Red Hat Training

A Red Hat training course is available for Red Hat OpenStack Platform

Spine Leaf Networking

Red Hat OpenStack Platform 13

Configure routed spine-leaf networks using Red Hat OpenStack Platform director

OpenStack Documentation Team

Abstract

This guide provides a basic scenario on how to configure a routed spine-leaf network on the overcloud. This includes setting up the undercloud, writing the main configuration files, and creating roles for your nodes.

Chapter 1. Introduction

This guide provides information of how to construct a spine-leaf network topology for your Red Hat OpenStack Platform environment. This includes a full end-to-end scenario and example files to help replicate a more extensive network topology within your own environment.

1.1. Spine-leaf networking

Red Hat OpenStack Platform’s composable network architecture allows you to adapt your networking to the popular routed spine-leaf data center topology. In a practical application of routed spine-leaf, a leaf is represented as a composable Compute or Storage role usually in a data center rack, as shown in Figure 1.1, “Routed spine-leaf example”. The Leaf 0 rack has an undercloud node, controllers, and compute nodes. The composable networks are presented to the nodes, which have been assigned to composable roles. In this diagram:

  • The StorageLeaf networks are presented to the Ceph storage and Compute nodes.
  • The NetworkLeaf represents an example of any network you might want to compose.

Figure 1.1. Routed spine-leaf example

249 OpenStack Spine Leaf updates 0522 routed

1.2. Network topology

The routed spine-leaf bare metal environment has one or more layer 3 capable switches, which route traffic between the isolated VLANs in the separate layer 2 broadcast domains.

The intention of this design is to isolate the traffic according to function. For example, if the controller nodes host an API on the Internal API network, when a compute node accesses the API it should use its own version of the Internal API network. For this routing to work, you need routes that force traffic destined for the Internal API network to use the required interface. This can be configured using supernet routes. For example, if you use 172.18.0.0/24 as the Internal API network for the controller nodes, you can use 172.18.1.0/24 for the second Internal API network, and 172.18.2.0/24 for the third, and so on. As a result, you can have a route pointing to the larger 172.18.0.0/16 supernet that uses the gateway IP on the local Internal API network for each role in each layer 2 domain.

This scenario uses the following networks:

Table 1.1. Leaf 0 Networks

NetworkRoles attachedInterfaceBridgeSubnet

Provisioning / Control Plane

All

nic1

br-ctlplane (undercloud)

192.168.10.0/24

Storage

Controller

nic2

 

172.16.0.0/24

Storage Mgmt

Controller

nic3

 

172.17.0.0/24

Internal API

Controller

nic4

 

172.18.0.0/24

Tenant

Controller

nic5

 

172.19.0.0/24

External

Controller

nic6

br-ex

10.1.1.0/24

Table 1.2. Leaf 1 Networks

NetworkRoles attachedInterfaceBridgeSubnet

Provisioning / Control Plane

All

nic1

br-ctlplane (undercloud)

192.168.11.0/24

Storage1

Compute1, Ceph1

nic2

 

172.16.1.0/24

Storage Mgmt1

Ceph1

nic3

 

172.17.1.0/24

Internal API1

Compute1

nic4

 

172.18.1.0/24

Tenant1

Compute1

nic5

 

172.19.1.0/24

Table 1.3. Leaf 2 Networks

NetworkRoles attachedInterfaceBridgeSubnet

Provisioning / Control Plane

All

nic1

br-ctlplane (undercloud)

192.168.12.0/24

Storage2

Compute2, Ceph2

nic2

 

172.16.2.0/24

Storage Mgmt2

Ceph2

nic3

 

172.17.2.0/24

Internal API2

Compute2

nic4

 

172.18.2.0/24

Tenant2

Compute2

nic5

 

172.19.2.0/24

Table 1.4. Supernet Routes

NetworkSubnet

Storage

172.16.0.0/16

Storage Mgmt

172.17.0.0/16

Internal API

172.18.0.0/16

Tenant

172.19.0.0/16

249 OpenStack Spine Leaf updates 0522 API network

1.3. Spine-leaf requirements

To deploy the overcloud on a network with a layer-3 routed architecture, you must meet the following requirements:

Layer-3 routing
The network infrastructure must have routing configured to enable traffic between the different layer-2 segments. This can be statically or dynamically configured.
DHCP-Relay
Each layer-2 segment not local to the undercloud must provide dhcp-relay. You must forward DHCP requests to the undercloud on the provisioning network segment where the undercloud is connected.
Note

The undercloud uses two DHCP servers. One for baremetal node introspection, and another for deploying overcloud nodes. Make sure to read DHCP relay configuration to understand the requirements when configuring dhcp-relay.

1.4. Spine-leaf limitations

  • Some roles, such as the Controller role, use virtual IP addresses and clustering. The mechanism behind this functionality requires layer-2 network connectivity between these nodes. These nodes are all be placed within the same leaf.
  • Similar restrictions apply to Networker nodes. The network service implements highly-available default paths in the network using Virtual Router Redundancy Protocol (VRRP). Since VRRP uses a virtual router IP address, you must connect master and backup nodes to the same L2 network segment.
  • When using tenant or provider networks with VLAN segmentation, you must share the particular VLANs between all Networker and Compute nodes.
Note

It is possible to configure the network service with multiple sets of Networker nodes. Each set share routes for their networks, and VRRP would provide highly-available default paths within each set of Networker nodes. In such configuration all Networker nodes sharing networks must be on the same L2 network segment.

Chapter 2. Configuring the undercloud

This section describes a use case on how to configure the undercloud to accommodate routed spine-leaf with composable networks.

2.1. Configuring the spine leaf provisioning networks

To configure the provisioning networks for your spine leaf infrastructure, edit the undercloud.conf file and set the relevant parameters as defined in the following procedure.

Procedure

  1. Log into the undercloud as the stack user.
  2. If you do not already have an undercloud.conf, copy the sample template file:

    [stack@director ~]$ cp /usr/share/instack-undercloud/undercloud.conf.sample ~/undercloud.conf
  3. Edit your undercloud.conf.
  4. In the [DEFAULT] section:

    1. Set local_ip to the undercloud IP on leaf0:

      local_ip = 192.168.10.1/24
    2. Set undercloud_public_vip to the externally facing IP address of the undercloud:

      undercloud_public_vip = 10.1.1.1
    3. Set undercloud_admin_vip to the administration IP address of the undercloud. This IP address is usually on leaf0:

      undercloud_admin_vip = 192.168.10.2
    4. Set local_interface to the interface to bridge for the local network:

      local_interface = eth1
    5. Set enable_routed_networks to true:

      enable_routed_networks = true
    6. Define your list of subnets using the subnets parameter. Define one subnet for each layer 2 segment in the routed spine and leaf:

      subnets = leaf0,leaf1,leaf2
    7. Specify the subnet associated with the physical layer 2 segment local to the undercloud using the local_subnet parameter:

      local_subnet = leaf0
  5. Create a new section per each subnet defined with the subnets parameter:

    [leaf0]
    cidr = 192.168.10.0/24
    dhcp_start = 192.168.10.10
    dhcp_end = 192.168.10.90
    inspection_iprange = 192.168.10.100,192.168.10.190
    gateway = 192.168.10.1
    masquerade = False
    
    [leaf1]
    cidr = 192.168.11.0/24
    dhcp_start = 192.168.11.10
    dhcp_end = 192.168.11.90
    inspection_iprange = 192.168.11.100,192.168.11.190
    gateway = 192.168.11.1
    masquerade = False
    
    [leaf2]
    cidr = 192.168.12.0/24
    dhcp_start = 192.168.12.10
    dhcp_end = 192.168.12.90
    inspection_iprange = 192.168.12.100,192.168.12.190
    gateway = 192.168.12.1
    masquerade = False
  6. Save the undercloud.conf file.
  7. Run the undercloud installation command:

    [stack@director ~]$ openstack undercloud install

This creates three subnets on the provisioning network / control plane. The overcloud uses each network to provision systems within each respective leaf.

To ensure proper relay of DHCP requests to the undercloud, you might need to configure a DHCP relay. The next section provides some information on how to configure a DHCP relay.

2.2. Configuring a DHCP relay

The undercloud uses two DHCP servers on the provisioning network:

  • one for introspection.
  • one for provisioning.

When configuring a DHCP relay make sure to forward DHCP requests to both DHCP servers on the undercloud.

You can use UDP broadcast with devices that support it to relay DHCP requests to the L2 network segment where the undercloud provisioning network is connected. Alternatively you can use UDP unicast which relays DHCP requests to specific IP addresses.

Note

Configuration of DHCP relay on specific devices types is beyond the scope of this document. As a reference, this document provides a DHCP relay configuration example using the implementation in ISC DHCP software is available below. Please refer to manual page dhcrelay(8) for further details on how to use this implementation.

Broadcast DHCP relay

This method relays DHCP requests using UDP broadcast traffic onto the L2 network segment where the DHCP server(s) resides. All devices on the network segment receive the broadcast traffic. When using UDP broadcast, both DHCP servers on the undercloud receive the relayed DHCP request. Depending on implementation this is typically configured by specifying either the interface or IP network address:

Interface
Specifying an interface connected to the L2 network segment where the DHCP requests are relayed.
IP network address
Specifying the network address of the IP network where the DHCP request are relayed.

Unicast DHCP relay

This method relays DHCP requests using UDP unicast traffic to specific DHCP servers. When using UDP unicast, you must configure the device providing DHCP relay to relay DHCP requests to both the IP address assigned to the interface used for introspection on the undercloud and the IP address of the network namespace created by the OpenStack Networking (neutron) service to host the DHCP service for the ctlplane network.

The interface used for introspection is the one defined as inspection_interface in undercloud.conf.

Note

It is common to use the br-ctlplane interface for introspection. The IP address defined as local_ip in undercloud.conf is on the br-ctlplane interface.

The IP address allocated to the Neutron DHCP namespace is the first address available in the IP range configured for the local_subnet in undercloud.conf. The first address in the IP range is the one defined as dhcp_start in the configuration. For example: 192.168.10.10 would be the IP address when the following configuration is used:

[DEFAULT]
local_subnet = leaf0
subnets = leaf0,leaf1,leaf2

[leaf0]
cidr = 192.168.10.0/24
dhcp_start = 192.168.10.10
dhcp_end = 192.168.10.90
inspection_iprange = 192.168.10.100,192.168.10.190
gateway = 192.168.10.1
masquerade = False
Warning

The IP address for the DHCP namespace is automatically allocated. In most cases, it will be the first address in the IP range. Ensure sure to verify this is the case by running the following commands on the undercloud:

$ openstack port list --device-owner network:dhcp -c "Fixed IP Addresses"
+----------------------------------------------------------------------------+
| Fixed IP Addresses                                                         |
+----------------------------------------------------------------------------+
| ip_address='192.168.10.10', subnet_id='7526fbe3-f52a-4b39-a828-ec59f4ed12b2' |
+----------------------------------------------------------------------------+
$ openstack subnet show 7526fbe3-f52a-4b39-a828-ec59f4ed12b2 -c name
+-------+--------+
| Field | Value  |
+-------+--------+
| name  | leaf0  |
+-------+--------+

Example dhcrelay configuration

In the following example, the dhcrelay command in the dhcp package uses the following configuration:

  • Interfaces to relay incoming DHCP request: eth1, eth2, and eth3.
  • Interface the undercloud DHCP servers on the network segment are connected to: eth0.
  • The DHCP server used for introspection is listening on IP address: `192.168.10.1.
  • The DHCP server used for provisioning is listening on IP address 192.168.10.10.

This results in the following dhcrelay command:

$ sudo dhcrelay -d --no-pid 172.20.0.10 172.20.0.1 \
  -i eth0 -i eth1 -i eth2 -i eth3

Example Cisco IOS routing switch configuration

This example uses the following Cisco IOS configuration to perform the following tasks:

  • Configure a VLAN to use for our provisioning network.
  • Add the the IP address of the leaf.
  • Forward UDP and BOOTP requests to the introspection DHCP server listening on IP address: 192.168.10.1.
  • Forward UDP and BOOTP requests to the provisioning DHCP server listening on IP address 192.168.10.10.
interface vlan 2
ip address 192.168.24.254 255.255.255.0
ip helper-address 192.168.10.1
ip helper-address 192.168.10.10
!

Now that you have configured the provisioning network, you can configure the remaining overcloud leaf networks. You accomplish this with a series of configuration files.

2.3. Creating flavors and tagging nodes for leaf networks

Each role in each leaf network requires a flavor and role assignment so you can tag nodes into their respective leaf. This procedure shows how to create each flavor and assign them to a role.

Procedure

  1. Source the stackrc file:

    $ source ~/stackrc
  2. Create flavors for each custom role:

    $ ROLES="control0 compute_leaf0 compute_leaf1 compute_leaf2 ceph-storage_leaf0 ceph-storage_leaf1 ceph-storage_leaf2"
    $ for ROLE in $ROLES; do openstack flavor create --id auto --ram 4096 --disk 40 --vcpus 1 $ROLE ; done
    $ for ROLE in $ROLES; do openstack flavor set --property "cpu_arch"="x86_64" --property "capabilities:boot_option"="local" --property "capabilities:profile"="$ROLE" $ROLE ; done
  3. Tag nodes to their respective leaf networks. For example, run the following command to tag a node with UUID 58c3d07e-24f2-48a7-bbb6-6843f0e8ee13 to the compute role on Leaf2:

    $ openstack baremetal node set --property capabilities='profile:compute_leaf2,boot_option:local' 58c3d07e-24f2-48a7-bbb6-6843f0e8ee13
  4. Create an environment file (~/templates/node-data.yaml) that contains the mapping of flavors to roles:

    parameter_defaults:
      OvercloudController0Flavor: control0
      Controller0Count: 3
      OvercloudCompute0Flavor: compute_leaf0
      Compute0Count: 3
      OvercloudCompute1Flavor: compute_leaf1
      Compute1Count: 3
      OvercloudCompute2Flavor: compute_leaf2
      Compute2Count: 3
      OvercloudCephStorage0Flavor: ceph-storage_leaf0
      CephStorage0Count: 3
      OvercloudCephStorage1Flavor: ceph-storage_leaf1
      CephStorage1Count: 3
      OvercloudCephStorage2Flavor: ceph-storage_leaf2
      CephStorage2Count: 3

    You can also set the number of nodes to deploy in the overcloud using each respective *Count` parameter.

2.4. Mapping bare metal node ports to control plane network segments

To enable deployment onto a L3 routed network the bare metal ports must have its physical_network field configured. Each baremetal port is associated with a bare metal node in the OpenStack Bare Metal (ironic) service. The physical network names are the ones used in the subnets option in the undercloud configuration.

Note

The physical network name of the subnet specified as local_subnet in undercloud.conf is special. It is always named ctlplane.

Procedure

  1. Source the stackrc file:

    $ source ~/stackrc
  2. Check the bare metal nodes:

    $ openstack baremetal node list
  3. Ensure the bare metal nodes are either in enroll or manageable state. If the bare metal node is not in one of these states, the command used to set the physical_network property on the baremetal port will fail. To set all nodes to manageable state run the following command:

    $ for node in $(openstack baremetal node list -f value -c Name); do openstack baremetal node manage $node --wait; done
  4. Check which baremetal ports are associated with which baremetal node. For example:

    $ openstack baremetal port list --node <node-uuid>
  5. Set the physical-network parameter for the ports. In the example below, three subnets are defined in the configuration: leaf0, leaf1, and leaf2. The local_subnet is leaf0. Since the physical network for the local_subnet is always ctlplane, the baremetal port connected to leaf0 uses ctlplane. The remaining ports use the other leaf names:

    $ openstack baremetal port set --physical-network ctlplane <port-uuid>
    $ openstack baremetal port set --physical-network leaf1 <port-uuid>
    $ openstack baremetal port set --physical-network leaf2 <port-uuid>
    $ openstack baremetal port set --physical-network leaf2 <port-uuid>
  6. Make sure the nodes are in available state before deploying the overcloud:

    $ openstack overcloud node provide --all-manageable

Chapter 3. Alternative provisioning network methods

This section contains information about other methods to configure the provisioning network to accommodate routed spine-leaf with composable networks.

3.1. VLAN Provisioning Network

In this example, the director deploys new overcloud nodes through the provisioning network and uses a VLAN tunnel across the layer 3 topology (see Figure 3.1, “VLAN provisioning network topology”). This allows the director’s DHCP servers to send DHCPOFFER broadcasts to any leaf. To establish this tunnel, trunk a VLAN between the Top-of-Rack (ToR) leaf switches. In this diagram, the StorageLeaf networks are presented to the Ceph storage and Compute nodes; the NetworkLeaf represents an example of any network you may want to compose.

Figure 3.1. VLAN provisioning network topology

249 OpenStack Spine Leaf updates 0522 VLAN

3.2. VXLAN Provisioning Network

In this example, the director deploys new overcloud nodes through the provisioning network and uses a VXLAN tunnel to span across the layer 3 topology (see Figure 3.2, “VXLAN provisioning network topology”). This allows the director’s DHCP servers to send DHCPOFFER broadcasts to any leaf. To establish this tunnel, configure VXLAN endpoints on the Top-of-Rack (ToR) leaf switches.

Figure 3.2. VXLAN provisioning network topology

249 OpenStack Spine Leaf updates 0522 VXLAN

Chapter 4. Configuring the overcloud

Now that you have configured the undercloud, you can configure the remaining overcloud leaf networks. You accomplish this with a series of configuration files. Afterwards, you deploy the overcloud and the resulting deployment has multiple sets of networks with routing available.

4.1. Creating a network data file

To define the leaf networks, you create a network data file, which contain a YAML formatted list of each composable network and its attributes. The default network data is located on the undercloud at /usr/share/openstack-tripleo-heat-templates/network_data.yaml.

Procedure

  1. Create a new network_data_spine_leaf.yaml file in your stack user’s local directory. Use the default network_data file as a basis:

    $ cp /usr/share/openstack-tripleo-heat-templates/network_data.yaml /home/stack/network_data_spine_leaf.yaml
  2. In the network_data_spine_leaf.yaml file, create a YAML list to define each network and leaf network as a composable network item. For example, the Internal API network and its leaf networks are defined using the following syntax:

    # Internal API
    - name: InternalApi
      name_lower: internal_api
      vip: true
      ip_subnet: '172.18.0.0/24'
      allocation_pools: [{'start': '172.18.0.4', 'end': '172.18.0.250'}]
    - name: InternalApi1
      name_lower: internal_api1
      vip: false
      ip_subnet: '172.18.1.0/24'
      allocation_pools: [{'start': '172.18.1.4', 'end': '172.18.1.250'}]
    - name: InternalApi2
      name_lower: internal_api2
      vip: false
      ip_subnet: '172.18.2.0/24'
      allocation_pools: [{'start': '172.18.2.4', 'end': '172.18.2.250'}]
Note

You do not define the Control Plane networks in the network data file since the undercloud has already created these networks. However, you need to manually set the parameters so that the overcloud can configure its NICs accordingly.

Note

Define vip: true for the networks that contain the Controller-based services. In this example, InternalApi contains these services.

See Appendix A, Example network_data file for a full example with all composable networks.

4.2. Creating a roles data file

This section demonstrates how to define each composable role for each leaf and attach the composable networks to each respective role.

Procedure

  1. Create a custom roles director in your stack user’s local directory:

    $ mkdir ~/roles
  2. Copy the default Controller, Compute, and Ceph Storage roles from the director’s core template collection to the ~/roles directory. Rename the files for Leaf 1:

    $ cp /usr/share/openstack-tripleo-heat-templates/roles/Controller.yaml ~/roles/Controller.yaml
    $ cp /usr/share/openstack-tripleo-heat-templates/roles/Compute.yaml ~/roles/Compute1.yaml
    $ cp /usr/share/openstack-tripleo-heat-templates/roles/CephStorage.yaml ~/roles/CephStorage1.yaml
  3. Edit the Compute1.yaml file:

    $ vi ~/roles/Compute1.yaml
  4. Edit the name, networks, and HostnameFormatDefault parameters in this file so that they align with the Leaf 1 specific parameters. For example:

    - name: Compute1
      ...
      networks:
        - InternalApi1
        - Tenant1
        - Storage1
      HostnameFormatDefault: '%stackname%-compute1-%index%'

    Save this file.

  5. Edit the CephStorage1.yaml file:

    $ vi ~/roles/CephStorage1.yaml
  6. Edit the name and networks parameters in this file so that they align with the Leaf 1 specific parameters. In addition, add the HostnameFormatDefault parameter and define the Leaf 1 hostname for our Ceph Storage nodes. For example:

    - name: CephStorage1
      ...
      networks:
        - Storage1
        - StorageMgmt1
      HostnameFormatDefault: '%stackname%-cephstorage1-%index%'

    Save this file.

  7. Copy the Leaf 1 Compute and Ceph Storage files as a basis for your Leaf 2 and Leaf 3 files:

    $ cp ~/roles/Compute1.yaml ~/roles/Compute2.yaml
    $ cp ~/roles/Compute1.yaml ~/roles/Compute3.yaml
    $ cp ~/roles/CephStorage1.yaml ~/roles/CephStorage2.yaml
    $ cp ~/roles/CephStorage1.yaml ~/roles/CephStorage3.yaml
  8. Edit the name, networks, and HostnameFormatDefault parameters in the Leaf 2 and Leaf 3 files so that they align with the respective Leaf network parameters. For example, the parameters in the Leaf 2 Compute file have the following values:

    - name: Compute2
      ...
      networks:
        - InternalApi2
        - Tenant2
        - Storage2
      HostnameFormatDefault: '%stackname%-compute2-%index%'

    The Leaf 2 Ceph Storage parameters have the following values:

    - name: CephStorage2
      ...
      networks:
        - Storage2
        - StorageMgmt2
      HostnameFormatDefault: '%stackname%-cephstorage2-%index%'
  9. When your roles are ready, generate the full roles data file using the following command:

    $ openstack overcloud roles generate --roles-path ~/roles -o roles_data_spine_leaf.yaml Controller Compute1 Compute2 Compute3 CephStorage1 CephStorage2 CephStorage3

    This creates a full roles_data_spine_leaf.yaml file that includes all the custom roles for each respective leaf network.

See Appendix C, Example roles_data file for a full example of this file.

Each role has its own NIC configuration. Before configuring the spine-leaf configuration, you need to create a base set of NIC templates to suit your current NIC configuration.

4.3. Creating a custom NIC Configuration

Each role requires its own NIC configuration. Create a copy of the base set of NIC templates and modify them to suit your current NIC configuration.

Procedure

  1. Change to the core Heat template directory:

    $ cd /usr/share/openstack-tripleo-heat-templates
  2. Render the Jinja2 templates using the tools/process-templates.py script, your custom network_data file, and custom roles_data file:

    $ tools/process-templates.py -n /home/stack/network_data_spine_leaf.yaml \
        -r /home/stack/roles_data_spine_leaf.yaml \
        -o /home/stack/openstack-tripleo-heat-templates-spine-leaf
  3. Change to the home directory:

    $ cd /home/stack
  4. Copy the content from one of the default NIC templates to use as a basis for your spine-leaf templates. For example, copy the single-nic-vlans:

    $ cp -r openstack-tripleo-heat-templates-spine-leaf/network/config/single-nic-vlans/* \
        /home/stack/templates/spine-leaf-nics/.
  5. Remove the rendered template directory:

    $ rm -rf openstack-tripleo-heat-templates-spine-leaf

Resources

4.4. Editing custom Controller NIC configuration

The rendered template contains most of the content that is necessary to suit the spine-leaf configuration. However, some additional configuration changes are required. Follow this procedure to modify the YAML structure for Controller nodes on Leaf0.

Procedure

  1. Change to your custom NIC directory:

    $ cd ~/templates/spine-leaf-nics/
  2. Edit the template for controller0.yaml.
  3. Scroll to the ControlPlaneSubnetCidr and ControlPlaneDefaultRoute parameters in the parameters section. These parameters resemble the following snippet:

      ControlPlaneSubnetCidr: # Override this via parameter_defaults
        default: '24'
        description: The subnet CIDR of the control plane network.
        type: string
      ControlPlaneDefaultRoute: # Override this via parameter_defaults
        description: The default route of the control plane network.
        type: string

    Modify these parameters to suit Leaf0:

      ControlPlane0SubnetCidr: # Override this via parameter_defaults
        default: '24'
        description: The subnet CIDR of the control plane network.
        type: string
      ControlPlane0DefaultRoute: # Override this via parameter_defaults
        description: The default route of the control plane network.
        type: string
  4. Scroll to the EC2MetadataIp parameter in the parameters section. This parameter resembles the following snippet:

      EC2MetadataIp: # Override this via parameter_defaults
        description: The IP address of the EC2 metadata server.
        type: string

    Modify this parameter to suit Leaf0:

      Leaf0EC2MetadataIp: # Override this via parameter_defaults
        description: The IP address of the EC2 metadata server.
        type: string
  5. Scroll to the network configuration section. This section looks like the following example:

    resources:
      OsNetConfigImpl:
        type: OS::Heat::SoftwareConfig
        properties:
          group: script
          config:
            str_replace:
              template:
                get_file: ../../scripts/run-os-net-config.sh
              params:
                $network_config:
                  network_config:

    Change the location of the script to the absolute path:

    resources:
      OsNetConfigImpl:
        type: OS::Heat::SoftwareConfig
        properties:
          group: script
          config:
            str_replace:
              template:
                get_file: /usr/share/openstack-tripleo-heat-templates/network/scripts/run-os-net-config.sh
              params:
                $network_config:
                  network_config:
  6. In the network_config section, define the control plane / provisioning interface. For example:

                  network_config:
                  - type: ovs_bridge
                    name: bridge_name
                    use_dhcp: false
                    dns_servers:
                      get_param: DnsServers
                    addresses:
                    - ip_netmask:
                        list_join:
                        - /
                        - - get_param: ControlPlaneIp
                          - get_param: ControlPlane0SubnetCidr
                    routes:
                    - ip_netmask: 169.254.169.254/32
                      next_hop:
                        get_param: Leaf0EC2MetadataIp
                    - ip_netmask: 192.168.10.0/24
                      next_hop:
                        get_param: ControlPlane0DefaultRoute

    Note that the parameters used in this case are specific to Leaf0: ControlPlane0SubnetCidr, Leaf0EC2MetadataIp, and ControlPlane0DefaultRoute. Also note the use of the CIDR for Leaf0 on the provisioning network (192.168.10.0/24), which is used as a route.

  7. Each VLAN in the members section contains the relevant Leaf0 parameters. For example, the Storage network VLAN information should appear similar to the following snippet:

                    - type: vlan
                      vlan_id:
                        get_param: Storage0NetworkVlanID
                      addresses:
                      - ip_netmask:
                          get_param: Storage0IpSubnet

    Add a section to define parameters for routing. This includes the supernet route (StorageSupernet in this case) and the leaf default route (Storage0InterfaceDefaultRoute in this case):

                    - type: vlan
                      vlan_id:
                        get_param: Storage0NetworkVlanID
                      addresses:
                      - ip_netmask:
                          get_param: Storage0IpSubnet
                      routes:
                      - ip_netmask:
                          get_param: StorageSupernet
                        next_hop:
                          get_param: Storage0InterfaceDefaultRoute

    Add the routes for the VLAN structure for the following Controller networks: Storage, StorageMgmt, InternalApi, and Tenant.

  8. Save this file.

4.5. Creating custom Compute NIC configurations

This procedure creates a YAML structure for Compute nodes on Leaf0, Leaf1, and Leaf2.

Procedure

  1. Change to your custom NIC directory:

    $ cd ~/templates/spine-leaf-nics/
  2. Edit the template for compute0.yaml.
  3. Scroll to the ControlPlaneSubnetCidr and ControlPlaneDefaultRoute parameters in the parameters section. These parameters resemble the following snippet:

      ControlPlaneSubnetCidr: # Override this via parameter_defaults
        default: '24'
        description: The subnet CIDR of the control plane network.
        type: string
      ControlPlaneDefaultRoute: # Override this via parameter_defaults
        description: The default route of the control plane network.
        type: string

    Modify these parameters to suit Leaf0:

      ControlPlane0SubnetCidr: # Override this via parameter_defaults
        default: '24'
        description: The subnet CIDR of the control plane network.
        type: string
      ControlPlane0DefaultRoute: # Override this via parameter_defaults
        description: The default route of the control plane network.
        type: string
  4. Scroll to the EC2MetadataIp parameter in the parameters section. This parameter resembles the following snippet:

      EC2MetadataIp: # Override this via parameter_defaults
        description: The IP address of the EC2 metadata server.
        type: string

    Modify this parameter to suit Leaf0:

      Leaf0EC2MetadataIp: # Override this via parameter_defaults
        description: The IP address of the EC2 metadata server.
        type: string
  5. Scroll to the network configuration section. This section resembles the following snippet:

    resources:
      OsNetConfigImpl:
        type: OS::Heat::SoftwareConfig
        properties:
          group: script
          config:
            str_replace:
              template:
                get_file: ../../scripts/run-os-net-config.sh
              params:
                $network_config:
                  network_config:

    Change the location of the script to the absolute path:

    resources:
      OsNetConfigImpl:
        type: OS::Heat::SoftwareConfig
        properties:
          group: script
          config:
            str_replace:
              template:
                get_file: /usr/share/openstack-tripleo-heat-templates/network/scripts/run-os-net-config.sh
              params:
                $network_config:
                  network_config:
  6. In the network_config section, define the control plane / provisioning interface. For example

                  network_config:
                  - type: interface
                    name: nic1
                    use_dhcp: false
                    dns_servers:
                      get_param: DnsServers
                    addresses:
                    - ip_netmask:
                        list_join:
                        - /
                        - - get_param: ControlPlaneIp
                          - get_param: ControlPlane0SubnetCidr
                    routes:
                    - ip_netmask: 169.254.169.254/32
                      next_hop:
                        get_param: Leaf0EC2MetadataIp
                    - ip_netmask: 192.168.10.0/24
                      next_hop:
                        get_param: ControlPlane0DefaultRoute

    Note that the parameters used in this case are specific to Leaf0: ControlPlane0SubnetCidr, Leaf0EC2MetadataIp, and ControlPlane0DefaultRoute. Also note the use of the CIDR for Leaf0 on the provisioning network (192.168.10.0/24), which is used as a route.

  7. Each VLAN in the members section should contain the relevant Leaf0 parameters. For example, the Storage network VLAN information should appear similar to the following snippet:

                    - type: vlan
                      vlan_id:
                        get_param: Storage0NetworkVlanID
                      addresses:
                      - ip_netmask:
                          get_param: Storage0IpSubnet

    Add a section to define parameters for routing. This includes the supernet route (StorageSupernet in this case) and the leaf default route (Storage0InterfaceDefaultRoute in this case):

                    - type: vlan
                      vlan_id:
                        get_param: Storage0NetworkVlanID
                      addresses:
                      - ip_netmask:
                          get_param: Storage0IpSubnet
                      routes:
                      - ip_netmask:
                          get_param: StorageSupernet
                        next_hop:
                          get_param: Storage0InterfaceDefaultRoute

    Add a VLAN structure for the following Controller networks: Storage, InternalApi, and Tenant.

  8. Save this file.
  9. Edit compute1.yaml and perform the same steps. The following is the list of changes:

    • Change ControlPlaneSubnetCidr to ControlPlane1SubnetCidr.
    • Change ControlPlaneDefaultRoute to ControlPlane1DefaultRoute.
    • Change EC2MetadataIp to Leaf1EC2MetadataIp.
    • Change the network configuration script from ../../scripts/run-os-net-config.sh to /usr/share/openstack-tripleo-heat-templates/network/scripts/run-os-net-config.sh.
    • Modifying the control plane / provisioning interface to use the Leaf1 parameters.
    • Modifying each VLAN to include the Leaf1 routes.

    Save this file when complete.

  10. Edit compute2.yaml and perform the same steps. The following is the list of changes:

    • Change ControlPlaneSubnetCidr to ControlPlane2SubnetCidr.
    • Change ControlPlaneDefaultRoute to ControlPlane2DefaultRoute.
    • Change EC2MetadataIp to Leaf2EC2MetadataIp.
    • Change the network configuration script from ../../scripts/run-os-net-config.sh to /usr/share/openstack-tripleo-heat-templates/network/scripts/run-os-net-config.sh.
    • Modify the control plane / provisioning interface to use the Leaf2 parameters.
    • Modifying each VLAN to include the Leaf2 routes.

    Save this file when complete.

4.6. Creating custom Ceph Storage NIC configurations

This procedure creates a YAML structure for Ceph Storage nodes on Leaf0, Leaf1, and Leaf2.

Procedure

  1. Change to your custom NIC directory:

    $ cd ~/templates/spine-leaf-nics/
  2. Scroll to the ControlPlaneSubnetCidr and ControlPlaneDefaultRoute parameters in the parameters section. These parameters resemble the following snippet:

      ControlPlaneSubnetCidr: # Override this via parameter_defaults
        default: '24'
        description: The subnet CIDR of the control plane network.
        type: string
      ControlPlaneDefaultRoute: # Override this via parameter_defaults
        description: The default route of the control plane network.
        type: string

    Modify these parameters to suit Leaf0:

      ControlPlane0SubnetCidr: # Override this via parameter_defaults
        default: '24'
        description: The subnet CIDR of the control plane network.
        type: string
      ControlPlane0DefaultRoute: # Override this via parameter_defaults
        description: The default route of the control plane network.
        type: string
  3. Scroll to the EC2MetadataIp parameter in the parameters section. This parameter resembles the following snippet:

      EC2MetadataIp: # Override this via parameter_defaults
        description: The IP address of the EC2 metadata server.
        type: string

    Modify this parameter to suit Leaf0:

      Leaf0EC2MetadataIp: # Override this via parameter_defaults
        description: The IP address of the EC2 metadata server.
        type: string
  4. Scroll to the network configuration section. This section resembles the following snippet:

    resources:
      OsNetConfigImpl:
        type: OS::Heat::SoftwareConfig
        properties:
          group: script
          config:
            str_replace:
              template:
                get_file: ../../scripts/run-os-net-config.sh
              params:
                $network_config:
                  network_config:

    Change the location of the script to the absolute path:

    resources:
      OsNetConfigImpl:
        type: OS::Heat::SoftwareConfig
        properties:
          group: script
          config:
            str_replace:
              template:
                get_file: /usr/share/openstack-tripleo-heat-templates/network/scripts/run-os-net-config.sh
              params:
                $network_config:
                  network_config:
  5. In the network_config section, define the control plane / provisioning interface. For example

                  network_config:
                  - type: interface
                    name: nic1
                    use_dhcp: false
                    dns_servers:
                      get_param: DnsServers
                    addresses:
                    - ip_netmask:
                        list_join:
                        - /
                        - - get_param: ControlPlaneIp
                          - get_param: ControlPlane0SubnetCidr
                    routes:
                    - ip_netmask: 169.254.169.254/32
                      next_hop:
                        get_param: Leaf0EC2MetadataIp
                    - ip_netmask: 192.168.10.0/24
                      next_hop:
                        get_param: ControlPlane0DefaultRoute

    Note that the parameters used in this case are specific to Leaf0: ControlPlane0SubnetCidr, Leaf0EC2MetadataIp, and ControlPlane0DefaultRoute. Also note the use of the CIDR for Leaf0 on the provisioning network (192.168.10.0/24), which is used as a route.

  6. Each VLAN in the members section contains the relevant Leaf0 parameters.For example, the Storage network VLAN information should appear similar to the following snippet:

                    - type: vlan
                      vlan_id:
                        get_param: Storage0NetworkVlanID
                      addresses:
                      - ip_netmask:
                          get_param: Storage0IpSubnet

    Add a section to define parameters for routing. This includes the supernet route (StorageSupernet in this case) and the leaf default route (Storage0InterfaceDefaultRoute in this case):

                    - type: vlan
                      vlan_id:
                        get_param: Storage0NetworkVlanID
                      addresses:
                      - ip_netmask:
                          get_param: Storage0IpSubnet
                      routes:
                      - ip_netmask:
                          get_param: StorageSupernet
                        next_hop:
                          get_param: Storage0InterfaceDefaultRoute

    Add a VLAN structure for the following Controller networks: Storage, StorageMgmt.

  7. Save this file.
  8. Edit ceph-storage1.yaml and perform the same steps. The following is the list of changes:

    • Change ControlPlaneSubnetCidr to ControlPlane1SubnetCidr.
    • Change ControlPlaneDefaultRoute to ControlPlane1DefaultRoute.
    • Change EC2MetadataIp to Leaf1EC2MetadataIp.
    • Change the network configuration script from ../../scripts/run-os-net-config.sh to /usr/share/openstack-tripleo-heat-templates/network/scripts/run-os-net-config.sh.
    • Modify the control plane / provisioning interface to use the Leaf1 parameters.
    • Modify each VLAN to include the Leaf1 routes.

    Save this file when complete.

  9. Edit ceph-storage2.yaml and perform the same steps. The following is the list of changes:

    • Change ControlPlaneSubnetCidr to ControlPlane2SubnetCidr.
    • Change ControlPlaneDefaultRoute to ControlPlane2DefaultRoute.
    • Change EC2MetadataIp to Leaf2EC2MetadataIp.
    • Change the network configuration script from ../../scripts/run-os-net-config.sh to /usr/share/openstack-tripleo-heat-templates/network/scripts/run-os-net-config.sh.
    • Modify the control plane / provisioning interface to use the Leaf2 parameters.
    • Modify each VLAN to include the Leaf2 routes.

    Save this file when complete.

4.7. Creating a network environment file

This procedure creates a basic network environment file for use later.

Procedure

  1. Create a network-environment.yaml file in your stack user’s templates directory.
  2. Add the following sections to the environment file:

    resource_registry:
    
    parameter_defaults:

    Note the following:

    • The resource_registry will map networking resources to their respective NIC templates.
    • The parameter_defaults will define additional networking parameters relevant to your configuration.

The next couple of sections add details to your network environment file to configure certain aspects of the spine leaf architecture. Once complete, you include this file with your openstack overcloud deploy command.

4.8. Mapping network resources to NIC templates

This procedure maps the relevant resources for network configurations to their respective NIC templates.

Procedure

  1. Edit your network-environment.yaml file.
  2. Add the resource mappings to your resource_registry. The resource names take the following format:

    OS::TripleO::[ROLE]::Net::SoftwareConfig: [NIC TEMPLATE]

    For this guide’s scenario, the resource_registry includes the following resource mappings:

    resource_registry:
      OS::TripleO::Controller0::Net::SoftwareConfig: ./spine-leaf-nics/controller0.yaml
      OS::TripleO::Compute0::Net::SoftwareConfig: ./spine-leaf-nics/compute0.yaml
      OS::TripleO::Compute1::Net::SoftwareConfig: ./spine-leaf-nics/compute1.yaml
      OS::TripleO::Compute2::Net::SoftwareConfig: ./spine-leaf-nics/compute2.yaml
      OS::TripleO::CephStorage0::Net::SoftwareConfig: ./spine-leaf-nics/cephstorage0.yaml
      OS::TripleO::CephStorage1::Net::SoftwareConfig: ./spine-leaf-nics/cephstorage1.yaml
      OS::TripleO::CephStorage2::Net::SoftwareConfig: ./spine-leaf-nics/cephstorage2.yaml
  3. Save the network-environment.yaml file.

4.9. Spine leaf routing

Each role requires routes on each isolated network, pointing to the other subnets used for the same function. So when a Compute1 node contacts a controller on the InternalApi VIP, the traffic should target the InternalApi1 interface through the InternalApi1 gateway. As a result, the return traffic from the controller to the InternalApi1 network should go through the InternalApi network gateway.

The supernet routes apply to all isolated networks on each role to avoid sending traffic through the default gateway, which by default is the Control Plane network on non-controllers, and the External network on the controllers.

You need to configure these routes on the isolated networks because Red Hat Enterprise Linux by default implements strict reverse path filtering on inbound traffic. If an API is listening on the Internal API interface and a request comes in to that API, it only accepts the request if the return path route is on the Internal API interface. If the server is listening on the Internal API network but the return path to the client is through the Control Plane, then the server drops the requests due to the reverse path filter.

This following diagram shows an attempt to route traffic through the control plane, which will not succeed. The return route from the router to the controller node does not match the interface where the VIP is listening, so the packet is dropped. 192.168.24.0/24 is directly connected to the controller, so it is considered local to the Control Plane network.

Figure 4.1. Routed traffic through Control Plane

OpenStack Spine Leaf 466050 0218 topology

For comparison, this diagram shows routing running through the Internal API networks:

Figure 4.2. Routed traffic through Internal API

OpenStack Spine Leaf 466050 0218 topology control plane

4.10. Assigning routes for composable networks

This procedure defines the routing for the leaf networks.

Procedure

  1. Edit your network-environment.yaml file.
  2. Add the supernet route parameters to the parameter_defaults section. Each isolated network should have a supernet route applied. For example:

    parameter_defaults:
      StorageSupernet: 172.16.0.0/16
      StorageMgmtSupernet: 172.17.0.0/16
      InternalApiSupernet: 172.18.0.0/16
      TenantSupernet: 172.19.0.0/16
    Note

    The network interface templates should contain the supernet parameters for each network. For example:

    - type: vlan
      vlan_id:
        get_param: Storage0NetworkVlanID
      addresses:
      - ip_netmask:
          get_param: Storage0IpSubnet
      routes:
      - ip_netmask:
          get_param: StorageSupernet
        next_hop:
          get_param: Storage0InterfaceDefaultRoute
  3. Add ServiceNetMap HostnameResolveNetwork parameters to the parameter_defaults section to provide each node in a leaf with a list of hostnames to use to resolve other leaf nodes. For example:

    parameter_defaults:
      ...
      ServiceNetMap:
        Compute1HostnameResolveNetwork: internal_api1
        Compute2HostnameResolveNetwork: internal_api2
        Compute3HostnameResolveNetwork: internal_api3
        CephStorage1HostnameResolveNetwork: storage1
        CephStorage2HostnameResolveNetwork: storage2
        CephStorage3HostnameResolveNetwork: storage3

    The Compute nodes use the leaf’s Internal API network and the Ceph Storage nodes use the leaf’s Storage network.

  4. Add the following ExtraConfig settings to the parameter_defaults section to address routing for specific components on Compute and Ceph Storage nodes:

    Table 4.1. Compute ExtraConfig parameters

    ParameterSet to this value

    nova::compute::libvirt::vncserver_listen

    IP address that the VNC servers listen to.

    nova::compute::vncserver_proxyclient_address

    IP address of the server running the VNC proxy client.

    neutron::agents::ml2::ovs::local_ip

    IP address for OpenStack Networking (neutron) tunnel endpoints.

    cold_migration_ssh_inbound_addr

    Local IP address for cold migration SSH connections.

    live_migration_ssh_inbound_addr

    Local IP address for live migration SSH connections.

    nova::migration::libvirt::live_migration_inbound_addr

    IP address used for live migration traffic.

    Note

    If using SSL/TLS, prepend the network name with "fqdn_" to ensure the certificate is checked against the FQDN.

    nova::my_ip

    IP address of the Compute (nova) service on the host.

    tripleo::profile::base::database::mysql::client::mysql_client_bind_address

    IP address of the database client. In this case, it is the mysql client on the Compute nodes.

    Table 4.2. CephAnsibleExtraConfig parameters

    ParameterSet to this value

    public_network

    Comma-separated list of all the storage networks that contain Ceph nodes (one per leaf), for example, 172.16.0.0/24,172.16.1.0/24,172.16.2.0/24

    cluster_network

    Comma-separated list of the storage management networks that contain Ceph nodes (one per leaf), for example, 172.17.0.0/24,172.17.1.0/24,172.17.2.0/24

    For example:

    parameter_defaults:
      ...
      Compute1ExtraConfig:
        nova::compute::libvirt::vncserver_listen: "%{hiera('internal_api1')}"
        nova::compute::vncserver_proxyclient_address: "%{hiera('internal_api1')}"
        neutron::agents::ml2::ovs::local_ip: "%{hiera('tenant1')}"
        cold_migration_ssh_inbound_addr: "%{hiera('internal_api1')}"
        live_migration_ssh_inbound_addr: "%{hiera('internal_api1')}"
        nova::migration::libvirt::live_migration_inbound_addr: "%{hiera('internal_api1')}"
        nova::my_ip: "%{hiera('internal_api1')}"
        tripleo::profile::base::database::mysql::client::mysql_client_bind_address: "%{hiera('internal_api1')}"
    
      Compute2ExtraConfig:
        nova::compute::libvirt::vncserver_listen: "%{hiera('internal_api2')}"
        nova::compute::vncserver_proxyclient_address: "%{hiera('internal_api2')}"
        neutron::agents::ml2::ovs::local_ip: "%{hiera('tenant2')}"
        cold_migration_ssh_inbound_addr: "%{hiera('internal_api2')}"
        live_migration_ssh_inbound_addr: "%{hiera('internal_api2')}"
        nova::migration::libvirt::live_migration_inbound_addr: "%{hiera('internal_api2')}"
        nova::my_ip: "%{hiera('internal_api2')}"
        tripleo::profile::base::database::mysql::client::mysql_client_bind_address: "%{hiera('internal_api2')}"
    
      Compute3ExtraConfig:
        nova::compute::libvirt::vncserver_listen: "%{hiera('internal_api3')}"
        nova::compute::vncserver_proxyclient_address: "%{hiera('internal_api3')}"
        neutron::agents::ml2::ovs::local_ip: "%{hiera('tenant3')}"
        cold_migration_ssh_inbound_addr: "%{hiera('internal_api3')}"
        live_migration_ssh_inbound_addr: "%{hiera('internal_api3')}"
        nova::migration::libvirt::live_migration_inbound_addr: "%{hiera('internal_api3')}"
        nova::my_ip: "%{hiera('internal_api3')}"
        tripleo::profile::base::database::mysql::client::mysql_client_bind_address: "%{hiera('internal_api3')}"
    
      CephAnsibleExtraConfig:
        public_network: '172.16.0.0/24,172.16.1.0/24,172.16.2.0/24'
        cluster_network: '172.17.0.0/24,172.17.1.0/24,172.17.2.0/24'

4.11. Setting control plane parameters

You usually define networking details for isolated spine-leaf networks using a network_data file. The exception is the control plane network, which the undercloud created. However, the overcloud requires access to the control plane for each leaf. This requires some additional parameters, which you define in your network-environment.yaml file. For example, the following snippet is from an example NIC template for the Controller role on Leaf0

- type: interface
  name: nic1
  use_dhcp: false
  dns_servers:
    get_param: DnsServers
  addresses:
  - ip_netmask:
      list_join:
      - /
      - - get_param: ControlPlaneIp
        - get_param: ControlPlane0SubnetCidr
  routes:
  - ip_netmask: 169.254.169.254/32
    next_hop:
      get_param: Leaf0EC2MetadataIp
  - ip_netmask: 192.168.10.0/24
    next_hop:
      get_param: ControlPlane0DefaultRoute

In this instance, we need to define the IP, subnet, metadata IP, and default route for the respective Control Plane network on Leaf 0.

Procedure

  1. Edit your network-environment.yaml file.
  2. In the parameter_defaults section:

    1. Add the mapping to the main control plane subnet:

      parameter_defaults:
        ...
        ControlPlaneSubnet: leaf0
    2. Add the control plane subnet mapping for each spine-leaf network:

      parameter_defaults:
        ...
        Controller0ControlPlaneSubnet: leaf0
        Compute0ControlPlaneSubnet: leaf0
        Compute1ControlPlaneSubnet: leaf1
        Compute2ControlPlaneSubnet: leaf2
        CephStorage0ControlPlaneSubnet: leaf0
        CephStorage1ControlPlaneSubnet: leaf1
        CephStorage2ControlPlaneSubnet: leaf2
    3. Add the control plane routes for each leaf:

      parameter_defaults:
        ...
        ControlPlane0DefaultRoute: 192.168.10.1
        ControlPlane0SubnetCidr: '24'
        ControlPlane1DefaultRoute: 192.168.11.1
        ControlPlane1SubnetCidr: '24'
        ControlPlane2DefaultRoute: 192.168.12.1
        ControlPlane2SubnetCidr: '24'

      The default route parameters are typically the IP address set for the gateway of each provisioning subnet. Refer to your undercloud.conf file for this information.

    4. Add the parameters for the EC2 metadata IPs:

      parameter_defaults:
        ...
        Leaf0EC2MetadataIp: 192.168.10.1
        Leaf1EC2MetadataIp: 192.168.11.1
        Leaf2EC2MetadataIp: 192.168.12.1

      These act as routes through the control plane for the EC2 metadata service (169.254.169.254/32) and you should typically set these to the respective gateway for each leaf on the provisioning network.

  3. Save the network-environment.yaml file.

4.12. Deploying a spine-leaf enabled overcloud

All our files are now ready for our deployment. This section provides a review of each file and the deployment command:

Procedure

  1. Review the /home/stack/template/network_data_spine_leaf.yaml file and ensure it contains each network for each leaf.

    Note

    There is currently no validation performed for the network subnet and allocation_pools values. Be certain you have defined these consistently and there is no conflict with existing networks.

  2. Review the NIC templates contained in ~/templates/spine-leaf-nics/ and ensure the interfaces for each role on each leaf are correctly defined.
  3. Review the network-environment.yaml environment file and ensure it contains all custom parameters that fall outside control of the network data file. This includes routes, control plane parameters, and a resource_registry section that references the custom NIC templates for each role.
  4. Review the /home/stack/templates/roles_data_spine_leaf.yaml values and ensure you have defined a role for each leaf.
  5. Check the `/home/stack/templates/nodes_data.yaml file and ensure all roles have an assigned flavor and a node count. Check also that all nodes for each leaf are correctly tagged.
  6. Run the openstack overcloud deploy command to apply the spine leaf configuration. For example:

    openstack overcloud deploy --templates \
    -n /home/stack/template/network_data_spine_leaf.yaml \
    -r /home/stack/templates/roles_data_spine_leaf.yaml \
    -e /usr/share/openstack-tripleo-heat-templates/environments/network-isolation.yaml \
    -e /home/stack/templates/network-environment.yaml \
    -e /home/stack/templates/nodes_data.yaml \
    -e [OTHER ENVIRONMENT FILES]
    • The network-isolation.yaml is the rendered name of the Jinja2 file in the same location (network-isolation.j2.yaml). Include this file to ensure the director isolates each networks to its correct leaf. This ensures the networks are created dynamically during the overcloud creation process.
    • Include the network-environment.yaml file after the network-isolation.yaml and other network-based environment files. This ensures any parameters and resources defined within network-environment.yaml override the same parameters and resources previously defined in other environment files.
    • Add any additional environment files. For example, an environment file with your container image locations or Ceph cluster configuration.
  7. Wait until the spine-leaf enabled overcloud deploys.

Appendix A. Example network_data file

# Storage
- name: Storage
  vip: true
  name_lower: storage
  ip_subnet: '172.16.0.0/24'
  allocation_pools: [{'start': '172.16.0.4', 'end': '172.16.0.250'}]
- name: Storage1
  vip: false
  name_lower: storage1
  ip_subnet: '172.16.1.0/24'
  allocation_pools: [{'start': '172.16.1.4', 'end': '172.16.1.250'}]
- name: Storage2
  vip: false
  name_lower: storage2
  ip_subnet: '172.16.2.0/24'
  allocation_pools: [{'start': '172.16.2.4', 'end': '172.16.2.250'}]

# StorageMgmt
- name: StorageMgmt
  name_lower: storage_mgmt
  vip: true
  ip_subnet: '172.17.0.0/24'
  allocation_pools: [{'start': '172.17.0.0', 'end': '172.17.0.250'}]
- name: StorageMgmt1
  name_lower: storage_mgmt1
  vip: false
  ip_subnet: '172.17.1.0/24'
  allocation_pools: [{'start': '172.17.1.4', 'end': '172.17.1.250'}]
- name: StorageMgmt2
  name_lower: storage_mgmt2
  vip: false
  ip_subnet: '172.17.2.0/24'
  allocation_pools: [{'start': '172.17.2.4', 'end': '172.17.2.250'}]

# Internal API
- name: InternalApi
  name_lower: internal_api
  vip: true
  ip_subnet: '172.18.0.0/24'
  allocation_pools: [{'start': '172.18.0.4', 'end': '172.18.0.250'}]
- name: InternalApi1
  name_lower: internal_api1
  vip: false
  ip_subnet: '172.18.1.0/24'
  allocation_pools: [{'start': '172.18.1.4', 'end': '172.18.1.250'}]
- name: InternalApi2
  name_lower: internal_api2
  vip: false
  ip_subnet: '172.18.2.0/24'
  allocation_pools: [{'start': '172.18.2.4', 'end': '172.18.2.250'}]

# Tenant
- name: Tenant
  vip: false  # Tenant network does not use VIPs
  name_lower: tenant
  ip_subnet: '172.19.0.0/24'
  allocation_pools: [{'start': '172.19.0.4', 'end': '172.19.0.250'}]
- name: Tenant1
  vip: false  # Tenant network does not use VIPs
  name_lower: tenant1
  ip_subnet: '172.19.1.0/24'
  allocation_pools: [{'start': '172.19.1.4', 'end': '172.19.1.250'}]
- name: Tenant2
  vip: false  # Tenant network does not use VIPs
  name_lower: tenant2
  ip_subnet: '172.19.2.0/24'
  allocation_pools: [{'start': '172.19.2.4', 'end': '172.19.2.250'}]

- name: External
  vip: true
  name_lower: external
  ip_subnet: '10.0.0.0/24'
  allocation_pools: [{'start': '10.0.0.4', 'end': '10.0.0.250'}]
  gateway_ip: '10.0.0.1'

Appendix B. Custom NIC template

The following is a template to get you started with the configuring the network interface templates for spine leaf networking. Note that the resources section is incomplete and requires your interface definitions.

heat_template_version: queens

parameters:
  # Supernets
  StorageSupernet:
    type: string
  StorageMgmtSupernet:
    type: string
  InternalApiSupernet:
    type: string
  TenantSupernet:
    type: string
  ExternalSupernet:
    type: string

  # Default Routes
  ControlPlane0DefaultRoute:
    type: string
  ControlPlane1DefaultRoute:
    type: string
  ControlPlane2DefaultRoute:
    type: string
  StorageInterfaceDefaultRoute:
    type: string
  Storage1InterfaceDefaultRoute:
    type: string
  Storage2InterfaceDefaultRoute:
    type: string
  StorageMgmtInterfaceDefaultRoute:
    type: string
  StorageMgmt1InterfaceDefaultRoute:
    type: string
  StorageMgmt2InterfaceDefaultRoute:
    type: string
  InternalApiInterfaceDefaultRoute:
    type: string
  InternalApi1InterfaceDefaultRoute:
    type: string
  InternalApi2InterfaceDefaultRoute:
    type: string
  TenantInterfaceDefaultRoute:
    type: string
  Tenant1InterfaceDefaultRoute:
    type: string
  Tenant2InterfaceDefaultRoute:
    type: string
  ExternalInterfaceDefaultRoute:
    type: string

  # IP subnets
  StorageIpSubnet:
    default: ''
    type: string
  Storage1IpSubnet:
    default: ''
    type: string
  Storage2IpSubnet:
    default: ''
    type: string
  StorageMgmtIpSubnet:
    default: ''
    type: string
  StorageMgmt1IpSubnet:
    default: ''
    type: string
  StorageMgmt2IpSubnet:
    default: ''
    type: string
  InternalApiIpSubnet:
    default: ''
    type: string
  InternalApi1IpSubnet:
    default: ''
    type: string
  InternalApi2IpSubnet:
    default: ''
    type: string
  TenantIpSubnet:
    default: ''
    type: string
  Tenant1IpSubnet:
    default: ''
    type: string
  Tenant2IpSubnet:
    default: ''
    type: string
  ExternalIpSubnet:
    default: ''
    type: string
  ManagementIpSubnet:
    default: ''
    type: string

  # VLAN IDs
  StorageNetworkVlanID:
    type: number
  Storage1NetworkVlanID:
    type: number
  Storage2NetworkVlanID:
    type: number
  StorageMgmtNetworkVlanID:
    type: number
  StorageMgmt1NetworkVlanID:
    type: number
  StorageMgmt2NetworkVlanID:
    type: number
  InternalApiNetworkVlanID:
    type: number
  InternalApi1NetworkVlanID:
    type: number
  InternalApi1NetworkVlanID:
    type: number
  TenantNetworkVlanID:
    type: number
  Tenant1NetworkVlanID:
    type: number
  Tenant2NetworkVlanID:
    type: number
  ExternalNetworkVlanID:
    type: number
  ManagementNetworkVlanID:
    type: number

  # Subnet CIDR
  ControlPlane0SubnetCidr:
    type: string
  ControlPlane1SubnetCidr:
    type: string
  ControlPlane1SubnetCidr:
    type: string

  ControlPlaneIp:
    type: string
  DnsServers:
    type: comma_delimited_list

  # EC2 metadata server IPs
  Leaf0EC2MetadataIp:
    type: string
  Leaf1EC2MetadataIp:
    type: string
  Leaf2EC2MetadataIp:
    type: string

resources:
  OsNetConfigImpl:
    type: OS::Heat::SoftwareConfig
    properties:
      group: script
      config:
        str_replace:
          template:
            get_file: /usr/share/openstack-tripleo-heat-templates/network/scripts/run-os-net-config.sh
          params:
            $network_config:
              network_config:
                [NETWORK CONFIG HERE]

outputs:
  OS::stack_id:
    description: The OsNetConfigImpl resource.
    value:
      get_resource: OsNetConfigImpl

Appendix C. Example roles_data file

###############################################################################
# Role: Controller0                                                           #
###############################################################################
- name: Controller0
  description: |
    Controller role that has all the controler services loaded and handles
    Database, Messaging and Network functions.
  CountDefault: 1
  tags:
    - primary
    - controller
  networks:
    - External
    - InternalApi
    - Storage
    - StorageMgmt
    - Tenant
  default_route_networks: ['External']
  HostnameFormatDefault: '%stackname%-controller0-%index%'
  uses_deprecated_params: True
  deprecated_param_extraconfig: 'controllerExtraConfig'
  deprecated_param_flavor: 'OvercloudControlFlavor'
  deprecated_param_image: 'controllerImage'
  deprecated_nic_config_name: 'controller.yaml'
  ServicesDefault:
    - OS::TripleO::Services::Aide
    - OS::TripleO::Services::AodhApi
    - OS::TripleO::Services::AodhEvaluator
    - OS::TripleO::Services::AodhListener
    - OS::TripleO::Services::AodhNotifier
    - OS::TripleO::Services::AuditD
    - OS::TripleO::Services::BarbicanApi
    - OS::TripleO::Services::BarbicanBackendSimpleCrypto
    - OS::TripleO::Services::BarbicanBackendDogtag
    - OS::TripleO::Services::BarbicanBackendKmip
    - OS::TripleO::Services::BarbicanBackendPkcs11Crypto
    - OS::TripleO::Services::CACerts
    - OS::TripleO::Services::CeilometerApi
    - OS::TripleO::Services::CeilometerCollector
    - OS::TripleO::Services::CeilometerExpirer
    - OS::TripleO::Services::CeilometerAgentCentral
    - OS::TripleO::Services::CeilometerAgentNotification
    - OS::TripleO::Services::CephExternal
    - OS::TripleO::Services::CephMds
    - OS::TripleO::Services::CephMgr
    - OS::TripleO::Services::CephMon
    - OS::TripleO::Services::CephRbdMirror
    - OS::TripleO::Services::CephRgw
    - OS::TripleO::Services::CertmongerUser
    - OS::TripleO::Services::CinderApi
    - OS::TripleO::Services::CinderBackendDellPs
    - OS::TripleO::Services::CinderBackendDellSc
    - OS::TripleO::Services::CinderBackendDellEMCUnity
    - OS::TripleO::Services::CinderBackendDellEMCVMAXISCSI
    - OS::TripleO::Services::CinderBackendDellEMCVNX
    - OS::TripleO::Services::CinderBackendDellEMCXTREMIOISCSI
    - OS::TripleO::Services::CinderBackendNetApp
    - OS::TripleO::Services::CinderBackendScaleIO
    - OS::TripleO::Services::CinderBackendVRTSHyperScale
    - OS::TripleO::Services::CinderBackup
    - OS::TripleO::Services::CinderHPELeftHandISCSI
    - OS::TripleO::Services::CinderScheduler
    - OS::TripleO::Services::CinderVolume
    - OS::TripleO::Services::Clustercheck
    - OS::TripleO::Services::Collectd
    - OS::TripleO::Services::Congress
    - OS::TripleO::Services::Docker
    - OS::TripleO::Services::Ec2Api
    - OS::TripleO::Services::Etcd
    - OS::TripleO::Services::ExternalSwiftProxy
    - OS::TripleO::Services::Fluentd
    - OS::TripleO::Services::GlanceApi
    - OS::TripleO::Services::GlanceRegistry
    - OS::TripleO::Services::GnocchiApi
    - OS::TripleO::Services::GnocchiMetricd
    - OS::TripleO::Services::GnocchiStatsd
    - OS::TripleO::Services::HAproxy
    - OS::TripleO::Services::HeatApi
    - OS::TripleO::Services::HeatApiCloudwatch
    - OS::TripleO::Services::HeatApiCfn
    - OS::TripleO::Services::HeatEngine
    - OS::TripleO::Services::Horizon
    - OS::TripleO::Services::Ipsec
    - OS::TripleO::Services::IronicApi
    - OS::TripleO::Services::IronicConductor
    - OS::TripleO::Services::IronicPxe
    - OS::TripleO::Services::Iscsid
    - OS::TripleO::Services::Keepalived
    - OS::TripleO::Services::Kernel
    - OS::TripleO::Services::Keystone
    - OS::TripleO::Services::LoginDefs
    - OS::TripleO::Services::ManilaApi
    - OS::TripleO::Services::ManilaBackendCephFs
    - OS::TripleO::Services::ManilaBackendIsilon
    - OS::TripleO::Services::ManilaBackendNetapp
    - OS::TripleO::Services::ManilaBackendUnity
    - OS::TripleO::Services::ManilaBackendVNX
    - OS::TripleO::Services::ManilaBackendVMAX
    - OS::TripleO::Services::ManilaScheduler
    - OS::TripleO::Services::ManilaShare
    - OS::TripleO::Services::Memcached
    - OS::TripleO::Services::MistralApi
    - OS::TripleO::Services::MistralEngine
    - OS::TripleO::Services::MistralExecutor
    - OS::TripleO::Services::MistralEventEngine
    - OS::TripleO::Services::MongoDb
    - OS::TripleO::Services::MySQL
    - OS::TripleO::Services::MySQLClient
    - OS::TripleO::Services::NeutronApi
    - OS::TripleO::Services::NeutronBgpVpnApi
    - OS::TripleO::Services::NeutronSfcApi
    - OS::TripleO::Services::NeutronCorePlugin
    - OS::TripleO::Services::NeutronDhcpAgent
    - OS::TripleO::Services::NeutronL2gwAgent
    - OS::TripleO::Services::NeutronL2gwApi
    - OS::TripleO::Services::NeutronL3Agent
    - OS::TripleO::Services::NeutronLbaasv2Agent
    - OS::TripleO::Services::NeutronLbaasv2Api
    - OS::TripleO::Services::NeutronLinuxbridgeAgent
    - OS::TripleO::Services::NeutronMetadataAgent
    - OS::TripleO::Services::NeutronML2FujitsuCfab
    - OS::TripleO::Services::NeutronML2FujitsuFossw
    - OS::TripleO::Services::NeutronOvsAgent
    - OS::TripleO::Services::NeutronVppAgent
    - OS::TripleO::Services::NovaApi
    - OS::TripleO::Services::NovaConductor
    - OS::TripleO::Services::NovaConsoleauth
    - OS::TripleO::Services::NovaIronic
    - OS::TripleO::Services::NovaMetadata
    - OS::TripleO::Services::NovaPlacement
    - OS::TripleO::Services::NovaScheduler
    - OS::TripleO::Services::NovaVncProxy
    - OS::TripleO::Services::Ntp
    - OS::TripleO::Services::ContainersLogrotateCrond
    - OS::TripleO::Services::OctaviaApi
    - OS::TripleO::Services::OctaviaDeploymentConfig
    - OS::TripleO::Services::OctaviaHealthManager
    - OS::TripleO::Services::OctaviaHousekeeping
    - OS::TripleO::Services::OctaviaWorker
    - OS::TripleO::Services::OpenDaylightApi
    - OS::TripleO::Services::OpenDaylightOvs
    - OS::TripleO::Services::OVNDBs
    - OS::TripleO::Services::OVNController
    - OS::TripleO::Services::Pacemaker
    - OS::TripleO::Services::PankoApi
    - OS::TripleO::Services::RabbitMQ
    - OS::TripleO::Services::Redis
    - OS::TripleO::Services::Rhsm
    - OS::TripleO::Services::RsyslogSidecar
    - OS::TripleO::Services::SaharaApi
    - OS::TripleO::Services::SaharaEngine
    - OS::TripleO::Services::Securetty
    - OS::TripleO::Services::SensuClient
    - OS::TripleO::Services::SkydiveAgent
    - OS::TripleO::Services::SkydiveAnalyzer
    - OS::TripleO::Services::Snmp
    - OS::TripleO::Services::Sshd
    - OS::TripleO::Services::SwiftProxy
    - OS::TripleO::Services::SwiftDispersion
    - OS::TripleO::Services::SwiftRingBuilder
    - OS::TripleO::Services::SwiftStorage
    - OS::TripleO::Services::Tacker
    - OS::TripleO::Services::Timezone
    - OS::TripleO::Services::TripleoFirewall
    - OS::TripleO::Services::TripleoPackages
    - OS::TripleO::Services::Tuned
    - OS::TripleO::Services::Vpp
    - OS::TripleO::Services::Zaqar
    - OS::TripleO::Services::Ptp
###############################################################################
# Role: Compute0                                                              #
###############################################################################
- name: Compute0
  description: |
    Basic Compute Node role
  CountDefault: 1
  networks:
    - InternalApi
    - Tenant
    - Storage
  HostnameFormatDefault: '%stackname%-compute0-%index%'
  uses_deprecated_params: True
  deprecated_param_image: 'NovaImage'
  deprecated_param_extraconfig: 'NovaComputeExtraConfig'
  deprecated_param_metadata: 'NovaComputeServerMetadata'
  deprecated_param_scheduler_hints: 'NovaComputeSchedulerHints'
  deprecated_param_ips: 'NovaComputeIPs'
  deprecated_server_resource_name: 'NovaCompute'
  deprecated_nic_config_name: 'compute.yaml'
  disable_upgrade_deployment: True
  ServicesDefault:
    - OS::TripleO::Services::Aide
    - OS::TripleO::Services::AuditD
    - OS::TripleO::Services::CACerts
    - OS::TripleO::Services::CephClient
    - OS::TripleO::Services::CephExternal
    - OS::TripleO::Services::CertmongerUser
    - OS::TripleO::Services::Collectd
    - OS::TripleO::Services::ComputeCeilometerAgent
    - OS::TripleO::Services::ComputeNeutronCorePlugin
    - OS::TripleO::Services::ComputeNeutronL3Agent
    - OS::TripleO::Services::ComputeNeutronMetadataAgent
    - OS::TripleO::Services::ComputeNeutronOvsAgent
    - OS::TripleO::Services::Docker
    - OS::TripleO::Services::Fluentd
    - OS::TripleO::Services::Ipsec
    - OS::TripleO::Services::Iscsid
    - OS::TripleO::Services::Kernel
    - OS::TripleO::Services::LoginDefs
    - OS::TripleO::Services::MySQLClient
    - OS::TripleO::Services::NeutronBgpVpnBagpipe
    - OS::TripleO::Services::NeutronLinuxbridgeAgent
    - OS::TripleO::Services::NeutronVppAgent
    - OS::TripleO::Services::NovaCompute
    - OS::TripleO::Services::NovaLibvirt
    - OS::TripleO::Services::NovaMigrationTarget
    - OS::TripleO::Services::Ntp
    - OS::TripleO::Services::ContainersLogrotateCrond
    - OS::TripleO::Services::OpenDaylightOvs
    - OS::TripleO::Services::Rhsm
    - OS::TripleO::Services::RsyslogSidecar
    - OS::TripleO::Services::Securetty
    - OS::TripleO::Services::SensuClient
    - OS::TripleO::Services::SkydiveAgent
    - OS::TripleO::Services::Snmp
    - OS::TripleO::Services::Sshd
    - OS::TripleO::Services::Timezone
    - OS::TripleO::Services::TripleoFirewall
    - OS::TripleO::Services::TripleoPackages
    - OS::TripleO::Services::Tuned
    - OS::TripleO::Services::Vpp
    - OS::TripleO::Services::OVNController
    - OS::TripleO::Services::OVNMetadataAgent
    - OS::TripleO::Services::Ptp
###############################################################################
# Role: Compute1                                                              #
###############################################################################
- name: Compute1
  description: |
    Basic Compute Node role
  CountDefault: 1
  networks:
    - InternalApi1
    - Tenant1
    - Storage1
  HostnameFormatDefault: '%stackname%-compute1-%index%'
  uses_deprecated_params: True
  deprecated_param_image: 'NovaImage'
  deprecated_param_extraconfig: 'NovaComputeExtraConfig'
  deprecated_param_metadata: 'NovaComputeServerMetadata'
  deprecated_param_scheduler_hints: 'NovaComputeSchedulerHints'
  deprecated_param_ips: 'NovaComputeIPs'
  deprecated_server_resource_name: 'NovaCompute'
  deprecated_nic_config_name: 'compute.yaml'
  disable_upgrade_deployment: True
  ServicesDefault:
    - OS::TripleO::Services::Aide
    - OS::TripleO::Services::AuditD
    - OS::TripleO::Services::CACerts
    - OS::TripleO::Services::CephClient
    - OS::TripleO::Services::CephExternal
    - OS::TripleO::Services::CertmongerUser
    - OS::TripleO::Services::Collectd
    - OS::TripleO::Services::ComputeCeilometerAgent
    - OS::TripleO::Services::ComputeNeutronCorePlugin
    - OS::TripleO::Services::ComputeNeutronL3Agent
    - OS::TripleO::Services::ComputeNeutronMetadataAgent
    - OS::TripleO::Services::ComputeNeutronOvsAgent
    - OS::TripleO::Services::Docker
    - OS::TripleO::Services::Fluentd
    - OS::TripleO::Services::Ipsec
    - OS::TripleO::Services::Iscsid
    - OS::TripleO::Services::Kernel
    - OS::TripleO::Services::LoginDefs
    - OS::TripleO::Services::MySQLClient
    - OS::TripleO::Services::NeutronBgpVpnBagpipe
    - OS::TripleO::Services::NeutronLinuxbridgeAgent
    - OS::TripleO::Services::NeutronVppAgent
    - OS::TripleO::Services::NovaCompute
    - OS::TripleO::Services::NovaLibvirt
    - OS::TripleO::Services::NovaMigrationTarget
    - OS::TripleO::Services::Ntp
    - OS::TripleO::Services::ContainersLogrotateCrond
    - OS::TripleO::Services::OpenDaylightOvs
    - OS::TripleO::Services::Rhsm
    - OS::TripleO::Services::RsyslogSidecar
    - OS::TripleO::Services::Securetty
    - OS::TripleO::Services::SensuClient
    - OS::TripleO::Services::SkydiveAgent
    - OS::TripleO::Services::Snmp
    - OS::TripleO::Services::Sshd
    - OS::TripleO::Services::Timezone
    - OS::TripleO::Services::TripleoFirewall
    - OS::TripleO::Services::TripleoPackages
    - OS::TripleO::Services::Tuned
    - OS::TripleO::Services::Vpp
    - OS::TripleO::Services::OVNController
    - OS::TripleO::Services::OVNMetadataAgent
    - OS::TripleO::Services::Ptp
###############################################################################
# Role: Compute2                                                              #
###############################################################################
- name: Compute2
  description: |
    Basic Compute Node role
  CountDefault: 1
  networks:
    - InternalApi2
    - Tenant2
    - Storage2
  HostnameFormatDefault: '%stackname%-compute2-%index%'
  uses_deprecated_params: True
  deprecated_param_image: 'NovaImage'
  deprecated_param_extraconfig: 'NovaComputeExtraConfig'
  deprecated_param_metadata: 'NovaComputeServerMetadata'
  deprecated_param_scheduler_hints: 'NovaComputeSchedulerHints'
  deprecated_param_ips: 'NovaComputeIPs'
  deprecated_server_resource_name: 'NovaCompute'
  deprecated_nic_config_name: 'compute.yaml'
  disable_upgrade_deployment: True
  ServicesDefault:
    - OS::TripleO::Services::Aide
    - OS::TripleO::Services::AuditD
    - OS::TripleO::Services::CACerts
    - OS::TripleO::Services::CephClient
    - OS::TripleO::Services::CephExternal
    - OS::TripleO::Services::CertmongerUser
    - OS::TripleO::Services::Collectd
    - OS::TripleO::Services::ComputeCeilometerAgent
    - OS::TripleO::Services::ComputeNeutronCorePlugin
    - OS::TripleO::Services::ComputeNeutronL3Agent
    - OS::TripleO::Services::ComputeNeutronMetadataAgent
    - OS::TripleO::Services::ComputeNeutronOvsAgent
    - OS::TripleO::Services::Docker
    - OS::TripleO::Services::Fluentd
    - OS::TripleO::Services::Ipsec
    - OS::TripleO::Services::Iscsid
    - OS::TripleO::Services::Kernel
    - OS::TripleO::Services::LoginDefs
    - OS::TripleO::Services::MySQLClient
    - OS::TripleO::Services::NeutronBgpVpnBagpipe
    - OS::TripleO::Services::NeutronLinuxbridgeAgent
    - OS::TripleO::Services::NeutronVppAgent
    - OS::TripleO::Services::NovaCompute
    - OS::TripleO::Services::NovaLibvirt
    - OS::TripleO::Services::NovaMigrationTarget
    - OS::TripleO::Services::Ntp
    - OS::TripleO::Services::ContainersLogrotateCrond
    - OS::TripleO::Services::OpenDaylightOvs
    - OS::TripleO::Services::Rhsm
    - OS::TripleO::Services::RsyslogSidecar
    - OS::TripleO::Services::Securetty
    - OS::TripleO::Services::SensuClient
    - OS::TripleO::Services::SkydiveAgent
    - OS::TripleO::Services::Snmp
    - OS::TripleO::Services::Sshd
    - OS::TripleO::Services::Timezone
    - OS::TripleO::Services::TripleoFirewall
    - OS::TripleO::Services::TripleoPackages
    - OS::TripleO::Services::Tuned
    - OS::TripleO::Services::Vpp
    - OS::TripleO::Services::OVNController
    - OS::TripleO::Services::OVNMetadataAgent
    - OS::TripleO::Services::Ptp
###############################################################################
# Role: CephStorage0                                                          #
###############################################################################
- name: CephStorage0
  description: |
    Ceph OSD Storage node role
  networks:
    - Storage0
    - StorageMgmt0
  HostnameFormatDefault: '%stackname%-cephstorage0-%index%'
  uses_deprecated_params: False
  deprecated_nic_config_name: 'ceph-storage.yaml'
  ServicesDefault:
    - OS::TripleO::Services::Aide
    - OS::TripleO::Services::AuditD
    - OS::TripleO::Services::CACerts
    - OS::TripleO::Services::CephOSD
    - OS::TripleO::Services::CertmongerUser
    - OS::TripleO::Services::Collectd
    - OS::TripleO::Services::Docker
    - OS::TripleO::Services::Fluentd
    - OS::TripleO::Services::Ipsec
    - OS::TripleO::Services::Kernel
    - OS::TripleO::Services::LoginDefs
    - OS::TripleO::Services::MySQLClient
    - OS::TripleO::Services::Ntp
    - OS::TripleO::Services::ContainersLogrotateCrond
    - OS::TripleO::Services::Rhsm
    - OS::TripleO::Services::RsyslogSidecar
    - OS::TripleO::Services::Securetty
    - OS::TripleO::Services::SensuClient
    - OS::TripleO::Services::Snmp
    - OS::TripleO::Services::Sshd
    - OS::TripleO::Services::Timezone
    - OS::TripleO::Services::TripleoFirewall
    - OS::TripleO::Services::TripleoPackages
    - OS::TripleO::Services::Tuned
    - OS::TripleO::Services::Ptp
###############################################################################
# Role: CephStorage1                                                          #
###############################################################################
- name: CephStorage1
  description: |
    Ceph OSD Storage node role
  networks:
    - Storage1
    - StorageMgmt1
  HostnameFormatDefault: '%stackname%-cephstorage1-%index%'
  uses_deprecated_params: False
  deprecated_nic_config_name: 'ceph-storage.yaml'
  ServicesDefault:
    - OS::TripleO::Services::Aide
    - OS::TripleO::Services::AuditD
    - OS::TripleO::Services::CACerts
    - OS::TripleO::Services::CephOSD
    - OS::TripleO::Services::CertmongerUser
    - OS::TripleO::Services::Collectd
    - OS::TripleO::Services::Docker
    - OS::TripleO::Services::Fluentd
    - OS::TripleO::Services::Ipsec
    - OS::TripleO::Services::Kernel
    - OS::TripleO::Services::LoginDefs
    - OS::TripleO::Services::MySQLClient
    - OS::TripleO::Services::Ntp
    - OS::TripleO::Services::ContainersLogrotateCrond
    - OS::TripleO::Services::Rhsm
    - OS::TripleO::Services::RsyslogSidecar
    - OS::TripleO::Services::Securetty
    - OS::TripleO::Services::SensuClient
    - OS::TripleO::Services::Snmp
    - OS::TripleO::Services::Sshd
    - OS::TripleO::Services::Timezone
    - OS::TripleO::Services::TripleoFirewall
    - OS::TripleO::Services::TripleoPackages
    - OS::TripleO::Services::Tuned
    - OS::TripleO::Services::Ptp
###############################################################################
# Role: CephStorage2                                                          #
###############################################################################
- name: CephStorage2
  description: |
    Ceph OSD Storage node role
  networks:
    - Storage2
    - StorageMgmt2
  HostnameFormatDefault: '%stackname%-cephstorage2-%index%'
  uses_deprecated_params: False
  deprecated_nic_config_name: 'ceph-storage.yaml'
  ServicesDefault:
    - OS::TripleO::Services::Aide
    - OS::TripleO::Services::AuditD
    - OS::TripleO::Services::CACerts
    - OS::TripleO::Services::CephOSD
    - OS::TripleO::Services::CertmongerUser
    - OS::TripleO::Services::Collectd
    - OS::TripleO::Services::Docker
    - OS::TripleO::Services::Fluentd
    - OS::TripleO::Services::Ipsec
    - OS::TripleO::Services::Kernel
    - OS::TripleO::Services::LoginDefs
    - OS::TripleO::Services::MySQLClient
    - OS::TripleO::Services::Ntp
    - OS::TripleO::Services::ContainersLogrotateCrond
    - OS::TripleO::Services::Rhsm
    - OS::TripleO::Services::RsyslogSidecar
    - OS::TripleO::Services::Securetty
    - OS::TripleO::Services::SensuClient
    - OS::TripleO::Services::Snmp
    - OS::TripleO::Services::Sshd
    - OS::TripleO::Services::Timezone
    - OS::TripleO::Services::TripleoFirewall
    - OS::TripleO::Services::TripleoPackages
    - OS::TripleO::Services::Tuned
    - OS::TripleO::Services::Ptp

Appendix D. Example network_environment file

resource_registry:
  OS::TripleO::ControllerLeaf2::Net::SoftwareConfig: /home/stack/nics/controllerleaf2.yaml
  OS::TripleO::ComputeLeaf3::Net::SoftwareConfig: /home/stack/nics/computeleaf3.yaml
  OS::TripleO::ComputeLeaf4::Net::SoftwareConfig: /home/stack/nics/computeleaf4.yaml
parameter_defaults:
  ControlPlaneSubnet: leaf1
  ControllerLeaf2ControlPlaneSubnet: leaf2
  ComputeLeaf3ControlPlaneSubnet: leaf3
  ComputeLeaf4ControlPlaneSubnet: leaf4
  ControlPlaneDefaultRoute: 10.10.1.1
  ControlPlaneSubnetCidr: '24'
  ControlPlane2DefaultRoute: 10.10.2.1
  ControlPlane2SubnetCidr: '24'
  ControlPlane3DefaultRoute: 10.10.3.1
  ControlPlane3SubnetCidr: '24'
  ControlPlane4DefaultRoute: 10.10.4.1
  ControlPlane4SubnetCidr: '24'
  InternalApiSupernet: 10.20.0.0/16
  TenantSupernet: 10.30.0.0/16
  ProvisioningSupernet: 10.10.0.0/16
  EC2MetadataIp: 10.10.1.10
  Leaf2EC2MetadataIp: 10.10.1.10
  Leaf3EC2MetadataIp: 10.10.1.10
  Leaf4EC2MetadataIp: 10.10.1.10

  ServiceNetMap:
    ComputeLeaf3HostnameResolveNetwork: internal_api3
    ComputeLeaf4HostnameResolveNetwork: internal_api4

  ComputeLeaf3ExtraConfig:
    nova::compute::libvirt::vncserver_listen: "%{hiera('internal_api3')}"
    nova::compute::vncserver_proxyclient_address: "%{hiera('internal_api3')}"
    neutron::agents::ml2::ovs::local_ip: "%{hiera('tenant3')}"
    cold_migration_ssh_inbound_addr: "%{hiera('internal_api3')}"
    live_migration_ssh_inbound_addr: "%{hiera('internal_api3')}"
    nova::migration::libvirt::live_migration_inbound_addr: "%{hiera('internal_api3')}"
    nova::my_ip: "%{hiera('internal_api3')}"
    tripleo::profile::base::database::mysql::client::mysql_client_bind_address: "%{hiera('internal_api3')}"

  ComputeLeaf4ExtraConfig:
    nova::compute::libvirt::vncserver_listen: "%{hiera('internal_api4')}"
    nova::compute::vncserver_proxyclient_address: "%{hiera('internal_api4')}"
    neutron::agents::ml2::ovs::local_ip: "%{hiera('tenant4')}"
    cold_migration_ssh_inbound_addr: "%{hiera('internal_api4')}"
    live_migration_ssh_inbound_addr: "%{hiera('internal_api4')}"
    nova::migration::libvirt::live_migration_inbound_addr: "%{hiera('internal_api4')}"
    nova::my_ip: "%{hiera('internal_api4')}"
    tripleo::profile::base::database::mysql::client::mysql_client_bind_address: "%{hiera('internal_api4')}"

Legal Notice

Copyright © 2023 Red Hat, Inc.
The text of and illustrations in this document are licensed by Red Hat under a Creative Commons Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is available at http://creativecommons.org/licenses/by-sa/3.0/. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must provide the URL for the original version.
Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert, Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.
Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift, Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other countries.
Linux® is the registered trademark of Linus Torvalds in the United States and other countries.
Java® is a registered trademark of Oracle and/or its affiliates.
XFS® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States and/or other countries.
MySQL® is a registered trademark of MySQL AB in the United States, the European Union and other countries.
Node.js® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the official Joyent Node.js open source or commercial project.
The OpenStack® Word Mark and OpenStack logo are either registered trademarks/service marks or trademarks/service marks of the OpenStack Foundation, in the United States and other countries and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.
All other trademarks are the property of their respective owners.