Chapter 19. Using PTP hardware

19.1. About PTP in OpenShift Container Platform cluster nodes

Precision Time Protocol (PTP) is used to synchronize clocks in a network. When used in conjunction with hardware support, PTP is capable of sub-microsecond accuracy, and is more accurate than Network Time Protocol (NTP).

You can configure linuxptp services and use PTP-capable hardware in OpenShift Container Platform cluster nodes.

Use the OpenShift Container Platform web console or OpenShift CLI (oc) to install PTP by deploying the PTP Operator. The PTP Operator creates and manages the linuxptp services and provides the following features:

  • Discovery of the PTP-capable devices in the cluster.
  • Management of the configuration of linuxptp services.
  • Notification of PTP clock events that negatively affect the performance and reliability of your application with the PTP Operator cloud-event-proxy sidecar.
Note

The PTP Operator works with PTP-capable devices on clusters provisioned only on bare-metal infrastructure.

19.1.1. Elements of a PTP domain

PTP is used to synchronize multiple nodes connected in a network, with clocks for each node. The clocks synchronized by PTP are organized in a leader-follower hierarchy. The hierarchy is created and updated automatically by the best master clock (BMC) algorithm, which runs on every clock. Follower clocks are synchronized to leader clocks, and follower clocks can themselves be the source for other downstream clocks.

Figure 19.1. PTP nodes in the network

Diagram showing a PTP grandmaster clock

The three primary types of PTP clocks are described below.

Grandmaster clock
The grandmaster clock provides standard time information to other clocks across the network and ensures accurate and stable synchronisation. It writes time stamps and responds to time requests from other clocks. Grandmaster clocks synchronize to a Global Navigation Satellite System (GNSS) time source. The Grandmaster clock is the authoritative source of time in the network and is responsible for providing time synchronization to all other devices.
Boundary clock
The boundary clock has ports in two or more communication paths and can be a source and a destination to other destination clocks at the same time. The boundary clock works as a destination clock upstream. The destination clock receives the timing message, adjusts for delay, and then creates a new source time signal to pass down the network. The boundary clock produces a new timing packet that is still correctly synced with the source clock and can reduce the number of connected devices reporting directly to the source clock.
Ordinary clock
The ordinary clock has a single port connection that can play the role of source or destination clock, depending on its position in the network. The ordinary clock can read and write timestamps.
Advantages of PTP over NTP

One of the main advantages that PTP has over NTP is the hardware support present in various network interface controllers (NIC) and network switches. The specialized hardware allows PTP to account for delays in message transfer and improves the accuracy of time synchronization. To achieve the best possible accuracy, it is recommended that all networking components between PTP clocks are PTP hardware enabled.

Hardware-based PTP provides optimal accuracy, since the NIC can timestamp the PTP packets at the exact moment they are sent and received. Compare this to software-based PTP, which requires additional processing of the PTP packets by the operating system.

Important

Before enabling PTP, ensure that NTP is disabled for the required nodes. You can disable the chrony time service (chronyd) using a MachineConfig custom resource. For more information, see Disabling chrony time service.

19.1.2. Using dual Intel E810 NIC hardware with PTP

OpenShift Container Platform supports single and dual NIC Intel E810 hardware for precision PTP timing in grandmaster clocks (T-GM) and boundary clocks (T-BC).

Dual NIC grandmaster clock

You can use a cluster host that has dual NIC hardware as PTP grandmaster clock. One NIC receives timing information from the global navigation satellite system (GNSS). The second NIC receives the timing information from the first using the SMA1 Tx/Rx connections on the E810 NIC faceplate. The system clock on the cluster host is synchronized from the NIC that is connected to the GNSS satellite.

Dual NIC grandmaster clocks are a feature of distributed RAN (D-RAN) configurations where the Remote Radio Unit (RRU) and Baseband Unit (BBU) are located at the same radio cell site. D-RAN distributes radio functions across multiple sites, with backhaul connections linking them to the core network.

Figure 19.2. Dual NIC grandmaster clock

Dual NIC PTP grandmaster clock connected to GNSS timing source and downstream PTP boundary and ordinary clocks
Note

In a dual NIC T-GM configuration, a single ts2phc process reports as two ts2phc instances in the system.

Dual NIC boundary clock

For 5G telco networks that deliver mid-band spectrum coverage, each virtual distributed unit (vDU) requires connections to 6 radio units (RUs). To make these connections, each vDU host requires 2 NICs configured as boundary clocks.

Dual NIC hardware allows you to connect each NIC to the same upstream leader clock with separate ptp4l instances for each NIC feeding the downstream clocks.

19.1.3. Overview of linuxptp and gpsd in OpenShift Container Platform nodes

OpenShift Container Platform uses the PTP Operator with linuxptp and gpsd packages for high precision network synchronization. The linuxptp package provides tools and daemons for PTP timing in networks. Cluster hosts with Global Navigation Satellite System (GNSS) capable NICs use gpsd to interface with GNSS clock sources.

The linuxptp package includes the ts2phc, pmc, ptp4l, and phc2sys programs for system clock synchronization.

ts2phc

ts2phc synchronizes the PTP hardware clock (PHC) across PTP devices with a high degree of precision. ts2phc is used in grandmaster clock configurations. It receives the precision timing signal a high precision clock source such as Global Navigation Satellite System (GNSS). GNSS provides an accurate and reliable source of synchronized time for use in large distributed networks. GNSS clocks typically provide time information with a precision of a few nanoseconds.

The ts2phc system daemon sends timing information from the grandmaster clock to other PTP devices in the network by reading time information from the grandmaster clock and converting it to PHC format. PHC time is used by other devices in the network to synchronize their clocks with the grandmaster clock.

pmc
pmc implements a PTP management client (pmc) according to IEEE standard 1588.1588. pmc provides basic management access for the ptp4l system daemon. pmc reads from standard input and sends the output over the selected transport, printing any replies it receives.
ptp4l

ptp4l implements the PTP boundary clock and ordinary clock and runs as a system daemon. ptp4l does the following:

  • Synchronizes the PHC to the source clock with hardware time stamping
  • Synchronizes the system clock to the source clock with software time stamping
phc2sys
phc2sys synchronizes the system clock to the PHC on the network interface controller (NIC). The phc2sys system daemon continuously monitors the PHC for timing information. When it detects a timing error, the PHC corrects the system clock.

The gpsd package includes the ubxtool, gspipe, gpsd, programs for GNSS clock synchronization with the host clock.

ubxtool
ubxtool CLI allows you to communicate with a u-blox GPS system. The ubxtool CLI uses the u-blox binary protocol to communicate with the GPS.
gpspipe
gpspipe connects to gpsd output and pipes it to stdout.
gpsd
gpsd is a service daemon that monitors one or more GPS or AIS receivers connected to the host.

19.1.4. Overview of GNSS timing for PTP grandmaster clocks

OpenShift Container Platform supports receiving precision PTP timing from Global Navigation Satellite System (GNSS) sources and grandmaster clocks (T-GM) in the cluster.

Important

OpenShift Container Platform supports PTP timing from GNSS sources with Intel E810 Westport Channel NICs only.

Figure 19.3. Overview of Synchronization with GNSS and T-GM

GNSS and T-GM system architecture
Global Navigation Satellite System (GNSS)

GNSS is a satellite-based system used to provide positioning, navigation, and timing information to receivers around the globe. In PTP, GNSS receivers are often used as a highly accurate and stable reference clock source. These receivers receive signals from multiple GNSS satellites, allowing them to calculate precise time information. The timing information obtained from GNSS is used as a reference by the PTP grandmaster clock.

By using GNSS as a reference, the grandmaster clock in the PTP network can provide highly accurate timestamps to other devices, enabling precise synchronization across the entire network.

Digital Phase-Locked Loop (DPLL)
DPLL provides clock synchronization between different PTP nodes in the network. DPLL compares the phase of the local system clock signal with the phase of the incoming synchronization signal, for example, PTP messages from the PTP grandmaster clock. The DPLL continuously adjusts the local clock frequency and phase to minimize the phase difference between the local clock and the reference clock.

19.2. Configuring PTP devices

The PTP Operator adds the NodePtpDevice.ptp.openshift.io custom resource definition (CRD) to OpenShift Container Platform.

When installed, the PTP Operator searches your cluster for PTP-capable network devices on each node. It creates and updates a NodePtpDevice custom resource (CR) object for each node that provides a compatible PTP-capable network device.

19.2.1. Installing the PTP Operator using the CLI

As a cluster administrator, you can install the Operator by using the CLI.

Prerequisites

  • A cluster installed on bare-metal hardware with nodes that have hardware that supports PTP.
  • Install the OpenShift CLI (oc).
  • Log in as a user with cluster-admin privileges.

Procedure

  1. Create a namespace for the PTP Operator.

    1. Save the following YAML in the ptp-namespace.yaml file:

      apiVersion: v1
      kind: Namespace
      metadata:
        name: openshift-ptp
        annotations:
          workload.openshift.io/allowed: management
        labels:
          name: openshift-ptp
          openshift.io/cluster-monitoring: "true"
    2. Create the Namespace CR:

      $ oc create -f ptp-namespace.yaml
  2. Create an Operator group for the PTP Operator.

    1. Save the following YAML in the ptp-operatorgroup.yaml file:

      apiVersion: operators.coreos.com/v1
      kind: OperatorGroup
      metadata:
        name: ptp-operators
        namespace: openshift-ptp
      spec:
        targetNamespaces:
        - openshift-ptp
    2. Create the OperatorGroup CR:

      $ oc create -f ptp-operatorgroup.yaml
  3. Subscribe to the PTP Operator.

    1. Save the following YAML in the ptp-sub.yaml file:

      apiVersion: operators.coreos.com/v1alpha1
      kind: Subscription
      metadata:
        name: ptp-operator-subscription
        namespace: openshift-ptp
      spec:
        channel: "stable"
        name: ptp-operator
        source: redhat-operators
        sourceNamespace: openshift-marketplace
    2. Create the Subscription CR:

      $ oc create -f ptp-sub.yaml
  4. To verify that the Operator is installed, enter the following command:

    $ oc get csv -n openshift-ptp -o custom-columns=Name:.metadata.name,Phase:.status.phase

    Example output

    Name                         Phase
    4.14.0-202301261535          Succeeded

19.2.2. Installing the PTP Operator by using the web console

As a cluster administrator, you can install the PTP Operator by using the web console.

Note

You have to create the namespace and Operator group as mentioned in the previous section.

Procedure

  1. Install the PTP Operator using the OpenShift Container Platform web console:

    1. In the OpenShift Container Platform web console, click OperatorsOperatorHub.
    2. Choose PTP Operator from the list of available Operators, and then click Install.
    3. On the Install Operator page, under A specific namespace on the cluster select openshift-ptp. Then, click Install.
  2. Optional: Verify that the PTP Operator installed successfully:

    1. Switch to the OperatorsInstalled Operators page.
    2. Ensure that PTP Operator is listed in the openshift-ptp project with a Status of InstallSucceeded.

      Note

      During installation an Operator might display a Failed status. If the installation later succeeds with an InstallSucceeded message, you can ignore the Failed message.

      If the Operator does not appear as installed, to troubleshoot further:

      • Go to the OperatorsInstalled Operators page and inspect the Operator Subscriptions and Install Plans tabs for any failure or errors under Status.
      • Go to the WorkloadsPods page and check the logs for pods in the openshift-ptp project.

19.2.3. Discovering PTP capable network devices in your cluster

  • To return a complete list of PTP capable network devices in your cluster, run the following command:

    $ oc get NodePtpDevice -n openshift-ptp -o yaml

    Example output

    apiVersion: v1
    items:
    - apiVersion: ptp.openshift.io/v1
      kind: NodePtpDevice
      metadata:
        creationTimestamp: "2022-01-27T15:16:28Z"
        generation: 1
        name: dev-worker-0 1
        namespace: openshift-ptp
        resourceVersion: "6538103"
        uid: d42fc9ad-bcbf-4590-b6d8-b676c642781a
      spec: {}
      status:
        devices: 2
        - name: eno1
        - name: eno2
        - name: eno3
        - name: eno4
        - name: enp5s0f0
        - name: enp5s0f1
    ...

    1
    The value for the name parameter is the same as the name of the parent node.
    2
    The devices collection includes a list of the PTP capable devices that the PTP Operator discovers for the node.

19.2.4. Using hardware-specific NIC features with the PTP Operator

NIC hardware with built-in PTP capabilities sometimes require device-specific configuration. You can use hardware-specific NIC features for supported hardware with the PTP Operator by configuring a plugin in the PtpConfig custom resource (CR). The linuxptp-daemon service uses the named parameters in the plugin stanza to start linuxptp processes (ptp4l and phc2sys) based on the specific hardware configuration.

Important

In OpenShift Container Platform 4.14, the Intel E810 NIC is supported with a PtpConfig plugin.

19.2.5. Configuring linuxptp services as a grandmaster clock

You can configure the linuxptp services (ptp4l, phc2sys, ts2phc) as grandmaster clock (T-GM) by creating a PtpConfig custom resource (CR) that configures the host NIC.

The ts2phc utility allows you to synchronize the system clock with the PTP grandmaster clock so that the node can stream precision clock signal to downstream PTP ordinary clocks and boundary clocks.

Note

Use the following example PtpConfig CR as the basis to configure linuxptp services as T-GM for an Intel Westport Channel E810-XXVDA4T network interface.

To configure PTP fast events, set appropriate values for ptp4lOpts, ptp4lConf, and ptpClockThreshold. ptpClockThreshold is used only when events are enabled. See "Configuring the PTP fast event notifications publisher" for more information.

Prerequisites

  • For T-GM clocks in production environments, install an Intel E810 Westport Channel NIC in the bare-metal cluster host.
  • Install the OpenShift CLI (oc).
  • Log in as a user with cluster-admin privileges.
  • Install the PTP Operator.

Procedure

  1. Create the PtpConfig CR. For example:

    1. Depending on your requirements, use one of the following T-GM configurations for your deployment. Save the YAML in the grandmaster-clock-ptp-config.yaml file:

      Example 19.1. Example PTP grandmaster clock configuration

      apiVersion: ptp.openshift.io/v1
      kind: PtpConfig
      metadata:
        name: grandmaster
        namespace: openshift-ptp
      spec:
        profile:
        - name: "grandmaster"
          ptp4lOpts: "-2 --summary_interval -4"
          phc2sysOpts: -r -u 0 -m -O -37 -N 8 -R 16 -s $iface_master -n 24
          ptpSchedulingPolicy: SCHED_FIFO
          ptpSchedulingPriority: 10
          ptpSettings:
            logReduce: "true"
          plugins:
            e810:
              enableDefaultConfig: false
              settings:
                LocalMaxHoldoverOffSet: 1500
                LocalHoldoverTimeout: 14400
                MaxInSpecOffset: 100
              pins: $e810_pins
              #  "$iface_master":
              #    "U.FL2": "0 2"
              #    "U.FL1": "0 1"
              #    "SMA2": "0 2"
              #    "SMA1": "0 1"
              ublxCmds:
                - args: #ubxtool -P 29.20 -z CFG-HW-ANT_CFG_VOLTCTRL,1
                    - "-P"
                    - "29.20"
                    - "-z"
                    - "CFG-HW-ANT_CFG_VOLTCTRL,1"
                  reportOutput: false
                - args: #ubxtool -P 29.20 -e GPS
                    - "-P"
                    - "29.20"
                    - "-e"
                    - "GPS"
                  reportOutput: false
                - args: #ubxtool -P 29.20 -d Galileo
                    - "-P"
                    - "29.20"
                    - "-d"
                    - "Galileo"
                  reportOutput: false
                - args: #ubxtool -P 29.20 -d GLONASS
                    - "-P"
                    - "29.20"
                    - "-d"
                    - "GLONASS"
                  reportOutput: false
                - args: #ubxtool -P 29.20 -d BeiDou
                    - "-P"
                    - "29.20"
                    - "-d"
                    - "BeiDou"
                  reportOutput: false
                - args: #ubxtool -P 29.20 -d SBAS
                    - "-P"
                    - "29.20"
                    - "-d"
                    - "SBAS"
                  reportOutput: false
                - args: #ubxtool -P 29.20 -t -w 5 -v 1 -e SURVEYIN,600,50000
                    - "-P"
                    - "29.20"
                    - "-t"
                    - "-w"
                    - "5"
                    - "-v"
                    - "1"
                    - "-e"
                    - "SURVEYIN,600,50000"
                  reportOutput: true
                - args: #ubxtool -P 29.20 -p MON-HW
                    - "-P"
                    - "29.20"
                    - "-p"
                    - "MON-HW"
                  reportOutput: true
          ts2phcOpts: " "
          ts2phcConf: |
            [nmea]
            ts2phc.master 1
            [global]
            use_syslog  0
            verbose 1
            logging_level 7
            ts2phc.pulsewidth 100000000
            ts2phc.nmea_serialport $gnss_serialport
            leapfile  /usr/share/zoneinfo/leap-seconds.list
            [$iface_master]
            ts2phc.extts_polarity rising
            ts2phc.extts_correction 0
          ptp4lConf: |
            [$iface_master]
            masterOnly 1
            [$iface_master_1]
            masterOnly 1
            [$iface_master_2]
            masterOnly 1
            [$iface_master_3]
            masterOnly 1
            [global]
            #
            # Default Data Set
            #
            twoStepFlag 1
            priority1 128
            priority2 128
            domainNumber 24
            #utc_offset 37
            clockClass 6
            clockAccuracy 0x27
            offsetScaledLogVariance 0xFFFF
            free_running 0
            freq_est_interval 1
            dscp_event 0
            dscp_general 0
            dataset_comparison G.8275.x
            G.8275.defaultDS.localPriority 128
            #
            # Port Data Set
            #
            logAnnounceInterval -3
            logSyncInterval -4
            logMinDelayReqInterval -4
            logMinPdelayReqInterval 0
            announceReceiptTimeout 3
            syncReceiptTimeout 0
            delayAsymmetry 0
            fault_reset_interval -4
            neighborPropDelayThresh 20000000
            masterOnly 0
            G.8275.portDS.localPriority 128
            #
            # Run time options
            #
            assume_two_step 0
            logging_level 6
            path_trace_enabled 0
            follow_up_info 0
            hybrid_e2e 0
            inhibit_multicast_service 0
            net_sync_monitor 0
            tc_spanning_tree 0
            tx_timestamp_timeout 50
            unicast_listen 0
            unicast_master_table 0
            unicast_req_duration 3600
            use_syslog 1
            verbose 0
            summary_interval -4
            kernel_leap 1
            check_fup_sync 0
            clock_class_threshold 7
            #
            # Servo Options
            #
            pi_proportional_const 0.0
            pi_integral_const 0.0
            pi_proportional_scale 0.0
            pi_proportional_exponent -0.3
            pi_proportional_norm_max 0.7
            pi_integral_scale 0.0
            pi_integral_exponent 0.4
            pi_integral_norm_max 0.3
            step_threshold 2.0
            first_step_threshold 0.00002
            clock_servo pi
            sanity_freq_limit  200000000
            ntpshm_segment 0
            #
            # Transport options
            #
            transportSpecific 0x0
            ptp_dst_mac 01:1B:19:00:00:00
            p2p_dst_mac 01:80:C2:00:00:0E
            udp_ttl 1
            udp6_scope 0x0E
            uds_address /var/run/ptp4l
            #
            # Default interface options
            #
            clock_type BC
            network_transport L2
            delay_mechanism E2E
            time_stamping hardware
            tsproc_mode filter
            delay_filter moving_median
            delay_filter_length 10
            egressLatency 0
            ingressLatency 0
            boundary_clock_jbod 0
            #
            # Clock description
            #
            productDescription ;;
            revisionData ;;
            manufacturerIdentity 00:00:00
            userDescription ;
            timeSource 0x20
        recommend:
        - profile: "grandmaster"
          priority: 4
          match:
          - nodeLabel: "node-role.kubernetes.io/$mcp"
      Note

      The example PTP grandmaster clock configuration is for test purposes only and is not intended for production.

      Example 19.2. PTP grandmaster clock configuration for E810 NIC

      apiVersion: ptp.openshift.io/v1
      kind: PtpConfig
      metadata:
        name: grandmaster
        namespace: openshift-ptp
      spec:
        profile:
        - name: "grandmaster"
          ptp4lOpts: "-2 --summary_interval -4"
          phc2sysOpts: -r -u 0 -m -O -37 -N 8 -R 16 -s $iface_master -n 24
          ptpSchedulingPolicy: SCHED_FIFO
          ptpSchedulingPriority: 10
          ptpSettings:
            logReduce: "true"
          plugins:
            e810:
              enableDefaultConfig: false
              settings:
                LocalMaxHoldoverOffSet: 1500
                LocalHoldoverTimeout: 14400
                MaxInSpecOffset: 100
              pins: $e810_pins
              #  "$iface_master":
              #    "U.FL2": "0 2"
              #    "U.FL1": "0 1"
              #    "SMA2": "0 2"
              #    "SMA1": "0 1"
              ublxCmds:
                - args: #ubxtool -P 29.20 -z CFG-HW-ANT_CFG_VOLTCTRL,1
                    - "-P"
                    - "29.20"
                    - "-z"
                    - "CFG-HW-ANT_CFG_VOLTCTRL,1"
                  reportOutput: false
                - args: #ubxtool -P 29.20 -e GPS
                    - "-P"
                    - "29.20"
                    - "-e"
                    - "GPS"
                  reportOutput: false
                - args: #ubxtool -P 29.20 -d Galileo
                    - "-P"
                    - "29.20"
                    - "-d"
                    - "Galileo"
                  reportOutput: false
                - args: #ubxtool -P 29.20 -d GLONASS
                    - "-P"
                    - "29.20"
                    - "-d"
                    - "GLONASS"
                  reportOutput: false
                - args: #ubxtool -P 29.20 -d BeiDou
                    - "-P"
                    - "29.20"
                    - "-d"
                    - "BeiDou"
                  reportOutput: false
                - args: #ubxtool -P 29.20 -d SBAS
                    - "-P"
                    - "29.20"
                    - "-d"
                    - "SBAS"
                  reportOutput: false
                - args: #ubxtool -P 29.20 -t -w 5 -v 1 -e SURVEYIN,600,50000
                    - "-P"
                    - "29.20"
                    - "-t"
                    - "-w"
                    - "5"
                    - "-v"
                    - "1"
                    - "-e"
                    - "SURVEYIN,600,50000"
                  reportOutput: true
                - args: #ubxtool -P 29.20 -p MON-HW
                    - "-P"
                    - "29.20"
                    - "-p"
                    - "MON-HW"
                  reportOutput: true
          ts2phcOpts: " "
          ts2phcConf: |
            [nmea]
            ts2phc.master 1
            [global]
            use_syslog  0
            verbose 1
            logging_level 7
            ts2phc.pulsewidth 100000000
            ts2phc.nmea_serialport $gnss_serialport
            leapfile  /usr/share/zoneinfo/leap-seconds.list
            [$iface_master]
            ts2phc.extts_polarity rising
            ts2phc.extts_correction 0
          ptp4lConf: |
            [$iface_master]
            masterOnly 1
            [$iface_master_1]
            masterOnly 1
            [$iface_master_2]
            masterOnly 1
            [$iface_master_3]
            masterOnly 1
            [global]
            #
            # Default Data Set
            #
            twoStepFlag 1
            priority1 128
            priority2 128
            domainNumber 24
            #utc_offset 37
            clockClass 6
            clockAccuracy 0x27
            offsetScaledLogVariance 0xFFFF
            free_running 0
            freq_est_interval 1
            dscp_event 0
            dscp_general 0
            dataset_comparison G.8275.x
            G.8275.defaultDS.localPriority 128
            #
            # Port Data Set
            #
            logAnnounceInterval -3
            logSyncInterval -4
            logMinDelayReqInterval -4
            logMinPdelayReqInterval 0
            announceReceiptTimeout 3
            syncReceiptTimeout 0
            delayAsymmetry 0
            fault_reset_interval -4
            neighborPropDelayThresh 20000000
            masterOnly 0
            G.8275.portDS.localPriority 128
            #
            # Run time options
            #
            assume_two_step 0
            logging_level 6
            path_trace_enabled 0
            follow_up_info 0
            hybrid_e2e 0
            inhibit_multicast_service 0
            net_sync_monitor 0
            tc_spanning_tree 0
            tx_timestamp_timeout 50
            unicast_listen 0
            unicast_master_table 0
            unicast_req_duration 3600
            use_syslog 1
            verbose 0
            summary_interval -4
            kernel_leap 1
            check_fup_sync 0
            clock_class_threshold 7
            #
            # Servo Options
            #
            pi_proportional_const 0.0
            pi_integral_const 0.0
            pi_proportional_scale 0.0
            pi_proportional_exponent -0.3
            pi_proportional_norm_max 0.7
            pi_integral_scale 0.0
            pi_integral_exponent 0.4
            pi_integral_norm_max 0.3
            step_threshold 2.0
            first_step_threshold 0.00002
            clock_servo pi
            sanity_freq_limit  200000000
            ntpshm_segment 0
            #
            # Transport options
            #
            transportSpecific 0x0
            ptp_dst_mac 01:1B:19:00:00:00
            p2p_dst_mac 01:80:C2:00:00:0E
            udp_ttl 1
            udp6_scope 0x0E
            uds_address /var/run/ptp4l
            #
            # Default interface options
            #
            clock_type BC
            network_transport L2
            delay_mechanism E2E
            time_stamping hardware
            tsproc_mode filter
            delay_filter moving_median
            delay_filter_length 10
            egressLatency 0
            ingressLatency 0
            boundary_clock_jbod 0
            #
            # Clock description
            #
            productDescription ;;
            revisionData ;;
            manufacturerIdentity 00:00:00
            userDescription ;
            timeSource 0x20
        recommend:
        - profile: "grandmaster"
          priority: 4
          match:
          - nodeLabel: "node-role.kubernetes.io/$mcp"
      Note

      For E810 Westport Channel NICs, set the value for ts2phc.nmea_serialport to /dev/gnss0.

    2. Create the CR by running the following command:

      $ oc create -f grandmaster-clock-ptp-config.yaml

Verification

  1. Check that the PtpConfig profile is applied to the node.

    1. Get the list of pods in the openshift-ptp namespace by running the following command:

      $ oc get pods -n openshift-ptp -o wide

      Example output

      NAME                          READY   STATUS    RESTARTS   AGE     IP             NODE
      linuxptp-daemon-74m2g         3/3     Running   3          4d15h   10.16.230.7    compute-1.example.com
      ptp-operator-5f4f48d7c-x7zkf  1/1     Running   1          4d15h   10.128.1.145   compute-1.example.com

    2. Check that the profile is correct. Examine the logs of the linuxptp daemon that corresponds to the node you specified in the PtpConfig profile. Run the following command:

      $ oc logs linuxptp-daemon-74m2g -n openshift-ptp -c linuxptp-daemon-container

      Example output

      ts2phc[94980.334]: [ts2phc.0.config] nmea delay: 98690975 ns
      ts2phc[94980.334]: [ts2phc.0.config] ens3f0 extts index 0 at 1676577329.999999999 corr 0 src 1676577330.901342528 diff -1
      ts2phc[94980.334]: [ts2phc.0.config] ens3f0 master offset         -1 s2 freq      -1
      ts2phc[94980.441]: [ts2phc.0.config] nmea sentence: GNRMC,195453.00,A,4233.24427,N,07126.64420,W,0.008,,160223,,,A,V
      phc2sys[94980.450]: [ptp4l.0.config] CLOCK_REALTIME phc offset       943 s2 freq  -89604 delay    504
      phc2sys[94980.512]: [ptp4l.0.config] CLOCK_REALTIME phc offset      1000 s2 freq  -89264 delay    474

19.2.6. Configuring linuxptp services as a grandmaster clock for dual E810 Westport Channel NICs

You can configure the linuxptp services (ptp4l, phc2sys, ts2phc) as grandmaster clock (T-GM) for dual E810 Westport Channel NICs by creating a PtpConfig custom resource (CR) that configures the host NICs.

For distributed RAN (D-RAN) use cases, you can configure PTP for dual NICs as follows:

  • NIC one is synced to the global navigation satellite system (GNSS) time source.
  • NIC two is synced to the 1PPS timing output provided by NIC one. This configuration is provided by the PTP hardware plugin in the PtpConfig CR.

The dual NIC PTP T-GM configuration uses a single instance of ptp4l and one ts2phc process reporting two ts2phc instances, one for each NIC. The host system clock is synchronized from the NIC that is connected to the GNSS time source.

Note

Use the following example PtpConfig CR as the basis to configure linuxptp services as T-GM for dual Intel Westport Channel E810-XXVDA4T network interfaces.

To configure PTP fast events, set appropriate values for ptp4lOpts, ptp4lConf, and ptpClockThreshold. ptpClockThreshold is used only when events are enabled. See "Configuring the PTP fast event notifications publisher" for more information.

Prerequisites

  • For T-GM clocks in production environments, install two Intel E810 Westport Channel NICs in the bare-metal cluster host.
  • Install the OpenShift CLI (oc).
  • Log in as a user with cluster-admin privileges.
  • Install the PTP Operator.

Procedure

  1. Create the PtpConfig CR. For example:

    1. Save the following YAML in the grandmaster-clock-ptp-config-dual-nics.yaml file:

      Example 19.3. PTP grandmaster clock configuration for dual E810 NICs

      apiVersion: ptp.openshift.io/v1
      kind: PtpConfig
      metadata:
        name: grandmaster
        namespace: openshift-ptp
        annotations:
          ran.openshift.io/ztp-deploy-wave: "10"
      spec:
        profile:
        - name: "grandmaster"
          ptp4lOpts: "-2 --summary_interval -4"
          phc2sysOpts: -r -u 0 -m -O -37 -N 8 -R 16 -s $iface_nic1 -n 24
          ptpSchedulingPolicy: SCHED_FIFO
          ptpSchedulingPriority: 10
          ptpSettings:
            logReduce: "true"
          plugins:
            e810:
              enableDefaultConfig: false
              settings:
                LocalMaxHoldoverOffSet: 1500
                LocalHoldoverTimeout: 14400
                MaxInSpecOffset: 100
              pins:
               "$iface_nic1":
                 "U.FL2": "0 2"
                 "U.FL1": "0 1"
                 "SMA2": "0 2"
                 "SMA1": "2 1"
               "$iface_nic2":
                 "U.FL2": "0 2"
                 "U.FL1": "0 1"
                 "SMA2": "0 2"
                 "SMA1": "1 1"
              ublxCmds:
                - args: #ubxtool -P 29.20 -z CFG-HW-ANT_CFG_VOLTCTRL,1
                    - "-P"
                    - "29.20"
                    - "-z"
                    - "CFG-HW-ANT_CFG_VOLTCTRL,1"
                  reportOutput: false
                - args: #ubxtool -P 29.20 -e GPS
                    - "-P"
                    - "29.20"
                    - "-e"
                    - "GPS"
                  reportOutput: false
                - args: #ubxtool -P 29.20 -d Galileo
                    - "-P"
                    - "29.20"
                    - "-d"
                    - "Galileo"
                  reportOutput: false
                - args: #ubxtool -P 29.20 -d GLONASS
                    - "-P"
                    - "29.20"
                    - "-d"
                    - "GLONASS"
                  reportOutput: false
                - args: #ubxtool -P 29.20 -d BeiDou
                    - "-P"
                    - "29.20"
                    - "-d"
                    - "BeiDou"
                  reportOutput: false
                - args: #ubxtool -P 29.20 -d SBAS
                    - "-P"
                    - "29.20"
                    - "-d"
                    - "SBAS"
                  reportOutput: false
                - args: #ubxtool -P 29.20 -t -w 5 -v 1 -e SURVEYIN,600,50000
                    - "-P"
                    - "29.20"
                    - "-t"
                    - "-w"
                    - "5"
                    - "-v"
                    - "1"
                    - "-e"
                    - "SURVEYIN,600,50000"
                  reportOutput: true
                - args: #ubxtool -P 29.20 -p MON-HW
                    - "-P"
                    - "29.20"
                    - "-p"
                    - "MON-HW"
                  reportOutput: true
          ts2phcOpts: " "
          ts2phcConf: |
            [nmea]
            ts2phc.master 1
            [global]
            use_syslog  0
            verbose 1
            logging_level 7
            ts2phc.pulsewidth 100000000
            #cat /dev/GNSS to find available serial port
            #example value of gnss_serialport is /dev/ttyGNSS_1700_0
            ts2phc.nmea_serialport $gnss_serialport
            leapfile  /usr/share/zoneinfo/leap-seconds.list
            [$iface_nic1]
            ts2phc.extts_polarity rising
            ts2phc.extts_correction 0
            [$iface_nic2]
            ts2phc.master 0
            ts2phc.extts_polarity rising
            #this is a measured value in nanoseconds to compensate for SMA cable delay
            ts2phc.extts_correction -10
          ptp4lConf: |
            [$iface_nic1]
            masterOnly 1
            [$iface_nic1_1]
            masterOnly 1
            [$iface_nic1_2]
            masterOnly 1
            [$iface_nic1_3]
            masterOnly 1
            [$iface_nic2]
            masterOnly 1
            [$iface_nic2_1]
            masterOnly 1
            [$iface_nic2_2]
            masterOnly 1
            [$iface_nic2_3]
            masterOnly 1
            [global]
            #
            # Default Data Set
            #
            twoStepFlag 1
            priority1 128
            priority2 128
            domainNumber 24
            #utc_offset 37
            clockClass 6
            clockAccuracy 0x27
            offsetScaledLogVariance 0xFFFF
            free_running 0
            freq_est_interval 1
            dscp_event 0
            dscp_general 0
            dataset_comparison G.8275.x
            G.8275.defaultDS.localPriority 128
            #
            # Port Data Set
            #
            logAnnounceInterval -3
            logSyncInterval -4
            logMinDelayReqInterval -4
            logMinPdelayReqInterval 0
            announceReceiptTimeout 3
            syncReceiptTimeout 0
            delayAsymmetry 0
            fault_reset_interval -4
            neighborPropDelayThresh 20000000
            masterOnly 0
            G.8275.portDS.localPriority 128
            #
            # Run time options
            #
            assume_two_step 0
            logging_level 6
            path_trace_enabled 0
            follow_up_info 0
            hybrid_e2e 0
            inhibit_multicast_service 0
            net_sync_monitor 0
            tc_spanning_tree 0
            tx_timestamp_timeout 50
            unicast_listen 0
            unicast_master_table 0
            unicast_req_duration 3600
            use_syslog 1
            verbose 0
            summary_interval -4
            kernel_leap 1
            check_fup_sync 0
            clock_class_threshold 7
            #
            # Servo Options
            #
            pi_proportional_const 0.0
            pi_integral_const 0.0
            pi_proportional_scale 0.0
            pi_proportional_exponent -0.3
            pi_proportional_norm_max 0.7
            pi_integral_scale 0.0
            pi_integral_exponent 0.4
            pi_integral_norm_max 0.3
            step_threshold 2.0
            first_step_threshold 0.00002
            clock_servo pi
            sanity_freq_limit  200000000
            ntpshm_segment 0
            #
            # Transport options
            #
            transportSpecific 0x0
            ptp_dst_mac 01:1B:19:00:00:00
            p2p_dst_mac 01:80:C2:00:00:0E
            udp_ttl 1
            udp6_scope 0x0E
            uds_address /var/run/ptp4l
            #
            # Default interface options
            #
            clock_type BC
            network_transport L2
            delay_mechanism E2E
            time_stamping hardware
            tsproc_mode filter
            delay_filter moving_median
            delay_filter_length 10
            egressLatency 0
            ingressLatency 0
            boundary_clock_jbod 1
            #
            # Clock description
            #
            productDescription ;;
            revisionData ;;
            manufacturerIdentity 00:00:00
            userDescription ;
            timeSource 0x20
        recommend:
        - profile: "grandmaster"
          priority: 4
          match:
          - nodeLabel: "node-role.kubernetes.io/$mcp"
      Note

      For E810 Westport Channel NICs, set the value for ts2phc.nmea_serialport to /dev/gnss0.

    2. Create the CR by running the following command:

      $ oc create -f grandmaster-clock-ptp-config-dual-nics.yaml

Verification

  1. Check that the PtpConfig profile is applied to the node.

    1. Get the list of pods in the openshift-ptp namespace by running the following command:

      $ oc get pods -n openshift-ptp -o wide

      Example output

      NAME                          READY   STATUS    RESTARTS   AGE     IP             NODE
      linuxptp-daemon-74m2g         3/3     Running   3          4d15h   10.16.230.7    compute-1.example.com
      ptp-operator-5f4f48d7c-x7zkf  1/1     Running   1          4d15h   10.128.1.145   compute-1.example.com

    2. Check that the profile is correct. Examine the logs of the linuxptp daemon that corresponds to the node you specified in the PtpConfig profile. Run the following command:

      $ oc logs linuxptp-daemon-74m2g -n openshift-ptp -c linuxptp-daemon-container

      Example output

      ts2phc[509863.660]: [ts2phc.0.config] nmea delay: 347527248 ns
      ts2phc[509863.660]: [ts2phc.0.config] ens2f0 extts index 0 at 1705516553.000000000 corr 0 src 1705516553.652499081 diff 0
      ts2phc[509863.660]: [ts2phc.0.config] ens2f0 master offset          0 s2 freq      -0
      I0117 18:35:16.000146 1633226 stats.go:57] state updated for ts2phc =s2
      I0117 18:35:16.000163 1633226 event.go:417] dpll State s2, gnss State s2, tsphc state s2, gm state s2,
      ts2phc[1705516516]:[ts2phc.0.config] ens2f0 nmea_status 1 offset 0 s2
      GM[1705516516]:[ts2phc.0.config] ens2f0 T-GM-STATUS s2
      ts2phc[509863.677]: [ts2phc.0.config] ens7f0 extts index 0 at 1705516553.000000010 corr -10 src 1705516553.652499081 diff 0
      ts2phc[509863.677]: [ts2phc.0.config] ens7f0 master offset          0 s2 freq      -0
      I0117 18:35:16.016597 1633226 stats.go:57] state updated for ts2phc =s2
      phc2sys[509863.719]: [ptp4l.0.config] CLOCK_REALTIME phc offset        -6 s2 freq  +15441 delay    510
      phc2sys[509863.782]: [ptp4l.0.config] CLOCK_REALTIME phc offset        -7 s2 freq  +15438 delay    502

19.2.6.1. Grandmaster clock PtpConfig configuration reference

The following reference information describes the configuration options for the PtpConfig custom resource (CR) that configures the linuxptp services (ptp4l, phc2sys, ts2phc) as a grandmaster clock.

Table 19.1. PtpConfig configuration options for PTP Grandmaster clock

PtpConfig CR fieldDescription

plugins

Specify an array of .exec.cmdline options that configure the NIC for grandmaster clock operation. Grandmaster clock configuration requires certain PTP pins to be disabled.

The plugin mechanism allows the PTP Operator to do automated hardware configuration. For the Intel Westport Channel NIC, when enableDefaultConfig is true, The PTP Operator runs a hard-coded script to do the required configuration for the NIC.

ptp4lOpts

Specify system configuration options for the ptp4l service. The options should not include the network interface name -i <interface> and service config file -f /etc/ptp4l.conf because the network interface name and the service config file are automatically appended.

ptp4lConf

Specify the required configuration to start ptp4l as a grandmaster clock. For example, the ens2f1 interface synchronizes downstream connected devices. For grandmaster clocks, set clockClass to 6 and set clockAccuracy to 0x27. Set timeSource to 0x20 for when receiving the timing signal from a Global navigation satellite system (GNSS).

tx_timestamp_timeout

Specify the maximum amount of time to wait for the transmit (TX) timestamp from the sender before discarding the data.

boundary_clock_jbod

Specify the JBOD boundary clock time delay value. This value is used to correct the time values that are passed between the network time devices.

phc2sysOpts

Specify system config options for the phc2sys service. If this field is empty the PTP Operator does not start the phc2sys service.

Note

Ensure that the network interface listed here is configured as grandmaster and is referenced as required in the ts2phcConf and ptp4lConf fields.

ptpSchedulingPolicy

Configure the scheduling policy for ptp4l and phc2sys processes. Default value is SCHED_OTHER. Use SCHED_FIFO on systems that support FIFO scheduling.

ptpSchedulingPriority

Set an integer value from 1-65 to configure FIFO priority for ptp4l and phc2sys processes when ptpSchedulingPolicy is set to SCHED_FIFO. The ptpSchedulingPriority field is not used when ptpSchedulingPolicy is set to SCHED_OTHER.

ptpClockThreshold

Optional. If ptpClockThreshold stanza is not present, default values are used for ptpClockThreshold fields. Stanza shows default ptpClockThreshold values. ptpClockThreshold values configure how long after the PTP master clock is disconnected before PTP events are triggered. holdOverTimeout is the time value in seconds before the PTP clock event state changes to FREERUN when the PTP master clock is disconnected. The maxOffsetThreshold and minOffsetThreshold settings configure offset values in nanoseconds that compare against the values for CLOCK_REALTIME (phc2sys) or master offset (ptp4l). When the ptp4l or phc2sys offset value is outside this range, the PTP clock state is set to FREERUN. When the offset value is within this range, the PTP clock state is set to LOCKED.

ts2phcConf

Sets the configuration for the ts2phc command.

leapfile is the default path to the current leap seconds definition file in the PTP Operator container image.

ts2phc.nmea_serialport is the serial port device that is connected to the NMEA GPS clock source. When configured, the GNSS receiver is accessible on /dev/gnss<id>. If the host has multiple GNSS receivers, you can find the correct device by enumerating either of the following devices:

  • /sys/class/net/<eth_port>/device/gnss/
  • /sys/class/gnss/gnss<id>/device/

ts2phcOpts

Set options for the ts2phc command.

recommend

Specify an array of one or more recommend objects that define rules on how the profile should be applied to nodes.

.recommend.profile

Specify the .recommend.profile object name that is defined in the profile section.

.recommend.priority

Specify the priority with an integer value between 0 and 99. A larger number gets lower priority, so a priority of 99 is lower than a priority of 10. If a node can be matched with multiple profiles according to rules defined in the match field, the profile with the higher priority is applied to that node.

.recommend.match

Specify .recommend.match rules with nodeLabel or nodeName values.

.recommend.match.nodeLabel

Set nodeLabel with the key of the node.Labels field from the node object by using the oc get nodes --show-labels command. For example, node-role.kubernetes.io/worker.

.recommend.match.nodeName

Set nodeName with the value of the node.Name field from the node object by using the oc get nodes command. For example, compute-1.example.com.

19.2.6.2. Grandmaster clock class sync state reference

The following table describes the PTP grandmaster clock (T-GM) gm.ClockClass states. Clock class states categorize T-GM clocks based on their accuracy and stability with regard to the Primary Reference Time Clock (PRTC) or other timing source.

Holdover specification is the amount of time a PTP clock can maintain synchronization without receiving updates from the primary time source.

Table 19.2. T-GM clock class states

Clock class stateDescription

gm.ClockClass 6

T-GM clock is connected to a PRTC in LOCKED mode. For example, the PRTC is traceable to a GNSS time source.

gm.ClockClass 7

T-GM clock is in HOLDOVER mode, and within holdover specification. The clock source might not be traceable to a category 1 frequency source.

gm.ClockClass 140

T-GM clock is in HOLDOVER mode, is out of holdover specification, but it is still traceable to the category 1 frequency source.

gm.ClockClass 248

T-GM clock is in FREERUN mode.

For more information, see "Phase/time traceability information", ITU-T G.8275.1/Y.1369.1 Recommendations.

19.2.6.3. Intel Westport Channel E810 hardware configuration reference

Use this information to understand how to use the Intel E810-XXVDA4T hardware plugin to configure the E810 network interface as PTP grandmaster clock. Hardware pin configuration determines how the network interface interacts with other components and devices in the system. The E810-XXVDA4T NIC has four connectors for external 1PPS signals: SMA1, SMA2, U.FL1, and U.FL2.

Table 19.3. Intel E810 NIC hardware connectors configuration

Hardware pinRecommended settingDescription

U.FL1

0 1

Disables the U.FL1 connector input. The U.FL1 connector is output-only.

U.FL2

0 2

Disables the U.FL2 connector output. The U.FL2 connector is input-only.

SMA1

0 1

Disables the SMA1 connector input. The SMA1 connector is bidirectional.

SMA2

0 2

Disables the SMA2 connector output. The SMA2 connector is bidirectional.

Note

SMA1 and U.FL1 connectors share channel one. SMA2 and U.FL2 connectors share channel two.

Set spec.profile.plugins.e810.ublxCmds parameters to configure the GNSS clock in the PtpConfig custom resource (CR). Each of these ublxCmds stanzas correspond to a configuration that is applied to the host NIC by using ubxtool commands. For example:

ublxCmds:
  - args: #ubxtool -P 29.20 -z CFG-HW-ANT_CFG_VOLTCTRL,1
      - "-P"
      - "29.20"
      - "-z"
      - "CFG-HW-ANT_CFG_VOLTCTRL,1"
    reportOutput: false

The following table describes the equivalent ubxtool commands:

Table 19.4. Intel E810 ublxCmds configuration

ubxtool commandDescription

ubxtool -P 29.20 -z CFG-HW-ANT_CFG_VOLTCTRL,1

Enables antenna voltage control. Enables antenna status to be reported in the UBX-MON-RF and UBX-INF-NOTICE log messages.

ubxtool -P 29.20 -e GPS

Enables the antenna to receive GPS signals.

ubxtool -P 29.20 -d Galileo

Configures the antenna to receive signal from the Galileo GPS satellite.

ubxtool -P 29.20 -d GLONASS

Disables the antenna from receiving signal from the GLONASS GPS satellite.

ubxtool -P 29.20 -d BeiDou

Disables the antenna from receiving signal from the BeiDou GPS satellite.

ubxtool -P 29.20 -d SBAS

Disables the antenna from receiving signal from the SBAS GPS satellite.

ubxtool -P 29.20 -t -w 5 -v 1 -e SURVEYIN,600,50000

Configures the GNSS receiver survey-in process to improve its initial position estimate. This can take up to 24 hours to achieve an optimal result.

ubxtool -P 29.20 -p MON-HW

Runs a single automated scan of the hardware and reports on the NIC state and configuration settings.

The E810 plugin implements the following interfaces:

Table 19.5. E810 plugin interfaces

InterfaceDescription

OnPTPConfigChangeE810

Runs whenever you update the PtpConfig CR. The function parses the plugin options and applies the required configurations to the network device pins based on the configuration data.

AfterRunPTPCommandE810

Runs after launching the PTP processes and running the gpspipe PTP command. The function processes the plugin options and runs ubxtool commands, storing the output in the plugin-specific data.

PopulateHwConfigE810

Populates the NodePtpDevice CR based on hardware-specific data in the PtpConfig CR.

The E810 plugin has the following structs and variables:

Table 19.6. E810 plugin structs and variables

StructDescription

E810Opts

Represents options for the E810 plugin, including boolean flags and a map of network device pins.

E810UblxCmds

Represents configurations for ubxtool commands with a boolean flag and a slice of strings for command arguments.

E810PluginData

Holds plugin-specific data used during plugin execution.

19.2.6.4. Dual E810 Westport Channel NIC configuration reference

Use this information to understand how to use the Intel E810-XXVDA4T hardware plugin to configure a pair of E810 network interfaces as PTP grandmaster clock (T-GM).

Before you configure the dual NIC cluster host, you must connect the two NICs with an SMA1 cable using the 1PPS faceplace connections.

When you configure a dual NIC T-GM, you need to compensate for the 1PPS signal delay that occurs when you connect the NICs using the SMA1 connection ports. Various factors such as cable length, ambient temperature, and component and manufacturing tolerances can affect the signal delay. To compensate for the delay, you must calculate the specific value that you use to offset the signal delay.

Table 19.7. E810 dual NIC T-GM PtpConfig CR reference

PtpConfig fieldDescription

spec.profile.plugins.e810.pins

Configure the E810 hardware pins using the PTP Operator E810 hardware plugin.

  • Pin 2 1 enables the 1PPS OUT connection for SMA1 on NIC one.
  • Pin 1 1 enables the 1PPS IN connection for SMA1 on NIC two.

spec.profile.ts2phcConf

Use the ts2phcConf field to configure parameters for NIC one and NIC two. Set ts2phc.master 0 for NIC two. This configures the timing source for NIC two from the 1PPS input, not GNSS. Configure the ts2phc.extts_correction value for NIC two to compensate for the delay that is incurred for the specific SMA cable and cable length that you use. The value that you configure depends on your specific measurements and SMA1 cable length.

spec.profile.ptp4lConf

Set the value of boundary_clock_jbod to 1 to enable support for multiple NICs.

19.2.7. Configuring linuxptp services as a boundary clock

You can configure the linuxptp services (ptp4l, phc2sys) as boundary clock by creating a PtpConfig custom resource (CR) object.

Note

Use the following example PtpConfig CR as the basis to configure linuxptp services as the boundary clock for your particular hardware and environment. This example CR does not configure PTP fast events. To configure PTP fast events, set appropriate values for ptp4lOpts, ptp4lConf, and ptpClockThreshold. ptpClockThreshold is used only when events are enabled. See "Configuring the PTP fast event notifications publisher" for more information.

Prerequisites

  • Install the OpenShift CLI (oc).
  • Log in as a user with cluster-admin privileges.
  • Install the PTP Operator.

Procedure

  1. Create the following PtpConfig CR, and then save the YAML in the boundary-clock-ptp-config.yaml file.

    Example PTP boundary clock configuration

    apiVersion: ptp.openshift.io/v1
    kind: PtpConfig
    metadata:
      name: boundary-clock
      namespace: openshift-ptp
      annotations: {}
    spec:
      profile:
        - name: boundary-clock
          ptp4lOpts: "-2"
          phc2sysOpts: "-a -r -n 24"
          ptpSchedulingPolicy: SCHED_FIFO
          ptpSchedulingPriority: 10
          ptpSettings:
            logReduce: "true"
          ptp4lConf: |
            # The interface name is hardware-specific
            [$iface_slave]
            masterOnly 0
            [$iface_master_1]
            masterOnly 1
            [$iface_master_2]
            masterOnly 1
            [$iface_master_3]
            masterOnly 1
            [global]
            #
            # Default Data Set
            #
            twoStepFlag 1
            slaveOnly 0
            priority1 128
            priority2 128
            domainNumber 24
            #utc_offset 37
            clockClass 248
            clockAccuracy 0xFE
            offsetScaledLogVariance 0xFFFF
            free_running 0
            freq_est_interval 1
            dscp_event 0
            dscp_general 0
            dataset_comparison G.8275.x
            G.8275.defaultDS.localPriority 128
            #
            # Port Data Set
            #
            logAnnounceInterval -3
            logSyncInterval -4
            logMinDelayReqInterval -4
            logMinPdelayReqInterval -4
            announceReceiptTimeout 3
            syncReceiptTimeout 0
            delayAsymmetry 0
            fault_reset_interval -4
            neighborPropDelayThresh 20000000
            masterOnly 0
            G.8275.portDS.localPriority 128
            #
            # Run time options
            #
            assume_two_step 0
            logging_level 6
            path_trace_enabled 0
            follow_up_info 0
            hybrid_e2e 0
            inhibit_multicast_service 0
            net_sync_monitor 0
            tc_spanning_tree 0
            tx_timestamp_timeout 50
            unicast_listen 0
            unicast_master_table 0
            unicast_req_duration 3600
            use_syslog 1
            verbose 0
            summary_interval 0
            kernel_leap 1
            check_fup_sync 0
            clock_class_threshold 135
            #
            # Servo Options
            #
            pi_proportional_const 0.0
            pi_integral_const 0.0
            pi_proportional_scale 0.0
            pi_proportional_exponent -0.3
            pi_proportional_norm_max 0.7
            pi_integral_scale 0.0
            pi_integral_exponent 0.4
            pi_integral_norm_max 0.3
            step_threshold 2.0
            first_step_threshold 0.00002
            max_frequency 900000000
            clock_servo pi
            sanity_freq_limit 200000000
            ntpshm_segment 0
            #
            # Transport options
            #
            transportSpecific 0x0
            ptp_dst_mac 01:1B:19:00:00:00
            p2p_dst_mac 01:80:C2:00:00:0E
            udp_ttl 1
            udp6_scope 0x0E
            uds_address /var/run/ptp4l
            #
            # Default interface options
            #
            clock_type BC
            network_transport L2
            delay_mechanism E2E
            time_stamping hardware
            tsproc_mode filter
            delay_filter moving_median
            delay_filter_length 10
            egressLatency 0
            ingressLatency 0
            boundary_clock_jbod 0
            #
            # Clock description
            #
            productDescription ;;
            revisionData ;;
            manufacturerIdentity 00:00:00
            userDescription ;
            timeSource 0xA0
      recommend:
        - profile: boundary-clock
          priority: 4
          match:
            - nodeLabel: "node-role.kubernetes.io/$mcp"

    Table 19.8. PTP boundary clock CR configuration options

    CR fieldDescription

    name

    The name of the PtpConfig CR.

    profile

    Specify an array of one or more profile objects.

    name

    Specify the name of a profile object which uniquely identifies a profile object.

    ptp4lOpts

    Specify system config options for the ptp4l service. The options should not include the network interface name -i <interface> and service config file -f /etc/ptp4l.conf because the network interface name and the service config file are automatically appended.

    ptp4lConf

    Specify the required configuration to start ptp4l as boundary clock. For example, ens1f0 synchronizes from a grandmaster clock and ens1f3 synchronizes connected devices.

    <interface_1>

    The interface that receives the synchronization clock.

    <interface_2>

    The interface that sends the synchronization clock.

    tx_timestamp_timeout

    For Intel Columbiaville 800 Series NICs, set tx_timestamp_timeout to 50.

    boundary_clock_jbod

    For Intel Columbiaville 800 Series NICs, ensure boundary_clock_jbod is set to 0. For Intel Fortville X710 Series NICs, ensure boundary_clock_jbod is set to 1.

    phc2sysOpts

    Specify system config options for the phc2sys service. If this field is empty, the PTP Operator does not start the phc2sys service.

    ptpSchedulingPolicy

    Scheduling policy for ptp4l and phc2sys processes. Default value is SCHED_OTHER. Use SCHED_FIFO on systems that support FIFO scheduling.

    ptpSchedulingPriority

    Integer value from 1-65 used to set FIFO priority for ptp4l and phc2sys processes when ptpSchedulingPolicy is set to SCHED_FIFO. The ptpSchedulingPriority field is not used when ptpSchedulingPolicy is set to SCHED_OTHER.

    ptpClockThreshold

    Optional. If ptpClockThreshold is not present, default values are used for the ptpClockThreshold fields. ptpClockThreshold configures how long after the PTP master clock is disconnected before PTP events are triggered. holdOverTimeout is the time value in seconds before the PTP clock event state changes to FREERUN when the PTP master clock is disconnected. The maxOffsetThreshold and minOffsetThreshold settings configure offset values in nanoseconds that compare against the values for CLOCK_REALTIME (phc2sys) or master offset (ptp4l). When the ptp4l or phc2sys offset value is outside this range, the PTP clock state is set to FREERUN. When the offset value is within this range, the PTP clock state is set to LOCKED.

    recommend

    Specify an array of one or more recommend objects that define rules on how the profile should be applied to nodes.

    .recommend.profile

    Specify the .recommend.profile object name defined in the profile section.

    .recommend.priority

    Specify the priority with an integer value between 0 and 99. A larger number gets lower priority, so a priority of 99 is lower than a priority of 10. If a node can be matched with multiple profiles according to rules defined in the match field, the profile with the higher priority is applied to that node.

    .recommend.match

    Specify .recommend.match rules with nodeLabel or nodeName values.

    .recommend.match.nodeLabel

    Set nodeLabel with the key of the node.Labels field from the node object by using the oc get nodes --show-labels command. For example, node-role.kubernetes.io/worker.

    .recommend.match.nodeName

    Set nodeName with the value of the node.Name field from the node object by using the oc get nodes command. For example, compute-1.example.com.

  2. Create the CR by running the following command:

    $ oc create -f boundary-clock-ptp-config.yaml

Verification

  1. Check that the PtpConfig profile is applied to the node.

    1. Get the list of pods in the openshift-ptp namespace by running the following command:

      $ oc get pods -n openshift-ptp -o wide

      Example output

      NAME                            READY   STATUS    RESTARTS   AGE   IP               NODE
      linuxptp-daemon-4xkbb           1/1     Running   0          43m   10.1.196.24      compute-0.example.com
      linuxptp-daemon-tdspf           1/1     Running   0          43m   10.1.196.25      compute-1.example.com
      ptp-operator-657bbb64c8-2f8sj   1/1     Running   0          43m   10.129.0.61      control-plane-1.example.com

    2. Check that the profile is correct. Examine the logs of the linuxptp daemon that corresponds to the node you specified in the PtpConfig profile. Run the following command:

      $ oc logs linuxptp-daemon-4xkbb -n openshift-ptp -c linuxptp-daemon-container

      Example output

      I1115 09:41:17.117596 4143292 daemon.go:107] in applyNodePTPProfile
      I1115 09:41:17.117604 4143292 daemon.go:109] updating NodePTPProfile to:
      I1115 09:41:17.117607 4143292 daemon.go:110] ------------------------------------
      I1115 09:41:17.117612 4143292 daemon.go:102] Profile Name: profile1
      I1115 09:41:17.117616 4143292 daemon.go:102] Interface:
      I1115 09:41:17.117620 4143292 daemon.go:102] Ptp4lOpts: -2
      I1115 09:41:17.117623 4143292 daemon.go:102] Phc2sysOpts: -a -r -n 24
      I1115 09:41:17.117626 4143292 daemon.go:116] ------------------------------------

19.2.7.1. Configuring linuxptp services as boundary clocks for dual NIC hardware

Important

Precision Time Protocol (PTP) hardware with dual NIC configured as boundary clocks is a Technology Preview feature only. Technology Preview features are not supported with Red Hat production service level agreements (SLAs) and might not be functionally complete. Red Hat does not recommend using them in production. These features provide early access to upcoming product features, enabling customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features, see Technology Preview Features Support Scope.

You can configure the linuxptp services (ptp4l, phc2sys) as boundary clocks for dual NIC hardware by creating a PtpConfig custom resource (CR) object for each NIC.

Dual NIC hardware allows you to connect each NIC to the same upstream leader clock with separate ptp4l instances for each NIC feeding the downstream clocks.

Prerequisites

  • Install the OpenShift CLI (oc).
  • Log in as a user with cluster-admin privileges.
  • Install the PTP Operator.

Procedure

  1. Create two separate PtpConfig CRs, one for each NIC, using the reference CR in "Configuring linuxptp services as a boundary clock" as the basis for each CR. For example:

    1. Create boundary-clock-ptp-config-nic1.yaml, specifying values for phc2sysOpts:

      apiVersion: ptp.openshift.io/v1
      kind: PtpConfig
      metadata:
        name: boundary-clock-ptp-config-nic1
        namespace: openshift-ptp
      spec:
        profile:
        - name: "profile1"
          ptp4lOpts: "-2 --summary_interval -4"
          ptp4lConf: | 1
            [ens5f1]
            masterOnly 1
            [ens5f0]
            masterOnly 0
          ...
          phc2sysOpts: "-a -r -m -n 24 -N 8 -R 16" 2
      1
      Specify the required interfaces to start ptp4l as a boundary clock. For example, ens5f0 synchronizes from a grandmaster clock and ens5f1 synchronizes connected devices.
      2
      Required phc2sysOpts values. -m prints messages to stdout. The linuxptp-daemon DaemonSet parses the logs and generates Prometheus metrics.
    2. Create boundary-clock-ptp-config-nic2.yaml, removing the phc2sysOpts field altogether to disable the phc2sys service for the second NIC:

      apiVersion: ptp.openshift.io/v1
      kind: PtpConfig
      metadata:
        name: boundary-clock-ptp-config-nic2
        namespace: openshift-ptp
      spec:
        profile:
        - name: "profile2"
          ptp4lOpts: "-2 --summary_interval -4"
          ptp4lConf: | 1
            [ens7f1]
            masterOnly 1
            [ens7f0]
            masterOnly 0
      ...
      1
      Specify the required interfaces to start ptp4l as a boundary clock on the second NIC.
      Note

      You must completely remove the phc2sysOpts field from the second PtpConfig CR to disable the phc2sys service on the second NIC.

  2. Create the dual NIC PtpConfig CRs by running the following commands:

    1. Create the CR that configures PTP for the first NIC:

      $ oc create -f boundary-clock-ptp-config-nic1.yaml
    2. Create the CR that configures PTP for the second NIC:

      $ oc create -f boundary-clock-ptp-config-nic2.yaml

Verification

  • Check that the PTP Operator has applied the PtpConfig CRs for both NICs. Examine the logs for the linuxptp daemon corresponding to the node that has the dual NIC hardware installed. For example, run the following command:

    $ oc logs linuxptp-daemon-cvgr6 -n openshift-ptp -c linuxptp-daemon-container

    Example output

    ptp4l[80828.335]: [ptp4l.1.config] master offset          5 s2 freq   -5727 path delay       519
    ptp4l[80828.343]: [ptp4l.0.config] master offset         -5 s2 freq  -10607 path delay       533
    phc2sys[80828.390]: [ptp4l.0.config] CLOCK_REALTIME phc offset         1 s2 freq  -87239 delay    539

19.2.8. Configuring linuxptp services as an ordinary clock

You can configure linuxptp services (ptp4l, phc2sys) as ordinary clock by creating a PtpConfig custom resource (CR) object.

Note

Use the following example PtpConfig CR as the basis to configure linuxptp services as an ordinary clock for your particular hardware and environment. This example CR does not configure PTP fast events. To configure PTP fast events, set appropriate values for ptp4lOpts, ptp4lConf, and ptpClockThreshold. ptpClockThreshold is required only when events are enabled. See "Configuring the PTP fast event notifications publisher" for more information.

Prerequisites

  • Install the OpenShift CLI (oc).
  • Log in as a user with cluster-admin privileges.
  • Install the PTP Operator.

Procedure

  1. Create the following PtpConfig CR, and then save the YAML in the ordinary-clock-ptp-config.yaml file.

    Example PTP ordinary clock configuration

    apiVersion: ptp.openshift.io/v1
    kind: PtpConfig
    metadata:
      name: ordinary-clock
      namespace: openshift-ptp
      annotations: {}
    spec:
      profile:
        - name: ordinary-clock
          # The interface name is hardware-specific
          interface: $interface
          ptp4lOpts: "-2 -s"
          phc2sysOpts: "-a -r -n 24"
          ptpSchedulingPolicy: SCHED_FIFO
          ptpSchedulingPriority: 10
          ptpSettings:
            logReduce: "true"
          ptp4lConf: |
            [global]
            #
            # Default Data Set
            #
            twoStepFlag 1
            slaveOnly 1
            priority1 128
            priority2 128
            domainNumber 24
            #utc_offset 37
            clockClass 255
            clockAccuracy 0xFE
            offsetScaledLogVariance 0xFFFF
            free_running 0
            freq_est_interval 1
            dscp_event 0
            dscp_general 0
            dataset_comparison G.8275.x
            G.8275.defaultDS.localPriority 128
            #
            # Port Data Set
            #
            logAnnounceInterval -3
            logSyncInterval -4
            logMinDelayReqInterval -4
            logMinPdelayReqInterval -4
            announceReceiptTimeout 3
            syncReceiptTimeout 0
            delayAsymmetry 0
            fault_reset_interval -4
            neighborPropDelayThresh 20000000
            masterOnly 0
            G.8275.portDS.localPriority 128
            #
            # Run time options
            #
            assume_two_step 0
            logging_level 6
            path_trace_enabled 0
            follow_up_info 0
            hybrid_e2e 0
            inhibit_multicast_service 0
            net_sync_monitor 0
            tc_spanning_tree 0
            tx_timestamp_timeout 50
            unicast_listen 0
            unicast_master_table 0
            unicast_req_duration 3600
            use_syslog 1
            verbose 0
            summary_interval 0
            kernel_leap 1
            check_fup_sync 0
            clock_class_threshold 7
            #
            # Servo Options
            #
            pi_proportional_const 0.0
            pi_integral_const 0.0
            pi_proportional_scale 0.0
            pi_proportional_exponent -0.3
            pi_proportional_norm_max 0.7
            pi_integral_scale 0.0
            pi_integral_exponent 0.4
            pi_integral_norm_max 0.3
            step_threshold 2.0
            first_step_threshold 0.00002
            max_frequency 900000000
            clock_servo pi
            sanity_freq_limit 200000000
            ntpshm_segment 0
            #
            # Transport options
            #
            transportSpecific 0x0
            ptp_dst_mac 01:1B:19:00:00:00
            p2p_dst_mac 01:80:C2:00:00:0E
            udp_ttl 1
            udp6_scope 0x0E
            uds_address /var/run/ptp4l
            #
            # Default interface options
            #
            clock_type OC
            network_transport L2
            delay_mechanism E2E
            time_stamping hardware
            tsproc_mode filter
            delay_filter moving_median
            delay_filter_length 10
            egressLatency 0
            ingressLatency 0
            boundary_clock_jbod 0
            #
            # Clock description
            #
            productDescription ;;
            revisionData ;;
            manufacturerIdentity 00:00:00
            userDescription ;
            timeSource 0xA0
      recommend:
        - profile: ordinary-clock
          priority: 4
          match:
            - nodeLabel: "node-role.kubernetes.io/$mcp"

    Table 19.9. PTP ordinary clock CR configuration options

    CR fieldDescription

    name

    The name of the PtpConfig CR.

    profile

    Specify an array of one or more profile objects. Each profile must be uniquely named.

    interface

    Specify the network interface to be used by the ptp4l service, for example ens787f1.

    ptp4lOpts

    Specify system config options for the ptp4l service, for example -2 to select the IEEE 802.3 network transport. The options should not include the network interface name -i <interface> and service config file -f /etc/ptp4l.conf because the network interface name and the service config file are automatically appended. Append --summary_interval -4 to use PTP fast events with this interface.

    phc2sysOpts

    Specify system config options for the phc2sys service. If this field is empty, the PTP Operator does not start the phc2sys service. For Intel Columbiaville 800 Series NICs, set phc2sysOpts options to -a -r -m -n 24 -N 8 -R 16. -m prints messages to stdout. The linuxptp-daemon DaemonSet parses the logs and generates Prometheus metrics.

    ptp4lConf

    Specify a string that contains the configuration to replace the default /etc/ptp4l.conf file. To use the default configuration, leave the field empty.

    tx_timestamp_timeout

    For Intel Columbiaville 800 Series NICs, set tx_timestamp_timeout to 50.

    boundary_clock_jbod

    For Intel Columbiaville 800 Series NICs, set boundary_clock_jbod to 0.

    ptpSchedulingPolicy

    Scheduling policy for ptp4l and phc2sys processes. Default value is SCHED_OTHER. Use SCHED_FIFO on systems that support FIFO scheduling.

    ptpSchedulingPriority

    Integer value from 1-65 used to set FIFO priority for ptp4l and phc2sys processes when ptpSchedulingPolicy is set to SCHED_FIFO. The ptpSchedulingPriority field is not used when ptpSchedulingPolicy is set to SCHED_OTHER.

    ptpClockThreshold

    Optional. If ptpClockThreshold is not present, default values are used for the ptpClockThreshold fields. ptpClockThreshold configures how long after the PTP master clock is disconnected before PTP events are triggered. holdOverTimeout is the time value in seconds before the PTP clock event state changes to FREERUN when the PTP master clock is disconnected. The maxOffsetThreshold and minOffsetThreshold settings configure offset values in nanoseconds that compare against the values for CLOCK_REALTIME (phc2sys) or master offset (ptp4l). When the ptp4l or phc2sys offset value is outside this range, the PTP clock state is set to FREERUN. When the offset value is within this range, the PTP clock state is set to LOCKED.

    recommend

    Specify an array of one or more recommend objects that define rules on how the profile should be applied to nodes.

    .recommend.profile

    Specify the .recommend.profile object name defined in the profile section.

    .recommend.priority

    Set .recommend.priority to 0 for ordinary clock.

    .recommend.match

    Specify .recommend.match rules with nodeLabel or nodeName values.

    .recommend.match.nodeLabel

    Set nodeLabel with the key of the node.Labels field from the node object by using the oc get nodes --show-labels command. For example, node-role.kubernetes.io/worker.

    .recommend.match.nodeName

    Set nodeName with the value of the node.Name field from the node object by using the oc get nodes command. For example, compute-1.example.com.

  2. Create the PtpConfig CR by running the following command:

    $ oc create -f ordinary-clock-ptp-config.yaml

Verification

  1. Check that the PtpConfig profile is applied to the node.

    1. Get the list of pods in the openshift-ptp namespace by running the following command:

      $ oc get pods -n openshift-ptp -o wide

      Example output

      NAME                            READY   STATUS    RESTARTS   AGE   IP               NODE
      linuxptp-daemon-4xkbb           1/1     Running   0          43m   10.1.196.24      compute-0.example.com
      linuxptp-daemon-tdspf           1/1     Running   0          43m   10.1.196.25      compute-1.example.com
      ptp-operator-657bbb64c8-2f8sj   1/1     Running   0          43m   10.129.0.61      control-plane-1.example.com

    2. Check that the profile is correct. Examine the logs of the linuxptp daemon that corresponds to the node you specified in the PtpConfig profile. Run the following command:

      $ oc logs linuxptp-daemon-4xkbb -n openshift-ptp -c linuxptp-daemon-container

      Example output

      I1115 09:41:17.117596 4143292 daemon.go:107] in applyNodePTPProfile
      I1115 09:41:17.117604 4143292 daemon.go:109] updating NodePTPProfile to:
      I1115 09:41:17.117607 4143292 daemon.go:110] ------------------------------------
      I1115 09:41:17.117612 4143292 daemon.go:102] Profile Name: profile1
      I1115 09:41:17.117616 4143292 daemon.go:102] Interface: ens787f1
      I1115 09:41:17.117620 4143292 daemon.go:102] Ptp4lOpts: -2 -s
      I1115 09:41:17.117623 4143292 daemon.go:102] Phc2sysOpts: -a -r -n 24
      I1115 09:41:17.117626 4143292 daemon.go:116] ------------------------------------

19.2.8.1. Intel Columbiaville E800 series NIC as PTP ordinary clock reference

The following table describes the changes that you must make to the reference PTP configuration to use Intel Columbiaville E800 series NICs as ordinary clocks. Make the changes in a PtpConfig custom resource (CR) that you apply to the cluster.

Table 19.10. Recommended PTP settings for Intel Columbiaville NIC

PTP configurationRecommended setting

phc2sysOpts

-a -r -m -n 24 -N 8 -R 16

tx_timestamp_timeout

50

boundary_clock_jbod

0

Note

For phc2sysOpts, -m prints messages to stdout. The linuxptp-daemon DaemonSet parses the logs and generates Prometheus metrics.

Additional resources

19.2.9. Configuring FIFO priority scheduling for PTP hardware

In telco or other deployment types that require low latency performance, PTP daemon threads run in a constrained CPU footprint alongside the rest of the infrastructure components. By default, PTP threads run with the SCHED_OTHER policy. Under high load, these threads might not get the scheduling latency they require for error-free operation.

To mitigate against potential scheduling latency errors, you can configure the PTP Operator linuxptp services to allow threads to run with a SCHED_FIFO policy. If SCHED_FIFO is set for a PtpConfig CR, then ptp4l and phc2sys will run in the parent container under chrt with a priority set by the ptpSchedulingPriority field of the PtpConfig CR.

Note

Setting ptpSchedulingPolicy is optional, and is only required if you are experiencing latency errors.

Procedure

  1. Edit the PtpConfig CR profile:

    $ oc edit PtpConfig -n openshift-ptp
  2. Change the ptpSchedulingPolicy and ptpSchedulingPriority fields:

    apiVersion: ptp.openshift.io/v1
    kind: PtpConfig
    metadata:
      name: <ptp_config_name>
      namespace: openshift-ptp
    ...
    spec:
      profile:
      - name: "profile1"
    ...
        ptpSchedulingPolicy: SCHED_FIFO 1
        ptpSchedulingPriority: 10 2
    1
    Scheduling policy for ptp4l and phc2sys processes. Use SCHED_FIFO on systems that support FIFO scheduling.
    2
    Required. Sets the integer value 1-65 used to configure FIFO priority for ptp4l and phc2sys processes.
  3. Save and exit to apply the changes to the PtpConfig CR.

Verification

  1. Get the name of the linuxptp-daemon pod and corresponding node where the PtpConfig CR has been applied:

    $ oc get pods -n openshift-ptp -o wide

    Example output

    NAME                            READY   STATUS    RESTARTS   AGE     IP            NODE
    linuxptp-daemon-gmv2n           3/3     Running   0          1d17h   10.1.196.24   compute-0.example.com
    linuxptp-daemon-lgm55           3/3     Running   0          1d17h   10.1.196.25   compute-1.example.com
    ptp-operator-3r4dcvf7f4-zndk7   1/1     Running   0          1d7h    10.129.0.61   control-plane-1.example.com

  2. Check that the ptp4l process is running with the updated chrt FIFO priority:

    $ oc -n openshift-ptp logs linuxptp-daemon-lgm55 -c linuxptp-daemon-container|grep chrt

    Example output

    I1216 19:24:57.091872 1600715 daemon.go:285] /bin/chrt -f 65 /usr/sbin/ptp4l -f /var/run/ptp4l.0.config -2  --summary_interval -4 -m

19.2.10. Configuring log filtering for linuxptp services

The linuxptp daemon generates logs that you can use for debugging purposes. In telco or other deployment types that feature a limited storage capacity, these logs can add to the storage demand.

To reduce the number log messages, you can configure the PtpConfig custom resource (CR) to exclude log messages that report the master offset value. The master offset log message reports the difference between the current node’s clock and the master clock in nanoseconds.

Prerequisites

  • Install the OpenShift CLI (oc).
  • Log in as a user with cluster-admin privileges.
  • Install the PTP Operator.

Procedure

  1. Edit the PtpConfig CR:

    $ oc edit PtpConfig -n openshift-ptp
  2. In spec.profile, add the ptpSettings.logReduce specification and set the value to true:

    apiVersion: ptp.openshift.io/v1
    kind: PtpConfig
    metadata:
      name: <ptp_config_name>
      namespace: openshift-ptp
    ...
    spec:
      profile:
      - name: "profile1"
    ...
        ptpSettings:
          logReduce: "true"
    Note

    For debugging purposes, you can revert this specification to False to include the master offset messages.

  3. Save and exit to apply the changes to the PtpConfig CR.

Verification

  1. Get the name of the linuxptp-daemon pod and corresponding node where the PtpConfig CR has been applied:

    $ oc get pods -n openshift-ptp -o wide

    Example output

    NAME                            READY   STATUS    RESTARTS   AGE     IP            NODE
    linuxptp-daemon-gmv2n           3/3     Running   0          1d17h   10.1.196.24   compute-0.example.com
    linuxptp-daemon-lgm55           3/3     Running   0          1d17h   10.1.196.25   compute-1.example.com
    ptp-operator-3r4dcvf7f4-zndk7   1/1     Running   0          1d7h    10.129.0.61   control-plane-1.example.com

  2. Verify that master offset messages are excluded from the logs by running the following command:

    $ oc -n openshift-ptp logs <linux_daemon_container> -c linuxptp-daemon-container | grep "master offset" 1
    1
    <linux_daemon_container> is the name of the linuxptp-daemon pod, for example linuxptp-daemon-gmv2n.

    When you configure the logReduce specification, this command does not report any instances of master offset in the logs of the linuxptp daemon.

19.2.11. Troubleshooting common PTP Operator issues

Troubleshoot common problems with the PTP Operator by performing the following steps.

Prerequisites

  • Install the OpenShift Container Platform CLI (oc).
  • Log in as a user with cluster-admin privileges.
  • Install the PTP Operator on a bare-metal cluster with hosts that support PTP.

Procedure

  1. Check the Operator and operands are successfully deployed in the cluster for the configured nodes.

    $ oc get pods -n openshift-ptp -o wide

    Example output

    NAME                            READY   STATUS    RESTARTS   AGE     IP            NODE
    linuxptp-daemon-lmvgn           3/3     Running   0          4d17h   10.1.196.24   compute-0.example.com
    linuxptp-daemon-qhfg7           3/3     Running   0          4d17h   10.1.196.25   compute-1.example.com
    ptp-operator-6b8dcbf7f4-zndk7   1/1     Running   0          5d7h    10.129.0.61   control-plane-1.example.com

    Note

    When the PTP fast event bus is enabled, the number of ready linuxptp-daemon pods is 3/3. If the PTP fast event bus is not enabled, 2/2 is displayed.

  2. Check that supported hardware is found in the cluster.

    $ oc -n openshift-ptp get nodeptpdevices.ptp.openshift.io

    Example output

    NAME                                  AGE
    control-plane-0.example.com           10d
    control-plane-1.example.com           10d
    compute-0.example.com                 10d
    compute-1.example.com                 10d
    compute-2.example.com                 10d

  3. Check the available PTP network interfaces for a node:

    $ oc -n openshift-ptp get nodeptpdevices.ptp.openshift.io <node_name> -o yaml

    where:

    <node_name>

    Specifies the node you want to query, for example, compute-0.example.com.

    Example output

    apiVersion: ptp.openshift.io/v1
    kind: NodePtpDevice
    metadata:
      creationTimestamp: "2021-09-14T16:52:33Z"
      generation: 1
      name: compute-0.example.com
      namespace: openshift-ptp
      resourceVersion: "177400"
      uid: 30413db0-4d8d-46da-9bef-737bacd548fd
    spec: {}
    status:
      devices:
      - name: eno1
      - name: eno2
      - name: eno3
      - name: eno4
      - name: enp5s0f0
      - name: enp5s0f1

  4. Check that the PTP interface is successfully synchronized to the primary clock by accessing the linuxptp-daemon pod for the corresponding node.

    1. Get the name of the linuxptp-daemon pod and corresponding node you want to troubleshoot by running the following command:

      $ oc get pods -n openshift-ptp -o wide

      Example output

      NAME                            READY   STATUS    RESTARTS   AGE     IP            NODE
      linuxptp-daemon-lmvgn           3/3     Running   0          4d17h   10.1.196.24   compute-0.example.com
      linuxptp-daemon-qhfg7           3/3     Running   0          4d17h   10.1.196.25   compute-1.example.com
      ptp-operator-6b8dcbf7f4-zndk7   1/1     Running   0          5d7h    10.129.0.61   control-plane-1.example.com

    2. Remote shell into the required linuxptp-daemon container:

      $ oc rsh -n openshift-ptp -c linuxptp-daemon-container <linux_daemon_container>

      where:

      <linux_daemon_container>
      is the container you want to diagnose, for example linuxptp-daemon-lmvgn.
    3. In the remote shell connection to the linuxptp-daemon container, use the PTP Management Client (pmc) tool to diagnose the network interface. Run the following pmc command to check the sync status of the PTP device, for example ptp4l.

      # pmc -u -f /var/run/ptp4l.0.config -b 0 'GET PORT_DATA_SET'

      Example output when the node is successfully synced to the primary clock

      sending: GET PORT_DATA_SET
          40a6b7.fffe.166ef0-1 seq 0 RESPONSE MANAGEMENT PORT_DATA_SET
              portIdentity            40a6b7.fffe.166ef0-1
              portState               SLAVE
              logMinDelayReqInterval  -4
              peerMeanPathDelay       0
              logAnnounceInterval     -3
              announceReceiptTimeout  3
              logSyncInterval         -4
              delayMechanism          1
              logMinPdelayReqInterval -4
              versionNumber           2

  5. For GNSS-sourced grandmaster clocks, verify that the in-tree NIC ice driver is correct by running the following command, for example:

    $ oc rsh -n openshift-ptp -c linuxptp-daemon-container linuxptp-daemon-74m2g ethtool -i ens7f0

    Example output

    driver: ice
    version: 5.14.0-356.bz2232515.el9.x86_64
    firmware-version: 4.20 0x8001778b 1.3346.0

  6. For GNSS-sourced grandmaster clocks, verify that the linuxptp-daemon container is receiving signal from the GNSS antenna. If the container is not receiving the GNSS signal, the /dev/gnss0 file is not populated. To verify, run the following command:

    $ oc rsh -n openshift-ptp -c linuxptp-daemon-container linuxptp-daemon-jnz6r cat /dev/gnss0

    Example output

    $GNRMC,125223.00,A,4233.24463,N,07126.64561,W,0.000,,300823,,,A,V*0A
    $GNVTG,,T,,M,0.000,N,0.000,K,A*3D
    $GNGGA,125223.00,4233.24463,N,07126.64561,W,1,12,99.99,98.6,M,-33.1,M,,*7E
    $GNGSA,A,3,25,17,19,11,12,06,05,04,09,20,,,99.99,99.99,99.99,1*37
    $GPGSV,3,1,10,04,12,039,41,05,31,222,46,06,50,064,48,09,28,064,42,1*62

19.2.12. Collecting PTP Operator data

You can use the oc adm must-gather command to collect information about your cluster, including features and objects associated with PTP Operator.

Prerequisites

  • You have access to the cluster as a user with the cluster-admin role.
  • You have installed the OpenShift CLI (oc).
  • You have installed the PTP Operator.

Procedure

  • To collect PTP Operator data with must-gather, you must specify the PTP Operator must-gather image.

    $ oc adm must-gather --image=registry.redhat.io/openshift4/ptp-must-gather-rhel8:v4.14

19.3. Using the PTP hardware fast event notifications framework

Cloud native applications such as virtual RAN (vRAN) require access to notifications about hardware timing events that are critical to the functioning of the overall network. PTP clock synchronization errors can negatively affect the performance and reliability of your low-latency application, for example, a vRAN application running in a distributed unit (DU).

19.3.1. About PTP and clock synchronization error events

Loss of PTP synchronization is a critical error for a RAN network. If synchronization is lost on a node, the radio might be shut down and the network Over the Air (OTA) traffic might be shifted to another node in the wireless network. Fast event notifications mitigate against workload errors by allowing cluster nodes to communicate PTP clock sync status to the vRAN application running in the DU.

Event notifications are available to vRAN applications running on the same DU node. A publish/subscribe REST API passes events notifications to the messaging bus. Publish/subscribe messaging, or pub-sub messaging, is an asynchronous service-to-service communication architecture where any message published to a topic is immediately received by all of the subscribers to the topic.

The PTP Operator generates fast event notifications for every PTP-capable network interface. You can access the events by using a cloud-event-proxy sidecar container over an HTTP or Advanced Message Queuing Protocol (AMQP) message bus.

Note

PTP fast event notifications are available for network interfaces configured to use PTP ordinary clocks, PTP grandmaster clocks, or PTP boundary clocks.

Note

HTTP transport is the default transport for PTP and bare-metal events. Use HTTP transport instead of AMQP for PTP and bare-metal events where possible. AMQ Interconnect is EOL from 30 June 2024. Extended life cycle support (ELS) for AMQ Interconnect ends 29 November 2029. For more information see, Red Hat AMQ Interconnect support status.

19.3.2. About the PTP fast event notifications framework

Use the Precision Time Protocol (PTP) fast event notifications framework to subscribe cluster applications to PTP events that the bare-metal cluster node generates.

Note

The fast events notifications framework uses a REST API for communication. The REST API is based on the O-RAN O-Cloud Notification API Specification for Event Consumers 3.0 that is available from O-RAN ALLIANCE Specifications.

The framework consists of a publisher, subscriber, and an AMQ or HTTP messaging protocol to handle communications between the publisher and subscriber applications. Applications run the cloud-event-proxy container in a sidecar pattern to subscribe to PTP events. The cloud-event-proxy sidecar container can access the same resources as the primary application container without using any of the resources of the primary application and with no significant latency.

Note

HTTP transport is the default transport for PTP and bare-metal events. Use HTTP transport instead of AMQP for PTP and bare-metal events where possible. AMQ Interconnect is EOL from 30 June 2024. Extended life cycle support (ELS) for AMQ Interconnect ends 29 November 2029. For more information see, Red Hat AMQ Interconnect support status.

Figure 19.4. Overview of PTP fast events

Overview of PTP fast events
20 Event is generated on the cluster host
linuxptp-daemon in the PTP Operator-managed pod runs as a Kubernetes DaemonSet and manages the various linuxptp processes (ptp4l, phc2sys, and optionally for grandmaster clocks, ts2phc). The linuxptp-daemon passes the event to the UNIX domain socket.
20 Event is passed to the cloud-event-proxy sidecar
The PTP plugin reads the event from the UNIX domain socket and passes it to the cloud-event-proxy sidecar in the PTP Operator-managed pod. cloud-event-proxy delivers the event from the Kubernetes infrastructure to Cloud-Native Network Functions (CNFs) with low latency.
20 Event is persisted
The cloud-event-proxy sidecar in the PTP Operator-managed pod processes the event and publishes the cloud-native event by using a REST API.
20 Message is transported
The message transporter transports the event to the cloud-event-proxy sidecar in the application pod over HTTP or AMQP 1.0 QPID.
20 Event is available from the REST API
The cloud-event-proxy sidecar in the Application pod processes the event and makes it available by using the REST API.
20 Consumer application requests a subscription and receives the subscribed event
The consumer application sends an API request to the cloud-event-proxy sidecar in the application pod to create a PTP events subscription. The cloud-event-proxy sidecar creates an AMQ or HTTP messaging listener protocol for the resource specified in the subscription.

The cloud-event-proxy sidecar in the application pod receives the event from the PTP Operator-managed pod, unwraps the cloud events object to retrieve the data, and posts the event to the consumer application. The consumer application listens to the address specified in the resource qualifier and receives and processes the PTP event.

19.3.3. Configuring the PTP fast event notifications publisher

To start using PTP fast event notifications for a network interface in your cluster, you must enable the fast event publisher in the PTP Operator PtpOperatorConfig custom resource (CR) and configure ptpClockThreshold values in a PtpConfig CR that you create.

Prerequisites

  • You have installed the OpenShift Container Platform CLI (oc).
  • You have logged in as a user with cluster-admin privileges.
  • You have installed the PTP Operator.

Procedure

  1. Modify the default PTP Operator config to enable PTP fast events.

    1. Save the following YAML in the ptp-operatorconfig.yaml file:

      apiVersion: ptp.openshift.io/v1
      kind: PtpOperatorConfig
      metadata:
        name: default
        namespace: openshift-ptp
      spec:
        daemonNodeSelector:
          node-role.kubernetes.io/worker: ""
        ptpEventConfig:
          enableEventPublisher: true 1
      1
      Set enableEventPublisher to true to enable PTP fast event notifications.
    Note

    In OpenShift Container Platform 4.13 or later, you do not need to set the spec.ptpEventConfig.transportHost field in the PtpOperatorConfig resource when you use HTTP transport for PTP events. Set transportHost only when you use AMQP transport for PTP events.

    1. Update the PtpOperatorConfig CR:

      $ oc apply -f ptp-operatorconfig.yaml
  2. Create a PtpConfig custom resource (CR) for the PTP enabled interface, and set the required values for ptpClockThreshold and ptp4lOpts. The following YAML illustrates the required values that you must set in the PtpConfig CR:

    spec:
      profile:
      - name: "profile1"
        interface: "enp5s0f0"
        ptp4lOpts: "-2 -s --summary_interval -4" 1
        phc2sysOpts: "-a -r -m -n 24 -N 8 -R 16" 2
        ptp4lConf: "" 3
        ptpClockThreshold: 4
          holdOverTimeout: 5
          maxOffsetThreshold: 100
          minOffsetThreshold: -100
    1
    Append --summary_interval -4 to use PTP fast events.
    2
    Required phc2sysOpts values. -m prints messages to stdout. The linuxptp-daemon DaemonSet parses the logs and generates Prometheus metrics.
    3
    Specify a string that contains the configuration to replace the default /etc/ptp4l.conf file. To use the default configuration, leave the field empty.
    4
    Optional. If the ptpClockThreshold stanza is not present, default values are used for the ptpClockThreshold fields. The stanza shows default ptpClockThreshold values. The ptpClockThreshold values configure how long after the PTP master clock is disconnected before PTP events are triggered. holdOverTimeout is the time value in seconds before the PTP clock event state changes to FREERUN when the PTP master clock is disconnected. The maxOffsetThreshold and minOffsetThreshold settings configure offset values in nanoseconds that compare against the values for CLOCK_REALTIME (phc2sys) or master offset (ptp4l). When the ptp4l or phc2sys offset value is outside this range, the PTP clock state is set to FREERUN. When the offset value is within this range, the PTP clock state is set to LOCKED.

Additional resources

19.3.4. Migrating consumer applications to use HTTP transport for PTP or bare-metal events

If you have previously deployed PTP or bare-metal events consumer applications, you need to update the applications to use HTTP message transport.

Prerequisites

  • You have installed the OpenShift CLI (oc).
  • You have logged in as a user with cluster-admin privileges.
  • You have updated the PTP Operator or Bare Metal Event Relay to version 4.13+ which uses HTTP transport by default.

Procedure

  1. Update your events consumer application to use HTTP transport. Set the http-event-publishers variable for the cloud event sidecar deployment.

    For example, in a cluster with PTP events configured, the following YAML snippet illustrates a cloud event sidecar deployment:

    containers:
      - name: cloud-event-sidecar
        image: cloud-event-sidecar
        args:
          - "--metrics-addr=127.0.0.1:9091"
          - "--store-path=/store"
          - "--transport-host=consumer-events-subscription-service.cloud-events.svc.cluster.local:9043"
          - "--http-event-publishers=ptp-event-publisher-service-NODE_NAME.openshift-ptp.svc.cluster.local:9043" 1
          - "--api-port=8089"
    1
    The PTP Operator automatically resolves NODE_NAME to the host that is generating the PTP events. For example, compute-1.example.com.

    In a cluster with bare-metal events configured, set the http-event-publishers field to hw-event-publisher-service.openshift-bare-metal-events.svc.cluster.local:9043 in the cloud event sidecar deployment CR.

  2. Deploy the consumer-events-subscription-service service alongside the events consumer application. For example:

    apiVersion: v1
    kind: Service
    metadata:
      annotations:
        prometheus.io/scrape: "true"
        service.alpha.openshift.io/serving-cert-secret-name: sidecar-consumer-secret
      name: consumer-events-subscription-service
      namespace: cloud-events
      labels:
        app: consumer-service
    spec:
      ports:
        - name: sub-port
          port: 9043
      selector:
        app: consumer
      clusterIP: None
      sessionAffinity: None
      type: ClusterIP

19.3.5. Installing the AMQ messaging bus

To pass PTP fast event notifications between publisher and subscriber on a node, you can install and configure an AMQ messaging bus to run locally on the node. To use AMQ messaging, you must install the AMQ Interconnect Operator.

Note

HTTP transport is the default transport for PTP and bare-metal events. Use HTTP transport instead of AMQP for PTP and bare-metal events where possible. AMQ Interconnect is EOL from 30 June 2024. Extended life cycle support (ELS) for AMQ Interconnect ends 29 November 2029. For more information see, Red Hat AMQ Interconnect support status.

Prerequisites

  • Install the OpenShift Container Platform CLI (oc).
  • Log in as a user with cluster-admin privileges.

Procedure

Verification

  1. Check that the AMQ Interconnect Operator is available and the required pods are running:

    $ oc get pods -n amq-interconnect

    Example output

    NAME                                    READY   STATUS    RESTARTS   AGE
    amq-interconnect-645db76c76-k8ghs       1/1     Running   0          23h
    interconnect-operator-5cb5fc7cc-4v7qm   1/1     Running   0          23h

  2. Check that the required linuxptp-daemon PTP event producer pods are running in the openshift-ptp namespace.

    $ oc get pods -n openshift-ptp

    Example output

    NAME                     READY   STATUS    RESTARTS       AGE
    linuxptp-daemon-2t78p    3/3     Running   0              12h
    linuxptp-daemon-k8n88    3/3     Running   0              12h

19.3.6. Subscribing DU applications to PTP events with the REST API

Subscribe applications to PTP events by using the resource address /cluster/node/<node_name>/ptp, where <node_name> is the cluster node running the DU application.

Deploy your cloud-event-consumer DU application container and cloud-event-proxy sidecar container in a separate DU application pod. The cloud-event-consumer DU application subscribes to the cloud-event-proxy container in the application pod.

Use the following API endpoints to subscribe the cloud-event-consumer DU application to PTP events posted by the cloud-event-proxy container at http://localhost:8089/api/ocloudNotifications/v1/ in the DU application pod:

Note

9089 is the default port for the cloud-event-consumer container deployed in the application pod. You can configure a different port for your DU application as required.

19.3.6.1. PTP events REST API reference

Use the PTP event notifications REST API to subscribe a cluster application to the PTP events that are generated on the parent node.

19.3.6.1.1. api/ocloudNotifications/v1/subscriptions
HTTP method

GET api/ocloudNotifications/v1/subscriptions

Description

Returns a list of subscriptions. If subscriptions exist, a 200 OK status code is returned along with the list of subscriptions.

Example API response

[
 {
  "id": "75b1ad8f-c807-4c23-acf5-56f4b7ee3826",
  "endpointUri": "http://localhost:9089/event",
  "uriLocation": "http://localhost:8089/api/ocloudNotifications/v1/subscriptions/75b1ad8f-c807-4c23-acf5-56f4b7ee3826",
  "resource": "/cluster/node/compute-1.example.com/ptp"
 }
]

HTTP method

POST api/ocloudNotifications/v1/subscriptions

Description

Creates a new subscription. If a subscription is successfully created, or if it already exists, a 201 Created status code is returned.

Table 19.11. Query parameters

ParameterType

subscription

data

Example payload

{
  "uriLocation": "http://localhost:8089/api/ocloudNotifications/v1/subscriptions",
  "resource": "/cluster/node/compute-1.example.com/ptp"
}

19.3.6.1.2. api/ocloudNotifications/v1/subscriptions/<subscription_id>
HTTP method

GET api/ocloudNotifications/v1/subscriptions/<subscription_id>

Description

Returns details for the subscription with ID <subscription_id>

Table 19.12. Query parameters

ParameterType

<subscription_id>

string

Example API response

{
  "id":"48210fb3-45be-4ce0-aa9b-41a0e58730ab",
  "endpointUri": "http://localhost:9089/event",
  "uriLocation":"http://localhost:8089/api/ocloudNotifications/v1/subscriptions/48210fb3-45be-4ce0-aa9b-41a0e58730ab",
  "resource":"/cluster/node/compute-1.example.com/ptp"
}

19.3.6.1.3. api/ocloudNotifications/v1/health
HTTP method

GET api/ocloudNotifications/v1/health/

Description

Returns the health status for the ocloudNotifications REST API.

Example API response

OK

19.3.6.1.4. api/ocloudNotifications/v1/publishers
HTTP method

GET api/ocloudNotifications/v1/publishers

Description

Returns an array of os-clock-sync-state, ptp-clock-class-change, lock-state, and gnss-sync-status details for the cluster node. The system generates notifications when the relevant equipment state changes.

  • os-clock-sync-state notifications describe the host operating system clock synchronization state. Can be in LOCKED or FREERUN state.
  • ptp-clock-class-change notifications describe the current state of the PTP clock class.
  • lock-state notifications describe the current status of the PTP equipment lock state. Can be in LOCKED, HOLDOVER or FREERUN state.
  • gnss-sync-status notifications describe the GPS synchronization state with regard to the external GNSS clock signal. Can be in LOCKED or FREERUN state.

You can use equipment synchronization status subscriptions together to deliver a detailed view of the overall synchronization health of the system.

Example API response

[
  {
    "id": "0fa415ae-a3cf-4299-876a-589438bacf75",
    "endpointUri": "http://localhost:9085/api/ocloudNotifications/v1/dummy",
    "uriLocation": "http://localhost:9085/api/ocloudNotifications/v1/publishers/0fa415ae-a3cf-4299-876a-589438bacf75",
    "resource": "/cluster/node/compute-1.example.com/sync/sync-status/os-clock-sync-state"
  },
  {
    "id": "28cd82df-8436-4f50-bbd9-7a9742828a71",
    "endpointUri": "http://localhost:9085/api/ocloudNotifications/v1/dummy",
    "uriLocation": "http://localhost:9085/api/ocloudNotifications/v1/publishers/28cd82df-8436-4f50-bbd9-7a9742828a71",
    "resource": "/cluster/node/compute-1.example.com/sync/ptp-status/ptp-clock-class-change"
  },
  {
    "id": "44aa480d-7347-48b0-a5b0-e0af01fa9677",
    "endpointUri": "http://localhost:9085/api/ocloudNotifications/v1/dummy",
    "uriLocation": "http://localhost:9085/api/ocloudNotifications/v1/publishers/44aa480d-7347-48b0-a5b0-e0af01fa9677",
    "resource": "/cluster/node/compute-1.example.com/sync/ptp-status/lock-state"
  },
  {
    "id": "778da345d-4567-67b0-a43f0-rty885a456",
    "endpointUri": "http://localhost:9085/api/ocloudNotifications/v1/dummy",
    "uriLocation": "http://localhost:9085/api/ocloudNotifications/v1/publishers/778da345d-4567-67b0-a43f0-rty885a456",
    "resource": "/cluster/node/compute-1.example.com/sync/gnss-status/gnss-sync-status"
  }
]

You can find os-clock-sync-state, ptp-clock-class-change, lock-state, and gnss-sync-status events in the logs for the cloud-event-proxy container. For example:

$ oc logs -f linuxptp-daemon-cvgr6 -n openshift-ptp -c cloud-event-proxy

Example os-clock-sync-state event

{
   "id":"c8a784d1-5f4a-4c16-9a81-a3b4313affe5",
   "type":"event.sync.sync-status.os-clock-sync-state-change",
   "source":"/cluster/compute-1.example.com/ptp/CLOCK_REALTIME",
   "dataContentType":"application/json",
   "time":"2022-05-06T15:31:23.906277159Z",
   "data":{
      "version":"v1",
      "values":[
         {
            "resource":"/sync/sync-status/os-clock-sync-state",
            "dataType":"notification",
            "valueType":"enumeration",
            "value":"LOCKED"
         },
         {
            "resource":"/sync/sync-status/os-clock-sync-state",
            "dataType":"metric",
            "valueType":"decimal64.3",
            "value":"-53"
         }
      ]
   }
}

Example ptp-clock-class-change event

{
   "id":"69eddb52-1650-4e56-b325-86d44688d02b",
   "type":"event.sync.ptp-status.ptp-clock-class-change",
   "source":"/cluster/compute-1.example.com/ptp/ens2fx/master",
   "dataContentType":"application/json",
   "time":"2022-05-06T15:31:23.147100033Z",
   "data":{
      "version":"v1",
      "values":[
         {
            "resource":"/sync/ptp-status/ptp-clock-class-change",
            "dataType":"metric",
            "valueType":"decimal64.3",
            "value":"135"
         }
      ]
   }
}

Example lock-state event

{
   "id":"305ec18b-1472-47b3-aadd-8f37933249a9",
   "type":"event.sync.ptp-status.ptp-state-change",
   "source":"/cluster/compute-1.example.com/ptp/ens2fx/master",
   "dataContentType":"application/json",
   "time":"2022-05-06T15:31:23.467684081Z",
   "data":{
      "version":"v1",
      "values":[
         {
            "resource":"/sync/ptp-status/lock-state",
            "dataType":"notification",
            "valueType":"enumeration",
            "value":"LOCKED"
         },
         {
            "resource":"/sync/ptp-status/lock-state",
            "dataType":"metric",
            "valueType":"decimal64.3",
            "value":"62"
         }
      ]
   }
}

Example gnss-sync-status event

{
  "id": "435e1f2a-6854-4555-8520-767325c087d7",
  "type": "event.sync.gnss-status.gnss-state-change",
  "source": "/cluster/node/compute-1.example.com/sync/gnss-status/gnss-sync-status",
  "dataContentType": "application/json",
  "time": "2023-09-27T19:35:33.42347206Z",
  "data": {
    "version": "v1",
    "values": [
      {
        "resource": "/cluster/node/compute-1.example.com/ens2fx/master",
        "dataType": "notification",
        "valueType": "enumeration",
        "value": "LOCKED"
      },
      {
        "resource": "/cluster/node/compute-1.example.com/ens2fx/master",
        "dataType": "metric",
        "valueType": "decimal64.3",
        "value": "5"
      }
    ]
  }
}

19.3.6.1.5. api/ocloudNotifications/v1/<resource_address>/CurrentState
HTTP method

GET api/ocloudNotifications/v1/cluster/node/<node_name>/sync/ptp-status/lock-state/CurrentState

GET api/ocloudNotifications/v1/cluster/node/<node_name>/sync/sync-status/os-clock-sync-state/CurrentState

GET api/ocloudNotifications/v1/cluster/node/<node_name>/sync/ptp-status/ptp-clock-class-change/CurrentState

Description

Configure the CurrentState API endpoint to return the current state of the os-clock-sync-state, ptp-clock-class-change, lock-state events for the cluster node.

  • os-clock-sync-state notifications describe the host operating system clock synchronization state. Can be in LOCKED or FREERUN state.
  • ptp-clock-class-change notifications describe the current state of the PTP clock class.
  • lock-state notifications describe the current status of the PTP equipment lock state. Can be in LOCKED, HOLDOVER or FREERUN state.

Table 19.13. Query parameters

ParameterType

<resource_address>

string

Example lock-state API response

{
  "id": "c1ac3aa5-1195-4786-84f8-da0ea4462921",
  "type": "event.sync.ptp-status.ptp-state-change",
  "source": "/cluster/node/compute-1.example.com/sync/ptp-status/lock-state",
  "dataContentType": "application/json",
  "time": "2023-01-10T02:41:57.094981478Z",
  "data": {
    "version": "v1",
    "values": [
      {
        "resource": "/cluster/node/compute-1.example.com/ens5fx/master",
        "dataType": "notification",
        "valueType": "enumeration",
        "value": "LOCKED"
      },
      {
        "resource": "/cluster/node/compute-1.example.com/ens5fx/master",
        "dataType": "metric",
        "valueType": "decimal64.3",
        "value": "29"
      }
    ]
  }
}

Example os-clock-sync-state API response

{
  "specversion": "0.3",
  "id": "4f51fe99-feaa-4e66-9112-66c5c9b9afcb",
  "source": "/cluster/node/compute-1.example.com/sync/sync-status/os-clock-sync-state",
  "type": "event.sync.sync-status.os-clock-sync-state-change",
  "subject": "/cluster/node/compute-1.example.com/sync/sync-status/os-clock-sync-state",
  "datacontenttype": "application/json",
  "time": "2022-11-29T17:44:22.202Z",
  "data": {
    "version": "v1",
    "values": [
      {
        "resource": "/cluster/node/compute-1.example.com/CLOCK_REALTIME",
        "dataType": "notification",
        "valueType": "enumeration",
        "value": "LOCKED"
      },
      {
        "resource": "/cluster/node/compute-1.example.com/CLOCK_REALTIME",
        "dataType": "metric",
        "valueType": "decimal64.3",
        "value": "27"
      }
    ]
  }
}

Example ptp-clock-class-change API response

{
  "id": "064c9e67-5ad4-4afb-98ff-189c6aa9c205",
  "type": "event.sync.ptp-status.ptp-clock-class-change",
  "source": "/cluster/node/compute-1.example.com/sync/ptp-status/ptp-clock-class-change",
  "dataContentType": "application/json",
  "time": "2023-01-10T02:41:56.785673989Z",
  "data": {
    "version": "v1",
    "values": [
      {
        "resource": "/cluster/node/compute-1.example.com/ens5fx/master",
        "dataType": "metric",
        "valueType": "decimal64.3",
        "value": "165"
      }
    ]
  }
}

19.3.7. Monitoring PTP fast event metrics

You can monitor PTP fast events metrics from cluster nodes where the linuxptp-daemon is running. You can also monitor PTP fast event metrics in the OpenShift Container Platform web console by using the preconfigured and self-updating Prometheus monitoring stack.

Prerequisites

  • Install the OpenShift Container Platform CLI oc.
  • Log in as a user with cluster-admin privileges.
  • Install and configure the PTP Operator on a node with PTP-capable hardware.

Procedure

  1. Start a debug pod for the node by running the following command:

    $ oc debug node/<node_name>
  2. Check for PTP metrics exposed by the linuxptp-daemon container. For example, run the following command:

    sh-4.4# curl http://localhost:9091/metrics

    Example output

    # HELP cne_api_events_published Metric to get number of events published by the rest api
    # TYPE cne_api_events_published gauge
    cne_api_events_published{address="/cluster/node/compute-1.example.com/sync/gnss-status/gnss-sync-status",status="success"} 1
    cne_api_events_published{address="/cluster/node/compute-1.example.com/sync/ptp-status/lock-state",status="success"} 94
    cne_api_events_published{address="/cluster/node/compute-1.example.com/sync/ptp-status/ptp-clock-class-change",status="success"} 18
    cne_api_events_published{address="/cluster/node/compute-1.example.com/sync/sync-status/os-clock-sync-state",status="success"} 27

  3. To view the PTP event in the OpenShift Container Platform web console, copy the name of the PTP metric you want to query, for example, openshift_ptp_offset_ns.
  4. In the OpenShift Container Platform web console, click ObserveMetrics.
  5. Paste the PTP metric name into the Expression field, and click Run queries.

Additional resources

19.3.8. PTP fast event metrics reference

The following table describes the PTP fast events metrics that are available from cluster nodes where the linuxptp-daemon service is running.

Note

Some of the following metrics are applicable for PTP grandmaster clocks (T-GM) only.

Table 19.14. PTP fast event metrics

MetricDescriptionExample

openshift_ptp_clock_class

Returns the PTP clock class for the interface. Possible values for PTP clock class are 6 (LOCKED), 7 (PRC UNLOCKED IN-SPEC), 52 (PRC UNLOCKED OUT-OF-SPEC), 187 (PRC UNLOCKED OUT-OF-SPEC), 135 (T-BC HOLDOVER IN-SPEC), 165 (T-BC HOLDOVER OUT-OF-SPEC), 248 (DEFAULT), or 255 (SLAVE ONLY CLOCK). Applicable to T-GM clocks only.

{node="compute-1.example.com",process="ptp4l"} 6

openshift_ptp_clock_state

Returns the current PTP clock state for the interface. Possible values for PTP clock state are FREERUN, LOCKED, or HOLDOVER.

{iface="CLOCK_REALTIME", node="compute-1.example.com", process="phc2sys"} 1

openshift_ptp_delay_ns

Returns the delay in nanoseconds between the primary clock sending the timing packet and the secondary clock receiving the timing packet.

{from="master", iface="ens2fx", node="compute-1.example.com", process="ts2phc"} 0

openshift_ptp_frequency_adjustment_ns

Returns the frequency adjustment in nanoseconds between 2 PTP clocks. For example, between the upstream clock and the NIC, between the system clock and the NIC, or between the PTP hardware clock (phc) and the NIC. Applicable to T-GM clocks only.

{from="phc", iface="CLOCK_REALTIME", node="compute-1.example.com", process="phc2sys"} -6768

openshift_ptp_frequency_status

Returns the current status of the digital phase-locked loop (DPLL) frequency for the NIC. Possible values are -1 (UNKNOWN), 0 (INVALID), 1 (FREERUN), 2 (LOCKED), 3 (LOCKED_HO_ACQ), or 4 (HOLDOVER).

{from="dpll",iface="ens2fx",node="compute-1.example.com",process="dpll"} 3

openshift_ptp_phase_status

Returns the status of the DPLL phase for the NIC. Possible values are -1 (UNKNOWN), 0 (INVALID), 1 (FREERUN), 2 (LOCKED), 3 (LOCKED_HO_ACQ), or 4 (HOLDOVER).

{from="dpll",iface="ens2fx",node="compute-1.example.com",process="dpll"} 3

openshift_ptp_interface_role

Returns the configured PTP clock role for the interface. Possible values are 0 (PASSIVE), 1 (SLAVE), 2 (MASTER), 3 (FAULTY), 4 (UNKNOWN), or 5 (LISTENING).

{iface="ens2f0", node="compute-1.example.com", process="ptp4l"} 2

openshift_ptp_max_offset_ns

Returns the maximum offset in nanoseconds between 2 clocks or interfaces. For example, between the upstream GNSS clock and the NIC (ts2phc), or between the PTP hardware clock (phc) and the system clock (phc2sys). Applicable to T-GM clocks only.

{from="master", iface="ens2fx", node="compute-1.example.com", process="ts2phc"} 1.038099569e+09

openshift_ptp_offset_ns

Returns the offset in nanoseconds between the DPLL clock or the GNSS clock source and the NIC hardware clock. Applicable to T-GM clocks only.

{from="phc", iface="CLOCK_REALTIME", node="compute-1.example.com", process="phc2sys"} -9

openshift_ptp_process_restart_count

Returns a count of the number of times the ptp4l process was restarted.

{config="ptp4l.0.config", node="compute-1.example.com",process="phc2sys"} 1

openshift_ptp_process_status

Returns a status code that shows whether the PTP process is running or not.

{config="ptp4l.0.config", node="compute-1.example.com",process="phc2sys"} 1

openshift_ptp_threshold

Returns values for HoldOverTimeout, MaxOffsetThreshold, and MinOffsetThreshold.

  • holdOverTimeout is the time value in seconds before the PTP clock event state changes to FREERUN when the PTP master clock is disconnected.
  • maxOffsetThreshold and minOffsetThreshold are offset values in nanoseconds that compare against the values for CLOCK_REALTIME (phc2sys) or master offset (ptp4l) values that you configure in the PtpConfig CR for the NIC.

{node="compute-1.example.com", profile="grandmaster", threshold="HoldOverTimeout"} 5

openshift_ptp_pps_status

Returns the current status of the NIC 1PPS connection. You use the 1PPS connection to synchronize timing between connected NICs. Possible values are 0 (UNAVAILABLE) and 1 (AVAILABLE).

{from="dpll",iface="ens2fx",node="compute-1.example.com",process="dpll"} 1

openshift_ptp_nmea_status

Returns the current status of the NMEA connection. NMEA is the protocol that is used for 1PPS NIC connections. Possible values are 0 (UNAVAILABLE) and 1 (AVAILABLE).

{iface="ens2fx",node="compute-1.example.com",process="ts2phc"} 1

openshift_ptp_gnss_status

Returns the current status of the global navigation satellite system (GNSS) connection. GNSS provides satellite-based positioning, navigation, and timing services globally. Possible values are 0 (NOFIX), 1 (DEAD RECKONING ONLY), 2 (2D-FIX), 3 (3D-FIX), 4 (GPS+DEAD RECKONING FIX), 5, (TIME ONLY FIX).

{from="gnss",iface="ens2fx",node="compute-1.example.com",process="gnss"} 3

19.4. Developing PTP events consumer applications

When developing consumer applications that make use of Precision Time Protocol (PTP) events on a bare-metal cluster node, you need to deploy your consumer application and a cloud-event-proxy container in a separate application pod. The cloud-event-proxy container receives the events from the PTP Operator pod and passes it to the consumer application. The consumer application subscribes to the events posted in the cloud-event-proxy container by using a REST API.

For more information about deploying PTP events applications, see About the PTP fast event notifications framework.

Note

The following information provides general guidance for developing consumer applications that use PTP events. A complete events consumer application example is outside the scope of this information.

19.4.1. PTP events consumer application reference

PTP event consumer applications require the following features:

  1. A web service running with a POST handler to receive the cloud native PTP events JSON payload
  2. A createSubscription function to subscribe to the PTP events producer
  3. A getCurrentState function to poll the current state of the PTP events producer

The following example Go snippets illustrate these requirements:

Example PTP events consumer server function in Go

func server() {
  http.HandleFunc("/event", getEvent)
  http.ListenAndServe("localhost:8989", nil)
}

func getEvent(w http.ResponseWriter, req *http.Request) {
  defer req.Body.Close()
  bodyBytes, err := io.ReadAll(req.Body)
  if err != nil {
    log.Errorf("error reading event %v", err)
  }
  e := string(bodyBytes)
  if e != "" {
    processEvent(bodyBytes)
    log.Infof("received event %s", string(bodyBytes))
  } else {
    w.WriteHeader(http.StatusNoContent)
  }
}

Example PTP events createSubscription function in Go

import (
"github.com/redhat-cne/sdk-go/pkg/pubsub"
"github.com/redhat-cne/sdk-go/pkg/types"
v1pubsub "github.com/redhat-cne/sdk-go/v1/pubsub"
)

// Subscribe to PTP events using REST API
s1,_:=createsubscription("/cluster/node/<node_name>/sync/sync-status/os-clock-sync-state") 1
s2,_:=createsubscription("/cluster/node/<node_name>/sync/ptp-status/ptp-clock-class-change")
s3,_:=createsubscription("/cluster/node/<node_name>/sync/ptp-status/lock-state")

// Create PTP event subscriptions POST
func createSubscription(resourceAddress string) (sub pubsub.PubSub, err error) {
  var status int
      apiPath:= "/api/ocloudNotifications/v1/"
      localAPIAddr:=localhost:8989 // vDU service API address
      apiAddr:= "localhost:8089" // event framework API address

  subURL := &types.URI{URL: url.URL{Scheme: "http",
    Host: apiAddr
    Path: fmt.Sprintf("%s%s", apiPath, "subscriptions")}}
  endpointURL := &types.URI{URL: url.URL{Scheme: "http",
    Host: localAPIAddr,
    Path: "event"}}

  sub = v1pubsub.NewPubSub(endpointURL, resourceAddress)
  var subB []byte

  if subB, err = json.Marshal(&sub); err == nil {
    rc := restclient.New()
    if status, subB = rc.PostWithReturn(subURL, subB); status != http.StatusCreated {
      err = fmt.Errorf("error in subscription creation api at %s, returned status %d", subURL, status)
    } else {
      err = json.Unmarshal(subB, &sub)
    }
  } else {
    err = fmt.Errorf("failed to marshal subscription for %s", resourceAddress)
  }
  return
}

1
Replace <node_name> with the FQDN of the node that is generating the PTP events. For example, compute-1.example.com.

Example PTP events consumer getCurrentState function in Go

//Get PTP event state for the resource
func getCurrentState(resource string) {
  //Create publisher
  url := &types.URI{URL: url.URL{Scheme: "http",
    Host: localhost:8989,
    Path: fmt.SPrintf("/api/ocloudNotifications/v1/%s/CurrentState",resource}}
  rc := restclient.New()
  status, event := rc.Get(url)
  if status != http.StatusOK {
    log.Errorf("CurrentState:error %d from url %s, %s", status, url.String(), event)
  } else {
    log.Debugf("Got CurrentState: %s ", event)
  }
}

19.4.2. Reference cloud-event-proxy deployment and service CRs

Use the following example cloud-event-proxy deployment and subscriber service CRs as a reference when deploying your PTP events consumer application.

Note

HTTP transport is the default transport for PTP and bare-metal events. Use HTTP transport instead of AMQP for PTP and bare-metal events where possible. AMQ Interconnect is EOL from 30 June 2024. Extended life cycle support (ELS) for AMQ Interconnect ends 29 November 2029. For more information see, Red Hat AMQ Interconnect support status.

Reference cloud-event-proxy deployment with HTTP transport

apiVersion: apps/v1
kind: Deployment
metadata:
  name: event-consumer-deployment
  namespace: <namespace>
  labels:
    app: consumer
spec:
  replicas: 1
  selector:
    matchLabels:
      app: consumer
  template:
    metadata:
      labels:
        app: consumer
    spec:
      serviceAccountName: sidecar-consumer-sa
      containers:
        - name: event-subscriber
          image: event-subscriber-app
        - name: cloud-event-proxy-as-sidecar
          image: openshift4/ose-cloud-event-proxy
          args:
            - "--metrics-addr=127.0.0.1:9091"
            - "--store-path=/store"
            - "--transport-host=consumer-events-subscription-service.cloud-events.svc.cluster.local:9043"
            - "--http-event-publishers=ptp-event-publisher-service-NODE_NAME.openshift-ptp.svc.cluster.local:9043"
            - "--api-port=8089"
          env:
            - name: NODE_NAME
              valueFrom:
                fieldRef:
                  fieldPath: spec.nodeName
            - name: NODE_IP
              valueFrom:
                fieldRef:
                  fieldPath: status.hostIP
              volumeMounts:
                - name: pubsubstore
                  mountPath: /store
          ports:
            - name: metrics-port
              containerPort: 9091
            - name: sub-port
              containerPort: 9043
          volumes:
            - name: pubsubstore
              emptyDir: {}

Reference cloud-event-proxy deployment with AMQ transport

apiVersion: apps/v1
kind: Deployment
metadata:
  name: cloud-event-proxy-sidecar
  namespace: cloud-events
  labels:
    app: cloud-event-proxy
spec:
  selector:
    matchLabels:
      app: cloud-event-proxy
  template:
    metadata:
      labels:
        app: cloud-event-proxy
    spec:
      nodeSelector:
        node-role.kubernetes.io/worker: ""
      containers:
        - name: cloud-event-sidecar
          image: openshift4/ose-cloud-event-proxy
          args:
            - "--metrics-addr=127.0.0.1:9091"
            - "--store-path=/store"
            - "--transport-host=amqp://router.router.svc.cluster.local"
            - "--api-port=8089"
          env:
            - name: <node_name>
              valueFrom:
                fieldRef:
                  fieldPath: spec.nodeName
            - name: <node_ip>
              valueFrom:
                fieldRef:
                  fieldPath: status.hostIP
          volumeMounts:
            - name: pubsubstore
              mountPath: /store
          ports:
            - name: metrics-port
              containerPort: 9091
            - name: sub-port
              containerPort: 9043
          volumes:
            - name: pubsubstore
              emptyDir: {}

Reference cloud-event-proxy subscriber service

apiVersion: v1
kind: Service
metadata:
  annotations:
    prometheus.io/scrape: "true"
    service.alpha.openshift.io/serving-cert-secret-name: sidecar-consumer-secret
  name: consumer-events-subscription-service
  namespace: cloud-events
  labels:
    app: consumer-service
spec:
  ports:
    - name: sub-port
      port: 9043
  selector:
    app: consumer
  clusterIP: None
  sessionAffinity: None
  type: ClusterIP

19.4.3. PTP events available from the cloud-event-proxy sidecar REST API

PTP events consumer applications can poll the PTP events producer for the following PTP timing events.

Table 19.15. PTP events available from the cloud-event-proxy sidecar

Resource URIDescription

/cluster/node/<node_name>/sync/ptp-status/lock-state

Describes the current status of the PTP equipment lock state. Can be in LOCKED, HOLDOVER, or FREERUN state.

/cluster/node/<node_name>/sync/sync-status/os-clock-sync-state

Describes the host operating system clock synchronization state. Can be in LOCKED or FREERUN state.

/cluster/node/<node_name>/sync/ptp-status/ptp-clock-class-change

Describes the current state of the PTP clock class.

19.4.4. Subscribing the consumer application to PTP events

Before the PTP events consumer application can poll for events, you need to subscribe the application to the event producer.

19.4.4.1. Subscribing to PTP lock-state events

To create a subscription for PTP lock-state events, send a POST action to the cloud event API at http://localhost:8081/api/ocloudNotifications/v1/subscriptions with the following payload:

{
"endpointUri": "http://localhost:8989/event",
"resource": "/cluster/node/<node_name>/sync/ptp-status/lock-state",
}

Example response

{
"id": "e23473d9-ba18-4f78-946e-401a0caeff90",
"endpointUri": "http://localhost:8989/event",
"uriLocation": "http://localhost:8089/api/ocloudNotifications/v1/subscriptions/e23473d9-ba18-4f78-946e-401a0caeff90",
"resource": "/cluster/node/<node_name>/sync/ptp-status/lock-state",
}

19.4.4.2. Subscribing to PTP os-clock-sync-state events

To create a subscription for PTP os-clock-sync-state events, send a POST action to the cloud event API at http://localhost:8081/api/ocloudNotifications/v1/subscriptions with the following payload:

{
"endpointUri": "http://localhost:8989/event",
"resource": "/cluster/node/<node_name>/sync/sync-status/os-clock-sync-state",
}

Example response

{
"id": "e23473d9-ba18-4f78-946e-401a0caeff90",
"endpointUri": "http://localhost:8989/event",
"uriLocation": "http://localhost:8089/api/ocloudNotifications/v1/subscriptions/e23473d9-ba18-4f78-946e-401a0caeff90",
"resource": "/cluster/node/<node_name>/sync/sync-status/os-clock-sync-state",
}

19.4.4.3. Subscribing to PTP ptp-clock-class-change events

To create a subscription for PTP ptp-clock-class-change events, send a POST action to the cloud event API at http://localhost:8081/api/ocloudNotifications/v1/subscriptions with the following payload:

{
"endpointUri": "http://localhost:8989/event",
"resource": "/cluster/node/<node_name>/sync/ptp-status/ptp-clock-class-change",
}

Example response

{
"id": "e23473d9-ba18-4f78-946e-401a0caeff90",
"endpointUri": "http://localhost:8989/event",
"uriLocation": "http://localhost:8089/api/ocloudNotifications/v1/subscriptions/e23473d9-ba18-4f78-946e-401a0caeff90",
"resource": "/cluster/node/<node_name>/sync/ptp-status/ptp-clock-class-change",
}

19.4.5. Getting the current PTP clock status

To get the current PTP status for the node, send a GET action to one of the following event REST APIs:

  • http://localhost:8081/api/ocloudNotifications/v1/cluster/node/<node_name>/sync/ptp-status/lock-state/CurrentState
  • http://localhost:8081/api/ocloudNotifications/v1/cluster/node/<node_name>/sync/sync-status/os-clock-sync-state/CurrentState
  • http://localhost:8081/api/ocloudNotifications/v1/cluster/node/<node_name>/sync/ptp-status/ptp-clock-class-change/CurrentState

The response is a cloud native event JSON object. For example:

Example lock-state API response

{
  "id": "c1ac3aa5-1195-4786-84f8-da0ea4462921",
  "type": "event.sync.ptp-status.ptp-state-change",
  "source": "/cluster/node/compute-1.example.com/sync/ptp-status/lock-state",
  "dataContentType": "application/json",
  "time": "2023-01-10T02:41:57.094981478Z",
  "data": {
    "version": "v1",
    "values": [
      {
        "resource": "/cluster/node/compute-1.example.com/ens5fx/master",
        "dataType": "notification",
        "valueType": "enumeration",
        "value": "LOCKED"
      },
      {
        "resource": "/cluster/node/compute-1.example.com/ens5fx/master",
        "dataType": "metric",
        "valueType": "decimal64.3",
        "value": "29"
      }
    ]
  }
}

19.4.6. Verifying that the PTP events consumer application is receiving events

Verify that the cloud-event-proxy container in the application pod is receiving PTP events.

Prerequisites

  • You have installed the OpenShift CLI (oc).
  • You have logged in as a user with cluster-admin privileges.
  • You have installed and configured the PTP Operator.

Procedure

  1. Get the list of active linuxptp-daemon pods. Run the following command:

    $ oc get pods -n openshift-ptp

    Example output

    NAME                    READY   STATUS    RESTARTS   AGE
    linuxptp-daemon-2t78p   3/3     Running   0          8h
    linuxptp-daemon-k8n88   3/3     Running   0          8h

  2. Access the metrics for the required consumer-side cloud-event-proxy container by running the following command:

    $ oc exec -it <linuxptp-daemon> -n openshift-ptp -c cloud-event-proxy -- curl 127.0.0.1:9091/metrics

    where:

    <linuxptp-daemon>

    Specifies the pod you want to query, for example, linuxptp-daemon-2t78p.

    Example output

    # HELP cne_transport_connections_resets Metric to get number of connection resets
    # TYPE cne_transport_connections_resets gauge
    cne_transport_connection_reset 1
    # HELP cne_transport_receiver Metric to get number of receiver created
    # TYPE cne_transport_receiver gauge
    cne_transport_receiver{address="/cluster/node/compute-1.example.com/ptp",status="active"} 2
    cne_transport_receiver{address="/cluster/node/compute-1.example.com/redfish/event",status="active"} 2
    # HELP cne_transport_sender Metric to get number of sender created
    # TYPE cne_transport_sender gauge
    cne_transport_sender{address="/cluster/node/compute-1.example.com/ptp",status="active"} 1
    cne_transport_sender{address="/cluster/node/compute-1.example.com/redfish/event",status="active"} 1
    # HELP cne_events_ack Metric to get number of events produced
    # TYPE cne_events_ack gauge
    cne_events_ack{status="success",type="/cluster/node/compute-1.example.com/ptp"} 18
    cne_events_ack{status="success",type="/cluster/node/compute-1.example.com/redfish/event"} 18
    # HELP cne_events_transport_published Metric to get number of events published by the transport
    # TYPE cne_events_transport_published gauge
    cne_events_transport_published{address="/cluster/node/compute-1.example.com/ptp",status="failed"} 1
    cne_events_transport_published{address="/cluster/node/compute-1.example.com/ptp",status="success"} 18
    cne_events_transport_published{address="/cluster/node/compute-1.example.com/redfish/event",status="failed"} 1
    cne_events_transport_published{address="/cluster/node/compute-1.example.com/redfish/event",status="success"} 18
    # HELP cne_events_transport_received Metric to get number of events received  by the transport
    # TYPE cne_events_transport_received gauge
    cne_events_transport_received{address="/cluster/node/compute-1.example.com/ptp",status="success"} 18
    cne_events_transport_received{address="/cluster/node/compute-1.example.com/redfish/event",status="success"} 18
    # HELP cne_events_api_published Metric to get number of events published by the rest api
    # TYPE cne_events_api_published gauge
    cne_events_api_published{address="/cluster/node/compute-1.example.com/ptp",status="success"} 19
    cne_events_api_published{address="/cluster/node/compute-1.example.com/redfish/event",status="success"} 19
    # HELP cne_events_received Metric to get number of events received
    # TYPE cne_events_received gauge
    cne_events_received{status="success",type="/cluster/node/compute-1.example.com/ptp"} 18
    cne_events_received{status="success",type="/cluster/node/compute-1.example.com/redfish/event"} 18
    # HELP promhttp_metric_handler_requests_in_flight Current number of scrapes being served.
    # TYPE promhttp_metric_handler_requests_in_flight gauge
    promhttp_metric_handler_requests_in_flight 1
    # HELP promhttp_metric_handler_requests_total Total number of scrapes by HTTP status code.
    # TYPE promhttp_metric_handler_requests_total counter
    promhttp_metric_handler_requests_total{code="200"} 4
    promhttp_metric_handler_requests_total{code="500"} 0
    promhttp_metric_handler_requests_total{code="503"} 0