변경할 수 없습니다. 프로덕션 배포의 경우 기본 템플릿을 사용자 지정해야 합니다.

절차

    1. Elasticsearchspec.addons.jaeger.install.storage.type를 설정하여 production 배포 전략을 사용하기 위해 ServiceMeshControlPlane 리소스를 편집하고 install에서 추가 구성 옵션을 지정합니다.

      Elasticsearch를 포함한 기본 Jaeger 매개변수

      apiVersion: maistra.io/v2
      kind: ServiceMeshControlPlane
      metadata:
        name: basic
      spec:
        version: v2.3
        tracing:
          sampling: 100
          type: Jaeger
        addons:
          jaeger:
            name: MyJaeger
            install:
              storage:
                type: Elasticsearch
              ingress:
                enabled: true
        runtime:
          components:
            tracing.jaeger.elasticsearch: # only supports resources and image name
              container:
                resources: {}

    2. 프로덕션을 위한 샘플링 속도를 구성합니다. 자세한 내용은 성능 및 확장성 섹션을 참조하십시오.
  1. 외부 인증 기관에서 보안 인증서를 설치하여 보안 인증서가 프로덕션에 준비되었는지 확인합니다. 자세한 내용은 보안 섹션을 참조하십시오.
  2. 결과를 확인합니다. 다음 명령을 입력하여 ServiceMeshControlPlane 리소스가 올바르게 업데이트되었는지 확인합니다. 이 예에서 basicServiceMeshControlPlane 리소스의 이름입니다.

    $ oc get smcp basic -o yaml

1.17.2. 추가 리소스

1.18.

1.18.1.

1.18.2.

1.18.3.

1.18.4.

1.18.5.

1.18.6.

    • 참고

1.18.7.

1.18.7.1.

1.18.7.2.

1.18.7.3.

service.beta.kubernetes.io/aws-load-balancer-type: nlb

1.18.7.4.

1.18.7.5.

1.18.8.

1.18.9.

apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
metadata:
  name: red-mesh
  namespace: red-mesh-system
spec:
  version: v2.3
  runtime:
    defaults:
      container:
        imagePullPolicy: Always
  gateways:
    additionalEgress:
      egress-green-mesh:
        enabled: true
        requestedNetworkView:
        - green-network
        routerMode: sni-dnat
        service:
          metadata:
            labels:
              federation.maistra.io/egress-for: egress-green-mesh
          ports:
          - port: 15443
            name: tls
          - port: 8188
            name: http-discovery  #note HTTP here
      egress-blue-mesh:
        enabled: true
        requestedNetworkView:
        - blue-network
        routerMode: sni-dnat
        service:
          metadata:
            labels:
              federation.maistra.io/egress-for: egress-blue-mesh
          ports:
          - port: 15443
            name: tls
          - port: 8188
            name: http-discovery  #note HTTP here
    additionalIngress:
      ingress-green-mesh:
        enabled: true
        routerMode: sni-dnat
        service:
          type: LoadBalancer
          metadata:
            labels:
              federation.maistra.io/ingress-for: ingress-green-mesh
          ports:
          - port: 15443
            name: tls
          - port: 8188
            name: https-discovery  #note HTTPS here
      ingress-blue-mesh:
        enabled: true
        routerMode: sni-dnat
        service:
          type: LoadBalancer
          metadata:
            labels:
              federation.maistra.io/ingress-for: ingress-blue-mesh
          ports:
          - port: 15443
            name: tls
          - port: 8188
            name: https-discovery  #note HTTPS here
  security:
    trust:
      domain: red-mesh.local

표 1.6.

매개변수설명기본값
spec:
  cluster:
    name:

문자열

해당 없음

spec:
  cluster:
    network:

문자열

해당 없음

1.18.9.1.

표 1.7.

매개변수설명기본값
spec:
  gateways:
    additionalEgress:
      <egressName>:

  
spec:
  gateways:
    additionalEgress:
      <egressName>:
        enabled:

true/false

true

spec:
  gateways:
    additionalEgress:
      <egressName>:
        requestedNetworkView:

 
spec:
  gateways:
    additionalEgress:
      <egressName>:
        routerMode:

sni-dnat

 
spec:
  gateways:
    additionalEgress:
      <egressName>:
        service:
          metadata:
            labels:
              federation.maistra.io/egress-for:

  
spec:
  gateways:
    additionalEgress:
      <egressName>:
        service:
          ports:

 
spec:
  gateways:
    additionalIngress:

  
spec:
  gateways:
    additionalIgress:
      <ingressName>:
        enabled:

true/false

true

spec:
  gateways:
    additionalIngress:
      <ingressName>:
        routerMode:

sni-dnat

 
spec:
  gateways:
    additionalIngress:
      <ingressName>:
        service:
          type:

LoadBalancer

 
spec:
  gateways:
    additionalIngress:
      <ingressName>:
        service:
          type:

NodePort

 
spec:
  gateways:
    additionalIngress:
      <ingressName>:
        service:
          metadata:
            labels:
              federation.maistra.io/ingress-for:

  
spec:
  gateways:
    additionalIngress:
      <ingressName>:
        service:
          ports:

 
spec:
  gateways:
    additionalIngress:
      <ingressName>:
        service:
          ports:
            nodePort:

 

  gateways:
     additionalIngress:
      ingress-green-mesh:
        enabled: true
        routerMode: sni-dnat
        service:
          type: NodePort
          metadata:
            labels:
              federation.maistra.io/ingress-for: ingress-green-mesh
          ports:
          - port: 15443
            nodePort: 30510
            name: tls
          - port: 8188
            nodePort: 32359
            name: https-discovery

1.18.9.2.

kind: ServiceMeshControlPlane
metadata:
  name: red-mesh
  namespace: red-mesh-system
spec:
  security:
    trust:
      domain: red-mesh.local

표 1.8.

매개변수설명기본값
spec:
  security:
    trust:
      domain:

<mesh-name>.local

해당 없음

  1. Operators설치된 Operator로 이동합니다.
  2. Red Hat OpenShift Service Mesh Operator를 클릭합니다.
  3. ServiceMeshControlPlane 세부 정보 만들기 페이지에서 YAML을 클릭하여 구성을 수정합니다.
  4. 저장을 클릭합니다.

다음 절차에 따라 명령줄로 ServiceMeshControlPlane을 생성하거나 편집합니다.

  1. 다음 명령을 입력합니다. 메시지가 표시되면 사용자 이름과 암호를 입력합니다.

    $ oc login --username=<NAMEOFUSER> https://<HOSTNAME>:6443
  2. $ oc project red-mesh-system
  3. $ oc edit -n red-mesh-system smcp red-mesh
  4. $ oc get smcp -n red-mesh-system

    NAME       READY   STATUS            PROFILES      VERSION   AGE
    red-mesh   10/10   ComponentsReady   ["default"]   2.1.0     4m25s

1.18.10.

kind: ServiceMeshPeer
apiVersion: federation.maistra.io/v1
metadata:
  name: green-mesh
  namespace: red-mesh-system
spec:
  remote:
    addresses:
    - ingress-red-mesh.green-mesh-system.apps.domain.com
  gateways:
    ingress:
      name: ingress-green-mesh
    egress:
      name: egress-green-mesh
  security:
    trustDomain: green-mesh.local
    clientID: green-mesh.local/ns/green-mesh-system/sa/egress-red-mesh-service-account
    certificateChain:
      kind: ConfigMap
      name: green-mesh-ca-root-cert

표 1.9.

매개변수설명
metadata:
  name:

문자열

metadata:
  namespace:

문자열

spec:
  remote:
    addresses:

 
spec:
  remote:
    discoveryPort:

spec:
  remote:
    servicePort:

spec:
  gateways:
    ingress:
      name:

 
spec:
  gateways:
    egress:
      name:

 
spec:
  security:
    trustDomain:

<peerMeshName>.local

spec:
  security:
    clientID:

<peerMeshTrustDomain>/ns/<peerMeshSystem>/sa/<peerMeshEgressGatewayName>-service-account

spec:
  security:
    certificateChain:
      kind: ConfigMap
      name:

1.18.10.1.

사전 요구 사항

  • cluster-admin 역할이 있는 계정.

  1. 다음 명령을 입력합니다. 메시지가 표시되면 사용자 이름과 암호를 입력합니다.

    $ oc login --username=<NAMEOFUSER> <API token> https://<HOSTNAME>:6443
  2. $ oc project red-mesh-system
  3. kind: ServiceMeshPeer
    apiVersion: federation.maistra.io/v1
    metadata:
      name: green-mesh
      namespace: red-mesh-system
    spec:
      remote:
        addresses:
        - ingress-red-mesh.green-mesh-system.apps.domain.com
      gateways:
        ingress:
          name: ingress-green-mesh
        egress:
          name: egress-green-mesh
      security:
        trustDomain: green-mesh.local
        clientID: green-mesh.local/ns/green-mesh-system/sa/egress-red-mesh-service-account
        certificateChain:
          kind: ConfigMap
          name: green-mesh-ca-root-cert

  4. $ oc create -n red-mesh-system -f servicemeshpeer.yaml
  5. $ oc -n red-mesh-system get servicemeshpeer green-mesh -o yaml

    status:
      discoveryStatus:
        active:
        - pod: istiod-red-mesh-b65457658-9wq5j
          remotes:
          - connected: true
            lastConnected: "2021-10-05T13:02:25Z"
            lastFullSync: "2021-10-05T13:02:25Z"
            source: 10.128.2.149
          watch:
            connected: true
            lastConnected: "2021-10-05T13:02:55Z"
            lastDisconnectStatus: 503 Service Unavailable
            lastFullSync: "2021-10-05T13:05:43Z"

1.18.11.

kind: ExportedServiceSet
apiVersion: federation.maistra.io/v1
metadata:
  name: green-mesh
  namespace: red-mesh-system
spec:
  exportRules:
  # export ratings.mesh-x-bookinfo as ratings.bookinfo
  - type: NameSelector
    nameSelector:
      namespace: red-mesh-bookinfo
      name: red-ratings
      alias:
        namespace: bookinfo
        name: ratings
  # export any service in red-mesh-bookinfo namespace with label export-service=true
  - type: LabelSelector
    labelSelector:
      namespace: red-mesh-bookinfo
      selector:
        matchLabels:
          export-service: "true"
      aliases: # export all matching services as if they were in the bookinfo namespace
      - namespace: "*"
        name: "*"
        alias:
          namespace: bookinfo

표 1.10.

매개변수설명
metadata:
  name:

metadata:
  namespace:

 
spec:
  exportRules:
  - type:

NameSelector, LabelSelector

spec:
  exportRules:
  - type: NameSelector
    nameSelector:
      namespace:
      name:

 
spec:
  exportRules:
  - type: NameSelector
    nameSelector:
      alias:
        namespace:
        name:

 
spec:
  exportRules:
  - type: LabelSelector
    labelSelector:
      namespace: <exportingMesh>
      selector:
        matchLabels:
          <labelKey>: <labelValue>

 
spec:
  exportRules:
  - type: LabelSelector
    labelSelector:
      namespace: <exportingMesh>
      selector:
        matchLabels:
          <labelKey>: <labelValue>
      aliases:
      - namespace:
        name:
        alias:
          namespace:
          name:

 

kind: ExportedServiceSet
apiVersion: federation.maistra.io/v1
metadata:
  name: blue-mesh
  namespace: red-mesh-system
spec:
  exportRules:
  - type: NameSelector
    nameSelector:
      namespace: "*"
      name: ratings

kind: ExportedServiceSet
apiVersion: federation.maistra.io/v1
metadata:
  name: green-mesh
  namespace: red-mesh-system
spec:
  exportRules:
  - type: NameSelector
    nameSelector:
      namespace: west-data-center
      name: "*"

1.18.11.1.

사전 요구 사항

  • cluster-admin 역할이 있는 계정.
참고

  1. 다음 명령을 입력합니다. 메시지가 표시되면 사용자 이름과 암호를 입력합니다.

    $ oc login --username=<NAMEOFUSER> <API token> https://<HOSTNAME>:6443
  2. $ oc project red-mesh-system
  3. apiVersion: federation.maistra.io/v1
    kind: ExportedServiceSet
    metadata:
      name: green-mesh
      namespace: red-mesh-system
    spec:
      exportRules:
      - type: NameSelector
        nameSelector:
          namespace: red-mesh-bookinfo
          name: ratings
          alias:
            namespace: bookinfo
            name: red-ratings
      - type: NameSelector
        nameSelector:
          namespace: red-mesh-bookinfo
          name: reviews

  4. $ oc create -n <ControlPlaneNamespace> -f <ExportedServiceSet.yaml>

    예를 들면 다음과 같습니다.

    $ oc create -n red-mesh-system -f export-to-green-mesh.yaml
  5. $ oc get exportedserviceset <PeerMeshExportedTo> -o yaml

    예를 들면 다음과 같습니다.

    $ oc get exportedserviceset green-mesh -o yaml
  6. $ oc get exportedserviceset <PeerMeshExportedTo> -o yaml

    예를 들면 다음과 같습니다.

    $ oc -n red-mesh-system get exportedserviceset green-mesh -o yaml

      status:
        exportedServices:
        - exportedName: red-ratings.bookinfo.svc.green-mesh-exports.local
          localService:
            hostname: ratings.red-mesh-bookinfo.svc.cluster.local
            name: ratings
            namespace: red-mesh-bookinfo
        - exportedName: reviews.red-mesh-bookinfo.svc.green-mesh-exports.local
          localService:
            hostname: reviews.red-mesh-bookinfo.svc.cluster.local
            name: reviews
            namespace: red-mesh-bookinfo

1.18.12.

kind: ImportedServiceSet
apiVersion: federation.maistra.io/v1
metadata:
  name: red-mesh #name of mesh that exported the service
  namespace: green-mesh-system #mesh namespace that service is being imported into
spec:
  importRules: # first matching rule is used
  # import ratings.bookinfo as ratings.bookinfo
  - type: NameSelector
    importAsLocal: false
    nameSelector:
      namespace: bookinfo
      name: ratings
      alias:
        # service will be imported as ratings.bookinfo.svc.red-mesh-imports.local
        namespace: bookinfo
        name: ratings

표 1.11.

매개변수설명
metadata:
  name:

 
metadata:
  namespace:

 
spec:
  importRules:
  - type:

NameSelector

spec:
  importRules:
  - type: NameSelector
    nameSelector:
      namespace:
      name:

 
spec:
  importRules:
  - type: NameSelector
    importAsLocal:

true/false

spec:
  importRules:
  - type: NameSelector
    nameSelector:
      namespace:
      name:
      alias:
        namespace:
        name:

 

kind: ImportedServiceSet
apiVersion: federation.maistra.io/v1
metadata:
  name: red-mesh
  namespace: blue-mesh-system
spec:
  importRules:
  - type: NameSelector
    importAsLocal: false
    nameSelector:
      namespace: bookinfo
      name: ratings

kind: ImportedServiceSet
apiVersion: federation.maistra.io/v1
metadata:
  name: red-mesh
  namespace: green-mesh-system
spec:
  importRules:
  - type: NameSelector
    importAsLocal: false
    nameSelector:
      namespace: west-data-center
      name: "*"

1.18.12.1.

사전 요구 사항

  • cluster-admin 역할이 있는 계정.
참고

  1. 다음 명령을 입력합니다. 메시지가 표시되면 사용자 이름과 암호를 입력합니다.

    $ oc login --username=<NAMEOFUSER> <API token> https://<HOSTNAME>:6443
  2. $ oc project green-mesh-system
  3. kind: ImportedServiceSet
    apiVersion: federation.maistra.io/v1
    metadata:
      name: red-mesh
      namespace: green-mesh-system
    spec:
      importRules:
      - type: NameSelector
        importAsLocal: false
        nameSelector:
          namespace: bookinfo
          name: red-ratings
          alias:
            namespace: bookinfo
            name: ratings

  4. $ oc create -n <ControlPlaneNamespace> -f <ImportedServiceSet.yaml>

    예를 들면 다음과 같습니다.

    $ oc create -n green-mesh-system -f import-from-red-mesh.yaml
  5. $ oc get importedserviceset <PeerMeshImportedInto> -o yaml

    예를 들면 다음과 같습니다.

    $ oc get importedserviceset green-mesh -o yaml
  6. $ oc get importedserviceset <PeerMeshImportedInto> -o yaml

    $ oc -n green-mesh-system get importedserviceset/red-mesh -o yaml

    status:
      importedServices:
      - exportedName: red-ratings.bookinfo.svc.green-mesh-exports.local
        localService:
          hostname: ratings.bookinfo.svc.red-mesh-imports.local
          name: ratings
          namespace: bookinfo
      - exportedName: reviews.red-mesh-bookinfo.svc.green-mesh-exports.local
        localService:
          hostname: ""
          name: ""
          namespace: ""

1.18.13.

사전 요구 사항

  • cluster-admin 역할이 있는 계정.

1.18.13.1.

kind: ImportedServiceSet
apiVersion: federation.maistra.io/v1
metadata:
  name: red-mesh #name of mesh that exported the service
  namespace: green-mesh-system #mesh namespace that service is being imported into
spec:
  importRules: # first matching rule is used
  # import ratings.bookinfo as ratings.bookinfo
  - type: NameSelector
    importAsLocal: true
    nameSelector:
      namespace: bookinfo
      name: ratings
      alias:
        # service will be imported as ratings.bookinfo.svc.red-mesh-imports.local
        namespace: bookinfo
        name: ratings
  #Locality within which imported services should be associated.
  locality:
    region: us-west

표 1.12.

이름설명유형

string

string

string

절차

  1. $ oc login --username=<NAMEOFUSER> <API token> https://<HOSTNAME>:6443
  2. $ oc project <smcp-system>

    $ oc project green-mesh-system
  3. $ oc edit -n <smcp-system> -f <ImportedServiceSet.yaml>

    $ oc edit -n green-mesh-system -f import-from-red-mesh.yaml
    1. 변경 사항을 저장하십시오.

1.18.13.2.

절차

  1. 다음 명령을 입력합니다. 메시지가 표시되면 사용자 이름과 암호를 입력합니다.

    $ oc login --username=<NAMEOFUSER> <API token> https://<HOSTNAME>:6443
  2. $ oc project <smcp-system>

    $ oc project green-mesh-system
  3. apiVersion: networking.istio.io/v1beta1
    kind: DestinationRule
    metadata:
      name: default-failover
      namespace: bookinfo
    spec:
      host: "ratings.bookinfo.svc.cluster.local"
      trafficPolicy:
        loadBalancer:
          localityLbSetting:
            enabled: true
            failover:
              - from: us-east
                to: us-west
        outlierDetection:
          consecutive5xxErrors: 3
          interval: 10s
          baseEjectionTime: 1m

  4. $ oc create -n <application namespace> -f <DestinationRule.yaml>

    예를 들면 다음과 같습니다.

    $ oc create -n bookinfo -f green-mesh-us-west-DestinationRule.yaml

1.18.14.

1.18.14.1.

1.18.14.2.

1.18.15.

1.19. 확장

참고

1.19.1.

참고

지원되는 언어

WebAssembly 바이트 코드에 컴파일된 모든 언어를 사용하여 Red Hat OpenShift Service Mesh 확장을 작성할 수 있지만, 다음 언어에는 proxy-wasm API를 공개하는 기존 SDK가 있어 직접 사용할 수 있습니다.

표 1.13. 지원되는 언어

언어유지 관리자리포지터리

AssemblyScript

solo.io

solo-io/proxy-runtime

C++

proxy-wasm 팀(Istio 커뮤니티)

proxy-wasm/proxy-wasm-cpp-sdk

Go

tetrate.io

tetratelabs/proxy-wasm-go-sdk

Rust

proxy-wasm 팀(Istio 커뮤니티)

proxy-wasm/proxy-wasm-rust-sdk

1.19.2.

1.19.3.

apiVersion: extensions.istio.io/v1alpha1
kind: WasmPlugin
metadata:
  name: openid-connect
  namespace: istio-ingress
spec:
  selector:
    matchLabels:
      istio: ingressgateway
  url: file:///opt/filters/openid.wasm
  sha256: 1ef0c9a92b0420cf25f7fe5d481b231464bc88f486ca3b9c83ed5cc21d2f6210
  phase: AUTHN
  pluginConfig:
    openid_server: authn
    openid_realm: ingress

apiVersion: extensions.istio.io/v1alpha1
kind: WasmPlugin
metadata:
  name: openid-connect
  namespace: istio-system
spec:
  selector:
    matchLabels:
      istio: ingressgateway
  url: oci://private-registry:5000/openid-connect/openid:latest
  imagePullPolicy: IfNotPresent
  imagePullSecret: private-registry-pull-secret
  phase: AUTHN
  pluginConfig:
    openid_server: authn
    openid_realm: ingress

표 1.14.

필드유형설명필수 항목

spec.selector

WorkloadSelector

없음

spec.url

string

없음

spec.sha256

string

없음

spec.imagePullPolicy

PullPolicy

없음

spec.imagePullSecret

string

없음

spec.phase

PluginPhase

없음

spec.priority

int64

없음

spec.pluginName

string

없음

spec.pluginConfig

없음

spec.pluginConfig.verificationKey

string

없음

표 1.15. WorkloadSelector

필드유형설명필수 항목

matchLabels

제공됨

표 1.16. PullPolicy

현재의설명

<empty>

IfNotPresent

Always

표 1.17.

필드유형설명

map<string, Value>

표 1.18. PluginPhase

필드설명

<empty>

AUTHN

AUTHZ

STATS

1.19.3.1.

절차

  1. 다음 예제 리소스를 만듭니다.

    apiVersion: extensions.istio.io/v1alpha1
    kind: WasmPlugin
    metadata:
      name: openid-connect
      namespace: istio-system
    spec:
      selector:
        matchLabels:
          istio: ingressgateway
      url: oci://private-registry:5000/openid-connect/openid:latest
      imagePullPolicy: IfNotPresent
      imagePullSecret: private-registry-pull-secret
      phase: AUTHN
      pluginConfig:
        openid_server: authn
        openid_realm: ingress

  2. $ oc apply -f plugin.yaml

1.19.4.

컨테이너 이미지를 유효한 확장 이미지로 만들려면 컨테이너 파일 시스템의 루트에 WebAssembly 모듈의 바이트 코드가 포함된 .wasm 파일과 manifest.yaml 파일이 있어야 합니다.

참고

manifest.yaml

schemaVersion: 1

name: <your-extension>
description: <description>
version: 1.0.0
phase: PreAuthZ
priority: 100
module: extension.wasm

표 1.19. manifest.yml에 대한 필드 참조

필드설명필수 항목

schemaVersion

매니페스트 스키마 버전 지정에 사용됩니다. 현재 가능한 값은 1입니다.

이 필드는 필수 항목입니다.

name

해당 확장의 이름입니다.

이 필드는 메타데이터일 뿐이며 현재 사용되지 않습니다.

description

해당 확장의 설명입니다.

이 필드는 메타데이터일 뿐이며 현재 사용되지 않습니다.

version

해당 확장의 버전입니다.

이 필드는 메타데이터일 뿐이며 현재 사용되지 않습니다.

phase

해당 확장의 기본 실행 단계입니다.

이 필드는 필수 항목입니다.

priority

해당 확장의 기본 우선순위입니다.

이 필드는 필수 항목입니다.

module

컨테이너 파일 시스템의 루트에서 WebAssembly 모듈에 대한 상대적 경로입니다.

이 필드는 필수 항목입니다.

1.19.5.

참고

표 1.20. ServiceMeshExtension 필드 참조

필드설명

metadata.namespace

다른 메시 네임스페이스에 배포하면 동일한 네임스페이스의 워크로드에만 적용됩니다.

spec.workloadSelector

spec.workloadSelector 필드는 Istio 게이트웨이 리소스spec.selector 필드와 동일한 의미가 있습니다. Pod 레이블을 기반으로 하는 워크로드와 일치합니다.

spec.config

spec.image

확장자가 있는 이미지를 가리키는 컨테이너 이미지 URI입니다.

spec.phase

단계는 인증, 권한 부여, 지표 생성과 같은 기존 Istio 기능과 관련하여 필터 체인에서 확장이 삽입되는 위치를 결정합니다. 유효한 값: PreAuthN, PostAuthN, PreAuthZ, PostAuthZ, PreStats, PostStats.

spec.priority

우선순위가 높은 확장이 먼저 실행됩니다. 이를 통해 상호 의존적인 확장을 허용합니다.

1.19.5.1.

참고

Rust SDK를 사용하여 빌드된 전체 예제는 header-append-filter를 참조하십시오.

절차

  1. 다음 예제 리소스를 만듭니다.

    ServiceMeshExtension 리소스 extensions.yaml의 예

    apiVersion: maistra.io/v1
    kind: ServiceMeshExtension
    metadata:
      name: header-append
      namespace: istio-system
    spec:
      workloadSelector:
        labels:
          app: httpbin
      config:
        first-header: some-value
        another-header: another-value
      image: quay.io/maistra-dev/header-append-filter:2.1
      phase: PostAuthZ
      priority: 100

  2. $ oc apply -f <extension>.yaml

1.19.6.

1.19.6.1.

표 1.21.

ServiceMeshExtensionWasmPlugin

spec.config

spec.pluginConfig

spec.workloadSelector

spec.selector

spec.image

spec.url

apiVersion: maistra.io/v1
kind: ServiceMeshExtension
metadata:
  name: header-append
  namespace: istio-system
spec:
  workloadSelector:
    labels:
      app: httpbin
  config:
    first-header: some-value
    another-header: another-value
  image: quay.io/maistra-dev/header-append-filter:2.2
  phase: PostAuthZ
  priority: 100

apiVersion: extensions.istio.io/v1alpha1
kind: WasmPlugin
metadata:
  name: header-append
  namespace: istio-system
spec:
  selector:
    matchLabels:
      app: httpbin
  url: oci://quay.io/maistra-dev/header-append-filter:2.2
  phase: STATS
  pluginConfig:
    first-header: some-value
    another-header: another-value

1.19.6.2.

1.19.6.3.

사전 요구 사항

절차

1.20.

참고

1.20.1.

1.20.2.

1.20.3.

1.20.3.1.

참고

사전 요구 사항

    • apiVersion: extensions.istio.io/v1alpha1
      kind: WasmPlugin
      metadata:
        name: <threescale_wasm_plugin_name>
        namespace: <bookinfo> 1
      spec:
        selector: 2
          labels:
            app: <product_page>
        pluginConfig: <yaml_configuration>
        url: oci://registry.redhat.io/3scale-amp2/3scale-auth-wasm-rhel8:0.0.3
        phase: AUTHZ
        priority: 100
      1
      2
  • $ oc apply -f threescale-wasm-auth-bookinfo.yaml

추가 리소스

1.20.4.

절차

    1. ServiceEntry CR

      apiVersion: networking.istio.io/v1beta1
      kind: ServiceEntry
      metadata:
        name: service-entry-threescale-saas-backend
      spec:
        hosts:
        - su1.3scale.net
        ports:
        - number: 443
          name: https
          protocol: HTTPS
        location: MESH_EXTERNAL
        resolution: DNS

    2. apiVersion: networking.istio.io/v1beta1
      kind: DestinationRule
      metadata:
        name: destination-rule-threescale-saas-backend
      spec:
        host: su1.3scale.net
        trafficPolicy:
          tls:
            mode: SIMPLE
            sni: su1.3scale.net

    3. $ oc apply -f service-entry-threescale-saas-backend.yml
    4. $ oc apply -f destination-rule-threescale-saas-backend.yml
    1. ServiceEntry CR

      apiVersion: networking.istio.io/v1beta1
      kind: ServiceEntry
      metadata:
        name: service-entry-threescale-saas-system
      spec:
        hosts:
        - multitenant.3scale.net
        ports:
        - number: 443
          name: https
          protocol: HTTPS
        location: MESH_EXTERNAL
        resolution: DNS

    2. apiVersion: networking.istio.io/v1beta1
      kind: DestinationRule
      metadata:
        name: destination-rule-threescale-saas-system
      spec:
        host: multitenant.3scale.net
        trafficPolicy:
          tls:
            mode: SIMPLE
            sni: multitenant.3scale.net

    3. $ oc apply -f service-entry-threescale-saas-system.yml
    4. $ oc apply -f <destination-rule-threescale-saas-system.yml>

추가 리소스

1.20.5.

중요

1.20.5.1.

사전 요구 사항

1.20.5.2.

참고

apiVersion: extensions.istio.io/v1alpha1
kind: WasmPlugin
metadata:
  name: <threescale_wasm_plugin_name>
  namespace: <bookinfo>
spec:
  pluginConfig:
    api: v1
...

1.20.5.3.

apiVersion: extensions.istio.io/v1alpha1
kind: WasmPlugin
metadata:
  name: <threescale_wasm_plugin_name>
spec:
  pluginConfig:
    system:
      name: <saas_porta>
      upstream: <object>
      token: <my_account_token>
      ttl: 300
  ...

표 1.22.

이름설명필수 항목

name

선택 사항

upstream

제공됨

token

제공됨

ttl

선택 사항

1.20.5.4.

apiVersion: maistra.io/v1
upstream:
  name: outbound|443||multitenant.3scale.net
  url: "https://myaccount-admin.3scale.net/"
  timeout: 5000
...

표 1.23.

이름설명필수 항목

name

제공됨

url

제공됨

Timeout

선택 사항

1.20.5.5.

apiVersion: extensions.istio.io/v1alpha1
kind: WasmPlugin
metadata:
  name: <threescale_wasm_plugin_name>
spec:
  pluginConfig:
    ...
    backend:
      name: backend
      upstream: <object>
    ...

표 1.24.

이름설명필수 항목

name

선택 사항

upstream

제공됨

1.20.5.6.

apiVersion: extensions.istio.io/v1alpha1
kind: WasmPlugin
metadata:
  name: <threescale_wasm_plugin_name>
spec:
  pluginConfig:
    ...
    services:
    - id: "2555417834789"
      token: service_token
      authorities:
        - "*.app"
        - 0.0.0.0
        - "0.0.0.0:8443"
      credentials: <object>
      mapping_rules: <object>
    ...

표 1.25.

이름설명필수 항목

ID

제공됨

token

선택 사항

제공됨

credentials

제공됨

mapping_rules

선택 사항

1.20.5.7.

apiVersion: extensions.istio.io/v1alpha1
kind: WasmPlugin
metadata:
  name: <threescale_wasm_plugin_name>
spec:
  pluginConfig:
    ...
    services:
    - credentials:
        user_key: <array_of_lookup_queries>
        app_id: <array_of_lookup_queries>
        app_key: <array_of_lookup_queries>
    ...

표 1.26.

이름설명필수 항목

user_key

선택 사항

app_id

선택 사항

app_key

선택 사항

1.20.5.8.

다음 예제를 참조하십시오.

apiVersion: extensions.istio.io/v1alpha1
kind: WasmPlugin
metadata:
  name: <threescale_wasm_plugin_name>
spec:
  pluginConfig:
    ...
    services:
    - credentials:
        user_key:
          - <source_type>: <object>
          - <source_type>: <object>
          ...
        app_id:
          - <source_type>: <object>
          ...
        app_key:
          - <source_type>: <object>
          ...
    ...

1.20.5.9.

표 1.27.

이름설명필수 항목

keys

제공됨

ops

선택 사항

1.20.5.10.

참고

추가 리소스

1.20.5.11.

1.20.5.12.

표 1.28.

이름설명필수 항목

method

제공됨

패턴

제공됨

usages

제공됨

last

apiVersion: extensions.istio.io/v1alpha1
kind: WasmPlugin
metadata:
  name: <threescale_wasm_plugin_name>
spec:
  pluginConfig:
    ...
    mapping_rules:
      - method: GET
        pattern: /
        usages:
          - name: hits
            delta: 1
      - method: GET
        pattern: /products/
        usages:
          - name: products
            delta: 1
      - method: ANY
        pattern: /products/{id}/sold
        usages:
          - name: sales
            delta: 1
          - name: products
            delta: 1
    ...

  • products: 2

1.20.6.

1.20.6.1.

credentials:
  user_key:
    - query_string:
        keys:
          - user_key
    - header:
        keys:
          - user_key

1.20.6.2.

credentials:
  app_id:
    - header:
        keys:
          - app_id
    - query_string:
        keys:
          - app_id
  app_key:
    - header:
        keys:
          - app_key
    - query_string:
        keys:
          - app_key

1.20.6.3.

aladdin:opensesame:  Authorization: Basic YWxhZGRpbjpvcGVuc2VzYW1l

credentials:
  app_id:
    - header:
        keys:
          - authorization
        ops:
          - split:
              separator: " "
              max: 2
          - length:
              min: 2
          - drop:
              head: 1
          - base64_urlsafe
          - split:
              max: 2
  app_key:
    - header:
        keys:
          - app_key

  1. credentials:
      app_id:
        - header:
            keys:
              - authorization
            ops:
              - split:
                  separator: " "
                  max: 2
              - length:
                  min: 2
              - reverse
              - glob:
                - Basic
              - drop:
                  tail: 1
              - base64_urlsafe
              - split:
                  max: 2
              - test:
                  if:
                    length:
                      min: 2
                  then:
                    - strlen:
                        max: 63
                    - or:
                        - strlen:
                            min: 1
                        - drop:
                            tail: 1
              - assert:
                - and:
                  - reverse
                  - or:
                    - strlen:
                        min: 8
                    - glob:
                      - aladdin
                      - admin

1.20.6.4.

apiVersion: security.istio.io/v1beta1
kind: RequestAuthentication
metadata:
  name: jwt-example
  namespace: bookinfo
spec:
  selector:
    matchLabels:
      app: productpage
  jwtRules:
  - issuer: >-
      http://keycloak-keycloak.34.242.107.254.nip.io/auth/realms/3scale-keycloak
    jwksUri: >-
      http://keycloak-keycloak.34.242.107.254.nip.io/auth/realms/3scale-keycloak/protocol/openid-connect/certs

credentials:
  app_id:
    - filter:
        path:
          - envoy.filters.http.jwt_authn
          - "0"
        keys:
          - azp
          - aud
        ops:
          - take:
              head: 1

1.20.6.5.

credentials:
  app_id:
    - header:
        keys:
          - x-jwt-payload
        ops:
          - base64_urlsafe
          - json:
            - keys:
              - azp
              - aud
          - take:
              head: 1

1.20.7.

apiVersion: extensions.istio.io/v1alpha1
kind: WasmPlugin
metadata:
  name: <threescale_wasm_plugin_name>
spec:
  url: oci://registry.redhat.io/3scale-amp2/3scale-auth-wasm-rhel8:0.0.3
  imagePullSecret: <optional_pull_secret_resource>
  phase: AUTHZ
  priority: 100
  selector:
    labels:
      app: <product_page>
  pluginConfig:
    api: v1
    system:
      name: <system_name>
      upstream:
        name: outbound|443||multitenant.3scale.net
        url: https://istiodevel-admin.3scale.net/
        timeout: 5000
      token: <token>
    backend:
      name: <backend_name>
      upstream:
        name: outbound|443||su1.3scale.net
        url: https://su1.3scale.net/
        timeout: 5000
      extensions:
      - no_body
    services:
    - id: '2555417834780'
      authorities:
      - "*"
      credentials:
        user_key:
          - query_string:
              keys:
                - <user_key>
          - header:
              keys:
                - <user_key>
        app_id:
          - query_string:
              keys:
                - <app_id>
          - header:
              keys:
                - <app_id>
        app_key:
          - query_string:
              keys:
                - <app_key>
          - header:
              keys:
                - <app_key>

1.21. 3scale Istio 어댑터 사용

3scale Istio Adapter는 Red Hat OpenShift Service Mesh 내에서 실행되는 서비스에 레이블을 지정하고 해당 서비스를 3scale API 관리 솔루션과 통합할 수 있는 선택적 어댑터입니다. Red Hat OpenShift Service Mesh에는 필요하지 않습니다.

중요

3scale Istio 어댑터로 3scale 백엔드 캐시를 활성화하려면 Mixer 정책 및 Mixer Telemetry도 활성화해야 합니다.

1.21.1. Red Hat OpenShift Service Mesh와 3scale 어댑터 통합

이러한 예제를 사용하여 3scale Istio 어댑터로 서비스에 대한 요청을 구성할 수 있습니다.

사전 요구 사항

  • Red Hat OpenShift Service Mesh 버전 2.x
  • 작업 중인 3scale 계정(SaaS 또는 3scale 2.9 on-Premises)
  • 백엔드 캐시를 활성화하려면 3scale 2.9 이상 필요
  • Red Hat OpenShift Service Mesh 사전 요구 사항
  • Mixer 정책 적용이 활성화되었는지 확인합니다. Mixer 정책 시행 업데이트 섹션에서는 현재 Mixer 정책 시행 상태를 확인하고 정책 시행을 활성화하는 지침을 제공합니다.
    • 업그레이드 시 SMCP(Service Mesh Control Plane)를 올바르게 구성해야 합니다.
참고

3scale Istio Adapter를 구성하려면 사용자 정의 리소스 파일에 어댑터 매개변수를 추가하는 방법에 대한 Red Hat OpenShift Service Mesh 사용자 정의 리소스를 참조하십시오.

참고

특히 kind: handler 리소스에 주의하십시오. 3scale 계정 인증 정보로 업데이트해야 합니다. 선택적으로 service_id를 처리기에 추가할 수 있지만 3scale 계정의 하나의 서비스에만 처리기를 렌더링하므로 이전 버전과의 호환성을 위해서만 유지됩니다. service_id를 처리기에 추가하는 경우 다른 서비스에 3scale을 활성화하려면 다른 service_ids로 더 많은 처리기를 생성해야 합니다.

아래 단계에 따라 3scale 계정당 단일 처리기를 사용합니다.

절차

  1. 3scale 계정에 대한 처리기를 생성하고 계정 인증 정보를 지정합니다. 서비스 식별자를 생략합니다.

      apiVersion: "config.istio.io/v1alpha2"
      kind: handler
      metadata:
       name: threescale
      spec:
       adapter: threescale
       params:
         system_url: "https://<organization>-admin.3scale.net/"
         access_token: "<ACCESS_TOKEN>"
       connection:
         address: "threescale-istio-adapter:3333"

    필요한 경우, 3scale 구성에서 제공하는 URL을 재정의하기 위해 params 섹션에 backend_url 필드를 제공할 수 있습니다. 어댑터가 3scale 온프레미스 인스턴스와 동일한 클러스터에서 실행되고 내부 클러스터 DNS를 사용하려는 경우 유용할 수 있습니다.

  2. 다음과 같이 3scale 계정에 속하는 서비스의 배포 리소스를 편집하거나 패치합니다.

    1. 유효한 service_id에 해당하는 값을 사용하여 "service-mesh.3scale.net/service-id" 레이블을 추가합니다.
    2. 1단계에서 처리기 리소스의 이름이 값이 되도록 "service-mesh.3scale.net/credentials" 레이블을 추가합니다.
  3. 더 많은 서비스를 추가하려는 경우 2단계를 수행하여 3scale 계정 인증 정보 및 서비스 식별자에 연결합니다.
  4. 3scale 구성으로 규칙 구성을 수정하여 3scale 처리기에 규칙을 전송합니다.

    규칙 구성 예

      apiVersion: "config.istio.io/v1alpha2"
      kind: rule
      metadata:
        name: threescale
      spec:
        match: destination.labels["service-mesh.3scale.net"] == "true"
        actions:
          - handler: threescale.handler
            instances:
              - threescale-authorization.instance

1.21.1.1. 3scale 사용자 정의 리소스 생성

어댑터에는 handler, instance, rule 사용자 정의 리소스를 생성할 수 있는 도구가 포함되어 있습니다.

표 1.29. 사용법

옵션설명필수 항목기본값

-h, --help

사용 가능한 옵션에 대한 도움말 출력 생성

아니요

 

--name

이 URL의 고유 이름, 토큰 쌍

 

-n, --namespace

템플릿을 생성할 네임스페이스

아니요

istio-system

-t, --token

3scale 액세스 토큰

 

-u, --url

3scale 관리자 포털 URL

 

--backend-url

3scale 백엔드 URL. 설정하면 시스템 설정에서 읽은 값을 재정의합니다.

아니요

 

-s, --service

3scale API/서비스 ID

아니요

 

--auth

지정을 위한 3scale 인증 패턴(1=API Key, 2=App Id/App Key, 3=OIDC)

아니요

하이브리드

-o, --output

생성된 매니페스트를 저장할 파일

아니요

표준 출력

--version

CLI 버전을 출력하고 즉시 종료합니다.

아니요

 
1.21.1.1.1. URL 예제에서 템플릿 생성
참고
  • 배포된 어댑터의 매니페스트를 생성하며 3scale 어댑터 컨테이너 이미지에서 oc exec를 통해 다음 명령을 실행합니다.
  • 3scale-config-gen 명령을 사용하여 YAML 구문 및 들여쓰기 오류를 방지할 수 있습니다.
  • 주석을 사용하는 경우 --service를 생략할 수 있습니다.
  • 이 명령은 oc exec를 통해 컨테이너 이미지 내에서 호출해야 합니다.

절차

  • 3scale-config-gen 명령을 사용하여 토큰, URL 쌍을 단일 처리기로 여러 서비스에서 공유할 수 있도록 템플릿 파일을 자동 생성합니다.

    $ 3scale-config-gen --name=admin-credentials --url="https://<organization>-admin.3scale.net:443" --token="[redacted]"
  • 다음 예제에서는 처리기에 포함된 서비스 ID로 템플릿을 생성합니다.

    $ 3scale-config-gen --url="https://<organization>-admin.3scale.net" --name="my-unique-id" --service="123456789" --token="[redacted]"

추가 리소스

1.21.1.2. 배포된 어댑터에서 매니페스트 생성

참고
  • NAME은 3scale로 관리 중인 서비스와 식별하는 데 사용하는 식별자입니다.
  • CREDENTIALS_NAME 참조는 규칙 구성의 match 섹션에 해당하는 식별자입니다. CLI 툴을 사용하는 경우 NAME 식별자로 자동 설정됩니다.
  • 해당 값은 특정할 필요가 없습니다. 레이블 값은 규칙의 내용과 일치해야 합니다. 자세한 정보는 어댑터를 통한 서비스 트래픽 라우팅을 참조하십시오.
  1. 이 명령을 실행하여 istio-system 네임스페이스의 배포된 어댑터에서 매니페스트를 생성합니다.

    $ export NS="istio-system" URL="https://replaceme-admin.3scale.net:443" NAME="name" TOKEN="token"
    oc exec -n ${NS} $(oc get po -n ${NS} -o jsonpath='{.items[?(@.metadata.labels.app=="3scale-istio-adapter")].metadata.name}') \
    -it -- ./3scale-config-gen \
    --url ${URL} --name ${NAME} --token ${TOKEN} -n ${NS}
  2. 터미널에 샘플 출력이 생성됩니다. 필요한 경우 이러한 샘플을 편집하고 oc create 명령을 사용하여 오브젝트를 생성합니다.
  3. 요청이 어댑터에 도달하면 어댑터는 서비스가 3scale의 API에 매핑되는 방식을 알아야 합니다. 다음 두 가지 방법으로 이러한 정보를 제공할 수 있습니다.

    1. 워크로드에 레이블 지장(권장)
    2. 처리기를 service_id로 하드 코딩
  4. 필요한 주석으로 워크로드를 업데이트합니다.

    참고

    처리기에 아직 포함되지 않은 경우, 이 예제에 제공된 서비스 ID만 업데이트해야 합니다. 처리기의 설정이 우선합니다.

    $ export CREDENTIALS_NAME="replace-me"
    export SERVICE_ID="replace-me"
    export DEPLOYMENT="replace-me"
    patch="$(oc get deployment "${DEPLOYMENT}"
    patch="$(oc get deployment "${DEPLOYMENT}" --template='{"spec":{"template":{"metadata":{"labels":{ {{ range $k,$v := .spec.template.metadata.labels }}"{{ $k }}":"{{ $v }}",{{ end }}"service-mesh.3scale.net/service-id":"'"${SERVICE_ID}"'","service-mesh.3scale.net/credentials":"'"${CREDENTIALS_NAME}"'"}}}}}' )"
    oc patch deployment "${DEPLOYMENT}" --patch ''"${patch}"''

1.21.1.3. 어댑터를 통한 서비스 트래픽 라우팅

3scale 어댑터를 통해 서비스 트래픽을 유도하려면 다음 단계를 따르십시오.

사전 요구 사항

  • 3scale 관리자의 인증 정보 및 서비스 ID

프로세스

  1. kind: rule 리소스의 구성에서 이전에 생성한 destination.labels["service-mesh.3scale.net/credentials"] == "threescale" 규칙과 일치합니다.
  2. 서비스를 통합하기 위해 대상 워크로드 배포에서 위의 레이블을 PodTemplateSpec에 추가합니다. threescale 값은 생성된 처리기의 이름을 나타냅니다. 이 처리기에서는 3scale를 호출하는 데 필요한 액세스 토큰을 저장합니다.
  3. destination.labels["service-mesh.3scale.net/service-id"] == "replace-me" 레이블을 워크로드에 추가하여 요청 시 인스턴스를 통해 서비스 ID를 어댑터에 전달합니다.

1.21.2. 3scale로 통합 설정 구성

3scale 통합 설정을 구성하려면 다음 절차를 따르십시오.

참고

3scale SaaS 고객의 경우, Red Hat OpenShift Service Mesh는 조Early Access 프로그램의 일부로 활성화됩니다.

절차

  1. [your_API_name]통합으로 이동합니다.
  2. 설정을 클릭합니다.
  3. 배포에서 Istio 옵션을 선택합니다.

    • 인증에서 API Key (user_key) 옵션은 기본적으로 선택됩니다.
  4. 제품 업데이트를 클릭하여 선택 사항을 저장합니다.
  5. 설정을 클릭합니다.
  6. 구성 업데이트를 클릭합니다.

1.21.3. 캐싱 동작

3scale System API의 응답은 기본적으로 어댑터 내에서 캐시됩니다. 항목이 cacheTTLSeconds 값보다 오래되면 캐시에서 제거됩니다. 또한 기본적으로 캐시된 항목의 자동 새로 고침은 cacheRefreshSeconds 값에 따라 만료되기 몇 초 전에 시도됩니다. 이 값을 cacheTTLSeconds 값보다 높게 설정하여 자동 새로 고침을 비활성화할 수 있습니다.

cacheEntriesMax를 양수가 아닌 값으로 설정하여 캐싱을 완전히 비활성화할 수 있습니다.

새로 고침 프로세스를 사용하면 호스트가 연결할 수 없는 캐시된 값은 만료가 지나면 제거되기 전에 다시 시도됩니다.

1.21.4. 요청 인증

이 릴리스에서는 다음 인증 방법을 지원합니다.

  • 표준 API 키: 식별자와 시크릿 토큰으로 작동하는 임의의 단일 문자열 또는 해시입니다.
  • 애플리케이션 식별자 및 키 쌍: 변경 불가능한 식별자 및 변경 가능한 시크릿 키 문자열입니다.
  • OpenID 인증 방법: JSON 웹 토큰에서 구문 분석된 클라이언트 ID 문자열입니다.

1.21.4.1. 인증 패턴 적용

인증 동작을 구성하려면 다음 인증 방법 예제에 설명된 인스턴스 사용자 정의 리소스를 수정합니다. 다음에서 인증 자격 증명을 허용할 수 있습니다.

  • 요청 헤더
  • 요청 매개변수
  • 요청 헤더 및 쿼리 매개변수 둘 다
참고

헤더에서 값을 지정하는 경우 소문자여야 합니다. 예를 들어 User-Key로 헤더를 보내려면 구성에서 request.headers["user-key"]로 참조되어야 합니다.

1.21.4.1.1. API 키 인증 방법

서비스 메시는 subject 사용자 정의 리소스 매개변수의 user 옵션에 지정된 대로 쿼리 매개변수 및 요청 헤더에서 API 키를 찾습니다. 사용자 정의 리소스 파일에 지정된 순서로 값을 확인합니다. 원하지 않는 옵션을 생략하여 API 키 검색을 쿼리 매개변수 또는 요청 헤더로 제한할 수 있습니다.

이 예에서 서비스 메시는 user_key 쿼리 매개변수에서 API 키를 찾습니다. API 키가 쿼리 매개변수에 없으면 서비스 메시가 user-key 헤더를 확인합니다.

API 키 인증 방법 예

apiVersion: "config.istio.io/v1alpha2"
kind: instance
metadata:
  name: threescale-authorization
  namespace: istio-system
spec:
  template: authorization
  params:
    subject:
      user: request.query_params["user_key"] | request.headers["user-key"] | ""
    action:
      path: request.url_path
      method: request.method | "get"

어댑터가 다른 쿼리 매개변수 또는 요청 헤더를 검사하도록 하려면 이름을 적절하게 변경합니다. 예를 들어 "key"라는 쿼리 매개변수에서 API 키를 확인하려면 request.query_params["user_key"]request.query_params["key"]로 변경합니다.

1.21.4.1.2. 애플리케이션 ID 및 애플리케이션 키 쌍 인증 방법

서비스 메시는 subject 사용자 정의 리소스 매개변수의 properties 옵션에 지정된 대로 쿼리 매개변수 및 요청 헤더에서 애플리케이션 ID와 애플리케이션 키를 찾습니다. 애플리케이션 키는 선택 사항입니다. 사용자 정의 리소스 파일에 지정된 순서로 값을 확인합니다. 원하지 않는 옵션을 제외하여 자격 증명 검색을 쿼리 매개변수 또는 요청 헤더로 제한할 수 있습니다.

이 예에서 서비스 메시는 쿼리 매개변수의 애플리케이션 ID 및 애플리케이션 키를 먼저 찾고 필요한 경우 요청 헤더로 이동합니다.

애플리케이션 ID 및 애플리케이션 키 쌍 인증 방법 예

apiVersion: "config.istio.io/v1alpha2"
kind: instance
metadata:
  name: threescale-authorization
  namespace: istio-system
spec:
  template: authorization
  params:
    subject:
        app_id: request.query_params["app_id"] | request.headers["app-id"] | ""
        app_key: request.query_params["app_key"] | request.headers["app-key"] | ""
    action:
      path: request.url_path
      method: request.method | "get"

어댑터가 다른 쿼리 매개변수 또는 요청 헤더를 검사하도록 하려면 이름을 적절하게 변경합니다. 예를 들어, identification라는 쿼리 매개변수의 애플리케이션 ID를 확인하려면 request.query_params["app_id"]request.query_params["identification"]로 변경합니다.

1.21.4.1.3. OpenID 인증 방법

OIDC(OpenID Connect) 인증 방법을 사용하려면 subject 필드에서 properties 값을 사용하여 client_id 또는 필요한 경우 app_key로 설정할 수 있습니다.

이전에 설명된 방법을 사용하여 이 오브젝트를 조작할 수 있습니다. 아래 설정 예에서 클라이언트 식별자(애플리케이션 ID)는 azp 레이블 아래에 있는 JSON 웹 토큰(JWT)에서 구문 분석됩니다. 필요에 따라 수정할 수 있습니다.

OpenID 인증 방법 예

apiVersion: "config.istio.io/v1alpha2"
kind: instance
metadata:
  name: threescale-authorization
spec:
  template: threescale-authorization
  params:
    subject:
      properties:
        app_key: request.query_params["app_key"] | request.headers["app-key"] | ""
        client_id: request.auth.claims["azp"] | ""
      action:
        path: request.url_path
        method: request.method | "get"
        service: destination.labels["service-mesh.3scale.net/service-id"] | ""

이 통합이 올바르게 작동하려면 클라이언트가 ID 공급자(IdP)에서 생성되도록 OIDC를 3scale에서 수행해야 합니다. 해당 서비스와 동일한 네임스페이스에서 보호하려는 서비스에 대해 요청 권한 부여를 생성해야 합니다. JWT는 요청의 Authorization 헤더로 전달됩니다.

아래에 정의된 샘플 RequestAuthentication에서 issuer, jwksUri, selector를 적절하게 대체합니다.

OpenID 정책 예

apiVersion: security.istio.io/v1beta1
kind: RequestAuthentication
metadata:
  name: jwt-example
  namespace: bookinfo
spec:
  selector:
    matchLabels:
      app: productpage
  jwtRules:
  - issuer: >-
      http://keycloak-keycloak.34.242.107.254.nip.io/auth/realms/3scale-keycloak
    jwksUri: >-
      http://keycloak-keycloak.34.242.107.254.nip.io/auth/realms/3scale-keycloak/protocol/openid-connect/certs

1.21.4.1.4. 하이브리드 인증 방법

특정 인증 방법을 적용하지 않도록 선택하고, 두 방법에 대해 유효한 자격 증명을 수락할 수 있습니다. API 키와 애플리케이션 ID/애플리케이션 키 쌍이 모두 제공되면 서비스 메시는 API 키를 사용합니다.

이 예제에서 서비스 메시는 쿼리 매개변수에서 API 키를 확인한 다음 요청 헤더를 확인합니다. API 키가 없는 경우 쿼리 매개변수에서 애플리케이션 ID와 키를 확인한 다음 요청 헤더를 확인합니다.

하이브리드 인증 방법 예

apiVersion: "config.istio.io/v1alpha2"
kind: instance
metadata:
  name: threescale-authorization
spec:
  template: authorization
  params:
    subject:
      user: request.query_params["user_key"] | request.headers["user-key"] |
      properties:
        app_id: request.query_params["app_id"] | request.headers["app-id"] | ""
        app_key: request.query_params["app_key"] | request.headers["app-key"] | ""
        client_id: request.auth.claims["azp"] | ""
    action:
      path: request.url_path
      method: request.method | "get"
      service: destination.labels["service-mesh.3scale.net/service-id"] | ""

1.21.5. 3scale Adapter 지표

기본적으로 어댑터는 /metrics 끝점의 포트 8080에서 공개되는 다양한 Prometheus 지표를 보고합니다. 이러한 지표는 어댑터와 3scale 간의 상호 작용 수행 방식에 대한 인사이트를 제공합니다. 이 서비스는 Prometheus에서 자동으로 검색 및 스크랩하도록 레이블이 지정됩니다.

참고

Service Mesh 1.x의 이전 릴리스 이후 3scale Istio 어댑터 지표에 호환되지 않는 변경 사항이 있습니다.

Prometheus에서 지표는 백엔드 캐시에 대해 한 번의 추가로 이름이 변경되었으므로, Service Mesh 2.0부터 다음 지표가 존재합니다.

표 1.30. Prometheus 지표

지표유형설명

threescale_latency

히스토그램

어댑터와 3scale 간의 대기 시간을 요청합니다.

threescale_http_total

카운터

3scale 백엔드에 대한 요청의 HTTP 상태 응답 코드입니다.

threescale_system_cache_hits

카운터

구성 캐시에서 가져온 3scale 시스템에 대한 총 요청 수입니다.

threescale_backend_cache_hits

카운터

백엔드 캐시에서 가져온 3scale 백엔드에 대한 총 요청 수입니다.

1.21.6. 3scale 백엔드 캐시

3scale 백엔드 캐시는 3scale Service Management API의 클라이언트에 대한 권한 부여 및 보고 캐시를 제공합니다. 이 캐시는 어댑터에 내장되어 관리자가 절충을 기꺼이 받아들인다는 가정하에 특정 상황에서 응답 대기 시간을 줄일 수 있습니다.

참고

3scale 백엔드 캐시는 기본적으로 비활성화되어 있습니다. 3scale 백엔드 캐시 기능은 낮은 대기 시간과 프로세서 및 메모리의 더 많은 리소스 소비를 위해 마지막 플러시를 수행한 후 속도 제한 및 잠재적 손실에서 부정확하게 사용됩니다.

1.21.6.1. 백엔드 캐시 활성화의 이점

다음은 백엔드 캐시 활성화의 몇 가지 이점입니다.

  • 3scale Istio Adapter에서 관리하는 서비스에 액세스하는 동안 대기 시간이 길면 백엔드 캐시를 활성화합니다.
  • 백엔드 캐시를 활성화하면 어댑터가 3scale API 관리자의 요청 승인을 계속 확인하지 못하므로 대기 시간이 줄어듭니다.

    • 이렇게 하면 3scale Istio Adapter가 3scale API 관리자에게 권한 부여를 요청하기 전에 저장 및 재사용할 수 있도록 3scale 권한 부여의 메모리 내 캐시가 생성됩니다. 권한 부여는 승인 또는 거부에 소요되는 시간이 훨씬 짧습니다.
  • 백엔드 캐싱은 3scale Istio Adapter를 실행하는 서비스 메시와 다른 지리적 위치에서 3scale API 관리자를 호스팅할 때 유용합니다.

    • 일반적으로 3scale Hosted(SaaS) 플랫폼과 관련이 있지만 사용자가 다른 지리적 위치나 다른 가용성 영역에 있는 다른 클러스터에서 3scale API 관리자를 호스팅하거나 네트워크 오버헤드가 3scale API 관리자의 눈에 띄는 경우도 있습니다.

1.21.6.2. 대기 시간을 줄이기 위한 절충

다음은 대기 시간을 더 줄이기 위한 절충안입니다.

  • 플러시가 발생할 때마다 3scale 어댑터의 권한 부여 상태 업데이트.

    • 즉, 두 개 이상의 어댑터 인스턴스가 플러시 간격 간에 부정확함을 발생시킵니다.
    • 제한을 초과하고 비정상적인 동작을 유발하는 요청이 너무 빈번하게 허용될 가능성이 커져, 각 요청을 처리하는 어댑터에 따라 어떤 요청은 통과하고, 어떤 요청은 통과하지 않습니다.
  • 데이터를 플러시하고 권한 부여 정보를 업데이트할 수 없는 어댑터 캐시는 API 관리자에게 해당 정보를 보고하지 않고 종료되거나 중단될 수 있습니다.
  • API 관리자에 연결할 때 네트워크 연결 문제로 인해 어댑터 캐시가 요청 허용/거부 여부를 결정할 수 없는 경우 페일오픈 또는 페일클로즈 정책이 적용됩니다.
  • 일반적으로 어댑터를 부팅한 직후나 연결이 장기간 끊긴 뒤에 캐시 누락이 발생하면, API 관리자에게 쿼리하기 위해 대기 시간이 늘어납니다.
  • 어댑터 캐시는 활성화된 캐시가 없을 때보다 컴퓨팅 권한 부여에 훨씬 더 많은 작업을 수행해야 프로세서 리소스에 부담이 됩니다.
  • 메모리 요구 사항은 캐시로 관리되는 제한, 애플리케이션 및 서비스 조합에 비례하여 증가합니다.

1.21.6.3. 백엔드 캐시 구성 설정

다음 포인트는 백엔드 캐시 구성 설정을 설명합니다.

  • 3scale 구성 옵션에서 백엔드 캐시를 구성하는 설정을 찾습니다.
  • 마지막 3가지 설정에서 백엔드 캐시 활성화를 제어합니다.

    • PARAM_USE_CACHE_BACKEND - 백엔드 캐시를 활성화하려면 true로 설정합니다.
    • PARAM_BACKEND_CACHE_FLUSH_INTERVAL_SECONDS - 캐시 데이터를 API 관리자에 플러시하려는 연속 시도 사이의 시간(초)을 설정합니다.
    • PARAM_BACKEND_CACHE_POLICY_FAIL_CLOSED - 캐시 데이터가 충분하지 않고 3scale API 관리자에 연결할 수 없는 경우 서비스 요청을 허용/열기 또는 거부/종료 여부를 설정합니다.

1.21.7. 3scale Istio Adapter APIcast 에뮬레이션

3scale Istio Adapter는 다음과 같은 상태가 발생하는 경우 APIcast를 수행합니다.

  • 요청이 정의된 매핑 규칙과 일치할 수 없는 경우 반환되는 HTTP 코드는 404 Not Found입니다. 이전에는 403 Forbidden이었습니다.
  • 제한을 초과하여 요청이 거부되면 반환된 HTTP 코드는 429 Too Many Requests입니다. 이전에는 403 Forbidden이었습니다.
  • CLI를 통해 기본 템플릿을 생성할 때 헤더에 대시 대신 밑줄을 사용합니다(예: user-key 대신 user_key).

1.21.8. 3scale Istio 어댑터 검증

3scale Istio 어댑터가 예상대로 작동하는지 확인해야 할 수 있습니다. 어댑터가 작동하지 않는 경우 다음 단계를 사용하여 문제를 해결합니다.

절차

  1. $ oc get pods -n <istio-system>
  2. 3scale-adapter Pod에서 버전과 같이 자체 부팅에 대한 정보를 출력했는지 확인합니다.

    $ oc logs <istio-system>
  3. 3scale 어댑터 통합으로 보호되는 서비스에 대한 요청을 수행할 때 항상 올바른 인증 정보가 없는 요청을 시도하여 실패하는지 확인합니다. 3scale 어댑터 로그를 확인하여 추가 정보를 수집합니다.

1.21.9. 3scale Istio 어댑터 문제 해결 체크리스트

3scale Istio 어댑터를 설치하는 관리자는 통합이 제대로 작동하지 않을 수 있는 여러 시나리오가 있습니다. 다음 목록을 사용하여 설치 문제를 해결합니다.

  • YAML 들여쓰기가 잘못되었습니다.
  • YAML 섹션이 누락되었습니다.
  • YAML 변경 사항을 클러스터에 적용하는 것을 잊어버렸습니다.
  • service-mesh.3scale.net/credentials 키를 사용하여 서비스 워크로드의 레이블을 지정하는 것을 잊어버렸습니다.
  • 서비스 워크로드에 service_id가 포함되지 않은 처리기를 사용할 때 service-mesh.3scale.net/service-id로 레이블을 지정하여 계정별로 재사용할 수 있도록 하는 것을 잊었버렸습니다.
  • Rule 사용자 지정 리소스는 잘못된 처리기 또는 인스턴스 사용자 지정 리소스를 가리키거나 참조에 해당 네임스페이스 접미사가 없습니다.
  • Rule 사용자 정의 리소스 match 섹션은 구성 중인 서비스와 일치하지 않거나 현재 실행 중이거나 존재하지 않는 대상 워크로드를 가리킵니다.
  • 처리기의 3scale 관리 포털의 잘못된 액세스 토큰 또는 URL입니다.
  • 인스턴스 사용자 정의 리소스의 params/subject/properties 섹션은 쿼리 매개 변수, 헤더 및 권한 부여 클레임과 같은 잘못된 위치를 지정하거나 매개 변수 이름이 테스트에 사용되는 요청과 일치하지 않기 때문에 app_id, app_key, 또는 client_id에 대한 올바른 매개 변수를 나열하지 못합니다.
  • 구성 생성기가 실제로 어댑터 컨테이너 이미지에 있고 oc exec 호출 해야 한다는 사실을 인식하지 못한 채 구성 생성기를 사용하지 못했습니다 .

1.22.

1.22.1.

  • 중요

1.22.2.

1.22.2.1.

  • pods
  • secrets
  • services

  1. 워크로드Pod로 이동합니다.
    • istio-operator
    • jaeger-operator
    • kiali-operator

  1. $ oc get pods -n openshift-operators

    출력 예

    NAME                               READY   STATUS    RESTARTS   AGE
    istio-operator-bb49787db-zgr87     1/1     Running   0          15s
    jaeger-operator-7d5c4f57d8-9xphf   1/1     Running   0          2m42s
    kiali-operator-f9c8d84f4-7xh2v     1/1     Running   0          64s

  2. $ oc get pods -n openshift-operators-redhat

    출력 예

    NAME                                      READY   STATUS    RESTARTS   AGE
    elasticsearch-operator-d4f59b968-796vq     1/1     Running   0          15s

1.22.2.2.

참고

1.22.2.2.1.

절차

  • $ oc logs -n openshift-operators <podName>

    예를 들면 다음과 같습니다.

    $ oc logs -n openshift-operators istio-operator-bb49787db-zgr87

1.22.3.

1.22.3.1.

    • istiod
    • istio-ingressgateway
    • istio-egressgateway
    • grafana
    • prometheus
  • 참고

  • 참고

    1. Operators설치된 Operator로 이동합니다.
      1. Istio Service Mesh Control Plane 탭을 클릭합니다.
      1. Jaeger 탭을 클릭합니다.
      2. Operators설치된 Operator로 이동합니다.
      1. Istio Service Mesh Control Plane 탭을 클릭합니다.

  1. $ oc get pods -n istio-system

    출력 예

    NAME                                   READY   STATUS    RESTARTS   AGE
    grafana-6776785cfc-6fz7t               2/2     Running   0          102s
    istio-egressgateway-5f49dd99-l9ppq     1/1     Running   0          103s
    istio-ingressgateway-6dc885c48-jjd8r   1/1     Running   0          103s
    istiod-basic-6c9cc55998-wg4zq          1/1     Running   0          2m14s
    jaeger-6865d5d8bf-zrfss                2/2     Running   0          100s
    kiali-579799fbb7-8mwc8                 1/1     Running   0          46s
    prometheus-5c579dfb-6qhjk              2/2     Running   0          115s

  2. $ oc get smcp -n <istio-system>

    출력 예

    NAME    READY   STATUS            PROFILES      VERSION   AGE
    basic   10/10   ComponentsReady   ["default"]   2.1.3     4m2s

    출력 예

    NAME            READY     STATUS             TEMPLATE   VERSION   AGE
    basic-install   10/10     UpdateSuccessful   default     v1.1     3d16h

  3. $ oc describe smcp <smcp-name> -n <controlplane-namespace>

    출력 예

    $ oc describe smcp basic -n istio-system

  4. $ oc get jaeger -n <istio-system>

    출력 예

    NAME     STATUS    VERSION   STRATEGY   STORAGE   AGE
    jaeger   Running   1.30.0    allinone   memory    15m

  5. $ oc get kiali -n <istio-system>

    출력 예

    NAME    AGE
    kiali   15m

1.22.3.1.1. Kiali 콘솔에 액세스

Kiali 콘솔에서 애플리케이션의 토폴로지, 상태 및 지표를 볼 수 있습니다. 추상 애플리케이션, 서비스 및 워크로드를 포함하여 다양한 수준에서 메시 구성 요소에 대한 인사이트를 볼 수 있습니다.

  1. 프로젝트를 클릭합니다.

1.22.3.1.2.

설치 프로세스는 Jaeger 콘솔에 액세스하기 위한 경로를 생성합니다.

  1. Red Hat OpenShift Dedicated를 사용하는 경우 dedicated-admin 역할의 계정이 있어야 합니다.

  1. Red Hat OpenShift Dedicated를 사용하는 경우 dedicated-admin 역할의 계정이 있어야 합니다.

    $ oc login --username=<NAMEOFUSER> https://<HOSTNAME>:6443
  2. $ export JAEGER_URL=$(oc get route -n istio-system jaeger -o jsonpath='{.spec.host}')

1.22.3.2.

1.22.4.

1.22.4.1.

1.22.4.1.1.

1.22.4.1.2.

1.23.

Envoy는 동일한 pod에서 관련 서비스에 사이드카로 배포됩니다.

1.23.1.

절차

  1. 다음 명령을 입력합니다. 메시지가 표시되면 사용자 이름과 암호를 입력합니다.

    $ oc login --username=<NAMEOFUSER> https://<HOSTNAME>:6443
  2. $ oc project istio-system
  3. ServiceMeshControlPlane 파일을 편집합니다.

    $ oc edit smcp <smcp_name>
  4. spec:
      proxy:
        accessLogging:
          file:
            name: /dev/stdout     #file name

1.23.2. 지원 요청

고객 포털에서 다음을 수행할 수 있습니다.

  • Red Hat 제품과 관련된 기사 및 솔루션에 대한 Red Hat 지식베이스를 검색하거나 살펴볼 수 있습니다.
  • Red Hat 지원에 대한 지원 케이스 제출할 수 있습니다.
  • 다른 제품 설명서에 액세스 가능합니다.

Insights는 문제에 대한 세부 정보 및 문제 해결 방법에 대한 정보를 제공합니다.

1.23.2.1. Red Hat 지식베이스 정보

Red Hat 지식베이스는 Red Hat의 제품과 기술을 최대한 활용할 수 있도록 풍부한 콘텐츠를 제공합니다. Red Hat 지식베이스는 Red Hat 제품 설치, 설정 및 사용에 대한 기사, 제품 문서 및 동영상으로 구성되어 있습니다. 또한 알려진 문제에 대한 솔루션을 검색할 수 있으며, 간결한 근본 원인 설명 및 해결 단계를 제공합니다.

1.23.2.2. Red Hat 지식베이스 검색

사전 요구 사항

  • Red Hat 고객 포털 계정이 있어야 합니다.

프로세스

  1. Red Hat 고객 포털에 로그인합니다.
  2. 기본 Red Hat 고객 포털 검색 필드에 다음과 같이 문제와 관련된 키워드 및 문자열을 입력하십시오.

    • 관련 절차 (예: installation 등)
    • 명시적 실패와 관련된 경고, 오류 메시지 및 기타 출력
  3. Search를 클릭합니다
  4. Knowledgebase 콘텐츠 유형 필터를 선택합니다.

1.23.2.3. must-gather 툴 정보

  • 리소스 정의
  • 서비스 로그

  • 예를 들면 다음과 같습니다.

    $ oc adm must-gather  --image=registry.redhat.io/container-native-virtualization/cnv-must-gather-rhel8:v4.0
  • 예를 들면 다음과 같습니다.

    $ oc adm must-gather -- /usr/bin/gather_audit_logs
    참고

해당 Pod에 대한 데이터가 수집되어 must-gather.local로 시작하는 새 디렉터리에 저장됩니다. 이 디렉터리는 현재 작업 중인 디렉터리에 생성되어 있습니다.

예를 들면 다음과 같습니다.

NAMESPACE                      NAME                 READY   STATUS      RESTARTS      AGE
...
openshift-must-gather-5drcj    must-gather-bklx4    2/2     Running     0             72s
openshift-must-gather-5drcj    must-gather-s8sdh    2/2     Running     0             72s
...

1.23.2.4. 서비스 메시 데이터 수집 정보

oc adm must-gather CLI 명령을 사용하면 Red Hat OpenShift Service Mesh와 연관된 기능 및 오브젝트를 포함하여 클러스터에 대한 정보를 수집할 수 있습니다.

사전 요구 사항

  • cluster-admin 역할의 사용자로 클러스터에 액세스할 수 있어야 합니다.

  1. must-gather을 사용하여 Red Hat OpenShift Service Mesh 데이터를 수집하려면 Red Hat OpenShift Service Mesh 이미지를 지정해야 합니다.

    $ oc adm must-gather --image=registry.redhat.io/openshift-service-mesh/istio-must-gather-rhel8:2.3
  2. $ oc adm must-gather --image=registry.redhat.io/openshift-service-mesh/istio-must-gather-rhel8:2.3 gather <namespace>

1.23.2.5. 지원 케이스 제출

사전 요구 사항

  • cluster-admin 역할의 사용자로 클러스터에 액세스할 수 있어야 합니다.
  • OpenShift CLI(oc)가 설치되어 있습니다.
  • Red Hat 고객 포털 계정이 있어야 합니다.
  • Red Hat 표준 또는 프리미엄 서브스크립션이 있습니다.

프로세스

  1. Red Hat 고객 포털에 로그인하고 SUPPORT CASESOpen a case를 선택합니다.
  2. 보고되는 문제와 관련이 있을 수 있는 권장 Red Hat 지식베이스 솔루션 목록을 확인합니다. 제안된 문서로 문제가 해결되지 않으면 Continue을 클릭합니다.
  3. 문제의 증상 및 예상 동작에 대한 자세한 정보와 함께 간결하지만 구체적인 문제 요약을 입력합니다.
  4. 보고되는 문제와 관련있는 제안된 Red Hat 지식베이스 솔루션 목록을 확인하십시오. 케이스 작성 과정에서 더 많은 정보를 제공하면 목록이 구체화됩니다. 제안된 문서로 문제가 해결되지 않으면 Continue을 클릭합니다.
  5. 제시된 계정 정보가 정확한지 확인하고 필요한 경우 적절하게 수정합니다.
  6. 그렇지 않은 경우 클러스터 ID를 수동으로 가져옵니다.

      1. HomeDashboardsOverview로 이동합니다.
      2. Details 섹션의 Cluster ID 필드에서 값을 찾습니다.
      1. 툴바에서 (?) HelpOpen Support Case로 이동합니다.
      2. Cluster ID 값이 자동으로 입력됩니다.
    • OpenShift CLI (oc)를 사용하여 클러스터 ID를 얻으려면 다음 명령을 실행합니다.

      $ oc get clusterversion -o jsonpath='{.items[].spec.clusterID}{"\n"}'
  7. 프롬프트가 표시되면 다음 질문을 입력한 후 Continue를 클릭합니다.

    • 이 문제가 어디에서 발생했습니까? 어떤 시스템 환경을 사용하고 있습니까?
    • 이 동작이 언제 발생했습니까? 발생 빈도는 어떻게 됩니까? 반복적으로 발생합니까? 특정 시간에만 발생합니까?
    • 이 문제의 발생 기간 및 비즈니스에 미치는 영향에 대한 정보를 제공해주십시오.
  8. 관련 진단 데이터 파일을 업로드하고 Continue를 클릭합니다. oc adm must-gather 명령을 사용하여 수집된 데이터와 해당 명령으로 수집되지 않은 특정 문제와 관련된 데이터를 제공하는 것이 좋습니다
  9. 관련 케이스 관리 세부 정보를 입력하고 Continue를 클릭합니다.
  10. 케이스 세부 정보를 미리보고 Submit을 클릭합니다.

1.24.

1.24.1.

다음 표에는 ServiceMeshControlPlane 리소스의 최상위 매개변수가 나열되어 있습니다.

표 1.31. ServiceMeshControlPlane 리소스 매개변수

이름설명유형

apiVersion

APIVersion은 버전이 지정된 이 오브젝트 표현의 스키마를 정의합니다. 서버는 인식된 스키마를 최신 내부 값으로 변환해야 하며, 인식되지 않는 값을 거부할 수 있습니다. ServiceMeshControlPlane 버전 2.0의 값은 maistra.io/v2입니다.

ServiceMeshControlPlane 버전 2.0의 값은 maistra.io/v2입니다.

kind

kind는 이 오브젝트가 나타내는 REST 리소스를 나타내는 문자열 값입니다.

ServiceMeshControlPlane은 ServiceMeshControlPlane의 유일한 유효한 값입니다.

metadata

ServiceMeshControlPlane 인스턴스에 대한 메타데이터입니다.

string

spec

ServiceMeshControlPlane의 원하는 상태 사양입니다.

자세한 내용은 표 2를 참조하십시오.

status

자세한 내용은 표 3을 참조하십시오.

다음 표에는 ServiceMeshControlPlane 리소스의 사양이 나열되어 있습니다. 이러한 매개변수를 변경하면 Red Hat OpenShift Service Mesh 구성 요소가 구성됩니다.

표 1.32. ServiceMeshControlPlane 리소스 사양

이름설명구성 가능한 매개변수

addons

3scale, grafana, jaeger, kiali, prometheus.

cluster

cluster 매개변수는 클러스터의 일반 구성(예: 클러스터 이름, 네트워크 이름, 다중 클러스터, 메시 확장 등)을 설정합니다.

meshExpansion, multiCluster, name, network

gateways

gateways 매개변수를 사용하여 메시에 대한 수신 및 송신 게이트웨이를 구성합니다.

enabled, additionalEgress, additionalIngress, egress, ingress, openshiftRoute

general

logging, validationMessages

policy

spec.policy.enabledtrue로 설정하여 정책 검사를 활성화할 수 있습니다.

mixer remote 또는 type. typeIstiod, Mixer 또는 None으로 설정할 수 있습니다.

profiles

profiles 매개변수를 사용하여 기본값에 적용할 ServiceMeshControlPlane 프로필을 선택합니다.

default

proxy

proxy 매개변수를 사용하여 사이드카의 기본 동작을 설정합니다.

accessLogging, adminPort, concurrency, envoyMetricsService

runtime

components, defaults

보안

certificateAuthority, controlPlane, identity, dataPlane, trust

techPreview

techPreview 매개변수를 사용하면 기술 프리뷰에 있는 기능에 조기 액세스할 수 있습니다.

해당 없음

telemetry

spec.mixer.telemetry.enabledtrue로 설정되면 Telemetry가 활성화됩니다.

mixer, remote, type. typeIstiod, Mixer 또는 None으로 설정할 수 있습니다.

tracing

tracing 매개변수를 사용하여 메시의 분산 추적을 활성화합니다.

sampling, type. typeJaeger 또는 None으로 설정할 수 있습니다.

버전

비어 있는 버전으로 ServiceMeshControlPlane을 생성할 때 승인 Webhook는 버전을 현재 버전으로 설정합니다. 빈 버전이 있는 새로운 ServiceMeshControlPlanesv2.0으로 설정됩니다. 빈 버전이 있는 기존 ServiceMeshControlPlanes는 설정을 유지합니다.

문자열

ControlPlaneStatus는 서비스 메시의 현재 상태를 나타냅니다.

표 1.33. ServiceMeshControlPlane 리소스 ControlPlaneStatus

이름설명유형

annotations

annotations 매개변수는 ServiceMeshControlPlane에서 배포한 구성 요소 수와 같이 일반적으로 중복되는 상태 정보를 저장합니다. 이러한 상태는 아직 JSONPath 표현식에서 오브젝트를 셀 수 없는 oc 명령줄 도구에서 사용됩니다.

구성 불가능

conditions

오브젝트의 현재 상태에 대해 사용 가능한 최신 관찰을 나타냅니다. Reconciled는 Operator가 ServiceMeshControlPlane 리소스의 구성을 사용하여 배포된 구성 요소의 실제 상태를 조정했는지 여부를 나타냅니다.

string

components

string

appliedSpec

모든 프로필이 적용된 후 구성 옵션의 결과 사양입니다.

ControlPlaneSpec

appliedValues

차트를 생성하는 데 사용되는 결과 values.yaml입니다.

ControlPlaneSpec

chartVersion

이 리소스를 위해 마지막으로 처리된 차트의 버전입니다.

문자열

observedGeneration

가장 최근 조정 중에 컨트롤러가 관찰한 생성입니다. 상태의 정보는 이 특정 오브젝트 생성과 관련이 있습니다. status.conditionsstatus.observedGeneration 필드가 metadata.generation과 일치하지 않는 경우 최신 상태가 아닙니다.

정수

operatorVersion

이 리소스를 마지막으로 처리하는 Operator의 버전입니다.

문자열

readiness

구성 요소 및 소유 리소스의 준비 상태입니다.

string

이 예제 ServiceMeshControlPlane 정의에는 지원되는 모든 매개변수가 포함되어 있습니다.

ServiceMeshControlPlane 리소스 예

apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
metadata:
  name: basic
spec:
  version: v2.3
  proxy:
    runtime:
      container:
        resources:
          requests:
            cpu: 100m
            memory: 128Mi
          limits:
            cpu: 500m
            memory: 128Mi
  tracing:
    type: Jaeger
  gateways:
    ingress: # istio-ingressgateway
      service:
        type: ClusterIP
        ports:
        - name: status-port
          port: 15020
        - name: http2
          port: 80
          targetPort: 8080
        - name: https
          port: 443
          targetPort: 8443
      meshExpansionPorts: []
    egress: # istio-egressgateway
      service:
        type: ClusterIP
        ports:
        - name: status-port
          port: 15020
        - name: http2
          port: 80
          targetPort: 8080
        - name: https
          port: 443
          targetPort: 8443
    additionalIngress:
      some-other-ingress-gateway: {}
    additionalEgress:
      some-other-egress-gateway: {}

  policy:
    type: Mixer
    mixer: # only applies if policy.type: Mixer
      enableChecks: true
      failOpen: false

  telemetry:
    type: Istiod # or Mixer
    mixer: # only applies if telemetry.type: Mixer, for v1 telemetry
      sessionAffinity: false
      batching:
        maxEntries: 100
        maxTime: 1s
      adapters:
        kubernetesenv: true
        stdio:
          enabled: true
          outputAsJSON: true
  addons:
    grafana:
      enabled: true
      install:
        config:
          env: {}
          envSecrets: {}
        persistence:
          enabled: true
          storageClassName: ""
          accessMode: ReadWriteOnce
          capacity:
            requests:
              storage: 5Gi
        service:
          ingress:
            contextPath: /grafana
            tls:
              termination: reencrypt
    kiali:
      name: kiali
      enabled: true
      install: # install kiali CR if not present
        dashboard:
          viewOnly: false
          enableGrafana: true
          enableTracing: true
          enablePrometheus: true
      service:
        ingress:
          contextPath: /kiali
    jaeger:
      name: jaeger
      install:
        storage:
          type: Elasticsearch # or Memory
          memory:
            maxTraces: 100000
          elasticsearch:
            nodeCount: 3
            storage: {}
            redundancyPolicy: SingleRedundancy
            indexCleaner: {}
        ingress: {} # jaeger ingress configuration
  runtime:
    components:
      pilot:
        deployment:
          replicas: 2
        pod:
          affinity: {}
        container:
          resources:
            requests:
              cpu: 100m
              memory: 128Mi
            limits:
              cpu: 500m
              memory: 128Mi
      grafana:
        deployment: {}
        pod: {}
      kiali:
        deployment: {}
        pod: {}

1.24.2.

1.24.2.1.

apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
metadata:
  name: basic
spec:
  general:
    logging:
      componentLevels: {}
          # misc: error
      logAsJSON: false
    validationMessages: true

표 1.34.

매개변수설명기본값
logging:

 

해당 없음

logging:
 componentLevels:

가능한 값: trace, debug, info, warning, error, fatal, panic.

해당 없음

logging:
 logLevels:

가능한 값: trace, debug, info, warning, error, fatal, panic.

 

해당 없음

logging:
 logAsJSON:

true/false

해당 없음

validationMessages:

true/false

해당 없음

1.24.2.2.

apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
metadata:
  name: basic
spec:
  profiles:
  - YourProfileName

1.24.2.3.

중요

기술 프리뷰 기능은 Red Hat 프로덕션 서비스 수준 계약(SLA)에서 지원되지 않으며 기능적으로 완전하지 않을 수 있습니다. 따라서 프로덕션 환경에서 사용하는 것은 권장하지 않습니다. 이러한 기능을 사용하면 향후 제품 기능을 조기에 이용할 수 있어 개발 과정에서 고객이 기능을 테스트하고 피드백을 제공할 수 있습니다.

Red Hat 기술 프리뷰 기능의 지원 범위에 대한 자세한 내용은 기술 프리뷰 기능 지원 범위를 참조하십시오.

1.24.2.4.

apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
metadata:
  name: basic
spec:
  version: v2.3
  tracing:
    sampling: 100
    type: Jaeger

표 1.35.

매개변수설명기본값
tracing:
 sampling:

샘플링 비율은 Envoy 프록시가 추적을 생성하는 빈도를 결정합니다.

tracing:
 type:

현재 지원되는 유일한 추적 유형은 Jaeger입니다. Jaeger는 기본적으로 활성화되어 있습니다.

Jaeger

1.24.2.5.

1.24.2.6. 3scale 구성

다음 표는 ServiceMeshControlPlane 리소스의 3scale Istio 어댑터에 대한 매개변수를 설명합니다

3scale 매개변수 예

spec:
  addons:
    3Scale:
      enabled: false
      PARAM_THREESCALE_LISTEN_ADDR: 3333
      PARAM_THREESCALE_LOG_LEVEL: info
      PARAM_THREESCALE_LOG_JSON: true
      PARAM_THREESCALE_LOG_GRPC: false
      PARAM_THREESCALE_REPORT_METRICS: true
      PARAM_THREESCALE_METRICS_PORT: 8080
      PARAM_THREESCALE_CACHE_TTL_SECONDS: 300
      PARAM_THREESCALE_CACHE_REFRESH_SECONDS: 180
      PARAM_THREESCALE_CACHE_ENTRIES_MAX: 1000
      PARAM_THREESCALE_CACHE_REFRESH_RETRIES: 1
      PARAM_THREESCALE_ALLOW_INSECURE_CONN: false
      PARAM_THREESCALE_CLIENT_TIMEOUT_SECONDS: 10
      PARAM_THREESCALE_GRPC_CONN_MAX_SECONDS: 60
      PARAM_USE_CACHED_BACKEND: false
      PARAM_BACKEND_CACHE_FLUSH_INTERVAL_SECONDS: 15
      PARAM_BACKEND_CACHE_POLICY_FAIL_CLOSED: true

표 1.36. 3scale 매개변수

매개변수설명기본값

enabled

3scale 어댑터 사용 여부

true/false

false

PARAM_THREESCALE_LISTEN_ADDR

gRPC 서버의 수신 주소를 설정

유효한 포트 번호

3333

PARAM_THREESCALE_LOG_LEVEL

최소 로그 출력 수준을 설정합니다.

debug, info, warn, error 또는 none

info

PARAM_THREESCALE_LOG_JSON

로그 형식이 JSON인지 여부를 제어

true/false

true

PARAM_THREESCALE_LOG_GRPC

로그에 gRPC 정보가 포함되었는지 여부를 제어

true/false

true

PARAM_THREESCALE_REPORT_METRICS

3scale 시스템 및 백엔드 지표가 수집되어 Prometheus에 보고되는지 제어

true/false

true

PARAM_THREESCALE_METRICS_PORT

3scale /metrics 끝점을 스크랩할 수 있는 포트를 설정

유효한 포트 번호

8080

PARAM_THREESCALE_CACHE_TTL_SECONDS

캐시에서 만료된 항목을 제거하기 전에 대기하는 시간(초)

시간(초)

300

PARAM_THREESCALE_CACHE_REFRESH_SECONDS

캐시 요소를 새로 고침하려고 할 때 만료되기 전 시간

시간(초)

180

PARAM_THREESCALE_CACHE_ENTRIES_MAX

언제든지 캐시에 저장할 수 있는 항목의 최대 수. 캐싱을 비활성화하려면 0으로 설정합니다.

유효한 번호

1000

PARAM_THREESCALE_CACHE_REFRESH_RETRIES

캐시 업데이트 루프 중에 연결할 수 없는 호스트가 재시도되는 횟수

유효한 번호

1

PARAM_THREESCALE_ALLOW_INSECURE_CONN

3scale API를 호출할 때 인증서 확인을 건너뛸 수 있습니다. 이 설정 사용은 권장되지 않습니다.

true/false

false

PARAM_THREESCALE_CLIENT_TIMEOUT_SECONDS

3scale System 및 백엔드에 대한 요청을 종료하기 전 대기하는 시간(초)을 설정합니다.

시간(초)

10

PARAM_THREESCALE_GRPC_CONN_MAX_SECONDS

연결이 닫히기 전에 연결할 수 있는 최대 시간(초)(+/-10% jitter)을 설정합니다.

시간(초)

60

PARAM_USE_CACHE_BACKEND

true인 경우, 권한 부여 요청에 대해 메모리 내 apisonator 캐시를 생성합니다.

true/false

false

PARAM_BACKEND_CACHE_FLUSH_INTERVAL_SECONDS

백엔드 캐시가 활성화된 경우 3scale에 대해 캐시를 플러싱하는 간격(초)을 설정합니다.

시간(초)

15

PARAM_BACKEND_CACHE_POLICY_FAIL_CLOSED

백엔드 캐시가 권한 부여 데이터를 검색할 수 없을 때마다 요청을 거부(닫기)할지, 허용할지(열기) 여부

true/false

true

1.24.3.

표 1.37.

이름설명유형

observedGeneration

가장 최근 조정 중에 컨트롤러가 관찰한 생성입니다. 상태의 정보는 이 특정 오브젝트 생성과 관련이 있습니다. status.conditionsstatus.observedGeneration 필드가 metadata.generation과 일치하지 않는 경우 최신 상태가 아닙니다.

integer

annotations

이러한 상태는 아직 JSONPath 표현식에서 오브젝트를 셀 수 없는 oc 명령줄 도구에서 사용됩니다.

구성 불가능

readiness

string

operatorVersion

string

components

string

appliedSpec

모든 프로필이 적용된 후 구성 옵션의 결과 사양입니다.

ControlPlaneSpec

conditions

오브젝트의 현재 상태에 대해 사용 가능한 최신 관찰을 나타냅니다.

string

chartVersion

이 리소스를 위해 마지막으로 처리된 차트의 버전입니다.

string

appliedValues

ControlPlaneSpec

1.24.4. 추가 리소스

1.25.

Service Mesh Operator에서 ServiceMeshControlPlane을 생성할 때 Kiali 리소스도 처리합니다. 그런 다음 Kiali Operator는 Kiali 인스턴스를 생성할 때 이 오브젝트를 사용합니다.

1.25.1.

Kiali는 기본적으로 활성화되어 있습니다.

apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
metadata:
  name: basic
spec:
  addons:
    kiali:
      name: kiali
      enabled: true
      install:
        dashboard:
          viewOnly: false
          enableGrafana: true
          enableTracing: true
          enablePrometheus: true
        service:
          ingress:
            contextPath: /kiali

표 1.38.

매개변수설명기본값
spec:
  addons:
    kiali:
      name:

string

kiali

kiali:
  enabled:

Kiali는 기본적으로 활성화되어 있습니다.

true/false

true

kiali:
  install:

  
kiali:
  install:
    dashboard:

  
kiali:
  install:
    dashboard:
      viewOnly:

true/false

false

kiali:
  install:
    dashboard:
      enableGrafana:

true/false

true

kiali:
  install:
    dashboard:
      enablePrometheus:

true/false

true

kiali:
  install:
    dashboard:
      enableTracing:

true/false

true

kiali:
  install:
    service:

  
kiali:
  install:
    service:
      metadata:

해당 없음

해당 없음

kiali:
  install:
    service:
      metadata:
        annotations:

string

해당 없음

kiali:
  install:
    service:
      metadata:
        labels:

string

해당 없음

kiali:
  install:
    service:
      ingress:

해당 없음

해당 없음

kiali:
  install:
    service:
      ingress:
        metadata:
          annotations:

string

해당 없음

kiali:
  install:
    service:
      ingress:
        metadata:
          labels:

string

해당 없음

kiali:
  install:
    service:
      ingress:
        enabled:

true/false

true

kiali:
  install:
    service:
      ingress:
        contextPath:

string

해당 없음

install:
  service:
    ingress:
      hosts:

string

해당 없음

install:
  service:
    ingress:
      tls:

 

해당 없음

kiali:
  install:
    service:
      nodePort:

integer

해당 없음

1.25.2.

참고

예를 들면 istio-system입니다.

1.26. Jaeger 설정 참조

Service Mesh Operator가 ServiceMeshControlPlane 리소스를 생성할 때 분산 추적을 위한 리소스도 배포할 수 있습니다. 서비스 메시는 분산 추적을 위해 Jaeger를 사용합니다.

1.26.1. 추적 활성화 및 비활성화

ServiceMeshControlPlane 리소스에 추적 유형 및 샘플링 비율을 지정하여 분산 추적을 활성화합니다.

기본 all-in-one Jaeger 매개변수

apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
metadata:
  name: basic
spec:
  version: v2.3
  tracing:
    sampling: 100
    type: Jaeger

현재 지원되는 유일한 추적 유형은 Jaeger입니다.

Jaeger는 기본적으로 활성화되어 있습니다. 추적을 비활성화하려면 typeNone으로 설정합니다.

샘플링 비율은 Envoy 프록시가 추적을 생성하는 빈도를 결정합니다. 샘플링 비율 옵션을 사용하여 추적 시스템에 보고되는 요청의 백분율을 제어할 수 있습니다. 메시의 트래픽 및 수집하려는 추적 데이터 양을 기반으로 이 설정을 구성할 수 있습니다. 0.01% 증분을 나타내는 스케일링된 정수로 sampling을 구성합니다. 예를 들어, 값을 10로 설정하면 추적의 0.1%를 샘플링하고, 500으로 설정하면 추적의 5%를 샘플링하며, 10000으로 설정하면 추적의 100%를 샘플링합니다.

참고

SMCP 샘플링 구성 옵션은 Envoy 샘플링 비율을 제어합니다. Jaeger 사용자 정의 리소스에서 Jaeger 추적 샘플링 비율을 구성합니다.

1.26.2. SMCP에서 Jaeger 설정 지정

그러나 SMCP에서 구성할 수 있는 몇 가지 제한 사항이 있습니다.

1.26.3.

Jaeger 사용자 정의 리소스 (CR) 파일에 배포 전략을 지정합니다.

  • allInOne(기본값) - 이 전략은 개발, 테스트 및 데모 목적으로 설계되었으며 이는 프로덕션 사용을 목적으로 하지 않습니다. SMCP에서 이 배포 전략을 구성할 수 있습니다.

    참고

    메모리 내 스토리지는 영구적이지 않습니다. 즉, Jaeger 인스턴스가 종료, 재시작 또는 교체되면 추적 데이터가 손실됩니다. 각 Pod에 자체 메모리가 있으므로 메모리 내 스토리지를 확장할 수 없습니다. 영구 스토리지의 경우 Elasticsearch를 기본 스토리지로 사용하는 production 또는 streaming 전략을 사용해야 합니다.

  • 프로덕션 - 프로덕션 전략은 장기적인 추적 데이터 저장과 더 확장 가능하고 가용성이 높은 아키텍처가 필요한 프로덕션 환경을 위한 것입니다. 따라서 각 백엔드 구성 요소는 별도로 배포됩니다. 에이전트는 조정된 애플리케이션에서 사이드카로 삽입될 수 있습니다. 쿼리 및 수집기 서비스는 지원되는 스토리지 유형(현재 Elasticsearch)으로 구성됩니다. 이러한 각 구성 요소의 여러 인스턴스는 성능 및 복원에 필요한 대로 프로비저닝할 수 있습니다. SMCP에서 이 배포 전략을 구성할 수 있지만 완전히 사용자 정의하려면 Jaeger CR에 구성을 지정하고 SMCP에 링크를 연결해야 합니다.
  • 스트리밍 - 스트리밍 전략은 Collector와 Elasticsearch 백엔드 스토리지 간에 적용되는 스트리밍 기능을 제공하여 프로덕션 전략을 보강하도록 설계되었습니다. 이를 통해 높은 로드 상황에서 백엔드 스토리지의 부담을 줄이고 다른 추적 후 처리 기능을 통해 스트리밍 플랫폼 (AMQ Streams/ Kafka)에서 직접 실시간 데이터를 가져올 수 있습니다. SMCP에서 이 배포 전략을 구성할 수 없습니다. Jaeger CR을 구성하고 이를 SMCP에 연결해야 합니다.
참고

스트리밍 전략에는 AMQ Streams에 대한 추가 Red Hat 서브스크립션이 필요합니다.

1.26.3.1.

Jaeger 구성 옵션을 지정하지 않으면 ServiceMeshControlPlane 리소스는 기본적으로 allInOne Jaeger 배포 전략을 사용합니다. 기본 allInOne 배포 전략을 사용하려면 spec.addons.jaeger.install.storage.typeMemory로 설정합니다. 기본값을 허용하거나 install에서 추가 구성 옵션을 지정할 수 있습니다.

컨트롤 플레인 기본 Jaeger 매개변수 (메모리)

apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
metadata:
  name: basic
spec:
  version: v2.3
  tracing:
    sampling: 10000
    type: Jaeger
  addons:
    jaeger:
      name: jaeger
      install:
        storage:
          type: Memory

1.26.3.2.

production 배포 전략의 기본 설정을 사용하려면 spec.addons.jaeger.install.storage.typeElasticsearch로 설정하고 install에서 추가 구성 옵션을 지정합니다. SMCP는 Elasticsearch 리소스 및 이미지 이름 설정만 지원한다는 점에 유의하십시오.

컨트롤 플레인 기본 Jaeger 매개변수(Elasticsearch)

apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
metadata:
  name: basic
spec:
  version: v2.3
  tracing:
    sampling: 10000
    type: Jaeger
  addons:
    jaeger:
      name: jaeger  #name of Jaeger CR
      install:
        storage:
          type: Elasticsearch
        ingress:
          enabled: true
  runtime:
    components:
      tracing.jaeger.elasticsearch: # only supports resources and image name
        container:
          resources: {}

1.26.3.3.

SMCP는 최소한의 Elasticsearch 매개변수만 지원합니다. 프로덕션 환경을 완전히 사용자 지정하고 모든 Elasticsearch 구성 매개변수에 액세스하려면 Jaeger 사용자 정의 리소스(CR)를 사용하여 Jaeger를 구성합니다.

연결된 Jaeger 프로덕션 CR이 있는 컨트롤 플레인

apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
metadata:
  name: basic
spec:
  version: v2.3
  tracing:
    sampling: 1000
    type: Jaeger
  addons:
    jaeger:
      name: MyJaegerInstance #name of Jaeger CR
      install:
        storage:
          type: Elasticsearch
        ingress:
          enabled: true

1.26.3.4. 스트리밍 Jaeger 배포

연결된 Jaeger 스트리밍 CR이 있는 컨트롤 플레인

apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
metadata:
  name: basic
spec:
  version: v2.3
  tracing:
    sampling: 1000
    type: Jaeger
  addons:
    jaeger:
      name: MyJaegerInstance  #name of Jaeger CR

1.26.4. Jaeger 사용자 정의 리소스에서 Jaeger 구성 지정

ServiceMeshControlPlane (SMCP) 리소스가 아닌 Jaeger CR(사용자 정의 리소스)에서 Jaeger를 구성하여 Jaeger 배포를 완전히 사용자 지정할 수 있습니다. 구성이 SMCP 외부에 지정되므로 이 구성을 "외부 Jaeger"라고도 합니다.

참고

동일한 네임스페이스에 SMCP 및 Jaeger CR을 배포해야 합니다. 예를 들면 istio-system입니다.

독립형 Jaeger 인스턴스를 구성하고 배포한 다음 SMCP 리소스의 spec.addons.jaeger.name 값으로 Jaeger 리소스의 name을 지정할 수 있습니다. 이 방법을 사용하면 Jaeger 설정을 완전히 사용자 지정할 수 있습니다.

1.26.4.1. 배포 모범 사례

1.26.4.2.

1.26.4.2.1.

사전 요구 사항

  • cluster-admin 역할의 사용자로 클러스터에 액세스할 수 있어야 합니다. Red Hat OpenShift Dedicated를 사용하는 경우 dedicated-admin 역할의 계정이 있어야 합니다.
  • Red Hat OpenShift Service Mesh Operator가 설치되어 있어야 합니다.

절차

    • spec.ingress.openshift.htpasswdFile
    • spec.volumes
    • spec.volumeMounts

      apiVersion: jaegertracing.io/v1
      kind: Jaeger
      spec:
        ingress:
          enabled: true
          openshift:
            htpasswdFile: /etc/proxy/htpasswd/auth
            sar: '{"namespace": "istio-system", "resource": "pods", "verb": "get"}'
          options: {}
          resources: {}
          security: oauth-proxy
        volumes:
          - name: secret-htpasswd
            secret:
              secretName: htpasswd
          - configMap:
              defaultMode: 420
              items:
                - key: ca-bundle.crt
                  path: tls-ca-bundle.pem
              name: trusted-ca-bundle
              optional: true
            name: trusted-ca-bundle
        volumeMounts:
          - mountPath: /etc/proxy/htpasswd
            name: secret-htpasswd
          - mountPath: /etc/pki/ca-trust/extracted/pem/
            name: trusted-ca-bundle
            readOnly: true

  1. 저장을 클릭합니다.
1.26.4.2.2.

사전 요구 사항

  • cluster-admin 역할의 사용자로 클러스터에 액세스할 수 있어야 합니다. Red Hat OpenShift Dedicated를 사용하는 경우 dedicated-admin 역할의 계정이 있어야 합니다.
  • Red Hat OpenShift Service Mesh Operator가 설치되어 있어야 합니다.

절차

  1. Red Hat OpenShift Dedicated를 사용하는 경우 dedicated-admin 역할의 계정이 있어야 합니다.

    $ oc login https://<HOSTNAME>:6443
  2. $ oc project istio-system
  3. $ oc edit -n tracing-system -f jaeger.yaml
    • spec.ingress.openshift.htpasswdFile
    • spec.volumes
    • spec.volumeMounts

      apiVersion: jaegertracing.io/v1
      kind: Jaeger
      spec:
        ingress:
          enabled: true
          openshift:
            htpasswdFile: /etc/proxy/htpasswd/auth
            sar: '{"namespace": "istio-system", "resource": "pods", "verb": "get"}'
          options: {}
          resources: {}
          security: oauth-proxy
        volumes:
          - name: secret-htpasswd
            secret:
              secretName: htpasswd
          - configMap:
              defaultMode: 420
              items:
                - key: ca-bundle.crt
                  path: tls-ca-bundle.pem
              name: trusted-ca-bundle
              optional: true
            name: trusted-ca-bundle
        volumeMounts:
          - mountPath: /etc/proxy/htpasswd
            name: secret-htpasswd
          - mountPath: /etc/pki/ca-trust/extracted/pem/
            name: trusted-ca-bundle
            readOnly: true

  4. $ oc apply -n tracing-system -f <jaeger.yaml>
  5. $ oc get pods -n tracing-system -w

1.26.4.3.

Jaeger 일반 YAML 예

apiVersion: jaegertracing.io/v1
kind: Jaeger
metadata:
  name: name
spec:
  strategy: <deployment_strategy>
  allInOne:
    options: {}
    resources: {}
  agent:
    options: {}
    resources: {}
  collector:
    options: {}
    resources: {}
  sampling:
    options: {}
  storage:
    type:
    options: {}
  query:
    options: {}
    resources: {}
  ingester:
    options: {}
    resources: {}
  options: {}

표 1.39. Jaeger 매개변수

매개변수설명기본값

apiVersion:

 

jaegertracing.io/v1

jaegertracing.io/v1

kind:

생성할 Kubernetes 오브젝트를 정의합니다.

jaeger

 

metadata:

name 문자열, UID 및 선택적 namespace 를 포함하여 오브젝트를 고유하게 식별할 수 있는 데이터입니다.

 

name:

오브젝트의 이름입니다.

jaeger-all-in-one-inmemory

spec:

생성할 오브젝트의 사양입니다.

해당 없음

strategy:

Jaeger 배포 전략

allInOne, production 또는 streaming

allInOne

allInOne:

 
 

agent:

 
 

collector:

Jaeger 수집기를 정의하는 구성 옵션입니다.

 
 

sampling:

추적을 위한 샘플링 전략을 정의하는 구성 옵션입니다.

 
 

storage:

스토리지를 정의하는 구성 옵션입니다.

 
 

query:

쿼리 서비스를 정의하는 구성 옵션입니다.

 
 

ingester:

Ingester 서비스를 정의하는 구성 옵션입니다.

 

apiVersion: jaegertracing.io/v1
kind: Jaeger
metadata:
  name: jaeger-all-in-one-inmemory

1.26.4.4. Jaeger 수집기 구성 옵션

수집기는 Elasticsearch 클러스터의 위치를 제외하고 거의 구성이 필요하지 않습니다.

표 1.40. Operator에서 Jaeger Collector를 정의하는 데 사용하는 매개변수

매개변수설명
collector:
  replicas:

생성할 수집기 복제본 수를 지정합니다.

정수(예: 5)

표 1.41.

매개변수설명
spec:
 collector:
  options: {}

Jaeger 수집기를 정의하는 구성 옵션입니다.

 
options:
  collector:
    num-workers:

큐에서 가져온 작업자 수입니다.

정수(예: 50)

options:
  collector:
    queue-size:

수집기 큐의 크기입니다.

정수(예: 2000)

options:
  kafka:
    producer:
      topic: jaeger-spans

options:
  kafka:
    producer:
      brokers: my-cluster-kafka-brokers.kafka:9092

메시지를 생성하기 위해 수집기에서 사용하는 Kafka 구성을 식별합니다.

 
options:
  log-level:

1.26.4.5.

모든 추적이 생성되지만 소수만 샘플링됩니다. 추적 샘플링은 추가 처리 및 스토리지의 추적을 나타냅니다.

참고

  • 확률론 - 샘플러는 샘플링(sampling.param) 속성의 값과 동일한 샘플링의 확률로 임의 샘플링 결정을 내립니다.
  • 속도 제한 - 샘플러는 누수된 버킷 속도 제한기를 사용하여 추적을 특정한 일정 속도로 샘플링합니다.

표 1.42. Jaeger 샘플링 옵션

매개변수설명기본값
spec:
 sampling:
  options: {}
    default_strategy:
    service_strategy:

추적을 위한 샘플링 전략을 정의하는 구성 옵션입니다.

 

default_strategy:
  type:
service_strategy:
  type:

사용할 샘플링 전략입니다.

유효한 값은 probabilisticratelimiting입니다.

probabilistic

default_strategy:
  param:
service_strategy:
  param:

선택한 샘플링 전략에 대한 매개변수입니다.

10진수 및 정수 값(0, .1, 1, 10)

1

이 예에서는 추적 인스턴스가 샘플링될 가능성이 50%인 비율로 확률적인 기본 샘플링 전략을 정의합니다.

확률 샘플링 예

apiVersion: jaegertracing.io/v1
kind: Jaeger
metadata:
  name: with-sampling
spec:
  sampling:
    options:
      default_strategy:
        type: probabilistic
        param: 0.5
      service_strategies:
        - service: alpha
          type: probabilistic
          param: 0.8
          operation_strategies:
            - operation: op1
              type: probabilistic
              param: 0.2
            - operation: op2
              type: probabilistic
              param: 0.4
        - service: beta
          type: ratelimiting
          param: 5

spec:
  sampling:
    options:
      default_strategy:
        type: probabilistic
        param: 1

1.26.4.6.

spec:storage에서 Collector, Ingester 및 쿼리 서비스에 대한 스토리지를 구성합니다. 이러한 각 구성 요소의 여러 인스턴스는 성능 및 복원에 필요한 대로 프로비저닝할 수 있습니다.

표 1.43.

매개변수설명기본값
spec:
  storage:
    type:

배포에 사용할 스토리지 유형입니다.

memory 또는 elasticsearch. 메모리 스토리지는 Pod가 종료되면 데이터가 유지되지 않으므로 개념 환경의 개발, 테스트, 시연 및 검증에만 적합합니다.

memory

storage:
  secretname:

 

해당 없음

storage:
  options: {}

스토리지를 정의하는 구성 옵션입니다.

  

표 1.44. Elasticsearch 인덱스 정리 매개변수

매개변수설명기본값
storage:
  esIndexCleaner:
    enabled:

Elasticsearch 스토리지를 사용하는 경우 기본적으로 인덱스에서 오래된 추적을 정리하는 작업이 생성됩니다. 이 매개변수는 인덱스 정리 작업을 활성화하거나 비활성화합니다.

true/ false

true

storage:
  esIndexCleaner:
    numberOfDays:

인덱스를 삭제하기 전에 대기하는 날의 수입니다.

정수 값

7

storage:
  esIndexCleaner:
    schedule:

Elasticsearch 인덱스를 정리하는 빈도에 대한 일정을 정의합니다.

Cron 표현식

"55 23 * * *"

1.26.4.6.1. Elasticsearch 인스턴스 자동 프로비저닝

제한 사항

  • 네임스페이스당 Elasticsearch가 하나만 있을 수 있습니다.
참고

구성 파일의 spec:storage:elasticsearch에서 자체 프로비저닝 Elasticsearch에 대한 구성 옵션을 지정합니다.

표 1.45. Elasticsearch 리소스 구성 매개변수

매개변수설명기본값
elasticsearch:
  properties:
    doNotProvision:

true/false

true

elasticsearch:
  properties:
    name:

string

elasticsearch

elasticsearch:
  nodeCount:

Elasticsearch 노드 수입니다. 고가용성의 경우 최소 3개의 노드를 사용합니다. “스플릿 브레인” 문제가 발생할 수 있으므로 2개의 노드를 사용하지 마십시오.

정수 값입니다. 예를 들면 개념 증명 = 1, 최소 배포 =3입니다.

3

elasticsearch:
  resources:
    requests:
      cpu:

사용자 환경 구성에 따른 요청에 대한 중앙 처리 단위 수입니다.

예를 들면 개념 증명 = 500m, 최소 배포 =1입니다.

1

elasticsearch:
  resources:
    requests:
      memory:

환경 구성에 따른 요청에 사용 가능한 메모리입니다.

예를 들면 개념 증명 = 1Gi, 최소 배포 = 16Gi*입니다.

16Gi

elasticsearch:
  resources:
    limits:
      cpu:

사용자 환경 구성에 따른 중앙 처리 장치 수에 대한 제한입니다.

예를 들면 개념 증명 = 500m, 최소 배포 =1입니다.

 
elasticsearch:
  resources:
    limits:
      memory:

사용자 환경 구성에 따라 사용 가능한 메모리 제한입니다.

예를 들면 개념 증명 = 1Gi, 최소 배포 = 16Gi*입니다.

 
elasticsearch:
  redundancyPolicy:

데이터 복제 정책은 Elasticsearch shard가 클러스터의 데이터 노드에 복제되는 방법을 정의합니다.

ZeroRedundancy(replica shard 없음), SingleRedundancy(하나의 replica shard), MultipleRedundancy(각 인덱스가 데이터 노드의 반을 넘어 분산됨), FullRedundancy(각 인덱스가 클러스터의 모든 데이터 노드에 전체적으로 복제됨).

 
elasticsearch:
  useCertManagement:

true/false

true

*각 Elasticsearch 노드는 더 낮은 메모리 설정으로 작동할 수 있지만 프로덕션 배포에는 권장되지 않습니다. 프로덕션 용도의 경우 기본적으로 각 Pod에 할당된 16Gi 미만이 있어야 하지만 Pod당 최대 64Gi까지 할당할 수도 있습니다.

프로덕션 스토리지 예

apiVersion: jaegertracing.io/v1
kind: Jaeger
metadata:
  name: simple-prod
spec:
  strategy: production
  storage:
    type: elasticsearch
    elasticsearch:
      nodeCount: 3
      resources:
        requests:
          cpu: 1
          memory: 16Gi
        limits:
          memory: 16Gi

영구 스토리지가 있는 스토리지 예:

apiVersion: jaegertracing.io/v1
kind: Jaeger
metadata:
  name: simple-prod
spec:
  strategy: production
  storage:
    type: elasticsearch
    elasticsearch:
      nodeCount: 1
      storage: 1
        storageClassName: gp2
        size: 5Gi
      resources:
        requests:
          cpu: 200m
          memory: 4Gi
        limits:
          memory: 4Gi
      redundancyPolicy: ZeroRedundancy

1
영구 스토리지 구성. 이 경우 AWS gp25Gi 크기가 있습니다.
1.26.4.6.2. 기존 Elasticsearch 인스턴스에 연결

제한 사항

참고

Red Hat은 외부 Elasticsearch 인스턴스를 지원하지 않습니다. Customer Portal에서 테스트된 통합 매트릭스를 검토할 수 있습니다.

다음 구성 매개변수는 외부 Elasticsearch 인스턴스 라고도 하는 기존 Elasticsearch 인스턴스에 대한 것입니다. 이 경우 spec:storage:options:es 사용자 지정 리소스 파일에서 Elasticsearch에 대한 구성 옵션을 지정합니다.

표 1.46. 일반 ES 구성 매개변수

매개변수설명기본값
es:
  server-urls:

Elasticsearch 인스턴스의 URL입니다.

Elasticsearch 서버의 정규화된 도메인 이름입니다.

http://elasticsearch.<namespace>.svc:9200

es:
  max-doc-count:

Elasticsearch 쿼리에서 반환하는 최대 문서 수입니다. 이는 집계에도 적용됩니다. es.max-doc-countes.max-num-spans를 모두 설정하면 Elasticsearch에서 이 둘 중 작은 값을 사용합니다.

 

10000

es:
  max-num-spans:

[더 이상 사용되지 않음 - 향후 릴리스에서 제거되며 대신 es.max-doc-count를 사용합니다.] Elasticsearch에서 쿼리당 한 번에 가져올 최대 기간 수입니다. es.max-num-spanses.max-doc-count를 모두 설정하면 Elasticsearch는 이 둘 중 작은 값을 사용합니다.

 

10000

es:
  max-span-age:

Elasticsearch에서 기간에 대한 최대 조회 수입니다.

 

72h0m0s

es:
  sniffer:

Elasticsearch의 스니퍼 구성입니다. 클라이언트는 스니핑 프로세스를 사용하여 모든 노드를 자동으로 찾습니다. 기본적으로 비활성되어 있습니다.

true/ false

false

es:
  sniffer-tls-enabled:

클라이언트는 스니핑 프로세스를 사용하여 모든 노드를 자동으로 찾습니다. 기본적으로 비활성화되어 있습니다.

true/ false

false

es:
  timeout:

쿼리에 사용되는 시간 제한입니다. 0으로 설정하면 시간 제한이 없습니다.

 

0s

es:
  username:

Elasticsearch에 필요한 사용자 이름입니다. 기본 인증은 지정된 경우 CA도 로드합니다. es.password도 참조하십시오.

  
es:
  password:

Elasticsearch에 필요한 암호입니다. es.username도 참조하십시오.

  
es:
  version:

주요 Elasticsearch 버전입니다. 지정하지 않으면 Elasticsearch에서 값을 자동으로 탐지합니다.

 

0

표 1.47. ES 데이터 복제 매개변수

매개변수설명기본값
es:
  num-replicas:

Elasticsearch의 인덱스당 복제본 수입니다.

 

1

es:
  num-shards:

Elasticsearch의 인덱스당 shard 수입니다.

 

5

표 1.48. ES 인덱스 구성 매개변수

매개변수설명기본값
es:
  create-index-templates:

true로 설정할 때 애플리케이션 시작 시 인덱스 템플릿을 자동으로 생성합니다. 템플릿이 수동으로 설치되면 false로 설정합니다.

true/ false

true

es:
  index-prefix:

  

표 1.49. ES 일괄 프로세서 구성 매개변수

매개변수설명기본값
es:
  bulk:
    actions:

대규모 프로세서가 디스크에 업데이트를 커밋하기 전에 큐에 추가할 수 있는 요청 수입니다.

 

1000

es:
  bulk:
    flush-interval:

다른 임계값에 관계없이 대규모 요청이 커밋된 후 time.Duration입니다. 대규모 프로세서 플러시 간격을 비활성화하려면 이를 0으로 설정합니다.

 

200ms

es:
  bulk:
    size:

대규모 프로세서가 디스크에 업데이트를 커밋하기 전에 대규모 요청이 수행할 수 있는 바이트 수입니다.

 

5000000

es:
  bulk:
    workers:

Elasticsearch에 대규모 요청을 수신하고 커밋할 수 있는 작업자 수입니다.

 

1

표 1.50. ES TLS 구성 매개변수

매개변수설명기본값
es:
  tls:
    ca:

 

기본적으로 시스템 신뢰 저장소를 사용합니다.

es:
  tls:
    cert:

  
es:
  tls:
    enabled:

기본적으로 비활성되어 있습니다.

true/ false

false

es:
  tls:
    key:

  
es:
  tls:
    server-name:

  
es:
  token-file:

전달자 토큰이 포함된 파일의 경로입니다. 이 플래그는 지정된 경우 CA(인증 기관) 파일도 로드합니다.

  

표 1.51. ES 아카이브 구성 매개변수

매개변수설명기본값
es-archive:
  bulk:
    actions:

대규모 프로세서가 디스크에 업데이트를 커밋하기 전에 큐에 추가할 수 있는 요청 수입니다.

 

0

es-archive:
  bulk:
    flush-interval:

다른 임계값에 관계없이 대규모 요청이 커밋된 후 time.Duration입니다. 대규모 프로세서 플러시 간격을 비활성화하려면 이를 0으로 설정합니다.

 

0s

es-archive:
  bulk:
    size:

대규모 프로세서가 디스크에 업데이트를 커밋하기 전에 대규모 요청이 수행할 수 있는 바이트 수입니다.

 

0

es-archive:
  bulk:
    workers:

Elasticsearch에 대규모 요청을 수신하고 커밋할 수 있는 작업자 수입니다.

 

0

es-archive:
  create-index-templates:

true로 설정할 때 애플리케이션 시작 시 인덱스 템플릿을 자동으로 생성합니다. 템플릿이 수동으로 설치되면 false로 설정합니다.

true/ false

false

es-archive:
  enabled:

추가 스토리지를 활성화합니다.

true/ false

false

es-archive:
  index-prefix:

  
es-archive:
  max-doc-count:

Elasticsearch 쿼리에서 반환하는 최대 문서 수입니다. 이는 집계에도 적용됩니다.

 

0

es-archive:
  max-num-spans:

[더 이상 사용되지 않음 - 향후 릴리스에서 제거되며 대신 es-archive.max-doc-count를 사용합니다.] Elasticsearch에서 쿼리당 한 번에 가져올 최대 기간 수입니다.

 

0

es-archive:
  max-span-age:

Elasticsearch에서 기간에 대한 최대 조회 수입니다.

 

0s

es-archive:
  num-replicas:

Elasticsearch의 인덱스당 복제본 수입니다.

 

0

es-archive:
  num-shards:

Elasticsearch의 인덱스당 shard 수입니다.

 

0

es-archive:
  password:

Elasticsearch에 필요한 암호입니다. es.username도 참조하십시오.

  
es-archive:
  server-urls:

Elasticsearch 서버의 쉼표로 구분된 목록입니다. 정규화된 URL로 지정해야 합니다(예: http://localhost:9200).

  
es-archive:
  sniffer:

Elasticsearch의 스니퍼 구성입니다. 클라이언트는 스니핑 프로세스를 사용하여 모든 노드를 자동으로 찾습니다. 기본적으로 비활성되어 있습니다.

true/ false

false

es-archive:
  sniffer-tls-enabled:

클라이언트는 스니핑 프로세스를 사용하여 모든 노드를 자동으로 찾습니다. 기본적으로 비활성되어 있습니다.

true/ false

false

es-archive:
  timeout:

쿼리에 사용되는 시간 제한입니다. 0으로 설정하면 시간 제한이 없습니다.

 

0s

es-archive:
  tls:
    ca:

 

기본적으로 시스템 신뢰 저장소를 사용합니다.

es-archive:
  tls:
    cert:

  
es-archive:
  tls:
    enabled:

기본적으로 비활성되어 있습니다.

true/ false

false

es-archive:
  tls:
    key:

  
es-archive:
  tls:
    server-name:

  
es-archive:
  token-file:

전달자 토큰이 포함된 파일의 경로입니다. 이 플래그는 지정된 경우 CA(인증 기관) 파일도 로드합니다.

  
es-archive:
  username:

Elasticsearch에 필요한 사용자 이름입니다. 기본 인증은 지정된 경우 CA도 로드합니다. es-archive.password도 참조하십시오.

  
es-archive:
  version:

주요 Elasticsearch 버전입니다. 지정하지 않으면 Elasticsearch에서 값을 자동으로 탐지합니다.

 

0

볼륨 마운트가 있는 스토리지 예

apiVersion: jaegertracing.io/v1
kind: Jaeger
metadata:
  name: simple-prod
spec:
  strategy: production
  storage:
    type: elasticsearch
    options:
      es:
        server-urls: https://quickstart-es-http.default.svc:9200
        index-prefix: my-prefix
        tls:
          ca: /es/certificates/ca.crt
    secretName: tracing-secret
  volumeMounts:
    - name: certificates
      mountPath: /es/certificates/
      readOnly: true
  volumes:
    - name: certificates
      secret:
        secretName: quickstart-es-http-certs-public

다음 예는 시크릿에 저장된 볼륨 및 사용자/암호에서 마운트된 TLS CA 인증서가 포함된 외부 Elasticsearch 클러스터를 사용하는 Jaeger CR을 보여줍니다.

외부 Elasticsearch 예:

apiVersion: jaegertracing.io/v1
kind: Jaeger
metadata:
  name: simple-prod
spec:
  strategy: production
  storage:
    type: elasticsearch
    options:
      es:
        server-urls: https://quickstart-es-http.default.svc:9200 1
        index-prefix: my-prefix
        tls: 2
          ca: /es/certificates/ca.crt
    secretName: tracing-secret 3
  volumeMounts: 4
    - name: certificates
      mountPath: /es/certificates/
      readOnly: true
  volumes:
    - name: certificates
      secret:
        secretName: quickstart-es-http-certs-public

1
기본 네임스페이스에서 실행되는 Elasticsearch 서비스에 대한 URL입니다.
2
TLS 구성입니다. 이 경우 CA 인증서만 해당하지만 상호 TLS를 사용하는 경우 es.tls.key 및 es.tls.cert를 포함할 수 있습니다.
3
환경 변수 ES_PASSWORD 및 ES_USERNAME을 정의하는 시크릿입니다.
4
모든 스토리지 구성 요소에 마운트되는 볼륨 마운트 및 볼륨입니다.

1.26.4.7.

중요

기술 프리뷰 기능은 Red Hat 프로덕션 서비스 수준 계약(SLA)에서 지원되지 않으며 기능적으로 완전하지 않을 수 있습니다. 따라서 프로덕션 환경에서 사용하는 것은 권장하지 않습니다. 이러한 기능을 사용하면 향후 제품 기능을 조기에 이용할 수 있어 개발 과정에서 고객이 기능을 테스트하고 피드백을 제공할 수 있습니다.

Red Hat 기술 프리뷰 기능의 지원 범위에 대한 자세한 내용은 기술 프리뷰 기능 지원 범위를 참조하십시오.

  • logging.openshift.io/elasticsearch-cert-management: "true"
  • logging.openshift.io/elasticsearch-cert.jaeger-<shared-es-node-name>: "user.jaeger"

apiVersion: logging.openshift.io/v1
kind: Elasticsearch
metadata:
  annotations:
    logging.openshift.io/elasticsearch-cert-management: "true"
    logging.openshift.io/elasticsearch-cert.jaeger-custom-es: "user.jaeger"
    logging.openshift.io/elasticsearch-cert.curator-custom-es: "system.logging.curator"
  name: custom-es
spec:
  managementState: Managed
  nodeSpec:
    resources:
      limits:
        memory: 16Gi
      requests:
        cpu: 1
        memory: 16Gi
  nodes:
    - nodeCount: 3
      proxyResources: {}
      resources: {}
      roles:
        - master
        - client
        - data
      storage: {}
  redundancyPolicy: ZeroRedundancy

사전 요구 사항

  • logging subsystem for Red Hat OpenShift 5.2

apiVersion: jaegertracing.io/v1
kind: Jaeger
metadata:
  name: jaeger-prod
spec:
  strategy: production
  storage:
    type: elasticsearch
    elasticsearch:
      name: custom-es
      doNotProvision: true
      useCertManagement: true

1.26.4.8.

쿼리는 스토리지에서 추적을 검색하고 사용자 인터페이스에서 표시하도록 호스팅하는 서비스입니다.

표 1.52.

매개변수설명기본값
spec:
  query:
    replicas:

생성할 쿼리 복제본 수를 지정합니다.

예: 정수 2)

 

표 1.53.

매개변수설명기본값
spec:
  query:
    options: {}

쿼리 서비스를 정의하는 구성 옵션입니다.

  
options:
  log-level:

쿼리의 로깅 수준입니다.

 
options:
  query:
    base-path:

모든 jaeger-query HTTP 경로의 기본 경로는 root 값이 아닌 값으로 설정할 수 있습니다(예: /jaeger는 모든 UI URL을 /jaeger로 시작합니다). 이는 리버스 프록시 뒤에서 jaeger-query를 실행할 때 유용할 수 있습니다.

/<path>

 

샘플 쿼리 구성

apiVersion: jaegertracing.io/v1
kind: "Jaeger"
metadata:
  name: "my-jaeger"
spec:
  strategy: allInOne
  allInOne:
    options:
      log-level: debug
      query:
        base-path: /jaeger

1.26.4.9.

allInOne 또는 production 배포 전략을 사용하는 경우 Ingester 서비스를 구성할 필요가 없습니다.

표 1.54. Ingester에 전달된 Jaeger 매개변수

매개변수설명
spec:
  ingester:
    options: {}

Ingester 서비스를 정의하는 구성 옵션입니다.

 
options:
  deadlockInterval:

분 및 초(예: 1m0s)입니다. 기본값은 0입니다.

options:
  kafka:
    consumer:
      topic:

소비자의 레이블입니다. 예를 들면 jaeger-spans입니다.

options:
  kafka:
    consumer:
      brokers:

메시지를 사용하려면 Ingester에서 사용하는 Kafka 구성을 식별합니다.

브로커의 레이블은 예를 들면 my-cluster-kafka-brokers.kafka:9092입니다.

options:
  log-level:

Ingester의 로깅 수준입니다.

스트리밍 수집기 및 Ingester 예

apiVersion: jaegertracing.io/v1
kind: Jaeger
metadata:
  name: simple-streaming
spec:
  strategy: streaming
  collector:
    options:
      kafka:
        producer:
          topic: jaeger-spans
          brokers: my-cluster-kafka-brokers.kafka:9092
  ingester:
    options:
      kafka:
        consumer:
          topic: jaeger-spans
          brokers: my-cluster-kafka-brokers.kafka:9092
      ingester:
        deadlockInterval: 5
  storage:
    type: elasticsearch
    options:
      es:
        server-urls: http://elasticsearch:9200

1.27.

1.27.1. Red Hat OpenShift Service Mesh Control Plane 제거

1.27.1.1.

웹 콘솔을 사용하여 Red Hat OpenShift Service Mesh Control Plane을 제거할 수 있습니다.

절차

  1. Operators설치된 Operator로 이동합니다.
  2. 제공된 API에서 Service Mesh Control Plane을 클릭합니다.
  3. ServiceMeshControlPlane 메뉴 kebab 를 클릭합니다.
  4. Service Mesh Control Plane 삭제를 클릭합니다.
  5. 확인 대화 상자에서 삭제를 클릭하여 ServiceMeshControlPlane을 삭제합니다.

1.27.1.2.

CLI를 사용하여 Red Hat OpenShift Service Mesh Control Plane을 제거할 수 있습니다. 이 예제에서 istio-system은 컨트롤 플레인 프로젝트의 이름입니다.

절차

  1. $ oc delete smmr -n istio-system default
  2. 이 명령을 실행하여 설치된 ServiceMeshControlPlane의 이름을 검색합니다.

    $ oc get smcp -n istio-system
  3. <name_of_custom_resource>을 이전 명령의 출력으로 바꾸고, 이 명령을 실행하여 사용자 정의 리소스를 삭제합니다.

    $ oc delete smcp -n istio-system <name_of_custom_resource>

1.27.2. 설치된 Operator 제거

Red Hat OpenShift Service Mesh를 성공적으로 제거하려면 Operator를 제거해야 합니다.

1.27.2.1. Operator 제거

Red Hat OpenShift Service Mesh를 구성하는 Operator를 제거하려면 다음 절차를 따르십시오. 다음 각 Operator에 대해 단계를 반복합니다.

  • Red Hat OpenShift Service Mesh
  • Kiali
  • OpenShift Elasticsearch

절차

  1. Operator설치된 Operator 페이지에서 스크롤하거나 이름별 필터링에 키워드를 입력하여 각 Operator를 찾습니다. 그런 다음 Operator 이름을 클릭합니다.
  2. Operator 상세 정보 페이지의 작업 메뉴에서 Operator 제거를 선택합니다. 프롬프트에 따라 각 Operator를 제거합니다.

1.27.3. Operator 리소스 정리

사전 요구 사항

  • 클러스터 관리 권한이 있는 계정. Red Hat OpenShift Dedicated를 사용하는 경우 dedicated-admin 역할의 계정이 있어야 합니다.
  • OpenShift CLI(oc)에 액세스합니다.

절차

  1. Operator를 제거한 후 다음 명령을 실행하여 리소스를 정리합니다.

    참고

    다른 Operator는 기본적으로 openshift-operators 네임스페이스에 설치됩니다. 다른 네임스페이스에 Operators를 설치한 경우openshift-operators를 Red Hat OpenShift Service Mesh Operator가 설치된 프로젝트의 이름으로 교체합니다.

    $ oc delete validatingwebhookconfiguration/openshift-operators.servicemesh-resources.maistra.io
    $ oc delete mutatingwebhookconfiguration/openshift-operators.servicemesh-resources.maistra.io
    $ oc delete svc maistra-admission-controller -n openshift-operators
    $ oc -n openshift-operators delete ds -lmaistra-version
    $ oc delete clusterrole/istio-admin clusterrole/istio-cni clusterrolebinding/istio-cni
    $ oc delete clusterrole istio-view istio-edit
    $ oc delete clusterrole jaegers.jaegertracing.io-v1-admin jaegers.jaegertracing.io-v1-crdview jaegers.jaegertracing.io-v1-edit jaegers.jaegertracing.io-v1-view
    $ oc get crds -o name | grep '.*\.istio\.io' | xargs -r -n 1 oc delete
    $ oc get crds -o name | grep '.*\.maistra\.io' | xargs -r -n 1 oc delete
    $ oc get crds -o name | grep '.*\.kiali\.io' | xargs -r -n 1 oc delete
    $ oc delete crds jaegers.jaegertracing.io
    $ oc delete cm -n openshift-operators maistra-operator-cabundle
    $ oc delete cm -n openshift-operators istio-cni-config
    $ oc delete sa -n openshift-operators istio-cni

2장. Service Mesh 1.x

2.1. 서비스 메시 릴리스 노트

주의

2.1.1. 보다 포괄적 수용을 위한 오픈 소스 용어 교체

Red Hat은 코드, 문서, 웹 속성에서 문제가 있는 용어를 교체하기 위해 최선을 다하고 있습니다. 먼저 마스터(master), 슬레이브(slave), 블랙리스트(blacklist), 화이트리스트(whitelist) 등 네 가지 용어를 교체하고 있습니다. 이러한 변경 작업은 작업 범위가 크므로 향후 여러 릴리스에 걸쳐 점차 구현할 예정입니다. 자세한 내용은 CTO Chris Wright의 메시지를 참조하십시오.

2.1.2. Red Hat OpenShift Service Mesh 소개

Red Hat OpenShift Service Mesh는 애플리케이션에서 중앙 집중식 제어 지점을 생성하여 마이크로 서비스 아키텍처에서 다양한 문제에 대응합니다. 애플리케이션 코드를 변경하지 않고도 기존 분산 애플리케이션에 투명한 레이어를 추가합니다.

마이크로 서비스 아키텍처는 엔터프라이즈 애플리케이션의 작업을 모듈식 서비스로 분할하므로 확장 및 유지 관리를 더 쉽게 수행할 수 있습니다. 그러나 마이크로 서비스 아키텍처에 구축된 엔터프라이즈 애플리케이션이 크기와 복잡성이 증가함에 따라 마이크로 서비스 아키텍처의 이해 및 관리가 어려워집니다. 서비스 메시는 서비스 간 트래픽을 캡처하거나 차단하거나 다른 서비스에 대한 새 요청을 리디렉트 또는 생성하여 이러한 아키텍처의 문제에 대응할 수 있습니다.

오픈 소스 Istio project를 기반으로 하는 Service Mesh는 배포된 서비스 네트워크를 쉽게 구축할 수 있는 방법을 제공하여 검색, 로드 밸런싱, 서비스 간 인증, 실패 복구, 지표 및 모니터링을 지원합니다.

2.1.3. 지원 요청

고객 포털에서 다음을 수행할 수 있습니다.

  • Red Hat 제품과 관련된 기사 및 솔루션에 대한 Red Hat 지식베이스를 검색하거나 살펴볼 수 있습니다.
  • Red Hat 지원에 대한 지원 케이스 제출할 수 있습니다.
  • 다른 제품 설명서에 액세스 가능합니다.

Insights는 문제에 대한 세부 정보 및 문제 해결 방법에 대한 정보를 제공합니다.

지원 사례를 여는 경우 클러스터에 대한 디버깅 정보를 Red Hat 지원에 제공하면 도움이 됩니다.

2.1.3.1. must-gather 툴 정보

  • 리소스 정의
  • 서비스 로그

  • 예를 들면 다음과 같습니다.

    $ oc adm must-gather  --image=registry.redhat.io/container-native-virtualization/cnv-must-gather-rhel8:v4.0
  • 예를 들면 다음과 같습니다.

    $ oc adm must-gather -- /usr/bin/gather_audit_logs
    참고

해당 Pod에 대한 데이터가 수집되어 must-gather.local로 시작하는 새 디렉터리에 저장됩니다. 이 디렉터리는 현재 작업 중인 디렉터리에 생성되어 있습니다.

예를 들면 다음과 같습니다.

NAMESPACE                      NAME                 READY   STATUS      RESTARTS      AGE
...
openshift-must-gather-5drcj    must-gather-bklx4    2/2     Running     0             72s
openshift-must-gather-5drcj    must-gather-s8sdh    2/2     Running     0             72s
...

2.1.3.2. 사전 요구 사항

  • cluster-admin 역할의 사용자로 클러스터에 액세스할 수 있어야 합니다.

2.1.3.3. 서비스 메시 데이터 수집 정보

oc adm must-gather CLI 명령을 사용하면 Red Hat OpenShift Service Mesh와 연관된 기능 및 오브젝트를 포함하여 클러스터에 대한 정보를 수집할 수 있습니다.

사전 요구 사항

  • cluster-admin 역할의 사용자로 클러스터에 액세스할 수 있어야 합니다.

  1. must-gather을 사용하여 Red Hat OpenShift Service Mesh 데이터를 수집하려면 Red Hat OpenShift Service Mesh 이미지를 지정해야 합니다.

    $ oc adm must-gather --image=registry.redhat.io/openshift-service-mesh/istio-must-gather-rhel8:2.3
  2. $ oc adm must-gather --image=registry.redhat.io/openshift-service-mesh/istio-must-gather-rhel8:2.3 gather <namespace>

2.1.4. Red Hat OpenShift Service Mesh 지원 구성

다음은 Red Hat OpenShift Service Mesh에 지원되는 구성입니다.

참고

  • 클러스터 외부에 있거나 멀티 클러스터 시나리오에 있는 마이크로 서비스 관리는 지원하지 않습니다.
  • 이 릴리스는 가상 머신과 같은 외부 서비스를 통합하지 않는 구성만 지원합니다.

Red Hat OpenShift Service Mesh 라이프사이클 및 지원되는 구성에 대한 자세한 내용은 지원 정책을 참조하십시오.

2.1.4.1. Red Hat OpenShift Service Mesh에서 Kiali에 지원되는 구성

  • Kiali Observation Console은 Chrome, Edge, Firefox 또는 Safari 브라우저의 두 가지 최신 버전에서만 지원됩니다.

2.1.4.2. 지원되는 Mixer 어댑터

  • 이 릴리스에서는 다음 Mixer 어댑터만 지원합니다.

    • 3scale Istio 어댑터

2.1.5. 새로운 기능

Red Hat OpenShift Service Mesh는 서비스 네트워크 전반에서 여러 주요 기능을 균일하게 제공합니다.

  • 트래픽 관리 - 서비스 간 트래픽 및 API 호출 흐름을 제어하고, 호출을 더 안정적으로 만들며, 불리한 조건에서도 네트워크를 보다 견고하게 만듭니다.
  • 서비스 ID 및 보안 - 메시에서 확인 가능한 ID로 서비스를 제공하고 다양한 수준의 신뢰도를 갖춘 네트워크를 통해 전달될 때 서비스 트래픽을 보호할 수 있는 기능을 제공합니다.
  • 정책 강화- 서비스 간 상호 작용에 조직 정책을 적용하여 액세스 정책이 시행되고 리소스가 소비자 간에 공정하게 배포되도록 합니다. 애플리케이션 코드를 변경하는 것이 아니라 메시를 구성하여 정책 변경을 수행합니다.
  • Telemetry - 서비스 간의 종속성과 트래픽 속성 및 흐름을 이해하여 문제를 신속하게 식별할 수 있는 기능을 제공합니다.

2.1.5.1.

이번 Red Hat OpenShift Service Mesh 릴리스는 CVE(Common Vulnerabilities and Exposures)를 제공합니다.

2.1.5.1.1.
구성 요소버전

Istio

1.4.10

Jaeger

1.30.2

Kiali

1.12.21.1

3scale Istio 어댑터

1.0.0

2.1.5.2.

이번 Red Hat OpenShift Service Mesh 릴리스는 CVE(Common Vulnerabilities and Exposures)를 제공합니다.

2.1.5.2.1.
구성 요소버전

Istio

1.4.10

Jaeger

1.30.2

Kiali

1.12.20.1

3scale Istio 어댑터

1.0.0

2.1.5.3.

이번 Red Hat OpenShift Service Mesh 릴리스는 CVE(Common Vulnerabilities and Exposures)를 제공합니다.

2.1.5.3.1.
구성 요소버전

Istio

1.4.10

Jaeger

1.24.0

Kiali

1.12.18

3scale Istio 어댑터

1.0.0

2.1.5.4.

이번 Red Hat OpenShift Service Mesh 릴리스는 CVE(Common Vulnerabilities and Exposures)를 제공합니다.

2.1.5.4.1.

2.1.5.4.2.

apiVersion: security.istio.io/v1beta1
kind: AuthorizationPolicy
metadata:
  name: httpbin
  namespace: foo
spec:
  action: DENY
  rules:
  - from:
    - source:
        namespaces: ["dev"]
    to:
    - operation:
        hosts: [“httpbin.com”,"httpbin.com:*"]

apiVersion: security.istio.io/v1beta1
kind: AuthorizationPolicy
metadata:
  name: httpbin
  namespace: default
spec:
  action: DENY
  rules:
  - to:
    - operation:
        hosts: ["httpbin.example.com:*"]

2.1.5.5. Red Hat OpenShift Service Mesh 1.1.17 새 기능

이번 Red Hat OpenShift Service Mesh 릴리스는 CVE(Common Vulnerabilities and Exposures) 및 버그 수정을 제공합니다.

2.1.5.6. Red Hat OpenShift Service Mesh 1.1.16 새 기능

이번 Red Hat OpenShift Service Mesh 릴리스는 CVE(Common Vulnerabilities and Exposures) 및 버그 수정을 제공합니다.

2.1.5.7. Red Hat OpenShift Service Mesh 1.1.15 새 기능

이번 Red Hat OpenShift Service Mesh 릴리스는 CVE(Common Vulnerabilities and Exposures) 및 버그 수정을 제공합니다.

2.1.5.8. Red Hat OpenShift Service Mesh 1.1.14 새 기능

이번 Red Hat OpenShift Service Mesh 릴리스는 CVE(Common Vulnerabilities and Exposures) 및 버그 수정을 제공합니다.

중요

CVE-2021-29492 및 CVE-2021-31920 문제를 해결하려면 수동 단계가 완료되어야 합니다.

2.1.5.8.1. CVE-2021-29492 및 CVE-2021-31920에서 필요한 수동 업데이트

Istio에는 경로 기반 권한 부여 규칙이 사용될 때 여러 슬래시 또는 이스케이프된 슬래시 문자 (%2F` or %5C`)가 있는 HTTP 요청 경로가 잠재적으로 Istio 권한 부여 정책을 우회할 수 있는 원격으로 악용 가능한 취약점이 포함되어 있습니다.

예를 들어 Istio 클러스터 관리자가 경로 /admin에 있는 요청을 거부하도록 권한 부여 DENY 정책을 정의한다고 가정합니다. //admin URL 경로에 전송된 요청이 권한 부여 정책에서 거부되지 않습니다.

RFC 3986에 따르면 여러 개의 슬래시가 있는 //admin 경로는 기술적으로 /admin과 다른 경로로 처리되어야 합니다. 그러나 일부 백엔드 서비스는 여러 슬래시를 단일 슬래시로 병합하여 URL 경로를 정규화하도록 선택합니다. 이로 인해 권한 부여 정책( //admin/admin과 일치하지 않음)을 우회할 수 있으며 사용자는 백엔드의 /admin 경로에 있는 리소스에 액세스할 수 있습니다. 결과적으로 이는 보안 문제로 나타날 수 있습니다.

ALLOW action + notPaths 필드 또는 DENY action + paths field 경로 필드 패턴을 사용하는 권한 부여 정책이 있는 경우 클러스터는 이 취약점의 영향을 받습니다. 이러한 패턴은 예기치 않은 정책 우회에 취약합니다.

다음과 같은 경우 클러스터는 이 취약점의 영향을 받지 않습니다.

  • 권한 부여 정책이 없습니다.
  • 권한 부여 정책은 paths 또는 notPaths 필드를 정의하지 않습니다.
  • 권한 부여 정책은 ALLOW action + paths 필드 또는 DENY action + notPaths 필드 패턴을 사용합니다. 이러한 패턴은 정책 우회 대신 예기치 않은 거부를 유발할 수 있습니다. 이러한 경우 업그레이드는 선택 사항입니다.
참고

경로 정규화를 위한 Red Hat OpenShift Service Mesh 구성 위치는 Istio 구성과 다릅니다.

2.1.5.8.2. 경로 정규화 구성 업데이트

Istio 권한 부여 정책은 HTTP 요청의 URL 경로를 기반으로 할 수 있습니다. URI 정규화라고도 하는 경로 정규화는 들어오는 요청의 경로를 수정 및 표준화하여 정규화된 경로를 표준 방식으로 처리할 수 있도록 합니다. 구문적으로 경로 정규화 후에는 다른 경로가 동일할 수 있습니다.

Istio는 권한 부여 정책에 대해 평가하고 요청을 라우팅하기 전에 요청 경로에서 다음 정규화 체계를 지원합니다.

표 2.1. 정규화 체계

옵션설명예제참고

NONE

정규화는 수행되지 않습니다. Envoy가 수신한 모든 항목은 정확히 그대로 모든 백엔드 서비스에 전달됩니다.

../%2FA../b는 권한 부여 정책에 의해 평가되고 서비스로 전송됩니다.

이 설정은 CVE-2021-31920에 취약합니다.

BASE

현재 이는 Istio의 기본 설치에 사용되는 옵션입니다. 이로 인해 Envoy 프록시에 normalize_path 옵션을 적용하며, RFC 3986에 따라 백슬래시를 슬래시로 변환하는 추가 정규화를 따릅니다.

/a/../b/b로 정규화됩니다. \da/da로 정규화됩니다.

이 설정은 CVE-2021-31920에 취약합니다.

MERGE_SLASHES

BASE 정규화 후 슬래시가 병합됩니다.

/a//b/a/b로 정규화됩니다.

CVE-2021-31920을 완화하려면 이 설정으로 업데이트합니다.

DECODE_AND_MERGE_SLASHES

기본적으로 모든 트래픽을 허용할 때 가장 엄격한 설정입니다. 이 설정은 권한 부여 정책 경로를 철저하게 테스트해야 한다는 경고와 함께 권장됩니다. 백분율로 인코딩된 슬래시 및 백슬래시 문자 (%2F, %2f, %5C%5c)는 MERGE_SLASHES 정규화 전에 / 또는 \로 디코딩됩니다.

/a%2fb/a/b로 정규화됩니다.

CVE-2021-31920을 완화하려면 이 설정으로 업데이트합니다. 이 설정은 더 안전하지만 애플리케이션이 중단될 수도 있습니다. 프로덕션에 배포하기 전에 애플리케이션을 테스트합니다.

정규화 알고리즘은 다음 순서로 수행됩니다.

  1. 백분율로 디코딩된 %2F, %2f, %5C%5c.
  2. Envoy의 normalize_path 옵션에 의해 구현된 RFC 3986 및 기타 정규화입니다.
  3. 슬래시를 병합합니다.
주의

이러한 정규화 옵션은 HTTP 표준 및 일반적인 업계 관행의 권장 사항을 나타내지만 애플리케이션은 원하는 방식으로 URL을 해석할 수 있습니다. 거부 정책을 사용할 때 애플리케이션이 작동하는 방식을 이해해야 합니다.

2.1.5.8.3. 경로 정규화 구성 예

Envoy는 백엔드 서비스의 기대치와 일치하도록 요청 경로를 표준화하여 시스템 보안에 매우 중요합니다. 다음 예제는 시스템을 구성하기 위한 참조로 사용할 수 있습니다. 정규화된 URL 경로 또는 NONE이 선택된 경우 원래 URL 경로는 다음과 같습니다.

  1. 권한 부여 정책을 확인하는 데 사용됩니다.
  2. 백엔드 애플리케이션으로 전달됩니다.

표 2.2. 구성 예

애플리케이션 조건선택…​

프록시를 사용하여 정규화를 수행합니다.

BASE,MERGE_SLASHES 또는 DECODE_AND_MERGE_SLASHES

RFC 3986을 기반으로 요청 경로를 정규화하고 슬래시를 병합하지 않습니다.

BASE

RFC 3986을 기반으로 요청 경로를 정규화하고 슬래시를 병합하지만 백분율로 인코딩된 슬래시를 디코딩하지는 않습니다.

MERGE_SLASHES

RFC 3986을 기반으로 요청 경로를 표준화하고, 백분율로 인코딩된 슬래시를 디코딩하고, 슬래시를 병합합니다.

DECODE_AND_MERGE_SLASHES

프로세스는 RFC 3986과 호환되지 않는 방식으로 요청 경로를 처리합니다.

NONE

2.1.5.8.4. 경로 정규화를 위해 SMCP 구성

Red Hat OpenShift Service Mesh에 대한 경로 정규화를 구성하려면 ServiceMeshControlPlane에서 다음을 지정합니다. 시스템 설정을 결정하는 데 도움이 되도록 구성 예제를 사용합니다.

SMCP v1 pathNormalization

spec:
  global:
    pathNormalization: <option>

2.1.5.9. Red Hat OpenShift Service Mesh 1.1.13 새 기능

이번 Red Hat OpenShift Service Mesh 릴리스는 CVE(Common Vulnerabilities and Exposures) 및 버그 수정을 제공합니다.

2.1.5.10. Red Hat OpenShift Service Mesh 1.1.12 새 기능

이번 Red Hat OpenShift Service Mesh 릴리스는 CVE(Common Vulnerabilities and Exposures) 및 버그 수정을 제공합니다.

2.1.5.11. Red Hat OpenShift Service Mesh 1.1.11 새 기능

이번 Red Hat OpenShift Service Mesh 릴리스는 CVE(Common Vulnerabilities and Exposures) 및 버그 수정을 제공합니다.

2.1.5.12. Red Hat OpenShift Service Mesh 1.1.10 새 기능

이번 Red Hat OpenShift Service Mesh 릴리스는 CVE(Common Vulnerabilities and Exposures) 및 버그 수정을 제공합니다.

2.1.5.13. Red Hat OpenShift Service Mesh 1.1.9 새 기능

이번 Red Hat OpenShift Service Mesh 릴리스는 CVE(Common Vulnerabilities and Exposures) 및 버그 수정을 제공합니다.

2.1.5.14. Red Hat OpenShift Service Mesh 1.1.8 새 기능

이번 Red Hat OpenShift Service Mesh 릴리스는 CVE(Common Vulnerabilities and Exposures) 및 버그 수정을 제공합니다.

2.1.5.15. Red Hat OpenShift Service Mesh 1.1.7 새 기능

이번 Red Hat OpenShift Service Mesh 릴리스는 CVE(Common Vulnerabilities and Exposures) 및 버그 수정을 제공합니다.

2.1.5.16. Red Hat OpenShift Service Mesh 1.1.6 새 기능

이번 Red Hat OpenShift Service Mesh 릴리스는 CVE(Common Vulnerabilities and Exposures) 및 버그 수정을 제공합니다.

2.1.5.17. Red Hat OpenShift Service Mesh 1.1.5 새 기능

이번 Red Hat OpenShift Service Mesh 릴리스는 CVE(Common Vulnerabilities and Exposures) 및 버그 수정을 제공합니다.

또한 이 릴리스에는 암호화 제품군 구성에 대한 지원이 추가되었습니다.

2.1.5.18. Red Hat OpenShift Service Mesh 1.1.4 새 기능

이번 Red Hat OpenShift Service Mesh 릴리스는 CVE(Common Vulnerabilities and Exposures) 및 버그 수정을 제공합니다.

참고

CVE-2020-8663 문제를 해결하려면 수동 단계가 완료되어야 합니다.

2.1.5.18.1. CVE-2020-8663에서 필요한 수동 업데이트

CVE-2020-8663: envoy: Resource exhaustion when accepting too many connections에 대한 수정이 다운스트림 연결에 구성 가능한 제한을 추가했습니다. 이 제한에 대한 구성 옵션은 이 취약점을 완화하도록 설정되어야 합니다.

중요

이러한 수동 단계는 Red Hat OpenShift Service Mesh의 1.1 버전을 사용하든 1.0 버전을 사용하든 이 CVE를 완화하는 데 필요합니다.

이 새로운 설정 옵션은 overload.global_downstream_max_connections라고 하며 프록시 runtime 설정으로 구성할 수 있습니다. 수신 게이트웨이에서 제한을 구성하려면 다음 단계를 수행합니다.

프로세스

  1. 다음 텍스트로 bootstrap-override.json이라는 파일을 생성하여 프록시에서 부트스트랩 템플릿을 재정의하고 디스크의 런타임 구성을 로드하도록 적용합니다.

      {
        "runtime": {
          "symlink_root": "/var/lib/istio/envoy/runtime"
        }
      }
  2. bootstrap-override.json 파일에서 시크릿을 생성하여 <SMCPnamespace>를 Service Mesh Control Plane(SMCP)을 생성한 네임스페이스로 바꿉니다.

    $  oc create secret generic -n <SMCPnamespace> gateway-bootstrap --from-file=bootstrap-override.json
  3. SMCP 구성을 업데이트하여 재정의를 활성화합니다.

    업데이트된 SMCP 구성 예 #1

    apiVersion: maistra.io/v1
    kind: ServiceMeshControlPlane
    spec:
      istio:
        gateways:
          istio-ingressgateway:
            env:
              ISTIO_BOOTSTRAP_OVERRIDE: /var/lib/istio/envoy/custom-bootstrap/bootstrap-override.json
            secretVolumes:
            - mountPath: /var/lib/istio/envoy/custom-bootstrap
              name: custom-bootstrap
              secretName: gateway-bootstrap

  4. 새 구성 옵션을 설정하려면 overload.global_downstream_max_connections 설정에 필요한 값을 보유한 시크릿을 생성합니다. 다음 예제에서는 값 10000을 사용합니다.

    $  oc create secret generic -n <SMCPnamespace> gateway-settings --from-literal=overload.global_downstream_max_connections=10000
  5. SMCP를 다시 업데이트하여 Envoy가 런타임 구성을 찾고 있는 위치에 시크릿을 다시 마운트합니다.

업데이트된 SMCP 구성 예 #2

apiVersion: maistra.io/v1
kind: ServiceMeshControlPlane
spec:
  template: default
#Change the version to "v1.0" if you are on the 1.0 stream.
  version: v1.1
  istio:
    gateways:
      istio-ingressgateway:
        env:
          ISTIO_BOOTSTRAP_OVERRIDE: /var/lib/istio/envoy/custom-bootstrap/bootstrap-override.json
        secretVolumes:
        - mountPath: /var/lib/istio/envoy/custom-bootstrap
          name: custom-bootstrap
          secretName: gateway-bootstrap
        # below is the new secret mount
        - mountPath: /var/lib/istio/envoy/runtime
          name: gateway-settings
          secretName: gateway-settings

2.1.5.18.2. Elasticsearch 5에서 Elasticsearch 6으로 업그레이드

Elasticsearch 5에서 Elasticsearch 6으로 업데이트할 때 인증서 문제로 인해 Jaeger 인스턴스를 삭제한 다음 Jaeger 인스턴스를 다시 생성해야 합니다. Jaeger 인스턴스 트리거를 다시 생성하여 새 인증서 세트를 생성합니다. 영구 스토리지를 사용하는 경우, 새 Jaeger 인스턴스의 Jaeger 이름과 네임스페이스가 삭제된 Jaeger 인스턴스와 동일하다면 새 Jaeger 인스턴스에 대해 동일한 볼륨을 마운트할 수 있습니다.

Jaeger가 Red Hat Service Mesh의 일부로 설치된 경우 프로세스

  1. Jaeger 사용자 정의 리소스 파일의 이름을 결정합니다.

    $ oc get jaeger -n istio-system

    다음과 같은 내용이 표시됩니다.

    NAME     AGE
    jaeger   3d21h
  2. 생성된 사용자 정의 리소스 파일을 임시 디렉터리에 복사합니다.

    $ oc get jaeger jaeger -oyaml -n istio-system > /tmp/jaeger-cr.yaml
  3. Jaeger 인스턴스를 삭제합니다.

    $ oc delete jaeger jaeger -n istio-system
  4. 사용자 정의 리소스 파일의 사본에서 Jaeger 인스턴스를 재생성합니다.

    $ oc create -f /tmp/jaeger-cr.yaml -n istio-system
  5. 생성된 사용자 정의 리소스 파일의 사본을 삭제합니다.

    $ rm /tmp/jaeger-cr.yaml

Jaeger가 Red Hat Service Mesh의 일부로 설치되지 않은 경우 프로세스

시작하기 전에 Jaeger 사용자 정의 리소스 파일의 사본을 만듭니다.

  1. 사용자 정의 리소스 파일을 삭제하여 Jaeger 인스턴스를 삭제합니다.

    $ oc delete -f <jaeger-cr-file>

    예를 들면 다음과 같습니다.

    $ oc delete -f jaeger-prod-elasticsearch.yaml
  2. 사용자 정의 리소스 파일의 백업 사본에서 Jaeger 인스턴스를 재생성합니다.

    $ oc create -f <jaeger-cr-file>
  3. Pod가 다시 시작되었는지 확인합니다.

    $ oc get pods -n jaeger-system -w

2.1.5.19. Red Hat OpenShift Service Mesh 1.1.3 새 기능

이번 Red Hat OpenShift Service Mesh 릴리스는 CVE(Common Vulnerabilities and Exposures) 및 버그 수정을 제공합니다.

2.1.5.20. Red Hat OpenShift Service Mesh 1.1.2 새 기능

이번 Red Hat OpenShift Service Mesh 릴리스는 보안 취약점을 해결합니다.

2.1.5.21. Red Hat OpenShift Service Mesh 1.1.1 새 기능

이번 Red Hat OpenShift Service Mesh 릴리스는 연결이 중단된 설치를 지원합니다.

2.1.5.22. Red Hat OpenShift Service Mesh 1.1.0 새 기능

이번 Red Hat OpenShift Service Mesh 릴리스에는 Istio 1.4.6 및 Jaeger 1.17.1에 대한 지원이 추가되었습니다.

2.1.5.22.1. 1.0에서 1.1로 수동 업데이트

Red Hat OpenShift Service Mesh 1.0에서 1.1로 업데이트하는 경우 컨트롤 플레인 구성 요소를 새 버전으로 업데이트하기 위해 ServiceMeshControlPlane 리소스를 업데이트해야 합니다.

  1. 웹 콘솔에서 Red Hat OpenShift Service Mesh Operator를 클릭합니다.
  2. 프로젝트 메뉴를 클릭하고 ServiceMeshControlPlane이 목록에서 배포되는 프로젝트를 선택합니다(예: istio-system).
  3. 컨트롤 플레인의 이름을 클릭합니다(예: basic-install).
  4. YAML 을 클릭하고 ServiceMeshControlPlane리소스의 spec:에 버전 필드를 추가합니다. 예를 들어 Red Hat OpenShift Service Mesh 1.1.0으로 업데이트하려면 version: v1.1을 추가합니다.
spec:
  version: v1.1
  ...

version 필드는 설치할 Service Mesh 버전을 지정하고 기본값을 최신 사용 가능한 최신 버전으로 지정합니다.

참고

Red Hat OpenShift Service Mesh v1.0 지원은 2020년 10월에 종료되었습니다. v1.1 또는 v2.0으로 업그레이드해야 합니다.

2.1.6. 더 이상 사용되지 않는 기능

이전 릴리스에서 사용 가능하던 일부 기능이 더 이상 사용되지 않거나 삭제되었습니다.

2.1.6.1. Red Hat OpenShift Service Mesh 1.1.5의 중단된 기능

다음 사용자 정의 리소스는 릴리스 1.1.5에서 더 이상 사용되지 않으며 릴리스 1.1.12에서 제외되었습니다.

  • Policy - Policy 리소스는 더 이상 사용되지 않으며 향후 릴리스에서는 PeerAuthentication 리소스로 대체됩니다.
  • MeshPolicy - MeshPolicy 리소스는 더 이상 사용되지 않으며 향후 릴리스에서는 PeerAuthentication 리소스로 대체됩니다.
  • v1alpha1 RBAC API -The v1alpha1 RBAC 정책은 v1beta1 AuthorizationPolicy에서 더 이상 사용되지 않습니다. RBAC(Role Based Access Control)는 ServiceRoleServiceRoleBinding 오브젝트를 정의합니다.

    • ServiceRole
    • ServiceRoleBinding
  • RbacConfig - RbacConfig는 Istio RBAC 동작을 제어하기 위해 사용자 정의 리소스 정의를 구현합니다.

    • ClusterRbacConfig(Red Hat OpenShift Service Mesh 버전 1.0 이전)
    • ServiceMeshRbacConfig(Red Hat OpenShift Service Mesh 버전 1.0 이상)
  • Kiali에서는 loginLDAP 전략이 더 이상 사용되지 않습니다. 향후 버전에서는 OpenID 공급자를 사용한 인증을 도입할 예정입니다.

다음 구성 요소는 이 릴리스에서 더 이상 사용되지 않으며 향후 릴리스에서 Istiod 구성 요소로 대체됩니다.

  • Mixer - 액세스 제어 및 사용 정책
  • Pilot - 서비스 검색 및 프록시 구성
  • Citadel - 인증서 생성
  • Galley - 구성 검증 및 배포

2.1.7. 확인된 문제

이러한 제한 사항은 Red Hat OpenShift Service Mesh에 있습니다.

  • 그래프 레이아웃 - 애플리케이션 아키텍처 및 표시할 데이터(그래프 노드 및 상호 작용 수)에 따라 Kiali 그래프의 레이아웃이 다르게 렌더링됩니다. 모든 상황에 적합하게 렌더링되는 단일 레이아웃을 만드는 것이 불가능하지는 않지만 어렵기 때문에 Kiali는 다양한 레이아웃 옵션을 제공합니다. 다른 레이아웃을 선택하려면 그래프 설정 메뉴에서 다른 레이아웃 스키마를 선택할 수 있습니다.
  • 이것은 프레임워크가 콘솔에 포함된 페이지를 표시하는 방법에 문제가 있기 때문입니다.

2.1.7.1. 서비스 메시의 알려진 문제

이는 Red Hat OpenShift Service Mesh에서 알려진 문제입니다.

  • Jaeger/Kiali Operator 업그레이드가 operator 보류로 차단됩니다. Service Mesh 1.0.x가 설치된 Jaeger 또는 Kiali Operator를 업그레이드할 때 Operator 상태가 보류 중으로 표시됩니다.

  • Istio-14743 이 Red Hat OpenShift Service Mesh 릴리스의 기반이 되는 Istio 버전의 제한으로 인해 현재 Service Mesh와 호환되지 않는 여러 애플리케이션이 있습니다. 자세한 내용은 링크 커뮤니티 관련 문제를 참조하십시오.
  • MAISTRA-858 Istio 1.1.x와 관련된 더 이상 사용하지 않는 옵션 및 구성을 설명하는 다음과 같은 Envoy 로그 메시지가 예상됩니다.

    • [2019-06-03 07:03:28.943][19][warning][misc] [external/envoy/source/common/protobuf/utility.cc:129] Using deprecated option 'envoy.api.v2.listener.Filter.config'. 이 구성은 곧 Envoy에서 삭제될 예정입니다.
    • [2019-08-12 22:12:59.001][13][warning][misc] [external/envoy/source/common/protobuf/utility.cc:174] Using deprecated option 'envoy.api.v2.Listener.use_original_dst' from file lds.proto. 이 구성은 곧 Envoy에서 삭제될 예정입니다.
  • MAISTRA-806 제거된 Istio Operator pod로 인해 메시 및 CNI가 배포되지 않습니다.

  • MAISTRA-681 컨트롤 플레인에 네임스페이스가 많은 경우 성능 문제가 발생할 수 있습니다.
  • MAISTRA-465 Maistra Operator가 Operator 지표에 대한 서비스를 생성하지 못합니다.
  • MAISTRA-453 새 프로젝트를 생성하고 즉시 pod를 배포하면 사이드카 삽입이 발생하지 않습니다. pod가 생성되기 전에 Operator에서 maistra.io/member-of를 추가하지 못하므로 사이드카 삽입을 수행하려면 pod를 삭제하고 다시 생성해야 합니다.
  • MAISTRA-158 동일한 호스트 이름을 참조하는 여러 게이트웨이를 적용하면 모든 게이트웨이가 작동을 중지합니다.

2.1.7.2. Kiali의 확인된 문제

참고

Kiali의 새로운 문제는 OpenShift Service Mesh 프로젝트에서 생성되어야 하며 ComponentKiali로 설정되어야 합니다.

다음은 Kiali에서 알려진 문제입니다.

  • KIALI-2206 처음으로 Kiali 콘솔에 액세스했을 때 Kiali에 대해 캐시된 브라우저 데이터가 없는 경우 Kiali 서비스 상세 정보 페이지의 Metrics 탭에 있는 ‘Grafana에서 보기’ 링크가 잘못된 위치로 리디렉션됩니다. 이 문제가 발생하는 유일한 상황은 Kiali에 처음 액세스하는 경우입니다.
  • KIALI-507 Kiali는 Internet Explorer 11을 지원하지 않습니다. 기본 프레임워크가 Internet Explorer를 지원하지 않기 때문입니다. Kiali 콘솔에 액세스하려면 Chrome, Edge, Firefox 또는 Safari 브라우저의 두 가지 최신 버전 중 하나를 사용하십시오.

2.1.7.3.

  • Apache Spark가 지원되지 않습니다.

  • TRACING-2057 Kafka API가 Strimzi Kafka Operator 0.23.0을 지원하도록 v1beta2로 업데이트되었습니다. 그러나 이 API 버전은 AMQ Streams 1.6.3에서 지원되지 않습니다. 다음 환경의 경우 Jaeger 서비스가 업그레이드되지 않으며 새 Jaeger 서비스를 생성하거나 기존 Jaeger 서비스를 수정할 수 없습니다.

    • Jaeger Operator 채널: 1.17.x stable 또는 1.20.x stable
    • AMQ Streams Operator 채널: amq-streams-1.6.x

      이 문제를 해결하려면 AMQ Streams Operator의 서브스크립션 채널을 amq-streams-1.7.x 또는 stable로 전환합니다.

2.1.8. 해결된 문제

현재 릴리스에서 다음 문제가 해결되었습니다.

2.1.8.1. 서비스 메시의 수정된 문제

  • MAISTRA-2371 listerInformer에서 tombstones를 처리합니다. 업데이트된 캐시 코드베이스는 네임스페이스 캐시에서 집계된 캐시로 이벤트를 변환할 때 tombstones를 처리하지 않아 go 루틴에서 패닉이 발생했습니다.
  • OSSM-93 IstioConfigList는 두 개 이상의 이름으로 필터링할 수 없습니다.
  • OSSM-92 VS/DR YAML 편집 페이지에서 저장되지 않은 변경 사항을 취소해도 변경 사항이 취소되지 않습니다.
  • OSSM-90 추적은 서비스 세부 정보 페이지에서 사용할 수 없습니다.
  • MAISTRA-1649 헤드리스 서비스가 다른 네임스페이스에서 충돌합니다. 다른 네임스페이스에 헤드리스 서비스를 배포할 때 끝점 구성이 병합되고 잘못된 Envoy 구성이 사이드카로 푸시됩니다.
  • MAISTRA-1541 컨트롤러가 소유자 참조에 설정되지 않은 경우 kubernetesenv에서 패닉이 발생합니다. pod에 컨트롤러를 지정하지 않는 ownerReference가 있는 경우 kubernetesenv cache.go 코드 내에서 패닉이 발생할 수 있습니다.
  • MAISTRA-1352 컨트롤 플레인 설치의 Cert-manager CRD(Custom Resource Definitions)가 이 릴리스와 향후 릴리스에서 제외됩니다. Red Hat OpenShift Service Mesh를 이미 설치한 경우 cert-manager가 사용되지 않는 경우 CRD를 수동으로 제거해야 합니다.
  • MAISTRA-1001 HTTP/2 연결을 종료하면 istio-proxy에서 세그먼트 오류가 발생할 수 있습니다.
  • MAISTRA-862 Galley는 여러 네임스페이스를 삭제하고 다시 만든 뒤, 감시를 중단하고 다른 구성 요소에 대한 구성 제공을 중단했습니다.
  • MAISTRA-833 Pilot은 여러 네임스페이스를 삭제하고 다시 만든 뒤, 구성 전달을 중단했습니다.
  • MAISTRA-684 istio-operator의 기본 Jaeger 버전은 1.12.0이며, 이는 Red Hat OpenShift Service Mesh 0.12.TechPreview에 제공된 Jaeger 버전 1.13.1과 일치하지 않습니다.
  • MAISTRA-622 Maistra 0.12.0/TP12에서는 허용 모드가 작동하지 않습니다. 사용자에게는 일반 텍스트 모드 또는 상호 TLS 모드를 사용하는 옵션이 있지만 허용되지는 않습니다.
  • MAISTRA-572 Jaeger는 Kiali와 함께 사용할 수 없습니다. 이 릴리스에서 Jaeger는 OAuth 프록시를 사용하도록 구성되어 있지만, 브라우저를 통해서만 작동하도록 구성되어 서비스 액세스를 허용하지 않습니다. Kiali는 Jaeger 끝점과 올바르게 통신할 수 없으며 Jaeger가 비활성화된 것으로 간주합니다. 또한 TRACING-591을 참조하십시오.
  • MAISTRA-357 AWS의 OpenShift 4 Beta에서는 기본적으로 포트 80 이외의 포트에서 수신 게이트웨이를 통해 TCP 또는 HTTPS 서비스에 액세스할 수 없습니다. AWS 로드 밸런서에는 서비스 끝점의 포트 80이 활성화되어 있는지 확인하는 상태 점검 기능이 있습니다. 포트 80에서 서비스를 실행하지 않으면 로드 밸런서 상태 점검에 실패합니다.
  • MAISTRA-348 AWS의 OpenShift 4 Beta는 80 또는 443 이외의 포트에서 수신 게이트웨이 트래픽을 지원하지 않습니다. 80 또는 443 이외의 포트 번호로 TCP 트래픽을 처리하도록 수신 게이트웨이를 구성하려면, 이 문제를 해결하기 위해 OpenShift 라우터 대신 AWS 로드 밸런서에서 제공하는 서비스 호스트 이름을 사용해야 합니다.
  • MAISTRA-193 citadel에 대해 상태 확인이 활성화되면 예기치 않은 콘솔 정보 메시지가 표시됩니다.
  • ServiceMeshControlPlane 리소스를 업데이트하려면 토글 제어를 클릭하는 대신 YAML 콘텐츠를 직접 편집하거나 명령줄에서 리소스를 업데이트합니다.

2.1.8.2. Kiali의 수정된 문제

  • KIALI-3239 Kiali Operator Pod가 "Evicted" 상태로 실패한 경우 Kiali Operator가 배포되지 않습니다. 해결방법은 Evicted pod를 삭제하고 Kiali Operator를 재배포하는 것입니다.
  • KIALI-3118 ServiceMeshMemberRoll을 변경(예: 프로젝트 추가 또는 삭제)한 후 Kiali pod가 다시 시작되며, Kiali pod가 다시 시작되는 동안 그래프 페이지에 오류가 표시됩니다.
  • KIALI-3096 서비스 메시에서 런타임 지표가 실패합니다. 서비스 메시와 Prometheus 사이에 OAuth 필터가 있으며 액세스 권한이 부여되기 전에 전달자 토큰을 Prometheus에 전달해야 합니다. Kiali는 Prometheus 서버와 통신할 때 이 토큰을 사용하도록 업데이트되었지만 현재 애플리케이션 지표에 403 오류가 발생하고 있습니다.
  • KIALI-3070 이 버그는 기본 대시보드가 아닌 사용자 정의 대시보드에만 영향을 미칩니다. 지표 설정에서 레이블을 선택하고 페이지를 새로 고침하면 선택 사항이 메뉴에는 유지하지만 차트에 표시되지 않습니다.
  • KIALI-2686 컨트롤 플레인에 네임스페이스가 많은 경우 성능 문제가 발생할 수 있습니다.

2.1.8.3.

  • {"level":"warn","ts":1642438880.918793,"caller":"channelz/logging.go:62","msg":"[core]grpc: Server.Serve failed to create ServerTransport: connection error: desc = \"transport: http2Server.HandleStreams received bogus greeting from client: \\\"\\\\x16\\\\x03\\\\x01\\\\x02\\\\x00\\\\x01\\\\x00\\\\x01\\\\xfc\\\\x03\\\\x03vw\\\\x1a\\\\xc9T\\\\xe7\\\\xdaCj\\\\xb7\\\\x8dK\\\\xa6\\\"\"","system":"grpc","grpc_log":true}

  • TRACING-2009 Jaeger Operator가 Strimzi Kafka Operator 0.23.0에 대한 지원을 포함하도록 업데이트되었습니다.
  • TRACING-1907 애플리케이션 네임스페이스에서 구성 맵이 누락되어 Jaeger 에이전트 사이드카 삽입이 실패했습니다. 잘못된 OwnerReference 필드 설정으로 인해 구성 맵이 자동으로 삭제되었으며 결과적으로 애플리케이션 Pod가 "ContainerCreating" 단계를 통과하지 않았습니다. 잘못된 설정이 제거되었습니다.
  • TRACING-1725 TRACING-1631에 대한 후속 조치입니다. 동일한 이름을 사용하지만 다른 네임스페이스 내에 Jaeger 프로덕션 인스턴스가 여러 개인 경우 Elasticsearch 인증서가 올바르게 조정되는지 확인하기 위한 추가 수정 사항입니다. BZ-1918920도 참조하십시오.
  • TRACING-1631 동일한 이름을 사용하지만 다른 네임스페이스 내의 여러 Jaeger 프로덕션 인스턴스로, Elasticsearch 인증서 문제를 발생시킵니다. 여러 서비스 메시가 설치되면 모든 Jaeger Elasticsearch 인스턴스에 개별 시크릿 대신 동일한 Elasticsearch 시크릿이 있어 OpenShift Elasticsearch Operator가 모든 Elasticsearch 클러스터와 통신할 수 없습니다.
  • TRACING-1300 Istio 사이드카를 사용할 때 에이전트와 수집기 간의 연결에 실패했습니다. Jaeger Operator 업데이트는 Jaeger 사이드카 에이전트와 Jaeger 수집기 간의 TLS 통신을 기본적으로 활성화했습니다.
  • TRACING-1208 Jaeger UI에 액세스할 때 인증 “500 Internal Error”입니다. OAuth를 사용하여 UI를 인증할 때 oauth-proxy 사이드카가 additionalTrustBundle로 설치할 때 정의된 사용자 정의 CA 번들을 신뢰하지 않기 때문에 500 오류가 발생합니다.
  • TRACING-1166 현재 연결이 끊긴 환경에서 Jaeger 스트리밍 전략을 사용할 수 없습니다. Kafka 클러스터가 프로비저닝 중인 경우 오류가 발생합니다. registry.redhat.io/amq7/amq-streams-kafka-24-rhel7@sha256:f9ceca004f1b7dccb3b82d9a8027961f9fe4104e0ed69752c0bdd8078b4a1076 이미지를 가져올 수 없습니다.
  • TRACING-809 Jaeger Ingester는 Kafka 2.3과 호환되지 않습니다. Jaeger Ingester의 두 개 이상의 인스턴스와 트래픽이 충분한 경우 로그에 지속적으로 리밸런싱 메시지를 생성합니다. 이는 Kafka 2.3.1에서 수정된 Kafka 2.3의 문제의 재발로 인해 발생합니다. 자세한 내용은 Jaegertracing-1819를 참조하십시오.

2.2.

주의

Red Hat OpenShift Service Mesh는 서비스 메시에서 네트워크로 연결된 마이크로 서비스에 대해 동작 정보 및 운영 제어용 플랫폼을 제공합니다.

2.2.1. 서비스 메시 이해

서비스 메시는 분산 마이크로 서비스 아키텍처에서 애플리케이션을 구성하는 마이크로 서비스 네트워크와 이러한 마이크로 서비스 간의 상호 작용입니다. 서비스 메시의 크기와 복잡성이 증가함에 따라 이를 이해하고 관리하는 것이 어려워질 수 있습니다.

오픈 소스 Istio 프로젝트를 기반으로 하는 Red Hat OpenShift Service Mesh는 서비스 코드를 변경할 필요 없이 기존 분산 애플리케이션에 투명 계층을 추가합니다. 마이크로 서비스 간의 모든 네트워크 통신을 차단하는 메시의 관련 서비스에 특수 사이드카 프록시를 배포하여 Red Hat OpenShift Service Mesh 지원을 서비스에 추가합니다.

Red Hat OpenShift Service Mesh를 사용하면, 다음과 같은 기능을 제공하는 배포된 서비스 네트워크를 쉽게 생성할 수 있습니다.

  • 검색
  • 로드 밸런싱
  • 서비스 간 인증
  • 장애 복구
  • 지표
  • 모니터링

Red Hat OpenShift Service Mesh는 다음과 같은 보다 복잡한 운영 기능을 제공합니다:

  • A/B 테스트
  • Canary 릴리스
  • 액세스 제어
  • 엔드 투 엔드 인증

2.2.2. Red Hat OpenShift Service Mesh 아키텍처

Red Hat OpenShift Service Mesh는 논리적으로 데이터 플레인과 컨트롤 플레인으로 분할됩니다.

데이터 플레인은 사이드카로 배포된 지능적 프록시 세트입니다. 이러한 프록시는 서비스 메시에서 마이크로 서비스 간의 모든 인바운드 및 아웃바운드 네트워크 통신을 가로채기하고 제어합니다. 또한 사이드카 프록시는 범용 정책 및 Telemetry 허브인 Mixer와 통신합니다.

  • Envoy proxy는 서비스 메시의 모든 서비스에 대한 인바운드 및 아웃바운드 트래픽을 가로채기합니다. Envoy는 동일한 pod에서 관련 서비스에 사이드카로 배포됩니다.

컨트롤 플레인은 트래픽을 라우팅하기 위해 프록시를 관리 및 구성하며, 정책을 적용하고 Telemetry를 수집하도록 Mixers를 구성합니다.

  • Mixer는 액세스 제어 및 사용 정책(예: 권한 부여, 속도 제한, 할당량, 인증 및 요청 추적)을 시행하고 Envoy 프록시 및 기타 서비스에서 Telemetry 데이터를 수집합니다.
  • Pilot은 런타임 시 프록시를 구성합니다. Pilot은 Envoy 사이드카에 대한 서비스 검색, 지능형 라우팅을 위한 트래픽 관리 기능(예: A/B 테스트 또는 카나리아 배포) 및 복구 기능(시간 초과, 재시도 및 회로 차단기)을 제공합니다.
  • Citadel은 인증서를 발행 및 교체합니다. Citadel은 내장 ID 및 자격 증명 관리를 통해 강력한 서비스 간 인증과 최종 사용자 인증을 제공합니다. Citadel을 사용하여 서비스 메시에서 암호화되지 않은 트래픽을 업그레이드할 수 있습니다. Operator는 Citadel을 사용하여 네트워크 제어가 아닌 서비스 ID를 기반으로 정책을 시행할 수 있습니다.
  • Galley는 서비스 메시 구성을 수집한 다음, 구성의 유효성을 검증, 처리 및 배포합니다.

또한 Red Hat OpenShift Service Mesh는 istio-operator를 사용하여 컨트롤 플레인 설치를 관리합니다. 컨트롤러 역할을 하여 클러스터에서 원하는 오브젝트 상태를 설정하거나 변경할 수 있습니다.

2.2.3. Kiali 이해

Kiali는 서비스 메시의 마이크로 서비스와 해당 연결 방법을 표시하여 서비스 메시를 시각화할 수 있습니다.

2.2.3.1. Kiali 개요

Kiali는 Istio 서비스 메시를 정의하고 검증하며 관찰하는 데 도움이 됩니다. 이를 통해 토폴로지를 유추하여 서비스 메시의 구조를 이해하고 서비스 메시의 상태에 대한 정보를 제공할 수 있습니다.

Kiali는 회로 차단기, 요청 속도, 대기 시간, 트래픽 흐름 그래프와 같은 기능에 대한 가시성을 제공하는 네임스페이스의 대화형 그래프 보기를 실시간으로 제공합니다. Kiali는 애플리케이션에서 서비스 및 워크로드에 이르기까지 다양한 수준의 구성 요소에 대한 통찰력을 제공하며, 선택한 그래프 노드 또는 에지에서 상황별 정보에 대한 상호 작용과 차트를 표시할 수 있습니다. Kiali는 게이트웨이, 대상 규칙, 가상 서비스, 메시 정책 등과 같은 Istio 구성의 유효성을 확인하는 기능도 제공합니다. Kiali는 자세한 지표를 제공하며 고급 쿼리에 기본 Grafana 통합이 가능합니다. Jaeger를 Kiali 콘솔에 통합하면 분산 추적이 제공됩니다.

Kiali는 기본적으로 Red Hat OpenShift Service Mesh의 일부로 설치됩니다.

2.2.3.2. Kiali 아키텍처

Kiali는 Kiali 애플리케이션과 Kiali 콘솔이라는 두 가지 구성 요소로 구성됩니다.

  • Kiali 애플리케이션(백엔드) - 이 구성 요소는 컨테이너 애플리케이션 플랫폼에서 실행되고 서비스 메시 구성 요소와 통신하며, 데이터를 검색 및 처리하고, 이 데이터를 콘솔에 노출합니다. Kiali 애플리케이션에는 스토리지가 필요하지 않습니다. 클러스터에 애플리케이션을 배포할 때 구성은 ConfigMaps 및 시크릿에 설정됩니다.
  • Kiali 콘솔(프론트엔드) - Kiali 콘솔은 웹 애플리케이션입니다. Kiali 애플리케이션은 Kiali 콘솔을 제공하며 이를 사용자에게 표시하기 위해 데이터의 백엔드를 쿼리합니다.

또한 Kiali는 컨테이너 애플리케이션 플랫폼과 Istio에서 제공하는 외부 서비스 및 구성 요소에 따라 달라집니다.

  • Red Hat Service Mesh(Istio) - Istio는 Kiali 요구 사항입니다. Istio는 서비스 메시를 제공하고 제어하는 구성 요소입니다. Kiali와 Istio를 별도로 설치할 수 있지만 Kiali는 Istio에 따라 달라지며 Istio가 존재하지 않는 경우 작동하지 않습니다. Kiali는 Prometheus 및 클러스터 API를 통해 노출되는 Istio 데이터와 구성을 검색해야 합니다.
  • Prometheus - 전용 Prometheus 인스턴스는 Red Hat OpenShift Service Mesh 설치의 일부로 포함되어 있습니다. Istio Telemetry가 활성화되면 지표 데이터가 Prometheus에 저장됩니다. Kiali는 이 Prometheus 데이터를 사용하여 메시 토폴로지 확인, 지표 표시, 상태 계산, 가능한 문제 표시 등의 작업을 수행합니다. Kiali는 Prometheus와 직접 통신하고 Istio Telemetry에서 사용하는 데이터 스키마를 가정합니다. Prometheus는 Istio 종속성 및 Kiali에 대한 하드 종속성이며, 대부분의 Kiali 기능은 Prometheus없이 작동하지 않습니다.
  • Kiali는 클러스터 API를 쿼리하여 네임스페이스, 서비스, 배포, pod 및 기타 엔터티에 대한 정의를 검색합니다. 또한 Kiali는 다른 클러스터 엔티티 간의 관계를 해결하기 위해 쿼리를 만듭니다. 클러스터 API는 가상 서비스, 대상 규칙, 경로 규칙, 게이트웨이, 할당량 등과 같은 Istio 구성을 검색하도록 쿼리합니다.
  • Jaeger - Jaeger는 선택 사항이지만 Red Hat OpenShift Service Mesh의 일부로 설치됩니다. Istio의 분산 추적 기능을 비활성화하면 추적 데이터를 사용할 수 없습니다.
  • Grafana - Grafana는 선택 사항이지만 Red Hat OpenShift Service Mesh의 일부로 설치됩니다. 사용 가능한 경우, Kiali의 지표 페이지에 사용자를 Grafana의 동일한 지표로 안내하는 링크가 표시됩니다.

2.2.3.3. Kiali 기능

Kiali 콘솔은 Red Hat Service Mesh와 통합되어 다음 기능을 제공합니다.

  • 상태 - 애플리케이션, 서비스 또는 워크로드에 대한 문제를 빠르게 식별합니다.
  • 토폴로지 - 애플리케이션, 서비스 또는 워크로드가 Kiali 그래프를 통해 통신하는 방식을 시각화합니다.
  • 지표 - 사전 정의된 지표 대시 보드를 통해 Go, Node.js. Quarkus, Spring Boot, Thorntail, Vert.x에 대한 서비스 메시 및 애플리케이션 성능을 차트로 작성할 수 있습니다. 또한 사용자 정의 대시보드를 생성할 수도 있습니다.
  • 추적 - Jaeger와의 통합을 통해 애플리케이션을 구성하는 다양한 마이크로 서비스를 통해 요청 경로를 따를 수 있습니다.
  • 검증 - 가장 일반적인 Istio 오브젝트에 대한 고급 검증(대상 규칙, 서비스 항목, 가상 서비스 등)을 수행합니다.
  • 구성 - 마법사를 사용하거나 Kiali 콘솔의 YAML 편집기에서 직접 Istio 라우팅 구성을 생성, 업데이트 및 삭제할 수 있는 옵션입니다.

2.2.4. Jaeger 이해

사용자가 애플리케이션에서 작업을 수행할 때마다 응답을 생성하기 위해 참여하도록 다양한 서비스를 필요로 할 수 있는 아키텍처에 의해 요청이 실행됩니다. 이 요청의 경로는 분산 트랜잭션입니다. Jaeger를 사용하면 애플리케이션을 구성하는 다양한 마이크로 서비스를 통해 요청의 경로를 따르는 분산 추적을 수행할 수 있습니다.

분산 추적은 분산 트랜잭션에 있는 전체 이벤트 체인을 이해하기 위해 일반적으로 다양한 프로세스 또는 호스트에서 실행되는 다양한 작업 단위에 대한 정보를 결합하는 데 사용되는 기술입니다. 분산 추적을 통해 개발자는 대규모 서비스 지향 아키텍처에서 호출 흐름을 시각화할 수 있습니다. 직렬화, 병렬 처리 및 대기 시간 소스를 이해하는 데 유용할 수 있습니다.

Jaeger는 마이크로 서비스의 전체 스택에서 개별 요청 실행을 기록하고 이를 추적으로 제공합니다. 추적은 시스템을 통한 데이터/실행 경로입니다. 엔드 투 엔드 추적은 하나 이상의 기간으로 구성됩니다.

기간은 작업 이름, 작업의 시작 시간 및 기간이 있는 Jaeger의 논리적 작업 단위를 나타냅니다. 기간은 중첩되어 인과 관계를 모델링하도록 주문될 수 있습니다.

2.2.4.1.

  • 분산 트랜잭션 모니터링
  • 성능 및 대기 시간 최적화
  • 근본 원인 분석 수행

2.2.4.2.

  • Jaeger Client(Tracer, Reporter, 조정된 애플리케이션, 클라이언트 라이브러리)- Jaeger 클라이언트는 OpenTracing API의 언어 특정 구현입니다. 수동으로 또는 이미 OpenTracing과 통합된 Camel(Fuse), Spring Boot(RHOAR), MicroProfile(RHOAR/T©tail), Wildfly(EAP) 등의 다양한 기존 오픈 소스 프레임워크를 사용하여 분산 추적에 대해 애플리케이션을 조정하는 데 사용할 수 있습니다.
  • Jaeger 에이전트(Server Queue, Processor Workers) - Jaeger 에이전트는 UDP(User Datagram Protocol)를 통해 전송되는 기간을 수신 대기하는 네트워크 데몬으로, 수집기에 배치 및 전송합니다. 에이전트는 조정된 애플리케이션과 동일한 호스트에 배치되어야 합니다. 일반적으로 Kubernetes와 같은 컨테이너 환경에서 사이드카를 보유하여 수행됩니다.
  • Jaeger 수집기(Queue, Workers) - 에이전트와 유사하게 수집기는 기간을 수신하여 처리를 위한 내부 큐에 배치할 수 있습니다. 그러면 수집기는 기간이 스토리지로 이동할 때까지 대기하지 않고 클라이언트/에이전트로 즉시 돌아갈 수 있습니다.
  • 스토리지(데이터 저장소) - 수집기에는 영구 스토리지 백엔드가 필요합니다. Jaeger에는 기간 스토리지를 위한 플러그인 메커니즘이 있습니다. 이 릴리스에서 지원되는 유일한 스토리지는 Elasticsearch입니다.
  • 쿼리(쿼리 서비스) - 쿼리는 스토리지에서 추적을 검색하는 서비스입니다.
  • Ingester(Ingester 서비스) - Jaeger는 수집기와 실제 백업 스토리(Elasticsearch) 간의 버퍼로 Apache Kafka를 사용할 수 있습니다. Ingester는 Kafka에서 데이터를 읽고 다른 스토리지 백엔드(Elasticsearch)에 쓰는 서비스입니다.
  • Jaeger 콘솔 - Jaeger는 분산 추적 데이터를 시각화할 수 있는 사용자 인터페이스를 제공합니다. 검색 페이지에서 추적을 찾고 개별 추적을 구성하는 기간의 세부 사항을 확인할 수 있습니다.

2.2.4.3.

2.2.5. 다음 단계

2.3. 서비스 메시 및 Istio 차이점

주의

Red Hat OpenShift Service Mesh 설치는 여러 가지 면에서 업스트림 Istio 커뮤니티 설치와 다릅니다.

Red Hat OpenShift Service Mesh의 현재 릴리스는 다음과 같은 점에서 현재 업스트림 Istio 커뮤니티 릴리스와 다릅니다.

2.3.1. 다중 테넌트 설치

업스트림 Istio는 하나의 테넌트 접근법을 사용하지만 Red Hat OpenShift Service Mesh는 클러스터 내에서 여러 개의 독립적인 컨트롤 플레인을 지원합니다. Red Hat OpenShift Service Mesh는 다중 테넌트 연산자를 사용하여 컨트롤 플레인 라이프사이클을 관리합니다.

Red Hat OpenShift Service Mesh는 기본적으로 다중 테넌트 컨트롤 플레인을 설치합니다. 서비스 메시에 액세스할 수 있는 프로젝트를 지정하고 다른 컨트롤 플레인 인스턴스에서 서비스 메시를 분리합니다.

2.3.1.1. 멀티 테넌시 대 클러스터 전체 설치

구성 요소는 더 이상 클러스터 범위의 역할 기반 액세스 제어(RBAC) 리소스 ClusterRoleBinding을 사용하지 않습니다.

ServiceMeshMemberRoll members 목록에 있는 모든 프로젝트는 컨트롤 플레인 배포와 관련된 각 서비스 계정에 대해 RoleBinding을 가지며, 각 컨트롤 플레인 배포는 해당하는 멤버 프로젝트만 감시합니다. 각 멤버 프로젝트에는 maistra.io/member-of 레이블이 추가됩니다. 여기서 member-of 값은 컨트롤 플레인 설치가 포함된 프로젝트입니다.

Red Hat OpenShift Service Mesh는 각 멤버 프로젝트를 구성하여 자체, 컨트롤 플레인 및 기타 멤버 프로젝트 간의 네트워크 액세스를 보장합니다. 자세한 내용은 OpenShift SDN 정보를 참조하십시오.

  • NetworkPolicy: Red Hat OpenShift Service Mesh는 각 멤버 프로젝트에서 NetworkPolicy 리소스를 생성하여 다른 멤버 및 컨트롤 플레인에서 모든 pod로 수신할 수 있습니다. Service Mesh에서 멤버를 제거하면 이 NetworkPolicy 리소스는 프로젝트에서 삭제됩니다.

    참고

    또한 멤버 프로젝트 전용 수신으로 제한합니다. 멤버 외 프로젝트에서 수신이 필요한 경우 해당 트래픽을 허용하기 위해 NetworkPolicy를 생성해야 합니다.

  • 다중 테넌트: Red Hat OpenShift Service Mesh는 각 멤버 프로젝트의 NetNamespace를 컨트롤 플레인 프로젝트의 NetNamespace에 결합합니다(oc adm pod-network join-projects --to control-plane-project member-project). 서비스 메시에서 멤버를 제거하면 해당 NetNamespace가 컨트롤 플레인과 분리됩니다(oc adm pod-network isolate-projects member-project 실행과 동일).
  • 서브넷: 추가 구성이 수행되지 않습니다.

2.3.1.2. 클러스터 범위 리소스

업스트림 Istio에는 의존하는 두 개의 클러스터 범위 리소스가 있습니다. MeshPolicyClusterRbacConfig 이는 다중 테넌트 클러스터와 호환되지 않으며 아래에 설명된 대로 교체되었습니다.

  • ServiceMeshPolicy는 컨트롤 플레인 전체의 인증 정책 구성을 위해 MeshPolicy를 대체합니다. 이는 컨트롤 플레인과 동일한 프로젝트에서 생성되어야 합니다.
  • ServicemeshRbacConfig는 컨트롤 플레인 전체 역할 기반 액세스 제어 구성을 위해 ClusterRbacConfig 를 대체합니다. 이는 컨트롤 플레인과 동일한 프로젝트에서 생성되어야 합니다.

2.3.2. Istio와 Red Hat OpenShift Service Mesh 간의 차이점

Red Hat OpenShift Service Mesh 설치는 여러 가지 면에서 Istio 설치와 다릅니다.

2.3.2.1. 명령줄 도구

Red Hat OpenShift Service Mesh의 명령줄 도구는 oc입니다.  Red Hat OpenShift Service Mesh는 istioctl을 지원하지 않습니다.

2.3.2.2. 자동 삽입

업스트림 Istio 커뮤니티 설치는 레이블을 지정한 프로젝트 내의 pod에 사이드카를 자동으로 삽입합니다.

Red Hat OpenShift Service Mesh는 사이드카를 Pod에 자동으로 삽입하지 않지만 프로젝트에 레이블을 지정하지 않고 주석을 사용하여 삽입해야 합니다. 이 방법은 더 적은 권한이 필요하며, builder pod와 같은 다른 OpenShift 기능과 충돌하지 않습니다. 자동 삽입을 활성화하려면 자동 사이드카 삽입 섹션에 설명된 대로 sidecar.istio.io/inject 주석을 지정합니다.

2.3.2.3. Istio 역할 기반 액세스 제어 기능

역할 기반 액세스 제어(RBAC)는 서비스에 대한 액세스를 제어하는 데 사용할 수 있는 메커니즘을 제공합니다. 사용자 이름별로, 또는 속성 집합을 지정하여 제목을 식별하고 그에 따라 액세스 제어를 적용할 수 있습니다.

업스트림 Istio 커뮤니티 설치에는 정확한 헤더 일치를 수행하거나, 헤더에서 와일드카드를 일치시키거나, 특정 접두사 또는 접미사가 포함된 헤더를 확인하는 옵션이 포함되어 있습니다.

Red Hat OpenShift Service Mesh는 정규식을 사용하여 요청 헤더를 일치시키는 기능을 확장합니다. 정규식이 있는 request.regex.headers의 속성 키를 지정합니다.

요청 헤더와 일치하는 업스트림 Istio 커뮤니티 예

apiVersion: "rbac.istio.io/v1alpha1"
kind: ServiceRoleBinding
metadata:
  name: httpbin-client-binding
  namespace: httpbin
spec:
  subjects:
  - user: "cluster.local/ns/istio-system/sa/istio-ingressgateway-service-account"
    properties:
      request.headers[<header>]: "value"

정규식을 사용하여 요청 헤더를 일치시키는 Red Hat OpenShift Service Mesh

apiVersion: "rbac.istio.io/v1alpha1"
kind: ServiceRoleBinding
metadata:
  name: httpbin-client-binding
  namespace: httpbin
spec:
  subjects:
  - user: "cluster.local/ns/istio-system/sa/istio-ingressgateway-service-account"
    properties:
      request.regex.headers[<header>]: "<regular expression>"

2.3.2.4. OpenSSL

Red Hat OpenShift Service Mesh는 BoringSSL을 OpenSSL로 대체합니다. OpenSSL은 SSL(Secure Sockets Layer) 및 TLS(Transport Layer Security) 프로토콜의 오픈 소스 구현이 포함된 소프트웨어 라이브러리입니다. Red Hat OpenShift Service Mesh 프록시 바이너리는 기본 Red Hat Enterprise Linux 운영 체제에서 OpenSSL 라이브러리(libssl 및 libcrypto)를 동적으로 연결합니다.

2.3.2.5. 구성 요소 수정

  • maistra-version 레이블이 모든 리소스에 추가되었습니다.
  • 모든 Ingress 리소스가 OpenShift Route 리소스로 변환되었습니다.
  • Grafana, Tracing(Jaeger) 및 Kiali는 기본적으로 활성화되어 OpenShift 경로를 통해 노출됩니다.
  • Godebug가 모든 템플릿에서 제거됨
  • istio-multi ServiceAccount과 ClusterRoleBinding, istio-reader ClusterRole이 제거되었습니다.

2.3.2.6. Envoy, Secret Discovery Service, 및 인증서

  • Red Hat OpenShift Service Mesh는 QUIC 기반 서비스를 지원하지 않습니다.
  • Istio의 SDS(Security Discovery Service) 기능을 사용한 TLS 인증서 배포는 현재 Red Hat OpenShift Service Mesh에서 지원되지 않습니다. Istio 구현은 hostPath 마운트를 사용하는 nodeagent 컨테이너에 따라 다릅니다.

2.3.2.7.

2.3.2.8. Istio 게이트웨이 경로

Istio 게이트웨이의 OpenShift 경로는 Red Hat OpenShift Service Mesh에서 자동으로 관리됩니다. Istio 게이트웨이가 서비스 메시 내부에서 생성, 업데이트 또는 삭제될 때마다 OpenShift 경로가 생성, 업데이트 또는 삭제됩니다.

IOR(Istio OpenShift Routing)이라는 Red Hat OpenShift Service Mesh Control Plane 구성 요소는 게이트웨이 경로를 동기화합니다. 자세한 내용은 자동 경로 생성을 참조하십시오.

2.3.2.8.1. catch-all 도메인

catch-all 도메인("*")은 지원되지 않습니다. 게이트웨이 정의에서 이 도메인이 발견되면 Red Hat OpenShift Service Mesh는 경로를 생성하지만 기본 호스트 이름을 만들기 위해 OpenShift에 의존합니다. 즉, 새로 생성된 경로는 catch-all ("*") 경로가 아니며, 대신 r<route-name>[-<project>].<suffix> 형식의 호스트 이름이 있습니다. 기본 호스트 이름이 작동하는 방법과 클러스터 관리자가 사용자 지정할 수 있는 방법에 대한 자세한 내용은 OpenShift 문서를 참조하십시오.

2.3.2.8.2. 하위 도메인

하위 도메인(예: "*.domain.com")이 지원됩니다.

2.3.2.8.3. TLS(Transport layer security)

TLS(Transport Layer Security)가 지원됩니다. 즉, 게이트웨이에 tls 섹션이 포함된 경우 OpenShift 경로는 TLS를 지원하도록 구성됩니다.

추가 리소스

2.3.3. Kiali 및 서비스 메시

  • Kiali는 기본적으로 활성화되어 있습니다.
  • Ingress는 기본적으로 활성화되어 있습니다.
  • Kiali ConfigMap이 업데이트되었습니다.
  • Kiali의 ClusterRole 설정이 업데이트되었습니다.
  • Operator 파일을 업데이트하려면 cluster-admin 권한이 있는 사용자로 제한해야 합니다.

2.3.4.

  • Ingress는 기본적으로 서비스 메시에 대해 활성화되어 있습니다.
  • Zipkin 포트 이름의 이름이 jaeger-collector-zipkin(http)으로 변경되었습니다.
  • Jaeger는 production 또는 streaming 배포 옵션을 선택할 때 기본적으로 스토리지에 Elasticsearch를 사용합니다.
  • Istio 커뮤니티 버전은 일반적인 "tracing" 경로를 제공합니다.
  • Red Hat OpenShift Service Mesh는 Envoy 프록시에 사이드카를 사용하며 Jaeger 또한 Jaeger 에이전트에 사이드카를 사용합니다. 이 두 가지 사이드카는 별도로 구성되어 있으며 서로 혼동해서는 안 됩니다. 프록시 사이드카는 Pod의 수신 및 송신 트래픽과 관련된 기간을 생성합니다. 에이전트 사이드카는 응용 프로그램에서 발송되는 기간을 수신하여 Jaeger 수집기로 보냅니다.

2.4.

주의

Red Hat OpenShift Service Mesh를 설치하려면 설치 활동을 검토하고 사전 요구 사항을 충족해야 합니다.

2.4.1. 사전 요구 사항

  • 서브스크립션이 없는 경우 영업 담당자에게 자세한 내용을 문의하십시오.

2.4.2. Red Hat OpenShift Service Mesh 지원 구성

다음은 Red Hat OpenShift Service Mesh에 지원되는 구성입니다.

참고

  • 클러스터 외부에 있거나 멀티 클러스터 시나리오에 있는 마이크로 서비스 관리는 지원하지 않습니다.
  • 이 릴리스는 가상 머신과 같은 외부 서비스를 통합하지 않는 구성만 지원합니다.

Red Hat OpenShift Service Mesh 라이프사이클 및 지원되는 구성에 대한 자세한 내용은 지원 정책을 참조하십시오.

2.4.2.1. Red Hat OpenShift Service Mesh에서 Kiali에 지원되는 구성

  • Kiali Observation Console은 Chrome, Edge, Firefox 또는 Safari 브라우저의 두 가지 최신 버전에서만 지원됩니다.

2.4.2.2. 지원되는 Mixer 어댑터

  • 이 릴리스에서는 다음 Mixer 어댑터만 지원합니다.

    • 3scale Istio 어댑터

2.4.3. Operator 개요

Red Hat OpenShift Service Mesh에는 다음과 같은 네 가지 Operator가 필요합니다.

  • 오픈 소스 Elasticsearch 프로젝트를 기반으로 합니다.
  • 오픈 소스 Jaeger 프로젝트를 기반으로 합니다.
  • Kiali - 서비스 메시에 대한 가시성을 제공합니다. 단일 콘솔에서 구성을 보고, 트래픽을 모니터링하며 추적을 분석할 수 있습니다. 오픈 소스 Kiali 프로젝트를 기반으로 합니다.
  • Red Hat OpenShift Service Mesh - 애플리케이션을 구성하는 마이크로 서비스를 연결, 보안, 제어 및 관찰할 수 있습니다. Service Mesh Operator는 Service Mesh 구성 요소의 배포, 업데이트 및 삭제를 관리하는 ServiceMeshControlPlane 리소스를 정의하고 모니터링합니다. 오픈소스 Istio 프로젝트를 기반으로 합니다.

2.5.

주의

Service Mesh를 설치하려면 OpenShift Elasticsearch, Jaeger, Kiali, Service Mesh Operator를 설치하고, ServiceMeshControlPlane 리소스를 생성 및 관리하여 컨트롤 플레인을 배포하며, Service MeshMemberRoll 리소스를 생성하여 Service Mesh와 연결된 네임스페이스를 지정해야 합니다.

참고

Mixer의 정책 적용은 기본적으로 비활성화되어 있습니다. 정책 작업을 실행하려면 활성화해야 합니다.

참고

참고

Service Mesh 문서는 istio-system을 예제 프로젝트로 사용하지만, 모든 프로젝트에 서비스 메시를 배포할 수 있습니다.

2.5.1. 사전 요구 사항

  • cluster-admin 역할이 있는 계정.

서비스 메시 설치 프로세스는 OperatorHub를 사용하여 openshift-operators 프로젝트 내에 ServiceMeshControlPlane 사용자 정의 리소스 정의를 설치합니다. Red Hat OpenShift Service Mesh는 컨트롤 플레인의 배포, 업데이트 및 삭제와 관련된 ServiceMeshControlPlane을 정의하고 모니터링합니다.

2.5.2. OpenShift Elasticsearch Operator 설치

사전 요구 사항

  • cluster-admin 역할의 사용자로 클러스터에 액세스할 수 있어야 합니다. Red Hat OpenShift Dedicated를 사용하는 경우 dedicated-admin 역할의 계정이 있어야 합니다.
주의

Operator의 커뮤니티 버전은 설치하지 마십시오. 커뮤니티 Operator는 지원되지 않습니다.

참고

이미 OpenShift Elasticsearch Operator를 OpenShift 로깅의 일부로 설치한 경우 OpenShift Elasticsearch Operator를 다시 설치할 필요가 없습니다.

절차

  1. Red Hat OpenShift Dedicated를 사용하는 경우 dedicated-admin 역할의 계정이 있어야 합니다.
  2. OperatorsOperatorHub로 이동합니다.
  3. Elasticsearch를 필터 상자에 입력하여 OpenShift Elasticsearch Operator를 찾습니다.
  4. Red Hat에서 제공하는 OpenShift Elasticsearch Operator를 클릭하여 Operator에 대한 정보를 표시합니다.
  5. 설치를 클릭합니다.
  6. Operator 설치 페이지에서 stable 업데이트 채널을 선택합니다.
  7. 참고

    Elasticsearch 설치에는 OpenShift Elasticsearch Operator의 openshift-operators-redhat 네임스페이스가 필요합니다.

    • 클러스터 관리자는 Operator를 새 버전으로 업데이트하려면 OLM 업데이트 요청을 수동으로 승인해야 합니다.

      참고

  8. 설치를 클릭합니다.
  9. 설치된 Operator 페이지에서 openshift-operators-redhat 프로젝트를 선택합니다. 계속하기 전에 OpenShift Elasticsearch Operator에 "InstallSucceeded" 상태가 표시될 때까지 기다립니다.

2.5.3.

사전 요구 사항

  • cluster-admin 역할의 사용자로 클러스터에 액세스할 수 있어야 합니다. Red Hat OpenShift Dedicated를 사용하는 경우 dedicated-admin 역할의 계정이 있어야 합니다.
주의

Operator의 커뮤니티 버전은 설치하지 마십시오. 커뮤니티 Operator는 지원되지 않습니다.

절차

  1. Red Hat OpenShift Dedicated를 사용하는 경우 dedicated-admin 역할의 계정이 있어야 합니다.
  2. OperatorsOperatorHub로 이동합니다.
  3. 설치를 클릭합니다.
  4. Operator 설치 페이지에서 stable 업데이트 채널을 선택합니다.
  5. 이렇게 하면 기본 openshift-operators 프로젝트에서 Operator가 설치되고 클러스터의 모든 프로젝트에서 Operator를 사용할 수 있습니다.

    • 클러스터 관리자는 Operator를 새 버전으로 업데이트하려면 OLM 업데이트 요청을 수동으로 승인해야 합니다.

      참고

  6. 설치를 클릭합니다.
  7. Operators설치된 Operator로 이동합니다.

2.5.4. Kiali Operator 설치

주의

Operator의 커뮤니티 버전은 설치하지 마십시오. 커뮤니티 Operator는 지원되지 않습니다.

사전 요구 사항

절차

  1. OperatorsOperatorHub로 이동합니다.
  2. Kiali를 필터 상자에 입력하여 Kiali Operator를 찾습니다.
  3. Red Hat에서 제공하는 Kiali Operator를 클릭하여 Operator에 대한 정보를 표시합니다.
  4. 설치를 클릭합니다.
  5. Operator 설치 페이지에서 stable 업데이트 채널을 선택합니다.
  6. 클러스터의 모든 네임스페이스(기본값)를 선택합니다. 이렇게 하면 기본 openshift-operators 프로젝트에서 Operator가 설치되고 클러스터의 모든 프로젝트에서 Operator를 사용할 수 있습니다.
  7. 자동 승인 전략을 선택합니다.

    참고

    수동 승인 전략을 사용하려면 적절한 인증 정보를 가진 사용자가 Operator 설치 및 서브스크립션 프로세스를 승인해야 합니다.

  8. 설치를 클릭합니다.
  9. 설치된 Operator 페이지에 Kiali Operator의 설치 진행 상황을 표시합니다.

2.5.5. Operator 설치

Red Hat OpenShift Service Mesh를 설치하려면 다음 Operator를 이 순서대로 설치합니다. 각 Operator에 대한 절차를 반복합니다.

  • OpenShift Elasticsearch
  • Kiali
  • Red Hat OpenShift Service Mesh
참고

이미 OpenShift Elasticsearch Operator를 OpenShift 로깅의 일부로 설치한 경우 OpenShift Elasticsearch Operator를 다시 설치할 필요가 없습니다.

절차

  1. Red Hat OpenShift Dedicated를 사용하는 경우 dedicated-admin 역할의 계정이 있어야 합니다.
  2. Operator 이름을 필터 상자에 입력하고 Operator의 Red Hat 버전을 선택합니다. Operator의 커뮤니티 버전은 지원되지 않습니다.
  3. 설치를 클릭합니다.
  4. 설치를 클릭합니다. 목록에서 다음 Operator에 대한 단계를 반복하기 전에 Operator가 설치될 때까지 기다립니다.

  5. 4개의 Operator를 모두 설치한 후 Operators설치된 Operators를 클릭하여 Operator가 설치되었는지 확인합니다.

2.5.6. Red Hat OpenShift Service Mesh Control Plane 배포

ServiceMeshControlPlane 리소스는 설치 중에 사용할 구성을 정의합니다. Red Hat에서 제공하는 기본 구성을 배포하거나 비즈니스 요구에 맞게 ServiceMeshControlPlane 파일을 사용자 지정할 수 있습니다.

2.5.6.1. 웹 콘솔에서 컨트롤 플레인 배포

웹 콘솔을 사용하여 Red Hat OpenShift Service Mesh Control Plane을 배포하려면 다음 절차를 따르십시오. 이 예제에서 istio-system은 컨트롤 플레인 프로젝트의 이름입니다.

사전 요구 사항

  • Red Hat OpenShift Service Mesh Operator가 설치되어 있어야 합니다.
  • Red Hat OpenShift Service Mesh 설치를 사용자 지정하는 방법에 대한 지침을 검토하십시오.
  • cluster-admin 역할이 있는 계정.

절차

  1. istio-system이라는 프로젝트를 생성합니다.

    1. 프로젝트로 이동합니다.
    2. 프로젝트 만들기를 클릭합니다.
    3. 이름 필드에 istio-system을 입력합니다.
    4. 생성을 클릭합니다.
  2. Operators설치된 Operator로 이동합니다.
  3. 필요한 경우 프로젝트 메뉴에서 istio-system을 선택합니다. Operator가 새 프로젝트에 복사될 때까지 몇 분 정도 기다려야 할 수 있습니다.
  4. Red Hat OpenShift Service Mesh Operator를 클릭합니다. 제공된 API에서 Operator는 두 가지 리소스 유형을 생성할 수 있는 링크를 제공합니다.

    • ServiceMeshControlPlane 리소스
    • ServiceMeshMemberRoll 리소스
  5. Istio Service Mesh Control Plane에서 ServiceMeshControlPlane 만들기를 클릭합니다.
  6. Service Mesh Control Plane 페이지에서 필요에 따라 기본 ServiceMeshControlPlane 템플릿에 대한 YAML을 수정합니다.

    참고

    컨트롤 플레인 사용자 지정에 대한 자세한 내용은 Red Hat OpenShift Service Mesh 설치 사용자 지정을 참조하십시오. 프로덕션의 경우 기본 Jaeger 템플릿을 변경해야 합니다.

  7. 생성을 클릭하여 컨트롤 플레인을 생성합니다. Operator는 구성 매개변수를 기반으로 pods, 서비스 및 Service Mesh Control Plane 구성 요소를 생성합니다.
  8. Istio Service Mesh Control Plane 탭을 클릭합니다.
  9. 새 컨트롤 플레인의 이름을 클릭합니다.
  10. 리소스 탭을 클릭하여 Operator가 생성 및 구성된 Red Hat OpenShift Service Mesh Control Plane 리소스를 확인합니다.

2.5.6.2. CLI에서 컨트롤 플레인 배포

Red Hat OpenShift Service Mesh Control Plane에 명령줄을 배포하려면 다음 절차를 따르십시오.

사전 요구 사항

  • Red Hat OpenShift Service Mesh Operator가 설치되어 있어야 합니다.
  • Red Hat OpenShift Service Mesh 설치를 사용자 지정하는 방법에 대한 지침을 검토하십시오.
  • cluster-admin 역할이 있는 계정.
  • OpenShift CLI(oc)에 액세스합니다.

절차

  1. $ oc login --username=<NAMEOFUSER> https://<HOSTNAME>:6443
  2. istio-system이라는 프로젝트를 생성합니다.

    $ oc new-project istio-system
  3. “Red Hat OpenShift Service Mesh 설치 사용자 지정”에서 확인된 예제를 사용하여 istio-installation.yaml이라는 ServiceMeshControlPlane 파일을 생성합니다. 필요에 따라, 사용 사례와 일치하도록 사용자 지정할 수 있습니다. 프로덕션 배포의 경우 기본 Jaeger 템플릿을 변경해야 합니다.
  4. 다음 명령을 실행하여 컨트롤 플레인을 배포합니다.

    $ oc create -n istio-system -f istio-installation.yaml
  5. 다음 명령을 실행하여 컨트롤 플레인 설치 상태를 확인합니다.

    $ oc get smcp -n istio-system

    NAME            READY   STATUS            PROFILES      VERSION   AGE
    basic-install   11/11   ComponentsReady   ["default"]   v1.1.18   4m25s
  6. 다음 명령을 실행하여 설치 프로세스 중에 Pod의 진행 상황을 확인합니다.

    $ oc get pods -n istio-system -w

    출력은 다음과 유사합니다.

    출력 예

    NAME                                     READY   STATUS             RESTARTS   AGE
    grafana-7bf5764d9d-2b2f6                 2/2     Running            0          28h
    istio-citadel-576b9c5bbd-z84z4           1/1     Running            0          28h
    istio-egressgateway-5476bc4656-r4zdv     1/1     Running            0          28h
    istio-galley-7d57b47bb7-lqdxv            1/1     Running            0          28h
    istio-ingressgateway-dbb8f7f46-ct6n5     1/1     Running            0          28h
    istio-pilot-546bf69578-ccg5x             2/2     Running            0          28h
    istio-policy-77fd498655-7pvjw            2/2     Running            0          28h
    istio-sidecar-injector-df45bd899-ctxdt   1/1     Running            0          28h
    istio-telemetry-66f697d6d5-cj28l         2/2     Running            0          28h
    jaeger-896945cbc-7lqrr                   2/2     Running            0          11h
    kiali-78d9c5b87c-snjzh                   1/1     Running            0          22h
    prometheus-6dff867c97-gr2n5              2/2     Running            0          28h

멀티 테넌트 설치의 경우, Red Hat OpenShift Service Mesh는 클러스터 내에서 여러 개의 독립적인 컨트롤 플레인을 지원합니다. ServiceMeshControlPlane 템플릿을 사용하여 재사용 가능한 구성을 생성할 수 있습니다.

2.5.7. Red Hat OpenShift Service Mesh 멤버 롤 생성

ServiceMeshMemberRoll에 나열된 프로젝트만 컨트롤 플레인의 영향을 받습니다. 특정 컨트롤 플레인 배포의 멤버 롤에 추가할 때까지 프로젝트는 서비스 메시에 속하지 않습니다.

ServiceMeshControlPlane과 동일한 프로젝트에서 default 라는 ServiceMeshMemberRoll 리소스를 생성해야 합니다. (예: istio-system)

2.5.7.1. 웹 콘솔에서 멤버 롤 생성

웹 콘솔에서 서비스 메시 멤버 롤에 하나 이상의 프로젝트를 추가할 수 있습니다.

사전 요구 사항

  • Red Hat OpenShift Service Mesh Operator 설치 및 검증.
  • 서비스 메시에 추가할 기존 프로젝트 목록.

절차

  1. 메시에 대한 서비스가 아직 없거나 처음부터 시작하려는 경우 애플리케이션에 대한 프로젝트를 생성합니다.

    1. 프로젝트로 이동합니다.
    2. 이름 필드에 이름을 입력합니다.
    3. 생성을 클릭합니다.
  2. Operators설치된 Operator로 이동합니다.
  3. 프로젝트 메뉴를 클릭하고 목록에서 ServiceMeshControlPlane 리소스가 배포되는 프로젝트를 선택합니다(예: istio-system).
  4. Red Hat OpenShift Service Mesh Operator를 클릭합니다.
  5. Istio Service Mesh 멤버 목록 탭을 클릭합니다.
  6. ServiceMeshMemberRoll 만들기를 클릭합니다.
  7. Members를 클릭한 다음 Value 필드에 프로젝트 이름을 입력합니다. 여러 프로젝트를 추가할 수 있지만 프로젝트는 하나ServiceMeshMemberRoll 리소스에만 속할 수 있습니다.
  8. 생성을 클릭합니다.

2.5.7.2. CLI에서 멤버 롤 생성

명령줄의 ServiceMeshMemberRoll에 프로젝트를 추가할 수 있습니다.

사전 요구 사항

  • Red Hat OpenShift Service Mesh Operator 설치 및 검증.
  • 서비스 메시에 추가할 프로젝트 목록.
  • OpenShift CLI(oc)에 액세스합니다.

절차

  1. $ oc login --username=<NAMEOFUSER> https://<HOSTNAME>:6443
  2. 메시에 대한 서비스가 아직 없거나 처음부터 시작하려는 경우 애플리케이션에 대한 프로젝트를 생성합니다.

    $ oc new-project <your-project>
  3. 프로젝트를 멤버로 추가하려면 다음 예제 YAML을 수정합니다. 여러 프로젝트를 추가할 수 있지만 프로젝트는 하나ServiceMeshMemberRoll 리소스에만 속할 수 있습니다.

    servicemeshmemberroll-default.yaml 예

    apiVersion: maistra.io/v1
    kind: ServiceMeshMemberRoll
    metadata:
      name: default
      namespace: istio-system
    spec:
      members:
        # a list of projects joined into the service mesh
        - your-project-name
        - another-project-name

  4. 다음 명령을 실행하여 istio-system 네임스페이스에 ServiceMeshMemberRoll 리소스를 업로드하고 만듭니다.

    $ oc create -n istio-system -f servicemeshmemberroll-default.yaml
  5. 다음 명령을 실행하여 ServiceMeshMemberRoll이 성공적으로 생성되었는지 확인합니다.

    $ oc get smmr -n istio-system default

    STATUS 열이 Configured인 경우 설치가 성공적으로 완료된 것입니다.

2.5.8. 서비스 메시에서 프로젝트 추가 또는 제거

웹 콘솔을 사용하여 기존 Service Mesh ServiceMeshMemberRoll 리소스에서 프로젝트를 추가하거나 제거할 수 있습니다.

  • 여러 프로젝트를 추가할 수 있지만 프로젝트는 하나ServiceMeshMemberRoll 리소스에만 속할 수 있습니다.
  • 해당 ServiceMeshControlPlane 리소스가 삭제되면 ServiceMeshMemberRoll 리소스가 삭제됩니다.

2.5.8.1. 웹 콘솔을 사용하여 멤버 롤에서 프로젝트 추가 또는 제거

사전 요구 사항

  • Red Hat OpenShift Service Mesh Operator 설치 및 검증.
  • 기존 ServiceMeshMemberRoll 리소스.
  • ServiceMeshMemberRoll 리소스를 사용한 프로젝트의 이름.
  • 메시에서 추가하거나 삭제하려는 프로젝트의 이름.

절차

  1. Operators설치된 Operator로 이동합니다.
  2. 프로젝트 메뉴를 클릭하고 목록에서 ServiceMeshControlPlane 리소스가 배포되는 프로젝트를 선택합니다(예: istio-system).
  3. Red Hat OpenShift Service Mesh Operator를 클릭합니다.
  4. Istio Service Mesh 멤버 목록 탭을 클릭합니다.
  5. default 링크를 클릭합니다.
  6. YAML 탭을 클릭합니다.
  7. YAML을 수정하여 프로젝트를 멤버로 추가하거나 제거합니다. 여러 프로젝트를 추가할 수 있지만 프로젝트는 하나ServiceMeshMemberRoll 리소스에만 속할 수 있습니다.
  8. 저장을 클릭합니다.
  9. 새로 고침을 클릭합니다.

2.5.8.2. CLI를 사용하여 멤버 롤에서 프로젝트 추가 또는 제거

명령줄을 사용하여 기존 서비스 메시 멤버 목록을 수정할 수 있습니다.

사전 요구 사항

  • Red Hat OpenShift Service Mesh Operator 설치 및 검증.
  • 기존 ServiceMeshMemberRoll 리소스.
  • ServiceMeshMemberRoll 리소스를 사용한 프로젝트의 이름.
  • 메시에서 추가하거나 삭제하려는 프로젝트의 이름.
  • OpenShift CLI(oc)에 액세스합니다.

절차

  1. ServiceMeshMemberRoll 리소스를 편집합니다.

    $ oc edit smmr -n <controlplane-namespace>
  2. YAML을 수정하여 프로젝트를 멤버로 추가하거나 제거합니다. 여러 프로젝트를 추가할 수 있지만 프로젝트는 하나ServiceMeshMemberRoll 리소스에만 속할 수 있습니다.

    servicemeshmemberroll-default.yaml 예

    apiVersion: maistra.io/v1
    kind: ServiceMeshMemberRoll
    metadata:
      name: default
      namespace: istio-system #control plane project
    spec:
      members:
        # a list of projects joined into the service mesh
        - your-project-name
        - another-project-name

2.5.9. 수동 업데이트

수동으로 업데이트하는 경우 OLM(Operator Lifecycle Manager)은 클러스터에서 Operator의 설치, 업그레이드 및 역할 기반 액세스 제어(RBAC)를 제어합니다. OLM은 Operator Registry API를 사용하는 CatalogSources를 통해 활용 가능한 Operator와 설치된 Operator의 업그레이드를 쿼리합니다.

2.5.9.1.

배포 시 자동 사이드카 삽입을 사용하는 경우 주석을 추가하거나 수정하여 배포에서 pod 템플릿을 업데이트할 수 있습니다. 다음 명령을 실행하여 pod를 다시 배포합니다.

$ oc patch deployment/<deployment> -p '{"spec":{"template":{"metadata":{"annotations":{"kubectl.kubernetes.io/restartedAt": "'`date -Iseconds`'"}}}}}'

2.5.10. 다음 단계

2.6. 서비스 메시에서 보안 사용자 정의

주의

서비스 메시 애플리케이션이 복잡한 마이크로 서비스를 사용하여 구성된 경우 Red Hat OpenShift Service Mesh를 사용하여 해당 서비스 간 통신 보안을 사용자 지정할 수 있습니다.

2.6.1. mTLS(mutual Transport Layer Security) 활성화

mTLS(mutual Transport Layer Security)은 두 당사자가 서로 인증하는 프로토콜입니다. 일부 프로토콜(IKE, SSH)에서는 기본 인증 모드이며, 다른 프로토콜(TLS)에서는 선택적입니다.

mTLS는 애플리케이션이나 서비스 코드에 대한 변경 없이 사용할 수 있습니다. TLS는 서비스 메시 인프라와 두 사이드카 프록시 사이에서 전적으로 처리됩니다.

기본적으로 Red Hat OpenShift Service Mesh가 허용 모드로 설정됩니다. 여기서 서비스 메시의 사이드카는 일반 텍스트 트래픽과 mTLS를 사용하여 암호화된 연결을 모두 허용합니다. 메시의 서비스가 메시 외부 서비스와 통신하는 경우 엄격한 mTLS가 해당 서비스 간의 통신을 중단할 수 있습니다. 워크로드를 서비스 메시로 마이그레이션하는 동안 허용 모드를 사용합니다.

2.6.1.1. 메시에서 엄격한 mTLS 활성화

워크로드가 메시 외부의 서비스와 통신하지 않고 암호화된 연결만 수락하여 통신이 중단되지 않는 경우 메시 전체에서 mTLS를 빠르게 활성화할 수 있습니다. ServiceMeshControlPlane 리소스에서 spec.istio.global.mtls.enabledtrue로 설정합니다. Operator는 필요한 리소스를 생성합니다.

apiVersion: maistra.io/v1
kind: ServiceMeshControlPlane
spec:
  istio:
    global:
      mtls:
        enabled: true
2.6.1.1.1. 특정 서비스의 수신 연결에 대해 사이드카 구성

정책을 생성하여 개별 서비스 또는 네임스페이스에 대해 mTLS를 구성할 수도 있습니다.

apiVersion: "authentication.istio.io/v1alpha1"
kind: "Policy"
metadata:
  name: default
  namespace: <NAMESPACE>
spec:
  peers:
    - mtls: {}

2.6.1.2. 발신 연결에 대한 사이드카 구성

메시에서 다른 서비스로 요청을 보낼 때 mTLS를 사용하도록 서비스 메시를 구성하는 대상 규칙을 생성합니다.

apiVersion: "networking.istio.io/v1alpha3"
kind: "DestinationRule"
metadata:
  name: "default"
  namespace: <CONTROL_PLANE_NAMESPACE>>
spec:
  host: "*.local"
  trafficPolicy:
    tls:
      mode: ISTIO_MUTUAL

2.6.1.3. 최소 및 최대 프로토콜 버전 설정

사용자 환경에 서비스 메시의 암호화된 트래픽에 대한 특정 요구 사항이 있는 경우 ServiceMeshControlPlane 리소스에 spec.security.controlPlane.tls.minProtocolVersion 또는 spec.security.controlPlane.tls.maxProtocolVersion을 설정하여 허용되는 암호화 기능을 제어할 수 있습니다. 컨트롤 플레인 리소스에 구성된 해당 값은 TLS를 통해 안전하게 통신할 때 메시 구성 요소에서 사용하는 최소 및 최대 TLS 버전을 정의합니다.

apiVersion: maistra.io/v1
kind: ServiceMeshControlPlane
spec:
  istio:
    global:
      tls:
        minProtocolVersion: TLSv1_2
        maxProtocolVersion: TLSv1_3

기본값은 TLS_AUTO이며 TLS 버전을 지정하지 않습니다.

표 2.3. 유효한 값

설명

TLS_AUTO

default

TLSv1_0

TLS 버전 1.0

TLSv1_1

TLS 버전 1.1

TLSv1_2

TLS 버전 1.2

TLSv1_3

TLS 버전 1.3

2.6.2. 암호화 제품군 및 ECDH 곡선 구성

암호화 제품군 및 ECDH(Elliptic-curve Diffie–Hellman) 곡선은 서비스 메시를 보호하는 데 도움이 될 수 있습니다. ServiceMeshControlPlane 리소스에서 spec.istio.global.tls.cipherSuites를 사용하는 암호화 제품군과 spec.istio.global.tls.ecdhCurves를 사용하는 ECDH 곡선을 쉼표로 구분된 목록으로 정의할 수 있습니다. 이러한 속성 중 하나가 비어 있으면 기본값이 사용됩니다.

서비스 메시에서 TLS 1.2 또는 이전 버전을 사용하는 경우 cipherSuites 설정이 적용됩니다. TLS 1.3을 사용할 때는 효과가 없습니다.

우선순위에 따라 암호화 제품군을 쉼표로 구분된 목록으로 설정합니다. 예를 들어 ecdhCurves: CurveP256, CurveP384CurveP256CurveP384보다 높은 우선순위로 설정합니다.

참고

암호화 제품군을 구성할 때 TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 또는 TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256을 포함해야 합니다. HTTP/2 지원에는 이러한 암호화 제품군 중 하나 이상이 필요합니다.

지원되는 암호화 제품군은 다음과 같습니다.

  • TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256
  • TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256
  • TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
  • TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
  • TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
  • TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
  • TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
  • TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
  • TLS_RSA_WITH_AES_128_GCM_SHA256
  • TLS_RSA_WITH_AES_256_GCM_SHA384
  • TLS_RSA_WITH_AES_128_CBC_SHA256
  • TLS_RSA_WITH_AES_128_CBC_SHA
  • TLS_RSA_WITH_AES_256_CBC_SHA
  • TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_RSA_WITH_3DES_EDE_CBC_SHA

지원되는 ECDH 곡선은 다음과 같습니다.

  • CurveP256
  • CurveP384
  • CurveP521
  • X25519

2.6.3. 외부 인증 기관 키 및 인증서 추가

기본적으로 Red Hat OpenShift Service Mesh는 자체 서명된 루트 인증서와 키를 생성하고 이를 사용하여 워크로드 인증서에 서명합니다. 사용자 정의 인증서 및 키를 사용하여 사용자 정의 루트 인증서로 워크로드 인증서에 서명할 수도 있습니다. 이 작업은 인증서와 키를 서비스 메시에 연결하는 예제를 보여줍니다.

사전 요구 사항

  • 인증서를 구성하려면 상호 TLS가 활성화된 Red Hat OpenShift Service Mesh를 설치해야 합니다.
  • 이 예제에서는 Maistra 리포지토리의 인증서를 사용합니다. 프로덕션의 경우 인증 기관의 자체 인증서를 사용합니다.
  • 이러한 지침으로 결과를 확인하려면 Bookinfo 샘플 애플리케이션을 배포해야 합니다.

2.6.3.1. 기존 인증서 및 키 추가

기존 서명(CA) 인증서 및 키를 사용하려면 CA 인증서, 키, 루트 인증서가 포함된 신뢰 파일 체인을 생성해야 합니다. 해당 인증서 각각에 대해 다음과 같은 정확한 파일 이름을 사용해야 합니다. CA 인증서를 ca-cert.pem, 키는 ca-key.pem이라고 합니다. ca-cert.pem을 서명하는 루트 인증서는 root-cert.pem이라고 합니다. 워크로드에서 중개 인증서를 사용하는 경우 cert-chain.pem 파일에 인증서를 지정해야 합니다.

다음 단계에 따라 서비스 메시에 인증서를 추가합니다.

  1. 입력 파일 ca-cert.pem, ca-key.pem, root-cert.pem, cert-chain.pem을 포함하는 시크릿 cacert를 생성합니다.

    $ oc create secret generic cacerts -n istio-system --from-file=<path>/ca-cert.pem \
        --from-file=<path>/ca-key.pem --from-file=<path>/root-cert.pem \
        --from-file=<path>/cert-chain.pem
  2. 서비스 메시는 secret-mount 파일에서 인증서와 키를 읽습니다.

    apiVersion: maistra.io/v1
    kind: ServiceMeshControlPlane
    spec:
      istio:
        global:
          mtls:
            enabled: true
        security:
          selfSigned: false
  3. 워크로드에 새 인증서를 즉시 추가하려면 서비스 메시에서 생성한 istio.*라는 시크릿을 삭제합니다. 이 예제에서는 istio.default 입니다. 서비스 메시는 워크로드에 대한 새 인증서를 발행합니다.

    $ oc delete secret istio.default

2.6.3.2. 인증서 확인

Bookinfo 샘플 애플리케이션을 사용하여 인증서가 올바르게 마운트되었는지 확인합니다. 먼저 마운트된 인증서를 검색합니다. 그런 다음 pod에 마운트된 인증서를 확인합니다.

  1. pod 이름을 변수 RATINGSPOD에 저장합니다.

    $ RATINGSPOD=`oc get pods -l app=ratings -o jsonpath='{.items[0].metadata.name}'`
  2. 다음 명령을 실행하여 프록시에 마운트된 인증서를 검색합니다.

    $ oc exec -it $RATINGSPOD -c istio-proxy -- /bin/cat /etc/certs/root-cert.pem > /tmp/pod-root-cert.pem

    /tmp/pod-root-cert.pem 파일에는 Pod로 전달된 루트 인증서가 포함되어 있습니다.

    $ oc exec -it $RATINGSPOD -c istio-proxy -- /bin/cat /etc/certs/cert-chain.pem > /tmp/pod-cert-chain.pem

    /tmp/pod-cert-chain.pem 파일에는 Pod로 전달된 워크로드 인증서와 CA 인증서가 포함되어 있습니다.

  3. 루트 인증서가 Operator가 지정한 것과 동일한지 확인합니다. <path>를 인증서 경로로 교체합니다.

    $ openssl x509 -in <path>/root-cert.pem -text -noout > /tmp/root-cert.crt.txt
    $ openssl x509 -in /tmp/pod-root-cert.pem -text -noout > /tmp/pod-root-cert.crt.txt
    $ diff /tmp/root-cert.crt.txt /tmp/pod-root-cert.crt.txt

    출력 대상이 비어 있을 것으로 예상됩니다.

  4. CA 인증서가 Operator가 지정한 것과 동일한지 확인합니다. <path>를 인증서 경로로 교체합니다.

    $ sed '0,/^-----END CERTIFICATE-----/d' /tmp/pod-cert-chain.pem > /tmp/pod-cert-chain-ca.pem
    $ openssl x509 -in <path>/ca-cert.pem -text -noout > /tmp/ca-cert.crt.txt
    $ openssl x509 -in /tmp/pod-cert-chain-ca.pem -text -noout > /tmp/pod-cert-chain-ca.crt.txt
    $ diff /tmp/ca-cert.crt.txt /tmp/pod-cert-chain-ca.crt.txt

    출력 대상이 비어 있을 것으로 예상됩니다.

  5. 루트 인증서에서 워크로드 인증서로의 인증서 체인을 확인합니다. <path>를 인증서 경로로 교체합니다.

    $ head -n 21 /tmp/pod-cert-chain.pem > /tmp/pod-cert-chain-workload.pem
    $ openssl verify -CAfile <(cat <path>/ca-cert.pem <path>/root-cert.pem) /tmp/pod-cert-chain-workload.pem

    출력 예

    /tmp/pod-cert-chain-workload.pem: OK

2.6.3.3. 인증서 제거

추가한 인증서를 제거하려면 다음 단계를 따르십시오.

  1. 시크릿 cacerts를 제거합니다.

    $ oc delete secret cacerts -n istio-system
  2. ServiceMeshControlPlane 리소스에서 자체 서명된 루트 인증서로 서비스 메시를 재배포합니다.

    apiVersion: maistra.io/v1
    kind: ServiceMeshControlPlane
    spec:
      istio:
        global:
          mtls:
            enabled: true
        security:
          selfSigned: true

2.7. 트래픽 관리

주의

Red Hat OpenShift Service Mesh의 서비스 간 트래픽 및 API 호출 흐름을 제어할 수 있습니다. 예를 들어, 서비스 메시의 일부 서비스는 메시 내에서 통신해야 하며 다른 서비스는 숨겨야 할 수 있습니다. 트래픽을 관리하여 특정 백엔드 서비스를 숨기고, 서비스를 노출하며, 테스트 또는 버전 관리 배포를 생성하거나 서비스 세트에 보안 계층을 추가합니다.

2.7.1.

게이트웨이를 사용하여 메시에 대한 인바운드 및 아웃바운드 트래픽을 관리하여 메시에 들어가거나 나가려는 트래픽을 지정할 수 있습니다. 게이트웨이 구성은 서비스 워크로드와 함께 실행되는 사이드카 Envoy 프록시가 아닌, 메시의 에지에서 실행되는 독립 실행형 Envoy 프록시에 적용됩니다.

애플리케이션 계층 트래픽 라우팅(L7)을 동일한 API 리소스에 추가하는 대신, 일반 Red Hat OpenShift Service Mesh 가상 서비스를 게이트웨이에 바인딩하고 서비스 메시의 다른 데이터 플레인 트래픽처럼 게이트웨이 트래픽을 관리할 수 있습니다.

게이트웨이는 주로 수신 트래픽을 관리하는 데 사용되지만 송신 게이트웨이를 구성할 수도 있습니다. 이를 통해 외부 네트워크에 대한 액세스 권한이 있는 서비스를 제한하여 서비스 메시에 보안 제어를 추가할 수 있습니다. 게이트웨이를 사용하여 전적으로 내부 프록시를 구성할 수도 있습니다.

게이트웨이 예제

다음 예제는 외부 HTTPS 수신 트래픽에 대해 샘플 게이트웨이 구성을 보여줍니다.

apiVersion: networking.istio.io/v1alpha3
kind: Gateway
metadata:
  name: ext-host-gwy
spec:
  selector:
    istio: ingressgateway # use istio default controller
  servers:
  - port:
      number: 443
      name: https
      protocol: HTTPS
    hosts:
    - ext-host.example.com
    tls:
      mode: SIMPLE
      serverCertificate: /tmp/tls.crt
      privateKey: /tmp/tls.key

이 게이트웨이 구성으로 ext-host.example.com의 HTTPS 트래픽을 포트 443의 메시로 허용할 수 있지만 트래픽에 라우팅을 지정하지 않습니다.

라우팅을 지정하고 게이트웨이가 의도한 대로 작동하려면 게이트웨이도 가상 서비스에 바인딩해야 합니다. 다음 예와 같이 가상 서비스의 게이트웨이 필드를 사용하여 이 작업을 수행합니다.

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
  name: virtual-svc
spec:
  hosts:
  - ext-host.example.com
  gateways:
    - ext-host-gwy

그러면 외부 트래픽에 대한 라우팅 규칙으로 가상 서비스를 구성할 수 있습니다.

2.7.2.

Ingress 게이트웨이는 들어오는 HTTP/TCP 연결을 수신하는 메시의 에지에서 작동하는 로드 밸런서입니다. 노출된 포트와 프로토콜을 구성하지만 트래픽 라우팅 구성은 포함하지 않습니다. Ingress 트래픽의 트래픽 라우팅은 내부 서비스 요청과 동일한 방식으로 라우팅 규칙으로 구성됩니다.

다음 단계에서는 게이트웨이를 만들고 Bookinfo 샘플 애플리케이션에서 서비스를 /productpage/login. 경로의 외부 트래픽에 노출하도록 VirtualService를 구성하는 방법을 보여줍니다.

절차

  1. 트래픽을 수락하기 위해 게이트웨이를 만듭니다.

    1. YAML 파일을 생성한 후 다음 YAML을 이 파일에 복사합니다.

      게이트웨이 예제 gateway.yaml

      apiVersion: networking.istio.io/v1alpha3
      kind: Gateway
      metadata:
        name: bookinfo-gateway
      spec:
        selector:
          istio: ingressgateway
        servers:
        - port:
            number: 80
            name: http
            protocol: HTTP
          hosts:
          - "*"

    2. YAML 파일을 적용합니다.

      $ oc apply -f gateway.yaml
  2. VirtualService 오브젝트를 생성하여 호스트 헤더를 다시 작성합니다.

    1. YAML 파일을 생성한 후 다음 YAML을 이 파일에 복사합니다.

      apiVersion: networking.istio.io/v1alpha3
      kind: VirtualService
      metadata:
        name: bookinfo
      spec:
        hosts:
        - "*"
        gateways:
        - bookinfo-gateway
        http:
        - match:
          - uri:
              exact: /productpage
          - uri:
              prefix: /static
          - uri:
              exact: /login
          - uri:
              exact: /logout
          - uri:
              prefix: /api/v1/products
          route:
          - destination:
              host: productpage
              port:
                number: 9080

    2. YAML 파일을 적용합니다.

      $ oc apply -f vs.yaml
  3. 게이트웨이 및 VirtualService가 올바르게 설정되었는지 확인합니다.

    1. 게이트웨이 URL을 설정합니다.

      export GATEWAY_URL=$(oc -n istio-system get route istio-ingressgateway -o jsonpath='{.spec.host}')
    2. 포트 번호를 설정합니다.

      export TARGET_PORT=$(oc -n istio-system get route istio-ingressgateway -o jsonpath='{.spec.port.targetPort}')
    3. 명시적으로 노출된 페이지를 테스트합니다.

      curl -s -I "$GATEWAY_URL/productpage"

      예상 결과는 200입니다.

2.7.3. Ingress 트래픽 관리

Red Hat OpenShift Service Mesh에서 Ingress Gateway는 모니터링, 보안 및 라우팅 규칙과 같은 기능을 클러스터에 들어오는 트래픽에 적용할 수 있도록 합니다. 서비스 메시 게이트웨이를 사용하여 서비스 메시 외부에서 서비스를 노출합니다.

2.7.3.1. Ingress IP 및 포트 확인

Ingress 구성은 환경에서 외부 로드 밸런서를 지원하는지 여부에 따라 달라집니다. 외부 로드 밸런서는 클러스터의 Ingress IP 및 포트에 설정됩니다. 클러스터의 IP 및 포트가 외부 로드 밸런서에 구성되어 있는지 확인하려면 다음 명령을 실행합니다.

$ oc get svc istio-ingressgateway -n istio-system

해당 명령은 네임스페이스에 있는 각 항목의 NAME, TYPE, CLUSTER-IP, EXTERNAL-IP, PORT(S), AGE를 반환합니다.

EXTERNAL-IP 값이 설정되면 해당 환경에 Ingress 게이트웨이에 사용할 수 있는 외부 로드 밸런서가 있습니다.

EXTERNAL-IP 값이 <none> 또는 영구적으로 <pending>인 경우, 해당 환경은 Ingress 게이트웨이에 외부 로드 밸런서를 제공하지 않습니다.

2.7.3.1.1. 로드 밸런서를 사용하여 Ingress 포트 확인

환경에 외부 로드 밸런서가 있는 경우 다음 지침을 따릅니다.

절차

  1. 다음 명령을 실행하여 Ingress IP 및 포트를 설정합니다. 이 명령은 터미널에서 변수를 설정합니다.

    $ export INGRESS_HOST=$(oc -n istio-system get service istio-ingressgateway -o jsonpath='{.status.loadBalancer.ingress[0].ip}')
  2. 다음 명령을 실행하여 Ingress 포트를 설정합니다.

    $ export INGRESS_PORT=$(oc -n istio-system get service istio-ingressgateway -o jsonpath='{.spec.ports[?(@.name=="http2")].port}')
  3. 다음 명령을 실행하여 보안 Ingress 포트를 설정합니다.

    $ export SECURE_INGRESS_PORT=$(oc -n istio-system get service istio-ingressgateway -o jsonpath='{.spec.ports[?(@.name=="https")].port}')
  4. 다음 명령을 실행하여 TCP Ingress 포트를 설정합니다.

    $ export TCP_INGRESS_PORT=$(kubectl -n istio-system get service istio-ingressgateway -o jsonpath='{.spec.ports[?(@.name=="tcp")].port}')
참고

이 경우 Ingress 게이트웨이의 EXTERNAL-IP 값은 IP 주소가 아닙니다.

이 경우 다음 명령을 사용하여 INGRESS_HOST 값을 수정합니다.

$ export INGRESS_HOST=$(oc -n istio-system get service istio-ingressgateway -o jsonpath='{.status.loadBalancer.ingress[0].hostname}')
2.7.3.1.2. 로드 밸런서 없이 Ingress 포트 확인

환경에 외부 로드 밸런서가 없는 경우 Ingress 포트를 확인하고 대신 노드 포트를 사용합니다.

절차

  1. Ingress 포트를 설정합니다.

    $ export INGRESS_PORT=$(oc -n istio-system get service istio-ingressgateway -o jsonpath='{.spec.ports[?(@.name=="http2")].nodePort}')
  2. 다음 명령을 실행하여 보안 Ingress 포트를 설정합니다.

    $ export SECURE_INGRESS_PORT=$(oc -n istio-system get service istio-ingressgateway -o jsonpath='{.spec.ports[?(@.name=="https")].nodePort}')
  3. 다음 명령을 실행하여 TCP Ingress 포트를 설정합니다.

    $ export TCP_INGRESS_PORT=$(kubectl -n istio-system get service istio-ingressgateway -o jsonpath='{.spec.ports[?(@.name=="tcp")].nodePort}')

2.7.4. 자동 경로 생성

Istio 게이트웨이의 OpenShift 경로는 Red Hat OpenShift Service Mesh에서 자동으로 관리됩니다. Istio 게이트웨이가 서비스 메시 내부에서 생성, 업데이트 또는 삭제될 때마다 OpenShift 경로가 생성, 업데이트 또는 삭제됩니다.

2.7.4.1. 자동 경로 생성 활성화

IOR(Istio OpenShift Routing)이라는 Red Hat OpenShift Service Mesh Control Plane 구성 요소는 게이트웨이 경로를 동기화합니다. 컨트롤 플레인 배포의 일부로 IOR을 활성화합니다.

게이트웨이에 TLS 섹션이 포함된 경우 OpenShift 경로는 TLS를 지원하도록 구성됩니다.

  1. ServiceMeshControlPlane리소스에서 ior_enabled 매개변수를 추가하고 true로 설정합니다. 예를 들어, 다음 리소스 스니펫을 참조하십시오.
spec:
  istio:
    gateways:
     istio-egressgateway:
       autoscaleEnabled: false
       autoscaleMin: 1
       autoscaleMax: 5
     istio-ingressgateway:
       autoscaleEnabled: false
       autoscaleMin: 1
       autoscaleMax: 5
       ior_enabled: true

2.7.4.2. 하위 도메인

하위 도메인(예: *.domain.com)은 지원되지만 기본적으로 아닙니다. 자세한 내용은 “링크" 섹션을 참조하십시오.

다음 게이트웨이가 생성되는 경우:

apiVersion: networking.istio.io/v1alpha3
kind: Gateway
metadata:
  name: gateway1
spec:
  selector:
    istio: ingressgateway
  servers:
  - port:
      number: 80
      name: http
      protocol: HTTP
    hosts:
    - www.bookinfo.com
    - bookinfo.example.com

이제 다음 OpenShift 경로가 자동으로 생성됩니다. 다음 명령을 사용하여 경로가 생성되었는지 확인할 수 있습니다.

$ oc -n <control_plane_namespace> get routes

예상 출력

NAME           HOST/PORT             PATH  SERVICES               PORT  TERMINATION   WILDCARD
gateway1-lvlfn bookinfo.example.com        istio-ingressgateway   <all>               None
gateway1-scqhv www.bookinfo.com            istio-ingressgateway   <all>               None

게이트웨이가 삭제되면 Red Hat OpenShift Service Mesh가 경로를 삭제합니다. 그러나 수동으로 생성된 경로는 Red Hat OpenShift Service Mesh에 의해 수정되지 않습니다.

2.7.5.

서비스 항목은 Red Hat OpenShift Service Mesh가 내부적으로 관리하는 서비스 레지스트리에 항목을 추가합니다. 서비스 항목을 추가한 후 Envoy 프록시는 메시의 서비스인 것처럼 서비스에 트래픽을 보냅니다. 서비스 항목을 사용하면 다음을 수행할 수 있습니다.

  • 서비스 메시 외부에서 실행되는 서비스의 트래픽을 관리합니다.
  • 웹에서 소비된 API 또는 레거시 인프라의 서비스에 대한 트래픽과 같은 외부 대상의 트래픽을 리디렉션 및 전달합니다.
  • 외부 대상에 대한 재시도, 시간 초과 및 오류 삽입 정책을 정의합니다.
  • VM(가상 머신)에서 메시에 VM을 추가하여 메시 서비스를 실행합니다.
참고

Kubernetes에서 다중 클러스터 Red Hat OpenShift Service Mesh 메시를 구성하기 위해 다른 클러스터의 서비스를 메시에 추가합니다.

서비스 항목 예

apiVersion: networking.istio.io/v1alpha3
kind: ServiceEntry
metadata:
  name: svc-entry
spec:
  hosts:
  - ext-svc.example.com
  ports:
  - number: 443
    name: https
    protocol: HTTPS
  location: MESH_EXTERNAL
  resolution: DNS

완전히 한정하거나 와일드카드 접두사 도메인 이름을 사용할 수 있습니다.

메시의 다른 서비스에 대한 트래픽을 구성하는 것과 동일한 방식으로 서비스 항목에 대한 트래픽을 제어하도록 가상 서비스 및 대상 규칙을 구성할 수 있습니다. 예를 들어 다음 대상 규칙은 서비스 항목을 사용하여 구성된 ext-svc.example.com 외부 서비스에 대한 연결을 보호하기 위해 상호 TLS를 사용하도록 트래픽 경로를 구성합니다.

apiVersion: networking.istio.io/v1alpha3
kind: DestinationRule
metadata:
  name: ext-res-dr
spec:
  host: ext-svc.example.com
  trafficPolicy:
    tls:
      mode: MUTUAL
      clientCertificate: /etc/certs/myclientcert.pem
      privateKey: /etc/certs/client_private_key.pem
      caCertificates: /etc/certs/rootcacerts.pem

2.7.6.

가상 서비스가 있는 Red Hat OpenShift Service Mesh를 통해 여러 버전의 마이크로 서비스로 요청을 동적으로 라우팅할 수 있습니다. 가상 서비스를 사용하면 다음을 수행할 수 있습니다.

  • 단일 가상 서비스를 통해 여러 애플리케이션 서비스를 처리합니다. 예를 들어 메시에서 Kubernetes를 사용하는 경우 특정 네임스페이스의 모든 서비스를 처리하도록 가상 서비스를 구성할 수 있습니다.
  • 게이트웨이와 결합하여 트래픽 규칙을 구성하고 수신 및 송신 트래픽을 제어합니다.

2.7.6.1.

요청은 가상 서비스를 통해 서비스 메시 내의 서비스로 라우팅됩니다. 각 가상 서비스는 순서대로 평가되는 라우팅 규칙 세트로 구성됩니다. Red Hat OpenShift Service Mesh는 가상 서비스에 대해 주어진 각 요청을 메시 내의 실제 특정 대상에 연결합니다.

가상 서비스가 없는 Red Hat OpenShift Service Mesh는 모든 서비스 인스턴스 간에 라운드 로빈 로드 밸런싱을 사용하여 트래픽을 배포합니다. 가상 서비스에서는 하나 이상의 호스트 이름에 대한 트래픽 동작을 지정할 수 있습니다. 가상 서비스의 라우팅 규칙은 가상 서비스에 대한 트래픽을 적절한 대상으로 전송하는 방법을 Red Hat OpenShift Service Mesh에 알립니다. 경로 대상은 동일한 서비스 또는 완전히 다른 서비스 버전일 수 있습니다.

절차

  1. 예: VirtualService.yaml

    apiVersion: networking.istio.io/v1alpha3
    kind: VirtualService
    metadata:
      name: reviews
    spec:
      hosts:
      - reviews
      http:
      - match:
        - headers:
            end-user:
              exact: jason
        route:
        - destination:
            host: reviews
            subset: v2
      - route:
        - destination:
            host: reviews
            subset: v3

  2. 다음 명령을 실행하여 VirtualService.yaml을 적용합니다. 여기서 VirtualService.yaml은 파일 경로입니다.

    $ oc apply -f <VirtualService.yaml>

2.7.6.2.

매개변수설명
spec:
  hosts:

hosts 필드에는 라우팅 규칙이 적용되는 가상 서비스의 대상 주소가 나열됩니다. 이는 서비스에 요청을 보내는 데 사용되는 주소입니다. 가상 서비스 호스트 이름은 IP 주소, DNS 이름 또는 정규화된 도메인 이름으로 확인되는 짧은 이름일 수 있습니다.

spec:
  http:
  - match:

http 섹션에는 호스트 필드에 지정된 대상으로 전송된 HTTP/1.1, HTTP2, gRPC 트래픽을 라우팅하기 위한 일치 조건 및 작업을 설명하는 가상 서비스의 라우팅 규칙이 포함됩니다. 라우팅 규칙은 트래픽을 이동할 대상과 지정된 일치 조건으로 구성됩니다. 예제의 첫 번째 라우팅 규칙에는 일치 필드로 시작하는 조건이 있습니다. 이 예제에서 이 라우팅은 사용자 jason의 모든 요청에 적용됩니다. headers, end-user, exact 필드를 추가하여 적절한 요청을 선택합니다.

spec:
  http:
  - match:
    - destination:

경로 섹션의 destination 필드는 이 조건과 일치하는 트래픽에 대한 실제 대상을 지정합니다. 가상 서비스의 호스트와 달리 대상 호스트는 Red Hat OpenShift Service Mesh 서비스 레지스트리에 있는 실제 대상이어야 합니다. 프록시가 있는 메시 서비스 또는 서비스 항목을 사용하여 추가된 비 메시 서비스일 수 있습니다.

2.7.7.

대상 규칙은 가상 서비스 라우팅 규칙이 평가된 후에 적용되므로 트래픽의 실제 대상에 적용됩니다. 가상 서비스는 트래픽을 대상으로 라우팅합니다. 대상 규칙은 해당 대상의 트래픽에 발생하는 요소를 설정합니다.

기본적으로 Red Hat OpenShift Service Mesh는 풀의 각 서비스 인스턴스에서 차례대로 요청을 수신하는 라운드 로빈 로드 밸런싱 정책을 사용합니다. 또한 Red Hat OpenShift Service Mesh는 특정 서비스 또는 서비스 하위 집합에 대한 요청의 대상 규칙에 지정할 수 있는 다음과 같은 모델을 지원합니다.

  • Random: 요청은 풀의 인스턴스에 무작위로 전달됩니다.
  • Weighted: 요청은 구체적인 비율에 따라 풀의 인스턴스로 전달됩니다.
  • Least requests: 요청은 요청 수가 가장 적은 인스턴스로 전달됩니다.

대상 규칙 예

다음 예제 대상 규칙은 서로 다른 로드 밸런싱 정책을 사용하여 my-svc 대상 서비스에 대해 세 가지 다른 하위 집합을 구성합니다.

apiVersion: networking.istio.io/v1alpha3
kind: DestinationRule
metadata:
  name: my-destination-rule
spec:
  host: my-svc
  trafficPolicy:
    loadBalancer:
      simple: RANDOM
  subsets:
  - name: v1
    labels:
      version: v1
  - name: v2
    labels:
      version: v2
    trafficPolicy:
      loadBalancer:
        simple: ROUND_ROBIN
  - name: v3
    labels:
      version: v3

이 안내서는 Bookinfo 샘플 애플리케이션을 참조하여 예제 애플리케이션에 라우팅 예제를 제공합니다.

2.7.8.

Service Mesh Bookinfo 샘플 애플리케이션은 각각 여러 가지 버전이 있는 네 개의 마이크로 서비스로 구성됩니다. Bookinfo 샘플 애플리케이션을 설치한 후에는 reviews 마이크로 서비스의 세 가지 버전이 동시에 실행됩니다.

브라우저에서 Bookinfo 앱 /product 페이지에 액세스하여 여러 번 새로 고침하면 북 리뷰 출력에 별점이 포함된 경우도 있고 그렇지 않은 경우도 있습니다. 라우팅할 명시적인 기본 서비스 버전이 없으면 서비스 메시는 사용 가능한 모든 버전으로 차례대로 요청을 라우팅합니다.

이 튜토리얼은 모든 트래픽을 마이크로 서비스의 v1(버전 1)으로 라우팅하는 규칙을 적용하는 데 도움이 됩니다. 나중에 HTTP 요청 헤더의 값을 기반으로 트래픽을 라우팅하는 규칙을 적용할 수 있습니다.

사전 요구 사항

  • 다음 예제에서 작동하도록 Bookinfo 샘플 애플리케이션을 배포하십시오.

2.7.8.1. 가상 서비스 적용

다음 절차에서 가상 서비스는 마이크로 서비스의 기본 버전을 설정하는 가상 서비스를 적용하여 모든 트래픽을 각 마이크로 서비스의 v1로 라우팅합니다.

절차

  1. 가상 서비스를 적용합니다.

    $ oc apply -f https://raw.githubusercontent.com/Maistra/istio/maistra-2.3/samples/bookinfo/networking/virtual-service-all-v1.yaml
  2. 가상 서비스를 적용했는지 확인하려면 다음 명령을 사용하여 정의된 경로를 표시합니다.

    $ oc get virtualservices -o yaml

    이 명령은 kind: VirtualService의 리소스를 YAML 형식으로 반환합니다.

reviews 서비스 버전 1을 포함하여 서비스 메시를 Bookinfo 마이크로 서비스 v1 버전으로 라우팅하도록 구성했습니다.

2.7.8.2. 새 경로 구성 테스트

Bookinfo 앱의 /productpage를 다시 새로 고침하여 새 구성을 테스트합니다.

절차

  1. GATEWAY_URL 매개변수 값을 설정합니다. 이 변수를 사용하여 나중에 Bookinfo 제품 페이지의 URL을 찾을 수 있습니다. 이 예제에서 컨트롤 플레인 프로젝트는 istio-system입니다.

    export GATEWAY_URL=$(oc -n istio-system get route istio-ingressgateway -o jsonpath='{.spec.host}')
  2. 다음 명령을 실행하여 제품 페이지의 URL을 검색합니다.

    echo "http://$GATEWAY_URL/productpage"
  3. 브라우저에서 Bookinfo 사이트를 엽니다.

페이지의 리뷰 부분은 새로 고침 횟수와 관계없이 별점 없이 표시됩니다. 이는 리뷰 서비스의 모든 트래픽을 reviews:v1 버전으로 라우팅하도록 서비스 메시를 구성했기 때문이며, 이 서비스 버전은 별점 서비스에 액세스할 수 없습니다.

이제 서비스 메시가 트래픽을 하나의 서비스 버전으로 라우팅합니다.

2.7.8.3. 사용자 ID 기반 경로

특정 사용자의 모든 트래픽이 특정 서비스 버전으로 라우팅되도록 경로 구성을 변경합니다. 이 경우 jason이라는 사용자의 모든 트래픽은 서비스 reviews:v2로 라우팅됩니다.

서비스 메시에는 사용자 ID에 대한 특별한 기본 이해가 없습니다. 이 예제는 productpage 서비스가 모든 아웃바운드 HTTP 요청에 대한 사용자 정의 end-user 헤더를 검토 서비스에 추가한다는 사실에 의해 활성화됩니다.

절차

  1. 다음 명령을 실행하여 Bookinfo 샘플 애플리케이션에서 사용자 기반 라우팅을 활성화하도록 설정합니다.

    $ oc apply -f https://raw.githubusercontent.com/Maistra/istio/maistra-2.3/samples/bookinfo/networking/virtual-service-reviews-test-v2.yaml
  2. 다음 명령을 실행하여 규칙이 생성되었는지 확인합니다. 이 명령은 kind: VirtualService의 모든 리소스를 YAML 형식으로 반환합니다.

    $ oc get virtualservice reviews -o yaml
  3. Bookinfo 앱의 /productpage에서 암호없이 jason으로 로그인합니다.
  4. 브라우저를 새로 고침합니다. 별점은 각 리뷰 옆에 표시됩니다.
  5. 브라우저를 새로 고침합니다. 이제 별이 사라졌습니다. Jason을 제외한 모든 사용자에 대해 트래픽이 reviews:v1으로 라우팅됩니다.

사용자 ID를 기반으로 트래픽을 라우팅하도록 Bookinfo 샘플 애플리케이션을 성공적으로 구성했습니다.

2.8.

주의

Service Mesh에 애플리케이션을 배포할 때 Istio의 업스트림 커뮤니티 버전과 Red Hat OpenShift Service Mesh 설치 내의 애플리케이션 동작 간의 몇 가지 차이점이 있습니다.

2.8.1. 사전 요구 사항

2.8.2. 컨트롤 플레인 템플릿 생성

ServiceMeshControlPlane 템플릿을 사용하여 재사용 가능한 구성을 생성할 수 있습니다. 개별 사용자는 생성한 템플릿을 자체 구성으로 확장할 수 있습니다. 템플릿은 다른 템플릿의 구성 정보를 상속할 수도 있습니다. 예를 들어, 회계 팀에 대한 계정 컨트롤 플레인과 마케팅 팀에 대한 마케팅 컨트롤 플레인을 생성할 수 있습니다. 개발 템플릿과 프로덕션 템플릿을 생성하는 경우 마케팅 팀과 회계 팀의 구성원은 팀별 사용자 지정을 통해 개발 및 프로덕션 템플릿을 확장할 수 있습니다.

ServiceMeshControlPlane과 동일한 구문을 따르는 컨트롤 플레인 템플릿을 구성하면, 사용자는 계층적으로 설정을 상속합니다. Operator는 Red Hat OpenShift Service Mesh의 기본 설정이 포함된 default 템플릿과 함께 제공됩니다. 사용자 지정 템플릿을 추가하려면 openshift-operators 프로젝트에서 smcp-templates라는 ConfigMap을 생성하고 /usr/local/share/istio-operator/templates에서 Operator 컨테이너에 ConfigMap을 마운트해야 합니다.

2.8.2.1. ConfigMap 생성

다음 절차에 따라 ConfigMap을 생성합니다.

사전 요구 사항

  • Service Mesh Operator 설치 및 검증.
  • cluster-admin 역할이 있는 계정.
  • Operator 배포 위치.
  • OpenShift CLI(oc)에 액세스합니다.

절차

  1. CLI에서 이 명령을 실행하여 openshift-operators 프로젝트에서 smcp-templates라는 ConfigMap을 생성하고 <templates-directory>를 로컬 디스크의 ServiceMeshControlPlane 파일의 위치로 교체합니다.

    $ oc create configmap --from-file=<templates-directory> smcp-templates -n openshift-operators
  2. Operator ClusterServiceVersion 이름을 찾습니다.

    $ oc get clusterserviceversion -n openshift-operators | grep 'Service Mesh'

    출력 예

    maistra.v1.0.0            Red Hat OpenShift Service Mesh   1.0.0                Succeeded

  3. Operator 클러스터 서비스 버전을 편집하여 Operator에서 smcp-templates ConfigMap을 사용하도록 지시합니다.

    $ oc edit clusterserviceversion -n openshift-operators maistra.v1.0.0
  4. Operator 배포에 볼륨 마운트 및 볼륨을 추가합니다.

    deployments:
      - name: istio-operator
        spec:
          template:
            spec:
              containers:
                volumeMounts:
                  - name: discovery-cache
                    mountPath: /home/istio-operator/.kube/cache/discovery
                  - name: smcp-templates
                    mountPath: /usr/local/share/istio-operator/templates/
              volumes:
                - name: discovery-cache
                  emptyDir:
                    medium: Memory
                - name: smcp-templates
                  configMap:
                    name: smcp-templates
    ...
  5. 변경 사항을 저장하고 편집기를 종료합니다.
  6. 이제 ServiceMeshControlPlane에서 template 매개변수를 사용하여 템플릿을 지정할 수 있습니다.

    apiVersion: maistra.io/v1
    kind: ServiceMeshControlPlane
    metadata:
      name: minimal-install
    spec:
      template: default

2.8.3. 자동 사이드카 삽입 활성화

사전 요구 사항

절차

  1. $ oc get deployment -n <namespace>

    oc get deployment -n bookinfo ratings-v1 -o yaml
  2. 편집기에서 애플리케이션의 배포 구성 YAML 파일을 엽니다.
  3. apiVersion: apps/v1
    kind: Deployment
    metadata:
      name: ratings-v1
      namespace: bookinfo
      labels:
        app: ratings
        version: v1
    spec:
      template:
        metadata:
          annotations:
            sidecar.istio.io/inject: 'true'

  4. 앱이 포함된 프로젝트에 파일을 다시 추가합니다.

    $ oc apply -n <namespace> -f deployment.yaml

    $ oc apply -n bookinfo -f deployment-ratings-v1.yaml
  5. 리소스가 업로드되었는지 확인하려면 다음 명령을 실행합니다.

    $ oc get deployment -n <namespace> <deploymentName> -o yaml

    예를 들면 다음과 같습니다.

    $ oc get deployment -n bookinfo ratings-v1 -o yaml

2.8.4.

환경 변수가 사이드카에 삽입됩니다.

예: injection-template.yaml

apiVersion: apps/v1
kind: Deployment
metadata:
  name: resource
spec:
  replicas: 7
  selector:
    matchLabels:
      app: resource
  template:
    metadata:
      annotations:
        sidecar.maistra.io/proxyEnv: "{ \"maistra_test_env\": \"env_value\", \"maistra_test_env_2\": \"env_value_2\" }"

주의

2.8.5. Mixer 정책 시행 업데이트

이전 버전의 Red Hat OpenShift Service Mesh에서는 기본적으로 Mixer의 정책 시행이 활성화되었습니다. 이제 Mixer 정책 시행은 기본적으로 비활성화되었습니다. 정책 작업을 실행하기 전에 활성화해야 합니다.

사전 요구 사항

  • OpenShift CLI(oc)에 액세스합니다.
참고

예에서는 <istio-system>을 컨트롤 플레인 네임스페이스로 사용합니다. 이 값을 SMCP(Service Mesh Control Plane)를 배포한 네임스페이스로 교체합니다.

절차

  1. 이 명령을 실행하여 현재 Mixer 정책 시행 상태를 확인합니다.

    $ oc get cm -n <istio-system> istio -o jsonpath='{.data.mesh}' | grep disablePolicyChecks
  2. disablePolicyChecks: true인 경우 Service Mesh ConfigMap을 편집합니다.

    $ oc edit cm -n <istio-system> istio
  3. ConfigMap 내에서 disablePolicyChecks: true를 찾고 값을 false로 변경합니다.
  4. 구성을 저장하고 편집기를 종료합니다.
  5. Mixer 정책 시행 상태를 다시 점검하여 false로 설정되어 있는지 확인합니다.

2.8.5.1. 올바른 네트워크 정책 설정

  • Istio가 제대로 작동하려면 서비스 메시로 들어오는 트래픽이 항상 Ingress-gateway를 통과해야 합니다.
  • 서비스 메시에 없는 별도의 네임스페이스에서 서비스 메시 외부에 서비스를 배포합니다.

2.8.6. Bookinfo 예제 애플리케이션

Bookinfo 애플리케이션은 온라인 서점의 단일 카탈로그 항목과 유사하게 한 권의 책에 대한 정보를 표시합니다. 애플리케이션은 도서 설명, 도서 세부 정보(ISBN, 페이지 수, 기타 정보), 도서 리뷰가 설명된 페이지를 표시합니다.

Bookinfo 애플리케이션은 이러한 마이크로 서비스로 구성됩니다.

  • productpage 마이크로 서비스는 detailsreviews 마이크로 서비스를 호출하여 페이지를 채웁니다.
  • details 마이크로 서비스에는 도서 정보가 포함되어 있습니다.
  • reviews 마이크로 서비스에는 도서 리뷰가 포함되어 있습니다. 이를 ratings 마이크로 서비스라고도 합니다.
  • ratings 마이크로 서비스에는 도서 리뷰와 함께 제공되는 도서 순위 정보가 포함되어 있습니다.

리뷰 마이크로 서비스의 세 가지 버전이 있습니다.

  • 버전 v1에서는 ratings 서비스를 호출하지 않습니다.
  • 버전 v2는 ratings 서비스를 호출하고 각 평가를 1~5개의 검정별로 표시합니다.
  • 버전 v3은 ratings 서비스를 호출하고 각 평가를 1~5개의 빨강별로 표시합니다.

2.8.6.1. Bookinfo 애플리케이션 설치

이 튜토리얼에서는 프로젝트를 생성하고, Bookinfo 애플리케이션을 해당 프로젝트에 배포하고, 서비스 메시에서 실행 중인 애플리케이션을 확인하여 샘플 애플리케이션을 생성하는 방법을 안내합니다.

사전 요구 사항

  • OpenShift CLI(oc)에 액세스합니다.
  • cluster-admin 역할이 있는 계정.
참고

참고

절차

  1. Red Hat OpenShift Dedicated를 사용하는 경우 dedicated-admin 역할의 계정이 있어야 합니다.
  2. 프로젝트를 클릭합니다.
  3. 프로젝트 만들기를 클릭합니다.
  4. 프로젝트 이름으로 bookinfo를 입력하고, 디스플레이 이름, 설명을 입력한 다음 생성을 클릭합니다.

    • 대신 CLI에서 이 명령을 실행하여 bookinfo 프로젝트를 생성할 수 있습니다.

      $ oc new-project bookinfo
  5. Operators설치된 Operators를 클릭합니다.
  6. 이 예제에서는 istio-system을 사용합니다.
  7. Red Hat OpenShift Service Mesh Operator를 클릭합니다.
  8. Istio Service Mesh 멤버 목록 탭을 클릭합니다.

    1. 이미 Istio Service Mesh 멤버 롤을 생성한 경우, 이름을 클릭한 다음 YAML 탭을 클릭하여 YAML 편집기를 엽니다.
    2. ServiceMeshMemberRoll을 생성하지 않은 경우 ServiceMeshMemberRoll 생성을 클릭합니다.
  9. Members를 클릭한 다음 Value 필드에 프로젝트 이름을 입력합니다.
  10. 생성을 클릭하여 업데이트된 서비스 메시 멤버 롤을 저장합니다.

    1. 또는 다음 예제를 YAML 파일에 저장합니다.

      Bookinfo ServiceMeshMemberRoll example servicemeshmemberroll-default.yaml

      apiVersion: maistra.io/v1
      kind: ServiceMeshMemberRoll
      metadata:
        name: default
      spec:
        members:
        - bookinfo

    2. 다음 명령을 실행하여 해당 파일을 업로드하고 istio-system 네임스페이스에 ServiceMeshMemberRoll 리소스를 만듭니다.

      $ oc create -n istio-system -f servicemeshmemberroll-default.yaml
  11. 다음 명령을 실행하여 ServiceMeshMemberRoll이 성공적으로 생성되었는지 확인합니다.

    $ oc get smmr -n istio-system -o wide

    STATUS 열이 Configured인 경우 설치가 성공적으로 완료된 것입니다.

    NAME      READY   STATUS       AGE   MEMBERS
    default   1/1     Configured   70s   ["bookinfo"]
  12. CLI에서 bookinfo.yaml 파일을 적용하여 'bookinfo' 프로젝트에 Bookinfo 애플리케이션을 배포합니다.

    $ oc apply -n bookinfo -f https://raw.githubusercontent.com/Maistra/istio/maistra-2.3/samples/bookinfo/platform/kube/bookinfo.yaml

    출력은 다음과 유사합니다.

    service/details created
    serviceaccount/bookinfo-details created
    deployment.apps/details-v1 created
    service/ratings created
    serviceaccount/bookinfo-ratings created
    deployment.apps/ratings-v1 created
    service/reviews created
    serviceaccount/bookinfo-reviews created
    deployment.apps/reviews-v1 created
    deployment.apps/reviews-v2 created
    deployment.apps/reviews-v3 created
    service/productpage created
    serviceaccount/bookinfo-productpage created
    deployment.apps/productpage-v1 created
  13. bookinfo-gateway.yaml 파일을 적용하여 수신 게이트웨이를 생성합니다.

    $ oc apply -n bookinfo -f https://raw.githubusercontent.com/Maistra/istio/maistra-2.3/samples/bookinfo/networking/bookinfo-gateway.yaml

    출력은 다음과 유사합니다.

    gateway.networking.istio.io/bookinfo-gateway created
    virtualservice.networking.istio.io/bookinfo created
  14. GATEWAY_URL 매개변수 값을 설정합니다.

    $ export GATEWAY_URL=$(oc -n istio-system get route istio-ingressgateway -o jsonpath='{.spec.host}')

2.8.6.2. 기본 대상 규칙 추가

Bookinfo 애플리케이션을 사용하기 전에 먼저 기본 대상 규칙을 추가해야 합니다. 상호 TLS(Transport layer security) 인증을 활성화했는지 여부에 따라 사전 구성된 YAML 파일이 두 개 있습니다.

프로세스

  1. 대상 규칙을 추가하려면 다음 명령 중 하나를 실행합니다.

    • 상호 TLS를 활성화하지 않은 경우:

      $ oc apply -n bookinfo -f https://raw.githubusercontent.com/Maistra/istio/maistra-2.3/samples/bookinfo/networking/destination-rule-all.yaml
    • 상호 TLS를 활성화한 경우:

      $ oc apply -n bookinfo -f https://raw.githubusercontent.com/Maistra/istio/maistra-2.3/samples/bookinfo/networking/destination-rule-all-mtls.yaml

      출력은 다음과 유사합니다.

      destinationrule.networking.istio.io/productpage created
      destinationrule.networking.istio.io/reviews created
      destinationrule.networking.istio.io/ratings created
      destinationrule.networking.istio.io/details created

2.8.6.3. Bookinfo 설치 확인

샘플 Bookinfo 애플리케이션이 성공적으로 배포되었는지 확인하려면 다음 단계를 수행합니다.

사전 요구 사항

  • Bookinfo 샘플 애플리케이션을 설치하는 단계를 완료합니다.

  1. 다음 명령으로 모든 pod가 준비되었는지 확인합니다.

    $ oc get pods -n bookinfo

    모든 pod의 상태는 Running이어야 합니다. 출력은 다음과 유사합니다.

    NAME                              READY   STATUS    RESTARTS   AGE
    details-v1-55b869668-jh7hb        2/2     Running   0          12m
    productpage-v1-6fc77ff794-nsl8r   2/2     Running   0          12m
    ratings-v1-7d7d8d8b56-55scn       2/2     Running   0          12m
    reviews-v1-868597db96-bdxgq       2/2     Running   0          12m
    reviews-v2-5b64f47978-cvssp       2/2     Running   0          12m
    reviews-v3-6dfd49b55b-vcwpf       2/2     Running   0          12m
  2. 다음 명령을 실행하여 제품 페이지의 URL을 검색합니다.

    echo "http://$GATEWAY_URL/productpage"
  3. 웹 브라우저에 출력을 복사하여 붙여넣어 Bookinfo 제품 페이지가 배포되었는지 확인합니다.

    1. Red Hat OpenShift Dedicated를 사용하는 경우 dedicated-admin 역할의 계정이 있어야 합니다.

2.8.6.4. Bookinfo 애플리케이션 제거

다음 단계에 따라 Bookinfo 애플리케이션을 제거하십시오.

사전 요구 사항

  • OpenShift CLI(oc)에 액세스합니다.
2.8.6.4.1. Bookinfo 프로젝트 삭제

절차

  1. 프로젝트를 클릭합니다.
  2. bookinfo 메뉴 kebab 를 클릭한 다음 프로젝트 삭제를 클릭합니다.
  3. 확인 대화 상자에 bookinfo를 입력한 다음 삭제 를 클릭합니다.

    • $ oc delete project bookinfo
2.8.6.4.2. 서비스 메시 멤버 롤에서 Bookinfo 프로젝트를 제거

절차

  1. Operators설치된 Operators를 클릭합니다.
  2. Red Hat OpenShift Service Mesh Operator에 대해 제공된 APIS에서 Istio Service Mesh 멤버 롤 링크를 클릭합니다.
  3. ServiceMeshMemberRoll 메뉴 kebab 를 클릭하고 서비스 메시 멤버 롤 편집을 선택합니다.
  4. 기본 Service Mesh 멤버 롤 YAML을 편집하고 멤버 목록에서 bookinfo를 삭제합니다.

    • $ oc -n istio-system patch --type='json' smmr default -p '[{"op": "remove", "path": "/spec/members", "value":["'"bookinfo"'"]}]'
  5. 저장을 클릭하여 서비스 메시 멤버 롤을 업데이트합니다.

2.8.7. 예제 추적 생성 및 추적 데이터 분석

Jaeger는 오픈 소스 분산 추적 시스템입니다. Jaeger를 사용하면 애플리케이션을 구성하는 다양한 마이크로 서비스를 통해 요청의 경로를 따라 추적할 수 있습니다. Jaeger는 기본적으로 서비스 메시의 일부로 설치됩니다.

이 튜토리얼에서는 서비스 메시와 Bookinfo 샘플 애플리케이션을 사용하여 Jaeger로 분산 추적을 수행하는 방법을 보여줍니다.

사전 요구 사항

  • 설치 중에 Jaeger가 활성화되었습니다.
  • Bookinfo 예제 애플리케이션이 설치되었습니다.

절차

  1. Bookinfo 샘플 애플리케이션을 설치한 후 트래픽을 메시로 보냅니다. 다음 명령을 여러 번 입력합니다.

    $ curl "http://$GATEWAY_URL/productpage"

    이 명령은 애플리케이션의 productpage 마이크로 서비스에 액세스하는 사용자를 시뮬레이션합니다.

    • 다른 방법으로 CLI를 사용하여 경로에 대한 세부 정보를 쿼리합니다.

      $ export JAEGER_URL=$(oc get route -n istio-system jaeger -o jsonpath='{.spec.host}')
      1. 다음 명령을 입력하여 Jaeger 콘솔의 URL을 표시합니다. 결과를 브라우저에 붙여넣고 해당 URL로 이동합니다.

        echo $JAEGER_URL
  2. 추적 목록이 표시됩니다.
  3. 목록의 추적 중 하나를 클릭하여 해당 추적에 대한 상세 보기를 엽니다. 목록의 첫 번째 (가장 최근) 추적을 클릭하면 /productpage의 최신 새로 고침에 해당하는 세부 사항이 표시됩니다.

2.9. 데이터 시각화 및 관찰 기능

주의

Kiali 콘솔에서 애플리케이션의 토폴로지, 상태 및 지표를 볼 수 있습니다. 서비스에 문제가 있는 경우 Kiali 콘솔은 서비스를 통해 데이터 흐름을 시각화하는 방법을 제공합니다. 추상 애플리케이션, 서비스 및 워크로드를 포함하여 다양한 수준에서 메시 구성 요소에 대한 인사이트를 볼 수 있습니다. 또한 네임스페이스에 대한 대화형 그래프 보기도 실시간으로 제공합니다.

사전 준비 사항

애플리케이션이 설치된 경우 애플리케이션을 통한 데이터 흐름을 확인할 수 있습니다.

2.9.1. 서비스 메시 데이터 보기

Kiali Operator는 Red Hat OpenShift Service Mesh에서 수집된 Telemetry 데이터를 사용하여 네임스페이스의 애플리케이션, 서비스 및 워크로드에 대한 그래프와 실시간 네트워크 다이어그램을 제공합니다.

Kiali 콘솔에 액세스하려면 Red Hat OpenShift Service Mesh가 설치되어 있고 서비스 메시에 대해 구성된 프로젝트가 있어야 합니다.

절차

  1. 프로젝트를 클릭합니다.
  2. 프로젝트 이름을 클릭합니다.

2.9.2.

몇 가지의 그래프를 선택할 수 있습니다.

  • 앱 그래프는 동일한 레이블이 있는 애플리케이션에 대한 집계 워크로드를 보여줍니다.
  • 서비스 그래프는 메시의 각 서비스에 대한 노드를 표시되지만 그래프에서 모든 애플리케이션과 워크로드는 제외됩니다. 높은 수준의 보기를 제공하며 정의된 서비스에 대한 모든 트래픽을 집계합니다.
  • 버전이 지정된 앱 그래프는 애플리케이션의 각 버전에 대한 노드를 보여줍니다. 모든 애플리케이션 버전이 함께 그룹화됩니다.
  • 워크로드 그래프는 서비스 메시의 각 워크로드에 대한 노드를 표시합니다. 이 그래프는 애플리케이션 및 버전 레이블을 사용할 필요가 없습니다. 애플리케이션에서 버전 레이블을 사용하지 않는 경우 이 그래프를 사용하십시오.

지표 요약을 보려면 그래프에서 노드 또는 에지를 선택하여 요약 세부 정보 패널에 지표 세부 정보를 표시합니다.

2.9.2.1.

사전 요구 사항

  • $ curl "http://$GATEWAY_URL/productpage"

    이 명령은 애플리케이션의 productpage 마이크로 서비스에 액세스하는 사용자를 시뮬레이션합니다.

절차

2.10. 사용자 정의 리소스

주의

기본 서비스 메시 사용자 정의 리소스를 수정하거나 새 사용자 정의 리소스를 생성하여 Red Hat OpenShift Service Mesh를 사용자 지정할 수 있습니다.

2.10.1. 사전 요구 사항

  • cluster-admin 역할이 있는 계정.
  • Operator 설치.

2.10.2. Red Hat OpenShift Service Mesh 사용자 정의 리소스

참고

istio-system 프로젝트는 서비스 메시 문서 전체에서 예제로 사용되지만, 필요에 따라 다른 프로젝트를 사용할 수 있습니다.

사용자 지정 리소스를 사용하여 Red Hat OpenShift Service Mesh 프로젝트 또는 클러스터에서 API를 확장할 수 있습니다. 서비스 메시를 배포할 때 프로젝트 매개변수를 변경하기 위해 수정할 수 있는 기본 ServiceMeshControlPlane을 생성합니다.

Service Mesh Operator는 ServiceMeshControlPlane 리소스 유형을 추가하여 API를 확장하며, 이를 통해 프로젝트 내에서 ServiceMeshControlPlane 오브젝트를 생성할 수 있습니다. ServiceMeshControlPlane 오브젝트를 생성하여 Operator에 ServiceMeshControlPlane 오브젝트에 설정한 매개변수로 구성된 Service Mesh Control Plane을 프로젝트에 설치하도록 지시합니다.

중요

3scale Istio Adapter는 사용자 정의 리소스 파일에 배포 및 구성됩니다. 또한 작동 중인 3scale 계정(SaaS 또는 On-Premises)이 필요합니다.

예: istio-installation.yaml

apiVersion: maistra.io/v1
kind: ServiceMeshControlPlane
metadata:
  name: basic-install
spec:

  istio:
    global:
      proxy:
        resources:
          requests:
            cpu: 100m
            memory: 128Mi
          limits:
            cpu: 500m
            memory: 128Mi

    gateways:
      istio-egressgateway:
        autoscaleEnabled: false
      istio-ingressgateway:
        autoscaleEnabled: false
        ior_enabled: false

    mixer:
      policy:
        autoscaleEnabled: false

      telemetry:
        autoscaleEnabled: false
        resources:
          requests:
            cpu: 100m
            memory: 1G
          limits:
            cpu: 500m
            memory: 4G

    pilot:
      autoscaleEnabled: false
      traceSampling: 100

    kiali:
      enabled: true

    grafana:
      enabled: true

    tracing:
      enabled: true
      jaeger:
        template: all-in-one

2.10.3. ServiceMeshControlPlane 매개변수

다음 예제에서는 ServiceMeshControlPlane 매개변수의 사용을 보여주고, 표에서는 지원되는 매개변수에 대한 추가 정보를 제공합니다.

중요

현재 클러스터 구성의 사용 가능한 리소스에 따라 이러한 매개변수를 구성합니다.

2.10.3.1. Istio 글로벌 예

다음 예제는 ServiceMeshControlPlane의 Istio 전역 매개변수와 적절한 값과 함께 사용 가능한 매개변수에 대한 설명을 보여줍니다.

참고

3scale Istio Adapter가 작동하려면 disablePolicyChecksfalse여야 합니다.

전역 매개변수 예

  istio:
    global:
      tag: 1.1.0
      hub: registry.redhat.io/openshift-service-mesh/
      proxy:
        resources:
          requests:
            cpu: 10m
            memory: 128Mi
          limits:
      mtls:
        enabled: false
      disablePolicyChecks: true
      policyCheckFailOpen: false
      imagePullSecrets:
        - MyPullSecret

표 2.4. 전역 매개변수

매개변수설명기본값

disablePolicyChecks

이 매개변수는 정책 검사를 활성화/비활성화합니다.

true/false

true

policyCheckFailOpen

이 매개변수는 Mixer 정책 서비스에 도달할 수 없는 경우 트래픽이 Envoy 사이드카를 통과할 수 있는지 여부를 나타냅니다.

true/false

false

tag

Operator가 Istio 이미지를 가져오는 데 사용하는 태그입니다.

유효한 컨테이너 이미지 태그.

1.1.0

hub

Operator가 Istio 이미지를 가져오는 데 사용하는 허브입니다.

유효한 이미지 리포지토리

maistra/ 또는 registry.redhat.io/openshift-service-mesh/

mtls

이 매개변수는 기본적으로 서비스 간에 mTLS(mutual Transport Layer Security)를 활성화/비활성화할지 여부를 제어합니다.

true/false

false

imagePullSecrets

Istio 이미지를 제공하는 레지스트리에 대한 액세스가 안전한 경우, 여기에 imagePullSecret을 나열하십시오.

redhat-registry-pullsecret 또는 quay-pullsecret

없음

이러한 매개 변수는 전역 매개변수의 프록시 하위 집합에 따라 다릅니다.

표 2.5. 프록시 매개변수

유형매개변수설명기본값

requests

cpu

Envoy 프록시에 대해 요청된 CPU 리소스의 양입니다.

사용자 환경 구성에 따라 코어 또는 밀리코어(예: 200m, 0.5, 1)로 지정된 CPU 리소스입니다.

10m

 

memory

Envoy 프록시에 대해 요청된 메모리 양입니다.

사용자 환경 구성에 따라 사용 가능한 바이트 단위 메모리(예: 200Ki, 50Mi, 5Gi)입니다.

128Mi

limits

cpu

Envoy 프록시에 대해 요청된 최대 CPU 리소스 양입니다.

사용자 환경 구성에 따라 코어 또는 밀리코어(예: 200m, 0.5, 1)로 지정된 CPU 리소스입니다.

2000m

 

memory

Envoy 프록시가 사용할 수 있는 최대 메모리 양입니다.

사용자 환경 구성에 따라 사용 가능한 바이트 단위 메모리(예: 200Ki, 50Mi, 5Gi)입니다.

1024Mi

2.10.3.2. Istio 게이트웨이 구성

다음 예제는 ServiceMeshControlPlane의 Istio 게이트웨이 매개변수와 적절한 값과 함께 사용 가능한 매개변수에 대한 설명을 보여줍니다.

게이트웨이 매개변수 예

  gateways:
    egress:
      enabled: true
      runtime:
        deployment:
          autoScaling:
            enabled: true
            maxReplicas: 5
            minReplicas: 1
    enabled: true
    ingress:
      enabled: true
      runtime:
        deployment:
          autoScaling:
            enabled: true
            maxReplicas: 5
            minReplicas: 1

표 2.6. Istio 게이트웨이 매개변수

매개변수설명기본값

gateways.egress.runtime.deployment.autoScaling.enabled

이 매개변수는 자동 스케일링을 활성화/비활성화합니다.

true/false

true

gateways.egress.runtime.deployment.autoScaling.minReplicas

autoscaleEnabled 설정을 기반으로 송신 게이트웨이에 배포할 최소 pod 수입니다.

사용자 환경 구성에 따라 할당 가능한 유효한 Pod 수입니다.

1

gateways.egress.runtime.deployment.autoScaling.maxReplicas

autoscaleEnabled 설정을 기반으로 송신 게이트웨이에 배포할 최대 pod 수입니다.

사용자 환경 구성에 따라 할당 가능한 유효한 Pod 수입니다.

5

gateways.ingress.runtime.deployment.autoScaling.enabled

이 매개변수는 자동 스케일링을 활성화/비활성화합니다.

true/false

true

gateways.ingress.runtime.deployment.autoScaling.minReplicas

autoscaleEnabled 설정을 기반으로 수신 게이트웨이에 배포할 최소 pod 수입니다.

사용자 환경 구성에 따라 할당 가능한 유효한 Pod 수입니다.

1

gateways.ingress.runtime.deployment.autoScaling.maxReplicas

autoscaleEnabled 설정을 기반으로 수신 게이트웨이에 배포할 최대 pod 수입니다.

사용자 환경 구성에 따라 할당 가능한 유효한 Pod 수입니다.

5

2.10.3.3. Istio Mixer 구성

다음 예제는 ServiceMeshControlPlane의 Mixer 매개변수와 적절한 값과 함께 사용 가능한 매개변수에 대한 설명을 보여줍니다.

Mixer 매개변수 예

mixer:
  enabled: true
  policy:
    autoscaleEnabled: false
  telemetry:
    autoscaleEnabled: false
    resources:
    requests:
      cpu: 10m
      memory: 128Mi
      limits:

표 2.7. Istio Mixer 정책 매개변수

매개변수설명기본값

enabled

이 매개변수는 Mixer를 활성화/비활성화합니다.

true/false

true

autoscaleEnabled

이 매개변수는 자동 스케일링을 활성화/비활성화합니다. 작은 환경에서는 이 값을 비활성화합니다.

true/false

true

autoscaleMin

autoscaleEnabled 설정을 기반으로 배포할 최소 pod 수입니다.

사용자 환경 구성에 따라 할당 가능한 유효한 Pod 수입니다.

1

autoscaleMax

autoscaleEnabled 설정을 기반으로 배포할 최대 pod 수입니다.

사용자 환경 구성에 따라 할당 가능한 유효한 Pod 수입니다.

5

표 2.8. Istio Mixer Telemetry 매개변수

유형매개변수설명Default

requests

cpu

Mixer Telemetry에 요청된 CPU 리소스의 백분율입니다.

사용자 환경 구성을 기반으로 하는 밀리코어 단위의 CPU 리소스입니다.

10m

 

memory

Mixer Telemetry에 요청된 메모리 양입니다.

사용자 환경 구성에 따라 사용 가능한 바이트 단위 메모리(예: 200Ki, 50Mi, 5Gi)입니다.

128Mi

limits

cpu

Mixer telemetry가 사용할 수 있는 CPU 리소스의 최대 백분율입니다.

사용자 환경 구성을 기반으로 하는 밀리코어 단위의 CPU 리소스입니다.

4800m

 

memory

Mixer telemetry가 사용할 수 있는 메모리 최대 크기입니다.

사용자 환경 구성에 따라 사용 가능한 바이트 단위 메모리(예: 200Ki, 50Mi, 5Gi)입니다.

4G

2.10.3.4. Istio Pilot 구성

리소스 할당에 대한 일정 또는 제한을 설정하도록 Pilot을 구성할 수 있습니다. 다음 예제는 ServiceMeshControlPlane의 Pilot 매개변수와 적절한 값과 함께 사용 가능한 매개변수에 대한 설명을 보여줍니다.

pilot 매개변수 예

spec:
  runtime:
    components:
      pilot:
        deployment:
          autoScaling:
            enabled: true
            minReplicas: 1
            maxReplicas: 5
            targetCPUUtilizationPercentage: 85
        pod:
          tolerations:
          - key: node.kubernetes.io/unreachable
            operator: Exists
            effect: NoExecute
            tolerationSeconds: 60
          affinity:
            podAntiAffinity:
              requiredDuringScheduling:
              - key: istio
                topologyKey: kubernetes.io/hostname
                operator: In
                values:
                - pilot
        container:
          resources:
            limits:
              cpu: 100m
              memory: 128M

표 2.9. Istio Pilot 매개변수

매개변수설명기본값

cpu

Pilot에 요청된 CPU 리소스의 백분율입니다.

사용자 환경 구성을 기반으로 하는 밀리코어 단위의 CPU 리소스입니다.

10m

memory

Pilot에 대해 요청된 메모리 양입니다.

사용자 환경 구성에 따라 사용 가능한 바이트 단위 메모리(예: 200Ki, 50Mi, 5Gi)입니다.

128Mi

autoscaleEnabled

이 매개변수는 자동 스케일링을 활성화/비활성화합니다. 작은 환경에서는 이 값을 비활성화합니다.

true/false

true

traceSampling

이 값은 임의의 샘플링이 발생하는 빈도를 제어합니다. 참고: 개발 또는 테스트를 할 때는 늘리십시오.

유효한 백분율입니다.

1.0

2.10.4. Kiali 구성

Service Mesh Operator에서 ServiceMeshControlPlane을 생성할 때 Kiali 리소스도 처리합니다. 그런 다음 Kiali Operator는 Kiali 인스턴스를 생성할 때 이 오브젝트를 사용합니다.

ServiceMeshControlPlane에 지정된 기본 Kiali 매개변수는 다음과 같습니다.

Kiali 매개변수 예

apiVersion: maistra.io/v1
kind: ServiceMeshControlPlane
spec:
    kiali:
      enabled: true
      dashboard:
        viewOnlyMode: false
      ingress:
        enabled: true

표 2.10. Kiali 매개변수

매개변수설명기본값
enabled

이 매개변수는 Kiali를 활성화/비활성화합니다. Kiali는 기본적으로 활성화되어 있습니다.

true/false

true

dashboard
   viewOnlyMode

이 매개변수는 Kiali 콘솔에 대해 보기 전용 모드를 활성화/비활성화합니다. 보기 전용 모드가 활성화되면 콘솔을 사용하여 서비스 메시를 변경할 수 없습니다.

true/false

false

ingress
   enabled

이 매개변수는 Kiali에 대해 수신을 활성화/비활성화합니다.

true/false

true

2.10.4.1. Grafana에 대한 Kiali 설정

Kiali 및 Grafana를 Red Hat OpenShift Service Mesh의 일부로 설치할 때 Operator는 기본적으로 다음을 구성합니다.

  • Grafana가 Kiali의 외부 서비스로 활성화됨
  • Kiali 콘솔에 대한 Grafana 인증
  • Kiali 콘솔의 Grafana URL

Kiali는 Grafana URL을 자동으로 감지할 수 있습니다. 그러나 Kiali에서 쉽게 자동 감지할 수 없는 사용자 지정 Grafana 설치가 있는 경우 ServiceMeshControlPlane 리소스에서 URL 값을 업데이트해야 합니다.

추가 Grafana 매개변수

spec:
  kiali:
    enabled: true
    dashboard:
      viewOnlyMode: false
      grafanaURL:  "https://grafana-istio-system.127.0.0.1.nip.io"
    ingress:
      enabled: true

2.10.4.2. Jaeger에 대한 Kiali 설정

Kiali 및 Jaeger를 Red Hat OpenShift Service Mesh의 일부로 설치할 때 Operator는 기본적으로 다음을 구성합니다.

  • Jaeger가 Kiali의 외부 서비스로 활성화됨
  • Kiali 콘솔에 대한 Jaeger 인증
  • Kiali 콘솔의 Jaeger URL

Kiali는 Jaeger URL을 자동으로 감지할 수 있습니다. 그러나 Kiali에서 쉽게 자동 감지할 수 없는 사용자 지정 Jaeger 설치가 있는 경우 ServiceMeshControlPlane 리소스에서 URL 값을 업데이트해야 합니다.

추가 Jaeger 매개변수

spec:
  kiali:
    enabled: true
    dashboard:
      viewOnlyMode: false
      jaegerURL: "http://jaeger-query-istio-system.127.0.0.1.nip.io"
    ingress:
      enabled: true

2.10.5. Jaeger 구성

Service Mesh Operator가 ServiceMeshControlPlane 리소스를 생성할 때 분산 추적을 위한 리소스도 생성할 수 있습니다. 서비스 메시는 분산 추적을 위해 Jaeger를 사용합니다.

다음 두 가지 방법 중 하나로 Jaeger 설정을 지정할 수 있습니다.

  • ServiceMeshControlPlane 리소스에서 Jaeger를 구성합니다. 이 방법에는 몇 가지 제한 사항이 있습니다.
  • 사용자 지정 Jaeger 리소스에서 Jaeger를 구성한 다음 ServiceMeshControlPlane 리소스에서 Jaeger 인스턴스를 참조합니다. name 값과 일치하는 Jaeger 리소스가 있으면 컨트롤 플레인에서 기존 설치를 사용합니다. 이 방법을 사용하면 Jaeger 설정을 완전히 사용자 지정할 수 있습니다.

ServiceMeshControlPlane에 지정된 기본 Jaeger 매개변수는 다음과 같습니다.

기본 all-in-one Jaeger 매개변수

apiVersion: maistra.io/v1
kind: ServiceMeshControlPlane
spec:
  version: v1.1
  istio:
    tracing:
      enabled: true
      jaeger:
        template: all-in-one

표 2.11. Jaeger 매개변수

매개변수설명기본값
tracing:
   enabled:

이 매개변수는 Service Mesh Operator에 의한 설치 및 추적을 활성화/비활성화합니다. Jaeger 설치는 기본적으로 활성화되어 있습니다. 기존 Jaeger 배포를 사용하려면 이 값을 false로 설정합니다.

true/false

true

jaeger:
   template:

이 매개변수는 사용할 Jaeger 배포 전략을 지정합니다.

  • all-in-one - 개발, 테스트, 시연, 개념 증명용.
  • production-elasticsearch - 프로덕션용.

all-in-one

참고

ServiceMeshControlPlane 리소스의 기본 템플릿은 메모리 내 스토리지를 사용하는 all-in-one 배포 전략입니다. 프로덕션의 경우 지원되는 유일한 스토리지 옵션은 Elasticsearch이므로, 프로덕션 환경에서 서비스 메시를 배포할 때 production-elasticsearch 템플릿을 요청하도록 ServiceMeshControlPlane을 구성해야 합니다.

2.10.5.1. Elasticsearch 구성

기본 Jaeger 배포 전략에서는 최소한의 리소스를 사용하여 설치를 완료할 수 있도록 all-in-one 템플릿을 사용합니다. 하지만 all-in-one 템플릿은 메모리 내 스토리지를 사용하므로 개발, 데모 또는 테스트 목적으로만 권장되며 프로덕션 환경에 사용해서는 안 됩니다.

프로덕션 환경에서 서비스 메시와 Jaeger를 배포하는 경우, 템플릿을 Jaeger의 스토리지 요건에 Elasticsearch를 사용하는 production-elasticsearch 템플릿으로 변경해야 합니다.

Elasticsearch는 메모리를 많이 사용하는 애플리케이션입니다. 유효한 CPU 및 메모리값으로 리소스 블록을 수정하여 각 구성 요소의 CPU 및 메모리 제한을 모두 조정할 수 있습니다. 권장 메모리 양, 또는 그 이상으로 실행하려는 경우 클러스터에 추가 노드를 추가해야 합니다.

Elasticsearch를 사용하는 기본 "production" Jaeger 매개변수

apiVersion: maistra.io/v1
kind: ServiceMeshControlPlane
spec:
  istio:
    tracing:
    enabled: true
    ingress:
      enabled: true
    jaeger:
      template: production-elasticsearch
      elasticsearch:
        nodeCount: 3
        redundancyPolicy:
        resources:
          requests:
            cpu: "1"
            memory: "16Gi"
          limits:
            cpu: "1"
            memory: "16Gi"

표 2.12. Elasticsearch 매개변수

매개변수설명기본값
tracing:
  enabled:

이 매개변수는 서비스 메시에서 추적을 활성화/비활성화합니다. Jaeger는 기본적으로 설치되어 있습니다.

true/false

true

 
ingress:
  enabled:

이 매개변수는 Jaeger에 대해 수신을 활성화/비활성화합니다.

true/false

true

 
jaeger:
   template:

이 매개변수는 사용할 Jaeger 배포 전략을 지정합니다.

all-in-one/production-elasticsearch

all-in-one

 
elasticsearch:
  nodeCount:

생성할 Elasticsearch 노드 수입니다.

정수 값.

1

개념 증명 = 1, 최소 배포 = 3

requests:
  cpu:

사용자 환경 구성에 따른 요청에 대한 중앙 처리 단위 수입니다.

코어 또는 밀리코어(예: 200m, 0.5, 1)에 지정되어 있습니다.

1Gi

개념 증명 = 500m, 최소 배포 = 1

requests:
  memory:

환경 구성에 따른 요청에 사용 가능한 메모리입니다.

바이트로 지정됩니다(예: 200Ki, 50Mi, 5Gi).

500m

개념 증명 = 1Gi, 최소 배포 = 16Gi*

limits:
  cpu:

사용자 환경 구성에 따른 중앙 처리 장치 수에 대한 제한입니다.

코어 또는 밀리코어(예: 200m, 0.5, 1)에 지정되어 있습니다.

 

개념 증명 = 500m, 최소 배포 = 1

limits:
  memory:

사용자 환경 구성에 따라 사용 가능한 메모리 제한입니다.

바이트로 지정됩니다(예: 200Ki, 50Mi, 5Gi).

 

개념 증명 = 1Gi, 최소 배포 = 16Gi*

각 Elasticsearch 노드는 더 낮은 메모리 설정으로 작동할 수 있지만 프로덕션 배포에는 권장되지 않습니다. 프로덕션 용도의 경우 기본적으로 각 Pod에 할당된 16Gi 미만이 있어야 하지만 Pod당 최대 64Gi까지 할당할 수도 있습니다.

절차

  1. Operators설치된 Operator로 이동합니다.
  2. Red Hat OpenShift Service Mesh Operator를 클릭합니다.
  3. Istio Service Mesh Control Plane 탭을 클릭합니다.
  4. 컨트롤 플레인 파일의 이름을 클릭합니다(예: basic-install).
  5. YAML 탭을 클릭합니다.
  6. Jaeger 매개변수를 편집하여, 기본 all-in-one 템플릿을 사용 사례에 맞게 수정한 production-elasticsearch 템플릿의 매개변수로 바꿉니다. 들여쓰기가 올바른지 확인합니다.
  7. 저장을 클릭합니다.
  8. 새로 고침을 클릭합니다.

2.10.5.2. 기존 Jaeger 인스턴스에 연결

SMCP가 기존 Jaeger 인스턴스에 연결하려면 다음이 true여야 합니다.

  • Jaeger 인스턴스는 컨트롤 플레인과 동일한 네임스페이스에 배포됩니다(예: istio-system 네임스페이스).
  • 서비스 간에 보안 통신을 활성화하려면, Jaeger 인스턴스에 대한 통신을 보호하는 oauth-proxy를 활성화하고 Kiali와 통신할 수 있도록 시크릿이 Jaeger 인스턴스에 마운트되었는지 확인해야 합니다.
  • 사용자 지정 또는 이미 존재하는 Jaeger 인스턴스를 사용하려면 spec.istio.tracing.enabled를 “false”로 설정하여 Jaeger 인스턴스 배포를 비활성화합니다.
  • spec.istio.global.tracer.zipkin.address를 jaeger-collector 서비스의 호스트 이름 및 포트로 설정하여 정확한 jaeger-collector 끝점을 Mixer에 제공합니다. 서비스의 호스트 이름은 일반적으로 <jaeger-instance-name>-collector.<namespace>.svc.cluster.local입니다.
  • spec.istio.kiali.jaegerInClusterURL을 jaeger-query 서비스의 호스트 이름으로 설정하여 추적 수집에 올바른 Jaeger-query 끝점을 Kiali에 제공합니다. 기본적으로 포트는 443을 사용하므로 일반적으로 필요하지 않습니다. 서비스의 호스트 이름은 일반적으로 <jaeger-instance-name>-query.<namespace>.svc.cluster.local입니다.
  • Kiali 콘솔을 통해 Jaeger에 액세스할 수 있도록 Kiali에 Jaeger 인스턴스의 대시보드 URL을 제공하십시오. Jaeger Operator가 생성한 OpenShift 경로에서 URL을 검색할 수 있습니다. Jaeger 리소스를 external-jaeger라고 하고 istio-system 프로젝트에 있는 경우, 다음 명령을 사용하여 경로를 검색할 수 있습니다.

    $ oc get route -n istio-system external-jaeger

    출력 예

    NAME                   HOST/PORT                                     PATH   SERVICES               [...]
    external-jaeger        external-jaeger-istio-system.apps.test        external-jaeger-query  [...]

    HOST/PORT 아래의 값은 Jaeger 대시보드의 외부 액세스 URL입니다.

Jaeger 리소스 예

apiVersion: jaegertracing.io/v1
kind: "Jaeger"
metadata:
  name: "external-jaeger"
  # Deploy to the Control Plane Namespace
  namespace: istio-system
spec:
  # Set Up Authentication
  ingress:
    enabled: true
    security: oauth-proxy
    openshift:
      # This limits user access to the Jaeger instance to users who have access
      # to the control plane namespace. Make sure to set the correct namespace here
      sar: '{"namespace": "istio-system", "resource": "pods", "verb": "get"}'
      htpasswdFile: /etc/proxy/htpasswd/auth

  volumeMounts:
  - name: secret-htpasswd
    mountPath: /etc/proxy/htpasswd
  volumes:
  - name: secret-htpasswd
    secret:
      secretName: htpasswd

다음 ServiceMeshControlPlane 예는 Jaeger Operator 및 Jaeger 리소스 예제를 사용하여 Jaeger를 배포했다고 가정합니다.

외부 Jaeger가 있는 ServiceMeshControlPlane

apiVersion: maistra.io/v1
kind: ServiceMeshControlPlane
metadata:
  name: external-jaeger
  namespace: istio-system
spec:
  version: v1.1
  istio:
    tracing:
      # Disable Jaeger deployment by service mesh operator
      enabled: false
    global:
      tracer:
        zipkin:
          # Set Endpoint for Trace Collection
          address: external-jaeger-collector.istio-system.svc.cluster.local:9411
    kiali:
      # Set Jaeger dashboard URL
      dashboard:
        jaegerURL: https://external-jaeger-istio-system.apps.test
      # Set Endpoint for Trace Querying
      jaegerInClusterURL: external-jaeger-query.istio-system.svc.cluster.local

2.10.5.3. Elasticsearch 구성

기본 Jaeger 배포 전략에서는 최소한의 리소스를 사용하여 설치를 완료할 수 있도록 all-in-one 템플릿을 사용합니다. 하지만 all-in-one 템플릿은 메모리 내 스토리지를 사용하므로 개발, 데모 또는 테스트 목적으로만 권장되며 프로덕션 환경에 사용해서는 안 됩니다.

프로덕션 환경에서 서비스 메시와 Jaeger를 배포하는 경우, 템플릿을 Jaeger의 스토리지 요건에 Elasticsearch를 사용하는 production-elasticsearch 템플릿으로 변경해야 합니다.

Elasticsearch는 메모리를 많이 사용하는 애플리케이션입니다. 유효한 CPU 및 메모리값으로 리소스 블록을 수정하여 각 구성 요소의 CPU 및 메모리 제한을 모두 조정할 수 있습니다. 권장 메모리 양, 또는 그 이상으로 실행하려는 경우 클러스터에 추가 노드를 추가해야 합니다.

Elasticsearch를 사용하는 기본 "production" Jaeger 매개변수

apiVersion: maistra.io/v1
kind: ServiceMeshControlPlane
spec:
  istio:
    tracing:
    enabled: true
    ingress:
      enabled: true
    jaeger:
      template: production-elasticsearch
      elasticsearch:
        nodeCount: 3
        redundancyPolicy:
        resources:
          requests:
            cpu: "1"
            memory: "16Gi"
          limits:
            cpu: "1"
            memory: "16Gi"

표 2.13. Elasticsearch 매개변수

매개변수설명기본값
tracing:
  enabled:

이 매개변수는 서비스 메시에서 추적을 활성화/비활성화합니다. Jaeger는 기본적으로 설치되어 있습니다.

true/false

true

 
ingress:
  enabled:

이 매개변수는 Jaeger에 대해 수신을 활성화/비활성화합니다.

true/false

true

 
jaeger:
   template:

이 매개변수는 사용할 Jaeger 배포 전략을 지정합니다.

all-in-one/production-elasticsearch

all-in-one

 
elasticsearch:
  nodeCount:

생성할 Elasticsearch 노드 수입니다.

정수 값.

1

개념 증명 = 1, 최소 배포 = 3

requests:
  cpu:

사용자 환경 구성에 따른 요청에 대한 중앙 처리 단위 수입니다.

코어 또는 밀리코어(예: 200m, 0.5, 1)에 지정되어 있습니다.

1Gi

개념 증명 = 500m, 최소 배포 = 1

requests:
  memory:

환경 구성에 따른 요청에 사용 가능한 메모리입니다.

바이트로 지정됩니다(예: 200Ki, 50Mi, 5Gi).

500m

개념 증명 = 1Gi, 최소 배포 = 16Gi*

limits:
  cpu:

사용자 환경 구성에 따른 중앙 처리 장치 수에 대한 제한입니다.

코어 또는 밀리코어(예: 200m, 0.5, 1)에 지정되어 있습니다.

 

개념 증명 = 500m, 최소 배포 = 1

limits:
  memory:

사용자 환경 구성에 따라 사용 가능한 메모리 제한입니다.

바이트로 지정됩니다(예: 200Ki, 50Mi, 5Gi).

 

개념 증명 = 1Gi, 최소 배포 = 16Gi*

각 Elasticsearch 노드는 더 낮은 메모리 설정으로 작동할 수 있지만 프로덕션 배포에는 권장되지 않습니다. 프로덕션 용도의 경우 기본적으로 각 Pod에 할당된 16Gi 미만이 있어야 하지만 Pod당 최대 64Gi까지 할당할 수도 있습니다.

절차

  1. Operators설치된 Operator로 이동합니다.
  2. Red Hat OpenShift Service Mesh Operator를 클릭합니다.
  3. Istio Service Mesh Control Plane 탭을 클릭합니다.
  4. 컨트롤 플레인 파일의 이름을 클릭합니다(예: basic-install).
  5. YAML 탭을 클릭합니다.
  6. Jaeger 매개변수를 편집하여, 기본 all-in-one 템플릿을 사용 사례에 맞게 수정한 production-elasticsearch 템플릿의 매개변수로 바꿉니다. 들여쓰기가 올바른지 확인합니다.
  7. 저장을 클릭합니다.
  8. 새로 고침을 클릭합니다.

2.10.5.4. Elasticsearch 인덱스 정리 작업 구성

Service Mesh Operator가 ServiceMeshControlPlane을 생성할 때 Jaeger에 대한 사용자 정의 리소스(CR)도 생성합니다.

Elasticsearch 스토리지를 사용하는 경우 기본적으로 오래된 추적을 정리하는 작업이 생성됩니다. 이 작업에 대한 옵션을 설정하려면 Jaeger 사용자 정의 리소스(CR)를 편집하여 사용 사례에 맞게 사용자 지정할 수 있습니다. 관련 옵션은 아래에 나열되어 있습니다.

  apiVersion: jaegertracing.io/v1
  kind: Jaeger
  spec:
    strategy: production
    storage:
      type: elasticsearch
      esIndexCleaner:
        enabled: false
        numberOfDays: 7
        schedule: "55 23 * * *"

표 2.14. Elasticsearch 인덱스 정리 매개변수

매개변수설명

활성화됨:

true/ false

인덱스 정리 작업을 활성화하거나 비활성화합니다.

numberOfDays:

정수 값

인덱스를 삭제하기 전에 대기하는 날의 수입니다.

schedule:

"55 23 * * *"

실행할 작업의 Cron 표현식

2.10.6. 3scale 구성

다음 표는 ServiceMeshControlPlane 리소스의 3scale Istio 어댑터에 대한 매개변수를 설명합니다

3scale 매개변수 예

spec:
  addons:
    3Scale:
      enabled: false
      PARAM_THREESCALE_LISTEN_ADDR: 3333
      PARAM_THREESCALE_LOG_LEVEL: info
      PARAM_THREESCALE_LOG_JSON: true
      PARAM_THREESCALE_LOG_GRPC: false
      PARAM_THREESCALE_REPORT_METRICS: true
      PARAM_THREESCALE_METRICS_PORT: 8080
      PARAM_THREESCALE_CACHE_TTL_SECONDS: 300
      PARAM_THREESCALE_CACHE_REFRESH_SECONDS: 180
      PARAM_THREESCALE_CACHE_ENTRIES_MAX: 1000
      PARAM_THREESCALE_CACHE_REFRESH_RETRIES: 1
      PARAM_THREESCALE_ALLOW_INSECURE_CONN: false
      PARAM_THREESCALE_CLIENT_TIMEOUT_SECONDS: 10
      PARAM_THREESCALE_GRPC_CONN_MAX_SECONDS: 60
      PARAM_USE_CACHED_BACKEND: false
      PARAM_BACKEND_CACHE_FLUSH_INTERVAL_SECONDS: 15
      PARAM_BACKEND_CACHE_POLICY_FAIL_CLOSED: true

표 2.15. 3scale 매개변수

매개변수설명기본값

enabled

3scale 어댑터 사용 여부

true/false

false

PARAM_THREESCALE_LISTEN_ADDR

gRPC 서버의 수신 주소를 설정

유효한 포트 번호

3333

PARAM_THREESCALE_LOG_LEVEL

최소 로그 출력 수준을 설정합니다.

debug, info, warn, error 또는 none

info

PARAM_THREESCALE_LOG_JSON

로그 형식이 JSON인지 여부를 제어

true/false

true

PARAM_THREESCALE_LOG_GRPC

로그에 gRPC 정보가 포함되었는지 여부를 제어

true/false

true

PARAM_THREESCALE_REPORT_METRICS

3scale 시스템 및 백엔드 지표가 수집되어 Prometheus에 보고되는지 제어

true/false

true

PARAM_THREESCALE_METRICS_PORT

3scale /metrics 끝점을 스크랩할 수 있는 포트를 설정

유효한 포트 번호

8080

PARAM_THREESCALE_CACHE_TTL_SECONDS

캐시에서 만료된 항목을 제거하기 전에 대기하는 시간(초)

시간(초)

300

PARAM_THREESCALE_CACHE_REFRESH_SECONDS

캐시 요소를 새로 고침하려고 할 때 만료되기 전 시간

시간(초)

180

PARAM_THREESCALE_CACHE_ENTRIES_MAX

언제든지 캐시에 저장할 수 있는 항목의 최대 수. 캐싱을 비활성화하려면 0으로 설정합니다.

유효한 번호

1000

PARAM_THREESCALE_CACHE_REFRESH_RETRIES

캐시 업데이트 루프 중에 연결할 수 없는 호스트가 재시도되는 횟수

유효한 번호

1

PARAM_THREESCALE_ALLOW_INSECURE_CONN

3scale API를 호출할 때 인증서 확인을 건너뛸 수 있습니다. 이 설정 사용은 권장되지 않습니다.

true/false

false

PARAM_THREESCALE_CLIENT_TIMEOUT_SECONDS

3scale System 및 백엔드에 대한 요청을 종료하기 전 대기하는 시간(초)을 설정합니다.

시간(초)

10

PARAM_THREESCALE_GRPC_CONN_MAX_SECONDS

연결이 닫히기 전에 연결할 수 있는 최대 시간(초)(+/-10% jitter)을 설정합니다.

시간(초)

60

PARAM_USE_CACHE_BACKEND

true인 경우, 권한 부여 요청에 대해 메모리 내 apisonator 캐시를 생성합니다.

true/false

false

PARAM_BACKEND_CACHE_FLUSH_INTERVAL_SECONDS

백엔드 캐시가 활성화된 경우 3scale에 대해 캐시를 플러싱하는 간격(초)을 설정합니다.

시간(초)

15

PARAM_BACKEND_CACHE_POLICY_FAIL_CLOSED

백엔드 캐시가 권한 부여 데이터를 검색할 수 없을 때마다 요청을 거부(닫기)할지, 허용할지(열기) 여부

true/false

true

2.11. 3scale Istio 어댑터 사용

주의

3scale Istio Adapter는 Red Hat OpenShift Service Mesh 내에서 실행되는 서비스에 레이블을 지정하고 해당 서비스를 3scale API 관리 솔루션과 통합할 수 있는 선택적 어댑터입니다. Red Hat OpenShift Service Mesh에는 필요하지 않습니다.

2.11.1. Red Hat OpenShift Service Mesh와 3scale 어댑터 통합

이러한 예제를 사용하여 3scale Istio 어댑터로 서비스에 대한 요청을 구성할 수 있습니다.

사전 요구 사항

  • Red Hat OpenShift Service Mesh 버전 1.x
  • 작업 중인 3scale 계정(SaaS 또는 3scale 2.5 on-Premises)
  • 백엔드 캐시를 활성화하려면 3scale 2.9 이상 필요
  • Red Hat OpenShift Service Mesh 사전 요구 사항
참고

3scale Istio Adapter를 구성하려면 사용자 정의 리소스 파일에 어댑터 매개변수를 추가하는 방법에 대한 Red Hat OpenShift Service Mesh 사용자 정의 리소스를 참조하십시오.

참고

특히 kind: handler 리소스에 주의하십시오. 3scale 계정 인증 정보로 업데이트해야 합니다. 선택적으로 service_id를 처리기에 추가할 수 있지만 3scale 계정의 하나의 서비스에만 처리기를 렌더링하므로 이전 버전과의 호환성을 위해서만 유지됩니다. service_id를 처리기에 추가하는 경우 다른 서비스에 3scale을 활성화하려면 다른 service_ids로 더 많은 처리기를 생성해야 합니다.

아래 단계에 따라 3scale 계정당 단일 처리기를 사용합니다.

절차

  1. 3scale 계정에 대한 처리기를 생성하고 계정 인증 정보를 지정합니다. 서비스 식별자를 생략합니다.

      apiVersion: "config.istio.io/v1alpha2"
      kind: handler
      metadata:
       name: threescale
      spec:
       adapter: threescale
       params:
         system_url: "https://<organization>-admin.3scale.net/"
         access_token: "<ACCESS_TOKEN>"
       connection:
         address: "threescale-istio-adapter:3333"

    필요한 경우, 3scale 구성에서 제공하는 URL을 재정의하기 위해 params 섹션에 backend_url 필드를 제공할 수 있습니다. 어댑터가 3scale 온프레미스 인스턴스와 동일한 클러스터에서 실행되고 내부 클러스터 DNS를 사용하려는 경우 유용할 수 있습니다.

  2. 다음과 같이 3scale 계정에 속하는 서비스의 배포 리소스를 편집하거나 패치합니다.

    1. 유효한 service_id에 해당하는 값을 사용하여 "service-mesh.3scale.net/service-id" 레이블을 추가합니다.
    2. 1단계에서 처리기 리소스의 이름이 값이 되도록 "service-mesh.3scale.net/credentials" 레이블을 추가합니다.
  3. 더 많은 서비스를 추가하려는 경우 2단계를 수행하여 3scale 계정 인증 정보 및 서비스 식별자에 연결합니다.
  4. 3scale 구성으로 규칙 구성을 수정하여 3scale 처리기에 규칙을 전송합니다.

    규칙 구성 예

      apiVersion: "config.istio.io/v1alpha2"
      kind: rule
      metadata:
        name: threescale
      spec:
        match: destination.labels["service-mesh.3scale.net"] == "true"
        actions:
          - handler: threescale.handler
            instances:
              - threescale-authorization.instance

2.11.1.1. 3scale 사용자 정의 리소스 생성

어댑터에는 handler, instance, rule 사용자 정의 리소스를 생성할 수 있는 도구가 포함되어 있습니다.

표 2.16. 사용법

옵션설명필수 항목기본값

-h, --help

사용 가능한 옵션에 대한 도움말 출력 생성

아니요

 

--name

이 URL의 고유 이름, 토큰 쌍

 

-n, --namespace

템플릿을 생성할 네임스페이스

아니요

istio-system

-t, --token

3scale 액세스 토큰

 

-u, --url

3scale 관리자 포털 URL

 

--backend-url

3scale 백엔드 URL. 설정하면 시스템 설정에서 읽은 값을 재정의합니다.

아니요

 

-s, --service

3scale API/서비스 ID

아니요

 

--auth

지정을 위한 3scale 인증 패턴(1=API Key, 2=App Id/App Key, 3=OIDC)

아니요

하이브리드

-o, --output

생성된 매니페스트를 저장할 파일

아니요

표준 출력

--version

CLI 버전을 출력하고 즉시 종료합니다.

아니요

 
2.11.1.1.1. URL 예제에서 템플릿 생성
참고
  • 배포된 어댑터에서 매니페스트 생성에 있는 3scale 어댑터 컨테이너 이미지에서 oc exec를 통해 다음 명령을 실행합니다.
  • 3scale-config-gen 명령을 사용하여 YAML 구문 및 들여쓰기 오류를 방지할 수 있습니다.
  • 주석을 사용하는 경우 --service를 생략할 수 있습니다.
  • 이 명령은 oc exec를 통해 컨테이너 이미지 내에서 호출해야 합니다.

절차

  • 3scale-config-gen 명령을 사용하여 토큰, URL 쌍을 단일 처리기로 여러 서비스에서 공유할 수 있도록 템플릿 파일을 자동 생성합니다.

    $ 3scale-config-gen --name=admin-credentials --url="https://<organization>-admin.3scale.net:443" --token="[redacted]"
  • 다음 예제에서는 처리기에 포함된 서비스 ID로 템플릿을 생성합니다.

    $ 3scale-config-gen --url="https://<organization>-admin.3scale.net" --name="my-unique-id" --service="123456789" --token="[redacted]"

추가 리소스

2.11.1.2. 배포된 어댑터에서 매니페스트 생성

참고
  • NAME은 3scale로 관리 중인 서비스와 식별하는 데 사용하는 식별자입니다.
  • CREDENTIALS_NAME 참조는 규칙 구성의 match 섹션에 해당하는 식별자입니다. CLI 툴을 사용하는 경우 NAME 식별자로 자동 설정됩니다.
  • 해당 값은 특정할 필요가 없습니다. 레이블 값은 규칙의 내용과 일치해야 합니다. 자세한 정보는 어댑터를 통한 서비스 트래픽 라우팅을 참조하십시오.
  1. 이 명령을 실행하여 istio-system 네임스페이스의 배포된 어댑터에서 매니페스트를 생성합니다.

    $ export NS="istio-system" URL="https://replaceme-admin.3scale.net:443" NAME="name" TOKEN="token"
    oc exec -n ${NS} $(oc get po -n ${NS} -o jsonpath='{.items[?(@.metadata.labels.app=="3scale-istio-adapter")].metadata.name}') \
    -it -- ./3scale-config-gen \
    --url ${URL} --name ${NAME} --token ${TOKEN} -n ${NS}
  2. 터미널에 샘플 출력이 생성됩니다. 필요한 경우 이러한 샘플을 편집하고 oc create 명령을 사용하여 오브젝트를 생성합니다.
  3. 요청이 어댑터에 도달하면 어댑터는 서비스가 3scale의 API에 매핑되는 방식을 알아야 합니다. 다음 두 가지 방법으로 이러한 정보를 제공할 수 있습니다.

    1. 워크로드에 레이블 지장(권장)
    2. 처리기를 service_id로 하드 코딩
  4. 필요한 주석으로 워크로드를 업데이트합니다.

    참고

    처리기에 아직 포함되지 않은 경우, 이 예제에 제공된 서비스 ID만 업데이트해야 합니다. 처리기의 설정이 우선합니다.

    $ export CREDENTIALS_NAME="replace-me"
    export SERVICE_ID="replace-me"
    export DEPLOYMENT="replace-me"
    patch="$(oc get deployment "${DEPLOYMENT}"
    patch="$(oc get deployment "${DEPLOYMENT}" --template='{"spec":{"template":{"metadata":{"labels":{ {{ range $k,$v := .spec.template.metadata.labels }}"{{ $k }}":"{{ $v }}",{{ end }}"service-mesh.3scale.net/service-id":"'"${SERVICE_ID}"'","service-mesh.3scale.net/credentials":"'"${CREDENTIALS_NAME}"'"}}}}}' )"
    oc patch deployment "${DEPLOYMENT}" --patch ''"${patch}"''

2.11.1.3. 어댑터를 통한 서비스 트래픽 라우팅

3scale 어댑터를 통해 서비스 트래픽을 유도하려면 다음 단계를 따르십시오.

사전 요구 사항

  • 3scale 관리자의 인증 정보 및 서비스 ID

프로세스

  1. kind: rule 리소스의 구성에서 이전에 생성한 destination.labels["service-mesh.3scale.net/credentials"] == "threescale" 규칙과 일치합니다.
  2. 서비스를 통합하기 위해 대상 워크로드 배포에서 위의 레이블을 PodTemplateSpec에 추가합니다. threescale 값은 생성된 처리기의 이름을 나타냅니다. 이 처리기에서는 3scale를 호출하는 데 필요한 액세스 토큰을 저장합니다.
  3. destination.labels["service-mesh.3scale.net/service-id"] == "replace-me" 레이블을 워크로드에 추가하여 요청 시 인스턴스를 통해 서비스 ID를 어댑터에 전달합니다.

2.11.2. 3scale로 통합 설정 구성

3scale 통합 설정을 구성하려면 다음 절차를 따르십시오.

참고

3scale SaaS 고객의 경우, Red Hat OpenShift Service Mesh는 조Early Access 프로그램의 일부로 활성화됩니다.

절차

  1. [your_API_name]통합으로 이동합니다.
  2. 설정을 클릭합니다.
  3. 배포에서 Istio 옵션을 선택합니다.

    • 인증에서 API Key (user_key) 옵션은 기본적으로 선택됩니다.
  4. 제품 업데이트를 클릭하여 선택 사항을 저장합니다.
  5. 설정을 클릭합니다.
  6. 구성 업데이트를 클릭합니다.

2.11.3. 캐싱 동작

3scale System API의 응답은 기본적으로 어댑터 내에서 캐시됩니다. 항목이 cacheTTLSeconds 값보다 오래되면 캐시에서 제거됩니다. 또한 기본적으로 캐시된 항목의 자동 새로 고침은 cacheRefreshSeconds 값에 따라 만료되기 몇 초 전에 시도됩니다. 이 값을 cacheTTLSeconds 값보다 높게 설정하여 자동 새로 고침을 비활성화할 수 있습니다.

cacheEntriesMax를 양수가 아닌 값으로 설정하여 캐싱을 완전히 비활성화할 수 있습니다.

새로 고침 프로세스를 사용하면 호스트가 연결할 수 없는 캐시된 값은 만료가 지나면 제거되기 전에 다시 시도됩니다.

2.11.4. 요청 인증

이 릴리스에서는 다음 인증 방법을 지원합니다.

  • 표준 API 키: 식별자와 시크릿 토큰으로 작동하는 임의의 단일 문자열 또는 해시입니다.
  • 애플리케이션 식별자 및 키 쌍: 변경 불가능한 식별자 및 변경 가능한 시크릿 키 문자열입니다.
  • OpenID 인증 방법: JSON 웹 토큰에서 구문 분석된 클라이언트 ID 문자열입니다.

2.11.4.1. 인증 패턴 적용

인증 동작을 구성하려면 다음 인증 방법 예제에 설명된 인스턴스 사용자 정의 리소스를 수정합니다. 다음에서 인증 자격 증명을 허용할 수 있습니다.

  • 요청 헤더
  • 요청 매개변수
  • 요청 헤더 및 쿼리 매개변수 둘 다
참고

헤더에서 값을 지정하는 경우 소문자여야 합니다. 예를 들어 User-Key로 헤더를 보내려면 구성에서 request.headers["user-key"]로 참조되어야 합니다.

2.11.4.1.1. API 키 인증 방법

서비스 메시는 subject 사용자 정의 리소스 매개변수의 user 옵션에 지정된 대로 쿼리 매개변수 및 요청 헤더에서 API 키를 찾습니다. 사용자 정의 리소스 파일에 지정된 순서로 값을 확인합니다. 원하지 않는 옵션을 생략하여 API 키 검색을 쿼리 매개변수 또는 요청 헤더로 제한할 수 있습니다.

이 예에서 서비스 메시는 user_key 쿼리 매개변수에서 API 키를 찾습니다. API 키가 쿼리 매개변수에 없으면 서비스 메시가 user-key 헤더를 확인합니다.

API 키 인증 방법 예

apiVersion: "config.istio.io/v1alpha2"
kind: instance
metadata:
  name: threescale-authorization
  namespace: istio-system
spec:
  template: authorization
  params:
    subject:
      user: request.query_params["user_key"] | request.headers["user-key"] | ""
    action:
      path: request.url_path
      method: request.method | "get"

어댑터가 다른 쿼리 매개변수 또는 요청 헤더를 검사하도록 하려면 이름을 적절하게 변경합니다. 예를 들어 "key"라는 쿼리 매개변수에서 API 키를 확인하려면 request.query_params["user_key"]request.query_params["key"]로 변경합니다.

2.11.4.1.2. 애플리케이션 ID 및 애플리케이션 키 쌍 인증 방법

서비스 메시는 subject 사용자 정의 리소스 매개변수의 properties 옵션에 지정된 대로 쿼리 매개변수 및 요청 헤더에서 애플리케이션 ID와 애플리케이션 키를 찾습니다. 애플리케이션 키는 선택 사항입니다. 사용자 정의 리소스 파일에 지정된 순서로 값을 확인합니다. 원하지 않는 옵션을 제외하여 자격 증명 검색을 쿼리 매개변수 또는 요청 헤더로 제한할 수 있습니다.

이 예에서 서비스 메시는 쿼리 매개변수의 애플리케이션 ID 및 애플리케이션 키를 먼저 찾고 필요한 경우 요청 헤더로 이동합니다.

애플리케이션 ID 및 애플리케이션 키 쌍 인증 방법 예

apiVersion: "config.istio.io/v1alpha2"
kind: instance
metadata:
  name: threescale-authorization
  namespace: istio-system
spec:
  template: authorization
  params:
    subject:
        app_id: request.query_params["app_id"] | request.headers["app-id"] | ""
        app_key: request.query_params["app_key"] | request.headers["app-key"] | ""
    action:
      path: request.url_path
      method: request.method | "get"

어댑터가 다른 쿼리 매개변수 또는 요청 헤더를 검사하도록 하려면 이름을 적절하게 변경합니다. 예를 들어, identification라는 쿼리 매개변수의 애플리케이션 ID를 확인하려면 request.query_params["app_id"]request.query_params["identification"]로 변경합니다.

2.11.4.1.3. OpenID 인증 방법

OIDC(OpenID Connect) 인증 방법을 사용하려면 subject 필드에서 properties 값을 사용하여 client_id 또는 필요한 경우 app_key로 설정할 수 있습니다.

이전에 설명된 방법을 사용하여 이 오브젝트를 조작할 수 있습니다. 아래 설정 예에서 클라이언트 식별자(애플리케이션 ID)는 azp 레이블 아래에 있는 JSON 웹 토큰(JWT)에서 구문 분석됩니다. 필요에 따라 수정할 수 있습니다.

OpenID 인증 방법 예

apiVersion: "config.istio.io/v1alpha2"
kind: instance
metadata:
  name: threescale-authorization
spec:
  template: threescale-authorization
  params:
    subject:
      properties:
        app_key: request.query_params["app_key"] | request.headers["app-key"] | ""
        client_id: request.auth.claims["azp"] | ""
      action:
        path: request.url_path
        method: request.method | "get"
        service: destination.labels["service-mesh.3scale.net/service-id"] | ""

이 통합이 올바르게 작동하려면 클라이언트가 ID 공급자(IdP)에서 생성되도록 OIDC를 3scale에서 수행해야 합니다. 해당 서비스와 동일한 네임스페이스에서 보호하려는 서비스에 대해 요청 권한 부여를 생성해야 합니다. JWT는 요청의 Authorization 헤더로 전달됩니다.

아래에 정의된 샘플 RequestAuthentication에서 issuer, jwksUri, selector를 적절하게 대체합니다.

OpenID 정책 예

apiVersion: security.istio.io/v1beta1
kind: RequestAuthentication
metadata:
  name: jwt-example
  namespace: bookinfo
spec:
  selector:
    matchLabels:
      app: productpage
  jwtRules:
  - issuer: >-
      http://keycloak-keycloak.34.242.107.254.nip.io/auth/realms/3scale-keycloak
    jwksUri: >-
      http://keycloak-keycloak.34.242.107.254.nip.io/auth/realms/3scale-keycloak/protocol/openid-connect/certs

2.11.4.1.4. 하이브리드 인증 방법

특정 인증 방법을 적용하지 않도록 선택하고, 두 방법에 대해 유효한 자격 증명을 수락할 수 있습니다. API 키와 애플리케이션 ID/애플리케이션 키 쌍이 모두 제공되면 서비스 메시는 API 키를 사용합니다.

이 예제에서 서비스 메시는 쿼리 매개변수에서 API 키를 확인한 다음 요청 헤더를 확인합니다. API 키가 없는 경우 쿼리 매개변수에서 애플리케이션 ID와 키를 확인한 다음 요청 헤더를 확인합니다.

하이브리드 인증 방법 예

apiVersion: "config.istio.io/v1alpha2"
kind: instance
metadata:
  name: threescale-authorization
spec:
  template: authorization
  params:
    subject:
      user: request.query_params["user_key"] | request.headers["user-key"] |
      properties:
        app_id: request.query_params["app_id"] | request.headers["app-id"] | ""
        app_key: request.query_params["app_key"] | request.headers["app-key"] | ""
        client_id: request.auth.claims["azp"] | ""
    action:
      path: request.url_path
      method: request.method | "get"
      service: destination.labels["service-mesh.3scale.net/service-id"] | ""

2.11.5. 3scale Adapter 지표

기본적으로 어댑터는 /metrics 끝점의 포트 8080에서 공개되는 다양한 Prometheus 지표를 보고합니다. 이러한 지표는 어댑터와 3scale 간의 상호 작용 수행 방식에 대한 인사이트를 제공합니다. 이 서비스는 Prometheus에서 자동으로 검색 및 스크랩하도록 레이블이 지정됩니다.

2.11.6. 3scale Istio 어댑터 검증

3scale Istio 어댑터가 예상대로 작동하는지 확인해야 할 수 있습니다. 어댑터가 작동하지 않는 경우 다음 단계를 사용하여 문제를 해결합니다.

절차

  1. $ oc get pods -n <istio-system>
  2. 3scale-adapter Pod에서 버전과 같이 자체 부팅에 대한 정보를 출력했는지 확인합니다.

    $ oc logs <istio-system>
  3. 3scale 어댑터 통합으로 보호되는 서비스에 대한 요청을 수행할 때 항상 올바른 인증 정보가 없는 요청을 시도하여 실패하는지 확인합니다. 3scale 어댑터 로그를 확인하여 추가 정보를 수집합니다.

2.11.7. 3scale Istio 어댑터 문제 해결 체크리스트

3scale Istio 어댑터를 설치하는 관리자는 통합이 제대로 작동하지 않을 수 있는 여러 시나리오가 있습니다. 다음 목록을 사용하여 설치 문제를 해결합니다.

  • YAML 들여쓰기가 잘못되었습니다.
  • YAML 섹션이 누락되었습니다.
  • YAML 변경 사항을 클러스터에 적용하는 것을 잊어버렸습니다.
  • service-mesh.3scale.net/credentials 키를 사용하여 서비스 워크로드의 레이블을 지정하는 것을 잊어버렸습니다.
  • 서비스 워크로드에 service_id가 포함되지 않은 처리기를 사용할 때 service-mesh.3scale.net/service-id로 레이블을 지정하여 계정별로 재사용할 수 있도록 하는 것을 잊었버렸습니다.
  • Rule 사용자 지정 리소스는 잘못된 처리기 또는 인스턴스 사용자 지정 리소스를 가리키거나 참조에 해당 네임스페이스 접미사가 없습니다.
  • Rule 사용자 정의 리소스 match 섹션은 구성 중인 서비스와 일치하지 않거나 현재 실행 중이거나 존재하지 않는 대상 워크로드를 가리킵니다.
  • 처리기의 3scale 관리 포털의 잘못된 액세스 토큰 또는 URL입니다.
  • 인스턴스 사용자 정의 리소스의 params/subject/properties 섹션은 쿼리 매개 변수, 헤더 및 권한 부여 클레임과 같은 잘못된 위치를 지정하거나 매개 변수 이름이 테스트에 사용되는 요청과 일치하지 않기 때문에 app_id, app_key, 또는 client_id에 대한 올바른 매개 변수를 나열하지 못합니다.
  • 구성 생성기가 실제로 어댑터 컨테이너 이미지에 있고 oc exec 호출 해야 한다는 사실을 인식하지 못한 채 구성 생성기를 사용하지 못했습니다 .

2.12.

주의

2.12.1. Red Hat OpenShift Service Mesh Control Plane 제거

2.12.1.1.

웹 콘솔을 사용하여 Red Hat OpenShift Service Mesh Control Plane을 제거할 수 있습니다.

절차

  1. Operators설치된 Operator로 이동합니다.
  2. 제공된 API에서 Service Mesh Control Plane을 클릭합니다.
  3. ServiceMeshControlPlane 메뉴 kebab 를 클릭합니다.
  4. Service Mesh Control Plane 삭제를 클릭합니다.
  5. 확인 대화 상자에서 삭제를 클릭하여 ServiceMeshControlPlane을 삭제합니다.

2.12.1.2.

CLI를 사용하여 Red Hat OpenShift Service Mesh Control Plane을 제거할 수 있습니다. 이 예제에서 istio-system은 컨트롤 플레인 프로젝트의 이름입니다.

절차

  1. $ oc delete smmr -n istio-system default
  2. 이 명령을 실행하여 설치된 ServiceMeshControlPlane의 이름을 검색합니다.

    $ oc get smcp -n istio-system
  3. <name_of_custom_resource>을 이전 명령의 출력으로 바꾸고, 이 명령을 실행하여 사용자 정의 리소스를 삭제합니다.

    $ oc delete smcp -n istio-system <name_of_custom_resource>

2.12.2. 설치된 Operator 제거

Red Hat OpenShift Service Mesh를 성공적으로 제거하려면 Operator를 제거해야 합니다.

2.12.2.1. Operator 제거

Red Hat OpenShift Service Mesh를 구성하는 Operator를 제거하려면 다음 절차를 따르십시오. 다음 각 Operator에 대해 단계를 반복합니다.

  • Red Hat OpenShift Service Mesh
  • Kiali
  • OpenShift Elasticsearch

절차

  1. Operator설치된 Operator 페이지에서 스크롤하거나 이름별 필터링에 키워드를 입력하여 각 Operator를 찾습니다. 그런 다음 Operator 이름을 클릭합니다.
  2. Operator 상세 정보 페이지의 작업 메뉴에서 Operator 제거를 선택합니다. 프롬프트에 따라 각 Operator를 제거합니다.

2.12.2.2. Operator 리소스 정리

사전 요구 사항

  • 클러스터 관리 권한이 있는 계정.
  • OpenShift CLI(oc)에 액세스합니다.

절차

  1. Operator를 제거한 후 다음 명령을 실행하여 리소스를 정리합니다. 서비스 메시 없이 Jaeger를 독립형 서비스로 계속 사용하려면 Jaeger 리소스를 삭제하지 마십시오.

    참고

    Operator는 기본적으로 openshift-operators 네임스페이스에 설치됩니다. 다른 네임스페이스에 Operators를 설치한 경우openshift-operators를 Red Hat OpenShift Service Mesh Operator가 설치된 프로젝트의 이름으로 교체합니다.

    $ oc delete validatingwebhookconfiguration/openshift-operators.servicemesh-resources.maistra.io
    $ oc delete mutatingwebhookconfiguration/openshift-operators.servicemesh-resources.maistra.io
    $ oc delete -n openshift-operators daemonset/istio-node
    $ oc delete clusterrole/istio-admin clusterrole/istio-cni clusterrolebinding/istio-cni
    $ oc delete clusterrole istio-view istio-edit
    $ oc delete clusterrole jaegers.jaegertracing.io-v1-admin jaegers.jaegertracing.io-v1-crdview jaegers.jaegertracing.io-v1-edit jaegers.jaegertracing.io-v1-view
    $ oc get crds -o name | grep '.*\.istio\.io' | xargs -r -n 1 oc delete
    $ oc get crds -o name | grep '.*\.maistra\.io' | xargs -r -n 1 oc delete
    $ oc get crds -o name | grep '.*\.kiali\.io' | xargs -r -n 1 oc delete
    $ oc delete crds jaegers.jaegertracing.io
    $ oc delete svc admission-controller -n <operator-project>
    $ oc delete project <istio-system-project>