
Red Hat AMQ Streams 2.5

Deploying and Managing AMQ Streams on
OpenShift

Deploy and manage AMQ Streams 2.5 on OpenShift Container Platform

Last Updated: 2023-10-19

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on
OpenShift

Deploy and manage AMQ Streams 2.5 on OpenShift Container Platform

Legal Notice

Copyright © 2023 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Use the AMQ Streams operators to deploy Kafka components. Configure Kafka components to
build a large-scale messaging network. Set up secure client access to your Kafka clusters and
incoprorate features such as metrics and distrubuted tracing. Upgrade to leverage new features,
including the latest supported Kafka version.

. .

. .

. .

. .

. .

. .

. .

Table of Contents

MAKING OPEN SOURCE MORE INCLUSIVE

CHAPTER 1. DEPLOYMENT OVERVIEW
1.1. AMQ STREAMS CUSTOM RESOURCES

1.1.1. AMQ Streams custom resource example
1.2. AMQ STREAMS OPERATORS

1.2.1. Watching AMQ Streams resources in OpenShift namespaces
1.2.2. Managing RBAC resources

1.2.2.1. Delegating privileges to AMQ Streams components
1.2.2.2. Running the Cluster Operator using a ServiceAccount
1.2.2.3. ClusterRole resources
1.2.2.4. ClusterRoleBinding resources

1.3. USING THE KAFKA BRIDGE TO CONNECT WITH A KAFKA CLUSTER
1.4. SEAMLESS FIPS SUPPORT
1.5. DOCUMENT CONVENTIONS
1.6. ADDITIONAL RESOURCES

CHAPTER 2. AMQ STREAMS INSTALLATION METHODS

CHAPTER 3. WHAT IS DEPLOYED WITH AMQ STREAMS
3.1. ORDER OF DEPLOYMENT

CHAPTER 4. PREPARING FOR YOUR AMQ STREAMS DEPLOYMENT
4.1. DEPLOYMENT PREREQUISITES
4.2. DOWNLOADING AMQ STREAMS RELEASE ARTIFACTS
4.3. PUSHING CONTAINER IMAGES TO YOUR OWN REGISTRY
4.4. CREATING A PULL SECRET FOR AUTHENTICATION TO THE CONTAINER IMAGE REGISTRY
4.5. DESIGNATING AMQ STREAMS ADMINISTRATORS

CHAPTER 5. INSTALLING AMQ STREAMS FROM THE OPERATORHUB USING THE WEB CONSOLE
5.1. INSTALLING THE AMQ STREAMS OPERATOR FROM THE OPERATORHUB
5.2. DEPLOYING KAFKA COMPONENTS USING THE AMQ STREAMS OPERATOR

CHAPTER 6. DEPLOYING AMQ STREAMS USING INSTALLATION ARTIFACTS
6.1. BASIC DEPLOYMENT PATH
6.2. DEPLOYING THE CLUSTER OPERATOR

6.2.1. Specifying the namespaces the Cluster Operator watches
6.2.2. Deploying the Cluster Operator to watch a single namespace
6.2.3. Deploying the Cluster Operator to watch multiple namespaces
6.2.4. Deploying the Cluster Operator to watch all namespaces

6.3. DEPLOYING KAFKA
6.3.1. Deploying the Kafka cluster
6.3.2. (Preview) Deploying Kafka node pools
6.3.3. Deploying the Topic Operator using the Cluster Operator
6.3.4. Deploying the User Operator using the Cluster Operator
6.3.5. List of Kafka cluster resources

6.4. DEPLOYING KAFKA CONNECT
6.4.1. Deploying Kafka Connect to your OpenShift cluster
6.4.2. Configuring Kafka Connect for multiple instances
6.4.3. Adding connectors

6.4.3.1. Building a new container image with connector plugins automatically
6.4.3.2. Building a new container image with connector plugins from the Kafka Connect base image
6.4.3.3. Deploying KafkaConnector resources

11

12
12
12
15
15
16
16
18
18
25
27
28
28
28

29

30
30

31
31
31
31

33
34

35
35
36

38
38
39
39
40
41

42
44
44
47
49
50
51
55
56
56
57
58
59
61

Table of Contents

1

. .

. .

Source and sink connector configuration options
6.4.3.4. Manually restarting connectors
6.4.3.5. Manually restarting Kafka connector tasks
6.4.3.6. Exposing the Kafka Connect API
6.4.3.7. Limiting access to the Kafka Connect API
6.4.3.8. Switching from using the Kafka Connect API to using KafkaConnector custom resources

6.4.4. List of Kafka Connect cluster resources
6.5. DEPLOYING KAFKA MIRRORMAKER

6.5.1. Deploying Kafka MirrorMaker to your OpenShift cluster
6.5.2. List of Kafka MirrorMaker cluster resources

6.6. DEPLOYING KAFKA BRIDGE
6.6.1. Deploying Kafka Bridge to your OpenShift cluster
6.6.2. Exposing the Kafka Bridge service to your local machine
6.6.3. Accessing the Kafka Bridge outside of OpenShift
6.6.4. List of Kafka Bridge cluster resources

6.7. ALTERNATIVE STANDALONE DEPLOYMENT OPTIONS FOR AMQ STREAMS OPERATORS
6.7.1. Deploying the standalone Topic Operator

6.7.1.1. (Preview) Deploying the standalone Topic Operator for unidirectional topic management
6.7.2. Deploying the standalone User Operator

CHAPTER 7. ENABLING AMQ STREAMS FEATURE GATES
7.1. CONTROLPLANELISTENER FEATURE GATE
7.2. SERVICEACCOUNTPATCHING FEATURE GATE
7.3. USESTRIMZIPODSETS FEATURE GATE
7.4. (PREVIEW) USEKRAFT FEATURE GATE
7.5. STABLECONNECTIDENTITIES FEATURE GATE
7.6. (PREVIEW) KAFKANODEPOOLS FEATURE GATE
7.7. (PREVIEW) UNIDIRECTIONALTOPICOPERATOR FEATURE GATE
7.8. FEATURE GATE RELEASES

CHAPTER 8. CONFIGURING A DEPLOYMENT
8.1. USING EXAMPLE CONFIGURATION FILES
8.2. CONFIGURING KAFKA

8.2.1. Setting limits on brokers using the Kafka Static Quota plugin
8.2.2. Default ZooKeeper configuration values

8.3. (PREVIEW) CONFIGURING NODE POOLS
8.3.1. (Preview) Assigning IDs to node pools for scaling operations
8.3.2. (Preview) Adding nodes to a node pool
8.3.3. (Preview) Removing nodes from a node pool
8.3.4. (Preview) Moving nodes between node pools
8.3.5. (Preview) Migrating existing Kafka clusters to use Kafka node pools

8.4. CONFIGURING THE ENTITY OPERATOR
8.4.1. Configuring the Topic Operator
8.4.2. Configuring the User Operator

8.5. CONFIGURING THE CLUSTER OPERATOR
8.5.1. Restricting access to the Cluster Operator using network policy
8.5.2. Configuring periodic reconciliation by the Cluster Operator
8.5.3. Running multiple Cluster Operator replicas with leader election

8.5.3.1. Enabling leader election for Cluster Operator replicas
8.5.3.2. Configuring Cluster Operator replicas

8.5.4. Configuring Cluster Operator HTTP proxy settings
8.5.5. Disabling FIPS mode using Cluster Operator configuration

8.6. CONFIGURING KAFKA CONNECT

64
65
65
66
68
69
70
70
71
72
72
72
73
74
74
74
75
78
80

85
85
85
85
86
87
87
87
88

90
91

92
97
98
99

102
103
104
105
107
108
109

111
112
116
116
117
117
118
121
122
123

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

2

8.6.1. Configuring Kafka Connect user authorization
8.7. CONFIGURING KAFKA MIRRORMAKER 2

8.7.1. Configuring active/active or active/passive modes
8.7.1.1. Bidirectional replication (active/active)
8.7.1.2. Unidirectional replication (active/passive)

8.7.2. Configuring MirrorMaker 2 connectors
8.7.2.1. Changing the location of the consumer group offsets topic
8.7.2.2. Synchronizing consumer group offsets
8.7.2.3. Deciding when to use the heartbeat connector
8.7.2.4. Aligning the configuration of MirrorMaker 2 connectors

8.7.3. Configuring MirrorMaker 2 connector producers and consumers
8.7.4. Specifying a maximum number of data replication tasks

8.7.4.1. Checking connector task operations
8.7.5. Synchronizing ACL rules for remote topics
8.7.6. Securing a Kafka MirrorMaker 2 deployment

8.8. CONFIGURING KAFKA MIRRORMAKER (DEPRECATED)
8.9. CONFIGURING THE KAFKA BRIDGE
8.10. CONFIGURING KAFKA AND ZOOKEEPER STORAGE

8.10.1. Data storage considerations
8.10.1.1. File systems
8.10.1.2. Disk usage

8.10.2. Ephemeral storage
8.10.2.1. Mount path of Kafka log directories

8.10.3. Persistent storage
8.10.3.1. Storage class overrides
8.10.3.2. PVC resources for persistent storage
8.10.3.3. Mount path of Kafka log directories

8.10.4. Resizing persistent volumes
8.10.5. JBOD storage

8.10.5.1. PVC resource for JBOD storage
8.10.5.2. Mount path of Kafka log directories

8.10.6. Adding volumes to JBOD storage
8.10.7. Removing volumes from JBOD storage

8.11. CONFIGURING CPU AND MEMORY RESOURCE LIMITS AND REQUESTS
8.12. CONFIGURING POD SCHEDULING

8.12.1. Specifying affinity, tolerations, and topology spread constraints
8.12.1.1. Use pod anti-affinity to avoid critical applications sharing nodes
8.12.1.2. Use node affinity to schedule workloads onto specific nodes
8.12.1.3. Use node affinity and tolerations for dedicated nodes

8.12.2. Configuring pod anti-affinity to schedule each Kafka broker on a different worker node
8.12.3. Configuring pod anti-affinity in Kafka components
8.12.4. Configuring node affinity in Kafka components
8.12.5. Setting up dedicated nodes and scheduling pods on them

8.13. CONFIGURING LOGGING LEVELS
8.13.1. Logging options for Kafka components and operators
8.13.2. Creating a ConfigMap for logging
8.13.3. Configuring Cluster Operator logging
8.13.4. Adding logging filters to AMQ Streams operators

8.14. USING CONFIGMAPS TO ADD CONFIGURATION
8.14.1. Naming custom ConfigMaps

8.15. LOADING CONFIGURATION VALUES FROM EXTERNAL SOURCES
8.15.1. Enabling configuration providers
8.15.2. Loading configuration values from secrets or config maps

127
129
135
135
136
136
140
141

142
142
142
144
145
146
146
153
156
159
159
160
160
160
161
161

163
164
165
165
166
167
167
167
168
169
170
170
170
170
171
171

173
174
174
175
176
177
178
178
181

182
183
183
184

Table of Contents

3

. .

. .

. .

. .

. .

. .

8.15.3. Loading configuration values from environment variables
8.15.4. Loading configuration values from a file within a directory
8.15.5. Loading configuration values from multiple files within a directory

8.16. CUSTOMIZING OPENSHIFT RESOURCES
8.16.1. Customizing the image pull policy
8.16.2. Applying a termination grace period

CHAPTER 9. USING THE TOPIC OPERATOR TO MANAGE KAFKA TOPICS
9.1. TOPIC MANAGEMENT MODES

9.1.1. Bidirectional topic management
9.1.2. (Preview) Unidirectional topic management

9.2. TOPIC NAMING CONVENTIONS
9.3. HANDLING CHANGES TO TOPICS

9.3.1. Topic store for bidirectional topic management
9.3.2. Migrating topic metadata from ZooKeeper to the topic store
9.3.3. Downgrading to an AMQ Streams version that uses ZooKeeper to store topic metadata
9.3.4. Automatic creation of topics

9.4. CONFIGURING KAFKA TOPICS
9.5. CONFIGURING TOPICS FOR REPLICATION AND NUMBER OF PARTITIONS
9.6. (PREVIEW) MANAGING KAFKATOPIC RESOURCES WITHOUT IMPACTING KAFKA TOPICS
9.7. (PREVIEW) ENABLING TOPIC MANAGEMENT FOR EXISTING KAFKA TOPICS
9.8. (PREVIEW) DELETING MANAGED TOPICS

CHAPTER 10. USING THE USER OPERATOR TO MANAGE KAFKA USERS
10.1. CONFIGURING KAFKA USERS

CHAPTER 11. VALIDATING SCHEMAS WITH THE RED HAT BUILD OF APICURIO REGISTRY

CHAPTER 12. INTEGRATING WITH THE RED HAT BUILD OF DEBEZIUM FOR CHANGE DATA CAPTURE

CHAPTER 13. SETTING UP CLIENT ACCESS TO A KAFKA CLUSTER
13.1. DEPLOYING EXAMPLE CLIENTS
13.2. CONFIGURING LISTENERS TO CONNECT TO KAFKA BROKERS
13.3. SETTING UP CLIENT ACCESS TO A KAFKA CLUSTER USING LISTENERS
13.4. ACCESSING KAFKA USING NODE PORTS
13.5. ACCESSING KAFKA USING LOADBALANCERS
13.6. ACCESSING KAFKA USING OPENSHIFT ROUTES

CHAPTER 14. MANAGING SECURE ACCESS TO KAFKA
14.1. SECURITY OPTIONS FOR KAFKA

14.1.1. Listener authentication
14.1.1.1. mTLS authentication
14.1.1.2. SCRAM-SHA-512 authentication
14.1.1.3. Network policies
14.1.1.4. Providing listener certificates

14.1.2. Kafka authorization
14.1.2.1. Super users

14.2. SECURITY OPTIONS FOR KAFKA CLIENTS
14.2.1. Identifying a Kafka cluster for user handling
14.2.2. User authentication

14.2.2.1. mTLS authentication
14.2.2.2. mTLS authentication using a certificate issued outside the User Operator
14.2.2.3. SCRAM-SHA-512 authentication

14.2.2.3.1. Custom password configuration
14.2.3. User authorization

187
189
191

193
194
194

196
196
196
196
197
198
198
199
199

200
200
202
203
205
206

208
208

211

212

213
213
213
215
221

223
226

230
230
230
232
233
233
234
234
234
235
235
236
236
238
238
239
239

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

4

. .

14.2.3.1. ACL rules
14.2.3.2. Super user access to Kafka brokers
14.2.3.3. User quotas

14.3. SECURING ACCESS TO KAFKA BROKERS
14.3.1. Securing Kafka brokers
14.3.2. Securing user access to Kafka
14.3.3. Restricting access to Kafka listeners using network policies
14.3.4. Providing your own Kafka listener certificates for TLS encryption
14.3.5. Alternative subjects in server certificates for Kafka listeners

14.3.5.1. Examples of SANs for internal listeners
14.3.5.2. Examples of SANs for external listeners

14.4. USING OAUTH 2.0 TOKEN-BASED AUTHENTICATION
14.4.1. OAuth 2.0 authentication mechanisms
14.4.2. OAuth 2.0 Kafka broker configuration

14.4.2.1. OAuth 2.0 client configuration on an authorization server
14.4.2.2. OAuth 2.0 authentication configuration in the Kafka cluster
14.4.2.3. Fast local JWT token validation configuration
14.4.2.4. OAuth 2.0 introspection endpoint configuration

14.4.3. Session re-authentication for Kafka brokers
14.4.4. OAuth 2.0 Kafka client configuration
14.4.5. OAuth 2.0 client authentication flows

14.4.5.1. Example client authentication flows using the SASL OAUTHBEARER mechanism
14.4.5.2. Example client authentication flows using the SASL PLAIN mechanism

14.4.6. Configuring OAuth 2.0 authentication
14.4.6.1. Configuring an OAuth 2.0 authorization server
14.4.6.2. Configuring OAuth 2.0 support for Kafka brokers
14.4.6.3. Configuring Kafka Java clients to use OAuth 2.0
14.4.6.4. Configuring OAuth 2.0 for Kafka components

14.5. USING OAUTH 2.0 TOKEN-BASED AUTHORIZATION
14.5.1. OAuth 2.0 authorization mechanism

14.5.1.1. Kafka broker custom authorizer
14.5.2. Configuring OAuth 2.0 authorization support
14.5.3. Managing policies and permissions in Red Hat Single Sign-On Authorization Services

14.5.3.1. Kafka and Red Hat Single Sign-On authorization models overview
Kafka authorization model
Red Hat Single Sign-On Authorization Services model

14.5.3.2. Map Red Hat Single Sign-On Authorization Services to the Kafka authorization model
14.5.3.3. Example permissions required for Kafka operations

14.5.4. Trying Red Hat Single Sign-On Authorization Services
14.5.4.1. Accessing the Red Hat Single Sign-On Admin Console
14.5.4.2. Deploying a Kafka cluster with Red Hat Single Sign-On authorization
14.5.4.3. Preparing TLS connectivity for a CLI Kafka client session
14.5.4.4. Checking authorized access to Kafka using a CLI Kafka client session

CHAPTER 15. MANAGING TLS CERTIFICATES
15.1. INTERNAL CLUSTER CA AND CLIENTS CA
15.2. SECRETS GENERATED BY THE OPERATORS

15.2.1. TLS authentication using keys and certificates in PEM or PKCS #12 format
15.2.2. Secrets generated by the Cluster Operator
15.2.3. Cluster CA secrets
15.2.4. Clients CA secrets
15.2.5. User secrets generated by the User Operator
15.2.6. Adding labels and annotations to cluster CA secrets

240
240
240
241
242
243
245
246
248
248
249
249
250
252
252
252
253
254
255
256
257
257
259
261
261
262
267
271

273
274
274
274
277
277
277
278
279
281

284
285
287
288
290

297
299
299
300
301
302
305
306
306

Table of Contents

5

. .

. .

. .

. .

15.2.7. Disabling ownerReference in the CA secrets
15.3. CERTIFICATE RENEWAL AND VALIDITY PERIODS

15.3.1. Renewal process with automatically generated CA certificates
15.3.2. Client certificate renewal
15.3.3. Manually renewing Cluster Operator-managed CA certificates
15.3.4. Manually recovering from expired Cluster Operator-managed CA certificates
15.3.5. Replacing private keys used by Cluster Operator-managed CA certificates

15.4. CONFIGURING INTERNAL CLIENTS TO TRUST THE CLUSTER CA
15.5. CONFIGURING EXTERNAL CLIENTS TO TRUST THE CLUSTER CA
15.6. USING YOUR OWN CA CERTIFICATES AND PRIVATE KEYS

15.6.1. Installing your own CA certificates and private keys
15.6.2. Renewing your own CA certificates
15.6.3. Renewing or replacing CA certificates and private keys with your own

CHAPTER 16. APPLYING SECURITY CONTEXT TO AMQ STREAMS PODS AND CONTAINERS
16.1. HANDLING OF SECURITY CONTEXT BY OPENSHIFT PLATFORM

CHAPTER 17. SCALING CLUSTERS BY ADDING OR REMOVING BROKERS

CHAPTER 18. REBALANCING CLUSTERS USING CRUISE CONTROL
18.1. CRUISE CONTROL COMPONENTS AND FEATURES
18.2. OPTIMIZATION GOALS OVERVIEW

18.2.1. Goals order of priority
18.2.2. Goals configuration in AMQ Streams custom resources
18.2.3. Hard and soft optimization goals
18.2.4. Main optimization goals
18.2.5. Default optimization goals
18.2.6. User-provided optimization goals

18.3. OPTIMIZATION PROPOSALS OVERVIEW
18.3.1. Rebalancing modes
18.3.2. The results of an optimization proposal
18.3.3. Manually approving or rejecting an optimization proposal
18.3.4. Automatically approving an optimization proposal
18.3.5. Optimization proposal summary properties
18.3.6. Broker load properties
18.3.7. Cached optimization proposal

18.4. REBALANCE PERFORMANCE TUNING OVERVIEW
18.4.1. Partition reassignment commands
18.4.2. Replica movement strategies
18.4.3. Intra-broker disk balancing
18.4.4. Rebalance tuning options

18.5. CONFIGURING AND DEPLOYING CRUISE CONTROL WITH KAFKA
Auto-created topics

18.6. GENERATING OPTIMIZATION PROPOSALS
18.7. APPROVING AN OPTIMIZATION PROPOSAL
18.8. STOPPING A CLUSTER REBALANCE
18.9. FIXING PROBLEMS WITH A KAFKAREBALANCE RESOURCE

CHAPTER 19. USING THE PARTITION REASSIGNMENT TOOL
19.1. PARTITION REASSIGNMENT TOOL OVERVIEW

19.1.1. Generating a partition reassignment plan
19.1.2. Specifying topics in a partition reassignment JSON file
19.1.3. Reassigning partitions between JBOD volumes
19.1.4. Throttling partition reassignment

307
307
308
309
309
310
312
313
315
316
317
319
321

327
327

328

330
330
331
331
332
333
334
334
335
336
336
337
337
339
339
341

342
342
342
343
343
343
346
348
349
354
355
356

358
358
358
359
360
361

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

6

. .

. .

. .

. .

19.2. GENERATING A REASSIGNMENT JSON FILE TO REASSIGN PARTITIONS
19.3. REASSIGNING PARTITIONS AFTER ADDING BROKERS
19.4. REASSIGNING PARTITIONS BEFORE REMOVING BROKERS
19.5. CHANGING THE REPLICATION FACTOR OF TOPICS

CHAPTER 20. SETTING UP METRICS AND DASHBOARDS FOR AMQ STREAMS
20.1. MONITORING CONSUMER LAG WITH KAFKA EXPORTER

The importance of monitoring consumer lag
Reducing consumer lag

20.2. MONITORING CRUISE CONTROL OPERATIONS
20.2.1. Monitoring balancedness scores
20.2.2. Setting up alerts for anomaly detection

20.3. EXAMPLE METRICS FILES
20.3.1. Example Prometheus metrics configuration
20.3.2. Example Prometheus rules for alert notifications
20.3.3. Example Grafana dashboards

20.4. ENABLING PROMETHEUS METRICS THROUGH CONFIGURATION
20.5. VIEWING KAFKA METRICS AND DASHBOARDS IN OPENSHIFT

20.5.1. Prerequisites
20.5.2. Deploying the Prometheus resources
20.5.3. Creating a service account for Grafana
20.5.4. Deploying Grafana with a Prometheus datasource
20.5.5. Creating a route to the Grafana Service
20.5.6. Importing the example Grafana dashboards

CHAPTER 21. INTRODUCING DISTRIBUTED TRACING
21.1. TRACING OPTIONS
21.2. ENVIRONMENT VARIABLES FOR TRACING
21.3. SETTING UP DISTRIBUTED TRACING

21.3.1. Prerequisites
21.3.2. Enabling tracing in MirrorMaker, Kafka Connect, and Kafka Bridge resources
21.3.3. Initializing tracing for Kafka clients
21.3.4. Instrumenting producers and consumers for tracing
21.3.5. Instrumenting Kafka Streams applications for tracing
21.3.6. Introducing a different OpenTelemetry tracing system
21.3.7. Custom span names

21.3.7.1. Specifying span names for OpenTelemetry
21.3.7.2. Specifying span names for OpenTracing

CHAPTER 22. RETRIEVING DIAGNOSTIC AND TROUBLESHOOTING DATA

CHAPTER 23. UPGRADING AMQ STREAMS
23.1. AMQ STREAMS UPGRADE PATHS

23.1.1. Support for Kafka versions when upgrading
23.1.2. Upgrading from an AMQ Streams version earlier than 1.7

23.2. REQUIRED UPGRADE SEQUENCE
23.3. UPGRADING OPENSHIFT WITH MINIMAL DOWNTIME

23.3.1. Rolling pods using the AMQ Streams Drain Cleaner
23.3.2. Rolling pods manually while keeping topics available

23.4. UPGRADING THE CLUSTER OPERATOR
23.4.1. Upgrading the Cluster Operator returns Kafka version error
23.4.2. Upgrading from AMQ Streams 1.7 or earlier using the OperatorHub
23.4.3. Upgrading the Cluster Operator using installation files

23.5. UPGRADING KAFKA

361
366
368
370

373
374
375
375
375
375
376
376
377
378
379
380
384
385
385
386
388
390
390

392
392
393
394
394
395
398
400
401

403
404
404
405

406

409
409
409
409
410
411
411

412
413
413
413
414
416

Table of Contents

7

. .

. .

. .

. .

23.5.1. Kafka versions
23.5.2. Strategies for upgrading clients
23.5.3. Kafka version and image mappings
23.5.4. Upgrading Kafka brokers and client applications

23.6. SWITCHING TO FIPS MODE WHEN UPGRADING AMQ STREAMS

CHAPTER 24. DOWNGRADING AMQ STREAMS
24.1. DOWNGRADING THE CLUSTER OPERATOR TO A PREVIOUS VERSION
24.2. DOWNGRADING KAFKA

24.2.1. Kafka version compatibility for downgrades
24.2.2. Downgrading Kafka brokers and client applications

CHAPTER 25. HANDLING HIGH VOLUMES OF MESSAGES
25.1. CONFIGURING KAFKA CONNECT FOR HIGH-VOLUME MESSAGES
25.2. CONFIGURING MIRRORMAKER 2 FOR HIGH-VOLUME MESSAGES
25.3. CHECKING THE MIRRORMAKER 2 MESSAGE FLOW

CHAPTER 26. FINDING INFORMATION ON KAFKA RESTARTS
26.1. REASONS FOR A RESTART EVENT
26.2. RESTART EVENT FILTERS
26.3. CHECKING KAFKA RESTARTS

CHAPTER 27. MANAGING AMQ STREAMS
27.1. WORKING WITH CUSTOM RESOURCES

27.1.1. Performing oc operations on custom resources
27.1.1.1. Resource categories
27.1.1.2. Querying the status of sub-resources

27.1.2. AMQ Streams custom resource status information
27.1.3. Finding the status of a custom resource

27.2. DISCOVERING SERVICES USING LABELS AND ANNOTATIONS
Example internal Kafka bootstrap service
Example HTTP Bridge service
27.2.1. Returning connection details on services

27.3. CONNECTING TO ZOOKEEPER FROM A TERMINAL
27.4. PAUSING RECONCILIATION OF CUSTOM RESOURCES
27.5. MAINTENANCE TIME WINDOWS FOR ROLLING UPDATES

27.5.1. Maintenance time windows overview
27.5.2. Maintenance time window definition
27.5.3. Configuring a maintenance time window

27.6. EVICTING PODS WITH THE AMQ STREAMS DRAIN CLEANER
27.6.1. Downloading the AMQ Streams Drain Cleaner deployment files
27.6.2. Deploying the AMQ Streams Drain Cleaner using installation files
27.6.3. Using the AMQ Streams Drain Cleaner
27.6.4. Watching the TLS certificates used by the AMQ Streams Drain Cleaner

27.7. DELETING KAFKA NODES USING ANNOTATIONS
27.8. DELETING ZOOKEEPER NODES USING ANNOTATIONS
27.9. STARTING ROLLING UPDATES OF KAFKA AND ZOOKEEPER CLUSTERS USING ANNOTATIONS

27.9.1. Performing a rolling update using a pod management annotation
27.9.2. Performing a rolling update using a pod annotation

27.10. PERFORMING RESTARTS OF MIRRORMAKER 2 CONNECTORS USING ANNOTATIONS
27.11. PERFORMING RESTARTS OF MIRRORMAKER 2 CONNECTOR TASK USING ANNOTATIONS
27.12. RECOVERING A CLUSTER FROM PERSISTENT VOLUMES

27.12.1. Recovery from namespace deletion
27.12.2. Recovery from loss of an OpenShift cluster

417
418
418
419
422

424
424
425
425
426

429
430
432
433

434
434
435
436

438
438
438
439
439
440
443
443
443
444
444
444
445
446
446
446
447
448
449
449
451
452
453
454
454
455
455
456
457
458
458
459

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

8

. .

. .

27.12.3. Recovering a deleted cluster from persistent volumes
27.13. UNINSTALLING AMQ STREAMS

27.13.1. Uninstalling AMQ Streams from the OperatorHub using the web console
27.13.2. Uninstalling AMQ Streams using the CLI

27.14. FREQUENTLY ASKED QUESTIONS
27.14.1. Questions related to the Cluster Operator

27.14.1.1. Why do I need cluster administrator privileges to install AMQ Streams?
27.14.1.2. Why does the Cluster Operator need to create ClusterRoleBindings?
27.14.1.3. Can standard OpenShift users create Kafka custom resources?
27.14.1.4. What do the failed to acquire lock warnings in the log mean?
27.14.1.5. Why is hostname verification failing when connecting to NodePorts using TLS?

CHAPTER 28. USING METERING ON AMQ STREAMS
28.1. METERING RESOURCES
28.2. METERING LABELS FOR AMQ STREAMS

APPENDIX A. USING YOUR SUBSCRIPTION
Accessing Your Account
Activating a Subscription
Downloading Zip and Tar Files
Installing packages with DNF

459
463
463
465
465
465
466
466
466
466
467

468
468
468

471
471
471
471
471

Table of Contents

9

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

10

MAKING OPEN SOURCE MORE INCLUSIVE
Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright’s message .

MAKING OPEN SOURCE MORE INCLUSIVE

11

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

CHAPTER 1. DEPLOYMENT OVERVIEW
AMQ Streams simplifies the process of running Apache Kafka in an OpenShift cluster.

This guide provides instructions for deploying and managing AMQ Streams. Deployment options and
steps are covered using the example installation files included with AMQ Streams. While the guide
highlights important configuration considerations, it does not cover all available options. For a deeper
understanding of the Kafka component configuration options, refer to the AMQ Streams Custom
Resource API Reference.

In addition to deployment instructions, the guide offers pre- and post-deployment guidance. It covers
setting up and securing client access to your Kafka cluster. Furthermore, it explores additional
deployment options such as metrics integration, distributed tracing, and cluster management tools like
Cruise Control and the AMQ Streams Drain Cleaner. You’ll also find recommendations on managing
AMQ Streams and fine-tuning Kafka configuration for optimal performance.

Upgrade instructions are provided for both AMQ Streams and Kafka, to help keep your deployment up
to date.

AMQ Streams is designed to be compatible with all types of OpenShift clusters, irrespective of their
distribution. Whether your deployment involves public or private clouds, or if you are setting up a local
development environment, the instructions in this guide are applicable in all cases.

1.1. AMQ STREAMS CUSTOM RESOURCES

Deployment of Kafka components to an OpenShift cluster using AMQ Streams is highly configurable
through the application of custom resources. These custom resources are created as instances of APIs
added by Custom Resource Definitions (CRDs) to extend OpenShift resources.

CRDs act as configuration instructions to describe the custom resources in an OpenShift cluster, and are
provided with AMQ Streams for each Kafka component used in a deployment, as well as users and
topics. CRDs and custom resources are defined as YAML files. Example YAML files are provided with
the AMQ Streams distribution.

CRDs also allow AMQ Streams resources to benefit from native OpenShift features like CLI accessibility
and configuration validation.

1.1.1. AMQ Streams custom resource example

CRDs require a one-time installation in a cluster to define the schemas used to instantiate and manage
AMQ Streams-specific resources.

After a new custom resource type is added to your cluster by installing a CRD, you can create instances
of the resource based on its specification.

Depending on the cluster setup, installation typically requires cluster admin privileges.

NOTE

Access to manage custom resources is limited to AMQ Streams administrators. For more
information, see Section 4.5, “Designating AMQ Streams administrators” .

A CRD defines a new kind of resource, such as kind:Kafka, within an OpenShift cluster.

The Kubernetes API server allows custom resources to be created based on the kind and understands

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

12

https://kafka.apache.org/
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index

The Kubernetes API server allows custom resources to be created based on the kind and understands
from the CRD how to validate and store the custom resource when it is added to the OpenShift cluster.

WARNING

When a CustomResourceDefinition is deleted, custom resources of that type are
also deleted. Additionally, OpenShift resources created by the custom resource are
also deleted, such as Deployment, Pod, Service and ConfigMap resources.

Each AMQ Streams-specific custom resource conforms to the schema defined by the CRD for the
resource’s kind. The custom resources for AMQ Streams components have common configuration
properties, which are defined under spec.

To understand the relationship between a CRD and a custom resource, let’s look at a sample of the CRD
for a Kafka topic.

Kafka topic CRD



apiVersion: kafka.strimzi.io/v1beta2
kind: CustomResourceDefinition
metadata: 1
 name: kafkatopics.kafka.strimzi.io
 labels:
 app: strimzi
spec: 2
 group: kafka.strimzi.io
 versions:
 v1beta2
 scope: Namespaced
 names:
 # ...
 singular: kafkatopic
 plural: kafkatopics
 shortNames:
 - kt 3
 additionalPrinterColumns: 4
 # ...
 subresources:
 status: {} 5
 validation: 6
 openAPIV3Schema:
 properties:
 spec:
 type: object
 properties:
 partitions:
 type: integer
 minimum: 1
 replicas:
 type: integer

CHAPTER 1. DEPLOYMENT OVERVIEW

13

1

2

3

4

5

6

1

2

The metadata for the topic CRD, its name and a label to identify the CRD.

The specification for this CRD, including the group (domain) name, the plural name and the
supported schema version, which are used in the URL to access the API of the topic. The other
names are used to identify instance resources in the CLI. For example, oc get kafkatopic my-topic
or oc get kafkatopics.

The shortname can be used in CLI commands. For example, oc get kt can be used as an
abbreviation instead of oc get kafkatopic.

The information presented when using a get command on the custom resource.

The current status of the CRD as described in the schema reference for the resource.

openAPIV3Schema validation provides validation for the creation of topic custom resources. For
example, a topic requires at least one partition and one replica.

NOTE

You can identify the CRD YAML files supplied with the AMQ Streams installation files,
because the file names contain an index number followed by ‘Crd’.

Here is a corresponding example of a KafkaTopic custom resource.

Kafka topic custom resource

The kind and apiVersion identify the CRD of which the custom resource is an instance.

A label, applicable only to KafkaTopic and KafkaUser resources, that defines the name of the
Kafka cluster (which is same as the name of the Kafka resource) to which a topic or user belongs.

 minimum: 1
 maximum: 32767
 # ...

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaTopic 1
metadata:
 name: my-topic
 labels:
 strimzi.io/cluster: my-cluster 2
spec: 3
 partitions: 1
 replicas: 1
 config:
 retention.ms: 7200000
 segment.bytes: 1073741824
status:
 conditions: 4
 lastTransitionTime: "2019-08-20T11:37:00.706Z"
 status: "True"
 type: Ready
 observedGeneration: 1
 / ...

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

14

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index#type-Kafka-reference

3

4

Kafka cluster (which is same as the name of the Kafka resource) to which a topic or user belongs.
The spec shows the number of partitions and replicas for the topic as well as the configuration
parameters for the topic itself. In this example, the retention period for a message to remain in the

Status conditions for the KafkaTopic resource. The type condition changed to Ready at the
lastTransitionTime.

Custom resources can be applied to a cluster through the platform CLI. When the custom resource is
created, it uses the same validation as the built-in resources of the Kubernetes API.

After a KafkaTopic custom resource is created, the Topic Operator is notified and corresponding Kafka
topics are created in AMQ Streams.

Additional resources

Extend the Kubernetes API with CustomResourceDefinitions

Example configuration files provided with AMQ Streams

1.2. AMQ STREAMS OPERATORS

AMQ Streams operators are purpose-built with specialist operational knowledge to effectively manage
Kafka on OpenShift. Each operator performs a distinct function.

Cluster Operator

The Cluster Operator handles the deployment and management of Apache Kafka clusters on
OpenShift. It automates the setup of Kafka brokers, and other Kafka components and resources.

Topic Operator

The Topic Operator manages the creation, configuration, and deletion of topics within Kafka clusters.

User Operator

The User Operator manages Kafka users that require access to Kafka brokers.

When you deploy AMQ Streams, you first deploy the Cluster Operator. The Cluster Operator is then
ready to handle the deployment of Kafka. You can also deploy the Topic Operator and User Operator
using the Cluster Operator (recommended) or as standalone operators. You would use a standalone
operator with a Kafka cluster that is not managed by the Cluster Operator.

The Topic Operator and User Operator are part of the Entity Operator. The Cluster Operator can
deploy one or both operators based on the Entity Operator configuration.

IMPORTANT

To deploy the standalone operators, you need to set environment variables to connect to
a Kafka cluster. These environment variables do not need to be set if you are deploying
the operators using the Cluster Operator as they will be set by the Cluster Operator.

1.2.1. Watching AMQ Streams resources in OpenShift namespaces

Operators watch and manage AMQ Streams resources in OpenShift namespaces. The Cluster Operator
can watch a single namespace, multiple namespaces, or all namespaces in an OpenShift cluster. The
Topic Operator and User Operator can watch a single namespace.

The Cluster Operator watches for Kafka resources

CHAPTER 1. DEPLOYMENT OVERVIEW

15

https://kubernetes.io/docs/tasks/access-kubernetes-api/custom-resources/custom-resource-definitions/

The Topic Operator watches for KafkaTopic resources

The User Operator watches for KafkaUser resources

The Topic Operator and the User Operator can only watch a single Kafka cluster in a namespace. And
they can only be connected to a single Kafka cluster.

If multiple Topic Operators watch the same namespace, name collisions and topic deletion can occur.
This is because each Kafka cluster uses Kafka topics that have the same name (such as
__consumer_offsets). Make sure that only one Topic Operator watches a given namespace.

When using multiple User Operators with a single namespace, a user with a given username can exist in
more than one Kafka cluster.

If you deploy the Topic Operator and User Operator using the Cluster Operator, they watch the Kafka
cluster deployed by the Cluster Operator by default. You can also specify a namespace using
watchedNamespace in the operator configuration.

For a standalone deployment of each operator, you specify a namespace and connection to the Kafka
cluster to watch in the configuration.

1.2.2. Managing RBAC resources

The Cluster Operator creates and manages role-based access control (RBAC) resources for AMQ
Streams components that need access to OpenShift resources.

For the Cluster Operator to function, it needs permission within the OpenShift cluster to interact with
Kafka resources, such as Kafka and KafkaConnect, as well as managed resources like ConfigMap, Pod,
Deployment, and Service.

Permission is specified through the following OpenShift RBAC resources:

ServiceAccount

Role and ClusterRole

RoleBinding and ClusterRoleBinding

1.2.2.1. Delegating privileges to AMQ Streams components

The Cluster Operator runs under a service account called strimzi-cluster-operator. It is assigned cluster
roles that give it permission to create the RBAC resources for AMQ Streams components. Role bindings
associate the cluster roles with the service account.

OpenShift prevents components operating under one ServiceAccount from granting another
ServiceAccount privileges that the granting ServiceAccount does not have. Because the Cluster
Operator creates the RoleBinding and ClusterRoleBinding RBAC resources needed by the resources
it manages, it requires a role that gives it the same privileges.

The following tables describe the RBAC resources created by the Cluster Operator.

Table 1.1. ServiceAccount resources

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

16

Name Used by

<cluster_name>-kafka Kafka broker pods

<cluster_name>-zookeeper ZooKeeper pods

<cluster_name>-cluster-connect Kafka Connect pods

<cluster_name>-mirror-maker MirrorMaker pods

<cluster_name>-mirrormaker2 MirrorMaker 2 pods

<cluster_name>-bridge Kafka Bridge pods

<cluster_name>-entity-operator Entity Operator

Table 1.2. ClusterRole resources

Name Used by

strimzi-cluster-operator-namespaced Cluster Operator

strimzi-cluster-operator-global Cluster Operator

strimzi-cluster-operator-leader-election Cluster Operator

strimzi-kafka-broker Cluster Operator, rack feature (when used)

strimzi-entity-operator Cluster Operator, Topic Operator, User Operator

strimzi-kafka-client Cluster Operator, Kafka clients for rack awareness

Table 1.3. ClusterRoleBinding resources

Name Used by

strimzi-cluster-operator Cluster Operator

strimzi-cluster-operator-kafka-broker-
delegation

Cluster Operator, Kafka brokers for rack awareness

strimzi-cluster-operator-kafka-client-
delegation

Cluster Operator, Kafka clients for rack awareness

Table 1.4. RoleBinding resources

CHAPTER 1. DEPLOYMENT OVERVIEW

17

Name Used by

strimzi-cluster-operator Cluster Operator

strimzi-cluster-operator-kafka-broker-
delegation

Cluster Operator, Kafka brokers for rack awareness

1.2.2.2. Running the Cluster Operator using a ServiceAccount

The Cluster Operator is best run using a ServiceAccount.

Example ServiceAccount for the Cluster Operator

The Deployment of the operator then needs to specify this in its
spec.template.spec.serviceAccountName.

Partial example of Deployment for the Cluster Operator

1.2.2.3. ClusterRole resources

The Cluster Operator uses ClusterRole resources to provide the necessary access to resources.
Depending on the OpenShift cluster setup, a cluster administrator might be needed to create the
cluster roles.

NOTE

apiVersion: v1
kind: ServiceAccount
metadata:
 name: strimzi-cluster-operator
 labels:
 app: strimzi

apiVersion: apps/v1
kind: Deployment
metadata:
 name: strimzi-cluster-operator
 labels:
 app: strimzi
spec:
 replicas: 1
 selector:
 matchLabels:
 name: strimzi-cluster-operator
 strimzi.io/kind: cluster-operator
 template:
 metadata:
 labels:
 name: strimzi-cluster-operator
 strimzi.io/kind: cluster-operator
 spec:
 serviceAccountName: strimzi-cluster-operator
 # ...

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

18

NOTE

Cluster administrator rights are only needed for the creation of ClusterRole resources.
The Cluster Operator will not run under a cluster admin account.

ClusterRole resources follow the principle of least privilege and contain only those privileges needed by
the Cluster Operator to operate the cluster of the Kafka component. The first set of assigned privileges
allow the Cluster Operator to manage OpenShift resources such as Deployment, Pod, and ConfigMap.

All cluster roles are required by the Cluster Operator in order to delegate privileges.

The Cluster Operator uses the strimzi-cluster-operator-namespaced and strimzi-cluster-operator-
global cluster roles to grant permission at the namespace-scoped resources level and cluster-scoped
resources level.

ClusterRole with namespaced resources for the Cluster Operator

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
 name: strimzi-cluster-operator-namespaced
 labels:
 app: strimzi
rules:
 # Resources in this role are used by the operator based on an operand being deployed in some
namespace. When needed, you
 # can deploy the operator as a cluster-wide operator. But grant the rights listed in this role only on
the namespaces
 # where the operands will be deployed. That way, you can limit the access the operator has to other
namespaces where it
 # does not manage any clusters.
 - apiGroups:
 - "rbac.authorization.k8s.io"
 resources:
 # The cluster operator needs to access and manage rolebindings to grant Strimzi components
cluster permissions
 - rolebindings
 verbs:
 - get
 - list
 - watch
 - create
 - delete
 - patch
 - update
 - apiGroups:
 - "rbac.authorization.k8s.io"
 resources:
 # The cluster operator needs to access and manage roles to grant the entity operator permissions
 - roles
 verbs:
 - get
 - list
 - watch
 - create
 - delete

CHAPTER 1. DEPLOYMENT OVERVIEW

19

 - patch
 - update
 - apiGroups:
 - ""
 resources:
 # The cluster operator needs to access and delete pods, this is to allow it to monitor pod health
and coordinate rolling updates
 - pods
 # The cluster operator needs to access and manage service accounts to grant Strimzi
components cluster permissions
 - serviceaccounts
 # The cluster operator needs to access and manage config maps for Strimzi components
configuration
 - configmaps
 # The cluster operator needs to access and manage services and endpoints to expose Strimzi
components to network traffic
 - services
 - endpoints
 # The cluster operator needs to access and manage secrets to handle credentials
 - secrets
 # The cluster operator needs to access and manage persistent volume claims to bind them to
Strimzi components for persistent data
 - persistentvolumeclaims
 verbs:
 - get
 - list
 - watch
 - create
 - delete
 - patch
 - update
 - apiGroups:
 - "apps"
 resources:
 # The cluster operator needs to access and manage deployments to run deployment based
Strimzi components
 - deployments
 - deployments/scale
 - deployments/status
 # The cluster operator needs to access and manage stateful sets to run stateful sets based
Strimzi components
 - statefulsets
 # The cluster operator needs to access replica-sets to manage Strimzi components and to
determine error states
 - replicasets
 verbs:
 - get
 - list
 - watch
 - create
 - delete
 - patch
 - update
 - apiGroups:
 - "" # legacy core events api, used by topic operator
 - "events.k8s.io" # new events api, used by cluster operator

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

20

 resources:
 # The cluster operator needs to be able to create events and delegate permissions to do so
 - events
 verbs:
 - create
 - apiGroups:
 # Kafka Connect Build on OpenShift requirement
 - build.openshift.io
 resources:
 - buildconfigs
 - buildconfigs/instantiate
 - builds
 verbs:
 - get
 - list
 - watch
 - create
 - delete
 - patch
 - update
 - apiGroups:
 - networking.k8s.io
 resources:
 # The cluster operator needs to access and manage network policies to lock down
communication between Strimzi components
 - networkpolicies
 # The cluster operator needs to access and manage ingresses which allow external access to the
services in a cluster
 - ingresses
 verbs:
 - get
 - list
 - watch
 - create
 - delete
 - patch
 - update
 - apiGroups:
 - route.openshift.io
 resources:
 # The cluster operator needs to access and manage routes to expose Strimzi components for
external access
 - routes
 - routes/custom-host
 verbs:
 - get
 - list
 - watch
 - create
 - delete
 - patch
 - update
 - apiGroups:
 - image.openshift.io
 resources:
 # The cluster operator needs to verify the image stream when used for Kafka Connect image build

CHAPTER 1. DEPLOYMENT OVERVIEW

21

ClusterRole with cluster-scoped resources for the Cluster Operator

 - imagestreams
 verbs:
 - get
 - apiGroups:
 - policy
 resources:
 # The cluster operator needs to access and manage pod disruption budgets this limits the number
of concurrent disruptions
 # that a Strimzi component experiences, allowing for higher availability
 - poddisruptionbudgets
 verbs:
 - get
 - list
 - watch
 - create
 - delete
 - patch
 - update

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
 name: strimzi-cluster-operator-global
 labels:
 app: strimzi
rules:
 - apiGroups:
 - "rbac.authorization.k8s.io"
 resources:
 # The cluster operator needs to create and manage cluster role bindings in the case of an install
where a user
 # has specified they want their cluster role bindings generated
 - clusterrolebindings
 verbs:
 - get
 - list
 - watch
 - create
 - delete
 - patch
 - update
 - apiGroups:
 - storage.k8s.io
 resources:
 # The cluster operator requires "get" permissions to view storage class details
 # This is because only a persistent volume of a supported storage class type can be resized
 - storageclasses
 verbs:
 - get
 - apiGroups:
 - ""
 resources:
 # The cluster operator requires "list" permissions to view all nodes in a cluster

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

22

The strimzi-cluster-operator-leader-election cluster role represents the permissions needed for the
leader election.

ClusterRole with leader election permissions

The strimzi-kafka-broker cluster role represents the access needed by the init container in Kafka pods
that use rack awareness.

A role binding named strimzi-<cluster_name>-kafka-init grants the <cluster_name>-kafka service
account access to nodes within a cluster using the strimzi-kafka-broker role. If the rack feature is not
used and the cluster is not exposed through nodeport, no binding is created.

ClusterRole for the Cluster Operator allowing it to delegate access to OpenShift nodes to
the Kafka broker pods

 # The listing is used to determine the node addresses when NodePort access is configured
 # These addresses are then exposed in the custom resource states
 - nodes
 verbs:
 - list

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
 name: strimzi-cluster-operator-leader-election
 labels:
 app: strimzi
rules:
 - apiGroups:
 - coordination.k8s.io
 resources:
 # The cluster operator needs to access and manage leases for leader election
 # The "create" verb cannot be used with "resourceNames"
 - leases
 verbs:
 - create
 - apiGroups:
 - coordination.k8s.io
 resources:
 # The cluster operator needs to access and manage leases for leader election
 - leases
 resourceNames:
 # The default RBAC files give the operator only access to the Lease resource names strimzi-
cluster-operator
 # If you want to use another resource name or resource namespace, you have to configure the
RBAC resources accordingly
 - strimzi-cluster-operator
 verbs:
 - get
 - list
 - watch
 - delete
 - patch
 - update

CHAPTER 1. DEPLOYMENT OVERVIEW

23

The strimzi-entity-operator cluster role represents the access needed by the Topic Operator and User
Operator.

The Topic Operator produces OpenShift events with status information, so the <cluster_name>-
entity-operator service account is bound to the strimzi-entity-operator role, which grants this access
via the strimzi-entity-operator role binding.

ClusterRole for the Cluster Operator allowing it to delegate access to events to the Topic
and User Operators

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
 name: strimzi-kafka-broker
 labels:
 app: strimzi
rules:
 - apiGroups:
 - ""
 resources:
 # The Kafka Brokers require "get" permissions to view the node they are on
 # This information is used to generate a Rack ID that is used for High Availability configurations
 - nodes
 verbs:
 - get

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
 name: strimzi-entity-operator
 labels:
 app: strimzi
rules:
 - apiGroups:
 - "kafka.strimzi.io"
 resources:
 # The entity operator runs the KafkaTopic assembly operator, which needs to access and manage
KafkaTopic resources
 - kafkatopics
 - kafkatopics/status
 # The entity operator runs the KafkaUser assembly operator, which needs to access and manage
KafkaUser resources
 - kafkausers
 - kafkausers/status
 verbs:
 - get
 - list
 - watch
 - create
 - patch
 - update
 - delete
 - apiGroups:
 - ""
 resources:

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

24

The strimzi-kafka-client cluster role represents the access needed by Kafka clients that use rack
awareness.

ClusterRole for the Cluster Operator allowing it to delegate access to OpenShift nodes to
the Kafka client-based pods

1.2.2.4. ClusterRoleBinding resources

The Cluster Operator uses ClusterRoleBinding and RoleBinding resources to associate its
ClusterRole with its ServiceAccount: Cluster role bindings are required by cluster roles containing
cluster-scoped resources.

Example ClusterRoleBinding for the Cluster Operator

 - events
 verbs:
 # The entity operator needs to be able to create events
 - create
 - apiGroups:
 - ""
 resources:
 # The entity operator user-operator needs to access and manage secrets to store generated
credentials
 - secrets
 verbs:
 - get
 - list
 - watch
 - create
 - delete
 - patch
 - update

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
 name: strimzi-kafka-client
 labels:
 app: strimzi
rules:
 - apiGroups:
 - ""
 resources:
 # The Kafka clients (Connect, Mirror Maker, etc.) require "get" permissions to view the node they
are on
 # This information is used to generate a Rack ID (client.rack option) that is used for consuming
from the closest
 # replicas when enabled
 - nodes
 verbs:
 - get

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding

CHAPTER 1. DEPLOYMENT OVERVIEW

25

Cluster role bindings are also needed for the cluster roles used in delegating privileges:

Example ClusterRoleBinding for the Cluster Operator and Kafka broker rack awareness

Example ClusterRoleBinding for the Cluster Operator and Kafka client rack awareness

metadata:
 name: strimzi-cluster-operator
 labels:
 app: strimzi
subjects:
 - kind: ServiceAccount
 name: strimzi-cluster-operator
 namespace: myproject
roleRef:
 kind: ClusterRole
 name: strimzi-cluster-operator-global
 apiGroup: rbac.authorization.k8s.io

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
 name: strimzi-cluster-operator-kafka-broker-delegation
 labels:
 app: strimzi
The Kafka broker cluster role must be bound to the cluster operator service account so that it can
delegate the cluster role to the Kafka brokers.
This must be done to avoid escalating privileges which would be blocked by Kubernetes.
subjects:
 - kind: ServiceAccount
 name: strimzi-cluster-operator
 namespace: myproject
roleRef:
 kind: ClusterRole
 name: strimzi-kafka-broker
 apiGroup: rbac.authorization.k8s.io

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
 name: strimzi-cluster-operator-kafka-client-delegation
 labels:
 app: strimzi
The Kafka clients cluster role must be bound to the cluster operator service account so that it can
delegate the
cluster role to the Kafka clients using it for consuming from closest replica.
This must be done to avoid escalating privileges which would be blocked by Kubernetes.
subjects:
 - kind: ServiceAccount
 name: strimzi-cluster-operator
 namespace: myproject
roleRef:
 kind: ClusterRole
 name: strimzi-kafka-client
 apiGroup: rbac.authorization.k8s.io

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

26

Cluster roles containing only namespaced resources are bound using role bindings only.

Example RoleBinding for the Cluster Operator

Example RoleBinding for the Cluster Operator and Kafka broker rack awareness

1.3. USING THE KAFKA BRIDGE TO CONNECT WITH A KAFKA CLUSTER

You can use the AMQ Streams Kafka Bridge API to create and manage consumers and send and receive
records over HTTP rather than the native Kafka protocol.

When you set up the Kafka Bridge you configure HTTP access to the Kafka cluster. You can then use the
Kafka Bridge to produce and consume messages from the cluster, as well as performing other operations
through its REST interface.

Additional resources

For information on installing and using the Kafka Bridge, see Using the AMQ Streams Kafka
Bridge.

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
 name: strimzi-cluster-operator
 labels:
 app: strimzi
subjects:
 - kind: ServiceAccount
 name: strimzi-cluster-operator
 namespace: myproject
roleRef:
 kind: ClusterRole
 name: strimzi-cluster-operator-namespaced
 apiGroup: rbac.authorization.k8s.io

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
 name: strimzi-cluster-operator-entity-operator-delegation
 labels:
 app: strimzi
The Entity Operator cluster role must be bound to the cluster operator service account so that it can
delegate the cluster role to the Entity Operator.
This must be done to avoid escalating privileges which would be blocked by Kubernetes.
subjects:
 - kind: ServiceAccount
 name: strimzi-cluster-operator
 namespace: myproject
roleRef:
 kind: ClusterRole
 name: strimzi-entity-operator
 apiGroup: rbac.authorization.k8s.io

CHAPTER 1. DEPLOYMENT OVERVIEW

27

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/using_the_amq_streams_kafka_bridge/index

1.4. SEAMLESS FIPS SUPPORT

Federal Information Processing Standards (FIPS) are standards for computer security and
interoperability. When running AMQ Streams on a FIPS-enabled OpenShift cluster, the OpenJDK used
in AMQ Streams container images automatically switches to FIPS mode. From version 2.4, AMQ
Streams can run on FIPS-enabled OpenShift clusters without any changes or special configuration. It
uses only the FIPS-compliant security libraries from the OpenJDK.

Minimum password length

When running in the FIPS mode, SCRAM-SHA-512 passwords need to be at least 32 characters long.
From AMQ Streams 2.4, the default password length in AMQ Streams User Operator is set to 32
characters as well. If you have a Kafka cluster with custom configuration that uses a password length
that is less than 32 characters, you need to update your configuration. If you have any users with
passwords shorter than 32 characters, you need to regenerate a password with the required length. You
can do that, for example, by deleting the user secret and waiting for the User Operator to create a new
password with the appropriate length.

IMPORTANT

If you are using FIPS-enabled OpenShift clusters, you may experience higher memory
consumption compared to regular OpenShift clusters. To avoid any issues, we suggest
increasing the memory request to at least 512Mi.

Additional resources

Disabling FIPS mode using Cluster Operator configuration

What are Federal Information Processing Standards (FIPS)

1.5. DOCUMENT CONVENTIONS

User-replaced values

User-replaced values, also known as replaceables, are shown in with angle brackets (< >). Underscores (_
) are used for multi-word values. If the value refers to code or commands, monospace is also used.

For example, the following code shows that <my_namespace> must be replaced by the correct
namespace name:

sed -i 's/namespace: .*/namespace: <my_namespace>' install/cluster-operator/*RoleBinding*.yaml

1.6. ADDITIONAL RESOURCES

AMQ Streams Overview

AMQ Streams Custom Resource API Reference

Using the AMQ Streams Kafka Bridge

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

28

https://www.nist.gov/standardsgov/compliance-faqs-federal-information-processing-standards-fips
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_on_openshift_overview/index
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/using_the_amq_streams_kafka_bridge/index

CHAPTER 2. AMQ STREAMS INSTALLATION METHODS
You can install AMQ Streams on OpenShift 4.10 to 4.14 in two ways.

Installation method Description

Installation artifacts (YAML files) Download Red Hat AMQ Streams 2.5 OpenShift
Installation and Example Files from the AMQ Streams
software downloads page. Deploy the YAML
installation artifacts to your OpenShift cluster using
oc. You start by deploying the Cluster Operator from
install/cluster-operator to a single namespace,
multiple namespaces, or all namespaces.

You can also use the install/ artifacts to deploy the
following:

AMQ Streams administrator roles (strimzi-
admin)

A standalone Topic Operator (topic-
operator)

A standalone User Operator (user-
operator)

AMQ Streams Drain Cleaner (drain-
cleaner)

OperatorHub Use the AMQ Streams operator in the OperatorHub
to deploy AMQ Streams to a single namespace or all
namespaces.

For the greatest flexibility, choose the installation artifacts method. The OperatorHub method provides
a standard configuration and allows you to take advantage of automatic updates.

NOTE

Installation of AMQ Streams using Helm is not supported.

CHAPTER 2. AMQ STREAMS INSTALLATION METHODS

29

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?downloadType=distributions&product=jboss.amq.streams

CHAPTER 3. WHAT IS DEPLOYED WITH AMQ STREAMS
Apache Kafka components are provided for deployment to OpenShift with the AMQ Streams
distribution. The Kafka components are generally run as clusters for availability.

A typical deployment incorporating Kafka components might include:

Kafka cluster of broker nodes

ZooKeeper cluster of replicated ZooKeeper instances

Kafka Connect cluster for external data connections

Kafka MirrorMaker cluster to mirror the Kafka cluster in a secondary cluster

Kafka Exporter to extract additional Kafka metrics data for monitoring

Kafka Bridge to make HTTP-based requests to the Kafka cluster

Cruise Control to rebalance topic partitions across broker nodes

Not all of these components are mandatory, though you need Kafka and ZooKeeper as a minimum.
Some components can be deployed without Kafka, such as MirrorMaker or Kafka Connect.

3.1. ORDER OF DEPLOYMENT

The required order of deployment to an OpenShift cluster is as follows:

1. Deploy the Cluster Operator to manage your Kafka cluster

2. Deploy the Kafka cluster with the ZooKeeper cluster, and include the Topic Operator and User
Operator in the deployment

3. Optionally deploy:

The Topic Operator and User Operator standalone if you did not deploy them with the
Kafka cluster

Kafka Connect

Kafka MirrorMaker

Kafka Bridge

Components for the monitoring of metrics

The Cluster Operator creates OpenShift resources for the components, such as Deployment, Service,
and Pod resources. The names of the OpenShift resources are appended with the name specified for a
component when it’s deployed. For example, a Kafka cluster named my-kafka-cluster has a service
named my-kafka-cluster-kafka.

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

30

CHAPTER 4. PREPARING FOR YOUR AMQ STREAMS
DEPLOYMENT

Prepare for a deployment of AMQ Streams by completing any necessary pre-deployment tasks. Take
the necessary preparatory steps according to your specific requirements, such as the following:

Ensuring you have the necessary prerequisites before deploying AMQ Streams

Downloading the AMQ Streams release artifacts to facilitate your deployment

Pushing the AMQ Streams container images into your own registry (if required)

Setting up admin roles to enable configuration of custom resources used in the deployment

NOTE

To run the commands in this guide, your cluster user must have the rights to manage role-
based access control (RBAC) and CRDs.

4.1. DEPLOYMENT PREREQUISITES

To deploy AMQ Streams, you will need the following:

An OpenShift 4.10 to 4.14 cluster.
AMQ Streams is based on Strimzi 0.36.x.

The oc command-line tool is installed and configured to connect to the running cluster.

4.2. DOWNLOADING AMQ STREAMS RELEASE ARTIFACTS

To use deployment files to install AMQ Streams, download and extract the files from the AMQ Streams
software downloads page.

AMQ Streams release artifacts include sample YAML files to help you deploy the components of AMQ
Streams to OpenShift, perform common operations, and configure your Kafka cluster.

Use oc to deploy the Cluster Operator from the install/cluster-operator folder of the downloaded ZIP
file. For more information about deploying and configuring the Cluster Operator, see Section 6.2,
“Deploying the Cluster Operator”.

In addition, if you want to use standalone installations of the Topic and User Operators with a Kafka
cluster that is not managed by the AMQ Streams Cluster Operator, you can deploy them from the
install/topic-operator and install/user-operator folders.

NOTE

AMQ Streams container images are also available through the Red Hat Ecosystem
Catalog. However, we recommend that you use the YAML files provided to deploy AMQ
Streams.

4.3. PUSHING CONTAINER IMAGES TO YOUR OWN REGISTRY

Container images for AMQ Streams are available in the Red Hat Ecosystem Catalog . The installation

CHAPTER 4. PREPARING FOR YOUR AMQ STREAMS DEPLOYMENT

31

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?downloadType=distributions&product=jboss.amq.streams
https://catalog.redhat.com/software/containers/explore

Container images for AMQ Streams are available in the Red Hat Ecosystem Catalog . The installation
YAML files provided by AMQ Streams will pull the images directly from the Red Hat Ecosystem Catalog .

If you do not have access to the Red Hat Ecosystem Catalog or want to use your own container
repository, do the following:

1. Pull all container images listed here

2. Push them into your own registry

3. Update the image names in the installation YAML files

NOTE

Each Kafka version supported for the release has a separate image.

Container image Namespace/Repository Description

Kafka
registry.redhat.io/amq-
streams/kafka-35-
rhel8:2.5.1

registry.redhat.io/amq-
streams/kafka-34-
rhel8:2.5.1

AMQ Streams image for running
Kafka, including:

Kafka Broker

Kafka Connect

Kafka MirrorMaker

ZooKeeper

TLS Sidecars

Cruise Control

Operator
registry.redhat.io/amq-
streams/strimzi-rhel8-
operator:2.5.1

AMQ Streams image for running
the operators:

Cluster Operator

Topic Operator

User Operator

Kafka Initializer

Kafka Bridge
registry.redhat.io/amq-
streams/bridge-
rhel8:2.5.1

AMQ Streams image for running
the AMQ Streams Kafka Bridge

AMQ Streams Drain Cleaner
registry.redhat.io/amq-
streams/drain-cleaner-
rhel8:2.5.1

AMQ Streams image for running
the AMQ Streams Drain Cleaner

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

32

https://catalog.redhat.com/software/containers/explore
https://catalog.redhat.com/software/containers/explore
https://catalog.redhat.com/software/containers/explore

4.4. CREATING A PULL SECRET FOR AUTHENTICATION TO THE
CONTAINER IMAGE REGISTRY

The installation YAML files provided by AMQ Streams pull container images directly from the Red Hat
Ecosystem Catalog. If an AMQ Streams deployment requires authentication, configure authentication
credentials in a secret and add it to the installation YAML.

NOTE

Authentication is not usually required, but might be requested on certain platforms.

Prerequisites

You need your Red Hat username and password or the login details from your Red Hat registry
service account.

NOTE

You can use your Red Hat subscription to create a registry service account from the Red
Hat Customer Portal.

Procedure

1. Create a pull secret containing your login details and the container registry where the AMQ
Streams image is pulled from:

Add your user name and password. The email address is optional.

2. Edit the install/cluster-operator/060-Deployment-strimzi-cluster-operator.yaml deployment
file to specify the pull secret using the STRIMZI_IMAGE_PULL_SECRET environment variable:

The secret applies to all pods created by the Cluster Operator.

oc create secret docker-registry <pull_secret_name> \
 --docker-server=registry.redhat.io \
 --docker-username=<user_name> \
 --docker-password=<password> \
 --docker-email=<email>

apiVersion: apps/v1
kind: Deployment
metadata:
 name: strimzi-cluster-operator
spec:
 # ...
 template:
 spec:
 serviceAccountName: strimzi-cluster-operator
 containers:
 # ...
 env:
 - name: STRIMZI_IMAGE_PULL_SECRETS
 value: "<pull_secret_name>"
...

CHAPTER 4. PREPARING FOR YOUR AMQ STREAMS DEPLOYMENT

33

https://catalog.redhat.com/software/containers/explore
https://access.redhat.com/

4.5. DESIGNATING AMQ STREAMS ADMINISTRATORS

AMQ Streams provides custom resources for configuration of your deployment. By default, permission
to view, create, edit, and delete these resources is limited to OpenShift cluster administrators. AMQ
Streams provides two cluster roles that you can use to assign these rights to other users:

strimzi-view allows users to view and list AMQ Streams resources.

strimzi-admin allows users to also create, edit or delete AMQ Streams resources.

When you install these roles, they will automatically aggregate (add) these rights to the default
OpenShift cluster roles. strimzi-view aggregates to the view role, and strimzi-admin aggregates to
the edit and admin roles. Because of the aggregation, you might not need to assign these roles to users
who already have similar rights.

The following procedure shows how to assign a strimzi-admin role that allows non-cluster
administrators to manage AMQ Streams resources.

A system administrator can designate AMQ Streams administrators after the Cluster Operator is
deployed.

Prerequisites

The AMQ Streams Custom Resource Definitions (CRDs) and role-based access control (RBAC)
resources to manage the CRDs have been deployed with the Cluster Operator .

Procedure

1. Create the strimzi-view and strimzi-admin cluster roles in OpenShift.

2. If needed, assign the roles that provide access rights to users that require them.

oc create -f install/strimzi-admin

oc create clusterrolebinding strimzi-admin --clusterrole=strimzi-admin --user=user1 --
user=user2

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

34

CHAPTER 5. INSTALLING AMQ STREAMS FROM THE
OPERATORHUB USING THE WEB CONSOLE

Install the AMQ Streams operator from the OperatorHub in the OpenShift Container Platform web
console.

The procedures in this section show how to:

Install the AMQ Streams operator from the OperatorHub

Deploy Kafka components using the AMQ Streams operator

5.1. INSTALLING THE AMQ STREAMS OPERATOR FROM THE
OPERATORHUB

You can install and subscribe to the AMQ Streams operator using the OperatorHub in the OpenShift
Container Platform web console.

This procedure describes how to create a project and install the AMQ Streams operator to that project.
A project is a representation of a namespace. For manageability, it is a good practice to use namespaces
to separate functions.

WARNING

Make sure you use the appropriate update channel. If you are on a supported
version of OpenShift, installing AMQ Streams from the default stable channel is
generally safe. However, we do not recommend enabling automatic updates on the
stable channel. An automatic upgrade will skip any necessary steps prior to
upgrade. Use automatic upgrades only on version-specific channels.

Prerequisites

Access to an OpenShift Container Platform web console using an account with cluster-admin
or strimzi-admin permissions.

Procedure

1. Navigate in the OpenShift web console to the Home > Projects page and create a project
(namespace) for the installation.
We use a project named amq-streams-kafka in this example.

2. Navigate to the Operators > OperatorHub page.

3. Scroll or type a keyword into the Filter by keyword box to find the AMQ Streams operator.
The operator is located in the Streaming & Messaging category.

4. Click AMQ Streams to display the operator information.

5. Read the information about the operator and click Install.



CHAPTER 5. INSTALLING AMQ STREAMS FROM THE OPERATORHUB USING THE WEB CONSOLE

35

6. On the Install Operator page, choose from the following installation and update options:

Update Channel: Choose the update channel for the operator.

The (default) stable channel contains all the latest updates and releases, including
major, minor, and micro releases, which are assumed to be well tested and stable.

An amq-streams-X.x channel contains the minor and micro release updates for a major
release, where X is the major release version number.

An amq-streams-X.Y.x channel contains the micro release updates for a minor release,
where X is the major release version number and Y is the minor release version number.

Installation Mode: Choose the project you created to install the operator on a specific
namespace.
You can install the AMQ Streams operator to all namespaces in the cluster (the default
option) or a specific namespace. We recommend that you dedicate a specific namespace to
the Kafka cluster and other AMQ Streams components.

Update approval: By default, the AMQ Streams operator is automatically upgraded to the
latest AMQ Streams version by the Operator Lifecycle Manager (OLM). Optionally, select
Manual if you want to manually approve future upgrades. For more information on
operators, see the OpenShift documentation.

7. Click Install to install the operator to your selected namespace.
The AMQ Streams operator deploys the Cluster Operator, CRDs, and role-based access control
(RBAC) resources to the selected namespace.

8. After the operator is ready for use, navigate to Operators > Installed Operators to verify that
the operator has installed to the selected namespace.
The status will show as Succeeded.

You can now use the AMQ Streams operator to deploy Kafka components, starting with a Kafka
cluster.

NOTE

If you navigate to Workloads > Deployments, you can see the deployment details for the
Cluster Operator and Entity Operator. The name of the Cluster Operator includes a
version number: amq-streams-cluster-operator-<version>. The name is different when
deploying the Cluster Operator using the AMQ Streams installation artifacts. In this case,
the name is strimzi-cluster-operator.

5.2. DEPLOYING KAFKA COMPONENTS USING THE AMQ STREAMS
OPERATOR

When installed on Openshift, the AMQ Streams operator makes Kafka components available for
installation from the user interface.

The following Kafka components are available for installation:

Kafka

Kafka Connect

Kafka MirrorMaker

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

36

https://docs.openshift.com

Kafka MirrorMaker 2

Kafka Topic

Kafka User

Kafka Bridge

Kafka Connector

Kafka Rebalance

You select the component and create an instance. As a minimum, you create a Kafka instance. This
procedure describes how to create a Kafka instance using the default settings. You can configure the
default installation specification before you perform the installation.

The process is the same for creating instances of other Kafka components.

Prerequisites

The AMQ Streams operator is installed on the OpenShift cluster.

Procedure

1. Navigate in the web console to the Operators > Installed Operators page and click AMQ
Streams to display the operator details.
From Provided APIs, you can create instances of Kafka components.

2. Click Create instance under Kafka to create a Kafka instance.
By default, you’ll create a Kafka cluster called my-cluster with three Kafka broker nodes and
three ZooKeeper nodes. The cluster uses ephemeral storage.

3. Click Create to start the installation of Kafka.
Wait until the status changes to Ready.

CHAPTER 5. INSTALLING AMQ STREAMS FROM THE OPERATORHUB USING THE WEB CONSOLE

37

CHAPTER 6. DEPLOYING AMQ STREAMS USING
INSTALLATION ARTIFACTS

Having prepared your environment for a deployment of AMQ Streams , you can deploy AMQ Streams to
an OpenShift cluster. Use the installation files provided with the release artifacts.

AMQ Streams is based on Strimzi 0.36.x. You can deploy AMQ Streams 2.5 on OpenShift 4.10 to 4.14.

The steps to deploy AMQ Streams using the installation files are as follows:

1. Deploy the Cluster Operator

2. Use the Cluster Operator to deploy the following:

a. Kafka cluster

b. Topic Operator

c. User Operator

3. Optionally, deploy the following Kafka components according to your requirements:

Kafka Connect

Kafka MirrorMaker

Kafka Bridge

NOTE

To run the commands in this guide, an OpenShift user must have the rights to manage
role-based access control (RBAC) and CRDs.

6.1. BASIC DEPLOYMENT PATH

You can set up a deployment where AMQ Streams manages a single Kafka cluster in the same
namespace. You might use this configuration for development or testing. Or you can use AMQ Streams
in a production environment to manage a number of Kafka clusters in different namespaces.

The first step for any deployment of AMQ Streams is to install the Cluster Operator using the
install/cluster-operator files.

A single command applies all the installation files in the cluster-operator folder: oc apply -f
./install/cluster-operator.

The command sets up everything you need to be able to create and manage a Kafka deployment,
including the following:

Cluster Operator (Deployment, ConfigMap)

AMQ Streams CRDs (CustomResourceDefinition)

RBAC resources (ClusterRole, ClusterRoleBinding, RoleBinding)

Service account (ServiceAccount)

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

38

The basic deployment path is as follows:

1. Download the release artifacts

2. Create an OpenShift namespace in which to deploy the Cluster Operator

3. Deploy the Cluster Operator

a. Update the install/cluster-operator files to use the namespace created for the Cluster
Operator

b. Install the Cluster Operator to watch one, multiple, or all namespaces

4. Create a Kafka cluster

After which, you can deploy other Kafka components and set up monitoring of your deployment.

6.2. DEPLOYING THE CLUSTER OPERATOR

The Cluster Operator is responsible for deploying and managing Kafka clusters within an OpenShift
cluster.

When the Cluster Operator is running, it starts to watch for updates of Kafka resources.

By default, a single replica of the Cluster Operator is deployed. You can add replicas with leader election
so that additional Cluster Operators are on standby in case of disruption. For more information, see
Section 8.5.3, “Running multiple Cluster Operator replicas with leader election” .

6.2.1. Specifying the namespaces the Cluster Operator watches

The Cluster Operator watches for updates in the namespaces where the Kafka resources are deployed.
When you deploy the Cluster Operator, you specify which namespaces to watch in the OpenShift
cluster. You can specify the following namespaces:

A single selected namespace (the same namespace containing the Cluster Operator)

Multiple selected namespaces

All namespaces in the cluster

Watching multiple selected namespaces has the most impact on performance due to increased
processing overhead. To optimize performance for namespace monitoring, it is generally recommended
to either watch a single namespace or monitor the entire cluster. Watching a single namespace allows
for focused monitoring of namespace-specific resources, while monitoring all namespaces provides a
comprehensive view of the cluster’s resources across all namespaces.

The Cluster Operator watches for changes to the following resources:

Kafka for the Kafka cluster.

KafkaConnect for the Kafka Connect cluster.

KafkaConnector for creating and managing connectors in a Kafka Connect cluster.

KafkaMirrorMaker for the Kafka MirrorMaker instance.

KafkaMirrorMaker2 for the Kafka MirrorMaker 2 instance.

CHAPTER 6. DEPLOYING AMQ STREAMS USING INSTALLATION ARTIFACTS

39

KafkaBridge for the Kafka Bridge instance.

KafkaRebalance for the Cruise Control optimization requests.

When one of these resources is created in the OpenShift cluster, the operator gets the cluster
description from the resource and starts creating a new cluster for the resource by creating the
necessary OpenShift resources, such as Deployments, Pods, Services and ConfigMaps.

Each time a Kafka resource is updated, the operator performs corresponding updates on the OpenShift
resources that make up the cluster for the resource.

Resources are either patched or deleted, and then recreated in order to make the cluster for the
resource reflect the desired state of the cluster. This operation might cause a rolling update that might
lead to service disruption.

When a resource is deleted, the operator undeploys the cluster and deletes all related OpenShift
resources.

NOTE

While the Cluster Operator can watch one, multiple, or all namespaces in an OpenShift
cluster, the Topic Operator and User Operator watch for KafkaTopic and KafkaUser
resources in a single namespace. For more information, see Section 1.2.1, “Watching AMQ
Streams resources in OpenShift namespaces”.

6.2.2. Deploying the Cluster Operator to watch a single namespace

This procedure shows how to deploy the Cluster Operator to watch AMQ Streams resources in a single
namespace in your OpenShift cluster.

Prerequisites

You need an account with permission to create and manage CustomResourceDefinition and
RBAC (ClusterRole, and RoleBinding) resources.

Procedure

1. Edit the AMQ Streams installation files to use the namespace the Cluster Operator is going to
be installed into.
For example, in this procedure the Cluster Operator is installed into the namespace my-cluster-
operator-namespace.

On Linux, use:

sed -i 's/namespace: .*/namespace: my-cluster-operator-namespace/' install/cluster-
operator/*RoleBinding*.yaml

On MacOS, use:

sed -i '' 's/namespace: .*/namespace: my-cluster-operator-namespace/' install/cluster-
operator/*RoleBinding*.yaml

2. Deploy the Cluster Operator:

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

40

3. Check the status of the deployment:

Output shows the deployment name and readiness

READY shows the number of replicas that are ready/expected. The deployment is successful
when the AVAILABLE output shows 1.

6.2.3. Deploying the Cluster Operator to watch multiple namespaces

This procedure shows how to deploy the Cluster Operator to watch AMQ Streams resources across
multiple namespaces in your OpenShift cluster.

Prerequisites

You need an account with permission to create and manage CustomResourceDefinition and
RBAC (ClusterRole, and RoleBinding) resources.

Procedure

1. Edit the AMQ Streams installation files to use the namespace the Cluster Operator is going to
be installed into.
For example, in this procedure the Cluster Operator is installed into the namespace my-cluster-
operator-namespace.

On Linux, use:

sed -i 's/namespace: .*/namespace: my-cluster-operator-namespace/' install/cluster-
operator/*RoleBinding*.yaml

On MacOS, use:

sed -i '' 's/namespace: .*/namespace: my-cluster-operator-namespace/' install/cluster-
operator/*RoleBinding*.yaml

2. Edit the install/cluster-operator/060-Deployment-strimzi-cluster-operator.yaml file to add a
list of all the namespaces the Cluster Operator will watch to the STRIMZI_NAMESPACE
environment variable.
For example, in this procedure the Cluster Operator will watch the namespaces watched-
namespace-1, watched-namespace-2, watched-namespace-3.

oc create -f install/cluster-operator -n my-cluster-operator-namespace

oc get deployments -n my-cluster-operator-namespace

NAME READY UP-TO-DATE AVAILABLE
strimzi-cluster-operator 1/1 1 1

apiVersion: apps/v1
kind: Deployment
spec:
 # ...
 template:

CHAPTER 6. DEPLOYING AMQ STREAMS USING INSTALLATION ARTIFACTS

41

3. For each namespace listed, install the RoleBindings.
In this example, we replace watched-namespace in these commands with the namespaces
listed in the previous step, repeating them for watched-namespace-1, watched-namespace-2,
watched-namespace-3:

4. Deploy the Cluster Operator:

5. Check the status of the deployment:

Output shows the deployment name and readiness

READY shows the number of replicas that are ready/expected. The deployment is successful
when the AVAILABLE output shows 1.

6.2.4. Deploying the Cluster Operator to watch all namespaces

This procedure shows how to deploy the Cluster Operator to watch AMQ Streams resources across all
namespaces in your OpenShift cluster.

When running in this mode, the Cluster Operator automatically manages clusters in any new
namespaces that are created.

Prerequisites

You need an account with permission to create and manage CustomResourceDefinition and
RBAC (ClusterRole, and RoleBinding) resources.

Procedure

1. Edit the AMQ Streams installation files to use the namespace the Cluster Operator is going to

 spec:
 serviceAccountName: strimzi-cluster-operator
 containers:
 - name: strimzi-cluster-operator
 image: registry.redhat.io/amq-streams/strimzi-rhel8-operator:2.5.1
 imagePullPolicy: IfNotPresent
 env:
 - name: STRIMZI_NAMESPACE
 value: watched-namespace-1,watched-namespace-2,watched-namespace-3

oc create -f install/cluster-operator/020-RoleBinding-strimzi-cluster-operator.yaml -n
<watched_namespace>
oc create -f install/cluster-operator/023-RoleBinding-strimzi-cluster-operator.yaml -n
<watched_namespace>
oc create -f install/cluster-operator/031-RoleBinding-strimzi-cluster-operator-entity-operator-
delegation.yaml -n <watched_namespace>

oc create -f install/cluster-operator -n my-cluster-operator-namespace

oc get deployments -n my-cluster-operator-namespace

NAME READY UP-TO-DATE AVAILABLE
strimzi-cluster-operator 1/1 1 1

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

42

1. Edit the AMQ Streams installation files to use the namespace the Cluster Operator is going to
be installed into.
For example, in this procedure the Cluster Operator is installed into the namespace my-cluster-
operator-namespace.

On Linux, use:

sed -i 's/namespace: .*/namespace: my-cluster-operator-namespace/' install/cluster-
operator/*RoleBinding*.yaml

On MacOS, use:

sed -i '' 's/namespace: .*/namespace: my-cluster-operator-namespace/' install/cluster-
operator/*RoleBinding*.yaml

2. Edit the install/cluster-operator/060-Deployment-strimzi-cluster-operator.yaml file to set
the value of the STRIMZI_NAMESPACE environment variable to *.

3. Create ClusterRoleBindings that grant cluster-wide access for all namespaces to the Cluster
Operator.

4. Deploy the Cluster Operator to your OpenShift cluster.

5. Check the status of the deployment:

apiVersion: apps/v1
kind: Deployment
spec:
 # ...
 template:
 spec:
 # ...
 serviceAccountName: strimzi-cluster-operator
 containers:
 - name: strimzi-cluster-operator
 image: registry.redhat.io/amq-streams/strimzi-rhel8-operator:2.5.1
 imagePullPolicy: IfNotPresent
 env:
 - name: STRIMZI_NAMESPACE
 value: "*"
 # ...

oc create clusterrolebinding strimzi-cluster-operator-namespaced --clusterrole=strimzi-
cluster-operator-namespaced --serviceaccount my-cluster-operator-namespace:strimzi-
cluster-operator
oc create clusterrolebinding strimzi-cluster-operator-watched --clusterrole=strimzi-cluster-
operator-watched --serviceaccount my-cluster-operator-namespace:strimzi-cluster-operator
oc create clusterrolebinding strimzi-cluster-operator-entity-operator-delegation --
clusterrole=strimzi-entity-operator --serviceaccount my-cluster-operator-namespace:strimzi-
cluster-operator

oc create -f install/cluster-operator -n my-cluster-operator-namespace

oc get deployments -n my-cluster-operator-namespace

CHAPTER 6. DEPLOYING AMQ STREAMS USING INSTALLATION ARTIFACTS

43

Output shows the deployment name and readiness

READY shows the number of replicas that are ready/expected. The deployment is successful
when the AVAILABLE output shows 1.

6.3. DEPLOYING KAFKA

To be able to manage a Kafka cluster with the Cluster Operator, you must deploy it as a Kafka resource.
AMQ Streams provides example deployment files to do this. You can use these files to deploy the Topic
Operator and User Operator at the same time.

After you have deployed the Cluster Operator, use a Kafka resource to deploy the following
components:

Kafka cluster or (preview) Kafka cluster with node pools

Topic Operator

User Operator

When installing Kafka, AMQ Streams also installs a ZooKeeper cluster and adds the necessary
configuration to connect Kafka with ZooKeeper.

If you are trying the preview of the node pools feature, you can deploy a Kafka cluster with one or more
node pools. Node pools provide configuration for a set of Kafka nodes. By using node pools, nodes can
have different configuration within the same Kafka cluster.

Node pools are not enabled by default, so you must enable the KafkaNodePools feature gate before
using them.

If you haven’t deployed a Kafka cluster as a Kafka resource, you can’t use the Cluster Operator to
manage it. This applies, for example, to a Kafka cluster running outside of OpenShift. However, you can
use the Topic Operator and User Operator with a Kafka cluster that is not managed by AMQ Streams,
by deploying them as standalone components . You can also deploy and use other Kafka components
with a Kafka cluster not managed by AMQ Streams.

6.3.1. Deploying the Kafka cluster

This procedure shows how to deploy a Kafka cluster to your OpenShift cluster using the Cluster
Operator.

The deployment uses a YAML file to provide the specification to create a Kafka resource.

AMQ Streams provides the following example files you can use to create a Kafka cluster:

kafka-persistent.yaml

Deploys a persistent cluster with three ZooKeeper and three Kafka nodes.

kafka-jbod.yaml

Deploys a persistent cluster with three ZooKeeper and three Kafka nodes (each using multiple
persistent volumes).

kafka-persistent-single.yaml

NAME READY UP-TO-DATE AVAILABLE
strimzi-cluster-operator 1/1 1 1

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

44

Deploys a persistent cluster with a single ZooKeeper node and a single Kafka node.

kafka-ephemeral.yaml

Deploys an ephemeral cluster with three ZooKeeper and three Kafka nodes.

kafka-ephemeral-single.yaml

Deploys an ephemeral cluster with three ZooKeeper nodes and a single Kafka node.

In this procedure, we use the examples for an ephemeral and persistent Kafka cluster deployment.

Ephemeral cluster

In general, an ephemeral (or temporary) Kafka cluster is suitable for development and testing
purposes, not for production. This deployment uses emptyDir volumes for storing broker
information (for ZooKeeper) and topics or partitions (for Kafka). Using an emptyDir volume means
that its content is strictly related to the pod life cycle and is deleted when the pod goes down.

Persistent cluster

A persistent Kafka cluster uses persistent volumes to store ZooKeeper and Kafka data. A
PersistentVolume is acquired using a PersistentVolumeClaim to make it independent of the actual
type of the PersistentVolume. The PersistentVolumeClaim can use a StorageClass to trigger
automatic volume provisioning. When no StorageClass is specified, OpenShift will try to use the
default StorageClass.
The following examples show some common types of persistent volumes:

If your OpenShift cluster runs on Amazon AWS, OpenShift can provision Amazon EBS
volumes

If your OpenShift cluster runs on Microsoft Azure, OpenShift can provision Azure Disk
Storage volumes

If your OpenShift cluster runs on Google Cloud, OpenShift can provision Persistent Disk
volumes

If your OpenShift cluster runs on bare metal, OpenShift can provision local persistent
volumes

The example YAML files specify the latest supported Kafka version, and configuration for its supported
log message format version and inter-broker protocol version. The inter.broker.protocol.version
property for the Kafka config must be the version supported by the specified Kafka version
(spec.kafka.version). The property represents the version of Kafka protocol used in a Kafka cluster.

From Kafka 3.0.0, when the inter.broker.protocol.version is set to 3.0 or higher, the
log.message.format.version option is ignored and doesn’t need to be set.

An update to the inter.broker.protocol.version is required when upgrading Kafka.

The example clusters are named my-cluster by default. The cluster name is defined by the name of the
resource and cannot be changed after the cluster has been deployed. To change the cluster name
before you deploy the cluster, edit the Kafka.metadata.name property of the Kafka resource in the
relevant YAML file.

Default cluster name and specified Kafka versions

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:

CHAPTER 6. DEPLOYING AMQ STREAMS USING INSTALLATION ARTIFACTS

45

Prerequisites

The Cluster Operator must be deployed.

Procedure

1. Create and deploy an ephemeral or persistent cluster.

To create and deploy an ephemeral cluster:

To create and deploy a persistent cluster:

2. Check the status of the deployment:

Output shows the pod names and readiness

my-cluster is the name of the Kafka cluster.

A sequential index number starting with 0 identifies each Kafka and ZooKeeper pod created.

With the default deployment, you create an Entity Operator cluster, 3 Kafka pods, and 3
ZooKeeper pods.

READY shows the number of replicas that are ready/expected. The deployment is successful
when the STATUS displays as Running.

Additional resources

 name: my-cluster
spec:
 kafka:
 version: 3.5.0
 #...
 config:
 #...
 log.message.format.version: "3.5"
 inter.broker.protocol.version: "3.5"
 # ...

oc apply -f examples/kafka/kafka-ephemeral.yaml

oc apply -f examples/kafka/kafka-persistent.yaml

oc get pods -n <my_cluster_operator_namespace>

NAME READY STATUS RESTARTS
my-cluster-entity-operator 3/3 Running 0
my-cluster-kafka-0 1/1 Running 0
my-cluster-kafka-1 1/1 Running 0
my-cluster-kafka-2 1/1 Running 0
my-cluster-zookeeper-0 1/1 Running 0
my-cluster-zookeeper-1 1/1 Running 0
my-cluster-zookeeper-2 1/1 Running 0

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

46

Kafka cluster configuration

6.3.2. (Preview) Deploying Kafka node pools

This procedure shows how to deploy Kafka node pools to your OpenShift cluster using the Cluster
Operator. Node pools represent a distinct group of Kafka nodes within a Kafka cluster that share the
same configuration. For each Kafka node in the node pool, any configuration not defined in node pool is
inherited from the cluster configuration in the kafka resource.

NOTE

The node pools feature is available as a preview. Node pools are not enabled by default,
so you must enable the KafkaNodePools feature gate before using them.

The deployment uses a YAML file to provide the specification to create a KafkaNodePool resource.
You can use node pools with Kafka clusters that use KRaft (Kafka Raft metadata) mode or ZooKeeper
for cluster management.

IMPORTANT

KRaft mode is not ready for production in Apache Kafka or in AMQ Streams.

AMQ Streams provides the following example files that you can use to create a Kafka node pool:

kafka.yaml

Deploys ZooKeeper with 3 nodes, and 2 different pools of Kafka brokers. Each of the pools has 3
brokers. The pools in the example use different storage configuration.

kafka-with-dual-role-kraft-nodes.yaml

Deploys a Kafka cluster with one pool of KRaft nodes that share the broker and controller roles.

kafka-with-kraft.yaml

Deploys a Kafka cluster with one pool of controller nodes and one pool of broker nodes.

NOTE

You don’t need to start using node pools right away. If you decide to use them, you can
perform the steps outlined here to deploy a new Kafka cluster with KafkaNodePool
resources or migrate your existing Kafka cluster .

Prerequisites

The Cluster Operator must be deployed.

You have created and deployed a Kafka cluster .

NOTE

If you want to migrate an existing Kafka cluster to use node pools, see the steps to
migrate existing Kafka clusters.

Procedure

CHAPTER 6. DEPLOYING AMQ STREAMS USING INSTALLATION ARTIFACTS

47

1. Enable the KafkaNodePools feature gate from the command line:

Or by editing the Cluster Operator Deployment and updating the STRIMZI_FEATURE_GATES
environment variable:

This updates the Cluster Operator.

If using KRaft mode, enable the UseKRaft feature gate as well.

2. Create a node pool.

To deploy a Kafka cluster and ZooKeeper cluster with two node pools of three brokers:

To deploy a Kafka cluster in KRaft mode with a single node pool that uses dual-role nodes:

To deploy a Kafka cluster in KRaft mode with separate node pools for broker and controller
nodes:

3. Check the status of the deployment:

Output shows the node pool names and readiness

my-cluster is the name of the Kafka cluster.

pool-a is the name of the node pool.
A sequential index number starting with 0 identifies each Kafka pod created. If you are using
ZooKeeper, you’ll also see the ZooKeeper pods.

READY shows the number of replicas that are ready/expected. The deployment is
successful when the STATUS displays as Running.

Information on the deployment is also shown in the status of the KafkaNodePool resource,
including a list of IDs for nodes in the pool.

NOTE

oc set env deployment/strimzi-cluster-operator
STRIMZI_FEATURE_GATES="+KafkaNodePools"

env
 - name: STRIMZI_FEATURE_GATES
 value: +KafkaNodePools

oc apply -f examples/kafka/nodepools/kafka.yaml

oc apply -f examples/kafka/nodepools/kafka-with-dual-role-kraft-nodes.yaml

oc apply -f examples/kafka/nodepools/kafka-with-kraft.yaml

oc get pods -n <my_cluster_operator_namespace>

NAME READY STATUS RESTARTS
my-cluster-entity-operator 3/3 Running 0
my-cluster-pool-a-kafka-0 1/1 Running 0
my-cluster-pool-a-kafka-1 1/1 Running 0
my-cluster-pool-a-kafka-4 1/1 Running 0

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

48

NOTE

Node IDs are assigned sequentially starting at 0 (zero) across all node pools
within a cluster. This means that node IDs might not run sequentially within a
specific node pool. If there are gaps in the sequence of node IDs across the
cluster, the next node to be added is assigned an ID that fills the gap. When
scaling down, the node with the highest node ID within a pool is removed.

Additional resources

Node pool configuration

6.3.3. Deploying the Topic Operator using the Cluster Operator

This procedure describes how to deploy the Topic Operator using the Cluster Operator. The Topic
Operator can be deployed for use in either bidirectional mode or unidirectional mode. To learn more
about bidirectional and unidirectional topic management, see Section 9.1, “Topic management modes”.

NOTE

Unidirectional topic management is available as a preview. Unidirectional topic
management is not enabled by default, so you must enable the
UnidirectionalTopicOperator feature gate to be able to use it.

You configure the entityOperator property of the Kafka resource to include the topicOperator. By
default, the Topic Operator watches for KafkaTopic resources in the namespace of the Kafka cluster
deployed by the Cluster Operator. You can also specify a namespace using watchedNamespace in the
Topic Operator spec. A single Topic Operator can watch a single namespace. One namespace should
be watched by only one Topic Operator.

If you use AMQ Streams to deploy multiple Kafka clusters into the same namespace, enable the Topic
Operator for only one Kafka cluster or use the watchedNamespace property to configure the Topic
Operators to watch other namespaces.

If you want to use the Topic Operator with a Kafka cluster that is not managed by AMQ Streams, you
must deploy the Topic Operator as a standalone component .

For more information about configuring the entityOperator and topicOperator properties, see
Configuring the Entity Operator.

Prerequisites

The Cluster Operator must be deployed.

Procedure

1. Edit the entityOperator properties of the Kafka resource to include topicOperator:

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 name: my-cluster
spec:
 #...

CHAPTER 6. DEPLOYING AMQ STREAMS USING INSTALLATION ARTIFACTS

49

2. Configure the Topic Operator spec using the properties described in the
EntityTopicOperatorSpec schema reference.
Use an empty object ({}) if you want all properties to use their default values.

3. Create or update the resource:

4. Check the status of the deployment:

Output shows the pod name and readiness

my-cluster is the name of the Kafka cluster.

READY shows the number of replicas that are ready/expected. The deployment is successful
when the STATUS displays as Running.

6.3.4. Deploying the User Operator using the Cluster Operator

This procedure describes how to deploy the User Operator using the Cluster Operator.

You configure the entityOperator property of the Kafka resource to include the userOperator. By
default, the User Operator watches for KafkaUser resources in the namespace of the Kafka cluster
deployment. You can also specify a namespace using watchedNamespace in the User Operator spec. A
single User Operator can watch a single namespace. One namespace should be watched by only one
User Operator.

If you want to use the User Operator with a Kafka cluster that is not managed by AMQ Streams, you
must deploy the User Operator as a standalone component .

For more information about configuring the entityOperator and userOperator properties, see
Configuring the Entity Operator.

Prerequisites

The Cluster Operator must be deployed.

Procedure

1. Edit the entityOperator properties of the Kafka resource to include userOperator:

 entityOperator:
 topicOperator: {}
 userOperator: {}

oc apply -f <kafka_configuration_file>

oc get pods -n <my_cluster_operator_namespace>

NAME READY STATUS RESTARTS
my-cluster-entity-operator 3/3 Running 0
...

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

50

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index#type-EntityTopicOperatorSpec-reference

2. Configure the User Operator spec using the properties described in EntityUserOperatorSpec
schema reference.
Use an empty object ({}) if you want all properties to use their default values.

3. Create or update the resource:

4. Check the status of the deployment:

Output shows the pod name and readiness

my-cluster is the name of the Kafka cluster.

READY shows the number of replicas that are ready/expected. The deployment is successful
when the STATUS displays as Running.

6.3.5. List of Kafka cluster resources

The following resources are created by the Cluster Operator in the OpenShift cluster:

Shared resources

cluster-name-cluster-ca

Secret with the Cluster CA private key used to encrypt the cluster communication.

cluster-name-cluster-ca-cert

Secret with the Cluster CA public key. This key can be used to verify the identity of the Kafka
brokers.

cluster-name-clients-ca

Secret with the Clients CA private key used to sign user certificates

cluster-name-clients-ca-cert

Secret with the Clients CA public key. This key can be used to verify the identity of the Kafka users.

cluster-name-cluster-operator-certs

Secret with Cluster operators keys for communication with Kafka and ZooKeeper.

ZooKeeper nodes

 name: my-cluster
spec:
 #...
 entityOperator:
 topicOperator: {}
 userOperator: {}

oc apply -f <kafka_configuration_file>

oc get pods -n <my_cluster_operator_namespace>

NAME READY STATUS RESTARTS
my-cluster-entity-operator 3/3 Running 0
...

CHAPTER 6. DEPLOYING AMQ STREAMS USING INSTALLATION ARTIFACTS

51

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index#type-EntityUserOperatorSpec-reference

cluster-name-zookeeper

Name given to the following ZooKeeper resources:

StrimziPodSet for managing the ZooKeeper node pods.

Service account used by the ZooKeeper nodes.

PodDisruptionBudget configured for the ZooKeeper nodes.

cluster-name-zookeeper-idx

Pods created by the StrimziPodSet.

cluster-name-zookeeper-nodes

Headless Service needed to have DNS resolve the ZooKeeper pods IP addresses directly.

cluster-name-zookeeper-client

Service used by Kafka brokers to connect to ZooKeeper nodes as clients.

cluster-name-zookeeper-config

ConfigMap that contains the ZooKeeper ancillary configuration, and is mounted as a volume by the
ZooKeeper node pods.

cluster-name-zookeeper-nodes

Secret with ZooKeeper node keys.

cluster-name-network-policy-zookeeper

Network policy managing access to the ZooKeeper services.

data-cluster-name-zookeeper-idx

Persistent Volume Claim for the volume used for storing data for the ZooKeeper node pod idx. This
resource will be created only if persistent storage is selected for provisioning persistent volumes to
store data.

Kafka brokers

cluster-name-kafka

Name given to the following Kafka resources:

StrimziPodSet for managing the Kafka broker pods.

Service account used by the Kafka pods.

PodDisruptionBudget configured for the Kafka brokers.

cluster-name-kafka-idx

Name given to the following Kafka resources:

Pods created by the StrimziPodSet.

ConfigMaps with Kafka broker configuration.

cluster-name-kafka-brokers

Service needed to have DNS resolve the Kafka broker pods IP addresses directly.

cluster-name-kafka-bootstrap

Service can be used as bootstrap servers for Kafka clients connecting from within the OpenShift

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

52

Service can be used as bootstrap servers for Kafka clients connecting from within the OpenShift
cluster.

cluster-name-kafka-external-bootstrap

Bootstrap service for clients connecting from outside the OpenShift cluster. This resource is created
only when an external listener is enabled. The old service name will be used for backwards
compatibility when the listener name is external and port is 9094.

cluster-name-kafka-pod-id

Service used to route traffic from outside the OpenShift cluster to individual pods. This resource is
created only when an external listener is enabled. The old service name will be used for backwards
compatibility when the listener name is external and port is 9094.

cluster-name-kafka-external-bootstrap

Bootstrap route for clients connecting from outside the OpenShift cluster. This resource is created
only when an external listener is enabled and set to type route. The old route name will be used for
backwards compatibility when the listener name is external and port is 9094.

cluster-name-kafka-pod-id

Route for traffic from outside the OpenShift cluster to individual pods. This resource is created only
when an external listener is enabled and set to type route. The old route name will be used for
backwards compatibility when the listener name is external and port is 9094.

cluster-name-kafka-listener-name-bootstrap

Bootstrap service for clients connecting from outside the OpenShift cluster. This resource is created
only when an external listener is enabled. The new service name will be used for all other external
listeners.

cluster-name-kafka-listener-name-pod-id

Service used to route traffic from outside the OpenShift cluster to individual pods. This resource is
created only when an external listener is enabled. The new service name will be used for all other
external listeners.

cluster-name-kafka-listener-name-bootstrap

Bootstrap route for clients connecting from outside the OpenShift cluster. This resource is created
only when an external listener is enabled and set to type route. The new route name will be used for
all other external listeners.

cluster-name-kafka-listener-name-pod-id

Route for traffic from outside the OpenShift cluster to individual pods. This resource is created only
when an external listener is enabled and set to type route. The new route name will be used for all
other external listeners.

cluster-name-kafka-config

ConfigMap containing the Kafka ancillary configuration, which is mounted as a volume by the broker
pods when the UseStrimziPodSets feature gate is disabled.

cluster-name-kafka-brokers

Secret with Kafka broker keys.

cluster-name-network-policy-kafka

Network policy managing access to the Kafka services.

strimzi-namespace-name-cluster-name-kafka-init

Cluster role binding used by the Kafka brokers.

cluster-name-jmx

Secret with JMX username and password used to secure the Kafka broker port. This resource is
created only when JMX is enabled in Kafka.

data-cluster-name-kafka-idx
Persistent Volume Claim for the volume used for storing data for the Kafka broker pod idx. This

CHAPTER 6. DEPLOYING AMQ STREAMS USING INSTALLATION ARTIFACTS

53

Persistent Volume Claim for the volume used for storing data for the Kafka broker pod idx. This
resource is created only if persistent storage is selected for provisioning persistent volumes to store
data.

data-id-cluster-name-kafka-idx

Persistent Volume Claim for the volume id used for storing data for the Kafka broker pod idx. This
resource is created only if persistent storage is selected for JBOD volumes when provisioning
persistent volumes to store data.

Entity Operator

These resources are only created if the Entity Operator is deployed using the Cluster Operator.

cluster-name-entity-operator

Name given to the following Entity Operator resources:

Deployment with Topic and User Operators.

Service account used by the Entity Operator.

Network policy managing access to the Entity Operator metrics.

cluster-name-entity-operator-random-string

Pod created by the Entity Operator deployment.

cluster-name-entity-topic-operator-config

ConfigMap with ancillary configuration for Topic Operators.

cluster-name-entity-user-operator-config

ConfigMap with ancillary configuration for User Operators.

cluster-name-entity-topic-operator-certs

Secret with Topic Operator keys for communication with Kafka and ZooKeeper.

cluster-name-entity-user-operator-certs

Secret with User Operator keys for communication with Kafka and ZooKeeper.

strimzi-cluster-name-entity-topic-operator

Role binding used by the Entity Topic Operator.

strimzi-cluster-name-entity-user-operator

Role binding used by the Entity User Operator.

Kafka Exporter

These resources are only created if the Kafka Exporter is deployed using the Cluster Operator.

cluster-name-kafka-exporter

Name given to the following Kafka Exporter resources:

Deployment with Kafka Exporter.

Service used to collect consumer lag metrics.

Service account used by the Kafka Exporter.

Network policy managing access to the Kafka Exporter metrics.

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

54

cluster-name-kafka-exporter-random-string

Pod created by the Kafka Exporter deployment.

Cruise Control

These resources are only created if Cruise Control was deployed using the Cluster Operator.

cluster-name-cruise-control

Name given to the following Cruise Control resources:

Deployment with Cruise Control.

Service used to communicate with Cruise Control.

Service account used by the Cruise Control.

cluster-name-cruise-control-random-string

Pod created by the Cruise Control deployment.

cluster-name-cruise-control-config

ConfigMap that contains the Cruise Control ancillary configuration, and is mounted as a volume by
the Cruise Control pods.

cluster-name-cruise-control-certs

Secret with Cruise Control keys for communication with Kafka and ZooKeeper.

cluster-name-network-policy-cruise-control

Network policy managing access to the Cruise Control service.

6.4. DEPLOYING KAFKA CONNECT

Kafka Connect is an integration toolkit for streaming data between Kafka brokers and other systems
using connector plugins. Kafka Connect provides a framework for integrating Kafka with an external data
source or target, such as a database or messaging system, for import or export of data using connectors.
Connectors are plugins that provide the connection configuration needed.

In AMQ Streams, Kafka Connect is deployed in distributed mode. Kafka Connect can also work in
standalone mode, but this is not supported by AMQ Streams.

Using the concept of connectors, Kafka Connect provides a framework for moving large amounts of
data into and out of your Kafka cluster while maintaining scalability and reliability.

The Cluster Operator manages Kafka Connect clusters deployed using the KafkaConnect resource and
connectors created using the KafkaConnector resource.

In order to use Kafka Connect, you need to do the following.

Deploy a Kafka Connect cluster

Add connectors to integrate with other systems

NOTE

The term connector is used interchangeably to mean a connector instance running within
a Kafka Connect cluster, or a connector class. In this guide, the term connector is used
when the meaning is clear from the context.

CHAPTER 6. DEPLOYING AMQ STREAMS USING INSTALLATION ARTIFACTS

55

https://kafka.apache.org/documentation/#connect

6.4.1. Deploying Kafka Connect to your OpenShift cluster

This procedure shows how to deploy a Kafka Connect cluster to your OpenShift cluster using the Cluster
Operator.

A Kafka Connect cluster deployment is implemented with a configurable number of nodes (also called
workers) that distribute the workload of connectors as tasks so that the message flow is highly scalable
and reliable.

The deployment uses a YAML file to provide the specification to create a KafkaConnect resource.

AMQ Streams provides example configuration files . In this procedure, we use the following example file:

examples/connect/kafka-connect.yaml

Prerequisites

The Cluster Operator must be deployed.

Running Kafka cluster.

Procedure

1. Deploy Kafka Connect to your OpenShift cluster. Use the examples/connect/kafka-
connect.yaml file to deploy Kafka Connect.

2. Check the status of the deployment:

Output shows the deployment name and readiness

my-connect-cluster is the name of the Kafka Connect cluster.

A pod ID identifies each pod created.

With the default deployment, you create a single Kafka Connect pod.

READY shows the number of replicas that are ready/expected. The deployment is successful
when the STATUS displays as Running.

Additional resources

Kafka Connect cluster configuration

6.4.2. Configuring Kafka Connect for multiple instances

If you are running multiple instances of Kafka Connect, you have to change the default configuration of
the following config properties:

oc apply -f examples/connect/kafka-connect.yaml

oc get pods -n <my_cluster_operator_namespace>

NAME READY STATUS RESTARTS
my-connect-cluster-connect-<pod_id> 1/1 Running 0

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

56

1

2

3

4

The Kafka Connect cluster ID within Kafka.

Kafka topic that stores connector offsets.

Kafka topic that stores connector and task status configurations.

Kafka topic that stores connector and task status updates.

NOTE

Values for the three topics must be the same for all Kafka Connect instances with the
same group.id.

Unless you change the default settings, each Kafka Connect instance connecting to the same Kafka
cluster is deployed with the same values. What happens, in effect, is all instances are coupled to run in a
cluster and use the same topics.

If multiple Kafka Connect clusters try to use the same topics, Kafka Connect will not work as expected
and generate errors.

If you wish to run multiple Kafka Connect instances, change the values of these properties for each
instance.

6.4.3. Adding connectors

Kafka Connect uses connectors to integrate with other systems to stream data. A connector is an
instance of a Kafka Connector class, which can be one of the following type:

Source connector

A source connector is a runtime entity that fetches data from an external system and feeds it to
Kafka as messages.

Sink connector

A sink connector is a runtime entity that fetches messages from Kafka topics and feeds them to an
external system.

Kafka Connect uses a plugin architecture to provide the implementation artifacts for connectors.
Plugins allow connections to other systems and provide additional configuration to manipulate data.
Plugins include connectors and other components, such as data converters and transforms. A connector

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
metadata:
 name: my-connect
spec:
 # ...
 config:
 group.id: connect-cluster 1
 offset.storage.topic: connect-cluster-offsets 2
 config.storage.topic: connect-cluster-configs 3
 status.storage.topic: connect-cluster-status 4
 # ...
...

CHAPTER 6. DEPLOYING AMQ STREAMS USING INSTALLATION ARTIFACTS

57

operates with a specific type of external system. Each connector defines a schema for its configuration.
You supply the configuration to Kafka Connect to create a connector instance within Kafka Connect.
Connector instances then define a set of tasks for moving data between systems.

Add connector plugins to Kafka Connect in one of the following ways:

Configure Kafka Connect to build a new container image with plugins automatically

Create a Docker image from the base Kafka Connect image (manually or using continuous
integration)

After plugins have been added to the container image, you can start, stop, and manage connector
instances in the following ways:

Using AMQ Streams’s KafkaConnector custom resource

Using the Kafka Connect API

You can also create new connector instances using these options.

6.4.3.1. Building a new container image with connector plugins automatically

Configure Kafka Connect so that AMQ Streams automatically builds a new container image with
additional connectors. You define the connector plugins using the .spec.build.plugins property of the
KafkaConnect custom resource. AMQ Streams will automatically download and add the connector
plugins into a new container image. The container is pushed into the container repository specified in
.spec.build.output and automatically used in the Kafka Connect deployment.

Prerequisites

The Cluster Operator must be deployed.

A container registry.

You need to provide your own container registry where images can be pushed to, stored, and pulled
from. AMQ Streams supports private container registries as well as public registries such as Quay or
Docker Hub.

Procedure

1. Configure the KafkaConnect custom resource by specifying the container registry in
.spec.build.output, and additional connectors in .spec.build.plugins:

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
metadata:
 name: my-connect-cluster
spec: 1
 #...
 build:
 output: 2
 type: docker
 image: my-registry.io/my-org/my-connect-cluster:latest
 pushSecret: my-registry-credentials
 plugins: 3

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

58

https://quay.io/
https://hub.docker.com//

1

2

3

The specification for the Kafka Connect cluster .

(Required) Configuration of the container registry where new images are pushed.

(Required) List of connector plugins and their artifacts to add to the new container image.
Each plugin must be configured with at least one artifact.

2. Create or update the resource:

$ oc apply -f <kafka_connect_configuration_file>

3. Wait for the new container image to build, and for the Kafka Connect cluster to be deployed.

4. Use the Kafka Connect REST API or KafkaConnector custom resources to use the connector
plugins you added.

Additional resources

Kafka Connect Build schema reference

6.4.3.2. Building a new container image with connector plugins from the Kafka Connect
base image

Create a custom Docker image with connector plugins from the Kafka Connect base image Add the
custom image to the /opt/kafka/plugins directory.

You can use the Kafka container image on Red Hat Ecosystem Catalog as a base image for creating
your own custom image with additional connector plugins.

At startup, the AMQ Streams version of Kafka Connect loads any third-party connector plugins
contained in the /opt/kafka/plugins directory.

Prerequisites

The Cluster Operator must be deployed.

Procedure

 - name: debezium-postgres-connector
 artifacts:
 - type: tgz
 url: https://repo1.maven.org/maven2/io/debezium/debezium-connector-
postgres/2.1.3.Final/debezium-connector-postgres-2.1.3.Final-plugin.tar.gz
 sha512sum:
c4ddc97846de561755dc0b021a62aba656098829c70eb3ade3b817ce06d852ca12ae50c0281cc
791a5a131cb7fc21fb15f4b8ee76c6cae5dd07f9c11cb7c6e79
 - name: camel-telegram
 artifacts:
 - type: tgz
 url: https://repo.maven.apache.org/maven2/org/apache/camel/kafkaconnector/camel-
telegram-kafka-connector/0.11.5/camel-telegram-kafka-connector-0.11.5-package.tar.gz
 sha512sum:
d6d9f45e0d1dbfcc9f6d1c7ca2046168c764389c78bc4b867dab32d24f710bb74ccf2a007d7d7a8
af2dfca09d9a52ccbc2831fc715c195a3634cca055185bd91
 #...

CHAPTER 6. DEPLOYING AMQ STREAMS USING INSTALLATION ARTIFACTS

59

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index#type-KafkaConnectSpec-reference
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index#type-Build-reference
https://catalog.redhat.com/software/containers/explore

Procedure

1. Create a new Dockerfile using registry.redhat.io/amq-streams/kafka-35-rhel8:2.5.1 as the
base image:

FROM registry.redhat.io/amq-streams/kafka-35-rhel8:2.5.1
USER root:root
COPY ./my-plugins/ /opt/kafka/plugins/
USER 1001

Example plugins file

$ tree ./my-plugins/
./my-plugins/
├── debezium-connector-mongodb
│ ├── bson-<version>.jar
│ ├── CHANGELOG.md
│ ├── CONTRIBUTE.md
│ ├── COPYRIGHT.txt
│ ├── debezium-connector-mongodb-<version>.jar
│ ├── debezium-core-<version>.jar
│ ├── LICENSE.txt
│ ├── mongodb-driver-core-<version>.jar
│ ├── README.md
│ └── # ...
├── debezium-connector-mysql
│ ├── CHANGELOG.md
│ ├── CONTRIBUTE.md
│ ├── COPYRIGHT.txt
│ ├── debezium-connector-mysql-<version>.jar
│ ├── debezium-core-<version>.jar
│ ├── LICENSE.txt
│ ├── mysql-binlog-connector-java-<version>.jar
│ ├── mysql-connector-java-<version>.jar
│ ├── README.md
│ └── # ...
└── debezium-connector-postgres
 ├── CHANGELOG.md
 ├── CONTRIBUTE.md
 ├── COPYRIGHT.txt
 ├── debezium-connector-postgres-<version>.jar
 ├── debezium-core-<version>.jar
 ├── LICENSE.txt
 ├── postgresql-<version>.jar
 ├── protobuf-java-<version>.jar
 ├── README.md
 └── # ...

The COPY command points to the plugin files to copy to the container image.

This example adds plugins for Debezium connectors (MongoDB, MySQL, and PostgreSQL),
though not all files are listed for brevity. Debezium running in Kafka Connect looks the same as
any other Kafka Connect task.

2. Build the container image.

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

60

1

2

3

3. Push your custom image to your container registry.

4. Point to the new container image.
You can point to the image in one of the following ways:

Edit the KafkaConnect.spec.image property of the KafkaConnect custom resource.
If set, this property overrides the STRIMZI_KAFKA_CONNECT_IMAGES environment
variable in the Cluster Operator.

The specification for the Kafka Connect cluster .

The docker image for the pods.

Configuration of the Kafka Connect workers (not connectors).

Edit the STRIMZI_KAFKA_CONNECT_IMAGES environment variable in the
install/cluster-operator/060-Deployment-strimzi-cluster-operator.yaml file to point to
the new container image, and then reinstall the Cluster Operator.

Additional resources

Container image configuration and the KafkaConnect.spec.image property

Cluster Operator configuration and the STRIMZI_KAFKA_CONNECT_IMAGES variable

6.4.3.3. Deploying KafkaConnector resources

Deploy KafkaConnector resources to manage connectors. The KafkaConnector custom resource
offers an OpenShift-native approach to management of connectors by the Cluster Operator. You don’t
need to send HTTP requests to manage connectors, as with the Kafka Connect REST API. You manage a
running connector instance by updating its corresponding KafkaConnector resource, and then applying
the updates. The Cluster Operator updates the configurations of the running connector instances. You
remove a connector by deleting its corresponding KafkaConnector.

KafkaConnector resources must be deployed to the same namespace as the Kafka Connect cluster
they link to.

In the configuration shown in this procedure, the autoRestart property is set to true. This enables
automatic restarts of failed connectors and tasks. Up to seven restart attempts are made, after which
restarts must be made manually. You annotate the KafkaConnector resource to restart a connector or
restart a connector task manually.

Example connectors

You can use your own connectors or try the examples provided by AMQ Streams. Up until Apache Kafka

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
metadata:
 name: my-connect-cluster
spec: 1
 #...
 image: my-new-container-image 2
 config: 3
 #...

CHAPTER 6. DEPLOYING AMQ STREAMS USING INSTALLATION ARTIFACTS

61

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index#type-KafkaConnectSpec-reference
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index#con-common-configuration-images-reference

You can use your own connectors or try the examples provided by AMQ Streams. Up until Apache Kafka
3.1.0, example file connector plugins were included with Apache Kafka. Starting from the 3.1.1 and 3.2.0
releases of Apache Kafka, the examples need to be added to the plugin path as any other connector .

AMQ Streams provides an example KafkaConnector configuration file (examples/connect/source-
connector.yaml) for the example file connector plugins, which creates the following connector
instances as KafkaConnector resources:

A FileStreamSourceConnector instance that reads each line from the Kafka license file (the
source) and writes the data as messages to a single Kafka topic.

A FileStreamSinkConnector instance that reads messages from the Kafka topic and writes the
messages to a temporary file (the sink).

We use the example file to create connectors in this procedure.

NOTE

The example connectors are not intended for use in a production environment.

Prerequisites

A Kafka Connect deployment

The Cluster Operator is running

Procedure

1. Add the FileStreamSourceConnector and FileStreamSinkConnector plugins to Kafka
Connect in one of the following ways:

Configure Kafka Connect to build a new container image with plugins automatically

Create a Docker image from the base Kafka Connect image (manually or using continuous
integration)

2. Set the strimzi.io/use-connector-resources annotation to true in the Kafka Connect
configuration.

With the KafkaConnector resources enabled, the Cluster Operator watches for them.

3. Edit the examples/connect/source-connector.yaml file:

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
metadata:
 name: my-connect-cluster
 annotations:
 strimzi.io/use-connector-resources: "true"
spec:
 # ...

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnector
metadata:
 name: my-source-connector 1

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

62

1

2

3

4

5

6

7

8

Name of the KafkaConnector resource, which is used as the name of the connector. Use
any name that is valid for an OpenShift resource.

Name of the Kafka Connect cluster to create the connector instance in. Connectors must
be deployed to the same namespace as the Kafka Connect cluster they link to.

Full name or alias of the connector class. This should be present in the image being used
by the Kafka Connect cluster.

Maximum number of Kafka Connect tasks that the connector can create.

Enables automatic restarts of failed connectors and tasks.

Connector configuration as key-value pairs.

This example source connector configuration reads data from the /opt/kafka/LICENSE
file.

Kafka topic to publish the source data to.

4. Create the source KafkaConnector in your OpenShift cluster:

5. Create an examples/connect/sink-connector.yaml file:

6. Paste the following YAML into the sink-connector.yaml file:

 labels:
 strimzi.io/cluster: my-connect-cluster 2
spec:
 class: org.apache.kafka.connect.file.FileStreamSourceConnector 3
 tasksMax: 2 4
 autoRestart: 5
 enabled: true
 config: 6
 file: "/opt/kafka/LICENSE" 7
 topic: my-topic 8
 # ...

oc apply -f examples/connect/source-connector.yaml

touch examples/connect/sink-connector.yaml

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnector
metadata:
 name: my-sink-connector
 labels:
 strimzi.io/cluster: my-connect
spec:
 class: org.apache.kafka.connect.file.FileStreamSinkConnector 1
 tasksMax: 2

CHAPTER 6. DEPLOYING AMQ STREAMS USING INSTALLATION ARTIFACTS

63

1

2

3

4

Full name or alias of the connector class. This should be present in the image being used
by the Kafka Connect cluster.

Connector configuration as key-value pairs.

Temporary file to publish the source data to.

Kafka topic to read the source data from.

7. Create the sink KafkaConnector in your OpenShift cluster:

8. Check that the connector resources were created:

Replace <my_connect_cluster> with the name of your Kafka Connect cluster.

9. In the container, execute kafka-console-consumer.sh to read the messages that were written
to the topic by the source connector:

Replace <my_kafka_cluster> with the name of your Kafka cluster.

Source and sink connector configuration options
The connector configuration is defined in the spec.config property of the KafkaConnector resource.

The FileStreamSourceConnector and FileStreamSinkConnector classes support the same
configuration options as the Kafka Connect REST API. Other connectors support different configuration
options.

Table 6.1. Configuration options for the FileStreamSource connector class

Name Type Default value Description

file String Null Source file to write
messages to. If not
specified, the standard
input is used.

topic List Null The Kafka topic to
publish data to.

 config: 2
 file: "/tmp/my-file" 3
 topics: my-topic 4

oc apply -f examples/connect/sink-connector.yaml

oc get kctr --selector strimzi.io/cluster=<my_connect_cluster> -o name

my-source-connector
my-sink-connector

oc exec <my_kafka_cluster>-kafka-0 -i -t -- bin/kafka-console-consumer.sh --bootstrap-
server <my_kafka_cluster>-kafka-bootstrap.NAMESPACE.svc:9092 --topic my-topic --from-
beginning

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

64

Table 6.2. Configuration options for FileStreamSinkConnector class

Name Type Default value Description

file String Null Destination file to write
messages to. If not
specified, the standard
output is used.

topics List Null One or more Kafka
topics to read data from.

topics.regex String Null A regular expression
matching one or more
Kafka topics to read
data from.

6.4.3.4. Manually restarting connectors

If you are using KafkaConnector resources to manage connectors, use the restart annotation to
manually trigger a restart of a connector.

Prerequisites

The Cluster Operator is running.

Procedure

1. Find the name of the KafkaConnector custom resource that controls the Kafka connector you
want to restart:

2. Restart the connector by annotating the KafkaConnector resource in OpenShift.

The restart annotation is set to true.

3. Wait for the next reconciliation to occur (every two minutes by default).
The Kafka connector is restarted, as long as the annotation was detected by the reconciliation
process. When Kafka Connect accepts the restart request, the annotation is removed from the
KafkaConnector custom resource.

6.4.3.5. Manually restarting Kafka connector tasks

If you are using KafkaConnector resources to manage connectors, use the restart-task annotation to
manually trigger a restart of a connector task.

Prerequisites

The Cluster Operator is running.

oc get KafkaConnector

oc annotate KafkaConnector <kafka_connector_name> strimzi.io/restart=true

CHAPTER 6. DEPLOYING AMQ STREAMS USING INSTALLATION ARTIFACTS

65

Procedure

1. Find the name of the KafkaConnector custom resource that controls the Kafka connector task
you want to restart:

2. Find the ID of the task to be restarted from the KafkaConnector custom resource. Task IDs are
non-negative integers, starting from 0:

3. Use the ID to restart the connector task by annotating the KafkaConnector resource in
OpenShift:

In this example, task 0 is restarted.

4. Wait for the next reconciliation to occur (every two minutes by default).
The Kafka connector task is restarted, as long as the annotation was detected by the
reconciliation process. When Kafka Connect accepts the restart request, the annotation is
removed from the KafkaConnector custom resource.

6.4.3.6. Exposing the Kafka Connect API

Use the Kafka Connect REST API as an alternative to using KafkaConnector resources to manage
connectors. The Kafka Connect REST API is available as a service running on
<connect_cluster_name>-connect-api:8083, where <connect_cluster_name> is the name of your Kafka
Connect cluster. The service is created when you create a Kafka Connect instance.

The operations supported by the Kafka Connect REST API are described in the Apache Kafka Connect
API documentation.

NOTE

The strimzi.io/use-connector-resources annotation enables KafkaConnectors. If you
applied the annotation to your KafkaConnect resource configuration, you need to
remove it to use the Kafka Connect API. Otherwise, manual changes made directly using
the Kafka Connect REST API are reverted by the Cluster Operator.

You can add the connector configuration as a JSON object.

Example curl request to add connector configuration

oc get KafkaConnector

oc describe KafkaConnector <kafka_connector_name>

oc annotate KafkaConnector <kafka_connector_name> strimzi.io/restart-task=0

curl -X POST \
 http://my-connect-cluster-connect-api:8083/connectors \
 -H 'Content-Type: application/json' \
 -d '{ "name": "my-source-connector",
 "config":
 {
 "connector.class":"org.apache.kafka.connect.file.FileStreamSourceConnector",
 "file": "/opt/kafka/LICENSE",
 "topic":"my-topic",

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

66

https://kafka.apache.org/documentation#connect_rest

1

2

The API is only accessible within the OpenShift cluster. If you want to make the Kafka Connect API
accessible to applications running outside of the OpenShift cluster, you can expose it manually by
creating one of the following features:

LoadBalancer or NodePort type services

Ingress resources (Kubernetes only)

OpenShift routes (OpenShift only)

NOTE

The connection is insecure, so allow external access advisedly.

If you decide to create services, use the labels from the selector of the <connect_cluster_name>-
connect-api service to configure the pods to which the service will route the traffic:

Selector configuration for the service

Name of the Kafka Connect custom resource in your OpenShift cluster.

Name of the Kafka Connect deployment created by the Cluster Operator.

You must also create a NetworkPolicy that allows HTTP requests from external clients.

Example NetworkPolicy to allow requests to the Kafka Connect API

 "tasksMax": "4",
 "type": "source"
 }
}'

...
selector:
 strimzi.io/cluster: my-connect-cluster 1
 strimzi.io/kind: KafkaConnect
 strimzi.io/name: my-connect-cluster-connect 2
#...

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: my-custom-connect-network-policy
spec:
 ingress:
 - from:
 - podSelector: 1
 matchLabels:
 app: my-connector-manager
 ports:
 - port: 8083
 protocol: TCP
 podSelector:

CHAPTER 6. DEPLOYING AMQ STREAMS USING INSTALLATION ARTIFACTS

67

1 The label of the pod that is allowed to connect to the API.

To add the connector configuration outside the cluster, use the URL of the resource that exposes the
API in the curl command.

6.4.3.7. Limiting access to the Kafka Connect API

It is crucial to restrict access to the Kafka Connect API only to trusted users to prevent unauthorized
actions and potential security issues. The Kafka Connect API provides extensive capabilities for altering
connector configurations, which makes it all the more important to take security precautions. Someone
with access to the Kafka Connect API could potentially obtain sensitive information that an administrator
may assume is secure.

The Kafka Connect REST API can be accessed by anyone who has authenticated access to the
OpenShift cluster and knows the endpoint URL, which includes the hostname/IP address and port
number.

For example, suppose an organization uses a Kafka Connect cluster and connectors to stream sensitive
data from a customer database to a central database. The administrator uses a configuration provider
plugin to store sensitive information related to connecting to the customer database and the central
database, such as database connection details and authentication credentials. The configuration
provider protects this sensitive information from being exposed to unauthorized users. However,
someone who has access to the Kafka Connect API can still obtain access to the customer database
without the consent of the administrator. They can do this by setting up a fake database and configuring
a connector to connect to it. They then modify the connector configuration to point to the customer
database, but instead of sending the data to the central database, they send it to the fake database. By
configuring the connector to connect to the fake database, the login details and credentials for
connecting to the customer database are intercepted, even though they are stored securely in the
configuration provider.

If you are using the KafkaConnector custom resources, then by default the OpenShift RBAC rules
permit only OpenShift cluster administrators to make changes to connectors. You can also designate
non-cluster administrators to manage AMQ Streams resources. With KafkaConnector resources
enabled in your Kafka Connect configuration, changes made directly using the Kafka Connect REST API
are reverted by the Cluster Operator. If you are not using the KafkaConnector resource, the default
RBAC rules do not limit access to the Kafka Connect API. If you want to limit direct access to the Kafka
Connect REST API using OpenShift RBAC, you need to enable and use the KafkaConnector resources.

For improved security, we recommend configuring the following properties for the Kafka Connect API:

org.apache.kafka.disallowed.login.modules

(Kafka 3.4 or later) Set the org.apache.kafka.disallowed.login.modules Java system property to
prevent the use of insecure login modules. For example, specifying
com.sun.security.auth.module.JndiLoginModule prevents the use of the Kafka
JndiLoginModule.

Example configuration for disallowing login modules

 matchLabels:
 strimzi.io/cluster: my-connect-cluster
 strimzi.io/kind: KafkaConnect
 strimzi.io/name: my-connect-cluster-connect
 policyTypes:
 - Ingress

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

68

Only allow trusted login modules and follow the latest advice from Kafka for the version you are using.
As a best practice, you should explicitly disallow insecure login modules in your Kafka Connect
configuration by using the org.apache.kafka.disallowed.login.modules system property.

connector.client.config.override.policy

Set the connector.client.config.override.policy property to None to prevent connector
configurations from overriding the Kafka Connect configuration and the consumers and producers it
uses.

Example configuration to specify connector override policy

6.4.3.8. Switching from using the Kafka Connect API to using KafkaConnector custom
resources

You can switch from using the Kafka Connect API to using KafkaConnector custom resources to
manage your connectors. To make the switch, do the following in the order shown:

1. Deploy KafkaConnector resources with the configuration to create your connector instances.

2. Enable KafkaConnector resources in your Kafka Connect configuration by setting the
strimzi.io/use-connector-resources annotation to true.

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
metadata:
 name: my-connect-cluster
 annotations:
 strimzi.io/use-connector-resources: "true"
spec:
 # ...
 jvmOptions:
 javaSystemProperties:
 - name: org.apache.kafka.disallowed.login.modules
 value: com.sun.security.auth.module.JndiLoginModule,
org.apache.kafka.common.security.kerberos.KerberosLoginModule
...

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
metadata:
 name: my-connect-cluster
 annotations:
 strimzi.io/use-connector-resources: "true"
spec:
 # ...
 config:
 connector.client.config.override.policy: None
...

CHAPTER 6. DEPLOYING AMQ STREAMS USING INSTALLATION ARTIFACTS

69

WARNING

If you enable KafkaConnector resources before creating them, you delete all
connectors.

To switch from using KafkaConnector resources to using the Kafka Connect API, first remove the
annotation that enables the KafkaConnector resources from your Kafka Connect configuration.
Otherwise, manual changes made directly using the Kafka Connect REST API are reverted by the
Cluster Operator.

When making the switch, check the status of the KafkaConnect resource. The value of
metadata.generation (the current version of the deployment) must match status.observedGeneration
(the latest reconciliation of the resource). When the Kafka Connect cluster is Ready, you can delete the
KafkaConnector resources.

6.4.4. List of Kafka Connect cluster resources

The following resources are created by the Cluster Operator in the OpenShift cluster:

connect-cluster-name-connect

Name given to the following Kafka Connect resources:

Deployment that creates the Kafka Connect worker node pods (when
StableConnectIdentities feature gate is disabled).

StrimziPodSet that creates the Kafka Connect worker node pods (when
StableConnectIdentities feature gate is enabled).

Headless service that provides stable DNS names to the Connect pods (when
StableConnectIdentities feature gate is enabled).

Pod Disruption Budget configured for the Kafka Connect worker nodes.

connect-cluster-name-connect-idx

Pods created by the Kafka Connect StrimziPodSet (when StableConnectIdentities feature gate is
enabled).

connect-cluster-name-connect-api

Service which exposes the REST interface for managing the Kafka Connect cluster.

connect-cluster-name-config

ConfigMap which contains the Kafka Connect ancillary configuration and is mounted as a volume by
the Kafka broker pods.

6.5. DEPLOYING KAFKA MIRRORMAKER

Kafka MirrorMaker replicates data between two or more Kafka clusters, within or across data centers.
This process is called mirroring to avoid confusion with the concept of Kafka partition replication.
MirrorMaker consumes messages from a source cluster and republishes those messages to a target
cluster.



Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

70

Data replication across clusters supports scenarios that require the following:

Recovery of data in the event of a system failure

Consolidation of data from multiple source clusters for centralized analysis

Restriction of data access to a specific cluster

Provision of data at a specific location to improve latency

6.5.1. Deploying Kafka MirrorMaker to your OpenShift cluster

This procedure shows how to deploy a Kafka MirrorMaker cluster to your OpenShift cluster using the
Cluster Operator.

The deployment uses a YAML file to provide the specification to create a KafkaMirrorMaker or
KafkaMirrorMaker2 resource depending on the version of MirrorMaker deployed.

IMPORTANT

Kafka MirrorMaker 1 (referred to as just MirrorMaker in the documentation) has been
deprecated in Apache Kafka 3.0.0 and will be removed in Apache Kafka 4.0.0. As a result,
the KafkaMirrorMaker custom resource which is used to deploy Kafka MirrorMaker 1 has
been deprecated in AMQ Streams as well. The KafkaMirrorMaker resource will be
removed from AMQ Streams when we adopt Apache Kafka 4.0.0. As a replacement, use
the KafkaMirrorMaker2 custom resource with the IdentityReplicationPolicy.

AMQ Streams provides example configuration files . In this procedure, we use the following example
files:

examples/mirror-maker/kafka-mirror-maker.yaml

examples/mirror-maker/kafka-mirror-maker-2.yaml

Prerequisites

The Cluster Operator must be deployed.

Procedure

1. Deploy Kafka MirrorMaker to your OpenShift cluster:
For MirrorMaker:

For MirrorMaker 2:

2. Check the status of the deployment:

oc apply -f examples/mirror-maker/kafka-mirror-maker.yaml

oc apply -f examples/mirror-maker/kafka-mirror-maker-2.yaml

oc get pods -n <my_cluster_operator_namespace>

CHAPTER 6. DEPLOYING AMQ STREAMS USING INSTALLATION ARTIFACTS

71

Output shows the deployment name and readiness

my-mirror-maker is the name of the Kafka MirrorMaker cluster. my-mm2-cluster is the name
of the Kafka MirrorMaker 2 cluster.

A pod ID identifies each pod created.

With the default deployment, you install a single MirrorMaker or MirrorMaker 2 pod.

READY shows the number of replicas that are ready/expected. The deployment is successful
when the STATUS displays as Running.

Additional resources

Kafka MirrorMaker cluster configuration

6.5.2. List of Kafka MirrorMaker cluster resources

The following resources are created by the Cluster Operator in the OpenShift cluster:

<mirror-maker-name>-mirror-maker

Deployment which is responsible for creating the Kafka MirrorMaker pods.

<mirror-maker-name>-config

ConfigMap which contains ancillary configuration for the Kafka MirrorMaker, and is mounted as a
volume by the Kafka broker pods.

<mirror-maker-name>-mirror-maker

Pod Disruption Budget configured for the Kafka MirrorMaker worker nodes.

6.6. DEPLOYING KAFKA BRIDGE

Kafka Bridge provides an API for integrating HTTP-based clients with a Kafka cluster.

6.6.1. Deploying Kafka Bridge to your OpenShift cluster

This procedure shows how to deploy a Kafka Bridge cluster to your OpenShift cluster using the Cluster
Operator.

The deployment uses a YAML file to provide the specification to create a KafkaBridge resource.

AMQ Streams provides example configuration files . In this procedure, we use the following example file:

examples/bridge/kafka-bridge.yaml

Prerequisites

The Cluster Operator must be deployed.

Procedure

NAME READY STATUS RESTARTS
my-mirror-maker-mirror-maker-<pod_id> 1/1 Running 1
my-mm2-cluster-mirrormaker2-<pod_id> 1/1 Running 1

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

72

1. Deploy Kafka Bridge to your OpenShift cluster:

2. Check the status of the deployment:

Output shows the deployment name and readiness

my-bridge is the name of the Kafka Bridge cluster.

A pod ID identifies each pod created.

With the default deployment, you install a single Kafka Bridge pod.

READY shows the number of replicas that are ready/expected. The deployment is successful
when the STATUS displays as Running.

Additional resources

Kafka Bridge cluster configuration

Using the AMQ Streams Kafka Bridge

6.6.2. Exposing the Kafka Bridge service to your local machine

Use port forwarding to expose the AMQ Streams Kafka Bridge service to your local machine on
http://localhost:8080.

NOTE

Port forwarding is only suitable for development and testing purposes.

Procedure

1. List the names of the pods in your OpenShift cluster:

2. Connect to the Kafka Bridge pod on port 8080:

NOTE

oc apply -f examples/bridge/kafka-bridge.yaml

oc get pods -n <my_cluster_operator_namespace>

NAME READY STATUS RESTARTS
my-bridge-bridge-<pod_id> 1/1 Running 0

oc get pods -o name

pod/kafka-consumer
...
pod/my-bridge-bridge-<pod_id>

oc port-forward pod/my-bridge-bridge-<pod_id> 8080:8080 &

CHAPTER 6. DEPLOYING AMQ STREAMS USING INSTALLATION ARTIFACTS

73

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/using_the_amq_streams_kafka_bridge/index
http://localhost:8080

1

NOTE

If port 8080 on your local machine is already in use, use an alternative HTTP port,
such as 8008.

API requests are now forwarded from port 8080 on your local machine to port 8080 in the Kafka Bridge
pod.

6.6.3. Accessing the Kafka Bridge outside of OpenShift

After deployment, the AMQ Streams Kafka Bridge can only be accessed by applications running in the
same OpenShift cluster. These applications use the <kafka_bridge_name>-bridge-service service to
access the API.

If you want to make the Kafka Bridge accessible to applications running outside of the OpenShift cluster,
you can expose it manually by creating one of the following features:

LoadBalancer or NodePort type services

Ingress resources (Kubernetes only)

OpenShift routes (OpenShift only)

If you decide to create Services, use the labels from the selector of the <kafka_bridge_name>-bridge-
service service to configure the pods to which the service will route the traffic:

Name of the Kafka Bridge custom resource in your OpenShift cluster.

6.6.4. List of Kafka Bridge cluster resources

The following resources are created by the Cluster Operator in the OpenShift cluster:

bridge-cluster-name-bridge

Deployment which is in charge to create the Kafka Bridge worker node pods.

bridge-cluster-name-bridge-service

Service which exposes the REST interface of the Kafka Bridge cluster.

bridge-cluster-name-bridge-config

ConfigMap which contains the Kafka Bridge ancillary configuration and is mounted as a volume by the
Kafka broker pods.

bridge-cluster-name-bridge

Pod Disruption Budget configured for the Kafka Bridge worker nodes.

6.7. ALTERNATIVE STANDALONE DEPLOYMENT OPTIONS FOR AMQ
STREAMS OPERATORS

 # ...
 selector:
 strimzi.io/cluster: kafka-bridge-name 1
 strimzi.io/kind: KafkaBridge
 #...

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

74

You can perform a standalone deployment of the Topic Operator and User Operator. Consider a
standalone deployment of these operators if you are using a Kafka cluster that is not managed by the
Cluster Operator.

You deploy the operators to OpenShift. Kafka can be running outside of OpenShift. For example, you
might be using a Kafka as a managed service. You adjust the deployment configuration for the
standalone operator to match the address of your Kafka cluster.

6.7.1. Deploying the standalone Topic Operator

This procedure shows how to deploy the Topic Operator as a standalone component for topic
management. You can use a standalone Topic Operator with a Kafka cluster that is not managed by the
Cluster Operator.

A standalone deployment can operate with any Kafka cluster.

Standalone deployment files are provided with AMQ Streams. Use the 05-Deployment-strimzi-topic-
operator.yaml deployment file to deploy the Topic Operator. Add or set the environment variables
needed to make a connection to a Kafka cluster.

The Topic Operator watches for KafkaTopic resources in a single namespace. You specify the
namespace to watch, and the connection to the Kafka cluster, in the Topic Operator configuration. A
single Topic Operator can watch a single namespace. One namespace should be watched by only one
Topic Operator. If you want to use more than one Topic Operator, configure each of them to watch
different namespaces. In this way, you can use Topic Operators with multiple Kafka clusters.

Prerequisites

You are running a Kafka cluster for the Topic Operator to connect to.
As long as the standalone Topic Operator is correctly configured for connection, the Kafka
cluster can be running on a bare-metal environment, a virtual machine, or as a managed cloud
application service.

Procedure

1. Edit the env properties in the install/topic-operator/05-Deployment-strimzi-topic-
operator.yaml standalone deployment file.

Example standalone Topic Operator deployment configuration

apiVersion: apps/v1
kind: Deployment
metadata:
 name: strimzi-topic-operator
 labels:
 app: strimzi
spec:
 # ...
 template:
 # ...
 spec:
 # ...
 containers:
 - name: strimzi-topic-operator
 # ...

CHAPTER 6. DEPLOYING AMQ STREAMS USING INSTALLATION ARTIFACTS

75

1

2

3

4

The OpenShift namespace for the Topic Operator to watch for KafkaTopic resources.
Specify the namespace of the Kafka cluster.

The host and port pair of the bootstrap broker address to discover and connect to all
brokers in the Kafka cluster. Use a comma-separated list to specify two or three broker
addresses in case a server is down.

The label to identify the KafkaTopic resources managed by the Topic Operator. This does
not have to be the name of the Kafka cluster. It can be the label assigned to the
KafkaTopic resource. If you deploy more than one Topic Operator, the labels must be
unique for each. That is, the operators cannot manage the same resources.

(ZooKeeper) The host and port pair of the address to connect to the ZooKeeper cluster.
This must be the same ZooKeeper cluster that your Kafka cluster is using.

 env:
 - name: STRIMZI_NAMESPACE 1
 valueFrom:
 fieldRef:
 fieldPath: metadata.namespace
 - name: STRIMZI_KAFKA_BOOTSTRAP_SERVERS 2
 value: my-kafka-bootstrap-address:9092
 - name: STRIMZI_RESOURCE_LABELS 3
 value: "strimzi.io/cluster=my-cluster"
 - name: STRIMZI_ZOOKEEPER_CONNECT 4
 value: my-cluster-zookeeper-client:2181
 - name: STRIMZI_ZOOKEEPER_SESSION_TIMEOUT_MS 5
 value: "18000"
 - name: STRIMZI_FULL_RECONCILIATION_INTERVAL_MS 6
 value: "120000"
 - name: STRIMZI_TOPIC_METADATA_MAX_ATTEMPTS 7
 value: "6"
 - name: STRIMZI_LOG_LEVEL 8
 value: INFO
 - name: STRIMZI_TLS_ENABLED 9
 value: "false"
 - name: STRIMZI_JAVA_OPTS 10
 value: "-Xmx=512M -Xms=256M"
 - name: STRIMZI_JAVA_SYSTEM_PROPERTIES 11
 value: "-Djavax.net.debug=verbose -DpropertyName=value"
 - name: STRIMZI_PUBLIC_CA 12
 value: "false"
 - name: STRIMZI_TLS_AUTH_ENABLED 13
 value: "false"
 - name: STRIMZI_SASL_ENABLED 14
 value: "false"
 - name: STRIMZI_SASL_USERNAME 15
 value: "admin"
 - name: STRIMZI_SASL_PASSWORD 16
 value: "password"
 - name: STRIMZI_SASL_MECHANISM 17
 value: "scram-sha-512"
 - name: STRIMZI_SECURITY_PROTOCOL 18
 value: "SSL"

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

76

5

6

7

8

9

10

11

12

13

14

15

16

17

18

(ZooKeeper) The ZooKeeper session timeout, in milliseconds. The default is 18000 (18
seconds).

The interval between periodic reconciliations, in milliseconds. The default is 120000 (2
minutes).

The number of attempts at getting topic metadata from Kafka. The time between each
attempt is defined as an exponential backoff. Consider increasing this value when topic
creation takes more time due to the number of partitions or replicas. The default is 6
attempts.

The level for printing logging messages. You can set the level to ERROR, WARNING,
INFO, DEBUG, or TRACE.

Enables TLS support for encrypted communication with the Kafka brokers.

(Optional) The Java options used by the JVM running the Topic Operator.

(Optional) The debugging (-D) options set for the Topic Operator.

(Optional) Skips the generation of trust store certificates if TLS is enabled through
STRIMZI_TLS_ENABLED. If this environment variable is enabled, the brokers must use a
public trusted certificate authority for their TLS certificates. The default is false.

(Optional) Generates key store certificates for mTLS authentication. Setting this to false
disables client authentication with mTLS to the Kafka brokers. The default is true.

(Optional) Enables SASL support for client authentication when connecting to Kafka
brokers. The default is false.

(Optional) The SASL username for client authentication. Mandatory only if SASL is
enabled through STRIMZI_SASL_ENABLED.

(Optional) The SASL password for client authentication. Mandatory only if SASL is enabled
through STRIMZI_SASL_ENABLED.

(Optional) The SASL mechanism for client authentication. Mandatory only if SASL is
enabled through STRIMZI_SASL_ENABLED. You can set the value to plain, scram-sha-
256, or scram-sha-512.

(Optional) The security protocol used for communication with Kafka brokers. The default
value is "PLAINTEXT". You can set the value to PLAINTEXT, SSL, SASL_PLAINTEXT, or
SASL_SSL.

2. If you want to connect to Kafka brokers that are using certificates from a public certificate
authority, set STRIMZI_PUBLIC_CA to true. Set this property to true, for example, if you are
using Amazon AWS MSK service.

3. If you enabled mTLS with the STRIMZI_TLS_ENABLED environment variable, specify the
keystore and truststore used to authenticate connection to the Kafka cluster.

Example mTLS configuration

....
env:
 - name: STRIMZI_TRUSTSTORE_LOCATION 1

CHAPTER 6. DEPLOYING AMQ STREAMS USING INSTALLATION ARTIFACTS

77

1

2

3

4

The truststore contains the public keys of the Certificate Authorities used to sign the Kafka
and ZooKeeper server certificates.

The password for accessing the truststore.

The keystore contains the private key for mTLS authentication.

The password for accessing the keystore.

4. Deploy the Topic Operator.

5. Check the status of the deployment:

Output shows the deployment name and readiness

READY shows the number of replicas that are ready/expected. The deployment is successful
when the AVAILABLE output shows 1.

6.7.1.1. (Preview) Deploying the standalone Topic Operator for unidirectional topic
management

Unidirectional topic management maintains topics solely through KafkaTopic resources. For more
information on unidirectional topic management, see Section 9.1, “Topic management modes”.

If you want to try the preview of unidirectional topic management, follow these steps to deploy the
standalone Topic Operator.

Procedure

1. Undeploy the current standalone Topic Operator.
Retain the KafkaTopic resources, which are picked up by the Topic Operator when it is
deployed again.

2. Edit the Deployment configuration for the standalone Topic Operator to remove any
ZooKeeper-related environment variables:

STRIMZI_ZOOKEEPER_CONNECT

 value: "/path/to/truststore.p12"
 - name: STRIMZI_TRUSTSTORE_PASSWORD 2
 value: "TRUSTSTORE-PASSWORD"
 - name: STRIMZI_KEYSTORE_LOCATION 3
 value: "/path/to/keystore.p12"
 - name: STRIMZI_KEYSTORE_PASSWORD 4
 value: "KEYSTORE-PASSWORD"
...

oc create -f install/topic-operator

oc get deployments

NAME READY UP-TO-DATE AVAILABLE
strimzi-topic-operator 1/1 1 1

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

78

STRIMZI_ZOOKEEPER_SESSION_TIMEOUT_MS

TC_ZK_CONNECTION_TIMEOUT_MS

STRIMZI_USE_ZOOKEEPER_TOPIC_STORE
It is the presence or absence of the ZooKeeper variables that defines whether the
unidirectional Topic Operator is used. Unidirectional topic management does not use
ZooKeeper. If ZooKeeper environment variables are not present, the unidirectional Topic
Operator is used. Otherwise, the bidirectional Topic Operator is used.

Other unused environment variables that can be removed if present:

STRIMZI_REASSIGN_THROTTLE

STRIMZI_REASSIGN_VERIFY_INTERVAL_MS

STRIMZI_TOPIC_METADATA_MAX_ATTEMPTS

STRIMZI_TOPICS_PATH

STRIMZI_STORE_TOPIC

STRIMZI_STORE_NAME

STRIMZI_APPLICATION_ID

STRIMZI_STALE_RESULT_TIMEOUT_MS

3. (Optional) Set the STRIMZI_USE_FINALIZERS environment variable to false:

Additional configuration for unidirectional topic management

Set this environment variable to false if you do not want to use finalizers to control topic
deletion.

Example standalone Topic Operator deployment configuration for unidirectional
topic management

...
env:
 - name: STRIMZI_USE_FINALIZERS
 value: "false"

apiVersion: apps/v1
kind: Deployment
metadata:
 name: strimzi-topic-operator
 labels:
 app: strimzi
spec:
 # ...
 template:
 # ...
 spec:
 # ...
 containers:

CHAPTER 6. DEPLOYING AMQ STREAMS USING INSTALLATION ARTIFACTS

79

4. Deploy the standalone Topic Operator in the standard way.

6.7.2. Deploying the standalone User Operator

This procedure shows how to deploy the User Operator as a standalone component for user
management. You can use a standalone User Operator with a Kafka cluster that is not managed by the
Cluster Operator.

A standalone deployment can operate with any Kafka cluster.

Standalone deployment files are provided with AMQ Streams. Use the 05-Deployment-strimzi-user-
operator.yaml deployment file to deploy the User Operator. Add or set the environment variables
needed to make a connection to a Kafka cluster.

The User Operator watches for KafkaUser resources in a single namespace. You specify the namespace
to watch, and the connection to the Kafka cluster, in the User Operator configuration. A single User
Operator can watch a single namespace. One namespace should be watched by only one User Operator.

 - name: strimzi-topic-operator
 # ...
 env:
 - name: STRIMZI_NAMESPACE
 valueFrom:
 fieldRef:
 fieldPath: metadata.namespace
 - name: STRIMZI_KAFKA_BOOTSTRAP_SERVERS
 value: my-kafka-bootstrap-address:9092
 - name: STRIMZI_RESOURCE_LABELS
 value: "strimzi.io/cluster=my-cluster"
 - name: STRIMZI_FULL_RECONCILIATION_INTERVAL_MS
 value: "120000"
 - name: STRIMZI_LOG_LEVEL
 value: INFO
 - name: STRIMZI_TLS_ENABLED
 value: "false"
 - name: STRIMZI_JAVA_OPTS
 value: "-Xmx=512M -Xms=256M"
 - name: STRIMZI_JAVA_SYSTEM_PROPERTIES
 value: "-Djavax.net.debug=verbose -DpropertyName=value"
 - name: STRIMZI_PUBLIC_CA
 value: "false"
 - name: STRIMZI_TLS_AUTH_ENABLED
 value: "false"
 - name: STRIMZI_SASL_ENABLED
 value: "false"
 - name: STRIMZI_SASL_USERNAME
 value: "admin"
 - name: STRIMZI_SASL_PASSWORD
 value: "password"
 - name: STRIMZI_SASL_MECHANISM
 value: "scram-sha-512"
 - name: STRIMZI_SECURITY_PROTOCOL
 value: "SSL"
 - name: STRIMZI_USE_FINALIZERS
 value: "true"

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

80

If you want to use more than one User Operator, configure each of them to watch different namespaces.
In this way, you can use the User Operator with multiple Kafka clusters.

Prerequisites

You are running a Kafka cluster for the User Operator to connect to.
As long as the standalone User Operator is correctly configured for connection, the Kafka
cluster can be running on a bare-metal environment, a virtual machine, or as a managed cloud
application service.

Procedure

1. Edit the following env properties in the install/user-operator/05-Deployment-strimzi-user-
operator.yaml standalone deployment file.

Example standalone User Operator deployment configuration

apiVersion: apps/v1
kind: Deployment
metadata:
 name: strimzi-user-operator
 labels:
 app: strimzi
spec:
 # ...
 template:
 # ...
 spec:
 # ...
 containers:
 - name: strimzi-user-operator
 # ...
 env:
 - name: STRIMZI_NAMESPACE 1
 valueFrom:
 fieldRef:
 fieldPath: metadata.namespace
 - name: STRIMZI_KAFKA_BOOTSTRAP_SERVERS 2
 value: my-kafka-bootstrap-address:9092
 - name: STRIMZI_CA_CERT_NAME 3
 value: my-cluster-clients-ca-cert
 - name: STRIMZI_CA_KEY_NAME 4
 value: my-cluster-clients-ca
 - name: STRIMZI_LABELS 5
 value: "strimzi.io/cluster=my-cluster"
 - name: STRIMZI_FULL_RECONCILIATION_INTERVAL_MS 6
 value: "120000"
 - name: STRIMZI_WORK_QUEUE_SIZE 7
 value: 10000
 - name: STRIMZI_CONTROLLER_THREAD_POOL_SIZE 8
 value: 10
 - name: STRIMZI_USER_OPERATIONS_THREAD_POOL_SIZE 9
 value: 4
 - name: STRIMZI_LOG_LEVEL 10

CHAPTER 6. DEPLOYING AMQ STREAMS USING INSTALLATION ARTIFACTS

81

1

2

3

4

5

6

7

8

9

10

The OpenShift namespace for the User Operator to watch for KafkaUser resources. Only
one namespace can be specified.

The host and port pair of the bootstrap broker address to discover and connect to all
brokers in the Kafka cluster. Use a comma-separated list to specify two or three broker
addresses in case a server is down.

The OpenShift Secret that contains the public key (ca.crt) value of the CA (certificate
authority) that signs new user certificates for mTLS authentication.

The OpenShift Secret that contains the private key (ca.key) value of the CA that signs
new user certificates for mTLS authentication.

The label to identify the KafkaUser resources managed by the User Operator. This does
not have to be the name of the Kafka cluster. It can be the label assigned to the KafkaUser
resource. If you deploy more than one User Operator, the labels must be unique for each.
That is, the operators cannot manage the same resources.

The interval between periodic reconciliations, in milliseconds. The default is 120000 (2
minutes).

The size of the controller event queue. The size of the queue should be at least as big as
the maximal amount of users you expect the User Operator to operate. The default is
1024.

The size of the worker pool for reconciling the users. Bigger pool might require more
resources, but it will also handle more KafkaUser resources The default is 50.

The size of the worker pool for Kafka Admin API and OpenShift operations. Bigger pool
might require more resources, but it will also handle more KafkaUser resources The
default is 4.

The level for printing logging messages. You can set the level to ERROR, WARNING,

 value: INFO
 - name: STRIMZI_GC_LOG_ENABLED 11
 value: "true"
 - name: STRIMZI_CA_VALIDITY 12
 value: "365"
 - name: STRIMZI_CA_RENEWAL 13
 value: "30"
 - name: STRIMZI_JAVA_OPTS 14
 value: "-Xmx=512M -Xms=256M"
 - name: STRIMZI_JAVA_SYSTEM_PROPERTIES 15
 value: "-Djavax.net.debug=verbose -DpropertyName=value"
 - name: STRIMZI_SECRET_PREFIX 16
 value: "kafka-"
 - name: STRIMZI_ACLS_ADMIN_API_SUPPORTED 17
 value: "true"
 - name: STRIMZI_MAINTENANCE_TIME_WINDOWS 18
 value: '* * 8-10 * * ?;* * 14-15 * * ?'
 - name: STRIMZI_KAFKA_ADMIN_CLIENT_CONFIGURATION 19
 value: |
 default.api.timeout.ms=120000
 request.timeout.ms=60000

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

82

11

12

13

14

15

16

17

18

19

1

2

Enables garbage collection (GC) logging. The default is true.

The validity period for the CA. The default is 365 days.

The renewal period for the CA. The renewal period is measured backwards from the expiry
date of the current certificate. The default is 30 days to initiate certificate renewal before
the old certificates expire.

(Optional) The Java options used by the JVM running the User Operator

(Optional) The debugging (-D) options set for the User Operator

(Optional) Prefix for the names of OpenShift secrets created by the User Operator.

(Optional) Indicates whether the Kafka cluster supports management of authorization ACL
rules using the Kafka Admin API. When set to false, the User Operator will reject all
resources with simple authorization ACL rules. This helps to avoid unnecessary exceptions
in the Kafka cluster logs. The default is true.

(Optional) Semi-colon separated list of Cron Expressions defining the maintenance time
windows during which the expiring user certificates will be renewed.

(Optional) Configuration options for configuring the Kafka Admin client used by the User
Operator in the properties format.

2. If you are using mTLS to connect to the Kafka cluster, specify the secrets used to authenticate
connection. Otherwise, go to the next step.

Example mTLS configuration

The OpenShift Secret that contains the public key (ca.crt) value of the CA that signs
Kafka broker certificates.

The OpenShift Secret that contains the certificate public key (entity-operator.crt) and
private key (entity-operator.key) that is used for mTLS authentication against the Kafka
cluster.

3. Deploy the User Operator.

4. Check the status of the deployment:

....
env:
 - name: STRIMZI_CLUSTER_CA_CERT_SECRET_NAME 1
 value: my-cluster-cluster-ca-cert
 - name: STRIMZI_EO_KEY_SECRET_NAME 2
 value: my-cluster-entity-operator-certs
..."

oc create -f install/user-operator

oc get deployments

CHAPTER 6. DEPLOYING AMQ STREAMS USING INSTALLATION ARTIFACTS

83

Output shows the deployment name and readiness

READY shows the number of replicas that are ready/expected. The deployment is successful
when the AVAILABLE output shows 1.

NAME READY UP-TO-DATE AVAILABLE
strimzi-user-operator 1/1 1 1

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

84

CHAPTER 7. ENABLING AMQ STREAMS FEATURE GATES
AMQ Streams operators use feature gates to enable or disable specific features and functions. By
enabling a feature gate, you alter the behavior of the corresponding operator, thereby introducing the
feature to your AMQ Streams deployment.

A feature gate might be enabled or disabled by default, depending on its level of maturity.

To modify a feature gate’s default state, use the STRIMZI_FEATURE_GATES environment variable in
the operator’s configuration. You can modify multiple feature gates using this single environment
variable. Specify a comma-separated list of feature gate names and prefixes. A + prefix enables the
feature gate and a - prefix disables it.

Example feature gate configuration that enables FeatureGate1 and disables FeatureGate2

7.1. CONTROLPLANELISTENER FEATURE GATE

The ControlPlaneListener feature gate has moved to GA, which means it is now permanently enabled
and cannot be disabled. With ControlPlaneListener enabled, the connections between the Kafka
controller and brokers use an internal control plane listener on port 9090. Replication of data between
brokers, as well as internal connections from AMQ Streams operators, Cruise Control, or the Kafka
Exporter use the replication listener on port 9091.

IMPORTANT

With the ControlPlaneListener feature gate permanently enabled, it is no longer
possible to upgrade or downgrade directly between AMQ Streams 1.7 and earlier and
AMQ Streams 2.3 and newer. You have to first upgrade or downgrade through one of the
AMQ Streams versions in-between, disable the ControlPlaneListener feature gate, and
then downgrade or upgrade (with the feature gate enabled) to the target version.

7.2. SERVICEACCOUNTPATCHING FEATURE GATE

The ServiceAccountPatching feature gate has moved to GA, which means it is now permanently
enabled and cannot be disabled. With ServiceAccountPatching enabled, the Cluster Operator always
reconciles service accounts and updates them when needed. For example, when you change service
account labels or annotations using the template property of a custom resource, the operator
automatically updates them on the existing service account resources.

7.3. USESTRIMZIPODSETS FEATURE GATE

The UseStrimziPodSets feature gate has moved to GA, which means it is now permanently enabled
and cannot be disabled. Support for StatefulSets has been removed and AMQ Streams is now always
using StrimziPodSets to manage Kafka and ZooKeeper pods.

IMPORTANT

env:
 - name: STRIMZI_FEATURE_GATES
 value: +FeatureGate1,-FeatureGate2

CHAPTER 7. ENABLING AMQ STREAMS FEATURE GATES

85

IMPORTANT

With the UseStrimziPodSets feature gate permanently enabled, it is no longer possible
to downgrade directly from AMQ Streams 2.4 and newer to AMQ Streams 2.0 or earlier.
You have to first downgrade through one of the AMQ Streams versions in-between,
disable the UseStrimziPodSets feature gate, and then downgrade to AMQ Streams 2.0
or earlier.

7.4. (PREVIEW) USEKRAFT FEATURE GATE

The UseKRaft feature gate has a default state of disabled.

The UseKRaft feature gate deploys the Kafka cluster in the KRaft (Kafka Raft metadata) mode without
ZooKeeper. ZooKeeper and KRaft are mechanisms used to manage metadata and coordinate operations
in Kafka clusters. KRaft mode eliminates the need for an external coordination service like ZooKeeper. In
KRaft mode, Kafka nodes take on the roles of brokers, controllers, or both. They collectively manage the
metadata, which is replicated across partitions. Controllers are responsible for coordinating operations
and maintaining the cluster’s state.

This feature gate is currently intended only for development and testing.

IMPORTANT

KRaft mode is not ready for production in Apache Kafka or in AMQ Streams.

Enabling the UseKRaft feature gate requires the KafkaNodePools feature gate to be enabled as well.
To deploy a Kafka cluster in KRaft mode, you must use the KafkaNodePool resources. For more details
and examples, see Section 6.3.2, “(Preview) Deploying Kafka node pools” .

When the UseKRaft feature gate is enabled, the Kafka cluster is deployed without ZooKeeper. The
.spec.zookeeper properties in the Kafka custom resource are ignored, but still need to be present.
The UseKRaft feature gate provides an API that configures Kafka cluster nodes and their roles. The API
is still in development and is expected to change before the KRaft mode is production-ready.

Currently, the KRaft mode in AMQ Streams has the following major limitations:

Moving from Kafka clusters with ZooKeeper to KRaft clusters or the other way around is not
supported.

Controller-only nodes cannot undergo rolling updates or be updated individually.

Upgrades and downgrades of Apache Kafka versions or the AMQ Streams operator are not
supported. Users might need to delete the cluster, upgrade the operator and deploy a new
Kafka cluster.

Only the Unidirectional Topic Operator is supported in KRaft mode. You can enable it using the
UnidirectionalTopicOperator feature gate. The Bidirectional Topic Operator is not supported
and when the UnidirectionalTopicOperator feature gate is not enabled, the
spec.entityOperator.topicOperator property must be removed from the Kafka custom
resource.

JBOD storage is not supported. The type: jbod storage can be used, but the JBOD array can
contain only one disk.

Enabling the UseKRaft feature gate

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

86

To enable the UseKRaft feature gate, specify +UseKRaft,+KafkaNodePools in the
STRIMZI_FEATURE_GATES environment variable in the Cluster Operator configuration.

7.5. STABLECONNECTIDENTITIES FEATURE GATE

The StableConnectIdentities feature gate has a default state of disabled.

The StableConnectIdentities feature gate uses StrimziPodSet resources to manage Kafka Connect
and Kafka MirrorMaker 2 pods instead of using OpenShift Deployment resources. StrimziPodSets give
the pods stable names and stable addresses, which do not change during rolling upgrades. This helps to
minimize the number of rebalances of connector tasks.

Enabling the StableConnectIdentities feature gate

To enable the StableConnectIdentities feature gate, specify +StableConnectIdentities in the
STRIMZI_FEATURE_GATES environment variable in the Cluster Operator configuration.

IMPORTANT

The StableConnectIdentities feature gate must be disabled when downgrading to AMQ
Streams 2.3 and earlier versions.

7.6. (PREVIEW) KAFKANODEPOOLS FEATURE GATE

The KafkaNodePools feature gate has a default state of disabled.

The KafkaNodePools feature gate introduces a new KafkaNodePool custom resource that enables the
configuration of different pools of Apache Kafka nodes.

A node pool refers to a distinct group of Kafka nodes within a Kafka cluster. Each pool has its own unique
configuration, which includes mandatory settings such as the number of replicas, storage configuration,
and a list of assigned roles. You can assign the controller role, broker role, or both roles to all nodes in
the pool in the .spec.roles field. When used with a ZooKeeper-based Apache Kafka cluster, it must be
set to the broker role. When used with the UseKRaft feature gate, it can be set to broker, controller, or
both.

In addition, a node pool can have its own configuration of resource requests and limits, Java JVM
options, and resource templates. Configuration options not set in the KafkaNodePool resource are
inherited from the Kafka custom resource.

The KafkaNodePool resources use a strimzi.io/cluster label to indicate to which Kafka cluster they
belong. The label must be set to the name of the Kafka custom resource.

Examples of the KafkaNodePool resources can be found in the example configuration files provided by
AMQ Streams.

Enabling the KafkaNodePools feature gate

To enable the KafkaNodePools feature gate, specify +KafkaNodePools in the
STRIMZI_FEATURE_GATES environment variable in the Cluster Operator configuration. The Kafka
custom resource using the node pools must also have the annotation strimzi.io/node-pools: enabled.

7.7. (PREVIEW) UNIDIRECTIONALTOPICOPERATOR FEATURE GATE

The UnidirectionalTopicOperator feature gate has a default state of disabled.

CHAPTER 7. ENABLING AMQ STREAMS FEATURE GATES

87

The UnidirectionalTopicOperator feature gate introduces a unidirectional topic management mode
for creating Kafka topics using the KafkaTopic resource. Unidirectional mode is compatible with using
KRaft for cluster management. With unidirectional mode, you create Kafka topics using the KafkaTopic
resource, which are then managed by the Topic Operator. Any configuration changes to a topic outside
the KafkaTopic resource are reverted. For more information on topic management, see Section 9.1,
“Topic management modes”.

Enabling the UnidirectionalTopicOperator feature gate

To enable the UnidirectionalTopicOperator feature gate, specify +UnidirectionalTopicOperator in
the STRIMZI_FEATURE_GATES environment variable in the Cluster Operator configuration. For the
KafkaTopic custom resource to use this feature, the strimzi.io/managed annotation is set to true by
default.

7.8. FEATURE GATE RELEASES

Feature gates have three stages of maturity:

Alpha — typically disabled by default

Beta — typically enabled by default

General Availability (GA) — typically always enabled

Alpha stage features might be experimental or unstable, subject to change, or not sufficiently tested for
production use. Beta stage features are well tested and their functionality is not likely to change. GA
stage features are stable and should not change in the future. Alpha and beta stage features are
removed if they do not prove to be useful.

The ControlPlaneListener feature gate moved to GA stage in AMQ Streams 2.3. It is now
permanently enabled and cannot be disabled.

The ServiceAccountPatching feature gate moved to GA stage in AMQ Streams 2.3. It is now
permanently enabled and cannot be disabled.

The UseStrimziPodSets feature gate moved to GA stage in AMQ Streams 2.5 and the support
for StatefulSets is completely removed. It is now permanently enabled and cannot be disabled.

The UseKRaft feature gate is available for development only and does not currently have a
planned release for moving to the beta phase.

The StableConnectIdentities feature gate is in alpha stage and is disabled by default.

The KafkaNodePools feature gate is in alpha stage and is disabled by default.

The UnidirectionalTopicOperator feature gate is in alpha stage and is disabled by default.

NOTE

Feature gates might be removed when they reach GA. This means that the feature was
incorporated into the AMQ Streams core features and can no longer be disabled.

Table 7.1. Feature gates and the AMQ Streams versions when they moved to alpha, beta, or GA

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

88

Feature gate Alpha Beta GA

ControlPlaneListene
r

1.8 2.0 2.3

ServiceAccountPatc
hing

1.8 2.0 2.3

UseStrimziPodSets 2.1 2.3 2.5

UseKRaft 2.2 - -

StableConnectIdentit
ies

2.4 - -

KafkaNodePools 2.5 - -

UnidirectionalTopic
Operator

2.5 - -

If a feature gate is enabled, you may need to disable it before upgrading or downgrading from a specific
AMQ Streams version. The following table shows which feature gates you need to disable when
upgrading or downgrading AMQ Streams versions.

Table 7.2. Feature gates to disable when upgrading or downgrading AMQ Streams

Disable Feature gate Upgrading from AMQ Streams
version

Downgrading to AMQ Streams
version

ControlPlaneListener 1.7 and earlier 1.7 and earlier

UseStrimziPodSets - 2.0 and earlier

StableConnectIdentities - 2.3 and earlier

CHAPTER 7. ENABLING AMQ STREAMS FEATURE GATES

89

CHAPTER 8. CONFIGURING A DEPLOYMENT
Configure and manage an AMQ Streams deployment to your precise needs using AMQ Streams custom
resources. AMQ Streams provides example custom resources with each release, allowing you to
configure and create instances of supported Kafka components. Fine-tune your deployment by
configuring custom resources to include additional features according to your specific requirements.
For specific areas of configuration, namely metrics, logging, and external configuration for Kafka
Connect connectors, you can also use ConfigMap resources. By using a ConfigMap resource to
incorporate configuration, you centralize maintenance. You can also use configuration providers to load
configuration from external sources, which we recommend for supplying the credentials for Kafka
Connect connector configuration.

Use custom resources to configure and create instances of the following components:

Kafka clusters

Kafka Connect clusters

Kafka MirrorMaker

Kafka Bridge

Cruise Control

You can also use custom resource configuration to manage your instances or modify your deployment
to introduce additional features. This might include configuration that supports the following:

(Preview) Specifying node pools

Securing client access to Kafka brokers

Accessing Kafka brokers from outside the cluster

Creating topics

Creating users (clients)

Controlling feature gates

Changing logging frequency

Allocating resource limits and requests

Introducing features, such as AMQ Streams Drain Cleaner, Cruise Control, or distributed tracing.

The AMQ Streams Custom Resource API Reference describes the properties you can use in your
configuration.

NOTE

Labels applied to a custom resource are also applied to the OpenShift resources making
up its cluster. This provides a convenient mechanism for resources to be labeled as
required.

Applying changes to a custom resource configuration file

You add configuration to a custom resource using spec properties. After adding the configuration, you

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

90

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index

1

2

3

4

You add configuration to a custom resource using spec properties. After adding the configuration, you
can use oc to apply the changes to a custom resource configuration file:

8.1. USING EXAMPLE CONFIGURATION FILES

Further enhance your deployment by incorporating additional supported configuration. Example
configuration files are provided with the downloadable release artifacts from the AMQ Streams
software downloads page.

The example files include only the essential properties and values for custom resources by default. You
can download and apply the examples using the oc command-line tool. The examples can serve as a
starting point when building your own Kafka component configuration for deployment.

NOTE

If you installed AMQ Streams using the Operator, you can still download the example files
and use them to upload configuration.

The release artifacts include an examples directory that contains the configuration examples.

Example configuration files provided with AMQ Streams

examples
├── user 1
├── topic 2
├── security 3
│ ├── tls-auth
│ ├── scram-sha-512-auth
│ └── keycloak-authorization
├── mirror-maker 4
├── metrics 5
├── kafka 6
│ └── nodepools 7
├── cruise-control 8
├── connect 9
└── bridge 10

KafkaUser custom resource configuration, which is managed by the User Operator.

KafkaTopic custom resource configuration, which is managed by Topic Operator.

Authentication and authorization configuration for Kafka components. Includes example
configuration for TLS and SCRAM-SHA-512 authentication. The Red Hat Single Sign-On example
includes Kafka custom resource configuration and a Red Hat Single Sign-On realm specification.
You can use the example to try Red Hat Single Sign-On authorization services. There is also an
example with enabled oauth authentication and keycloak authorization metrics.

Kafka custom resource configuration for a deployment of Mirror Maker. Includes example
configuration for replication policy and synchronization frequency.

oc apply -f <kafka_configuration_file>

CHAPTER 8. CONFIGURING A DEPLOYMENT

91

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?downloadType=distributions&product=jboss.amq.streams

5

6

7

8

9

10

Metrics configuration , including Prometheus installation and Grafana dashboard files.

Kafka custom resource configuration for a deployment of Kafka. Includes example configuration
for an ephemeral or persistent single or multi-node deployment.

(Preview) KafkaNodePool configuration for Kafka nodes in a Kafka cluster. Includes example
configuration for nodes in clusters that use KRaft (Kafka Raft metadata) mode or ZooKeeper.

Kafka custom resource with a deployment configuration for Cruise Control. Includes
KafkaRebalance custom resources to generate optimization proposals from Cruise Control, with
example configurations to use the default or user optimization goals.

KafkaConnect and KafkaConnector custom resource configuration for a deployment of Kafka
Connect. Includes example configurations for a single or multi-node deployment.

KafkaBridge custom resource configuration for a deployment of Kafka Bridge.

8.2. CONFIGURING KAFKA

Update the spec properties of the Kafka custom resource to configure your Kafka deployment.

As well as configuring Kafka, you can add configuration for ZooKeeper and the AMQ Streams Operators.
Common configuration properties, such as logging and healthchecks, are configured independently for
each component.

Configuration options that are particularly important include the following:

Resource requests (CPU / Memory)

JVM options for maximum and minimum memory allocation

Listeners for connecting clients to Kafka brokers (and authentication of clients)

Authentication

Storage

Rack awareness

Metrics

Cruise Control for cluster rebalancing

For a deeper understanding of the Kafka cluster configuration options, refer to the AMQ Streams
Custom Resource API Reference.

Kafka versions

The inter.broker.protocol.version property for the Kafka config must be the version supported by the
specified Kafka version (spec.kafka.version). The property represents the version of Kafka protocol
used in a Kafka cluster.

From Kafka 3.0.0, when the inter.broker.protocol.version is set to 3.0 or higher, the
log.message.format.version option is ignored and doesn’t need to be set.

An update to the inter.broker.protocol.version is required when upgrading your Kafka version. For

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

92

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index

An update to the inter.broker.protocol.version is required when upgrading your Kafka version. For
more information, see Upgrading Kafka .

Managing TLS certificates

When deploying Kafka, the Cluster Operator automatically sets up and renews TLS certificates to
enable encryption and authentication within your cluster. If required, you can manually renew the cluster
and clients CA certificates before their renewal period starts. You can also replace the keys used by the
cluster and clients CA certificates. For more information, see Renewing CA certificates manually and
Replacing private keys.

Example Kafka custom resource configuration

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 name: my-cluster
spec:
 kafka:
 replicas: 3 1
 version: 3.5.0 2
 logging: 3
 type: inline
 loggers:
 kafka.root.logger.level: INFO
 resources: 4
 requests:
 memory: 64Gi
 cpu: "8"
 limits:
 memory: 64Gi
 cpu: "12"
 readinessProbe: 5
 initialDelaySeconds: 15
 timeoutSeconds: 5
 livenessProbe:
 initialDelaySeconds: 15
 timeoutSeconds: 5
 jvmOptions: 6
 -Xms: 8192m
 -Xmx: 8192m
 image: my-org/my-image:latest 7
 listeners: 8
 - name: plain 9
 port: 9092 10
 type: internal 11
 tls: false 12
 configuration:
 useServiceDnsDomain: true 13
 - name: tls
 port: 9093
 type: internal
 tls: true
 authentication: 14

CHAPTER 8. CONFIGURING A DEPLOYMENT

93

 type: tls
 - name: external 15
 port: 9094
 type: route
 tls: true
 configuration:
 brokerCertChainAndKey: 16
 secretName: my-secret
 certificate: my-certificate.crt
 key: my-key.key
 authorization: 17
 type: simple
 config: 18
 auto.create.topics.enable: "false"
 offsets.topic.replication.factor: 3
 transaction.state.log.replication.factor: 3
 transaction.state.log.min.isr: 2
 default.replication.factor: 3
 min.insync.replicas: 2
 inter.broker.protocol.version: "3.5"
 storage: 19
 type: persistent-claim 20
 size: 10000Gi
 rack: 21
 topologyKey: topology.kubernetes.io/zone
 metricsConfig: 22
 type: jmxPrometheusExporter
 valueFrom:
 configMapKeyRef: 23
 name: my-config-map
 key: my-key
 # ...
 zookeeper: 24
 replicas: 3 25
 logging: 26
 type: inline
 loggers:
 zookeeper.root.logger: INFO
 resources:
 requests:
 memory: 8Gi
 cpu: "2"
 limits:
 memory: 8Gi
 cpu: "2"
 jvmOptions:
 -Xms: 4096m
 -Xmx: 4096m
 storage:
 type: persistent-claim
 size: 1000Gi
 metricsConfig:
 # ...
 entityOperator: 27

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

94

1

2

3

4

5

The number of replica nodes.

Kafka version, which can be changed to a supported version by following the upgrade procedure.

Kafka loggers and log levels added directly (inline) or indirectly (external) through a ConfigMap. A
custom Log4j configuration must be placed under the log4j.properties key in the ConfigMap. For
the Kafka kafka.root.logger.level logger, you can set the log level to INFO, ERROR, WARN,
TRACE, DEBUG, FATAL or OFF.

Requests for reservation of supported resources, currently cpu and memory, and limits to specify
the maximum resources that can be consumed.

Healthchecks to know when to restart a container (liveness) and when a container can accept
traffic (readiness).

 tlsSidecar: 28
 resources:
 requests:
 cpu: 200m
 memory: 64Mi
 limits:
 cpu: 500m
 memory: 128Mi
 topicOperator:
 watchedNamespace: my-topic-namespace
 reconciliationIntervalSeconds: 60
 logging: 29
 type: inline
 loggers:
 rootLogger.level: INFO
 resources:
 requests:
 memory: 512Mi
 cpu: "1"
 limits:
 memory: 512Mi
 cpu: "1"
 userOperator:
 watchedNamespace: my-topic-namespace
 reconciliationIntervalSeconds: 60
 logging: 30
 type: inline
 loggers:
 rootLogger.level: INFO
 resources:
 requests:
 memory: 512Mi
 cpu: "1"
 limits:
 memory: 512Mi
 cpu: "1"
 kafkaExporter: 31
 # ...
 cruiseControl: 32
 # ...

CHAPTER 8. CONFIGURING A DEPLOYMENT

95

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

JVM configuration options to optimize performance for the Virtual Machine (VM) running Kafka.

ADVANCED OPTION: Container image configuration, which is recommended only in special
situations.

Listeners configure how clients connect to the Kafka cluster via bootstrap addresses. Listeners are
configured as internal or external listeners for connection from inside or outside the OpenShift
cluster.

Name to identify the listener. Must be unique within the Kafka cluster.

Port number used by the listener inside Kafka. The port number has to be unique within a given
Kafka cluster. Allowed port numbers are 9092 and higher with the exception of ports 9404 and
9999, which are already used for Prometheus and JMX. Depending on the listener type, the port
number might not be the same as the port number that connects Kafka clients.

Listener type specified as internal or cluster-ip (to expose Kafka using per-broker ClusterIP
services), or for external listeners, as route (OpenShift only), loadbalancer, nodeport or ingress
(Kubernetes only).

Enables TLS encryption for each listener. Default is false. TLS encryption has to be enabled, by
setting it to true, for route and ingress type listeners.

Defines whether the fully-qualified DNS names including the cluster service suffix (usually
.cluster.local) are assigned.

Listener authentication mechanism specified as mTLS, SCRAM-SHA-512, or token-based OAuth
2.0.

External listener configuration specifies how the Kafka cluster is exposed outside OpenShift, such
as through a route, loadbalancer or nodeport.

Optional configuration for a Kafka listener certificate managed by an external CA (certificate
authority). The brokerCertChainAndKey specifies a Secret that contains a server certificate and
a private key. You can configure Kafka listener certificates on any listener with enabled TLS
encryption.

Authorization enables simple, OAUTH 2.0, or OPA authorization on the Kafka broker. Simple
authorization uses the AclAuthorizer Kafka plugin.

Broker configuration. Standard Apache Kafka configuration may be provided, restricted to those
properties not managed directly by AMQ Streams.

Storage size for persistent volumes may be increased and additional volumes may be added to
JBOD storage.

Persistent storage has additional configuration options, such as a storage id and class for dynamic
volume provisioning.

Rack awareness configuration to spread replicas across different racks, data centers, or availability
zones. The topologyKey must match a node label containing the rack ID. The example used in this
configuration specifies a zone using the standard topology.kubernetes.io/zone label.

Prometheus metrics enabled. In this example, metrics are configured for the Prometheus JMX
Exporter (the default metrics exporter).

Rules for exporting metrics in Prometheus format to a Grafana dashboard through the

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

96

https://kubernetes.io/docs/reference/labels-annotations-taints/#topologykubernetesiozone

24

25

26

27

28

29

30

31

32

Rules for exporting metrics in Prometheus format to a Grafana dashboard through the
Prometheus JMX Exporter, which are enabled by referencing a ConfigMap containing

ZooKeeper-specific configuration, which contains properties similar to the Kafka configuration.

The number of ZooKeeper nodes. ZooKeeper clusters or ensembles usually run with an odd number
of nodes, typically three, five, or seven. The majority of nodes must be available in order to maintain
an effective quorum. If the ZooKeeper cluster loses its quorum, it will stop responding to clients and
the Kafka brokers will stop working. Having a stable and highly available ZooKeeper cluster is crucial
for AMQ Streams.

ZooKeeper loggers and log levels.

Entity Operator configuration, which specifies the configuration for the Topic Operator and User
Operator.

Entity Operator TLS sidecar configuration. Entity Operator uses the TLS sidecar for secure
communication with ZooKeeper.

Specified Topic Operator loggers and log levels. This example uses inline logging.

Specified User Operator loggers and log levels.

Kafka Exporter configuration. Kafka Exporter is an optional component for extracting metrics data
from Kafka brokers, in particular consumer lag data. For Kafka Exporter to be able to work properly,
consumer groups need to be in use.

Optional configuration for Cruise Control, which is used to rebalance the Kafka cluster.

8.2.1. Setting limits on brokers using the Kafka Static Quota plugin

Use the Kafka Static Quota plugin to set throughput and storage limits on brokers in your Kafka cluster.
You enable the plugin and set limits by configuring the Kafka resource. You can set a byte-rate
threshold and storage quotas to put limits on the clients interacting with your brokers.

You can set byte-rate thresholds for producer and consumer bandwidth. The total limit is distributed
across all clients accessing the broker. For example, you can set a byte-rate threshold of 40 MBps for
producers. If two producers are running, they are each limited to a throughput of 20 MBps.

Storage quotas throttle Kafka disk storage limits between a soft limit and hard limit. The limits apply to
all available disk space. Producers are slowed gradually between the soft and hard limit. The limits
prevent disks filling up too quickly and exceeding their capacity. Full disks can lead to issues that are
hard to rectify. The hard limit is the maximum storage limit.

NOTE

For JBOD storage, the limit applies across all disks. If a broker is using two 1 TB disks and
the quota is 1.1 TB, one disk might fill and the other disk will be almost empty.

Prerequisites

The Cluster Operator that manages the Kafka cluster is running.

Procedure

CHAPTER 8. CONFIGURING A DEPLOYMENT

97

1

2

3

4

5

6

1. Add the plugin properties to the config of the Kafka resource.
The plugin properties are shown in this example configuration.

Example Kafka Static Quota plugin configuration

Loads the Kafka Static Quota plugin.

Sets the producer byte-rate threshold. 1 MBps in this example.

Sets the consumer byte-rate threshold. 1 MBps in this example.

Sets the lower soft limit for storage. 400 GB in this example.

Sets the higher hard limit for storage. 500 GB in this example.

Sets the interval in seconds between checks on storage. 5 seconds in this example. You can
set this to 0 to disable the check.

2. Update the resource.

Additional resources

KafkaUserQuotas schema reference

8.2.2. Default ZooKeeper configuration values

When deploying ZooKeeper with AMQ Streams, some of the default configuration set by AMQ Streams
differs from the standard ZooKeeper defaults. This is because AMQ Streams sets a number of
ZooKeeper properties with values that are optimized for running ZooKeeper within an OpenShift
environment.

The default configuration for key ZooKeeper properties in AMQ Streams is as follows:

Table 8.1. Default ZooKeeper Properties in AMQ Streams

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 name: my-cluster
spec:
 kafka:
 # ...
 config:
 client.quota.callback.class: io.strimzi.kafka.quotas.StaticQuotaCallback 1
 client.quota.callback.static.produce: 1000000 2
 client.quota.callback.static.fetch: 1000000 3
 client.quota.callback.static.storage.soft: 400000000000 4
 client.quota.callback.static.storage.hard: 500000000000 5
 client.quota.callback.static.storage.check-interval: 5 6

oc apply -f <kafka_configuration_file>

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

98

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index#type-KafkaUserQuotas-reference

Property Default value Description

tickTime 2000 The length of a single tick in milliseconds, which
determines the length of a session timeout.

initLimit 5 The maximum number of ticks that a follower is
allowed to fall behind the leader in a ZooKeeper
cluster.

syncLimit 2 The maximum number of ticks that a follower is
allowed to be out of sync with the leader in a
ZooKeeper cluster.

autopurge.purgeInterval 1 Enables the autopurge feature and sets the time
interval in hours for purging the server-side
ZooKeeper transaction log.

admin.enableServer false Flag to disable the ZooKeeper admin server. The
admin server is not used by AMQ Streams.

IMPORTANT

Modifying these default values as zookeeper.config in the Kafka custom resource may
impact the behavior and performance of your ZooKeeper cluster.

8.3. (PREVIEW) CONFIGURING NODE POOLS

Update the spec properties of the KafkaNodePool custom resource to configure a node pool
deployment.

NOTE

The node pools feature is available as a preview. Node pools are not enabled by default,
so you must enable the KafkaNodePools feature gate before using them.

A node pool refers to a distinct group of Kafka nodes within a Kafka cluster. Each pool has its own unique
configuration, which includes mandatory settings for the number of replicas, roles, and storage
allocation.

Optionally, you can also specify values for the following properties:

resources to specify memory and cpu requests and limits

template to specify custom configuration for pods and other OpenShift resources

jvmOptions to specify custom JVM configuration for heap size, runtime and other options

The Kafka resource represents the configuration for all nodes in the Kafka cluster. The KafkaNodePool
resource represents the configuration for nodes only in the node pool. If a configuration property is not
specified in KafkaNodePool, it is inherited from the Kafka resource. Configuration specified in the
KafkaNodePool resource takes precedence if set in both resources. For example, if both the node pool

CHAPTER 8. CONFIGURING A DEPLOYMENT

99

and Kafka configuration includes jvmOptions, the values specified in the node pool configuration are
used. When -Xmx: 1024m is set in KafkaNodePool.spec.jvmOptions and -Xms: 512m is set in
Kafka.spec.kafka.jvmOptions, the node uses the value from its node pool configuration.

Properties from Kafka and KafkaNodePool schemas are not combined. To clarify, if
KafkaNodePool.spec.template includes only podSet.metadata.labels, and
Kafka.spec.kafka.template includes podSet.metadata.annotations and pod.metadata.labels, the
template values from the Kafka configuration are ignored since there is a template value in the node
pool configuration.

Node pools can be used with Kafka clusters that operate in KRaft mode (using Kafka Raft metadata) or
use ZooKeeper for cluster management. If you are using KRaft mode, you can specify roles for all nodes
in the node pool to operate as brokers, controllers, or both. If you are using ZooKeeper, nodes must be
set as brokers only.

IMPORTANT

KRaft mode is not ready for production in Apache Kafka or in AMQ Streams.

For a deeper understanding of the node pool configuration options, refer to the AMQ Streams Custom
Resource API Reference.

NOTE

While the KafkaNodePools feature gate that enables node pools is in alpha phase,
replica and storage configuration properties in the KafkaNodePool resource must also
be present in the Kafka resource. The configuration in the Kafka resource is ignored
when node pools are used. Similarly, ZooKeeper configuration properties must also be
present in the Kafka resource when using KRaft mode. These properties are also ignored.

Example configuration for a node pool in a cluster using ZooKeeper

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaNodePool
metadata:
 name: pool-a 1
 labels:
 strimzi.io/cluster: my-cluster 2
spec:
 replicas: 3 3
 roles:
 - broker 4
 storage: 5
 type: jbod
 volumes:
 - id: 0
 type: persistent-claim
 size: 100Gi
 deleteClaim: false
 resources: 6
 requests:
 memory: 64Gi
 cpu: "8"

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

100

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index

1

2

3

4

5

6

1

Unique name for the node pool.

The Kafka cluster the node pool belongs to. A node pool can only belong to a single cluster.

Number of replicas for the nodes.

Roles for the nodes in the node pool, which can only be broker when using Kafka with ZooKeeper.

Storage specification for the nodes.

Requests for reservation of supported resources, currently cpu and memory, and limits to specify
the maximum resources that can be consumed.

Example configuration for a node pool in a cluster using KRaft mode

Roles for the nodes in the node pool. In this example, the nodes have dual roles as controllers and
brokers.

NOTE

The configuration for the Kafka resource must be suitable for KRaft mode. Currently,
KRaft mode has a number of limitations .

 limits:
 memory: 64Gi
 cpu: "12"

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaNodePool
metadata:
 name: kraft-dual-role
 labels:
 strimzi.io/cluster: my-cluster
spec:
 replicas: 3
 roles: 1
 - controller
 - broker
 storage:
 type: jbod
 volumes:
 - id: 0
 type: persistent-claim
 size: 20Gi
 deleteClaim: false
 resources:
 requests:
 memory: 64Gi
 cpu: "8"
 limits:
 memory: 64Gi
 cpu: "12"

CHAPTER 8. CONFIGURING A DEPLOYMENT

101

8.3.1. (Preview) Assigning IDs to node pools for scaling operations

This procedure describes how to use annotations for advanced node ID handling by the Cluster
Operator when performing scaling operations on node pools. You specify the node IDs to use, rather
than the Cluster Operator using the next ID in sequence. Management of node IDs in this way gives
greater control.

To add a range of IDs, you assign the following annotations to the KafkaNodePool resource:

strimzi.io/next-node-ids to add a range of IDs that are used for new brokers

strimzi.io/remove-node-ids to add a range of IDs for removing existing brokers

You can specify an array of individual node IDs, ID ranges, or a combination of both. For example, you
can specify the following range of IDs: [0, 1, 2, 10-20, 30] for scaling up the Kafka node pool. This
format allows you to specify a combination of individual node IDs (0, 1, 2, 30) as well as a range of IDs
(10-20).

In a typical scenario, you might specify a range of IDs for scaling up and a single node ID to remove a
specific node when scaling down.

In this procedure, we add the scaling annotations to node pools as follows:

pool-a is assigned a range of IDs for scaling up

pool-b is assigned a range of IDs for scaling down

During the scaling operation, IDs are used as follows:

Scale up picks up the lowest available ID in the range for the new node.

Scale down removes the node with the highest available ID in the range.

If there are gaps in the sequence of node IDs assigned in the node pool, the next node to be added is
assigned an ID that fills the gap.

The annotations don’t need to be updated after every scaling operation. Any unused IDs are still valid for
the next scaling event.

The Cluster Operator allows you to specify a range of IDs in either ascending or descending order, so
you can define them in the order the nodes are scaled. For example, when scaling up, you can specify a
range such as [1000-1999], and the new nodes are assigned the next lowest IDs: 1000, 1001, 1002, 1003,
and so on. Conversely, when scaling down, you can specify a range like [1999-1000], ensuring that nodes
with the next highest IDs are removed: 1003, 1002, 1001, 1000, and so on.

If you don’t specify an ID range using the annotations, the Cluster Operator follows its default behavior
for handling IDs during scaling operations. Node IDs start at 0 (zero) and run sequentially across the
Kafka cluster. The next lowest ID is assigned to a new node. Gaps to node IDs are filled across the
cluster. This means that they might not run sequentially within a node pool. The default behavior for
scaling up is to add the next lowest available node ID across the cluster; and for scaling down, it is to
remove the node in the node pool with the highest available node ID. The default approach is also
applied if the assigned range of IDs is misformatted, the scaling up range runs out of IDs, or the scaling
down range does not apply to any in-use nodes.

Prerequisites

The Cluster Operator must be deployed.

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

102

Procedure

1. Annotate the node pool with the IDs to use when scaling up or scaling down, as shown in the
following examples.
IDs for scaling up are assigned to node pool pool-a:

Assigning IDs for scaling up

The lowest available ID from this range is used when adding a node to pool-a.

IDs for scaling down are assigned to node pool pool-b:

Assigning IDs for scaling down

The highest available ID from this range is removed when scaling down pool-b.

2. You can now scale the node pool.
For more information, see the following:

Section 8.3.2, “(Preview) Adding nodes to a node pool”

Section 8.3.3, “(Preview) Removing nodes from a node pool”

Section 8.3.4, “(Preview) Moving nodes between node pools”

On reconciliation, a warning is given if the annotations are misformatted.

8.3.2. (Preview) Adding nodes to a node pool

This procedure describes how to scale up a node pool to add new nodes.

In this procedure, we start with three nodes for node pool pool-a:

Kafka nodes in the node pool

Node IDs are appended to the name of the node on creation. We add node my-cluster-pool-a-kafka-3,
which has a node ID of 3.

NOTE

During this process, the ID of the node that holds the partition replicas changes. Consider
any dependencies that reference the node ID.

Prerequisites

oc annotate kafkanodepool pool-a strimzi.io/next-node-ids="[0,1,2,10-20,30]"

oc annotate kafkanodepool pool-b strimzi.io/remove-node-ids="[60-50,9,8,7]"

NAME READY STATUS RESTARTS
my-cluster-pool-a-kafka-0 1/1 Running 0
my-cluster-pool-a-kafka-1 1/1 Running 0
my-cluster-pool-a-kafka-2 1/1 Running 0

CHAPTER 8. CONFIGURING A DEPLOYMENT

103

The Cluster Operator must be deployed.

(Optional) For scale up operations, you can specify the range of node IDs to use .
If you have assigned a range of node IDs for the operation, the ID of the node being added is
determined by the sequence of nodes given. Otherwise, the lowest available node ID across the
cluster is used.

Procedure

1. Create a new node in the node pool.
For example, node pool pool-a has three replicas. We add a node by increasing the number of
replicas:

2. Check the status of the deployment and wait for the pods in the node pool to be created and
have a status of READY.

Output shows four Kafka nodes in the node pool

3. Reassign the partitions after increasing the number of nodes in the node pool.
After scaling up a node pool, you can use the Cruise Control add-brokers mode to move
partition replicas from existing brokers to the newly added brokers.

8.3.3. (Preview) Removing nodes from a node pool

This procedure describes how to scale down a node pool to remove nodes.

In this procedure, we start with four nodes for node pool pool-a:

Kafka nodes in the node pool

Node IDs are appended to the name of the node on creation. We remove node my-cluster-pool-a-
kafka-3, which has a node ID of 3.

NOTE

During this process, the ID of the node that holds the partition replicas changes. Consider
any dependencies that reference the node ID.

oc scale kafkanodepool pool-a --replicas=4

oc get pods -n <my_cluster_operator_namespace>

NAME READY STATUS RESTARTS
my-cluster-pool-a-kafka-0 1/1 Running 0
my-cluster-pool-a-kafka-1 1/1 Running 0
my-cluster-pool-a-kafka-2 1/1 Running 0
my-cluster-pool-a-kafka-3 1/1 Running 0

NAME READY STATUS RESTARTS
my-cluster-pool-a-kafka-0 1/1 Running 0
my-cluster-pool-a-kafka-1 1/1 Running 0
my-cluster-pool-a-kafka-2 1/1 Running 0
my-cluster-pool-a-kafka-3 1/1 Running 0

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

104

Prerequisites

The Cluster Operator must be deployed.

(Optional) For scale down operations, you can specify the range of node IDs to use in the
operation.
If you have assigned a range of node IDs for the operation, the ID of the node being removed is
determined by the sequence of nodes given. Otherwise, the node with the highest available ID in
the node pool is removed.

Procedure

1. Reassign the partitions before decreasing the number of nodes in the node pool.
Before scaling down a node pool, you can use the Cruise Control remove-brokers mode to
move partition replicas off the brokers that are going to be removed.

2. After the reassignment process is complete, and the node being removed has no live partitions,
reduce the number of Kafka nodes in the node pool.
For example, node pool pool-a has four replicas. We remove a node by decreasing the number
of replicas:

Output shows three Kafka nodes in the node pool

8.3.4. (Preview) Moving nodes between node pools

This procedure describes how to move nodes between source and target Kafka node pools without
downtime. You create a new node on the target node pool and reassign partitions to move data from
the old node on the source node pool. When the replicas on the new node are in-sync, you can delete
the old node.

In this procedure, we start with two node pools:

pool-a with three replicas is the target node pool

pool-b with four replicas is the source node pool

We scale up pool-a, and reassign partitions and scale down pool-b, which results in the following:

pool-a with four replicas

pool-b with three replicas

NOTE

During this process, the ID of the node that holds the partition replicas changes. Consider
any dependencies that reference the node ID.

oc scale kafkanodepool pool-a --replicas=3

NAME READY STATUS RESTARTS
my-cluster-pool-b-kafka-0 1/1 Running 0
my-cluster-pool-b-kafka-1 1/1 Running 0
my-cluster-pool-b-kafka-2 1/1 Running 0

CHAPTER 8. CONFIGURING A DEPLOYMENT

105

Prerequisites

The Cluster Operator must be deployed.

(Optional) For scale up and scale down operations, you can specify the range of node IDs to
use.
If you have assigned node IDs for the operation, the ID of the node being added or removed is
determined by the sequence of nodes given. Otherwise, the lowest available node ID across the
cluster is used when adding nodes; and the node with the highest available ID in the node pool is
removed.

Procedure

1. Create a new node in the target node pool.
For example, node pool pool-a has three replicas. We add a node by increasing the number of
replicas:

2. Check the status of the deployment and wait for the pods in the node pool to be created and
have a status of READY.

Output shows four Kafka nodes in the target node pool

Node IDs are appended to the name of the node on creation. We add node my-cluster-pool-a-
kafka-5, which has a node ID of 5.

3. Reassign the partitions from the old node to the new node.
Before scaling down the source node pool, you can use the Cruise Control remove-brokers
mode to move partition replicas off the brokers that are going to be removed.

4. After the reassignment process is complete, reduce the number of Kafka nodes in the source
node pool.
For example, node pool pool-b has four replicas. We remove a node by decreasing the number
of replicas:

The node with the highest ID within a pool is removed.

Output shows three Kafka nodes in the source node pool

oc scale kafkanodepool pool-a --replicas=4

oc get pods -n <my_cluster_operator_namespace>

NAME READY STATUS RESTARTS
my-cluster-pool-a-kafka-0 1/1 Running 0
my-cluster-pool-a-kafka-1 1/1 Running 0
my-cluster-pool-a-kafka-4 1/1 Running 0
my-cluster-pool-a-kafka-5 1/1 Running 0

oc scale kafkanodepool pool-b --replicas=3

NAME READY STATUS RESTARTS
my-cluster-pool-b-kafka-2 1/1 Running 0
my-cluster-pool-b-kafka-3 1/1 Running 0
my-cluster-pool-b-kafka-6 1/1 Running 0

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

106

8.3.5. (Preview) Migrating existing Kafka clusters to use Kafka node pools

This procedure describes how to migrate existing Kafka clusters to use Kafka node pools. After you have
updated the Kafka cluster, you can use the node pools to manage the configuration of nodes within each
pool.

NOTE

While the KafkaNodePools feature gate that enables node pools is in alpha phase,
replica and storage configuration in the KafkaNodePool resource must also be present in
the Kafka resource. The configuration is ignored when node pools are being used.

Prerequisites

The Cluster Operator must be deployed.

Procedure

1. Create a new KafkaNodePool resource.

a. Name the resource kafka.

b. Point a strimzi.io/cluster label to your existing Kafka resource.

c. Set the replica count and storage configuration to match your current Kafka cluster.

d. Set the roles to broker.

Example configuration for a node pool used in migrating a Kafka cluster

2. Apply the KafkaNodePool resource:

By applying this resource, you switch Kafka to using node pools.

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaNodePool
metadata:
 name: kafka
 labels:
 strimzi.io/cluster: my-cluster
spec:
 replicas: 3
 roles:
 - broker
 storage:
 type: jbod
 volumes:
 - id: 0
 type: persistent-claim
 size: 100Gi
 deleteClaim: false

oc apply -f <node_pool_configuration_file>

CHAPTER 8. CONFIGURING A DEPLOYMENT

107

There is no change or rolling update and resources are identical to how they were before.

3. Update the STRIMZI_FEATURE_GATES environment variable in the Cluster Operator
configuration to include +KafkaNodePools.

4. Enable the KafkaNodePools feature gate in the Kafka resource using the strimzi.io/node-
pools: enabled annotation.

Example configuration for a node pool in a cluster using ZooKeeper

5. Apply the Kafka resource:

8.4. CONFIGURING THE ENTITY OPERATOR

Use the entityOperator property in Kafka.spec to configure the Entity Operator. The Entity Operator
is responsible for managing Kafka-related entities in a running Kafka cluster. It comprises the following
operators:

Topic Operator to manage Kafka topics

User Operator to manage Kafka users

By configuring the Kafka resource, the Cluster Operator can deploy the Entity Operator, including one
or both operators. Once deployed, the operators are automatically configured to handle the topics and
users of the Kafka cluster.

Each operator can only monitor a single namespace. For more information, see Section 1.2.1, “Watching
AMQ Streams resources in OpenShift namespaces”.

env:
 - name: STRIMZI_FEATURE_GATES
 value: +KafkaNodePools

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 name: my-cluster
 annotations:
 strimzi.io/node-pools: enabled
spec:
 kafka:
 version: 3.5.0
 replicas: 3
 # ...
 storage:
 type: jbod
 volumes:
 - id: 0
 type: persistent-claim
 size: 100Gi
 deleteClaim: false

oc apply -f <kafka_configuration_file>

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

108

The entityOperator property supports several sub-properties:

tlsSidecar

topicOperator

userOperator

template

The tlsSidecar property contains the configuration of the TLS sidecar container, which is used to
communicate with ZooKeeper.

The template property contains the configuration of the Entity Operator pod, such as labels,
annotations, affinity, and tolerations. For more information on configuring templates, see Section 8.16,
“Customizing OpenShift resources”.

The topicOperator property contains the configuration of the Topic Operator. When this option is
missing, the Entity Operator is deployed without the Topic Operator.

The userOperator property contains the configuration of the User Operator. When this option is
missing, the Entity Operator is deployed without the User Operator.

For more information on the properties used to configure the Entity Operator, see the
EntityUserOperatorSpec schema reference.

Example of basic configuration enabling both operators

If an empty object ({}) is used for the topicOperator and userOperator, all properties use their default
values.

When both topicOperator and userOperator properties are missing, the Entity Operator is not
deployed.

8.4.1. Configuring the Topic Operator

Use topicOperator properties in Kafka.spec.entityOperator to configure the Topic Operator.

NOTE

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 name: my-cluster
spec:
 kafka:
 # ...
 zookeeper:
 # ...
 entityOperator:
 topicOperator: {}
 userOperator: {}

CHAPTER 8. CONFIGURING A DEPLOYMENT

109

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index#type-EntityUserOperatorSpec-reference

NOTE

If you are using the preview of unidirectional topic management, the following properties
are not used and will be ignored:
Kafka.spec.entityOperator.topicOperator.zookeeperSessionTimeoutSeconds and
Kafka.spec.entityOperator.topicOperator.topicMetadataMaxAttempts. For more
information on unidirectional topic management, refer to Section 9.1, “Topic
management modes”.

The following properties are supported:

watchedNamespace

The OpenShift namespace in which the Topic Operator watches for KafkaTopic resources. Default
is the namespace where the Kafka cluster is deployed.

reconciliationIntervalSeconds

The interval between periodic reconciliations in seconds. Default 120.

zookeeperSessionTimeoutSeconds

The ZooKeeper session timeout in seconds. Default 18.

topicMetadataMaxAttempts

The number of attempts at getting topic metadata from Kafka. The time between each attempt is
defined as an exponential back-off. Consider increasing this value when topic creation might take
more time due to the number of partitions or replicas. Default 6.

image

The image property can be used to configure the container image which will be used. To learn more,
refer to the information provided on configuring the image property`.

resources

The resources property configures the amount of resources allocated to the Topic Operator. You
can specify requests and limits for memory and cpu resources. The requests should be enough to
ensure a stable performance of the operator.

logging

The logging property configures the logging of the Topic Operator. To learn more, refer to the
information provided on Topic Operator logging .

Example Topic Operator configuration

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 name: my-cluster
spec:
 kafka:
 # ...
 zookeeper:
 # ...
 entityOperator:
 # ...
 topicOperator:
 watchedNamespace: my-topic-namespace
 reconciliationIntervalSeconds: 60
 resources:
 requests:

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

110

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index#con-common-configuration-images-reference
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index#property-topic-operator-logging-reference

8.4.2. Configuring the User Operator

Use userOperator properties in Kafka.spec.entityOperator to configure the User Operator. The
following properties are supported:

watchedNamespace

The OpenShift namespace in which the User Operator watches for KafkaUser resources. Default is
the namespace where the Kafka cluster is deployed.

reconciliationIntervalSeconds

The interval between periodic reconciliations in seconds. Default 120.

image

The image property can be used to configure the container image which will be used. To learn more,
refer to the information provided on configuring the image property`.

resources

The resources property configures the amount of resources allocated to the User Operator. You
can specify requests and limits for memory and cpu resources. The requests should be enough to
ensure a stable performance of the operator.

logging

The logging property configures the logging of the User Operator. To learn more, refer to the
information provided on User Operator logging.

secretPrefix

The secretPrefix property adds a prefix to the name of all Secrets created from the KafkaUser
resource. For example, secretPrefix: kafka- would prefix all Secret names with kafka-. So a
KafkaUser named my-user would create a Secret named kafka-my-user.

Example User Operator configuration

 cpu: "1"
 memory: 500Mi
 limits:
 cpu: "1"
 memory: 500Mi
 # ...

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 name: my-cluster
spec:
 kafka:
 # ...
 zookeeper:
 # ...
 entityOperator:
 # ...
 userOperator:
 watchedNamespace: my-user-namespace
 reconciliationIntervalSeconds: 60
 resources:
 requests:
 cpu: "1"

CHAPTER 8. CONFIGURING A DEPLOYMENT

111

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index#con-common-configuration-images-reference
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index#property-user-operator-logging-reference

8.5. CONFIGURING THE CLUSTER OPERATOR

Use environment variables to configure the Cluster Operator. Specify the environment variables for the
container image of the Cluster Operator in its Deployment configuration file.

NOTE

The Deployment configuration file provided with the AMQ Streams release artifacts is
install/cluster-operator/060-Deployment-strimzi-cluster-operator.yaml.

You can use the following environment variables to configure the Cluster Operator. If you are running
Cluster Operator replicas in standby mode, there are additional environment variables for enabling
leader election.

STRIMZI_NAMESPACE

A comma-separated list of namespaces that the operator operates in. When not set, set to empty
string, or set to *, the Cluster Operator operates in all namespaces.
The Cluster Operator deployment might use the downward API to set this automatically to the
namespace the Cluster Operator is deployed in.

Example configuration for Cluster Operator namespaces

STRIMZI_FULL_RECONCILIATION_INTERVAL_MS

Optional, default is 120000 ms. The interval between periodic reconciliations, in milliseconds.

STRIMZI_OPERATION_TIMEOUT_MS

Optional, default 300000 ms. The timeout for internal operations, in milliseconds. Increase this value
when using AMQ Streams on clusters where regular OpenShift operations take longer than usual
(because of slow downloading of Docker images, for example).

STRIMZI_ZOOKEEPER_ADMIN_SESSION_TIMEOUT_MS

Optional, default 10000 ms. The session timeout for the Cluster Operator’s ZooKeeper admin client,
in milliseconds. Increase the value if ZooKeeper requests from the Cluster Operator are regularly
failing due to timeout issues. There is a maximum allowed session time set on the ZooKeeper server
side via the maxSessionTimeout config. By default, the maximum session timeout value is 20 times
the default tickTime (whose default is 2000) at 40000 ms. If you require a higher timeout, change
the maxSessionTimeout ZooKeeper server configuration value.

STRIMZI_OPERATIONS_THREAD_POOL_SIZE

Optional, default 10. The worker thread pool size, which is used for various asynchronous and
blocking operations that are run by the Cluster Operator.

 memory: 500Mi
 limits:
 cpu: "1"
 memory: 500Mi
 # ...

env:
 - name: STRIMZI_NAMESPACE
 valueFrom:
 fieldRef:
 fieldPath: metadata.namespace

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

112

STRIMZI_OPERATOR_NAME

Optional, defaults to the pod’s hostname. The operator name identifies the AMQ Streams instance
when emitting OpenShift events.

STRIMZI_OPERATOR_NAMESPACE

The name of the namespace where the Cluster Operator is running. Do not configure this variable
manually. Use the downward API.

STRIMZI_OPERATOR_NAMESPACE_LABELS

Optional. The labels of the namespace where the AMQ Streams Cluster Operator is running. Use
namespace labels to configure the namespace selector in network policies. Network policies allow
the AMQ Streams Cluster Operator access only to the operands from the namespace with these
labels. When not set, the namespace selector in network policies is configured to allow access to the
Cluster Operator from any namespace in the OpenShift cluster.

STRIMZI_LABELS_EXCLUSION_PATTERN

Optional, default regex pattern is ^app.kubernetes.io/(?!part-of).*. The regex exclusion pattern
used to filter labels propagation from the main custom resource to its subresources. The labels
exclusion filter is not applied to labels in template sections such as
spec.kafka.template.pod.metadata.labels.

STRIMZI_CUSTOM_{COMPONENT_NAME}_LABELS

Optional. One or more custom labels to apply to all the pods created by the {COMPONENT_NAME}
custom resource. The Cluster Operator labels the pods when the custom resource is created or is
next reconciled.
Labels can be applied to the following components:

KAFKA

KAFKA_CONNECT

KAFKA_CONNECT_BUILD

ZOOKEEPER

ENTITY_OPERATOR

KAFKA_MIRROR_MAKER2

env:
 - name: STRIMZI_OPERATOR_NAMESPACE
 valueFrom:
 fieldRef:
 fieldPath: metadata.namespace

env:
 - name: STRIMZI_OPERATOR_NAMESPACE_LABELS
 value: label1=value1,label2=value2

env:
 - name: STRIMZI_LABELS_EXCLUSION_PATTERN
 value: "^key1.*"

CHAPTER 8. CONFIGURING A DEPLOYMENT

113

KAFKA_MIRROR_MAKER

CRUISE_CONTROL

KAFKA_BRIDGE

KAFKA_EXPORTER

STRIMZI_CUSTOM_RESOURCE_SELECTOR

Optional. The label selector to filter the custom resources handled by the Cluster Operator. The
operator will operate only on those custom resources that have the specified labels set. Resources
without these labels will not be seen by the operator. The label selector applies to Kafka,
KafkaConnect, KafkaBridge, KafkaMirrorMaker, and KafkaMirrorMaker2 resources.
KafkaRebalance and KafkaConnector resources are operated only when their corresponding Kafka
and Kafka Connect clusters have the matching labels.

STRIMZI_KAFKA_IMAGES

Required. The mapping from the Kafka version to the corresponding Docker image containing a
Kafka broker for that version. The required syntax is whitespace or comma-separated
<version>=<image> pairs. For example 3.4.0=registry.redhat.io/amq-streams/kafka-34-
rhel8:2.5.1, 3.5.0=registry.redhat.io/amq-streams/kafka-35-rhel8:2.5.1. This is used when a
Kafka.spec.kafka.version property is specified but not the Kafka.spec.kafka.image in the Kafka
resource.

STRIMZI_DEFAULT_KAFKA_INIT_IMAGE

Optional, default registry.redhat.io/amq-streams/strimzi-rhel8-operator:2.5.1. The image name to
use as default for the init container if no image is specified as the kafka-init-image in the Kafka
resource. The init container is started before the broker for initial configuration work, such as rack
support.

STRIMZI_KAFKA_CONNECT_IMAGES

Required. The mapping from the Kafka version to the corresponding Docker image of Kafka Connect
for that version. The required syntax is whitespace or comma-separated <version>=<image> pairs.
For example 3.4.0=registry.redhat.io/amq-streams/kafka-34-rhel8:2.5.1,
3.5.0=registry.redhat.io/amq-streams/kafka-35-rhel8:2.5.1. This is used when a
KafkaConnect.spec.version property is specified but not the KafkaConnect.spec.image.

STRIMZI_KAFKA_MIRROR_MAKER_IMAGES

Required. The mapping from the Kafka version to the corresponding Docker image of MirrorMaker
for that version. The required syntax is whitespace or comma-separated <version>=<image> pairs.
For example 3.4.0=registry.redhat.io/amq-streams/kafka-34-rhel8:2.5.1,
3.5.0=registry.redhat.io/amq-streams/kafka-35-rhel8:2.5.1. This is used when a
KafkaMirrorMaker.spec.version property is specified but not the KafkaMirrorMaker.spec.image.

STRIMZI_DEFAULT_TOPIC_OPERATOR_IMAGE

Optional, default registry.redhat.io/amq-streams/strimzi-rhel8-operator:2.5.1. The image name to
use as the default when deploying the Topic Operator if no image is specified as the
Kafka.spec.entityOperator.topicOperator.image in the Kafka resource.

STRIMZI_DEFAULT_USER_OPERATOR_IMAGE

Optional, default registry.redhat.io/amq-streams/strimzi-rhel8-operator:2.5.1. The image name to

env:
 - name: STRIMZI_CUSTOM_RESOURCE_SELECTOR
 value: label1=value1,label2=value2

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

114

Optional, default registry.redhat.io/amq-streams/strimzi-rhel8-operator:2.5.1. The image name to
use as the default when deploying the User Operator if no image is specified as the
Kafka.spec.entityOperator.userOperator.image in the Kafka resource.

STRIMZI_DEFAULT_TLS_SIDECAR_ENTITY_OPERATOR_IMAGE

Optional, default registry.redhat.io/amq-streams/kafka-35-rhel8:2.5.1. The image name to use as
the default when deploying the sidecar container for the Entity Operator if no image is specified as
the Kafka.spec.entityOperator.tlsSidecar.image in the Kafka resource. The sidecar provides TLS
support.

STRIMZI_IMAGE_PULL_POLICY

Optional. The ImagePullPolicy that is applied to containers in all pods managed by the Cluster
Operator. The valid values are Always, IfNotPresent, and Never. If not specified, the OpenShift
defaults are used. Changing the policy will result in a rolling update of all your Kafka, Kafka Connect,
and Kafka MirrorMaker clusters.

STRIMZI_IMAGE_PULL_SECRETS

Optional. A comma-separated list of Secret names. The secrets referenced here contain the
credentials to the container registries where the container images are pulled from. The secrets are
specified in the imagePullSecrets property for all pods created by the Cluster Operator. Changing
this list results in a rolling update of all your Kafka, Kafka Connect, and Kafka MirrorMaker clusters.

STRIMZI_KUBERNETES_VERSION

Optional. Overrides the OpenShift version information detected from the API server.

Example configuration for OpenShift version override

KUBERNETES_SERVICE_DNS_DOMAIN

Optional. Overrides the default OpenShift DNS domain name suffix.
By default, services assigned in the OpenShift cluster have a DNS domain name that uses the
default suffix cluster.local.

For example, for broker kafka-0:

The DNS domain name is added to the Kafka broker certificates used for hostname verification.

If you are using a different DNS domain name suffix in your cluster, change the
KUBERNETES_SERVICE_DNS_DOMAIN environment variable from the default to the one you are
using in order to establish a connection with the Kafka brokers.

env:
 - name: STRIMZI_KUBERNETES_VERSION
 value: |
 major=1
 minor=16
 gitVersion=v1.16.2
 gitCommit=c97fe5036ef3df2967d086711e6c0c405941e14b
 gitTreeState=clean
 buildDate=2019-10-15T19:09:08Z
 goVersion=go1.12.10
 compiler=gc
 platform=linux/amd64

<cluster-name>-kafka-0.<cluster-name>-kafka-brokers.<namespace>.svc.cluster.local

CHAPTER 8. CONFIGURING A DEPLOYMENT

115

STRIMZI_CONNECT_BUILD_TIMEOUT_MS

Optional, default 300000 ms. The timeout for building new Kafka Connect images with additional
connectors, in milliseconds. Consider increasing this value when using AMQ Streams to build
container images containing many connectors or using a slow container registry.

STRIMZI_NETWORK_POLICY_GENERATION

Optional, default true. Network policy for resources. Network policies allow connections between
Kafka components.
Set this environment variable to false to disable network policy generation. You might do this, for
example, if you want to use custom network policies. Custom network policies allow more control over
maintaining the connections between components.

STRIMZI_DNS_CACHE_TTL

Optional, default 30. Number of seconds to cache successful name lookups in local DNS resolver.
Any negative value means cache forever. Zero means do not cache, which can be useful for avoiding
connection errors due to long caching policies being applied.

STRIMZI_POD_SET_RECONCILIATION_ONLY

Optional, default false. When set to true, the Cluster Operator reconciles only the StrimziPodSet
resources and any changes to the other custom resources (Kafka, KafkaConnect, and so on) are
ignored. This mode is useful for ensuring that your pods are recreated if needed, but no other
changes happen to the clusters.

STRIMZI_FEATURE_GATES

Optional. Enables or disables the features and functionality controlled by feature gates.

STRIMZI_POD_SECURITY_PROVIDER_CLASS

Optional. Configuration for the pluggable PodSecurityProvider class, which can be used to provide
the security context configuration for Pods and containers.

8.5.1. Restricting access to the Cluster Operator using network policy

Use the STRIMZI_OPERATOR_NAMESPACE_LABELS environment variable to establish network
policy for the Cluster Operator using namespace labels.

The Cluster Operator can run in the same namespace as the resources it manages, or in a separate
namespace. By default, the STRIMZI_OPERATOR_NAMESPACE environment variable is configured
to use the downward API to find the namespace the Cluster Operator is running in. If the Cluster
Operator is running in the same namespace as the resources, only local access is required and allowed
by AMQ Streams.

If the Cluster Operator is running in a separate namespace to the resources it manages, any namespace
in the OpenShift cluster is allowed access to the Cluster Operator unless network policy is configured.
By adding namespace labels, access to the Cluster Operator is restricted to the namespaces specified.

Network policy configured for the Cluster Operator deployment

8.5.2. Configuring periodic reconciliation by the Cluster Operator

#...
env:
 # ...
 - name: STRIMZI_OPERATOR_NAMESPACE_LABELS
 value: label1=value1,label2=value2
 #...

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

116

Use the STRIMZI_FULL_RECONCILIATION_INTERVAL_MS variable to set the time interval for
periodic reconciliations by the Cluster Operator. Replace its value with the required interval in
milliseconds.

Reconciliation period configured for the Cluster Operator deployment

The Cluster Operator reacts to all notifications about applicable cluster resources received from the
OpenShift cluster. If the operator is not running, or if a notification is not received for any reason,
resources will get out of sync with the state of the running OpenShift cluster. In order to handle failovers
properly, a periodic reconciliation process is executed by the Cluster Operator so that it can compare
the state of the resources with the current cluster deployments in order to have a consistent state
across all of them.

Additional resources

Downward API

8.5.3. Running multiple Cluster Operator replicas with leader election

The default Cluster Operator configuration enables leader election to run multiple parallel replicas of
the Cluster Operator. One replica is elected as the active leader and operates the deployed resources.
The other replicas run in standby mode. When the leader stops or fails, one of the standby replicas is
elected as the new leader and starts operating the deployed resources.

By default, AMQ Streams runs with a single Cluster Operator replica that is always the leader replica.
When a single Cluster Operator replica stops or fails, OpenShift starts a new replica.

Running the Cluster Operator with multiple replicas is not essential. But it’s useful to have replicas on
standby in case of large-scale disruptions caused by major failure. For example, suppose multiple worker
nodes or an entire availability zone fails. This failure might cause the Cluster Operator pod and many
Kafka pods to go down at the same time. If subsequent pod scheduling causes congestion through lack
of resources, this can delay operations when running a single Cluster Operator.

8.5.3.1. Enabling leader election for Cluster Operator replicas

Configure leader election environment variables when running additional Cluster Operator replicas. The
following environment variables are supported:

STRIMZI_LEADER_ELECTION_ENABLED

Optional, disabled (false) by default. Enables or disables leader election, which allows additional
Cluster Operator replicas to run on standby.

NOTE

Leader election is disabled by default. It is only enabled when applying this environment
variable on installation.

#...
env:
 # ...
 - name: STRIMZI_FULL_RECONCILIATION_INTERVAL_MS
 value: "120000"
 #...

CHAPTER 8. CONFIGURING A DEPLOYMENT

117

https://docs.openshift.com/container-platform/latest/nodes/containers/nodes-containers-downward-api.html

STRIMZI_LEADER_ELECTION_LEASE_NAME

Required when leader election is enabled. The name of the OpenShift Lease resource that is used
for the leader election.

STRIMZI_LEADER_ELECTION_LEASE_NAMESPACE

Required when leader election is enabled. The namespace where the OpenShift Lease resource
used for leader election is created. You can use the downward API to configure it to the namespace
where the Cluster Operator is deployed.

STRIMZI_LEADER_ELECTION_IDENTITY

Required when leader election is enabled. Configures the identity of a given Cluster Operator
instance used during the leader election. The identity must be unique for each operator instance.
You can use the downward API to configure it to the name of the pod where the Cluster Operator is
deployed.

STRIMZI_LEADER_ELECTION_LEASE_DURATION_MS

Optional, default 15000 ms. Specifies the duration the acquired lease is valid.

STRIMZI_LEADER_ELECTION_RENEW_DEADLINE_MS

Optional, default 10000 ms. Specifies the period the leader should try to maintain leadership.

STRIMZI_LEADER_ELECTION_RETRY_PERIOD_MS

Optional, default 2000 ms. Specifies the frequency of updates to the lease lock by the leader.

8.5.3.2. Configuring Cluster Operator replicas

To run additional Cluster Operator replicas in standby mode, you will need to increase the number of
replicas and enable leader election. To configure leader election, use the leader election environment
variables.

To make the required changes, configure the following Cluster Operator installation files located in
install/cluster-operator/:

060-Deployment-strimzi-cluster-operator.yaml

022-ClusterRole-strimzi-cluster-operator-role.yaml

022-RoleBinding-strimzi-cluster-operator.yaml

Leader election has its own ClusterRole and RoleBinding RBAC resources that target the namespace
where the Cluster Operator is running, rather than the namespace it is watching.

The default deployment configuration creates a Lease resource called strimzi-cluster-operator in the

env:
 - name: STRIMZI_LEADER_ELECTION_LEASE_NAMESPACE
 valueFrom:
 fieldRef:
 fieldPath: metadata.namespace

env:
 - name: STRIMZI_LEADER_ELECTION_IDENTITY
 valueFrom:
 fieldRef:
 fieldPath: metadata.name

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

118

same namespace as the Cluster Operator. The Cluster Operator uses leases to manage leader election.
The RBAC resources provide the permissions to use the Lease resource. If you use a different Lease
name or namespace, update the ClusterRole and RoleBinding files accordingly.

Prerequisites

You need an account with permission to create and manage CustomResourceDefinition and
RBAC (ClusterRole, and RoleBinding) resources.

Procedure

Edit the Deployment resource that is used to deploy the Cluster Operator, which is defined in the 060-
Deployment-strimzi-cluster-operator.yaml file.

1. Change the replicas property from the default (1) to a value that matches the required number
of replicas.

Increasing the number of Cluster Operator replicas

2. Check that the leader election env properties are set.
If they are not set, configure them.

To enable leader election, STRIMZI_LEADER_ELECTION_ENABLED must be set to true
(default).

In this example, the name of the lease is changed to my-strimzi-cluster-operator.

Configuring leader election environment variables for the Cluster Operator

apiVersion: apps/v1
kind: Deployment
metadata:
 name: strimzi-cluster-operator
 labels:
 app: strimzi
spec:
 replicas: 3

...
spec
 containers:
 - name: strimzi-cluster-operator
 # ...
 env:
 - name: STRIMZI_LEADER_ELECTION_ENABLED
 value: "true"
 - name: STRIMZI_LEADER_ELECTION_LEASE_NAME
 value: "my-strimzi-cluster-operator"
 - name: STRIMZI_LEADER_ELECTION_LEASE_NAMESPACE
 valueFrom:
 fieldRef:
 fieldPath: metadata.namespace
 - name: STRIMZI_LEADER_ELECTION_IDENTITY
 valueFrom:
 fieldRef:
 fieldPath: metadata.name

CHAPTER 8. CONFIGURING A DEPLOYMENT

119

For a description of the available environment variables, see Section 8.5.3.1, “Enabling leader
election for Cluster Operator replicas”.

If you specified a different name or namespace for the Lease resource used in leader election,
update the RBAC resources.

3. (optional) Edit the ClusterRole resource in the 022-ClusterRole-strimzi-cluster-operator-
role.yaml file.
Update resourceNames with the name of the Lease resource.

Updating the ClusterRole references to the lease

4. (optional) Edit the RoleBinding resource in the 022-RoleBinding-strimzi-cluster-
operator.yaml file.
Update subjects.name and subjects.namespace with the name of the Lease resource and
the namespace where it was created.

Updating the RoleBinding references to the lease

5. Deploy the Cluster Operator:

6. Check the status of the deployment:

Output shows the deployment name and readiness

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
 name: strimzi-cluster-operator-leader-election
 labels:
 app: strimzi
rules:
 - apiGroups:
 - coordination.k8s.io
 resourceNames:
 - my-strimzi-cluster-operator
...

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
 name: strimzi-cluster-operator-leader-election
 labels:
 app: strimzi
subjects:
 - kind: ServiceAccount
 name: my-strimzi-cluster-operator
 namespace: myproject
...

oc create -f install/cluster-operator -n myproject

oc get deployments -n myproject

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

120

1

2

READY shows the number of replicas that are ready/expected. The deployment is successful
when the AVAILABLE output shows the correct number of replicas.

8.5.4. Configuring Cluster Operator HTTP proxy settings

If you are running a Kafka cluster behind a HTTP proxy, you can still pass data in and out of the cluster.
For example, you can run Kafka Connect with connectors that push and pull data from outside the proxy.
Or you can use a proxy to connect with an authorization server.

Configure the Cluster Operator deployment to specify the proxy environment variables. The Cluster
Operator accepts standard proxy configuration (HTTP_PROXY, HTTPS_PROXY and NO_PROXY) as
environment variables. The proxy settings are applied to all AMQ Streams containers.

The format for a proxy address is http://<ip_address>:<port_number>. To set up a proxy with a name and
password, the format is http://<username>:<password>@<ip-address>:<port_number>.

Prerequisites

You need an account with permission to create and manage CustomResourceDefinition and
RBAC (ClusterRole, and RoleBinding) resources.

Procedure

1. To add proxy environment variables to the Cluster Operator, update its Deployment
configuration (install/cluster-operator/060-Deployment-strimzi-cluster-operator.yaml).

Example proxy configuration for the Cluster Operator

Address of the proxy server.

Secure address of the proxy server.

NAME READY UP-TO-DATE AVAILABLE
strimzi-cluster-operator 3/3 3 3

apiVersion: apps/v1
kind: Deployment
spec:
 # ...
 template:
 spec:
 serviceAccountName: strimzi-cluster-operator
 containers:
 # ...
 env:
 # ...
 - name: "HTTP_PROXY"
 value: "http://proxy.com" 1
 - name: "HTTPS_PROXY"
 value: "https://proxy.com" 2
 - name: "NO_PROXY"
 value: "internal.com, other.domain.com" 3
 # ...

CHAPTER 8. CONFIGURING A DEPLOYMENT

121

3

1

Addresses for servers that are accessed directly as exceptions to the proxy server. The
URLs are comma-separated.

Alternatively, edit the Deployment directly:

2. If you updated the YAML file instead of editing the Deployment directly, apply the changes:

Additional resources

Host aliases

Designating AMQ Streams administrators

8.5.5. Disabling FIPS mode using Cluster Operator configuration

AMQ Streams automatically switches to FIPS mode when running on a FIPS-enabled OpenShift cluster.
Disable FIPS mode by setting the FIPS_MODE environment variable to disabled in the deployment
configuration for the Cluster Operator. With FIPS mode disabled, AMQ Streams automatically disables
FIPS in the OpenJDK for all components. With FIPS mode disabled, AMQ Streams is not FIPS
compliant. The AMQ Streams operators, as well as all operands, run in the same way as if they were
running on an OpenShift cluster without FIPS enabled.

Procedure

1. To disable the FIPS mode in the Cluster Operator, update its Deployment configuration
(install/cluster-operator/060-Deployment-strimzi-cluster-operator.yaml) and add the
FIPS_MODE environment variable.

Example FIPS configuration for the Cluster Operator

Disables the FIPS mode.

Alternatively, edit the Deployment directly:

oc edit deployment strimzi-cluster-operator

oc create -f install/cluster-operator/060-Deployment-strimzi-cluster-operator.yaml

apiVersion: apps/v1
kind: Deployment
spec:
 # ...
 template:
 spec:
 serviceAccountName: strimzi-cluster-operator
 containers:
 # ...
 env:
 # ...
 - name: "FIPS_MODE"
 value: "disabled" 1
 # ...

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

122

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index#property-hostaliases-config-reference

2. If you updated the YAML file instead of editing the Deployment directly, apply the changes:

8.6. CONFIGURING KAFKA CONNECT

Update the spec properties of the KafkaConnect custom resource to configure your Kafka Connect
deployment.

Use Kafka Connect to set up external data connections to your Kafka cluster. Use the properties of the
KafkaConnect resource to configure your Kafka Connect deployment.

For a deeper understanding of the Kafka Connect cluster configuration options, refer to the AMQ
Streams Custom Resource API Reference.

KafkaConnector configuration

KafkaConnector resources allow you to create and manage connector instances for Kafka Connect in
an OpenShift-native way.

In your Kafka Connect configuration, you enable KafkaConnectors for a Kafka Connect cluster by adding
the strimzi.io/use-connector-resources annotation. You can also add a build configuration so that
AMQ Streams automatically builds a container image with the connector plugins you require for your
data connections. External configuration for Kafka Connect connectors is specified through the
externalConfiguration property.

To manage connectors, you can use use KafkaConnector custom resources or the Kafka Connect
REST API. KafkaConnector resources must be deployed to the same namespace as the Kafka Connect
cluster they link to. For more information on using these methods to create, reconfigure, or delete
connectors, see Adding connectors.

Connector configuration is passed to Kafka Connect as part of an HTTP request and stored within Kafka
itself. ConfigMaps and Secrets are standard OpenShift resources used for storing configurations and
confidential data. You can use ConfigMaps and Secrets to configure certain elements of a connector.
You can then reference the configuration values in HTTP REST commands, which keeps the
configuration separate and more secure, if needed. This method applies especially to confidential data,
such as usernames, passwords, or certificates.

Handling high volumes of messages

You can tune the configuration to handle high volumes of messages. For more information, see
Handling high volumes of messages .

Example KafkaConnect custom resource configuration

oc edit deployment strimzi-cluster-operator

oc apply -f install/cluster-operator/060-Deployment-strimzi-cluster-operator.yaml

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect 1
metadata:
 name: my-connect-cluster
 annotations:
 strimzi.io/use-connector-resources: "true" 2
spec:
 replicas: 3 3

CHAPTER 8. CONFIGURING A DEPLOYMENT

123

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index

 authentication: 4
 type: tls
 certificateAndKey:
 certificate: source.crt
 key: source.key
 secretName: my-user-source
 bootstrapServers: my-cluster-kafka-bootstrap:9092 5
 tls: 6
 trustedCertificates:
 - secretName: my-cluster-cluster-cert
 certificate: ca.crt
 - secretName: my-cluster-cluster-cert
 certificate: ca2.crt
 config: 7
 group.id: my-connect-cluster
 offset.storage.topic: my-connect-cluster-offsets
 config.storage.topic: my-connect-cluster-configs
 status.storage.topic: my-connect-cluster-status
 key.converter: org.apache.kafka.connect.json.JsonConverter
 value.converter: org.apache.kafka.connect.json.JsonConverter
 key.converter.schemas.enable: true
 value.converter.schemas.enable: true
 config.storage.replication.factor: 3
 offset.storage.replication.factor: 3
 status.storage.replication.factor: 3
 build: 8
 output: 9
 type: docker
 image: my-registry.io/my-org/my-connect-cluster:latest
 pushSecret: my-registry-credentials
 plugins: 10
 - name: debezium-postgres-connector
 artifacts:
 - type: tgz
 url: https://repo1.maven.org/maven2/io/debezium/debezium-connector-
postgres/2.1.3.Final/debezium-connector-postgres-2.1.3.Final-plugin.tar.gz
 sha512sum:
c4ddc97846de561755dc0b021a62aba656098829c70eb3ade3b817ce06d852ca12ae50c0281cc791a5a
131cb7fc21fb15f4b8ee76c6cae5dd07f9c11cb7c6e79
 - name: camel-telegram
 artifacts:
 - type: tgz
 url: https://repo.maven.apache.org/maven2/org/apache/camel/kafkaconnector/camel-
telegram-kafka-connector/0.11.5/camel-telegram-kafka-connector-0.11.5-package.tar.gz
 sha512sum:
d6d9f45e0d1dbfcc9f6d1c7ca2046168c764389c78bc4b867dab32d24f710bb74ccf2a007d7d7a8af2dfca0
9d9a52ccbc2831fc715c195a3634cca055185bd91
 externalConfiguration: 11
 env:
 - name: AWS_ACCESS_KEY_ID
 valueFrom:
 secretKeyRef:
 name: aws-creds
 key: awsAccessKey
 - name: AWS_SECRET_ACCESS_KEY

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

124

 valueFrom:
 secretKeyRef:
 name: aws-creds
 key: awsSecretAccessKey
 resources: 12
 requests:
 cpu: "1"
 memory: 2Gi
 limits:
 cpu: "2"
 memory: 2Gi
 logging: 13
 type: inline
 loggers:
 log4j.rootLogger: INFO
 readinessProbe: 14
 initialDelaySeconds: 15
 timeoutSeconds: 5
 livenessProbe:
 initialDelaySeconds: 15
 timeoutSeconds: 5
 metricsConfig: 15
 type: jmxPrometheusExporter
 valueFrom:
 configMapKeyRef:
 name: my-config-map
 key: my-key
 jvmOptions: 16
 "-Xmx": "1g"
 "-Xms": "1g"
 image: my-org/my-image:latest 17
 rack:
 topologyKey: topology.kubernetes.io/zone 18
 template: 19
 pod:
 affinity:
 podAntiAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 - labelSelector:
 matchExpressions:
 - key: application
 operator: In
 values:
 - postgresql
 - mongodb
 topologyKey: "kubernetes.io/hostname"
 connectContainer: 20
 env:
 - name: OTEL_SERVICE_NAME
 value: my-otel-service
 - name: OTEL_EXPORTER_OTLP_ENDPOINT
 value: "http://otlp-host:4317"
 tracing:
 type: opentelemetry 21

CHAPTER 8. CONFIGURING A DEPLOYMENT

125

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

Use KafkaConnect.

Enables KafkaConnectors for the Kafka Connect cluster.

The number of replica nodes for the workers that run tasks.

Authentication for the Kafka Connect cluster, specified as mTLS, token-based OAuth, SASL-
based SCRAM-SHA-256/SCRAM-SHA-512, or PLAIN. By default, Kafka Connect connects to
Kafka brokers using a plain text connection.

Bootstrap server for connection to the Kafka cluster.

TLS encryption with key names under which TLS certificates are stored in X.509 format for the
cluster. If certificates are stored in the same secret, it can be listed multiple times.

Kafka Connect configuration of workers (not connectors). Standard Apache Kafka configuration
may be provided, restricted to those properties not managed directly by AMQ Streams.

Build configuration properties for building a container image with connector plugins automatically.

(Required) Configuration of the container registry where new images are pushed.

(Required) List of connector plugins and their artifacts to add to the new container image. Each
plugin must be configured with at least one artifact.

External configuration for connectors using environment variables, as shown here, or volumes. You
can also use configuration provider plugins to load configuration values from external sources.

Requests for reservation of supported resources, currently cpu and memory, and limits to specify
the maximum resources that can be consumed.

Specified Kafka Connect loggers and log levels added directly (inline) or indirectly (external)
through a ConfigMap. A custom Log4j configuration must be placed under the log4j.properties or
log4j2.properties key in the ConfigMap. For the Kafka Connect log4j.rootLogger logger, you can
set the log level to INFO, ERROR, WARN, TRACE, DEBUG, FATAL or OFF.

Healthchecks to know when to restart a container (liveness) and when a container can accept
traffic (readiness).

Prometheus metrics, which are enabled by referencing a ConfigMap containing configuration for
the Prometheus JMX exporter in this example. You can enable metrics without further
configuration using a reference to a ConfigMap containing an empty file under
metricsConfig.valueFrom.configMapKeyRef.key.

JVM configuration options to optimize performance for the Virtual Machine (VM) running Kafka
Connect.

ADVANCED OPTION: Container image configuration, which is recommended only in special
situations.

SPECIALIZED OPTION: Rack awareness configuration for the deployment. This is a specialized
option intended for a deployment within the same location, not across regions. Use this option if
you want connectors to consume from the closest replica rather than the leader replica. In certain
cases, consuming from the closest replica can improve network utilization or reduce costs . The
topologyKey must match a node label containing the rack ID. The example used in this
configuration specifies a zone using the standard topology.kubernetes.io/zone label. To consume
from the closest replica, enable the RackAwareReplicaSelector in the Kafka broker configuration.

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

126

https://kubernetes.io/docs/reference/labels-annotations-taints/#topologykubernetesiozone

19

20

21

1

2

3

4

Template customization. Here a pod is scheduled with anti-affinity, so the pod is not scheduled on
nodes with the same hostname.

Environment variables are set for distributed tracing.

Distributed tracing is enabled by using OpenTelemetry.

8.6.1. Configuring Kafka Connect user authorization

This procedure describes how to authorize user access to Kafka Connect.

When any type of authorization is being used in Kafka, a Kafka Connect user requires read/write access
rights to the consumer group and the internal topics of Kafka Connect.

The properties for the consumer group and internal topics are automatically configured by AMQ
Streams, or they can be specified explicitly in the spec of the KafkaConnect resource.

Example configuration properties in the KafkaConnect resource

The Kafka Connect cluster ID within Kafka.

Kafka topic that stores connector offsets.

Kafka topic that stores connector and task status configurations.

Kafka topic that stores connector and task status updates.

This procedure shows how access is provided when simple authorization is being used.

Simple authorization uses ACL rules, handled by the Kafka AclAuthorizer plugin, to provide the right
level of access. For more information on configuring a KafkaUser resource to use simple authorization,
see the AclRule schema reference.

NOTE

The default values for the consumer group and topics will differ when running multiple
instances.

Prerequisites

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
metadata:
 name: my-connect
spec:
 # ...
 config:
 group.id: my-connect-cluster 1
 offset.storage.topic: my-connect-cluster-offsets 2
 config.storage.topic: my-connect-cluster-configs 3
 status.storage.topic: my-connect-cluster-status 4
 # ...
 # ...

CHAPTER 8. CONFIGURING A DEPLOYMENT

127

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index#type-AclRule-reference

An OpenShift cluster

A running Cluster Operator

Procedure

1. Edit the authorization property in the KafkaUser resource to provide access rights to the user.
In the following example, access rights are configured for the Kafka Connect topics and
consumer group using literal name values:

Property Name

offset.storage.topic connect-cluster-offsets

status.storage.topic connect-cluster-status

config.storage.topic connect-cluster-configs

group connect-cluster

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaUser
metadata:
 name: my-user
 labels:
 strimzi.io/cluster: my-cluster
spec:
 # ...
 authorization:
 type: simple
 acls:
 # access to offset.storage.topic
 - resource:
 type: topic
 name: connect-cluster-offsets
 patternType: literal
 operations:
 - Create
 - Describe
 - Read
 - Write
 host: "*"
 # access to status.storage.topic
 - resource:
 type: topic
 name: connect-cluster-status
 patternType: literal
 operations:
 - Create
 - Describe
 - Read
 - Write
 host: "*"

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

128

2. Create or update the resource.

8.7. CONFIGURING KAFKA MIRRORMAKER 2

Update the spec properties of the KafkaMirrorMaker2 custom resource to configure your MirrorMaker
2 deployment. MirrorMaker 2 uses source cluster configuration for data consumption and target cluster
configuration for data output.

MirrorMaker 2 is based on the Kafka Connect framework, connectors managing the transfer of data
between clusters.

You configure MirrorMaker 2 to define the Kafka Connect deployment, including the connection details
of the source and target clusters, and then run a set of MirrorMaker 2 connectors to make the
connection.

MirrorMaker 2 supports topic configuration synchronization between the source and target clusters. You
specify source topics in the MirrorMaker 2 configuration. MirrorMaker 2 monitors the source topics.
MirrorMaker 2 detects and propagates changes to the source topics to the remote topics. Changes
might include automatically creating missing topics and partitions.

NOTE

In most cases you write to local topics and read from remote topics. Though write
operations are not prevented on remote topics, they should be avoided.

The configuration must specify:

Each Kafka cluster

Connection information for each cluster, including authentication

The replication flow and direction

Cluster to cluster

 # access to config.storage.topic
 - resource:
 type: topic
 name: connect-cluster-configs
 patternType: literal
 operations:
 - Create
 - Describe
 - Read
 - Write
 host: "*"
 # consumer group
 - resource:
 type: group
 name: connect-cluster
 patternType: literal
 operations:
 - Read
 host: "*"

oc apply -f KAFKA-USER-CONFIG-FILE

CHAPTER 8. CONFIGURING A DEPLOYMENT

129

Cluster to cluster

Topic to topic

For a deeper understanding of the Kafka MirrorMaker 2 cluster configuration options, refer to the AMQ
Streams Custom Resource API Reference.

NOTE

MirrorMaker 2 resource configuration differs from the previous version of MirrorMaker,
which is now deprecated. There is currently no legacy support, so any resources must be
manually converted into the new format.

Default configuration

MirrorMaker 2 provides default configuration values for properties such as replication factors. A minimal
configuration, with defaults left unchanged, would be something like this example:

Minimal configuration for MirrorMaker 2

You can configure access control for source and target clusters using mTLS or SASL authentication.
This procedure shows a configuration that uses TLS encryption and mTLS authentication for the source
and target cluster.

You can specify the topics and consumer groups you wish to replicate from a source cluster in the
KafkaMirrorMaker2 resource. You use the topicsPattern and groupsPattern properties to do this. You
can provide a list of names or use a regular expression. By default, all topics and consumer groups are
replicated if you do not set the topicsPattern and groupsPattern properties. You can also replicate all
topics and consumer groups by using ".*" as a regular expression. However, try to specify only the topics
and consumer groups you need to avoid causing any unnecessary extra load on the cluster.

Handling high volumes of messages

You can tune the configuration to handle high volumes of messages. For more information, see
Handling high volumes of messages .

Example KafkaMirrorMaker2 custom resource configuration

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaMirrorMaker2
metadata:
 name: my-mirror-maker2
spec:
 version: 3.5.0
 connectCluster: "my-cluster-target"
 clusters:
 - alias: "my-cluster-source"
 bootstrapServers: my-cluster-source-kafka-bootstrap:9092
 - alias: "my-cluster-target"
 bootstrapServers: my-cluster-target-kafka-bootstrap:9092
 mirrors:
 - sourceCluster: "my-cluster-source"
 targetCluster: "my-cluster-target"
 sourceConnector: {}

apiVersion: kafka.strimzi.io/v1beta2

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

130

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index

kind: KafkaMirrorMaker2
metadata:
 name: my-mirror-maker2
spec:
 version: 3.5.0 1
 replicas: 3 2
 connectCluster: "my-cluster-target" 3
 clusters: 4
 - alias: "my-cluster-source" 5
 authentication: 6
 certificateAndKey:
 certificate: source.crt
 key: source.key
 secretName: my-user-source
 type: tls
 bootstrapServers: my-cluster-source-kafka-bootstrap:9092 7
 tls: 8
 trustedCertificates:
 - certificate: ca.crt
 secretName: my-cluster-source-cluster-ca-cert
 - alias: "my-cluster-target" 9
 authentication: 10
 certificateAndKey:
 certificate: target.crt
 key: target.key
 secretName: my-user-target
 type: tls
 bootstrapServers: my-cluster-target-kafka-bootstrap:9092 11
 config: 12
 config.storage.replication.factor: 1
 offset.storage.replication.factor: 1
 status.storage.replication.factor: 1
 tls: 13
 trustedCertificates:
 - certificate: ca.crt
 secretName: my-cluster-target-cluster-ca-cert
 mirrors: 14
 - sourceCluster: "my-cluster-source" 15
 targetCluster: "my-cluster-target" 16
 sourceConnector: 17
 tasksMax: 10 18
 autoRestart: 19
 enabled: true
 config:
 replication.factor: 1 20
 offset-syncs.topic.replication.factor: 1 21
 sync.topic.acls.enabled: "false" 22
 refresh.topics.interval.seconds: 60 23
 replication.policy.class: "org.apache.kafka.connect.mirror.IdentityReplicationPolicy" 24
 heartbeatConnector: 25
 autoRestart:
 enabled: true
 config:

CHAPTER 8. CONFIGURING A DEPLOYMENT

131

 heartbeats.topic.replication.factor: 1 26
 replication.policy.class: "org.apache.kafka.connect.mirror.IdentityReplicationPolicy"
 checkpointConnector: 27
 autoRestart:
 enabled: true
 config:
 checkpoints.topic.replication.factor: 1 28
 refresh.groups.interval.seconds: 600 29
 sync.group.offsets.enabled: true 30
 sync.group.offsets.interval.seconds: 60 31
 emit.checkpoints.interval.seconds: 60 32
 replication.policy.class: "org.apache.kafka.connect.mirror.IdentityReplicationPolicy"
 topicsPattern: "topic1|topic2|topic3" 33
 groupsPattern: "group1|group2|group3" 34
 resources: 35
 requests:
 cpu: "1"
 memory: 2Gi
 limits:
 cpu: "2"
 memory: 2Gi
 logging: 36
 type: inline
 loggers:
 connect.root.logger.level: INFO
 readinessProbe: 37
 initialDelaySeconds: 15
 timeoutSeconds: 5
 livenessProbe:
 initialDelaySeconds: 15
 timeoutSeconds: 5
 jvmOptions: 38
 "-Xmx": "1g"
 "-Xms": "1g"
 image: my-org/my-image:latest 39
 rack:
 topologyKey: topology.kubernetes.io/zone 40
 template: 41
 pod:
 affinity:
 podAntiAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 - labelSelector:
 matchExpressions:
 - key: application
 operator: In
 values:
 - postgresql
 - mongodb
 topologyKey: "kubernetes.io/hostname"
 connectContainer: 42
 env:
 - name: OTEL_SERVICE_NAME
 value: my-otel-service

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

132

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

The Kafka Connect and Mirror Maker 2.0 version, which will always be the same.

The number of replica nodes for the workers that run tasks.

Kafka cluster alias for Kafka Connect, which must specify the target Kafka cluster. The Kafka
cluster is used by Kafka Connect for its internal topics.

Specification for the Kafka clusters being synchronized.

Cluster alias for the source Kafka cluster.

Authentication for the source cluster, specified as mTLS, token-based OAuth, SASL-based
SCRAM-SHA-256/SCRAM-SHA-512, or PLAIN.

Bootstrap server for connection to the source Kafka cluster.

TLS encryption with key names under which TLS certificates are stored in X.509 format for the
source Kafka cluster. If certificates are stored in the same secret, it can be listed multiple times.

Cluster alias for the target Kafka cluster.

Authentication for the target Kafka cluster is configured in the same way as for the source Kafka
cluster.

Bootstrap server for connection to the target Kafka cluster.

Kafka Connect configuration. Standard Apache Kafka configuration may be provided, restricted to
those properties not managed directly by AMQ Streams.

TLS encryption for the target Kafka cluster is configured in the same way as for the source Kafka
cluster.

MirrorMaker 2 connectors.

Cluster alias for the source cluster used by the MirrorMaker 2 connectors.

Cluster alias for the target cluster used by the MirrorMaker 2 connectors.

Configuration for the MirrorSourceConnector that creates remote topics. The config overrides
the default configuration options.

 - name: OTEL_EXPORTER_OTLP_ENDPOINT
 value: "http://otlp-host:4317"
 tracing:
 type: opentelemetry 43
 externalConfiguration: 44
 env:
 - name: AWS_ACCESS_KEY_ID
 valueFrom:
 secretKeyRef:
 name: aws-creds
 key: awsAccessKey
 - name: AWS_SECRET_ACCESS_KEY
 valueFrom:
 secretKeyRef:
 name: aws-creds
 key: awsSecretAccessKey

CHAPTER 8. CONFIGURING A DEPLOYMENT

133

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

The maximum number of tasks that the connector may create. Tasks handle the data replication
and run in parallel. If the infrastructure supports the processing overhead, increasing this value can

Enables automatic restarts of failed connectors and tasks. Up to seven restart attempts are made,
after which restarts must be made manually.

Replication factor for mirrored topics created at the target cluster.

Replication factor for the MirrorSourceConnector offset-syncs internal topic that maps the
offsets of the source and target clusters.

When ACL rules synchronization is enabled, ACLs are applied to synchronized topics. The default is
true. This feature is not compatible with the User Operator. If you are using the User Operator, set
this property to false.

Optional setting to change the frequency of checks for new topics. The default is for a check every
10 minutes.

Adds a policy that overrides the automatic renaming of remote topics. Instead of prepending the
name with the name of the source cluster, the topic retains its original name. This optional setting
is useful for active/passive backups and data migration. The property must be specified for all
connectors. For bidirectional (active/active) replication, use the DefaultReplicationPolicy class to
automatically rename remote topics and specify the replication.policy.separator property for all
connectors to add a custom separator.

Configuration for the MirrorHeartbeatConnector that performs connectivity checks. The config
overrides the default configuration options.

Replication factor for the heartbeat topic created at the target cluster.

Configuration for the MirrorCheckpointConnector that tracks offsets. The config overrides the
default configuration options.

Replication factor for the checkpoints topic created at the target cluster.

Optional setting to change the frequency of checks for new consumer groups. The default is for a
check every 10 minutes.

Optional setting to synchronize consumer group offsets, which is useful for recovery in an
active/passive configuration. Synchronization is not enabled by default.

If the synchronization of consumer group offsets is enabled, you can adjust the frequency of the
synchronization.

Adjusts the frequency of checks for offset tracking. If you change the frequency of offset
synchronization, you might also need to adjust the frequency of these checks.

Topic replication from the source cluster defined as a comma-separated list or regular expression
pattern. The source connector replicates the specified topics. The checkpoint connector tracks
offsets for the specified topics. Here we request three topics by name.

Consumer group replication from the source cluster defined as a comma-separated list or regular
expression pattern. The checkpoint connector replicates the specified consumer groups. Here we
request three consumer groups by name.

Requests for reservation of supported resources, currently cpu and memory, and limits to specify
the maximum resources that can be consumed.

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

134

36

37

38

39

40

41

42

43

44

Specified Kafka Connect loggers and log levels added directly (inline) or indirectly (external)
through a ConfigMap. A custom Log4j configuration must be placed under the log4j.properties or

Healthchecks to know when to restart a container (liveness) and when a container can accept
traffic (readiness).

JVM configuration options to optimize performance for the Virtual Machine (VM) running Kafka
MirrorMaker.

ADVANCED OPTION: Container image configuration, which is recommended only in special
situations.

SPECIALIZED OPTION: Rack awareness configuration for the deployment. This is a specialized
option intended for a deployment within the same location, not across regions. Use this option if
you want connectors to consume from the closest replica rather than the leader replica. In certain
cases, consuming from the closest replica can improve network utilization or reduce costs . The
topologyKey must match a node label containing the rack ID. The example used in this
configuration specifies a zone using the standard topology.kubernetes.io/zone label. To consume
from the closest replica, enable the RackAwareReplicaSelector in the Kafka broker configuration.

Template customization. Here a pod is scheduled with anti-affinity, so the pod is not scheduled on
nodes with the same hostname.

Environment variables are set for distributed tracing.

Distributed tracing is enabled by using OpenTelemetry.

External configuration for an OpenShift Secret mounted to Kafka MirrorMaker as an environment
variable. You can also use configuration provider plugins to load configuration values from external
sources.

8.7.1. Configuring active/active or active/passive modes

You can use MirrorMaker 2 in active/passive or active/active cluster configurations.

active/active cluster configuration

An active/active configuration has two active clusters replicating data bidirectionally. Applications
can use either cluster. Each cluster can provide the same data. In this way, you can make the same
data available in different geographical locations. As consumer groups are active in both clusters,
consumer offsets for replicated topics are not synchronized back to the source cluster.

active/passive cluster configuration

An active/passive configuration has an active cluster replicating data to a passive cluster. The passive
cluster remains on standby. You might use the passive cluster for data recovery in the event of
system failure.

The expectation is that producers and consumers connect to active clusters only. A MirrorMaker 2
cluster is required at each target destination.

8.7.1.1. Bidirectional replication (active/active)

The MirrorMaker 2 architecture supports bidirectional replication in an active/active cluster
configuration.

Each cluster replicates the data of the other cluster using the concept of source and remote topics. As

CHAPTER 8. CONFIGURING A DEPLOYMENT

135

https://kubernetes.io/docs/reference/labels-annotations-taints/#topologykubernetesiozone

Each cluster replicates the data of the other cluster using the concept of source and remote topics. As
the same topics are stored in each cluster, remote topics are automatically renamed by MirrorMaker 2 to
represent the source cluster. The name of the originating cluster is prepended to the name of the topic.

Figure 8.1. Topic renaming

By flagging the originating cluster, topics are not replicated back to that cluster.

The concept of replication through remote topics is useful when configuring an architecture that
requires data aggregation. Consumers can subscribe to source and remote topics within the same
cluster, without the need for a separate aggregation cluster.

8.7.1.2. Unidirectional replication (active/passive)

The MirrorMaker 2 architecture supports unidirectional replication in an active/passive cluster
configuration.

You can use an active/passive cluster configuration to make backups or migrate data to another cluster.
In this situation, you might not want automatic renaming of remote topics.

You can override automatic renaming by adding IdentityReplicationPolicy to the source connector
configuration. With this configuration applied, topics retain their original names.

8.7.2. Configuring MirrorMaker 2 connectors

Use MirrorMaker 2 connector configuration for the internal connectors that orchestrate the
synchronization of data between Kafka clusters.

MirrorMaker 2 consists of the following connectors:

MirrorSourceConnector

The source connector replicates topics from a source cluster to a target cluster. It also replicates

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

136

The source connector replicates topics from a source cluster to a target cluster. It also replicates
ACLs and is necessary for the MirrorCheckpointConnector to run.

MirrorCheckpointConnector

The checkpoint connector periodically tracks offsets. If enabled, it also synchronizes consumer group
offsets between the source and target cluster.

MirrorHeartbeatConnector

The heartbeat connector periodically checks connectivity between the source and target cluster.

The following table describes connector properties and the connectors you configure to use them.

Table 8.2. MirrorMaker 2 connector configuration properties

Property sourceConnector checkpointConne
ctor

heartbeatConnec
tor

admin.timeout.ms
Timeout for admin tasks, such as
detecting new topics. Default is
60000 (1 minute).

✓ ✓ ✓

replication.policy.class
Policy to define the remote topic
naming convention. Default is
org.apache.kafka.connect.mirror
.DefaultReplicationPolicy.

✓ ✓ ✓

replication.policy.separator
The separator used for topic naming in
the target cluster. By default, the
separator is set to a dot (.). Separator
configuration is only applicable to the
DefaultReplicationPolicy
replication policy class, which defines
remote topic names. The
IdentityReplicationPolicy class
does not use the property as topics
retain their original names.

✓ ✓ ✓

consumer.poll.timeout.ms
Timeout when polling the source
cluster. Default is 1000 (1 second).

✓ ✓

offset-syncs.topic.location
The location of the offset-syncs
topic, which can be the source
(default) or target cluster.

✓ ✓

CHAPTER 8. CONFIGURING A DEPLOYMENT

137

topic.filter.class
Topic filter to select the topics to
replicate. Default is
org.apache.kafka.connect.mirror
.DefaultTopicFilter.

✓ ✓

config.property.filter.class
Topic filter to select the topic
configuration properties to replicate.
Default is
org.apache.kafka.connect.mirror
.DefaultConfigPropertyFilter.

✓

config.properties.exclude
Topic configuration properties that
should not be replicated. Supports
comma-separated property names
and regular expressions.

✓

offset.lag.max
Maximum allowable (out-of-sync)
offset lag before a remote partition is
synchronized. Default is 100.

✓

offset-syncs.topic.replication.factor
Replication factor for the internal
offset-syncs topic. Default is 3.

✓

refresh.topics.enabled
Enables check for new topics and
partitions. Default is true.

✓

refresh.topics.interval.seconds
Frequency of topic refresh. Default is
600 (10 minutes). By default, a check
for new topics in the source cluster is
made every 10 minutes. You can
change the frequency by adding
refresh.topics.interval.seconds
to the source connector configuration.

✓

Property sourceConnector checkpointConne
ctor

heartbeatConnec
tor

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

138

replication.factor
The replication factor for new topics.
Default is 2.

✓

sync.topic.acls.enabled
Enables synchronization of ACLs from
the source cluster. Default is true. For
more information, see Section 8.7.5,
“Synchronizing ACL rules for remote
topics”.

✓

sync.topic.acls.interval.seconds
Frequency of ACL synchronization.
Default is 600 (10 minutes).

✓

sync.topic.configs.enabled
Enables synchronization of topic
configuration from the source cluster.
Default is true.

✓

sync.topic.configs.interval.seconds
Frequency of topic configuration
synchronization. Default 600 (10
minutes).

✓

checkpoints.topic.replication.factor
Replication factor for the internal
checkpoints topic. Default is 3.

 ✓

emit.checkpoints.enabled
Enables synchronization of consumer
offsets to the target cluster. Default is
true.

 ✓

emit.checkpoints.interval.seconds
Frequency of consumer offset
synchronization. Default is 60 (1
minute).

 ✓

Property sourceConnector checkpointConne
ctor

heartbeatConnec
tor

CHAPTER 8. CONFIGURING A DEPLOYMENT

139

group.filter.class
Group filter to select the consumer
groups to replicate. Default is
org.apache.kafka.connect.mirror
.DefaultGroupFilter.

 ✓

refresh.groups.enabled
Enables check for new consumer
groups. Default is true.

 ✓

refresh.groups.interval.seconds
Frequency of consumer group refresh.
Default is 600 (10 minutes).

 ✓

sync.group.offsets.enabled
Enables synchronization of consumer
group offsets to the target cluster
__consumer_offsets topic. Default
is false.

 ✓

sync.group.offsets.interval.seconds
Frequency of consumer group offset
synchronization. Default is 60 (1
minute).

 ✓

emit.heartbeats.enabled
Enables connectivity checks on the
target cluster. Default is true.

 ✓

emit.heartbeats.interval.seconds
Frequency of connectivity checks.
Default is 1 (1 second).

 ✓

heartbeats.topic.replication.factor
Replication factor for the internal
heartbeats topic. Default is 3.

 ✓

Property sourceConnector checkpointConne
ctor

heartbeatConnec
tor

8.7.2.1. Changing the location of the consumer group offsets topic

MirrorMaker 2 tracks offsets for consumer groups using internal topics.

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

140

offset-syncs topic

The offset-syncs topic maps the source and target offsets for replicated topic partitions from
record metadata.

checkpoints topic

The checkpoints topic maps the last committed offset in the source and target cluster for
replicated topic partitions in each consumer group.

As they are used internally by MirrorMaker 2, you do not interact directly with these topics.

MirrorCheckpointConnector emits checkpoints for offset tracking. Offsets for the checkpoints topic
are tracked at predetermined intervals through configuration. Both topics enable replication to be fully
restored from the correct offset position on failover.

The location of the offset-syncs topic is the source cluster by default. You can use the offset-
syncs.topic.location connector configuration to change this to the target cluster. You need read/write
access to the cluster that contains the topic. Using the target cluster as the location of the offset-syncs
topic allows you to use MirrorMaker 2 even if you have only read access to the source cluster.

8.7.2.2. Synchronizing consumer group offsets

The __consumer_offsets topic stores information on committed offsets for each consumer group.
Offset synchronization periodically transfers the consumer offsets for the consumer groups of a source
cluster into the consumer offsets topic of a target cluster.

Offset synchronization is particularly useful in an active/passive configuration. If the active cluster goes
down, consumer applications can switch to the passive (standby) cluster and pick up from the last
transferred offset position.

To use topic offset synchronization, enable the synchronization by adding sync.group.offsets.enabled
to the checkpoint connector configuration, and setting the property to true. Synchronization is disabled
by default.

When using the IdentityReplicationPolicy in the source connector, it also has to be configured in the
checkpoint connector configuration. This ensures that the mirrored consumer offsets will be applied for
the correct topics.

Consumer offsets are only synchronized for consumer groups that are not active in the target cluster. If
the consumer groups are in the target cluster, the synchronization cannot be performed and an
UNKNOWN_MEMBER_ID error is returned.

If enabled, the synchronization of offsets from the source cluster is made periodically. You can change
the frequency by adding sync.group.offsets.interval.seconds and
emit.checkpoints.interval.seconds to the checkpoint connector configuration. The properties specify
the frequency in seconds that the consumer group offsets are synchronized, and the frequency of
checkpoints emitted for offset tracking. The default for both properties is 60 seconds. You can also
change the frequency of checks for new consumer groups using the refresh.groups.interval.seconds
property, which is performed every 10 minutes by default.

Because the synchronization is time-based, any switchover by consumers to a passive cluster will likely
result in some duplication of messages.

NOTE

CHAPTER 8. CONFIGURING A DEPLOYMENT

141

NOTE

If you have an application written in Java, you can use the RemoteClusterUtils.java
utility to synchronize offsets through the application. The utility fetches remote offsets
for a consumer group from the checkpoints topic.

8.7.2.3. Deciding when to use the heartbeat connector

The heartbeat connector emits heartbeats to check connectivity between source and target Kafka
clusters. An internal heartbeat topic is replicated from the source cluster, which means that the
heartbeat connector must be connected to the source cluster. The heartbeat topic is located on the
target cluster, which allows it to do the following:

Identify all source clusters it is mirroring data from

Verify the liveness and latency of the mirroring process

This helps to make sure that the process is not stuck or has stopped for any reason. While the heartbeat
connector can be a valuable tool for monitoring the mirroring processes between Kafka clusters, it’s not
always necessary to use it. For example, if your deployment has low network latency or a small number of
topics, you might prefer to monitor the mirroring process using log messages or other monitoring tools.
If you decide not to use the heartbeat connector, simply omit it from your MirrorMaker 2 configuration.

8.7.2.4. Aligning the configuration of MirrorMaker 2 connectors

To ensure that MirrorMaker 2 connectors work properly, make sure to align certain configuration
settings across connectors. Specifically, ensure that the following properties have the same value across
all applicable connectors:

replication.policy.class

replication.policy.separator

offset-syncs.topic.location

topic.filter.class

For example, the value for replication.policy.class must be the same for the source, checkpoint, and
heartbeat connectors. Mismatched or missing settings cause issues with data replication or offset
syncing, so it’s essential to keep all relevant connectors configured with the same settings.

8.7.3. Configuring MirrorMaker 2 connector producers and consumers

MirrorMaker 2 connectors use internal producers and consumers. If needed, you can configure these
producers and consumers to override the default settings.

For example, you can increase the batch.size for the source producer that sends topics to the target
Kafka cluster to better accommodate large volumes of messages.

IMPORTANT

Producer and consumer configuration options depend on the MirrorMaker 2
implementation, and may be subject to change.

The following tables describe the producers and consumers for each of the connectors and where you

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

142

The following tables describe the producers and consumers for each of the connectors and where you
can add configuration.

Table 8.3. Source connector producers and consumers

Type Description Configuration

Producer Sends topic
messages to the
target Kafka
cluster. Consider
tuning the
configuration of
this producer when
it is handling large
volumes of data.

mirrors.sourceConnector.config: producer.override.*

Producer Writes to the
offset-syncs
topic, which maps
the source and
target offsets for
replicated topic
partitions.

mirrors.sourceConnector.config: producer.*

Consumer Retrieves topic
messages from the
source Kafka
cluster.

mirrors.sourceConnector.config: consumer.*

Table 8.4. Checkpoint connector producers and consumers

Type Description Configuration

Producer Emits consumer
offset checkpoints.

mirrors.checkpointConnector.config:
producer.override.*

Consumer Loads the offset-
syncs topic.

mirrors.checkpointConnector.config: consumer.*

NOTE

You can set offset-syncs.topic.location to target to use the target Kafka cluster as the
location of the offset-syncs topic.

Table 8.5. Heartbeat connector producer

Type Description Configuration

Producer Emits heartbeats. mirrors.heartbeatConnector.config:
producer.override.*

CHAPTER 8. CONFIGURING A DEPLOYMENT

143

Type Description Configuration

The following example shows how you configure the producers and consumers.

Example configuration for connector producers and consumers

8.7.4. Specifying a maximum number of data replication tasks

Connectors create the tasks that are responsible for moving data in and out of Kafka. Each connector
comprises one or more tasks that are distributed across a group of worker pods that run the tasks.
Increasing the number of tasks can help with performance issues when replicating a large number of
partitions or synchronizing the offsets of a large number of consumer groups.

Tasks run in parallel. Workers are assigned one or more tasks. A single task is handled by one worker pod,
so you don’t need more worker pods than tasks. If there are more tasks than workers, workers handle
multiple tasks.

You can specify the maximum number of connector tasks in your MirrorMaker configuration using the
tasksMax property. Without specifying a maximum number of tasks, the default setting is a single task.

The heartbeat connector always uses a single task.

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaMirrorMaker2
metadata:
 name: my-mirror-maker2
spec:
 version: 3.5.0
 # ...
 mirrors:
 - sourceCluster: "my-cluster-source"
 targetCluster: "my-cluster-target"
 sourceConnector:
 tasksMax: 5
 config:
 producer.override.batch.size: 327680
 producer.override.linger.ms: 100
 producer.request.timeout.ms: 30000
 consumer.fetch.max.bytes: 52428800
 # ...
 checkpointConnector:
 config:
 producer.override.request.timeout.ms: 30000
 consumer.max.poll.interval.ms: 300000
 # ...
 heartbeatConnector:
 config:
 producer.override.request.timeout.ms: 30000
 # ...

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

144

The number of tasks that are started for the source and checkpoint connectors is the lower value
between the maximum number of possible tasks and the value for tasksMax. For the source connector,
the maximum number of tasks possible is one for each partition being replicated from the source cluster.
For the checkpoint connector, the maximum number of tasks possible is one for each consumer group
being replicated from the source cluster. When setting a maximum number of tasks, consider the
number of partitions and the hardware resources that support the process.

If the infrastructure supports the processing overhead, increasing the number of tasks can improve
throughput and latency. For example, adding more tasks reduces the time taken to poll the source
cluster when there is a high number of partitions or consumer groups.

Increasing the number of tasks for the source connector is useful when you have a large number of
partitions.

Increasing the number of tasks for the source connector

Increasing the number of tasks for the checkpoint connector is useful when you have a large number of
consumer groups.

Increasing the number of tasks for the checkpoint connector

By default, MirrorMaker 2 checks for new consumer groups every 10 minutes. You can adjust the
refresh.groups.interval.seconds configuration to change the frequency. Take care when adjusting
lower. More frequent checks can have a negative impact on performance.

8.7.4.1. Checking connector task operations

If you are using Prometheus and Grafana to monitor your deployment, you can check MirrorMaker 2

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaMirrorMaker2
metadata:
 name: my-mirror-maker2
spec:
 # ...
 mirrors:
 - sourceCluster: "my-cluster-source"
 targetCluster: "my-cluster-target"
 sourceConnector:
 tasksMax: 10
 # ...

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaMirrorMaker2
metadata:
 name: my-mirror-maker2
spec:
 # ...
 mirrors:
 - sourceCluster: "my-cluster-source"
 targetCluster: "my-cluster-target"
 checkpointConnector:
 tasksMax: 10
 # ...

CHAPTER 8. CONFIGURING A DEPLOYMENT

145

If you are using Prometheus and Grafana to monitor your deployment, you can check MirrorMaker 2
performance. The example MirrorMaker 2 Grafana dashboard provided with AMQ Streams shows the
following metrics related to tasks and latency.

The number of tasks

Replication latency

Offset synchronization latency

Additional resources

Chapter 20, Setting up metrics and dashboards for AMQ Streams

8.7.5. Synchronizing ACL rules for remote topics

When using MirrorMaker 2 with AMQ Streams, it is possible to synchronize ACL rules for remote topics.
However, this feature is only available if you are not using the User Operator.

If you are using type: simple authorization without the User Operator, the ACL rules that manage
access to brokers also apply to remote topics. This means that users who have read access to a source
topic can also read its remote equivalent.

NOTE

OAuth 2.0 authorization does not support access to remote topics in this way.

8.7.6. Securing a Kafka MirrorMaker 2 deployment

This procedure describes in outline the configuration required to secure a MirrorMaker 2 deployment.

You need separate configuration for the source Kafka cluster and the target Kafka cluster. You also
need separate user configuration to provide the credentials required for MirrorMaker to connect to the
source and target Kafka clusters.

For the Kafka clusters, you specify internal listeners for secure connections within an OpenShift cluster
and external listeners for connections outside the OpenShift cluster.

You can configure authentication and authorization mechanisms. The security options implemented for
the source and target Kafka clusters must be compatible with the security options implemented for
MirrorMaker 2.

After you have created the cluster and user authentication credentials, you specify them in your
MirrorMaker configuration for secure connections.

NOTE

In this procedure, the certificates generated by the Cluster Operator are used, but you
can replace them by installing your own certificates. You can also configure your listener
to use a Kafka listener certificate managed by an external CA (certificate authority) .

Before you start

Before starting this procedure, take a look at the example configuration files provided by AMQ Streams.

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

146

Before starting this procedure, take a look at the example configuration files provided by AMQ Streams.
They include examples for securing a deployment of MirrorMaker 2 using mTLS or SCRAM-SHA-512
authentication. The examples specify internal listeners for connecting within an OpenShift cluster.

The examples provide the configuration for full authorization, including all the ACLs needed by
MirrorMaker 2 to allow operations on the source and target Kafka clusters.

Prerequisites

AMQ Streams is running

Separate namespaces for source and target clusters

The procedure assumes that the source and target Kafka clusters are installed to separate namespaces
If you want to use the Topic Operator, you’ll need to do this. The Topic Operator only watches a single
cluster in a specified namespace.

By separating the clusters into namespaces, you will need to copy the cluster secrets so they can be
accessed outside the namespace. You need to reference the secrets in the MirrorMaker configuration.

Procedure

1. Configure two Kafka resources, one to secure the source Kafka cluster and one to secure the
target Kafka cluster.
You can add listener configuration for authentication and enable authorization.

In this example, an internal listener is configured for a Kafka cluster with TLS encryption and
mTLS authentication. Kafka simple authorization is enabled.

Example source Kafka cluster configuration with TLS encryption and mTLS
authentication

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 name: my-source-cluster
spec:
 kafka:
 version: 3.5.0
 replicas: 1
 listeners:
 - name: tls
 port: 9093
 type: internal
 tls: true
 authentication:
 type: tls
 authorization:
 type: simple
 config:
 offsets.topic.replication.factor: 1
 transaction.state.log.replication.factor: 1
 transaction.state.log.min.isr: 1
 default.replication.factor: 1
 min.insync.replicas: 1
 inter.broker.protocol.version: "3.5"

CHAPTER 8. CONFIGURING A DEPLOYMENT

147

Example target Kafka cluster configuration with TLS encryption and mTLS
authentication

 storage:
 type: jbod
 volumes:
 - id: 0
 type: persistent-claim
 size: 100Gi
 deleteClaim: false
 zookeeper:
 replicas: 1
 storage:
 type: persistent-claim
 size: 100Gi
 deleteClaim: false
 entityOperator:
 topicOperator: {}
 userOperator: {}

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 name: my-target-cluster
spec:
 kafka:
 version: 3.5.0
 replicas: 1
 listeners:
 - name: tls
 port: 9093
 type: internal
 tls: true
 authentication:
 type: tls
 authorization:
 type: simple
 config:
 offsets.topic.replication.factor: 1
 transaction.state.log.replication.factor: 1
 transaction.state.log.min.isr: 1
 default.replication.factor: 1
 min.insync.replicas: 1
 inter.broker.protocol.version: "3.5"
 storage:
 type: jbod
 volumes:
 - id: 0
 type: persistent-claim
 size: 100Gi
 deleteClaim: false
 zookeeper:
 replicas: 1
 storage:
 type: persistent-claim

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

148

2. Create or update the Kafka resources in separate namespaces.

The Cluster Operator creates the listeners and sets up the cluster and client certificate
authority (CA) certificates to enable authentication within the Kafka cluster.

The certificates are created in the secret <cluster_name>-cluster-ca-cert.

3. Configure two KafkaUser resources, one for a user of the source Kafka cluster and one for a
user of the target Kafka cluster.

a. Configure the same authentication and authorization types as the corresponding source
and target Kafka cluster. For example, if you used tls authentication and the simple
authorization type in the Kafka configuration for the source Kafka cluster, use the same in
the KafkaUser configuration.

b. Configure the ACLs needed by MirrorMaker 2 to allow operations on the source and target
Kafka clusters.
The ACLs are used by the internal MirrorMaker connectors, and by the underlying Kafka
Connect framework.

Example source user configuration for mTLS authentication

 size: 100Gi
 deleteClaim: false
 entityOperator:
 topicOperator: {}
 userOperator: {}

oc apply -f <kafka_configuration_file> -n <namespace>

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaUser
metadata:
 name: my-source-user
 labels:
 strimzi.io/cluster: my-source-cluster
spec:
 authentication:
 type: tls
 authorization:
 type: simple
 acls:
 # MirrorSourceConnector
 - resource: # Not needed if offset-syncs.topic.location=target
 type: topic
 name: mm2-offset-syncs.my-target-cluster.internal
 operations:
 - Create
 - DescribeConfigs
 - Read
 - Write
 - resource: # Needed for every topic which is mirrored
 type: topic
 name: "*"
 operations:
 - DescribeConfigs

CHAPTER 8. CONFIGURING A DEPLOYMENT

149

Example target user configuration for mTLS authentication

 - Read
 # MirrorCheckpointConnector
 - resource:
 type: cluster
 operations:
 - Describe
 - resource: # Needed for every group for which offsets are synced
 type: group
 name: "*"
 operations:
 - Describe
 - resource: # Not needed if offset-syncs.topic.location=target
 type: topic
 name: mm2-offset-syncs.my-target-cluster.internal
 operations:
 - Read

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaUser
metadata:
 name: my-target-user
 labels:
 strimzi.io/cluster: my-target-cluster
spec:
 authentication:
 type: tls
 authorization:
 type: simple
 acls:
 # Underlying Kafka Connect internal topics to store configuration, offsets, or status
 - resource:
 type: group
 name: mirrormaker2-cluster
 operations:
 - Read
 - resource:
 type: topic
 name: mirrormaker2-cluster-configs
 operations:
 - Create
 - Describe
 - DescribeConfigs
 - Read
 - Write
 - resource:
 type: topic
 name: mirrormaker2-cluster-status
 operations:
 - Create
 - Describe
 - DescribeConfigs
 - Read
 - Write
 - resource:

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

150

NOTE

You can use a certificate issued outside the User Operator by setting type to tls-
external. For more information, see the KafkaUserSpec schema reference.

4. Create or update a KafkaUser resource in each of the namespaces you created for the source
and target Kafka clusters.

 type: topic
 name: mirrormaker2-cluster-offsets
 operations:
 - Create
 - Describe
 - DescribeConfigs
 - Read
 - Write
 # MirrorSourceConnector
 - resource: # Needed for every topic which is mirrored
 type: topic
 name: "*"
 operations:
 - Create
 - Alter
 - AlterConfigs
 - Write
 # MirrorCheckpointConnector
 - resource:
 type: cluster
 operations:
 - Describe
 - resource:
 type: topic
 name: my-source-cluster.checkpoints.internal
 operations:
 - Create
 - Describe
 - Read
 - Write
 - resource: # Needed for every group for which the offset is synced
 type: group
 name: "*"
 operations:
 - Read
 - Describe
 # MirrorHeartbeatConnector
 - resource:
 type: topic
 name: heartbeats
 operations:
 - Create
 - Describe
 - Write

oc apply -f <kafka_user_configuration_file> -n <namespace>

CHAPTER 8. CONFIGURING A DEPLOYMENT

151

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index#type-KafkaUserSpec-reference

The User Operator creates the users representing the client (MirrorMaker), and the security
credentials used for client authentication, based on the chosen authentication type.

The User Operator creates a new secret with the same name as the KafkaUser resource. The
secret contains a private and public key for mTLS authentication. The public key is contained in
a user certificate, which is signed by the clients CA.

5. Configure a KafkaMirrorMaker2 resource with the authentication details to connect to the
source and target Kafka clusters.

Example MirrorMaker 2 configuration with TLS encryption and mTLS authentication

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaMirrorMaker2
metadata:
 name: my-mirror-maker-2
spec:
 version: 3.5.0
 replicas: 1
 connectCluster: "my-target-cluster"
 clusters:
 - alias: "my-source-cluster"
 bootstrapServers: my-source-cluster-kafka-bootstrap:9093
 tls: 1
 trustedCertificates:
 - secretName: my-source-cluster-cluster-ca-cert
 certificate: ca.crt
 authentication: 2
 type: tls
 certificateAndKey:
 secretName: my-source-user
 certificate: user.crt
 key: user.key
 - alias: "my-target-cluster"
 bootstrapServers: my-target-cluster-kafka-bootstrap:9093
 tls: 3
 trustedCertificates:
 - secretName: my-target-cluster-cluster-ca-cert
 certificate: ca.crt
 authentication: 4
 type: tls
 certificateAndKey:
 secretName: my-target-user
 certificate: user.crt
 key: user.key
 config:
 # -1 means it will use the default replication factor configured in the broker
 config.storage.replication.factor: -1
 offset.storage.replication.factor: -1
 status.storage.replication.factor: -1
 mirrors:
 - sourceCluster: "my-source-cluster"
 targetCluster: "my-target-cluster"
 sourceConnector:
 config:

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

152

1

2

3

4

The TLS certificates for the source Kafka cluster. If they are in a separate namespace, copy
the cluster secrets from the namespace of the Kafka cluster.

The user authentication for accessing the source Kafka cluster using the TLS mechanism.

The TLS certificates for the target Kafka cluster.

The user authentication for accessing the target Kafka cluster.

6. Create or update the KafkaMirrorMaker2 resource in the same namespace as the target Kafka
cluster.

8.8. CONFIGURING KAFKA MIRRORMAKER (DEPRECATED)

Update the spec properties of the KafkaMirrorMaker custom resource to configure your Kafka
MirrorMaker deployment.

You can configure access control for producers and consumers using TLS or SASL authentication. This
procedure shows a configuration that uses TLS encryption and mTLS authentication on the consumer
and producer side.

For a deeper understanding of the Kafka MirrorMaker cluster configuration options, refer to the AMQ
Streams Custom Resource API Reference.

IMPORTANT

Kafka MirrorMaker 1 (referred to as just MirrorMaker in the documentation) has been
deprecated in Apache Kafka 3.0.0 and will be removed in Apache Kafka 4.0.0. As a result,
the KafkaMirrorMaker custom resource which is used to deploy Kafka MirrorMaker 1 has
been deprecated in AMQ Streams as well. The KafkaMirrorMaker resource will be
removed from AMQ Streams when we adopt Apache Kafka 4.0.0. As a replacement, use
the KafkaMirrorMaker2 custom resource with the IdentityReplicationPolicy.

Example KafkaMirrorMaker custom resource configuration

 replication.factor: 1
 offset-syncs.topic.replication.factor: 1
 sync.topic.acls.enabled: "false"
 heartbeatConnector:
 config:
 heartbeats.topic.replication.factor: 1
 checkpointConnector:
 config:
 checkpoints.topic.replication.factor: 1
 sync.group.offsets.enabled: "true"
 topicsPattern: "topic1|topic2|topic3"
 groupsPattern: "group1|group2|group3"

oc apply -f <mirrormaker2_configuration_file> -n <namespace_of_target_cluster>

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaMirrorMaker
metadata:

CHAPTER 8. CONFIGURING A DEPLOYMENT

153

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index

 name: my-mirror-maker
spec:
 replicas: 3 1
 consumer:
 bootstrapServers: my-source-cluster-kafka-bootstrap:9092 2
 groupId: "my-group" 3
 numStreams: 2 4
 offsetCommitInterval: 120000 5
 tls: 6
 trustedCertificates:
 - secretName: my-source-cluster-ca-cert
 certificate: ca.crt
 authentication: 7
 type: tls
 certificateAndKey:
 secretName: my-source-secret
 certificate: public.crt
 key: private.key
 config: 8
 max.poll.records: 100
 receive.buffer.bytes: 32768
 producer:
 bootstrapServers: my-target-cluster-kafka-bootstrap:9092
 abortOnSendFailure: false 9
 tls:
 trustedCertificates:
 - secretName: my-target-cluster-ca-cert
 certificate: ca.crt
 authentication:
 type: tls
 certificateAndKey:
 secretName: my-target-secret
 certificate: public.crt
 key: private.key
 config:
 compression.type: gzip
 batch.size: 8192
 include: "my-topic|other-topic" 10
 resources: 11
 requests:
 cpu: "1"
 memory: 2Gi
 limits:
 cpu: "2"
 memory: 2Gi
 logging: 12
 type: inline
 loggers:
 mirrormaker.root.logger: INFO
 readinessProbe: 13
 initialDelaySeconds: 15
 timeoutSeconds: 5
 livenessProbe:
 initialDelaySeconds: 15

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

154

1

2

3

4

5

6

7

8

9

10

The number of replica nodes.

Bootstrap servers for consumer and producer.

Group ID for the consumer.

The number of consumer streams.

The offset auto-commit interval in milliseconds.

TLS encryption with key names under which TLS certificates are stored in X.509 format for
consumer or producer. If certificates are stored in the same secret, it can be listed multiple times.

Authentication for consumer or producer, specified as mTLS, token-based OAuth, SASL-based
SCRAM-SHA-256/SCRAM-SHA-512, or PLAIN.

Kafka configuration options for consumer and producer.

If the abortOnSendFailure property is set to true, Kafka MirrorMaker will exit and the container
will restart following a send failure for a message.

A list of included topics mirrored from source to target Kafka cluster.

Requests for reservation of supported resources, currently cpu and memory, and limits to specify

 timeoutSeconds: 5
 metricsConfig: 14
 type: jmxPrometheusExporter
 valueFrom:
 configMapKeyRef:
 name: my-config-map
 key: my-key
 jvmOptions: 15
 "-Xmx": "1g"
 "-Xms": "1g"
 image: my-org/my-image:latest 16
 template: 17
 pod:
 affinity:
 podAntiAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 - labelSelector:
 matchExpressions:
 - key: application
 operator: In
 values:
 - postgresql
 - mongodb
 topologyKey: "kubernetes.io/hostname"
 mirrorMakerContainer: 18
 env:
 - name: OTEL_SERVICE_NAME
 value: my-otel-service
 - name: OTEL_EXPORTER_OTLP_ENDPOINT
 value: "http://otlp-host:4317"
 tracing: 19
 type: opentelemetry

CHAPTER 8. CONFIGURING A DEPLOYMENT

155

11

12

13

14

15

16

17

18

19

Requests for reservation of supported resources, currently cpu and memory, and limits to specify
the maximum resources that can be consumed.

Specified loggers and log levels added directly (inline) or indirectly (external) through a
ConfigMap. A custom Log4j configuration must be placed under the log4j.properties or
log4j2.properties key in the ConfigMap. MirrorMaker has a single logger called
mirrormaker.root.logger. You can set the log level to INFO, ERROR, WARN, TRACE, DEBUG,
FATAL or OFF.

Healthchecks to know when to restart a container (liveness) and when a container can accept
traffic (readiness).

Prometheus metrics, which are enabled by referencing a ConfigMap containing configuration for
the Prometheus JMX exporter in this example. You can enable metrics without further
configuration using a reference to a ConfigMap containing an empty file under
metricsConfig.valueFrom.configMapKeyRef.key.

JVM configuration options to optimize performance for the Virtual Machine (VM) running Kafka
MirrorMaker.

ADVANCED OPTION: Container image configuration, which is recommended only in special
situations.

Template customization. Here a pod is scheduled with anti-affinity, so the pod is not scheduled on
nodes with the same hostname.

Environment variables are set for distributed tracing.

Distributed tracing is enabled by using OpenTelemetry.

WARNING

With the abortOnSendFailure property set to false, the producer attempts to
send the next message in a topic. The original message might be lost, as there
is no attempt to resend a failed message.

8.9. CONFIGURING THE KAFKA BRIDGE

Update the spec properties of the KafkaBridge custom resource to configure your Kafka Bridge
deployment.

In order to prevent issues arising when client consumer requests are processed by different Kafka Bridge
instances, address-based routing must be employed to ensure that requests are routed to the right
Kafka Bridge instance. Additionally, each independent Kafka Bridge instance must have a replica. A
Kafka Bridge instance has its own state which is not shared with another instances.

For a deeper understanding of the Kafka Bridge cluster configuration options, refer to the AMQ
Streams Custom Resource API Reference.

Example KafkaBridge custom resource configuration



Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

156

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaBridge
metadata:
 name: my-bridge
spec:
 replicas: 3 1
 bootstrapServers: <cluster_name>-cluster-kafka-bootstrap:9092 2
 tls: 3
 trustedCertificates:
 - secretName: my-cluster-cluster-cert
 certificate: ca.crt
 - secretName: my-cluster-cluster-cert
 certificate: ca2.crt
 authentication: 4
 type: tls
 certificateAndKey:
 secretName: my-secret
 certificate: public.crt
 key: private.key
 http: 5
 port: 8080
 cors: 6
 allowedOrigins: "https://strimzi.io"
 allowedMethods: "GET,POST,PUT,DELETE,OPTIONS,PATCH"
 consumer: 7
 config:
 auto.offset.reset: earliest
 producer: 8
 config:
 delivery.timeout.ms: 300000
 resources: 9
 requests:
 cpu: "1"
 memory: 2Gi
 limits:
 cpu: "2"
 memory: 2Gi
 logging: 10
 type: inline
 loggers:
 logger.bridge.level: INFO
 # enabling DEBUG just for send operation
 logger.send.name: "http.openapi.operation.send"
 logger.send.level: DEBUG
 jvmOptions: 11
 "-Xmx": "1g"
 "-Xms": "1g"
 readinessProbe: 12
 initialDelaySeconds: 15
 timeoutSeconds: 5
 livenessProbe:
 initialDelaySeconds: 15
 timeoutSeconds: 5
 image: my-org/my-image:latest 13

CHAPTER 8. CONFIGURING A DEPLOYMENT

157

1

2

3

4

5

6

7

8

9

10

11

12

The number of replica nodes.

Bootstrap server for connection to the target Kafka cluster. Use the name of the Kafka cluster as
the <cluster_name>.

TLS encryption with key names under which TLS certificates are stored in X.509 format for the
source Kafka cluster. If certificates are stored in the same secret, it can be listed multiple times.

Authentication for the Kafka Bridge cluster, specified as mTLS, token-based OAuth, SASL-based
SCRAM-SHA-256/SCRAM-SHA-512, or PLAIN. By default, the Kafka Bridge connects to Kafka
brokers without authentication.

HTTP access to Kafka brokers.

CORS access specifying selected resources and access methods. Additional HTTP headers in
requests describe the origins that are permitted access to the Kafka cluster.

Consumer configuration options.

Producer configuration options.

Requests for reservation of supported resources, currently cpu and memory, and limits to specify
the maximum resources that can be consumed.

Specified Kafka Bridge loggers and log levels added directly (inline) or indirectly (external)
through a ConfigMap. A custom Log4j configuration must be placed under the log4j.properties or
log4j2.properties key in the ConfigMap. For the Kafka Bridge loggers, you can set the log level to
INFO, ERROR, WARN, TRACE, DEBUG, FATAL or OFF.

JVM configuration options to optimize performance for the Virtual Machine (VM) running the
Kafka Bridge.

Healthchecks to know when to restart a container (liveness) and when a container can accept
traffic (readiness).

 template: 14
 pod:
 affinity:
 podAntiAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 - labelSelector:
 matchExpressions:
 - key: application
 operator: In
 values:
 - postgresql
 - mongodb
 topologyKey: "kubernetes.io/hostname"
 bridgeContainer: 15
 env:
 - name: OTEL_SERVICE_NAME
 value: my-otel-service
 - name: OTEL_EXPORTER_OTLP_ENDPOINT
 value: "http://otlp-host:4317"
 tracing:
 type: opentelemetry 16

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

158

13

14

15

16

Optional: Container image configuration, which is recommended only in special situations.

Template customization. Here a pod is scheduled with anti-affinity, so the pod is not scheduled on
nodes with the same hostname.

Environment variables are set for distributed tracing.

Distributed tracing is enabled by using OpenTelemetry.

Additional resources

Using the AMQ Streams Kafka Bridge

8.10. CONFIGURING KAFKA AND ZOOKEEPER STORAGE

As stateful applications, Kafka and ZooKeeper store data on disk. AMQ Streams supports three storage
types for this data:

Ephemeral (Recommended for development only)

Persistent

JBOD (Kafka only not ZooKeeper)

When configuring a Kafka resource, you can specify the type of storage used by the Kafka broker and its
corresponding ZooKeeper node. You configure the storage type using the storage property in the
following resources:

Kafka.spec.kafka

Kafka.spec.zookeeper

The storage type is configured in the type field.

Refer to the schema reference for more information on storage configuration properties:

EphemeralStorage schema reference

PersistentClaimStorage schema reference

JbodStorage schema reference

WARNING

The storage type cannot be changed after a Kafka cluster is deployed.

8.10.1. Data storage considerations

For AMQ Streams to work well, an efficient data storage infrastructure is essential. We strongly



CHAPTER 8. CONFIGURING A DEPLOYMENT

159

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/using_the_amq_streams_kafka_bridge/index
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index#type-EphemeralStorage-reference
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index#type-PersistentClaimStorage-reference
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index#type-JbodStorage-reference

For AMQ Streams to work well, an efficient data storage infrastructure is essential. We strongly
recommend using block storage. AMQ Streams is only tested for use with block storage. File storage,
such as NFS, is not tested and there is no guarantee it will work.

Choose one of the following options for your block storage:

A cloud-based block storage solution, such as Amazon Elastic Block Store (EBS)

Persistent storage using local persistent volumes

Storage Area Network (SAN) volumes accessed by a protocol such as Fibre Channel or iSCSI

NOTE

AMQ Streams does not require OpenShift raw block volumes.

8.10.1.1. File systems

Kafka uses a file system for storing messages. AMQ Streams is compatible with the XFS and ext4 file
systems, which are commonly used with Kafka. Consider the underlying architecture and requirements of
your deployment when choosing and setting up your file system.

For more information, refer to Filesystem Selection in the Kafka documentation.

8.10.1.2. Disk usage

Use separate disks for Apache Kafka and ZooKeeper.

Solid-state drives (SSDs), though not essential, can improve the performance of Kafka in large clusters
where data is sent to and received from multiple topics asynchronously. SSDs are particularly effective
with ZooKeeper, which requires fast, low latency data access.

NOTE

You do not need to provision replicated storage because Kafka and ZooKeeper both have
built-in data replication.

8.10.2. Ephemeral storage

Ephemeral data storage is transient. All pods on a node share a local ephemeral storage space. Data is
retained for as long as the pod that uses it is running. The data is lost when a pod is deleted. Although a
pod can recover data in a highly available environment.

Because of its transient nature, ephemeral storage is only recommended for development and testing.

Ephemeral storage uses emptyDir volumes to store data. An emptyDir volume is created when a pod is
assigned to a node. You can set the total amount of storage for the emptyDir using the sizeLimit
property .

IMPORTANT

Ephemeral storage is not suitable for single-node ZooKeeper clusters or Kafka topics
with a replication factor of 1.

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

160

https://aws.amazon.com/ebs/
https://kubernetes.io/docs/concepts/storage/volumes/#local
https://kafka.apache.org/documentation/#filesystems
https://kubernetes.io/docs/concepts/storage/volumes/#emptydir

To use ephemeral storage, you set the storage type configuration in the Kafka or ZooKeeper resource
to ephemeral.

Example ephemeral storage configuration

8.10.2.1. Mount path of Kafka log directories

The ephemeral volume is used by Kafka brokers as log directories mounted into the following path:

Where IDX is the Kafka broker pod index. For example /var/lib/kafka/data/kafka-log0.

8.10.3. Persistent storage

Persistent data storage retains data in the event of system disruption. For pods that use persistent data
storage, data is persisted across pod failures and restarts.

A dynamic provisioning framework enables clusters to be created with persistent storage. Pod
configuration uses Persistent Volume Claims (PVCs) to make storage requests on persistent volumes
(PVs). PVs are storage resources that represent a storage volume. PVs are independent of the pods
that use them. The PVC requests the amount of storage required when a pod is being created. The
underlying storage infrastructure of the PV does not need to be understood. If a PV matches the
storage criteria, the PVC is bound to the PV.

Because of its permanent nature, persistent storage is recommended for production.

PVCs can request different types of persistent storage by specifying a StorageClass. Storage classes
define storage profiles and dynamically provision PVs. If a storage class is not specified, the default
storage class is used. Persistent storage options might include SAN storage types or local persistent
volumes.

To use persistent storage, you set the storage type configuration in the Kafka or ZooKeeper resource
to persistent-claim.

In the production environment, the following configuration is recommended:

For Kafka, configure type: jbod with one or more type: persistent-claim volumes

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 name: my-cluster
spec:
 kafka:
 # ...
 storage:
 type: ephemeral
 # ...
 zookeeper:
 # ...
 storage:
 type: ephemeral
 # ...

/var/lib/kafka/data/kafka-logIDX

CHAPTER 8. CONFIGURING A DEPLOYMENT

161

https://kubernetes.io/docs/concepts/storage/dynamic-provisioning/
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/concepts/storage/volumes/#local

For ZooKeeper, configure type: persistent-claim

Persistent storage also has the following configuration options:

id (optional)

A storage identification number. This option is mandatory for storage volumes defined in a JBOD
storage declaration. Default is 0.

size (required)

The size of the persistent volume claim, for example, "1000Gi".

class (optional)

The OpenShift StorageClass to use for dynamic volume provisioning. Storage class configuration
includes parameters that describe the profile of a volume in detail.

selector (optional)

Configuration to specify a specific PV. Provides key:value pairs representing the labels of the volume
selected.

deleteClaim (optional)

Boolean value to specify whether the PVC is deleted when the cluster is uninstalled. Default is false.

WARNING

Increasing the size of persistent volumes in an existing AMQ Streams cluster is only
supported in OpenShift versions that support persistent volume resizing. The
persistent volume to be resized must use a storage class that supports volume
expansion. For other versions of OpenShift and storage classes that do not support
volume expansion, you must decide the necessary storage size before deploying
the cluster. Decreasing the size of existing persistent volumes is not possible.

Example persistent storage configuration for Kafka and ZooKeeper



...
spec:
 kafka:
 # ...
 storage:
 type: jbod
 volumes:
 - id: 0
 type: persistent-claim
 size: 100Gi
 deleteClaim: false
 - id: 1
 type: persistent-claim
 size: 100Gi
 deleteClaim: false
 - id: 2
 type: persistent-claim
 size: 100Gi

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

162

https://kubernetes.io/docs/concepts/storage/storage-classes/

If you do not specify a storage class, the default is used. The following example specifies a storage class.

Example persistent storage configuration with specific storage class

Use a selector to specify a labeled persistent volume that provides certain features, such as an SSD.

Example persistent storage configuration with selector

8.10.3.1. Storage class overrides

Instead of using the default storage class, you can specify a different storage class for one or more
Kafka brokers or ZooKeeper nodes. This is useful, for example, when storage classes are restricted to
different availability zones or data centers. You can use the overrides field for this purpose.

In this example, the default storage class is named my-storage-class:

Example AMQ Streams cluster using storage class overrides

 deleteClaim: false
 # ...
 zookeeper:
 storage:
 type: persistent-claim
 size: 1000Gi
...

...
storage:
 type: persistent-claim
 size: 1Gi
 class: my-storage-class
...

...
storage:
 type: persistent-claim
 size: 1Gi
 selector:
 hdd-type: ssd
 deleteClaim: true
...

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 labels:
 app: my-cluster
 name: my-cluster
 namespace: myproject
spec:
 # ...
 kafka:
 replicas: 3
 storage:

CHAPTER 8. CONFIGURING A DEPLOYMENT

163

As a result of the configured overrides property, the volumes use the following storage classes:

The persistent volumes of ZooKeeper node 0 use my-storage-class-zone-1a.

The persistent volumes of ZooKeeper node 1 use my-storage-class-zone-1b.

The persistent volumes of ZooKeeepr node 2 use my-storage-class-zone-1c.

The persistent volumes of Kafka broker 0 use my-storage-class-zone-1a.

The persistent volumes of Kafka broker 1 use my-storage-class-zone-1b.

The persistent volumes of Kafka broker 2 use my-storage-class-zone-1c.

The overrides property is currently used only to override storage class configurations. Overrides for
other storage configuration properties is not currently supported. Other storage configuration
properties are currently not supported.

8.10.3.2. PVC resources for persistent storage

When persistent storage is used, it creates PVCs with the following names:

data-cluster-name-kafka-idx

PVC for the volume used for storing data for the Kafka broker pod idx.

 type: jbod
 volumes:
 - id: 0
 type: persistent-claim
 size: 100Gi
 deleteClaim: false
 class: my-storage-class
 overrides:
 - broker: 0
 class: my-storage-class-zone-1a
 - broker: 1
 class: my-storage-class-zone-1b
 - broker: 2
 class: my-storage-class-zone-1c
 # ...
 # ...
 zookeeper:
 replicas: 3
 storage:
 deleteClaim: true
 size: 100Gi
 type: persistent-claim
 class: my-storage-class
 overrides:
 - broker: 0
 class: my-storage-class-zone-1a
 - broker: 1
 class: my-storage-class-zone-1b
 - broker: 2
 class: my-storage-class-zone-1c
 # ...

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

164

data-cluster-name-zookeeper-idx

PVC for the volume used for storing data for the ZooKeeper node pod idx.

8.10.3.3. Mount path of Kafka log directories

The persistent volume is used by the Kafka brokers as log directories mounted into the following path:

Where IDX is the Kafka broker pod index. For example /var/lib/kafka/data/kafka-log0.

8.10.4. Resizing persistent volumes

Persistent volumes used by a cluster can be resized without any risk of data loss, as long as the storage
infrastructure supports it. Following a configuration update to change the size of the storage, AMQ
Streams instructs the storage infrastructure to make the change. Storage expansion is supported in
AMQ Streams clusters that use persistent-claim volumes.

Storage reduction is only possible when using multiple disks per broker. You can remove a disk after
moving all partitions on the disk to other volumes within the same broker (intra-broker) or to other
brokers within the same cluster (intra-cluster).

IMPORTANT

You cannot decrease the size of persistent volumes because it is not currently supported
in OpenShift.

Prerequisites

An OpenShift cluster with support for volume resizing.

The Cluster Operator is running.

A Kafka cluster using persistent volumes created using a storage class that supports volume
expansion.

Procedure

1. Edit the Kafka resource for your cluster.
Change the size property to increase the size of the persistent volume allocated to a Kafka
cluster, a ZooKeeper cluster, or both.

For Kafka clusters, update the size property under spec.kafka.storage.

For ZooKeeper clusters, update the size property under spec.zookeeper.storage.

Kafka configuration to increase the volume size to 2000Gi

/var/lib/kafka/data/kafka-logIDX

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 name: my-cluster
spec:
 kafka:

CHAPTER 8. CONFIGURING A DEPLOYMENT

165

2. Create or update the resource:

OpenShift increases the capacity of the selected persistent volumes in response to a request
from the Cluster Operator. When the resizing is complete, the Cluster Operator restarts all pods
that use the resized persistent volumes. This happens automatically.

3. Verify that the storage capacity has increased for the relevant pods on the cluster:

Kafka broker pods with increased storage

The output shows the names of each PVC associated with a broker pod.

Additional resources

For more information about resizing persistent volumes in OpenShift, see Resizing Persistent
Volumes using Kubernetes.

8.10.5. JBOD storage

You can configure AMQ Streams to use JBOD, a data storage configuration of multiple disks or
volumes. JBOD is one approach to providing increased data storage for Kafka brokers. It can also
improve performance.

NOTE

JBOD storage is supported for Kafka only not ZooKeeper.

A JBOD configuration is described by one or more volumes, each of which can be either ephemeral or
persistent. The rules and constraints for JBOD volume declarations are the same as those for ephemeral
and persistent storage. For example, you cannot decrease the size of a persistent storage volume after
it has been provisioned, or you cannot change the value of sizeLimit when the type is ephemeral.

To use JBOD storage, you set the storage type configuration in the Kafka resource to jbod. The
volumes property allows you to describe the disks that make up your JBOD storage array or
configuration.

 # ...
 storage:
 type: persistent-claim
 size: 2000Gi
 class: my-storage-class
 # ...
 zookeeper:
 # ...

oc apply -f <kafka_configuration_file>

oc get pv

NAME CAPACITY CLAIM
pvc-0ca459ce-... 2000Gi my-project/data-my-cluster-kafka-2
pvc-6e1810be-... 2000Gi my-project/data-my-cluster-kafka-0
pvc-82dc78c9-... 2000Gi my-project/data-my-cluster-kafka-1

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

166

https://kubernetes.io/blog/2018/07/12/resizing-persistent-volumes-using-kubernetes/

Example JBOD storage configuration

The IDs cannot be changed once the JBOD volumes are created. You can add or remove volumes from
the JBOD configuration.

8.10.5.1. PVC resource for JBOD storage

When persistent storage is used to declare JBOD volumes, it creates a PVC with the following name:

data-id-cluster-name-kafka-idx

PVC for the volume used for storing data for the Kafka broker pod idx. The id is the ID of the volume
used for storing data for Kafka broker pod.

8.10.5.2. Mount path of Kafka log directories

The JBOD volumes are used by Kafka brokers as log directories mounted into the following path:

Where id is the ID of the volume used for storing data for Kafka broker pod idx. For example
/var/lib/kafka/data-0/kafka-log0.

8.10.6. Adding volumes to JBOD storage

This procedure describes how to add volumes to a Kafka cluster configured to use JBOD storage. It
cannot be applied to Kafka clusters configured to use any other storage type.

NOTE

When adding a new volume under an id which was already used in the past and removed,
you have to make sure that the previously used PersistentVolumeClaims have been
deleted.

Prerequisites

An OpenShift cluster

A running Cluster Operator

...
storage:
 type: jbod
 volumes:
 - id: 0
 type: persistent-claim
 size: 100Gi
 deleteClaim: false
 - id: 1
 type: persistent-claim
 size: 100Gi
 deleteClaim: false
...

/var/lib/kafka/data-id/kafka-logidx

CHAPTER 8. CONFIGURING A DEPLOYMENT

167

A Kafka cluster with JBOD storage

Procedure

1. Edit the spec.kafka.storage.volumes property in the Kafka resource. Add the new volumes to
the volumes array. For example, add the new volume with id 2:

2. Create or update the resource:

3. Create new topics or reassign existing partitions to the new disks.

TIP

Cruise Control is an effective tool for reassigning partitions. To perform an intra-broker disk
balance, you set rebalanceDisk to true under the KafkaRebalance.spec.

8.10.7. Removing volumes from JBOD storage

This procedure describes how to remove volumes from Kafka cluster configured to use JBOD storage. It
cannot be applied to Kafka clusters configured to use any other storage type. The JBOD storage always
has to contain at least one volume.

IMPORTANT

To avoid data loss, you have to move all partitions before removing the volumes.

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 name: my-cluster
spec:
 kafka:
 # ...
 storage:
 type: jbod
 volumes:
 - id: 0
 type: persistent-claim
 size: 100Gi
 deleteClaim: false
 - id: 1
 type: persistent-claim
 size: 100Gi
 deleteClaim: false
 - id: 2
 type: persistent-claim
 size: 100Gi
 deleteClaim: false
 # ...
 zookeeper:
 # ...

oc apply -f <kafka_configuration_file>

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

168

Prerequisites

An OpenShift cluster

A running Cluster Operator

A Kafka cluster with JBOD storage with two or more volumes

Procedure

1. Reassign all partitions from the disks which are you going to remove. Any data in partitions still
assigned to the disks which are going to be removed might be lost.

TIP

You can use the kafka-reassign-partitions.sh tool to reassign the partitions.

2. Edit the spec.kafka.storage.volumes property in the Kafka resource. Remove one or more
volumes from the volumes array. For example, remove the volumes with ids 1 and 2:

3. Create or update the resource:

8.11. CONFIGURING CPU AND MEMORY RESOURCE LIMITS AND
REQUESTS

By default, the AMQ Streams Cluster Operator does not specify CPU and memory resource requests
and limits for its deployed operands. Ensuring an adequate allocation of resources is crucial for
maintaining stability and achieving optimal performance in Kafka. The ideal resource allocation depends
on your specific requirements and use cases.

It is recommended to configure CPU and memory resources for each container by setting appropriate
requests and limits.

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 name: my-cluster
spec:
 kafka:
 # ...
 storage:
 type: jbod
 volumes:
 - id: 0
 type: persistent-claim
 size: 100Gi
 deleteClaim: false
 # ...
 zookeeper:
 # ...

oc apply -f <kafka_configuration_file>

CHAPTER 8. CONFIGURING A DEPLOYMENT

169

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index#con-common-configuration-resources-reference

8.12. CONFIGURING POD SCHEDULING

To avoid performance degradation caused by resource conflicts between applications scheduled on the
same OpenShift node, you can schedule Kafka pods separately from critical workloads. This can be
achieved by either selecting specific nodes or dedicating a set of nodes exclusively for Kafka.

8.12.1. Specifying affinity, tolerations, and topology spread constraints

Use affinity, tolerations and topology spread constraints to schedule the pods of kafka resources onto
nodes. Affinity, tolerations and topology spread constraints are configured using the affinity,
tolerations, and topologySpreadConstraint properties in following resources:

Kafka.spec.kafka.template.pod

Kafka.spec.zookeeper.template.pod

Kafka.spec.entityOperator.template.pod

KafkaConnect.spec.template.pod

KafkaBridge.spec.template.pod

KafkaMirrorMaker.spec.template.pod

KafkaMirrorMaker2.spec.template.pod

The format of the affinity, tolerations, and topologySpreadConstraint properties follows the
OpenShift specification. The affinity configuration can include different types of affinity:

Pod affinity and anti-affinity

Node affinity

Additional resources

Kubernetes node and pod affinity documentation

Kubernetes taints and tolerations

Controlling pod placement by using pod topology spread constraints

8.12.1.1. Use pod anti-affinity to avoid critical applications sharing nodes

Use pod anti-affinity to ensure that critical applications are never scheduled on the same disk. When
running a Kafka cluster, it is recommended to use pod anti-affinity to ensure that the Kafka brokers do
not share nodes with other workloads, such as databases.

8.12.1.2. Use node affinity to schedule workloads onto specific nodes

The OpenShift cluster usually consists of many different types of worker nodes. Some are optimized for
CPU heavy workloads, some for memory, while other might be optimized for storage (fast local SSDs) or
network. Using different nodes helps to optimize both costs and performance. To achieve the best
possible performance, it is important to allow scheduling of AMQ Streams components to use the right
nodes.

OpenShift uses node affinity to schedule workloads onto specific nodes. Node affinity allows you to

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

170

https://kubernetes.io/docs/concepts/configuration/assign-pod-node/
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/
https://docs.openshift.com/container-platform/latest/nodes/scheduling/nodes-scheduler-pod-topology-spread-constraints.html

create a scheduling constraint for the node on which the pod will be scheduled. The constraint is
specified as a label selector. You can specify the label using either the built-in node label like
beta.kubernetes.io/instance-type or custom labels to select the right node.

8.12.1.3. Use node affinity and tolerations for dedicated nodes

Use taints to create dedicated nodes, then schedule Kafka pods on the dedicated nodes by configuring
node affinity and tolerations.

Cluster administrators can mark selected OpenShift nodes as tainted. Nodes with taints are excluded
from regular scheduling and normal pods will not be scheduled to run on them. Only services which can
tolerate the taint set on the node can be scheduled on it. The only other services running on such nodes
will be system services such as log collectors or software defined networks.

Running Kafka and its components on dedicated nodes can have many advantages. There will be no
other applications running on the same nodes which could cause disturbance or consume the resources
needed for Kafka. That can lead to improved performance and stability.

8.12.2. Configuring pod anti-affinity to schedule each Kafka broker on a different
worker node

Many Kafka brokers or ZooKeeper nodes can run on the same OpenShift worker node. If the worker
node fails, they will all become unavailable at the same time. To improve reliability, you can use
podAntiAffinity configuration to schedule each Kafka broker or ZooKeeper node on a different
OpenShift worker node.

Prerequisites

An OpenShift cluster

A running Cluster Operator

Procedure

1. Edit the affinity property in the resource specifying the cluster deployment. To make sure that
no worker nodes are shared by Kafka brokers or ZooKeeper nodes, use the strimzi.io/name
label. Set the topologyKey to kubernetes.io/hostname to specify that the selected pods are
not scheduled on nodes with the same hostname. This will still allow the same worker node to
be shared by a single Kafka broker and a single ZooKeeper node. For example:

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
spec:
 kafka:
 # ...
 template:
 pod:
 affinity:
 podAntiAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 - labelSelector:
 matchExpressions:
 - key: strimzi.io/name
 operator: In
 values:

CHAPTER 8. CONFIGURING A DEPLOYMENT

171

Where CLUSTER-NAME is the name of your Kafka custom resource.

2. If you even want to make sure that a Kafka broker and ZooKeeper node do not share the same
worker node, use the strimzi.io/cluster label. For example:

 - CLUSTER-NAME-kafka
 topologyKey: "kubernetes.io/hostname"
 # ...
 zookeeper:
 # ...
 template:
 pod:
 affinity:
 podAntiAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 - labelSelector:
 matchExpressions:
 - key: strimzi.io/name
 operator: In
 values:
 - CLUSTER-NAME-zookeeper
 topologyKey: "kubernetes.io/hostname"
 # ...

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
spec:
 kafka:
 # ...
 template:
 pod:
 affinity:
 podAntiAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 - labelSelector:
 matchExpressions:
 - key: strimzi.io/cluster
 operator: In
 values:
 - CLUSTER-NAME
 topologyKey: "kubernetes.io/hostname"
 # ...
 zookeeper:
 # ...
 template:
 pod:
 affinity:
 podAntiAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 - labelSelector:
 matchExpressions:
 - key: strimzi.io/cluster
 operator: In
 values:

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

172

Where CLUSTER-NAME is the name of your Kafka custom resource.

3. Create or update the resource.

8.12.3. Configuring pod anti-affinity in Kafka components

Pod anti-affinity configuration helps with the stability and performance of Kafka brokers. By using
podAntiAffinity, OpenShift will not schedule Kafka brokers on the same nodes as other workloads.
Typically, you want to avoid Kafka running on the same worker node as other network or storage
intensive applications such as databases, storage or other messaging platforms.

Prerequisites

An OpenShift cluster

A running Cluster Operator

Procedure

1. Edit the affinity property in the resource specifying the cluster deployment. Use labels to
specify the pods which should not be scheduled on the same nodes. The topologyKey should
be set to kubernetes.io/hostname to specify that the selected pods should not be scheduled
on nodes with the same hostname. For example:

2. Create or update the resource.
This can be done using oc apply:

 - CLUSTER-NAME
 topologyKey: "kubernetes.io/hostname"
 # ...

oc apply -f <kafka_configuration_file>

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
spec:
 kafka:
 # ...
 template:
 pod:
 affinity:
 podAntiAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 - labelSelector:
 matchExpressions:
 - key: application
 operator: In
 values:
 - postgresql
 - mongodb
 topologyKey: "kubernetes.io/hostname"
 # ...
 zookeeper:
 # ...

CHAPTER 8. CONFIGURING A DEPLOYMENT

173

8.12.4. Configuring node affinity in Kafka components

Prerequisites

An OpenShift cluster

A running Cluster Operator

Procedure

1. Label the nodes where AMQ Streams components should be scheduled.
This can be done using oc label:

Alternatively, some of the existing labels might be reused.

2. Edit the affinity property in the resource specifying the cluster deployment. For example:

3. Create or update the resource.
This can be done using oc apply:

8.12.5. Setting up dedicated nodes and scheduling pods on them

Prerequisites

An OpenShift cluster

oc apply -f <kafka_configuration_file>

oc label node NAME-OF-NODE node-type=fast-network

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
spec:
 kafka:
 # ...
 template:
 pod:
 affinity:
 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key: node-type
 operator: In
 values:
 - fast-network
 # ...
 zookeeper:
 # ...

oc apply -f <kafka_configuration_file>

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

174

A running Cluster Operator

Procedure

1. Select the nodes which should be used as dedicated.

2. Make sure there are no workloads scheduled on these nodes.

3. Set the taints on the selected nodes:
This can be done using oc adm taint:

4. Additionally, add a label to the selected nodes as well.
This can be done using oc label:

5. Edit the affinity and tolerations properties in the resource specifying the cluster deployment.
For example:

6. Create or update the resource.
This can be done using oc apply:

8.13. CONFIGURING LOGGING LEVELS

oc adm taint node NAME-OF-NODE dedicated=Kafka:NoSchedule

oc label node NAME-OF-NODE dedicated=Kafka

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
spec:
 kafka:
 # ...
 template:
 pod:
 tolerations:
 - key: "dedicated"
 operator: "Equal"
 value: "Kafka"
 effect: "NoSchedule"
 affinity:
 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key: dedicated
 operator: In
 values:
 - Kafka
 # ...
 zookeeper:
 # ...

oc apply -f <kafka_configuration_file>

CHAPTER 8. CONFIGURING A DEPLOYMENT

175

Configure logging levels in the custom resources of Kafka components and AMQ Streams operators.
You can specify the logging levels directly in the spec.logging property of the custom resource. Or you
can define the logging properties in a ConfigMap that’s referenced in the custom resource using the
configMapKeyRef property.

The advantages of using a ConfigMap are that the logging properties are maintained in one place and
are accessible to more than one resource. You can also reuse the ConfigMap for more than one
resource. If you are using a ConfigMap to specify loggers for AMQ Streams Operators, you can also
append the logging specification to add filters.

You specify a logging type in your logging specification:

inline when specifying logging levels directly

external when referencing a ConfigMap

Example inline logging configuration

Example external logging configuration

Values for the name and key of the ConfigMap are mandatory. Default logging is used if the name or
key is not set.

8.13.1. Logging options for Kafka components and operators

For more information on configuring logging for specific Kafka components or operators, see the
following sections.

Kafka component logging

Kafka logging

ZooKeeper logging

Kafka Connect and Mirror Maker 2.0 logging

MirrorMaker logging

Kafka Bridge logging

spec:
 # ...
 logging:
 type: inline
 loggers:
 kafka.root.logger.level: INFO

spec:
 # ...
 logging:
 type: external
 valueFrom:
 configMapKeyRef:
 name: my-config-map
 key: my-config-map-key

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

176

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index#property-kafka-logging-reference
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index#property-zookeeper-logging-reference
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index#property-kafka-connect-logging-reference
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index#property-mm-loggers-reference
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index#property-kafka-bridge-logging-reference

Cruise Control logging

Operator logging

Cluster Operator logging

Topic Operator logging

User Operator logging

8.13.2. Creating a ConfigMap for logging

To use a ConfigMap to define logging properties, you create the ConfigMap and then reference it as
part of the logging definition in the spec of a resource.

The ConfigMap must contain the appropriate logging configuration.

log4j.properties for Kafka components, ZooKeeper, and the Kafka Bridge

log4j2.properties for the Topic Operator and User Operator

The configuration must be placed under these properties.

In this procedure a ConfigMap defines a root logger for a Kafka resource.

Procedure

1. Create the ConfigMap.
You can create the ConfigMap as a YAML file or from a properties file.

ConfigMap example with a root logger definition for Kafka:

If you are using a properties file, specify the file at the command line:

The properties file defines the logging configuration:

2. Define external logging in the spec of the resource, setting the
logging.valueFrom.configMapKeyRef.name to the name of the ConfigMap and
logging.valueFrom.configMapKeyRef.key to the key in this ConfigMap.

kind: ConfigMap
apiVersion: v1
metadata:
 name: logging-configmap
data:
 log4j.properties:
 kafka.root.logger.level="INFO"

oc create configmap logging-configmap --from-file=log4j.properties

Define the logger
kafka.root.logger.level="INFO"
...

CHAPTER 8. CONFIGURING A DEPLOYMENT

177

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index#property-cruise-control-logging-reference
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index#property-topic-operator-logging-reference
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index#property-user-operator-logging-reference

3. Create or update the resource.

8.13.3. Configuring Cluster Operator logging

Cluster Operator logging is configured through a ConfigMap named strimzi-cluster-operator. A
ConfigMap containing logging configuration is created when installing the Cluster Operator. This
ConfigMap is described in the file install/cluster-operator/050-ConfigMap-strimzi-cluster-
operator.yaml. You configure Cluster Operator logging by changing the data.log4j2.properties values
in this ConfigMap.

To update the logging configuration, you can edit the 050-ConfigMap-strimzi-cluster-operator.yaml
file and then run the following command:

Alternatively, edit the ConfigMap directly:

With this ConfigMap, you can control various aspects of logging, including the root logger level, log
output format, and log levels for different components. The monitorInterval setting, determines how
often the logging configuration is reloaded. You can also control the logging levels for the Kafka
AdminClient, ZooKeeper ZKTrustManager, Netty, and the OkHttp client. Netty is a framework used in
AMQ Streams for network communication, and OkHttp is a library used for making HTTP requests.

If the ConfigMap is missing when the Cluster Operator is deployed, the default logging values are used.

If the ConfigMap is accidentally deleted after the Cluster Operator is deployed, the most recently
loaded logging configuration is used. Create a new ConfigMap to load a new logging configuration.

NOTE

Do not remove the monitorInterval option from the ConfigMap.

8.13.4. Adding logging filters to AMQ Streams operators

If you are using a ConfigMap to configure the (log4j2) logging levels for AMQ Streams operators, you
can also define logging filters to limit what’s returned in the log.

Logging filters are useful when you have a large number of logging messages. Suppose you set the log
level for the logger as DEBUG (rootLogger.level="DEBUG"). Logging filters reduce the number of
logs returned for the logger at that level, so you can focus on a specific resource. When the filter is set,

spec:
 # ...
 logging:
 type: external
 valueFrom:
 configMapKeyRef:
 name: logging-configmap
 key: log4j.properties

oc apply -f <kafka_configuration_file>

oc create -f install/cluster-operator/050-ConfigMap-strimzi-cluster-operator.yaml

oc edit configmap strimzi-cluster-operator

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

178

1

2

3

4

only log messages matching the filter are logged.

Filters use markers to specify what to include in the log. You specify a kind, namespace and name for the
marker. For example, if a Kafka cluster is failing, you can isolate the logs by specifying the kind as Kafka,
and use the namespace and name of the failing cluster.

This example shows a marker filter for a Kafka cluster named my-kafka-cluster.

Basic logging filter configuration

The MarkerFilter type compares a specified marker for filtering.

The onMatch property accepts the log if the marker matches.

The onMismatch property rejects the log if the marker does not match.

The marker used for filtering is in the format KIND(NAMESPACE/NAME-OF-RESOURCE).

You can create one or more filters. Here, the log is filtered for two Kafka clusters.

Multiple logging filter configuration

Adding filters to the Cluster Operator

To add filters to the Cluster Operator, update its logging ConfigMap YAML file (install/cluster-
operator/050-ConfigMap-strimzi-cluster-operator.yaml).

Procedure

1. Update the 050-ConfigMap-strimzi-cluster-operator.yaml file to add the filter properties to
the ConfigMap.
In this example, the filter properties return logs only for the my-kafka-cluster Kafka cluster:

rootLogger.level="INFO"
appender.console.filter.filter1.type=MarkerFilter 1
appender.console.filter.filter1.onMatch=ACCEPT 2
appender.console.filter.filter1.onMismatch=DENY 3
appender.console.filter.filter1.marker=Kafka(my-namespace/my-kafka-cluster) 4

appender.console.filter.filter1.type=MarkerFilter
appender.console.filter.filter1.onMatch=ACCEPT
appender.console.filter.filter1.onMismatch=DENY
appender.console.filter.filter1.marker=Kafka(my-namespace/my-kafka-cluster-1)
appender.console.filter.filter2.type=MarkerFilter
appender.console.filter.filter2.onMatch=ACCEPT
appender.console.filter.filter2.onMismatch=DENY
appender.console.filter.filter2.marker=Kafka(my-namespace/my-kafka-cluster-2)

kind: ConfigMap
apiVersion: v1
metadata:
 name: strimzi-cluster-operator
data:
 log4j2.properties:

CHAPTER 8. CONFIGURING A DEPLOYMENT

179

Alternatively, edit the ConfigMap directly:

2. If you updated the YAML file instead of editing the ConfigMap directly, apply the changes by
deploying the ConfigMap:

Adding filters to the Topic Operator or User Operator

To add filters to the Topic Operator or User Operator, create or edit a logging ConfigMap.

In this procedure a logging ConfigMap is created with filters for the Topic Operator. The same approach
is used for the User Operator.

Procedure

1. Create the ConfigMap.
You can create the ConfigMap as a YAML file or from a properties file.

In this example, the filter properties return logs only for the my-topic topic:

If you are using a properties file, specify the file at the command line:

The properties file defines the logging configuration:

 #...
 appender.console.filter.filter1.type=MarkerFilter
 appender.console.filter.filter1.onMatch=ACCEPT
 appender.console.filter.filter1.onMismatch=DENY
 appender.console.filter.filter1.marker=Kafka(my-namespace/my-kafka-cluster)

oc edit configmap strimzi-cluster-operator

oc create -f install/cluster-operator/050-ConfigMap-strimzi-cluster-operator.yaml

kind: ConfigMap
apiVersion: v1
metadata:
 name: logging-configmap
data:
 log4j2.properties:
 rootLogger.level="INFO"
 appender.console.filter.filter1.type=MarkerFilter
 appender.console.filter.filter1.onMatch=ACCEPT
 appender.console.filter.filter1.onMismatch=DENY
 appender.console.filter.filter1.marker=KafkaTopic(my-namespace/my-topic)

oc create configmap logging-configmap --from-file=log4j2.properties

Define the logger
rootLogger.level="INFO"
Set the filters
appender.console.filter.filter1.type=MarkerFilter
appender.console.filter.filter1.onMatch=ACCEPT

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

180

2. Define external logging in the spec of the resource, setting the
logging.valueFrom.configMapKeyRef.name to the name of the ConfigMap and
logging.valueFrom.configMapKeyRef.key to the key in this ConfigMap.
For the Topic Operator, logging is specified in the topicOperator configuration of the Kafka
resource.

3. Apply the changes by deploying the Cluster Operator:

Additional resources

Configuring Kafka

Cluster Operator logging

Topic Operator logging

User Operator logging

8.14. USING CONFIGMAPS TO ADD CONFIGURATION

Add specific configuration to your AMQ Streams deployment using ConfigMap resources. ConfigMaps
use key-value pairs to store non-confidential data. Configuration data added to ConfigMaps is
maintained in one place and can be reused amongst components.

ConfigMaps can only store the following types of configuration data:

Logging configuration

Metrics configuration

External configuration for Kafka Connect connectors

You can’t use ConfigMaps for other areas of configuration.

When you configure a component, you can add a reference to a ConfigMap using the configMapKeyRef
property.

For example, you can use configMapKeyRef to reference a ConfigMap that provides configuration for

appender.console.filter.filter1.onMismatch=DENY
appender.console.filter.filter1.marker=KafkaTopic(my-namespace/my-topic)
...

spec:
 # ...
 entityOperator:
 topicOperator:
 logging:
 type: external
 valueFrom:
 configMapKeyRef:
 name: logging-configmap
 key: log4j2.properties

create -f install/cluster-operator -n my-cluster-operator-namespace

CHAPTER 8. CONFIGURING A DEPLOYMENT

181

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index#property-topic-operator-logging-reference
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index#property-user-operator-logging-reference

For example, you can use configMapKeyRef to reference a ConfigMap that provides configuration for
logging. You might use a ConfigMap to pass a Log4j configuration file. You add the reference to the
logging configuration.

Example ConfigMap for logging

To use a ConfigMap for metrics configuration, you add a reference to the metricsConfig configuration
of the component in the same way.

ExternalConfiguration properties make data from a ConfigMap (or Secret) mounted to a pod available
as environment variables or volumes. You can use external configuration data for the connectors used
by Kafka Connect. The data might be related to an external data source, providing the values needed for
the connector to communicate with that data source.

For example, you can use the configMapKeyRef property to pass configuration data from a ConfigMap
as an environment variable.

Example ConfigMap providing environment variable values

If you are using ConfigMaps that are managed externally, use configuration providers to load the data in
the ConfigMaps.

8.14.1. Naming custom ConfigMaps

AMQ Streams creates its own ConfigMaps and other resources when it is deployed to OpenShift. The
ConfigMaps contain data necessary for running components. The ConfigMaps created by AMQ
Streams must not be edited.

Make sure that any custom ConfigMaps you create do not have the same name as these default
ConfigMaps. If they have the same name, they will be overwritten. For example, if your ConfigMap has
the same name as the ConfigMap for the Kafka cluster, it will be overwritten when there is an update to
the Kafka cluster.

spec:
 # ...
 logging:
 type: external
 valueFrom:
 configMapKeyRef:
 name: my-config-map
 key: my-config-map-key

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
metadata:
 name: my-connect
spec:
 # ...
 externalConfiguration:
 env:
 - name: MY_ENVIRONMENT_VARIABLE
 valueFrom:
 configMapKeyRef:
 name: my-config-map
 key: my-key

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

182

Additional resources

List of Kafka cluster resources (including ConfigMaps)

Logging configuration

metricsConfig

ExternalConfiguration schema reference

Loading configuration values from external sources

8.15. LOADING CONFIGURATION VALUES FROM EXTERNAL SOURCES

Use configuration providers to load configuration data from external sources. The providers operate
independently of AMQ Streams. You can use them to load configuration data for all Kafka components,
including producers and consumers. You reference the external source in the configuration of the
component and provide access rights. The provider loads data without needing to restart the Kafka
component or extracting files, even when referencing a new external source. For example, use providers
to supply the credentials for the Kafka Connect connector configuration. The configuration must
include any access rights to the external source.

8.15.1. Enabling configuration providers

You can enable one or more configuration providers using the config.providers properties in the spec
configuration of a component.

Example configuration to enable a configuration provider

KubernetesSecretConfigProvider

Loads configuration data from OpenShift secrets. You specify the name of the secret and the key
within the secret where the configuration data is stored. This provider is useful for storing sensitive
configuration data like passwords or other user credentials.

KubernetesConfigMapConfigProvider

Loads configuration data from OpenShift config maps. You specify the name of the config map and
the key within the config map where the configuration data is stored. This provider is useful for
storing non-sensitive configuration data.

EnvVarConfigProvider

Loads configuration data from environment variables. You specify the name of the environment

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
metadata:
 name: my-connect
 annotations:
 strimzi.io/use-connector-resources: "true"
spec:
 # ...
 config:
 # ...
 config.providers: env
 config.providers.env.class: io.strimzi.kafka.EnvVarConfigProvider
 # ...

CHAPTER 8. CONFIGURING A DEPLOYMENT

183

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index#con-common-configuration-prometheus-reference
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index#type-ExternalConfiguration-reference

variable where the configuration data is stored. This provider is useful for configuring applications
running in containers, for example, to load certificates or JAAS configuration from environment
variables mapped from secrets.

FileConfigProvider

Loads configuration data from a file. You specify the path to the file where the configuration data is
stored. This provider is useful for loading configuration data from files that are mounted into
containers.

DirectoryConfigProvider

Loads configuration data from files within a directory. You specify the path to the directory where
the configuration files are stored. This provider is useful for loading multiple configuration files and
for organizing configuration data into separate files.

To use KubernetesSecretConfigProvider and KubernetesConfigMapConfigProvider, which are part
of the OpenShift Configuration Provider plugin, you must set up access rights to the namespace that
contains the configuration file.

You can use the other providers without setting up access rights. You can supply connector
configuration for Kafka Connect or MirrorMaker 2 in this way by doing the following:

Mount config maps or secrets into the Kafka Connect pod as environment variables or volumes

Enable EnvVarConfigProvider, FileConfigProvider, or DirectoryConfigProvider in the Kafka
Connect or MirrorMaker 2 configuration

Pass connector configuration using the externalConfiguration property in the spec of the
KafkaConnect or KafkaMirrorMaker2 resource

Using providers help prevent the passing of restricted information through the Kafka Connect REST
interface. You can use this approach in the following scenarios:

Mounting environment variables with the values a connector uses to connect and communicate
with a data source

Mounting a properties file with values that are used to configure Kafka Connect connectors

Mounting files in a directory that contains values for the TLS truststore and keystore used by a
connector

NOTE

A restart is required when using a new Secret or ConfigMap for a connector, which can
disrupt other connectors.

Additional resources

ExternalConfiguration schema reference

8.15.2. Loading configuration values from secrets or config maps

Use the KubernetesSecretConfigProvider to provide configuration properties from a secret or the
KubernetesConfigMapConfigProvider to provide configuration properties from a config map.

In this procedure, a config map provides configuration properties for a connector. The properties are

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

184

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index#type-ExternalConfiguration-reference

1

2

3

In this procedure, a config map provides configuration properties for a connector. The properties are
specified as key values of the config map. The config map is mounted into the Kafka Connect pod as a
volume.

Prerequisites

A Kafka cluster is running.

The Cluster Operator is running.

You have a config map containing the connector configuration.

Example config map with connector properties

Procedure

1. Configure the KafkaConnect resource.

Enable the KubernetesConfigMapConfigProvider

The specification shown here can support loading values from config maps and secrets.

Example Kafka Connect configuration to use config maps and secrets

The alias for the configuration provider is used to define other configuration parameters.
The provider parameters use the alias from config.providers, taking the form
config.providers.${alias}.class.

KubernetesConfigMapConfigProvider provides values from config maps.

KubernetesSecretConfigProvider provides values from secrets.

apiVersion: v1
kind: ConfigMap
metadata:
 name: my-connector-configuration
data:
 option1: value1
 option2: value2

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
metadata:
 name: my-connect
 annotations:
 strimzi.io/use-connector-resources: "true"
spec:
 # ...
 config:
 # ...
 config.providers: secrets,configmaps 1
 config.providers.configmaps.class: io.strimzi.kafka.KubernetesConfigMapConfigProvider
2

 config.providers.secrets.class: io.strimzi.kafka.KubernetesSecretConfigProvider 3
 # ...

CHAPTER 8. CONFIGURING A DEPLOYMENT

185

2. Create or update the resource to enable the provider.

3. Create a role that permits access to the values in the external config map.

Example role to access values from a config map

The rule gives the role permission to access the my-connector-configuration config map.

4. Create a role binding to permit access to the namespace that contains the config map.

Example role binding to access the namespace that contains the config map

The role binding gives the role permission to access the my-project namespace.

The service account must be the same one used by the Kafka Connect deployment. The service
account name format is <cluster_name>-connect, where <cluster_name> is the name of the
KafkaConnect custom resource.

5. Reference the config map in the connector configuration.

Example connector configuration referencing the config map

oc apply -f <kafka_connect_configuration_file>

apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
 name: connector-configuration-role
rules:
- apiGroups: [""]
 resources: ["configmaps"]
 resourceNames: ["my-connector-configuration"]
 verbs: ["get"]
...

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
 name: connector-configuration-role-binding
subjects:
- kind: ServiceAccount
 name: my-connect-connect
 namespace: my-project
roleRef:
 kind: Role
 name: connector-configuration-role
 apiGroup: rbac.authorization.k8s.io
...

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnector
metadata:
 name: my-connector
 labels:

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

186

The placeholder structure is configmaps:<path_and_file_name>:<property>.
KubernetesConfigMapConfigProvider reads and extracts the option1 property value from
the external config map.

8.15.3. Loading configuration values from environment variables

Use the EnvVarConfigProvider to provide configuration properties as environment variables.
Environment variables can contain values from config maps or secrets.

In this procedure, environment variables provide configuration properties for a connector to
communicate with Amazon AWS. The connector must be able to read the AWS_ACCESS_KEY_ID and
AWS_SECRET_ACCESS_KEY. The values of the environment variables are derived from a secret
mounted into the Kafka Connect pod.

NOTE

The names of user-defined environment variables cannot start with KAFKA_ or
STRIMZI_.

Prerequisites

A Kafka cluster is running.

The Cluster Operator is running.

You have a secret containing the connector configuration.

Example secret with values for environment variables

Procedure

1. Configure the KafkaConnect resource.

Enable the EnvVarConfigProvider

Specify the environment variables using the externalConfiguration property.

Example Kafka Connect configuration to use external environment variables

 strimzi.io/cluster: my-connect
spec:
 # ...
 config:
 option: ${configmaps:my-project/my-connector-configuration:option1}
 # ...
...

apiVersion: v1
kind: Secret
metadata:
 name: aws-creds
type: Opaque
data:
 awsAccessKey: QUtJQVhYWFhYWFhYWFhYWFg=
 awsSecretAccessKey: Ylhsd1lYTnpkMjl5WkE=

CHAPTER 8. CONFIGURING A DEPLOYMENT

187

1

2

3

4

5

The alias for the configuration provider is used to define other configuration parameters.
The provider parameters use the alias from config.providers, taking the form
config.providers.${alias}.class.

EnvVarConfigProvider provides values from environment variables.

The environment variable takes a value from the secret.

The name of the secret containing the environment variable.

The name of the key stored in the secret.

NOTE

The secretKeyRef property references keys in a secret. If you are using a config
map instead of a secret, use the configMapKeyRef property.

2. Create or update the resource to enable the provider.

3. Reference the environment variable in the connector configuration.

Example connector configuration referencing the environment variable

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
metadata:
 name: my-connect
 annotations:
 strimzi.io/use-connector-resources: "true"
spec:
 # ...
 config:
 # ...
 config.providers: env 1
 config.providers.env.class: io.strimzi.kafka.EnvVarConfigProvider 2
 # ...
 externalConfiguration:
 env:
 - name: AWS_ACCESS_KEY_ID 3
 valueFrom:
 secretKeyRef:
 name: aws-creds 4
 key: awsAccessKey 5
 - name: AWS_SECRET_ACCESS_KEY
 valueFrom:
 secretKeyRef:
 name: aws-creds
 key: awsSecretAccessKey
 # ...

oc apply -f <kafka_connect_configuration_file>

apiVersion: kafka.strimzi.io/v1beta2

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

188

1

2

The placeholder structure is env:<environment_variable_name>. EnvVarConfigProvider
reads and extracts the environment variable values from the mounted secret.

8.15.4. Loading configuration values from a file within a directory

Use the FileConfigProvider to provide configuration properties from a file within a directory. Files can
be config maps or secrets.

In this procedure, a file provides configuration properties for a connector. A database name and
password are specified as properties of a secret. The secret is mounted to the Kafka Connect pod as a
volume. Volumes are mounted on the path /opt/kafka/external-configuration/<volume-name>.

Prerequisites

A Kafka cluster is running.

The Cluster Operator is running.

You have a secret containing the connector configuration.

Example secret with database properties

The connector configuration in properties file format.

Database username and password properties used in the configuration.

Procedure

1. Configure the KafkaConnect resource.

Enable the FileConfigProvider

kind: KafkaConnector
metadata:
 name: my-connector
 labels:
 strimzi.io/cluster: my-connect
spec:
 # ...
 config:
 option: ${env:AWS_ACCESS_KEY_ID}
 option: ${env:AWS_SECRET_ACCESS_KEY}
 # ...
...

apiVersion: v1
kind: Secret
metadata:
 name: mysecret
type: Opaque
stringData:
 connector.properties: |- 1
 dbUsername: my-username 2
 dbPassword: my-password

CHAPTER 8. CONFIGURING A DEPLOYMENT

189

1

2

3

4

Specify the file using the externalConfiguration property.

Example Kafka Connect configuration to use an external property file

The alias for the configuration provider is used to define other configuration parameters.

FileConfigProvider provides values from properties files. The parameter uses the alias
from config.providers, taking the form config.providers.${alias}.class.

The name of the volume containing the secret.

The name of the secret.

2. Create or update the resource to enable the provider.

3. Reference the file properties in the connector configuration as placeholders.

Example connector configuration referencing the file

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
metadata:
 name: my-connect
spec:
 # ...
 config:
 config.providers: file 1
 config.providers.file.class: org.apache.kafka.common.config.provider.FileConfigProvider
2

 #...
 externalConfiguration:
 volumes:
 - name: connector-config 3
 secret:
 secretName: mysecret 4

oc apply -f <kafka_connect_configuration_file>

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnector
metadata:
 name: my-source-connector
 labels:
 strimzi.io/cluster: my-connect-cluster
spec:
 class: io.debezium.connector.mysql.MySqlConnector
 tasksMax: 2
 config:
 database.hostname: 192.168.99.1
 database.port: "3306"
 database.user: "${file:/opt/kafka/external-configuration/connector-
config/mysecret:dbUsername}"
 database.password: "${file:/opt/kafka/external-configuration/connector-

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

190

The placeholder structure is file:<path_and_file_name>:<property>. FileConfigProvider
reads and extracts the database username and password property values from the mounted
secret.

8.15.5. Loading configuration values from multiple files within a directory

Use the DirectoryConfigProvider to provide configuration properties from multiple files within a
directory. Files can be config maps or secrets.

In this procedure, a secret provides the TLS keystore and truststore user credentials for a connector.
The credentials are in separate files. The secrets are mounted into the Kafka Connect pod as volumes.
Volumes are mounted on the path /opt/kafka/external-configuration/<volume-name>.

Prerequisites

A Kafka cluster is running.

The Cluster Operator is running.

You have a secret containing the user credentials.

Example secret with user credentials

The my-user secret provides the keystore credentials (user.crt and user.key) for the connector.

The <cluster_name>-cluster-ca-cert secret generated when deploying the Kafka cluster provides the
cluster CA certificate as truststore credentials (ca.crt).

Procedure

1. Configure the KafkaConnect resource.

Enable the DirectoryConfigProvider

Specify the files using the externalConfiguration property.

config/mysecret:dbPassword}"
 database.server.id: "184054"
 #...

apiVersion: v1
kind: Secret
metadata:
 name: my-user
 labels:
 strimzi.io/kind: KafkaUser
 strimzi.io/cluster: my-cluster
type: Opaque
data:
 ca.crt: <public_key> # Public key of the clients CA
 user.crt: <user_certificate> # Public key of the user
 user.key: <user_private_key> # Private key of the user
 user.p12: <store> # PKCS #12 store for user certificates and keys
 user.password: <password_for_store> # Protects the PKCS #12 store

CHAPTER 8. CONFIGURING A DEPLOYMENT

191

1

2

3

4

5

Example Kafka Connect configuration to use external property files

The alias for the configuration provider is used to define other configuration parameters.

DirectoryConfigProvider provides values from files in a directory. The parameter uses the
alias from config.providers, taking the form config.providers.${alias}.class.

The names of the volumes containing the secrets.

The name of the secret for the cluster CA certificate to supply truststore configuration.

The name of the secret for the user to supply keystore configuration.

2. Create or update the resource to enable the provider.

3. Reference the file properties in the connector configuration as placeholders.

Example connector configuration referencing the files

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
metadata:
 name: my-connect
spec:
 # ...
 config:
 config.providers: directory 1
 config.providers.directory.class:
org.apache.kafka.common.config.provider.DirectoryConfigProvider 2
 #...
 externalConfiguration:
 volumes: 3
 - name: cluster-ca 4
 secret:
 secretName: my-cluster-cluster-ca-cert 5
 - name: my-user
 secret:
 secretName: my-user 6

oc apply -f <kafka_connect_configuration_file>

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnector
metadata:
 name: my-source-connector
 labels:
 strimzi.io/cluster: my-connect-cluster
spec:
 class: io.debezium.connector.mysql.MySqlConnector
 tasksMax: 2
 config:
 # ...
 database.history.producer.security.protocol: SSL

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

192

The placeholder structure is directory:<path>:<file_name>. DirectoryConfigProvider reads
and extracts the credentials from the mounted secrets.

8.16. CUSTOMIZING OPENSHIFT RESOURCES

An AMQ Streams deployment creates OpenShift resources, such as Deployment, Pod, and Service
resources. These resources are managed by AMQ Streams operators. Only the operator that is
responsible for managing a particular OpenShift resource can change that resource. If you try to
manually change an operator-managed OpenShift resource, the operator will revert your changes back.

Changing an operator-managed OpenShift resource can be useful if you want to perform certain tasks,
such as the following:

Adding custom labels or annotations that control how Pods are treated by Istio or other
services

Managing how Loadbalancer-type Services are created by the cluster

To make the changes to an OpenShift resource, you can use the template property within the spec
section of various AMQ Streams custom resources.

Here is a list of the custom resources where you can apply the changes:

Kafka.spec.kafka

Kafka.spec.zookeeper

Kafka.spec.entityOperator

Kafka.spec.kafkaExporter

Kafka.spec.cruiseControl

KafkaNodePool.spec

KafkaConnect.spec

KafkaMirrorMaker.spec

KafkaMirrorMaker2.spec

KafkaBridge.spec

KafkaUser.spec

For more information about these properties, see the AMQ Streams Custom Resource API Reference .

 database.history.producer.ssl.truststore.type: PEM
 database.history.producer.ssl.truststore.certificates: "${directory:/opt/kafka/external-
configuration/cluster-ca:ca.crt}"
 database.history.producer.ssl.keystore.type: PEM
 database.history.producer.ssl.keystore.certificate.chain: "${directory:/opt/kafka/external-
configuration/my-user:user.crt}"
 database.history.producer.ssl.keystore.key: "${directory:/opt/kafka/external-
configuration/my-user:user.key}"
 #...

CHAPTER 8. CONFIGURING A DEPLOYMENT

193

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index

The AMQ Streams Custom Resource API Reference provides more details about the customizable
fields.

In the following example, the template property is used to modify the labels in a Kafka broker’s pod.

Example template customization

8.16.1. Customizing the image pull policy

AMQ Streams allows you to customize the image pull policy for containers in all pods deployed by the
Cluster Operator. The image pull policy is configured using the environment variable
STRIMZI_IMAGE_PULL_POLICY in the Cluster Operator deployment. The
STRIMZI_IMAGE_PULL_POLICY environment variable can be set to three different values:

Always

Container images are pulled from the registry every time the pod is started or restarted.

IfNotPresent

Container images are pulled from the registry only when they were not pulled before.

Never

Container images are never pulled from the registry.

Currently, the image pull policy can only be customized for all Kafka, Kafka Connect, and Kafka
MirrorMaker clusters at once. Changing the policy will result in a rolling update of all your Kafka, Kafka
Connect, and Kafka MirrorMaker clusters.

Additional resources

Disruptions.

8.16.2. Applying a termination grace period

Apply a termination grace period to give a Kafka cluster enough time to shut down cleanly.

Specify the time using the terminationGracePeriodSeconds property. Add the property to the
template.pod configuration of the Kafka custom resource.

The time you add will depend on the size of your Kafka cluster. The OpenShift default for the

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 name: my-cluster
 labels:
 app: my-cluster
spec:
 kafka:
 # ...
 template:
 pod:
 metadata:
 labels:
 mylabel: myvalue
 # ...

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

194

https://kubernetes.io/docs/concepts/containers/images/#updating-images

The time you add will depend on the size of your Kafka cluster. The OpenShift default for the
termination grace period is 30 seconds. If you observe that your clusters are not shutting down cleanly,
you can increase the termination grace period.

A termination grace period is applied every time a pod is restarted. The period begins when OpenShift
sends a term (termination) signal to the processes running in the pod. The period should reflect the
amount of time required to transfer the processes of the terminating pod to another pod before they
are stopped. After the period ends, a kill signal stops any processes still running in the pod.

The following example adds a termination grace period of 120 seconds to the Kafka custom resource.
You can also specify the configuration in the custom resources of other Kafka components.

Example termination grace period configuration

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 name: my-cluster
spec:
 kafka:
 # ...
 template:
 pod:
 terminationGracePeriodSeconds: 120
 # ...
 # ...

CHAPTER 8. CONFIGURING A DEPLOYMENT

195

CHAPTER 9. USING THE TOPIC OPERATOR TO MANAGE
KAFKA TOPICS

The KafkaTopic resource configures topics, including partition and replication factor settings. When you
create, modify, or delete a topic using KafkaTopic, the Topic Operator ensures that these changes are
reflected in the Kafka cluster.

For more information on the KafkaTopic resource, see the KafkaTopic schema reference.

9.1. TOPIC MANAGEMENT MODES

The KafkaTopic resource is responsible for managing a single topic within a Kafka cluster. The Topic
Operator provides two modes for managing KafkaTopic resources and Kafka topics:

Bidirectional mode

Bidirectional mode requires ZooKeeper for cluster management. It is not compatible with using AMQ
Streams in KRaft mode.

(Preview) Unidirectional mode

Unidirectional mode does not require ZooKeeper for cluster management. It is compatible with using
AMQ Streams in KRaft mode.

NOTE

Unidirectional topic management is available as a preview. Unidirectional topic
management is not enabled by default, so you must enable the
UnidirectionalTopicOperator feature gate to be able to use it.

9.1.1. Bidirectional topic management

In bidirectional mode, the Topic Operator operates as follows:

When a KafkaTopic is created, deleted, or changed, the Topic Operator performs the
corresponding operation on the Kafka topic.

Similarly, when a topic is created, deleted, or changed within the Kafka cluster, the Topic
Operator performs the corresponding operation on the KafkaTopic resource.

TIP

Try to stick to one method of managing topics, either through the KafkaTopic resources or directly in
Kafka. Avoid routinely switching between both methods for a given topic.

9.1.2. (Preview) Unidirectional topic management

In unidirectional mode, the Topic Operator operates as follows:

When a KafkaTopic is created, deleted, or changed, the Topic Operator performs the
corresponding operation on the Kafka topic.

If a topic is created, deleted, or modified directly within the Kafka cluster, without the presence of a
corresponding KafkaTopic resource, the Topic Operator does not manage that topic. The Topic
Operator will only manage Kafka topics associated with KafkaTopic resources and does not interfere

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

196

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index#type-KafkaTopic-reference

1

with topics managed independently within the Kafka cluster. If a KafkaTopic does exist for a Kafka topic,
any configuration changes made outside the resource are reverted.

9.2. TOPIC NAMING CONVENTIONS

A KafkaTopic resource includes a name for the topic and a label that identifies the name of the Kafka
cluster it belongs to.

Label identifying a Kafka cluster for topic handling

The label provides the cluster name of the Kafka resource. The Topic Operator uses the label as a
mechanism for determining which KafkaTopic resources to manage. If the label does not match the
Kafka cluster, the Topic Operator cannot see the KafkaTopic, and the topic is not created.

Kafka and OpenShift have their own naming validation rules, and a Kafka topic name might not be a valid
resource name in OpenShift. If possible, try and stick to a naming convention that works for both.

Consider the following guidelines:

Use topic names that reflect the nature of the topic

Be concise and keep the name under 63 characters

Use all lower case and hyphens

Avoid special characters, spaces or symbols

The KafkaTopic resource allows you to specify the Kafka topic name using the metadata.name field.
However, if the desired Kafka topic name is not a valid OpenShift resource name, you can use the
spec.topicName property to specify the actual name. The spec.topicName field is optional, and when
it’s absent, the Kafka topic name defaults to the metadata.name of the topic. When a topic is created,
the topic name cannot be changed later.

Example of supplying a valid Kafka topic name

A valid topic name that works in OpenShift.

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaTopic
metadata:
 name: topic-name-1
 labels:
 strimzi.io/cluster: my-cluster
spec:
 topicName: topic-name-1

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaTopic
metadata:
 name: my-topic-1 1
spec:
 topicName: My.Topic.1 2
 # ...

CHAPTER 9. USING THE TOPIC OPERATOR TO MANAGE KAFKA TOPICS

197

2 A Kafka topic name that uses upper case and periods, which are invalid in OpenShift.

If more than one KafkaTopic resource refers to the same Kafka topic, the resource that was created
first is considered to be the one managing the topic. The status of the newer resources is updated to
indicate a conflict, and their Ready status is changed to False.

If a Kafka client application, such as Kafka Streams, automatically creates topics with invalid OpenShift
resource names, the Topic Operator generates a valid metadata.name when used in bidirectional mode.
It replaces invalid characters and appends a hash to the name. However, this behavior does not apply in
(preview) unidirectional mode.

Example of replacing an invalid topic name

NOTE

For more information on the requirements for identifiers and names in a cluster, refer to
the OpenShift documentation Object Names and IDs .

9.3. HANDLING CHANGES TO TOPICS

How the Topic Operator handles changes to topics depends on the mode of topic management.

For bidirectional topic management, configuration changes are synchronized between the Kafka
topic and the KafkaTopic resource in both directions. Incompatible changes prioritize the Kafka
configuration, and the KafkaTopic resource is adjusted accordingly.

For unidirectional topic management (currently in preview), configuration changes only go in
one direction: from the KafkaTopic resource to the Kafka topic. Any changes to a Kafka topic
managed outside the KafkaTopic resource are reverted.

9.3.1. Topic store for bidirectional topic management

For bidirectional topic management, the Topic Operator is capable of handling changes to topics when
there is no single source of truth. The KafkaTopic resource and the Kafka topic can undergo
independent modifications, where real-time observation of changes may not always be feasible,
particularly when the Topic Operator is not operational. To handle this, the Topic Operator maintains a
topic store that stores topic configuration information about each topic. It compares the state of the
Kafka cluster and OpenShift with the topic store to determine the necessary changes for
synchronization. This evaluation takes place during startup and at regular intervals while the Topic
Operator is active.

For example, if the Topic Operator is inactive, and a new KafkaTopic named my-topic is created, upon
restart, the Topic Operator recognizes the absence of my-topic in the topic store. It recognizes that the
KafkaTopic was created after its last operation. Consequently, the Topic Operator generates the
corresponding Kafka topic and saves the metadata in the topic store.

The topic store enables the Topic Operator to manage situations where the topic configuration is
altered in both Kafka topics and KafkaTopic resources, as long as the changes are compatible. When

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaTopic
metadata:
 name: my-topic---c55e57fe2546a33f9e603caf57165db4072e827e
 # ...

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

198

https://kubernetes.io/docs/concepts/overview/working-with-objects/names

Kafka topic configuration is updated or changes are made to the KafkaTopic custom resource, the
topic store is updated after reconciling with the Kafka cluster, as long as the changes are compatible.

The topic store is based on the Kafka Streams key-value mechanism, which uses Kafka topics to persist
the state. Topic metadata is cached in-memory and accessed locally within the Topic Operator. Updates
from operations applied to the local in-memory cache are persisted to a backup topic store on disk. The
topic store is continually synchronized with updates from Kafka topics or OpenShift KafkaTopic custom
resources. Operations are handled rapidly with the topic store set up this way, but should the in-memory
cache crash it is automatically repopulated from the persistent storage.

Internal topics support the handling of topic metadata in the topic store.

__strimzi_store_topic

Input topic for storing the topic metadata

__strimzi-topic-operator-kstreams-topic-store-changelog

Retains a log of compacted topic store values

WARNING

Do not delete these topics, as they are essential to the running of the Topic
Operator.

9.3.2. Migrating topic metadata from ZooKeeper to the topic store

In previous releases of AMQ Streams, topic metadata was stored in ZooKeeper. The topic store
removes this requirement, bringing the metadata into the Kafka cluster, and under the control of the
Topic Operator.

When upgrading to AMQ Streams 2.5, the transition to Topic Operator control of the topic store is
seamless. Metadata is found and migrated from ZooKeeper, and the old store is deleted.

9.3.3. Downgrading to an AMQ Streams version that uses ZooKeeper to store topic
metadata

If you are reverting back to a version of AMQ Streams earlier than 1.7, which uses ZooKeeper for the
storage of topic metadata, you still downgrade your Cluster Operator to the previous version, then
downgrade Kafka brokers and client applications to the previous Kafka version as standard.

However, you must also delete the topics that were created for the topic store using a kafka-topics
command, specifying the bootstrap address of the Kafka cluster. For example:

The command must correspond to the type of listener and authentication used to access the Kafka
cluster.

The Topic Operator will reconstruct the ZooKeeper topic metadata from the state of the topics in



oc run kafka-admin -ti --image=registry.redhat.io/amq-streams/kafka-35-rhel8:2.5.1 --rm=true --
restart=Never -- ./bin/kafka-topics.sh --bootstrap-server localhost:9092 --topic __strimzi-topic-
operator-kstreams-topic-store-changelog --delete && ./bin/kafka-topics.sh --bootstrap-server
localhost:9092 --topic __strimzi_store_topic --delete

CHAPTER 9. USING THE TOPIC OPERATOR TO MANAGE KAFKA TOPICS

199

The Topic Operator will reconstruct the ZooKeeper topic metadata from the state of the topics in
Kafka.

9.3.4. Automatic creation of topics

Applications can trigger the automatic creation of topics in the Kafka cluster. By default, the Kafka
broker configuration auto.create.topics.enable is set to true, allowing the broker to create topics
automatically when an application attempts to produce or consume from a non-existing topic.
Applications might also use the Kafka AdminClient to automatically create topics. When an application
is deployed along with its KafkaTopic resources, it is possible that automatic topic creation in the
cluster happens before the Topic Operator can react to the KafkaTopic.

For bidirectional topic management, the Topic Operator synchronizes the changes between the topics
and KafkaTopic resources.

If you are trying the unidirectional topic management preview, this can mean that the topics created for
an application deployment are initially created with default topic configuration. If the Topic Operator
attempts to reconfigure the topics based on KafkaTopic resource specifications included with the
application deployment, the operation might fail because the required change to the configuration is
not allowed. For example, if the change means lowering the number of topic partitions. For this reason,
it is recommended to disable auto.create.topics.enable in the Kafka cluster configuration when using
unidirectional topic management.

9.4. CONFIGURING KAFKA TOPICS

Use the properties of the KafkaTopic resource to configure Kafka topics. Changes made to topic
configuration in the KafkaTopic are propagated to Kafka.

You can use oc apply to create or modify topics, and oc delete to delete existing topics.

For example:

oc apply -f <topic_config_file>

oc delete KafkaTopic <topic_name>

To be able to delete topics, delete.topic.enable must be set to true (default) in the spec.kafka.config
of the Kafka resource.

This procedure shows how to create a topic with 10 partitions and 2 replicas.

NOTE

The procedure is the same for the bidirectional and (preview) unidirectional modes of
topic management.

Before you begin

The KafkaTopic resource does not allow the following changes:

Renaming the topic defined in spec.topicName. A mismatch between spec.topicName and
status.topicName will be detected.

Decreasing the number of partitions using spec.partitions (not supported by Kafka).

Modifying the number of replicas specified in spec.replicas.

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

200

WARNING

Increasing spec.partitions for topics with keys will alter the partitioning of records,
which can cause issues, especially when the topic uses semantic partitioning.

Prerequisites

A running Kafka cluster configured with a Kafka broker listener using mTLS authentication and
TLS encryption.

A running Topic Operator (typically deployed with the Entity Operator).

For deleting a topic, delete.topic.enable=true (default) in the spec.kafka.config of the Kafka
resource.

Procedure

1. Configure the KafkaTopic resource.

Example Kafka topic configuration

TIP

When modifying a topic, you can get the current version of the resource using oc get
kafkatopic my-topic-1 -o yaml.

2. Create the KafkaTopic resource in OpenShift.

3. Wait for the ready status of the topic to change to True:

Kafka topic status



apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaTopic
metadata:
 name: my-topic-1
 labels:
 strimzi.io/cluster: my-cluster
spec:
 partitions: 10
 replicas: 2

oc apply -f <topic_config_file>

oc get kafkatopics -o wide -w -n <namespace>

NAME CLUSTER PARTITIONS REPLICATION FACTOR READY
my-topic-1 my-cluster 10 3 True
my-topic-2 my-cluster 10 3

CHAPTER 9. USING THE TOPIC OPERATOR TO MANAGE KAFKA TOPICS

201

Topic creation is successful when the READY output shows True.

4. If the READY column stays blank, get more details on the status from the resource YAML or
from the Topic Operator logs.
Status messages provide details on the reason for the current status.

Details on a topic with a NotReady status

In this example, the reason the topic is not ready is because the original number of partitions
was reduced in the KafkaTopic configuration. Kafka does not support this.

After resetting the topic configuration, the status shows the topic is ready.

Status update of the topic

Fetching the details shows no messages

Details on a topic with a READY status

9.5. CONFIGURING TOPICS FOR REPLICATION AND NUMBER OF
PARTITIONS

The recommended configuration for topics managed by the Topic Operator is a topic replication factor
of 3, and a minimum of 2 in-sync replicas.

my-topic-3 my-cluster 10 3 True

oc get kafkatopics my-topic-2 -o yaml

...
status:
 conditions:
 - lastTransitionTime: "2022-06-13T10:14:43.351550Z"
 message: Number of partitions cannot be decreased
 reason: PartitionDecreaseException
 status: "True"
 type: NotReady

oc get kafkatopics my-topic-2 -o wide -w -n <namespace>

NAME CLUSTER PARTITIONS REPLICATION FACTOR READY
my-topic-2 my-cluster 10 3 True

oc get kafkatopics my-topic-2 -o yaml

...
status:
 conditions:
 - lastTransitionTime: '2022-06-13T10:15:03.761084Z'
 status: 'True'
 type: Ready

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

202

1

2

3

The number of partitions for the topic.

The number of replica topic partitions. Currently, this cannot be changed in the KafkaTopic
resource, but it can be changed using the kafka-reassign-partitions.sh tool.

The minimum number of replica partitions that a message must be successfully written to, or an
exception is raised.

NOTE

In-sync replicas are used in conjunction with the acks configuration for producer
applications. The acks configuration determines the number of follower partitions a
message must be replicated to before the message is acknowledged as successfully
received. The bidirectional Topic Operator runs with acks=all for its internal topics
whereby messages must be acknowledged by all in-sync replicas.

When scaling Kafka clusters by adding or removing brokers, replication factor configuration is not
changed and replicas are not reassigned automatically. However, you can use the kafka-reassign-
partitions.sh tool to change the replication factor, and manually reassign replicas to brokers.

Alternatively, though the integration of Cruise Control for AMQ Streams cannot change the replication
factor for topics, the optimization proposals it generates for rebalancing Kafka include commands that
transfer partition replicas and change partition leadership.

Additional resources

Downgrading AMQ Streams

Section 19.1, “Partition reassignment tool overview”

Chapter 18, Rebalancing clusters using Cruise Control

9.6. (PREVIEW) MANAGING KAFKATOPIC RESOURCES WITHOUT
IMPACTING KAFKA TOPICS

This procedure describes how to convert Kafka topics that are currently managed through the
KafkaTopic resource into non-managed topics. This capability can be useful in various scenarios. For
instance, you might want to update the metadata.name of a KafkaTopic resource. You can only do that
by deleting the original KafkaTopic resource and recreating a new one.

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaTopic
metadata:
 name: my-topic
 labels:
 strimzi.io/cluster: my-cluster
spec:
 partitions: 10 1
 replicas: 3 2
 config:
 min.insync.replicas: 2 3
 #...

CHAPTER 9. USING THE TOPIC OPERATOR TO MANAGE KAFKA TOPICS

203

1

By annotating a KafkaTopic resource with strimzi.io/managed=false, you indicate that the Topic
Operator should no longer manage that particular topic. This allows you to retain the Kafka topic while
making changes to the resource’s configuration or other administrative tasks.

You can perform this task if you are using unidirectional topic management.

NOTE

Unidirectional topic management is available as a preview. Unidirectional topic
management is not enabled by default, so you must enable the
UnidirectionalTopicOperator feature gate to be able to use it.

Prerequisites

The Cluster Operator must be deployed.

Procedure

1. Annotate the KafkaTopic resource in OpenShift, setting strimzi.io/managed to false:

Specify the metadata.name of the topic in your KafkaTopic resource, which is my-topic-1 in
this example.

2. Check the status of the KafkaTopic resource to make sure the request was successful:

Example topic with a Ready status

Successful reconciliation of the resource means the topic is no longer managed.

oc annotate kafkatopic my-topic-1 strimzi.io/managed=false

oc get kafkatopics my-topic-1 -o yaml

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaTopic
metadata:
 generation: 124
 name: my-topic-1
 finalizer:
 strimzi.io/topic-operator
 labels:
 strimzi.io/cluster: my-cluster
spec:
 partitions: 10
 replicas: 2

...
status:
 observedGeneration: 124 1
 topicName: my-topic-1
 conditions:
 - type: Ready
 status: True
 lastTransitionTime: 20230301T103000Z

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

204

The value of metadata.generation (the current version of the deployment) must match
status.observedGeneration (the latest reconciliation of the resource).

3. You can now make changes to the KafkaTopic resource without it affecting the Kafka topic it
was managing.
For example, to change the metadata.name, do as follows:

a. Delete the original KafkTopic resource:

b. Recreate the KafkTopic resource with a different metadata.name, but use
spec.topicName to refer to the same topic that was managed by the original

4. If you haven’t deleted the original KafkaTopic resource, and you wish to resume management
of the Kafka topic again, set the strimzi.io/managed annotation to true or remove the
annotation.

9.7. (PREVIEW) ENABLING TOPIC MANAGEMENT FOR EXISTING
KAFKA TOPICS

This procedure describes how to enable topic management for topics that are not currently managed
through the KafkaTopic resource. You do this by creating a matching KafkaTopic resource.

You can perform this task if you are using unidirectional topic management.

NOTE

Unidirectional topic management is available as a preview. Unidirectional topic
management is not enabled by default, so you must enable the
UnidirectionalTopicOperator feature gate to be able to use it.

Prerequisites

The Cluster Operator must be deployed.

Procedure

1. Create a KafkaTopic resource with a metadata.name that is the same as the Kafka topic.
Or use spec.topicName if the name of the topic in Kafka would not be a legal OpenShift
resource name.

Example Kafka topic configuration

oc delete kafkatopic <kafka_topic_name>

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaTopic
metadata:
 name: my-topic-1
 labels:
 strimzi.io/cluster: my-cluster
spec:
 partitions: 10
 replicas: 2

CHAPTER 9. USING THE TOPIC OPERATOR TO MANAGE KAFKA TOPICS

205

1

In this example, the Kafka topic is named my-topic-1.

The Topic Operator checks whether the topic is managed by another KafkaTopic resource. If it
is, the older resource takes precedence and a resource conflict error is returned in the status of
the new resource.

2. Apply the KafkaTopic resource:

3. Wait for the operator to update the topic in Kafka.
The operator updates the Kafka topic with the spec of the KafkaTopic that has the same
name.

4. Check the status of the KafkaTopic resource to make sure the request was successful:

Example topic with a Ready status

Successful reconciliation of the resource means the topic is now managed.

The value of metadata.generation (the current version of the deployment) must match
status.observedGeneration (the latest reconciliation of the resource).

9.8. (PREVIEW) DELETING MANAGED TOPICS

Unidirectional topic management supports the deletion of topics managed through the KafkaTopic
resource with or without OpenShift finalizers. This is controlled by the STRIMZI_USE_FINALIZERS
Topic Operator environment variable. By default, this is set to true, though it can be set to false in the
Topic Operator env configuration if you do not want the Topic Operator to add finalizers.

NOTE

oc apply -f <topic_configuration_file>

oc get kafkatopics my-topic-1 -o yaml

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaTopic
metadata:
 generation: 1
 name: my-topic-1
 labels:
 strimzi.io/cluster: my-cluster
spec:
 partitions: 10
 replicas: 2
...
status:
 observedGeneration: 1 1
 topicName: my-topic-1
 conditions:
 - type: Ready
 status: True
 lastTransitionTime: 20230301T103000Z

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

206

NOTE

Unidirectional topic management is available as a preview. Unidirectional topic
management is not enabled by default, so you must enable the
UnidirectionalTopicOperator feature gate to be able to use it.

Finalizers ensure orderly and controlled deletion of KafkaTopic resources. A finalizer for the Topic
Operator is added to the metadata of the KafkaTopic resource:

Finalizer to control topic deletion

In this example, the finalizer is added for topic my-topic-1. The finalizer prevents the topic from being
fully deleted until the finalization process is complete. If you then delete the topic using oc delete
kafkatopic my-topic-1, a timestamp is added to the metadata:

Finalizer timestamp on deletion

The resource is still present. If the deletion fails, it is shown in the status of the resource.

When the finalization tasks are successfully executed, the finalizer is removed from the metadata, and
the resource is fully deleted.

Finalizers also prevent related resources from being deleted. If the unidirectional Topic Operator is not
running, it won’t be able to remove the metadata.finalizer. Consequently, an attempt to delete the
namespace that contains the KafkaTopic resource won’t complete until either the operator is restarted,
or the finalizer is otherwise removed (for example using oc edit).

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaTopic
metadata:
 generation: 1
 name: my-topic-1
 finalizer:
 strimzi.io/topic-operator
 labels:
 strimzi.io/cluster: my-cluster

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaTopic
metadata:
 generation: 1
 name: my-topic-1
 finalizer:
 strimzi.io/topic-operator
 labels:
 strimzi.io/cluster: my-cluster
 deletionTimestamp: 20230301T000000.000

CHAPTER 9. USING THE TOPIC OPERATOR TO MANAGE KAFKA TOPICS

207

CHAPTER 10. USING THE USER OPERATOR TO MANAGE
KAFKA USERS

When you create, modify or delete a user using the KafkaUser resource, the User Operator ensures that
these changes are reflected in the Kafka cluster.

For more information on the KafkaUser resource, see the KafkaUser schema reference.

10.1. CONFIGURING KAFKA USERS

Use the properties of the KafkaUser resource to configure Kafka users.

You can use oc apply to create or modify users, and oc delete to delete existing users.

For example:

oc apply -f <user_config_file>

oc delete KafkaUser <user_name>

Users represent Kafka clients. When you configure Kafka users, you enable the user authentication and
authorization mechanisms required by clients to access Kafka. The mechanism used must match the
equivalent Kafka configuration. For more information on using Kafka and KafkaUser resources to
secure access to Kafka brokers, see Securing access to Kafka brokers .

Prerequisites

A running Kafka cluster configured with a Kafka broker listener using mTLS authentication and
TLS encryption.

A running User Operator (typically deployed with the Entity Operator).

Procedure

1. Configure the KafkaUser resource.
This example specifies mTLS authentication and simple authorization using ACLs.

Example Kafka user configuration

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaUser
metadata:
 name: my-user-1
 labels:
 strimzi.io/cluster: my-cluster
spec:
 authentication:
 type: tls
 authorization:
 type: simple
 acls:
 # Example consumer Acls for topic my-topic using consumer group my-group
 - resource:
 type: topic

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

208

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index#type-KafkaUser-reference

2. Create the KafkaUser resource in OpenShift.

3. Wait for the ready status of the user to change to True:

Kafka user status

User creation is successful when the READY output shows True.

4. If the READY column stays blank, get more details on the status from the resource YAML or
User Operator logs.
Messages provide details on the reason for the current status.

Details on a user with a NotReady status

 name: my-topic
 patternType: literal
 operations:
 - Describe
 - Read
 host: "*"
 - resource:
 type: group
 name: my-group
 patternType: literal
 operations:
 - Read
 host: "*"
 # Example Producer Acls for topic my-topic
 - resource:
 type: topic
 name: my-topic
 patternType: literal
 operations:
 - Create
 - Describe
 - Write
 host: "*"

oc apply -f <user_config_file>

oc get kafkausers -o wide -w -n <namespace>

NAME CLUSTER AUTHENTICATION AUTHORIZATION READY
my-user-1 my-cluster tls simple True
my-user-2 my-cluster tls simple
my-user-3 my-cluster tls simple True

oc get kafkausers my-user-2 -o yaml

...
status:
 conditions:
 - lastTransitionTime: "2022-06-10T10:07:37.238065Z"

CHAPTER 10. USING THE USER OPERATOR TO MANAGE KAFKA USERS

209

In this example, the reason the user is not ready is because simple authorization is not enabled in
the Kafka configuration.

Kafka configuration for simple authorization

After updating the Kafka configuration, the status shows the user is ready.

Status update of the user

Fetching the details shows no messages.

Details on a user with a READY status

 message: Simple authorization ACL rules are configured but not supported in the
 Kafka cluster configuration.
 reason: InvalidResourceException
 status: "True"
 type: NotReady

 apiVersion: kafka.strimzi.io/v1beta2
 kind: Kafka
 metadata:
 name: my-cluster
 spec:
 kafka:
 # ...
 authorization:
 type: simple

oc get kafkausers my-user-2 -o wide -w -n <namespace>

NAME CLUSTER AUTHENTICATION AUTHORIZATION READY
my-user-2 my-cluster tls simple True

oc get kafkausers my-user-2 -o yaml

...
status:
 conditions:
 - lastTransitionTime: "2022-06-10T10:33:40.166846Z"
 status: "True"
 type: Ready

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

210

CHAPTER 11. VALIDATING SCHEMAS WITH THE RED HAT
BUILD OF APICURIO REGISTRY

You can use the Red Hat build of Apicurio Registry with AMQ Streams.

Apicurio Registry is a datastore for sharing standard event schemas and API designs across API and
event-driven architectures. You can use Apicurio Registry to decouple the structure of your data from
your client applications, and to share and manage your data types and API descriptions at runtime using
a REST interface.

Apicurio Registry stores schemas used to serialize and deserialize messages, which can then be
referenced from your client applications to ensure that the messages that they send and receive are
compatible with those schemas. Apicurio Registry provides Kafka client serializers/deserializers for Kafka
producer and consumer applications. Kafka producer applications use serializers to encode messages
that conform to specific event schemas. Kafka consumer applications use deserializers, which validate
that the messages have been serialized using the correct schema, based on a specific schema ID.

You can enable your applications to use a schema from the registry. This ensures consistent schema
usage and helps to prevent data errors at runtime.

Additional resources

Red Hat build of Apicurio Registry product documentation

Red Hat build of Apicurio Registry is built on the Apicurio Registry open source community
project available on GitHub: Apicurio/apicurio-registry

CHAPTER 11. VALIDATING SCHEMAS WITH THE RED HAT BUILD OF APICURIO REGISTRY

211

https://access.redhat.com/documentation/en-us/red_hat_build_of_apicurio_registry
https://github.com/apicurio/apicurio-registry

CHAPTER 12. INTEGRATING WITH THE RED HAT BUILD OF
DEBEZIUM FOR CHANGE DATA CAPTURE

The Red Hat build of Debezium is a distributed change data capture platform. It captures row-level
changes in databases, creates change event records, and streams the records to Kafka topics.
Debezium is built on Apache Kafka. You can deploy and integrate the Red Hat build of Debezium with
AMQ Streams. Following a deployment of AMQ Streams, you deploy Debezium as a connector
configuration through Kafka Connect. Debezium passes change event records to AMQ Streams on
OpenShift. Applications can read these change event streams and access the change events in the
order in which they occurred.

Debezium has multiple uses, including:

Data replication

Updating caches and search indexes

Simplifying monolithic applications

Data integration

Enabling streaming queries

To capture database changes, deploy Kafka Connect with a Debezium database connector. You
configure a KafkaConnector resource to define the connector instance.

For more information on deploying the Red Hat build of Debezium with AMQ Streams, refer to the
product documentation. The documentation includes a Getting Started with Debezium guide that guides
you through the process of setting up the services and connector required to view change event
records for database updates.

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

212

https://access.redhat.com/documentation/en-us/red_hat_build_of_debezium

CHAPTER 13. SETTING UP CLIENT ACCESS TO A KAFKA
CLUSTER

After you have deployed AMQ Streams , you can set up client access to your Kafka cluster. To verify the
deployment, you can deploy example producer and consumer clients. Otherwise, create listeners that
provide client access within or outside the OpenShift cluster.

13.1. DEPLOYING EXAMPLE CLIENTS

Deploy example producer and consumer clients to send and receive messages. You can use these
clients to verify a deployment of AMQ Streams.

Prerequisites

The Kafka cluster is available for the clients.

Procedure

1. Deploy a Kafka producer.

2. Type a message into the console where the producer is running.

3. Press Enter to send the message.

4. Deploy a Kafka consumer.

5. Confirm that you see the incoming messages in the consumer console.

13.2. CONFIGURING LISTENERS TO CONNECT TO KAFKA BROKERS

Use listeners for client connection to Kafka brokers. AMQ Streams provides a generic
GenericKafkaListener schema with properties to configure listeners through the Kafka resource. The
GenericKafkaListener provides a flexible approach to listener configuration. You can specify
properties to configure internal listeners for connecting within the OpenShift cluster or external
listeners for connecting outside the OpenShift cluster.

Specify a connection type to expose Kafka in the listener configuration. The type chosen depends on
your requirements, and your environment and infrastructure. The following listener types are supported:

Internal listeners

internal to connect within the same OpenShift cluster

cluster-ip to expose Kafka using per-broker ClusterIP services

oc run kafka-producer -ti --image=registry.redhat.io/amq-streams/kafka-35-rhel8:2.5.1 --
rm=true --restart=Never -- bin/kafka-console-producer.sh --bootstrap-server cluster-name-
kafka-bootstrap:9092 --topic my-topic

oc run kafka-consumer -ti --image=registry.redhat.io/amq-streams/kafka-35-rhel8:2.5.1 --
rm=true --restart=Never -- bin/kafka-console-consumer.sh --bootstrap-server cluster-name-
kafka-bootstrap:9092 --topic my-topic --from-beginning

CHAPTER 13. SETTING UP CLIENT ACCESS TO A KAFKA CLUSTER

213

External listeners

nodeport to use ports on OpenShift nodes

loadbalancer to use loadbalancer services

ingress to use Kubernetes Ingress and the Ingress NGINX Controller for Kubernetes
(Kubernetes only)

route to use OpenShift Route and the default HAProxy router (OpenShift only)

IMPORTANT

Do not use ingress on OpenShift, use the route type instead. The Ingress NGINX
Controller is only intended for use on Kubernetes. The route type is only supported on
OpenShift.

An internal type listener configuration uses a headless service and the DNS names given to the broker
pods. You might want to join your OpenShift network to an outside network. In which case, you can
configure an internal type listener (using the useServiceDnsDomain property) so that the OpenShift
service DNS domain (typically .cluster.local) is not used. You can also configure a cluster-ip type of
listener that exposes a Kafka cluster based on per-broker ClusterIP services. This is a useful option
when you can’t route through the headless service or you wish to incorporate a custom access
mechanism. For example, you might use this listener when building your own type of external listener for
a specific Ingress controller or the OpenShift Gateway API.

External listeners handle access to a Kafka cluster from networks that require different authentication
mechanisms. You can configure external listeners for client access outside an OpenShift environment
using a specified connection mechanism, such as a loadbalancer or route. For example, loadbalancers
might not be suitable for certain infrastructure, such as bare metal, where node ports provide a better
option.

Each listener is defined as an array in the Kafka resource.

Example listener configuration

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 name: my-cluster
spec:
 kafka:
 # ...
 listeners:
 - name: plain
 port: 9092
 type: internal
 tls: false
 configuration:
 useServiceDnsDomain: true
 - name: tls
 port: 9093
 type: internal
 tls: true
 authentication:

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

214

https://github.com/kubernetes/ingress-nginx

You can configure as many listeners as required, as long as their names and ports are unique. You can
also configure listeners for secure connection using authentication.

If you want to know more about the pros and cons of each connection type, refer to Accessing Apache
Kafka in Strimzi.

NOTE

If you scale your Kafka cluster while using external listeners, it might trigger a rolling
update of all Kafka brokers. This depends on the configuration.

Additional resources

GenericKafkaListener schema reference

13.3. SETTING UP CLIENT ACCESS TO A KAFKA CLUSTER USING
LISTENERS

Using the address of the Kafka cluster, you can provide access to a client in the same OpenShift cluster;
or provide external access to a client on a different OpenShift namespace or outside OpenShift entirely.
This procedure shows how to configure client access to a Kafka cluster from outside OpenShift or from
another OpenShift cluster.

A Kafka listener provides access to the Kafka cluster. Client access is secured using the following
configuration:

1. An external listener is configured for the Kafka cluster, with TLS encryption and mTLS
authentication, and Kafka simple authorization enabled.

2. A KafkaUser is created for the client, with mTLS authentication, and Access Control Lists
(ACLs) defined for simple authorization.

You can configure your listener to use mutual tls, scram-sha-512, or oauth authentication. mTLS
always uses encryption, but encryption is also recommended when using SCRAM-SHA-512 and OAuth
2.0 authentication.

You can configure simple, oauth, opa, or custom authorization for Kafka brokers. When enabled,
authorization is applied to all enabled listeners.

When you configure the KafkaUser authentication and authorization mechanisms, ensure they match
the equivalent Kafka configuration:

KafkaUser.spec.authentication matches Kafka.spec.kafka.listeners[*].authentication

 type: tls
 - name: external
 port: 9094
 type: route
 tls: true
 configuration:
 brokerCertChainAndKey:
 secretName: my-secret
 certificate: my-certificate.crt
 key: my-key.key
 # ...

CHAPTER 13. SETTING UP CLIENT ACCESS TO A KAFKA CLUSTER

215

https://developers.redhat.com/blog/2019/06/06/accessing-apache-kafka-in-strimzi-part-1-introduction/
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index#type-GenericKafkaListener-reference

KafkaUser.spec.authorization matches Kafka.spec.kafka.authorization

You should have at least one listener supporting the authentication you want to use for the KafkaUser.

NOTE

Authentication between Kafka users and Kafka brokers depends on the authentication
settings for each. For example, it is not possible to authenticate a user with mTLS if it is
not also enabled in the Kafka configuration.

AMQ Streams operators automate the configuration process and create the certificates required for
authentication:

The Cluster Operator creates the listeners and sets up the cluster and client certificate
authority (CA) certificates to enable authentication with the Kafka cluster.

The User Operator creates the user representing the client and the security credentials used for
client authentication, based on the chosen authentication type.

You add the certificates to your client configuration.

In this procedure, the CA certificates generated by the Cluster Operator are used, but you can replace
them by installing your own certificates. You can also configure your listener to use a Kafka listener
certificate managed by an external CA (certificate authority).

Certificates are available in PEM (.crt) and PKCS #12 (.p12) formats. This procedure uses PEM
certificates. Use PEM certificates with clients that use certificates in X.509 format.

NOTE

For internal clients in the same OpenShift cluster and namespace, you can mount the
cluster CA certificate in the pod specification. For more information, see Configuring
internal clients to trust the cluster CA.

Prerequisites

The Kafka cluster is available for connection by a client running outside the OpenShift cluster

The Cluster Operator and User Operator are running in the cluster

Procedure

1. Configure the Kafka cluster with a Kafka listener.

Define the authentication required to access the Kafka broker through the listener.

Enable authorization on the Kafka broker.

Example listener configuration

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 name: my-cluster
 namespace: myproject

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

216

1

2

3

4

5

6

7

8

9

Configuration options for enabling external listeners are described in the Generic
Kafka listener schema reference.

Name to identify the listener. Must be unique within the Kafka cluster.

Port number used by the listener inside Kafka. The port number has to be unique within
a given Kafka cluster. Allowed port numbers are 9092 and higher with the exception of
ports 9404 and 9999, which are already used for Prometheus and JMX. Depending on
the listener type, the port number might not be the same as the port number that
connects Kafka clients.

External listener type specified as route (OpenShift only), loadbalancer, nodeport or
ingress (Kubernetes only). An internal listener is specified as internal or cluster-ip.

Required. TLS encryption on the listener. For route and ingress type listeners it must
be set to true. For mTLS authentication, also use the authentication property.

Client authentication mechanism on the listener. For server and client authentication
using mTLS, you specify tls: true and authentication.type: tls.

(Optional) Depending on the requirements of the listener type, you can specify
additional listener configuration.

Authorization specified as simple, which uses the AclAuthorizer Kafka plugin.

(Optional) Super users can access all brokers regardless of any access restrictions
defined in ACLs.

spec:
 kafka:
 # ...
 listeners: 1
 - name: external 2
 port: 9094 3
 type: <listener_type> 4
 tls: true 5
 authentication:
 type: tls 6
 configuration: 7
 #...
 authorization: 8
 type: simple
 superUsers:
 - super-user-name 9
 # ...

CHAPTER 13. SETTING UP CLIENT ACCESS TO A KAFKA CLUSTER

217

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index#type-GenericKafkaListener-reference
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index#type-GenericKafkaListenerConfiguration-reference

WARNING

An OpenShift Route address comprises the name of the Kafka cluster,
the name of the listener, and the name of the namespace it is created
in. For example, my-cluster-kafka-listener1-bootstrap-myproject
(CLUSTER-NAME-kafka-LISTENER-NAME-bootstrap-NAMESPACE).
If you are using a route listener type, be careful that the whole length of
the address does not exceed a maximum limit of 63 characters.

2. Create or update the Kafka resource.

The Kafka cluster is configured with a Kafka broker listener using mTLS authentication.

A service is created for each Kafka broker pod.

A service is created to serve as the bootstrap address for connection to the Kafka cluster.

A service is also created as the external bootstrap address for external connection to the Kafka
cluster using nodeport listeners.

The cluster CA certificate to verify the identity of the kafka brokers is also created in the secret
<cluster_name>-cluster-ca-cert.

NOTE

If you scale your Kafka cluster while using external listeners, it might trigger a
rolling update of all Kafka brokers. This depends on the configuration.

3. Retrieve the bootstrap address you can use to access the Kafka cluster from the status of the
Kafka resource.

For example:

Use the bootstrap address in your Kafka client to connect to the Kafka cluster.

4. Create or modify a user representing the client that requires access to the Kafka cluster.

Specify the same authentication type as the Kafka listener.

Specify the authorization ACLs for simple authorization.

Example user configuration



oc apply -f <kafka_configuration_file>

oc get kafka <kafka_cluster_name> -o=jsonpath='{.status.listeners[?
(@.name=="<listener_name>")].bootstrapServers}{"\n"}'

oc get kafka my-cluster -o=jsonpath='{.status.listeners[?
(@.name=="external")].bootstrapServers}{"\n"}'

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

218

1

2

3

The label must match the label of the Kafka cluster.

Authentication specified as mutual tls.

Simple authorization requires an accompanying list of ACL rules to apply to the user.
The rules define the operations allowed on Kafka resources based on the username
(my-user).

5. Create or modify the KafkaUser resource.

The user is created, as well as a secret with the same name as the KafkaUser resource. The
secret contains a public and private key for mTLS authentication.

Example secret

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaUser
metadata:
 name: my-user
 labels:
 strimzi.io/cluster: my-cluster 1
spec:
 authentication:
 type: tls 2
 authorization:
 type: simple
 acls: 3
 - resource:
 type: topic
 name: my-topic
 patternType: literal
 operations:
 - Describe
 - Read
 - resource:
 type: group
 name: my-group
 patternType: literal
 operations:
 - Read

oc apply -f USER-CONFIG-FILE

apiVersion: v1
kind: Secret
metadata:
 name: my-user
 labels:
 strimzi.io/kind: KafkaUser
 strimzi.io/cluster: my-cluster
type: Opaque
data:
 ca.crt: <public_key> # Public key of the clients CA
 user.crt: <user_certificate> # Public key of the user

CHAPTER 13. SETTING UP CLIENT ACCESS TO A KAFKA CLUSTER

219

6. Extract the cluster CA certificate from the <cluster_name>-cluster-ca-cert secret of the Kafka
cluster.

7. Extract the user CA certificate from the <user_name> secret.

8. Extract the private key of the user from the <user_name> secret.

9. Configure your client with the bootstrap address hostname and port for connecting to the Kafka
cluster:

10. Configure your client with the truststore credentials to verify the identity of the Kafka cluster.
Specify the public cluster CA certificate.

Example truststore configuration

SSL is the specified security protocol for mTLS authentication. Specify SASL_SSL for SCRAM-
SHA-512 authentication over TLS. PEM is the file format of the truststore.

11. Configure your client with the keystore credentials to verify the user when connecting to the
Kafka cluster.
Specify the public certificate and private key.

Example keystore configuration

Add the keystore certificate and the private key directly to the configuration. Add as a single-
line format. Between the BEGIN CERTIFICATE and END CERTIFICATE delimiters, start with a
newline character (\n). End each line from the original certificate with \n too.

Example keystore configuration

 user.key: <user_private_key> # Private key of the user
 user.p12: <store> # PKCS #12 store for user certificates and keys
 user.password: <password_for_store> # Protects the PKCS #12 store

oc get secret <cluster_name>-cluster-ca-cert -o jsonpath='{.data.ca\.crt}' | base64 -d > ca.crt

oc get secret <user_name> -o jsonpath='{.data.user\.crt}' | base64 -d > user.crt

oc get secret <user_name> -o jsonpath='{.data.user\.key}' | base64 -d > user.key

props.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "<hostname>:<port>");

props.put(CommonClientConfigs.SECURITY_PROTOCOL_CONFIG, "SSL");
props.put(SslConfigs.SSL_TRUSTSTORE_TYPE_CONFIG, "PEM");
props.put(SslConfigs.SSL_TRUSTSTORE_CERTIFICATES_CONFIG,
"<ca.crt_file_content>");

props.put(CommonClientConfigs.SECURITY_PROTOCOL_CONFIG, "SSL");
props.put(SslConfigs.SSL_KEYSTORE_TYPE_CONFIG, "PEM");
props.put(SslConfigs.SSL_KEYSTORE_CERTIFICATE_CHAIN_CONFIG,
"<user.crt_file_content>");
props.put(SslConfigs.SSL_KEYSTORE_KEY_CONFIG, "<user.key_file_content>");

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

220

Additional resources

Section 14.1.1, “Listener authentication”

Section 14.1.2, “Kafka authorization”

If you are using an authorization server, you can use token-based authentication and
authorization:

Section 14.4, “Using OAuth 2.0 token-based authentication”

Section 14.5, “Using OAuth 2.0 token-based authorization”

13.4. ACCESSING KAFKA USING NODE PORTS

Use node ports to access an AMQ Streams Kafka cluster from an external client outside the OpenShift
cluster.

To connect to a broker, you specify a hostname and port number for the Kafka bootstrap address, as well
as the certificate used for TLS encryption.

The procedure shows basic nodeport listener configuration. You can use listener properties to enable
TLS encryption (tls) and specify a client authentication mechanism (authentication). Add additional
configuration using configuration properties. For example, you can use the following configuration
properties with nodeport listeners:

preferredNodePortAddressType

Specifies the first address type that’s checked as the node address.

externalTrafficPolicy

Specifies whether the service routes external traffic to node-local or cluster-wide endpoints.

nodePort

Overrides the assigned node port numbers for the bootstrap and broker services.

For more information on listener configuration, see the GenericKafkaListener schema reference.

Prerequisites

A running Cluster Operator

In this procedure, the Kafka cluster name is my-cluster. The name of the listener is external.

Procedure

1. Configure a Kafka resource with an external listener set to the nodeport type.
For example:

props.put(SslConfigs.SSL_KEYSTORE_CERTIFICATE_CHAIN_CONFIG, "-----BEGIN
CERTIFICATE-----
\n<user_certificate_content_line_1>\n<user_certificate_content_line_n>\n-----END
CERTIFICATE---");
props.put(SslConfigs.SSL_KEYSTORE_KEY_CONFIG, "----BEGIN PRIVATE KEY-----
\n<user_key_content_line_1>\n<user_key_content_line_n>\n-----END PRIVATE KEY-----");

CHAPTER 13. SETTING UP CLIENT ACCESS TO A KAFKA CLUSTER

221

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index#type-GenericKafkaListener-reference

2. Create or update the resource.

A cluster CA certificate to verify the identity of the kafka brokers is created in the secret my-
cluster-cluster-ca-cert.

NodePort type services are created for each Kafka broker, as well as an external bootstrap
service.

Node port services created for the bootstrap and brokers

The bootstrap address used for client connection is propagated to the status of the Kafka
resource.

Example status for the bootstrap address

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 labels:
 app: my-cluster
 name: my-cluster
 namespace: myproject
spec:
 kafka:
 # ...
 listeners:
 - name: external
 port: 9094
 type: nodeport
 tls: true
 authentication:
 type: tls
 # ...
 # ...
 zookeeper:
 # ...

oc apply -f <kafka_configuration_file>

NAME TYPE CLUSTER-IP PORT(S)
my-cluster-kafka-external-0 NodePort 172.30.55.13 9094:31789/TCP
my-cluster-kafka-external-1 NodePort 172.30.250.248 9094:30028/TCP
my-cluster-kafka-external-2 NodePort 172.30.115.81 9094:32650/TCP
my-cluster-kafka-external-bootstrap NodePort 172.30.30.23 9094:32650/TCP

status:
 clusterId: Y_RJQDGKRXmNF7fEcWldJQ
 conditions:
 - lastTransitionTime: '2023-01-31T14:59:37.113630Z'
 status: 'True'
 type: Ready
 listeners:
 # ...
 - addresses:

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

222

3. Retrieve the bootstrap address you can use to access the Kafka cluster from the status of the
Kafka resource.

4. Extract the cluster CA certificate.

5. Configure your client to connect to the brokers.

a. Specify the bootstrap host and port in your Kafka client as the bootstrap address to connect
to the Kafka cluster. For example, ip-10-0-224-199.us-west-2.compute.internal:32650.

b. Add the extracted certificate to the truststore of your Kafka client to configure a TLS
connection.
If you enabled a client authentication mechanism, you will also need to configure it in your
client.

NOTE

If you are using your own listener certificates, check whether you need to add the CA
certificate to the client’s truststore configuration. If it is a public (external) CA, you usually
won’t need to add it.

13.5. ACCESSING KAFKA USING LOADBALANCERS

Use loadbalancers to access an AMQ Streams Kafka cluster from an external client outside the
OpenShift cluster.

To connect to a broker, you specify a hostname and port number for the Kafka bootstrap address, as well
as the certificate used for TLS encryption.

The procedure shows basic loadbalancer listener configuration. You can use listener properties to
enable TLS encryption (tls) and specify a client authentication mechanism (authentication). Add
additional configuration using configuration properties. For example, you can use the following
configuration properties with loadbalancer listeners:

loadBalancerSourceRanges

 - host: ip-10-0-224-199.us-west-2.compute.internal
 port: 32650
 bootstrapServers: 'ip-10-0-224-199.us-west-2.compute.internal:32650'
 certificates:
 - |
 -----BEGIN CERTIFICATE-----

 -----END CERTIFICATE-----
 name: external
 type: external
 observedGeneration: 2
 # ...

oc get kafka my-cluster -o=jsonpath='{.status.listeners[?
(@.name=="external")].bootstrapServers}{"\n"}'

ip-10-0-224-199.us-west-2.compute.internal:32650

oc get secret my-cluster-cluster-ca-cert -o jsonpath='{.data.ca\.crt}' | base64 -d > ca.crt

CHAPTER 13. SETTING UP CLIENT ACCESS TO A KAFKA CLUSTER

223

Restricts traffic to a specified list of CIDR (Classless Inter-Domain Routing) ranges.

externalTrafficPolicy

Specifies whether the service routes external traffic to node-local or cluster-wide endpoints.

loadBalancerIP

Requests a specific IP address when creating a loadbalancer.

For more information on listener configuration, see the GenericKafkaListener schema reference.

Prerequisites

A running Cluster Operator

In this procedure, the Kafka cluster name is my-cluster. The name of the listener is external.

Procedure

1. Configure a Kafka resource with an external listener set to the loadbalancer type.
For example:

2. Create or update the resource.

A cluster CA certificate to verify the identity of the kafka brokers is also created in the secret
my-cluster-cluster-ca-cert.

loadbalancer type services and loadbalancers are created for each Kafka broker, as well as an
external bootstrap service.

Loadbalancer services and loadbalancers created for the bootstraps and brokers

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 labels:
 app: my-cluster
 name: my-cluster
 namespace: myproject
spec:
 kafka:
 # ...
 listeners:
 - name: external
 port: 9095
 type: loadbalancer
 tls: true
 authentication:
 type: tls
 # ...
 # ...
 zookeeper:
 # ...

oc apply -f <kafka_configuration_file>

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

224

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index#type-GenericKafkaListener-reference

The bootstrap address used for client connection is propagated to the status of the Kafka
resource.

Example status for the bootstrap address

The DNS addresses used for client connection are propagated to the status of each
loadbalancer service.

Example status for the bootstrap loadbalancer

NAME TYPE CLUSTER-IP PORT(S)
my-cluster-kafka-external-0 LoadBalancer 172.30.204.234 9095:30011/TCP
my-cluster-kafka-external-1 LoadBalancer 172.30.164.89 9095:32544/TCP
my-cluster-kafka-external-2 LoadBalancer 172.30.73.151 9095:32504/TCP
my-cluster-kafka-external-bootstrap LoadBalancer 172.30.30.228 9095:30371/TCP

NAME EXTERNAL-IP (loadbalancer)
my-cluster-kafka-external-0 a8a519e464b924000b6c0f0a05e19f0d-1132975133.us-
west-2.elb.amazonaws.com
my-cluster-kafka-external-1 ab6adc22b556343afb0db5ea05d07347-611832211.us-
west-2.elb.amazonaws.com
my-cluster-kafka-external-2 a9173e8ccb1914778aeb17eca98713c0-777597560.us-
west-2.elb.amazonaws.com
my-cluster-kafka-external-bootstrap a8d4a6fb363bf447fb6e475fc3040176-36312313.us-
west-2.elb.amazonaws.com

status:
 clusterId: Y_RJQDGKRXmNF7fEcWldJQ
 conditions:
 - lastTransitionTime: '2023-01-31T14:59:37.113630Z'
 status: 'True'
 type: Ready
 listeners:
 # ...
 - addresses:
 - host: >-
 a8d4a6fb363bf447fb6e475fc3040176-36312313.us-west-2.elb.amazonaws.com
 port: 9095
 bootstrapServers: >-
 a8d4a6fb363bf447fb6e475fc3040176-36312313.us-west-2.elb.amazonaws.com:9095
 certificates:
 - |
 -----BEGIN CERTIFICATE-----

 -----END CERTIFICATE-----
 name: external
 type: external
 observedGeneration: 2
 # ...

status:
 loadBalancer:
 ingress:

CHAPTER 13. SETTING UP CLIENT ACCESS TO A KAFKA CLUSTER

225

3. Retrieve the bootstrap address you can use to access the Kafka cluster from the status of the
Kafka resource.

4. Extract the cluster CA certificate.

5. Configure your client to connect to the brokers.

a. Specify the bootstrap host and port in your Kafka client as the bootstrap address to connect
to the Kafka cluster. For example, a8d4a6fb363bf447fb6e475fc3040176-36312313.us-
west-2.elb.amazonaws.com:9095.

b. Add the extracted certificate to the truststore of your Kafka client to configure a TLS
connection.
If you enabled a client authentication mechanism, you will also need to configure it in your
client.

NOTE

If you are using your own listener certificates, check whether you need to add the CA
certificate to the client’s truststore configuration. If it is a public (external) CA, you usually
won’t need to add it.

13.6. ACCESSING KAFKA USING OPENSHIFT ROUTES

Use OpenShift routes to access an AMQ Streams Kafka cluster from clients outside the OpenShift
cluster.

To be able to use routes, add configuration for a route type listener in the Kafka custom resource.
When applied, the configuration creates a dedicated route and service for an external bootstrap and
each broker in the cluster. Clients connect to the bootstrap route, which routes them through the
bootstrap service to connect to a broker. Per-broker connections are then established using DNS
names, which route traffic from the client to the broker through the broker-specific routes and services.

To connect to a broker, you specify a hostname for the route bootstrap address, as well as the certificate
used for TLS encryption. For access using routes, the port is always 443.

 - hostname: >-
 a8d4a6fb363bf447fb6e475fc3040176-36312313.us-west-2.elb.amazonaws.com
 # ...

oc get kafka my-cluster -o=jsonpath='{.status.listeners[?
(@.name=="external")].bootstrapServers}{"\n"}'

a8d4a6fb363bf447fb6e475fc3040176-36312313.us-west-2.elb.amazonaws.com:9095

oc get secret my-cluster-cluster-ca-cert -o jsonpath='{.data.ca\.crt}' | base64 -d > ca.crt

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

226

WARNING

An OpenShift route address comprises the name of the Kafka cluster, the name of
the listener, and the name of the project it is created in. For example, my-cluster-
kafka-external-bootstrap-myproject (<cluster_name>-kafka-<listener_name>-
bootstrap-<namespace>). Be careful that the whole length of the address does not
exceed a maximum limit of 63 characters.

The procedure shows basic listener configuration. TLS encryption (tls) must be enabled. You can also
specify a client authentication mechanism (authentication). Add additional configuration using
configuration properties. For example, you can use the host configuration property with route listeners
to specify the hostnames used by the bootstrap and per-broker services.

For more information on listener configuration, see the GenericKafkaListener schema reference.

TLS passthrough

TLS passthrough is enabled for routes created by AMQ Streams. Kafka uses a binary protocol over TCP,
but routes are designed to work with a HTTP protocol. To be able to route TCP traffic through routes,
AMQ Streams uses TLS passthrough with Server Name Indication (SNI).

SNI helps with identifying and passing connection to Kafka brokers. In passthrough mode, TLS
encryption is always used. Because the connection passes to the brokers, the listeners use TLS
certificates signed by the internal cluster CA and not the ingress certificates. To configure listeners to
use your own listener certificates, use the brokerCertChainAndKey property.

Prerequisites

A running Cluster Operator

In this procedure, the Kafka cluster name is my-cluster. The name of the listener is external.

Procedure

1. Configure a Kafka resource with an external listener set to the route type.
For example:



apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 labels:
 app: my-cluster
 name: my-cluster
 namespace: myproject
spec:
 kafka:
 # ...
 listeners:
 - name: external
 port: 9094
 type: route

CHAPTER 13. SETTING UP CLIENT ACCESS TO A KAFKA CLUSTER

227

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index#type-GenericKafkaListener-reference

1 For route type listeners, TLS encryption must be enabled (true).

2. Create or update the resource.

A cluster CA certificate to verify the identity of the kafka brokers is created in the secret my-
cluster-cluster-ca-cert.

ClusterIP type services are created for each Kafka broker, as well as an external bootstrap
service.

A route is also created for each service, with a DNS address (host/port) to expose them using
the default OpenShift HAProxy router.

The routes are preconfigured with TLS passthrough.

Routes created for the bootstraps and brokers

The DNS addresses used for client connection are propagated to the status of each route.

Example status for the bootstrap route

3. Use a target broker to check the client-server TLS connection on port 443 using the OpenSSL
s_client.

 tls: true 1
 authentication:
 type: tls
 # ...
 # ...
 zookeeper:
 # ...

oc apply -f <kafka_configuration_file>

NAME HOST/PORT SERVICES
PORT TERMINATION
my-cluster-kafka-external-0 my-cluster-kafka-external-0-my-project.router.com
my-cluster-kafka-external-0 9094 passthrough
my-cluster-kafka-external-1 my-cluster-kafka-external-1-my-project.router.com
my-cluster-kafka-external-1 9094 passthrough
my-cluster-kafka-external-2 my-cluster-kafka-external-2-my-project.router.com
my-cluster-kafka-external-2 9094 passthrough
my-cluster-kafka-external-bootstrap my-cluster-kafka-external-bootstrap-my-
project.router.com my-cluster-kafka-external-bootstrap 9094 passthrough

status:
 ingress:
 - host: >-
 my-cluster-kafka-external-bootstrap-my-project.router.com
 # ...

openssl s_client -connect my-cluster-kafka-external-0-my-project.router.com:443 -
servername my-cluster-kafka-external-0-my-project.router.com -showcerts

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

228

The server name is the SNI for passing the connection to the broker.

If the connection is successful, the certificates for the broker are returned.

Certificates for the broker

4. Retrieve the address of the bootstrap service from the status of the Kafka resource.

The address comprises the cluster name, the listener name, the project name and the domain of
the router (router.com in this example).

5. Extract the cluster CA certificate.

6. Configure your client to connect to the brokers.

a. Specify the address for the bootstrap service and port 443 in your Kafka client as the
bootstrap address to connect to the Kafka cluster.

b. Add the extracted certificate to the truststore of your Kafka client to configure a TLS
connection.
If you enabled a client authentication mechanism, you will also need to configure it in your
client.

NOTE

If you are using your own listener certificates, check whether you need to add the CA
certificate to the client’s truststore configuration. If it is a public (external) CA, you usually
won’t need to add it.

Certificate chain
 0 s:O = io.strimzi, CN = my-cluster-kafka
 i:O = io.strimzi, CN = cluster-ca v0

oc get kafka my-cluster -o=jsonpath='{.status.listeners[?
(@.name=="external")].bootstrapServers}{"\n"}'

my-cluster-kafka-external-bootstrap-my-project.router.com:443

oc get secret my-cluster-cluster-ca-cert -o jsonpath='{.data.ca\.crt}' | base64 -d > ca.crt

CHAPTER 13. SETTING UP CLIENT ACCESS TO A KAFKA CLUSTER

229

CHAPTER 14. MANAGING SECURE ACCESS TO KAFKA
Secure your Kafka cluster by managing the access a client has to Kafka brokers. Specify configuration
options to secure Kafka brokers and clients

A secure connection between Kafka brokers and clients can encompass the following:

Encryption for data exchange

Authentication to prove identity

Authorization to allow or decline actions executed by users

The authentication and authorization mechanisms specified for a client must match those specified for
the Kafka brokers. AMQ Streams operators automate the configuration process and create the
certificates required for authentication. The Cluster Operator automatically sets up TLS certificates for
data encryption and authentication within your cluster.

14.1. SECURITY OPTIONS FOR KAFKA

Use the Kafka resource to configure the mechanisms used for Kafka authentication and authorization.

14.1.1. Listener authentication

Configure client authentication for Kafka brokers when creating listeners. Specify the listener
authentication type using the Kafka.spec.kafka.listeners.authentication property in the Kafka
resource.

For clients inside the OpenShift cluster, you can create plain (without encryption) or tls internal
listeners. The internal listener type use a headless service and the DNS names given to the broker pods.
As an alternative to the headless service, you can also create a cluster-ip type of internal listener to
expose Kafka using per-broker ClusterIP services. For clients outside the OpenShift cluster, you create
external listeners and specify a connection mechanism, which can be nodeport, loadbalancer, ingress
(Kubernetes only), or route (OpenShift only).

For more information on the configuration options for connecting an external client, see Chapter 13,
Setting up client access to a Kafka cluster .

Supported authentication options:

1. mTLS authentication (only on the listeners with TLS enabled encryption)

2. SCRAM-SHA-512 authentication

3. OAuth 2.0 token-based authentication

4. Custom authentication

The authentication option you choose depends on how you wish to authenticate client access to Kafka
brokers.

NOTE

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

230

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index#type-KafkaListenerAuthenticationCustom-reference

NOTE

Try exploring the standard authentication options before using custom authentication.
Custom authentication allows for any type of kafka-supported authentication. It can
provide more flexibility, but also adds complexity.

Figure 14.1. Kafka listener authentication options

The listener authentication property is used to specify an authentication mechanism specific to that
listener.

If no authentication property is specified then the listener does not authenticate clients which connect
through that listener. The listener will accept all connections without authentication.

Authentication must be configured when using the User Operator to manage KafkaUsers.

The following example shows:

A plain listener configured for SCRAM-SHA-512 authentication

A tls listener with mTLS authentication

An external listener with mTLS authentication

CHAPTER 14. MANAGING SECURE ACCESS TO KAFKA

231

Each listener is configured with a unique name and port within a Kafka cluster.

IMPORTANT

When configuring listeners for client access to brokers, you can use port 9092 or higher
(9093, 9094, and so on), but with a few exceptions. The listeners cannot be configured
to use the ports reserved for interbroker communication (9090 and 9091), Prometheus
metrics (9404), and JMX (Java Management Extensions) monitoring (9999).

Example listener authentication configuration

14.1.1.1. mTLS authentication

mTLS authentication is always used for the communication between Kafka brokers and ZooKeeper
pods.

AMQ Streams can configure Kafka to use TLS (Transport Layer Security) to provide encrypted
communication between Kafka brokers and clients either with or without mutual authentication. For
mutual, or two-way, authentication, both the server and the client present certificates. When you
configure mTLS authentication, the broker authenticates the client (client authentication) and the client
authenticates the broker (server authentication).

mTLS listener configuration in the Kafka resource requires the following:

tls: true to specify TLS encryption and server authentication

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 name: my-cluster
 namespace: myproject
spec:
 kafka:
 # ...
 listeners:
 - name: plain
 port: 9092
 type: internal
 tls: true
 authentication:
 type: scram-sha-512
 - name: tls
 port: 9093
 type: internal
 tls: true
 authentication:
 type: tls
 - name: external
 port: 9094
 type: loadbalancer
 tls: true
 authentication:
 type: tls
...

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

232

authentication.type: tls to specify the client authentication

When a Kafka cluster is created by the Cluster Operator, it creates a new secret with the name
<cluster_name>-cluster-ca-cert. The secret contains a CA certificate. The CA certificate is in PEM and
PKCS #12 format. To verify a Kafka cluster, add the CA certificate to the truststore in your client
configuration. To verify a client, add a user certificate and key to the keystore in your client
configuration. For more information on configuring a client for mTLS, see Section 14.2.2, “User
authentication”.

NOTE

TLS authentication is more commonly one-way, with one party authenticating the identity
of another. For example, when HTTPS is used between a web browser and a web server,
the browser obtains proof of the identity of the web server.

14.1.1.2. SCRAM-SHA-512 authentication

SCRAM (Salted Challenge Response Authentication Mechanism) is an authentication protocol that can
establish mutual authentication using passwords. AMQ Streams can configure Kafka to use SASL
(Simple Authentication and Security Layer) SCRAM-SHA-512 to provide authentication on both
unencrypted and encrypted client connections.

When SCRAM-SHA-512 authentication is used with a TLS connection, the TLS protocol provides the
encryption, but is not used for authentication.

The following properties of SCRAM make it safe to use SCRAM-SHA-512 even on unencrypted
connections:

The passwords are not sent in the clear over the communication channel. Instead the client and
the server are each challenged by the other to offer proof that they know the password of the
authenticating user.

The server and client each generate a new challenge for each authentication exchange. This
means that the exchange is resilient against replay attacks.

When KafkaUser.spec.authentication.type is configured with scram-sha-512 the User Operator will
generate a random 12-character password consisting of upper and lowercase ASCII letters and numbers.

14.1.1.3. Network policies

By default, AMQ Streams automatically creates a NetworkPolicy resource for every listener that is
enabled on a Kafka broker. This NetworkPolicy allows applications to connect to listeners in all
namespaces. Use network policies as part of the listener configuration.

If you want to restrict access to a listener at the network level to only selected applications or
namespaces, use the networkPolicyPeers property. Each listener can have a different
networkPolicyPeers configuration. For more information on network policy peers, refer to the
NetworkPolicyPeer API reference .

If you want to use custom network policies, you can set the
STRIMZI_NETWORK_POLICY_GENERATION environment variable to false in the Cluster Operator
configuration. For more information, see Section 8.5, “Configuring the Cluster Operator” .

NOTE

CHAPTER 14. MANAGING SECURE ACCESS TO KAFKA

233

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index#configuration-listener-network-policy-reference
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#networkpolicypeer-v1-networking-k8s-io

NOTE

Your configuration of OpenShift must support ingress NetworkPolicies in order to use
network policies in AMQ Streams.

14.1.1.4. Providing listener certificates

You can provide your own server certificates, called Kafka listener certificates, for TLS listeners or
external listeners which have TLS encryption enabled. For more information, see Section 14.3.4,
“Providing your own Kafka listener certificates for TLS encryption”.

Additional resources

GenericKafkaListener schema reference

14.1.2. Kafka authorization

Configure authorization for Kafka brokers using the Kafka.spec.kafka.authorization property in the
Kafka resource. If the authorization property is missing, no authorization is enabled and clients have no
restrictions. When enabled, authorization is applied to all enabled listeners. The authorization method is
defined in the type field.

Supported authorization options:

Simple authorization

OAuth 2.0 authorization (if you are using OAuth 2.0 token based authentication)

Open Policy Agent (OPA) authorization

Custom authorization

Figure 14.2. Kafka cluster authorization options

14.1.2.1. Super users

Super users can access all resources in your Kafka cluster regardless of any access restrictions, and are
supported by all authorization mechanisms.

To designate super users for a Kafka cluster, add a list of user principals to the superUsers property. If a
user uses mTLS authentication, the username is the common name from the TLS certificate subject

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

234

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index#type-GenericKafkaListener-reference
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index#type-KafkaAuthorizationSimple-reference
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index#type-KafkaAuthorizationOpa-reference
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index#type-KafkaAuthorizationCustom-reference

prefixed with CN=. If you are not using the User Operator and using your own certificates for mTLS, the
username is the full certificate subject. A full certificate subject can have the following fields:
CN=user,OU=my_ou,O=my_org,L=my_location,ST=my_state,C=my_country_code. Omit any fields
that are not present.

An example configuration with super users

14.2. SECURITY OPTIONS FOR KAFKA CLIENTS

Use the KafkaUser resource to configure the authentication mechanism, authorization mechanism, and
access rights for Kafka clients. In terms of configuring security, clients are represented as users.

You can authenticate and authorize user access to Kafka brokers. Authentication permits access, and
authorization constrains the access to permissible actions.

You can also create super users that have unconstrained access to Kafka brokers.

The authentication and authorization mechanisms must match the specification for the listener used to
access the Kafka brokers.

For more information on configuring a KafkaUser resource to access Kafka brokers securely, see
Section 13.3, “Setting up client access to a Kafka cluster using listeners” .

14.2.1. Identifying a Kafka cluster for user handling

A KafkaUser resource includes a label that defines the appropriate name of the Kafka cluster (derived
from the name of the Kafka resource) to which it belongs.

The label is used by the User Operator to identify the KafkaUser resource and create a new user, and

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 name: my-cluster
 namespace: myproject
spec:
 kafka:
 # ...
 authorization:
 type: simple
 superUsers:
 - CN=client_1
 - user_2
 - CN=client_3
 - CN=client_4,OU=my_ou,O=my_org,L=my_location,ST=my_state,C=US
 - CN=client_5,OU=my_ou,O=my_org,C=GB
 - CN=client_6,O=my_org
 # ...

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaUser
metadata:
 name: my-user
 labels:
 strimzi.io/cluster: my-cluster

CHAPTER 14. MANAGING SECURE ACCESS TO KAFKA

235

The label is used by the User Operator to identify the KafkaUser resource and create a new user, and
also in subsequent handling of the user.

If the label does not match the Kafka cluster, the User Operator cannot identify the KafkaUser and the
user is not created.

If the status of the KafkaUser resource remains empty, check your label.

14.2.2. User authentication

Use the KafkaUser custom resource to configure authentication credentials for users (clients) that
require access to a Kafka cluster. Configure the credentials using the authentication property in
KafkaUser.spec. By specifying a type, you control what credentials are generated.

Supported authentication types:

tls for mTLS authentication

tls-external for mTLS authentication using external certificates

scram-sha-512 for SCRAM-SHA-512 authentication

If tls or scram-sha-512 is specified, the User Operator creates authentication credentials when it
creates the user. If tls-external is specified, the user still uses mTLS, but no authentication credentials
are created. Use this option when you’re providing your own certificates. When no authentication type is
specified, the User Operator does not create the user or its credentials.

You can use tls-external to authenticate with mTLS using a certificate issued outside the User
Operator. The User Operator does not generate a TLS certificate or a secret. You can still manage ACL
rules and quotas through the User Operator in the same way as when you’re using the tls mechanism.
This means that you use the CN=USER-NAME format when specifying ACL rules and quotas. USER-
NAME is the common name given in a TLS certificate.

14.2.2.1. mTLS authentication

To use mTLS authentication, you set the type field in the KafkaUser resource to tls.

Example user with mTLS authentication enabled

The authentication type must match the equivalent configuration for the Kafka listener used to access
the Kafka cluster.

When the user is created by the User Operator, it creates a new secret with the same name as the
KafkaUser resource. The secret contains a private and public key for mTLS. The public key is contained
in a user certificate, which is signed by a clients CA (certificate authority) when it is created. All keys are

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaUser
metadata:
 name: my-user
 labels:
 strimzi.io/cluster: my-cluster
spec:
 authentication:
 type: tls
 # ...

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

236

1

2

3

in X.509 format.

NOTE

If you are using the clients CA generated by the Cluster Operator, the user certificates
generated by the User Operator are also renewed when the clients CA is renewed by the
Cluster Operator.

The user secret provides keys and certificates in PEM and PKCS #12 formats .

Example secret with user credentials

When you configure a client, you specify the following:

Truststore properties for the public cluster CA certificate to verify the identity of the Kafka
cluster

Keystore properties for the user authentication credentials to verify the client

The configuration depends on the file format (PEM or PKCS #12). This example uses PKCS #12 stores,
and the passwords required to access the credentials in the stores.

Example client configuration using mTLS in PKCS #12 format

The bootstrap server address to connect to the Kafka cluster.

The security protocol option when using TLS for encryption.

The truststore location contains the public key certificate (ca.p12) for the Kafka cluster. A cluster
CA certificate and password is generated by the Cluster Operator in the <cluster_name>-cluster-
ca-cert secret when the Kafka cluster is created.

apiVersion: v1
kind: Secret
metadata:
 name: my-user
 labels:
 strimzi.io/kind: KafkaUser
 strimzi.io/cluster: my-cluster
type: Opaque
data:
 ca.crt: <public_key> # Public key of the clients CA
 user.crt: <user_certificate> # Public key of the user
 user.key: <user_private_key> # Private key of the user
 user.p12: <store> # PKCS #12 store for user certificates and keys
 user.password: <password_for_store> # Protects the PKCS #12 store

bootstrap.servers=<kafka_cluster_name>-kafka-bootstrap:9093 1
security.protocol=SSL 2
ssl.truststore.location=/tmp/ca.p12 3
ssl.truststore.password=<truststore_password> 4
ssl.keystore.location=/tmp/user.p12 5
ssl.keystore.password=<keystore_password> 6

CHAPTER 14. MANAGING SECURE ACCESS TO KAFKA

237

4

5

6

The password (ca.password) for accessing the truststore.

The keystore location contains the public key certificate (user.p12) for the Kafka user.

The password (user.password) for accessing the keystore.

14.2.2.2. mTLS authentication using a certificate issued outside the User Operator

To use mTLS authentication using a certificate issued outside the User Operator, you set the type field
in the KafkaUser resource to tls-external. A secret and credentials are not created for the user.

Example user with mTLS authentication that uses a certificate issued outside the User
Operator

14.2.2.3. SCRAM-SHA-512 authentication

To use the SCRAM-SHA-512 authentication mechanism, you set the type field in the KafkaUser
resource to scram-sha-512.

Example user with SCRAM-SHA-512 authentication enabled

When the user is created by the User Operator, it creates a new secret with the same name as the
KafkaUser resource. The secret contains the generated password in the password key, which is
encoded with base64. In order to use the password, it must be decoded.

Example secret with user credentials

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaUser
metadata:
 name: my-user
 labels:
 strimzi.io/cluster: my-cluster
spec:
 authentication:
 type: tls-external
 # ...

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaUser
metadata:
 name: my-user
 labels:
 strimzi.io/cluster: my-cluster
spec:
 authentication:
 type: scram-sha-512
 # ...

apiVersion: v1
kind: Secret
metadata:
 name: my-user

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

238

1

2

1

2

The generated password, base64 encoded.

The JAAS configuration string for SASL SCRAM-SHA-512 authentication, base64 encoded.

Decoding the generated password:

echo "Z2VuZXJhdGVkcGFzc3dvcmQ=" | base64 --decode

14.2.2.3.1. Custom password configuration

When a user is created, AMQ Streams generates a random password. You can use your own password
instead of the one generated by AMQ Streams. To do so, create a secret with the password and
reference it in the KafkaUser resource.

Example user with a password set for SCRAM-SHA-512 authentication

The name of the secret containing the predefined password.

The key for the password stored inside the secret.

14.2.3. User authorization

Use the KafkaUser custom resource to configure authorization rules for users (clients) that require
access to a Kafka cluster. Configure the rules using the authorization property in KafkaUser.spec. By
specifying a type, you control what rules are used.

To use simple authorization, you set the type property to simple in KafkaUser.spec.authorization. The

 labels:
 strimzi.io/kind: KafkaUser
 strimzi.io/cluster: my-cluster
type: Opaque
data:
 password: Z2VuZXJhdGVkcGFzc3dvcmQ= 1
 sasl.jaas.config:
b3JnLmFwYWNoZS5rYWZrYS5jb21tb24uc2VjdXJpdHkuc2NyYW0uU2NyYW1Mb2dpbk1vZHVsZSByZ
XF1aXJlZCB1c2VybmFtZT0ibXktdXNlciIgcGFzc3dvcmQ9ImdlbmVyYXRlZHBhc3N3b3JkIjsK 2

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaUser
metadata:
 name: my-user
 labels:
 strimzi.io/cluster: my-cluster
spec:
 authentication:
 type: scram-sha-512
 password:
 valueFrom:
 secretKeyRef:
 name: my-secret 1
 key: my-password 2
 # ...

CHAPTER 14. MANAGING SECURE ACCESS TO KAFKA

239

To use simple authorization, you set the type property to simple in KafkaUser.spec.authorization. The
simple authorization uses the Kafka Admin API to manage the ACL rules inside your Kafka cluster.
Whether ACL management in the User Operator is enabled or not depends on your authorization
configuration in the Kafka cluster.

For simple authorization, ACL management is always enabled.

For OPA authorization, ACL management is always disabled. Authorization rules are configured
in the OPA server.

For Red Hat Single Sign-On authorization, you can manage the ACL rules directly in Red Hat
Single Sign-On. You can also delegate authorization to the simple authorizer as a fallback option
in the configuration. When delegation to the simple authorizer is enabled, the User Operator will
enable management of ACL rules as well.

For custom authorization using a custom authorization plugin, use the supportsAdminApi
property in the .spec.kafka.authorization configuration of the Kafka custom resource to
enable or disable the support.

Authorization is cluster-wide. The authorization type must match the equivalent configuration in the
Kafka custom resource.

If ACL management is not enabled, AMQ Streams rejects a resource if it contains any ACL rules.

If you’re using a standalone deployment of the User Operator, ACL management is enabled by default.
You can disable it using the STRIMZI_ACLS_ADMIN_API_SUPPORTED environment variable.

If no authorization is specified, the User Operator does not provision any access rights for the user.
Whether such a KafkaUser can still access resources depends on the authorizer being used. For
example, for the AclAuthorizer this is determined by its allow.everyone.if.no.acl.found configuration.

14.2.3.1. ACL rules

AclAuthorizer uses ACL rules to manage access to Kafka brokers.

ACL rules grant access rights to the user, which you specify in the acls property.

For more information about the AclRule object, see the AclRule schema reference.

14.2.3.2. Super user access to Kafka brokers

If a user is added to a list of super users in a Kafka broker configuration, the user is allowed unlimited
access to the cluster regardless of any authorization constraints defined in ACLs in KafkaUser.

For more information on configuring super user access to brokers, see Kafka authorization.

14.2.3.3. User quotas

You can configure the spec for the KafkaUser resource to enforce quotas so that a user does not
exceed a configured level of access to Kafka brokers. You can set size-based network usage and time-
based CPU utilization thresholds. You can also add a partition mutation quota to control the rate at
which requests to change partitions are accepted for user requests.

An example KafkaUser with user quotas

apiVersion: kafka.strimzi.io/v1beta2

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

240

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index#type-AclRule-reference

1

2

3

4

Byte-per-second quota on the amount of data the user can push to a Kafka broker

Byte-per-second quota on the amount of data the user can fetch from a Kafka broker

CPU utilization limit as a percentage of time for a client group

Number of concurrent partition creation and deletion operations (mutations) allowed per second

For more information on these properties, see the KafkaUserQuotas schema reference.

14.3. SECURING ACCESS TO KAFKA BROKERS

To establish secure access to Kafka brokers, you configure and apply:

A Kafka resource to:

Create listeners with a specified authentication type

Configure authorization for the whole Kafka cluster

A KafkaUser resource to access the Kafka brokers securely through the listeners

Configure the Kafka resource to set up:

Listener authentication

Network policies that restrict access to Kafka listeners

Kafka authorization

Super users for unconstrained access to brokers

Authentication is configured independently for each listener. Authorization is always configured for the
whole Kafka cluster.

The Cluster Operator creates the listeners and sets up the cluster and client certificate authority (CA)
certificates to enable authentication within the Kafka cluster.

You can replace the certificates generated by the Cluster Operator by installing your own certificates.

You can also provide your own server certificates and private keys for any listener with TLS encryption
enabled. These user-provided certificates are called Kafka listener certificates. Providing Kafka listener

kind: KafkaUser
metadata:
 name: my-user
 labels:
 strimzi.io/cluster: my-cluster
spec:
 # ...
 quotas:
 producerByteRate: 1048576 1
 consumerByteRate: 2097152 2
 requestPercentage: 55 3
 controllerMutationRate: 10 4

CHAPTER 14. MANAGING SECURE ACCESS TO KAFKA

241

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index#type-KafkaUserQuotas-reference

certificates allows you to leverage existing security infrastructure, such as your organization’s private CA
or a public CA. Kafka clients will need to trust the CA which was used to sign the listener certificate. You
must manually renew Kafka listener certificates when needed. Certificates are available in PKCS #12
format (.p12) and PEM (.crt) formats.

Use KafkaUser to enable the authentication and authorization mechanisms that a specific client uses to
access Kafka.

Configure the KafkaUser resource to set up:

Authentication to match the enabled listener authentication

Authorization to match the enabled Kafka authorization

Quotas to control the use of resources by clients

The User Operator creates the user representing the client and the security credentials used for client
authentication, based on the chosen authentication type.

Refer to the schema reference for more information on access configuration properties:

Kafka schema reference

KafkaUser schema reference

GenericKafkaListener schema reference

14.3.1. Securing Kafka brokers

This procedure shows the steps involved in securing Kafka brokers when running AMQ Streams.

The security implemented for Kafka brokers must be compatible with the security implemented for the
clients requiring access.

Kafka.spec.kafka.listeners[*].authentication matches KafkaUser.spec.authentication

Kafka.spec.kafka.authorization matches KafkaUser.spec.authorization

The steps show the configuration for simple authorization and a listener using mTLS authentication. For
more information on listener configuration, see the GenericKafkaListener schema reference.

Alternatively, you can use SCRAM-SHA or OAuth 2.0 for listener authentication, and OAuth 2.0 or OPA
for Kafka authorization.

Procedure

1. Configure the Kafka resource.

a. Configure the authorization property for authorization.

b. Configure the listeners property to create a listener with authentication.
For example:

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
spec:
 kafka:

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

242

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index#type-Kafka-reference
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index#type-KafkaUser-reference
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index#type-GenericKafkaListener-reference
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index#type-GenericKafkaListener-reference

1

2

3

Authorization enables simple authorization on the Kafka broker using the
AclAuthorizer Kafka plugin .

List of user principals with unlimited access to Kafka. CN is the common name from
the client certificate when mTLS authentication is used.

Listener authentication mechanisms may be configured for each listener, and specified
as mTLS, SCRAM-SHA-512, or token-based OAuth 2.0.

If you are configuring an external listener, the configuration is dependent on the chosen
connection mechanism.

2. Create or update the Kafka resource.

The Kafka cluster is configured with a Kafka broker listener using mTLS authentication.

A service is created for each Kafka broker pod.

A service is created to serve as the bootstrap address for connection to the Kafka cluster.

The cluster CA certificate to verify the identity of the kafka brokers is also created in the secret
<cluster_name>-cluster-ca-cert.

14.3.2. Securing user access to Kafka

Create or modify a KafkaUser to represent a client that requires secure access to the Kafka cluster.

When you configure the KafkaUser authentication and authorization mechanisms, ensure they match
the equivalent Kafka configuration:

KafkaUser.spec.authentication matches Kafka.spec.kafka.listeners[*].authentication

KafkaUser.spec.authorization matches Kafka.spec.kafka.authorization

This procedure shows how a user is created with mTLS authentication. You can also create a user with

 # ...
 authorization: 1
 type: simple
 superUsers: 2
 - CN=client_1
 - user_2
 - CN=client_3
 listeners:
 - name: tls
 port: 9093
 type: internal
 tls: true
 authentication:
 type: tls 3
 # ...
 zookeeper:
 # ...

oc apply -f <kafka_configuration_file>

CHAPTER 14. MANAGING SECURE ACCESS TO KAFKA

243

1

2

This procedure shows how a user is created with mTLS authentication. You can also create a user with
SCRAM-SHA authentication.

The authentication required depends on the type of authentication configured for the Kafka broker
listener.

NOTE

Authentication between Kafka users and Kafka brokers depends on the authentication
settings for each. For example, it is not possible to authenticate a user with mTLS if it is
not also enabled in the Kafka configuration.

Prerequisites

A running Kafka cluster configured with a Kafka broker listener using mTLS authentication and
TLS encryption.

A running User Operator (typically deployed with the Entity Operator).

The authentication type in KafkaUser should match the authentication configured in Kafka brokers.

Procedure

1. Configure the KafkaUser resource.
For example:

User authentication mechanism, defined as mutual tls or scram-sha-512.

Simple authorization, which requires an accompanying list of ACL rules.

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaUser
metadata:
 name: my-user
 labels:
 strimzi.io/cluster: my-cluster
spec:
 authentication: 1
 type: tls
 authorization:
 type: simple 2
 acls:
 - resource:
 type: topic
 name: my-topic
 patternType: literal
 operations:
 - Describe
 - Read
 - resource:
 type: group
 name: my-group
 patternType: literal
 operations:
 - Read

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

244

2. Create or update the KafkaUser resource.

The user is created, as well as a Secret with the same name as the KafkaUser resource. The
Secret contains a private and public key for mTLS authentication.

For information on configuring a Kafka client with properties for secure connection to Kafka brokers, see
Section 13.3, “Setting up client access to a Kafka cluster using listeners” .

14.3.3. Restricting access to Kafka listeners using network policies

You can restrict access to a listener to only selected applications by using the networkPolicyPeers
property.

Prerequisites

An OpenShift cluster with support for Ingress NetworkPolicies.

The Cluster Operator is running.

Procedure

1. Open the Kafka resource.

2. In the networkPolicyPeers property, define the application pods or namespaces that will be
allowed to access the Kafka cluster.
For example, to configure a tls listener to allow connections only from application pods with the
label app set to kafka-client:

3. Create or update the resource.
Use oc apply:

oc apply -f <user_config_file>

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
spec:
 kafka:
 # ...
 listeners:
 - name: tls
 port: 9093
 type: internal
 tls: true
 authentication:
 type: tls
 networkPolicyPeers:
 - podSelector:
 matchLabels:
 app: kafka-client
 # ...
 zookeeper:
 # ...

oc apply -f your-file

CHAPTER 14. MANAGING SECURE ACCESS TO KAFKA

245

Additional resources

networkPolicyPeers configuration

NetworkPolicyPeer API reference

14.3.4. Providing your own Kafka listener certificates for TLS encryption

Listeners provide client access to Kafka brokers. Configure listeners in the Kafka resource, including the
configuration required for client access using TLS.

By default, the listeners use certificates signed by the internal CA (certificate authority) certificates
generated by AMQ Streams. A CA certificate is generated by the Cluster Operator when it creates a
Kafka cluster. When you configure a client for TLS, you add the CA certificate to its truststore
configuration to verify the Kafka cluster. You can also install and use your own CA certificates . Or you
can configure a listener using brokerCertChainAndKey properties and use a custom server certificate.

The brokerCertChainAndKey properties allow you to access Kafka brokers using your own custom
certificates at the listener-level. You create a secret with your own private key and server certificate,
then specify the key and certificate in the listener’s brokerCertChainAndKey configuration. You can
use a certificate signed by a public (external) CA or a private CA. If signed by a public CA, you usually
won’t need to add it to a client’s truststore configuration. Custom certificates are not managed by AMQ
Streams, so you need to renew them manually.

NOTE

Listener certificates are used for TLS encryption and server authentication only. They are
not used for TLS client authentication. If you want to use your own certificate for TLS
client authentication as well, you must install and use your own clients CA .

Prerequisites

The Cluster Operator is running.

Each listener requires the following:

A compatible server certificate signed by an external CA. (Provide an X.509 certificate in
PEM format.)
You can use one listener certificate for multiple listeners.

Subject Alternative Names (SANs) are specified in the certificate for each listener. For
more information, see Section 14.3.5, “Alternative subjects in server certificates for Kafka
listeners”.

If you are not using a self-signed certificate, you can provide a certificate that includes the whole CA
chain in the certificate.

You can only use the brokerCertChainAndKey properties if TLS encryption (tls: true) is configured for
the listener.

NOTE

AMQ Streams does not support the use of encrypted private keys for TLS. The private
key stored in the secret must be unencrypted for this to work.

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

246

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index#configuration-listener-network-policy-reference
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#networkpolicypeer-v1-networking-k8s-io

Procedure

1. Create a Secret containing your private key and server certificate:

2. Edit the Kafka resource for your cluster.
Configure the listener to use your Secret, certificate file, and private key file in the
configuration.brokerCertChainAndKey property.

Example configuration for a loadbalancer external listener with TLS encryption
enabled

Example configuration for a TLS listener

3. Apply the new configuration to create or update the resource:

The Cluster Operator starts a rolling update of the Kafka cluster, which updates the

oc create secret generic my-secret --from-file=my-listener-key.key --from-file=my-listener-
certificate.crt

...
listeners:
 - name: plain
 port: 9092
 type: internal
 tls: false
 - name: external
 port: 9094
 type: loadbalancer
 tls: true
 configuration:
 brokerCertChainAndKey:
 secretName: my-secret
 certificate: my-listener-certificate.crt
 key: my-listener-key.key
...

...
listeners:
 - name: plain
 port: 9092
 type: internal
 tls: false
 - name: tls
 port: 9093
 type: internal
 tls: true
 configuration:
 brokerCertChainAndKey:
 secretName: my-secret
 certificate: my-listener-certificate.crt
 key: my-listener-key.key
...

oc apply -f kafka.yaml

CHAPTER 14. MANAGING SECURE ACCESS TO KAFKA

247

The Cluster Operator starts a rolling update of the Kafka cluster, which updates the
configuration of the listeners.

NOTE

A rolling update is also started if you update a Kafka listener certificate in a
Secret that is already used by a listener.

14.3.5. Alternative subjects in server certificates for Kafka listeners

In order to use TLS hostname verification with your own Kafka listener certificates, you must use the
correct Subject Alternative Names (SANs) for each listener. The certificate SANs must specify
hostnames for the following:

All of the Kafka brokers in your cluster

The Kafka cluster bootstrap service

You can use wildcard certificates if they are supported by your CA.

14.3.5.1. Examples of SANs for internal listeners

Use the following examples to help you specify hostnames of the SANs in your certificates for your
internal listeners.

Replace <cluster-name> with the name of the Kafka cluster and <namespace> with the OpenShift
namespace where the cluster is running.

Wildcards example for a type: internal listener

Non-wildcards example for a type: internal listener

Non-wildcards example for a type: cluster-ip listener

//Kafka brokers
*.<cluster-name>-kafka-brokers
*.<cluster-name>-kafka-brokers.<namespace>.svc

// Bootstrap service
<cluster-name>-kafka-bootstrap
<cluster-name>-kafka-bootstrap.<namespace>.svc

// Kafka brokers
<cluster-name>-kafka-0.<cluster-name>-kafka-brokers
<cluster-name>-kafka-0.<cluster-name>-kafka-brokers.<namespace>.svc
<cluster-name>-kafka-1.<cluster-name>-kafka-brokers
<cluster-name>-kafka-1.<cluster-name>-kafka-brokers.<namespace>.svc
...

// Bootstrap service
<cluster-name>-kafka-bootstrap
<cluster-name>-kafka-bootstrap.<namespace>.svc

// Kafka brokers

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

248

14.3.5.2. Examples of SANs for external listeners

For external listeners which have TLS encryption enabled, the hostnames you need to specify in
certificates depends on the external listener type.

Table 14.1. SANs for each type of external listener

External listener type In the SANs, specify…​

ingress Addresses of all Kafka broker Ingress resources and
the address of the bootstrap Ingress.

You can use a matching wildcard name.

route Addresses of all Kafka broker Routes and the
address of the bootstrap Route.

You can use a matching wildcard name.

loadbalancer Addresses of all Kafka broker loadbalancers and
the bootstrap loadbalancer address.

You can use a matching wildcard name.

nodeport Addresses of all OpenShift worker nodes that the
Kafka broker pods might be scheduled to.

You can use a matching wildcard name.

Additional resources

Section 14.3.4, “Providing your own Kafka listener certificates for TLS encryption”

14.4. USING OAUTH 2.0 TOKEN-BASED AUTHENTICATION

AMQ Streams supports the use of OAuth 2.0 authentication using the OAUTHBEARER and PLAIN
mechanisms.

OAuth 2.0 enables standardized token-based authentication and authorization between applications,
using a central authorization server to issue tokens that grant limited access to resources.

You can configure OAuth 2.0 authentication, then OAuth 2.0 authorization .

Kafka brokers and clients both need to be configured to use OAuth 2.0. OAuth 2.0 authentication can

<cluster-name>-kafka-<listener-name>-0
<cluster-name>-kafka-<listener-name>-0.<namespace>.svc
<cluster-name>-kafka-<listener-name>-1
<cluster-name>-kafka-<listener-name>-1.<namespace>.svc
...

// Bootstrap service
<cluster-name>-kafka-<listener-name>-bootstrap
<cluster-name>-kafka-<listener-name>-bootstrap.<namespace>.svc

CHAPTER 14. MANAGING SECURE ACCESS TO KAFKA

249

https://oauth.net/2/

Kafka brokers and clients both need to be configured to use OAuth 2.0. OAuth 2.0 authentication can
also be used in conjunction with simple or OPA-based Kafka authorization.

Using OAuth 2.0 token-based authentication, application clients can access resources on application
servers (called resource servers) without exposing account credentials.

The application client passes an access token as a means of authenticating, which application servers
can also use to determine the level of access to grant. The authorization server handles the granting of
access and inquiries about access.

In the context of AMQ Streams:

Kafka brokers act as OAuth 2.0 resource servers

Kafka clients act as OAuth 2.0 application clients

Kafka clients authenticate to Kafka brokers. The brokers and clients communicate with the OAuth 2.0
authorization server, as necessary, to obtain or validate access tokens.

For a deployment of AMQ Streams, OAuth 2.0 integration provides:

Server-side OAuth 2.0 support for Kafka brokers

Client-side OAuth 2.0 support for Kafka MirrorMaker, Kafka Connect and the Kafka Bridge

14.4.1. OAuth 2.0 authentication mechanisms

AMQ Streams supports the OAUTHBEARER and PLAIN mechanisms for OAuth 2.0 authentication.
Both mechanisms allow Kafka clients to establish authenticated sessions with Kafka brokers. The
authentication flow between clients, the authorization server, and Kafka brokers is different for each
mechanism.

We recommend that you configure clients to use OAUTHBEARER whenever possible. OAUTHBEARER
provides a higher level of security than PLAIN because client credentials are never shared with Kafka
brokers. Consider using PLAIN only with Kafka clients that do not support OAUTHBEARER.

You configure Kafka broker listeners to use OAuth 2.0 authentication for connecting clients. If
necessary, you can use the OAUTHBEARER and PLAIN mechanisms on the same oauth listener. The
properties to support each mechanism must be explicitly specified in the oauth listener configuration.

OAUTHBEARER overview

OAUTHBEARER is automatically enabled in the oauth listener configuration for the Kafka broker. You
can set the enableOauthBearer property to true, though this is not required.

Many Kafka client tools use libraries that provide basic support for OAUTHBEARER at the protocol
level. To support application development, AMQ Streams provides an OAuth callback handler for the
upstream Kafka Client Java libraries (but not for other libraries). Therefore, you do not need to write
your own callback handlers. An application client can use the callback handler to provide the access
token. Clients written in other languages, such as Go, must use custom code to connect to the
authorization server and obtain the access token.

 # ...
 authentication:
 type: oauth
 # ...
 enableOauthBearer: true

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

250

With OAUTHBEARER, the client initiates a session with the Kafka broker for credentials exchange, where
credentials take the form of a bearer token provided by the callback handler. Using the callbacks, you
can configure token provision in one of three ways:

Client ID and Secret (by using the OAuth 2.0 client credentials mechanism)

A long-lived access token, obtained manually at configuration time

A long-lived refresh token, obtained manually at configuration time

NOTE

OAUTHBEARER authentication can only be used by Kafka clients that support the
OAUTHBEARER mechanism at the protocol level.

PLAIN overview

To use PLAIN, you must enable it in the oauth listener configuration for the Kafka broker.

In the following example, PLAIN is enabled in addition to OAUTHBEARER, which is enabled by default. If
you want to use PLAIN only, you can disable OAUTHBEARER by setting enableOauthBearer to false.

PLAIN is a simple authentication mechanism used by all Kafka client tools. To enable PLAIN to be used
with OAuth 2.0 authentication, AMQ Streams provides OAuth 2.0 over PLAIN server-side callbacks.

With the AMQ Streams implementation of PLAIN, the client credentials are not stored in ZooKeeper.
Instead, client credentials are handled centrally behind a compliant authorization server, similar to when
OAUTHBEARER authentication is used.

When used with the OAuth 2.0 over PLAIN callbacks, Kafka clients authenticate with Kafka brokers using
either of the following methods:

Client ID and secret (by using the OAuth 2.0 client credentials mechanism)

A long-lived access token, obtained manually at configuration time

For both methods, the client must provide the PLAIN username and password properties to pass
credentials to the Kafka broker. The client uses these properties to pass a client ID and secret or
username and access token.

Client IDs and secrets are used to obtain access tokens.

Access tokens are passed as password property values. You pass the access token with or without an
$accessToken: prefix.

If you configure a token endpoint (tokenEndpointUri) in the listener configuration, you need
the prefix.

 # ...
 authentication:
 type: oauth
 # ...
 enablePlain: true
 tokenEndpointUri: https://OAUTH-SERVER-ADDRESS/auth/realms/external/protocol/openid-
connect/token

CHAPTER 14. MANAGING SECURE ACCESS TO KAFKA

251

If you don’t configure a token endpoint (tokenEndpointUri) in the listener configuration, you
don’t need the prefix. The Kafka broker interprets the password as a raw access token.

If the password is set as the access token, the username must be set to the same principal name that
the Kafka broker obtains from the access token. You can specify username extraction options in your
listener using the userNameClaim, fallbackUserNameClaim, fallbackUsernamePrefix, and
userInfoEndpointUri properties. The username extraction process also depends on your authorization
server; in particular, how it maps client IDs to account names.

NOTE

OAuth over PLAIN does not support password grant mechanism. You can only 'proxy'
through SASL PLAIN mechanism the client credentials (clientId + secret) or the access
token as described above.

Additional resources

Section 14.4.6.2, “Configuring OAuth 2.0 support for Kafka brokers”

14.4.2. OAuth 2.0 Kafka broker configuration

Kafka broker configuration for OAuth 2.0 involves:

Creating the OAuth 2.0 client in the authorization server

Configuring OAuth 2.0 authentication in the Kafka custom resource

NOTE

In relation to the authorization server, Kafka brokers and Kafka clients are both regarded
as OAuth 2.0 clients.

14.4.2.1. OAuth 2.0 client configuration on an authorization server

To configure a Kafka broker to validate the token received during session initiation, the recommended
approach is to create an OAuth 2.0 client definition in an authorization server, configured as confidential,
with the following client credentials enabled:

Client ID of kafka (for example)

Client ID and Secret as the authentication mechanism

NOTE

You only need to use a client ID and secret when using a non-public introspection
endpoint of the authorization server. The credentials are not typically required when using
public authorization server endpoints, as with fast local JWT token validation.

14.4.2.2. OAuth 2.0 authentication configuration in the Kafka cluster

To use OAuth 2.0 authentication in the Kafka cluster, you specify, for example, a tls listener
configuration for your Kafka cluster custom resource with the authentication method oauth:

Assigining the authentication method type for OAuth 2.0

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

252

You can configure OAuth 2.0 authentication in your listeners. We recommend using OAuth 2.0
authentication together with TLS encryption (tls: true). Without encryption, the connection is
vulnerable to network eavesdropping and unauthorized access through token theft.

You configure an external listener with type: oauth for a secure transport layer to communicate with
the client.

Using OAuth 2.0 with an external listener

The tls property is false by default, so it must be enabled.

When you have defined the type of authentication as OAuth 2.0, you add configuration based on the
type of validation, either as fast local JWT validation or token validation using an introspection endpoint .

The procedure to configure OAuth 2.0 for listeners, with descriptions and examples, is described in
Configuring OAuth 2.0 support for Kafka brokers .

14.4.2.3. Fast local JWT token validation configuration

Fast local JWT token validation checks a JWT token signature locally.

The local check ensures that a token:

Conforms to type by containing a (typ) claim value of Bearer for an access token

Is valid (not expired)

Has an issuer that matches a validIssuerURI

You specify a validIssuerURI attribute when you configure the listener, so that any tokens not issued by
the authorization server are rejected.

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
spec:
 kafka:
 # ...
 listeners:
 - name: tls
 port: 9093
 type: internal
 tls: true
 authentication:
 type: oauth
 #...

...
listeners:
 - name: external
 port: 9094
 type: loadbalancer
 tls: true
 authentication:
 type: oauth
 #...

CHAPTER 14. MANAGING SECURE ACCESS TO KAFKA

253

The authorization server does not need to be contacted during fast local JWT token validation. You
activate fast local JWT token validation by specifying a jwksEndpointUri attribute, the endpoint
exposed by the OAuth 2.0 authorization server. The endpoint contains the public keys used to validate
signed JWT tokens, which are sent as credentials by Kafka clients.

NOTE

All communication with the authorization server should be performed using TLS
encryption.

You can configure a certificate truststore as an OpenShift Secret in your AMQ Streams project
namespace, and use a tlsTrustedCertificates attribute to point to the OpenShift Secret containing the
truststore file.

You might want to configure a userNameClaim to properly extract a username from the JWT token. If
required, you can use a JsonPath expression like "['user.info'].['user.id']" to retrieve the username
from nested JSON attributes within a token.

If you want to use Kafka ACL authorization, you need to identify the user by their username during
authentication. (The sub claim in JWT tokens is typically a unique ID, not a username.)

Example configuration for fast local JWT token validation

14.4.2.4. OAuth 2.0 introspection endpoint configuration

Token validation using an OAuth 2.0 introspection endpoint treats a received access token as opaque.
The Kafka broker sends an access token to the introspection endpoint, which responds with the token
information necessary for validation. Importantly, it returns up-to-date information if the specific access
token is valid, and also information about when the token expires.

To configure OAuth 2.0 introspection-based validation, you specify an introspectionEndpointUri
attribute rather than the jwksEndpointUri attribute specified for fast local JWT token validation.
Depending on the authorization server, you typically have to specify a clientId and clientSecret,

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
spec:
 kafka:
 #...
 listeners:
 - name: tls
 port: 9093
 type: internal
 tls: true
 authentication:
 type: oauth
 validIssuerUri: <https://<auth_server_address>/auth/realms/tls>
 jwksEndpointUri: <https://<auth_server_address>/auth/realms/tls/protocol/openid-
connect/certs>
 userNameClaim: preferred_username
 maxSecondsWithoutReauthentication: 3600
 tlsTrustedCertificates:
 - secretName: oauth-server-cert
 certificate: ca.crt
 #...

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

254

because the introspection endpoint is usually protected.

Example configuration for an introspection endpoint

14.4.3. Session re-authentication for Kafka brokers

You can configure oauth listeners to use Kafka session re-authentication for OAuth 2.0 sessions
between Kafka clients and Kafka brokers. This mechanism enforces the expiry of an authenticated
session between the client and the broker after a defined period of time. When a session expires, the
client immediately starts a new session by reusing the existing connection rather than dropping it.

Session re-authentication is disabled by default. To enable it, you set a time value for
maxSecondsWithoutReauthentication in the oauth listener configuration. The same property is used
to configure session re-authentication for OAUTHBEARER and PLAIN authentication. For an example
configuration, see Section 14.4.6.2, “Configuring OAuth 2.0 support for Kafka brokers” .

Session re-authentication must be supported by the Kafka client libraries used by the client.

Session re-authentication can be used with fast local JWT or introspection endpoint token validation.

Client re-authentication

When the broker’s authenticated session expires, the client must re-authenticate to the existing session
by sending a new, valid access token to the broker, without dropping the connection.

If token validation is successful, a new client session is started using the existing connection. If the client
fails to re-authenticate, the broker will close the connection if further attempts are made to send or
receive messages. Java clients that use Kafka client library 2.2 or later automatically re-authenticate if
the re-authentication mechanism is enabled on the broker.

Session re-authentication also applies to refresh tokens, if used. When the session expires, the client

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
spec:
 kafka:
 listeners:
 - name: tls
 port: 9093
 type: internal
 tls: true
 authentication:
 type: oauth
 clientId: kafka-broker
 clientSecret:
 secretName: my-cluster-oauth
 key: clientSecret
 validIssuerUri: <https://<auth_server_-_address>/auth/realms/tls>
 introspectionEndpointUri: <https://<auth_server_address>/auth/realms/tls/protocol/openid-
connect/token/introspect>
 userNameClaim: preferred_username
 maxSecondsWithoutReauthentication: 3600
 tlsTrustedCertificates:
 - secretName: oauth-server-cert
 certificate: ca.crt

CHAPTER 14. MANAGING SECURE ACCESS TO KAFKA

255

Session re-authentication also applies to refresh tokens, if used. When the session expires, the client
refreshes the access token by using its refresh token. The client then uses the new access token to re-
authenticate to the existing session.

Session expiry for OAUTHBEARER and PLAIN

When session re-authentication is configured, session expiry works differently for OAUTHBEARER and
PLAIN authentication.

For OAUTHBEARER and PLAIN, using the client ID and secret method:

The broker’s authenticated session will expire at the configured
maxSecondsWithoutReauthentication.

The session will expire earlier if the access token expires before the configured time.

For PLAIN using the long-lived access token method:

The broker’s authenticated session will expire at the configured
maxSecondsWithoutReauthentication.

Re-authentication will fail if the access token expires before the configured time. Although
session re-authentication is attempted, PLAIN has no mechanism for refreshing tokens.

If maxSecondsWithoutReauthentication is not configured, OAUTHBEARER and PLAIN clients can
remain connected to brokers indefinitely, without needing to re-authenticate. Authenticated sessions
do not end with access token expiry. However, this can be considered when configuring authorization,
for example, by using keycloak authorization or installing a custom authorizer.

Additional resources

Section 14.4.2, “OAuth 2.0 Kafka broker configuration”

Section 14.4.6.2, “Configuring OAuth 2.0 support for Kafka brokers”

KafkaListenerAuthenticationOAuth schema reference

KIP-368

14.4.4. OAuth 2.0 Kafka client configuration

A Kafka client is configured with either:

The credentials required to obtain a valid access token from an authorization server (client ID
and Secret)

A valid long-lived access token or refresh token, obtained using tools provided by an
authorization server

The only information ever sent to the Kafka broker is an access token. The credentials used to
authenticate with the authorization server to obtain the access token are never sent to the broker.

When a client obtains an access token, no further communication with the authorization server is
needed.

The simplest mechanism is authentication with a client ID and Secret. Using a long-lived access token, or

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

256

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index#type-KafkaListenerAuthenticationOAuth-reference
https://cwiki.apache.org/confluence/display/KAFKA/KIP-368%3A+Allow+SASL+Connections+to+Periodically+Re-Authenticate

The simplest mechanism is authentication with a client ID and Secret. Using a long-lived access token, or
a long-lived refresh token, adds more complexity because there is an additional dependency on
authorization server tools.

NOTE

If you are using long-lived access tokens, you may need to configure the client in the
authorization server to increase the maximum lifetime of the token.

If the Kafka client is not configured with an access token directly, the client exchanges credentials for an
access token during Kafka session initiation by contacting the authorization server. The Kafka client
exchanges either:

Client ID and Secret

Client ID, refresh token, and (optionally) a secret

Username and password, with client ID and (optionally) a secret

14.4.5. OAuth 2.0 client authentication flows

OAuth 2.0 authentication flows depend on the underlying Kafka client and Kafka broker configuration.
The flows must also be supported by the authorization server used.

The Kafka broker listener configuration determines how clients authenticate using an access token. The
client can pass a client ID and secret to request an access token.

If a listener is configured to use PLAIN authentication, the client can authenticate with a client ID and
secret or username and access token. These values are passed as the username and password
properties of the PLAIN mechanism.

Listener configuration supports the following token validation options:

You can use fast local token validation based on JWT signature checking and local token
introspection, without contacting an authorization server. The authorization server provides a
JWKS endpoint with public certificates that are used to validate signatures on the tokens.

You can use a call to a token introspection endpoint provided by an authorization server. Each
time a new Kafka broker connection is established, the broker passes the access token received
from the client to the authorization server. The Kafka broker checks the response to confirm
whether or not the token is valid.

NOTE

An authorization server might only allow the use of opaque access tokens, which means
that local token validation is not possible.

Kafka client credentials can also be configured for the following types of authentication:

Direct local access using a previously generated long-lived access token

Contact with the authorization server for a new access token to be issued (using a client ID and
a secret, or a refresh token, or a username and a password)

14.4.5.1. Example client authentication flows using the SASL OAUTHBEARER mechanism

CHAPTER 14. MANAGING SECURE ACCESS TO KAFKA

257

You can use the following communication flows for Kafka authentication using the SASL
OAUTHBEARER mechanism.

Client using client ID and secret, with broker delegating validation to authorization server

Client using client ID and secret, with broker performing fast local token validation

Client using long-lived access token, with broker delegating validation to authorization server

Client using long-lived access token, with broker performing fast local validation

Client using client ID and secret, with broker delegating validation to authorization server

1. The Kafka client requests an access token from the authorization server using a client ID and
secret, and optionally a refresh token. Alternatively, the client may authenticate using a
username and a password.

2. The authorization server generates a new access token.

3. The Kafka client authenticates with the Kafka broker using the SASL OAUTHBEARER
mechanism to pass the access token.

4. The Kafka broker validates the access token by calling a token introspection endpoint on the
authorization server using its own client ID and secret.

5. A Kafka client session is established if the token is valid.

Client using client ID and secret, with broker performing fast local token validation

1. The Kafka client authenticates with the authorization server from the token endpoint, using a
client ID and secret, and optionally a refresh token. Alternatively, the client may authenticate
using a username and a password.

2. The authorization server generates a new access token.

3. The Kafka client authenticates with the Kafka broker using the SASL OAUTHBEARER
mechanism to pass the access token.

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

258

4. The Kafka broker validates the access token locally using a JWT token signature check, and
local token introspection.

Client using long-lived access token, with broker delegating validation to authorization
server

1. The Kafka client authenticates with the Kafka broker using the SASL OAUTHBEARER
mechanism to pass the long-lived access token.

2. The Kafka broker validates the access token by calling a token introspection endpoint on the
authorization server, using its own client ID and secret.

3. A Kafka client session is established if the token is valid.

Client using long-lived access token, with broker performing fast local validation

1. The Kafka client authenticates with the Kafka broker using the SASL OAUTHBEARER
mechanism to pass the long-lived access token.

2. The Kafka broker validates the access token locally using a JWT token signature check and local
token introspection.

WARNING

Fast local JWT token signature validation is suitable only for short-lived tokens as
there is no check with the authorization server if a token has been revoked. Token
expiration is written into the token, but revocation can happen at any time, so
cannot be accounted for without contacting the authorization server. Any issued
token would be considered valid until it expires.

14.4.5.2. Example client authentication flows using the SASL PLAIN mechanism



CHAPTER 14. MANAGING SECURE ACCESS TO KAFKA

259

You can use the following communication flows for Kafka authentication using the OAuth PLAIN
mechanism.

Client using a client ID and secret, with the broker obtaining the access token for the client

Client using a long-lived access token without a client ID and secret

Client using a client ID and secret, with the broker obtaining the access token for the client

1. The Kafka client passes a clientId as a username and a secret as a password.

2. The Kafka broker uses a token endpoint to pass the clientId and secret to the authorization
server.

3. The authorization server returns a fresh access token or an error if the client credentials are not
valid.

4. The Kafka broker validates the token in one of the following ways:

a. If a token introspection endpoint is specified, the Kafka broker validates the access token
by calling the endpoint on the authorization server. A session is established if the token
validation is successful.

b. If local token introspection is used, a request is not made to the authorization server. The
Kafka broker validates the access token locally using a JWT token signature check.

Client using a long-lived access token without a client ID and secret

1. The Kafka client passes a username and password. The password provides the value of an
access token that was obtained manually and configured before running the client.

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

260

2. The password is passed with or without an $accessToken: string prefix depending on whether
or not the Kafka broker listener is configured with a token endpoint for authentication.

a. If the token endpoint is configured, the password should be prefixed by $accessToken: to
let the broker know that the password parameter contains an access token rather than a
client secret. The Kafka broker interprets the username as the account username.

b. If the token endpoint is not configured on the Kafka broker listener (enforcing a no-client-
credentials mode), the password should provide the access token without the prefix. The
Kafka broker interprets the username as the account username. In this mode, the client
doesn’t use a client ID and secret, and the password parameter is always interpreted as a
raw access token.

3. The Kafka broker validates the token in one of the following ways:

a. If a token introspection endpoint is specified, the Kafka broker validates the access token
by calling the endpoint on the authorization server. A session is established if token
validation is successful.

b. If local token introspection is used, there is no request made to the authorization server.
Kafka broker validates the access token locally using a JWT token signature check.

14.4.6. Configuring OAuth 2.0 authentication

OAuth 2.0 is used for interaction between Kafka clients and AMQ Streams components.

In order to use OAuth 2.0 for AMQ Streams, you must:

1. Deploy an authorization server and configure the deployment to integrate with AMQ Streams

2. Deploy or update the Kafka cluster with Kafka broker listeners configured to use OAuth 2.0

3. Update your Java-based Kafka clients to use OAuth 2.0

4. Update Kafka component clients to use OAuth 2.0

14.4.6.1. Configuring an OAuth 2.0 authorization server

This procedure describes in general what you need to do to configure an authorization server for
integration with AMQ Streams.

These instructions are not product specific.

The steps are dependent on the chosen authorization server. Consult the product documentation for
the authorization server for information on how to set up OAuth 2.0 access.

NOTE

If you already have an authorization server deployed, you can skip the deployment step
and use your current deployment.

Procedure

1. Deploy the authorization server to your cluster.

2. Access the CLI or admin console for the authorization server to configure OAuth 2.0 for AMQ

CHAPTER 14. MANAGING SECURE ACCESS TO KAFKA

261

2. Access the CLI or admin console for the authorization server to configure OAuth 2.0 for AMQ
Streams.
Now prepare the authorization server to work with AMQ Streams.

3. Configure a kafka-broker client.

4. Configure clients for each Kafka client component of your application.

What to do next

After deploying and configuring the authorization server, configure the Kafka brokers to use OAuth 2.0 .

14.4.6.2. Configuring OAuth 2.0 support for Kafka brokers

This procedure describes how to configure Kafka brokers so that the broker listeners are enabled to use
OAuth 2.0 authentication using an authorization server.

We advise use of OAuth 2.0 over an encrypted interface through through a listener with tls: true. Plain
listeners are not recommended.

If the authorization server is using certificates signed by the trusted CA and matching the OAuth 2.0
server hostname, TLS connection works using the default settings. Otherwise, you may need to
configure the truststore with proper certificates or disable the certificate hostname validation.

When configuring the Kafka broker you have two options for the mechanism used to validate the access
token during OAuth 2.0 authentication of the newly connected Kafka client:

Configuring fast local JWT token validation

Configuring token validation using an introspection endpoint

Before you start

For more information on the configuration of OAuth 2.0 authentication for Kafka broker listeners, see:

KafkaListenerAuthenticationOAuth schema reference

OAuth 2.0 authentication mechanisms

Prerequisites

AMQ Streams and Kafka are running

An OAuth 2.0 authorization server is deployed

Procedure

1. Update the Kafka broker configuration (Kafka.spec.kafka) of your Kafka resource in an editor.

2. Configure the Kafka broker listeners configuration.
The configuration for each type of listener does not have to be the same, as they are
independent.

The examples here show the configuration options as configured for external listeners.

oc edit kafka my-cluster

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

262

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index#type-KafkaListenerAuthenticationOAuth-reference

1

2

3

4

5

6

7

8

9

10

Example 1: Configuring fast local JWT token validation

Listener type set to oauth.

URI of the token issuer used for authentication.

URI of the JWKS certificate endpoint used for local JWT validation.

The token claim (or key) that contains the actual username used to identify the user. Its
value depends on the authorization server. If necessary, a JsonPath expression like "
['user.info'].['user.id']" can be used to retrieve the username from nested JSON
attributes within a token.

(Optional) Activates the Kafka re-authentication mechanism that enforces session expiry
to the same length of time as the access token. If the specified value is less than the time
left for the access token to expire, then the client will have to re-authenticate before the
actual token expiry. By default, the session does not expire when the access token expires,
and the client does not attempt re-authentication.

(Optional) Trusted certificates for TLS connection to the authorization server.

(Optional) Disable TLS hostname verification. Default is false.

The duration the JWKS certificates are considered valid before they expire. Default is 360
seconds. If you specify a longer time, consider the risk of allowing access to revoked
certificates.

The period between refreshes of JWKS certificates. The interval must be at least 60
seconds shorter than the expiry interval. Default is 300 seconds.

The minimum pause in seconds between consecutive attempts to refresh JWKS public
keys. When an unknown signing key is encountered, the JWKS keys refresh is scheduled
outside the regular periodic schedule with at least the specified pause since the last
refresh attempt. The refreshing of keys follows the rule of exponential backoff, retrying on
unsuccessful refreshes with ever increasing pause, until it reaches jwksRefreshSeconds.

#...
- name: external
 port: 9094
 type: loadbalancer
 tls: true
 authentication:
 type: oauth 1
 validIssuerUri: https://<auth_server_address>/auth/realms/external 2
 jwksEndpointUri: https://<auth_server_address>/auth/realms/external/protocol/openid-
connect/certs 3
 userNameClaim: preferred_username 4
 maxSecondsWithoutReauthentication: 3600 5
 tlsTrustedCertificates: 6
 - secretName: oauth-server-cert
 certificate: ca.crt
 disableTlsHostnameVerification: true 7
 jwksExpirySeconds: 360 8
 jwksRefreshSeconds: 300 9
 jwksMinRefreshPauseSeconds: 1 10

CHAPTER 14. MANAGING SECURE ACCESS TO KAFKA

263

1

2

3

4

5

The default value is 1.

Example 2: Configuring token validation using an introspection endpoint

URI of the token introspection endpoint.

Client ID to identify the client.

Client Secret and client ID is used for authentication.

The token claim (or key) that contains the actual username used to identify the user. Its
value depends on the authorization server. If necessary, a JsonPath expression like "
['user.info'].['user.id']" can be used to retrieve the username from nested JSON
attributes within a token.

(Optional) Activates the Kafka re-authentication mechanism that enforces session expiry
to the same length of time as the access token. If the specified value is less than the time
left for the access token to expire, then the client will have to re-authenticate before the
actual token expiry. By default, the session does not expire when the access token expires,
and the client does not attempt re-authentication.

Depending on how you apply OAuth 2.0 authentication, and the type of authorization server,
there are additional (optional) configuration settings you can use:

- name: external
 port: 9094
 type: loadbalancer
 tls: true
 authentication:
 type: oauth
 validIssuerUri: https://<auth_server_address>/auth/realms/external
 introspectionEndpointUri:
https://<auth_server_address>/auth/realms/external/protocol/openid-connect/token/introspect
1

 clientId: kafka-broker 2
 clientSecret: 3
 secretName: my-cluster-oauth
 key: clientSecret
 userNameClaim: preferred_username 4
 maxSecondsWithoutReauthentication: 3600 5

 # ...
 authentication:
 type: oauth
 # ...
 checkIssuer: false 1
 checkAudience: true 2
 fallbackUserNameClaim: client_id 3
 fallbackUserNamePrefix: client-account- 4
 validTokenType: bearer 5
 userInfoEndpointUri: https://<auth_server_address>/auth/realms/external/protocol/openid-
connect/userinfo 6

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

264

1

2

3

4

5

6

7

8

If your authorization server does not provide an iss claim, it is not possible to perform an
issuer check. In this situation, set checkIssuer to false and do not specify a
validIssuerUri. Default is true.

If your authorization server provides an aud (audience) claim, and you want to enforce an
audience check, set checkAudience to true. Audience checks identify the intended
recipients of tokens. As a result, the Kafka broker will reject tokens that do not have its
clientId in their aud claim. Default is false.

An authorization server may not provide a single attribute to identify both regular users
and clients. When a client authenticates in its own name, the server might provide a client
ID. When a user authenticates using a username and password to obtain a refresh token or
an access token, the server might provide a username attribute in addition to a client ID.
Use this fallback option to specify the username claim (attribute) to use if a primary user ID
attribute is not available. If necessary, a JsonPath expression like "['client.info'].
['client.id']" can be used to retrieve the fallback username to retrieve the username from
nested JSON attributes within a token.

In situations where fallbackUserNameClaim is applicable, it may also be necessary to
prevent name collisions between the values of the username claim, and those of the
fallback username claim. Consider a situation where a client called producer exists, but
also a regular user called producer exists. In order to differentiate between the two, you
can use this property to add a prefix to the user ID of the client.

(Only applicable when using introspectionEndpointUri) Depending on the authorization
server you are using, the introspection endpoint may or may not return the token type
attribute, or it may contain different values. You can specify a valid token type value that
the response from the introspection endpoint has to contain.

(Only applicable when using introspectionEndpointUri) The authorization server may be
configured or implemented in such a way to not provide any identifiable information in an
Introspection Endpoint response. In order to obtain the user ID, you can configure the URI
of the userinfo endpoint as a fallback. The userNameClaim, fallbackUserNameClaim,
and fallbackUserNamePrefix settings are applied to the response of userinfo endpoint.

Set this to false to disable the OAUTHBEARER mechanism on the listener. At least one of
PLAIN or OAUTHBEARER has to be enabled. Default is true.

Set to true to enable PLAIN authentication on the listener, which is supported for clients
on all platforms.

 enableOauthBearer: false 7
 enablePlain: true 8
 tokenEndpointUri: https://<auth_server_address>/auth/realms/external/protocol/openid-
connect/token 9
 customClaimCheck: "@.custom == 'custom-value'" 10
 clientAudience: audience 11
 clientScope: scope 12
 connectTimeoutSeconds: 60 13
 readTimeoutSeconds: 60 14
 httpRetries: 2 15
 httpRetryPauseMs: 300 16
 groupsClaim: "$.groups" 17
 groupsClaimDelimiter: "," 18

CHAPTER 14. MANAGING SECURE ACCESS TO KAFKA

265

9

10

11

12

13

14

15

16

17

18

Additional configuration for the PLAIN mechanism. If specified, clients can authenticate
over PLAIN by passing an access token as the password using an $accessToken: prefix.

Additional custom rules can be imposed on the JWT access token during validation by
setting this to a JsonPath filter query. If the access token does not contain the necessary
data, it is rejected. When using the introspectionEndpointUri, the custom check is applied
to the introspection endpoint response JSON.

An audience parameter passed to the token endpoint. An audience is used when obtaining
an access token for inter-broker authentication. It is also used in the name of a client for
OAuth 2.0 over PLAIN client authentication using a clientId and secret. This only affects
the ability to obtain the token, and the content of the token, depending on the
authorization server. It does not affect token validation rules by the listener.

A scope parameter passed to the token endpoint. A scope is used when obtaining an
access token for inter-broker authentication. It is also used in the name of a client for
OAuth 2.0 over PLAIN client authentication using a clientId and secret. This only affects
the ability to obtain the token, and the content of the token, depending on the
authorization server. It does not affect token validation rules by the listener.

The connect timeout in seconds when connecting to the authorization server. The default
value is 60.

The read timeout in seconds when connecting to the authorization server. The default
value is 60.

The maximum number of times to retry a failed HTTP request to the authorization server.
The default value is 0, meaning that no retries are performed. To use this option
effectively, consider reducing the timeout times for the connectTimeoutSeconds and
readTimeoutSeconds options. However, note that retries may prevent the current worker
thread from being available to other requests, and if too many requests stall, it could make
the Kafka broker unresponsive.

The time to wait before attempting another retry of a failed HTTP request to the
authorization server. By default, this time is set to zero, meaning that no pause is applied.
This is because many issues that cause failed requests are per-request network glitches or
proxy issues that can be resolved quickly. However, if your authorization server is under
stress or experiencing high traffic, you may want to set this option to a value of 100 ms or
more to reduce the load on the server and increase the likelihood of successful retries.

A JsonPath query that is used to extract groups information from either the JWT token or
the introspection endpoint response. This option is not set by default. By configuring this
option, a custom authorizer can make authorization decisions based on user groups.

A delimiter used to parse groups information when it is returned as a single delimited string.
The default value is ',' (comma).

3. Save and exit the editor, then wait for rolling updates to complete.

4. Check the update in the logs or by watching the pod state transitions:

The rolling update configures the brokers to use OAuth 2.0 authentication.

oc logs -f ${POD_NAME} -c ${CONTAINER_NAME}
oc get pod -w

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

266

What to do next

Configure your Kafka clients to use OAuth 2.0

14.4.6.3. Configuring Kafka Java clients to use OAuth 2.0

Configure Kafka producer and consumer APIs to use OAuth 2.0 for interaction with Kafka brokers. Add a
callback plugin to your client pom.xml file, then configure your client for OAuth 2.0.

Specify the following in your client configuration:

A SASL (Simple Authentication and Security Layer) security protocol:

SASL_SSL for authentication over TLS encrypted connections

SASL_PLAINTEXT for authentication over unencrypted connections
Use SASL_SSL for production and SASL_PLAINTEXT for local development only. When
using SASL_SSL, additional ssl.truststore configuration is needed. The truststore
configuration is required for secure connection (https://) to the OAuth 2.0 authorization
server. To verify the OAuth 2.0 authorization server, add the CA certificate for the
authorization server to the truststore in your client configuration. You can configure a
truststore in PEM or PKCS #12 format.

A Kafka SASL mechanism:

OAUTHBEARER for credentials exchange using a bearer token

PLAIN to pass client credentials (clientId + secret) or an access token

A JAAS (Java Authentication and Authorization Service) module that implements the SASL
mechanism:

org.apache.kafka.common.security.oauthbearer.OAuthBearerLoginModule
implements the OAUTHBEARER mechanism

org.apache.kafka.common.security.plain.PlainLoginModule implements the PLAIN
mechanism

SASL authentication properties, which support the following authentication methods:

OAuth 2.0 client credentials

OAuth 2.0 password grant (deprecated)

Access token

Refresh token

Add the SASL authentication properties as JAAS configuration (sasl.jaas.config). How you configure
the authentication properties depends on the authentication method you are using to access the OAuth
2.0 authorization server. In this procedure, the properties are specified in a properties file, then loaded
into the client configuration.

NOTE

CHAPTER 14. MANAGING SECURE ACCESS TO KAFKA

267

1

NOTE

You can also specify authentication properties as environment variables, or as Java
system properties. For Java system properties, you can set them using setProperty and
pass them on the command line using the -D option.

Prerequisites

AMQ Streams and Kafka are running

An OAuth 2.0 authorization server is deployed and configured for OAuth access to Kafka
brokers

Kafka brokers are configured for OAuth 2.0

Procedure

1. Add the client library with OAuth 2.0 support to the pom.xml file for the Kafka client:

2. Configure the client properties by specifying the following configuration in a properties file:

The security protocol

The SASL mechanism

The JAAS module and authentication properties according to the method being used
For example, we can add the following to a client.properties file:

Client credentials mechanism properties

SASL_SSL security protocol for TLS-encrypted connections. Use SASL_PLAINTEXT
over unencrypted connections for local development only.

<dependency>
 <groupId>io.strimzi</groupId>
 <artifactId>kafka-oauth-client</artifactId>
 <version>0.13.0.redhat-00008</version>
</dependency>

security.protocol=SASL_SSL 1
sasl.mechanism=OAUTHBEARER 2
ssl.truststore.location=/tmp/truststore.p12 3
ssl.truststore.password=$STOREPASS
ssl.truststore.type=PKCS12
sasl.jaas.config=org.apache.kafka.common.security.oauthbearer.OAuthBearerLoginModule
required \
 oauth.token.endpoint.uri="<token_endpoint_url>" \ 4
 oauth.client.id="<client_id>" \ 5
 oauth.client.secret="<client_secret>" \ 6
 oauth.ssl.truststore.location="/tmp/oauth-truststore.p12" \ 7
 oauth.ssl.truststore.password="$STOREPASS" \ 8
 oauth.ssl.truststore.type="PKCS12" \ 9
 oauth.scope="<scope>" \ 10
 oauth.audience="<audience>" ; 11

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

268

2

3

4

5

6

7

8

9

10

11

1

2

3

4

The SASL mechanism specified as OAUTHBEARER or PLAIN.

The truststore configuration for secure access to the Kafka cluster.

URI of the authorization server token endpoint.

Client ID, which is the name used when creating the client in the authorization server.

Client secret created when creating the client in the authorization server.

The location contains the public key certificate (truststore.p12) for the authorization
server.

The password for accessing the truststore.

The truststore type.

(Optional) The scope for requesting the token from the token endpoint. An
authorization server may require a client to specify the scope.

(Optional) The audience for requesting the token from the token endpoint. An
authorization server may require a client to specify the audience.

Password grants mechanism properties

Client ID, which is the name used when creating the client in the authorization server.

(Optional) Client secret created when creating the client in the authorization server.

Username for password grant authentication. OAuth password grant configuration
(username and password) uses the OAuth 2.0 password grant method. To use
password grants, create a user account for a client on your authorization server with
limited permissions. The account should act like a service account. Use in environments
where user accounts are required for authentication, but consider using a refresh token
first.

Password for password grant authentication.

security.protocol=SASL_SSL
sasl.mechanism=OAUTHBEARER
ssl.truststore.location=/tmp/truststore.p12
ssl.truststore.password=$STOREPASS
ssl.truststore.type=PKCS12
sasl.jaas.config=org.apache.kafka.common.security.oauthbearer.OAuthBearerLoginModule
required \
 oauth.token.endpoint.uri="<token_endpoint_url>" \
 oauth.client.id="<client_id>" \ 1
 oauth.client.secret="<client_secret>" \ 2
 oauth.password.grant.username="<username>" \ 3
 oauth.password.grant.password="<password>" \ 4
 oauth.ssl.truststore.location="/tmp/oauth-truststore.p12" \
 oauth.ssl.truststore.password="$STOREPASS" \
 oauth.ssl.truststore.type="PKCS12" \
 oauth.scope="<scope>" \
 oauth.audience="<audience>" ;

CHAPTER 14. MANAGING SECURE ACCESS TO KAFKA

269

1

1

2

3

NOTE

SASL PLAIN does not support passing a username and password
(password grants) using the OAuth 2.0 password grant method.

Access token properties

Long-lived access token for Kafka clients.

Refresh token properties

Client ID, which is the name used when creating the client in the authorization server.

(Optional) Client secret created when creating the client in the authorization server.

Long-lived refresh token for Kafka clients.

3. Input the client properties for OAUTH 2.0 authentication into the Java client code.

Example showing input of client properties

security.protocol=SASL_SSL
sasl.mechanism=OAUTHBEARER
ssl.truststore.location=/tmp/truststore.p12
ssl.truststore.password=$STOREPASS
ssl.truststore.type=PKCS12
sasl.jaas.config=org.apache.kafka.common.security.oauthbearer.OAuthBearerLoginModule
required \
 oauth.token.endpoint.uri="<token_endpoint_url>" \
 oauth.access.token="<access_token>" ; 1
 oauth.ssl.truststore.location="/tmp/oauth-truststore.p12" \
 oauth.ssl.truststore.password="$STOREPASS" \
 oauth.ssl.truststore.type="PKCS12" \

security.protocol=SASL_SSL
sasl.mechanism=OAUTHBEARER
ssl.truststore.location=/tmp/truststore.p12
ssl.truststore.password=$STOREPASS
ssl.truststore.type=PKCS12
sasl.jaas.config=org.apache.kafka.common.security.oauthbearer.OAuthBearerLoginModule
required \
 oauth.token.endpoint.uri="<token_endpoint_url>" \
 oauth.client.id="<client_id>" \ 1
 oauth.client.secret="<client_secret>" \ 2
 oauth.refresh.token="<refresh_token>" ; 3
 oauth.ssl.truststore.location="/tmp/oauth-truststore.p12" \
 oauth.ssl.truststore.password="$STOREPASS" \
 oauth.ssl.truststore.type="PKCS12" \

Properties props = new Properties();
try (FileReader reader = new FileReader("client.properties", StandardCharsets.UTF_8)) {

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

270

1

4. Verify that the Kafka client can access the Kafka brokers.

14.4.6.4. Configuring OAuth 2.0 for Kafka components

This procedure describes how to configure Kafka components to use OAuth 2.0 authentication using an
authorization server.

You can configure authentication for:

Kafka Connect

Kafka MirrorMaker

Kafka Bridge

In this scenario, the Kafka component and the authorization server are running in the same cluster.

Before you start

For more information on the configuration of OAuth 2.0 authentication for Kafka components, see the
KafkaClientAuthenticationOAuth schema reference. The schema reference includes examples of
configuration options.

Prerequisites

AMQ Streams and Kafka are running

An OAuth 2.0 authorization server is deployed and configured for OAuth access to Kafka
brokers

Kafka brokers are configured for OAuth 2.0

Procedure

1. Create a client secret and mount it to the component as an environment variable.
For example, here we are creating a client Secret for the Kafka Bridge:

The clientSecret key must be in base64 format.

2. Create or edit the resource for the Kafka component so that OAuth 2.0 authentication is
configured for the authentication property.
For OAuth 2.0 authentication, you can use the following options:

Client ID and secret

 props.load(reader);
}

apiVersion: kafka.strimzi.io/v1beta2
kind: Secret
metadata:
 name: my-bridge-oauth
type: Opaque
data:
 clientSecret: MGQ1OTRmMzYtZTllZS00MDY2LWI5OGEtMTM5MzM2NjdlZjQw 1

CHAPTER 14. MANAGING SECURE ACCESS TO KAFKA

271

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index#type-KafkaClientAuthenticationOAuth-reference

1

2

3

Client ID and refresh token

Access token

Username and password

TLS

For example, here OAuth 2.0 is assigned to the Kafka Bridge client using a client ID and secret,
and TLS:

Authentication type set to oauth.

URI of the token endpoint for authentication.

Trusted certificates for TLS connection to the authorization server.

Depending on how you apply OAuth 2.0 authentication, and the type of authorization server,
there are additional configuration options you can use:

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaBridge
metadata:
 name: my-bridge
spec:
 # ...
 authentication:
 type: oauth 1
 tokenEndpointUri: https://<auth-server-address>/auth/realms/master/protocol/openid-
connect/token 2
 clientId: kafka-bridge
 clientSecret:
 secretName: my-bridge-oauth
 key: clientSecret
 tlsTrustedCertificates: 3
 - secretName: oauth-server-cert
 certificate: tls.crt

...
spec:
 # ...
 authentication:
 # ...
 disableTlsHostnameVerification: true 1
 checkAccessTokenType: false 2
 accessTokenIsJwt: false 3
 scope: any 4
 audience: kafka 5
 connectTimeoutSeconds: 60 6
 readTimeoutSeconds: 60 7
 httpRetries: 2 8
 httpRetryPauseMs: 300 9

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

272

1

2

3

4

5

6

7

8

9

(Optional) Disable TLS hostname verification. Default is false.

If the authorization server does not return a typ (type) claim inside the JWT token, you can
apply checkAccessTokenType: false to skip the token type check. Default is true.

If you are using opaque tokens, you can apply accessTokenIsJwt: false so that access
tokens are not treated as JWT tokens.

(Optional) The scope for requesting the token from the token endpoint. An authorization
server may require a client to specify the scope. In this case it is any.

(Optional) The audience for requesting the token from the token endpoint. An
authorization server may require a client to specify the audience. In this case it is kafka.

(Optional) The connect timeout in seconds when connecting to the authorization server.
The default value is 60.

(Optional) The read timeout in seconds when connecting to the authorization server. The
default value is 60.

(Optional) The maximum number of times to retry a failed HTTP request to the
authorization server. The default value is 0, meaning that no retries are performed. To use
this option effectively, consider reducing the timeout times for the
connectTimeoutSeconds and readTimeoutSeconds options. However, note that retries
may prevent the current worker thread from being available to other requests, and if too
many requests stall, it could make the Kafka broker unresponsive.

(Optional) The time to wait before attempting another retry of a failed HTTP request to
the authorization server. By default, this time is set to zero, meaning that no pause is
applied. This is because many issues that cause failed requests are per-request network
glitches or proxy issues that can be resolved quickly. However, if your authorization server
is under stress or experiencing high traffic, you may want to set this option to a value of 100
ms or more to reduce the load on the server and increase the likelihood of successful
retries.

3. Apply the changes to the deployment of your Kafka resource.

4. Check the update in the logs or by watching the pod state transitions:

The rolling updates configure the component for interaction with Kafka brokers using OAuth 2.0
authentication.

14.5. USING OAUTH 2.0 TOKEN-BASED AUTHORIZATION

If you are using OAuth 2.0 with Red Hat Single Sign-On for token-based authentication, you can also
use Red Hat Single Sign-On to configure authorization rules to constrain client access to Kafka brokers.
Authentication establishes the identity of a user. Authorization decides the level of access for that user.

AMQ Streams supports the use of OAuth 2.0 token-based authorization through Red Hat Single Sign-
On Authorization Services, which allows you to manage security policies and permissions centrally.

oc apply -f your-file

oc logs -f ${POD_NAME} -c ${CONTAINER_NAME}
oc get pod -w

CHAPTER 14. MANAGING SECURE ACCESS TO KAFKA

273

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on

Security policies and permissions defined in Red Hat Single Sign-On are used to grant access to
resources on Kafka brokers. Users and clients are matched against policies that permit access to
perform specific actions on Kafka brokers.

Kafka allows all users full access to brokers by default, and also provides the AclAuthorizer plugin to
configure authorization based on Access Control Lists (ACLs).

ZooKeeper stores ACL rules that grant or deny access to resources based on username. However,
OAuth 2.0 token-based authorization with Red Hat Single Sign-On offers far greater flexibility on how
you wish to implement access control to Kafka brokers. In addition, you can configure your Kafka brokers
to use OAuth 2.0 authorization and ACLs.

Additional resources

Using OAuth 2.0 token-based authentication

Kafka Authorization

Red Hat Single Sign-On documentation

14.5.1. OAuth 2.0 authorization mechanism

OAuth 2.0 authorization in AMQ Streams uses Red Hat Single Sign-On server Authorization Services
REST endpoints to extend token-based authentication with Red Hat Single Sign-On by applying
defined security policies on a particular user, and providing a list of permissions granted on different
resources for that user. Policies use roles and groups to match permissions to users. OAuth 2.0
authorization enforces permissions locally based on the received list of grants for the user from Red Hat
Single Sign-On Authorization Services.

14.5.1.1. Kafka broker custom authorizer

A Red Hat Single Sign-On authorizer (KeycloakAuthorizer) is provided with AMQ Streams. To be able
to use the Red Hat Single Sign-On REST endpoints for Authorization Services provided by Red Hat
Single Sign-On, you configure a custom authorizer on the Kafka broker.

The authorizer fetches a list of granted permissions from the authorization server as needed, and
enforces authorization locally on the Kafka Broker, making rapid authorization decisions for each client
request.

14.5.2. Configuring OAuth 2.0 authorization support

This procedure describes how to configure Kafka brokers to use OAuth 2.0 authorization using Red Hat
Single Sign-On Authorization Services.

Before you begin

Consider the access you require or want to limit for certain users. You can use a combination of Red Hat
Single Sign-On groups, roles, clients, and users to configure access in Red Hat Single Sign-On.

Typically, groups are used to match users based on organizational departments or geographical
locations. And roles are used to match users based on their function.

With Red Hat Single Sign-On, you can store users and groups in LDAP, whereas clients and roles cannot
be stored this way. Storage and access to user data may be a factor in how you choose to configure
authorization policies.

NOTE

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

274

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on

NOTE

Super users always have unconstrained access to a Kafka broker regardless of the
authorization implemented on the Kafka broker.

Prerequisites

AMQ Streams must be configured to use OAuth 2.0 with Red Hat Single Sign-On for token-
based authentication. You use the same Red Hat Single Sign-On server endpoint when you set
up authorization.

OAuth 2.0 authentication must be configured with the maxSecondsWithoutReauthentication
option to enable re-authentication.

Procedure

1. Access the Red Hat Single Sign-On Admin Console or use the Red Hat Single Sign-On Admin
CLI to enable Authorization Services for the Kafka broker client you created when setting up
OAuth 2.0 authentication.

2. Use Authorization Services to define resources, authorization scopes, policies, and permissions
for the client.

3. Bind the permissions to users and clients by assigning them roles and groups.

4. Configure the Kafka brokers to use Red Hat Single Sign-On authorization by updating the Kafka
broker configuration (Kafka.spec.kafka) of your Kafka resource in an editor.

5. Configure the Kafka broker kafka configuration to use keycloak authorization, and to be able to
access the authorization server and Authorization Services.
For example:

oc edit kafka my-cluster

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 name: my-cluster
spec:
 kafka:
 # ...
 authorization:
 type: keycloak 1
 tokenEndpointUri: <https://<auth-server-address>/auth/realms/external/protocol/openid-
connect/token> 2
 clientId: kafka 3
 delegateToKafkaAcls: false 4
 disableTlsHostnameVerification: false 5
 superUsers: 6
 - CN=fred
 - sam
 - CN=edward
 tlsTrustedCertificates: 7
 - secretName: oauth-server-cert

CHAPTER 14. MANAGING SECURE ACCESS TO KAFKA

275

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index#property-simple-authorization-superusers-reference

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Type keycloak enables Red Hat Single Sign-On authorization.

URI of the Red Hat Single Sign-On token endpoint. For production, always use https://
urls. When you configure token-based oauth authentication, you specify a
jwksEndpointUri as the URI for local JWT validation. The hostname for the
tokenEndpointUri URI must be the same.

The client ID of the OAuth 2.0 client definition in Red Hat Single Sign-On that has
Authorization Services enabled. Typically, kafka is used as the ID.

(Optional) Delegate authorization to Kafka AclAuthorizer if access is denied by Red Hat
Single Sign-On Authorization Services policies. Default is false.

(Optional) Disable TLS hostname verification. Default is false.

(Optional) Designated super users.

(Optional) Trusted certificates for TLS connection to the authorization server.

(Optional) The time between two consecutive grants refresh runs. That is the maximum
time for active sessions to detect any permissions changes for the user on Red Hat Single
Sign-On. The default value is 60.

(Optional) The number of threads to use to refresh (in parallel) the grants for the active
sessions. The default value is 5.

(Optional) The time, in seconds, after which an idle grant in the cache can be evicted. The
default value is 300.

(Optional) The time, in seconds, between consecutive runs of a job that cleans stale grants
from the cache. The default value is 300.

(Optional) Controls whether the latest grants are fetched for a new session. When enabled,
grants are retrieved from Red Hat Single Sign-On and cached for the user. The default
value is false.

(Optional) The connect timeout in seconds when connecting to the Red Hat Single Sign-
On token endpoint. The default value is 60.

(Optional) The read timeout in seconds when connecting to the Red Hat Single Sign-On
token endpoint. The default value is 60.

(Optional) The maximum number of times to retry (without pausing) a failed HTTP request
to the authorization server. The default value is 0, meaning that no retries are performed.
To use this option effectively, consider reducing the timeout times for the

 certificate: ca.crt
 grantsRefreshPeriodSeconds: 60 8
 grantsRefreshPoolSize: 5 9
 grantsMaxIdleSeconds: 300 10
 grantsGcPeriodSeconds: 300 11
 grantsAlwaysLatest: false 12
 connectTimeoutSeconds: 60 13
 readTimeoutSeconds: 60 14
 httpRetries: 2 15
 enableMetrics: false 16
 #...

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

276

16

To use this option effectively, consider reducing the timeout times for the
connectTimeoutSeconds and readTimeoutSeconds options. However, note that retries
may prevent the current worker thread from being available to other requests, and if too
many requests stall, it could make the Kafka broker unresponsive.

(Optional) Enable or disable OAuth metrics. The default value is false.

6. Save and exit the editor, then wait for rolling updates to complete.

7. Check the update in the logs or by watching the pod state transitions:

The rolling update configures the brokers to use OAuth 2.0 authorization.

8. Verify the configured permissions by accessing Kafka brokers as clients or users with specific
roles, making sure they have the necessary access, or do not have the access they are not
supposed to have.

14.5.3. Managing policies and permissions in Red Hat Single Sign-On Authorization
Services

This section describes the authorization models used by Red Hat Single Sign-On Authorization Services
and Kafka, and defines the important concepts in each model.

To grant permissions to access Kafka, you can map Red Hat Single Sign-On Authorization Services
objects to Kafka resources by creating an OAuth client specification in Red Hat Single Sign-On. Kafka
permissions are granted to user accounts or service accounts using Red Hat Single Sign-On
Authorization Services rules.

Examples are shown of the different user permissions required for common Kafka operations, such as
creating and listing topics.

14.5.3.1. Kafka and Red Hat Single Sign-On authorization models overview

Kafka and Red Hat Single Sign-On Authorization Services use different authorization models.

Kafka authorization model
Kafka’s authorization model uses resource types . When a Kafka client performs an action on a broker, the
broker uses the configured KeycloakAuthorizer to check the client’s permissions, based on the action
and resource type.

Kafka uses five resource types to control access: Topic, Group, Cluster, TransactionalId, and
DelegationToken. Each resource type has a set of available permissions.

Topic

Create

Write

Read

Delete

oc logs -f ${POD_NAME} -c kafka
oc get pod -w

CHAPTER 14. MANAGING SECURE ACCESS TO KAFKA

277

Describe

DescribeConfigs

Alter

AlterConfigs

Group

Read

Describe

Delete

Cluster

Create

Describe

Alter

DescribeConfigs

AlterConfigs

IdempotentWrite

ClusterAction

TransactionalId

Describe

Write

DelegationToken

Describe

Red Hat Single Sign-On Authorization Services model
The Red Hat Single Sign-On Authorization Services model has four concepts for defining and granting
permissions: resources, authorization scopes, policies, and permissions.

Resources

A resource is a set of resource definitions that are used to match resources with permitted actions. A
resource might be an individual topic, for example, or all topics with names starting with the same
prefix. A resource definition is associated with a set of available authorization scopes, which
represent a set of all actions available on the resource. Often, only a subset of these actions is
actually permitted.

Authorization scopes

An authorization scope is a set of all the available actions on a specific resource definition. When you
define a new resource, you add scopes from the set of all scopes.

Policies

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

278

A policy is an authorization rule that uses criteria to match against a list of accounts. Policies can
match:

Service accounts based on client ID or roles

User accounts based on username, groups, or roles.

Permissions

A permission grants a subset of authorization scopes on a specific resource definition to a set of
users.

Additional resources

Kafka authorization model

14.5.3.2. Map Red Hat Single Sign-On Authorization Services to the Kafka authorization
model

The Kafka authorization model is used as a basis for defining the Red Hat Single Sign-On roles and
resources that will control access to Kafka.

To grant Kafka permissions to user accounts or service accounts, you first create an OAuth client
specification in Red Hat Single Sign-On for the Kafka broker. You then specify Red Hat Single Sign-On
Authorization Services rules on the client. Typically, the client id of the OAuth client that represents the
broker is kafka. The example configuration files provided with AMQ Streams use kafka as the OAuth
client id.

NOTE

If you have multiple Kafka clusters, you can use a single OAuth client (kafka) for all of
them. This gives you a single, unified space in which to define and manage authorization
rules. However, you can also use different OAuth client ids (for example, my-cluster-
kafka or cluster-dev-kafka) and define authorization rules for each cluster within each
client configuration.

The kafka client definition must have the Authorization Enabled option enabled in the Red Hat Single
Sign-On Admin Console.

All permissions exist within the scope of the kafka client. If you have different Kafka clusters configured
with different OAuth client IDs, they each need a separate set of permissions even though they’re part
of the same Red Hat Single Sign-On realm.

When the Kafka client uses OAUTHBEARER authentication, the Red Hat Single Sign-On authorizer
(KeycloakAuthorizer) uses the access token of the current session to retrieve a list of grants from the
Red Hat Single Sign-On server. To retrieve the grants, the authorizer evaluates the Red Hat Single
Sign-On Authorization Services policies and permissions.

Authorization scopes for Kafka permissions

An initial Red Hat Single Sign-On configuration usually involves uploading authorization scopes to create
a list of all possible actions that can be performed on each Kafka resource type. This step is performed
once only, before defining any permissions. You can add authorization scopes manually instead of
uploading them.

Authorization scopes must contain all the possible Kafka permissions regardless of the resource type:

CHAPTER 14. MANAGING SECURE ACCESS TO KAFKA

279

https://kafka.apache.org/documentation/#security_authz_primitives

Create

Write

Read

Delete

Describe

Alter

DescribeConfig

AlterConfig

ClusterAction

IdempotentWrite

NOTE

If you’re certain you won’t need a permission (for example, IdempotentWrite), you can
omit it from the list of authorization scopes. However, that permission won’t be available
to target on Kafka resources.

Resource patterns for permissions checks

Resource patterns are used for pattern matching against the targeted resources when performing
permission checks. The general pattern format is RESOURCE-TYPE:PATTERN-NAME.

The resource types mirror the Kafka authorization model. The pattern allows for two matching options:

Exact matching (when the pattern does not end with *)

Prefix matching (when the pattern ends with *)

Example patterns for resources

Topic:my-topic
Topic:orders-*
Group:orders-*
Cluster:*

Additionally, the general pattern format can be prefixed by kafka-cluster:CLUSTER-NAME followed by
a comma, where CLUSTER-NAME refers to the metadata.name in the Kafka custom resource.

Example patterns for resources with cluster prefix

kafka-cluster:my-cluster,Topic:*
kafka-cluster:*,Group:b_*

When the kafka-cluster prefix is missing, it is assumed to be kafka-cluster:*.

When defining a resource, you can associate it with a list of possible authorization scopes which are

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

280

When defining a resource, you can associate it with a list of possible authorization scopes which are
relevant to the resource. Set whatever actions make sense for the targeted resource type.

Though you may add any authorization scope to any resource, only the scopes supported by the
resource type are considered for access control.

Policies for applying access permission

Policies are used to target permissions to one or more user accounts or service accounts. Targeting can
refer to:

Specific user or service accounts

Realm roles or client roles

User groups

JavaScript rules to match a client IP address

A policy is given a unique name and can be reused to target multiple permissions to multiple resources.

Permissions to grant access

Use fine-grained permissions to pull together the policies, resources, and authorization scopes that
grant access to users.

The name of each permission should clearly define which permissions it grants to which users. For
example, Dev Team B can read from topics starting with x.

Additional resources

For more information about how to configure permissions through Red Hat Single Sign-On
Authorization Services, see Section 14.5.4, “Trying Red Hat Single Sign-On Authorization
Services”.

14.5.3.3. Example permissions required for Kafka operations

The following examples demonstrate the user permissions required for performing common operations
on Kafka.

Create a topic

To create a topic, the Create permission is required for the specific topic, or for Cluster:kafka-cluster.

List topics

If a user has the Describe permission on a specified topic, the topic is listed.

Display topic details

To display a topic’s details, Describe and DescribeConfigs permissions are required on the topic.

bin/kafka-topics.sh --create --topic my-topic \
 --bootstrap-server my-cluster-kafka-bootstrap:9092 --command-config=/tmp/config.properties

bin/kafka-topics.sh --list \
 --bootstrap-server my-cluster-kafka-bootstrap:9092 --command-config=/tmp/config.properties

CHAPTER 14. MANAGING SECURE ACCESS TO KAFKA

281

Produce messages to a topic

To produce messages to a topic, Describe and Write permissions are required on the topic.

If the topic hasn’t been created yet, and topic auto-creation is enabled, the permissions to create a
topic are required.

Consume messages from a topic

To consume messages from a topic, Describe and Read permissions are required on the topic.
Consuming from the topic normally relies on storing the consumer offsets in a consumer group, which
requires additional Describe and Read permissions on the consumer group.

Two resources are needed for matching. For example:

Topic:my-topic
Group:my-group-*

Produce messages to a topic using an idempotent producer

As well as the permissions for producing to a topic, an additional IdempotentWrite permission is
required on the Cluster:kafka-cluster resource.

Two resources are needed for matching. For example:

Topic:my-topic
Cluster:kafka-cluster

List consumer groups

When listing consumer groups, only the groups on which the user has the Describe permissions are
returned. Alternatively, if the user has the Describe permission on the Cluster:kafka-cluster, all the
consumer groups are returned.

Display consumer group details

To display a consumer group’s details, the Describe permission is required on the group and the topics
associated with the group.

bin/kafka-topics.sh --describe --topic my-topic \
 --bootstrap-server my-cluster-kafka-bootstrap:9092 --command-config=/tmp/config.properties

bin/kafka-console-producer.sh --topic my-topic \
 --bootstrap-server my-cluster-kafka-bootstrap:9092 --producer.config=/tmp/config.properties

bin/kafka-console-consumer.sh --topic my-topic --group my-group-1 --from-beginning \
 --bootstrap-server my-cluster-kafka-bootstrap:9092 --consumer.config /tmp/config.properties

bin/kafka-console-producer.sh --topic my-topic \
 --bootstrap-server my-cluster-kafka-bootstrap:9092 --producer.config=/tmp/config.properties --
producer-property enable.idempotence=true --request-required-acks -1

bin/kafka-consumer-groups.sh --list \
 --bootstrap-server my-cluster-kafka-bootstrap:9092 --command-config=/tmp/config.properties

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

282

Change topic configuration

To change a topic’s configuration, the Describe and Alter permissions are required on the topic.

Display Kafka broker configuration

In order to use kafka-configs.sh to get a broker’s configuration, the DescribeConfigs permission is
required on the Cluster:kafka-cluster.

Change Kafka broker configuration

To change a Kafka broker’s configuration, DescribeConfigs and AlterConfigs permissions are required
on Cluster:kafka-cluster.

Delete a topic

To delete a topic, the Describe and Delete permissions are required on the topic.

Select a lead partition

To run leader selection for topic partitions, the Alter permission is required on the Cluster:kafka-
cluster.

Reassign partitions

To generate a partition reassignment file, Describe permissions are required on the topics involved.

To execute the partition reassignment, Describe and Alter permissions are required on Cluster:kafka-
cluster. Also, Describe permissions are required on the topics involved.

bin/kafka-consumer-groups.sh --describe --group my-group-1 \
 --bootstrap-server my-cluster-kafka-bootstrap:9092 --command-config=/tmp/config.properties

bin/kafka-topics.sh --alter --topic my-topic --partitions 2 \
 --bootstrap-server my-cluster-kafka-bootstrap:9092 --command-config=/tmp/config.properties

bin/kafka-configs.sh --entity-type brokers --entity-name 0 --describe --all \
 --bootstrap-server my-cluster-kafka-bootstrap:9092 --command-config=/tmp/config.properties

bin/kafka-configs --entity-type brokers --entity-name 0 --alter --add-config log.cleaner.threads=2 \
 --bootstrap-server my-cluster-kafka-bootstrap:9092 --command-config=/tmp/config.properties

bin/kafka-topics.sh --delete --topic my-topic \
 --bootstrap-server my-cluster-kafka-bootstrap:9092 --command-config=/tmp/config.properties

bin/kafka-leader-election.sh --topic my-topic --partition 0 --election-type PREFERRED /
 --bootstrap-server my-cluster-kafka-bootstrap:9092 --admin.config /tmp/config.properties

bin/kafka-reassign-partitions.sh --topics-to-move-json-file /tmp/topics-to-move.json --broker-list "0,1" -
-generate \
 --bootstrap-server my-cluster-kafka-bootstrap:9092 --command-config /tmp/config.properties >
/tmp/partition-reassignment.json

CHAPTER 14. MANAGING SECURE ACCESS TO KAFKA

283

To verify partition reassignment, Describe, and AlterConfigs permissions are required on
Cluster:kafka-cluster, and on each of the topics involved.

14.5.4. Trying Red Hat Single Sign-On Authorization Services

This example explains how to use Red Hat Single Sign-On Authorization Services with keycloak
authorization. Use Red Hat Single Sign-On Authorization Services to enforce access restrictions on
Kafka clients. Red Hat Single Sign-On Authorization Services use authorization scopes, policies and
permissions to define and apply access control to resources.

Red Hat Single Sign-On Authorization Services REST endpoints provide a list of granted permissions on
resources for authenticated users. The list of grants (permissions) is fetched from the Red Hat Single
Sign-On server as the first action after an authenticated session is established by the Kafka client. The
list is refreshed in the background so that changes to the grants are detected. Grants are cached and
enforced locally on the Kafka broker for each user session to provide fast authorization decisions.

AMQ Streams provides example configuration files . These include the following example files for
setting up Red Hat Single Sign-On:

kafka-ephemeral-oauth-single-keycloak-authz.yaml

An example Kafka custom resource configured for OAuth 2.0 token-based authorization using Red
Hat Single Sign-On. You can use the custom resource to deploy a Kafka cluster that uses keycloak
authorization and token-based oauth authentication.

kafka-authz-realm.json

An example Red Hat Single Sign-On realm configured with sample groups, users, roles and clients.
You can import the realm into a Red Hat Single Sign-On instance to set up fine-grained permissions
to access Kafka.

If you want to try the example with Red Hat Single Sign-On, use these files to perform the tasks outlined
in this section in the order shown.

1. Accessing the Red Hat Single Sign-On Admin Console

2. Deploying a Kafka cluster with Red Hat Single Sign-On authorization

3. Preparing TLS connectivity for a CLI Kafka client session

4. Checking authorized access to Kafka using a CLI Kafka client session

Authentication

When you configure token-based oauth authentication, you specify a jwksEndpointUri as the URI for
local JWT validation. When you configure keycloak authorization, you specify a tokenEndpointUri as
the URI of the Red Hat Single Sign-On token endpoint. The hostname for both URIs must be the same.

Targeted permissions with group or role policies

In Red Hat Single Sign-On, confidential clients with service accounts enabled can authenticate to the
server in their own name using a client ID and a secret. This is convenient for microservices that typically

bin/kafka-reassign-partitions.sh --reassignment-json-file /tmp/partition-reassignment.json --execute \
 --bootstrap-server my-cluster-kafka-bootstrap:9092 --command-config /tmp/config.properties

bin/kafka-reassign-partitions.sh --reassignment-json-file /tmp/partition-reassignment.json --verify \
 --bootstrap-server my-cluster-kafka-bootstrap:9092 --command-config /tmp/config.properties

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

284

act in their own name, and not as agents of a particular user (like a web site). Service accounts can have
roles assigned like regular users. They cannot, however, have groups assigned. As a consequence, if you
want to target permissions to microservices using service accounts, you cannot use group policies, and
should instead use role policies. Conversely, if you want to limit certain permissions only to regular user
accounts where authentication with a username and password is required, you can achieve that as a side
effect of using the group policies rather than the role policies. This is what is used in this example for
permissions that start with ClusterManager. Performing cluster management is usually done
interactively using CLI tools. It makes sense to require the user to log in before using the resulting
access token to authenticate to the Kafka broker. In this case, the access token represents the specific
user, rather than the client application.

14.5.4.1. Accessing the Red Hat Single Sign-On Admin Console

Set up Red Hat Single Sign-On, then connect to its Admin Console and add the preconfigured realm.
Use the example kafka-authz-realm.json file to import the realm. You can check the authorization rules
defined for the realm in the Admin Console. The rules grant access to the resources on the Kafka cluster
configured to use the example Red Hat Single Sign-On realm.

Prerequisites

A running OpenShift cluster.

The AMQ Streams examples/security/keycloak-authorization/kafka-authz-realm.json file
that contains the preconfigured realm.

Procedure

1. Install the Red Hat Single Sign-On server using the Red Hat Single Sign-On Operator as
described in Server Installation and Configuration in the Red Hat Single Sign-On
documentation.

2. Wait until the Red Hat Single Sign-On instance is running.

3. Get the external hostname to be able to access the Admin Console.

In this example, we assume the Red Hat Single Sign-On server is running in the sso namespace.

4. Get the password for the admin user.

The password is stored as a secret, so get the configuration YAML file for the Red Hat Single
Sign-On instance to identify the name of the secret (secretKeyRef.name).

5. Use the name of the secret to obtain the clear text password.

In this example, we assume the name of the secret is credential-keycloak.

NS=sso
oc get ingress keycloak -n $NS

oc get -n $NS pod keycloak-0 -o yaml | less

SECRET_NAME=credential-keycloak
oc get -n $NS secret $SECRET_NAME -o yaml | grep PASSWORD | awk '{print $2}' |
base64 -D

CHAPTER 14. MANAGING SECURE ACCESS TO KAFKA

285

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on

6. Log in to the Admin Console with the username admin and the password you obtained.
Use https://HOSTNAME to access the Kubernetes Ingress.

You can now upload the example realm to Red Hat Single Sign-On using the Admin Console.

7. Click Add Realm to import the example realm.

8. Add the examples/security/keycloak-authorization/kafka-authz-realm.json file, and then
click Create.
You now have kafka-authz as your current realm in the Admin Console.

The default view displays the Master realm.

9. In the Red Hat Single Sign-On Admin Console, go to Clients > kafka > Authorization > Settings
and check that Decision Strategy is set to Affirmative.
An affirmative policy means that at least one policy must be satisfied for a client to access the
Kafka cluster.

10. In the Red Hat Single Sign-On Admin Console, go to Groups, Users, Roles and Clients to view
the realm configuration.

Groups

Groups are used to create user groups and set user permissions. Groups are sets of users
with a name assigned. They are used to compartmentalize users into geographical,
organizational or departmental units. Groups can be linked to an LDAP identity provider. You
can make a user a member of a group through a custom LDAP server admin user interface,
for example, to grant permissions on Kafka resources.

Users

Users are used to create users. For this example, alice and bob are defined. alice is a
member of the ClusterManager group and bob is a member of ClusterManager-my-
cluster group. Users can be stored in an LDAP identity provider.

Roles

Roles mark users or clients as having certain permissions. Roles are a concept analogous to
groups. They are usually used to tag users with organizational roles and have the requisite
permissions. Roles cannot be stored in an LDAP identity provider. If LDAP is a requirement,
you can use groups instead, and add Red Hat Single Sign-On roles to the groups so that
when users are assigned a group they also get a corresponding role.

Clients

Clients can have specific configurations. For this example, kafka, kafka-cli, team-a-client,
and team-b-client clients are configured.

The kafka client is used by Kafka brokers to perform the necessary OAuth 2.0
communication for access token validation. This client also contains the authorization
services resource definitions, policies, and authorization scopes used to perform
authorization on the Kafka brokers. The authorization configuration is defined in the
kafka client from the Authorization tab, which becomes visible when Authorization
Enabled is switched on from the Settings tab.

The kafka-cli client is a public client that is used by the Kafka command line tools when
authenticating with username and password to obtain an access token or a refresh
token.

The team-a-client and team-b-client clients are confidential clients representing
services with partial access to certain Kafka topics.

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

286

11. In the Red Hat Single Sign-On Admin Console, go to Authorization > Permissions to see the
granted permissions that use the resources and policies defined for the realm.
For example, the kafka client has the following permissions:

Dev Team A can write to topics that start with x_ on any cluster
Dev Team B can read from topics that start with x_ on any cluster
Dev Team B can update consumer group offsets that start with x_ on any cluster
ClusterManager of my-cluster Group has full access to cluster config on my-cluster
ClusterManager of my-cluster Group has full access to consumer groups on my-cluster
ClusterManager of my-cluster Group has full access to topics on my-cluster

Dev Team A

The Dev Team A realm role can write to topics that start with x_ on any cluster. This
combines a resource called Topic:x_*, Describe and Write scopes, and the Dev Team A
policy. The Dev Team A policy matches all users that have a realm role called Dev Team A.

Dev Team B

The Dev Team B realm role can read from topics that start with x_ on any cluster. This
combines Topic:x_*, Group:x_* resources, Describe and Read scopes, and the Dev Team
B policy. The Dev Team B policy matches all users that have a realm role called Dev Team
B. Matching users and clients have the ability to read from topics, and update the consumed
offsets for topics and consumer groups that have names starting with x_.

14.5.4.2. Deploying a Kafka cluster with Red Hat Single Sign-On authorization

Deploy a Kafka cluster configured to connect to the Red Hat Single Sign-On server. Use the example
kafka-ephemeral-oauth-single-keycloak-authz.yaml file to deploy the Kafka cluster as a Kafka
custom resource. The example deploys a single-node Kafka cluster with keycloak authorization and
oauth authentication.

Prerequisites

The Red Hat Single Sign-On authorization server is deployed to your OpenShift cluster and
loaded with the example realm.

The Cluster Operator is deployed to your OpenShift cluster.

The AMQ Streams examples/security/keycloak-authorization/kafka-ephemeral-oauth-
single-keycloak-authz.yaml custom resource.

Procedure

1. Use the hostname of the Red Hat Single Sign-On instance you deployed to prepare a truststore
certificate for Kafka brokers to communicate with the Red Hat Single Sign-On server.

The certificate is required as Kubernetes Ingress is used to make a secure (HTTPS) connection.

Usually there is not one single certificate, but a certificate chain. You only have to provide the

SSO_HOST=SSO-HOSTNAME
SSO_HOST_PORT=$SSO_HOST:443
STOREPASS=storepass

echo "Q" | openssl s_client -showcerts -connect $SSO_HOST_PORT 2>/dev/null | awk '
/BEGIN CERTIFICATE/,/END CERTIFICATE/ { print $0 } ' > /tmp/sso.pem

CHAPTER 14. MANAGING SECURE ACCESS TO KAFKA

287

Usually there is not one single certificate, but a certificate chain. You only have to provide the
top-most issuer CA, which is listed last in the /tmp/sso.pem file. You can extract it manually or
using the following commands:

Example command to extract the top CA certificate in a certificate chain

NOTE

A trusted CA certificate is normally obtained from a trusted source, and not by
using the openssl command.

2. Deploy the certificate to OpenShift as a secret.

3. Set the hostname as an environment variable

4. Create and deploy the example Kafka cluster.

14.5.4.3. Preparing TLS connectivity for a CLI Kafka client session

Create a new pod for an interactive CLI session. Set up a truststore with a Red Hat Single Sign-On
certificate for TLS connectivity. The truststore is to connect to Red Hat Single Sign-On and the Kafka
broker.

Prerequisites

The Red Hat Single Sign-On authorization server is deployed to your OpenShift cluster and
loaded with the example realm.
In the Red Hat Single Sign-On Admin Console, check the roles assigned to the clients are
displayed in Clients > Service Account Roles.

The Kafka cluster configured to connect with Red Hat Single Sign-On is deployed to your
OpenShift cluster.

Procedure

1. Run a new interactive pod container using the AMQ Streams Kafka image to connect to a
running Kafka broker.

NOTE

split -p "-----BEGIN CERTIFICATE-----" sso.pem sso-
for f in $(ls sso-*); do mv $f $f.pem; done
cp $(ls sso-* | sort -r | head -n 1) sso-ca.crt

oc create secret generic oauth-server-cert --from-file=/tmp/sso-ca.crt -n $NS

SSO_HOST=SSO-HOSTNAME

cat examples/security/keycloak-authorization/kafka-ephemeral-oauth-single-keycloak-
authz.yaml | sed -E 's#\${SSO_HOST}'"#$SSO_HOST#" | oc create -n $NS -f -

NS=sso
oc run -ti --restart=Never --image=registry.redhat.io/amq-streams/kafka-35-rhel8:2.5.1 kafka-
cli -n $NS -- /bin/sh

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

288

NOTE

If oc times out waiting on the image download, subsequent attempts may result
in an AlreadyExists error.

2. Attach to the pod container.

3. Use the hostname of the Red Hat Single Sign-On instance to prepare a certificate for client
connection using TLS.

Usually there is not one single certificate, but a certificate chain. You only have to provide the
top-most issuer CA, which is listed last in the /tmp/sso.pem file. You can extract it manually or
using the following command:

Example command to extract the top CA certificate in a certificate chain

NOTE

A trusted CA certificate is normally obtained from a trusted source, and not by
using the openssl command.

4. Create a truststore for TLS connection to the Kafka brokers.

5. Use the Kafka bootstrap address as the hostname of the Kafka broker and the tls listener port
(9093) to prepare a certificate for the Kafka broker.

The obtained .pem file is usually not one single certificate, but a certificate chain. You only have
to provide the top-most issuer CA, which is listed last in the /tmp/my-cluster-kafka.pem file.
You can extract it manually or using the following command:

Example command to extract the top CA certificate in a certificate chain

oc attach -ti kafka-cli -n $NS

SSO_HOST=SSO-HOSTNAME
SSO_HOST_PORT=$SSO_HOST:443
STOREPASS=storepass

echo "Q" | openssl s_client -showcerts -connect $SSO_HOST_PORT 2>/dev/null | awk '
/BEGIN CERTIFICATE/,/END CERTIFICATE/ { print $0 } ' > /tmp/sso.pem

split -p "-----BEGIN CERTIFICATE-----" sso.pem sso-
for f in $(ls sso-*); do mv $f $f.pem; done
cp $(ls sso-* | sort -r | head -n 1) sso-ca.crt

keytool -keystore /tmp/truststore.p12 -storetype pkcs12 -alias sso -storepass $STOREPASS
-import -file /tmp/sso-ca.crt -noprompt

KAFKA_HOST_PORT=my-cluster-kafka-bootstrap:9093
STOREPASS=storepass

echo "Q" | openssl s_client -showcerts -connect $KAFKA_HOST_PORT 2>/dev/null | awk '
/BEGIN CERTIFICATE/,/END CERTIFICATE/ { print $0 } ' > /tmp/my-cluster-kafka.pem

CHAPTER 14. MANAGING SECURE ACCESS TO KAFKA

289

NOTE

A trusted CA certificate is normally obtained from a trusted source, and not by
using the openssl command. For this example we assume the client is running in
a pod in the same namespace where the Kafka cluster was deployed. If the client
is accessing the Kafka cluster from outside the OpenShift cluster, you would have
to first determine the bootstrap address. In that case you can also get the cluster
certificate directly from the OpenShift secret, and there is no need for openssl.
For more information, see Chapter 13, Setting up client access to a Kafka cluster .

6. Add the certificate for the Kafka broker to the truststore.

Keep the session open to check authorized access.

14.5.4.4. Checking authorized access to Kafka using a CLI Kafka client session

Check the authorization rules applied through the Red Hat Single Sign-On realm using an interactive
CLI session. Apply the checks using Kafka’s example producer and consumer clients to create topics
with user and service accounts that have different levels of access.

Use the team-a-client and team-b-client clients to check the authorization rules. Use the alice admin
user to perform additional administrative tasks on Kafka.

The AMQ Streams Kafka image used in this example contains Kafka producer and consumer binaries.

Prerequisites

ZooKeeper and Kafka are running in the OpenShift cluster to be able to send and receive
messages.

The interactive CLI Kafka client session is started.
Apache Kafka download .

Setting up client and admin user configuration

1. Prepare a Kafka configuration file with authentication properties for the team-a-client client.

split -p "-----BEGIN CERTIFICATE-----" /tmp/my-cluster-kafka.pem kafka-
for f in $(ls kafka-*); do mv $f $f.pem; done
cp $(ls kafka-* | sort -r | head -n 1) my-cluster-kafka-ca.crt

keytool -keystore /tmp/truststore.p12 -storetype pkcs12 -alias my-cluster-kafka -storepass
$STOREPASS -import -file /tmp/my-cluster-kafka-ca.crt -noprompt

SSO_HOST=SSO-HOSTNAME

cat > /tmp/team-a-client.properties << EOF
security.protocol=SASL_SSL
ssl.truststore.location=/tmp/truststore.p12
ssl.truststore.password=$STOREPASS
ssl.truststore.type=PKCS12
sasl.mechanism=OAUTHBEARER
sasl.jaas.config=org.apache.kafka.common.security.oauthbearer.OAuthBearerLoginModule
required \

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

290

http://kafka.apache.org/

The SASL OAUTHBEARER mechanism is used. This mechanism requires a client ID and client
secret, which means the client first connects to the Red Hat Single Sign-On server to obtain an
access token. The client then connects to the Kafka broker and uses the access token to
authenticate.

2. Prepare a Kafka configuration file with authentication properties for the team-b-client client.

3. Authenticate admin user alice by using curl and performing a password grant authentication to
obtain a refresh token.

The refresh token is an offline token that is long-lived and does not expire.

4. Prepare a Kafka configuration file with authentication properties for the admin user alice.

 oauth.client.id="team-a-client" \
 oauth.client.secret="team-a-client-secret" \
 oauth.ssl.truststore.location="/tmp/truststore.p12" \
 oauth.ssl.truststore.password="$STOREPASS" \
 oauth.ssl.truststore.type="PKCS12" \
 oauth.token.endpoint.uri="https://$SSO_HOST/auth/realms/kafka-authz/protocol/openid-
connect/token" ;
sasl.login.callback.handler.class=io.strimzi.kafka.oauth.client.JaasClientOauthLoginCallbackHan
dler
EOF

cat > /tmp/team-b-client.properties << EOF
security.protocol=SASL_SSL
ssl.truststore.location=/tmp/truststore.p12
ssl.truststore.password=$STOREPASS
ssl.truststore.type=PKCS12
sasl.mechanism=OAUTHBEARER
sasl.jaas.config=org.apache.kafka.common.security.oauthbearer.OAuthBearerLoginModule
required \
 oauth.client.id="team-b-client" \
 oauth.client.secret="team-b-client-secret" \
 oauth.ssl.truststore.location="/tmp/truststore.p12" \
 oauth.ssl.truststore.password="$STOREPASS" \
 oauth.ssl.truststore.type="PKCS12" \
 oauth.token.endpoint.uri="https://$SSO_HOST/auth/realms/kafka-authz/protocol/openid-
connect/token" ;
sasl.login.callback.handler.class=io.strimzi.kafka.oauth.client.JaasClientOauthLoginCallbackHan
dler
EOF

USERNAME=alice
PASSWORD=alice-password

GRANT_RESPONSE=$(curl -X POST "https://$SSO_HOST/auth/realms/kafka-
authz/protocol/openid-connect/token" -H 'Content-Type: application/x-www-form-urlencoded'
-d
"grant_type=password&username=$USERNAME&password=$PASSWORD&client_id=kafka-
cli&scope=offline_access" -s -k)

REFRESH_TOKEN=$(echo $GRANT_RESPONSE | awk -F "refresh_token\":\"" '{printf $2}' |
awk -F "\"" '{printf $1}')

CHAPTER 14. MANAGING SECURE ACCESS TO KAFKA

291

The kafka-cli public client is used for the oauth.client.id in the sasl.jaas.config. Since it’s a
public client it does not require a secret. The client authenticates with the refresh token that was
authenticated in the previous step. The refresh token requests an access token behind the
scenes, which is then sent to the Kafka broker for authentication.

Producing messages with authorized access

Use the team-a-client configuration to check that you can produce messages to topics that start with
a_ or x_.

1. Write to topic my-topic.

This request returns a Not authorized to access topics: [my-topic] error.

team-a-client has a Dev Team A role that gives it permission to perform any supported actions
on topics that start with a_, but can only write to topics that start with x_. The topic named my-
topic matches neither of those rules.

2. Write to topic a_messages.

Messages are produced to Kafka successfully.

3. Press CTRL+C to exit the CLI application.

4. Check the Kafka container log for a debug log of Authorization GRANTED for the request.

cat > /tmp/alice.properties << EOF
security.protocol=SASL_SSL
ssl.truststore.location=/tmp/truststore.p12
ssl.truststore.password=$STOREPASS
ssl.truststore.type=PKCS12
sasl.mechanism=OAUTHBEARER
sasl.jaas.config=org.apache.kafka.common.security.oauthbearer.OAuthBearerLoginModule
required \
 oauth.refresh.token="$REFRESH_TOKEN" \
 oauth.client.id="kafka-cli" \
 oauth.ssl.truststore.location="/tmp/truststore.p12" \
 oauth.ssl.truststore.password="$STOREPASS" \
 oauth.ssl.truststore.type="PKCS12" \
 oauth.token.endpoint.uri="https://$SSO_HOST/auth/realms/kafka-authz/protocol/openid-
connect/token" ;
sasl.login.callback.handler.class=io.strimzi.kafka.oauth.client.JaasClientOauthLoginCallbackHan
dler
EOF

bin/kafka-console-producer.sh --bootstrap-server my-cluster-kafka-bootstrap:9093 --topic
my-topic \
 --producer.config=/tmp/team-a-client.properties
First message

bin/kafka-console-producer.sh --bootstrap-server my-cluster-kafka-bootstrap:9093 --topic
a_messages \
 --producer.config /tmp/team-a-client.properties
First message
Second message

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

292

Consuming messages with authorized access

Use the team-a-client configuration to consume messages from topic a_messages.

1. Fetch messages from topic a_messages.

The request returns an error because the Dev Team A role for team-a-client only has access to
consumer groups that have names starting with a_.

2. Update the team-a-client properties to specify the custom consumer group it is permitted to
use.

The consumer receives all the messages from the a_messages topic.

Administering Kafka with authorized access

The team-a-client is an account without any cluster-level access, but it can be used with some
administrative operations.

1. List topics.

The a_messages topic is returned.

2. List consumer groups.

The a_consumer_group_1 consumer group is returned.

Fetch details on the cluster configuration.

The request returns an error because the operation requires cluster level permissions that team-
a-client does not have.

Using clients with different permissions

Use the team-b-client configuration to produce messages to topics that start with b_.

oc logs my-cluster-kafka-0 -f -n $NS

bin/kafka-console-consumer.sh --bootstrap-server my-cluster-kafka-bootstrap:9093 --topic
a_messages \
 --from-beginning --consumer.config /tmp/team-a-client.properties

bin/kafka-console-consumer.sh --bootstrap-server my-cluster-kafka-bootstrap:9093 --topic
a_messages \
 --from-beginning --consumer.config /tmp/team-a-client.properties --group
a_consumer_group_1

bin/kafka-topics.sh --bootstrap-server my-cluster-kafka-bootstrap:9093 --command-config
/tmp/team-a-client.properties --list

bin/kafka-consumer-groups.sh --bootstrap-server my-cluster-kafka-bootstrap:9093 --
command-config /tmp/team-a-client.properties --list

bin/kafka-configs.sh --bootstrap-server my-cluster-kafka-bootstrap:9093 --command-config
/tmp/team-a-client.properties \
 --entity-type brokers --describe --entity-default

CHAPTER 14. MANAGING SECURE ACCESS TO KAFKA

293

1. Write to topic a_messages.

This request returns a Not authorized to access topics: [a_messages] error.

2. Write to topic b_messages.

Messages are produced to Kafka successfully.

3. Write to topic x_messages.

A Not authorized to access topics: [x_messages] error is returned, The team-b-client can
only read from topic x_messages.

4. Write to topic x_messages using team-a-client.

This request returns a Not authorized to access topics: [x_messages] error. The team-a-
client can write to the x_messages topic, but it does not have a permission to create a topic if
it does not yet exist. Before team-a-client can write to the x_messages topic, an admin power
user must create it with the correct configuration, such as the number of partitions and replicas.

Managing Kafka with an authorized admin user

Use admin user alice to manage Kafka. alice has full access to manage everything on any Kafka cluster.

1. Create the x_messages topic as alice.

The topic is created successfully.

2. List all topics as alice.

bin/kafka-console-producer.sh --bootstrap-server my-cluster-kafka-bootstrap:9093 --topic
a_messages \
 --producer.config /tmp/team-b-client.properties
Message 1

bin/kafka-console-producer.sh --bootstrap-server my-cluster-kafka-bootstrap:9093 --topic
b_messages \
 --producer.config /tmp/team-b-client.properties
Message 1
Message 2
Message 3

bin/kafka-console-producer.sh --bootstrap-server my-cluster-kafka-bootstrap:9093 --topic
x_messages \
 --producer.config /tmp/team-b-client.properties
Message 1

bin/kafka-console-producer.sh --bootstrap-server my-cluster-kafka-bootstrap:9093 --topic
x_messages \
 --producer.config /tmp/team-a-client.properties
Message 1

bin/kafka-topics.sh --bootstrap-server my-cluster-kafka-bootstrap:9093 --command-config
/tmp/alice.properties \
 --topic x_messages --create --replication-factor 1 --partitions 1

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

294

Admin user alice can list all the topics, whereas team-a-client and team-b-client can only list
the topics they have access to.

The Dev Team A and Dev Team B roles both have Describe permission on topics that start
with x_, but they cannot see the other team’s topics because they do not have Describe
permissions on them.

3. Use the team-a-client to produce messages to the x_messages topic:

As alice created the x_messages topic, messages are produced to Kafka successfully.

4. Use the team-b-client to produce messages to the x_messages topic.

This request returns a Not authorized to access topics: [x_messages] error.

5. Use the team-b-client to consume messages from the x_messages topic:

The consumer receives all the messages from the x_messages topic.

6. Use the team-a-client to consume messages from the x_messages topic.

This request returns a Not authorized to access topics: [x_messages] error.

7. Use the team-a-client to consume messages from a consumer group that begins with a_.

bin/kafka-topics.sh --bootstrap-server my-cluster-kafka-bootstrap:9093 --command-config
/tmp/alice.properties --list
bin/kafka-topics.sh --bootstrap-server my-cluster-kafka-bootstrap:9093 --command-config
/tmp/team-a-client.properties --list
bin/kafka-topics.sh --bootstrap-server my-cluster-kafka-bootstrap:9093 --command-config
/tmp/team-b-client.properties --list

bin/kafka-console-producer.sh --bootstrap-server my-cluster-kafka-bootstrap:9093 --topic
x_messages \
 --producer.config /tmp/team-a-client.properties
Message 1
Message 2
Message 3

bin/kafka-console-producer.sh --bootstrap-server my-cluster-kafka-bootstrap:9093 --topic
x_messages \
 --producer.config /tmp/team-b-client.properties
Message 4
Message 5

bin/kafka-console-consumer.sh --bootstrap-server my-cluster-kafka-bootstrap:9093 --topic
x_messages \
 --from-beginning --consumer.config /tmp/team-b-client.properties --group
x_consumer_group_b

bin/kafka-console-consumer.sh --bootstrap-server my-cluster-kafka-bootstrap:9093 --topic
x_messages \
 --from-beginning --consumer.config /tmp/team-a-client.properties --group
x_consumer_group_a

CHAPTER 14. MANAGING SECURE ACCESS TO KAFKA

295

This request returns a Not authorized to access topics: [x_messages] error.

Dev Team A has no Read access on topics that start with a x_.

8. Use alice to produce messages to the x_messages topic.

Messages are produced to Kafka successfully.

alice can read from or write to any topic.

9. Use alice to read the cluster configuration.

The cluster configuration for this example is empty.

Additional resources

Server Installation and Configuration

Map Red Hat Single Sign-On Authorization Services to the Kafka authorization model

bin/kafka-console-consumer.sh --bootstrap-server my-cluster-kafka-bootstrap:9093 --topic
x_messages \
 --from-beginning --consumer.config /tmp/team-a-client.properties --group
a_consumer_group_a

bin/kafka-console-consumer.sh --bootstrap-server my-cluster-kafka-bootstrap:9093 --topic
x_messages \
 --from-beginning --consumer.config /tmp/alice.properties

bin/kafka-configs.sh --bootstrap-server my-cluster-kafka-bootstrap:9093 --command-config
/tmp/alice.properties \
 --entity-type brokers --describe --entity-default

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

296

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on

CHAPTER 15. MANAGING TLS CERTIFICATES
AMQ Streams supports TLS for encrypted communication between Kafka and AMQ Streams
components.

AMQ Streams establishes encrypted TLS connections for communication between the following
components:

Kafka brokers and ZooKeeper nodes

Kafka brokers (interbroker communication)

ZooKeeper nodes (internodal communication)

AMQ Streams operators and Kafka and ZooKeeper

Cruise Control and Kafka

Kafka Exporter and Kafka

Connections between clients and brokers use listeners that you must configure to use TLS-encrypted
communication. You configure these listeners in the Kafka custom resource and each listener name and
port number must be unique within the cluster. Communication between Kafka brokers and Kafka clients
is encrypted according to how the tls property is configured for the listener. For more information, see
Chapter 13, Setting up client access to a Kafka cluster .

The following diagram shows the connections for secure communication.

Figure 15.1. Kafka and ZooKeeper communication secured by TLS encryption

CHAPTER 15. MANAGING TLS CERTIFICATES

297

Figure 15.1. Kafka and ZooKeeper communication secured by TLS encryption

The ports shown in the diagram are used as follows:

Control plane listener (9090)

Connections between the Kafka controller and brokers use an internal control plane listener on port
9090, facilitating interbroker communication. This listener is not accessible to Kafka clients.

Replication listener (9091)

Data replication between brokers, as well as internal connections from AMQ Streams operators,
Cruise Control, and the Kafka Exporter, use the replication listener on port 9091. This listener is not
accessible to Kafka clients.

Listeners for client connections (9092 or higher)

For TLS-encrypted communication (through configuration of the listener), internal and external
clients connect to Kafka brokers. External clients (producers and consumers) connect to the Kafka
brokers through the advertised listener port.

ZooKeeper Port (2181)

ZooKeeper port for connection to Kafka.

ZooKeeper internodal communication port (2888)

ZooKeeper port for internodal communication between ZooKeeper nodes.

ZooKeeper leader election port (3888)

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

298

ZooKeeper port for leader election among ZooKeeper nodes in a ZooKeeper cluster.

IMPORTANT

When configuring listeners for client access to brokers, you can use port 9092 or higher
(9093, 9094, and so on), but with a few exceptions. The listeners cannot be configured
to use the ports reserved for interbroker communication (9090 and 9091), Prometheus
metrics (9404), and JMX (Java Management Extensions) monitoring (9999).

15.1. INTERNAL CLUSTER CA AND CLIENTS CA

To support encryption, each AMQ Streams component needs its own private keys and public key
certificates. All component certificates are signed by an internal CA (certificate authority) called the
cluster CA .

CA (Certificate Authority) certificates are generated by the Cluster Operator to verify the identities of
components and clients.

Similarly, each Kafka client application connecting to AMQ Streams using mTLS needs to use private
keys and certificates. A second internal CA, named the clients CA, is used to sign certificates for the
Kafka clients.

Both the cluster CA and clients CA have a self-signed public key certificate.

Kafka brokers are configured to trust certificates signed by either the cluster CA or clients CA.
Components that clients do not need to connect to, such as ZooKeeper, only trust certificates signed by
the cluster CA. Unless TLS encryption for external listeners is disabled, client applications must trust
certificates signed by the cluster CA. This is also true for client applications that perform mTLS
authentication.

By default, AMQ Streams automatically generates and renews CA certificates issued by the cluster CA
or clients CA. You can configure the management of these CA certificates using Kafka.spec.clusterCa
and Kafka.spec.clientsCa properties.

NOTE

If you don’t want to use the CAs generated by the Cluster Operator, you can install your
own cluster and clients CA certificates. Any certificates you provide are not renewed by
the Cluster Operator.

15.2. SECRETS GENERATED BY THE OPERATORS

The Cluster Operator automatically sets up and renews TLS certificates to enable encryption and
authentication within a cluster. It also sets up other TLS certificates if you want to enable encryption or
mTLS authentication between Kafka brokers and clients.

Secrets are created when custom resources are deployed, such as Kafka and KafkaUser. AMQ Streams
uses these secrets to store private and public key certificates for Kafka clusters, clients, and users. The
secrets are used for establishing TLS encrypted connections between Kafka brokers, and between
brokers and clients. They are also used for mTLS authentication.

Cluster and clients secrets are always pairs: one contains the public key and one contains the private
key.

Cluster secret

CHAPTER 15. MANAGING TLS CERTIFICATES

299

A cluster secret contains the cluster CA to sign Kafka broker certificates. Connecting clients use the
certificate to establish a TLS encrypted connection with a Kafka cluster. The certificate verifies
broker identity.

Client secret

A client secret contains the clients CA for a user to sign its own client certificate. This allows mutual
authentication against the Kafka cluster. The broker validates a client’s identity through the
certificate.

User secret

A user secret contains a private key and certificate. The secret is created and signed by the clients
CA when a new user is created. The key and certificate are used to authenticate and authorize the
user when accessing the cluster.

NOTE

You can provide Kafka listener certificates for TLS listeners or external listeners that have
TLS encryption enabled. Use Kafka listener certificates to incorporate the security
infrastructure you already have in place.

15.2.1. TLS authentication using keys and certificates in PEM or PKCS #12 format

The secrets created by AMQ Streams provide private keys and certificates in PEM (Privacy Enhanced
Mail) and PKCS #12 (Public-Key Cryptography Standards) formats. PEM and PKCS #12 are OpenSSL-
generated key formats for TLS communications using the SSL protocol.

You can configure mutual TLS (mTLS) authentication that uses the credentials contained in the secrets
generated for a Kafka cluster and user.

To set up mTLS, you must first do the following:

Configure your Kafka cluster with a listener that uses mTLS

Create a KafkaUser that provides client credentials for mTLs

When you deploy a Kafka cluster, a <cluster_name>-cluster-ca-cert secret is created with public key to
verify the cluster. You use the public key to configure a truststore for the client.

When you create a KafkaUser, a <kafka_user_name> secret is created with the keys and certificates to
verify the user (client). Use these credentials to configure a keystore for the client.

With the Kafka cluster and client set up to use mTLS, you extract credentials from the secrets and add
them to your client configuration.

PEM keys and certificates

For PEM, you add the following to your client configuration:

Truststore

ca.crt from the <cluster_name>-cluster-ca-cert secret, which is the CA certificate for
the cluster.

Keystore

user.crt from the <kafka_user_name> secret, which is the public certificate of the user.

user.key from the <kafka_user_name> secret, which is the private key of the user.

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

300

PKCS #12 keys and certificates

For PKCS #12, you add the following to your client configuration:

Truststore

ca.p12 from the <cluster_name>-cluster-ca-cert secret, which is the CA certificate for
the cluster.

ca.password from the <cluster_name>-cluster-ca-cert secret, which is the password to
access the public cluster CA certificate.

Keystore

user.p12 from the <kafka_user_name> secret, which is the public key certificate of the
user.

user.password from the <kafka_user_name> secret, which is the password to access
the public key certificate of the Kafka user.

PKCS #12 is supported by Java, so you can add the values of the certificates directly to your Java client
configuration. You can also reference the certificates from a secure storage location. With PEM files, you
must add the certificates directly to the client configuration in single-line format. Choose a format that’s
suitable for establishing TLS connections between your Kafka cluster and client. Use PKCS #12 if you are
unfamiliar with PEM.

NOTE

All keys are 2048 bits in size and, by default, are valid for 365 days from the initial
generation. You can change the validity period .

15.2.2. Secrets generated by the Cluster Operator

The Cluster Operator generates the following certificates, which are saved as secrets in the OpenShift
cluster. AMQ Streams uses these secrets by default.

The cluster CA and clients CA have separate secrets for the private key and public key.

<cluster_name>-cluster-ca

Contains the private key of the cluster CA. AMQ Streams and Kafka components use the private key
to sign server certificates.

<cluster_name>-cluster-ca-cert

Contains the public key of the cluster CA. Kafka clients use the public key to verify the identity of the
Kafka brokers they are connecting to with TLS server authentication.

<cluster_name>-clients-ca

Contains the private key of the clients CA. Kafka clients use the private key to sign new user
certificates for mTLS authentication when connecting to Kafka brokers.

<cluster_name>-clients-ca-cert

Contains the public key of the clients CA. Kafka brokers use the public key to verify the identity of
clients accessing the Kafka brokers when mTLS authentication is used.

Secrets for communication between AMQ Streams components contain a private key and a public key
certificate signed by the cluster CA.

CHAPTER 15. MANAGING TLS CERTIFICATES

301

<cluster_name>-kafka-brokers

Contains the private and public keys for Kafka brokers.

<cluster_name>-zookeeper-nodes

Contains the private and public keys for ZooKeeper nodes.

<cluster_name>-cluster-operator-certs

Contains the private and public keys for encrypting communication between the Cluster Operator
and Kafka or ZooKeeper.

<cluster_name>-entity-topic-operator-certs

Contains the private and public keys for encrypting communication between the Topic Operator and
Kafka or ZooKeeper.

<cluster_name>-entity-user-operator-certs

Contains the private and public keys for encrypting communication between the User Operator and
Kafka or ZooKeeper.

<cluster_name>-cruise-control-certs

Contains the private and public keys for encrypting communication between Cruise Control and
Kafka or ZooKeeper.

<cluster_name>-kafka-exporter-certs

Contains the private and public keys for encrypting communication between Kafka Exporter and
Kafka or ZooKeeper.

NOTE

You can provide your own server certificates and private keys to connect to Kafka
brokers using Kafka listener certificates rather than certificates signed by the cluster CA.

15.2.3. Cluster CA secrets

Cluster CA secrets are managed by the Cluster Operator in a Kafka cluster.

Only the <cluster_name>-cluster-ca-cert secret is required by clients. All other cluster secrets are
accessed by AMQ Streams components. You can enforce this using OpenShift role-based access
controls, if necessary.

NOTE

The CA certificates in <cluster_name>-cluster-ca-cert must be trusted by Kafka client
applications so that they validate the Kafka broker certificates when connecting to Kafka
brokers over TLS.

Table 15.1. Fields in the <cluster_name>-cluster-ca secret

Field Description

ca.key The current private key for the cluster CA.

Table 15.2. Fields in the <cluster_name>-cluster-ca-cert secret

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

302

Field Description

ca.p12 PKCS #12 store for storing certificates and keys.

ca.password Password for protecting the PKCS #12 store.

ca.crt The current certificate for the cluster CA.

Table 15.3. Fields in the <cluster_name>-kafka-brokers secret

Field Description

<cluster_name>-kafka-<num>.p12 PKCS #12 store for storing certificates and keys.

<cluster_name>-
kafka-<num>.password

Password for protecting the PKCS #12 store.

<cluster_name>-kafka-<num>.crt Certificate for a Kafka broker pod <num>. Signed by a current or
former cluster CA private key in <cluster_name>-cluster-ca.

<cluster_name>-kafka-<num>.key Private key for a Kafka broker pod <num>.

Table 15.4. Fields in the <cluster_name>-zookeeper-nodes secret

Field Description

<cluster_name>-
zookeeper-<num>.p12

PKCS #12 store for storing certificates and keys.

<cluster_name>-
zookeeper-<num>.password

Password for protecting the PKCS #12 store.

<cluster_name>-
zookeeper-<num>.crt

Certificate for ZooKeeper node <num>. Signed by a current or
former cluster CA private key in <cluster_name>-cluster-ca.

<cluster_name>-
zookeeper-<num>.key

Private key for ZooKeeper pod <num>.

Table 15.5. Fields in the <cluster_name>-cluster-operator-certs secret

Field Description

cluster-operator.p12 PKCS #12 store for storing certificates and keys.

cluster-operator.password Password for protecting the PKCS #12 store.

CHAPTER 15. MANAGING TLS CERTIFICATES

303

cluster-operator.crt Certificate for mTLS communication between the Cluster
Operator and Kafka or ZooKeeper. Signed by a current or former
cluster CA private key in <cluster_name>-cluster-ca.

cluster-operator.key Private key for mTLS communication between the Cluster
Operator and Kafka or ZooKeeper.

Field Description

Table 15.6. Fields in the <cluster_name>-entity-topic-operator-certs secret

Field Description

entity-operator.p12 PKCS #12 store for storing certificates and keys.

entity-operator.password Password for protecting the PKCS #12 store.

entity-operator.crt Certificate for mTLS communication between the Topic
Operator and Kafka or ZooKeeper. Signed by a current or former
cluster CA private key in <cluster_name>-cluster-ca.

entity-operator.key Private key for mTLS communication between the Topic
Operator and Kafka or ZooKeeper.

Table 15.7. Fields in the <cluster_name>-entity-user-operator-certs secret

Field Description

entity-operator.p12 PKCS #12 store for storing certificates and keys.

entity-operator.password Password for protecting the PKCS #12 store.

entity-operator.crt Certificate for mTLS communication between the User
Operator and Kafka or ZooKeeper. Signed by a current or former
cluster CA private key in <cluster_name>-cluster-ca.

entity-operator.key Private key for mTLS communication between the User
Operator and Kafka or ZooKeeper.

Table 15.8. Fields in the <cluster_name>-cruise-control-certs secret

Field Description

cruise-control.p12 PKCS #12 store for storing certificates and keys.

cruise-control.password Password for protecting the PKCS #12 store.

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

304

cruise-control.crt Certificate for mTLS communication between Cruise Control
and Kafka or ZooKeeper. Signed by a current or former cluster
CA private key in <cluster_name>-cluster-ca.

cruise-control.key Private key for mTLS communication between the Cruise
Control and Kafka or ZooKeeper.

Field Description

Table 15.9. Fields in the <cluster_name>-kafka-exporter-certs secret

Field Description

kafka-exporter.p12 PKCS #12 store for storing certificates and keys.

kafka-exporter.password Password for protecting the PKCS #12 store.

kafka-exporter.crt Certificate for mTLS communication between Kafka Exporter
and Kafka or ZooKeeper. Signed by a current or former cluster
CA private key in <cluster_name>-cluster-ca.

kafka-exporter.key Private key for mTLS communication between the Kafka
Exporter and Kafka or ZooKeeper.

15.2.4. Clients CA secrets

Clients CA secrets are managed by the Cluster Operator in a Kafka cluster.

The certificates in <cluster_name>-clients-ca-cert are those which the Kafka brokers trust.

The <cluster_name>-clients-ca secret is used to sign the certificates of client applications. This secret
must be accessible to the AMQ Streams components and for administrative access if you are intending
to issue application certificates without using the User Operator. You can enforce this using OpenShift
role-based access controls, if necessary.

Table 15.10. Fields in the <cluster_name>-clients-ca secret

Field Description

ca.key The current private key for the clients CA.

Table 15.11. Fields in the <cluster_name>-clients-ca-cert secret

Field Description

ca.p12 PKCS #12 store for storing certificates and keys.

ca.password Password for protecting the PKCS #12 store.

CHAPTER 15. MANAGING TLS CERTIFICATES

305

ca.crt The current certificate for the clients CA.

Field Description

15.2.5. User secrets generated by the User Operator

User secrets are managed by the User Operator.

When a user is created using the User Operator, a secret is generated using the name of the user.

Table 15.12. Fields in the user_name secret

Secret name Field within secret Description

<user_name> user.p12 PKCS #12 store for storing certificates
and keys.

user.password Password for protecting the PKCS #12
store.

user.crt Certificate for the user, signed by the
clients CA

user.key Private key for the user

15.2.6. Adding labels and annotations to cluster CA secrets

By configuring the clusterCaCert template property in the Kafka custom resource, you can add custom
labels and annotations to the Cluster CA secrets created by the Cluster Operator. Labels and
annotations are useful for identifying objects and adding contextual information. You configure
template properties in AMQ Streams custom resources.

Example template customization to add labels and annotations to secrets

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 name: my-cluster
spec:
 kafka:
 # ...
 template:
 clusterCaCert:
 metadata:
 labels:
 label1: value1
 label2: value2
 annotations:
 annotation1: value1
 annotation2: value2
 # ...

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

306

15.2.7. Disabling ownerReference in the CA secrets

By default, the cluster and clients CA secrets are created with an ownerReference property that is set
to the Kafka custom resource. This means that, when the Kafka custom resource is deleted, the CA
secrets are also deleted (garbage collected) by OpenShift.

If you want to reuse the CA for a new cluster, you can disable the ownerReference by setting the
generateSecretOwnerReference property for the cluster and clients CA secrets to false in the Kafka
configuration. When the ownerReference is disabled, CA secrets are not deleted by OpenShift when
the corresponding Kafka custom resource is deleted.

Example Kafka configuration with disabled ownerReference for cluster and clients CAs

Additional resources

CertificateAuthority schema reference

15.3. CERTIFICATE RENEWAL AND VALIDITY PERIODS

Cluster CA and clients CA certificates are only valid for a limited time period, known as the validity
period. This is usually defined as a number of days since the certificate was generated.

For CA certificates automatically created by the Cluster Operator, you can configure the validity period
of:

Cluster CA certificates in Kafka.spec.clusterCa.validityDays

Clients CA certificates in Kafka.spec.clientsCa.validityDays

The default validity period for both certificates is 365 days. Manually-installed CA certificates should
have their own validity periods defined.

When a CA certificate expires, components and clients that still trust that certificate will not accept
connections from peers whose certificates were signed by the CA private key. The components and
clients need to trust the new CA certificate instead.

To allow the renewal of CA certificates without a loss of service, the Cluster Operator initiates
certificate renewal before the old CA certificates expire.

You can configure the renewal period of the certificates created by the Cluster Operator:

Cluster CA certificates in Kafka.spec.clusterCa.renewalDays

Clients CA certificates in Kafka.spec.clientsCa.renewalDays

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
...
spec:
...
 clusterCa:
 generateSecretOwnerReference: false
 clientsCa:
 generateSecretOwnerReference: false
...

CHAPTER 15. MANAGING TLS CERTIFICATES

307

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index#type-CertificateAuthority-reference

The default renewal period for both certificates is 30 days.

The renewal period is measured backwards, from the expiry date of the current certificate.

Validity period against renewal period

Not Before Not After
 | |
 |<--------------- validityDays --------------->|
 <--- renewalDays --->|

To make a change to the validity and renewal periods after creating the Kafka cluster, you configure and
apply the Kafka custom resource, and manually renew the CA certificates. If you do not manually renew
the certificates, the new periods will be used the next time the certificate is renewed automatically.

Example Kafka configuration for certificate validity and renewal periods

The behavior of the Cluster Operator during the renewal period depends on the settings for the
generateCertificateAuthority certificate generation properties for the cluster CA and clients CA.

true

If the properties are set to true, a CA certificate is generated automatically by the Cluster Operator,
and renewed automatically within the renewal period.

false

If the properties are set to false, a CA certificate is not generated by the Cluster Operator. Use this
option if you are installing your own certificates.

15.3.1. Renewal process with automatically generated CA certificates

The Cluster Operator performs the following processes in this order when renewing CA certificates:

1. Generates a new CA certificate, but retains the existing key.
The new certificate replaces the old one with the name ca.crt within the corresponding Secret.

2. Generates new client certificates (for ZooKeeper nodes, Kafka brokers, and the Entity
Operator).
This is not strictly necessary because the signing key has not changed, but it keeps the validity
period of the client certificate in sync with the CA certificate.

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
...
spec:
...
 clusterCa:
 renewalDays: 30
 validityDays: 365
 generateCertificateAuthority: true
 clientsCa:
 renewalDays: 30
 validityDays: 365
 generateCertificateAuthority: true
...

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

308

3. Restarts ZooKeeper nodes so that they will trust the new CA certificate and use the new client
certificates.

4. Restarts Kafka brokers so that they will trust the new CA certificate and use the new client
certificates.

5. Restarts the Topic and User Operators so that they will trust the new CA certificate and use the
new client certificates.
User certificates are signed by the clients CA. User certificates generated by the User Operator
are renewed when the clients CA is renewed.

15.3.2. Client certificate renewal

The Cluster Operator is not aware of the client applications using the Kafka cluster.

When connecting to the cluster, and to ensure they operate correctly, client applications must:

Trust the cluster CA certificate published in the <cluster>-cluster-ca-cert Secret.

Use the credentials published in their <user-name> Secret to connect to the cluster.
The User Secret provides credentials in PEM and PKCS #12 format, or it can provide a password
when using SCRAM-SHA authentication. The User Operator creates the user credentials when a
user is created.

You must ensure clients continue to work after certificate renewal. The renewal process depends on
how the clients are configured.

If you are provisioning client certificates and keys manually, you must generate new client certificates
and ensure the new certificates are used by clients within the renewal period. Failure to do this by the
end of the renewal period could result in client applications being unable to connect to the cluster.

NOTE

For workloads running inside the same OpenShift cluster and namespace, Secrets can be
mounted as a volume so the client Pods construct their keystores and truststores from
the current state of the Secrets. For more details on this procedure, see Configuring
internal clients to trust the cluster CA.

15.3.3. Manually renewing Cluster Operator-managed CA certificates

Cluster and clients CA certificates generated by the Cluster Operator auto-renew at the start of their
respective certificate renewal periods. However, you can use the strimzi.io/force-renew annotation to
manually renew one or both of these certificates before the certificate renewal period starts. You might
do this for security reasons, or if you have changed the renewal or validity periods for the certificates .

A renewed certificate uses the same private key as the old certificate.

NOTE

If you are using your own CA certificates, the force-renew annotation cannot be used.
Instead, follow the procedure for renewing your own CA certificates .

Prerequisites

The Cluster Operator must be deployed.

CHAPTER 15. MANAGING TLS CERTIFICATES

309

A Kafka cluster in which CA certificates and private keys are installed.

The OpenSSL TLS management tool to check the period of validity for CA certificates.

In this procedure, we use a Kafka cluster named my-cluster within the my-project namespace.

Procedure

1. Apply the strimzi.io/force-renew annotation to the secret that contains the CA certificate that
you want to renew.

Renewing the Cluster CA secret

Renewing the Clients CA secret

2. At the next reconciliation, the Cluster Operator generates new certificates.
If maintenance time windows are configured, the Cluster Operator generates the new CA
certificate at the first reconciliation within the next maintenance time window.

3. Check the period of validity for the new CA certificates.

Checking the period of validity for the new cluster CA certificate

Checking the period of validity for the new clients CA certificate

The command returns a notBefore and notAfter date, which is the valid start and end date for
the CA certificate.

4. Update client configurations to trust the new cluster CA certificate.
See:

Section 15.4, “Configuring internal clients to trust the cluster CA”

Section 15.5, “Configuring external clients to trust the cluster CA”

15.3.4. Manually recovering from expired Cluster Operator-managed CA certificates

The Cluster Operator automatically renews the cluster and clients CA certificates when their renewal
periods begin. Nevertheless, unexpected operational problems or disruptions may prevent the renewal
process, such as prolonged downtime of the Cluster Operator or unavailability of the Kafka cluster. If CA
certificates expire, Kafka cluster components cannot communicate with each other and the Cluster
Operator cannot renew the CA certificates without manual intervention.

To promptly perform a recovery, follow the steps outlined in this procedure in the order given. You can

oc annotate secret my-cluster-cluster-ca-cert -n my-project strimzi.io/force-renew=true

oc annotate secret my-cluster-clients-ca-cert -n my-project strimzi.io/force-renew=true

oc get secret my-cluster-cluster-ca-cert -n my-project -o=jsonpath='{.data.ca\.crt}' | base64 -d
| openssl x509 -noout -dates

oc get secret my-cluster-clients-ca-cert -n my-project -o=jsonpath='{.data.ca\.crt}' | base64 -d
| openssl x509 -noout -dates

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

310

To promptly perform a recovery, follow the steps outlined in this procedure in the order given. You can
recover from expired cluster and clients CA certificates. The process involves deleting the secrets
containing the expired certificates so that new ones are generated by the Cluster Operator. For more
information on the secrets managed in AMQ Streams, see Section 15.2.2, “Secrets generated by the
Cluster Operator”.

NOTE

If you are using your own CA certificates and they expire, the process is similar, but you
need to renew the CA certificates rather than use certificates generated by the Cluster
Operator.

Prerequisites

The Cluster Operator must be deployed.

A Kafka cluster in which CA certificates and private keys are installed.

The OpenSSL TLS management tool to check the period of validity for CA certificates.

In this procedure, we use a Kafka cluster named my-cluster within the my-project namespace.

Procedure

1. Delete the secret containing the expired CA certificate.

Deleting the Cluster CA secret

Deleting the Clients CA secret

2. Wait for the Cluster Operator to generate new certificates.

A new CA cluster certificate to verify the identity of the Kafka brokers is created in a secret
of the same name (my-cluster-cluster-ca-cert).

A new CA clients certificate to verify the identity of Kafka users is created in a secret of the
same name (my-cluster-clients-ca-cert).

3. Check the period of validity for the new CA certificates.

Checking the period of validity for the new cluster CA certificate

Checking the period of validity for the new clients CA certificate

oc delete secret my-cluster-cluster-ca-cert -n my-project

oc delete secret my-cluster-clients-ca-cert -n my-project

oc get secret my-cluster-cluster-ca-cert -n my-project -o=jsonpath='{.data.ca\.crt}' | base64 -d
| openssl x509 -noout -dates

oc get secret my-cluster-clients-ca-cert -n my-project -o=jsonpath='{.data.ca\.crt}' | base64 -d
| openssl x509 -noout -dates

CHAPTER 15. MANAGING TLS CERTIFICATES

311

The command returns a notBefore and notAfter date, which is the valid start and end date for
the CA certificate.

4. Delete the component pods and secrets that use the CA certificates.

a. Delete the ZooKeeper secret.

b. Wait for the Cluster Operator to detect the missing ZooKeeper secret and recreate it.

c. Delete all ZooKeeper pods.

d. Delete the Kafka secret.

e. Wait for the Cluster Operator to detect the missing Kafka secret and recreate it.

f. Delete all Kafka pods.

If you are only recovering the clients CA certificate, you only need to delete the Kafka secret and
pods.

You can use the following oc command to find resources and also verify that they have been
removed.

Replace <resource_type> with the type of the resource, such as Pod or Secret.

5. Wait for the Cluster Operator to detect the missing Kafka and ZooKeeper pods and recreate
them with the updated CA certificates.
On reconciliation, the Cluster Operator automatically updates other components to trust the
new CA certificates.

6. Verify that there are no issues related to certificate validation in the Cluster Operator log.

7. Update client configurations to trust the new cluster CA certificate.
See:

Section 15.4, “Configuring internal clients to trust the cluster CA”

Section 15.5, “Configuring external clients to trust the cluster CA”

15.3.5. Replacing private keys used by Cluster Operator-managed CA certificates

You can replace the private keys used by the cluster CA and clients CA certificates generated by the
Cluster Operator. When a private key is replaced, the Cluster Operator generates a new CA certificate
for the new private key.

NOTE

If you are using your own CA certificates, the force-replace annotation cannot be used.
Instead, follow the procedure for renewing your own CA certificates .

Prerequisites

The Cluster Operator is running.

oc get <resource_type> --all-namespaces | grep <kafka_cluster_name>

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

312

A Kafka cluster in which CA certificates and private keys are installed.

Procedure

Apply the strimzi.io/force-replace annotation to the Secret that contains the private key that
you want to renew.

Table 15.13. Commands for replacing private keys

Private key for Secret Annotate command

Cluster CA CLUSTER-NAME-cluster-ca oc annotate secret
CLUSTER-NAME-cluster-
ca strimzi.io/force-
replace=true

Clients CA CLUSTER-NAME-clients-ca oc annotate secret
CLUSTER-NAME-clients-
ca strimzi.io/force-
replace=true

At the next reconciliation the Cluster Operator will:

Generate a new private key for the Secret that you annotated

Generate a new CA certificate

If maintenance time windows are configured, the Cluster Operator will generate the new private key and
CA certificate at the first reconciliation within the next maintenance time window.

Client applications must reload the cluster and clients CA certificates that were renewed by the Cluster
Operator.

Additional resources

Section 15.2, “Secrets generated by the operators”

Section 27.5, “Maintenance time windows for rolling updates”

15.4. CONFIGURING INTERNAL CLIENTS TO TRUST THE CLUSTER CA

This procedure describes how to configure a Kafka client that resides inside the OpenShift cluster —
connecting to a TLS listener — to trust the cluster CA certificate.

The easiest way to achieve this for an internal client is to use a volume mount to access the Secrets
containing the necessary certificates and keys.

Follow the steps to configure trust certificates that are signed by the cluster CA for Java-based Kafka
Producer, Consumer, and Streams APIs.

Choose the steps to follow according to the certificate format of the cluster CA: PKCS #12 (.p12) or
PEM (.crt).

The steps describe how to mount the Cluster Secret that verifies the identity of the Kafka cluster to the

CHAPTER 15. MANAGING TLS CERTIFICATES

313

The steps describe how to mount the Cluster Secret that verifies the identity of the Kafka cluster to the
client pod.

Prerequisites

The Cluster Operator must be running.

There needs to be a Kafka resource within the OpenShift cluster.

You need a Kafka client application inside the OpenShift cluster that will connect using TLS, and
needs to trust the cluster CA certificate.

The client application must be running in the same namespace as the Kafka resource.

Using PKCS #12 format (.p12)

1. Mount the cluster Secret as a volume when defining the client pod.
For example:

Here we’re mounting the following:

The PKCS #12 file into an exact path, which can be configured

The password into an environment variable, where it can be used for Java configuration

2. Configure the Kafka client with the following properties:

A security protocol option:

security.protocol: SSL when using TLS for encryption (with or without mTLS
authentication).

security.protocol: SASL_SSL when using SCRAM-SHA authentication over TLS.

kind: Pod
apiVersion: v1
metadata:
 name: client-pod
spec:
 containers:
 - name: client-name
 image: client-name
 volumeMounts:
 - name: secret-volume
 mountPath: /data/p12
 env:
 - name: SECRET_PASSWORD
 valueFrom:
 secretKeyRef:
 name: my-secret
 key: my-password
 volumes:
 - name: secret-volume
 secret:
 secretName: my-cluster-cluster-ca-cert

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

314

ssl.truststore.location with the truststore location where the certificates were imported.

ssl.truststore.password with the password for accessing the truststore.

ssl.truststore.type=PKCS12 to identify the truststore type.

Using PEM format (.crt)

1. Mount the cluster Secret as a volume when defining the client pod.
For example:

2. Use the extracted certificate to configure a TLS connection in clients that use certificates in
X.509 format.

15.5. CONFIGURING EXTERNAL CLIENTS TO TRUST THE CLUSTER CA

This procedure describes how to configure a Kafka client that resides outside the OpenShift cluster –
connecting to an external listener – to trust the cluster CA certificate. Follow this procedure when
setting up the client and during the renewal period, when the old clients CA certificate is replaced.

Follow the steps to configure trust certificates that are signed by the cluster CA for Java-based Kafka
Producer, Consumer, and Streams APIs.

Choose the steps to follow according to the certificate format of the cluster CA: PKCS #12 (.p12) or
PEM (.crt).

The steps describe how to obtain the certificate from the Cluster Secret that verifies the identity of the
Kafka cluster.

IMPORTANT

The <cluster_name>-cluster-ca-cert secret contains more than one CA certificate
during the CA certificate renewal period. Clients must add all of them to their truststores.

Prerequisites

The Cluster Operator must be running.

There needs to be a Kafka resource within the OpenShift cluster.

kind: Pod
apiVersion: v1
metadata:
 name: client-pod
spec:
 containers:
 - name: client-name
 image: client-name
 volumeMounts:
 - name: secret-volume
 mountPath: /data/crt
 volumes:
 - name: secret-volume
 secret:
 secretName: my-cluster-cluster-ca-cert

CHAPTER 15. MANAGING TLS CERTIFICATES

315

You need a Kafka client application outside the OpenShift cluster that will connect using TLS,
and needs to trust the cluster CA certificate.

Using PKCS #12 format (.p12)

1. Extract the cluster CA certificate and password from the <cluster_name>-cluster-ca-cert
Secret of the Kafka cluster.

Replace <cluster_name> with the name of the Kafka cluster.

2. Configure the Kafka client with the following properties:

A security protocol option:

security.protocol: SSL when using TLS.

security.protocol: SASL_SSL when using SCRAM-SHA authentication over TLS.

ssl.truststore.location with the truststore location where the certificates were imported.

ssl.truststore.password with the password for accessing the truststore. This property can
be omitted if it is not needed by the truststore.

ssl.truststore.type=PKCS12 to identify the truststore type.

Using PEM format (.crt)

1. Extract the cluster CA certificate from the <cluster_name>-cluster-ca-cert secret of the Kafka
cluster.

2. Use the extracted certificate to configure a TLS connection in clients that use certificates in
X.509 format.

15.6. USING YOUR OWN CA CERTIFICATES AND PRIVATE KEYS

Install and use your own CA certificates and private keys instead of using the defaults generated by the
Cluster Operator. You can replace the cluster and clients CA certificates and private keys.

You can switch to using your own CA certificates and private keys in the following ways:

Install your own CA certificates and private keys before deploying your Kafka cluster

Replace the default CA certificates and private keys with your own after deploying a Kafka
cluster

The steps to replace the default CA certificates and private keys after deploying a Kafka cluster are the
same as those used to renew your own CA certificates and private keys.

oc get secret <cluster_name>-cluster-ca-cert -o jsonpath='{.data.ca\.p12}' | base64 -d >
ca.p12

oc get secret <cluster_name>-cluster-ca-cert -o jsonpath='{.data.ca\.password}' | base64 -d >
ca.password

oc get secret <cluster_name>-cluster-ca-cert -o jsonpath='{.data.ca\.crt}' | base64 -d > ca.crt

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

316

If you use your own certificates, they won’t be renewed automatically. You need to renew the CA
certificates and private keys before they expire.

Renewal options:

Renew the CA certificates only

Renew CA certificates and private keys (or replace the defaults)

15.6.1. Installing your own CA certificates and private keys

Install your own CA certificates and private keys instead of using the cluster and clients CA certificates
and private keys generated by the Cluster Operator.

By default, AMQ Streams uses the following cluster CA and clients CA secrets , which are renewed
automatically.

Cluster CA secrets

<cluster_name>-cluster-ca

<cluster_name>-cluster-ca-cert

Clients CA secrets

<cluster_name>-clients-ca

<cluster_name>-clients-ca-cert

To install your own certificates, use the same names.

Prerequisites

The Cluster Operator is running.

A Kafka cluster is not yet deployed.
If you have already deployed a Kafka cluster, you can replace the default CA certificates with
your own.

Your own X.509 certificates and keys in PEM format for the cluster CA or clients CA.

If you want to use a cluster or clients CA which is not a Root CA, you have to include the
whole chain in the certificate file. The chain should be in the following order:

1. The cluster or clients CA

2. One or more intermediate CAs

3. The root CA

All CAs in the chain should be configured using the X509v3 Basic Constraints extension.
Basic Constraints limit the path length of a certificate chain.

The OpenSSL TLS management tool for converting certificates.

Before you begin

The Cluster Operator generates keys and certificates in PEM (Privacy Enhanced Mail) and PKCS #12

CHAPTER 15. MANAGING TLS CERTIFICATES

317

The Cluster Operator generates keys and certificates in PEM (Privacy Enhanced Mail) and PKCS #12
(Public-Key Cryptography Standards) formats. You can add your own certificates in either format.

Some applications cannot use PEM certificates and support only PKCS #12 certificates. If you don’t
have a cluster certificate in PKCS #12 format, use the OpenSSL TLS management tool to generate one
from your ca.crt file.

Example certificate generation command

Replace <P12_password> with your own password.

Procedure

1. Create a new secret that contains the CA certificate.

Client secret creation with a certificate in PEM format only

Cluster secret creation with certificates in PEM and PKCS #12 format

Replace <cluster_name> with the name of your Kafka cluster.

2. Create a new secret that contains the private key.

3. Label the secrets.

Label strimzi.io/kind=Kafka identifies the Kafka custom resource.

Label strimzi.io/cluster=<cluster_name> identifies the Kafka cluster.

4. Annotate the secrets

openssl pkcs12 -export -in ca.crt -nokeys -out ca.p12 -password pass:<P12_password> -caname
ca.crt

oc create secret generic <cluster_name>-clients-ca-cert --from-file=ca.crt=ca.crt

oc create secret generic <cluster_name>-cluster-ca-cert \
 --from-file=ca.crt=ca.crt \
 --from-file=ca.p12=ca.p12 \
 --from-literal=ca.password=P12-PASSWORD

oc create secret generic CA-KEY-SECRET --from-file=ca.key=ca.key

oc label secret CA-CERTIFICATE-SECRET strimzi.io/kind=Kafka
strimzi.io/cluster=<cluster_name>

oc label secret CA-KEY-SECRET strimzi.io/kind=Kafka strimzi.io/cluster=<cluster_name>

oc annotate secret CA-CERTIFICATE-SECRET strimzi.io/ca-cert-generation=CA-
CERTIFICATE-GENERATION

oc annotate secret CA-KEY-SECRET strimzi.io/ca-key-generation=CA-KEY-GENERATION

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

318

Annotation strimzi.io/ca-cert-generation=CA-CERTIFICATE-GENERATION defines the
generation of a new CA certificate.

Annotation strimzi.io/ca-key-generation=CA-KEY-GENERATION defines the generation
of a new CA key.
Start from 0 (zero) as the incremental value (strimzi.io/ca-cert-generation=0) for your own
CA certificate. Set a higher incremental value when you renew the certificates.

5. Create the Kafka resource for your cluster, configuring either the Kafka.spec.clusterCa or the
Kafka.spec.clientsCa object to not use generated CAs.

Example fragment Kafka resource configuring the cluster CA to use certificates you
supply for yourself

Additional resources

Section 15.6.2, “Renewing your own CA certificates”

Section 15.6.3, “Renewing or replacing CA certificates and private keys with your own”

Section 14.3.4, “Providing your own Kafka listener certificates for TLS encryption”

15.6.2. Renewing your own CA certificates

If you are using your own CA certificates, you need to renew them manually. The Cluster Operator will
not renew them automatically. Renew the CA certificates in the renewal period before they expire.

Perform the steps in this procedure when you are renewing CA certificates and continuing with the same
private key. If you are renewing your own CA certificates and private keys, see Section 15.6.3, “Renewing
or replacing CA certificates and private keys with your own”.

The procedure describes the renewal of CA certificates in PEM format.

Prerequisites

The Cluster Operator is running.

You have new cluster or clients X.509 certificates in PEM format.

Procedure

1. Update the Secret for the CA certificate.
Edit the existing secret to add the new CA certificate and update the certificate generation
annotation value.

<ca_certificate_secret_name> is the name of the Secret, which is <kafka_cluster_name>-

kind: Kafka
version: kafka.strimzi.io/v1beta2
spec:
 # ...
 clusterCa:
 generateCertificateAuthority: false

oc edit secret <ca_certificate_secret_name>

CHAPTER 15. MANAGING TLS CERTIFICATES

319

1

2

<ca_certificate_secret_name> is the name of the Secret, which is <kafka_cluster_name>-
cluster-ca-cert for the cluster CA certificate and <kafka_cluster_name>-clients-ca-cert for
the clients CA certificate.

The following example shows a secret for a cluster CA certificate that’s associated with a Kafka
cluster named my-cluster.

Example secret configuration for a cluster CA certificate

Current base64-encoded CA certificate

Current CA certificate generation annotation value

2. Encode your new CA certificate into base64.

3. Update the CA certificate.
Copy the base64-encoded CA certificate from the previous step as the value for the ca.crt
property under data.

4. Increase the value of the CA certificate generation annotation.
Update the strimzi.io/ca-cert-generation annotation with a higher incremental value. For
example, change strimzi.io/ca-cert-generation=0 to strimzi.io/ca-cert-generation=1. If the
Secret is missing the annotation, the value is treated as 0, so add the annotation with a value of
1.

When AMQ Streams generates certificates, the certificate generation annotation is
automatically incremented by the Cluster Operator. For your own CA certificates, set the
annotations with a higher incremental value. The annotation needs a higher value than the one
from the current secret so that the Cluster Operator can roll the pods and update the
certificates. The strimzi.io/ca-cert-generation has to be incremented on each CA certificate
renewal.

5. Save the secret with the new CA certificate and certificate generation annotation value.

Example secret configuration updated with a new CA certificate

apiVersion: v1
kind: Secret
data:
 ca.crt: LS0tLS1CRUdJTiBDRVJUSUZJQ0F... 1
metadata:
 annotations:
 strimzi.io/ca-cert-generation: "0" 2
 labels:
 strimzi.io/cluster: my-cluster
 strimzi.io/kind: Kafka
 name: my-cluster-cluster-ca-cert
 #...
type: Opaque

cat <path_to_new_certificate> | base64

apiVersion: v1
kind: Secret

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

320

1

2

New base64-encoded CA certificate

New CA certificate generation annotation value

On the next reconciliation, the Cluster Operator performs a rolling update of ZooKeeper, Kafka, and
other components to trust the new CA certificate.

If maintenance time windows are configured, the Cluster Operator will roll the pods at the first
reconciliation within the next maintenance time window.

15.6.3. Renewing or replacing CA certificates and private keys with your own

If you are using your own CA certificates and private keys, you need to renew them manually. The Cluster
Operator will not renew them automatically. Renew the CA certificates in the renewal period before they
expire. You can also use the same procedure to replace the CA certificates and private keys generated
by the AMQ Streams operators with your own.

Perform the steps in this procedure when you are renewing or replacing CA certificates and private keys.
If you are only renewing your own CA certificates, see Section 15.6.2, “Renewing your own CA
certificates”.

The procedure describes the renewal of CA certificates and private keys in PEM format.

Before going through the following steps, make sure that the CN (Common Name) of the new CA
certificate is different from the current one. For example, when the Cluster Operator renews certificates
automatically it adds a v<version_number> suffix to identify a version. Do the same with your own CA
certificate by adding a different suffix on each renewal. By using a different key to generate a new CA
certificate, you retain the current CA certificate stored in the Secret.

Prerequisites

The Cluster Operator is running.

You have new cluster or clients X.509 certificates and keys in PEM format.

Procedure

1. Pause the reconciliation of the Kafka custom resource.

a. Annotate the custom resource in OpenShift, setting the pause-reconciliation annotation
to true:

data:
 ca.crt: GCa6LS3RTHeKFiFDGBOUDYFAZ0F... 1
metadata:
 annotations:
 strimzi.io/ca-cert-generation: "1" 2
 labels:
 strimzi.io/cluster: my-cluster
 strimzi.io/kind: Kafka
 name: my-cluster-cluster-ca-cert
 #...
type: Opaque

CHAPTER 15. MANAGING TLS CERTIFICATES

321

1

2

For example, for a Kafka custom resource named my-cluster:

b. Check that the status conditions of the custom resource show a change to
ReconciliationPaused:

The type condition changes to ReconciliationPaused at the lastTransitionTime.

2. Update the Secret for the CA certificate.

a. Edit the existing secret to add the new CA certificate and update the certificate generation
annotation value.

<ca_certificate_secret_name> is the name of the Secret, which is KAFKA-CLUSTER-NAME-
cluster-ca-cert for the cluster CA certificate and KAFKA-CLUSTER-NAME-clients-ca-
cert for the clients CA certificate.

The following example shows a secret for a cluster CA certificate that’s associated with a
Kafka cluster named my-cluster.

Example secret configuration for a cluster CA certificate

Current base64-encoded CA certificate

Current CA certificate generation annotation value

b. Rename the current CA certificate to retain it.
Rename the current ca.crt property under data as ca-<date>.crt, where <date> is the
certificate expiry date in the format YEAR-MONTH-DAYTHOUR-MINUTE-SECONDZ. For
example ca-2023-01-26T17-32-00Z.crt:. Leave the value for the property as it is to retain
the current CA certificate.

oc annotate Kafka <name_of_custom_resource> strimzi.io/pause-reconciliation="true"

oc annotate Kafka my-cluster strimzi.io/pause-reconciliation="true"

oc describe Kafka <name_of_custom_resource>

oc edit secret <ca_certificate_secret_name>

apiVersion: v1
kind: Secret
data:
 ca.crt: LS0tLS1CRUdJTiBDRVJUSUZJQ0F... 1
metadata:
 annotations:
 strimzi.io/ca-cert-generation: "0" 2
 labels:
 strimzi.io/cluster: my-cluster
 strimzi.io/kind: Kafka
 name: my-cluster-cluster-ca-cert
 #...
type: Opaque

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

322

1

2

3

c. Encode your new CA certificate into base64.

d. Update the CA certificate.
Create a new ca.crt property under data and copy the base64-encoded CA certificate from
the previous step as the value for ca.crt property.

e. Increase the value of the CA certificate generation annotation.
Update the strimzi.io/ca-cert-generation annotation with a higher incremental value. For
example, change strimzi.io/ca-cert-generation=0 to strimzi.io/ca-cert-generation=1. If
the Secret is missing the annotation, the value is treated as 0, so add the annotation with a
value of 1.

When AMQ Streams generates certificates, the certificate generation annotation is
automatically incremented by the Cluster Operator. For your own CA certificates, set the
annotations with a higher incremental value. The annotation needs a higher value than the
one from the current secret so that the Cluster Operator can roll the pods and update the
certificates. The strimzi.io/ca-cert-generation has to be incremented on each CA
certificate renewal.

f. Save the secret with the new CA certificate and certificate generation annotation value.

Example secret configuration updated with a new CA certificate

New base64-encoded CA certificate

Old base64-encoded CA certificate

New CA certificate generation annotation value

3. Update the Secret for the CA key used to sign your new CA certificate.

a. Edit the existing secret to add the new CA key and update the key generation annotation
value.

<ca_key_name> is the name of CA key, which is <kafka_cluster_name>-cluster-ca for the

cat <path_to_new_certificate> | base64

apiVersion: v1
kind: Secret
data:
 ca.crt: GCa6LS3RTHeKFiFDGBOUDYFAZ0F... 1
 ca-2023-01-26T17-32-00Z.crt: LS0tLS1CRUdJTiBDRVJUSUZJQ0F... 2
metadata:
 annotations:
 strimzi.io/ca-cert-generation: "1" 3
 labels:
 strimzi.io/cluster: my-cluster
 strimzi.io/kind: Kafka
 name: my-cluster-cluster-ca-cert
 #...
type: Opaque

oc edit secret <ca_key_name>

CHAPTER 15. MANAGING TLS CERTIFICATES

323

1

2

<ca_key_name> is the name of CA key, which is <kafka_cluster_name>-cluster-ca for the
cluster CA key and <kafka_cluster_name>-clients-ca for the clients CA key.

The following example shows a secret for a cluster CA key that’s associated with a Kafka
cluster named my-cluster.

Example secret configuration for a cluster CA key

Current base64-encoded CA key

Current CA key generation annotation value

b. Encode the CA key into base64.

c. Update the CA key.
Copy the base64-encoded CA key from the previous step as the value for the ca.key
property under data.

d. Increase the value of the CA key generation annotation.
Update the strimzi.io/ca-key-generation annotation with a higher incremental value. For
example, change strimzi.io/ca-key-generation=0 to strimzi.io/ca-key-generation=1. If the
Secret is missing the annotation, it is treated as 0, so add the annotation with a value of 1.

When AMQ Streams generates certificates, the key generation annotation is automatically
incremented by the Cluster Operator. For your own CA certificates together with a new CA
key, set the annotation with a higher incremental value. The annotation needs a higher value
than the one from the current secret so that the Cluster Operator can roll the pods and
update the certificates and keys. The strimzi.io/ca-key-generation has to be incremented
on each CA certificate renewal.

4. Save the secret with the new CA key and key generation annotation value.

Example secret configuration updated with a new CA key

apiVersion: v1
kind: Secret
data:
 ca.key: SA1cKF1GFDzOIiPOIUQBHDNFGDFS... 1
metadata:
 annotations:
 strimzi.io/ca-key-generation: "0" 2
 labels:
 strimzi.io/cluster: my-cluster
 strimzi.io/kind: Kafka
 name: my-cluster-cluster-ca
 #...
type: Opaque

cat <path_to_new_key> | base64

apiVersion: v1
kind: Secret
data:
 ca.key: AB0cKF1GFDzOIiPOIUQWERZJQ0F... 1

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

324

1

2

New base64-encoded CA key

New CA key generation annotation value

5. Resume from the pause.
To resume the Kafka custom resource reconciliation, set the pause-reconciliation annotation
to false.

You can also do the same by removing the pause-reconciliation annotation.

On the next reconciliation, the Cluster Operator performs a rolling update of ZooKeeper, Kafka,
and other components to trust the new CA certificate. When the rolling update is complete, the
Cluster Operator will start a new one to generate new server certificates signed by the new CA
key.

If maintenance time windows are configured, the Cluster Operator will roll the pods at the first
reconciliation within the next maintenance time window.

6. Wait until the rolling updates to move to the new CA certificate are complete.

7. Remove any outdated certificates from the secret configuration to ensure that the cluster no
longer trusts them.

Example secret configuration with the old certificate removed

metadata:
 annotations:
 strimzi.io/ca-key-generation: "1" 2
 labels:
 strimzi.io/cluster: my-cluster
 strimzi.io/kind: Kafka
 name: my-cluster-cluster-ca
 #...
type: Opaque

oc annotate --overwrite Kafka <name_of_custom_resource> strimzi.io/pause-
reconciliation="false"

oc annotate Kafka <name_of_custom_resource> strimzi.io/pause-reconciliation-

oc edit secret <ca_certificate_secret_name>

apiVersion: v1
kind: Secret
data:
 ca.crt: GCa6LS3RTHeKFiFDGBOUDYFAZ0F...
metadata:
 annotations:
 strimzi.io/ca-cert-generation: "1"
 labels:
 strimzi.io/cluster: my-cluster
 strimzi.io/kind: Kafka

CHAPTER 15. MANAGING TLS CERTIFICATES

325

8. Start a manual rolling update of your cluster to pick up the changes made to the secret
configuration.
See Section 27.9, “Starting rolling updates of Kafka and ZooKeeper clusters using annotations” .

 name: my-cluster-cluster-ca-cert
 #...
type: Opaque

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

326

CHAPTER 16. APPLYING SECURITY CONTEXT TO AMQ
STREAMS PODS AND CONTAINERS

Security context defines constraints on pods and containers. By specifying a security context, pods and
containers only have the permissions they need. For example, permissions can control runtime
operations or access to resources.

16.1. HANDLING OF SECURITY CONTEXT BY OPENSHIFT PLATFORM

Handling of security context depends on the tooling of the OpenShift platform you are using.

For example, OpenShift uses built-in security context constraints (SCCs) to control permissions. SCCs
are the settings and strategies that control the security features a pod has access to.

By default, OpenShift injects security context configuration automatically. In most cases, this means you
don’t need to configure security context for the pods and containers created by the Cluster Operator.
Although you can still create and manage your own SCCs.

For more information, see the OpenShift documentation.

CHAPTER 16. APPLYING SECURITY CONTEXT TO AMQ STREAMS PODS AND CONTAINERS

327

https://docs.openshift.com

CHAPTER 17. SCALING CLUSTERS BY ADDING OR REMOVING
BROKERS

Scaling Kafka clusters by adding brokers can increase the performance and reliability of the cluster.
Adding more brokers increases available resources, allowing the cluster to handle larger workloads and
process more messages. It can also improve fault tolerance by providing more replicas and backups.
Conversely, removing underutilized brokers can reduce resource consumption and improve efficiency.
Scaling must be done carefully to avoid disruption or data loss. By redistributing partitions across all
brokers in the cluster, the resource utilization of each broker is reduced, which can increase the overall
throughput of the cluster.

NOTE

To increase the throughput of a Kafka topic, you can increase the number of partitions for
that topic. This allows the load of the topic to be shared between different brokers in the
cluster. However, if every broker is constrained by a specific resource (such as I/O),
adding more partitions will not increase the throughput. In this case, you need to add
more brokers to the cluster.

Adjusting the Kafka.spec.kafka.replicas configuration affects the number of brokers in the cluster that
act as replicas. The actual replication factor for topics is determined by settings for the
default.replication.factor and min.insync.replicas, and the number of available brokers. For example,
a replication factor of 3 means that each partition of a topic is replicated across three brokers, ensuring
fault tolerance in the event of a broker failure.

Example replica configuration

When adding brokers through the Kafka configuration, node IDs start at 0 (zero) and the Cluster
Operator assigns the next lowest ID to a new node. The broker removal process starts from the broker
pod with the highest ID in the cluster.

If you are managing nodes in the cluster using the the preview of the node pools feature, you adjust the
KafkaNodePool.spec.replicas configuration to change the number of nodes in the node pool.
Additionally, when scaling existing clusters with node pools, you can assign node IDs for the scaling
operations.

When you add add or remove brokers, Kafka does not automatically reassign partitions. The best way to
do this is using Cruise Control. You can use Cruise Control’s add-brokers and remove-brokers modes
when scaling a cluster up or down.

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 name: my-cluster
spec:
 kafka:
 replicas: 3
 # ...
 config:
 # ...
 default.replication.factor: 3
 min.insync.replicas: 2
 # ...

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

328

Use the add-brokers mode after scaling up a Kafka cluster to move partition replicas from
existing brokers to the newly added brokers.

Use the remove-brokers mode before scaling down a Kafka cluster to move partition replicas
off the brokers that are going to be removed.

CHAPTER 17. SCALING CLUSTERS BY ADDING OR REMOVING BROKERS

329

CHAPTER 18. REBALANCING CLUSTERS USING CRUISE
CONTROL

Cruise Control is an open source system that supports the following Kafka operations:

Monitoring cluster workload

Rebalancing a cluster based on predefined constraints

The operations help with running a more balanced Kafka cluster that uses broker pods more efficiently.

A typical cluster can become unevenly loaded over time. Partitions that handle large amounts of
message traffic might not be evenly distributed across the available brokers. To rebalance the cluster,
administrators must monitor the load on brokers and manually reassign busy partitions to brokers with
spare capacity.

Cruise Control automates the cluster rebalancing process. It constructs a workload model of resource
utilization for the cluster—​based on CPU, disk, and network load—​and generates optimization proposals
(that you can approve or reject) for more balanced partition assignments. A set of configurable
optimization goals is used to calculate these proposals.

You can generate optimization proposals in specific modes. The default full mode rebalances partitions
across all brokers. You can also use the add-brokers and remove-brokers modes to accommodate
changes when scaling a cluster up or down.

When you approve an optimization proposal, Cruise Control applies it to your Kafka cluster. You
configure and generate optimization proposals using a KafkaRebalance resource. You can configure
the resource using an annotation so that optimization proposals are approved automatically or manually.

NOTE

AMQ Streams provides example configuration files for Cruise Control .

18.1. CRUISE CONTROL COMPONENTS AND FEATURES

Cruise Control consists of four main components—​the Load Monitor, the Analyzer, the Anomaly
Detector, and the Executor—​and a REST API for client interactions. AMQ Streams utilizes the REST API
to support the following Cruise Control features:

Generating optimization proposals from optimization goals.

Rebalancing a Kafka cluster based on an optimization proposal.

Optimization goals

An optimization goal describes a specific objective to achieve from a rebalance. For example, a goal
might be to distribute topic replicas across brokers more evenly. You can change what goals to
include through configuration. A goal is defined as a hard goal or soft goal. You can add hard goals
through Cruise Control deployment configuration. You also have main, default, and user-provided
goals that fit into each of these categories.

Hard goals are preset and must be satisfied for an optimization proposal to be successful.

Soft goals do not need to be satisfied for an optimization proposal to be successful. They
can be set aside if it means that all hard goals are met.

Main goals are inherited from Cruise Control. Some are preset as hard goals. Main goals are

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

330

Main goals are inherited from Cruise Control. Some are preset as hard goals. Main goals are
used in optimization proposals by default.

Default goals are the same as the main goals by default. You can specify your own set of
default goals.

User-provided goals are a subset of default goals that are configured for generating a
specific optimization proposal.

Optimization proposals

Optimization proposals comprise the goals you want to achieve from a rebalance. You generate an
optimization proposal to create a summary of proposed changes and the results that are possible
with the rebalance. The goals are assessed in a specific order of priority. You can then choose to
approve or reject the proposal. You can reject the proposal to run it again with an adjusted set of
goals.
You can generate an optimization proposal in one of three modes.

full is the default mode and runs a full rebalance.

add-brokers is the mode you use after adding brokers when scaling up a Kafka cluster.

remove-brokers is the mode you use before removing brokers when scaling down a Kafka
cluster.

Other Cruise Control features are not currently supported, including self healing, notifications, write-
your-own goals, and changing the topic replication factor.

Additional resources

Cruise Control documentation

18.2. OPTIMIZATION GOALS OVERVIEW

Optimization goals are constraints on workload redistribution and resource utilization across a Kafka
cluster. To rebalance a Kafka cluster, Cruise Control uses optimization goals to generate optimization
proposals, which you can approve or reject.

18.2.1. Goals order of priority

AMQ Streams supports most of the optimization goals developed in the Cruise Control project. The
supported goals, in the default descending order of priority, are as follows:

1. Rack-awareness

2. Minimum number of leader replicas per broker for a set of topics

3. Replica capacity

4. Capacity goals

Disk capacity

Network inbound capacity

CHAPTER 18. REBALANCING CLUSTERS USING CRUISE CONTROL

331

https://github.com/linkedin/cruise-control/wiki/Configurations

Network outbound capacity

CPU capacity

5. Replica distribution

6. Potential network output

7. Resource distribution goals

Disk utilization distribution

Network inbound utilization distribution

Network outbound utilization distribution

CPU utilization distribution

8. Leader bytes-in rate distribution

9. Topic replica distribution

10. Leader replica distribution

11. Preferred leader election

12. Intra-broker disk capacity

13. Intra-broker disk usage distribution

For more information on each optimization goal, see Goals in the Cruise Control Wiki.

NOTE

"Write your own" goals and Kafka assigner goals are not yet supported.

18.2.2. Goals configuration in AMQ Streams custom resources

You configure optimization goals in Kafka and KafkaRebalance custom resources. Cruise Control has
configurations for hard optimization goals that must be satisfied, as well as main, default, and user-
provided optimization goals.

You can specify optimization goals in the following configuration:

Main goals — Kafka.spec.cruiseControl.config.goals

Hard goals — Kafka.spec.cruiseControl.config.hard.goals

Default goals — Kafka.spec.cruiseControl.config.default.goals

User-provided goals — KafkaRebalance.spec.goals

NOTE

Resource distribution goals are subject to capacity limits on broker resources.

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

332

https://github.com/linkedin/cruise-control/wiki/Pluggable-Components#goals
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index#property-cruise-control-broker-capacity-reference

18.2.3. Hard and soft optimization goals

Hard goals are goals that must be satisfied in optimization proposals. Goals that are not configured as
hard goals are known as soft goals. You can think of soft goals as best effort goals: they do not need to
be satisfied in optimization proposals, but are included in optimization calculations. An optimization
proposal that violates one or more soft goals, but satisfies all hard goals, is valid.

Cruise Control will calculate optimization proposals that satisfy all the hard goals and as many soft goals
as possible (in their priority order). An optimization proposal that does not satisfy all the hard goals is
rejected by Cruise Control and not sent to the user for approval.

NOTE

For example, you might have a soft goal to distribute a topic’s replicas evenly across the
cluster (the topic replica distribution goal). Cruise Control will ignore this goal if doing so
enables all the configured hard goals to be met.

In Cruise Control, the following main optimization goals are preset as hard goals:

RackAwareGoal; MinTopicLeadersPerBrokerGoal; ReplicaCapacityGoal; DiskCapacityGoal;
NetworkInboundCapacityGoal; NetworkOutboundCapacityGoal; CpuCapacityGoal

You configure hard goals in the Cruise Control deployment configuration, by editing the hard.goals
property in Kafka.spec.cruiseControl.config.

To inherit the preset hard goals from Cruise Control, do not specify the hard.goals property in
Kafka.spec.cruiseControl.config

To change the preset hard goals, specify the desired goals in the hard.goals property, using
their fully-qualified domain names.

Example Kafka configuration for hard optimization goals

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 name: my-cluster
spec:
 kafka:
 # ...
 zookeeper:
 # ...
 entityOperator:
 topicOperator: {}
 userOperator: {}
 cruiseControl:
 brokerCapacity:
 inboundNetwork: 10000KB/s
 outboundNetwork: 10000KB/s
 config:
 # Note that `default.goals` (superset) must also include all `hard.goals` (subset)
 default.goals: >
 com.linkedin.kafka.cruisecontrol.analyzer.goals.NetworkInboundCapacityGoal,
 com.linkedin.kafka.cruisecontrol.analyzer.goals.NetworkOutboundCapacityGoal
 hard.goals: >

CHAPTER 18. REBALANCING CLUSTERS USING CRUISE CONTROL

333

Increasing the number of configured hard goals will reduce the likelihood of Cruise Control generating
valid optimization proposals.

If skipHardGoalCheck: true is specified in the KafkaRebalance custom resource, Cruise Control does
not check that the list of user-provided optimization goals (in KafkaRebalance.spec.goals) contains all
the configured hard goals (hard.goals). Therefore, if some, but not all, of the user-provided
optimization goals are in the hard.goals list, Cruise Control will still treat them as hard goals even if
skipHardGoalCheck: true is specified.

18.2.4. Main optimization goals

The main optimization goals are available to all users. Goals that are not listed in the main optimization
goals are not available for use in Cruise Control operations.

Unless you change the Cruise Control deployment configuration, AMQ Streams will inherit the following
main optimization goals from Cruise Control, in descending priority order:

RackAwareGoal; ReplicaCapacityGoal; DiskCapacityGoal; NetworkInboundCapacityGoal;
NetworkOutboundCapacityGoal; CpuCapacityGoal; ReplicaDistributionGoal; PotentialNwOutGoal;
DiskUsageDistributionGoal; NetworkInboundUsageDistributionGoal;
NetworkOutboundUsageDistributionGoal; CpuUsageDistributionGoal; TopicReplicaDistributionGoal;
LeaderReplicaDistributionGoal; LeaderBytesInDistributionGoal; PreferredLeaderElectionGoal

Some of these goals are preset as hard goals.

To reduce complexity, we recommend that you use the inherited main optimization goals, unless you
need to completely exclude one or more goals from use in KafkaRebalance resources. The priority
order of the main optimization goals can be modified, if desired, in the configuration for default
optimization goals.

You configure main optimization goals, if necessary, in the Cruise Control deployment configuration:
Kafka.spec.cruiseControl.config.goals

To accept the inherited main optimization goals, do not specify the goals property in
Kafka.spec.cruiseControl.config.

If you need to modify the inherited main optimization goals, specify a list of goals, in descending
priority order, in the goals configuration option.

NOTE

To avoid errors when generating optimization proposals, make sure that any changes you
make to the goals or default.goals in Kafka.spec.cruiseControl.config include all of
the hard goals specified for the hard.goals property. To clarify, the hard goals must also
be specified (as a subset) for the main optimization goals and default goals.

18.2.5. Default optimization goals

Cruise Control uses the default optimization goals to generate the cached optimization proposal . For
more information about the cached optimization proposal, see Section 18.3, “Optimization proposals
overview”.

 com.linkedin.kafka.cruisecontrol.analyzer.goals.NetworkInboundCapacityGoal,
 com.linkedin.kafka.cruisecontrol.analyzer.goals.NetworkOutboundCapacityGoal
 # ...

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

334

You can override the default optimization goals by setting user-provided optimization goals in a
KafkaRebalance custom resource.

Unless you specify default.goals in the Cruise Control deployment configuration, the main optimization
goals are used as the default optimization goals. In this case, the cached optimization proposal is
generated using the main optimization goals.

To use the main optimization goals as the default goals, do not specify the default.goals
property in Kafka.spec.cruiseControl.config.

To modify the default optimization goals, edit the default.goals property in
Kafka.spec.cruiseControl.config. You must use a subset of the main optimization goals.

Example Kafka configuration for default optimization goals

If no default optimization goals are specified, the cached proposal is generated using the main
optimization goals.

18.2.6. User-provided optimization goals

User-provided optimization goals narrow down the configured default goals for a particular optimization
proposal. You can set them, as required, in spec.goals in a KafkaRebalance custom resource:

KafkaRebalance.spec.goals

User-provided optimization goals can generate optimization proposals for different scenarios. For
example, you might want to optimize leader replica distribution across the Kafka cluster without
considering disk capacity or disk utilization. So, you create a KafkaRebalance custom resource
containing a single user-provided goal for leader replica distribution.

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 name: my-cluster
spec:
 kafka:
 # ...
 zookeeper:
 # ...
 entityOperator:
 topicOperator: {}
 userOperator: {}
 cruiseControl:
 brokerCapacity:
 inboundNetwork: 10000KB/s
 outboundNetwork: 10000KB/s
 config:
 # Note that `default.goals` (superset) must also include all `hard.goals` (subset)
 default.goals: >
 com.linkedin.kafka.cruisecontrol.analyzer.goals.RackAwareGoal,
 com.linkedin.kafka.cruisecontrol.analyzer.goals.ReplicaCapacityGoal,
 com.linkedin.kafka.cruisecontrol.analyzer.goals.DiskCapacityGoal
 hard.goals: >
 com.linkedin.kafka.cruisecontrol.analyzer.goals.RackAwareGoal
 # ...

CHAPTER 18. REBALANCING CLUSTERS USING CRUISE CONTROL

335

User-provided optimization goals must:

Include all configured hard goals, or an error occurs

Be a subset of the main optimization goals

To ignore the configured hard goals when generating an optimization proposal, add the
skipHardGoalCheck: true property to the KafkaRebalance custom resource. See Section 18.6,
“Generating optimization proposals”.

Additional resources

Configuring and deploying Cruise Control with Kafka

Configurations in the Cruise Control Wiki.

18.3. OPTIMIZATION PROPOSALS OVERVIEW

Configure a KafkaRebalance resource to generate optimization proposals and apply the suggested
changes. An optimization proposal is a summary of proposed changes that would produce a more
balanced Kafka cluster, with partition workloads distributed more evenly among the brokers.

Each optimization proposal is based on the set of optimization goals that was used to generate it,
subject to any configured capacity limits on broker resources .

All optimization proposals are estimates of the impact of a proposed rebalance. You can approve or
reject a proposal. You cannot approve a cluster rebalance without first generating the optimization
proposal.

You can run optimization proposals in one of the following rebalancing modes:

full

add-brokers

remove-brokers

18.3.1. Rebalancing modes

You specify a rebalancing mode using the spec.mode property of the KafkaRebalance custom
resource.

full

The full mode runs a full rebalance by moving replicas across all the brokers in the cluster. This is the
default mode if the spec.mode property is not defined in the KafkaRebalance custom resource.

add-brokers

The add-brokers mode is used after scaling up a Kafka cluster by adding one or more brokers.
Normally, after scaling up a Kafka cluster, new brokers are used to host only the partitions of newly
created topics. If no new topics are created, the newly added brokers are not used and the existing
brokers remain under the same load. By using the add-brokers mode immediately after adding
brokers to the cluster, the rebalancing operation moves replicas from existing brokers to the newly
added brokers. You specify the new brokers as a list using the spec.brokers property of the
KafkaRebalance custom resource.

remove-brokers

The remove-brokers mode is used before scaling down a Kafka cluster by removing one or more

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

336

https://github.com/linkedin/cruise-control/wiki/Configurations
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index#property-cruise-control-broker-capacity-reference

The remove-brokers mode is used before scaling down a Kafka cluster by removing one or more
brokers. If you scale down a Kafka cluster, brokers are shut down even if they host replicas. This can
lead to under-replicated partitions and possibly result in some partitions being under their minimum
ISR (in-sync replicas). To avoid this potential problem, the remove-brokers mode moves replicas off
the brokers that are going to be removed. When these brokers are not hosting replicas anymore, you
can safely run the scaling down operation. You specify the brokers you’re removing as a list in the
spec.brokers property in the KafkaRebalance custom resource.

In general, use the full rebalance mode to rebalance a Kafka cluster by spreading the load across
brokers. Use the add-brokers and remove-brokers modes only if you want to scale your cluster up or
down and rebalance the replicas accordingly.

The procedure to run a rebalance is actually the same across the three different modes. The only
difference is with specifying a mode through the spec.mode property and, if needed, listing brokers
that have been added or will be removed through the spec.brokers property.

18.3.2. The results of an optimization proposal

When an optimization proposal is generated, a summary and broker load is returned.

Summary

The summary is contained in the KafkaRebalance resource. The summary provides an overview of
the proposed cluster rebalance and indicates the scale of the changes involved. A summary of a
successfully generated optimization proposal is contained in the Status.OptimizationResult
property of the KafkaRebalance resource. The information provided is a summary of the full
optimization proposal.

Broker load

The broker load is stored in a ConfigMap that contains data as a JSON string. The broker load shows
before and after values for the proposed rebalance, so you can see the impact on each of the
brokers in the cluster.

18.3.3. Manually approving or rejecting an optimization proposal

An optimization proposal summary shows the proposed scope of changes.

You can use the name of the KafkaRebalance resource to return a summary from the command line.

Returning an optimization proposal summary

You can also use the jq command line JSON parser tool.

Returning an optimization proposal summary using jq

Use the summary to decide whether to approve or reject an optimization proposal.

Approving an optimization proposal

You approve the optimization proposal by setting the strimzi.io/rebalance annotation of the
KafkaRebalance resource to approve. Cruise Control applies the proposal to the Kafka cluster and
starts a cluster rebalance operation.

oc describe kafkarebalance <kafka_rebalance_resource_name> -n <namespace>

oc get kafkarebalance -o json | jq <jq_query>.

CHAPTER 18. REBALANCING CLUSTERS USING CRUISE CONTROL

337

Rejecting an optimization proposal

If you choose not to approve an optimization proposal, you can change the optimization goals or
update any of the rebalance performance tuning options , and then generate another proposal. You
can generate a new optimization proposal for a KafkaRebalance resource by setting the
strimzi.io/rebalance annotation to refresh.

Use optimization proposals to assess the movements required for a rebalance. For example, a summary
describes inter-broker and intra-broker movements. Inter-broker rebalancing moves data between
separate brokers. Intra-broker rebalancing moves data between disks on the same broker when you are
using a JBOD storage configuration. Such information can be useful even if you don’t go ahead and
approve the proposal.

You might reject an optimization proposal, or delay its approval, because of the additional load on a
Kafka cluster when rebalancing.

In the following example, the proposal suggests the rebalancing of data between separate brokers. The
rebalance involves the movement of 55 partition replicas, totaling 12MB of data, across the brokers.
Though the inter-broker movement of partition replicas has a high impact on performance, the total
amount of data is not large. If the total data was much larger, you could reject the proposal, or time
when to approve the rebalance to limit the impact on the performance of the Kafka cluster.

Rebalance performance tuning options can help reduce the impact of data movement. If you can extend
the rebalance period, you can divide the rebalance into smaller batches. Fewer data movements at a
single time reduces the load on the cluster.

Example optimization proposal summary

The proposal will also move 24 partition leaders to different brokers. This requires a change to the

Name: my-rebalance
Namespace: myproject
Labels: strimzi.io/cluster=my-cluster
Annotations: API Version: kafka.strimzi.io/v1alpha1
Kind: KafkaRebalance
Metadata:
...
Status:
 Conditions:
 Last Transition Time: 2022-04-05T14:36:11.900Z
 Status: ProposalReady
 Type: State
 Observed Generation: 1
 Optimization Result:
 Data To Move MB: 0
 Excluded Brokers For Leadership:
 Excluded Brokers For Replica Move:
 Excluded Topics:
 Intra Broker Data To Move MB: 12
 Monitored Partitions Percentage: 100
 Num Intra Broker Replica Movements: 0
 Num Leader Movements: 24
 Num Replica Movements: 55
 On Demand Balancedness Score After: 82.91290759174306
 On Demand Balancedness Score Before: 78.01176356230222
 Recent Windows: 5
 Session Id: a4f833bd-2055-4213-bfdd-ad21f95bf184

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

338

The proposal will also move 24 partition leaders to different brokers. This requires a change to the
ZooKeeper configuration, which has a low impact on performance.

The balancedness scores are measurements of the overall balance of the Kafka cluster before and after
the optimization proposal is approved. A balancedness score is based on optimization goals. If all goals
are satisfied, the score is 100. The score is reduced for each goal that will not be met. Compare the
balancedness scores to see whether the Kafka cluster is less balanced than it could be following a
rebalance.

18.3.4. Automatically approving an optimization proposal

To save time, you can automate the process of approving optimization proposals. With automation,
when you generate an optimization proposal it goes straight into a cluster rebalance.

To enable the optimization proposal auto-approval mechanism, create the KafkaRebalance resource
with the strimzi.io/rebalance-auto-approval annotation set to true. If the annotation is not set or set to
false, the optimization proposal requires manual approval.

Example rebalance request with auto-approval mechanism enabled

You can still check the status when automatically approving an optimization proposal. The status of the
KafkaRebalance resource moves to Ready when the rebalance is complete.

18.3.5. Optimization proposal summary properties

The following table explains the properties contained in the optimization proposal’s summary section.

Table 18.1. Properties contained in an optimization proposal summary

JSON property Description

numIntraBrokerReplicaMovem
ents

The total number of partition replicas that will be transferred between
the disks of the cluster’s brokers.

Performance impact during rebalance operation: Relatively high, but
lower than numReplicaMovements.

excludedBrokersForLeadershi
p

Not yet supported. An empty list is returned.

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaRebalance
metadata:
 name: my-rebalance
 labels:
 strimzi.io/cluster: my-cluster
 annotations:
 strimzi.io/rebalance-auto-approval: "true"
spec:
 mode: # any mode
 # ...

CHAPTER 18. REBALANCING CLUSTERS USING CRUISE CONTROL

339

numReplicaMovements The number of partition replicas that will be moved between separate
brokers.

Performance impact during rebalance operation: Relatively high.

onDemandBalancednessScore
Before,
onDemandBalancednessScore
After

A measurement of the overall balancedness of a Kafka Cluster, before
and after the optimization proposal was generated.

The score is calculated by subtracting the sum of the
BalancednessScore of each violated soft goal from 100. Cruise
Control assigns a BalancednessScore to every optimization goal
based on several factors, including priority—​the goal’s position in the
list of default.goals or user-provided goals.

The Before score is based on the current configuration of the Kafka
cluster. The After score is based on the generated optimization
proposal.

intraBrokerDataToMoveMB The sum of the size of each partition replica that will be moved
between disks on the same broker (see also
numIntraBrokerReplicaMovements).

Performance impact during rebalance operation: Variable. The
larger the number, the longer the cluster rebalance will take to
complete. Moving a large amount of data between disks on the same
broker has less impact than between separate brokers (see
dataToMoveMB).

recentWindows The number of metrics windows upon which the optimization proposal
is based.

dataToMoveMB The sum of the size of each partition replica that will be moved to a
separate broker (see also numReplicaMovements).

Performance impact during rebalance operation: Variable. The
larger the number, the longer the cluster rebalance will take to
complete.

monitoredPartitionsPercentag
e

The percentage of partitions in the Kafka cluster covered by the
optimization proposal. Affected by the number of excludedTopics.

excludedTopics If you specified a regular expression in the
spec.excludedTopicsRegex property in the KafkaRebalance
resource, all topic names matching that expression are listed here.
These topics are excluded from the calculation of partition
replica/leader movements in the optimization proposal.

numLeaderMovements The number of partitions whose leaders will be switched to different
replicas. This involves a change to ZooKeeper configuration.

Performance impact during rebalance operation: Relatively low.

JSON property Description

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

340

excludedBrokersForReplicaM
ove

Not yet supported. An empty list is returned.

JSON property Description

18.3.6. Broker load properties

The broker load is stored in a ConfigMap (with the same name as the KafkaRebalance custom resource)
as a JSON formatted string. This JSON string consists of a JSON object with keys for each broker IDs
linking to a number of metrics for each broker. Each metric consist of three values. The first is the metric
value before the optimization proposal is applied, the second is the expected value of the metric after
the proposal is applied, and the third is the difference between the first two values (after minus before).

NOTE

The ConfigMap appears when the KafkaRebalance resource is in the ProposalReady
state and remains after the rebalance is complete.

You can use the name of the ConfigMap to view its data from the command line.

Returning ConfigMap data

You can also use the jq command line JSON parser tool to extract the JSON string from the
ConfigMap.

Extracting the JSON string from the ConfigMap using jq

The following table explains the properties contained in the optimization proposal’s broker load
ConfigMap:

JSON property Description

leaders The number of replicas on this broker that are partition leaders.

replicas The number of replicas on this broker.

cpuPercentage The CPU utilization as a percentage of the defined capacity.

diskUsedPercentage The disk utilization as a percentage of the defined capacity.

diskUsedMB The absolute disk usage in MB.

networkOutRate The total network output rate for the broker.

oc describe configmaps <my_rebalance_configmap_name> -n <namespace>

oc get configmaps <my_rebalance_configmap_name> -o json | jq '.["data"]
["brokerLoad.json"]|fromjson|.'

CHAPTER 18. REBALANCING CLUSTERS USING CRUISE CONTROL

341

leaderNetworkInRate The network input rate for all partition leader replicas on this broker.

followerNetworkInRate The network input rate for all follower replicas on this broker.

potentialMaxNetworkOutRate The hypothetical maximum network output rate that would be realized
if this broker became the leader of all the replicas it currently hosts.

JSON property Description

18.3.7. Cached optimization proposal

Cruise Control maintains a cached optimization proposal based on the configured default optimization
goals. Generated from the workload model, the cached optimization proposal is updated every 15
minutes to reflect the current state of the Kafka cluster. If you generate an optimization proposal using
the default optimization goals, Cruise Control returns the most recent cached proposal.

To change the cached optimization proposal refresh interval, edit the proposal.expiration.ms setting
in the Cruise Control deployment configuration. Consider a shorter interval for fast changing clusters,
although this increases the load on the Cruise Control server.

Additional resources

Section 18.2, “Optimization goals overview”

Section 18.6, “Generating optimization proposals”

Section 18.7, “Approving an optimization proposal”

18.4. REBALANCE PERFORMANCE TUNING OVERVIEW

You can adjust several performance tuning options for cluster rebalances. These options control how
partition replica and leadership movements in a rebalance are executed, as well as the bandwidth that is
allocated to a rebalance operation.

18.4.1. Partition reassignment commands

Optimization proposals are comprised of separate partition reassignment commands. When you
approve a proposal, the Cruise Control server applies these commands to the Kafka cluster.

A partition reassignment command consists of either of the following types of operations:

Partition movement: Involves transferring the partition replica and its data to a new location.
Partition movements can take one of two forms:

Inter-broker movement: The partition replica is moved to a log directory on a different
broker.

Intra-broker movement: The partition replica is moved to a different log directory on the
same broker.

Leadership movement: This involves switching the leader of the partition’s replicas.

Cruise Control issues partition reassignment commands to the Kafka cluster in batches. The

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

342

Cruise Control issues partition reassignment commands to the Kafka cluster in batches. The
performance of the cluster during the rebalance is affected by the number of each type of movement
contained in each batch.

18.4.2. Replica movement strategies

Cluster rebalance performance is also influenced by the replica movement strategy that is applied to the
batches of partition reassignment commands. By default, Cruise Control uses the
BaseReplicaMovementStrategy, which simply applies the commands in the order they were generated.
However, if there are some very large partition reassignments early in the proposal, this strategy can
slow down the application of the other reassignments.

Cruise Control provides four alternative replica movement strategies that can be applied to
optimization proposals:

PrioritizeSmallReplicaMovementStrategy: Order reassignments in order of ascending size.

PrioritizeLargeReplicaMovementStrategy: Order reassignments in order of descending size.

PostponeUrpReplicaMovementStrategy: Prioritize reassignments for replicas of partitions
which have no out-of-sync replicas.

PrioritizeMinIsrWithOfflineReplicasStrategy: Prioritize reassignments with (At/Under)MinISR
partitions with offline replicas. This strategy will only work if
cruiseControl.config.concurrency.adjuster.min.isr.check.enabled is set to true in the Kafka
custom resource’s spec.

These strategies can be configured as a sequence. The first strategy attempts to compare two partition
reassignments using its internal logic. If the reassignments are equivalent, then it passes them to the
next strategy in the sequence to decide the order, and so on.

18.4.3. Intra-broker disk balancing

Moving a large amount of data between disks on the same broker has less impact than between
separate brokers. If you are running a Kafka deployment that uses JBOD storage with multiple disks on
the same broker, Cruise Control can balance partitions between the disks.

NOTE

If you are using JBOD storage with a single disk, intra-broker disk balancing will result in a
proposal with 0 partition movements since there are no disks to balance between.

To perform an intra-broker disk balance, set rebalanceDisk to true under the KafkaRebalance.spec.
When setting rebalanceDisk to true, do not set a goals field in the KafkaRebalance.spec, as Cruise
Control will automatically set the intra-broker goals and ignore the inter-broker goals. Cruise Control
does not perform inter-broker and intra-broker balancing at the same time.

18.4.4. Rebalance tuning options

Cruise Control provides several configuration options for tuning the rebalance parameters discussed
above. You can set these tuning options when configuring and deploying Cruise Control with Kafka or
optimization proposal levels:

The Cruise Control server setting can be set in the Kafka custom resource under
Kafka.spec.cruiseControl.config.

CHAPTER 18. REBALANCING CLUSTERS USING CRUISE CONTROL

343

The individual rebalance performance configurations can be set under KafkaRebalance.spec.

The relevant configurations are summarized in the following table.

Table 18.2. Rebalance performance tuning configuration

Cruise Control properties KafkaRebalance properties Defau
lt

Description

num.concurrent.partition.move
ments.per.broker

concurrentPartitionMovements
PerBroker

5 The maximum
number of inter-
broker partition
movements in
each partition
reassignment
batch

num.concurrent.intra.broker.par
tition.movements

concurrentIntraBrokerPartition
Movements

2 The maximum
number of intra-
broker partition
movements in
each partition
reassignment
batch

num.concurrent.leader.moveme
nts

concurrentLeaderMovements 1000 The maximum
number of
partition
leadership
changes in each
partition
reassignment
batch

default.replication.throttle replicationThrottle Null
(no
limit)

The bandwidth
(in bytes per
second) to
assign to
partition
reassignment

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

344

default.replica.movement.strate
gies

replicaMovementStrategies Base
Repli
caMo
veme
ntStr
ategy

The list of
strategies (in
priority order)
used to
determine the
order in which
partition
reassignment
commands are
executed for
generated
proposals. For
the server
setting, use a
comma
separated string
with the fully
qualified names
of the strategy
class (add
com.linkedin.
kafka.cruisec
ontrol.execut
or.strategy. to
the start of each
class name). For
the
KafkaRebalan
ce resource
setting use a
YAML array of
strategy class
names.

- rebalanceDisk false Enables intra-
broker disk
balancing, which
balances disk
space utilization
between disks
on the same
broker. Only
applies to Kafka
deployments
that use JBOD
storage with
multiple disks.

Cruise Control properties KafkaRebalance properties Defau
lt

Description

Changing the default settings affects the length of time that the rebalance takes to complete, as well as

CHAPTER 18. REBALANCING CLUSTERS USING CRUISE CONTROL

345

Changing the default settings affects the length of time that the rebalance takes to complete, as well as
the load placed on the Kafka cluster during the rebalance. Using lower values reduces the load but
increases the amount of time taken, and vice versa.

Additional resources

CruiseControlSpec schema reference

KafkaRebalanceSpec schema reference

18.5. CONFIGURING AND DEPLOYING CRUISE CONTROL WITH KAFKA

Configure a Kafka resource to deploy Cruise Control alongside a Kafka cluster. You can use the
cruiseControl properties of the Kafka resource to configure the deployment. Deploy one instance of
Cruise Control per Kafka cluster.

Use goals configuration in the Cruise Control config to specify optimization goals for generating
optimization proposals. You can use brokerCapacity to change the default capacity limits for goals
related to resource distribution. If brokers are running on nodes with heterogeneous network resources,
you can use overrides to set network capacity limits for each broker.

If an empty object ({}) is used for the cruiseControl configuration, all properties use their default
values.

For more information on the configuration options for Cruise Control, see the AMQ Streams Custom
Resource API Reference.

Prerequisites

An OpenShift cluster

A running Cluster Operator

Procedure

1. Edit the cruiseControl property for the Kafka resource.
The properties you can configure are shown in this example configuration:

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 name: my-cluster
spec:
 # ...
 cruiseControl:
 brokerCapacity: 1
 inboundNetwork: 10000KB/s
 outboundNetwork: 10000KB/s
 overrides: 2
 - brokers: [0]
 inboundNetwork: 20000KiB/s
 outboundNetwork: 20000KiB/s
 - brokers: [1, 2]
 inboundNetwork: 30000KiB/s
 outboundNetwork: 30000KiB/s

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

346

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index#type-CruiseControlSpec-reference
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index#type-KafkaRebalanceSpec-reference
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index

1

2

Capacity limits for broker resources.

Overrides set network capacity limits for specific brokers when running on nodes with
heterogeneous network resources.

 # ...
 config: 3
 # Note that `default.goals` (superset) must also include all `hard.goals` (subset)
 default.goals: > 4
 com.linkedin.kafka.cruisecontrol.analyzer.goals.RackAwareGoal,
 com.linkedin.kafka.cruisecontrol.analyzer.goals.ReplicaCapacityGoal,
 com.linkedin.kafka.cruisecontrol.analyzer.goals.DiskCapacityGoal
 # ...
 hard.goals: >
 com.linkedin.kafka.cruisecontrol.analyzer.goals.RackAwareGoal
 # ...
 cpu.balance.threshold: 1.1
 metadata.max.age.ms: 300000
 send.buffer.bytes: 131072
 webserver.http.cors.enabled: true 5
 webserver.http.cors.origin: "*"
 webserver.http.cors.exposeheaders: "User-Task-ID,Content-Type"
 # ...
 resources: 6
 requests:
 cpu: 1
 memory: 512Mi
 limits:
 cpu: 2
 memory: 2Gi
 logging: 7
 type: inline
 loggers:
 rootLogger.level: INFO
 template: 8
 pod:
 metadata:
 labels:
 label1: value1
 securityContext:
 runAsUser: 1000001
 fsGroup: 0
 terminationGracePeriodSeconds: 120
 readinessProbe: 9
 initialDelaySeconds: 15
 timeoutSeconds: 5
 livenessProbe:
 initialDelaySeconds: 15
 timeoutSeconds: 5
 metricsConfig: 10
 type: jmxPrometheusExporter
 valueFrom:
 configMapKeyRef:
 name: cruise-control-metrics
 key: metrics-config.yml
...

CHAPTER 18. REBALANCING CLUSTERS USING CRUISE CONTROL

347

3

4

5

6

7

8

9

10

heterogeneous network resources.

Cruise Control configuration. Standard Cruise Control configuration may be provided,
restricted to those properties not managed directly by AMQ Streams.

Optimization goals configuration, which can include configuration for default optimization
goals (default.goals), main optimization goals (goals), and hard goals (hard.goals).

CORS enabled and configured for read-only access to the Cruise Control API.

Requests for reservation of supported resources, currently cpu and memory, and limits to
specify the maximum resources that can be consumed.

Cruise Control loggers and log levels added directly (inline) or indirectly (external)
through a ConfigMap. A custom Log4j configuration must be placed under the
log4j.properties key in the ConfigMap. Cruise Control has a single logger named
rootLogger.level. You can set the log level to INFO, ERROR, WARN, TRACE, DEBUG,
FATAL or OFF.

Template customization. Here a pod is scheduled with additional security attributes.

Healthchecks to know when to restart a container (liveness) and when a container can
accept traffic (readiness).

Prometheus metrics enabled. In this example, metrics are configured for the Prometheus
JMX Exporter (the default metrics exporter).

2. Create or update the resource:

3. Check the status of the deployment:

Output shows the deployment name and readiness

my-cluster is the name of the Kafka cluster.

READY shows the number of replicas that are ready/expected. The deployment is successful
when the AVAILABLE output shows 1.

Auto-created topics
The following table shows the three topics that are automatically created when Cruise Control is
deployed. These topics are required for Cruise Control to work properly and must not be deleted or
changed. You can change the name of the topic using the specified configuration option.

Table 18.3. Auto-created topics

oc apply -f <kafka_configuration_file>

oc get deployments -n <my_cluster_operator_namespace>

NAME READY UP-TO-DATE AVAILABLE
my-cluster-cruise-control 1/1 1 1

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

348

Auto-created
topic
configuration

Default topic
name

Created by Function

metric.report
er.topic

strimzi.cruis
econtrol.met
rics

AMQ Streams
Metrics
Reporter

Stores the raw metrics from the Metrics Reporter in
each Kafka broker.

partition.met
ric.sample.st
ore.topic

strimzi.cruis
econtrol.part
itionmetricsa
mples

Cruise Control Stores the derived metrics for each partition. These
are created by the Metric Sample Aggregator.

broker.metri
c.sample.sto
re.topic

strimzi.cruis
econtrol.mo
deltrainingsa
mples

Cruise Control Stores the metrics samples used to create the
Cluster Workload Model.

To prevent the removal of records that are needed by Cruise Control, log compaction is disabled in the
auto-created topics.

NOTE

If the names of the auto-created topics are changed in a Kafka cluster that already has
Cruise Control enabled, the old topics will not be deleted and should be manually
removed.

What to do next

After configuring and deploying Cruise Control, you can generate optimization proposals .

Additional resources

Optimization goals overview

18.6. GENERATING OPTIMIZATION PROPOSALS

When you create or update a KafkaRebalance resource, Cruise Control generates an optimization
proposal for the Kafka cluster based on the configured optimization goals. Analyze the information in
the optimization proposal and decide whether to approve it. You can use the results of the optimization
proposal to rebalance your Kafka cluster.

You can run the optimization proposal in one of the following modes:

full (default)

add-brokers

remove-brokers

The mode you use depends on whether you are rebalancing across all the brokers already running in the
Kafka cluster; or you want to rebalance after scaling up or before scaling down your Kafka cluster. For
more information, see Rebalancing modes with broker scaling .

CHAPTER 18. REBALANCING CLUSTERS USING CRUISE CONTROL

349

https://github.com/linkedin/cruise-control/wiki/Overview#metric-sample-aggregator
https://github.com/linkedin/cruise-control/wiki/Overview#cluster-workload-model

Prerequisites

You have deployed Cruise Control to your AMQ Streams cluster.

You have configured optimization goals and, optionally, capacity limits on broker resources.

For more information on configuring Cruise Control, see Section 18.5, “Configuring and deploying Cruise
Control with Kafka”.

Procedure

1. Create a KafkaRebalance resource and specify the appropriate mode.

full mode (default)

To use the default optimization goals defined in the Kafka resource, leave the spec property
empty. Cruise Control rebalances a Kafka cluster in full mode by default.

Example configuration with full rebalancing by default

You can also run a full rebalance by specifying the full mode through the spec.mode
property.

Example configuration specifying full mode

add-brokers mode

If you want to rebalance a Kafka cluster after scaling up, specify the add-brokers mode.
In this mode, existing replicas are moved to the newly added brokers. You need to specify the
brokers as a list.

Example configuration specifying add-brokers mode

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaRebalance
metadata:
 name: my-rebalance
 labels:
 strimzi.io/cluster: my-cluster
spec: {}

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaRebalance
metadata:
 name: my-rebalance
 labels:
 strimzi.io/cluster: my-cluster
spec:
 mode: full

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaRebalance
metadata:
 name: my-rebalance
 labels:
 strimzi.io/cluster: my-cluster

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

350

1

1

List of newly added brokers added by the scale up operation. This property is
mandatory.

remove-brokers mode

If you want to rebalance a Kafka cluster before scaling down, specify the remove-brokers
mode.
In this mode, replicas are moved off the brokers that are going to be removed. You need to
specify the brokers that are being removed as a list.

Example configuration specifying remove-brokers mode

List of brokers to be removed by the scale down operation. This property is mandatory.

NOTE

The following steps and the steps to approve or stop a rebalance are the
same regardless of the rebalance mode you are using.

2. To configure user-provided optimization goals instead of using the default goals, add the goals
property and enter one or more goals.
In the following example, rack awareness and replica capacity are configured as user-provided
optimization goals:

3. To ignore the configured hard goals, add the skipHardGoalCheck: true property:

spec:
 mode: add-brokers
 brokers: [3, 4] 1

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaRebalance
metadata:
 name: my-rebalance
 labels:
 strimzi.io/cluster: my-cluster
spec:
 mode: remove-brokers
 brokers: [3, 4] 1

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaRebalance
metadata:
 name: my-rebalance
 labels:
 strimzi.io/cluster: my-cluster
spec:
 goals:
 - RackAwareGoal
 - ReplicaCapacityGoal

CHAPTER 18. REBALANCING CLUSTERS USING CRUISE CONTROL

351

4. (Optional) To approve the optimization proposal automatically, set the strimzi.io/rebalance-
auto-approval annotation to true:

5. Create or update the resource:

The Cluster Operator requests the optimization proposal from Cruise Control. This might take a
few minutes depending on the size of the Kafka cluster.

6. If you used the automatic approval mechanism, wait for the status of the optimization proposal
to change to Ready. If you haven’t enabled the automatic approval mechanism, wait for the
status of the optimization proposal to change to ProposalReady:

PendingProposal

A PendingProposal status means the rebalance operator is polling the Cruise Control API
to check if the optimization proposal is ready.

ProposalReady

A ProposalReady status means the optimization proposal is ready for review and approval.

When the status changes to ProposalReady, the optimization proposal is ready to approve.

7. Review the optimization proposal.
The optimization proposal is contained in the Status.Optimization Result property of the
KafkaRebalance resource.

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaRebalance
metadata:
 name: my-rebalance
 labels:
 strimzi.io/cluster: my-cluster
spec:
 goals:
 - RackAwareGoal
 - ReplicaCapacityGoal
 skipHardGoalCheck: true

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaRebalance
metadata:
 name: my-rebalance
 labels:
 strimzi.io/cluster: my-cluster
 annotations:
 strimzi.io/rebalance-auto-approval: "true"
spec:
 goals:
 - RackAwareGoal
 - ReplicaCapacityGoal
 skipHardGoalCheck: true

oc apply -f <kafka_rebalance_configuration_file>

oc get kafkarebalance -o wide -w -n <namespace>

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

352

Example optimization proposal

The properties in the Optimization Result section describe the pending cluster rebalance
operation. For descriptions of each property, see Contents of optimization proposals .

Insufficient CPU capacity

If a Kafka cluster is overloaded in terms of CPU utilization, you might see an insufficient CPU capacity
error in the KafkaRebalance status. It’s worth noting that this utilization value is unaffected by the
excludedTopics configuration. Although optimization proposals will not reassign replicas of excluded
topics, their load is still considered in the utilization calculation.

Example CPU utilization error

NOTE

The error shows CPU capacity as a percentage rather than the number of CPU cores. For
this reason, it does not directly map to the number of CPUs configured in the Kafka
custom resource. It is like having a single virtual CPU per broker, which has the cycles of
the CPUs configured in Kafka.spec.kafka.resources.limits.cpu. This has no effect on
the rebalance behavior, since the ratio between CPU utilization and capacity remains the
same.

What to do next

oc describe kafkarebalance <kafka_rebalance_resource_name>

Status:
 Conditions:
 Last Transition Time: 2020-05-19T13:50:12.533Z
 Status: ProposalReady
 Type: State
 Observed Generation: 1
 Optimization Result:
 Data To Move MB: 0
 Excluded Brokers For Leadership:
 Excluded Brokers For Replica Move:
 Excluded Topics:
 Intra Broker Data To Move MB: 0
 Monitored Partitions Percentage: 100
 Num Intra Broker Replica Movements: 0
 Num Leader Movements: 0
 Num Replica Movements: 26
 On Demand Balancedness Score After: 81.8666802863978
 On Demand Balancedness Score Before: 78.01176356230222
 Recent Windows: 1
 Session Id: 05539377-ca7b-45ef-b359-e13564f1458c

com.linkedin.kafka.cruisecontrol.exception.OptimizationFailureException:
 [CpuCapacityGoal] Insufficient capacity for cpu (Utilization 615.21,
 Allowed Capacity 420.00, Threshold: 0.70). Add at least 3 brokers with
 the same cpu capacity (100.00) as broker-0. Add at least 3 brokers with
 the same cpu capacity (100.00) as broker-0.

CHAPTER 18. REBALANCING CLUSTERS USING CRUISE CONTROL

353

Section 18.7, “Approving an optimization proposal”

Additional resources

Section 18.3, “Optimization proposals overview”

18.7. APPROVING AN OPTIMIZATION PROPOSAL

You can approve an optimization proposal generated by Cruise Control, if its status is ProposalReady.
Cruise Control will then apply the optimization proposal to the Kafka cluster, reassigning partitions to
brokers and changing partition leadership.

CAUTION

This is not a dry run. Before you approve an optimization proposal, you must:

Refresh the proposal in case it has become out of date.

Carefully review the contents of the proposal .

Prerequisites

You have generated an optimization proposal from Cruise Control.

The KafkaRebalance custom resource status is ProposalReady.

Procedure

Perform these steps for the optimization proposal that you want to approve.

1. Unless the optimization proposal is newly generated, check that it is based on current
information about the state of the Kafka cluster. To do so, refresh the optimization proposal to
make sure it uses the latest cluster metrics:

a. Annotate the KafkaRebalance resource in OpenShift with strimzi.io/rebalance=refresh:

2. Wait for the status of the optimization proposal to change to ProposalReady:

PendingProposal

A PendingProposal status means the rebalance operator is polling the Cruise Control API
to check if the optimization proposal is ready.

ProposalReady

A ProposalReady status means the optimization proposal is ready for review and approval.

When the status changes to ProposalReady, the optimization proposal is ready to approve.

3. Approve the optimization proposal that you want Cruise Control to apply.
Annotate the KafkaRebalance resource in OpenShift with strimzi.io/rebalance=approve:

oc annotate kafkarebalance <kafka_rebalance_resource_name>
strimzi.io/rebalance=refresh

oc get kafkarebalance -o wide -w -n <namespace>

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

354

4. The Cluster Operator detects the annotated resource and instructs Cruise Control to rebalance
the Kafka cluster.

5. Wait for the status of the optimization proposal to change to Ready:

Rebalancing

A Rebalancing status means the rebalancing is in progress.

Ready

A Ready status means the rebalance is complete.

NotReady

A NotReady status means an error occurred—​see Fixing problems with a KafkaRebalance
resource.

When the status changes to Ready, the rebalance is complete.

To use the same KafkaRebalance custom resource to generate another optimization proposal,
apply the refresh annotation to the custom resource. This moves the custom resource to the
PendingProposal or ProposalReady state. You can then review the optimization proposal and
approve it, if desired.

Additional resources

Section 18.3, “Optimization proposals overview”

Section 18.8, “Stopping a cluster rebalance”

18.8. STOPPING A CLUSTER REBALANCE

Once started, a cluster rebalance operation might take some time to complete and affect the overall
performance of the Kafka cluster.

If you want to stop a cluster rebalance operation that is in progress, apply the stop annotation to the
KafkaRebalance custom resource. This instructs Cruise Control to finish the current batch of partition
reassignments and then stop the rebalance. When the rebalance has stopped, completed partition
reassignments have already been applied; therefore, the state of the Kafka cluster is different when
compared to prior to the start of the rebalance operation. If further rebalancing is required, you should
generate a new optimization proposal.

NOTE

The performance of the Kafka cluster in the intermediate (stopped) state might be worse
than in the initial state.

Prerequisites

You have approved the optimization proposal by annotating the KafkaRebalance custom
resource with approve.

oc annotate kafkarebalance <kafka_rebalance_resource_name>
strimzi.io/rebalance=approve

oc get kafkarebalance -o wide -w -n <namespace>

CHAPTER 18. REBALANCING CLUSTERS USING CRUISE CONTROL

355

The status of the KafkaRebalance custom resource is Rebalancing.

Procedure

1. Annotate the KafkaRebalance resource in OpenShift:

2. Check the status of the KafkaRebalance resource:

3. Wait until the status changes to Stopped.

Additional resources

Section 18.3, “Optimization proposals overview”

18.9. FIXING PROBLEMS WITH A KAFKAREBALANCE RESOURCE

If an issue occurs when creating a KafkaRebalance resource or interacting with Cruise Control, the
error is reported in the resource status, along with details of how to fix it. The resource also moves to
the NotReady state.

To continue with the cluster rebalance operation, you must fix the problem in the KafkaRebalance
resource itself or with the overall Cruise Control deployment. Problems might include the following:

A misconfigured parameter in the KafkaRebalance resource.

The strimzi.io/cluster label for specifying the Kafka cluster in the KafkaRebalance resource is
missing.

The Cruise Control server is not deployed as the cruiseControl property in the Kafka resource
is missing.

The Cruise Control server is not reachable.

After fixing the issue, you need to add the refresh annotation to the KafkaRebalance resource. During
a “refresh”, a new optimization proposal is requested from the Cruise Control server.

Prerequisites

You have approved an optimization proposal .

The status of the KafkaRebalance custom resource for the rebalance operation is NotReady.

Procedure

1. Get information about the error from the KafkaRebalance status:

2. Attempt to resolve the issue in the KafkaRebalance resource.

oc annotate kafkarebalance rebalance-cr-name strimzi.io/rebalance=stop

oc describe kafkarebalance rebalance-cr-name

oc describe kafkarebalance rebalance-cr-name

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

356

3. Annotate the KafkaRebalance resource in OpenShift:

4. Check the status of the KafkaRebalance resource:

5. Wait until the status changes to PendingProposal, or directly to ProposalReady.

Additional resources

Section 18.3, “Optimization proposals overview”

oc annotate kafkarebalance rebalance-cr-name strimzi.io/rebalance=refresh

oc describe kafkarebalance rebalance-cr-name

CHAPTER 18. REBALANCING CLUSTERS USING CRUISE CONTROL

357

CHAPTER 19. USING THE PARTITION REASSIGNMENT TOOL
When scaling a Kafka cluster, you may need to add or remove brokers and update the distribution of
partitions or the replication factor of topics. To update partitions and topics, you can use the kafka-
reassign-partitions.sh tool.

Neither the AMQ Streams Cruise Control integration nor the Topic Operator support changing the
replication factor of a topic. However, you can change the replication factor of a topic using the kafka-
reassign-partitions.sh tool.

The tool can also be used to reassign partitions and balance the distribution of partitions across brokers
to improve performance. However, it is recommended to use Cruise Control for automated partition
reassignments and cluster rebalancing. Cruise Control can move topics from one broker to another
without any downtime, and it is the most efficient way to reassign partitions.

It is recommended to run the kafka-reassign-partitions.sh tool as a separate interactive pod rather
than within the broker container. Running the Kafka bin/ scripts within the broker container may cause a
JVM to start with the same settings as the Kafka broker, which can potentially cause disruptions. By
running the kafka-reassign-partitions.sh tool in a separate pod, you can avoid this issue. Running a pod
with the -ti option creates an interactive pod with a terminal for running shell commands inside the pod.

Running an interactive pod with a terminal

19.1. PARTITION REASSIGNMENT TOOL OVERVIEW

The partition reassignment tool provides the following capabilities for managing Kafka partitions and
brokers:

Redistributing partition replicas

Scale your cluster up and down by adding or removing brokers, and move Kafka partitions from
heavily loaded brokers to under-utilized brokers. To do this, you must create a partition reassignment
plan that identifies which topics and partitions to move and where to move them. Cruise Control is
recommended for this type of operation as it automates the cluster rebalancing process .

Scaling topic replication factor up and down

Increase or decrease the replication factor of your Kafka topics. To do this, you must create a
partition reassignment plan that identifies the existing replication assignment across partitions and
an updated assignment with the replication factor changes.

Changing the preferred leader

Change the preferred leader of a Kafka partition. This can be useful if the current preferred leader is
unavailable or if you want to redistribute load across the brokers in the cluster. To do this, you must
create a partition reassignment plan that specifies the new preferred leader for each partition by
changing the order of replicas.

Changing the log directories to use a specific JBOD volume

Change the log directories of your Kafka brokers to use a specific JBOD volume. This can be useful if
you want to move your Kafka data to a different disk or storage device. To do this, you must create a
partition reassignment plan that specifies the new log directory for each topic.

19.1.1. Generating a partition reassignment plan

The partition reassignment tool (kafka-reassign-partitions.sh) works by generating a partition

oc run helper-pod -ti --image=registry.redhat.io/amq-streams/kafka-35-rhel8:2.5.1 --rm=true --
restart=Never -- bash

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

358

The partition reassignment tool (kafka-reassign-partitions.sh) works by generating a partition
assignment plan that specifies which partitions should be moved from their current broker to a new
broker.

If you are satisfied with the plan, you can execute it. The tool then does the following:

Migrates the partition data to the new broker

Updates the metadata on the Kafka brokers to reflect the new partition assignments

Triggers a rolling restart of the Kafka brokers to ensure that the new assignments take effect

The partition reassignment tool has three different modes:

--generate

Takes a set of topics and brokers and generates a reassignment JSON file which will result in the
partitions of those topics being assigned to those brokers. Because this operates on whole topics, it
cannot be used when you only want to reassign some partitions of some topics.

--execute

Takes a reassignment JSON file and applies it to the partitions and brokers in the cluster. Brokers
that gain partitions as a result become followers of the partition leader. For a given partition, once
the new broker has caught up and joined the ISR (in-sync replicas) the old broker will stop being a
follower and will delete its replica.

--verify

Using the same reassignment JSON file as the --execute step, --verify checks whether all the
partitions in the file have been moved to their intended brokers. If the reassignment is complete, --
verify also removes any traffic throttles (--throttle) that are in effect. Unless removed, throttles will
continue to affect the cluster even after the reassignment has finished.

It is only possible to have one reassignment running in a cluster at any given time, and it is not possible
to cancel a running reassignment. If you must cancel a reassignment, wait for it to complete and then
perform another reassignment to revert the effects of the first reassignment. The kafka-reassign-
partitions.sh will print the reassignment JSON for this reversion as part of its output. Very large
reassignments should be broken down into a number of smaller reassignments in case there is a need to
stop in-progress reassignment.

19.1.2. Specifying topics in a partition reassignment JSON file

The kafka-reassign-partitions.sh tool uses a reassignment JSON file that specifies the topics to
reassign. You can generate a reassignment JSON file or create a file manually if you want to move
specific partitions.

A basic reassignment JSON file has the structure presented in the following example, which describes
three partitions belonging to two Kafka topics. Each partition is reassigned to a new set of replicas, which
are identified by their broker IDs. The version, topic, partition, and replicas properties are all required.

Example partition reassignment JSON file structure

{
 "version": 1, 1
 "partitions": [2
 {
 "topic": "example-topic-1", 3
 "partition": 0, 4

CHAPTER 19. USING THE PARTITION REASSIGNMENT TOOL

359

1

2

3

4

5

 "replicas": [1, 2, 3] 5
 },
 {
 "topic": "example-topic-1",
 "partition": 1,
 "replicas": [2, 3, 4]
 },
 {
 "topic": "example-topic-2",
 "partition": 0,
 "replicas": [3, 4, 5]
 }
]
}

The version of the reassignment JSON file format. Currently, only version 1 is supported, so this
should always be 1.

An array that specifies the partitions to be reassigned.

The name of the Kafka topic that the partition belongs to.

The ID of the partition being reassigned.

An ordered array of the IDs of the brokers that should be assigned as replicas for this partition. The
first broker in the list is the leader replica.

NOTE

Partitions not included in the JSON are not changed.

If you specify only topics using a topics array, the partition reassignment tool reassigns all the partitions
belonging to the specified topics.

Example reassignment JSON file structure for reassigning all partitions for a topic

{
 "version": 1,
 "topics": [
 { "topic": "my-topic"}
]
}

19.1.3. Reassigning partitions between JBOD volumes

When using JBOD storage in your Kafka cluster, you can reassign the partitions between specific
volumes and their log directories (each volume has a single log directory).

To reassign a partition to a specific volume, add log_dirs values for each partition in the reassignment
JSON file. Each log_dirs array contains the same number of entries as the replicas array, since each
replica should be assigned to a specific log directory. The log_dirs array contains either an absolute

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

360

path to a log directory or the special value any. The any value indicates that Kafka can choose any
available log directory for that replica, which can be useful when reassigning partitions between JBOD
volumes.

Example reassignment JSON file structure with log directories

{
 "version": 1,
 "partitions": [
 {
 "topic": "example-topic-1",
 "partition": 0,
 "replicas": [1, 2, 3]
 "log_dirs": ["/var/lib/kafka/data-0/kafka-log1", "any", "/var/lib/kafka/data-1/kafka-log2"]
 },
 {
 "topic": "example-topic-1",
 "partition": 1,
 "replicas": [2, 3, 4]
 "log_dirs": ["any", "/var/lib/kafka/data-2/kafka-log3", "/var/lib/kafka/data-3/kafka-log4"]
 },
 {
 "topic": "example-topic-2",
 "partition": 0,
 "replicas": [3, 4, 5]
 "log_dirs": ["/var/lib/kafka/data-4/kafka-log5", "any", "/var/lib/kafka/data-5/kafka-log6"]
 }
]
}

19.1.4. Throttling partition reassignment

Partition reassignment can be a slow process because it involves transferring large amounts of data
between brokers. To avoid a detrimental impact on clients, you can throttle the reassignment process.
Use the --throttle parameter with the kafka-reassign-partitions.sh tool to throttle a reassignment. You
specify a maximum threshold in bytes per second for the movement of partitions between brokers. For
example, --throttle 5000000 sets a maximum threshold for moving partitions of 50 MBps.

Throttling might cause the reassignment to take longer to complete.

If the throttle is too low, the newly assigned brokers will not be able to keep up with records
being published and the reassignment will never complete.

If the throttle is too high, clients will be impacted.

For example, for producers, this could manifest as higher than normal latency waiting for
acknowledgment. For consumers, this could manifest as a drop in throughput caused by higher latency
between polls.

19.2. GENERATING A REASSIGNMENT JSON FILE TO REASSIGN
PARTITIONS

Generate a reassignment JSON file with the kafka-reassign-partitions.sh tool to reassign partitions
after scaling a Kafka cluster. Adding or removing brokers does not automatically redistribute the existing

CHAPTER 19. USING THE PARTITION REASSIGNMENT TOOL

361

1

2

partitions. To balance the partition distribution and take full advantage of the new brokers, you can
reassign the partitions using the kafka-reassign-partitions.sh tool.

You run the tool from an interactive pod container connected to the Kafka cluster.

The following procedure describes a secure reassignment process that uses mTLS. You’ll need a Kafka
cluster that uses TLS encryption and mTLS authentication.

You’ll need the following to establish a connection:

The cluster CA certificate and password generated by the Cluster Operator when the Kafka
cluster is created

The user CA certificate and password generated by the User Operator when a user is created
for client access to the Kafka cluster

In this procedure, the CA certificates and corresponding passwords are extracted from the cluster and
user secrets that contain them in PKCS #12 (.p12 and .password) format. The passwords allow access
to the .p12 stores that contain the certificates. You use the .p12 stores to specify a truststore and
keystore to authenticate connection to the Kafka cluster.

Prerequisites

You have a running Cluster Operator.

You have a running Kafka cluster based on a Kafka resource configured with internal TLS
encryption and mTLS authentication.

Kafka configuration with TLS encryption and mTLS authentication

Enables TLS encryption for the internal listener.

Listener authentication mechanism specified as mutual tls.

The running Kafka cluster contains a set of topics and partitions to reassign.

Example topic configuration for my-topic

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 name: my-cluster
spec:
 kafka:
 # ...
 listeners:
 # ...
 - name: tls
 port: 9093
 type: internal
 tls: true 1
 authentication:
 type: tls 2
 # ...

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

362

1

2

You have a KafkaUser configured with ACL rules that specify permission to produce and
consume topics from the Kafka brokers.

Example Kafka user configuration with ACL rules to allow operations on my-topic
and my-cluster

User authentication mechanism defined as mutual tls.

Simple authorization and accompanying list of ACL rules.

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaTopic
metadata:
 name: my-topic
 labels:
 strimzi.io/cluster: my-cluster
spec:
 partitions: 10
 replicas: 3
 config:
 retention.ms: 7200000
 segment.bytes: 1073741824
 # ...

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaUser
metadata:
 name: my-user
 labels:
 strimzi.io/cluster: my-cluster
spec:
 authentication: 1
 type: tls
 authorization:
 type: simple 2
 acls:
 # access to the topic
 - resource:
 type: topic
 name: my-topic
 operations:
 - Create
 - Describe
 - Read
 - AlterConfigs
 host: "*"
 # access to the cluster
 - resource:
 type: cluster
 operations:
 - Alter
 - AlterConfigs
 host: "*"
 # ...
 # ...

CHAPTER 19. USING THE PARTITION REASSIGNMENT TOOL

363

Procedure

1. Extract the cluster CA certificate and password from the <cluster_name>-cluster-ca-cert
secret of the Kafka cluster.

Replace <cluster_name> with the name of the Kafka cluster. When you deploy Kafka using the
Kafka resource, a secret with the cluster CA certificate is created with the Kafka cluster name
(<cluster_name>-cluster-ca-cert). For example, my-cluster-cluster-ca-cert.

2. Run a new interactive pod container using the AMQ Streams Kafka image to connect to a
running Kafka broker.

Replace <interactive_pod_name> with the name of the pod.

3. Copy the cluster CA certificate to the interactive pod container.

4. Extract the user CA certificate and password from the secret of the Kafka user that has
permission to access the Kafka brokers.

Replace <kafka_user> with the name of the Kafka user. When you create a Kafka user using the
KafkaUser resource, a secret with the user CA certificate is created with the Kafka user name.
For example, my-user.

5. Copy the user CA certificate to the interactive pod container.

The CA certificates allow the interactive pod container to connect to the Kafka broker using
TLS.

6. Create a config.properties file to specify the truststore and keystore used to authenticate
connection to the Kafka cluster.
Use the certificates and passwords you extracted in the previous steps.

oc get secret <cluster_name>-cluster-ca-cert -o jsonpath='{.data.ca\.p12}' | base64 -d >
ca.p12

oc get secret <cluster_name>-cluster-ca-cert -o jsonpath='{.data.ca\.password}' | base64 -d >
ca.password

oc run --restart=Never --image=registry.redhat.io/amq-streams/kafka-35-rhel8:2.5.1
<interactive_pod_name> -- /bin/sh -c "sleep 3600"

oc cp ca.p12 <interactive_pod_name>:/tmp

oc get secret <kafka_user> -o jsonpath='{.data.user\.p12}' | base64 -d > user.p12

oc get secret <kafka_user> -o jsonpath='{.data.user\.password}' | base64 -d > user.password

oc cp user.p12 <interactive_pod_name>:/tmp

bootstrap.servers=<kafka_cluster_name>-kafka-bootstrap:9093 1
security.protocol=SSL 2
ssl.truststore.location=/tmp/ca.p12 3

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

364

1

2

3

4

5

6

The bootstrap server address to connect to the Kafka cluster. Use your own Kafka cluster
name to replace <kafka_cluster_name>.

The security protocol option when using TLS for encryption.

The truststore location contains the public key certificate (ca.p12) for the Kafka cluster.

The password (ca.password) for accessing the truststore.

The keystore location contains the public key certificate (user.p12) for the Kafka user.

The password (user.password) for accessing the keystore.

7. Copy the config.properties file to the interactive pod container.

8. Prepare a JSON file named topics.json that specifies the topics to move.
Specify topic names as a comma-separated list.

Example JSON file to reassign all the partitions of my-topic

You can also use this file to change the replication factor of a topic .

9. Copy the topics.json file to the interactive pod container.

10. Start a shell process in the interactive pod container.

Replace <namespace> with the OpenShift namespace where the pod is running.

11. Use the kafka-reassign-partitions.sh command to generate the reassignment JSON.

Example command to move the partitions of my-topic to specified brokers

ssl.truststore.password=<truststore_password> 4
ssl.keystore.location=/tmp/user.p12 5
ssl.keystore.password=<keystore_password> 6

oc cp config.properties <interactive_pod_name>:/tmp/config.properties

{
 "version": 1,
 "topics": [
 { "topic": "my-topic"}
]
}

oc cp topics.json <interactive_pod_name>:/tmp/topics.json

oc exec -n <namespace> -ti <interactive_pod_name> /bin/bash

bin/kafka-reassign-partitions.sh --bootstrap-server my-cluster-kafka-bootstrap:9093 \
 --command-config /tmp/config.properties \
 --topics-to-move-json-file /tmp/topics.json \

CHAPTER 19. USING THE PARTITION REASSIGNMENT TOOL

365

Additional resources

Configuring Kafka

Section 9.4, “Configuring Kafka topics”

Section 10.1, “Configuring Kafka users”

19.3. REASSIGNING PARTITIONS AFTER ADDING BROKERS

Use a reassignment file generated by the kafka-reassign-partitions.sh tool to reassign partitions after
increasing the number of brokers in a Kafka cluster. The reassignment file should describe how partitions
are reassigned to brokers in the enlarged Kafka cluster. You apply the reassignment specified in the file
to the brokers and then verify the new partition assignments.

This procedure describes a secure scaling process that uses TLS. You’ll need a Kafka cluster that uses
TLS encryption and mTLS authentication.

The kafka-reassign-partitions.sh tool can be used to reassign partitions within a Kafka cluster,
regardless of whether you are managing all nodes through the cluster or using the node pools preview
to manage groups of nodes within the cluster.

NOTE

Though you can use the kafka-reassign-partitions.sh tool, Cruise Control is
recommended for automated partition reassignments and cluster rebalancing . Cruise
Control can move topics from one broker to another without any downtime, and it is the
most efficient way to reassign partitions.

Prerequisites

You have a running Kafka cluster based on a Kafka resource configured with internal TLS
encryption and mTLS authentication.

You have generated a reassignment JSON file named reassignment.json.

You are running an interactive pod container that is connected to the running Kafka broker.

You are connected as a KafkaUser configured with ACL rules that specify permission to
manage the Kafka cluster and its topics.

Procedure

1. Add as many new brokers as you need by increasing the Kafka.spec.kafka.replicas
configuration option.

2. Verify that the new broker pods have started.

3. If you haven’t done so, run an interactive pod container to generate a reassignment JSON file
named reassignment.json.

4. Copy the reassignment.json file to the interactive pod container.

 --broker-list 0,1,2,3,4 \
 --generate

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

366

Replace <interactive_pod_name> with the name of the pod.

5. Start a shell process in the interactive pod container.

Replace <namespace> with the OpenShift namespace where the pod is running.

6. Run the partition reassignment using the kafka-reassign-partitions.sh script from the
interactive pod container.

Replace <cluster_name> with the name of your Kafka cluster. For example, my-cluster-kafka-
bootstrap:9093

If you are going to throttle replication, you can also pass the --throttle option with an inter-
broker throttled rate in bytes per second. For example:

This command will print out two reassignment JSON objects. The first records the current
assignment for the partitions being moved. You should save this to a local file (not a file in the
pod) in case you need to revert the reassignment later on. The second JSON object is the
target reassignment you have passed in your reassignment JSON file.

If you need to change the throttle during reassignment, you can use the same command with a
different throttled rate. For example:

7. Verify that the reassignment has completed using the kafka-reassign-partitions.sh command
line tool from any of the broker pods. This is the same command as the previous step, but with
the --verify option instead of the --execute option.

oc cp reassignment.json <interactive_pod_name>:/tmp/reassignment.json

oc exec -n <namespace> -ti <interactive_pod_name> /bin/bash

bin/kafka-reassign-partitions.sh --bootstrap-server
 <cluster_name>-kafka-bootstrap:9093 \
 --command-config /tmp/config.properties \
 --reassignment-json-file /tmp/reassignment.json \
 --execute

bin/kafka-reassign-partitions.sh --bootstrap-server
 <cluster_name>-kafka-bootstrap:9093 \
 --command-config /tmp/config.properties \
 --reassignment-json-file /tmp/reassignment.json \
 --throttle 5000000 \
 --execute

bin/kafka-reassign-partitions.sh --bootstrap-server
 <cluster_name>-kafka-bootstrap:9093 \
 --command-config /tmp/config.properties \
 --reassignment-json-file /tmp/reassignment.json \
 --throttle 10000000 \
 --execute

bin/kafka-reassign-partitions.sh --bootstrap-server
 <cluster_name>-kafka-bootstrap:9093 \
 --command-config /tmp/config.properties \

CHAPTER 19. USING THE PARTITION REASSIGNMENT TOOL

367

The reassignment has finished when the --verify command reports that each of the partitions
being moved has completed successfully. This final --verify will also have the effect of removing
any reassignment throttles.

8. You can now delete the revert file if you saved the JSON for reverting the assignment to their
original brokers.

19.4. REASSIGNING PARTITIONS BEFORE REMOVING BROKERS

Use a reassignment file generated by the kafka-reassign-partitions.sh tool to reassign partitions
before decreasing the number of brokers in a Kafka cluster. The reassignment file must describe how
partitions are reassigned to the remaining brokers in the Kafka cluster. You apply the reassignment
specified in the file to the brokers and then verify the new partition assignments. Brokers in the highest
numbered pods are removed first.

This procedure describes a secure scaling process that uses TLS. You’ll need a Kafka cluster that uses
TLS encryption and mTLS authentication.

The kafka-reassign-partitions.sh tool can be used to reassign partitions within a Kafka cluster,
regardless of whether you are managing all nodes through the cluster or using the node pools preview
to manage groups of nodes within the cluster.

NOTE

Though you can use the kafka-reassign-partitions.sh tool, Cruise Control is
recommended for automated partition reassignments and cluster rebalancing . Cruise
Control can move topics from one broker to another without any downtime, and it is the
most efficient way to reassign partitions.

Prerequisites

You have a running Kafka cluster based on a Kafka resource configured with internal TLS
encryption and mTLS authentication.

You have generated a reassignment JSON file named reassignment.json.

You are running an interactive pod container that is connected to the running Kafka broker.

You are connected as a KafkaUser configured with ACL rules that specify permission to
manage the Kafka cluster and its topics.

Procedure

1. If you haven’t done so, run an interactive pod container to generate a reassignment JSON file
named reassignment.json.

2. Copy the reassignment.json file to the interactive pod container.

Replace <interactive_pod_name> with the name of the pod.

 --reassignment-json-file /tmp/reassignment.json \
 --verify

oc cp reassignment.json <interactive_pod_name>:/tmp/reassignment.json

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

368

3. Start a shell process in the interactive pod container.

Replace <namespace> with the OpenShift namespace where the pod is running.

4. Run the partition reassignment using the kafka-reassign-partitions.sh script from the
interactive pod container.

Replace <cluster_name> with the name of your Kafka cluster. For example, my-cluster-kafka-
bootstrap:9093

If you are going to throttle replication, you can also pass the --throttle option with an inter-
broker throttled rate in bytes per second. For example:

This command will print out two reassignment JSON objects. The first records the current
assignment for the partitions being moved. You should save this to a local file (not a file in the
pod) in case you need to revert the reassignment later on. The second JSON object is the
target reassignment you have passed in your reassignment JSON file.

If you need to change the throttle during reassignment, you can use the same command with a
different throttled rate. For example:

5. Verify that the reassignment has completed using the kafka-reassign-partitions.sh command
line tool from any of the broker pods. This is the same command as the previous step, but with
the --verify option instead of the --execute option.

The reassignment has finished when the --verify command reports that each of the partitions

oc exec -n <namespace> -ti <interactive_pod_name> /bin/bash

bin/kafka-reassign-partitions.sh --bootstrap-server
 <cluster_name>-kafka-bootstrap:9093 \
 --command-config /tmp/config.properties \
 --reassignment-json-file /tmp/reassignment.json \
 --execute

bin/kafka-reassign-partitions.sh --bootstrap-server
 <cluster_name>-kafka-bootstrap:9093 \
 --command-config /tmp/config.properties \
 --reassignment-json-file /tmp/reassignment.json \
 --throttle 5000000 \
 --execute

bin/kafka-reassign-partitions.sh --bootstrap-server
 <cluster_name>-kafka-bootstrap:9093 \
 --command-config /tmp/config.properties \
 --reassignment-json-file /tmp/reassignment.json \
 --throttle 10000000 \
 --execute

bin/kafka-reassign-partitions.sh --bootstrap-server
 <cluster_name>-kafka-bootstrap:9093 \
 --command-config /tmp/config.properties \
 --reassignment-json-file /tmp/reassignment.json \
 --verify

CHAPTER 19. USING THE PARTITION REASSIGNMENT TOOL

369

The reassignment has finished when the --verify command reports that each of the partitions
being moved has completed successfully. This final --verify will also have the effect of removing
any reassignment throttles.

6. You can now delete the revert file if you saved the JSON for reverting the assignment to their
original brokers.

7. When all the partition reassignments have finished, the brokers being removed should not have
responsibility for any of the partitions in the cluster. You can verify this by checking that the
broker’s data log directory does not contain any live partition logs. If the log directory on the
broker contains a directory that does not match the extended regular expression \.[a-z0-9]-
delete$, the broker still has live partitions and should not be stopped.
You can check this by executing the command:

where n is the number of the pods being deleted.

If the above command prints any output then the broker still has live partitions. In this case,
either the reassignment has not finished or the reassignment JSON file was incorrect.

8. When you have confirmed that the broker has no live partitions, you can edit the
Kafka.spec.kafka.replicas property of your Kafka resource to reduce the number of brokers.

19.5. CHANGING THE REPLICATION FACTOR OF TOPICS

To change the replication factor of topics in a Kafka cluster, use the kafka-reassign-partitions.sh tool.
This can be done by running the tool from an interactive pod container that is connected to the Kafka
cluster, and using a reassignment file to describe how the topic replicas should be changed.

This procedure describes a secure process that uses TLS. You’ll need a Kafka cluster that uses TLS
encryption and mTLS authentication.

Prerequisites

You have a running Kafka cluster based on a Kafka resource configured with internal TLS
encryption and mTLS authentication.

You are running an interactive pod container that is connected to the running Kafka broker.

You have generated a reassignment JSON file named reassignment.json.

You are connected as a KafkaUser configured with ACL rules that specify permission to
manage the Kafka cluster and its topics.

See Generating reassignment JSON files.

In this procedure, a topic called my-topic has 4 replicas and we want to reduce it to 3. A JSON file
named topics.json specifies the topic, and was used to generate the reassignment.json file.

Example JSON file specifies my-topic

oc exec my-cluster-kafka-0 -c kafka -it -- \
 /bin/bash -c \
 "ls -l /var/lib/kafka/kafka-log_<n>_ | grep -E '^d' | grep -vE '[a-zA-Z0-9.-]+\.[a-z0-9]+-
delete$'"

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

370

Procedure

1. If you haven’t done so, run an interactive pod container to generate a reassignment JSON file
named reassignment.json.

Example reassignment JSON file showing the current and proposed replica
assignment

Save a copy of this file locally in case you need to revert the changes later on.

2. Edit the reassignment.json to remove a replica from each partition.
For example use jq to remove the last replica in the list for each partition of the topic:

Removing the last topic replica for each partition

Example reassignment file showing the updated replicas

3. Copy the reassignment.json file to the interactive pod container.

Replace <interactive_pod_name> with the name of the pod.

4. Start a shell process in the interactive pod container.

{
 "version": 1,
 "topics": [
 { "topic": "my-topic"}
]
}

Current partition replica assignment
{"version":1,"partitions":[{"topic":"my-topic","partition":0,"replicas":[3,4,2,0],"log_dirs":
["any","any","any","any"]},{"topic":"my-topic","partition":1,"replicas":[0,2,3,1],"log_dirs":
["any","any","any","any"]},{"topic":"my-topic","partition":2,"replicas":[1,3,0,4],"log_dirs":
["any","any","any","any"]}]}

Proposed partition reassignment configuration
{"version":1,"partitions":[{"topic":"my-topic","partition":0,"replicas":[0,1,2,3],"log_dirs":
["any","any","any","any"]},{"topic":"my-topic","partition":1,"replicas":[1,2,3,4],"log_dirs":
["any","any","any","any"]},{"topic":"my-topic","partition":2,"replicas":[2,3,4,0],"log_dirs":
["any","any","any","any"]}]}

jq '.partitions[].replicas |= del(.[-1])' reassignment.json > reassignment.json

{"version":1,"partitions":[{"topic":"my-topic","partition":0,"replicas":[0,1,2],"log_dirs":
["any","any","any","any"]},{"topic":"my-topic","partition":1,"replicas":[1,2,3],"log_dirs":
["any","any","any","any"]},{"topic":"my-topic","partition":2,"replicas":[2,3,4],"log_dirs":
["any","any","any","any"]}]}

oc cp reassignment.json <interactive_pod_name>:/tmp/reassignment.json

oc exec -n <namespace> -ti <interactive_pod_name> /bin/bash

CHAPTER 19. USING THE PARTITION REASSIGNMENT TOOL

371

Replace <namespace> with the OpenShift namespace where the pod is running.

5. Make the topic replica change using the kafka-reassign-partitions.sh script from the
interactive pod container.

NOTE

Removing replicas from a broker does not require any inter-broker data
movement, so there is no need to throttle replication. If you are adding replicas,
then you may want to change the throttle rate.

6. Verify that the change to the topic replicas has completed using the kafka-reassign-
partitions.sh command line tool from any of the broker pods. This is the same command as the
previous step, but with the --verify option instead of the --execute option.

The reassignment has finished when the --verify command reports that each of the partitions
being moved has completed successfully. This final --verify will also have the effect of removing
any reassignment throttles.

7. Run the bin/kafka-topics.sh command with the --describe option to see the results of the
change to the topics.

Results of reducing the number of replicas for a topic

bin/kafka-reassign-partitions.sh --bootstrap-server
 <cluster_name>-kafka-bootstrap:9093 \
 --command-config /tmp/config.properties \
 --reassignment-json-file /tmp/reassignment.json \
 --execute

bin/kafka-reassign-partitions.sh --bootstrap-server
 <cluster_name>-kafka-bootstrap:9093 \
 --command-config /tmp/config.properties \
 --reassignment-json-file /tmp/reassignment.json \
 --verify

bin/kafka-topics.sh --bootstrap-server
 <cluster_name>-kafka-bootstrap:9093 \
 --command-config /tmp/config.properties \
 --describe

my-topic Partition: 0 Leader: 0 Replicas: 0,1,2 Isr: 0,1,2
my-topic Partition: 1 Leader: 2 Replicas: 1,2,3 Isr: 1,2,3
my-topic Partition: 2 Leader: 3 Replicas: 2,3,4 Isr: 2,3,4

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

372

CHAPTER 20. SETTING UP METRICS AND DASHBOARDS FOR
AMQ STREAMS

Collecting metrics is critical for understanding the health and performance of your Kafka deployment. By
monitoring metrics, you can actively identify issues before they become critical and make informed
decisions about resource allocation and capacity planning. Without metrics, you may be left with limited
visibility into the behavior of your Kafka deployment, which can make troubleshooting more difficult and
time-consuming. Setting up metrics can save you time and resources in the long run, and help ensure
the reliability of your Kafka deployment.

Metrics are available for each component in AMQ Streams, providing valuable insights into their
individual performance. While other components require configuration to expose metrics metric
exposure, AMQ Streams operators automatically expose Prometheus metrics by default. These metrics
include:

Reconciliation count

Custom Resource count being processed

Reconciliation duration

JVM metrics

You can also collect metrics specific to oauth authentication and opa or keycloak authorization by
enabling the enableMetrics property in the listener or authorization configuration of the Kafka
resource. Similarly, you can enable metrics for oauth authentication in custom resources such as
KafkaBridge, KafkaConnect, KafkaMirrorMaker, and KafkaMirrorMaker2.

You can use Prometheus and Grafana to monitor AMQ Streams. Prometheus consumes metrics from
the running pods in your cluster when configured with Prometheus rules. Grafana visualizes these
metrics on dashboards, providing an intuitive interface for monitoring.

To facilitate metrics integration, AMQ Streams provides example Prometheus rules and Grafana
dashboards for AMQ Streams components. You can customize the example Grafana dashboards to suit
your specific deployment requirements. You can use rules to define conditions that trigger alerts based
on specific metrics.

Depending on your monitoring requirements, you can do the following:

Set up and deploy Prometheus to expose metrics

Deploy Kafka Exporter to provide additional metrics

Use Grafana to present the Prometheus metrics

Additionally, you can configure your deployment to track messages end-to-end by setting up distributed
tracing, or retrieve troubleshooting data using the diagnostics tool (report.sh).

NOTE

AMQ Streams provides example installation files for Prometheus and Grafana, which can
serve as a starting point for monitoring your AMQ Streams deployment. For further
support, try engaging with the Prometheus and Grafana developer communities.

Supporting documentation for metrics and monitoring tools

CHAPTER 20. SETTING UP METRICS AND DASHBOARDS FOR AMQ STREAMS

373

For more information on the metrics and monitoring tools, refer to the supporting documentation:

Prometheus

Prometheus configuration

Kafka Exporter

Grafana Labs

Apache Kafka Monitoring describes JMX metrics exposed by Apache Kafka

ZooKeeper JMX describes JMX metrics exposed by Apache ZooKeeper

20.1. MONITORING CONSUMER LAG WITH KAFKA EXPORTER

Kafka Exporter is an open source project to enhance monitoring of Apache Kafka brokers and clients.
You can configure the Kafka resource to deploy Kafka Exporter with your Kafka cluster . Kafka Exporter
extracts additional metrics data from Kafka brokers related to offsets, consumer groups, consumer lag,
and topics. The metrics data is used, for example, to help identify slow consumers. Lag data is exposed
as Prometheus metrics, which can then be presented in Grafana for analysis.

Kafka Exporter reads from the __consumer_offsets topic, which stores information on committed
offsets for consumer groups. For Kafka Exporter to be able to work properly, consumer groups needs to
be in use.

A Grafana dashboard for Kafka Exporter is one of a number of example Grafana dashboards provided
by AMQ Streams.

IMPORTANT

Kafka Exporter provides only additional metrics related to consumer lag and consumer
offsets. For regular Kafka metrics, you have to configure the Prometheus metrics in Kafka
brokers.

Consumer lag indicates the difference in the rate of production and consumption of messages.
Specifically, consumer lag for a given consumer group indicates the delay between the last message in
the partition and the message being currently picked up by that consumer.

The lag reflects the position of the consumer offset in relation to the end of the partition log.

Consumer lag between the producer and consumer offset

This difference is sometimes referred to as the delta between the producer offset and consumer offset:
the read and write positions in the Kafka broker topic partitions.

Suppose a topic streams 100 messages a second. A lag of 1000 messages between the producer offset

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

374

https://github.com/prometheus
https://prometheus.io/docs/prometheus/latest/configuration/configuration
https://github.com/danielqsj/kafka_exporter
https://grafana.com/
http://kafka.apache.org/documentation/#monitoring
https://zookeeper.apache.org/doc/current/zookeeperJMX.html
https://github.com/danielqsj/kafka_exporter

Suppose a topic streams 100 messages a second. A lag of 1000 messages between the producer offset
(the topic partition head) and the last offset the consumer has read means a 10-second delay.

The importance of monitoring consumer lag
For applications that rely on the processing of (near) real-time data, it is critical to monitor consumer lag
to check that it does not become too big. The greater the lag becomes, the further the process moves
from the real-time processing objective.

Consumer lag, for example, might be a result of consuming too much old data that has not been purged,
or through unplanned shutdowns.

Reducing consumer lag
Use the Grafana charts to analyze lag and to check if actions to reduce lag are having an impact on an
affected consumer group. If, for example, Kafka brokers are adjusted to reduce lag, the dashboard will
show the Lag by consumer group chart going down and the Messages consumed per minute chart going
up.

Typical actions to reduce lag include:

Scaling-up consumer groups by adding new consumers

Increasing the retention time for a message to remain in a topic

Adding more disk capacity to increase the message buffer

Actions to reduce consumer lag depend on the underlying infrastructure and the use cases AMQ
Streams is supporting. For instance, a lagging consumer is less likely to benefit from the broker being
able to service a fetch request from its disk cache. And in certain cases, it might be acceptable to
automatically drop messages until a consumer has caught up.

20.2. MONITORING CRUISE CONTROL OPERATIONS

Cruise Control monitors Kafka brokers in order to track the utilization of brokers, topics, and partitions.
Cruise Control also provides a set of metrics for monitoring its own performance.

The Cruise Control metrics reporter collects raw metrics data from Kafka brokers. The data is produced
to topics that are automatically created by Cruise Control. The metrics are used to generate
optimization proposals for Kafka clusters.

Cruise Control metrics are available for real-time monitoring of Cruise Control operations. For example,
you can use Cruise Control metrics to monitor the status of rebalancing operations that are running or
provide alerts on any anomalies that are detected in an operation’s performance.

You expose Cruise Control metrics by enabling the Prometheus JMX Exporter in the Cruise Control
configuration.

NOTE

For a full list of available Cruise Control metrics, which are known as sensors, see the
Cruise Control documentation

20.2.1. Monitoring balancedness scores

Cruise Control metrics include a balancedness score. Balancedness is the measure of how evenly a
workload is distributed in a Kafka cluster.

CHAPTER 20. SETTING UP METRICS AND DASHBOARDS FOR AMQ STREAMS

375

https://github.com/linkedin/cruise-control/wiki/Sensors

The Cruise Control metric for balancedness score (balancedness-score) might differ from the
balancedness score in the KafkaRebalance resource. Cruise Control calculates each score using
anomaly.detection.goals which might not be the same as the default.goals used in the
KafkaRebalance resource. The anomaly.detection.goals are specified in the
spec.cruiseControl.config of the Kafka custom resource.

NOTE

Refreshing the KafkaRebalance resource fetches an optimization proposal. The latest
cached optimization proposal is fetched if one of the following conditions applies:

KafkaRebalance goals match the goals configured in the default.goals section
of the Kafka resource

KafkaRebalance goals are not specified

Otherwise, Cruise Control generates a new optimization proposal based on
KafkaRebalance goals. If new proposals are generated with each refresh, this can impact
performance monitoring.

20.2.2. Setting up alerts for anomaly detection

Cruise control’s anomaly detector provides metrics data for conditions that block the generation of
optimization goals, such as broker failures. If you want more visibility, you can use the metrics provided
by the anomaly detector to set up alerts and send out notifications. You can set up Cruise Control’s
anomaly notifier to route alerts based on these metrics through a specified notification channel.
Alternatively, you can set up Prometheus to scrape the metrics data provided by the anomaly detector
and generate alerts. Prometheus Alertmanager can then route the alerts generated by Prometheus.

The Cruise Control documentation provides information on AnomalyDetector metrics and the anomaly
notifier.

20.3. EXAMPLE METRICS FILES

You can find example Grafana dashboards and other metrics configuration files in the example
configuration files provided by AMQ Streams.

Example metrics files provided with AMQ Streams

metrics
├── grafana-dashboards 1
│ ├── strimzi-cruise-control.json
│ ├── strimzi-kafka-bridge.json
│ ├── strimzi-kafka-connect.json
│ ├── strimzi-kafka-exporter.json
│ ├── strimzi-kafka-mirror-maker-2.json
│ ├── strimzi-kafka.json
│ ├── strimzi-operators.json
│ └── strimzi-zookeeper.json
├── grafana-install
│ └── grafana.yaml 2
├── prometheus-additional-properties
│ └── prometheus-additional.yaml 3
├── prometheus-alertmanager-config

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

376

https://github.com/linkedin/cruise-control/wiki/Configurations

1

2

3

4

5

6

7

8

9

10

11

12

13

│ └── alert-manager-config.yaml 4
├── prometheus-install
│ ├── alert-manager.yaml 5
│ ├── prometheus-rules.yaml 6
│ ├── prometheus.yaml 7
│ └── strimzi-pod-monitor.yaml 8
├── kafka-bridge-metrics.yaml 9
├── kafka-connect-metrics.yaml 10
├── kafka-cruise-control-metrics.yaml 11
├── kafka-metrics.yaml 12
└── kafka-mirror-maker-2-metrics.yaml 13

Example Grafana dashboards for the different AMQ Streams components.

Installation file for the Grafana image.

Additional configuration to scrape metrics for CPU, memory and disk volume usage, which comes
directly from the OpenShift cAdvisor agent and kubelet on the nodes.

Hook definitions for sending notifications through Alertmanager.

Resources for deploying and configuring Alertmanager.

Alerting rules examples for use with Prometheus Alertmanager (deployed with Prometheus).

Installation resource file for the Prometheus image.

PodMonitor definitions translated by the Prometheus Operator into jobs for the Prometheus
server to be able to scrape metrics data directly from pods.

Kafka Bridge resource with metrics enabled.

Metrics configuration that defines Prometheus JMX Exporter relabeling rules for Kafka Connect.

Metrics configuration that defines Prometheus JMX Exporter relabeling rules for Cruise Control.

Metrics configuration that defines Prometheus JMX Exporter relabeling rules for Kafka and
ZooKeeper.

Metrics configuration that defines Prometheus JMX Exporter relabeling rules for Kafka Mirror
Maker 2.0.

20.3.1. Example Prometheus metrics configuration

AMQ Streams uses the Prometheus JMX Exporter to expose metrics through an HTTP endpoint, which
can be scraped by the Prometheus server.

Grafana dashboards are dependent on Prometheus JMX Exporter relabeling rules, which are defined for
AMQ Streams components in the custom resource configuration.

A label is a name-value pair. Relabeling is the process of writing a label dynamically. For example, the
value of a label may be derived from the name of a Kafka server and client ID.

AMQ Streams provides example custom resource configuration YAML files with relabeling rules. When

CHAPTER 20. SETTING UP METRICS AND DASHBOARDS FOR AMQ STREAMS

377

https://github.com/prometheus/jmx_exporter

AMQ Streams provides example custom resource configuration YAML files with relabeling rules. When
deploying Prometheus metrics configuration, you can can deploy the example custom resource or copy
the metrics configuration to your own custom resource definition.

Table 20.1. Example custom resources with metrics configuration

Component Custom resource Example YAML file

Kafka and ZooKeeper Kafka kafka-metrics.yaml

Kafka Connect KafkaConnect kafka-connect-metrics.yaml

Kafka MirrorMaker 2 KafkaMirrorMaker2 kafka-mirror-maker-2-
metrics.yaml

Kafka Bridge KafkaBridge kafka-bridge-metrics.yaml

Cruise Control Kafka kafka-cruise-control-
metrics.yaml

20.3.2. Example Prometheus rules for alert notifications

Example Prometheus rules for alert notifications are provided with the example metrics configuration
files provided by AMQ Streams. The rules are specified in the example prometheus-rules.yaml file for
use in a Prometheus deployment.

The prometheus-rules.yaml file contains example rules for the following components:

Kafka

ZooKeeper

Entity Operator

Kafka Connect

Kafka Bridge

MirrorMaker

Kafka Exporter

A description of each of the example rules is provided in the file.

Alerting rules provide notifications about specific conditions observed in metrics. Rules are declared on
the Prometheus server, but Prometheus Alertmanager is responsible for alert notifications.

Prometheus alerting rules describe conditions using PromQL expressions that are continuously
evaluated.

When an alert expression becomes true, the condition is met and the Prometheus server sends alert
data to the Alertmanager. Alertmanager then sends out a notification using the communication method
configured for its deployment.

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

378

https://prometheus.io/docs/prometheus/latest/querying/basics/

General points about the alerting rule definitions:

A for property is used with the rules to determine the period of time a condition must persist
before an alert is triggered.

A tick is a basic ZooKeeper time unit, which is measured in milliseconds and configured using the
tickTime parameter of Kafka.spec.zookeeper.config. For example, if ZooKeeper
tickTime=3000, 3 ticks (3 x 3000) equals 9000 milliseconds.

The availability of the ZookeeperRunningOutOfSpace metric and alert is dependent on the
OpenShift configuration and storage implementation used. Storage implementations for
certain platforms may not be able to supply the information on available space required for the
metric to provide an alert.

Alertmanager can be configured to use email, chat messages or other notification methods. Adapt the
default configuration of the example rules according to your specific needs.

20.3.3. Example Grafana dashboards

If you deploy Prometheus to provide metrics, you can use the example Grafana dashboards provided
with AMQ Streams to monitor AMQ Streams components.

Example dashboards are provided in the examples/metrics/grafana-dashboards directory as JSON
files.

All dashboards provide JVM metrics, as well as metrics specific to the component. For example, the
Grafana dashboard for AMQ Streams operators provides information on the number of reconciliations
or custom resources they are processing.

The example dashboards don’t show all the metrics supported by Kafka. The dashboards are populated
with a representative set of metrics for monitoring.

Table 20.2. Example Grafana dashboard files

Component Example JSON file

AMQ Streams operators strimzi-operators.json

Kafka strimzi-kafka.json

ZooKeeper strimzi-zookeeper.json

Kafka Connect strimzi-kafka-connect.json

Kafka MirrorMaker 2 strimzi-kafka-mirror-maker-2.json

Kafka Bridge strimzi-kafka-bridge.json

Cruise Control strimzi-cruise-control.json

Kafka Exporter strimzi-kafka-exporter.json

NOTE

CHAPTER 20. SETTING UP METRICS AND DASHBOARDS FOR AMQ STREAMS

379

NOTE

When metrics are not available to the Kafka Exporter, because there is no traffic in the
cluster yet, the Kafka Exporter Grafana dashboard will show N/A for numeric fields and
No data to show for graphs.

20.4. ENABLING PROMETHEUS METRICS THROUGH
CONFIGURATION

To enable and expose metrics in AMQ Streams for Prometheus, use metrics configuration properties.

The following components require metricsConfig configuration to expose metrics:

Kafka

KafkaConnect

MirrorMaker

Cruise Control

ZooKeeper

This configuration enables the Prometheus JMX Exporter to expose metrics through an HTTP endpoint.
The port for the JMX exporter HTTP endpoint is 9404. Prometheus scrapes this endpoint to collect
Kafka metrics.

You set the enableMetrics property to true in order to expose metrics for these components:

Kafka Bridge

OAuth 2.0 authentication and authorization framework

Open Policy Agent (OPA) for authorization

To deploy Prometheus metrics configuration in AMQ Streams, you can use your own configuration or
the example custom resource configuration files provided with AMQ Streams:

kafka-metrics.yaml

kafka-connect-metrics.yaml

kafka-mirror-maker-2-metrics.yaml

kafka-bridge-metrics.yaml

kafka-cruise-control-metrics.yaml

oauth-metrics.yaml

These files contain the necessary relabeling rules and configuration to enable Prometheus metrics. They
are a good starting point for trying Prometheus with AMQ Streams.

This procedure shows how to deploy example Prometheus metrics configuration in the Kafka resource.
The process is the same when deploying the example files for other resources.

If you wish to include Kafka Exporter metrics, add kafkaExporter configuration to your Kafka resource.

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

380

https://github.com/prometheus/jmx_exporter

1

2

IMPORTANT

Kafka Exporter only provides additional metrics related to consumer lag and consumer
offsets. For regular Kafka metrics, you must configure the Prometheus metrics in Kafka
brokers.

Procedure

1. Deploy the example custom resource with the Prometheus configuration.
For example, for each Kafka resource you can apply the kafka-metrics.yaml file.

Deploying the example configuration

Alternatively, you can copy the example configuration in kafka-metrics.yaml to your own Kafka
resource.

Copying the example configuration

Copy the metricsConfig property and the ConfigMap it references to your Kafka resource.

Example metrics configuration for Kafka

Copy the metricsConfig property that references the ConfigMap that contains metrics
configuration.

Copy the whole ConfigMap that specifies the metrics configuration.

oc apply -f kafka-metrics.yaml

oc edit kafka <kafka_configuration_file>

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 name: my-cluster
spec:
 kafka:
 # ...
 metricsConfig: 1
 type: jmxPrometheusExporter
 valueFrom:
 configMapKeyRef:
 name: kafka-metrics
 key: kafka-metrics-config.yml

kind: ConfigMap 2
apiVersion: v1
metadata:
 name: kafka-metrics
 labels:
 app: strimzi
data:
 kafka-metrics-config.yml: |
 # metrics configuration...

CHAPTER 20. SETTING UP METRICS AND DASHBOARDS FOR AMQ STREAMS

381

1

2

3

4

2. To deploy Kafka Exporter, add kafkaExporter configuration.
kafkaExporter configuration is only specified in the Kafka resource.

Example configuration for deploying Kafka Exporter

ADVANCED OPTION: Container image configuration, which is recommended only in
special situations.

A regular expression to specify the consumer groups to include in the metrics.

A regular expression to specify the topics to include in the metrics.

A regular expression to specify the consumer groups to exclude in the metrics.

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 name: my-cluster
spec:
 # ...
 kafkaExporter:
 image: my-registry.io/my-org/my-exporter-cluster:latest 1
 groupRegex: ".*" 2
 topicRegex: ".*" 3
 groupExcludeRegex: "^excluded-.*" 4
 topicExcludeRegex: "^excluded-.*" 5
 resources: 6
 requests:
 cpu: 200m
 memory: 64Mi
 limits:
 cpu: 500m
 memory: 128Mi
 logging: debug 7
 enableSaramaLogging: true 8
 template: 9
 pod:
 metadata:
 labels:
 label1: value1
 imagePullSecrets:
 - name: my-docker-credentials
 securityContext:
 runAsUser: 1000001
 fsGroup: 0
 terminationGracePeriodSeconds: 120
 readinessProbe: 10
 initialDelaySeconds: 15
 timeoutSeconds: 5
 livenessProbe: 11
 initialDelaySeconds: 15
 timeoutSeconds: 5
...

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

382

5

6

7

8

9

10

11

A regular expression to specify the topics to exclude in the metrics.

CPU and memory resources to reserve.

Logging configuration, to log messages with a given severity (debug, info, warn, error,
fatal) or above.

Boolean to enable Sarama logging, a Go client library used by Kafka Exporter.

Customization of deployment templates and pods.

Healthcheck readiness probes.

Healthcheck liveness probes.

NOTE

For Kafka Exporter to be able to work properly, consumer groups need to be in use.

Enabling metrics for Kafka Bridge

To expose metrics for Kafka Bridge, set the enableMetrics property to true in the KafkaBridge
resource.

Example metrics configuration for Kafka Bridge

Enabling metrics for OAuth 2.0 and OPA

To expose metrics for OAuth 2.0 or OPA, set the enableMetrics property to true in the appropriate
custom resource.

OAuth 2.0 metrics

Enable metrics for Kafka cluster authorization and Kafka listener authentication in the Kafka
resource.
You can also enable metrics for OAuth 2.0 authentication in the custom resource of other supported
components.

OPA metrics

Enable metrics for Kafka cluster authorization the Kafka resource in the same way as for OAuth 2.0.

In the following example, metrics are enabled for OAuth 2.0 listener authentication and OAuth 2.0
(keycloak) cluster authorization.

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaBridge
metadata:
 name: my-bridge
spec:
 # ...
 bootstrapServers: my-cluster-kafka:9092
 http:
 # ...
 enableMetrics: true
 # ...

CHAPTER 20. SETTING UP METRICS AND DASHBOARDS FOR AMQ STREAMS

383

Example cluster configuration with metrics enabled for OAuth 2.0

To use the OAuth 2.0 metrics with Prometheus, you can use the oauth-metrics.yaml file to deploy
example Prometheus metrics configuration. Copy the ConfigMap configuration the oauth-
metrics.yaml file contains to the same Kafka resource configuration file where you enabled metrics for
OAuth 2.0.

20.5. VIEWING KAFKA METRICS AND DASHBOARDS IN OPENSHIFT

When AMQ Streams is deployed to OpenShift Container Platform, metrics are provided through
monitoring for user-defined projects. This OpenShift feature gives developers access to a separate
Prometheus instance for monitoring their own projects (for example, a Kafka project).

If monitoring for user-defined projects is enabled, the openshift-user-workload-monitoring project
contains the following components:

A Prometheus operator

A Prometheus instance (automatically deployed by the Prometheus Operator)

A Thanos Ruler instance

AMQ Streams uses these components to consume metrics.

A cluster administrator must enable monitoring for user-defined projects and then grant developers
and other users permission to monitor applications within their own projects.

Grafana deployment

You can deploy a Grafana instance to the project containing your Kafka cluster. The example Grafana
dashboards can then be used to visualize Prometheus metrics for AMQ Streams in the Grafana user
interface.

IMPORTANT

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 name: my-cluster
 namespace: myproject
spec:
 kafka:
 # ...
 listeners:
 - name: external
 port: 9094
 type: loadbalancer
 tls: true
 authentication:
 type: oauth
 enableMetrics: true
 configuration:
 #...
 authorization:
 type: keycloak
 enableMetrics: true
 # ...

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

384

IMPORTANT

The openshift-monitoring project provides monitoring for core platform components.
Do not use the Prometheus and Grafana components in this project to configure
monitoring for AMQ Streams on OpenShift Container Platform 4.x.

Procedure outline

To set up AMQ Streams monitoring in OpenShift Container Platform, follow these procedures in order:

1. Prerequisite: Deploy the Prometheus metrics configuration

2. Deploy the Prometheus resources

3. Create a service account for Grafana

4. Deploy Grafana with a Prometheus datasource

5. Create a Route to the Grafana Service

6. Import the example Grafana dashboards

20.5.1. Prerequisites

You have deployed the Prometheus metrics configuration using the example YAML files.

Monitoring for user-defined projects is enabled. A cluster administrator has created a cluster-
monitoring-config config map in your OpenShift cluster.

A cluster administrator has assigned you a monitoring-rules-edit or monitoring-edit role.

For more information on creating a cluster-monitoring-config config map and granting users
permission to monitor user-defined projects, see the OpenShift documentation.

20.5.2. Deploying the Prometheus resources

Use Prometheus to obtain monitoring data in your Kafka cluster.

You can use your own Prometheus deployment or deploy Prometheus using the example metrics
configuration files provided by AMQ Streams. To use the example files, you configure and deploy the
PodMonitor resources. The PodMonitors scrape data directly from pods for Apache Kafka, ZooKeeper,
Operators, the Kafka Bridge, and Cruise Control.

You then deploy the example alerting rules for Alertmanager.

Prerequisites

A running Kafka cluster.

Check the example alerting rules provided with AMQ Streams.

Procedure

1. Check that monitoring for user-defined projects is enabled:

oc get pods -n openshift-user-workload-monitoring

CHAPTER 20. SETTING UP METRICS AND DASHBOARDS FOR AMQ STREAMS

385

https://docs.openshift.com

1

If enabled, pods for the monitoring components are returned. For example:

If no pods are returned, monitoring for user-defined projects is disabled. See the Prerequisites
in Section 20.5, “Viewing Kafka metrics and dashboards in OpenShift” .

2. Multiple PodMonitor resources are defined in examples/metrics/prometheus-install/strimzi-
pod-monitor.yaml.
For each PodMonitor resource, edit the spec.namespaceSelector.matchNames property:

The project where the pods to scrape the metrics from are running, for example, Kafka.

3. Deploy the strimzi-pod-monitor.yaml file to the project where your Kafka cluster is running:

4. Deploy the example Prometheus rules to the same project:

20.5.3. Creating a service account for Grafana

A Grafana instance for AMQ Streams needs to run with a service account that is assigned the cluster-
monitoring-view role.

Create a service account if you are using Grafana to present metrics for monitoring.

Prerequisites

NAME READY STATUS RESTARTS AGE
prometheus-operator-5cc59f9bc6-kgcq8 1/1 Running 0 25s
prometheus-user-workload-0 5/5 Running 1 14s
prometheus-user-workload-1 5/5 Running 1 14s
thanos-ruler-user-workload-0 3/3 Running 0 14s
thanos-ruler-user-workload-1 3/3 Running 0 14s

apiVersion: monitoring.coreos.com/v1
kind: PodMonitor
metadata:
 name: cluster-operator-metrics
 labels:
 app: strimzi
spec:
 selector:
 matchLabels:
 strimzi.io/kind: cluster-operator
 namespaceSelector:
 matchNames:
 - <project-name> 1
 podMetricsEndpoints:
 - path: /metrics
 port: http
...

oc apply -f strimzi-pod-monitor.yaml -n MY-PROJECT

oc apply -f prometheus-rules.yaml -n MY-PROJECT

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

386

1

2

Deploy the Prometheus resources

Procedure

1. Create a ServiceAccount for Grafana in the project containing your Kafka cluster:

In this example, a service account named grafana-service-account is created in the my-project
namespace.

2. Create a ClusterRoleBinding resource that assigns the cluster-monitoring-view role to the
Grafana ServiceAccount. Here the resource is named grafana-cluster-monitoring-binding.

3. Deploy the ClusterRoleBinding to the same project:

4. Create a token secret for the service account:

Specifies the service account.

Specifies a service account token secret.

5. Create the Secret object and access token:

You need the access token when deploying Grafana.

 oc create sa grafana-service-account -n my-project

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
 name: grafana-cluster-monitoring-binding
 labels:
 app: strimzi
subjects:
 - kind: ServiceAccount
 name: grafana-service-account
 namespace: my-project
roleRef:
 kind: ClusterRole
 name: cluster-monitoring-view
 apiGroup: rbac.authorization.k8s.io

oc apply -f grafana-cluster-monitoring-binding.yaml -n my-project

apiVersion: v1
kind: Secret
metadata:
 name: secret-sa
 annotations:
 kubernetes.io/service-account.name: "grafana-service-account" 1
type: kubernetes.io/service-account-token 2

oc create -f <secret_configuration>.yaml

CHAPTER 20. SETTING UP METRICS AND DASHBOARDS FOR AMQ STREAMS

387

1

20.5.4. Deploying Grafana with a Prometheus datasource

Deploy Grafana to present Prometheus metrics. A Grafana application requires configuration for the
OpenShift Container Platform monitoring stack.

OpenShift Container Platform includes a Thanos Querier instance in the openshift-monitoring project.
Thanos Querier is used to aggregate platform metrics.

To consume the required platform metrics, your Grafana instance requires a Prometheus data source
that can connect to Thanos Querier. To configure this connection, you create a config map that
authenticates, by using a token, to the oauth-proxy sidecar that runs alongside Thanos Querier. A
datasource.yaml file is used as the source of the config map.

Finally, you deploy the Grafana application with the config map mounted as a volume to the project
containing your Kafka cluster.

Prerequisites

You have deployed Prometheus resources .

You have created a service account for Grafana .

Procedure

1. Get the access token of the Grafana ServiceAccount:

In this example, the service account is named grafana-service-account. Copy the access token
to use in the next step.

2. Create a datasource.yaml file containing the Thanos Querier configuration for Grafana.
Paste the access token into the httpHeaderValue1 property as indicated.

GRAFANA-ACCESS-TOKEN: The value of the access token for the Grafana
ServiceAccount.

oc describe sa/grafana-service-account | grep Tokens:
oc describe secret grafana-service-account-token-mmlp9 | grep token:

apiVersion: 1

datasources:
- name: Prometheus
 type: prometheus
 url: https://thanos-querier.openshift-monitoring.svc.cluster.local:9091
 access: proxy
 basicAuth: false
 withCredentials: false
 isDefault: true
 jsonData:
 timeInterval: 5s
 tlsSkipVerify: true
 httpHeaderName1: "Authorization"
 secureJsonData:
 httpHeaderValue1: "Bearer ${GRAFANA-ACCESS-TOKEN}" 1
 editable: true

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

388

3. Create a config map named grafana-config from the datasource.yaml file:

4. Create a Grafana application consisting of a Deployment and a Service.
The grafana-config config map is mounted as a volume for the datasource configuration.

oc create configmap grafana-config --from-file=datasource.yaml -n MY-PROJECT

apiVersion: apps/v1
kind: Deployment
metadata:
 name: grafana
 labels:
 app: strimzi
spec:
 replicas: 1
 selector:
 matchLabels:
 name: grafana
 template:
 metadata:
 labels:
 name: grafana
 spec:
 serviceAccountName: grafana-service-account
 containers:
 - name: grafana
 image: grafana/grafana:10.0.3
 ports:
 - name: grafana
 containerPort: 3000
 protocol: TCP
 volumeMounts:
 - name: grafana-data
 mountPath: /var/lib/grafana
 - name: grafana-logs
 mountPath: /var/log/grafana
 - name: grafana-config
 mountPath: /etc/grafana/provisioning/datasources/datasource.yaml
 readOnly: true
 subPath: datasource.yaml
 readinessProbe:
 httpGet:
 path: /api/health
 port: 3000
 initialDelaySeconds: 5
 periodSeconds: 10
 livenessProbe:
 httpGet:
 path: /api/health
 port: 3000
 initialDelaySeconds: 15
 periodSeconds: 20
 volumes:
 - name: grafana-data
 emptyDir: {}

CHAPTER 20. SETTING UP METRICS AND DASHBOARDS FOR AMQ STREAMS

389

5. Deploy the Grafana application to the project containing your Kafka cluster:

20.5.5. Creating a route to the Grafana Service

You can access the Grafana user interface through a Route that exposes the Grafana service.

Prerequisites

Deploy the Prometheus resources

Create a service account for Grafana

Deploy Grafana with a Prometheus datasource

Procedure

Create an edge route to the grafana service:

20.5.6. Importing the example Grafana dashboards

Use Grafana to provide visualizations of Prometheus metrics on customizable dashboards.

AMQ Streams provides example dashboard configuration files for Grafana in JSON format.

examples/metrics/grafana-dashboards

This procedure uses the example Grafana dashboards.

 - name: grafana-logs
 emptyDir: {}
 - name: grafana-config
 configMap:
 name: grafana-config

apiVersion: v1
kind: Service
metadata:
 name: grafana
 labels:
 app: strimzi
spec:
 ports:
 - name: grafana
 port: 3000
 targetPort: 3000
 protocol: TCP
 selector:
 name: grafana
 type: ClusterIP

oc apply -f <grafana-application> -n <my-project>

oc create route edge <my-grafana-route> --service=grafana --namespace=KAFKA-
NAMESPACE

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

390

The example dashboards are a good starting point for monitoring key metrics, but they don’t show all
the metrics supported by Kafka. You can modify the example dashboards or add other metrics,
depending on your infrastructure.

Prerequisites

Deploy the Prometheus resources

Create a service account for Grafana

Deploy Grafana with a Prometheus datasource

Create a Route to the Grafana Service

Procedure

1. Get the details of the Route to the Grafana Service. For example:

2. In a web browser, access the Grafana login screen using the URL for the Route host and port.

3. Enter your user name and password, and then click Log In.
The default Grafana user name and password are both admin. After logging in for the first time,
you can change the password.

4. In Configuration > Data Sources, check that the Prometheus data source was created. The
data source was created in Section 20.5.4, “Deploying Grafana with a Prometheus datasource” .

5. Click the + icon and then click Import.

6. In examples/metrics/grafana-dashboards, copy the JSON of the dashboard to import.

7. Paste the JSON into the text box, and then click Load.

8. Repeat steps 5-7 for the other example Grafana dashboards.

The imported Grafana dashboards are available to view from the Dashboards home page.

oc get routes

NAME HOST/PORT PATH SERVICES
MY-GRAFANA-ROUTE MY-GRAFANA-ROUTE-amq-streams.net grafana

CHAPTER 20. SETTING UP METRICS AND DASHBOARDS FOR AMQ STREAMS

391

CHAPTER 21. INTRODUCING DISTRIBUTED TRACING
Distributed tracing tracks the progress of transactions between applications in a distributed system. In a
microservices architecture, tracing tracks the progress of transactions between services. Trace data is
useful for monitoring application performance and investigating issues with target systems and end-
user applications.

In AMQ Streams, tracing facilitates the end-to-end tracking of messages: from source systems to
Kafka, and then from Kafka to target systems and applications. Distributed tracing complements the
monitoring of metrics in Grafana dashboards, as well as the component loggers.

Support for tracing is built in to the following Kafka components:

MirrorMaker to trace messages from a source cluster to a target cluster

Kafka Connect to trace messages consumed and produced by Kafka Connect

Kafka Bridge to trace messages between Kafka and HTTP client applications

Tracing is not supported for Kafka brokers.

You enable and configure tracing for these components through their custom resources. You add
tracing configuration using spec.template properties.

You enable tracing by specifying a tracing type using the spec.tracing.type property:

opentelemetry

Specify type: opentelemetry to use OpenTelemetry. By Default, OpenTelemetry uses the OTLP
(OpenTelemetry Protocol) exporter and endpoint to get trace data. You can specify other tracing
systems supported by OpenTelemetry, including Jaeger tracing. To do this, you change the
OpenTelemetry exporter and endpoint in the tracing configuration.

jaeger

Specify type:jaeger to use OpenTracing and the Jaeger client to get trace data.

NOTE

Support for type: jaeger tracing is deprecated. The Jaeger clients are now retired and
the OpenTracing project archived. As such, we cannot guarantee their support for future
Kafka versions. If possible, we will maintain the support for type: jaeger tracing until June
2023 and remove it afterwards. Please migrate to OpenTelemetry as soon as possible.

21.1. TRACING OPTIONS

Use OpenTelemetry or OpenTracing (deprecated) with the Jaeger tracing system.

OpenTelemetry and OpenTracing provide API specifications that are independent from the tracing or
monitoring system.

You use the APIs to instrument application code for tracing.

Instrumented applications generate traces for individual requests across the distributed system.

Traces are composed of spans that define specific units of work over time.

Jaeger is a tracing system for microservices-based distributed systems.

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

392

Jaeger implements the tracing APIs and provides client libraries for instrumentation.

The Jaeger user interface allows you to query, filter, and analyze trace data.

The Jaeger user interface showing a simple query

Additional resources

Jaeger documentation

OpenTelemetry documentation

OpenTracing documentation

21.2. ENVIRONMENT VARIABLES FOR TRACING

Use environment variables when you are enabling tracing for Kafka components or initializing a tracer for
Kafka clients.

Tracing environment variables are subject to change. For the latest information, see the OpenTelemetry
documentation and OpenTracing documentation.

The following tables describe the key environment variables for setting up a tracer.

Table 21.1. OpenTelemetry environment variables

Property Required Description

OTEL_SERVICE_NAME Yes The name of the Jaeger tracing service
for OpenTelemetry.

OTEL_EXPORTER_JAEGER_ENDP
OINT

Yes The exporter used for tracing.

CHAPTER 21. INTRODUCING DISTRIBUTED TRACING

393

https://www.jaegertracing.io/docs/
https://opentelemetry.io/docs/
https://opentracing.io/docs/
https://opentelemetry.io/docs/
https://opentracing.io/docs/

OTEL_TRACES_EXPORTER Yes The exporter used for tracing. Set to otlp
by default. If using Jaeger tracing, you
need to set this environment variable as
jaeger. If you are using another tracing
implementation, specify the exporter
used.

Property Required Description

Table 21.2. OpenTracing environment variables

Property Required Description

JAEGER_SERVICE_NAME Yes The name of the Jaeger tracer service.

JAEGER_AGENT_HOST No The hostname for communicating with
the jaeger-agent through the User
Datagram Protocol (UDP).

JAEGER_AGENT_PORT No The port used for communicating with the
jaeger-agent through UDP.

21.3. SETTING UP DISTRIBUTED TRACING

Enable distributed tracing in Kafka components by specifying a tracing type in the custom resource.
Instrument tracers in Kafka clients for end-to-end tracking of messages.

To set up distributed tracing, follow these procedures in order:

Enable tracing for MirrorMaker, Kafka Connect, and the Kafka Bridge

Set up tracing for clients:

Initialize a Jaeger tracer for Kafka clients

Instrument clients with tracers:

Instrument producers and consumers for tracing

Instrument Kafka Streams applications for tracing

21.3.1. Prerequisites

Before setting up distributed tracing, make sure Jaeger backend components are deployed to your
OpenShift cluster. We recommend using the Jaeger operator for deploying Jaeger on your OpenShift
cluster.

For deployment instructions, see the Jaeger documentation.

NOTE

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

394

https://www.jaegertracing.io/docs/

NOTE

Setting up tracing for applications and systems beyond AMQ Streams is outside the
scope of this content.

21.3.2. Enabling tracing in MirrorMaker, Kafka Connect, and Kafka Bridge resources

Distributed tracing is supported for MirrorMaker, MirrorMaker 2, Kafka Connect, and the AMQ Streams
Kafka Bridge. Configure the custom resource of the component to specify and enable a tracer service.

Enabling tracing in a resource triggers the following events:

Interceptor classes are updated in the integrated consumers and producers of the component.

For MirrorMaker, MirrorMaker 2, and Kafka Connect, the tracing agent initializes a tracer based
on the tracing configuration defined in the resource.

For the Kafka Bridge, a tracer based on the tracing configuration defined in the resource is
initialized by the Kafka Bridge itself.

You can enable tracing that uses OpenTelemetry or OpenTracing.

Tracing in MirrorMaker and MirrorMaker 2

For MirrorMaker and MirrorMaker 2, messages are traced from the source cluster to the target cluster.
The trace data records messages entering and leaving the MirrorMaker or MirrorMaker 2 component.

Tracing in Kafka Connect

For Kafka Connect, only messages produced and consumed by Kafka Connect are traced. To trace
messages sent between Kafka Connect and external systems, you must configure tracing in the
connectors for those systems.

Tracing in the Kafka Bridge

For the Kafka Bridge, messages produced and consumed by the Kafka Bridge are traced. Incoming
HTTP requests from client applications to send and receive messages through the Kafka Bridge are also
traced. To have end-to-end tracing, you must configure tracing in your HTTP clients.

Procedure

Perform these steps for each KafkaMirrorMaker, KafkaMirrorMaker2, KafkaConnect, and
KafkaBridge resource.

1. In the spec.template property, configure the tracer service.

Use the tracing environment variables as template configuration properties.

For OpenTelemetry, set the spec.tracing.type property to opentelemetry.

For OpenTracing, set the spec.tracing.type property to jaeger.

Example tracing configuration for Kafka Connect using OpenTelemetry

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
metadata:
 name: my-connect-cluster

CHAPTER 21. INTRODUCING DISTRIBUTED TRACING

395

Example tracing configuration for MirrorMaker using OpenTelemetry

Example tracing configuration for MirrorMaker 2 using OpenTelemetry

Example tracing configuration for the Kafka Bridge using OpenTelemetry

spec:
 #...
 template:
 connectContainer:
 env:
 - name: OTEL_SERVICE_NAME
 value: my-otel-service
 - name: OTEL_EXPORTER_OTLP_ENDPOINT
 value: "http://otlp-host:4317"
 tracing:
 type: opentelemetry
 #...

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaMirrorMaker
metadata:
 name: my-mirror-maker
spec:
 #...
 template:
 mirrorMakerContainer:
 env:
 - name: OTEL_SERVICE_NAME
 value: my-otel-service
 - name: OTEL_EXPORTER_OTLP_ENDPOINT
 value: "http://otlp-host:4317"
 tracing:
 type: opentelemetry
#...

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaMirrorMaker2
metadata:
 name: my-mm2-cluster
spec:
 #...
 template:
 connectContainer:
 env:
 - name: OTEL_SERVICE_NAME
 value: my-otel-service
 - name: OTEL_EXPORTER_OTLP_ENDPOINT
 value: "http://otlp-host:4317"
 tracing:
 type: opentelemetry
#...

apiVersion: kafka.strimzi.io/v1beta2

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

396

Example tracing configuration for Kafka Connect using OpenTracing

Example tracing configuration for MirrorMaker using OpenTracing

kind: KafkaBridge
metadata:
 name: my-bridge
spec:
 #...
 template:
 bridgeContainer:
 env:
 - name: OTEL_SERVICE_NAME
 value: my-otel-service
 - name: OTEL_EXPORTER_OTLP_ENDPOINT
 value: "http://otlp-host:4317"
 tracing:
 type: opentelemetry
#...

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
metadata:
 name: my-connect-cluster
spec:
 #...
 template:
 connectContainer:
 env:
 - name: JAEGER_SERVICE_NAME
 value: my-jaeger-service
 - name: JAEGER_AGENT_HOST
 value: jaeger-agent-name
 - name: JAEGER_AGENT_PORT
 value: "6831"
 tracing:
 type: jaeger
 #...

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaMirrorMaker
metadata:
 name: my-mirror-maker
spec:
 #...
 template:
 mirrorMakerContainer:
 env:
 - name: JAEGER_SERVICE_NAME
 value: my-jaeger-service
 - name: JAEGER_AGENT_HOST
 value: jaeger-agent-name
 - name: JAEGER_AGENT_PORT
 value: "6831"

CHAPTER 21. INTRODUCING DISTRIBUTED TRACING

397

Example tracing configuration for MirrorMaker 2 using OpenTracing

Example tracing configuration for the Kafka Bridge using OpenTracing

2. Create or update the resource:

21.3.3. Initializing tracing for Kafka clients

Initialize a tracer, then instrument your client applications for distributed tracing. You can instrument

 tracing:
 type: jaeger
#...

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaMirrorMaker2
metadata:
 name: my-mm2-cluster
spec:
 #...
 template:
 connectContainer:
 env:
 - name: JAEGER_SERVICE_NAME
 value: my-jaeger-service
 - name: JAEGER_AGENT_HOST
 value: jaeger-agent-name
 - name: JAEGER_AGENT_PORT
 value: "6831"
 tracing:
 type: jaeger
#...

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaBridge
metadata:
 name: my-bridge
spec:
 #...
 template:
 bridgeContainer:
 env:
 - name: JAEGER_SERVICE_NAME
 value: my-jaeger-service
 - name: JAEGER_AGENT_HOST
 value: jaeger-agent-name
 - name: JAEGER_AGENT_PORT
 value: "6831"
 tracing:
 type: jaeger
#...

oc apply -f <resource_configuration_file>

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

398

Initialize a tracer, then instrument your client applications for distributed tracing. You can instrument
Kafka producer and consumer clients, and Kafka Streams API applications. You can initialize a tracer for
OpenTracing or OpenTelemetry.

Configure and initialize a tracer using a set of tracing environment variables.

Procedure

In each client application add the dependencies for the tracer:

1. Add the Maven dependencies to the pom.xml file for the client application:

Dependencies for OpenTelemetry

Dependencies for OpenTracing

2. Define the configuration of the tracer using the tracing environment variables.

3. Create a tracer, which is initialized with the environment variables:

Creating a tracer for OpenTelemetry

Creating a tracer for OpenTracing

<dependency>
 <groupId>io.opentelemetry</groupId>
 <artifactId>opentelemetry-sdk-extension-autoconfigure</artifactId>
 <version>1.19.0.redhat-00002</version>
</dependency>
<dependency>
 <groupId>io.opentelemetry.instrumentation</groupId>
 <artifactId>opentelemetry-kafka-clients-{OpenTelemetryKafkaClient}</artifactId>
 <version>1.19.0.redhat-00002</version>
</dependency>
<dependency>
 <groupId>io.opentelemetry</groupId>
 <artifactId>opentelemetry-exporter-otlp</artifactId>
 <version>1.19.0.redhat-00002</version>
</dependency>

<dependency>
 <groupId>io.jaegertracing</groupId>
 <artifactId>jaeger-client</artifactId>
 <version>1.8.1.redhat-00002</version>
</dependency>
<dependency>
 <groupId>io.opentracing.contrib</groupId>
 <artifactId>opentracing-kafka-client</artifactId>
 <version>0.1.15.redhat-00006</version>
</dependency>

OpenTelemetry ot = GlobalOpenTelemetry.get();

Tracer tracer = Configuration.fromEnv().getTracer();

CHAPTER 21. INTRODUCING DISTRIBUTED TRACING

399

4. Register the tracer as a global tracer:

5. Instrument your client:

Section 21.3.4, “Instrumenting producers and consumers for tracing”

Section 21.3.5, “Instrumenting Kafka Streams applications for tracing”

21.3.4. Instrumenting producers and consumers for tracing

Instrument application code to enable tracing in Kafka producers and consumers. Use a decorator
pattern or interceptors to instrument your Java producer and consumer application code for tracing.
You can then record traces when messages are produced or retrieved from a topic.

OpenTelemetry and OpenTracing instrumentation projects provide classes that support
instrumentation of producers and consumers.

Decorator instrumentation

For decorator instrumentation, create a modified producer or consumer instance for tracing.
Decorator instrumentation is different for OpenTelemetry and OpenTracing.

Interceptor instrumentation

For interceptor instrumentation, add the tracing capability to the consumer or producer
configuration. Interceptor instrumentation is the same for OpenTelemetry and OpenTracing.

Prerequisites

You have initialized tracing for the client .
You enable instrumentation in producer and consumer applications by adding the tracing JARs
as dependencies to your project.

Procedure

Perform these steps in the application code of each producer and consumer application. Instrument
your client application code using either a decorator pattern or interceptors.

To use a decorator pattern, create a modified producer or consumer instance to send or receive
messages.
You pass the original KafkaProducer or KafkaConsumer class.

Example decorator instrumentation for OpenTelemetry

GlobalTracer.register(tracer);

// Producer instance
Producer < String, String > op = new KafkaProducer < > (
 configs,
 new StringSerializer(),
 new StringSerializer()
);
 Producer < String, String > producer = tracing.wrap(op);
KafkaTracing tracing = KafkaTracing.create(GlobalOpenTelemetry.get());
producer.send(...);

//consumer instance
Consumer<String, String> oc = new KafkaConsumer<>(

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

400

Example decorator instrumentation for OpenTracing

To use interceptors, set the interceptor class in the producer or consumer configuration.
You use the KafkaProducer and KafkaConsumer classes in the usual way. The
TracingProducerInterceptor and TracingConsumerInterceptor interceptor classes take care
of the tracing capability.

Example producer configuration using interceptors

Example consumer configuration using interceptors

21.3.5. Instrumenting Kafka Streams applications for tracing

Instrument application code to enable tracing in Kafka Streams API applications. Use a decorator

 configs,
 new StringDeserializer(),
 new StringDeserializer()
);
 Consumer<String, String> consumer = tracing.wrap(oc);
consumer.subscribe(Collections.singleton("mytopic"));
ConsumerRecords<Integer, String> records = consumer.poll(1000);
ConsumerRecord<Integer, String> record = ...
SpanContext spanContext = TracingKafkaUtils.extractSpanContext(record.headers(), tracer);

//producer instance
KafkaProducer<Integer, String> producer = new KafkaProducer<>(senderProps);
TracingKafkaProducer<Integer, String> tracingProducer = new TracingKafkaProducer<>
(producer, tracer);
TracingKafkaProducer.send(...)

//consumer instance
KafkaConsumer<Integer, String> consumer = new KafkaConsumer<>(consumerProps);
TracingKafkaConsumer<Integer, String> tracingConsumer = new TracingKafkaConsumer<>
(consumer, tracer);
tracingConsumer.subscribe(Collections.singletonList("mytopic"));
ConsumerRecords<Integer, String> records = tracingConsumer.poll(1000);
ConsumerRecord<Integer, String> record = ...
SpanContext spanContext = TracingKafkaUtils.extractSpanContext(record.headers(), tracer);

senderProps.put(ProducerConfig.INTERCEPTOR_CLASSES_CONFIG,
 TracingProducerInterceptor.class.getName());

KafkaProducer<Integer, String> producer = new KafkaProducer<>(senderProps);
producer.send(...);

consumerProps.put(ConsumerConfig.INTERCEPTOR_CLASSES_CONFIG,
 TracingConsumerInterceptor.class.getName());

KafkaConsumer<Integer, String> consumer = new KafkaConsumer<>(consumerProps);
consumer.subscribe(Collections.singletonList("messages"));
ConsumerRecords<Integer, String> records = consumer.poll(1000);
ConsumerRecord<Integer, String> record = ...
SpanContext spanContext = TracingKafkaUtils.extractSpanContext(record.headers(), tracer);

CHAPTER 21. INTRODUCING DISTRIBUTED TRACING

401

Instrument application code to enable tracing in Kafka Streams API applications. Use a decorator
pattern or interceptors to instrument your Kafka Streams API applications for tracing. You can then
record traces when messages are produced or retrieved from a topic.

Decorator instrumentation

For decorator instrumentation, create a modified Kafka Streams instance for tracing. The
OpenTracing instrumentation project provides a TracingKafkaClientSupplier class that supports
instrumentation of Kafka Streams. You create a wrapped instance of the
TracingKafkaClientSupplier supplier interface, which provides tracing instrumentation for Kafka
Streams. For OpenTelemetry, the process is the same but you need to create a custom
TracingKafkaClientSupplier class to provide the support.

Interceptor instrumentation

For interceptor instrumentation, add the tracing capability to the Kafka Streams producer and
consumer configuration.

Prerequisites

You have initialized tracing for the client .
You enable instrumentation in Kafka Streams applications by adding the tracing JARs as
dependencies to your project.

To instrument Kafka Streams with OpenTelemetry, you’ll need to write a custom
TracingKafkaClientSupplier.

The custom TracingKafkaClientSupplier can extend Kafka’s DefaultKafkaClientSupplier,
overriding the producer and consumer creation methods to wrap the instances with the
telemetry-related code.

Example custom TracingKafkaClientSupplier

private class TracingKafkaClientSupplier extends DefaultKafkaClientSupplier {
 @Override
 public Producer<byte[], byte[]> getProducer(Map<String, Object> config) {
 KafkaTelemetry telemetry = KafkaTelemetry.create(GlobalOpenTelemetry.get());
 return telemetry.wrap(super.getProducer(config));
 }

 @Override
 public Consumer<byte[], byte[]> getConsumer(Map<String, Object> config) {
 KafkaTelemetry telemetry = KafkaTelemetry.create(GlobalOpenTelemetry.get());
 return telemetry.wrap(super.getConsumer(config));
 }

 @Override
 public Consumer<byte[], byte[]> getRestoreConsumer(Map<String, Object> config) {
 return this.getConsumer(config);
 }

 @Override
 public Consumer<byte[], byte[]> getGlobalConsumer(Map<String, Object> config) {
 return this.getConsumer(config);
 }
}

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

402

Procedure

Perform these steps for each Kafka Streams API application.

To use a decorator pattern, create an instance of the TracingKafkaClientSupplier supplier
interface, then provide the supplier interface to KafkaStreams.

Example decorator instrumentation

To use interceptors, set the interceptor class in the Kafka Streams producer and consumer
configuration.
The TracingProducerInterceptor and TracingConsumerInterceptor interceptor classes take
care of the tracing capability.

Example producer and consumer configuration using interceptors

21.3.6. Introducing a different OpenTelemetry tracing system

Instead of the default OTLP system, you can specify other tracing systems that are supported by
OpenTelemetry. You do this by adding the required artifacts to the Kafka image provided with AMQ
Streams. Any required implementation specific environment variables must also be set. You then enable
the new tracing implementation using the OTEL_TRACES_EXPORTER environment variable.

This procedure shows how to implement Zipkin tracing.

Procedure

1. Add the tracing artifacts to the /opt/kafka/libs/ directory of the AMQ Streams Kafka image.
You can use the Kafka container image on the Red Hat Ecosystem Catalog as a base image for
creating a new custom image.

OpenTelemetry artifact for Zipkin

2. Set the tracing exporter and endpoint for the new tracing implementation.

Example Zikpin tracer configuration

KafkaClientSupplier supplier = new TracingKafkaClientSupplier(tracer);
KafkaStreams streams = new KafkaStreams(builder.build(), new StreamsConfig(config),
supplier);
streams.start();

props.put(StreamsConfig.PRODUCER_PREFIX +
ProducerConfig.INTERCEPTOR_CLASSES_CONFIG,
TracingProducerInterceptor.class.getName());
props.put(StreamsConfig.CONSUMER_PREFIX +
ConsumerConfig.INTERCEPTOR_CLASSES_CONFIG,
TracingConsumerInterceptor.class.getName());

io.opentelemetry:opentelemetry-exporter-zipkin

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaMirrorMaker2
metadata:

CHAPTER 21. INTRODUCING DISTRIBUTED TRACING

403

https://catalog.redhat.com/software/containers/explore

1

2

Specifies the Zipkin endpoint to connect to.

The Zipkin exporter.

21.3.7. Custom span names

A tracing span is a logical unit of work in Jaeger, with an operation name, start time, and duration. Spans
have built-in names, but you can specify custom span names in your Kafka client instrumentation where
used.

Specifying custom span names is optional and only applies when using a decorator pattern in producer
and consumer client instrumentation or Kafka Streams instrumentation .

21.3.7.1. Specifying span names for OpenTelemetry

Custom span names cannot be specified directly with OpenTelemetry. Instead, you retrieve span names
by adding code to your client application to extract additional tags and attributes.

Example code to extract attributes

 name: my-mm2-cluster
spec:
 #...
 template:
 connectContainer:
 env:
 - name: OTEL_SERVICE_NAME
 value: my-zipkin-service
 - name: OTEL_EXPORTER_ZIPKIN_ENDPOINT
 value: http://zipkin-exporter-host-name:9411/api/v2/spans 1
 - name: OTEL_TRACES_EXPORTER
 value: zipkin 2
 tracing:
 type: opentelemetry
#...

//Defines attribute extraction for a producer
private static class ProducerAttribExtractor implements AttributesExtractor < ProducerRecord < ? , ? >
, Void > {
 @Override
 public void onStart(AttributesBuilder attributes, ProducerRecord < ? , ? > producerRecord) {
 set(attributes, AttributeKey.stringKey("prod_start"), "prod1");
 }
 @Override
 public void onEnd(AttributesBuilder attributes, ProducerRecord < ? , ? > producerRecord,
@Nullable Void unused, @Nullable Throwable error) {
 set(attributes, AttributeKey.stringKey("prod_end"), "prod2");
 }
}
//Defines attribute extraction for a consumer
private static class ConsumerAttribExtractor implements AttributesExtractor < ConsumerRecord < ? ,
? > , Void > {
 @Override
 public void onStart(AttributesBuilder attributes, ConsumerRecord < ? , ? > producerRecord) {

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

404

21.3.7.2. Specifying span names for OpenTracing

To specify custom span names for OpenTracing, pass a BiFunction object as an additional argument
when instrumenting producers and consumers.

For more information on built-in names and specifying custom span names to instrument client
application code in a decorator pattern, see the OpenTracing Apache Kafka client instrumentation .

 set(attributes, AttributeKey.stringKey("con_start"), "con1");
 }
 @Override
 public void onEnd(AttributesBuilder attributes, ConsumerRecord < ? , ? > producerRecord,
@Nullable Void unused, @Nullable Throwable error) {
 set(attributes, AttributeKey.stringKey("con_end"), "con2");
 }
}
//Extracts the attributes
public static void main(String[] args) throws Exception {
 Map < String, Object > configs = new HashMap < >
(Collections.singletonMap(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092"));
 System.setProperty("otel.traces.exporter", "jaeger");
 System.setProperty("otel.service.name", "myapp1");
 KafkaTracing tracing = KafkaTracing.newBuilder(GlobalOpenTelemetry.get())
 .addProducerAttributesExtractors(new ProducerAttribExtractor())
 .addConsumerAttributesExtractors(new ConsumerAttribExtractor())
 .build();

CHAPTER 21. INTRODUCING DISTRIBUTED TRACING

405

https://github.com/opentracing-contrib/java-kafka-client

CHAPTER 22. RETRIEVING DIAGNOSTIC AND
TROUBLESHOOTING DATA

The report.sh diagnostics tool is a script provided by Red Hat to gather essential data for
troubleshooting AMQ Streams deployments on OpenShift. It collects relevant logs, configuration files,
and other diagnostic data to assist in identifying and resolving issues. When you run the script, you can
specify additional parameters to retrieve specific data.

Prerequisites

Bash 4 or newer

The OpenShift oc command-line tool is installed and configured to connect to the running
cluster.

This establishes the necessary authentication for the oc command-line tool to interact with your cluster
and retrieve the required diagnostic data.

Procedure

1. Download and extract the tool.
The diagnostics tool is available from AMQ Streams software downloads page .

2. From the directory where you extracted the tool, open a terminal and run the reporting tool:

Replace <cluster_namespace> with the actual OpenShift namespace of your AMQ Streams
deployment, <cluster_name> with the name of your Kafka cluster, and
<local_output_directory> with the path to the local directory where you want to save the
generated report. If you don’t specify a directory, a temporary directory is created.

Include other optional reporting options, as necessary:

--bridge=<string>

Specify the name of the Kafka Bridge cluster to get data on its pods and logs.

--connect=<string>

Specify the name of the Kafka Connect cluster to get data on its pods and logs.

--mm2=<string>

Specify the name of the Mirror Maker 2 cluster to get data on its pods and logs.

--secrets=(off|hidden|all)

Specify the secret verbosity level. The default is hidden. The available options are as follows:

all: Secret keys and data values are reported.

hidden: Secrets with only keys are reported. Data values, such as passwords, are
removed.

off: Secrets are not reported at all.

Example request with data collection options

./report.sh --namespace=<cluster_namespace> --cluster=<cluster_name> --out-dir=
<local_output_directory>

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

406

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?downloadType=distributions&product=jboss.amq.streams

NOTE

If required, assign execute permissions on the script to your user with the chmod
command. For example, chmod +x report.sh.

After the script has finished executing, the output directory contains files and directories of logs,
configurations, and other diagnostic data collected for each component of your AMQ Streams
deployment.

Data collected by the reporting diagnostics tool

Data on the following components is returned if present:

Cluster Operator

Deployment YAML and logs

All related pods and their logs

YAML files for resources related to the cluster operator (ClusterRoles, ClusterRoleBindings)

Drain Cleaner (if present)

Deployment YAML and logs

Pod logs

Custom Resources

Custom Resource Definitions (CRD) YAML

YAML files for all related Custom Resources (CR)

Events

Events related to the specified namespace

Configurations

Kafka pod logs and configuration file (strimzi.properties)

Zookeeper pod logs and configuration file (zookeeper.properties)

Entity Operator (Topic Operator, User Operator) pod logs

Cruise Control pod logs

Kafka Exporter pod logs

Bridge pod logs if specified in the options

Connect pod logs if specified in the options

MirrorMaker 2 pod logs if specified in the options

./report.sh --namespace=my-amq-streams-namespace --cluster=my-kafka-cluster --
bridge=my-bridge-component --secrets=all --out-dir=~/reports

CHAPTER 22. RETRIEVING DIAGNOSTIC AND TROUBLESHOOTING DATA

407

Secrets (if requested in the options)

YAML files for all secrets related to the specified Kafka cluster

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

408

CHAPTER 23. UPGRADING AMQ STREAMS
Upgrade your AMQ Streams installation to version 2.5 and benefit from new features, performance
improvements, and enhanced security options. During the upgrade, Kafka is also be updated to the
latest supported version, introducing additional features and bug fixes to your AMQ Streams
deployment.

If you encounter any issues with the new version, AMQ Streams can be downgraded to the previous
version.

Released AMQ Streams versions can be found at AMQ Streams software downloads page .

Upgrade without downtime

For topics configured with high availability (replication factor of at least 3 and evenly distributed
partitions), the upgrade process should not cause any downtime for consumers and producers.

The upgrade triggers rolling updates, where brokers are restarted one by one at different stages of the
process. During this time, overall cluster availability is temporarily reduced, which may increase the risk
of message loss in the event of a broker failure.

23.1. AMQ STREAMS UPGRADE PATHS

Two upgrade paths are available for AMQ Streams.

Incremental upgrade

An incremental upgrade involves upgrading AMQ Streams from the previous minor version to version
2.5.

Multi-version upgrade

A multi-version upgrade involves upgrading an older version of AMQ Streams to version 2.5 within a
single upgrade, skipping one or more intermediate versions. For example, upgrading directly from
AMQ Streams 2.3 to AMQ Streams 2.5 is possible.

23.1.1. Support for Kafka versions when upgrading

When upgrading AMQ Streams, it is important to ensure compatibility with the Kafka version being used.

Multi-version upgrades are possible even if the supported Kafka versions differ between the old and
new versions. However, if you attempt to upgrade to a new AMQ Streams version that does not support
the current Kafka version, an error indicating that the Kafka version is not supported is generated . In this
case, you must upgrade the Kafka version as part of the AMQ Streams upgrade by changing the
spec.kafka.version in the Kafka custom resource to the supported version for the new AMQ Streams
version.

Kafka 3.5.0 is supported for production use.

Kafka 3.4.0 is supported only for the purpose of upgrading to AMQ Streams 2.5.

23.1.2. Upgrading from an AMQ Streams version earlier than 1.7

If you are upgrading to the latest version of AMQ Streams from a version prior to version 1.7, do the
following:

1. Upgrade AMQ Streams to version 1.7 following the standard sequence.

2. Convert AMQ Streams custom resources to v1beta2 using the API conversion tool provided

CHAPTER 23. UPGRADING AMQ STREAMS

409

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?downloadType=distributions&product=jboss.amq.streams

2. Convert AMQ Streams custom resources to v1beta2 using the API conversion tool provided
with AMQ Streams.

3. Do one of the following:

Upgrade to AMQ Streams 1.8 (where the ControlPlaneListener feature gate is disabled by
default).

Upgrade to AMQ Streams 2.0 or 2.2 (where the ControlPlaneListener feature gate is
enabled by default) with the ControlPlaneListener feature gate disabled.

4. Enable the ControlPlaneListener feature gate.

5. Upgrade to AMQ Streams 2.5 following the standard sequence.

AMQ Streams custom resources started using the v1beta2 API version in release 1.7. CRDs and custom
resources must be converted before upgrading to AMQ Streams 1.8 or newer. For information on using
the API conversion tool, see the AMQ Streams 1.7 upgrade documentation .

NOTE

As an alternative to first upgrading to version 1.7, you can install the custom resources
from version 1.7 and then convert the resources.

The ControlPlaneListener feature is now permanently enabled in AMQ Streams. You must upgrade to
a version of AMQ Streams where it is disabled, then enable it using the STRIMZI_FEATURE_GATES
environment variable in the Cluster Operator configuration.

Disabling the ControlPlaneListener feature gate

Enabling the ControlPlaneListener feature gate

23.2. REQUIRED UPGRADE SEQUENCE

To upgrade brokers and clients without downtime, you must complete the AMQ Streams upgrade
procedures in the following order:

1. Make sure your OpenShift cluster version is supported.
AMQ Streams 2.5 is supported by OpenShift 4.10 to 4.14.

You can upgrade OpenShift with minimal downtime .

2. Upgrade the Cluster Operator .

3. Upgrade all Kafka brokers and client applications to the latest supported Kafka version.

env:
 - name: STRIMZI_FEATURE_GATES
 value: -ControlPlaneListener

env:
 - name: STRIMZI_FEATURE_GATES
 value: +ControlPlaneListener

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

410

https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q2/html/deploying_and_upgrading_amq_streams_on_openshift/assembly-upgrade-str

23.3. UPGRADING OPENSHIFT WITH MINIMAL DOWNTIME

If you are upgrading OpenShift, refer to the OpenShift upgrade documentation to check the upgrade
path and the steps to upgrade your nodes correctly. Before upgrading OpenShift, check the supported
versions for your version of AMQ Streams.

When performing your upgrade, you’ll want to keep your Kafka clusters available.

You can employ one of the following strategies:

1. Configuring pod disruption budgets

2. Rolling pods by one of these methods:

a. Using the AMQ Streams Drain Cleaner

b. Manually by applying an annotation to your pod

When using either of the methods to roll the pods, you must set a pod disruption budget of zero using
the maxUnavailable property.

NOTE

StrimziPodSet custom resources manage Kafka and ZooKeeper pods using a custom
controller that cannot use the maxUnavailable value directly. Instead, the
maxUnavailable value is converted to a minAvailable value. If there are three broker
pods and the maxUnavailable property is set to 0 (zero), the minAvailable setting is 3,
requiring all three broker pods to be available and allowing zero pods to be unavailable.

For Kafka to stay operational, topics must also be replicated for high availability. This requires topic
configuration that specifies a replication factor of at least 3 and a minimum number of in-sync replicas
to 1 less than the replication factor.

Kafka topic replicated for high availability

In a highly available environment, the Cluster Operator maintains a minimum number of in-sync replicas
for topics during the upgrade process so that there is no downtime.

23.3.1. Rolling pods using the AMQ Streams Drain Cleaner

You can use the AMQ Streams Drain Cleaner to evict nodes during an upgrade. The AMQ Streams

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaTopic
metadata:
 name: my-topic
 labels:
 strimzi.io/cluster: my-cluster
spec:
 partitions: 1
 replicas: 3
 config:
 # ...
 min.insync.replicas: 2
 # ...

CHAPTER 23. UPGRADING AMQ STREAMS

411

{supported-configurations}

You can use the AMQ Streams Drain Cleaner to evict nodes during an upgrade. The AMQ Streams
Drain Cleaner annotates pods with a rolling update pod annotation. This informs the Cluster Operator to
perform a rolling update of an evicted pod.

A pod disruption budget allows only a specified number of pods to be unavailable at a given time. During
planned maintenance of Kafka broker pods, a pod disruption budget ensures Kafka continues to run in a
highly available environment.

You specify a pod disruption budget using a template customization for a Kafka component. By default,
pod disruption budgets allow only a single pod to be unavailable at a given time.

In order to use the Drain Cleaner to roll pods, you set maxUnavailable to 0 (zero). Reducing the pod
disruption budget to zero prevents voluntary disruptions, so pods must be evicted manually.

Specifying a pod disruption budget

23.3.2. Rolling pods manually while keeping topics available

During an upgrade, you can trigger a manual rolling update of pods through the Cluster Operator. Using
Pod resources, rolling updates restart the pods of resources with new pods. As with using the AMQ
Streams Drain Cleaner, you’ll need to set the maxUnavailable value to zero for the pod disruption
budget.

You need to watch the pods that need to be drained. You then add a pod annotation to make the
update.

Here, the annotation updates a Kafka broker.

Performing a manual rolling update on a Kafka broker pod

You replace <cluster_name> with the name of the cluster. Kafka broker pods are named <cluster-name>-
kafka-<index>, where <index> starts at zero and ends at the total number of replicas minus one. For
example, my-cluster-kafka-0.

Additional resources

Draining pods using the AMQ Streams Drain Cleaner

Performing a rolling update using a pod annotation

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 name: my-cluster
 namespace: myproject
spec:
 kafka:
 # ...
 template:
 podDisruptionBudget:
 maxUnavailable: 0
...

oc annotate pod <cluster_name>-kafka-<index> strimzi.io/manual-rolling-update=true

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

412

PodDisruptionBudgetTemplate schema reference

OpenShift documentation

23.4. UPGRADING THE CLUSTER OPERATOR

Use the same method to upgrade the Cluster Operator as the initial method of deployment.

Using installation files

If you deployed the Cluster Operator using the installation YAML files, perform your upgrade by
modifying the Operator installation files, as described in Upgrading the Cluster Operator using
installation files.

Using the OperatorHub

If you deployed AMQ Streams from the OperatorHub, use the Operator Lifecycle Manager (OLM) to
change the update channel for the AMQ Streams operators to a new AMQ Streams version.
Updating the channel starts one of the following types of upgrade, depending on your chosen
upgrade strategy:

An automatic upgrade is initiated

A manual upgrade that requires approval before installation begins

NOTE

If you subscribe to the stable channel, you can get automatic updates without
changing channels. However, enabling automatic updates is not recommended
because of the potential for missing any pre-installation upgrade steps. Use
automatic upgrades only on version-specific channels.

For more information on using the OperatorHub to upgrade Operators, see Upgrading installed
Operators (OpenShift documentation).

23.4.1. Upgrading the Cluster Operator returns Kafka version error

If you upgrade the Cluster Operator to a version that does not support the current version of Kafka you
are using, you get an unsupported Kafka version error. This error applies to all installation methods and
means that you must upgrade Kafka to a supported Kafka version. Change the spec.kafka.version in
the Kafka resource to the supported version.

You can use oc to check for error messages like this in the status of the Kafka resource.

Checking the Kafka status for errors

Replace <kafka_cluster_name> with the name of your Kafka cluster and <namespace> with the
OpenShift namespace where the pod is running.

23.4.2. Upgrading from AMQ Streams 1.7 or earlier using the OperatorHub

Action required if upgrading from AMQ Streams 1.7 or earlier using the OperatorHub

Before you upgrade the AMQ Streams Operator to version 2.5, you need to make the following

oc get kafka <kafka_cluster_name> -n <namespace> -o jsonpath='{.status.conditions}'

CHAPTER 23. UPGRADING AMQ STREAMS

413

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index#type-PodDisruptionBudgetTemplate-reference
https://access.redhat.com/documentation/en-us/openshift_container_platform
https://docs.openshift.com/container-platform/latest/operators/admin/olm-upgrading-operators.html

Before you upgrade the AMQ Streams Operator to version 2.5, you need to make the following
changes:

Convert custom resources and CRDs to v1beta2

Upgrade to a version of AMQ Streams where the ControlPlaneListener feature gate is
disabled

These requirements are described in Section 23.1.2, “Upgrading from an AMQ Streams version earlier
than 1.7”.

If you are upgrading from AMQ Streams 1.7 or earlier, do the following:

1. Upgrade to AMQ Streams 1.7.

2. Download the Red Hat AMQ Streams API Conversion Tool provided with AMQ Streams 1.8
from the AMQ Streams software downloads page .

3. Convert custom resources and CRDs to v1beta2.
For more information, see the AMQ Streams 1.7 upgrade documentation .

4. In the OperatorHub, delete version 1.7 of the AMQ Streams Operator.

5. If it also exists, delete version 2.5 of the AMQ Streams Operator.
If it does not exist, go to the next step.

If the Approval Strategy for the AMQ Streams Operator was set to Automatic, version 2.5 of
the operator might already exist in your cluster. If you did not convert custom resources and
CRDs to the v1beta2 API version before release, the operator-managed custom resources and
CRDs will be using the old API version. As a result, the 2.5 Operator is stuck in Pending status. In
this situation, you need to delete version 2.5 of the AMQ Streams Operator as well as version
1.7.

If you delete both operators, reconciliations are paused until the new operator version is
installed. Follow the next steps immediately so that any changes to custom resources are not
delayed.

6. In the OperatorHub, do one of the following:

Upgrade to version 1.8 of the AMQ Streams Operator (where the ControlPlaneListener
feature gate is disabled by default).

Upgrade to version 2.0 or 2.2 of the AMQ Streams Operator (where the
ControlPlaneListener feature gate is enabled by default) with the ControlPlaneListener
feature gate disabled.

7. Upgrade to version 2.5 of the AMQ Streams Operator immediately.
The installed 2.5 operator begins to watch the cluster and performs rolling updates. You might
notice a temporary decrease in cluster performance during this process.

23.4.3. Upgrading the Cluster Operator using installation files

This procedure describes how to upgrade a Cluster Operator deployment to use AMQ Streams 2.5.

Follow this procedure if you deployed the Cluster Operator using the installation YAML files.

The availability of Kafka clusters managed by the Cluster Operator is not affected by the upgrade

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

414

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?downloadType=distributions&product=jboss.amq.streams
https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q2/html/deploying_and_upgrading_amq_streams_on_openshift/assembly-upgrade-str

The availability of Kafka clusters managed by the Cluster Operator is not affected by the upgrade
operation.

NOTE

Refer to the documentation supporting a specific version of AMQ Streams for
information on how to upgrade to that version.

Prerequisites

An existing Cluster Operator deployment is available.

You have downloaded the release artifacts for AMQ Streams 2.5 .

Procedure

1. Take note of any configuration changes made to the existing Cluster Operator resources (in the
/install/cluster-operator directory). Any changes will be overwritten by the new version of the
Cluster Operator.

2. Update your custom resources to reflect the supported configuration options available for AMQ
Streams version 2.5.

3. Update the Cluster Operator.

a. Modify the installation files for the new Cluster Operator version according to the
namespace the Cluster Operator is running in.
On Linux, use:

sed -i 's/namespace: .*/namespace: my-cluster-operator-namespace/' install/cluster-
operator/*RoleBinding*.yaml

On MacOS, use:

sed -i '' 's/namespace: .*/namespace: my-cluster-operator-namespace/' install/cluster-
operator/*RoleBinding*.yaml

b. If you modified one or more environment variables in your existing Cluster Operator
Deployment, edit the install/cluster-operator/060-Deployment-strimzi-cluster-
operator.yaml file to use those environment variables.

4. When you have an updated configuration, deploy it along with the rest of the installation
resources:

Wait for the rolling updates to complete.

5. If the new Operator version no longer supports the Kafka version you are upgrading from, the
Cluster Operator returns an error message to say the version is not supported. Otherwise, no
error message is returned.

If the error message is returned, upgrade to a Kafka version that is supported by the new
Cluster Operator version:

oc replace -f install/cluster-operator

CHAPTER 23. UPGRADING AMQ STREAMS

415

a. Edit the Kafka custom resource.

b. Change the spec.kafka.version property to a supported Kafka version.

If the error message is not returned, go to the next step. You will upgrade the Kafka version
later.

6. Get the image for the Kafka pod to ensure the upgrade was successful:

The image tag shows the new Operator version. For example:

Your Cluster Operator was upgraded to version 2.5 but the version of Kafka running in the cluster it
manages is unchanged.

Following the Cluster Operator upgrade, you must perform a Kafka upgrade.

23.5. UPGRADING KAFKA

After you have upgraded your Cluster Operator to 2.5, the next step is to upgrade all Kafka brokers to
the latest supported version of Kafka.

Kafka upgrades are performed by the Cluster Operator through rolling updates of the Kafka brokers.

The Cluster Operator initiates rolling updates based on the Kafka cluster configuration.

If Kafka.spec.kafka.config contains…​ The Cluster Operator initiates…​

Both the inter.broker.protocol.version and the
log.message.format.version.

A single rolling update. After the update, the
inter.broker.protocol.version must be updated
manually, followed by
log.message.format.version. Changing each will
trigger a further rolling update.

Either the inter.broker.protocol.version or the
log.message.format.version.

Two rolling updates.

No configuration for the
inter.broker.protocol.version or the
log.message.format.version.

Two rolling updates.

IMPORTANT

From Kafka 3.0.0, when the inter.broker.protocol.version is set to 3.0 or higher, the
log.message.format.version option is ignored and doesn’t need to be set. The
log.message.format.version property for brokers and the message.format.version
property for topics are deprecated and will be removed in a future release of Kafka.

As part of the Kafka upgrade, the Cluster Operator initiates rolling updates for ZooKeeper.

oc get pods my-cluster-kafka-0 -o jsonpath='{.spec.containers[0].image}'

registry.redhat.io/amq-streams/strimzi-kafka-35-rhel8:2.5.1

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

416

A single rolling update occurs even if the ZooKeeper version is unchanged.

Additional rolling updates occur if the new version of Kafka requires a new ZooKeeper version.

23.5.1. Kafka versions

Kafka’s log message format version and inter-broker protocol version specify, respectively, the log
format version appended to messages and the version of the Kafka protocol used in a cluster. To ensure
the correct versions are used, the upgrade process involves making configuration changes to existing
Kafka brokers and code changes to client applications (consumers and producers).

The following table shows the differences between Kafka versions:

Table 23.1. Kafka version differences

AMQ Streams
version

Kafka version Inter-broker
protocol version

Log message
format version

ZooKeeper
version

2.5 3.5.0 3.5 3.5 3.6.4

2.4 3.4.0 3.4 3.4 3.6.3

NOTE

AMQ Streams 2.5 uses Kafka 3.5.0, but Kafka 3.4.0 is also supported for the purpose of
upgrading.

Inter-broker protocol version

In Kafka, the network protocol used for inter-broker communication is called the inter-broker protocol.
Each version of Kafka has a compatible version of the inter-broker protocol. The minor version of the
protocol typically increases to match the minor version of Kafka, as shown in the preceding table.

The inter-broker protocol version is set cluster wide in the Kafka resource. To change it, you edit the
inter.broker.protocol.version property in Kafka.spec.kafka.config.

Log message format version

When a producer sends a message to a Kafka broker, the message is encoded using a specific format.
The format can change between Kafka releases, so messages specify which version of the message
format they were encoded with.

The properties used to set a specific message format version are as follows:

message.format.version property for topics

log.message.format.version property for Kafka brokers

From Kafka 3.0.0, the message format version values are assumed to match the
inter.broker.protocol.version and don’t need to be set. The values reflect the Kafka version used.

When upgrading to Kafka 3.0.0 or higher, you can remove these settings when you update the
inter.broker.protocol.version. Otherwise, set the message format version based on the Kafka version
you are upgrading to.

CHAPTER 23. UPGRADING AMQ STREAMS

417

The default value of message.format.version for a topic is defined by the
log.message.format.version that is set on the Kafka broker. You can manually set the
message.format.version of a topic by modifying its topic configuration.

23.5.2. Strategies for upgrading clients

Upgrading Kafka clients ensures that they benefit from the features, fixes, and improvements that are
introduced in new versions of Kafka. Upgraded clients maintain compatibility with other upgraded Kafka
components. The performance and stability of the clients might also be improved.

Consider the best approach for upgrading Kafka clients and brokers to ensure a smooth transition. The
chosen upgrade strategy depends on whether you are upgrading brokers or clients first. Since Kafka 3.0,
you can upgrade brokers and client independently and in any order. The decision to upgrade clients or
brokers first depends on several factors, such as the number of applications that need to be upgraded
and how much downtime is tolerable.

If you upgrade clients before brokers, some new features may not work as they are not yet supported by
brokers. However, brokers can handle producers and consumers running with different versions and
supporting different log message versions.

Upgrading clients when using Kafka versions older than Kafka 3.0

Before Kafka 3.0, you would configure a specific message format for brokers using the
log.message.format.version property (or the message.format.version property at the topic level).
This allowed brokers to support older Kafka clients that were using an outdated message format.
Otherwise, the brokers would need to convert the messages from the older clients, which came with a
significant performance cost.

Apache Kafka Java clients have supported the latest message format version since version 0.11. If all of
your clients are using the latest message version, you can remove the log.message.format.version or
message.format.version overrides when upgrading your brokers.

However, if you still have clients that are using an older message format version, we recommend
upgrading your clients first. Start with the consumers, then upgrade the producers before removing the
log.message.format.version or message.format.version overrides when upgrading your brokers. This
will ensure that all of your clients can support the latest message format version and that the upgrade
process goes smoothly.

You can track Kafka client names and versions using this metric:

kafka.server:type=socket-server-metrics,clientSoftwareName=
<name>,clientSoftwareVersion=<version>,listener=<listener>,networkProcessor=
<processor>

TIP

The following Kafka broker metrics help monitor the performance of message down-conversion:

kafka.network:type=RequestMetrics,name=MessageConversionsTimeMs,request=
{Produce|Fetch} provides metrics on the time taken to perform message conversion.

kafka.server:type=BrokerTopicMetrics,name=
{Produce|Fetch}MessageConversionsPerSec,topic=([-.\w]+) provides metrics on the number
of messages converted over a period of time.

23.5.3. Kafka version and image mappings

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

418

When upgrading Kafka, consider your settings for the STRIMZI_KAFKA_IMAGES environment variable
and the Kafka.spec.kafka.version property.

Each Kafka resource can be configured with a Kafka.spec.kafka.version.

The Cluster Operator’s STRIMZI_KAFKA_IMAGES environment variable provides a mapping
between the Kafka version and the image to be used when that version is requested in a given
Kafka resource.

If Kafka.spec.kafka.image is not configured, the default image for the given version is
used.

If Kafka.spec.kafka.image is configured, the default image is overridden.

WARNING

The Cluster Operator cannot validate that an image actually contains a Kafka broker
of the expected version. Take care to ensure that the given image corresponds to
the given Kafka version.

23.5.4. Upgrading Kafka brokers and client applications

Upgrade an AMQ Streams Kafka cluster to the latest supported Kafka version and inter-broker protocol
version.

You should also choose a strategy for upgrading clients . Kafka clients are upgraded in step 6 of this
procedure.

Prerequisites

The Cluster Operator is up and running.

Before you upgrade the AMQ Streams Kafka cluster, check that the Kafka.spec.kafka.config
properties of the Kafka resource do not contain configuration options that are not supported in
the new Kafka version.

Procedure

1. Update the Kafka cluster configuration:

2. If configured, check that the inter.broker.protocol.version and log.message.format.version
properties are set to the current version.
For example, the current version is 3.4 if upgrading from Kafka version 3.4.0 to 3.5.0:



oc edit kafka <my_cluster>

kind: Kafka
spec:
 # ...
 kafka:

CHAPTER 23. UPGRADING AMQ STREAMS

419

1

2

3

If log.message.format.version and inter.broker.protocol.version are not configured, AMQ
Streams automatically updates these versions to the current defaults after the update to the
Kafka version in the next step.

NOTE

The value of log.message.format.version and inter.broker.protocol.version
must be strings to prevent them from being interpreted as floating point
numbers.

3. Change the Kafka.spec.kafka.version to specify the new Kafka version; leave the
log.message.format.version and inter.broker.protocol.version at the defaults for the current
Kafka version.

NOTE

Changing the kafka.version ensures that all brokers in the cluster will be
upgraded to start using the new broker binaries. During this process, some
brokers are using the old binaries while others have already upgraded to the new
ones. Leaving the inter.broker.protocol.version unchanged at the current
setting ensures that the brokers can continue to communicate with each other
throughout the upgrade.

For example, if upgrading from Kafka 3.4.0 to 3.5.0:

Kafka version is changed to the new version.

Message format version is unchanged.

Inter-broker protocol version is unchanged.

 version: 3.4.0
 config:
 log.message.format.version: "3.4"
 inter.broker.protocol.version: "3.4"
 # ...

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
spec:
 # ...
 kafka:
 version: 3.5.0 1
 config:
 log.message.format.version: "3.4" 2
 inter.broker.protocol.version: "3.4" 3
 # ...

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

420

WARNING

You cannot downgrade Kafka if the inter.broker.protocol.version for the
new Kafka version changes. The inter-broker protocol version determines
the schemas used for persistent metadata stored by the broker, including
messages written to __consumer_offsets. The downgraded cluster will not
understand the messages.

4. If the image for the Kafka cluster is defined in the Kafka custom resource, in
Kafka.spec.kafka.image, update the image to point to a container image with the new Kafka
version.
See Kafka version and image mappings

5. Save and exit the editor, then wait for rolling updates to complete.
Check the progress of the rolling updates by watching the pod state transitions:

The rolling updates ensure that each pod is using the broker binaries for the new version of
Kafka.

6. Depending on your chosen strategy for upgrading clients , upgrade all client applications to use
the new version of the client binaries.
If required, set the version property for Kafka Connect and MirrorMaker as the new version of
Kafka:

a. For Kafka Connect, update KafkaConnect.spec.version.

b. For MirrorMaker, update KafkaMirrorMaker.spec.version.

c. For MirrorMaker 2, update KafkaMirrorMaker2.spec.version.

7. If configured, update the Kafka resource to use the new inter.broker.protocol.version version.
Otherwise, go to step 9.
For example, if upgrading to Kafka 3.5.0:

8. Wait for the Cluster Operator to update the cluster.

9. If configured, update the Kafka resource to use the new log.message.format.version version.
Otherwise, go to step 10.



oc get pods my-cluster-kafka-0 -o jsonpath='{.spec.containers[0].image}'

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
spec:
 # ...
 kafka:
 version: 3.5.0
 config:
 log.message.format.version: "3.4"
 inter.broker.protocol.version: "3.5"
 # ...

CHAPTER 23. UPGRADING AMQ STREAMS

421

For example, if upgrading to Kafka 3.5.0:

IMPORTANT

From Kafka 3.0.0, when the inter.broker.protocol.version is set to 3.0 or higher,
the log.message.format.version option is ignored and doesn’t need to be set.

10. Wait for the Cluster Operator to update the cluster.

The Kafka cluster and clients are now using the new Kafka version.

The brokers are configured to send messages using the inter-broker protocol version and
message format version of the new version of Kafka.

23.6. SWITCHING TO FIPS MODE WHEN UPGRADING AMQ STREAMS

Upgrade AMQ Streams to run in FIPS mode on FIPS-enabled OpenShift clusters. Until AMQ Streams
2.4, running on FIPS-enabled OpenShift clusters was possible only by disabling FIPS mode using the
FIPS_MODE environment variable. From release 2.4, AMQ Streams supports FIPS mode. If you run
AMQ Streams on a FIPS-enabled OpenShift cluster with the FIPS_MODE set to disabled, you can
enable it by following this procedure.

Prerequisites

FIPS-enabled OpenShift cluster

An existing Cluster Operator deployment with the FIPS_MODE environment variable set to
disabled

Procedure

1. Upgrade the Cluster Operator to version 2.4 or newer but keep the FIPS_MODE environment
variable set to disabled.

2. If you initially deployed an AMQ Streams version older than 2.3, it might use old encryption and
digest algorithms in its PKCS #12 stores, which are not supported with FIPS enabled. To recreate
the certificates with updated algorithms, renew the cluster and clients CA certificates.

a. To renew the CAs generated by the Cluster Operator, add the force-renew annotation to
the CA secrets to trigger a renewal.

b. To renew your own CAs, add the new certificate to the CA secret and update the ca-cert-
generation annotation with a higher incremental value to capture the update .

3. If you use SCRAM-SHA-512 authentication, check the password length of your users. If they are

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
spec:
 # ...
 kafka:
 version: 3.5.0
 config:
 log.message.format.version: "3.5"
 inter.broker.protocol.version: "3.5"
 # ...

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

422

3. If you use SCRAM-SHA-512 authentication, check the password length of your users. If they are
less than 32 characters long, generate a new password in one of the following ways:

a. Delete the user secret so that the User Operator generates a new one with a new password
of sufficient length.

b. If you provided your password using the .spec.authentication.password properties of the
KafkaUser custom resource, update the password in the OpenShift secret referenced in
the same password configuration. Don’t forget to update your clients to use the new
passwords.

4. Ensure that the CA certificates are using the correct algorithms and the SCRAM-SHA-512
passwords are of sufficient length. You can then enable the FIPS mode.

5. Remove the FIPS_MODE environment variable from the Cluster Operator deployment. This
restarts the Cluster Operator and rolls all the operands to enable the FIPS mode. After the
restart is complete, all Kafka clusters now run with FIPS mode enabled.

CHAPTER 23. UPGRADING AMQ STREAMS

423

CHAPTER 24. DOWNGRADING AMQ STREAMS
If you are encountering issues with the version of AMQ Streams you upgraded to, you can revert your
installation to the previous version.

If you used the YAML installation files to install AMQ Streams, you can use the YAML installation files
from the previous release to perform the following downgrade procedures:

1. Section 24.1, “Downgrading the Cluster Operator to a previous version”

2. Section 24.2, “Downgrading Kafka”

If the previous version of AMQ Streams does not support the version of Kafka you are using, you can
also downgrade Kafka as long as the log message format versions appended to messages match.

WARNING

The following downgrade instructions are only suitable if you installed AMQ Streams
using the installation files. If you installed AMQ Streams using another method, like
OperatorHub, downgrade may not be supported by that method unless specified in
their documentation. To ensure a successful downgrade process, it is essential to
use a supported approach.

24.1. DOWNGRADING THE CLUSTER OPERATOR TO A PREVIOUS
VERSION

If you are encountering issues with AMQ Streams, you can revert your installation.

This procedure describes how to downgrade a Cluster Operator deployment to a previous version.

Prerequisites

An existing Cluster Operator deployment is available.

You have downloaded the installation files for the previous version .

Before you begin

Check the downgrade requirements of the AMQ Streams feature gates. If a feature gate is permanently
enabled, you may need to downgrade to a version that allows you to disable it before downgrading to
your target version.

Procedure

1. Take note of any configuration changes made to the existing Cluster Operator resources (in the
/install/cluster-operator directory). Any changes will be overwritten by the previous version of
the Cluster Operator.

2. Revert your custom resources to reflect the supported configuration options available for the
version of AMQ Streams you are downgrading to.



Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

424

3. Update the Cluster Operator.

a. Modify the installation files for the previous version according to the namespace the Cluster
Operator is running in.
On Linux, use:

sed -i 's/namespace: .*/namespace: my-cluster-operator-namespace/' install/cluster-
operator/*RoleBinding*.yaml

On MacOS, use:

sed -i '' 's/namespace: .*/namespace: my-cluster-operator-namespace/' install/cluster-
operator/*RoleBinding*.yaml

b. If you modified one or more environment variables in your existing Cluster Operator
Deployment, edit the install/cluster-operator/060-Deployment-strimzi-cluster-
operator.yaml file to use those environment variables.

4. When you have an updated configuration, deploy it along with the rest of the installation
resources:

Wait for the rolling updates to complete.

5. Get the image for the Kafka pod to ensure the downgrade was successful:

The image tag shows the new AMQ Streams version followed by the Kafka version. For example,
NEW-STRIMZI-VERSION-kafka-CURRENT-KAFKA-VERSION.

Your Cluster Operator was downgraded to the previous version.

24.2. DOWNGRADING KAFKA

Kafka version downgrades are performed by the Cluster Operator.

24.2.1. Kafka version compatibility for downgrades

Kafka downgrades are dependent on compatible current and target Kafka versions, and the state at
which messages have been logged.

You cannot revert to the previous Kafka version if that version does not support any of the
inter.broker.protocol.version settings which have ever been used in that cluster, or messages have
been added to message logs that use a newer log.message.format.version.

The inter.broker.protocol.version determines the schemas used for persistent metadata stored by the
broker, such as the schema for messages written to __consumer_offsets. If you downgrade to a version
of Kafka that does not understand an inter.broker.protocol.version that has ever been previously used
in the cluster the broker will encounter data it cannot understand.

If the target downgrade version of Kafka has:

The same log.message.format.version as the current version, the Cluster Operator

oc replace -f install/cluster-operator

oc get pod my-cluster-kafka-0 -o jsonpath='{.spec.containers[0].image}'

CHAPTER 24. DOWNGRADING AMQ STREAMS

425

The same log.message.format.version as the current version, the Cluster Operator
downgrades by performing a single rolling restart of the brokers.

A different log.message.format.version, downgrading is only possible if the running cluster has
always had log.message.format.version set to the version used by the downgraded version.
This is typically only the case if the upgrade procedure was aborted before the
log.message.format.version was changed. In this case, the downgrade requires:

Two rolling restarts of the brokers if the interbroker protocol of the two versions is different

A single rolling restart if they are the same

Downgrading is not possible if the new version has ever used a log.message.format.version that is not
supported by the previous version, including when the default value for log.message.format.version is
used. For example, this resource can be downgraded to Kafka version 3.4.0 because the
log.message.format.version has not been changed:

The downgrade would not be possible if the log.message.format.version was set at "3.5" or a value
was absent, so that the parameter took the default value for a 3.5.0 broker of 3.5.

IMPORTANT

From Kafka 3.0.0, when the inter.broker.protocol.version is set to 3.0 or higher, the
log.message.format.version option is ignored and doesn’t need to be set.

24.2.2. Downgrading Kafka brokers and client applications

Downgrade an AMQ Streams Kafka cluster to a lower (previous) version of Kafka, such as downgrading
from 3.5.0 to 3.4.0.

Prerequisites

The Cluster Operator is up and running.

Before you downgrade the AMQ Streams Kafka cluster, check the following for the Kafka
resource:

IMPORTANT: Compatibility of Kafka versions.

Kafka.spec.kafka.config does not contain options that are not supported by the Kafka
version being downgraded to.

Kafka.spec.kafka.config has a log.message.format.version and
inter.broker.protocol.version that is supported by the Kafka version being downgraded to.
From Kafka 3.0.0, when the inter.broker.protocol.version is set to 3.0 or higher, the
log.message.format.version option is ignored and doesn’t need to be set.

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
spec:
 # ...
 kafka:
 version: 3.5.0
 config:
 log.message.format.version: "3.4"
 # ...

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

426

1

2

3

Procedure

1. Update the Kafka cluster configuration.

2. Change the Kafka.spec.kafka.version to specify the previous version.
For example, if downgrading from Kafka 3.5.0 to 3.4.0:

Kafka version is changed to the previous version.

Message format version is unchanged.

Inter-broker protocol version is unchanged.

NOTE

The value of log.message.format.version and inter.broker.protocol.version
must be strings to prevent them from being interpreted as floating point
numbers.

3. If the image for the Kafka version is different from the image defined in
STRIMZI_KAFKA_IMAGES for the Cluster Operator, update Kafka.spec.kafka.image.
See Section 23.5.3, “Kafka version and image mappings”

4. Save and exit the editor, then wait for rolling updates to complete.
Check the update in the logs or by watching the pod state transitions:

Check the Cluster Operator logs for an INFO level message:

5. Downgrade all client applications (consumers) to use the previous version of the client binaries.
The Kafka cluster and clients are now using the previous Kafka version.

oc edit kafka KAFKA-CONFIGURATION-FILE

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
spec:
 # ...
 kafka:
 version: 3.4.0 1
 config:
 log.message.format.version: "3.4" 2
 inter.broker.protocol.version: "3.4" 3
 # ...

oc logs -f CLUSTER-OPERATOR-POD-NAME | grep -E "Kafka version downgrade from [0-
9.]+ to [0-9.]+, phase ([0-9]+) of \1 completed"

oc get pod -w

Reconciliation #NUM(watch) Kafka(NAMESPACE/NAME): Kafka version downgrade from
FROM-VERSION to TO-VERSION, phase 1 of 1 completed

CHAPTER 24. DOWNGRADING AMQ STREAMS

427

6. If you are reverting back to a version of AMQ Streams earlier than 1.7, which uses ZooKeeper for
the storage of topic metadata, delete the internal topic store topics from the Kafka cluster.

oc run kafka-admin -ti --image=registry.redhat.io/amq-streams/kafka-35-rhel8:2.5.1 --rm=true
--restart=Never -- ./bin/kafka-topics.sh --bootstrap-server localhost:9092 --topic __strimzi-
topic-operator-kstreams-topic-store-changelog --delete && ./bin/kafka-topics.sh --bootstrap-
server localhost:9092 --topic __strimzi_store_topic --delete

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

428

CHAPTER 25. HANDLING HIGH VOLUMES OF MESSAGES
If your AMQ Streams deployment needs to handle a high volume of messages, you can use configuration
options to optimize for throughput and latency.

Producer and consumer configuration can help control the size and frequency of requests to Kafka
brokers. For more information on the configuration options, see the following:

Apache Kafka configuration documentation for producers

Apache Kafka configuration documentation for consumers

You can also use the same configuration options with the producers and consumers used by the Kafka
Connect runtime source connectors (including MirrorMaker 2) and sink connectors.

Source connectors

Producers from the Kafka Connect runtime send messages to the Kafka cluster.

For MirrorMaker 2, since the source system is Kafka, consumers retrieve messages from a
source Kafka cluster.

Sink connectors

Consumers from the Kafka Connect runtime retrieve messages from the Kafka cluster.

For consumers, you might increase the amount of data fetched in a single fetch request to reduce
latency. You increase the fetch request size using the fetch.max.bytes and max.partition.fetch.bytes
properties. You can also set a maximum limit on the number of messages returned from the consumer
buffer using the max.poll.records property.

For MirrorMaker 2, configure the fetch.max.bytes, max.partition.fetch.bytes, and max.poll.records
values at the source connector level (consumer.*), as they relate to the specific consumer that fetches
messages from the source.

For producers, you might increase the size of the message batches sent in a single produce request. You
increase the batch size using the batch.size property. A larger batch size reduces the number of
outstanding messages ready to be sent and the size of the backlog in the message queue. Messages
being sent to the same partition are batched together. A produce request is sent to the target cluster
when the batch size is reached. By increasing the batch size, produce requests are delayed and more
messages are added to the batch and sent to brokers at the same time. This can improve throughput
when you have just a few topic partitions that handle large numbers of messages.

Consider the number and size of the records that the producer handles for a suitable producer batch
size.

Use linger.ms to add a wait time in milliseconds to delay produce requests when producer load
decreases. The delay means that more records can be added to batches if they are under the maximum
batch size.

Configure the batch.size and linger.ms values at the source connector level (producer.override.*), as
they relate to the specific producer that sends messages to the target Kafka cluster.

For Kafka Connect source connectors, the data streaming pipeline to the target Kafka cluster is as
follows:

CHAPTER 25. HANDLING HIGH VOLUMES OF MESSAGES

429

https://kafka.apache.org/documentation/#producerconfigs
https://kafka.apache.org/documentation/#consumerconfigs

Data streaming pipeline for Kafka Connect source connector

external data source → (Kafka Connect tasks) source message queue → producer buffer → target
Kafka topic

For Kafka Connect sink connectors, the data streaming pipeline to the target external data source is as
follows:

Data streaming pipeline for Kafka Connect sink connector

source Kafka topic → (Kafka Connect tasks) sink message queue → consumer buffer → external
data source

For MirrorMaker 2, the data mirroring pipeline to the target Kafka cluster is as follows:

Data mirroring pipeline for MirrorMaker 2

source Kafka topic → (Kafka Connect tasks) source message queue → producer buffer → target
Kafka topic

The producer sends messages in its buffer to topics in the target Kafka cluster. While this is happening,
Kafka Connect tasks continue to poll the data source to add messages to the source message queue.

The size of the producer buffer for the source connector is set using the
producer.override.buffer.memory property. Tasks wait for a specified timeout period
(offset.flush.timeout.ms) before the buffer is flushed. This should be enough time for the sent
messages to be acknowledged by the brokers and offset data committed. The source task does not wait
for the producer to empty the message queue before committing offsets, except during shutdown.

If the producer is unable to keep up with the throughput of messages in the source message queue,
buffering is blocked until there is space available in the buffer within a time period bounded by
max.block.ms. Any unacknowledged messages still in the buffer are sent during this period. New
messages are not added to the buffer until these messages are acknowledged and flushed.

You can try the following configuration changes to keep the underlying source message queue of
outstanding messages at a manageable size:

Increasing the default value in milliseconds of the offset.flush.timeout.ms

Ensuring that there are enough CPU and memory resources

Increasing the number of tasks that run in parallel by doing the following:

Increasing the number of tasks that run in parallel using the tasksMax property

Increasing the number of worker nodes that run tasks using the replicas property

Consider the number of tasks that can run in parallel according to the available CPU and memory
resources and number of worker nodes. You might need to keep adjusting the configuration values until
they have the desired effect.

25.1. CONFIGURING KAFKA CONNECT FOR HIGH-VOLUME
MESSAGES

Kafka Connect fetches data from the source external data system and hands it to the Kafka Connect
runtime producers so that it’s replicated to the target cluster.

The following example shows configuration for Kafka Connect using the KafkaConnect custom

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

430

The following example shows configuration for Kafka Connect using the KafkaConnect custom
resource.

Example Kafka Connect configuration for handling high volumes of messages

Producer configuration is added for the source connector, which is managed using the KafkaConnector
custom resource.

Example source connector configuration for handling high volumes of messages

NOTE

FileStreamSourceConnector and FileStreamSinkConnector are provided as example
connectors. For information on deploying them as KafkaConnector resources, see
Section 6.4.3.3, “Deploying KafkaConnector resources”.

Consumer configuration is added for the sink connector.

Example sink connector configuration for handling high volumes of messages

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
metadata:
 name: my-connect-cluster
 annotations:
 strimzi.io/use-connector-resources: "true"
spec:
 replicas: 3
 config:
 offset.flush.timeout.ms: 10000
 # ...
 resources:
 requests:
 cpu: "1"
 memory: 2Gi
 limits:
 cpu: "2"
 memory: 2Gi
 # ...

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnector
metadata:
 name: my-source-connector
 labels:
 strimzi.io/cluster: my-connect-cluster
spec:
 class: org.apache.kafka.connect.file.FileStreamSourceConnector
 tasksMax: 2
 config:
 producer.override.batch.size: 327680
 producer.override.linger.ms: 100
 # ...

CHAPTER 25. HANDLING HIGH VOLUMES OF MESSAGES

431

If you are using the Kafka Connect API instead of the KafkaConnector custom resource to manage your
connectors, you can add the connector configuration as a JSON object.

Example curl request to add source connector configuration for handling high volumes of
messages

25.2. CONFIGURING MIRRORMAKER 2 FOR HIGH-VOLUME
MESSAGES

MirrorMaker 2 fetches data from the source cluster and hands it to the Kafka Connect runtime
producers so that it’s replicated to the target cluster.

The following example shows the configuration for MirrorMaker 2 using the KafkaMirrorMaker2 custom
resource.

Example MirrorMaker 2 configuration for handling high volumes of messages

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnector
metadata:
 name: my-sink-connector
 labels:
 strimzi.io/cluster: my-connect-cluster
spec:
 class: org.apache.kafka.connect.file.FileStreamSinkConnector
 tasksMax: 2
 config:
 consumer.fetch.max.bytes: 52428800
 consumer.max.partition.fetch.bytes: 1048576
 consumer.max.poll.records: 500
 # ...

curl -X POST \
 http://my-connect-cluster-connect-api:8083/connectors \
 -H 'Content-Type: application/json' \
 -d '{ "name": "my-source-connector",
 "config":
 {
 "connector.class":"org.apache.kafka.connect.file.FileStreamSourceConnector",
 "file": "/opt/kafka/LICENSE",
 "topic":"my-topic",
 "tasksMax": "4",
 "type": "source"
 "producer.override.batch.size": 327680
 "producer.override.linger.ms": 100
 }
}'

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaMirrorMaker2
metadata:
 name: my-mirror-maker2
spec:
 version: 3.5.0

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

432

25.3. CHECKING THE MIRRORMAKER 2 MESSAGE FLOW

If you are using Prometheus and Grafana to monitor your deployment, you can check the MirrorMaker 2
message flow.

The example MirrorMaker 2 Grafana dashboards provided with AMQ Streams show the following
metrics related to the flush pipeline.

The number of messages in Kafka Connect’s outstanding messages queue

The available bytes of the producer buffer

The offset commit timeout in milliseconds

You can use these metrics to gauge whether or not you need to tune your configuration based on the
volume of messages.

Additional resources

Chapter 20, Setting up metrics and dashboards for AMQ Streams

Section 6.4.3, “Adding connectors”

 replicas: 1
 connectCluster: "my-cluster-target"
 clusters:
 - alias: "my-cluster-source"
 bootstrapServers: my-cluster-source-kafka-bootstrap:9092
 - alias: "my-cluster-target"
 config:
 offset.flush.timeout.ms: 10000
 bootstrapServers: my-cluster-target-kafka-bootstrap:9092
 mirrors:
 - sourceCluster: "my-cluster-source"
 targetCluster: "my-cluster-target"
 sourceConnector:
 tasksMax: 2
 config:
 producer.override.batch.size: 327680
 producer.override.linger.ms: 100
 consumer.fetch.max.bytes: 52428800
 consumer.max.partition.fetch.bytes: 1048576
 consumer.max.poll.records: 500
 # ...
 resources:
 requests:
 cpu: "1"
 memory: Gi
 limits:
 cpu: "2"
 memory: 4Gi

CHAPTER 25. HANDLING HIGH VOLUMES OF MESSAGES

433

CHAPTER 26. FINDING INFORMATION ON KAFKA RESTARTS
After the Cluster Operator restarts a Kafka pod in an OpenShift cluster, it emits an OpenShift event into
the pod’s namespace explaining why the pod restarted. For help in understanding cluster behavior, you
can check restart events from the command line.

TIP

You can export and monitor restart events using metrics collection tools like Prometheus. Use the
metrics tool with an event exporter that can export the output in a suitable format.

26.1. REASONS FOR A RESTART EVENT

The Cluster Operator initiates a restart event for a specific reason. You can check the reason by fetching
information on the restart event.

Table 26.1. Restart reasons

Event Description

CaCertHasOldGeneration The pod is still using a server certificate signed with an old CA, so needs
to be restarted as part of the certificate update.

CaCertRemoved Expired CA certificates have been removed, and the pod is restarted to
run with the current certificates.

CaCertRenewed CA certificates have been renewed, and the pod is restarted to run with
the updated certificates.

ClientCaCertKeyReplaced The key used to sign clients CA certificates has been replaced, and the
pod is being restarted as part of the CA renewal process.

ClusterCaCertKeyReplaced The key used to sign the cluster’s CA certificates has been replaced, and
the pod is being restarted as part of the CA renewal process.

ConfigChangeRequiresRestart Some Kafka configuration properties are changed dynamically, but
others require that the broker be restarted.

FileSystemResizeNeeded The file system size has been increased, and a restart is needed to apply
it.

KafkaCertificatesChanged One or more TLS certificates used by the Kafka broker have been
updated, and a restart is needed to use them.

ManualRollingUpdate A user annotated the pod, or the StrimziPodSet set it belongs to, to
trigger a restart.

PodForceRestartOnError An error occurred that requires a pod restart to rectify.

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

434

PodHasOldRevision A disk was added or removed from the Kafka volumes, and a restart is
needed to apply the change. When using StrimziPodSet resources, the
same reason is given if the pod needs to be recreated.

PodHasOldRevision The StrimziPodSet that the pod is a member of has been updated, so
the pod needs to be recreated. When using StrimziPodSet resources,
the same reason is given if a disk was added or removed from the Kafka
volumes.

PodStuck The pod is still pending, and is not scheduled or cannot be scheduled, so
the operator has restarted the pod in a final attempt to get it running.

PodUnresponsive AMQ Streams was unable to connect to the pod, which can indicate a
broker not starting correctly, so the operator restarted it in an attempt
to resolve the issue.

Event Description

26.2. RESTART EVENT FILTERS

When checking restart events from the command line, you can specify a field-selector to filter on
OpenShift event fields.

The following fields are available when filtering events with field-selector.

regardingObject.kind

The object that was restarted, and for restart events, the kind is always Pod.

regarding.namespace

The namespace that the pod belongs to.

regardingObject.name

The pod’s name, for example, strimzi-cluster-kafka-0.

regardingObject.uid

The unique ID of the pod.

reason

The reason the pod was restarted, for example, JbodVolumesChanged.

reportingController

The reporting component is always strimzi.io/cluster-operator for AMQ Streams restart events.

source

source is an older version of reportingController. The reporting component is always
strimzi.io/cluster-operator for AMQ Streams restart events.

type

The event type, which is either Warning or Normal. For AMQ Streams restart events, the type is
Normal.

NOTE

CHAPTER 26. FINDING INFORMATION ON KAFKA RESTARTS

435

NOTE

In older versions of OpenShift, the fields using the regarding prefix might use an
involvedObject prefix instead. reportingController was previously called
reportingComponent.

26.3. CHECKING KAFKA RESTARTS

Use a oc command to list restart events initiated by the Cluster Operator. Filter restart events emitted
by the Cluster Operator by setting the Cluster Operator as the reporting component using the
reportingController or source event fields.

Prerequisites

The Cluster Operator is running in the OpenShift cluster.

Procedure

1. Get all restart events emitted by the Cluster Operator:

Example showing events returned

You can also specify a reason or other field-selector options to constrain the events returned.

Here, a specific reason is added:

2. Use an output format, such as YAML, to return more detailed information about one or more
events.

Example showing detailed events output

oc -n kafka get events --field-selector reportingController=strimzi.io/cluster-operator

LAST SEEN TYPE REASON OBJECT MESSAGE
2m Normal CaCertRenewed pod/strimzi-cluster-kafka-0 CA certificate
renewed
58m Normal PodForceRestartOnError pod/strimzi-cluster-kafka-1 Pod needs to be
forcibly restarted due to an error
5m47s Normal ManualRollingUpdate pod/strimzi-cluster-kafka-2 Pod was manually
annotated to be rolled

oc -n kafka get events --field-selector reportingController=strimzi.io/cluster-
operator,reason=PodForceRestartOnError

oc -n kafka get events --field-selector reportingController=strimzi.io/cluster-
operator,reason=PodForceRestartOnError -o yaml

apiVersion: v1
items:
- action: StrimziInitiatedPodRestart
 apiVersion: v1
 eventTime: "2022-05-13T00:22:34.168086Z"
 firstTimestamp: null

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

436

The following fields are deprecated, so they are not populated for these events:

firstTimestamp

lastTimestamp

source

 involvedObject:
 kind: Pod
 name: strimzi-cluster-kafka-1
 namespace: kafka
 kind: Event
 lastTimestamp: null
 message: Pod needs to be forcibly restarted due to an error
 metadata:
 creationTimestamp: "2022-05-13T00:22:34Z"
 generateName: strimzi-event
 name: strimzi-eventwppk6
 namespace: kafka
 resourceVersion: "432961"
 uid: 29fcdb9e-f2cf-4c95-a165-a5efcd48edfc
 reason: PodForceRestartOnError
 reportingController: strimzi.io/cluster-operator
 reportingInstance: strimzi-cluster-operator-6458cfb4c6-6bpdp
 source: {}
 type: Normal
kind: List
metadata:
 resourceVersion: ""
 selfLink: ""

CHAPTER 26. FINDING INFORMATION ON KAFKA RESTARTS

437

CHAPTER 27. MANAGING AMQ STREAMS
Managing AMQ Streams requires performing various tasks to keep the Kafka clusters and associated
resources running smoothly. Use oc commands to check the status of resources, configure maintenance
windows for rolling updates, and leverage tools such as the AMQ Streams Drain Cleaner and Kafka
Static Quota plugin to manage your deployment effectively.

27.1. WORKING WITH CUSTOM RESOURCES

You can use oc commands to retrieve information and perform other operations on AMQ Streams
custom resources.

Using oc with the status subresource of a custom resource allows you to get the information about the
resource.

27.1.1. Performing oc operations on custom resources

Use oc commands, such as get, describe, edit, or delete, to perform operations on resource types. For
example, oc get kafkatopics retrieves a list of all Kafka topics and oc get kafkas retrieves all deployed
Kafka clusters.

When referencing resource types, you can use both singular and plural names: oc get kafkas gets the
same results as oc get kafka.

You can also use the short name of the resource. Learning short names can save you time when
managing AMQ Streams. The short name for Kafka is k, so you can also run oc get k to list all Kafka
clusters.

Table 27.1. Long and short names for each AMQ Streams resource

AMQ Streams resource Long name Short name

Kafka kafka k

Kafka Topic kafkatopic kt

Kafka User kafkauser ku

Kafka Connect kafkaconnect kc

Kafka Connector kafkaconnector kctr

Kafka Mirror Maker kafkamirrormaker kmm

Kafka Mirror Maker 2 kafkamirrormaker2 kmm2

oc get k

NAME DESIRED KAFKA REPLICAS DESIRED ZK REPLICAS
my-cluster 3 3

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

438

Kafka Bridge kafkabridge kb

Kafka Rebalance kafkarebalance kr

AMQ Streams resource Long name Short name

27.1.1.1. Resource categories

Categories of custom resources can also be used in oc commands.

All AMQ Streams custom resources belong to the category strimzi, so you can use strimzi to get all the
AMQ Streams resources with one command.

For example, running oc get strimzi lists all AMQ Streams custom resources in a given namespace.

The oc get strimzi -o name command returns all resource types and resource names. The -o name
option fetches the output in the type/name format

You can combine this strimzi command with other commands. For example, you can pass it into a oc
delete command to delete all resources in a single command.

Deleting all resources in a single operation might be useful, for example, when you are testing new AMQ
Streams features.

27.1.1.2. Querying the status of sub-resources

There are other values you can pass to the -o option. For example, by using -o yaml you get the output
in YAML format. Using -o json will return it as JSON.

oc get strimzi

NAME DESIRED KAFKA REPLICAS DESIRED ZK REPLICAS
kafka.kafka.strimzi.io/my-cluster 3 3

NAME PARTITIONS REPLICATION FACTOR
kafkatopic.kafka.strimzi.io/kafka-apps 3 3

NAME AUTHENTICATION AUTHORIZATION
kafkauser.kafka.strimzi.io/my-user tls simple

oc get strimzi -o name

kafka.kafka.strimzi.io/my-cluster
kafkatopic.kafka.strimzi.io/kafka-apps
kafkauser.kafka.strimzi.io/my-user

oc delete $(oc get strimzi -o name)

kafka.kafka.strimzi.io "my-cluster" deleted
kafkatopic.kafka.strimzi.io "kafka-apps" deleted
kafkauser.kafka.strimzi.io "my-user" deleted

CHAPTER 27. MANAGING AMQ STREAMS

439

You can see all the options in oc get --help.

One of the most useful options is the JSONPath support, which allows you to pass JSONPath
expressions to query the Kubernetes API. A JSONPath expression can extract or navigate specific parts
of any resource.

For example, you can use the JSONPath expression {.status.listeners[?
(@.name=="tls")].bootstrapServers} to get the bootstrap address from the status of the Kafka
custom resource and use it in your Kafka clients.

Here, the command finds the bootstrapServers value of the listener named tls:

By changing the name condition you can also get the address of the other Kafka listeners.

You can use jsonpath to extract any other property or group of properties from any custom resource.

27.1.2. AMQ Streams custom resource status information

Status properties provide status information for certain custom resources.

The following table lists the custom resources that provide status information (when deployed) and the
schemas that define the status properties.

For more information on the schemas, see the AMQ Streams Custom Resource API Reference .

Table 27.2. Custom resources that provide status information

AMQ Streams resource Schema reference Publishes status information
on…​

Kafka KafkaStatus schema reference The Kafka cluster

KafkaTopic KafkaTopicStatus schema
reference

Kafka topics in the Kafka cluster

KafkaUser KafkaUserStatus schema
reference

Kafka users in the Kafka cluster

KafkaConnect KafkaConnectStatus schema
reference

The Kafka Connect cluster

KafkaConnector KafkaConnectorStatus
schema reference

KafkaConnector resources

KafkaMirrorMaker2 KafkaMirrorMaker2Status
schema reference

The Kafka MirrorMaker 2 cluster

KafkaMirrorMaker KafkaMirrorMakerStatus
schema reference

The Kafka MirrorMaker cluster

oc get kafka my-cluster -o=jsonpath='{.status.listeners[?(@.name=="tls")].bootstrapServers}{"\n"}'

my-cluster-kafka-bootstrap.myproject.svc:9093

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

440

https://kubernetes.io/docs/reference/kubectl/jsonpath/
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index

KafkaBridge KafkaBridgeStatus schema
reference

The AMQ Streams Kafka Bridge

KafkaRebalance KafkaRebalance schema
reference

The status and results of a
rebalance

AMQ Streams resource Schema reference Publishes status information
on…​

The status property of a resource provides information on the state of the resource. The
status.conditions and status.observedGeneration properties are common to all resources.

status.conditions

Status conditions describe the current state of a resource. Status condition properties are useful for
tracking progress related to the resource achieving its desired state , as defined by the configuration
specified in its spec. Status condition properties provide the time and reason the state of the
resource changed, and details of events preventing or delaying the operator from realizing the
desired state.

status.observedGeneration

Last observed generation denotes the latest reconciliation of the resource by the Cluster Operator.
If the value of observedGeneration is different from the value of metadata.generation ((the
current version of the deployment), the operator has not yet processed the latest update to the
resource. If these values are the same, the status information reflects the most recent changes to the
resource.

The status properties also provide resource-specific information. For example, KafkaStatus provides
information on listener addresses, and the ID of the Kafka cluster.

AMQ Streams creates and maintains the status of custom resources, periodically evaluating the current
state of the custom resource and updating its status accordingly. When performing an update on a
custom resource using oc edit, for example, its status is not editable. Moreover, changing the status
would not affect the configuration of the Kafka cluster.

Here we see the status properties for a Kafka custom resource.

Kafka custom resource status

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
spec:
 # ...
status:
 clusterId: XP9FP2P-RByvEy0W4cOEUA 1
 conditions: 2
 - lastTransitionTime: '2023-01-20T17:56:29.396588Z'
 status: 'True'
 type: Ready 3
 listeners: 4

CHAPTER 27. MANAGING AMQ STREAMS

441

1

2

3

4

5

The Kafka cluster ID.

Status conditions describe the current state of the Kafka cluster.

The Ready condition indicates that the Cluster Operator considers the Kafka cluster able to handle
traffic.

The listeners describe Kafka bootstrap addresses by type.

The observedGeneration value indicates the last reconciliation of the Kafka custom resource by
the Cluster Operator.

NOTE

 - addresses:
 - host: my-cluster-kafka-bootstrap.prm-project.svc
 port: 9092
 bootstrapServers: 'my-cluster-kafka-bootstrap.prm-project.svc:9092'
 name: plain
 type: plain
 - addresses:
 - host: my-cluster-kafka-bootstrap.prm-project.svc
 port: 9093
 bootstrapServers: 'my-cluster-kafka-bootstrap.prm-project.svc:9093'
 certificates:
 - |
 -----BEGIN CERTIFICATE-----

 -----END CERTIFICATE-----
 name: tls
 type: tls
 - addresses:
 - host: >-
 2054284155.us-east-2.elb.amazonaws.com
 port: 9095
 bootstrapServers: >-
 2054284155.us-east-2.elb.amazonaws.com:9095
 certificates:
 - |
 -----BEGIN CERTIFICATE-----

 -----END CERTIFICATE-----
 name: external2
 type: external2
 - addresses:
 - host: ip-10-0-172-202.us-east-2.compute.internal
 port: 31644
 bootstrapServers: 'ip-10-0-172-202.us-east-2.compute.internal:31644'
 certificates:
 - |
 -----BEGIN CERTIFICATE-----

 -----END CERTIFICATE-----
 name: external1
 type: external1
 observedGeneration: 3 5

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

442

NOTE

The Kafka bootstrap addresses listed in the status do not signify that those endpoints or
the Kafka cluster is in a Ready state.

Accessing status information

You can access status information for a resource from the command line. For more information, see
Section 27.1.3, “Finding the status of a custom resource” .

27.1.3. Finding the status of a custom resource

This procedure describes how to find the status of a custom resource.

Prerequisites

An OpenShift cluster.

The Cluster Operator is running.

Procedure

Specify the custom resource and use the -o jsonpath option to apply a standard JSONPath
expression to select the status property:

This expression returns all the status information for the specified custom resource. You can use
dot notation, such as status.listeners or status.observedGeneration, to fine-tune the status
information you wish to see.

Additional resources

Section 27.1.2, “AMQ Streams custom resource status information”

For more information about using JSONPath, see JSONPath support.

27.2. DISCOVERING SERVICES USING LABELS AND ANNOTATIONS

Service discovery makes it easier for client applications running in the same OpenShift cluster as AMQ
Streams to interact with a Kafka cluster.

A service discovery label and annotation is generated for services used to access the Kafka cluster:

Internal Kafka bootstrap service

HTTP Bridge service

The label helps to make the service discoverable, and the annotation provides connection details that a
client application can use to make the connection.

The service discovery label, strimzi.io/discovery, is set as true for the Service resources. The service
discovery annotation has the same key, providing connection details in JSON format for each service.

Example internal Kafka bootstrap service

oc get kafka <kafka_resource_name> -o jsonpath='{.status}'

CHAPTER 27. MANAGING AMQ STREAMS

443

https://kubernetes.io/docs/reference/kubectl/jsonpath/

Example HTTP Bridge service

27.2.1. Returning connection details on services

You can find the services by specifying the discovery label when fetching services from the command
line or a corresponding API call.

The connection details are returned when retrieving the service discovery label.

27.3. CONNECTING TO ZOOKEEPER FROM A TERMINAL

apiVersion: v1
kind: Service
metadata:
 annotations:
 strimzi.io/discovery: |-
 [{
 "port" : 9092,
 "tls" : false,
 "protocol" : "kafka",
 "auth" : "scram-sha-512"
 }, {
 "port" : 9093,
 "tls" : true,
 "protocol" : "kafka",
 "auth" : "tls"
 }]
 labels:
 strimzi.io/cluster: my-cluster
 strimzi.io/discovery: "true"
 strimzi.io/kind: Kafka
 strimzi.io/name: my-cluster-kafka-bootstrap
 name: my-cluster-kafka-bootstrap
spec:
 #...

apiVersion: v1
kind: Service
metadata:
 annotations:
 strimzi.io/discovery: |-
 [{
 "port" : 8080,
 "tls" : false,
 "auth" : "none",
 "protocol" : "http"
 }]
 labels:
 strimzi.io/cluster: my-bridge
 strimzi.io/discovery: "true"
 strimzi.io/kind: KafkaBridge
 strimzi.io/name: my-bridge-bridge-service

oc get service -l strimzi.io/discovery=true

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

444

ZooKeeper services are secured with encryption and authentication and are not intended to be used by
external applications that are not part of AMQ Streams.

However, if you want to use CLI tools that require a connection to ZooKeeper, you can use a terminal
inside a ZooKeeper pod and connect to localhost:12181 as the ZooKeeper address.

Prerequisites

An OpenShift cluster is available.

A Kafka cluster is running.

The Cluster Operator is running.

Procedure

1. Open the terminal using the OpenShift console or run the exec command from your CLI.
For example:

Be sure to use localhost:12181.

27.4. PAUSING RECONCILIATION OF CUSTOM RESOURCES

Sometimes it is useful to pause the reconciliation of custom resources managed by AMQ Streams
Operators, so that you can perform fixes or make updates. If reconciliations are paused, any changes
made to custom resources are ignored by the Operators until the pause ends.

If you want to pause reconciliation of a custom resource, set the strimzi.io/pause-reconciliation
annotation to true in its configuration. This instructs the appropriate Operator to pause reconciliation of
the custom resource. For example, you can apply the annotation to the KafkaConnect resource so that
reconciliation by the Cluster Operator is paused.

You can also create a custom resource with the pause annotation enabled. The custom resource is
created, but it is ignored.

Prerequisites

The AMQ Streams Operator that manages the custom resource is running.

Procedure

1. Annotate the custom resource in OpenShift, setting pause-reconciliation to true:

For example, for the KafkaConnect custom resource:

2. Check that the status conditions of the custom resource show a change to
ReconciliationPaused:

oc exec -ti my-cluster-zookeeper-0 -- bin/zookeeper-shell.sh localhost:12181 ls /

oc annotate <kind_of_custom_resource> <name_of_custom_resource> strimzi.io/pause-
reconciliation="true"

oc annotate KafkaConnect my-connect strimzi.io/pause-reconciliation="true"

CHAPTER 27. MANAGING AMQ STREAMS

445

The type condition changes to ReconciliationPaused at the lastTransitionTime.

Example custom resource with a paused reconciliation condition type

Resuming from pause

To resume reconciliation, you can set the annotation to false, or remove the annotation.

Additional resources

Finding the status of a custom resource

27.5. MAINTENANCE TIME WINDOWS FOR ROLLING UPDATES

Maintenance time windows allow you to schedule certain rolling updates of your Kafka and ZooKeeper
clusters to start at a convenient time.

27.5.1. Maintenance time windows overview

In most cases, the Cluster Operator only updates your Kafka or ZooKeeper clusters in response to
changes to the corresponding Kafka resource. This enables you to plan when to apply changes to a
Kafka resource to minimize the impact on Kafka client applications.

However, some updates to your Kafka and ZooKeeper clusters can happen without any corresponding
change to the Kafka resource. For example, the Cluster Operator will need to perform a rolling restart if
a CA (certificate authority) certificate that it manages is close to expiry.

While a rolling restart of the pods should not affect availability of the service (assuming correct broker
and topic configurations), it could affect performance of the Kafka client applications. Maintenance time
windows allow you to schedule such spontaneous rolling updates of your Kafka and ZooKeeper clusters
to start at a convenient time. If maintenance time windows are not configured for a cluster then it is
possible that such spontaneous rolling updates will happen at an inconvenient time, such as during a
predictable period of high load.

27.5.2. Maintenance time window definition

You configure maintenance time windows by entering an array of strings in the

oc describe <kind_of_custom_resource> <name_of_custom_resource>

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
metadata:
 annotations:
 strimzi.io/pause-reconciliation: "true"
 strimzi.io/use-connector-resources: "true"
 creationTimestamp: 2021-03-12T10:47:11Z
 #...
spec:
 # ...
status:
 conditions:
 - lastTransitionTime: 2021-03-12T10:47:41.689249Z
 status: "True"
 type: ReconciliationPaused

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

446

You configure maintenance time windows by entering an array of strings in the
Kafka.spec.maintenanceTimeWindows property. Each string is a cron expression interpreted as being
in UTC (Coordinated Universal Time, which for practical purposes is the same as Greenwich Mean
Time).

The following example configures a single maintenance time window that starts at midnight and ends at
01:59am (UTC), on Sundays, Mondays, Tuesdays, Wednesdays, and Thursdays:

In practice, maintenance windows should be set in conjunction with the
Kafka.spec.clusterCa.renewalDays and Kafka.spec.clientsCa.renewalDays properties of the Kafka
resource, to ensure that the necessary CA certificate renewal can be completed in the configured
maintenance time windows.

NOTE

AMQ Streams does not schedule maintenance operations exactly according to the given
windows. Instead, for each reconciliation, it checks whether a maintenance window is
currently "open". This means that the start of maintenance operations within a given time
window can be delayed by up to the Cluster Operator reconciliation interval. Maintenance
time windows must therefore be at least this long.

27.5.3. Configuring a maintenance time window

You can configure a maintenance time window for rolling updates triggered by supported processes.

Prerequisites

An OpenShift cluster.

The Cluster Operator is running.

Procedure

1. Add or edit the maintenanceTimeWindows property in the Kafka resource. For example to
allow maintenance between 0800 and 1059 and between 1400 and 1559 you would set the
maintenanceTimeWindows as shown below:

...
maintenanceTimeWindows:
 - "* * 0-1 ? * SUN,MON,TUE,WED,THU *"
...

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 name: my-cluster
spec:
 kafka:
 # ...
 zookeeper:
 # ...
 maintenanceTimeWindows:
 - "* * 8-10 * * ?"
 - "* * 14-15 * * ?"

CHAPTER 27. MANAGING AMQ STREAMS

447

http://www.quartz-scheduler.org/documentation/quartz-2.3.0/tutorials/tutorial-lesson-06.html

2. Create or update the resource:

Additional resources

Section 27.9.1, “Performing a rolling update using a pod management annotation”

Section 27.9.2, “Performing a rolling update using a pod annotation”

27.6. EVICTING PODS WITH THE AMQ STREAMS DRAIN CLEANER

Kafka and ZooKeeper pods might be evicted during OpenShift upgrades, maintenance, or pod
rescheduling. If your Kafka broker and ZooKeeper pods were deployed by AMQ Streams, you can use the
AMQ Streams Drain Cleaner tool to handle the pod evictions. The AMQ Streams Drain Cleaner handles
the eviction instead of OpenShift. You must set the podDisruptionBudget for your Kafka deployment
to 0 (zero). OpenShift will then no longer be allowed to evict the pod automatically.

By deploying the AMQ Streams Drain Cleaner, you can use the Cluster Operator to move Kafka pods
instead of OpenShift. The Cluster Operator ensures that topics are never under-replicated. Kafka can
remain operational during the eviction process. The Cluster Operator waits for topics to synchronize, as
the OpenShift worker nodes drain consecutively.

An admission webhook notifies the AMQ Streams Drain Cleaner of pod eviction requests to the
Kubernetes API. The AMQ Streams Drain Cleaner then adds a rolling update annotation to the pods to
be drained. This informs the Cluster Operator to perform a rolling update of an evicted pod.

NOTE

If you are not using the AMQ Streams Drain Cleaner, you can add pod annotations to
perform rolling updates manually.

Webhook configuration

The AMQ Streams Drain Cleaner deployment files include a ValidatingWebhookConfiguration
resource file. The resource provides the configuration for registering the webhook with the Kubernetes
API.

The configuration defines the rules for the Kubernetes API to follow in the event of a pod eviction
request. The rules specify that only CREATE operations related to pods/eviction sub-resources are
intercepted. If these rules are met, the API forwards the notification.

The clientConfig points to the AMQ Streams Drain Cleaner service and /drainer endpoint that exposes
the webhook. The webhook uses a secure TLS connection, which requires authentication. The caBundle
property specifies the certificate chain to validate HTTPS communication. Certificates are encoded in
Base64.

Webhook configuration for pod eviction notifications

oc apply -f <kafka_configuration_file>

apiVersion: admissionregistration.k8s.io/v1
kind: ValidatingWebhookConfiguration
...
webhooks:
 - name: strimzi-drain-cleaner.strimzi.io

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

448

27.6.1. Downloading the AMQ Streams Drain Cleaner deployment files

To deploy and use the AMQ Streams Drain Cleaner, you need to download the deployment files.

The AMQ Streams Drain Cleaner deployment files are available from the AMQ Streams software
downloads page.

27.6.2. Deploying the AMQ Streams Drain Cleaner using installation files

Deploy the AMQ Streams Drain Cleaner to the OpenShift cluster where the Cluster Operator and Kafka
cluster are running.

AMQ Streams sets a default PodDisruptionBudget (PDB) that allows only one Kafka or ZooKeeper
pod to be unavailable at any given time. To use the Drain Cleaner for planned maintenance or upgrades,
you must set a PDB of zero. This is to prevent voluntary evictions of pods, and ensure that the Kafka or
ZooKeeper cluster remains available. You do this by setting the maxUnavailable value to zero in the
Kafka or ZooKeeper template. StrimziPodSet custom resources manage Kafka and ZooKeeper pods
using a custom controller that cannot use the maxUnavailable value directly. Instead, the
maxUnavailable value is converted to a minAvailable value. For example, if there are three broker
pods and the maxUnavailable property is set to 0 (zero), the minAvailable setting is 3, requiring all
three broker pods to be available and allowing zero pods to be unavailable.

Prerequisites

You have downloaded the AMQ Streams Drain Cleaner deployment files .

You have a highly available Kafka cluster deployment running with OpenShift worker nodes that
you would like to update.

Topics are replicated for high availability.
Topic configuration specifies a replication factor of at least 3 and a minimum number of in-sync
replicas to 1 less than the replication factor.

Kafka topic replicated for high availability

 rules:
 - apiGroups: [""]
 apiVersions: ["v1"]
 operations: ["CREATE"]
 resources: ["pods/eviction"]
 scope: "Namespaced"
 clientConfig:
 service:
 namespace: "strimzi-drain-cleaner"
 name: "strimzi-drain-cleaner"
 path: /drainer
 port: 443
 caBundle: Cg==
 # ...

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaTopic
metadata:
 name: my-topic
 labels:

CHAPTER 27. MANAGING AMQ STREAMS

449

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?downloadType=distributions&product=jboss.amq.streams

Excluding Kafka or ZooKeeper

If you don’t want to include Kafka or ZooKeeper pods in Drain Cleaner operations, change the default
environment variables in the Drain Cleaner Deployment configuration file.

Set STRIMZI_DRAIN_KAFKA to false to exclude Kafka pods

Set STRIMZI_DRAIN_ZOOKEEPER to false to exclude ZooKeeper pods

Example configuration to exclude ZooKeeper pods

Procedure

1. Set maxUnavailable to 0 (zero) in the Kafka and ZooKeeper sections of the Kafka resource
using template settings.

Specifying a pod disruption budget

 strimzi.io/cluster: my-cluster
spec:
 partitions: 1
 replicas: 3
 config:
 # ...
 min.insync.replicas: 2
 # ...

apiVersion: apps/v1
kind: Deployment
spec:
 # ...
 template:
 spec:
 serviceAccountName: strimzi-drain-cleaner
 containers:
 - name: strimzi-drain-cleaner
 # ...
 env:
 - name: STRIMZI_DRAIN_KAFKA
 value: "true"
 - name: STRIMZI_DRAIN_ZOOKEEPER
 value: "false"
 # ...

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 name: my-cluster
 namespace: myproject
spec:
 kafka:
 template:
 podDisruptionBudget:
 maxUnavailable: 0

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

450

This setting prevents the automatic eviction of pods in case of planned disruptions, leaving the
AMQ Streams Drain Cleaner and Cluster Operator to roll the pods on different worker nodes.

Add the same configuration for ZooKeeper if you want to use AMQ Streams Drain Cleaner to
drain ZooKeeper nodes.

2. Update the Kafka resource:

3. Deploy the AMQ Streams Drain Cleaner.

To run the Drain Cleaner on OpenShift, apply the resources in the /install/drain-
cleaner/openshift directory.

27.6.3. Using the AMQ Streams Drain Cleaner

Use the AMQ Streams Drain Cleaner in combination with the Cluster Operator to move Kafka broker or
ZooKeeper pods from nodes that are being drained. When you run the AMQ Streams Drain Cleaner, it
annotates pods with a rolling update pod annotation. The Cluster Operator performs rolling updates
based on the annotation.

Prerequisites

You have deployed the AMQ Streams Drain Cleaner .

Procedure

1. Drain a specified OpenShift node hosting the Kafka broker or ZooKeeper pods.

2. Check the eviction events in the AMQ Streams Drain Cleaner log to verify that the pods have
been annotated for restart.

AMQ Streams Drain Cleaner log show annotations of pods

 # ...
 zookeeper:
 template:
 podDisruptionBudget:
 maxUnavailable: 0
 # ...

oc apply -f <kafka_configuration_file>

oc apply -f ./install/drain-cleaner/openshift

oc get nodes
oc drain <name-of-node> --delete-emptydir-data --ignore-daemonsets --timeout=6000s --
force

INFO ... Received eviction webhook for Pod my-cluster-zookeeper-2 in namespace my-
project
INFO ... Pod my-cluster-zookeeper-2 in namespace my-project will be annotated for restart
INFO ... Pod my-cluster-zookeeper-2 in namespace my-project found and annotated for
restart

CHAPTER 27. MANAGING AMQ STREAMS

451

3. Check the reconciliation events in the Cluster Operator log to verify the rolling updates.

Cluster Operator log shows rolling updates

27.6.4. Watching the TLS certificates used by the AMQ Streams Drain Cleaner

By default, the Drain Cleaner deployment watches the secret containing the TLS certificates its uses for
authentication. The Drain Cleaner watches for changes, such as certificate renewals. If it detects a
change, it restarts to reload the TLS certificates. The Drain Cleaner installation files enable this behavior
by default. But you can disable the watching of certificates by setting the
STRIMZI_CERTIFICATE_WATCH_ENABLED environment variable to false in the Deployment
configuration (060-Deployment.yaml) of the Drain Cleaner installation files.

With STRIMZI_CERTIFICATE_WATCH_ENABLED enabled, you can also use the following
environment variables for watching TLS certificates.

Table 27.3. Drain Cleaner environment variables for watching TLS certificates

Environment Variable Description Default

STRIMZI_CERTIFICATE_WATCH_ENABL
ED

Enables or disables the certificate
watch

false

STRIMZI_CERTIFICATE_WATCH_NAME
SPACE

The namespace where the Drain
Cleaner is deployed and where the
certificate secret exists

strimzi-drain-
cleaner

STRIMZI_CERTIFICATE_WATCH_POD_N
AME

The Drain Cleaner pod name -

STRIMZI_CERTIFICATE_WATCH_SECRE
T_NAME

The name of the secret containing
TLS certificates

strimzi-drain-
cleaner

STRIMZI_CERTIFICATE_WATCH_SECRE
T_KEYS

The list of fields inside the secret that
contain the TLS certificates

tls.crt, tls.key

Example environment variable configuration to control watch operations

INFO ... Received eviction webhook for Pod my-cluster-kafka-0 in namespace my-project
INFO ... Pod my-cluster-kafka-0 in namespace my-project will be annotated for restart
INFO ... Pod my-cluster-kafka-0 in namespace my-project found and annotated for restart

INFO PodOperator:68 - Reconciliation #13(timer) Kafka(my-project/my-cluster): Rolling Pod
my-cluster-zookeeper-2
INFO PodOperator:68 - Reconciliation #13(timer) Kafka(my-project/my-cluster): Rolling Pod
my-cluster-kafka-0
INFO AbstractOperator:500 - Reconciliation #13(timer) Kafka(my-project/my-cluster):
reconciled

apiVersion: apps/v1
kind: Deployment
metadata:

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

452

TIP

Use the Downward API mechanism to configure STRIMZI_CERTIFICATE_WATCH_NAMESPACE and
STRIMZI_CERTIFICATE_WATCH_POD_NAME.

27.7. DELETING KAFKA NODES USING ANNOTATIONS

This procedure describes how to delete an existing Kafka node by using an OpenShift annotation.
Deleting a Kafka node consists of deleting both the Pod on which the Kafka broker is running and the
related PersistentVolumeClaim (if the cluster was deployed with persistent storage). After deletion,
the Pod and its related PersistentVolumeClaim are recreated automatically.

WARNING

Deleting a PersistentVolumeClaim can cause permanent data loss and the
availability of your cluster cannot be guaranteed. The following procedure should
only be performed if you have encountered storage issues.

Prerequisites

A running Cluster Operator

 name: strimzi-drain-cleaner
 labels:
 app: strimzi-drain-cleaner
 namespace: strimzi-drain-cleaner
spec:
 # ...
 spec:
 serviceAccountName: strimzi-drain-cleaner
 containers:
 - name: strimzi-drain-cleaner
 # ...
 env:
 - name: STRIMZI_DRAIN_KAFKA
 value: "true"
 - name: STRIMZI_DRAIN_ZOOKEEPER
 value: "true"
 - name: STRIMZI_CERTIFICATE_WATCH_ENABLED
 value: "true"
 - name: STRIMZI_CERTIFICATE_WATCH_NAMESPACE
 valueFrom:
 fieldRef:
 fieldPath: metadata.namespace
 - name: STRIMZI_CERTIFICATE_WATCH_POD_NAME
 valueFrom:
 fieldRef:
 fieldPath: metadata.name
 # ...



CHAPTER 27. MANAGING AMQ STREAMS

453

https://docs.openshift.com/container-platform/latest/nodes/containers/nodes-containers-downward-api.html

Procedure

1. Find the name of the Pod that you want to delete.
Kafka broker pods are named <cluster-name>-kafka-<index>, where <index> starts at zero and
ends at the total number of replicas minus one. For example, my-cluster-kafka-0.

2. Annotate the Pod resource in OpenShift.
Use oc annotate:

3. Wait for the next reconciliation, when the annotated pod with the underlying persistent volume
claim will be deleted and then recreated.

27.8. DELETING ZOOKEEPER NODES USING ANNOTATIONS

This procedure describes how to delete an existing ZooKeeper node by using an OpenShift annotation.
Deleting a ZooKeeper node consists of deleting both the Pod on which ZooKeeper is running and the
related PersistentVolumeClaim (if the cluster was deployed with persistent storage). After deletion,
the Pod and its related PersistentVolumeClaim are recreated automatically.

WARNING

Deleting a PersistentVolumeClaim can cause permanent data loss and the
availability of your cluster cannot be guaranteed. The following procedure should
only be performed if you have encountered storage issues.

Prerequisites

A running Cluster Operator

Procedure

1. Find the name of the Pod that you want to delete.
ZooKeeper pods are named <cluster-name>-zookeeper-<index>, where <index> starts at zero
and ends at the total number of replicas minus one. For example, my-cluster-zookeeper-0.

2. Annotate the Pod resource in OpenShift.
Use oc annotate:

3. Wait for the next reconciliation, when the annotated pod with the underlying persistent volume
claim will be deleted and then recreated.

27.9. STARTING ROLLING UPDATES OF KAFKA AND ZOOKEEPER
CLUSTERS USING ANNOTATIONS

oc annotate pod cluster-name-kafka-index strimzi.io/delete-pod-and-pvc=true



oc annotate pod cluster-name-zookeeper-index strimzi.io/delete-pod-and-pvc=true

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

454

AMQ Streams supports the use of annotations on resources to manually trigger a rolling update of
Kafka and ZooKeeper clusters through the Cluster Operator. Rolling updates restart the pods of the
resource with new ones.

Manually performing a rolling update on a specific pod or set of pods is usually only required in
exceptional circumstances. However, rather than deleting the pods directly, if you perform the rolling
update through the Cluster Operator you ensure the following:

The manual deletion of the pod does not conflict with simultaneous Cluster Operator
operations, such as deleting other pods in parallel.

The Cluster Operator logic handles the Kafka configuration specifications, such as the number
of in-sync replicas.

27.9.1. Performing a rolling update using a pod management annotation

This procedure describes how to trigger a rolling update of a Kafka cluster or ZooKeeper cluster. To
trigger the update, you add an annotation to the StrimziPodSet that manages the pods running on the
cluster.

Prerequisites

To perform a manual rolling update, you need a running Cluster Operator and Kafka cluster.

Procedure

1. Find the name of the resource that controls the Kafka or ZooKeeper pods you want to manually
update.
For example, if your Kafka cluster is named my-cluster, the corresponding names are my-
cluster-kafka and my-cluster-zookeeper.

2. Use oc annotate to annotate the appropriate resource in OpenShift.

Annotating a StrimziPodSet

3. Wait for the next reconciliation to occur (every two minutes by default). A rolling update of all
pods within the annotated resource is triggered, as long as the annotation was detected by the
reconciliation process. When the rolling update of all the pods is complete, the annotation is
removed from the resource.

27.9.2. Performing a rolling update using a pod annotation

This procedure describes how to manually trigger a rolling update of an existing Kafka cluster or
ZooKeeper cluster using an OpenShift Pod annotation. When multiple pods are annotated, consecutive
rolling updates are performed within the same reconciliation run.

Prerequisites

To perform a manual rolling update, you need a running Cluster Operator and Kafka cluster.

You can perform a rolling update on a Kafka cluster regardless of the topic replication factor used. But
for Kafka to stay operational during the update, you’ll need the following:

oc annotate strimzipodset <cluster_name>-kafka strimzi.io/manual-rolling-update=true

oc annotate strimzipodset <cluster_name>-zookeeper strimzi.io/manual-rolling-update=true

CHAPTER 27. MANAGING AMQ STREAMS

455

A highly available Kafka cluster deployment running with nodes that you wish to update.

Topics replicated for high availability.
Topic configuration specifies a replication factor of at least 3 and a minimum number of in-sync
replicas to 1 less than the replication factor.

Kafka topic replicated for high availability

Procedure

1. Find the name of the Kafka or ZooKeeper Pod you want to manually update.
For example, if your Kafka cluster is named my-cluster, the corresponding Pod names are my-
cluster-kafka-index and my-cluster-zookeeper-index. The index starts at zero and ends at the
total number of replicas minus one.

2. Annotate the Pod resource in OpenShift.
Use oc annotate:

3. Wait for the next reconciliation to occur (every two minutes by default). A rolling update of the
annotated Pod is triggered, as long as the annotation was detected by the reconciliation
process. When the rolling update of a pod is complete, the annotation is removed from the Pod.

27.10. PERFORMING RESTARTS OF MIRRORMAKER 2 CONNECTORS
USING ANNOTATIONS

This procedure describes how to manually trigger a restart of a Kafka MirrorMaker 2 connector by using
an OpenShift annotation.

Prerequisites

The Cluster Operator is running.

Procedure

1. Find the name of the KafkaMirrorMaker2 custom resource that controls the Kafka MirrorMaker

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaTopic
metadata:
 name: my-topic
 labels:
 strimzi.io/cluster: my-cluster
spec:
 partitions: 1
 replicas: 3
 config:
 # ...
 min.insync.replicas: 2
 # ...

oc annotate pod cluster-name-kafka-index strimzi.io/manual-rolling-update=true

oc annotate pod cluster-name-zookeeper-index strimzi.io/manual-rolling-update=true

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

456

1. Find the name of the KafkaMirrorMaker2 custom resource that controls the Kafka MirrorMaker
2 connector you want to restart:

2. Find the name of the Kafka MirrorMaker 2 connector to be restarted from the
KafkaMirrorMaker2 custom resource.

3. To restart the connector, annotate the KafkaMirrorMaker2 resource in OpenShift. In this
example, oc annotate restarts a connector named my-source->my-
target.MirrorSourceConnector:

4. Wait for the next reconciliation to occur (every two minutes by default).
The Kafka MirrorMaker 2 connector is restarted, as long as the annotation was detected by the
reconciliation process. When the restart request is accepted, the annotation is removed from
the KafkaMirrorMaker2 custom resource.

Additional resources

Kafka MirrorMaker 2 cluster configuration .

27.11. PERFORMING RESTARTS OF MIRRORMAKER 2 CONNECTOR
TASK USING ANNOTATIONS

This procedure describes how to manually trigger a restart of a Kafka MirrorMaker 2 connector task by
using an OpenShift annotation.

Prerequisites

The Cluster Operator is running.

Procedure

1. Find the name of the KafkaMirrorMaker2 custom resource that controls the Kafka MirrorMaker
2 connector you want to restart:

2. Find the name of the Kafka MirrorMaker 2 connector and the ID of the task to be restarted from
the KafkaMirrorMaker2 custom resource. Task IDs are non-negative integers, starting from 0.

3. To restart the connector task, annotate the KafkaMirrorMaker2 resource in OpenShift. In this
example, oc annotate restarts task 0 of a connector named my-source->my-
target.MirrorSourceConnector:

oc get KafkaMirrorMaker2

oc describe KafkaMirrorMaker2 KAFKAMIRRORMAKER-2-NAME

oc annotate KafkaMirrorMaker2 KAFKAMIRRORMAKER-2-NAME "strimzi.io/restart-
connector=my-source->my-target.MirrorSourceConnector"

oc get KafkaMirrorMaker2

oc describe KafkaMirrorMaker2 KAFKAMIRRORMAKER-2-NAME

CHAPTER 27. MANAGING AMQ STREAMS

457

4. Wait for the next reconciliation to occur (every two minutes by default).
The Kafka MirrorMaker 2 connector task is restarted, as long as the annotation was detected by
the reconciliation process. When the restart task request is accepted, the annotation is removed
from the KafkaMirrorMaker2 custom resource.

Additional resources

Kafka MirrorMaker 2 cluster configuration .

27.12. RECOVERING A CLUSTER FROM PERSISTENT VOLUMES

You can recover a Kafka cluster from persistent volumes (PVs) if they are still present.

You might want to do this, for example, after:

A namespace was deleted unintentionally

A whole OpenShift cluster is lost, but the PVs remain in the infrastructure

27.12.1. Recovery from namespace deletion

Recovery from namespace deletion is possible because of the relationship between persistent volumes
and namespaces. A PersistentVolume (PV) is a storage resource that lives outside of a namespace. A
PV is mounted into a Kafka pod using a PersistentVolumeClaim (PVC), which lives inside a namespace.

The reclaim policy for a PV tells a cluster how to act when a namespace is deleted. If the reclaim policy is
set as:

Delete (default), PVs are deleted when PVCs are deleted within a namespace

Retain, PVs are not deleted when a namespace is deleted

To ensure that you can recover from a PV if a namespace is deleted unintentionally, the policy must be
reset from Delete to Retain in the PV specification using the persistentVolumeReclaimPolicy
property:

Alternatively, PVs can inherit the reclaim policy of an associated storage class. Storage classes are used
for dynamic volume allocation.

By configuring the reclaimPolicy property for the storage class, PVs that use the storage class are
created with the appropriate reclaim policy. The storage class is configured for the PV using the
storageClassName property.

oc annotate KafkaMirrorMaker2 KAFKAMIRRORMAKER-2-NAME "strimzi.io/restart-
connector-task=my-source->my-target.MirrorSourceConnector:0"

apiVersion: v1
kind: PersistentVolume
...
spec:
 # ...
 persistentVolumeReclaimPolicy: Retain

apiVersion: v1

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

458

NOTE

If you are using Retain as the reclaim policy, but you want to delete an entire cluster, you
need to delete the PVs manually. Otherwise they will not be deleted, and may cause
unnecessary expenditure on resources.

27.12.2. Recovery from loss of an OpenShift cluster

When a cluster is lost, you can use the data from disks/volumes to recover the cluster if they were
preserved within the infrastructure. The recovery procedure is the same as with namespace deletion,
assuming PVs can be recovered and they were created manually.

27.12.3. Recovering a deleted cluster from persistent volumes

This procedure describes how to recover a deleted cluster from persistent volumes (PVs).

In this situation, the Topic Operator identifies that topics exist in Kafka, but the KafkaTopic resources
do not exist.

When you get to the step to recreate your cluster, you have two options:

1. Use Option 1 when you can recover all KafkaTopic resources.
The KafkaTopic resources must therefore be recovered before the cluster is started so that
the corresponding topics are not deleted by the Topic Operator.

2. Use Option 2 when you are unable to recover all KafkaTopic resources.
In this case, you deploy your cluster without the Topic Operator, delete the Topic Operator
topic store metadata, and then redeploy the Kafka cluster with the Topic Operator so it can
recreate the KafkaTopic resources from the corresponding topics.

NOTE

If the Topic Operator is not deployed, you only need to recover the
PersistentVolumeClaim (PVC) resources.

Before you begin

In this procedure, it is essential that PVs are mounted into the correct PVC to avoid data corruption. A
volumeName is specified for the PVC and this must match the name of the PV.

kind: StorageClass
metadata:
 name: gp2-retain
parameters:
 # ...
...
reclaimPolicy: Retain

apiVersion: v1
kind: PersistentVolume
...
spec:
 # ...
 storageClassName: gp2-retain

CHAPTER 27. MANAGING AMQ STREAMS

459

For more information, see Persistent storage.

NOTE

The procedure does not include recovery of KafkaUser resources, which must be
recreated manually. If passwords and certificates need to be retained, secrets must be
recreated before creating the KafkaUser resources.

Procedure

1. Check information on the PVs in the cluster:

Information is presented for PVs with data.

Example output showing columns important to this procedure:

NAME shows the name of each PV.

RECLAIM POLICY shows that PVs are retained.

CLAIM shows the link to the original PVCs.

2. Recreate the original namespace:

3. Recreate the original PVC resource specifications, linking the PVCs to the appropriate PV:
For example:

oc get pv

NAME RECLAIMPOLICY CLAIM
pvc-5e9c5c7f-3317-11ea-a650-06e1eadd9a4c ... Retain ... myproject/data-my-cluster-
zookeeper-1
pvc-5e9cc72d-3317-11ea-97b0-0aef8816c7ea ... Retain ... myproject/data-my-cluster-
zookeeper-0
pvc-5ead43d1-3317-11ea-97b0-0aef8816c7ea ... Retain ... myproject/data-my-cluster-
zookeeper-2
pvc-7e1f67f9-3317-11ea-a650-06e1eadd9a4c ... Retain ... myproject/data-0-my-cluster-
kafka-0
pvc-7e21042e-3317-11ea-9786-02deaf9aa87e ... Retain ... myproject/data-0-my-cluster-
kafka-1
pvc-7e226978-3317-11ea-97b0-0aef8816c7ea ... Retain ... myproject/data-0-my-cluster-
kafka-2

oc create namespace myproject

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: data-0-my-cluster-kafka-0
spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

460

4. Edit the PV specifications to delete the claimRef properties that bound the original PVC.
For example:

 storage: 100Gi
 storageClassName: gp2-retain
 volumeMode: Filesystem
 volumeName: pvc-7e1f67f9-3317-11ea-a650-06e1eadd9a4c

apiVersion: v1
kind: PersistentVolume
metadata:
 annotations:
 kubernetes.io/createdby: aws-ebs-dynamic-provisioner
 pv.kubernetes.io/bound-by-controller: "yes"
 pv.kubernetes.io/provisioned-by: kubernetes.io/aws-ebs
 creationTimestamp: "<date>"
 finalizers:
 - kubernetes.io/pv-protection
 labels:
 failure-domain.beta.kubernetes.io/region: eu-west-1
 failure-domain.beta.kubernetes.io/zone: eu-west-1c
 name: pvc-7e226978-3317-11ea-97b0-0aef8816c7ea
 resourceVersion: "39431"
 selfLink: /api/v1/persistentvolumes/pvc-7e226978-3317-11ea-97b0-0aef8816c7ea
 uid: 7efe6b0d-3317-11ea-a650-06e1eadd9a4c
spec:
 accessModes:
 - ReadWriteOnce
 awsElasticBlockStore:
 fsType: xfs
 volumeID: aws://eu-west-1c/vol-09db3141656d1c258
 capacity:
 storage: 100Gi
 claimRef:
 apiVersion: v1
 kind: PersistentVolumeClaim
 name: data-0-my-cluster-kafka-2
 namespace: myproject
 resourceVersion: "39113"
 uid: 54be1c60-3319-11ea-97b0-0aef8816c7ea
 nodeAffinity:
 required:
 nodeSelectorTerms:
 - matchExpressions:
 - key: failure-domain.beta.kubernetes.io/zone
 operator: In
 values:
 - eu-west-1c
 - key: failure-domain.beta.kubernetes.io/region
 operator: In
 values:
 - eu-west-1
 persistentVolumeReclaimPolicy: Retain
 storageClassName: gp2-retain
 volumeMode: Filesystem

CHAPTER 27. MANAGING AMQ STREAMS

461

In the example, the following properties are deleted:

5. Deploy the Cluster Operator.

6. Recreate your cluster.
Follow the steps depending on whether or not you have all the KafkaTopic resources needed to
recreate your cluster.

Option 1: If you have all the KafkaTopic resources that existed before you lost your cluster,
including internal topics such as committed offsets from __consumer_offsets:

1. Recreate all KafkaTopic resources.
It is essential that you recreate the resources before deploying the cluster, or the Topic
Operator will delete the topics.

2. Deploy the Kafka cluster.
For example:

Option 2: If you do not have all the KafkaTopic resources that existed before you lost your
cluster:

1. Deploy the Kafka cluster, as with the first option, but without the Topic Operator by
removing the topicOperator property from the Kafka resource before deploying.
If you include the Topic Operator in the deployment, the Topic Operator will delete all the
topics.

2. Delete the internal topic store topics from the Kafka cluster:

The command must correspond to the type of listener and authentication used to access
the Kafka cluster.

3. Enable the Topic Operator by redeploying the Kafka cluster with the topicOperator
property to recreate the KafkaTopic resources.
For example:

claimRef:
 apiVersion: v1
 kind: PersistentVolumeClaim
 name: data-0-my-cluster-kafka-2
 namespace: myproject
 resourceVersion: "39113"
 uid: 54be1c60-3319-11ea-97b0-0aef8816c7ea

oc create -f install/cluster-operator -n my-project

oc apply -f kafka.yaml

oc run kafka-admin -ti --image=registry.redhat.io/amq-streams/kafka-35-rhel8:2.5.1 --
rm=true --restart=Never -- ./bin/kafka-topics.sh --bootstrap-server localhost:9092 --topic
__strimzi-topic-operator-kstreams-topic-store-changelog --delete && ./bin/kafka-topics.sh
--bootstrap-server localhost:9092 --topic __strimzi_store_topic --delete

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

462

1 Here we show the default configuration, which has no additional properties. You specify
the required configuration using the properties described in the EntityTopicOperatorSpec
schema reference.

7. Verify the recovery by listing the KafkaTopic resources:

27.13. UNINSTALLING AMQ STREAMS

You can uninstall AMQ Streams on OpenShift 4.10 to 4.14 from the OperatorHub using the OpenShift
Container Platform web console or CLI.

Use the same approach you used to install AMQ Streams.

When you uninstall AMQ Streams, you will need to identify resources created specifically for a
deployment and referenced from the AMQ Streams resource.

Such resources include:

Secrets (Custom CAs and certificates, Kafka Connect secrets, and other Kafka secrets)

Logging ConfigMaps (of type external)

These are resources referenced by Kafka, KafkaConnect, KafkaMirrorMaker, or KafkaBridge
configuration.

WARNING

Deleting CustomResourceDefinitions results in the garbage collection of the
corresponding custom resources (Kafka, KafkaConnect, KafkaMirrorMaker, or
KafkaBridge) and the resources dependent on them (Deployments, StatefulSets,
and other dependent resources).

27.13.1. Uninstalling AMQ Streams from the OperatorHub using the web console

This procedure describes how to uninstall AMQ Streams from the OperatorHub and remove resources
related to the deployment.

You can perform the steps from the console or use alternative CLI commands.

Prerequisites

metadata:
 name: my-cluster
spec:
 #...
 entityOperator:
 topicOperator: {} 1
 #...

oc get KafkaTopic



CHAPTER 27. MANAGING AMQ STREAMS

463

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index#type-EntityTopicOperatorSpec-reference

Prerequisites

Access to an OpenShift Container Platform web console using an account with cluster-admin
or strimzi-admin permissions.

You have identified the resources to be deleted.
You can use the following oc CLI command to find resources and also verify that they have
been removed when you have uninstalled AMQ Streams.

Command to find resources related to an AMQ Streams deployment

Replace <resource_type> with the type of the resource you are checking, such as secret or
configmap.

Procedure

1. Navigate in the OpenShift web console to Operators > Installed Operators.

2. For the installed AMQ Streams operator, select the options icon (three vertical dots) and click
Uninstall Operator.
The operator is removed from Installed Operators.

3. Navigate to Home > Projects and select the project where you installed AMQ Streams and the
Kafka components.

4. Click the options under Inventory to delete related resources.
Resources include the following:

Deployments

StatefulSets

Pods

Services

ConfigMaps

Secrets

TIP

Use the search to find related resources that begin with the name of the Kafka cluster. You can
also find the resources under Workloads.

Alternative CLI commands

You can use CLI commands to uninstall AMQ Streams from the OperatorHub.

1. Delete the AMQ Streams subscription.

2. Delete the cluster service version (CSV).

oc get <resource_type> --all-namespaces | grep <kafka_cluster_name>

oc delete subscription amq-streams -n openshift-operators

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

464

3. Remove related CRDs.

27.13.2. Uninstalling AMQ Streams using the CLI

This procedure describes how to use the oc command-line tool to uninstall AMQ Streams and remove
resources related to the deployment.

Prerequisites

Access to an OpenShift cluster using an account with cluster-admin or strimzi-admin
permissions.

You have identified the resources to be deleted.
You can use the following oc CLI command to find resources and also verify that they have
been removed when you have uninstalled AMQ Streams.

Command to find resources related to an AMQ Streams deployment

Replace <resource_type> with the type of the resource you are checking, such as secret or
configmap.

Procedure

1. Delete the Cluster Operator Deployment, related CustomResourceDefinitions, and RBAC
resources.
Specify the installation files used to deploy the Cluster Operator.

2. Delete the resources you identified in the prerequisites.

Replace <resource_type> with the type of resource you are deleting and <resource_name> with
the name of the resource.

Example to delete a secret

27.14. FREQUENTLY ASKED QUESTIONS

27.14.1. Questions related to the Cluster Operator

oc delete csv amqstreams.<version> -n openshift-operators

oc get crd -l app=strimzi -o name | xargs oc delete

oc get <resource_type> --all-namespaces | grep <kafka_cluster_name>

oc delete -f install/cluster-operator

oc delete <resource_type> <resource_name> -n <namespace>

oc delete secret my-cluster-clients-ca-cert -n my-project

CHAPTER 27. MANAGING AMQ STREAMS

465

27.14.1.1. Why do I need cluster administrator privileges to install AMQ Streams?

To install AMQ Streams, you need to be able to create the following cluster-scoped resources:

Custom Resource Definitions (CRDs) to instruct OpenShift about resources that are specific to
AMQ Streams, such as Kafka and KafkaConnect

ClusterRoles and ClusterRoleBindings

Cluster-scoped resources, which are not scoped to a particular OpenShift namespace, typically require
cluster administrator privileges to install.

As a cluster administrator, you can inspect all the resources being installed (in the /install/ directory) to
ensure that the ClusterRoles do not grant unnecessary privileges.

After installation, the Cluster Operator runs as a regular Deployment, so any standard (non-admin)
OpenShift user with privileges to access the Deployment can configure it. The cluster administrator can
grant standard users the privileges necessary to manage Kafka custom resources.

See also:

Why does the Cluster Operator need to create ClusterRoleBindings?

Can standard OpenShift users create Kafka custom resources?

27.14.1.2. Why does the Cluster Operator need to create ClusterRoleBindings?

OpenShift has built-in privilege escalation prevention , which means that the Cluster Operator cannot
grant privileges it does not have itself, specifically, it cannot grant such privileges in a namespace it
cannot access. Therefore, the Cluster Operator must have the privileges necessary for all the
components it orchestrates.

The Cluster Operator needs to be able to grant access so that:

The Topic Operator can manage KafkaTopics, by creating Roles and RoleBindings in the
namespace that the operator runs in

The User Operator can manage KafkaUsers, by creating Roles and RoleBindings in the
namespace that the operator runs in

The failure domain of a Node is discovered by AMQ Streams, by creating a ClusterRoleBinding

When using rack-aware partition assignment, the broker pod needs to be able to get information about
the Node it is running on, for example, the Availability Zone in Amazon AWS. A Node is a cluster-scoped
resource, so access to it can only be granted through a ClusterRoleBinding, not a namespace-scoped
RoleBinding.

27.14.1.3. Can standard OpenShift users create Kafka custom resources?

By default, standard OpenShift users will not have the privileges necessary to manage the custom
resources handled by the Cluster Operator. The cluster administrator can grant a user the necessary
privileges using OpenShift RBAC resources.

For more information, see Section 4.5, “Designating AMQ Streams administrators” .

27.14.1.4. What do the failed to acquire lock warnings in the log mean?

For each cluster, the Cluster Operator executes only one operation at a time. The Cluster Operator uses

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

466

https://kubernetes.io/docs/reference/access-authn-authz/rbac/#privilege-escalation-prevention-and-bootstrapping

For each cluster, the Cluster Operator executes only one operation at a time. The Cluster Operator uses
locks to make sure that there are never two parallel operations running for the same cluster. Other
operations must wait until the current operation completes before the lock is released.

INFO

Examples of cluster operations include cluster creation , rolling update, scale down , and scale up.

If the waiting time for the lock takes too long, the operation times out and the following warning
message is printed to the log:

Depending on the exact configuration of STRIMZI_FULL_RECONCILIATION_INTERVAL_MS and
STRIMZI_OPERATION_TIMEOUT_MS, this warning message might appear occasionally without
indicating any underlying issues. Operations that time out are picked up in the next periodic
reconciliation, so that the operation can acquire the lock and execute again.

Should this message appear periodically, even in situations when there should be no other operations
running for a given cluster, it might indicate that the lock was not properly released due to an error. If this
is the case, try restarting the Cluster Operator.

27.14.1.5. Why is hostname verification failing when connecting to NodePorts using TLS?

Currently, off-cluster access using NodePorts with TLS encryption enabled does not support TLS
hostname verification. As a result, the clients that verify the hostname will fail to connect. For example,
the Java client will fail with the following exception:

To connect, you must disable hostname verification. In the Java client, you can do this by setting the
configuration option ssl.endpoint.identification.algorithm to an empty string.

When configuring the client using a properties file, you can do it this way:

When configuring the client directly in Java, set the configuration option to an empty string:

2018-03-04 17:09:24 WARNING AbstractClusterOperations:290 - Failed to acquire lock for kafka
cluster lock::kafka::myproject::my-cluster

Caused by: java.security.cert.CertificateException: No subject alternative names matching IP address
168.72.15.231 found
 at sun.security.util.HostnameChecker.matchIP(HostnameChecker.java:168)
 at sun.security.util.HostnameChecker.match(HostnameChecker.java:94)
 at sun.security.ssl.X509TrustManagerImpl.checkIdentity(X509TrustManagerImpl.java:455)
 at sun.security.ssl.X509TrustManagerImpl.checkIdentity(X509TrustManagerImpl.java:436)
 at sun.security.ssl.X509TrustManagerImpl.checkTrusted(X509TrustManagerImpl.java:252)
 at sun.security.ssl.X509TrustManagerImpl.checkServerTrusted(X509TrustManagerImpl.java:136)
 at sun.security.ssl.ClientHandshaker.serverCertificate(ClientHandshaker.java:1501)
 ... 17 more

ssl.endpoint.identification.algorithm=

props.put("ssl.endpoint.identification.algorithm", "");

CHAPTER 27. MANAGING AMQ STREAMS

467

CHAPTER 28. USING METERING ON AMQ STREAMS
You can use the Metering tool that is available on OpenShift to generate metering reports from
different data sources. As a cluster administrator, you can use metering to analyze what is happening in
your cluster. You can either write your own, or use predefined SQL queries to define how you want to
process data from the different data sources you have available. Using Prometheus as a default data
source, you can generate reports on pods, namespaces, and most other OpenShift resources.

You can also use the OpenShift Metering operator to analyze your installed AMQ Streams components
to determine whether you are in compliance with your Red Hat subscription.

To use metering with AMQ Streams, you must first install and configure the Metering operator on
OpenShift Container Platform.

28.1. METERING RESOURCES

Metering has many resources which can be used to manage the deployment and installation of metering,
as well as the reporting functionality metering provides. Metering is managed using the following CRDs:

Table 28.1. Metering resources

Name Description

MeteringConfig Configures the metering stack for deployment. Contains
customizations and configuration options to control each
component that makes up the metering stack.

Reports Controls what query to use, when, and how often the query
should be run, and where to store the results.

ReportQueries Contains the SQL queries used to perform analysis on the data
contained within ReportDataSources.

ReportDataSources Controls the data available to ReportQueries and Reports.
Allows configuring access to different databases for use within
metering.

28.2. METERING LABELS FOR AMQ STREAMS

The following table lists the metering labels for AMQ Streams infrastructure components and
integrations.

Table 28.2. Metering Labels

Label Possible values

com.company Red_Hat

rht.prod_name Red_Hat_Application_Foundations

rht.prod_ver 2023.Q3

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

468

https://operatorhub.io/operator/application-services-metering-operator

rht.comp AMQ_Streams

rht.comp_ver 2.5

rht.subcomp Infrastructure

cluster-operator

entity-operator

topic-operator

user-operator

zookeeper

Application

kafka-broker

kafka-connect

kafka-connect-build

kafka-mirror-maker2

kafka-mirror-maker

cruise-control

kafka-bridge

kafka-exporter

drain-cleaner

rht.subcomp_t infrastructure

application

Label Possible values

Examples

Infrastructure example (where the infrastructure component is entity-operator)

com.company=Red_Hat
rht.prod_name=Red_Hat_Application_Foundations
rht.prod_ver=2023.Q3
rht.comp=AMQ_Streams
rht.comp_ver=2.5
rht.subcomp=entity-operator
rht.subcomp_t=infrastructure

CHAPTER 28. USING METERING ON AMQ STREAMS

469

Application example (where the integration deployment name is kafka-bridge)

com.company=Red_Hat
rht.prod_name=Red_Hat_Application_Foundations
rht.prod_ver=2023.Q3
rht.comp=AMQ_Streams
rht.comp_ver=2.5
rht.subcomp=kafka-bridge
rht.subcomp_t=application

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

470

APPENDIX A. USING YOUR SUBSCRIPTION
AMQ Streams is provided through a software subscription. To manage your subscriptions, access your
account at the Red Hat Customer Portal.

Accessing Your Account

1. Go to access.redhat.com.

2. If you do not already have an account, create one.

3. Log in to your account.

Activating a Subscription

1. Go to access.redhat.com.

2. Navigate to My Subscriptions.

3. Navigate to Activate a subscription and enter your 16-digit activation number.

Downloading Zip and Tar Files
To access zip or tar files, use the customer portal to find the relevant files for download. If you are using
RPM packages, this step is not required.

1. Open a browser and log in to the Red Hat Customer Portal Product Downloads page at
access.redhat.com/downloads.

2. Locate the AMQ Streams for Apache Kafka entries in the INTEGRATION AND
AUTOMATION category.

3. Select the desired AMQ Streams product. The Software Downloads page opens.

4. Click the Download link for your component.

Installing packages with DNF
To install a package and all the package dependencies, use:

To install a previously-downloaded package from a local directory, use:

Revised on 2023-10-19 10:42:28 UTC

dnf install <package_name>

dnf install <path_to_download_package>

APPENDIX A. USING YOUR SUBSCRIPTION

471

https://access.redhat.com
https://access.redhat.com
https://access.redhat.com/downloads

	Table of Contents
	MAKING OPEN SOURCE MORE INCLUSIVE
	CHAPTER 1. DEPLOYMENT OVERVIEW
	1.1. AMQ STREAMS CUSTOM RESOURCES
	1.1.1. AMQ Streams custom resource example

	1.2. AMQ STREAMS OPERATORS
	1.2.1. Watching AMQ Streams resources in OpenShift namespaces
	1.2.2. Managing RBAC resources
	1.2.2.1. Delegating privileges to AMQ Streams components
	1.2.2.2. Running the Cluster Operator using a ServiceAccount
	1.2.2.3. ClusterRole resources
	1.2.2.4. ClusterRoleBinding resources

	1.3. USING THE KAFKA BRIDGE TO CONNECT WITH A KAFKA CLUSTER
	1.4. SEAMLESS FIPS SUPPORT
	1.5. DOCUMENT CONVENTIONS
	1.6. ADDITIONAL RESOURCES

	CHAPTER 2. AMQ STREAMS INSTALLATION METHODS
	CHAPTER 3. WHAT IS DEPLOYED WITH AMQ STREAMS
	3.1. ORDER OF DEPLOYMENT

	CHAPTER 4. PREPARING FOR YOUR AMQ STREAMS DEPLOYMENT
	4.1. DEPLOYMENT PREREQUISITES
	4.2. DOWNLOADING AMQ STREAMS RELEASE ARTIFACTS
	4.3. PUSHING CONTAINER IMAGES TO YOUR OWN REGISTRY
	4.4. CREATING A PULL SECRET FOR AUTHENTICATION TO THE CONTAINER IMAGE REGISTRY
	4.5. DESIGNATING AMQ STREAMS ADMINISTRATORS

	CHAPTER 5. INSTALLING AMQ STREAMS FROM THE OPERATORHUB USING THE WEB CONSOLE
	5.1. INSTALLING THE AMQ STREAMS OPERATOR FROM THE OPERATORHUB
	5.2. DEPLOYING KAFKA COMPONENTS USING THE AMQ STREAMS OPERATOR

	CHAPTER 6. DEPLOYING AMQ STREAMS USING INSTALLATION ARTIFACTS
	6.1. BASIC DEPLOYMENT PATH
	6.2. DEPLOYING THE CLUSTER OPERATOR
	6.2.1. Specifying the namespaces the Cluster Operator watches
	6.2.2. Deploying the Cluster Operator to watch a single namespace
	6.2.3. Deploying the Cluster Operator to watch multiple namespaces
	6.2.4. Deploying the Cluster Operator to watch all namespaces

	6.3. DEPLOYING KAFKA
	6.3.1. Deploying the Kafka cluster
	6.3.2. (Preview) Deploying Kafka node pools
	6.3.3. Deploying the Topic Operator using the Cluster Operator
	6.3.4. Deploying the User Operator using the Cluster Operator
	6.3.5. List of Kafka cluster resources

	6.4. DEPLOYING KAFKA CONNECT
	6.4.1. Deploying Kafka Connect to your OpenShift cluster
	6.4.2. Configuring Kafka Connect for multiple instances
	6.4.3. Adding connectors
	6.4.3.1. Building a new container image with connector plugins automatically
	6.4.3.2. Building a new container image with connector plugins from the Kafka Connect base image
	6.4.3.3. Deploying KafkaConnector resources
	6.4.3.4. Manually restarting connectors
	6.4.3.5. Manually restarting Kafka connector tasks
	6.4.3.6. Exposing the Kafka Connect API
	6.4.3.7. Limiting access to the Kafka Connect API
	6.4.3.8. Switching from using the Kafka Connect API to using KafkaConnector custom resources

	6.4.4. List of Kafka Connect cluster resources

	6.5. DEPLOYING KAFKA MIRRORMAKER
	6.5.1. Deploying Kafka MirrorMaker to your OpenShift cluster
	6.5.2. List of Kafka MirrorMaker cluster resources

	6.6. DEPLOYING KAFKA BRIDGE
	6.6.1. Deploying Kafka Bridge to your OpenShift cluster
	6.6.2. Exposing the Kafka Bridge service to your local machine
	6.6.3. Accessing the Kafka Bridge outside of OpenShift
	6.6.4. List of Kafka Bridge cluster resources

	6.7. ALTERNATIVE STANDALONE DEPLOYMENT OPTIONS FOR AMQ STREAMS OPERATORS
	6.7.1. Deploying the standalone Topic Operator
	6.7.1.1. (Preview) Deploying the standalone Topic Operator for unidirectional topic management

	6.7.2. Deploying the standalone User Operator

	CHAPTER 7. ENABLING AMQ STREAMS FEATURE GATES
	7.1. CONTROLPLANELISTENER FEATURE GATE
	7.2. SERVICEACCOUNTPATCHING FEATURE GATE
	7.3. USESTRIMZIPODSETS FEATURE GATE
	7.4. (PREVIEW) USEKRAFT FEATURE GATE
	7.5. STABLECONNECTIDENTITIES FEATURE GATE
	7.6. (PREVIEW) KAFKANODEPOOLS FEATURE GATE
	7.7. (PREVIEW) UNIDIRECTIONALTOPICOPERATOR FEATURE GATE
	7.8. FEATURE GATE RELEASES

	CHAPTER 8. CONFIGURING A DEPLOYMENT
	8.1. USING EXAMPLE CONFIGURATION FILES
	8.2. CONFIGURING KAFKA
	8.2.1. Setting limits on brokers using the Kafka Static Quota plugin
	8.2.2. Default ZooKeeper configuration values

	8.3. (PREVIEW) CONFIGURING NODE POOLS
	8.3.1. (Preview) Assigning IDs to node pools for scaling operations
	8.3.2. (Preview) Adding nodes to a node pool
	8.3.3. (Preview) Removing nodes from a node pool
	8.3.4. (Preview) Moving nodes between node pools
	8.3.5. (Preview) Migrating existing Kafka clusters to use Kafka node pools

	8.4. CONFIGURING THE ENTITY OPERATOR
	8.4.1. Configuring the Topic Operator
	8.4.2. Configuring the User Operator

	8.5. CONFIGURING THE CLUSTER OPERATOR
	8.5.1. Restricting access to the Cluster Operator using network policy
	8.5.2. Configuring periodic reconciliation by the Cluster Operator
	8.5.3. Running multiple Cluster Operator replicas with leader election
	8.5.3.1. Enabling leader election for Cluster Operator replicas
	8.5.3.2. Configuring Cluster Operator replicas

	8.5.4. Configuring Cluster Operator HTTP proxy settings
	8.5.5. Disabling FIPS mode using Cluster Operator configuration

	8.6. CONFIGURING KAFKA CONNECT
	8.6.1. Configuring Kafka Connect user authorization

	8.7. CONFIGURING KAFKA MIRRORMAKER 2
	8.7.1. Configuring active/active or active/passive modes
	8.7.1.1. Bidirectional replication (active/active)
	8.7.1.2. Unidirectional replication (active/passive)

	8.7.2. Configuring MirrorMaker 2 connectors
	8.7.2.1. Changing the location of the consumer group offsets topic
	8.7.2.2. Synchronizing consumer group offsets
	8.7.2.3. Deciding when to use the heartbeat connector
	8.7.2.4. Aligning the configuration of MirrorMaker 2 connectors

	8.7.3. Configuring MirrorMaker 2 connector producers and consumers
	8.7.4. Specifying a maximum number of data replication tasks
	8.7.4.1. Checking connector task operations

	8.7.5. Synchronizing ACL rules for remote topics
	8.7.6. Securing a Kafka MirrorMaker 2 deployment

	8.8. CONFIGURING KAFKA MIRRORMAKER (DEPRECATED)
	8.9. CONFIGURING THE KAFKA BRIDGE
	8.10. CONFIGURING KAFKA AND ZOOKEEPER STORAGE
	8.10.1. Data storage considerations
	8.10.1.1. File systems
	8.10.1.2. Disk usage

	8.10.2. Ephemeral storage
	8.10.2.1. Mount path of Kafka log directories

	8.10.3. Persistent storage
	8.10.3.1. Storage class overrides
	8.10.3.2. PVC resources for persistent storage
	8.10.3.3. Mount path of Kafka log directories

	8.10.4. Resizing persistent volumes
	8.10.5. JBOD storage
	8.10.5.1. PVC resource for JBOD storage
	8.10.5.2. Mount path of Kafka log directories

	8.10.6. Adding volumes to JBOD storage
	8.10.7. Removing volumes from JBOD storage

	8.11. CONFIGURING CPU AND MEMORY RESOURCE LIMITS AND REQUESTS
	8.12. CONFIGURING POD SCHEDULING
	8.12.1. Specifying affinity, tolerations, and topology spread constraints
	8.12.1.1. Use pod anti-affinity to avoid critical applications sharing nodes
	8.12.1.2. Use node affinity to schedule workloads onto specific nodes
	8.12.1.3. Use node affinity and tolerations for dedicated nodes

	8.12.2. Configuring pod anti-affinity to schedule each Kafka broker on a different worker node
	8.12.3. Configuring pod anti-affinity in Kafka components
	8.12.4. Configuring node affinity in Kafka components
	8.12.5. Setting up dedicated nodes and scheduling pods on them

	8.13. CONFIGURING LOGGING LEVELS
	8.13.1. Logging options for Kafka components and operators
	8.13.2. Creating a ConfigMap for logging
	8.13.3. Configuring Cluster Operator logging
	8.13.4. Adding logging filters to AMQ Streams operators

	8.14. USING CONFIGMAPS TO ADD CONFIGURATION
	8.14.1. Naming custom ConfigMaps

	8.15. LOADING CONFIGURATION VALUES FROM EXTERNAL SOURCES
	8.15.1. Enabling configuration providers
	8.15.2. Loading configuration values from secrets or config maps
	8.15.3. Loading configuration values from environment variables
	8.15.4. Loading configuration values from a file within a directory
	8.15.5. Loading configuration values from multiple files within a directory

	8.16. CUSTOMIZING OPENSHIFT RESOURCES
	8.16.1. Customizing the image pull policy
	8.16.2. Applying a termination grace period

	CHAPTER 9. USING THE TOPIC OPERATOR TO MANAGE KAFKA TOPICS
	9.1. TOPIC MANAGEMENT MODES
	9.1.1. Bidirectional topic management
	9.1.2. (Preview) Unidirectional topic management

	9.2. TOPIC NAMING CONVENTIONS
	9.3. HANDLING CHANGES TO TOPICS
	9.3.1. Topic store for bidirectional topic management
	9.3.2. Migrating topic metadata from ZooKeeper to the topic store
	9.3.3. Downgrading to an AMQ Streams version that uses ZooKeeper to store topic metadata
	9.3.4. Automatic creation of topics

	9.4. CONFIGURING KAFKA TOPICS
	9.5. CONFIGURING TOPICS FOR REPLICATION AND NUMBER OF PARTITIONS
	9.6. (PREVIEW) MANAGING KAFKATOPIC RESOURCES WITHOUT IMPACTING KAFKA TOPICS
	9.7. (PREVIEW) ENABLING TOPIC MANAGEMENT FOR EXISTING KAFKA TOPICS
	9.8. (PREVIEW) DELETING MANAGED TOPICS

	CHAPTER 10. USING THE USER OPERATOR TO MANAGE KAFKA USERS
	10.1. CONFIGURING KAFKA USERS

	CHAPTER 11. VALIDATING SCHEMAS WITH THE RED HAT BUILD OF APICURIO REGISTRY
	CHAPTER 12. INTEGRATING WITH THE RED HAT BUILD OF DEBEZIUM FOR CHANGE DATA CAPTURE
	CHAPTER 13. SETTING UP CLIENT ACCESS TO A KAFKA CLUSTER
	13.1. DEPLOYING EXAMPLE CLIENTS
	13.2. CONFIGURING LISTENERS TO CONNECT TO KAFKA BROKERS
	13.3. SETTING UP CLIENT ACCESS TO A KAFKA CLUSTER USING LISTENERS
	13.4. ACCESSING KAFKA USING NODE PORTS
	13.5. ACCESSING KAFKA USING LOADBALANCERS
	13.6. ACCESSING KAFKA USING OPENSHIFT ROUTES

	CHAPTER 14. MANAGING SECURE ACCESS TO KAFKA
	14.1. SECURITY OPTIONS FOR KAFKA
	14.1.1. Listener authentication
	14.1.1.1. mTLS authentication
	14.1.1.2. SCRAM-SHA-512 authentication
	14.1.1.3. Network policies
	14.1.1.4. Providing listener certificates

	14.1.2. Kafka authorization
	14.1.2.1. Super users

	14.2. SECURITY OPTIONS FOR KAFKA CLIENTS
	14.2.1. Identifying a Kafka cluster for user handling
	14.2.2. User authentication
	14.2.2.1. mTLS authentication
	14.2.2.2. mTLS authentication using a certificate issued outside the User Operator
	14.2.2.3. SCRAM-SHA-512 authentication

	14.2.3. User authorization
	14.2.3.1. ACL rules
	14.2.3.2. Super user access to Kafka brokers
	14.2.3.3. User quotas

	14.3. SECURING ACCESS TO KAFKA BROKERS
	14.3.1. Securing Kafka brokers
	14.3.2. Securing user access to Kafka
	14.3.3. Restricting access to Kafka listeners using network policies
	14.3.4. Providing your own Kafka listener certificates for TLS encryption
	14.3.5. Alternative subjects in server certificates for Kafka listeners
	14.3.5.1. Examples of SANs for internal listeners
	14.3.5.2. Examples of SANs for external listeners

	14.4. USING OAUTH 2.0 TOKEN-BASED AUTHENTICATION
	14.4.1. OAuth 2.0 authentication mechanisms
	14.4.2. OAuth 2.0 Kafka broker configuration
	14.4.2.1. OAuth 2.0 client configuration on an authorization server
	14.4.2.2. OAuth 2.0 authentication configuration in the Kafka cluster
	14.4.2.3. Fast local JWT token validation configuration
	14.4.2.4. OAuth 2.0 introspection endpoint configuration

	14.4.3. Session re-authentication for Kafka brokers
	14.4.4. OAuth 2.0 Kafka client configuration
	14.4.5. OAuth 2.0 client authentication flows
	14.4.5.1. Example client authentication flows using the SASL OAUTHBEARER mechanism
	14.4.5.2. Example client authentication flows using the SASL PLAIN mechanism

	14.4.6. Configuring OAuth 2.0 authentication
	14.4.6.1. Configuring an OAuth 2.0 authorization server
	14.4.6.2. Configuring OAuth 2.0 support for Kafka brokers
	14.4.6.3. Configuring Kafka Java clients to use OAuth 2.0
	14.4.6.4. Configuring OAuth 2.0 for Kafka components

	14.5. USING OAUTH 2.0 TOKEN-BASED AUTHORIZATION
	14.5.1. OAuth 2.0 authorization mechanism
	14.5.1.1. Kafka broker custom authorizer

	14.5.2. Configuring OAuth 2.0 authorization support
	14.5.3. Managing policies and permissions in Red Hat Single Sign-On Authorization Services
	14.5.3.1. Kafka and Red Hat Single Sign-On authorization models overview
	14.5.3.2. Map Red Hat Single Sign-On Authorization Services to the Kafka authorization model
	14.5.3.3. Example permissions required for Kafka operations

	14.5.4. Trying Red Hat Single Sign-On Authorization Services
	14.5.4.1. Accessing the Red Hat Single Sign-On Admin Console
	14.5.4.2. Deploying a Kafka cluster with Red Hat Single Sign-On authorization
	14.5.4.3. Preparing TLS connectivity for a CLI Kafka client session
	14.5.4.4. Checking authorized access to Kafka using a CLI Kafka client session

	CHAPTER 15. MANAGING TLS CERTIFICATES
	15.1. INTERNAL CLUSTER CA AND CLIENTS CA
	15.2. SECRETS GENERATED BY THE OPERATORS
	15.2.1. TLS authentication using keys and certificates in PEM or PKCS #12 format
	15.2.2. Secrets generated by the Cluster Operator
	15.2.3. Cluster CA secrets
	15.2.4. Clients CA secrets
	15.2.5. User secrets generated by the User Operator
	15.2.6. Adding labels and annotations to cluster CA secrets
	15.2.7. Disabling ownerReference in the CA secrets

	15.3. CERTIFICATE RENEWAL AND VALIDITY PERIODS
	15.3.1. Renewal process with automatically generated CA certificates
	15.3.2. Client certificate renewal
	15.3.3. Manually renewing Cluster Operator-managed CA certificates
	15.3.4. Manually recovering from expired Cluster Operator-managed CA certificates
	15.3.5. Replacing private keys used by Cluster Operator-managed CA certificates

	15.4. CONFIGURING INTERNAL CLIENTS TO TRUST THE CLUSTER CA
	15.5. CONFIGURING EXTERNAL CLIENTS TO TRUST THE CLUSTER CA
	15.6. USING YOUR OWN CA CERTIFICATES AND PRIVATE KEYS
	15.6.1. Installing your own CA certificates and private keys
	15.6.2. Renewing your own CA certificates
	15.6.3. Renewing or replacing CA certificates and private keys with your own

	CHAPTER 16. APPLYING SECURITY CONTEXT TO AMQ STREAMS PODS AND CONTAINERS
	16.1. HANDLING OF SECURITY CONTEXT BY OPENSHIFT PLATFORM

	CHAPTER 17. SCALING CLUSTERS BY ADDING OR REMOVING BROKERS
	CHAPTER 18. REBALANCING CLUSTERS USING CRUISE CONTROL
	18.1. CRUISE CONTROL COMPONENTS AND FEATURES
	18.2. OPTIMIZATION GOALS OVERVIEW
	18.2.1. Goals order of priority
	18.2.2. Goals configuration in AMQ Streams custom resources
	18.2.3. Hard and soft optimization goals
	18.2.4. Main optimization goals
	18.2.5. Default optimization goals
	18.2.6. User-provided optimization goals

	18.3. OPTIMIZATION PROPOSALS OVERVIEW
	18.3.1. Rebalancing modes
	18.3.2. The results of an optimization proposal
	18.3.3. Manually approving or rejecting an optimization proposal
	18.3.4. Automatically approving an optimization proposal
	18.3.5. Optimization proposal summary properties
	18.3.6. Broker load properties
	18.3.7. Cached optimization proposal

	18.4. REBALANCE PERFORMANCE TUNING OVERVIEW
	18.4.1. Partition reassignment commands
	18.4.2. Replica movement strategies
	18.4.3. Intra-broker disk balancing
	18.4.4. Rebalance tuning options

	18.5. CONFIGURING AND DEPLOYING CRUISE CONTROL WITH KAFKA
	Auto-created topics

	18.6. GENERATING OPTIMIZATION PROPOSALS
	18.7. APPROVING AN OPTIMIZATION PROPOSAL
	18.8. STOPPING A CLUSTER REBALANCE
	18.9. FIXING PROBLEMS WITH A KAFKAREBALANCE RESOURCE

	CHAPTER 19. USING THE PARTITION REASSIGNMENT TOOL
	19.1. PARTITION REASSIGNMENT TOOL OVERVIEW
	19.1.1. Generating a partition reassignment plan
	19.1.2. Specifying topics in a partition reassignment JSON file
	19.1.3. Reassigning partitions between JBOD volumes
	19.1.4. Throttling partition reassignment

	19.2. GENERATING A REASSIGNMENT JSON FILE TO REASSIGN PARTITIONS
	19.3. REASSIGNING PARTITIONS AFTER ADDING BROKERS
	19.4. REASSIGNING PARTITIONS BEFORE REMOVING BROKERS
	19.5. CHANGING THE REPLICATION FACTOR OF TOPICS

	CHAPTER 20. SETTING UP METRICS AND DASHBOARDS FOR AMQ STREAMS
	20.1. MONITORING CONSUMER LAG WITH KAFKA EXPORTER
	The importance of monitoring consumer lag
	Reducing consumer lag

	20.2. MONITORING CRUISE CONTROL OPERATIONS
	20.2.1. Monitoring balancedness scores
	20.2.2. Setting up alerts for anomaly detection

	20.3. EXAMPLE METRICS FILES
	20.3.1. Example Prometheus metrics configuration
	20.3.2. Example Prometheus rules for alert notifications
	20.3.3. Example Grafana dashboards

	20.4. ENABLING PROMETHEUS METRICS THROUGH CONFIGURATION
	20.5. VIEWING KAFKA METRICS AND DASHBOARDS IN OPENSHIFT
	20.5.1. Prerequisites
	20.5.2. Deploying the Prometheus resources
	20.5.3. Creating a service account for Grafana
	20.5.4. Deploying Grafana with a Prometheus datasource
	20.5.5. Creating a route to the Grafana Service
	20.5.6. Importing the example Grafana dashboards

	CHAPTER 21. INTRODUCING DISTRIBUTED TRACING
	21.1. TRACING OPTIONS
	21.2. ENVIRONMENT VARIABLES FOR TRACING
	21.3. SETTING UP DISTRIBUTED TRACING
	21.3.1. Prerequisites
	21.3.2. Enabling tracing in MirrorMaker, Kafka Connect, and Kafka Bridge resources
	21.3.3. Initializing tracing for Kafka clients
	21.3.4. Instrumenting producers and consumers for tracing
	21.3.5. Instrumenting Kafka Streams applications for tracing
	21.3.6. Introducing a different OpenTelemetry tracing system
	21.3.7. Custom span names
	21.3.7.1. Specifying span names for OpenTelemetry
	21.3.7.2. Specifying span names for OpenTracing

	CHAPTER 22. RETRIEVING DIAGNOSTIC AND TROUBLESHOOTING DATA
	CHAPTER 23. UPGRADING AMQ STREAMS
	23.1. AMQ STREAMS UPGRADE PATHS
	23.1.1. Support for Kafka versions when upgrading
	23.1.2. Upgrading from an AMQ Streams version earlier than 1.7

	23.2. REQUIRED UPGRADE SEQUENCE
	23.3. UPGRADING OPENSHIFT WITH MINIMAL DOWNTIME
	23.3.1. Rolling pods using the AMQ Streams Drain Cleaner
	23.3.2. Rolling pods manually while keeping topics available

	23.4. UPGRADING THE CLUSTER OPERATOR
	23.4.1. Upgrading the Cluster Operator returns Kafka version error
	23.4.2. Upgrading from AMQ Streams 1.7 or earlier using the OperatorHub
	23.4.3. Upgrading the Cluster Operator using installation files

	23.5. UPGRADING KAFKA
	23.5.1. Kafka versions
	23.5.2. Strategies for upgrading clients
	23.5.3. Kafka version and image mappings
	23.5.4. Upgrading Kafka brokers and client applications

	23.6. SWITCHING TO FIPS MODE WHEN UPGRADING AMQ STREAMS

	CHAPTER 24. DOWNGRADING AMQ STREAMS
	24.1. DOWNGRADING THE CLUSTER OPERATOR TO A PREVIOUS VERSION
	24.2. DOWNGRADING KAFKA
	24.2.1. Kafka version compatibility for downgrades
	24.2.2. Downgrading Kafka brokers and client applications

	CHAPTER 25. HANDLING HIGH VOLUMES OF MESSAGES
	25.1. CONFIGURING KAFKA CONNECT FOR HIGH-VOLUME MESSAGES
	25.2. CONFIGURING MIRRORMAKER 2 FOR HIGH-VOLUME MESSAGES
	25.3. CHECKING THE MIRRORMAKER 2 MESSAGE FLOW

	CHAPTER 26. FINDING INFORMATION ON KAFKA RESTARTS
	26.1. REASONS FOR A RESTART EVENT
	26.2. RESTART EVENT FILTERS
	26.3. CHECKING KAFKA RESTARTS

	CHAPTER 27. MANAGING AMQ STREAMS
	27.1. WORKING WITH CUSTOM RESOURCES
	27.1.1. Performing oc operations on custom resources
	27.1.1.1. Resource categories
	27.1.1.2. Querying the status of sub-resources

	27.1.2. AMQ Streams custom resource status information
	27.1.3. Finding the status of a custom resource

	27.2. DISCOVERING SERVICES USING LABELS AND ANNOTATIONS
	Example internal Kafka bootstrap service
	Example HTTP Bridge service
	27.2.1. Returning connection details on services

	27.3. CONNECTING TO ZOOKEEPER FROM A TERMINAL
	27.4. PAUSING RECONCILIATION OF CUSTOM RESOURCES
	27.5. MAINTENANCE TIME WINDOWS FOR ROLLING UPDATES
	27.5.1. Maintenance time windows overview
	27.5.2. Maintenance time window definition
	27.5.3. Configuring a maintenance time window

	27.6. EVICTING PODS WITH THE AMQ STREAMS DRAIN CLEANER
	27.6.1. Downloading the AMQ Streams Drain Cleaner deployment files
	27.6.2. Deploying the AMQ Streams Drain Cleaner using installation files
	27.6.3. Using the AMQ Streams Drain Cleaner
	27.6.4. Watching the TLS certificates used by the AMQ Streams Drain Cleaner

	27.7. DELETING KAFKA NODES USING ANNOTATIONS
	27.8. DELETING ZOOKEEPER NODES USING ANNOTATIONS
	27.9. STARTING ROLLING UPDATES OF KAFKA AND ZOOKEEPER CLUSTERS USING ANNOTATIONS
	27.9.1. Performing a rolling update using a pod management annotation
	27.9.2. Performing a rolling update using a pod annotation

	27.10. PERFORMING RESTARTS OF MIRRORMAKER 2 CONNECTORS USING ANNOTATIONS
	27.11. PERFORMING RESTARTS OF MIRRORMAKER 2 CONNECTOR TASK USING ANNOTATIONS
	27.12. RECOVERING A CLUSTER FROM PERSISTENT VOLUMES
	27.12.1. Recovery from namespace deletion
	27.12.2. Recovery from loss of an OpenShift cluster
	27.12.3. Recovering a deleted cluster from persistent volumes

	27.13. UNINSTALLING AMQ STREAMS
	27.13.1. Uninstalling AMQ Streams from the OperatorHub using the web console
	27.13.2. Uninstalling AMQ Streams using the CLI

	27.14. FREQUENTLY ASKED QUESTIONS
	27.14.1. Questions related to the Cluster Operator
	27.14.1.1. Why do I need cluster administrator privileges to install AMQ Streams?
	27.14.1.2. Why does the Cluster Operator need to create ClusterRoleBindings?
	27.14.1.3. Can standard OpenShift users create Kafka custom resources?
	27.14.1.4. What do the failed to acquire lock warnings in the log mean?
	27.14.1.5. Why is hostname verification failing when connecting to NodePorts using TLS?

	CHAPTER 28. USING METERING ON AMQ STREAMS
	28.1. METERING RESOURCES
	28.2. METERING LABELS FOR AMQ STREAMS

	APPENDIX A. USING YOUR SUBSCRIPTION
	Accessing Your Account
	Activating a Subscription
	Downloading Zip and Tar Files
	Installing packages with DNF

