& RedHat

Red Hat AMQ Streams 2.5

Deploying and Managing AMQ Streams on
OpenShift

Deploy and manage AMQ Streams 2.5 on OpenShift Container Platform

Last Updated: 2023-10-19

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on
OpenShift

Deploy and manage AMQ Streams 2.5 on OpenShift Container Platform

Legal Notice

Copyright © 2023 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Use the AMQ Streams operators to deploy Kafka components. Configure Kafka components to
build a large-scale messaging network. Set up secure client access to your Kafka clusters and
incoprorate features such as metrics and distrubuted tracing. Upgrade to leverage new features,
including the latest supported Kafka version.

Table of Contents

Table of Contents

MAKING OPEN SOURCE MORE INCLUSIVE ..ttt it e ettt et eaeeeneeeaneenaneennnes, n
CHAPTER 1. DEPLOYMENT OVERVIEW ..ttt ettt e et et eeaneennneenneenns 12
1.1. AMQ STREAMS CUSTOM RESOURCES 12
1.1.1. AMQ Streams custom resource example 12

1.2. AMQ STREAMS OPERATORS 15
1.2.1. Watching AMQ Streams resources in OpenShift namespaces 15
1.2.2. Managing RBAC resources 16
1.2.2.1. Delegating privileges to AMQ Streams components 16
1.2.2.2. Running the Cluster Operator using a ServiceAccount 18
1.2.2.3. ClusterRole resources 18
1.2.2.4. ClusterRoleBinding resources 25

1.3. USING THE KAFKA BRIDGE TO CONNECT WITH A KAFKA CLUSTER 27
1.4. SEAMLESS FIPS SUPPORT 28
1.5. DOCUMENT CONVENTIONS 28
1.6. ADDITIONAL RESOURCES 28
CHAPTER 2. AMQ STREAMS INSTALLATION METHODS ...ttt eieeeiieaieaneenn, 29
CHAPTER 3. WHAT ISDEPLOYED WITH AMQ STREAMS ... ittt eiennnens 30
3.1. ORDER OF DEPLOYMENT 30
CHAPTER 4. PREPARING FOR YOUR AMQ STREAMS DEPLOYMENT ittt iieiiiieeennns 31
4.1. DEPLOYMENT PREREQUISITES 31
4.2. DOWNLOADING AMQ STREAMS RELEASE ARTIFACTS 31
4.3. PUSHING CONTAINER IMAGES TO YOUR OWN REGISTRY 31
4.4, CREATING A PULL SECRET FOR AUTHENTICATION TO THE CONTAINER IMAGE REGISTRY 33
4.5. DESIGNATING AMQ STREAMS ADMINISTRATORS 34
CHAPTERS. INSTALLING AMQ STREAMS FROM THE OPERATORHUB USING THE WEB CONSOLE 35
5.1. INSTALLING THE AMQ STREAMS OPERATOR FROM THE OPERATORHUB 35
5.2. DEPLOYING KAFKA COMPONENTS USING THE AMQ STREAMS OPERATOR 36
CHAPTER 6. DEPLOYING AMQ STREAMS USING INSTALLATIONARTIFACTSottt 38
6.1. BASIC DEPLOYMENT PATH 38
6.2. DEPLOYING THE CLUSTER OPERATOR 39
6.2.1. Specifying the namespaces the Cluster Operator watches 39
6.2.2. Deploying the Cluster Operator to watch a single namespace 40
6.2.3. Deploying the Cluster Operator to watch multiple namespaces 41
6.2.4. Deploying the Cluster Operator to watch all namespaces 42

6.3. DEPLOYING KAFKA 44
6.3.1. Deploying the Kafka cluster 44
6.3.2. (Preview) Deploying Kafka node pools 47
6.3.3. Deploying the Topic Operator using the Cluster Operator 49
6.3.4. Deploying the User Operator using the Cluster Operator 50
6.3.5. List of Kafka cluster resources 51

6.4. DEPLOYING KAFKA CONNECT 55
6.4.1. Deploying Kafka Connect to your OpenShift cluster 56
6.4.2. Configuring Kafka Connect for multiple instances 56
6.4.3. Adding connectors 57
6.4.3.1. Building a new container image with connector plugins automatically 58
6.4.3.2. Building a new container image with connector plugins from the Kafka Connect base image 59
6.4.3.3. Deploying KafkaConnector resources 61

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

Source and sink connector configuration options 64
6.4.3.4. Manually restarting connectors 65
6.4.3.5. Manually restarting Kafka connector tasks 65
6.4.3.6. Exposing the Kafka Connect API 66
6.4.3.7. Limiting access to the Kafka Connect API 68
6.4.3.8. Switching from using the Kafka Connect API to using KafkaConnector custom resources 69

6.4.4. List of Kafka Connect cluster resources 70
6.5. DEPLOYING KAFKA MIRRORMAKER 70
6.5.1. Deploying Kafka MirrorMaker to your OpenShift cluster 71
6.5.2. List of Kafka MirrorMaker cluster resources 72
6.6. DEPLOYING KAFKA BRIDGE 72
6.6.1. Deploying Kafka Bridge to your OpenShift cluster 72
6.6.2. Exposing the Kafka Bridge service to your local machine 73
6.6.3. Accessing the Kafka Bridge outside of OpenShift 74
6.6.4. List of Kafka Bridge cluster resources 74
6.7. ALTERNATIVE STANDALONE DEPLOYMENT OPTIONS FOR AMQ STREAMS OPERATORS 74
6.7.1. Deploying the standalone Topic Operator 75
6.7.1.1. (Preview) Deploying the standalone Topic Operator for unidirectional topic management 78
6.7.2. Deploying the standalone User Operator 80
CHAPTER 7. ENABLING AMQ STREAMS FEATURE GATES ... iinittiiittiitiieiieneennnennneenn, 85
7.1. CONTROLPLANELISTENER FEATURE GATE 85
7.2. SERVICEACCOUNTPATCHING FEATURE GATE 85
7.3. USESTRIMZIPODSETS FEATURE GATE 85
7.4. (PREVIEW) USEKRAFT FEATURE GATE 86
7.5.STABLECONNECTIDENTITIES FEATURE GATE 87
7.6. (PREVIEW) KAFKANODEPOOLS FEATURE GATE 87
7.7. (PREVIEW) UNIDIRECTIONALTOPICOPERATOR FEATURE GATE 87
7.8. FEATURE GATE RELEASES 88
CHAPTER 8. CONFIGURING A DEPLOYMENT . itttttitttiit ettt eaieeeaneennneeaneenaneennneens 0]
8.1. USING EXAMPLE CONFIGURATION FILES 91
8.2. CONFIGURING KAFKA 92
8.2.1. Setting limits on brokers using the Kafka Static Quota plugin 97
8.2.2. Default ZooKeeper configuration values 98
8.3. (PREVIEW) CONFIGURING NODE POOLS 99
8.3.1. (Preview) Assigning IDs to node pools for scaling operations 102
8.3.2. (Preview) Adding nodes to a node pool 103
8.3.3. (Preview) Removing nodes from a node pool 104
8.3.4. (Preview) Moving nodes between node pools 105
8.3.5. (Preview) Migrating existing Kafka clusters to use Kafka node pools 107
8.4. CONFIGURING THE ENTITY OPERATOR 108
8.4.1. Configuring the Topic Operator 109
8.4.2. Configuring the User Operator m
8.5. CONFIGURING THE CLUSTER OPERATOR 12
8.5.1. Restricting access to the Cluster Operator using network policy 16
8.5.2. Configuring periodic reconciliation by the Cluster Operator 16
8.5.3. Running multiple Cluster Operator replicas with leader election n7
8.5.3.1. Enabling leader election for Cluster Operator replicas n7
8.5.3.2. Configuring Cluster Operator replicas 18
8.5.4. Configuring Cluster Operator HTTP proxy settings 121
8.5.5. Disabling FIPS mode using Cluster Operator configuration 122
8.6. CONFIGURING KAFKA CONNECT 123

8.6.1. Configuring Kafka Connect user authorization
8.7. CONFIGURING KAFKA MIRRORMAKER 2
8.7.1. Configuring active/active or active/passive modes
8.7.1.1. Bidirectional replication (active/active)
8.7.1.2. Unidirectional replication (active/passive)
8.7.2. Configuring MirrorMaker 2 connectors
8.7.2.1. Changing the location of the consumer group offsets topic
8.7.2.2. Synchronizing consumer group offsets
8.7.2.3. Deciding when to use the heartbeat connector
8.7.2.4. Aligning the configuration of MirrorMaker 2 connectors
8.7.3. Configuring MirrorMaker 2 connector producers and consumers
8.7.4. Specifying a maximum number of data replication tasks
8.7.4.1. Checking connector task operations
8.7.5. Synchronizing ACL rules for remote topics
8.7.6. Securing a Kafka MirrorMaker 2 deployment
8.8. CONFIGURING KAFKA MIRRORMAKER (DEPRECATED)
8.9. CONFIGURING THE KAFKA BRIDGE
8.10. CONFIGURING KAFKA AND ZOOKEEPER STORAGE
8.10.1. Data storage considerations
8.10.1.1. File systems
8.10.1.2. Disk usage
8.10.2. Ephemeral storage
8.10.2.1. Mount path of Kafka log directories
8.10.3. Persistent storage
8.10.3.1. Storage class overrides
8.10.3.2. PVC resources for persistent storage
8.10.3.3. Mount path of Kafka log directories
8.10.4. Resizing persistent volumes
8.10.5. JBOD storage
8.10.5.1. PVC resource for JBOD storage
8.10.5.2. Mount path of Kafka log directories
8.10.6. Adding volumes to JBOD storage
8.10.7. Removing volumes from JBOD storage
8.11. CONFIGURING CPU AND MEMORY RESOURCE LIMITS AND REQUESTS
8.12. CONFIGURING POD SCHEDULING
8.12.1. Specifying affinity, tolerations, and topology spread constraints
8.12.1.1. Use pod anti-affinity to avoid critical applications sharing nodes
8.12.1.2. Use node affinity to schedule workloads onto specific nodes
8.12.1.3. Use node affinity and tolerations for dedicated nodes
8.12.2. Configuring pod anti-affinity to schedule each Kafka broker on a different worker node
8.12.3. Configuring pod anti-affinity in Kafka components
8.12.4. Configuring node affinity in Kaftka components
8.12.5. Setting up dedicated nodes and scheduling pods on them
8.13. CONFIGURING LOGGING LEVELS
8.13.1. Logging options for Kafka components and operators
8.13.2. Creating a ConfigMap for logging
8.13.3. Configuring Cluster Operator logging
8.13.4. Adding logging filters to AMQ Streams operators
8.14. USING CONFIGMAPS TO ADD CONFIGURATION
8.14.1. Naming custom ConfigMaps
8.15. LOADING CONFIGURATION VALUES FROM EXTERNAL SOURCES
8.15.1. Enabling configuration providers
8.15.2. Loading configuration values from secrets or config maps

Table of Contents

127
129
135
135
136
136
140

141
142
142
142
144
145
146
146
153
156
159
159
160
160
160

161

161
163
164
165
165
166
167
167
167
168
169
170
170
170
170

171

171
173
174
174
175
176
177
178
178

181
182
183
183
184

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

8.15.3. Loading configuration values from environment variables

8.15.4. Loading configuration values from a file within a directory

8.15.5. Loading configuration values from multiple files within a directory
8.16. CUSTOMIZING OPENSHIFT RESOURCES

8.16.1. Customizing the image pull policy

8.16.2. Applying a termination grace period

CHAPTER 9. USING THE TOPIC OPERATOR TO MANAGE KAFKATOPICSiiiiiiiiiiiiiiii e,
9.1. TOPIC MANAGEMENT MODES
9.1.1. Bidirectional topic management
9.1.2. (Preview) Unidirectional topic management
9.2. TOPIC NAMING CONVENTIONS
9.3. HANDLING CHANGES TO TOPICS
9.3.1. Topic store for bidirectional topic management
9.3.2. Migrating topic metadata from ZooKeeper to the topic store
9.3.3. Downgrading to an AMQ Streams version that uses ZooKeeper to store topic metadata
9.3.4. Automatic creation of topics
9.4. CONFIGURING KAFKA TOPICS
9.5. CONFIGURING TOPICS FOR REPLICATION AND NUMBER OF PARTITIONS
9.6. (PREVIEW) MANAGING KAFKATOPIC RESOURCES WITHOUT IMPACTING KAFKA TOPICS
9.7. (PREVIEW) ENABLING TOPIC MANAGEMENT FOR EXISTING KAFKA TOPICS
9.8. (PREVIEW) DELETING MANAGED TOPICS

CHAPTER 10. USING THE USER OPERATOR TO MANAGE KAFKAUSERSot
10.1. CONFIGURING KAFKA USERS

CHAPTER 1. VALIDATING SCHEMAS WITH THE RED HAT BUILD OF APICURIO REGISTRY
CHAPTER 12. INTEGRATING WITH THE RED HAT BUILD OF DEBEZIUM FOR CHANGE DATA CAPTURE

CHAPTER13.SETTING UP CLIENT ACCESSTO AKAFKACLUSTERot
13.1. DEPLOYING EXAMPLE CLIENTS
13.2. CONFIGURING LISTENERS TO CONNECT TO KAFKA BROKERS
13.3. SETTING UP CLIENT ACCESS TO A KAFKA CLUSTER USING LISTENERS
13.4. ACCESSING KAFKA USING NODE PORTS
13.5. ACCESSING KAFKA USING LOADBALANCERS
13.6. ACCESSING KAFKA USING OPENSHIFT ROUTES

CHAPTER 14. MANAGING SECURE ACCESS TO KAFKA .. ittt ei e raneennnes
14.1. SECURITY OPTIONS FOR KAFKA
14.1.1. Listener authentication
14.1.1.1. mTLS authentication
14.1.1.2. SCRAM-SHA-512 authentication
14.1.1.3. Network policies
14.1.1.4. Providing listener certificates
14.1.2. Kafka authorization
14.1.2.1. Super users
14.2. SECURITY OPTIONS FOR KAFKA CLIENTS
14.2.1. Identifying a Kafka cluster for user handling
14.2.2. User authentication
14.2.2.1. mTLS authentication
14.2.2.2. mTLS authentication using a certificate issued outside the User Operator
14.2.2.3. SCRAM-SHA-512 authentication
14.2.2.3.1. Custom password configuration
14.2.3. User authorization

187
189

191
193
194
194

212

213
213
213
215
221
223
226

230
230
230
232
233
233
234
234
234
235
235
236
236
238
238
239
239

Table of Contents

14.2.3.1. ACL rules 240
14.2.3.2. Super user access to Kafka brokers 240
14.2.3.3. User quotas 240
14.3. SECURING ACCESS TO KAFKA BROKERS 241
14.3.1. Securing Kafka brokers 242
14.3.2. Securing user access to Kafka 243
14.3.3. Restricting access to Kafka listeners using network policies 245
14.3.4. Providing your own Kafka listener certificates for TLS encryption 246
14.3.5. Alternative subjects in server certificates for Kafka listeners 248
14.3.5.1. Examples of SANSs for internal listeners 248
14.3.5.2. Examples of SANs for external listeners 249
14.4. USING OAUTH 2.0 TOKEN-BASED AUTHENTICATION 249
14.4.1. OAuth 2.0 authentication mechanisms 250
14.4.2. OAuth 2.0 Kafka broker configuration 252
14.4.2.1. OAuth 2.0 client configuration on an authorization server 252
14.4.2.2. OAuth 2.0 authentication configuration in the Kafka cluster 252
14.4.2.3. Fast local JWT token validation configuration 253
14.4.2.4. OAuth 2.0 introspection endpoint configuration 254
14.4.3. Session re-authentication for Kafka brokers 255
14.4.4. OAuth 2.0 Kafka client configuration 256
14.4.5. OAuth 2.0 client authentication flows 257
14.4.5.1. Example client authentication flows using the SASL OAUTHBEARER mechanism 257
14.4.5.2. Example client authentication flows using the SASL PLAIN mechanism 259
14.4.6. Configuring OAuth 2.0 authentication 261
14.4.6.1. Configuring an OAuth 2.0 authorization server 261
14.4.6.2. Configuring OAuth 2.0 support for Kafka brokers 262
14.4.6.3. Configuring Kafka Java clients to use OAuth 2.0 267
14.4.6.4. Configuring OAuth 2.0 for Kafka components 271
14.5. USING OAUTH 2.0 TOKEN-BASED AUTHORIZATION 273
14.5.1. OAuth 2.0 authorization mechanism 274
14.5.1.1. Kafka broker custom authorizer 274
14.5.2. Configuring OAuth 2.0 authorization support 274
14.5.3. Managing policies and permissions in Red Hat Single Sign-On Authorization Services 277
14.5.3.1. Kafka and Red Hat Single Sign-On authorization models overview 277
Kafka authorization model 277

Red Hat Single Sign-On Authorization Services model 278
14.5.3.2. Map Red Hat Single Sign-On Authorization Services to the Kafka authorization model 279
14.5.3.3. Example permissions required for Kafka operations 281
14.5.4. Trying Red Hat Single Sign-On Authorization Services 284
14.5.4.1. Accessing the Red Hat Single Sign-On Admin Console 285
14.5.4.2. Deploying a Kafka cluster with Red Hat Single Sign-On authorization 287
14.5.4.3. Preparing TLS connectivity for a CLI Kafka client session 288
14.5.4.4. Checking authorized access to Kafka using a CLI Kafka client session 290
CHAPTER 15. MANAGING TLS CERTIFICATES .ttt ittt et titeee e tnneeeeenennnaneanns 297
15.1. INTERNAL CLUSTER CA AND CLIENTS CA 299
15.2. SECRETS GENERATED BY THE OPERATORS 299
15.2.1. TLS authentication using keys and certificates in PEM or PKCS #12 format 300
15.2.2. Secrets generated by the Cluster Operator 301
15.2.3. Cluster CA secrets 302
15.2.4. Clients CA secrets 305
15.2.5. User secrets generated by the User Operator 306
15.2.6. Adding labels and annotations to cluster CA secrets 306

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

15.2.7. Disabling ownerReference in the CA secrets
15.3. CERTIFICATE RENEWAL AND VALIDITY PERIODS
15.3.1. Renewal process with automatically generated CA certificates
15.3.2. Client certificate renewal
15.3.3. Manually renewing Cluster Operator-managed CA certificates
15.3.4. Manually recovering from expired Cluster Operator-managed CA certificates
15.3.5. Replacing private keys used by Cluster Operator-managed CA certificates
15.4. CONFIGURING INTERNAL CLIENTS TO TRUST THE CLUSTER CA
15.5. CONFIGURING EXTERNAL CLIENTS TO TRUST THE CLUSTER CA
15.6. USING YOUR OWN CA CERTIFICATES AND PRIVATE KEYS
15.6.1. Installing your own CA certificates and private keys
15.6.2. Renewing your own CA certificates
15.6.3. Renewing or replacing CA certificates and private keys with your own

CHAPTER 16. APPLYING SECURITY CONTEXT TO AMQ STREAMS PODS AND CONTAINERS
16.1. HANDLING OF SECURITY CONTEXT BY OPENSHIFT PLATFORM

CHAPTER 17. SCALING CLUSTERS BY ADDING ORREMOVING BROKERScooiiiiiant.

CHAPTER 18. REBALANCING CLUSTERS USING CRUISECONTROL ccittiiiiiiiiiieenneennnn,
18.1. CRUISE CONTROL COMPONENTS AND FEATURES
18.2. OPTIMIZATION GOALS OVERVIEW
18.2.1. Goals order of priority
18.2.2. Goals configuration in AMQ Streams custom resources
18.2.3. Hard and soft optimization goals
18.2.4. Main optimization goals
18.2.5. Default optimization goals
18.2.6. User-provided optimization goals
18.3. OPTIMIZATION PROPOSALS OVERVIEW
18.3.1. Rebalancing modes
18.3.2. The results of an optimization proposal
18.3.3. Manually approving or rejecting an optimization proposal
18.3.4. Automatically approving an optimization proposal
18.3.5. Optimization proposal summary properties
18.3.6. Broker load properties
18.3.7. Cached optimization proposal
18.4. REBALANCE PERFORMANCE TUNING OVERVIEW
18.4.1. Partition reassignment commands
18.4.2. Replica movement strategies
18.4.3. Intra-broker disk balancing
18.4.4. Rebalance tuning options
18.5. CONFIGURING AND DEPLOYING CRUISE CONTROL WITH KAFKA
Auto-created topics
18.6. GENERATING OPTIMIZATION PROPOSALS
18.7. APPROVING AN OPTIMIZATION PROPOSAL
18.8. STOPPING A CLUSTER REBALANCE
18.9. FIXING PROBLEMS WITH A KAFKAREBALANCE RESOURCE

CHAPTER 19. USING THE PARTITION REASSIGNMENT TOOL ...ttt it reeenneennns
19.1. PARTITION REASSIGNMENT TOOL OVERVIEW
19.1.1. Generating a partition reassignment plan
19.1.2. Specifying topics in a partition reassignment JSON file
19.1.3. Reassigning partitions between JBOD volumes
19.1.4. Throttling partition reassignment

307
307
308
309
309
310
312
313
315
316
317
319
321

327
327

328

330
330

331

331
332
333
334
334
335
336
336
337
337
339
339

341
342
342
342
343
343
343
346
348
349
354
355
356

358
358
358
359
360

361

Table of Contents

19.2. GENERATING A REASSIGNMENT JSON FILE TO REASSIGN PARTITIONS 361
19.3. REASSIGNING PARTITIONS AFTER ADDING BROKERS 366
19.4. REASSIGNING PARTITIONS BEFORE REMOVING BROKERS 368
19.5. CHANGING THE REPLICATION FACTOR OF TOPICS 370
CHAPTER 20. SETTING UP METRICS AND DASHBOARDS FORAMQ STREAMSccivvvennn.. 373
20.1. MONITORING CONSUMER LAG WITH KAFKA EXPORTER 374
The importance of monitoring consumer lag 375
Reducing consumer lag 375
20.2. MONITORING CRUISE CONTROL OPERATIONS 375
20.2.1. Monitoring balancedness scores 375
20.2.2. Setting up alerts for anomaly detection 376
20.3. EXAMPLE METRICS FILES 376
20.3.1. Example Prometheus metrics configuration 377
20.3.2. Example Prometheus rules for alert notifications 378
20.3.3. Example Grafana dashboards 379
20.4. ENABLING PROMETHEUS METRICS THROUGH CONFIGURATION 380
20.5. VIEWING KAFKA METRICS AND DASHBOARDS IN OPENSHIFT 384
20.5.1. Prerequisites 385
20.5.2. Deploying the Prometheus resources 385
20.5.3. Creating a service account for Grafana 386
20.5.4. Deploying Grafana with a Prometheus datasource 388
20.5.5. Creating a route to the Grafana Service 390
20.5.6. Importing the example Grafana dashboards 390
CHAPTER 21. INTRODUCING DISTRIBUTED TRACING ...t iittiiitii e eiieieeiteeaneennneennnns 392
21.1. TRACING OPTIONS 392
21.2. ENVIRONMENT VARIABLES FOR TRACING 393
21.3. SETTING UP DISTRIBUTED TRACING 394
21.3.1. Prerequisites 394
21.3.2. Enabling tracing in MirrorMaker, Kafka Connect, and Kafka Bridge resources 395
21.3.3. Initializing tracing for Kafka clients 398
21.3.4. Instrumenting producers and consumers for tracing 400
21.3.5. Instrumenting Kafka Streams applications for tracing 401
21.3.6. Introducing a different OpenTelemetry tracing system 403
21.3.7. Custom span names 404
21.3.7.1. Specifying span names for OpenTelemetry 404
21.3.7.2. Specifying span names for OpenTracing 405
CHAPTER 22. RETRIEVING DIAGNOSTIC AND TROUBLESHOOTING DATA ...ttt iiiiiieen 406
CHAPTER 23. UPGRADING AMQ STREAMS ...ttt ittt et ittt eanieeenannnneeennns 409
23.1. AMQ STREAMS UPGRADE PATHS 409
23.1.1. Support for Kafka versions when upgrading 409
23.1.2. Upgrading from an AMQ Streams version earlier than 1.7 409
23.2. REQUIRED UPGRADE SEQUENCE 410
23.3. UPGRADING OPENSHIFT WITH MINIMAL DOWNTIME 41
23.3.1. Rolling pods using the AMQ Streams Drain Cleaner 4M
23.3.2. Rolling pods manually while keeping topics available 412
23.4. UPGRADING THE CLUSTER OPERATOR 413
23.4.1. Upgrading the Cluster Operator returns Kafka version error 413
23.4.2. Upgrading from AMQ Streams 1.7 or earlier using the OperatorHub 413
23.4.3. Upgrading the Cluster Operator using installation files 414
23.5. UPGRADING KAFKA 416

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

23.5.1. Kafka versions
23.5.2. Strategies for upgrading clients
23.5.3. Kafka version and image mappings
23.5.4. Upgrading Kafka brokers and client applications
23.6. SWITCHING TO FIPS MODE WHEN UPGRADING AMQ STREAMS

CHAPTER 24. DOWNGRADING AMQ STREAMS e

24.1. DOWNGRADING THE CLUSTER OPERATOR TO A PREVIOUS VERSION
24.2. DOWNGRADING KAFKA

24.2.1. Kafka version compatibility for downgrades

24.2.2. Downgrading Kafka brokers and client applications

CHAPTER 25. HANDLING HIGH VOLUMES OF MESSAGESt

25.1. CONFIGURING KAFKA CONNECT FOR HIGH-VOLUME MESSAGES
25.2. CONFIGURING MIRRORMAKER 2 FOR HIGH-VOLUME MESSAGES
25.3. CHECKING THE MIRRORMAKER 2 MESSAGE FLOW

CHAPTER 26. FINDING INFORMATION ON KAFKARESTARTSt

26.1. REASONS FOR A RESTART EVENT
26.2. RESTART EVENT FILTERS
26.3. CHECKING KAFKA RESTARTS

CHAPTER 27. MANAGING AMQ STREAMS .. e i

27.1. WORKING WITH CUSTOM RESOURCES
27.1.1. Performing oc operations on custom resources
27.1.1.1. Resource categories
27.1.1.2. Querying the status of sub-resources
27.1.2. AMQ Streams custom resource status information
27.1.3. Finding the status of a custom resource
27.2. DISCOVERING SERVICES USING LABELS AND ANNOTATIONS
Example internal Kafka bootstrap service
Example HTTP Bridge service
27.2.1. Returning connection details on services
27.3. CONNECTING TO ZOOKEEPER FROM A TERMINAL
27.4. PAUSING RECONCILIATION OF CUSTOM RESOURCES
27.5. MAINTENANCE TIME WINDOWS FOR ROLLING UPDATES
27.5.1. Maintenance time windows overview
27.5.2. Maintenance time window definition
27.5.3. Configuring a maintenance time window
27.6. EVICTING PODS WITH THE AMQ STREAMS DRAIN CLEANER
27.6.1. Downloading the AMQ Streams Drain Cleaner deployment files
27.6.2. Deploying the AMQ Streams Drain Cleaner using installation files
27.6.3. Using the AMQ Streams Drain Cleaner
27.6.4. Watching the TLS certificates used by the AMQ Streams Drain Cleaner
27.7. DELETING KAFKA NODES USING ANNOTATIONS
27.8. DELETING ZOOKEEPER NODES USING ANNOTATIONS
27.9. STARTING ROLLING UPDATES OF KAFKA AND ZOOKEEPER CLUSTERS USING ANNOTATIONS
27.9.1. Performing a rolling update using a pod management annotation
27.9.2. Performing a rolling update using a pod annotation
27.10. PERFORMING RESTARTS OF MIRRORMAKER 2 CONNECTORS USING ANNOTATIONS
27.11. PERFORMING RESTARTS OF MIRRORMAKER 2 CONNECTOR TASK USING ANNOTATIONS
27.12. RECOVERING A CLUSTER FROM PERSISTENT VOLUMES
27.12.1. Recovery from namespace deletion
27.12.2. Recovery from loss of an OpenShift cluster

417
418
418
419
422

424
424
425
425
426

429
430
432
433

434
434
435
436

438
438
438
439
439
440
443
443
443
444
444
444
445
446
446
446
447
448
449
449

451
452
453
454
454
455
455
456
457
458
458
459

Table of Contents

27.12.3. Recovering a deleted cluster from persistent volumes 459
27.13. UNINSTALLING AMQ STREAMS 463
27.13.1. Uninstalling AMQ Streams from the OperatorHub using the web console 463
27.13.2. Uninstalling AMQ Streams using the CLI 465
27.14. FREQUENTLY ASKED QUESTIONS 465
27.14.1. Questions related to the Cluster Operator 465
27.14.1.1. Why do | need cluster administrator privileges to install AMQ Streams? 466
27.14.1.2. Why does the Cluster Operator need to create ClusterRoleBindings? 466
27.14.1.3. Can standard OpenShift users create Kafka custom resources? 466
27.14.1.4. What do the failed to acquire lock warnings in the log mean? 466
27.14.1.5. Why is hostname verification failing when connecting to NodePorts using TLS? 467
CHAPTER 28. USING METERING ON AMQ STREAMS ...ttt ittt et e eneennees 468
28.1. METERING RESOURCES 468
28.2. METERING LABELS FOR AMQ STREAMS 468
APPENDIX A. USING YOUR SUBSCRIPTION ...ttt tiiteit et eanteenneenneeeaneennnns 471
Accessing Your Account 471
Activating a Subscription 471
Downloading Zip and Tar Files 471
Installing packages with DNF 471

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

10

MAKING OPEN SOURCE MORE INCLUSIVE

MAKING OPEN SOURCE MORE INCLUSIVE

Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright's message.

1

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

CHAPTER 1. DEPLOYMENT OVERVIEW

AMQ Streams simplifies the process of running Apache Kafka in an OpenShift cluster.

This guide provides instructions for deploying and managing AMQ Streams. Deployment options and
steps are covered using the example installation files included with AMQ Streams. While the guide
highlights important configuration considerations, it does not cover all available options. For a deeper
understanding of the Kafka component configuration options, refer to the AMQ Streams Custom
Resource API Reference.

In addition to deployment instructions, the guide offers pre- and post-deployment guidance. It covers
setting up and securing client access to your Kafka cluster. Furthermore, it explores additional
deployment options such as metrics integration, distributed tracing, and cluster management tools like
Cruise Control and the AMQ Streams Drain Cleaner. You'll also find recommendations on managing
AMQ Streams and fine-tuning Kafka configuration for optimal performance.

Upgrade instructions are provided for both AMQ Streams and Kafka, to help keep your deployment up
to date.

AMQ Streams is designed to be compatible with all types of OpenShift clusters, irrespective of their

distribution. Whether your deployment involves public or private clouds, or if you are setting up a local
development environment, the instructions in this guide are applicable in all cases.

1.1. AMQ STREAMS CUSTOM RESOURCES

Deployment of Kafka components to an OpenShift cluster using AMQ Streams is highly configurable
through the application of custom resources. These custom resources are created as instances of APIs
added by Custom Resource Definitions (CRDs) to extend OpenShift resources.

CRDs act as configuration instructions to describe the custom resources in an OpenShift cluster, and are
provided with AMQ Streams for each Kafka component used in a deployment, as well as users and
topics. CRDs and custom resources are defined as YAML files. Example YAML files are provided with

the AMQ Streams distribution.

CRDs also allow AMQ Streams resources to benefit from native OpenShift features like CLI accessibility
and configuration validation.

1.1.1. AMQ Streams custom resource example

CRDs require a one-time installation in a cluster to define the schemas used to instantiate and manage
AMQ Streams-specific resources.

After a new custom resource type is added to your cluster by installing a CRD, you can create instances
of the resource based on its specification.

Depending on the cluster setup, installation typically requires cluster admin privileges.

NOTE

Access to manage custom resources is limited to AMQ Streams administrators. For more
information, see Section 4.5, “Designating AMQ Streams administrators”.

A CRD defines a new kind of resource, such as kind:Kafka, within an OpenShift cluster.

12

https://kafka.apache.org/
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index

CHAPTER 1. DEPLOYMENT OVERVIEW

The Kubernetes API server allows custom resources to be created based on the kind and understands
from the CRD how to validate and store the custom resource when it is added to the OpenShift cluster.

' WARNING
A When a CustomResourceDefinition is deleted, custom resources of that type are

also deleted. Additionally, OpenShift resources created by the custom resource are
also deleted, such as Deployment, Pod, Service and ConfigMap resources.

Each AMQ Streams-specific custom resource conforms to the schema defined by the CRD for the
resource’s kind. The custom resources for AMQ Streams components have common configuration
properties, which are defined under spec.

To understand the relationship between a CRD and a custom resource, let’s look at a sample of the CRD
for a Kafka topic.

Kafka topic CRD

apiVersion: kafka.strimzi.io/vibeta2
kind: CustomResourceDefinition
metadata: ﬂ
name: kafkatopics.kafka.strimzi.io
labels:
app: strimzi
spec:
group: kafka.strimzi.io
versions:
vibeta2
scope: Namespaced
names:
#...
singular: kafkatopic
plural: kafkatopics
shortNames:
5y 3)
additionalPrinterColumns: ﬂ
#...
subresources:
status: {}
validation:
openAPIV3Schema:
properties:
spec:
type: object
properties:
partitions:
type: integer
minimum: 1
replicas:
type: integer

13

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

QDO O

Here

minimum: 1
maximum: 32767
#...

The metadata for the topic CRD, its name and a label to identify the CRD.

The specification for this CRD, including the group (domain) name, the plural name and the
supported schema version, which are used in the URL to access the API of the topic. The other
names are used to identify instance resources in the CLI. For example, oc get kafkatopic my-topic
or oc get kafkatopics.

The shortname can be used in CLI commands. For example, oc get kt can be used as an
abbreviation instead of oc get kafkatopic.

The information presented when using a get command on the custom resource.
The current status of the CRD as described in the schema reference for the resource.

openAPIV3Schema validation provides validation for the creation of topic custom resources. For
example, a topic requires at least one partition and one replica.

NOTE

You can identify the CRD YAML files supplied with the AMQ Streams installation files,
because the file names contain an index number followed by ‘Crd’.

is a corresponding example of a KafkaTopic custom resource.

Kafka topic custom resource

apiVersion: kafka.strimzi.io/vibeta2
kind: KafkaTopic)

m

etadata:

name: my-topic
labels:

strimzi.io/cluster: my-cluster 9

spec: 6
partitions: 1
replicas: 1
config:

retention.ms: 7200000
segment.bytes: 1073741824

status:
conditions: ﬂ

lastTransitionTime: "2019-08-20T11:37:00.706Z"
status: "True"
type: Ready

observedGeneration: 1
/...

ﬂ The kind and apiVersion identify the CRD of which the custom resource is an instance.

A label, applicable only to KafkaTopic and KafkaUser resources, that defines the name of the

14

Kafka cluster (which is same as the name of the Kafka resource) to which a topic or user belongs.

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index#type-Kafka-reference

CHAPTER 1. DEPLOYMENT OVERVIEW

9 The spec shows the number of partitions and replicas for the topic as well as the configuration
parameters for the topic itself. In this example, the retention period for a message to remain in the

Q Status conditions for the KafkaTopic resource. The type condition changed to Ready at the
lastTransitionTime.

Custom resources can be applied to a cluster through the platform CLI. When the custom resource is
created, it uses the same validation as the built-in resources of the Kubernetes API.

After a KafkaTopic custom resource is created, the Topic Operator is notified and corresponding Kafka
topics are created in AMQ Streams.

Additional resources

® [Extend the Kubernetes API| with CustomResourceDefinitions

® Example configuration files provided with AMQ Streams

1.2. AMQ STREAMS OPERATORS

AMQ Streams operators are purpose-built with specialist operational knowledge to effectively manage
Kafka on OpenShift. Each operator performs a distinct function.

Cluster Operator

The Cluster Operator handles the deployment and management of Apache Kafka clusters on
OpenShift. It automates the setup of Kafka brokers, and other Kafka components and resources.

Topic Operator
The Topic Operator manages the creation, configuration, and deletion of topics within Kafka clusters.
User Operator

The User Operator manages Kafka users that require access to Kafka brokers.

When you deploy AMQ Streams, you first deploy the Cluster Operator. The Cluster Operator is then
ready to handle the deployment of Kafka. You can also deploy the Topic Operator and User Operator
using the Cluster Operator (recommended) or as standalone operators. You would use a standalone
operator with a Kafka cluster that is not managed by the Cluster Operator.

The Topic Operator and User Operator are part of the Entity Operator. The Cluster Operator can
deploy one or both operators based on the Entity Operator configuration.

IMPORTANT

To deploy the standalone operators, you need to set environment variables to connect to
a Kafka cluster. These environment variables do not need to be set if you are deploying
the operators using the Cluster Operator as they will be set by the Cluster Operator.

1.2.1. Watching AMQ Streams resources in OpenShift namespaces

Operators watch and manage AMQ Streams resources in OpenShift namespaces. The Cluster Operator
can watch a single namespace, multiple namespaces, or all namespaces in an OpenShift cluster. The
Topic Operator and User Operator can watch a single namespace.

® The Cluster Operator watches for Kafka resources

15

https://kubernetes.io/docs/tasks/access-kubernetes-api/custom-resources/custom-resource-definitions/

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

® The Topic Operator watches for KafkaTopic resources
® The User Operator watches for KafkaUser resources

The Topic Operator and the User Operator can only watch a single Kafka cluster in a namespace. And
they can only be connected to a single Kafka cluster.

If multiple Topic Operators watch the same namespace, name collisions and topic deletion can occur.
This is because each Kafka cluster uses Kafka topics that have the same name (such as
__consumer_offsets). Make sure that only one Topic Operator watches a given namespace.

When using multiple User Operators with a single namespace, a user with a given username can exist in
more than one Kafka cluster.

If you deploy the Topic Operator and User Operator using the Cluster Operator, they watch the Kafka
cluster deployed by the Cluster Operator by default. You can also specify a namespace using
watchedNamespace in the operator configuration.

For a standalone deployment of each operator, you specify a namespace and connection to the Kafka
cluster to watch in the configuration.

1.2.2. Managing RBAC resources

The Cluster Operator creates and manages role-based access control (RBAC) resources for AMQ
Streams components that need access to OpenShift resources.

For the Cluster Operator to function, it needs permission within the OpenShift cluster to interact with
Kafka resources, such as Kafka and KafkaConnect, as well as managed resources like ConfigMap, Pod,
Deployment, and Service.
Permission is specified through the following OpenShift RBAC resources:

® ServiceAccount

o Role and ClusterRole

® RoleBinding and ClusterRoleBinding

1.2.2.1. Delegating privileges to AMQ Streams components

The Cluster Operator runs under a service account called strimzi-cluster-operator. It is assigned cluster
roles that give it permission to create the RBAC resources for AMQ Streams components. Role bindings
associate the cluster roles with the service account.

OpenShift prevents components operating under one ServiceAccount from granting another
ServiceAccount privileges that the granting ServiceAccount does not have. Because the Cluster
Operator creates the RoleBinding and ClusterRoleBinding RBAC resources needed by the resources
it manages, it requires a role that gives it the same privileges.

The following tables describe the RBAC resources created by the Cluster Operator.

Table 1.1. ServiceAccount resources

16

CHAPTER 1. DEPLOYMENT OVERVIEW

Name Used by
<cluster_name>-kafka Kafka broker pods
<cluster_name>-zookeeper ZooKeeper pods
<cluster_names>-cluster-connect Kafka Connect pods
<cluster_names>-mirror-maker MirrorMaker pods
<cluster_name>-mirrormaker2 MirrorMaker 2 pods
<cluster_name>-bridge Kafka Bridge pods
<cluster_name>-entity-operator Entity Operator

Table 1.2. ClusterRole resources

Name Used by
strimzi-cluster-operator-namespaced Cluster Operator
strimzi-cluster-operator-global Cluster Operator
strimzi-cluster-operator-leader-election Cluster Operator

strimzi-kafka-broker Cluster Operator, rack feature (when used)
strimzi-entity-operator Cluster Operator, Topic Operator, User Operator
strimzi-kafka-client Cluster Operator, Kafka clients for rack awareness

Table 1.3. ClusterRoleBinding resources

Name Used by

strimzi-cluster-operator Cluster Operator
strimzi-cluster-operator-kafka-broker- Cluster Operator, Kafka brokers for rack awareness
delegation

strimzi-cluster-operator-kafka-client- Cluster Operator, Kafka clients for rack awareness
delegation

Table 1.4. RoleBinding resources

—

7

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

Name Used by

strimzi-cluster-operator Cluster Operator
strimzi-cluster-operator-kafka-broker- Cluster Operator, Kafka brokers for rack awareness
delegation

1.2.2.2. Running the Cluster Operator using a ServiceAccount

The Cluster Operator is best run using a ServiceAccount.

Example ServiceAccount for the Cluster Operator

apiVersion: vi
kind: ServiceAccount
metadata:
name: strimzi-cluster-operator
labels:
app: strimzi

The Deployment of the operator then needs to specify this in its
spec.template.spec.serviceAccountName.

Partial example of Deployment for the Cluster Operator

apiVersion: apps/v1
kind: Deployment
metadata:
name: strimzi-cluster-operator
labels:
app: strimzi
spec:
replicas: 1
selector:
matchLabels:
name: strimzi-cluster-operator
strimzi.io/kind: cluster-operator
template:
metadata:
labels:
name: strimzi-cluster-operator
strimzi.io/kind: cluster-operator
spec:
serviceAccountName: strimzi-cluster-operator
#...

1.2.2.3. ClusterRole resources

The Cluster Operator uses ClusterRole resources to provide the necessary access to resources.
Depending on the OpenShift cluster setup, a cluster administrator might be needed to create the
cluster roles.

18

CHAPTER 1. DEPLOYMENT OVERVIEW

NOTE

Cluster administrator rights are only needed for the creation of ClusterRole resources.
The Cluster Operator will not run under a cluster admin account.

ClusterRole resources follow the principle of least privilege and contain only those privileges needed by
the Cluster Operator to operate the cluster of the Kafka component. The first set of assigned privileges
allow the Cluster Operator to manage OpenShift resources such as Deployment, Pod, and ConfigMap.

All cluster roles are required by the Cluster Operator in order to delegate privileges.

The Cluster Operator uses the strimzi-cluster-operator-namespaced and strimzi-cluster-operator-
global cluster roles to grant permission at the namespace-scoped resources level and cluster-scoped
resources level.

ClusterRole with namespaced resources for the Cluster Operator

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
name: strimzi-cluster-operator-namespaced
labels:
app: strimzi
rules:
Resources in this role are used by the operator based on an operand being deployed in some
namespace. When needed, you
can deploy the operator as a cluster-wide operator. But grant the rights listed in this role only on
the namespaces
where the operands will be deployed. That way, you can limit the access the operator has to other
namespaces where it
does not manage any clusters.
- apiGroups:
- "rbac.authorization.k8s.i0"
resources:
The cluster operator needs to access and manage rolebindings to grant Strimzi components
cluster permissions
- rolebindings
verbs:
- get
- list
- watch
- create
- delete
- patch
- update
- apiGroups:
- "rbac.authorization.k8s.i0"
resources:
The cluster operator needs to access and manage roles to grant the entity operator permissions
- roles
verbs:
- get
- list
- watch
- create
- delete

19

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

- patch
- update
- apiGroups:
resources:
The cluster operator needs to access and delete pods, this is to allow it to monitor pod health
and coordinate rolling updates
- pods
The cluster operator needs to access and manage service accounts to grant Strimzi
components cluster permissions
- serviceaccounts
The cluster operator needs to access and manage config maps for Strimzi components
configuration
- configmaps
The cluster operator needs to access and manage services and endpoints to expose Strimzi
components to network traffic
- services
- endpoints
The cluster operator needs to access and manage secrets to handle credentials
- secrets
The cluster operator needs to access and manage persistent volume claims to bind them to
Strimzi components for persistent data
- persistentvolumeclaims
verbs:
- get
- list
- watch
- create
- delete
- patch
- update
- apiGroups:
- "apps"
resources:
The cluster operator needs to access and manage deployments to run deployment based
Strimzi components
- deployments
- deployments/scale
- deployments/status
The cluster operator needs to access and manage stateful sets to run stateful sets based
Strimzi components
- statefulsets
The cluster operator needs to access replica-sets to manage Strimzi components and to
determine error states
- replicasets
verbs:
- get
- list
- watch
- create
- delete
- patch
- update
- apiGroups:
- "" # legacy core events api, used by topic operator
- "events.k8s.io" # new events api, used by cluster operator

20

CHAPTER 1. DEPLOYMENT OVERVIEW

resources:
The cluster operator needs to be able to create events and delegate permissions to do so
- events
verbs:
- create
- apiGroups:
Kafka Connect Build on OpenShift requirement
- build.openshift.io
resources:
- buildconfigs
- buildconfigs/instantiate
- builds
verbs:
- get
- list
- watch
- create
- delete
- patch
- update
- apiGroups:
- networking.k8s.io
resources:
The cluster operator needs to access and manage network policies to lock down
communication between Strimzi components
- networkpolicies
The cluster operator needs to access and manage ingresses which allow external access to the
services in a cluster
- ingresses
verbs:
- get
- list
- watch
- create
- delete
- patch
- update
- apiGroups:
- route.openshift.io
resources:
The cluster operator needs to access and manage routes to expose Strimzi components for
external access
- routes
- routes/custom-host
verbs:
- get
- list
- watch
- create
- delete
- patch
- update
- apiGroups:
- image.openshift.io
resources:
The cluster operator needs to verify the image stream when used for Kafka Connect image build

21

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

- imagestreams

verbs:
- get

- apiGroups:

- policy

resources:
The cluster operator needs to access and manage pod disruption budgets this limits the number

of concurrent disruptions

that a Strimzi component experiences, allowing for higher availability
- poddisruptionbudgets

verbs:
- get
- list
- watch
- create
- delete
- patch
- update

ClusterRole with cluster-scoped resources for the Cluster Operator

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
name: strimzi-cluster-operator-global
labels:
app: strimzi
rules:
- apiGroups:
- "rbac.authorization.k8s.io0"
resources:
The cluster operator needs to create and manage cluster role bindings in the case of an install
where a user
has specified they want their cluster role bindings generated
- clusterrolebindings
verbs:
- get
- list
- watch
- create
- delete
- patch
- update
- apiGroups:
- storage.k8s.io
resources:
The cluster operator requires "get" permissions to view storage class details
This is because only a persistent volume of a supported storage class type can be resized
- storageclasses
verbs:
- get
- apiGroups:
resources:
The cluster operator requires "list" permissions to view all nodes in a cluster

22

CHAPTER 1. DEPLOYMENT OVERVIEW

The listing is used to determine the node addresses when NodePort access is configured
These addresses are then exposed in the custom resource states
- nodes
verbs:
- list

The strimzi-cluster-operator-leader-election cluster role represents the permissions needed for the
leader election.

ClusterRole with leader election permissions

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
name: strimzi-cluster-operator-leader-election
labels:
app: strimzi
rules:
- apiGroups:
- coordination.k8s.io
resources:
The cluster operator needs to access and manage leases for leader election
The "create" verb cannot be used with "resourceNames”
- leases
verbs:
- create
- apiGroups:
- coordination.k8s.io
resources:
The cluster operator needs to access and manage leases for leader election
- leases
resourceNames:
The default RBAC files give the operator only access to the Lease resource names strimzi-
cluster-operator
If you want to use another resource name or resource namespace, you have to configure the
RBAC resources accordingly
- strimzi-cluster-operator
verbs:
- get
- list
- watch
- delete
- patch
- update

The strimzi-kafka-broker cluster role represents the access needed by the init container in Kafka pods
that use rack awareness.

A role binding named strimzi-<cluster_name>-kafka-init grants the <cluster_names>-kafka service
account access to nodes within a cluster using the strimzi-kafka-broker role. If the rack feature is not

used and the cluster is not exposed through nodeport, no binding is created.

ClusterRole for the Cluster Operator allowing it to delegate access to OpenShift nodes to
the Kafka broker pods

23

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
name: strimzi-kafka-broker
labels:
app: strimzi
rules:
- apiGroups:
resources:
The Kafka Brokers require "get" permissions to view the node they are on
This information is used to generate a Rack ID that is used for High Availability configurations
- nodes
verbs:
- get

The strimzi-entity-operator cluster role represents the access needed by the Topic Operator and User
Operator.

The Topic Operator produces OpenShift events with status information, so the <cluster_name>-
entity-operator service account is bound to the strimzi-entity-operator role, which grants this access
via the strimzi-entity-operator role binding.

ClusterRole for the Cluster Operator allowing it to delegate access to events to the Topic
and User Operators

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
name: strimzi-entity-operator
labels:
app: strimzi
rules:
- apiGroups:
- "kafka.strimzi.io"
resources:
The entity operator runs the KaftkaTopic assembly operator, which needs to access and manage
KafkaTopic resources
- kafkatopics
- kafkatopics/status
The entity operator runs the KatkaUser assembly operator, which needs to access and manage
KafkaUser resources
- kafkausers
- kafkausers/status
verbs:
- get
- list
- watch
- create
- patch
- update
- delete
- apiGroups:

resources:

24

CHAPTER 1. DEPLOYMENT OVERVIEW

- events
verbs:
The entity operator needs to be able to create events
- create
- apiGroups:
resources:
The entity operator user-operator needs to access and manage secrets to store generated
credentials
- secrets
verbs:
- get
- list
- watch
- create
- delete
- patch
- update

The strimzi-kafka-client cluster role represents the access needed by Kafka clients that use rack
awareness.

ClusterRole for the Cluster Operator allowing it to delegate access to OpenShift nodes to
the Kafka client-based pods

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
name: strimzi-kafka-client
labels:
app: strimzi
rules:
- apiGroups:
resources:
The Kafka clients (Connect, Mirror Maker, etc.) require "get" permissions to view the node they
are on
This information is used to generate a Rack ID (client.rack option) that is used for consuming
from the closest
replicas when enabled
- nodes
verbs:
- get

1.2.2.4. ClusterRoleBinding resources
The Cluster Operator uses ClusterRoleBinding and RoleBinding resources to associate its
ClusterRole with its ServiceAccount: Cluster role bindings are required by cluster roles containing

cluster-scoped resources.

Example ClusterRoleBinding for the Cluster Operator

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding

25

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

metadata:
name: strimzi-cluster-operator
labels:
app: strimzi
subjects:
- kind: ServiceAccount
name: strimzi-cluster-operator
namespace: myproject
roleRef:
kind: ClusterRole
name: strimzi-cluster-operator-global
apiGroup: rbac.authorization.k8s.io

Cluster role bindings are also needed for the cluster roles used in delegating privileges:

Example ClusterRoleBinding for the Cluster Operator and Kafka broker rack awareness

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
name: strimzi-cluster-operator-kafka-broker-delegation
labels:
app: strimzi
The Kafka broker cluster role must be bound to the cluster operator service account so that it can
delegate the cluster role to the Kafka brokers.
This must be done to avoid escalating privileges which would be blocked by Kubernetes.
subjects:
- kind: ServiceAccount
name: strimzi-cluster-operator
namespace: myproject
roleRef:
kind: ClusterRole
name: strimzi-kafka-broker
apiGroup: rbac.authorization.k8s.io

Example ClusterRoleBinding for the Cluster Operator and Kafka client rack awareness

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
name: strimzi-cluster-operator-kafka-client-delegation
labels:
app: strimzi
The Kafka clients cluster role must be bound to the cluster operator service account so that it can
delegate the
cluster role to the Kafka clients using it for consuming from closest replica.
This must be done to avoid escalating privileges which would be blocked by Kubernetes.
subjects:
- kind: ServiceAccount
name: strimzi-cluster-operator
namespace: myproject
roleRef:
kind: ClusterRole
name: strimzi-kafka-client
apiGroup: rbac.authorization.k8s.io

26

CHAPTER 1. DEPLOYMENT OVERVIEW

Cluster roles containing only namespaced resources are bound using role bindings only.

Example RoleBinding for the Cluster Operator

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
name: strimzi-cluster-operator
labels:
app: strimzi
subjects:
- kind: ServiceAccount
name: strimzi-cluster-operator
namespace: myproject
roleRef:
kind: ClusterRole
name: strimzi-cluster-operator-namespaced
apiGroup: rbac.authorization.k8s.io

Example RoleBinding for the Cluster Operator and Kafka broker rack awareness

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
name: strimzi-cluster-operator-entity-operator-delegation
labels:
app: strimzi
The Entity Operator cluster role must be bound to the cluster operator service account so that it can
delegate the cluster role to the Entity Operator.
This must be done to avoid escalating privileges which would be blocked by Kubernetes.
subjects:
- kind: ServiceAccount
name: strimzi-cluster-operator
namespace: myproject
roleRef:
kind: ClusterRole
name: strimzi-entity-operator
apiGroup: rbac.authorization.k8s.io

1.3. USING THE KAFKA BRIDGE TO CONNECT WITH A KAFKA CLUSTER

You can use the AMQ Streams Kafka Bridge API to create and manage consumers and send and receive
records over HTTP rather than the native Kafka protocol.

When you set up the Kafka Bridge you configure HTTP access to the Kafka cluster. You can then use the
Kafka Bridge to produce and consume messages from the cluster, as well as performing other operations
through its REST interface.

Additional resources

® Forinformation on installing and using the Kafka Bridge, see Using the AMQ Streams Kafka
Bridge.

27

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/using_the_amq_streams_kafka_bridge/index

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

1.4. SEAMLESS FIPS SUPPORT

Federal Information Processing Standards (FIPS) are standards for computer security and
interoperability. When running AMQ Streams on a FIPS-enabled OpenShift cluster, the OpenJDK used
in AMQ Streams container images automatically switches to FIPS mode. From version 2.4, AMQ
Streams can run on FIPS-enabled OpenShift clusters without any changes or special configuration. It
uses only the FIPS-compliant security libraries from the OpenJDK.

Minimum password length

When running in the FIPS mode, SCRAM-SHA-512 passwords need to be at least 32 characters long.
From AMQ Streams 2.4, the default password length in AMQ Streams User Operator is set to 32
characters as well. If you have a Kafka cluster with custom configuration that uses a password length
that is less than 32 characters, you need to update your configuration. If you have any users with
passwords shorter than 32 characters, you need to regenerate a password with the required length. You
can do that, for example, by deleting the user secret and waiting for the User Operator to create a new
password with the appropriate length.

IMPORTANT

If you are using FIPS-enabled OpenShift clusters, you may experience higher memory
consumption compared to regular OpenShift clusters. To avoid any issues, we suggest
increasing the memory request to at least 512Mi.

Additional resources

® Disabling FIPS mode using Cluster Operator configuration

® What are Federal Information Processing Standards (FIPS)

1.5. DOCUMENT CONVENTIONS

User-replaced values

User-replaced values, also known as replaceables, are shown in with angle brackets (< >). Underscores (_
) are used for multi-word values. If the value refers to code or commands, monospace is also used.

For example, the following code shows that <my_namespace> must be replaced by the correct
namespace name:

I sed -i 's/namespace: .*/namespace: <my_namespace>' install/cluster-operator/*RoleBinding*.yaml|

1.6. ADDITIONAL RESOURCES
® AMQ Streams Overview
® AMQ Streams Custom Resource API Reference

® Using the AMQ Streams Kafka Bridge

28

https://www.nist.gov/standardsgov/compliance-faqs-federal-information-processing-standards-fips
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_on_openshift_overview/index
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/using_the_amq_streams_kafka_bridge/index

CHAPTER 2. AMQ STREAMS INSTALLATION METHODS

CHAPTER 2. AMQ STREAMS INSTALLATION METHODS

You can install AMQ Streams on OpenShift 4.10 to 4.14 in two ways.

Installation method Description

Installation artifacts (YAML files) Download Red Hat AMQ Streams 2.5 OpenShift
Installation and Example Files from the AMQ Streams
software downloads page. Deploy the YAML
installation artifacts to your OpenShift cluster using
ocC. You start by deploying the Cluster Operator from
install/cluster-operator to a single namespace,
multiple namespaces, or all namespaces.

You can also use the install/ artifacts to deploy the
following:

® AMQ Streams administrator roles (strimzi-
admin)

e A standalone Topic Operator (topic-
operator)

® A standalone User Operator (User-
operator)

® AMQ Streams Drain Cleaner (drain-
cleaner)

OperatorHub Use the AMQ Streams operator in the OperatorHub
to deploy AMQ Streams to a single namespace or all
namespaces.

For the greatest flexibility, choose the installation artifacts method. The OperatorHub method provides
a standard configuration and allows you to take advantage of automatic updates.

NOTE

Installation of AMQ Streams using Helm is not supported.

29

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?downloadType=distributions&product=jboss.amq.streams

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

CHAPTER 3. WHAT IS DEPLOYED WITH AMQ STREAMS

Apache Kafka components are provided for deployment to OpenShift with the AMQ Streams
distribution. The Kafka components are generally run as clusters for availability.

A typical deployment incorporating Kafka components might include:
e Kafka cluster of broker nodes
® ZooKeeper cluster of replicated ZooKeeper instances
e Kafka Connect cluster for external data connections
e Kafka MirrorMaker cluster to mirror the Kafka cluster in a secondary cluster
e Kafka Exporter to extract additional Kafka metrics data for monitoring
e Kafka Bridge to make HTTP-based requests to the Kafka cluster
® Cruise Control to rebalance topic partitions across broker nodes

Not all of these components are mandatory, though you need Kafka and ZooKeeper as a minimum.
Some components can be deployed without Kafka, such as MirrorMaker or Kafka Connect.

3.1. ORDER OF DEPLOYMENT
The required order of deployment to an OpenShift cluster is as follows:
1. Deploy the Cluster Operator to manage your Kafka cluster

2. Deploy the Kafka cluster with the ZooKeeper cluster, and include the Topic Operator and User
Operator in the deployment

3. Optionally deploy:

® The Topic Operator and User Operator standalone if you did not deploy them with the
Kafka cluster

e Kafka Connect

e Kafka MirrorMaker

e Kafka Bridge

® Components for the monitoring of metrics
The Cluster Operator creates OpenShift resources for the components, such as Deployment, Service,
and Pod resources. The names of the OpenShift resources are appended with the name specified for a

component when it's deployed. For example, a Kafka cluster named my-kafka-cluster has a service
named my-kafka-cluster-kafka.

30

CHAPTER 4. PREPARING FOR YOUR AMQ STREAMS DEPLOYMENT

CHAPTER 4. PREPARING FOR YOUR AMQ STREAMS
DEPLOYMENT

Prepare for a deployment of AMQ Streams by completing any necessary pre-deployment tasks. Take
the necessary preparatory steps according to your specific requirements, such as the following:

® Ensuring you have the necessary prerequisites before deploying AMQ Streams
® Downloading the AMQ Streams release artifacts to facilitate your deployment
® Pushing the AMQ Streams container images into your own registry (if required)

® Setting up admin roles to enable configuration of custom resources used in the deployment

NOTE

To run the commands in this guide, your cluster user must have the rights to manage role-
based access control (RBAC) and CRDs.

4.1. DEPLOYMENT PREREQUISITES

To deploy AMQ Streams, you will need the following:

® An OpenShift 4.10 to 4.14 cluster.
AMQ Streams is based on Strimzi 0.36.x.

® The oc command-line tool is installed and configured to connect to the running cluster.

4.2. DOWNLOADING AMQ STREAMS RELEASE ARTIFACTS

To use deployment files to install AMQ Streams, download and extract the files from the AMQ Streams
software downloads page.

AMQ Streams release artifacts include sample YAML files to help you deploy the components of AMQ
Streams to OpenShift, perform common operations, and configure your Kafka cluster.

Use oc to deploy the Cluster Operator from the install/cluster-operator folder of the downloaded ZIP
file. For more information about deploying and configuring the Cluster Operator, see Section 6.2,
“Deploying the Cluster Operator”.

In addition, if you want to use standalone installations of the Topic and User Operators with a Kafka
cluster that is not managed by the AMQ Streams Cluster Operator, you can deploy them from the
install/topic-operator and install/user-operator folders.

NOTE

AMQ Streams container images are also available through the Red Hat Ecosystem
Catalog. However, we recommend that you use the YAML files provided to deploy AMQ
Streams.

-

4.3. PUSHING CONTAINER IMAGES TO YOUR OWN REGISTRY

31

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?downloadType=distributions&product=jboss.amq.streams
https://catalog.redhat.com/software/containers/explore

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

Container images for AMQ Streams are available in the Red Hat Ecosystem Catalog. The installation
YAML files provided by AMQ Streams will pull the images directly from the Red Hat Ecosystem Catalog.

If you do not have access to the Red Hat Ecosystem Catalog or want to use your own container
repository, do the following:

1. Pull all container images listed here
2. Push them into your own registry

3. Update the image names in the installation YAML files

NOTE

Each Kafka version supported for the release has a separate image.

Container image Namespace/Repository Description

Kafka . . AMQ Streams image for running
® registry.redhat.io/amqg- Kafka, including:
streams/kafka-35- ! ’

rhel82.5.1 o Kafka Broker

® registry.redhat.io/amqg-
streams/kafka-34-
rhel8:2.5.1

e Kafka Connect

e Kafka MirrorMaker
® ZooKeeper

® TLS Sidecars

® Cruise Control

Operator . . AMQ Streams image for running
® registry.redhat.io/amqg- the operators:
streams/strimzi-rhel8- P '

tor:2.5.1
operator ® Cluster Operator

® Topic Operator
® User Operator

o Kafka Initializer

Kafka Bridge AMQ Streams image for running

® registryredhatio/amq- the AMQ Streams Kafka Bridge
streams/bridge-

rhel8:2.5.1

AMQ Streams Drain Cleaner AMQ Streams image for running

° reglstry.redh'at.lo/amq— the AMQ Streams Drain Cleaner
streams/drain-cleaner-

rhel8:2.5.1

32

https://catalog.redhat.com/software/containers/explore
https://catalog.redhat.com/software/containers/explore
https://catalog.redhat.com/software/containers/explore

CHAPTER 4. PREPARING FOR YOUR AMQ STREAMS DEPLOYMENT

4.4. CREATING A PULL SECRET FOR AUTHENTICATION TO THE
CONTAINER IMAGE REGISTRY

The installation YAML files provided by AMQ Streams pull container images directly from the Red Hat
Ecosystem Catalog. If an AMQ Streams deployment requires authentication, configure authentication
credentials in a secret and add it to the installation YAML.

NOTE

Authentication is not usually required, but might be requested on certain platforms.

Prerequisites

® You need your Red Hat username and password or the login details from your Red Hat registry
service account.

NOTE

You can use your Red Hat subscription to create a registry service account from the Red
Hat Customer Portal.

Procedure

1. Create a pull secret containing your login details and the container registry where the AMQ
Streams image is pulled from:

oc create secret docker-registry <pull_secret_name> \
--docker-server=registry.redhat.io \
--docker-username=<user_name> \
--docker-password=<password> \
--docker-email=<email>

Add your user name and password. The email address is optional.

2. Edit the install/cluster-operator/060-Deployment-strimzi-cluster-operator.yaml deployment
file to specify the pull secret using the STRIMZI_IMAGE_PULL_SECRET environment variable:

apiVersion: apps/vi
kind: Deployment
metadata:
name: strimzi-cluster-operator
spec:
#...
template:
spec:
serviceAccountName: strimzi-cluster-operator
containers:
#...
env:
- name: STRIMZI_IMAGE_PULL_SECRETS
value: "<pull_secret_name>"
#...

The secret applies to all pods created by the Cluster Operator.

33

https://catalog.redhat.com/software/containers/explore
https://access.redhat.com/

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

4.5. DESIGNATING AMQ STREAMS ADMINISTRATORS
AMQ Streams provides custom resources for configuration of your deployment. By default, permission
to view, create, edit, and delete these resources is limited to OpenShift cluster administrators. AMQ
Streams provides two cluster roles that you can use to assign these rights to other users:

® strimzi-view allows users to view and list AMQ Streams resources.

o strimzi-admin allows users to also create, edit or delete AMQ Streams resources.
When you install these roles, they will automatically aggregate (add) these rights to the default
OpenShift cluster roles. strimzi-view aggregates to the view role, and strimzi-admin aggregates to
the edit and admin roles. Because of the aggregation, you might not need to assign these roles to users

who already have similar rights.

The following procedure shows how to assign a strimzi-admin role that allows non-cluster
administrators to manage AMQ Streams resources.

A system administrator can designate AMQ Streams administrators after the Cluster Operator is
deployed.

Prerequisites

® The AMQ Streams Custom Resource Definitions (CRDs) and role-based access control (RBAC)
resources to manage the CRDs have been deployed with the Cluster Operator.

Procedure

1. Create the strimzi-view and strimzi-admin cluster roles in OpenShift.
I oc create -f install/strimzi-admin
2. If needed, assign the roles that provide access rights to users that require them.

oc create clusterrolebinding strimzi-admin --clusterrole=strimzi-admin --user=user7 --
user=user2

34

CHAPTER 5. INSTALLING AMQ STREAMS FROM THE OPERATORHUB USING THE WEB CONSOLE

CHAPTER 5. INSTALLING AMQ STREAMS FROM THE
OPERATORHUB USING THE WEB CONSOLE

Install the AMQ Streams operator from the OperatorHub in the OpenShift Container Platform web
console.

The procedures in this section show how to:
® |nstall the AMQ Streams operator from the OperatorHub

® Deploy Kafka components using the AMQ Streams operator

S5.1. INSTALLING THE AMQ STREAMS OPERATOR FROM THE
OPERATORHUB

You can install and subscribe to the AMQ Streams operator using the OperatorHub in the OpenShift
Container Platform web console.

This procedure describes how to create a project and install the AMQ Streams operator to that project.
A project is a representation of a namespace. For manageability, it is a good practice to use namespaces
to separate functions.

' WARNING
A Make sure you use the appropriate update channel. If you are on a supported

version of OpenShift, installing AMQ Streams from the default stable channel is
generally safe. However, we do not recommend enabling automatic updates on the
stable channel. An automatic upgrade will skip any necessary steps prior to
upgrade. Use automatic upgrades only on version-specific channels.

Prerequisites

® Access to an OpenShift Container Platform web console using an account with cluster-admin
or strimzi-admin permissions.

Procedure

1. Navigate in the OpenShift web console to the Home > Projects page and create a project
(namespace) for the installation.
We use a project named amq-streams-kafka in this example.

2. Navigate to the Operators > OperatorHub page.

3. Scroll or type a keyword into the Filter by keyword box to find the AMQ Streams operator.
The operator is located in the Streaming & Messaging category.

4. Click AMQ Streams to display the operator information.

5. Read the information about the operator and click Install.

35

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

6. On the Install Operator page, choose from the following installation and update options:

e Update Channel Choose the update channel for the operator.

(o}

The (default) stable channel contains all the latest updates and releases, including
major, minor, and micro releases, which are assumed to be well tested and stable.

An amg-streams-X.x channel contains the minor and micro release updates for a major
release, where X'is the major release version number.

An amg-streams-X.Y.x channel contains the micro release updates for a minor release,
where Xis the major release version number and Y'is the minor release version number.

Installation Mode: Choose the project you created to install the operator on a specific
namespace.

You can install the AMQ Streams operator to all namespaces in the cluster (the default
option) or a specific namespace. We recommend that you dedicate a specific namespace to
the Kafka cluster and other AMQ Streams components.

Update approval: By default, the AMQ Streams operator is automatically upgraded to the
latest AMQ Streams version by the Operator Lifecycle Manager (OLM). Optionally, select
Manual if you want to manually approve future upgrades. For more information on
operators, see the OpenShift documentation.

7. Click Install to install the operator to your selected namespace.
The AMQ Streams operator deploys the Cluster Operator, CRDs, and role-based access control
(RBAC) resources to the selected namespace.

8. After the operator is ready for use, navigate to Operators > Installed Operatorsto verify that
the operator has installed to the selected namespace.
The status will show as Succeeded.

You can now use the AMQ Streams operator to deploy Kafka components, starting with a Kafka
cluster.

NOTE

If you navigate to Workloads > Deployments, you can see the deployment details for the
Cluster Operator and Entity Operator. The name of the Cluster Operator includes a
version number: amq-streams-cluster-operator-<versions. The name is different when
deploying the Cluster Operator using the AMQ Streams installation artifacts. In this case,
the name is strimzi-cluster-operator.

5.2. DEPLOYING KAFKA COMPONENTS USING THE AMQ STREAMS
OPERATOR

When installed on Openshift, the AMQ Streams operator makes Kafka components available for
installation from the user interface.

The following Kafka components are available for installation:

36

e Kafka

e Kafka Connect

e Kafka MirrorMaker

https://docs.openshift.com

CHAPTER 5. INSTALLING AMQ STREAMS FROM THE OPERATORHUB USING THE WEB CONSOLE

Kafka MirrorMaker 2
Kafka Topic

Kafka User

Kafka Bridge

Kafka Connector

Kafka Rebalance

You select the component and create an instance. As a minimum, you create a Kafka instance. This
procedure describes how to create a Kafka instance using the default settings. You can configure the
default installation specification before you perform the installation.

The process is the same for creating instances of other Kafka components.

Prerequisites

The AMQ Streams operator is installed on the OpenShift cluster.

Procedure

1. Navigate in the web console to the Operators > Installed Operatorspage and click AMQ

Streams to display the operator details.
From Provided APIs, you can create instances of Kafka components.

Click Create instance under Kafka to create a Kafka instance.
By default, you'll create a Kafka cluster called my-cluster with three Kafka broker nodes and
three ZooKeeper nodes. The cluster uses ephemeral storage.

Click Create to start the installation of Kafka.
Wait until the status changes to Ready.

37

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

CHAPTER 6. DEPLOYING AMQ STREAMS USING
INSTALLATION ARTIFACTS

Having prepared your environment for a deployment of AMQ Streams , you can deploy AMQ Streams to
an OpensShift cluster. Use the installation files provided with the release artifacts.

AMQ Streams is based on Strimzi 0.36.x. You can deploy AMQ Streams 2.5 on OpenShift 4.10 to 4.14.
The steps to deploy AMQ Streams using the installation files are as follows:
1. Deploy the Cluster Operator

2. Use the Cluster Operator to deploy the following:

a. Kafka cluster
b. Topic Operator
c. User Operator

3. Optionally, deploy the following Kafka components according to your requirements:

® Kafka Connect
o Kafka MirrorMaker

® Kafka Bridge

NOTE

To run the commands in this guide, an OpenShift user must have the rights to manage
role-based access control (RBAC) and CRDs.

6.1. BASIC DEPLOYMENT PATH
You can set up a deployment where AMQ Streams manages a single Kafka cluster in the same
namespace. You might use this configuration for development or testing. Or you can use AMQ Streams

in a production environment to manage a number of Kafka clusters in different namespaces.

The first step for any deployment of AMQ Streams is to install the Cluster Operator using the
install/cluster-operator files.

A single command applies all the installation files in the cluster-operator folder: oc apply -f
Jinstall/cluster-operator.

The command sets up everything you need to be able to create and manage a Kafka deployment,
including the following:

® Cluster Operator (Deployment, ConfigMap)
® AMQ Streams CRDs (CustomResourceDefinition)
® RBAC resources (ClusterRole, ClusterRoleBinding, RoleBinding)

® Service account (ServiceAccount)

38

CHAPTER 6. DEPLOYING AMQ STREAMS USING INSTALLATION ARTIFACTS

The basic deployment path is as follows:
1. Download the release artifacts
2. Create an OpenShift namespace in which to deploy the Cluster Operator

3. Deploy the Cluster Operator

a. Update the install/cluster-operator files to use the namespace created for the Cluster
Operator

b. Install the Cluster Operator to watch one, multiple, or all namespaces
4. Create a Kafka cluster

After which, you can deploy other Kafka components and set up monitoring of your deployment.

6.2. DEPLOYING THE CLUSTER OPERATOR

The Cluster Operator is responsible for deploying and managing Kafka clusters within an OpenShift
cluster.

When the Cluster Operator is running, it starts to watch for updates of Kafka resources.
By default, a single replica of the Cluster Operator is deployed. You can add replicas with leader election

so that additional Cluster Operators are on standby in case of disruption. For more information, see
Section 8.5.3, “Running multiple Cluster Operator replicas with leader election” .

6.2.1. Specifying the namespaces the Cluster Operator watches

The Cluster Operator watches for updates in the namespaces where the Kafka resources are deployed.
When you deploy the Cluster Operator, you specify which namespaces to watch in the OpenShift
cluster. You can specify the following namespaces:

® Asingle selected namespace (the same namespace containing the Cluster Operator)

® Multiple selected namespaces

® All namespaces in the cluster
Watching multiple selected namespaces has the most impact on performance due to increased
processing overhead. To optimize performance for namespace monitoring, it is generally recommended
to either watch a single namespace or monitor the entire cluster. Watching a single namespace allows
for focused monitoring of namespace-specific resources, while monitoring all namespaces provides a
comprehensive view of the cluster’s resources across all namespaces.
The Cluster Operator watches for changes to the following resources:

e Kafka for the Kafka cluster.

e KafkaConnect for the Kafka Connect cluster.

e KafkaConnector for creating and managing connectors in a Kafka Connect cluster.

e KafkaMirrorMaker for the Kafka MirrorMaker instance.

e KafkaMirrorMaker2 for the Kafka MirrorMaker 2 instance.

39

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

e KafkaBridge for the Kafka Bridge instance.
e KafkaRebalance for the Cruise Control optimization requests.

When one of these resources is created in the OpenShift cluster, the operator gets the cluster
description from the resource and starts creating a new cluster for the resource by creating the
necessary OpenShift resources, such as Deployments, Pods, Services and ConfigMaps.

Each time a Kafka resource is updated, the operator performs corresponding updates on the OpenShift
resources that make up the cluster for the resource.

Resources are either patched or deleted, and then recreated in order to make the cluster for the
resource reflect the desired state of the cluster. This operation might cause a rolling update that might
lead to service disruption.

When a resource is deleted, the operator undeploys the cluster and deletes all related OpenShift
resources.

NOTE

While the Cluster Operator can watch one, multiple, or all namespaces in an OpenShift
cluster, the Topic Operator and User Operator watch for KafkaTopic and KafkaUser
resources in a single namespace. For more information, see Section 1.2.1, “"Watching AMQ
Streams resources in OpenShift namespaces”.

6.2.2. Deploying the Cluster Operator to watch a single namespace

This procedure shows how to deploy the Cluster Operator to watch AMQ Streams resources in a single
namespace in your OpenShift cluster.

Prerequisites

® You need an account with permission to create and manage CustomResourceDefinition and
RBAC (ClusterRole, and RoleBinding) resources.

Procedure

1. Edit the AMQ Streams installation files to use the namespace the Cluster Operator is going to
be installed into.
For example, in this procedure the Cluster Operator is installed into the namespace my-cluster-
operator-namespace.

On Linux, use:

sed -i 's/namespace: .*/namespace: my-cluster-operator-namespace/' install/cluster-
operator/*RoleBinding*.yam|

On MacOS, use:

sed -i " 's/namespace: .*/namespace: my-cluster-operator-namespace/' install/cluster-
operator/*RoleBinding*.yam|

2. Deploy the Cluster Operator:

40

CHAPTER 6. DEPLOYING AMQ STREAMS USING INSTALLATION ARTIFACTS

I oc create -f install/cluster-operator -n my-cluster-operator-namespace

3. Check the status of the deployment:

I oc get deployments -n my-cluster-operator-namespace

Output shows the deployment name and readiness

NAME READY UP-TO-DATE AVAILABLE
strimzi-cluster-operator 1/1 1 1

READY shows the number of replicas that are ready/expected. The deployment is successful
when the AVAILABLE output shows 1.

6.2.3. Deploying the Cluster Operator to watch multiple namespaces

This procedure shows how to deploy the Cluster Operator to watch AMQ Streams resources across
multiple namespaces in your OpenShift cluster.

Prerequisites

® You need an account with permission to create and manage CustomResourceDefinition and
RBAC (ClusterRole, and RoleBinding) resources.

Procedure

1. Edit the AMQ Streams installation files to use the namespace the Cluster Operator is going to
be installed into.
For example, in this procedure the Cluster Operator is installed into the namespace my-cluster-
operator-namespace.

On Linux, use:

sed -i 's/namespace: .*/namespace: my-cluster-operator-namespace/' install/cluster-
operator/*RoleBinding*.yam|

On MacOS, use:

sed -i " 's/namespace: .*/namespace: my-cluster-operator-namespace/' install/cluster-
operator/*RoleBinding*.yaml

2. Edit the install/cluster-operator/060-Deployment-strimzi-cluster-operator.yaml file to add a
list of all the namespaces the Cluster Operator will watch to the STRIMZI_NAMESPACE
environment variable.

For example, in this procedure the Cluster Operator will watch the namespaces watched-
namespace-1, watched-namespace-2, watched-namespace-3.

apiVersion: apps/v1
kind: Deployment
spec:

#...

template:

41

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

spec:
serviceAccountName: strimzi-cluster-operator
containers:
- name: strimzi-cluster-operator
image: registry.redhat.io/amg-streams/strimzi-rhel8-operator:2.5.1
imagePullPolicy: IfNotPresent
env:
- name: STRIMZI_NAMESPACE
value: watched-namespace-1,watched-namespace-2,watched-namespace-3

3. For each namespace listed, install the RoleBindings.
In this example, we replace watched-namespace in these commands with the namespaces
listed in the previous step, repeating them for watched-namespace-1, watched-namespace-2,
watched-namespace-3:

oc create -f install/cluster-operator/020-RoleBinding-strimzi-cluster-operator.yaml -n
<watched_namespace>

oc create -f install/cluster-operator/023-RoleBinding-strimzi-cluster-operator.yaml -n
<watched_namespace>

oc create -f install/cluster-operator/031-RoleBinding-strimzi-cluster-operator-entity-operator-
delegation.yaml -n <watched_namespace>

4. Deploy the Cluster Operator:
I oc create -f install/cluster-operator -n my-cluster-operator-namespace
5. Check the status of the deployment:

I oc get deployments -n my-cluster-operator-namespace
Output shows the deployment name and readiness

NAME READY UP-TO-DATE AVAILABLE
strimzi-cluster-operator 1/1 1 1

READY shows the number of replicas that are ready/expected. The deployment is successful
when the AVAILABLE output shows 1.

6.2.4. Deploying the Cluster Operator to watch all namespaces

This procedure shows how to deploy the Cluster Operator to watch AMQ Streams resources across all
namespaces in your OpenShift cluster.

When running in this mode, the Cluster Operator automatically manages clusters in any new
namespaces that are created.

Prerequisites

® You need an account with permission to create and manage CustomResourceDefinition and
RBAC (ClusterRole, and RoleBinding) resources.

Procedure

42

CHAPTER 6. DEPLOYING AMQ STREAMS USING INSTALLATION ARTIFACTS

1. Edit the AMQ Streams installation files to use the namespace the Cluster Operator is going to
be installed into.
For example, in this procedure the Cluster Operator is installed into the namespace my-cluster-
operator-namespace.

On Linux, use:

sed -i 's/namespace: .*/namespace: my-cluster-operator-namespace/' install/cluster-
operator/*RoleBinding*.yaml

On MacOS, use:

sed -i " 's/namespace: .*/namespace: my-cluster-operator-namespace/' install/cluster-
operator/*RoleBinding*.yaml

2. Edit the install/cluster-operator/060-Deployment-strimzi-cluster-operator.yaml file to set
the value of the STRIMZI_NAMESPACE environment variable to *.

apiVersion: apps/v1
kind: Deployment
spec:
#...
template:
spec:
#...
serviceAccountName: strimzi-cluster-operator
containers:
- name: strimzi-cluster-operator
image: registry.redhat.io/amg-streams/strimzi-rhel8-operator:2.5.1
imagePullPolicy: IfNotPresent
env:
- name: STRIMZI_NAMESPACE
value: "*"
#...

3. Create ClusterRoleBindings that grant cluster-wide access for all namespaces to the Cluster
Operator.

oc create clusterrolebinding strimzi-cluster-operator-namespaced --clusterrole=strimzi-
cluster-operator-namespaced --serviceaccount my-cluster-operator-namespace:strimzi-
cluster-operator

oc create clusterrolebinding strimzi-cluster-operator-watched --clusterrole=strimzi-cluster-
operator-watched --serviceaccount my-cluster-operator-namespace:strimzi-cluster-operator
oc create clusterrolebinding strimzi-cluster-operator-entity-operator-delegation --
clusterrole=strimzi-entity-operator --serviceaccount my-cluster-operator-namespace:strimzi-
cluster-operator

4. Deploy the Cluster Operator to your OpenShift cluster.

I oc create -f install/cluster-operator -n my-cluster-operator-namespace

5. Check the status of the deployment:

I oc get deployments -n my-cluster-operator-namespace

43

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

Output shows the deployment name and readiness

NAME READY UP-TO-DATE AVAILABLE
strimzi-cluster-operator 1/1 1 1

READY shows the number of replicas that are ready/expected. The deployment is successful
when the AVAILABLE output shows 1.

6.3. DEPLOYING KAFKA

To be able to manage a Kafka cluster with the Cluster Operator, you must deploy it as a Kafka resource.
AMQ Streams provides example deployment files to do this. You can use these files to deploy the Topic
Operator and User Operator at the same time.

After you have deployed the Cluster Operator, use a Kafka resource to deploy the following
components:

® Kafka cluster or (preview) Kafka cluster with node pools
® Topic Operator
® User Operator

When installing Kafka, AMQ Streams also installs a ZooKeeper cluster and adds the necessary
configuration to connect Kafka with ZooKeeper.

If you are trying the preview of the node pools feature, you can deploy a Kafka cluster with one or more
node pools. Node pools provide configuration for a set of Kafka nodes. By using node pools, nodes can
have different configuration within the same Kafka cluster.

Node pools are not enabled by default, so you must enable the KafkaNodePools feature gate before
using them.

If you haven't deployed a Kafka cluster as a Kafka resource, you can’t use the Cluster Operator to
manage it. This applies, for example, to a Kafka cluster running outside of OpenShift. However, you can
use the Topic Operator and User Operator with a Kafka cluster that is not managed by AMQ Streams,
by deploying them as standalone components. You can also deploy and use other Kafka components
with a Kafka cluster not managed by AMQ Streams.

6.3.1. Deploying the Kafka cluster

This procedure shows how to deploy a Kafka cluster to your OpenShift cluster using the Cluster
Operator.

The deployment uses a YAML file to provide the specification to create a Kafka resource.
AMQ Streams provides the following example files you can use to create a Kafka cluster:

kafka-persistent.yaml
Deploys a persistent cluster with three ZooKeeper and three Kafka nodes.
kafka-jbod.yaml

Deploys a persistent cluster with three ZooKeeper and three Kafka nodes (each using multiple
persistent volumes).

kafka-persistent-single.yaml

44

CHAPTER 6. DEPLOYING AMQ STREAMS USING INSTALLATION ARTIFACTS

Deploys a persistent cluster with a single ZooKeeper node and a single Kafka node.
kafka-ephemeral.yamli

Deploys an ephemeral cluster with three ZooKeeper and three Kafka nodes.
kafka-ephemeral-single.yaml

Deploys an ephemeral cluster with three ZooKeeper nodes and a single Kafka node.
In this procedure, we use the examples for an ephemeral and persistent Kafka cluster deployment.

Ephemeral cluster

In general, an ephemeral (or temporary) Kafka cluster is suitable for development and testing
purposes, not for production. This deployment uses emptyDir volumes for storing broker
information (for ZooKeeper) and topics or partitions (for Kafka). Using an emptyDir volume means
that its content is strictly related to the pod life cycle and is deleted when the pod goes down.

Persistent cluster

A persistent Kafka cluster uses persistent volumes to store ZooKeeper and Kafka data. A
PersistentVolume is acquired using a PersistentVolumeClaim to make it independent of the actual
type of the PersistentVolume. The PersistentVolumeClaim can use a StorageClass to trigger
automatic volume provisioning. When no StorageClass is specified, OpenShift will try to use the
default StorageClass.

The following examples show some common types of persistent volumes:

e |f your OpenShift cluster runs on Amazon AWS, OpenShift can provision Amazon EBS
volumes

® |f your OpenShift cluster runs on Microsoft Azure, OpenShift can provision Azure Disk
Storage volumes

e |f your OpenShift cluster runs on Google Cloud, OpenShift can provision Persistent Disk
volumes

e |f your OpenShift cluster runs on bare metal, OpenShift can provision local persistent
volumes

The example YAML files specify the latest supported Kafka version, and configuration for its supported
log message format version and inter-broker protocol version. The inter.broker.protocol.version
property for the Kafka config must be the version supported by the specified Kafka version
(spec.kafka.version). The property represents the version of Kafka protocol used in a Kafka cluster.

From Kafka 3.0.0, when the inter.broker.protocol.version is set to 3.0 or higher, the
log.message.format.version option is ignored and doesn’t need to be set.

An update to the inter.broker.protocol.version is required when upgrading Kafka.

The example clusters are named my-cluster by default. The cluster name is defined by the name of the
resource and cannot be changed after the cluster has been deployed. To change the cluster name
before you deploy the cluster, edit the Kafka.metadata.name property of the Kafka resource in the
relevant YAML file.

Default cluster name and specified Kafka versions

apiVersion: kafka.strimzi.io/vibeta2
kind: Kafka
metadata:

45

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

name: my-cluster
spec:
kafka:
version: 3.5.0
#...
config:
#...
log.message.format.version: "3.5"
inter.broker.protocol.version: "3.5"
#...

Prerequisites

® The Cluster Operator must be deployed.

Procedure
1. Create and deploy an ephemeral or persistent cluster.

® To create and deploy an ephemeral cluster:

I oc apply -f examples/kafka/kafka-ephemeral.yaml

® To create and deploy a persistent cluster:

I oc apply -f examples/kafka/katka-persistent.yaml

2. Check the status of the deployment:

I oc get pods -n <my_cluster_operator_namespace>

Output shows the pod hames and readiness

NAME READY STATUS RESTARTS
my-cluster-entity-operator 3/3 Running 0
my-cluster-kafka-0 1/1 Running 0
my-cluster-kafka-1 1/1 Running 0
my-cluster-kafka-2 1/1 Running 0

my-cluster-zookeeper-0 1/1 Running 0
my-cluster-zookeeper-1 1/1 Running 0
my-cluster-zookeeper-2 ~ 1/1 Running 0

my-cluster is the name of the Kafka cluster.

A sequential index number starting with 0 identifies each Kafka and ZooKeeper pod created.

With the default deployment, you create an Entity Operator cluster, 3 Kafka pods, and 3

ZooKeeper pods.

READY shows the number of replicas that are ready/expected. The deployment is successful

when the STATUS displays as Running.

Additional resources

46

CHAPTER 6. DEPLOYING AMQ STREAMS USING INSTALLATION ARTIFACTS

Kafka cluster configuration

6.3.2. (Preview) Deploying Kafka node pools

This procedure shows how to deploy Kafka node pools to your OpenShift cluster using the Cluster
Operator. Node pools represent a distinct group of Kafka nodes within a Kafka cluster that share the
same configuration. For each Kafka node in the node pool, any configuration not defined in node pool is
inherited from the cluster configuration in the kafka resource.

NOTE

The node pools feature is available as a preview. Node pools are not enabled by default,
so you must enable the KafkaNodePools feature gate before using them.

The deployment uses a YAML file to provide the specification to create a KafkaNodePool resource.
You can use node pools with Kafka clusters that use KRaft (Kafka Raft metadata) mode or ZooKeeper
for cluster management.

IMPORTANT

KRaft mode is not ready for production in Apache Kafka or in AMQ Streams.

AMQ Streams provides the following example files that you can use to create a Kafka node pool:

kafka.yaml

Deploys ZooKeeper with 3 nodes, and 2 different pools of Kafka brokers. Each of the pools has 3
brokers. The pools in the example use different storage configuration.

kafka-with-dual-role-kraft-nodes.yaml
Deploys a Kafka cluster with one pool of KRaft nodes that share the broker and controller roles.
kafka-with-kraft.yaml

Deploys a Kafka cluster with one pool of controller nodes and one pool of broker nodes.

NOTE
You don't need to start using node pools right away. If you decide to use them, you can

perform the steps outlined here to deploy a new Kafka cluster with KafkaNodePool
resources or migrate your existing Kafka cluster.

Prerequisites

® The Cluster Operator must be deployed.

® You have created and deployed a Kafka cluster.

NOTE

If you want to migrate an existing Kafka cluster to use node pools, see the steps to
migrate existing Kafka clusters.

Procedure

47

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

48

1. Enable the KafkaNodePools feature gate from the command line:

oc set env deployment/strimzi-cluster-operator
STRIMZI_FEATURE_GATES="+KafkaNodePools"

Or by editing the Cluster Operator Deployment and updating the STRIMZI_FEATURE_GATES
environment variable:

env
- name: STRIMZI _FEATURE_GATES
value: +KafkaNodePools

This updates the Cluster Operator.
If using KRaft mode, enable the UseKRaft feature gate as well.
2. Create anode pool.

® To deploy a Kafka cluster and ZooKeeper cluster with two node pools of three brokers:

I oc apply -f examples/kafka/nodepools/kafka.yaml

® To deploy a Kafka cluster in KRaft mode with a single node pool that uses dual-role nodes:

I oc apply -f examples/kafka/nodepools/kafka-with-dual-role-kraft-nodes.yaml

® To deploy a Kafka cluster in KRaft mode with separate node pools for broker and controller
nodes:

I oc apply -f examples/kafka/nodepools/kafka-with-kraft.yaml
3. Check the status of the deployment:

I oc get pods -n <my_cluster_operator_namespace>
Output shows the node pool names and readiness

NAME READY STATUS RESTARTS
my-cluster-entity-operator 3/8 Running 0
my-cluster-pool-a-kafka-0 1/1 Running 0
my-cluster-pool-a-kafka-1 1/1 Running 0
my-cluster-pool-a-kafka-4 1/1 Running 0

® my-cluster is the name of the Kafka cluster.

® pool-ais the name of the node pool.

A sequential index number starting with 0 identifies each Kafka pod created. If you are using
ZooKeeper, you'll also see the ZooKeeper pods.

READY shows the number of replicas that are ready/expected. The deployment is
successful when the STATUS displays as Running.

Information on the deployment is also shown in the status of the KafkaNodePool resource,
including a list of IDs for nodes in the pool.

CHAPTER 6. DEPLOYING AMQ STREAMS USING INSTALLATION ARTIFACTS

NOTE

Node IDs are assigned sequentially starting at O (zero) across all node pools
within a cluster. This means that node IDs might not run sequentially within a
specific node pool. If there are gaps in the sequence of node IDs across the
cluster, the next node to be added is assigned an ID that fills the gap. When
scaling down, the node with the highest node ID within a pool is removed.

Additional resources

Node pool configuration

6.3.3. Deploying the Topic Operator using the Cluster Operator

This procedure describes how to deploy the Topic Operator using the Cluster Operator. The Topic
Operator can be deployed for use in either bidirectional mode or unidirectional mode. To learn more
about bidirectional and unidirectional topic management, see Section 9.1, “Topic management modes”.

NOTE

Unidirectional topic management is available as a preview. Unidirectional topic
management is not enabled by default, so you must enable the
UnidirectionalTopicOperator feature gate to be able to use it.

You configure the entityOperator property of the Kafka resource to include the topicOperator. By
default, the Topic Operator watches for KafkaTopic resources in the namespace of the Kafka cluster
deployed by the Cluster Operator. You can also specify a namespace using watchedNamespace in the
Topic Operator spec. A single Topic Operator can watch a single namespace. One namespace should
be watched by only one Topic Operator.

If you use AMQ Streams to deploy multiple Kafka clusters into the same namespace, enable the Topic
Operator for only one Kafka cluster or use the watchedNamespace property to configure the Topic
Operators to watch other namespaces.

If you want to use the Topic Operator with a Kafka cluster that is not managed by AMQ Streams, you
must deploy the Topic Operator as a standalone component.

For more information about configuring the entityOperator and topicOperator properties, see
Configuring the Entity Operator.

Prerequisites

® The Cluster Operator must be deployed.

Procedure

1. Edit the entityOperator properties of the Kafka resource to include topicOperator:

apiVersion: kafka.strimzi.io/vibeta2
kind: Kafka
metadata:
name: my-cluster
spec:
#...

49

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

entityOperator:
topicOperator: {}
userOperator: {}

2. Configure the Topic Operator spec using the properties described in the
EntityTopicOperatorSpec schema reference.
Use an empty object ({}) if you want all properties to use their default values.

3. Create or update the resource:

I oc apply -f <kafka_configuration_file>

4. Check the status of the deployment:

I oc get pods -n <my_cluster_operator_namespace>

Output shows the pod hame and readiness

NAME READY STATUS RESTARTS
my-cluster-entity-operator 3/3 Running 0
#...

my-cluster is the name of the Kafka cluster.

READY shows the number of replicas that are ready/expected. The deployment is successful
when the STATUS displays as Running.
6.3.4. Deploying the User Operator using the Cluster Operator

This procedure describes how to deploy the User Operator using the Cluster Operator.

You configure the entityOperator property of the Kafka resource to include the userOperator. By
default, the User Operator watches for KafkaUser resources in the namespace of the Kafka cluster
deployment. You can also specify a namespace using watchedNamespace in the User Operator spec. A
single User Operator can watch a single namespace. One namespace should be watched by only one
User Operator.

If you want to use the User Operator with a Kafka cluster that is not managed by AMQ Streams, you
must deploy the User Operator as a standalone component.

For more information about configuring the entityOperator and userOperator properties, see
Configuring the Entity Operator.

Prerequisites

® The Cluster Operator must be deployed.

Procedure

1. Edit the entityOperator properties of the Kafka resource to include userOperator:

apiVersion: kafka.strimzi.io/vibeta2
kind: Kafka
metadata:

50

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index#type-EntityTopicOperatorSpec-reference

CHAPTER 6. DEPLOYING AMQ STREAMS USING INSTALLATION ARTIFACTS

name: my-cluster
spec:
#...
entityOperator:
topicOperator: {}
userOperator: {}

2. Configure the User Operator spec using the properties described in EntityUserOperatorSpec
schema reference.
Use an empty object ({}) if you want all properties to use their default values.

3. Create or update the resource:

I oc apply -f <kafka_configuration_file>

4. Check the status of the deployment:

I oc get pods -n <my_cluster_operator_namespace>

Output shows the pod hame and readiness

NAME READY STATUS RESTARTS
my-cluster-entity-operator 3/8 Running 0
#...

my-cluster is the name of the Kafka cluster.

READY shows the number of replicas that are ready/expected. The deployment is successful
when the STATUS displays as Running.

6.3.5. List of Kafka cluster resources

The following resources are created by the Cluster Operator in the OpenShift cluster:

Shared resources

cluster-name-cluster-ca
Secret with the Cluster CA private key used to encrypt the cluster communication.
cluster-name-cluster-ca-cert

Secret with the Cluster CA public key. This key can be used to verify the identity of the Kafka
brokers.

cluster-name-clients-ca

Secret with the Clients CA private key used to sign user certificates
cluster-name-clients-ca-cert

Secret with the Clients CA public key. This key can be used to verify the identity of the Kafka users.
cluster-name-cluster-operator-certs

Secret with Cluster operators keys for communication with Kafka and ZooKeeper.

ZooKeeper nodes

51

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index#type-EntityUserOperatorSpec-reference

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

cluster-name-zookeeper

Name given to the following ZooKeeper resources:

® StrimziPodSet for managing the ZooKeeper node pods.
® Service account used by the ZooKeeper nodes.

e PodDisruptionBudget configured for the ZooKeeper nodes.

cluster-name-zookeeper-idx

Pods created by the StrimziPodSet.
cluster-name-zookeeper-nodes

Headless Service needed to have DNS resolve the ZooKeeper pods IP addresses directly.
cluster-name-zookeeper-client

Service used by Kafka brokers to connect to ZooKeeper nodes as clients.
cluster-name-zookeeper-config

ConfigMap that contains the ZooKeeper ancillary configuration, and is mounted as a volume by the
ZooKeeper node pods.

cluster-name-zookeeper-nodes

Secret with ZooKeeper node keys.
cluster-name-network-policy-zookeeper

Network policy managing access to the ZooKeeper services.
data-cluster-name-zookeeper-idx

Persistent Volume Claim for the volume used for storing data for the ZooKeeper node pod idx. This
resource will be created only if persistent storage is selected for provisioning persistent volumes to
store data.

Kafka brokers

cluster-name-kafka

Name given to the following Kafka resources:

® StrimziPodSet for managing the Kafka broker pods.
® Service account used by the Kafka pods.

e PodDisruptionBudget configured for the Kafka brokers.

cluster-name-kafka-idx

Name given to the following Kafka resources:

® Pods created by the StrimziPodSet.

e ConfigMaps with Kafka broker configuration.

cluster-name-kafka-brokers
Service needed to have DNS resolve the Kafka broker pods IP addresses directly.

cluster-name-kafka-bootstrap

52

CHAPTER 6. DEPLOYING AMQ STREAMS USING INSTALLATION ARTIFACTS

Service can be used as bootstrap servers for Kafka clients connecting from within the OpenShift
cluster.

cluster-name-kafka-external-bootstrap

Bootstrap service for clients connecting from outside the OpenShift cluster. This resource is created
only when an external listener is enabled. The old service name will be used for backwards
compatibility when the listener name is external and port is 9094.

cluster-name-kafka-pod-id

Service used to route traffic from outside the OpenShift cluster to individual pods. This resource is
created only when an external listener is enabled. The old service name will be used for backwards
compatibility when the listener name is external and port is 9094.

cluster-name-kafka-external-bootstrap

Bootstrap route for clients connecting from outside the OpenShift cluster. This resource is created
only when an external listener is enabled and set to type route. The old route name will be used for
backwards compatibility when the listener name is external and port is 9094.

cluster-name-kafka-pod-id

Route for traffic from outside the OpenShift cluster to individual pods. This resource is created only
when an external listener is enabled and set to type route. The old route name will be used for
backwards compatibility when the listener name is external and port is 9094.

cluster-name-kafka-listener-name-bootstrap

Bootstrap service for clients connecting from outside the OpenShift cluster. This resource is created
only when an external listener is enabled. The new service name will be used for all other external
listeners.

cluster-name-kafka-listener-name-pod-id

Service used to route traffic from outside the OpenShift cluster to individual pods. This resource is
created only when an external listener is enabled. The new service name will be used for all other
external listeners.

cluster-name-kafka-listener-name-bootstrap

Bootstrap route for clients connecting from outside the OpenShift cluster. This resource is created
only when an external listener is enabled and set to type route. The new route name will be used for
all other external listeners.

cluster-name-kafka-listener-name-pod-id

Route for traffic from outside the OpenShift cluster to individual pods. This resource is created only
when an external listener is enabled and set to type route. The new route name will be used for all
other external listeners.

cluster-name-kafka-config

ConfigMap containing the Kafka ancillary configuration, which is mounted as a volume by the broker
pods when the UseStrimziPodSets feature gate is disabled.

cluster-name-kafka-brokers

Secret with Kafka broker keys.
cluster-name-network-policy-kafka

Network policy managing access to the Kafka services.
strimzi-namespace-name-cluster-name-kafka-init

Cluster role binding used by the Kafka brokers.
cluster-name-jmx

Secret with JMX username and password used to secure the Kafka broker port. This resource is
created only when JMX is enabled in Kafka.

data-cluster-name-kafka-idx

53

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

Persistent Volume Claim for the volume used for storing data for the Kafka broker pod idx. This
resource is created only if persistent storage is selected for provisioning persistent volumes to store
data.

data-id-cluster-name-kafka-idx

Persistent Volume Claim for the volume id used for storing data for the Kafka broker pod idx. This
resource is created only if persistent storage is selected for JBOD volumes when provisioning
persistent volumes to store data.

Entity Operator

These resources are only created if the Entity Operator is deployed using the Cluster Operator.

cluster-name-entity-operator

Name given to the following Entity Operator resources:

® Deployment with Topic and User Operators.
® Service account used by the Entity Operator.

® Network policy managing access to the Entity Operator metrics.

cluster-name-entity-operator-random-string

Pod created by the Entity Operator deployment.
cluster-name-entity-topic-operator-config

ConfigMap with ancillary configuration for Topic Operators.
cluster-name-entity-user-operator-config

ConfigMap with ancillary configuration for User Operators.
cluster-name-entity-topic-operator-certs

Secret with Topic Operator keys for communication with Kafka and ZooKeeper.
cluster-name-entity-user-operator-certs

Secret with User Operator keys for communication with Kafka and ZooKeeper.
strimzi-cluster-name-entity-topic-operator

Role binding used by the Entity Topic Operator.
strimzi-cluster-name-entity-user-operator

Role binding used by the Entity User Operator.

Kafka Exporter

These resources are only created if the Kafka Exporter is deployed using the Cluster Operator.

cluster-name-kafka-exporter

Name given to the following Kafka Exporter resources:

® Deployment with Kafka Exporter.
® Service used to collect consumer lag metrics.
® Service account used by the Kafka Exporter.

® Network policy managing access to the Kafka Exporter metrics.

54

CHAPTER 6. DEPLOYING AMQ STREAMS USING INSTALLATION ARTIFACTS

cluster-name-kafka-exporter-random-string

Pod created by the Kafka Exporter deployment.

Cruise Control
These resources are only created if Cruise Control was deployed using the Cluster Operator.

cluster-name-cruise-control

Name given to the following Cruise Control resources:

® Deployment with Cruise Control.
® Service used to communicate with Cruise Control.

® Service account used by the Cruise Control.

cluster-name-cruise-control-random-string
Pod created by the Cruise Control deployment.
cluster-name-cruise-control-config

ConfigMap that contains the Cruise Control ancillary configuration, and is mounted as a volume by
the Cruise Control pods.

cluster-name-cruise-control-certs
Secret with Cruise Control keys for communication with Kafka and ZooKeeper.
cluster-name-network-policy-cruise-control

Network policy managing access to the Cruise Control service.

6.4. DEPLOYING KAFKA CONNECT

Kafka Connect is an integration toolkit for streaming data between Kafka brokers and other systems
using connector plugins. Kafka Connect provides a framework for integrating Kafka with an external data
source or target, such as a database or messaging system, for import or export of data using connectors.

Connectors are plugins that provide the connection configuration needed.

In AMQ Streams, Kafka Connect is deployed in distributed mode. Katka Connect can also work in
standalone mode, but this is not supported by AMQ Streams.

Using the concept of connectors, Kafka Connect provides a framework for moving large amounts of
data into and out of your Kafka cluster while maintaining scalability and reliability.

The Cluster Operator manages Kafka Connect clusters deployed using the KafkaConnect resource and
connectors created using the KafkaConnector resource.

In order to use Kafka Connect, you need to do the following.
® Deploy a Kafka Connect cluster

® Add connectors to integrate with other systems

NOTE

The term connector is used interchangeably to mean a connector instance running within
a Kafka Connect cluster, or a connector class. In this guide, the term connector is used
when the meaning is clear from the context.

55

https://kafka.apache.org/documentation/#connect

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

6.4.1. Deploying Kafka Connect to your OpenShift cluster

This procedure shows how to deploy a Kafka Connect cluster to your OpenShift cluster using the Cluster
Operator.

A Kafka Connect cluster deployment is implemented with a configurable number of nodes (also called
workers) that distribute the workload of connectors as tasks so that the message flow is highly scalable
and reliable.

The deployment uses a YAML file to provide the specification to create a KafkaConnect resource.

AMQ Streams provides example configuration files. In this procedure, we use the following example file:

e examples/connect/kafka-connect.yamli

Prerequisites

® The Cluster Operator must be deployed.

® Running Kafka cluster.

Procedure

1. Deploy Kafka Connect to your OpenShift cluster. Use the examples/connect/kafka-
connect.yaml file to deploy Kafka Connect.

I oc apply -f examples/connect/kafka-connect.yaml

2. Check the status of the deployment:

I oc get pods -n <my_cluster_operator_namespace>

Output shows the deployment name and readiness

NAME READY STATUS RESTARTS
my-connect-cluster-connect-<pod_id> 1/1 Running 0

my-connect-cluster is the name of the Kafka Connect cluster.
A pod ID identifies each pod created.
With the default deployment, you create a single Kafka Connect pod.

READY shows the number of replicas that are ready/expected. The deployment is successful
when the STATUS displays as Running.

Additional resources

Kafka Connect cluster configuration

6.4.2. Configuring Kafka Connect for multiple instances

If you are running multiple instances of Kafka Connect, you have to change the default configuration of
the following config properties:

56

0009

CHAPTER 6. DEPLOYING AMQ STREAMS USING INSTALLATION ARTIFACTS

apiVersion: kafka.strimzi.io/vibeta2
kind: KafkaConnect
metadata:
name: my-connect
spec:
#...
config:
group.id: connect-cluster ﬂ
offset.storage.topic: connect-cluster-offsets 9
config.storage.topic: connect-cluster-configs 6
status.storage.topic: connect-cluster-status
#...

The Kafka Connect cluster ID within Kafka.
Kafka topic that stores connector offsets.
Kafka topic that stores connector and task status configurations.

Kafka topic that stores connector and task status updates.

NOTE

Values for the three topics must be the same for all Kafka Connect instances with the
same group.id.

-

Unless you change the default settings, each Kafka Connect instance connecting to the same Kafka
cluster is deployed with the same values. What happens, in effect, is all instances are coupled to runin a
cluster and use the same topics.

If multiple Kafka Connect clusters try to use the same topics, Kafka Connect will not work as expected
and generate errors.

If you wish to run multiple Kafka Connect instances, change the values of these properties for each
instance.

6.4.3. Adding connectors

Kafka Connect uses connectors to integrate with other systems to stream data. A connector is an
instance of a Kafka Connector class, which can be one of the following type:

Source connector

A source connector is a runtime entity that fetches data from an external system and feeds it to
Kafka as messages.

Sink connector

A sink connector is a runtime entity that fetches messages from Kafka topics and feeds them to an
external system.

Kafka Connect uses a plugin architecture to provide the implementation artifacts for connectors.
Plugins allow connections to other systems and provide additional configuration to manipulate data.
Plugins include connectors and other components, such as data converters and transforms. A connector

57

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

operates with a specific type of external system. Each connector defines a schema for its configuration.
You supply the configuration to Kafka Connect to create a connector instance within Kafka Connect.
Connector instances then define a set of tasks for moving data between systems.

Add connector plugins to Kafka Connect in one of the following ways:
® Configure Kafka Connect to build a new container image with plugins automatically

® Create a Docker image from the base Kafka Connectimage (manually or using continuous
integration)

After plugins have been added to the container image, you can start, stop, and manage connector
instances in the following ways:

e Using AMQ Streams’s KafkaConnector custom resource
® Using the Kafka Connect API

You can also create new connector instances using these options.

6.4.3.1. Building a new container image with connector plugins automatically

Configure Kafka Connect so that AMQ Streams automatically builds a new container image with
additional connectors. You define the connector plugins using the .spec.build.plugins property of the
KafkaConnect custom resource. AMQ Streams will automatically download and add the connector
plugins into a new container image. The container is pushed into the container repository specified in
.spec.build.output and automatically used in the Kafka Connect deployment.

Prerequisites

® The Cluster Operator must be deployed.
® A container registry.

You need to provide your own container registry where images can be pushed to, stored, and pulled
from. AMQ Streams supports private container registries as well as public registries such as Quay or
Docker Hub.

Procedure

1. Configure the KafkaConnect custom resource by specifying the container registry in
.spec.build.output, and additional connectors in .spec.build.plugins:

apiVersion: kafka.strimzi.io/vibeta2
kind: KafkaConnect
metadata:
name: my-connect-cluster
spec:
#...
build:
output: @)
type: docker
image: my-registry.io/my-org/my-connect-cluster:latest
pushSecret: my-registry-credentials
plugins:

58

https://quay.io/
https://hub.docker.com//

CHAPTER 6. DEPLOYING AMQ STREAMS USING INSTALLATION ARTIFACTS

- name: debezium-postgres-connector
artifacts:
- type: tgz
url: https://repo1.maven.org/maven2/io/debezium/debezium-connector-
postgres/2.1.3.Final/debezium-connector-postgres-2.1.3.Final-plugin.tar.gz
sha512sum:
c4ddc97846de561755dc0b021a62aba656098829c70eb3ade3b817ce06d852ca12ae50c0281cc
791a5a131cb7fc21fb15f4b8ee76c6cae5dd07f9c11cb7c6e79
- name: camel-telegram
artifacts:
- type: tgz
url: https://repo.maven.apache.org/maven2/org/apache/camel/kafkaconnector/camel-
telegram-kafka-connector/0.11.5/camel-telegram-kafka-connector-0.11.5-package.tar.gz
sha512sum:
d6d9f45e0d1dbfccof6d1c7ca2046168c764389c78bc4b867dab32d24f710bb74ccf2a007d7d7a8
af2dfca09d9a52ccbc2831fc715¢195a3634cca055185bd911
#...

ﬂ The specification for the Kafka Connect cluster.
9 (Required) Configuration of the container registry where new images are pushed.
(Required) List of connector plugins and their artifacts to add to the new container image.

Each plugin must be configured with at least one artifact.

2. Create or update the resource:

I $ oc apply -f <kafka_connect_configuration_file>

3. Wait for the new container image to build, and for the Kafka Connect cluster to be deployed.

4. Use the Kafka Connect REST API or KafkaConnector custom resources to use the connector
plugins you added.

Additional resources

® Kafka Connect Build schema reference
6.4.3.2. Building a new container image with connector plugins from the Kafka Connect
base image

Create a custom Docker image with connector plugins from the Kafka Connect base image Add the
custom image to the /opt/kafka/plugins directory.

You can use the Kafka container image on Red Hat Ecosystem Catalog as a base image for creating
your own custom image with additional connector plugins.

At startup, the AMQ Streams version of Kafka Connect loads any third-party connector plugins
contained in the /opt/kafka/plugins directory.

Prerequisites

® The Cluster Operator must be deployed.

™~

59

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index#type-KafkaConnectSpec-reference
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index#type-Build-reference
https://catalog.redhat.com/software/containers/explore

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

rFroceaure

60

1. Create a new Dockerfile using registry.redhat.io/amq-streams/kafka-35-rhel8:2.5.1 as the
base image:

FROM registry.redhat.io/amqg-streams/kafka-35-rhel8:2.5.1
USER root:root

COPY ./my-plugins/ /opt/kafka/plugins/

USER 1001

Example plugins file

$ tree ./my-plugins/

./my-plugins/

— debezium-connector-mongodb

—— bson-<version>.jar

CHANGELOG.md

—— CONTRIBUTE.md

—— COPYRIGHT .txt

—— debezium-connector-mongodb-<version>.jar
—— debezium-core-<version>.jar

—— LICENSE.ixt

—— mongodb-driver-core-<version>.jar

—— README.md

—# ...

— debezium-connector-mysg|

—— CHANGELOG.md

—— CONTRIBUTE.md

—— COPYRIGHT .txt

—— debezium-connector-mysql-<version>.jar
—— debezium-core-<version>.jar

—— LICENSE.ixt

—— mysql-binlog-connector-java-<versions.jar
—— mysql-connector-java-<version>.jar

—— README.md

—# ...

L— debezium-connector-postgres

—— CHANGELOG.md

—— CONTRIBUTE.md

—— COPYRIGHT .txt

—— debezium-connector-postgres-<version>.jar
debezium-core-<version>.jar

—— LICENSE.txt

—— postgresql-<version>.jar

—— protobuf-java-<versions.jar

—— README.md

—# ...

The COPY command points to the plugin files to copy to the container image.
This example adds plugins for Debezium connectors (MongoDB, MySQL, and PostgreSQL),
though not all files are listed for brevity. Debezium running in Kafka Connect looks the same as

any other Kafka Connect task.

2. Build the container image.

CHAPTER 6. DEPLOYING AMQ STREAMS USING INSTALLATION ARTIFACTS

3. Push your custom image to your container registry.

4. Point to the new container image.
You can point to the image in one of the following ways:

e Edit the KafkaConnect.spec.image property of the KafkaConnect custom resource.
If set, this property overrides the STRIMZI_KAFKA_CONNECT_IMAGES environment
variable in the Cluster Operator.

apiVersion: kafka.strimzi.io/vibeta2
kind: KafkaConnect
metadata:
name: my-connect-cluster
spec:
#...
image: my-new-container-image 9
config:
#...

ﬂ The specification for the Kafka Connect cluster.
9 The docker image for the pods.

9 Configuration of the Kafka Connect workers (not connectors).

e Edit the STRIMZI_KAFKA_CONNECT_IMAGES environment variable in the
install/cluster-operator/060-Deployment-strimzi-cluster-operator.yaml file to point to
the new container image, and then reinstall the Cluster Operator.

Additional resources

® Container image configuration and the KafkaConnect.spec.image property

® Cluster Operator configuration and the STRIMZI_KAFKA_CONNECT_IMAGES variable

6.4.3.3. Deploying KafkaConnector resources

Deploy KafkaConnector resources to manage connectors. The KafkaConnector custom resource
offers an OpenShift-native approach to management of connectors by the Cluster Operator. You don't
need to send HTTP requests to manage connectors, as with the Kafka Connect REST API. You manage a
running connector instance by updating its corresponding KafkaConnector resource, and then applying
the updates. The Cluster Operator updates the configurations of the running connector instances. You
remove a connector by deleting its corresponding KafkaConnector.

KafkaConnector resources must be deployed to the same namespace as the Kafka Connect cluster
they link to.

In the configuration shown in this procedure, the autoRestart property is set to true. This enables
automatic restarts of failed connectors and tasks. Up to seven restart attempts are made, after which
restarts must be made manually. You annotate the KafkaConnector resource to restart a connector or

restart a connector task manually.

Example connectors

61

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index#type-KafkaConnectSpec-reference
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index#con-common-configuration-images-reference

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

You can use your own connectors or try the examples provided by AMQ Streams. Up until Apache Kafka
3.1.0, example file connector plugins were included with Apache Kafka. Starting from the 3.1.1and 3.2.0
releases of Apache Kafka, the examples need to be added to the plugin path as any other connector .

AMQ Streams provides an example KafkaConnector configuration file (examples/connect/source-
connector.yaml) for the example file connector plugins, which creates the following connector
instances as KafkaConnector resources:

e A FileStreamSourceConnector instance that reads each line from the Kafka license file (the
source) and writes the data as messages to a single Kafka topic.

e A FileStreamSinkConnector instance that reads messages from the Kafka topic and writes the
messages to a temporary file (the sink).

We use the example file to create connectors in this procedure.

NOTE

The example connectors are not intended for use in a production environment.

Prerequisites

e A Kafka Connect deployment

® The Cluster Operator is running

Procedure

1. Add the FileStreamSourceConnector and FileStreamSinkConnector plugins to Kafka
Connect in one of the following ways:

® Configure Kafka Connect to build a new container image with plugins automatically

® Create a Docker image from the base Kafka Connectimage (manually or using continuous
integration)

2. Set the strimzi.io/use-connector-resources annotation to true in the Kafka Connect
configuration.

apiVersion: kafka.strimzi.io/vibeta2
kind: KafkaConnect
metadata:
name: my-connect-cluster
annotations:
strimzi.io/use-connector-resources: "true"
spec:
#...

With the KafkaConnector resources enabled, the Cluster Operator watches for them.

3. Edit the examples/connect/source-connector.yaml file:

apiVersion: kafka.strimzi.io/vibeta2
kind: KafkaConnector
metadata:

name: my-source-connector ﬂ

62

CHAPTER 6. DEPLOYING AMQ STREAMS USING INSTALLATION ARTIFACTS

labels:
strimzi.io/cluster: my-connect-cluster 9
spec:
class: org.apache.kafka.connect.file.FileStreamSourceConnector 6
tasksMax: 2
autoRestart:
enabled: true
config: G
file: "/opt/kafka/LICENSE" ﬂ
topic: my-topic
#...

Name of the KafkaConnector resource, which is used as the name of the connector. Use
any name that is valid for an OpenShift resource.

Name of the Kafka Connect cluster to create the connector instance in. Connectors must
be deployed to the same namespace as the Kafka Connect cluster they link to.

Full name or alias of the connector class. This should be present in the image being used
by the Kafka Connect cluster.

Maximum number of Kafka Connect tasks that the connector can create.
Enables automatic restarts of failed connectors and tasks.

Connector configuration as key-value pairs.

OS9®0 ©®© ® °

This example source connector configuration reads data from the /opt/kafka/LICENSE
file.

o

Kafka topic to publish the source data to.

4. Create the source KafkaConnector in your OpenShift cluster:

I oc apply -f examples/connect/source-connector.yaml

5. Create an examples/connect/sink-connector.yaml file:

I touch examples/connect/sink-connector.yaml

6. Paste the following YAML into the sink-connector.yaml file:

apiVersion: kafka.strimzi.io/vibeta2
kind: KafkaConnector
metadata:
name: my-sink-connector
labels:
strimzi.io/cluster: my-connect
spec:
class: org.apache.kafka.connect.file.FileStreamSinkConnector ﬂ
tasksMax: 2

63

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

config: g
file: "tmp/my-file" @)
topics: my-topic

Full name or alias of the connector class. This should be present in the image being used
by the Kafka Connect cluster.

Connector configuration as key-value pairs.

Temporary file to publish the source data to.

O00® 9

Kafka topic to read the source data from.

7. Create the sink KafkaConnector in your OpenShift cluster:

I oc apply -f examples/connect/sink-connector.yami

8. Check that the connector resources were created:

oc get kctr --selector strimzi.io/cluster=<my_connect_cluster> -0 name

my-source-connector
my-sink-connector

Replace <my_connect_cluster> with the name of your Kafka Connect cluster.

9. In the container, execute kafka-console-consumer.sh to read the messages that were written
to the topic by the source connector:

oc exec <my_kafka_cluster>-kafka-0 -i -t -- bin/kafka-console-consumer.sh --bootstrap-
server <my_kafka_cluster>-kafka-bootstrap. NAMESPACE.svc:9092 --topic my-topic --from-
beginning

Replace <my_kafka_cluster> with the name of your Kafka cluster.

Source and sink connector configuration options
The connector configuration is defined in the spec.config property of the KafkaConnector resource.

The FileStreamSourceConnector and FileStreamSinkConnector classes support the same
configuration options as the Kafka Connect REST API. Other connectors support different configuration
options.

Table 6.1. Configuration options for theFileStreamSource connector class

Name Type Default value Description

file String Null Source file to write
messages to. If not
specified, the standard
input is used.

topic List Null The Kafka topic to
publish data to.

64

CHAPTER 6. DEPLOYING AMQ STREAMS USING INSTALLATION ARTIFACTS

Table 6.2. Configuration options forFileStreamSinkConnector class

Name Type Default value Description

file String Null Destination file to write
messages to. If not
specified, the standard
output is used.

topics List Null One or more Kafka
topics to read data from.

topics.regex String Null A regular expression
matching one or more
Kafka topics to read
data from.

6.4.3.4. Manually restarting connectors

If you are using KafkaConnector resources to manage connectors, use the restart annotation to
manually trigger a restart of a connector.

Prerequisites

® The Cluster Operator is running.

Procedure

1. Find the name of the KafkaConnector custom resource that controls the Kafka connector you
want to restart:

I oc get KafkaConnector

2. Restart the connector by annotating the KafkaConnector resource in OpenShift.
I oc annotate KafkaConnector <kafka_connector_name> strimzi.io/restart=true

The restart annotation is set to true.

3. Wait for the next reconciliation to occur (every two minutes by default).
The Kafka connector is restarted, as long as the annotation was detected by the reconciliation
process. When Kafka Connect accepts the restart request, the annotation is removed from the
KafkaConnector custom resource.

6.4.3.5. Manually restarting Kafka connector tasks

If you are using KafkaConnector resources to manage connectors, use the restart-task annotation to
manually trigger a restart of a connector task.

Prerequisites

® The Cluster Operator is running.

65

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

Procedure

1. Find the name of the KafkaConnector custom resource that controls the Kafka connector task
you want to restart:

I oc get KafkaConnector

2. Find the ID of the task to be restarted from the KafkaConnector custom resource. Task IDs are
non-negative integers, starting from O:

I oc describe KafkaConnector <kafka_connector _name>

3. Use the ID to restart the connector task by annotating the KafkaConnector resource in
OpenShift:

I oc annotate KafkaConnector <kafka_connector_name> strimzi.io/restart-task=0

In this example, task 0 is restarted.

4. Wait for the next reconciliation to occur (every two minutes by default).
The Kafka connector task is restarted, as long as the annotation was detected by the
reconciliation process. When Kafka Connect accepts the restart request, the annotation is
removed from the KafkaConnector custom resource.

6.4.3.6. Exposing the Kafka Connect API

Use the Kafka Connect REST API as an alternative to using KafkaConnector resources to manage
connectors. The Kafka Connect REST APl is available as a service running on
<connect_cluster_name>-connect-api:8083, where <connect_cluster_name>is the name of your Kafka
Connect cluster. The service is created when you create a Kafka Connect instance.

The operations supported by the Kafka Connect REST APl are described in the Apache Kafka Connect
AP| documentation.

NOTE

The strimzi.io/use-connector-resources annotation enables KafkaConnectors. If you
applied the annotation to your KafkaConnect resource configuration, you need to
remove it to use the Kafka Connect API. Otherwise, manual changes made directly using
the Kafka Connect REST API are reverted by the Cluster Operator.

You can add the connector configuration as a JSON object.

Example curl request to add connector configuration

curl -X POST \
http://my-connect-cluster-connect-api:8083/connectors \
-H 'Content-Type: application/json' \
-d '{ "name": "my-source-connector",

"config":

{
"connector.class":"org.apache.kafka.connect.file.FileStreamSourceConnector",
"file": "/opt/kafka/LICENSE",

"topic":"my-topic",

66

https://kafka.apache.org/documentation#connect_rest

CHAPTER 6. DEPLOYING AMQ STREAMS USING INSTALLATION ARTIFACTS

"tasksMax": "4",
"type": "source"

}
y

The APl is only accessible within the OpenShift cluster. If you want to make the Kafka Connect API
accessible to applications running outside of the OpenShift cluster, you can expose it manually by
creating one of the following features:

® LoadBalancer or NodePort type services
® Ingress resources (Kubernetes only)

® OpenShift routes (OpenShift only)

NOTE

The connection is insecure, so allow external access advisedly.

If you decide to create services, use the labels from the selector of the <connect_cluster_names>-
connect-api service to configure the pods to which the service will route the traffic:

Selector configuration for the service

#..
selector:
strimzi.io/cluster: my-connect-cluster ﬂ
strimzi.io/kind: KafkaConnect
strimzi.io/name: my-connect-cluster-connect 9
#..

ﬂ Name of the Kafka Connect custom resource in your OpenShift cluster.

9 Name of the Kafka Connect deployment created by the Cluster Operator.

You must also create a NetworkPolicy that allows HTTP requests from external clients.

Example NetworkPolicy to allow requests to the Kafka Connect API

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
name: my-custom-connect-network-policy
spec:
ingress:
- from:
- podSelector: ﬂ
matchLabels:
app: my-connector-manager
ports:
- port: 8083
protocol: TCP
podSelector:

67

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

matchLabels:
strimzi.io/cluster: my-connect-cluster
strimzi.io/kind: KafkaConnect
strimzi.io/name: my-connect-cluster-connect
policyTypes:
- Ingress

ﬂ The label of the pod that is allowed to connect to the API.

To add the connector configuration outside the cluster, use the URL of the resource that exposes the
APl in the curl command.

6.4.3.7. Limiting access to the Kafka Connect API

Itis crucial to restrict access to the Kafka Connect API only to trusted users to prevent unauthorized
actions and potential security issues. The Kafka Connect API provides extensive capabilities for altering
connector configurations, which makes it all the more important to take security precautions. Someone
with access to the Kafka Connect API could potentially obtain sensitive information that an administrator
may assume is secure.

The Kafka Connect REST API can be accessed by anyone who has authenticated access to the
OpenShift cluster and knows the endpoint URL, which includes the hostname/IP address and port
number.

For example, suppose an organization uses a Kafka Connect cluster and connectors to stream sensitive
data from a customer database to a central database. The administrator uses a configuration provider
plugin to store sensitive information related to connecting to the customer database and the central
database, such as database connection details and authentication credentials. The configuration
provider protects this sensitive information from being exposed to unauthorized users. However,
someone who has access to the Kafka Connect API can still obtain access to the customer database
without the consent of the administrator. They can do this by setting up a fake database and configuring
a connector to connect to it. They then modify the connector configuration to point to the customer
database, but instead of sending the data to the central database, they send it to the fake database. By
configuring the connector to connect to the fake database, the login details and credentials for
connecting to the customer database are intercepted, even though they are stored securely in the
configuration provider.

If you are using the KafkaConnector custom resources, then by default the OpenShift RBAC rules
permit only OpenShift cluster administrators to make changes to connectors. You can also designate
non-cluster administrators to manage AMQ Streams resources. With KafkaConnector resources
enabled in your Kafka Connect configuration, changes made directly using the Kafka Connect REST API
are reverted by the Cluster Operator. If you are not using the KafkaConnector resource, the default
RBAC rules do not limit access to the Kafka Connect API. If you want to limit direct access to the Kafka
Connect REST API using OpenShift RBAC, you need to enable and use the KafkaConnector resources.

For improved security, we recommend configuring the following properties for the Kafka Connect API:

org.apache.kafka.disallowed.login.modules

(Kafka 3.4 or later) Set the org.apache.kafka.disallowed.login.modules Java system property to
prevent the use of insecure login modules. For example, specifying
com.sun.security.auth.module.JndiLoginModule prevents the use of the Kafka
JndiLoginModule.

Example configuration for disallowing login modules

68

CHAPTER 6. DEPLOYING AMQ STREAMS USING INSTALLATION ARTIFACTS

apiVersion: kafka.strimzi.io/vibeta2
kind: KafkaConnect
metadata:
name: my-connect-cluster
annotations:
strimzi.io/use-connector-resources: "true"
spec:
#...
jvmOptions:
javaSystemProperties:
- name: org.apache.kafka.disallowed.login.modules
value: com.sun.security.auth.module.JndiLoginModule,
org.apache.kafka.common.security.kerberos.KerberosLoginModule
#...

Only allow trusted login modules and follow the latest advice from Kafka for the version you are using.
As a best practice, you should explicitly disallow insecure login modules in your Kafka Connect
configuration by using the org.apache.kafka.disallowed.login.modules system property.

connector.client.config.override.policy

Set the connector.client.config.override.policy property to None to prevent connector
configurations from overriding the Kafka Connect configuration and the consumers and producers it
uses.

Example configuration to specify connector override policy

apiVersion: kafka.strimzi.io/vibeta2
kind: KafkaConnect
metadata:
name: my-connect-cluster
annotations:
strimzi.io/use-connector-resources: "true"
spec:
#...
config:
connector.client.config.override.policy: None
#...

6.4.3.8. Switching from using the Kafka Connect API to using KafkaConnector custom
resources

You can switch from using the Kafka Connect API to using KafkaConnector custom resources to
manage your connectors. To make the switch, do the following in the order shown:

1. Deploy KafkaConnector resources with the configuration to create your connector instances.

2. Enable KafkaConnector resources in your Kafka Connect configuration by setting the
strimzi.io/use-connector-resources annotation to true.

69

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

' WARNING
A If you enable KafkaConnector resources before creating them, you delete all

connectors.

To switch from using KafkaConnector resources to using the Kafka Connect AP, first remove the
annotation that enables the KafkaConnector resources from your Kafka Connect configuration.
Otherwise, manual changes made directly using the Kafka Connect REST API are reverted by the
Cluster Operator.

When making the switch, check the status of the KafkaConnect resource. The value of
metadata.generation (the current version of the deployment) must match status.observedGeneration
(the latest reconciliation of the resource). When the Kafka Connect cluster is Ready, you can delete the
KafkaConnector resources.

6.4.4. List of Kafka Connect cluster resources

The following resources are created by the Cluster Operator in the OpenShift cluster:

connect-cluster-name-connect
Name given to the following Kafka Connect resources:

® Deployment that creates the Kafka Connect worker node pods (when
StableConnectldentities feature gate is disabled).

® StrimziPodSet that creates the Kafka Connect worker node pods (when
StableConnectldentities feature gate is enabled).

® Headless service that provides stable DNS names to the Connect pods (when
StableConnectldentities feature gate is enabled).

® Pod Disruption Budget configured for the Kafka Connect worker nodes.

connect-cluster-name-connect-idx

Pods created by the Kafka Connect StrimziPodSet (when StableConnectldentities feature gate is
enabled).

connect-cluster-name-connect-api
Service which exposes the REST interface for managing the Kafka Connect cluster.
connect-cluster-name-config

ConfigMap which contains the Kafka Connect ancillary configuration and is mounted as a volume by
the Kafka broker pods.

6.5. DEPLOYING KAFKA MIRRORMAKER

Kafka MirrorMaker replicates data between two or more Kafka clusters, within or across data centers.
This process is called mirroring to avoid confusion with the concept of Kafka partition replication.
MirrorMaker consumes messages from a source cluster and republishes those messages to a target
cluster.

70

CHAPTER 6. DEPLOYING AMQ STREAMS USING INSTALLATION ARTIFACTS

Data replication across clusters supports scenarios that require the following:
® Recovery of data in the event of a system failure
e Consolidation of data from multiple source clusters for centralized analysis
® Restriction of data access to a specific cluster

® Provision of data at a specific location to improve latency

6.5.1. Deploying Kafka MirrorMaker to your OpenShift cluster

This procedure shows how to deploy a Kafka MirrorMaker cluster to your OpenShift cluster using the
Cluster Operator.

The deployment uses a YAML file to provide the specification to create a KafkaMirrorMaker or
KafkaMirrorMaker2 resource depending on the version of MirrorMaker deployed.

IMPORTANT

Kafka MirrorMaker 1 (referred to as just MirrorMaker in the documentation) has been
deprecated in Apache Kafka 3.0.0 and will be removed in Apache Kafka 4.0.0. As a result,
the KafkaMirrorMaker custom resource which is used to deploy Kafka MirrorMaker 1 has
been deprecated in AMQ Streams as well. The KafkaMirrorMaker resource will be
removed from AMQ Streams when we adopt Apache Kafka 4.0.0. As a replacement, use
the KafkaMirrorMaker2 custom resource with the IdentityReplicationPolicy.

AMQ Streams provides example configuration files. In this procedure, we use the following example
files:

e examples/mirror-maker/kafka-mirror-maker.yaml

e examples/mirror-maker/kafka-mirror-maker-2.yaml

Prerequisites

® The Cluster Operator must be deployed.

Procedure

1. Deploy Kafka MirrorMaker to your OpenShift cluster:
For MirrorMaker:

I oc apply -f examples/mirror-maker/kafka-mirror-maker.yami

For MirrorMaker 2:
I oc apply -f examples/mirror-maker/kafka-mirror-maker-2.yaml

2. Check the status of the deployment:

I oc get pods -n <my_cluster_operator_namespace>

71

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

Output shows the deployment name and readiness

NAME READY STATUS RESTARTS
my-mirror-maker-mirror-maker-<pod_id> 1/1 Running 1
my-mma2-cluster-mirrormaker2-<pod_id> 1/1 Running 1

my-mirror-maker is the name of the Kafka MirrorMaker cluster. my-mm2-cluster is the name
of the Kafka MirrorMaker 2 cluster.

A pod ID identifies each pod created.
With the default deployment, you install a single MirrorMaker or MirrorMaker 2 pod.

READY shows the number of replicas that are ready/expected. The deployment is successful
when the STATUS displays as Running.

Additional resources

® Kafka MirrorMaker cluster configuration

6.5.2. List of Kafka MirrorMaker cluster resources

The following resources are created by the Cluster Operator in the OpenShift cluster:

<mirror-maker-name>-mirror-maker
Deployment which is responsible for creating the Kafka MirrorMaker pods.
<mirror-maker-name>-config

ConfigMap which contains ancillary configuration for the Kafka MirrorMaker, and is mounted as a
volume by the Kafka broker pods.

<mirror-maker-name>-mirror-maker

Pod Disruption Budget configured for the Kafka MirrorMaker worker nodes.

6.6. DEPLOYING KAFKA BRIDGE

Kafka Bridge provides an API for integrating HTTP-based clients with a Kafka cluster.

6.6.1. Deploying Kafka Bridge to your OpenShift cluster

This procedure shows how to deploy a Kafka Bridge cluster to your OpenShift cluster using the Cluster
Operator.

The deployment uses a YAML file to provide the specification to create a KafkaBridge resource.
AMQ Streams provides example configuration files. In this procedure, we use the following example file:

e examples/bridge/kafka-bridge.yaml

Prerequisites

® The Cluster Operator must be deployed.

Procedure

72

CHAPTER 6. DEPLOYING AMQ STREAMS USING INSTALLATION ARTIFACTS

1. Deploy Kafka Bridge to your OpenShift cluster:
I oc apply -f examples/bridge/katka-bridge.yaml
2. Check the status of the deployment:

I oc get pods -n <my_cluster_operator_namespace>

Output shows the deployment name and readiness

NAME READY STATUS RESTARTS
my-bridge-bridge-<pod_id> 1/1 Running 0

my-bridge is the name of the Kafka Bridge cluster.
A pod ID identifies each pod created.
With the default deployment, you install a single Kafka Bridge pod.

READY shows the number of replicas that are ready/expected. The deployment is successful
when the STATUS displays as Running.

Additional resources

® Kafka Bridge cluster configuration

® Using the AMQ Streams Kafka Bridge

6.6.2. Exposing the Kafka Bridge service to your local machine

Use port forwarding to expose the AMQ Streams Kafka Bridge service to your local machine on
http://localhost:8080.

NOTE

Port forwarding is only suitable for development and testing purposes.
Procedure
1. List the names of the pods in your OpenShift cluster:

oc get pods -0 name

pod/kafka-consumer
#...
pod/my-bridge-bridge-<pod_id>

2. Connect to the Kafka Bridge pod on port 8080:

I oc port-forward pod/my-bridge-bridge-<pod_id> 8080:8080 &

73

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/using_the_amq_streams_kafka_bridge/index
http://localhost:8080

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

NOTE

If port 8080 on your local machine is already in use, use an alternative HTTP port,
such as 8008.

API requests are now forwarded from port 8080 on your local machine to port 8080 in the Kafka Bridge
pod.

6.6.3. Accessing the Kafka Bridge outside of OpenShift

After deployment, the AMQ Streams Kafka Bridge can only be accessed by applications running in the
same OpenShift cluster. These applications use the <kafka bridge _name>bridge-service service to
access the API.

If you want to make the Kafka Bridge accessible to applications running outside of the OpenShift cluster,
you can expose it manually by creating one of the following features:

® LoadBalancer or NodePort type services
® Ingress resources (Kubernetes only)
® OpenShift routes (OpenShift only)

If you decide to create Services, use the labels from the selector of the <kafka_bridge name>bridge-
service service to configure the pods to which the service will route the traffic:

#...

selector:
strimzi.io/cluster: kafka-bridge-name ﬂ
strimzi.io/kind: KafkaBridge

#...

ﬂ Name of the Kafka Bridge custom resource in your OpenShift cluster.

6.6.4. List of Kafka Bridge cluster resources
The following resources are created by the Cluster Operator in the OpenShift cluster:

bridge-cluster-name-bridge

Deployment which is in charge to create the Kafka Bridge worker node pods.
bridge-cluster-name-bridge-service

Service which exposes the REST interface of the Kafka Bridge cluster.
bridge-cluster-name-bridge-config

ConfigMap which contains the Kafka Bridge ancillary configuration and is mounted as a volume by the
Kafka broker pods.

bridge-cluster-name-bridge

Pod Disruption Budget configured for the Kafka Bridge worker nodes.

6.7. ALTERNATIVE STANDALONE DEPLOYMENT OPTIONS FOR AMQ
STREAMS OPERATORS

74

CHAPTER 6. DEPLOYING AMQ STREAMS USING INSTALLATION ARTIFACTS

You can perform a standalone deployment of the Topic Operator and User Operator. Consider a
standalone deployment of these operators if you are using a Kafka cluster that is not managed by the
Cluster Operator.

You deploy the operators to OpenShift. Kafka can be running outside of OpenShift. For example, you
might be using a Kafka as a managed service. You adjust the deployment configuration for the
standalone operator to match the address of your Kafka cluster.

6.7.1. Deploying the standalone Topic Operator

This procedure shows how to deploy the Topic Operator as a standalone component for topic
management. You can use a standalone Topic Operator with a Kafka cluster that is not managed by the
Cluster Operator.

A standalone deployment can operate with any Kafka cluster.

Standalone deployment files are provided with AMQ Streams. Use the 05-Deployment-strimzi-topic-
operator.yaml deployment file to deploy the Topic Operator. Add or set the environment variables
needed to make a connection to a Kafka cluster.

The Topic Operator watches for KafkaTopic resources in a single namespace. You specify the
namespace to watch, and the connection to the Kafka cluster, in the Topic Operator configuration. A
single Topic Operator can watch a single namespace. One namespace should be watched by only one
Topic Operator. If you want to use more than one Topic Operator, configure each of them to watch
different namespaces. In this way, you can use Topic Operators with multiple Kafka clusters.

Prerequisites

® You are running a Kafka cluster for the Topic Operator to connect to.
As long as the standalone Topic Operator is correctly configured for connection, the Kafka
cluster can be running on a bare-metal environment, a virtual machine, or as a managed cloud
application service.

Procedure

1. Edit the env properties in the install/topic-operator/05-Deployment-strimzi-topic-
operator.yaml standalone deployment file.

Example standalone Topic Operator deployment configuration

apiVersion: apps/v1
kind: Deployment
metadata:
name: strimzi-topic-operator
labels:
app: strimzi
spec:
#...
template:
#...
spec:
#...
containers:
- name: strimzi-topic-operator
#...

75

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

env:
- name: STRIMZI_NAMESPACE ﬂ
valueFrom:
fieldRef:
fieldPath: metadata.namespace
- name: STRIMZI_KAFKA_BOOTSTRAP_SERVERS g
value: my-kafka-bootstrap-address:9092
- name: STRIMZI_RESOURCE_LABELS 6
value: "strimzi.io/cluster=my-cluster"
- name: STRIMZI_ZOOKEEPER_CONNECT ﬂ
value: my-cluster-zookeeper-client:2181
- name: STRIMZI_ZOOKEEPER_SESSION_TIMEOUT_MS 6
value: "18000"
- name: STRIMZI_FULL_RECONCILIATION_INTERVAL_MS G
value: "120000"
- name: STRIMZI_TOPIC_METADATA_MAX_ATTEMPTS ﬂ
value: "6"
- name: STRIMZI_LOG_LEVELG
value: INFO
- name: STRIMZI_TLS_ENABLED Q
value: "false"
- name: STRIMZI_JAVA_OPTS @
value: "-Xmx=512M -Xms=256M"
- name: STRIMZI_JAVA_SYSTEM_PROPERTIES m
value: "-Djavax.net.debug=verbose -DpropertyName=value"
- name: STRIMZI_PUBLIC_CA @
value: "false"
- name: STRIMZI_TLS _AUTH_ENABLED @
value: "false"
- name: STRIMZI_SASL_ENABLED @
value: "false"
- name: STRIMZI_SASL_USERNAME @
value: "admin"
- name: STRIMZI_SASL_PASSWORD @
value: "password"
- name: STRIMZI_SASL_MECHANISM m
value: "scram-sha-512"
- name: STRIMZI_SECURITY_PROTOCOL @
value: "SSL"

The OpenShift namespace for the Topic Operator to watch for KafkaTopic resources.
Specify the namespace of the Kafka cluster.

The host and port pair of the bootstrap broker address to discover and connect to all
brokers in the Kafka cluster. Use a comma-separated list to specify two or three broker
addresses in case a server is down.

o

9 The label to identify the KafkaTopic resources managed by the Topic Operator. This does
not have to be the name of the Kafka cluster. It can be the label assigned to the
KafkaTopic resource. If you deploy more than one Topic Operator, the labels must be
unique for each. That is, the operators cannot manage the same resources.

Q (ZooKeeper) The host and port pair of the address to connect to the ZooKeeper cluster.
This must be the same ZooKeeper cluster that your Kafka cluster is using.

76

CHAPTER 6. DEPLOYING AMQ STREAMS USING INSTALLATION ARTIFACTS

(ZooKeeper) The ZooKeeper session timeout, in milliseconds. The default is 18000 (18
seconds).

®

The interval between periodic reconciliations, in milliseconds. The default is 120000 (2
minutes).

o 9

The number of attempts at getting topic metadata from Kafka. The time between each
attempt is defined as an exponential backoff. Consider increasing this value when topic
creation takes more time due to the number of partitions or replicas. The default is 6
attempts.

The level for printing logging messages. You can set the level to ERROR, WARNING,
INFO, DEBUG, or TRACE.

Enables TLS support for encrypted communication with the Kafka brokers.

(Optional) The Java options used by the JVM running the Topic Operator.

(Optional) The debugging (-D) options set for the Topic Operator.

(Optional) Skips the generation of trust store certificates if TLS is enabled through
STRIMZI_TLS_ENABLED. If this environment variable is enabled, the brokers must use a

public trusted certificate authority for their TLS certificates. The default is false.

(Optional) Generates key store certificates for mTLS authentication. Setting this to false
disables client authentication with mTLS to the Kafka brokers. The default is true.

(Optional) Enables SASL support for client authentication when connecting to Kafka
brokers. The default is false.

(Optional) The SASL username for client authentication. Mandatory only if SASL is
enabled through STRIMZI_SASL_ENABLED.

(Optional) The SASL password for client authentication. Mandatory only if SASL is enabled
through STRIMZI_SASL_ENABLED.

(Optional) The SASL mechanism for client authentication. Mandatory only if SASL is
enabled through STRIMZI_SASL_ENABLED. You can set the value to plain, scram-sha-
256, or scram-sha-512.

@ O 9 ©®© 9 @9 909000 9

(Optional) The security protocol used for communication with Kafka brokers. The default
value is "PLAINTEXT". You can set the value to PLAINTEXT, SSL, SASL_PLAINTEXT, or
SASL_SSL.

2. If you want to connect to Kafka brokers that are using certificates from a public certificate
authority, set STRIMZI_PUBLIC_CA to true. Set this property to true, for example, if you are
using Amazon AWS MSK service.

3. If you enabled mTLS with the STRIMZI_TLS_ENABLED environment variable, specify the
keystore and truststore used to authenticate connection to the Kafka cluster.

Example mTLS configuration

#....
env.
- name: STRIMZI_TRUSTSTORE_LOCATION @)

77

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

value: "/path/to/truststore.p12"

- name: STRIMZI_TRUSTSTORE_PASSWORD 9
value: "TRUSTSTORE-PASSWORD"

- name: STRIMZI_KEYSTORE_LOCATION 6
value: "/path/to/keystore.p12"

- name: STRIMZI_KEYSTORE_PASSWORD ﬂ
value: "KEYSTORE-PASSWORD"

#...

ﬂ The truststore contains the public keys of the Certificate Authorities used to sign the Kafka
and ZooKeeper server certificates.

9 The password for accessing the truststore.
9 The keystore contains the private key for mTLS authentication.

Q The password for accessing the keystore.

4. Deploy the Topic Operator.

I oc create -f install/topic-operator

5. Check the status of the deployment:

I oc get deployments

Output shows the deployment name and readiness

NAME READY UP-TO-DATE AVAILABLE
strimzi-topic-operator 1/1 1 1

READY shows the number of replicas that are ready/expected. The deployment is successful
when the AVAILABLE output shows 1.

6.7.1.1. (Preview) Deploying the standalone Topic Operator for unidirectional topic
management

Unidirectional topic management maintains topics solely through KafkaTopic resources. For more
information on unidirectional topic management, see Section 9.1, “Topic management modes”.

If you want to try the preview of unidirectional topic management, follow these steps to deploy the
standalone Topic Operator.

Procedure

1. Undeploy the current standalone Topic Operator.

Retain the KafkaTopic resources, which are picked up by the Topic Operator when it is
deployed again.

2. Edit the Deployment configuration for the standalone Topic Operator to remove any
ZooKeeper-related environment variables:

e STRIMZI_ZOOKEEPER_CONNECT

78

CHAPTER 6. DEPLOYING AMQ STREAMS USING INSTALLATION ARTIFACTS

e STRIMZI_ZOOKEEPER_SESSION_TIMEOUT MS
e TC_ZK_CONNECTION_TIMEOUT MS

e STRIMZI_USE_ZOOKEEPER_TOPIC_STORE
It is the presence or absence of the ZooKeeper variables that defines whether the
unidirectional Topic Operator is used. Unidirectional topic management does not use
ZooKeeper. If ZooKeeper environment variables are not present, the unidirectional Topic
Operator is used. Otherwise, the bidirectional Topic Operator is used.

Other unused environment variables that can be removed if present:
e STRIMZI_REASSIGN_THROTTLE
e STRIMZI_REASSIGN_VERIFY_INTERVAL_MS
e STRIMZI_TOPIC_METADATA_MAX_ATTEMPTS
e STRIMZI_TOPICS_PATH
e STRIMZI_STORE_TOPIC
e STRIMZI_STORE_NAME
e STRIMZI_APPLICATION_ID
e STRIMZI_STALE_RESULT_TIMEOUT_MS
3. (Optional) Set the STRIMZI_USE_FINALIZERS environment variable to false:

Additional configuration for unidirectional topic management

#...
env:
- name: STRIMZI_USE_FINALIZERS
value: "false"

Set this environment variable to false if you do not want to use finalizers to control topic
deletion.

Example standalone Topic Operator deployment configuration for unidirectional
topic management

apiVersion: apps/v1
kind: Deployment
metadata:
name: strimzi-topic-operator
labels:
app: strimzi
spec:
#...
template:
#...
spec:
#...
containers:

79

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

- name: strimzi-topic-operator
#...
env:
- name: STRIMZI_NAMESPACE
valueFrom:
fieldRef:
fieldPath: metadata.namespace
- name: STRIMZI_KAFKA_BOOTSTRAP_SERVERS
value: my-kafka-bootstrap-address:9092
- name: STRIMZI_RESOURCE_LABELS
value: "strimzi.io/cluster=my-cluster"
- name: STRIMZI_FULL_RECONCILIATION_INTERVAL_MS
value: "120000"
- name: STRIMZI_LOG_LEVEL
value: INFO
- name: STRIMZI_TLS_ENABLED
value: "false"
- name: STRIMZI_JAVA_OPTS
value: "-Xmx=512M -Xms=256M"
- name: STRIMZI_JAVA_SYSTEM_PROPERTIES
value: "-Djavax.net.debug=verbose -DpropertyName=value"
- name: STRIMZI_PUBLIC_CA
value: "false"
- name: STRIMZI_TLS _AUTH_ENABLED
value: "false"
- name: STRIMZI_SASL_ENABLED
value: "false"
- name: STRIMZI_SASL_USERNAME
value: "admin”
- name: STRIMZI_SASL_PASSWORD
value: "password"
- name: STRIMZI_SASL_MECHANISM
value: "scram-sha-512"
- name: STRIMZI_SECURITY_PROTOCOL
value: "SSL"
- name: STRIMZI_USE_FINALIZERS
value: "true"

4. Deploy the standalone Topic Operator in the standard way.

6.7.2. Deploying the standalone User Operator

This procedure shows how to deploy the User Operator as a standalone component for user
management. You can use a standalone User Operator with a Kafka cluster that is not managed by the
Cluster Operator.

A standalone deployment can operate with any Kafka cluster.

Standalone deployment files are provided with AMQ Streams. Use the 05-Deployment-strimzi-user-
operator.yaml deployment file to deploy the User Operator. Add or set the environment variables
needed to make a connection to a Kafka cluster.

The User Operator watches for KafkaUser resources in a single namespace. You specify the namespace

to watch, and the connection to the Kafka cluster, in the User Operator configuration. A single User
Operator can watch a single namespace. One namespace should be watched by only one User Operator.

80

CHAPTER 6. DEPLOYING AMQ STREAMS USING INSTALLATION ARTIFACTS

If you want to use more than one User Operator, configure each of them to watch different namespaces.
In this way, you can use the User Operator with multiple Kafka clusters.

Prerequisites

® You are running a Kafka cluster for the User Operator to connect to.
As long as the standalone User Operator is correctly configured for connection, the Kafka
cluster can be running on a bare-metal environment, a virtual machine, or as a managed cloud
application service.

Procedure

1. Edit the following env properties in the install/user-operator/05-Deployment-strimzi-user-
operator.yaml standalone deployment file.

Example standalone User Operator deployment configuration

apiVersion: apps/v1
kind: Deployment
metadata:
name: strimzi-user-operator
labels:
app: strimzi
spec:
#...
template:
...
spec:
#...
containers:
- name: strimzi-user-operator
#...
env:
- name: STRIMZI_NAMESPACE ﬂ
valueFrom:
fieldRef:
fieldPath: metadata.namespace
- name: STRIMZI_KAFKA_BOOTSTRAP_SERVERS g
value: my-kafka-bootstrap-address:9092
- name: STRIMZI_CA_CERT_NAME 6
value: my-cluster-clients-ca-cert
- name: STRIMZI_CA_KEY_NAME ﬂ
value: my-cluster-clients-ca
- name: STRIMZI_LABELS 6
value: "strimzi.io/cluster=my-cluster"
- name: STRIMZ|_FULL_RECONCILIATION_INTERVAL_MS G
value: "120000"
- name: STRIMZI_WORK_QUEUE_SIZE ﬂ
value: 10000
- name: STRIMZI_CONTROLLER_THREAD_POOL_SIZE 6
value: 10
- name: STRIMZI_USER_OPERATIONS_THREAD_POOL_SIZE g
value: 4
- name: STRIMZI_LOG_LEVEL@

81

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

value: INFO
- name: STRIMZI_GC_LOG_ENABLED m
value: "true"
- name: STRIMZI_CA_VALIDITY @
value: "365"
- name: STRIMZI_CA_RENEWAL @
value: "30"
- name: STRIMZI_JAVA_OPTS @
value: "-Xmx=512M -Xms=256M"
- name: STRIMZI_JAVA_SYSTEM_PROPERTIES @
value: "-Djavax.net.debug=verbose -DpropertyName=value"
- name: STRIMZI_SECRET_PREFIX
value: "kafka-"
- name: STRIMZI_ACLS_ADMIN_API_SUPPORTED m
value: "true"
- name: STRIMZI_MAINTENANCE_TIME_WINDOWS @
value: ™ *8-10** ?;* * 14-15** 7'
- name: STRIMZI_KAFKA_ADMIN_CLIENT_CONFIGURATION @
value:
default.api.timeout.ms=120000
request.timeout.ms=60000

The OpenShift namespace for the User Operator to watch for KafkaUser resources. Only
one namespace can be specified.

The host and port pair of the bootstrap broker address to discover and connect to all
brokers in the Kafka cluster. Use a comma-separated list to specify two or three broker
addresses in case a server is down.

The OpenShift Secret that contains the public key (ca.crt) value of the CA (certificate
authority) that signs new user certificates for mTLS authentication.

The OpenShift Secret that contains the private key (ca.key) value of the CA that signs
new user certificates for mTLS authentication.

® 6 o o 9

The label to identify the KafkaUser resources managed by the User Operator. This does
not have to be the name of the Kafka cluster. It can be the label assigned to the KafkaUser
resource. If you deploy more than one User Operator, the labels must be unique for each.
That is, the operators cannot manage the same resources.

The interval between periodic reconciliations, in milliseconds. The default is 120000 (2
minutes).

The size of the controller event queue. The size of the queue should be at least as big as
the maximal amount of users you expect the User Operator to operate. The default is
1024.

The size of the worker pool for reconciling the users. Bigger pool might require more
resources, but it will also handle more KafkaUser resources The defaultis 50.

The size of the worker pool for Kafka Admin APl and OpenShift operations. Bigger pool

might require more resources, but it will also handle more KafkaUser resources The
default is 4.

The level for printing logging messages. You can set the level to ERROR, WARNING,

@ o0 o 9o 9o

82

CHAPTER 6. DEPLOYING AMQ STREAMS USING INSTALLATION ARTIFACTS

Enables garbage collection (GC) logging. The default is true.
The validity period for the CA. The default is 365 days.

The renewal period for the CA. The renewal period is measured backwards from the expiry
date of the current certificate. The default is 30 days to initiate certificate renewal before
the old certificates expire.

(Optional) The Java options used by the JVM running the User Operator

(Optional) The debugging (-D) options set for the User Operator

(Optional) Prefix for the names of OpenShift secrets created by the User Operator.
(Optional) Indicates whether the Kafka cluster supports management of authorization ACL
rules using the Kafka Admin API. When set to false, the User Operator will reject all

resources with simple authorization ACL rules. This helps to avoid unnecessary exceptions
in the Kafka cluster logs. The default is true.

OO0 OO

@ (Optional) Semi-colon separated list of Cron Expressions defining the maintenance time
windows during which the expiring user certificates will be renewed.

@ (Optional) Configuration options for configuring the Kafka Admin client used by the User

Operator in the properties format.

2. If you are using mTLS to connect to the Kafka cluster, specify the secrets used to authenticate
connection. Otherwise, go to the next step.

Example mTLS configuration

#....
env:
- name: STRIMZI_CLUSTER_CA_CERT_SECRET_NAME ﬂ
value: my-cluster-cluster-ca-cert
- name: STRIMZI_EO_KEY_SECRET_NAME 9
value: my-cluster-entity-operator-certs
#.."

ﬂ The OpenShift Secret that contains the public key (ca.crt) value of the CA that signs
Kafka broker certificates.

9 The OpenShift Secret that contains the certificate public key (entity-operator.crt) and
private key (entity-operator.key) that is used for mTLS authentication against the Kafka
cluster.

3. Deploy the User Operator.

I oc create -f install/user-operator

4. Check the status of the deployment:

I oc get deployments

83

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

Output shows the deployment name and readiness

NAME READY UP-TO-DATE AVAILABLE
strimzi-user-operator 1/1 1 1

READY shows the number of replicas that are ready/expected. The deployment is successful
when the AVAILABLE output shows 1.

84

CHAPTER 7. ENABLING AMQ STREAMS FEATURE GATES

CHAPTER 7. ENABLING AMQ STREAMS FEATURE GATES

AMQ Streams operators use feature gates to enable or disable specific features and functions. By
enabling a feature gate, you alter the behavior of the corresponding operator, thereby introducing the
feature to your AMQ Streams deployment.

A feature gate might be enabled or disabled by default, depending on its level of maturity.

To modify a feature gate’s default state, use the STRIMZI_FEATURE_GATES environment variable in
the operator’s configuration. You can modify multiple feature gates using this single environment
variable. Specify a comma-separated list of feature gate names and prefixes. A + prefix enables the
feature gate and a - prefix disables it.

Example feature gate configuration that enables FeatureGate1 and disables FeatureGate2

env:
- name: STRIMZI _FEATURE_GATES
value: +FeatureGate1,-FeatureGate2

7.1. CONTROLPLANELISTENER FEATURE GATE

The ControlPlaneListener feature gate has moved to GA, which means it is now permanently enabled
and cannot be disabled. With ControlPlaneListener enabled, the connections between the Kafka
controller and brokers use an internal control plane listener on port 9090. Replication of data between
brokers, as well as internal connections from AMQ Streams operators, Cruise Control, or the Kafka
Exporter use the replication listener on port 9091.

IMPORTANT

With the ControlPlaneListener feature gate permanently enabled, it is no longer
possible to upgrade or downgrade directly between AMQ Streams 1.7 and earlier and
AMQ Streams 2.3 and newer. You have to first upgrade or downgrade through one of the
AMQ Streams versions in-between, disable the ControlPlaneListener feature gate, and
then downgrade or upgrade (with the feature gate enabled) to the target version.

7.2. SERVICEACCOUNTPATCHING FEATURE GATE

The ServiceAccountPatching feature gate has moved to GA, which means it is now permanently
enabled and cannot be disabled. With ServiceAccountPatching enabled, the Cluster Operator always
reconciles service accounts and updates them when needed. For example, when you change service
account labels or annotations using the template property of a custom resource, the operator
automatically updates them on the existing service account resources.

7.3. USESTRIMZIPODSETS FEATURE GATE

The UseStrimziPodSets feature gate has moved to GA, which means it is now permanently enabled
and cannot be disabled. Support for StatefulSets has been removed and AMQ Streams is now always
using StrimziPodSets to manage Kafka and ZooKeeper pods.

85

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

IMPORTANT

With the UseStrimziPodSets feature gate permanently enabled, it is no longer possible
to downgrade directly from AMQ Streams 2.4 and newer to AMQ Streams 2.0 or earlier.
You have to first downgrade through one of the AMQ Streams versions in-between,
disable the UseStrimziPodSets feature gate, and then downgrade to AMQ Streams 2.0
or earlier.

7.4. (PREVIEW) USEKRAFT FEATURE GATE
The UseKRaft feature gate has a default state of disabled.

The UseKRaft feature gate deploys the Kafka cluster in the KRaft (Kafka Raft metadata) mode without
ZooKeeper. ZooKeeper and KRaft are mechanisms used to manage metadata and coordinate operations
in Kafka clusters. KRaft mode eliminates the need for an external coordination service like ZooKeeper. In
KRaft mode, Kafka nodes take on the roles of brokers, controllers, or both. They collectively manage the
metadata, which is replicated across partitions. Controllers are responsible for coordinating operations
and maintaining the cluster’s state.

This feature gate is currently intended only for development and testing.

IMPORTANT

KRaft mode is not ready for production in Apache Kafka or in AMQ Streams.

Enabling the UseKRaft feature gate requires the KafkaNodePools feature gate to be enabled as well.
To deploy a Kafka cluster in KRaft mode, you must use the KafkaNodePool resources. For more details
and examples, see Section 6.3.2, “(Preview) Deploying Kafka node pools” .

When the UseKRaft feature gate is enabled, the Kafka cluster is deployed without ZooKeeper. The
.spec.zookeeper properties in theKafka custom resource are ignored, but still need to be present.
The UseKRaft feature gate provides an API that configures Kafka cluster nodes and their roles. The API
is still in development and is expected to change before the KRaft mode is production-ready.

Currently, the KRaft mode in AMQ Streams has the following major limitations:

® Moving from Kafka clusters with ZooKeeper to KRaft clusters or the other way around is not
supported.

® Controller-only nodes cannot undergo rolling updates or be updated individually.

® Upgrades and downgrades of Apache Kafka versions or the AMQ Streams operator are not
supported. Users might need to delete the cluster, upgrade the operator and deploy a new
Kafka cluster.

® Only the Unidirectional Topic Operator is supported in KRaft mode. You can enable it using the
UnidirectionalTopicOperator feature gate. The Bidirectional Topic Operator is not supported
and when the UnidirectionalTopicOperator feature gate is not enabled, the
spec.entityOperator.topicOperator property must be removed from the Kafka custom
resource.

® JBOD storage is not supported. The type: jbod storage can be used, but the JBOD array can
contain only one disk.

Enabling the UseKRaft feature gate

86

CHAPTER 7. ENABLING AMQ STREAMS FEATURE GATES

To enable the UseKRaft feature gate, specify +UseKRaft,+KafkaNodePools in the
STRIMZI_FEATURE_GATES environment variable in the Cluster Operator configuration.

7.5.STABLECONNECTIDENTITIES FEATURE GATE
The StableConnectldentities feature gate has a default state of disabled.

The StableConnectldentities feature gate uses StrimziPodSet resources to manage Kafka Connect
and Kafka MirrorMaker 2 pods instead of using OpenShift Deployment resources. StrimziPodSets give
the pods stable names and stable addresses, which do not change during rolling upgrades. This helps to
minimize the number of rebalances of connector tasks.

Enabling the StableConnectldentities feature gate

To enable the StableConnectldentities feature gate, specify +StableConnectldentities in the
STRIMZI_FEATURE_GATES environment variable in the Cluster Operator configuration.

IMPORTANT

The StableConnectldentities feature gate must be disabled when downgrading to AMQ
Streams 2.3 and earlier versions.

7.6. (PREVIEW) KAFKANODEPOOLS FEATURE GATE
The KafkaNodePools feature gate has a default state of disabled.

The KafkaNodePools feature gate introduces a new KafkaNodePool custom resource that enables the
configuration of different pools of Apache Kafka nodes.

A node pool refers to a distinct group of Kafka nodes within a Kafka cluster. Each pool has its own unique
configuration, which includes mandatory settings such as the number of replicas, storage configuration,
and a list of assigned roles. You can assign the controller role, broker role, or both roles to all nodes in

the poolin the .spec.roles field. When used with a ZooKeeper-based Apache Kafka cluster, it must be
set to the broker role. When used with the UseKRaft feature gate, it can be set to broker, controller, or
both.

In addition, a node pool can have its own configuration of resource requests and limits, Java JVM
options, and resource templates. Configuration options not set in the KafkaNodePool resource are
inherited from the Kafka custom resource.

The KafkaNodePool resources use a strimzi.io/cluster label to indicate to which Kafka cluster they
belong. The label must be set to the name of the Kafka custom resource.

Examples of the KafkaNodePool resources can be found in the example configuration files provided by
AMQ Streams.

Enabling the KafkaNodePools feature gate

To enable the KafkaNodePools feature gate, specify +KafkaNodePools in the
STRIMZI_FEATURE_GATES environment variable in the Cluster Operator configuration. The Kafka
custom resource using the node pools must also have the annotation strimzi.io/node-pools: enabled.

7.7. (PREVIEW) UNIDIRECTIONALTOPICOPERATOR FEATURE GATE

The UnidirectionalTopicOperator feature gate has a default state of disabled.

87

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

The UnidirectionalTopicOperator feature gate introduces a unidirectional topic management mode
for creating Kafka topics using the KafkaTopic resource. Unidirectional mode is compatible with using
KRaft for cluster management. With unidirectional mode, you create Kafka topics using the KafkaTopic
resource, which are then managed by the Topic Operator. Any configuration changes to a topic outside
the KafkaTopic resource are reverted. For more information on topic management, see Section 9.1,
“Topic management modes”.

Enabling the UnidirectionalTopicOperator feature gate

To enable the UnidirectionalTopicOperator feature gate, specify +UnidirectionalTopicOperator in
the STRIMZI_FEATURE_GATES environment variable in the Cluster Operator configuration. For the
KafkaTopic custom resource to use this feature, the strimzi.io/managed annotation is set to true by
default.

7.8. FEATURE GATE RELEASES
Feature gates have three stages of maturity:

® Alpha — typically disabled by default

® Beta — typically enabled by default

® General Availability (GA) — typically always enabled
Alpha stage features might be experimental or unstable, subject to change, or not sufficiently tested for
production use. Beta stage features are well tested and their functionality is not likely to change. GA
stage features are stable and should not change in the future. Alpha and beta stage features are

removed if they do not prove to be useful.

e The ControlPlaneListener feature gate moved to GA stage in AMQ Streams 2.3. It is now
permanently enabled and cannot be disabled.

e The ServiceAccountPatching feature gate moved to GA stage in AMQ Streams 2.3. It is now
permanently enabled and cannot be disabled.

® The UseStrimziPodSets feature gate moved to GA stage in AMQ Streams 2.5 and the support
for StatefulSets is completely removed. It is now permanently enabled and cannot be disabled.

o The UseKRaft feature gate is available for development only and does not currently have a
planned release for moving to the beta phase.

e The StableConnectldentities feature gate is in alpha stage and is disabled by default.
o The KafkaNodePools feature gate is in alpha stage and is disabled by default.

e The UnidirectionalTopicOperator feature gate is in alpha stage and is disabled by default.

NOTE

Feature gates might be removed when they reach GA. This means that the feature was
incorporated into the AMQ Streams core features and can no longer be disabled.

Table 7.1. Feature gates and the AMQ Streams versions when they moved to alpha, beta, or GA

88

CHAPTER 7. ENABLING AMQ STREAMS FEATURE GATES

Feature gate Alpha Beta GA
ControlPlaneListene 1.8 2.0 2.3
r

ServiceAccountPatc 1.8 2.0 2.3
hing

UseStrimziPodSets 2. 2.3 25
UseKRaft 2.2 - -

StableConnectldentit 24 - _
ies

KafkaNodePools 25 - -

UnidirectionalTopic 25 - -
Operator

If a feature gate is enabled, you may need to disable it before upgrading or downgrading from a specific
AMQ Streams version. The following table shows which feature gates you need to disable when
upgrading or downgrading AMQ Streams versions.

Table 7.2. Feature gates to disable when upgrading or downgrading AMQ Streams

Disable Feature gate Upgrading from AMQ Streams Downgrading to AMQ Streams

version version

ControlPlanelListener 1.7 and earlier 1.7 and earlier
UseStrimziPodSets - 2.0 and earlier
StableConnectldentities - 2.3 and earlier

89

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

CHAPTER 8. CONFIGURING A DEPLOYMENT

Configure and manage an AMQ Streams deployment to your precise needs using AMQ Streams custom
resources. AMQ Streams provides example custom resources with each release, allowing you to
configure and create instances of supported Kafka components. Fine-tune your deployment by
configuring custom resources to include additional features according to your specific requirements.
For specific areas of configuration, namely metrics, logging, and external configuration for Kafka
Connect connectors, you can also use ConfigMap resources. By using a ConfigMap resource to
incorporate configuration, you centralize maintenance. You can also use configuration providers to load
configuration from external sources, which we recommend for supplying the credentials for Kafka
Connect connector configuration.
Use custom resources to configure and create instances of the following components:

e Kafka clusters

e Kafka Connect clusters

e Kafka MirrorMaker

e Kafka Bridge

® Cruise Control

You can also use custom resource configuration to manage your instances or modify your deployment
to introduce additional features. This might include configuration that supports the following:

® (Preview) Specifying node pools

® Securing client access to Kafka brokers

® Accessing Kafka brokers from outside the cluster

® (Creating topics

® Creating users (clients)

e Controlling feature gates

e Changinglogging frequency

® Allocating resource limits and requests

® |ntroducing features, such as AMQ Streams Drain Cleaner, Cruise Control, or distributed tracing.

The AMQ Streams Custom Resource API Reference describes the properties you can use in your
configuration.

NOTE

Labels applied to a custom resource are also applied to the OpenShift resources making
up its cluster. This provides a convenient mechanism for resources to be labeled as
required.

Applying changes to a custom resource configuration file

90

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index

CHAPTER 8. CONFIGURING A DEPLOYMENT

You add configuration to a custom resource using spec properties. After adding the configuration, you
can use oc to apply the changes to a custom resource configuration file:

I oc apply -f <kaftka_configuration_file>

8.1. USING EXAMPLE CONFIGURATION FILES

Further enhance your deployment by incorporating additional supported configuration. Example
configuration files are provided with the downloadable release artifacts from the AMQ Streams
software downloads page.

The example files include only the essential properties and values for custom resources by default. You
can download and apply the examples using the oc command-line tool. The examples can serve as a
starting point when building your own Kafka component configuration for deployment.

NOTE

If you installed AMQ Streams using the Operator, you can still download the example files
and use them to upload configuration.

The release artifacts include an examples directory that contains the configuration examples.

Example configuration files provided with AMQ Streams

examples

— user @
— topic @
— security @

| F—tls-auth

| F— scram-sha-512-auth
—— keycloak-authorization
— mirror-maker @)

R o

| L— nodepools
— cruise-control

KafkaUser custom resource configuration, which is managed by the User Operator.

KafkaTopic custom resource configuration, which is managed by Topic Operator.

09

Authentication and authorization configuration for Kafka components. Includes example
configuration for TLS and SCRAM-SHA-512 authentication. The Red Hat Single Sign-On example
includes Kafka custom resource configuration and a Red Hat Single Sign-On realm specification.
You can use the example to try Red Hat Single Sign-On authorization services. There is also an
example with enabled oauth authentication and keycloak authorization metrics.

Q Kafka custom resource configuration for a deployment of Mirror Maker. Includes example
configuration for replication policy and synchronization frequency.

o1

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?downloadType=distributions&product=jboss.amq.streams

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

a Metrics configuration, including Prometheus installation and Grafana dashboard files.

Kafka custom resource configuration for a deployment of Kafka. Includes example configuration
for an ephemeral or persistent single or multi-node deployment.

Q (Preview) KafkaNodePool configuration for Kafka nodes in a Kafka cluster. Includes example
configuration for nodes in clusters that use KRaft (Kafka Raft metadata) mode or ZooKeeper.

Kafka custom resource with a deployment configuration for Cruise Control. Includes
KafkaRebalance custom resources to generate optimization proposals from Cruise Control, with

example configurations to use the default or user optimization goals.

KafkaConnect and KafkaConnector custom resource configuration for a deployment of Kafka
Connect. Includes example configurations for a single or multi-node deployment.

@ KafkaBridge custom resource configuration for a deployment of Kafka Bridge.

8.2. CONFIGURING KAFKA
Update the spec properties of the Kafka custom resource to configure your Kafka deployment.
As well as configuring Kafka, you can add configuration for ZooKeeper and the AMQ Streams Operators.
Common configuration properties, such as logging and healthchecks, are configured independently for
each component.
Configuration options that are particularly important include the following:

® Resource requests (CPU / Memory)

® JVM options for maximum and minimum memory allocation

® |isteners for connecting clients to Kafka brokers (and authentication of clients)

® Authentication

® Storage

® Rack awareness

® Metrics

e Cruise Control for cluster rebalancing

For a deeper understanding of the Kafka cluster configuration options, refer to the AMQ Streams
Custom Resource API Reference.

Kafka versions

The inter.broker.protocol.version property for the Kafka config must be the version supported by the
specified Kafka version (spec.kafka.version). The property represents the version of Kafka protocol
used in a Kafka cluster.

From Kafka 3.0.0, when the inter.broker.protocol.version is set to 3.0 or higher, the
log.message.format.version option is ignored and doesn’t need to be set.

92

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index

CHAPTER 8. CONFIGURING A DEPLOYMENT

An update to the inter.broker.protocol.version is required when upgrading your Kafka version. For
more information, see Upgrading Kafka.

Managing TLS certificates

When deploying Kafka, the Cluster Operator automatically sets up and renews TLS certificates to
enable encryption and authentication within your cluster. If required, you can manually renew the cluster
and clients CA certificates before their renewal period starts. You can also replace the keys used by the
cluster and clients CA certificates. For more information, see Renewing CA certificates manually and
Replacing private keys.

Example Kafka custom resource configuration

apiVersion: kafka.strimzi.io/vibeta2
kind: Kafka
metadata:
name: my-cluster
spec:
kafka:
replicas: 3 ﬂ
version: 3.5.0
logging: e
type: inline
loggers:
kafka.root.logger.level: INFO
resources:
requests:
memory: 64Gi
cpu: "8"
limits:
memory: 64Gi
cpu: "12"
readinessProbe: 6
initialDelaySeconds: 15
timeoutSeconds: 5
livenessProbe:
initialDelaySeconds: 15
timeoutSeconds: 5
jvmOptions: G
-Xms: 8192m
-Xmx: 8192m
image: my-org/my-image:latest ﬂ
listeners:
- name: plain g
port: 9092 ()
type: internal
tls: false
configuration:
useServiceDnsDomain: true @
- name: tls
port: 9093
type: internal
tls: true
authentication: @

93

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

type: tls
- name: external
port: 9094
type: route
tls: true
configuration:
brokerCertChainAndKey: @
secretName: my-secret
certificate: my-certificate.crt
key: my-key.key
authorization:
type: simple
config:
auto.create.topics.enable: "false”
offsets.topic.replication.factor: 3
transaction.state.log.replication.factor: 3
transaction.state.log.min.isr: 2
default.replication.factor: 3
min.insync.replicas: 2
inter.broker.protocol.version: "3.5"

storage: @

type: persistent-claim @
size: 10000Gi
rack: @
topologyKey: topology.kubernetes.io/zone
metricsConfig:
type: jmxPrometheusExporter
valueFrom:
configMapKeyRef: @
name: my-config-map
key: my-key
#...
zookeeper: @
replicas: 3
logging: @
type: inline
loggers:
zookeeper.root.logger: INFO
resources:
requests:
memory: 8Gi
cpu: "2"
limits:
memory: 8Gi
cpu: "2"
jvmOptions:
-Xms: 4096m
-Xmx: 4096m
storage:
type: persistent-claim
size: 1000Gi
metricsConfig:
#

entityOperator: @

94

-

® o

tisSidecar: @
resources:
requests:
cpu: 200m
memory: 64Mi
limits:
cpu: 500m
memory: 128Mi
topicOperator:
watchedNamespace: my-topic-namespace
reconciliationIntervalSeconds: 60
logging: @
type: inline
loggers:
rootLogger.level: INFO
resources:
requests:
memory: 512Mi
cpu: "1"
limits:
memory: 512Mi
cpu: "1"
userQOperator:
watchedNamespace: my-topic-namespace
reconciliationIntervalSeconds: 60
logging: @
type: inline
loggers:
rootLogger.level: INFO
resources:
requests:
memory: 512Mi
cpu: "1"
limits:
memory: 512Mi
cpu: "1"
kafkaExporter: @
#...
cruiseControl: @
#...

The number of replica nodes.

CHAPTER 8. CONFIGURING A DEPLOYMENT

Kafka version, which can be changed to a supported version by following the upgrade procedure.

Kafka loggers and log levels added directly (inline) or indirectly (external) through a ConfigMap. A
custom Log4j configuration must be placed under the log4j.properties key in the ConfigMap. For
the Kafka kafka.root.logger.level logger, you can set the log level to INFO, ERROR, WARN,

TRACE, DEBUG, FATAL or OFF.

Requests for reservation of supported resources, currently cpu and memory, and limits to specify

the maximum resources that can be consumed.

Healthchecks to know when to restart a container (liveness) and when a container can accept

traffic (readiness).

95

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

@ ©® 9 @ O 9O 0 O 900

® ® O 9 9 0 9

96

JVM configuration options to optimize performance for the Virtual Machine (VM) running Kafka.

ADVANCED OPTION: Container image configuration, which is recommended only in special
situations.

Listeners configure how clients connect to the Kafka cluster via bootstrap addresses. Listeners are
configured as internal or external listeners for connection from inside or outside the OpenShift
cluster.

Name to identify the listener. Must be unique within the Kafka cluster.

Port number used by the listener inside Kafka. The port number has to be unique within a given
Kafka cluster. Allowed port numbers are 9092 and higher with the exception of ports 9404 and
9999, which are already used for Prometheus and JMX. Depending on the listener type, the port
number might not be the same as the port number that connects Kafka clients.

Listener type specified as internal or cluster-ip (to expose Kafka using per-broker ClusterIP
services), or for external listeners, as route (OpenShift only), loadbalancer, nodeport or ingress
(Kubernetes only).

Enables TLS encryption for each listener. Default is false. TLS encryption has to be enabled, by
setting it to true, for route and ingress type listeners.

Defines whether the fully-qualified DNS names including the cluster service suffix (usually
.cluster.local) are assigned.

Listener authentication mechanism specified as mTLS, SCRAM-SHA-512, or token-based OAuth
2.0.

External listener configuration specifies how the Kafka cluster is exposed outside OpenShift, such
as through a route, loadbalancer or nodeport.

Optional configuration for a Kafka listener certificate managed by an external CA (certificate
authority). The brokerCertChainAndKey specifies a Secret that contains a server certificate and
a private key. You can configure Kafka listener certificates on any listener with enabled TLS
encryption.

Authorization enables simple, OAUTH 2.0, or OPA authorization on the Kafka broker. Simple
authorization uses the AclAuthorizer Kafka plugin.

Broker configuration. Standard Apache Kafka configuration may be provided, restricted to those
properties not managed directly by AMQ Streams.

Storage size for persistent volumes may be increased and additional volumes may be added to
JBOD storage.

Persistent storage has additional configuration options, such as a storage id and class for dynamic
volume provisioning.

Rack awareness configuration to spread replicas across different racks, data centers, or availability
zones. The topologyKey must match a node label containing the rack ID. The example used in this
configuration specifies a zone using the standard topology.kubernetes.io/zone label.

Prometheus metrics enabled. In this example, metrics are configured for the Prometheus JMX
Exporter (the default metrics exporter).

https://kubernetes.io/docs/reference/labels-annotations-taints/#topologykubernetesiozone

CHAPTER 8. CONFIGURING A DEPLOYMENT

Rules for exporting metrics in Prometheus format to a Grafana dashboard through the
Prometheus JMX Exporter, which are enabled by referencing a ConfigMap containing

ZooKeeper-specific configuration, which contains properties similar to the Kafka configuration.

(>)

The number of ZooKeeper nodes. ZooKeeper clusters or ensembles usually run with an odd number

of nodes, typically three, five, or seven. The majority of nodes must be available in order to maintain

an effective quorum. If the ZooKeeper cluster loses its quorum, it will stop responding to clients an

d

the Kafka brokers will stop working. Having a stable and highly available ZooKeeper cluster is crucial

for AMQ Streams.
ZooKeeper loggers and log levels.

Entity Operator configuration, which specifies the configuration for the Topic Operator and User
Operator.

Entity Operator TLS sidecar configuration. Entity Operator uses the TLS sidecar for secure
communication with ZooKeeper.

Specified Topic Operator loggers and log levels. This example uses inline logging.

Specified User Operator loggers and log levels.

990 O 99

Kafka Exporter configuration. Kafka Exporter is an optional component for extracting metrics data

from Kafka brokers, in particular consumer lag data. For Kafka Exporter to be able to work properly,

consumer groups need to be in use.

@ Optional configuration for Cruise Control, which is used to rebalance the Kafka cluster.

8.2.1. Setting limits on brokers using the Kafka Static Quota plugin

Use the Kafka Static Quota plugin to set throughput and storage limits on brokers in your Kafka cluster.
You enable the plugin and set limits by configuring the Kafka resource. You can set a byte-rate
threshold and storage quotas to put limits on the clients interacting with your brokers.

You can set byte-rate thresholds for producer and consumer bandwidth. The total limit is distributed
across all clients accessing the broker. For example, you can set a byte-rate threshold of 40 MBps for
producers. If two producers are running, they are each limited to a throughput of 20 MBps.

Storage quotas throttle Kafka disk storage limits between a soft limit and hard limit. The limits apply to
all available disk space. Producers are slowed gradually between the soft and hard limit. The limits
prevent disks filling up too quickly and exceeding their capacity. Full disks can lead to issues that are
hard to rectify. The hard limit is the maximum storage limit.

NOTE

For JBOD storage, the limit applies across all disks. If a broker is using two 1 TB disks and
the quota is 1.1 TB, one disk might fill and the other disk will be almost empty.

Prerequisites

® The Cluster Operator that manages the Kafka cluster is running.

Procedure

97

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

1. Add the plugin properties to the config of the Kafka resource.
The plugin properties are shown in this example configuration.

Example Kafka Static Quota plugin configuration

apiVersion: kafka.strimzi.io/vibeta2
kind: Kafka
metadata:
name: my-cluster
spec:
kafka:
#...
config:
client.quota.callback.class: io.strimzi.kafka.quotas.StaticQuotaCallback ﬂ
client.quota.callback.static.produce: 1000000 9
client.quota.callback.static.fetch: 1000000 6
client.quota.callback.static.storage.soft: 400000000000 ﬂ
client.quota.callback.static.storage.hard: 500000000000 6
client.quota.callback.static.storage.check-interval: 5 G

Loads the Kafka Static Quota plugin.

Sets the producer byte-rate threshold. 1 MBps in this example.
Sets the consumer byte-rate threshold. 1 MBps in this example.
Sets the lower soft limit for storage. 400 GB in this example.

Sets the higher hard limit for storage. 500 GB in this example.

Q90009

Sets the interval in seconds between checks on storage. 5 seconds in this example. You can
set this to O to disable the check.

2. Update the resource.

I oc apply -f <kafka_configuration_file>

Additional resources

o KafkaUserQuotas schema reference

8.2.2. Default ZooKeeper configuration values

When deploying ZooKeeper with AMQ Streams, some of the default configuration set by AMQ Streams
differs from the standard ZooKeeper defaults. This is because AMQ Streams sets a number of
ZooKeeper properties with values that are optimized for running ZooKeeper within an OpenShift
environment.

The default configuration for key ZooKeeper properties in AMQ Streams is as follows:

Table 8.1. Default ZooKeeper Properties in AMQ Streams

98

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index#type-KafkaUserQuotas-reference

CHAPTER 8. CONFIGURING A DEPLOYMENT

Property Default value Description

tickTime 2000 The length of a single tick in milliseconds, which
determines the length of a session timeout.

initLimit 5 The maximum number of ticks that a follower is
allowed to fall behind the leader in a ZooKeeper
cluster.

syncLimit 2 The maximum number of ticks that a follower is

allowed to be out of sync with the leaderin a
ZooKeeper cluster.

autopurge.purgelnterval 1 Enables the autopurge feature and sets the time
interval in hours for purging the server-side
ZooKeeper transaction log.

admin.enableServer false Flag to disable the ZooKeeper admin server. The
admin server is not used by AMQ Streams.

IMPORTANT

Modifying these default values as zookeeper.config in the Kafka custom resource may
impact the behavior and performance of your ZooKeeper cluster.

8.3. (PREVIEW) CONFIGURING NODE POOLS

Update the spec properties of the KafkaNodePool custom resource to configure a node pool
deployment.

NOTE

The node pools feature is available as a preview. Node pools are not enabled by default,
so you must enable the KafkaNodePools feature gate before using them.

A node pool refers to a distinct group of Kafka nodes within a Kafka cluster. Each pool has its own unique
configuration, which includes mandatory settings for the number of replicas, roles, and storage
allocation.
Optionally, you can also specify values for the following properties:

® resources to specify memory and cpu requests and limits

e template to specify custom configuration for pods and other OpenShift resources

e jvmOptions to specify custom JVM configuration for heap size, runtime and other options
The Kafka resource represents the configuration for all nodes in the Kafka cluster. The KafkaNodePool
resource represents the configuration for nodes only in the node pool. If a configuration property is not

specified in KafkaNodePool, it is inherited from the Kafka resource. Configuration specified in the
KafkaNodePool resource takes precedence if set in both resources. For example, if both the node pool

99

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

and Kafka configuration includes jymOptions, the values specified in the node pool configuration are
used. When -Xmx: 1024m is set in KafkaNodePool.spec.jvmOptions and -Xms: 512m is set in
Kafka.spec.kafka.jvmOptions, the node uses the value from its node pool configuration.

Properties from Kafka and KafkaNodePool schemas are not combined. To clarify, if
KafkaNodePool.spec.template includes only podSet.metadata.labels, and
Kafka.spec.kafka.template includes podSet.metadata.annotations and pod.metadata.labels, the
template values from the Kafka configuration are ignored since there is a template value in the node
pool configuration.

Node pools can be used with Kafka clusters that operate in KRaft mode (using Kafka Raft metadata) or
use ZooKeeper for cluster management. If you are using KRaft mode, you can specify roles for all nodes
in the node pool to operate as brokers, controllers, or both. If you are using ZooKeeper, nodes must be
set as brokers only.

IMPORTANT

KRaft mode is not ready for production in Apache Kafka or in AMQ Streams.

For a deeper understanding of the node pool configuration options, refer to the AMQ Streams Custom
Resource API Reference.

NOTE

While the KafkaNodePools feature gate that enables node pools is in alpha phase,
replica and storage configuration properties in the KafkaNodePool resource must also
be present in the Kafka resource. The configuration in the Kafka resource is ignored
when node pools are used. Similarly, ZooKeeper configuration properties must also be
present in the Kafka resource when using KRaft mode. These properties are also ignored.

Example configuration for a node pool in a cluster using ZooKeeper

apiVersion: kafka.strimzi.io/vibeta2
kind: KafkaNodePool
metadata:
name: pool-a ﬂ
labels:
strimzi.io/cluster: my-cluster 9
spec:
replicas: 3 6
roles:
- broker ﬂ
storage: 6

type: jbod
volumes:
-id: 0
type: persistent-claim
size: 100Gi
deleteClaim: false
resources: G
requests:
memory: 64Gi
cpu: "8"

100

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index

CHAPTER 8. CONFIGURING A DEPLOYMENT

limits:
memory: 64Gi
cpu: "12"

Unique name for the node pool.

The Kafka cluster the node pool belongs to. A node pool can only belong to a single cluster.
Number of replicas for the nodes.

Roles for the nodes in the node pool, which can only be broker when using Kafka with ZooKeeper.
Storage specification for the nodes.

Requests for reservation of supported resources, currently cpu and memory, and limits to specify
the maximum resources that can be consumed.

QD009 9 —

Example configuration for a node pool in a cluster using KRaft mode

apiVersion: kafka.strimzi.io/vibeta2
kind: KafkaNodePool
metadata:
name: kraft-dual-role
labels:
strimzi.io/cluster: my-cluster
spec:
replicas: 3
roles: ﬂ
- controller
- broker
storage:
type: jbod
volumes:
-id: 0
type: persistent-claim
size: 20Gi
deleteClaim: false
resources:
requests:
memory: 64Gi
cpu: "8"
limits:
memory: 64Gi
cpu: "12"

ﬂ Roles for the nodes in the node pool. In this example, the nodes have dual roles as controllers and
brokers.

NOTE

The configuration for the Kafka resource must be suitable for KRaft mode. Currently,
KRaft mode has a number of limitations.

101

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

8.3.1. (Preview) Assigning IDs to node pools for scaling operations

This procedure describes how to use annotations for advanced node ID handling by the Cluster
Operator when performing scaling operations on node pools. You specify the node IDs to use, rather
than the Cluster Operator using the next ID in sequence. Management of node IDs in this way gives
greater control.

To add a range of IDs, you assign the following annotations to the KafkaNodePool resource:
e strimzi.io/next-node-ids to add a range of IDs that are used for new brokers
e strimzi.io/remove-node-ids to add a range of IDs for removing existing brokers

You can specify an array of individual node IDs, ID ranges, or a combination of both. For example, you
can specify the following range of IDs: [0, 1, 2, 10-20, 30] for scaling up the Kafka node pool. This
format allows you to specify a combination of individual node IDs (0, 1, 2, 30) as well as a range of IDs
(10-20).

In a typical scenario, you might specify a range of IDs for scaling up and a single node ID to remove a
specific node when scaling down.

In this procedure, we add the scaling annotations to node pools as follows:
® pool-ais assigned a range of IDs for scaling up
® pool-b is assigned a range of IDs for scaling down
During the scaling operation, IDs are used as follows:
® Scale up picks up the lowest available ID in the range for the new node.
® Scale down removes the node with the highest available ID in the range.

If there are gaps in the sequence of node IDs assigned in the node pool, the next node to be added is
assigned an ID that fills the gap.

The annotations don’t need to be updated after every scaling operation. Any unused IDs are still valid for
the next scaling event.

The Cluster Operator allows you to specify a range of IDs in either ascending or descending order, so
you can define them in the order the nodes are scaled. For example, when scaling up, you can specify a
range such as [1000-1999], and the new nodes are assigned the next lowest IDs: 1000, 1001, 1002, 1003,
and so on. Conversely, when scaling down, you can specify a range like [1999-1000], ensuring that nodes
with the next highest IDs are removed: 1003, 1002, 1001, 1000, and so on.

If you don't specify an ID range using the annotations, the Cluster Operator follows its default behavior
for handling IDs during scaling operations. Node IDs start at O (zero) and run sequentially across the
Kafka cluster. The next lowest ID is assigned to a new node. Gaps to node IDs are filled across the
cluster. This means that they might not run sequentially within a node pool. The default behavior for
scaling up is to add the next lowest available node ID across the cluster; and for scaling down, it is to
remove the node in the node pool with the highest available node ID. The default approach is also
applied if the assigned range of IDs is misformatted, the scaling up range runs out of IDs, or the scaling
down range does not apply to any in-use nodes.

Prerequisites

® The Cluster Operator must be deployed.

102

CHAPTER 8. CONFIGURING A DEPLOYMENT

Procedure

1. Annotate the node pool with the IDs to use when scaling up or scaling down, as shown in the
following examples.
IDs for scaling up are assigned to node pool pool-a:

Assigning IDs for scaling up
I oc annotate kafkanodepool pool-a strimzi.io/next-node-ids="[0,1,2,10-20,30]"

The lowest available ID from this range is used when adding a node to pool-a.
IDs for scaling down are assigned to node pool pool-b:

Assigning IDs for scaling down
I oc annotate kafkanodepool pool-b strimzi.io/remove-node-ids="[60-50,9,8,7]"

The highest available ID from this range is removed when scaling down pool-b.

2. You can now scale the node pool.
For more information, see the following:

® Section 8.3.2, “(Preview) Adding nodes to a node pool”
® Section 8.3.3, "(Preview) Removing nodes from a node pool”
® Section 8.3.4, “(Preview) Moving nodes between node pools”

On reconciliation, a warning is given if the annotations are misformatted.

8.3.2. (Preview) Adding nodes to a node pool

This procedure describes how to scale up a node pool to add new nodes.
In this procedure, we start with three nodes for node pool pool-a:

Kafka nodes in the node pool

NAME READY STATUS RESTARTS
my-cluster-pool-a-katka-0 1/1 Running 0
my-cluster-pool-a-katka-1 1/1 Running 0
my-cluster-pool-a-katka-2 1/1 Running 0

Node IDs are appended to the name of the node on creation. We add node my-cluster-pool-a-kafka-3,
which has a node ID of 3.

NOTE

During this process, the ID of the node that holds the partition replicas changes. Consider
any dependencies that reference the node ID.

Prerequisites

103

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

® The Cluster Operator must be deployed.

® (Optional) For scale up operations, you can specify the range of node IDs to use .

If you have assigned a range of node IDs for the operation, the ID of the node being added is
determined by the sequence of nodes given. Otherwise, the lowest available node ID across the
cluster is used.

Procedure

1. Create a new node in the node pool.

For example, node pool pool-a has three replicas. We add a node by increasing the number of
replicas:

I oc scale kafkanodepool pool-a --replicas=4

2. Check the status of the deployment and wait for the pods in the node pool to be created and

have a status of READY.

I oc get pods -n <my_cluster_operator_namespace>
Output shows four Kafka nodes in the node pool

NAME READY STATUS RESTARTS
my-cluster-pool-a-katka-0 1/1 Running 0
my-cluster-pool-a-katka-1 1/1 Running 0
my-cluster-pool-a-katka-2 1/1 Running 0
my-cluster-pool-a-katka-3 1/1 Running 0

3. Reassign the partitions after increasing the number of nodes in the node pool.

After scaling up a node pool, you can use the Cruise Control add-brokers mode to move
partition replicas from existing brokers to the newly added brokers.

8.3.3. (Preview) Removing nodes from a node pool

This procedure describes how to scale down a node pool to remove nodes.

In this procedure, we start with four nodes for node pool pool-a:

Kafka nodes in the node pool

NAME READY STATUS RESTARTS
my-cluster-pool-a-katka-0 1/1 Running 0
my-cluster-pool-a-katka-1 1/1 Running 0
my-cluster-pool-a-katka-2 1/1 Running 0
my-cluster-pool-a-katka-3 1/1 Running 0

Node IDs are appended to the name of the node on creation. We remove node my-cluster-pool-a-
kafka-3, which has a node ID of 3.

104

NOTE

During this process, the ID of the node that holds the partition replicas changes. Consider
any dependencies that reference the node ID.

CHAPTER 8. CONFIGURING A DEPLOYMENT

Prerequisites

® The Cluster Operator must be deployed.

® (Optional) For scale down operations, you can specify the range of node IDs to use in the
operation.
If you have assigned a range of node IDs for the operation, the ID of the node being removed is
determined by the sequence of nodes given. Otherwise, the node with the highest available ID in
the node pool is removed.

Procedure

1. Reassign the partitions before decreasing the number of nodes in the node pool.
Before scaling down a node pool, you can use the Cruise Control remove-brokers mode to
move partition replicas off the brokers that are going to be removed.

2. After the reassignment process is complete, and the node being removed has no live partitions,
reduce the number of Kafka nodes in the node pool.
For example, node pool pool-a has four replicas. We remove a node by decreasing the number
of replicas:

I oc scale kafkanodepool pool-a --replicas=3
Output shows three Kafka nodes in the node pool

NAME READY STATUS RESTARTS
my-cluster-pool-b-kafka-0 1/1 Running 0
my-cluster-pool-b-kafka-1 1/1 Running 0
my-cluster-pool-b-kafka-2 1/1 Running 0

8.3.4. (Preview) Moving nodes between node pools

This procedure describes how to move nodes between source and target Kafka node pools without
downtime. You create a new node on the target node pool and reassign partitions to move data from
the old node on the source node pool. When the replicas on the new node are in-sync, you can delete
the old node.

In this procedure, we start with two node pools:
® pool-a with three replicas is the target node pool
® pool-b with four replicas is the source node pool

We scale up pool-a, and reassign partitions and scale down pool-b, which results in the following:
e pool-a with four replicas

® pool-b with three replicas

NOTE

During this process, the ID of the node that holds the partition replicas changes. Consider
any dependencies that reference the node ID.

105

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

Prerequisites

® The Cluster Operator must be deployed.

® (Optional) For scale up and scale down operations, you can specify the range of node IDs to

use.
If you have assigned node IDs for the operation, the ID of the node being added or removed is
determined by the sequence of nodes given. Otherwise, the lowest available node ID across the
cluster is used when adding nodes; and the node with the highest available ID in the node pool is
removed.

Procedure

106

1. Create a new node in the target node pool.

For example, node pool pool-a has three replicas. We add a node by increasing the number of
replicas:

I oc scale kafkanodepool pool-a --replicas=4

. Check the status of the deployment and wait for the pods in the node pool to be created and

have a status of READY.

I oc get pods -n <my_cluster_operator_namespace>
Output shows four Kafka nodes in the target node pool

NAME READY STATUS RESTARTS
my-cluster-pool-a-katka-0 1/1 Running 0
my-cluster-pool-a-katka-1 1/1 Running 0
my-cluster-pool-a-katka-4 1/1 Running 0
my-cluster-pool-a-katka-5 1/1 Running 0

Node IDs are appended to the name of the node on creation. We add node my-cluster-pool-a-
kafka-5, which has a node ID of 5.

. Reassign the partitions from the old node to the new node.

Before scaling down the source node pool, you can use the Cruise Control remove-brokers
mode to move partition replicas off the brokers that are going to be removed.

. After the reassignment process is complete, reduce the number of Kafka nodes in the source

node pool.
For example, node pool pool-b has four replicas. We remove a node by decreasing the number
of replicas:

I oc scale kafkanodepool pool-b --replicas=3

The node with the highest ID within a pool is removed.

Output shows three Kafka nodes in the source node pool

NAME READY STATUS RESTARTS
my-cluster-pool-b-katka-2 1/1 Running 0
my-cluster-pool-b-katka-3 1/1 Running 0
my-cluster-pool-b-katka-6 1/1 Running 0

CHAPTER 8. CONFIGURING A DEPLOYMENT

8.3.5. (Preview) Migrating existing Kafka clusters to use Kafka node pools

This procedure describes how to migrate existing Kafka clusters to use Kafka node pools. After you have
updated the Kafka cluster, you can use the node pools to manage the configuration of nodes within each
pool.

NOTE

While the KafkaNodePools feature gate that enables node pools is in alpha phase,
replica and storage configuration in the KafkaNodePool resource must also be presentin
the Kafka resource. The configuration is ignored when node pools are being used.

Prerequisites

® The Cluster Operator must be deployed.

Procedure
1. Create a new KafkaNodePool resource.

a. Name the resource kafka.

b. Point a strimzi.io/cluster label to your existing Kafka resource.

c. Set the replica count and storage configuration to match your current Kafka cluster.
d. Setthe roles to broker.

Example configuration for a node pool used in migrating a Kafka cluster

apiVersion: kafka.strimzi.io/vibeta2
kind: KafkaNodePool
metadata:
name: kafka
labels:
strimzi.io/cluster: my-cluster
spec:
replicas: 3
roles:
- broker
storage:
type: jbod
volumes:
-id: 0
type: persistent-claim
size: 100Gi
deleteClaim: false

2. Apply the KafkaNodePool resource:
I oc apply -f <node_pool_configuration_file>

By applying this resource, you switch Kafka to using node pools.

107

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

There is no change or rolling update and resources are identical to how they were before.

3. Update the STRIMZI_FEATURE_GATES environment variable in the Cluster Operator
configuration to include +KafkaNodePools.

env:
- name: STRIMZI _FEATURE_GATES
value: +KafkaNodePools

4. Enable the KafkaNodePools feature gate in the Kafka resource using the strimzi.io/node-
pools: enabled annotation.

Example configuration for a node pool in a cluster using ZooKeeper

apiVersion: kafka.strimzi.io/vibeta2
kind: Kafka
metadata:
name: my-cluster
annotations:
strimzi.io/node-pools: enabled
spec:
kafka:
version: 3.5.0
replicas: 3
#...
storage:
type: jbod
volumes:
-id: 0
type: persistent-claim
size: 100Gi
deleteClaim: false

5. Apply the Kafka resource:

I oc apply -f <kaftka_configuration_file>

8.4. CONFIGURING THE ENTITY OPERATOR
Use the entityOperator property in Kafka.spec to configure the Entity Operator. The Entity Operator
is responsible for managing Kafka-related entities in a running Kafka cluster. It comprises the following
operators:

® Topic Operator to manage Kafka topics

e User Operator to manage Kafka users
By configuring the Kafka resource, the Cluster Operator can deploy the Entity Operator, including one
or both operators. Once deployed, the operators are automatically configured to handle the topics and

users of the Kafka cluster.

Each operator can only monitor a single namespace. For more information, see Section 1.2.1, “Watching
AMQ Streams resources in OpenShift namespaces”.

108

CHAPTER 8. CONFIGURING A DEPLOYMENT

The entityOperator property supports several sub-properties:
e tisSidecar
e topicOperator
e userOperator
e template

The tlsSidecar property contains the configuration of the TLS sidecar container, which is used to
communicate with ZooKeeper.

The template property contains the configuration of the Entity Operator pod, such as labels,
annotations, affinity, and tolerations. For more information on configuring templates, see Section 8.16,
“Customizing OpenShift resources”.

The topicOperator property contains the configuration of the Topic Operator. When this option is
missing, the Entity Operator is deployed without the Topic Operator.

The userOperator property contains the configuration of the User Operator. When this option is
missing, the Entity Operator is deployed without the User Operator.

For more information on the properties used to configure the Entity Operator, see the
EntityUserOperatorSpec schema reference.

Example of basic configuration enabling both operators

apiVersion: kafka.strimzi.io/vibeta2
kind: Kafka
metadata:
name: my-cluster
spec:
kafka:
#...
zookeeper:
#...
entityOperator:
topicOperator: {}
userOperator: {}

If an empty object ({}) is used for the topicOperator and userOperator, all properties use their default
values.

When both topicOperator and userOperator properties are missing, the Entity Operator is not
deployed.

8.4.1. Configuring the Topic Operator

Use topicOperator properties in Kafka.spec.entityOperator to configure the Topic Operator.

109

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index#type-EntityUserOperatorSpec-reference

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

NOTE

If you are using the preview of unidirectional topic management, the following properties
are not used and will be ignored:
Kafka.spec.entityOperator.topicOperator.zookeeperSessionTimeoutSeconds and
Kafka.spec.entityOperator.topicOperator.topicMetadataMaxAttempts. For more
information on unidirectional topic management, refer to Section 9.1, “Topic
management modes”.

The following properties are supported:

watchedNamespace

The OpenShift namespace in which the Topic Operator watches for KafkaTopic resources. Default
is the namespace where the Kafka cluster is deployed.

reconciliationintervalSeconds

The interval between periodic reconciliations in seconds. Default 120.
zookeeperSessionTimeoutSeconds

The ZooKeeper session timeout in seconds. Default 18.
topicMetadataMaxAttempts

The number of attempts at getting topic metadata from Kafka. The time between each attempt is
defined as an exponential back-off. Consider increasing this value when topic creation might take
more time due to the number of partitions or replicas. Default 6.

image

The image property can be used to configure the container image which will be used. To learn more,
refer to the information provided on configuring the image property .

resources

The resources property configures the amount of resources allocated to the Topic Operator. You
can specify requests and limits for memory and cpu resources. The requests should be enough to
ensure a stable performance of the operator.

logging
The logging property configures the logging of the Topic Operator. To learn more, refer to the
information provided on Topic Operator logging.

Example Topic Operator configuration

apiVersion: kafka.strimzi.io/vibeta2
kind: Kafka
metadata:
name: my-cluster
spec:
kafka:
#...
zookeeper:
#...
entityOperator:
#...
topicOperator:
watchedNamespace: my-topic-namespace
reconciliationIntervalSeconds: 60
resources:
requests:

110

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index#con-common-configuration-images-reference
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index#property-topic-operator-logging-reference

CHAPTER 8. CONFIGURING A DEPLOYMENT

cpu: "1"
memory: 500Mi
limits:
cpu: "1"
memory: 500Mi
#...

8.4.2. Configuring the User Operator

Use userOperator properties in Kafka.spec.entityOperator to configure the User Operator. The
following properties are supported:

watchedNamespace

The OpenShift namespace in which the User Operator watches for KafkaUser resources. Default is
the namespace where the Kafka cluster is deployed.

reconciliationintervalSeconds
The interval between periodic reconciliations in seconds. Default 120.
image

The image property can be used to configure the container image which will be used. To learn more,
refer to the information provided on configuring the image property .

resources

The resources property configures the amount of resources allocated to the User Operator. You
can specify requests and limits for memory and cpu resources. The requests should be enough to
ensure a stable performance of the operator.

logging

The logging property configures the logging of the User Operator. To learn more, refer to the
information provided on User Operator logging.

secretPrefix

The secretPrefix property adds a prefix to the name of all Secrets created from the KafkaUser
resource. For example, secretPrefix: kafka- would prefix all Secret names with kafka-. So a
KafkaUser named my-user would create a Secret named kafka-my-user.

Example User Operator configuration

apiVersion: kafka.strimzi.io/vibeta2
kind: Kafka
metadata:
name: my-cluster
spec:
kafka:
#...
zookeeper:
#...
entityOperator:
#...
userOperator:
watchedNamespace: my-user-namespace
reconciliationIntervalSeconds: 60
resources:
requests:
cpu: "1"

m

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index#con-common-configuration-images-reference
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index#property-user-operator-logging-reference

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

memory: 500Mi
limits:
cpu:"1"
memory: 500Mi
#...

8.5. CONFIGURING THE CLUSTER OPERATOR

Use environment variables to configure the Cluster Operator. Specify the environment variables for the
container image of the Cluster Operator in its Deployment configuration file.

/ NOTE

The Deployment configuration file provided with the AMQ Streams release artifacts is
install/cluster-operator/060-Deployment-strimzi-cluster-operator.yaml.

You can use the following environment variables to configure the Cluster Operator. If you are running
Cluster Operator replicas in standby mode, there are additional environment variables for enabling
leader election.

STRIMZI_NAMESPACE

A comma-separated list of namespaces that the operator operates in. When not set, set to empty
string, or set to *, the Cluster Operator operates in all namespaces.

The Cluster Operator deployment might use the downward API to set this automatically to the
namespace the Cluster Operator is deployed in.

Example configuration for Cluster Operator namespaces

env:
- name: STRIMZI_NAMESPACE
valueFrom:
fieldRef:
fieldPath: metadata.namespace

STRIMZI_FULL_RECONCILIATION_INTERVAL_MS
Optional, default is 120000 ms. The interval between periodic reconciliations, in milliseconds.
STRIMZI_OPERATION_TIMEOUT_MS

Optional, default 300000 ms. The timeout for internal operations, in milliseconds. Increase this value
when using AMQ Streams on clusters where regular OpenShift operations take longer than usual
(because of slow downloading of Docker images, for example).

STRIMZI_ZOOKEEPER_ADMIN_SESSION_TIMEOUT_MS

Optional, default 10000 ms. The session timeout for the Cluster Operator’s ZooKeeper admin client,
in milliseconds. Increase the value if ZooKeeper requests from the Cluster Operator are regularly
failing due to timeout issues. There is a maximum allowed session time set on the ZooKeeper server
side via the maxSessionTimeout config. By default, the maximum session timeout value is 20 times
the default tickTime (whose default is 2000) at 40000 ms. If you require a higher timeout, change
the maxSessionTimeout ZooKeeper server configuration value.

STRIMZI_OPERATIONS_THREAD_POOL_SIZE

Optional, default 10. The worker thread pool size, which is used for various asynchronous and
blocking operations that are run by the Cluster Operator.

12

CHAPTER 8. CONFIGURING A DEPLOYMENT

STRIMZI_OPERATOR_NAME

Optional, defaults to the pod’s hostname. The operator name identifies the AMQ Streams instance
when emitting OpenShift events.

STRIMZI_OPERATOR_NAMESPACE

The name of the namespace where the Cluster Operator is running. Do not configure this variable
manually. Use the downward API.

env:
- name: STRIMZI_OPERATOR_NAMESPACE
valueFrom:
fieldRef:
fieldPath: metadata.namespace

STRIMZI_OPERATOR_NAMESPACE_LABELS

Optional. The labels of the namespace where the AMQ Streams Cluster Operator is running. Use
namespace labels to configure the namespace selector in network policies. Network policies allow
the AMQ Streams Cluster Operator access only to the operands from the namespace with these
labels. When not set, the namespace selector in network policies is configured to allow access to the
Cluster Operator from any namespace in the OpenShift cluster.

env:
- name: STRIMZI_OPERATOR_NAMESPACE_LABELS
value: label1=value1l,label2=value2

STRIMZI_LABELS_EXCLUSION_PATTERN

Optional, default regex pattern is Aapp.kubernetes.io/(?!part-of).*. The regex exclusion pattern
used to filter labels propagation from the main custom resource to its subresources. The labels
exclusion filter is not applied to labels in template sections such as
spec.kafka.template.pod.metadata.labels.

env:
- name: STRIMZI_LABELS_EXCLUSION_PATTERN
value: "*key1.™"

STRIMZI_CUSTOM_{COMPONENT NAME} LABELS

Optional. One or more custom labels to apply to all the pods created by the {COMPONENT_NAME}
custom resource. The Cluster Operator labels the pods when the custom resource is created or is
next reconciled.

Labels can be applied to the following components:

e KAFKA

e KAFKA_CONNECT

e KAFKA_CONNECT_BUILD
e ZOOKEEPER

e ENTITY_OPERATOR

o KAFKA_MIRROR_MAKER2

13

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

KAFKA_MIRROR_MAKER

CRUISE_CONTROL

KAFKA_BRIDGE

KAFKA_EXPORTER

STRIMZI_CUSTOM_RESOURCE_SELECTOR

Optional. The label selector to filter the custom resources handled by the Cluster Operator. The
operator will operate only on those custom resources that have the specified labels set. Resources
without these labels will not be seen by the operator. The label selector applies to Kafka,
KafkaConnect, KafkaBridge, KafkaMirrorMaker, and KafkaMirrorMaker2 resources.
KafkaRebalance and KafkaConnector resources are operated only when their corresponding Kafka
and Kafka Connect clusters have the matching labels.

env:
- name: STRIMZI_CUSTOM_RESOURCE_SELECTOR
value: label1=value1l,label2=value2

STRIMZI_KAFKA_IMAGES

Required. The mapping from the Kafka version to the corresponding Docker image containing a
Kafka broker for that version. The required syntax is whitespace or comma-separated
<versions=<images pairs. For example 3.4.0=registry.redhat.io/amq-streams/kafka-34-
rhel8:2.5.1, 3.5.0=registry.redhat.io/amq-streams/kafka-35-rhel8:2.5.1. This is used when a
Kafka.spec.kafka.version property is specified but not the Kafka.spec.kafka.image in the Kafka
resource.

STRIMZI_DEFAULT_KAFKA_INIT_IMAGE

Optional, default registry.redhat.io/amgq-streams/strimzi-rhel8-operator:2.5.1. The image name to
use as default for the init container if no image is specified as the kafka-init-image in the Kafka
resource. The init container is started before the broker for initial configuration work, such as rack
support.

STRIMZI_KAFKA_CONNECT_IMAGES

Required. The mapping from the Kafka version to the corresponding Docker image of Kafka Connect
for that version. The required syntax is whitespace or comma-separated <versions=<images pairs.
For example 3.4.0=registry.redhat.io/amq-streams/kafka-34-rhel8:2.5.1,
3.5.0=registry.redhat.io/amq-streams/kafka-35-rhel8:2.5.1. This is used when a
KafkaConnect.spec.version property is specified but not the KafkaConnect.spec.image.

STRIMZI_KAFKA_MIRROR_MAKER_IMAGES

Required. The mapping from the Kafka version to the corresponding Docker image of MirrorMaker
for that version. The required syntax is whitespace or comma-separated <versions=<images pairs.
For example 3.4.0=registry.redhat.io/amq-streams/kafka-34-rhel8:2.5.1,
3.5.0=registry.redhat.io/amq-streams/kafka-35-rhel8:2.5.1. This is used when a
KafkaMirrorMaker.spec.version property is specified but not the KafkaMirrorMaker.spec.image.

STRIMZI_DEFAULT_TOPIC_OPERATOR_IMAGE

Optional, default registry.redhat.io/amgq-streams/strimzi-rhel8-operator:2.5.1. The image name to
use as the default when deploying the Topic Operator if no image is specified as the
Kafka.spec.entityOperator.topicOperator.image in the Kafka resource.

STRIMZI_DEFAULT_USER_OPERATOR_IMAGE

14

CHAPTER 8. CONFIGURING A DEPLOYMENT

Optional, default registry.redhat.io/amgq-streams/strimzi-rhel8-operator:2.5.1. The image name to
use as the default when deploying the User Operator if no image is specified as the
Kafka.spec.entityOperator.userOperator.image in the Kafka resource.

STRIMZI_DEFAULT_TLS_SIDECAR_ENTITY_OPERATOR_IMAGE

Optional, default registry.redhat.io/amgq-streams/kafka-35-rhel8:2.5.1. The image name to use as
the default when deploying the sidecar container for the Entity Operator if no image is specified as
the Kafka.spec.entityOperator.tlsSidecar.image in the Kafka resource. The sidecar provides TLS
support.

STRIMZI_IMAGE_PULL_POLICY

Optional. The ImagePullPolicy that is applied to containers in all pods managed by the Cluster
Operator. The valid values are Always, IfNotPresent, and Never. If not specified, the OpenShift
defaults are used. Changing the policy will result in a rolling update of all your Kafka, Kaftka Connect,
and Kafka MirrorMaker clusters.

STRIMZI_IMAGE_PULL_SECRETS

Optional. A comma-separated list of Secret names. The secrets referenced here contain the
credentials to the container registries where the container images are pulled from. The secrets are
specified in the imagePullSecrets property for all pods created by the Cluster Operator. Changing
this list results in a rolling update of all your Kafka, Kafka Connect, and Kafka MirrorMaker clusters.

STRIMZI_KUBERNETES_VERSION

Optional. Overrides the OpenShift version information detected from the APl server.

Example configuration for OpenShift version override

env:
- name: STRIMZI_KUBERNETES_VERSION
value: |

major=1
minor=16
gitVersion=v1.16.2
gitCommit=c97fe5036ef3df2967d086711e6c0c405941e14b
gitTreeState=clean
buildDate=2019-10-15T19:09:08Z
goVersion=go1.12.10
compiler=gc
platform=linux/amdé4

KUBERNETES_SERVICE_DNS_DOMAIN

Optional. Overrides the default OpenShift DNS domain name suffix.
By default, services assigned in the OpenShift cluster have a DNS domain name that uses the
default suffix cluster.local.

For example, for broker kafka-0:

I <cluster-name>-kafka-0. <cluster-name>kafka-brokers.<namespace>.svc.cluster.local

The DNS domain name is added to the Kafka broker certificates used for hostname verification.

If you are using a different DNS domain name suffix in your cluster, change the
KUBERNETES_SERVICE_DNS_DOMAIN environment variable from the default to the one you are
using in order to establish a connection with the Kafka brokers.

115

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

STRIMZI_CONNECT_BUILD_TIMEOUT_MS

Optional, default 300000 ms. The timeout for building new Kafka Connect images with additional
connectors, in milliseconds. Consider increasing this value when using AMQ Streams to build
container images containing many connectors or using a slow container registry.

STRIMZI_NETWORK_POLICY_GENERATION

Optional, default true. Network policy for resources. Network policies allow connections between
Kafka components.

Set this environment variable to false to disable network policy generation. You might do this, for
example, if you want to use custom network policies. Custom network policies allow more control over
maintaining the connections between components.

STRIMZI_DNS_CACHE_TTL

Optional, default 30. Number of seconds to cache successful name lookups in local DNS resolver.
Any negative value means cache forever. Zero means do not cache, which can be useful for avoiding
connection errors due to long caching policies being applied.

STRIMZI_POD_SET_RECONCILIATION_ONLY

Optional, default false. When set to true, the Cluster Operator reconciles only the StrimziPodSet
resources and any changes to the other custom resources (Kafka, KafkaConnect, and so on) are
ignored. This mode is useful for ensuring that your pods are recreated if needed, but no other
changes happen to the clusters.

STRIMZI_FEATURE_GATES
Optional. Enables or disables the features and functionality controlled by feature gates.
STRIMZI_POD_SECURITY_PROVIDER_CLASS

Optional. Configuration for the pluggable PodSecurityProvider class, which can be used to provide
the security context configuration for Pods and containers.

8.5.1. Restricting access to the Cluster Operator using network policy

Use the STRIMZI_OPERATOR_NAMESPACE_LABELS environment variable to establish network
policy for the Cluster Operator using namespace labels.

The Cluster Operator can run in the same namespace as the resources it manages, or in a separate
namespace. By default, the STRIMZI_OPERATOR_NAMESPACE environment variable is configured
to use the downward API to find the namespace the Cluster Operator is running in. If the Cluster
Operator is running in the same namespace as the resources, only local access is required and allowed
by AMQ Streams.

If the Cluster Operator is running in a separate namespace to the resources it manages, any namespace
in the OpenShift cluster is allowed access to the Cluster Operator unless network policy is configured.
By adding namespace labels, access to the Cluster Operator is restricted to the namespaces specified.

Network policy configured for the Cluster Operator deployment

#...
env:
#...
- name: STRIMZI_OPERATOR_NAMESPACE_LABELS
value: label1=value1l,label2=value2
#...

8.5.2. Configuring periodic reconciliation by the Cluster Operator

16

CHAPTER 8. CONFIGURING A DEPLOYMENT

Use the STRIMZI_FULL_RECONCILIATION_INTERVAL_MS variable to set the time interval for
periodic reconciliations by the Cluster Operator. Replace its value with the required interval in
milliseconds.

Reconciliation period configured for the Cluster Operator deployment

#...
env:
#...
- name: STRIMZI_FULL_RECONCILIATION_INTERVAL_MS
value: "120000"
#...

The Cluster Operator reacts to all notifications about applicable cluster resources received from the
OpenShift cluster. If the operator is not running, or if a notification is not received for any reason,
resources will get out of sync with the state of the running OpenShift cluster. In order to handle failovers
properly, a periodic reconciliation process is executed by the Cluster Operator so that it can compare
the state of the resources with the current cluster deployments in order to have a consistent state
across all of them.

Additional resources

e Downward API

8.5.3. Running multiple Cluster Operator replicas with leader election

The default Cluster Operator configuration enables leader election to run multiple parallel replicas of
the Cluster Operator. One replica is elected as the active leader and operates the deployed resources.
The other replicas run in standby mode. When the leader stops or fails, one of the standby replicas is
elected as the new leader and starts operating the deployed resources.

By default, AMQ Streams runs with a single Cluster Operator replica that is always the leader replica.
When a single Cluster Operator replica stops or fails, OpenShift starts a new replica.

Running the Cluster Operator with multiple replicas is not essential. But it's useful to have replicas on
standby in case of large-scale disruptions caused by major failure. For example, suppose multiple worker
nodes or an entire availability zone fails. This failure might cause the Cluster Operator pod and many
Kafka pods to go down at the same time. If subsequent pod scheduling causes congestion through lack
of resources, this can delay operations when running a single Cluster Operator.

8.5.3.1. Enabling leader election for Cluster Operator replicas

Configure leader election environment variables when running additional Cluster Operator replicas. The
following environment variables are supported:

STRIMZI_LEADER_ELECTION_ENABLED

Optional, disabled (false) by default. Enables or disables leader election, which allows additional
Cluster Operator replicas to run on standby.

NOTE

Leader election is disabled by default. It is only enabled when applying this environment
variable on installation.

17

https://docs.openshift.com/container-platform/latest/nodes/containers/nodes-containers-downward-api.html

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

STRIMZI_LEADER_ELECTION_LEASE_NAME

Required when leader election is enabled. The name of the OpenShift Lease resource that is used
for the leader election.

STRIMZI_LEADER_ELECTION_LEASE_NAMESPACE

Required when leader election is enabled. The namespace where the OpenShift Lease resource
used for leader election is created. You can use the downward API to configure it to the namespace
where the Cluster Operator is deployed.

env:
- name: STRIMZI_LEADER_ELECTION_LEASE_NAMESPACE
valueFrom:
fieldRef:
fieldPath: metadata.namespace

STRIMZI_LEADER_ELECTION_IDENTITY

Required when leader election is enabled. Configures the identity of a given Cluster Operator
instance used during the leader election. The identity must be unique for each operator instance.
You can use the downward API to configure it to the name of the pod where the Cluster Operator is
deployed.

env:
- name: STRIMZI LEADER_ELECTION_IDENTITY
valueFrom:
fieldRef:
fieldPath: metadata.name

STRIMZI_LEADER_ELECTION_LEASE_DURATION_MS

Optional, default 15000 ms. Specifies the duration the acquired lease is valid.
STRIMZI_LEADER_ELECTION_RENEW_DEADLINE_MS

Optional, default 10000 ms. Specifies the period the leader should try to maintain leadership.
STRIMZI_LEADER_ELECTION_RETRY_PERIOD_MS

Optional, default 2000 ms. Specifies the frequency of updates to the lease lock by the leader.

8.5.3.2. Configuring Cluster Operator replicas

To run additional Cluster Operator replicas in standby mode, you will need to increase the number of
replicas and enable leader election. To configure leader election, use the leader election environment
variables.

To make the required changes, configure the following Cluster Operator installation files located in
install/cluster-operator/:

® 060-Deployment-strimzi-cluster-operator.yaml
® (022-ClusterRole-strimzi-cluster-operator-role.yaml
® (022-RoleBinding-strimzi-cluster-operator.yaml

Leader election has its own ClusterRole and RoleBinding RBAC resources that target the namespace
where the Cluster Operator is running, rather than the namespace it is watching.

The default deployment configuration creates a Lease resource called strimzi-cluster-operator in the

18

CHAPTER 8. CONFIGURING A DEPLOYMENT

same namespace as the Cluster Operator. The Cluster Operator uses leases to manage leader election.
The RBAC resources provide the permissions to use the Lease resource. If you use a different Lease
name or namespace, update the ClusterRole and RoleBinding files accordingly.

Prerequisites

® You need an account with permission to create and manage CustomResourceDefinition and
RBAC (ClusterRole, and RoleBinding) resources.

Procedure

Edit the Deployment resource that is used to deploy the Cluster Operator, which is defined in the 060-
Deployment-strimzi-cluster-operator.yamil file.

1. Change the replicas property from the default (1) to a value that matches the required number
of replicas.

Increasing the number of Cluster Operator replicas

apiVersion: apps/v1
kind: Deployment
metadata:
name: strimzi-cluster-operator
labels:
app: strimzi
spec:
replicas: 3

2. Check that the leader election env properties are set.
If they are not set, configure them.

To enable leader election, STRIMZI_LEADER_ELECTION_ENABLED must be set to true
(default).

In this example, the name of the lease is changed to my-strimzi-cluster-operator.

Configuring leader election environment variables for the Cluster Operator

#...
spec
containers:
- name: strimzi-cluster-operator
#...
env:
- name: STRIMZI_LEADER_ELECTION_ENABLED
value: "true"
- name: STRIMZI_LEADER_ELECTION_LEASE_NAME
value: "my-strimzi-cluster-operator"
- name: STRIMZI_LEADER_ELECTION_LEASE_NAMESPACE
valueFrom:
fieldRef:
fieldPath: metadata.namespace
- name: STRIMZI_LEADER_ELECTION_IDENTITY
valueFrom:
fieldRef:
fieldPath: metadata.name

19

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

For a description of the available environment variables, see Section 8.5.3.1, "Enabling leader
election for Cluster Operator replicas”.

If you specified a different name or namespace for the Lease resource used in leader election,
update the RBAC resources.

3. (optional) Edit the ClusterRole resource in the 022-ClusterRole-strimzi-cluster-operator-
role.yaml file.
Update resourceNames with the name of the Lease resource.

Updating the ClusterRole references to the lease

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
name: strimzi-cluster-operator-leader-election
labels:
app: strimzi
rules:
- apiGroups:
- coordination.k8s.io
resourceNames:
- my-strimzi-cluster-operator
#...

4. (optional) Edit the RoleBinding resource in the 022-RoleBinding-strimzi-cluster-
operator.yaml file.
Update subjects.name and subjects.namespace with the name of the Lease resource and
the namespace where it was created.

Updating the RoleBinding references to the lease

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
name: strimzi-cluster-operator-leader-election
labels:
app: strimzi
subjects:
- kind: ServiceAccount
name: my-strimzi-cluster-operator
namespace: myproject
#...

5. Deploy the Cluster Operator:

I oc create -f install/cluster-operator -n myproject

6. Check the status of the deployment:

I oc get deployments -n myproject

Output shows the deployment name and readiness

120

CHAPTER 8. CONFIGURING A DEPLOYMENT

NAME READY UP-TO-DATE AVAILABLE
strimzi-cluster-operator 3/3 3 3

READY shows the number of replicas that are ready/expected. The deployment is successful
when the AVAILABLE output shows the correct number of replicas.

8.5.4. Configuring Cluster Operator HTTP proxy settings

If you are running a Kafka cluster behind a HTTP proxy, you can still pass data in and out of the cluster.
For example, you can run Kafka Connect with connectors that push and pull data from outside the proxy.
Or you can use a proxy to connect with an authorization server.

Configure the Cluster Operator deployment to specify the proxy environment variables. The Cluster
Operator accepts standard proxy configuration (HTTP_PROXY, HTTPS_PROXY and NO_PROXY) as
environment variables. The proxy settings are applied to all AMQ Streams containers.

The format for a proxy address is http://<ip_address>:<port_number>. To set up a proxy with a name and
password, the format is http://<username><password>@<ip-address>:<port_number>.

Prerequisites

® You need an account with permission to create and manage CustomResourceDefinition and
RBAC (ClusterRole, and RoleBinding) resources.

Procedure

1. To add proxy environment variables to the Cluster Operator, update its Deployment
configuration (install/cluster-operator/060-Deployment-strimzi-cluster-operator.yaml).

Example proxy configuration for the Cluster Operator

apiVersion: apps/vi
kind: Deployment
spec:
#...
template:
spec:
serviceAccountName: strimzi-cluster-operator
containers:
#...
env:
#...
- name: "HTTP_PROXY"
value: "http://proxy.com” ﬂ
- name: "HTTPS_PROXY"
value: "https://proxy.com” 9
- name: "NO_PROXY"
value: "internal.com, other.domain.com"
#...

ﬂ Address of the proxy server.

9 Secure address of the proxy server.

121

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

Addresses for servers that are accessed directly as exceptions to the proxy server. The
URLs are comma-separated.

Alternatively, edit the Deployment directly:
I oc edit deployment strimzi-cluster-operator

2. If you updated the YAML file instead of editing the Deployment directly, apply the changes:

I oc create -f install/cluster-operator/060-Deployment-strimzi-cluster-operator.yaml

Additional resources

® Host aliases

® Designating AMQ Streams administrators

8.5.5. Disabling FIPS mode using Cluster Operator configuration

AMQ Streams automatically switches to FIPS mode when running on a FIPS-enabled OpenShift cluster.
Disable FIPS mode by setting the FIPS_MODE environment variable to disabled in the deployment
configuration for the Cluster Operator. With FIPS mode disabled, AMQ Streams automatically disables
FIPS in the OpendDK for all components. With FIPS mode disabled, AMQ Streams is not FIPS
compliant. The AMQ Streams operators, as well as all operands, run in the same way as if they were
running on an OpenShift cluster without FIPS enabled.

Procedure

1. To disable the FIPS mode in the Cluster Operator, update its Deployment configuration
(install/cluster-operator/060-Deployment-strimzi-cluster-operator.yaml) and add the
FIPS_MODE environment variable.

Example FIPS configuration for the Cluster Operator

apiVersion: apps/v1
kind: Deployment
spec:
#...
template:
spec:
serviceAccountName: strimzi-cluster-operator
containers:
#...
env:
#...
- name: "FIPS_MODE"
value: "disabled" 0
#...

ﬂ Disables the FIPS mode.

Alternatively, edit the Deployment directly:

122

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index#property-hostaliases-config-reference

CHAPTER 8. CONFIGURING A DEPLOYMENT

I oc edit deployment strimzi-cluster-operator

2. If you updated the YAML file instead of editing the Deployment directly, apply the changes:

I oc apply -f install/cluster-operator/060-Deployment-strimzi-cluster-operator.yaml

8.6. CONFIGURING KAFKA CONNECT

Update the spec properties of the KafkaConnect custom resource to configure your Kafka Connect
deployment.

Use Kafka Connect to set up external data connections to your Kafka cluster. Use the properties of the
KafkaConnect resource to configure your Kafka Connect deployment.

For a deeper understanding of the Kafka Connect cluster configuration options, refer to the AMQ
Streams Custom Resource APl Reference.

KafkaConnector configuration

KafkaConnector resources allow you to create and manage connector instances for Kafka Connect in
an OpenShift-native way.

In your Kafka Connect configuration, you enable KafkaConnectors for a Kafka Connect cluster by adding
the strimzi.io/use-connector-resources annotation. You can also add a build configuration so that
AMQ Streams automatically builds a container image with the connector plugins you require for your
data connections. External configuration for Kafka Connect connectors is specified through the
externalConfiguration property.

To manage connectors, you can use use KafkaConnector custom resources or the Kafka Connect
REST API. KafkaConnector resources must be deployed to the same namespace as the Kafka Connect
cluster they link to. For more information on using these methods to create, reconfigure, or delete
connectors, see Adding connectors.

Connector configuration is passed to Kafka Connect as part of an HTTP request and stored within Kafka
itself. ConfigMaps and Secrets are standard OpenShift resources used for storing configurations and
confidential data. You can use ConfigMaps and Secrets to configure certain elements of a connector.
You can then reference the configuration values in HTTP REST commands, which keeps the
configuration separate and more secure, if needed. This method applies especially to confidential data,
such as usernames, passwords, or certificates.

Handling high volumes of messages

You can tune the configuration to handle high volumes of messages. For more information, see
Handling high volumes of messages.

Example KafkaConnect custom resource configuration

apiVersion: kafka.strimzi.io/vibeta2
kind: KafkaConnect @)
metadata:
name: my-connect-cluster
annotations:
strimzi.io/use-connector-resources: "true"
spec:
replicas: 3

123

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

124

authentication: ﬂ
type: tls
certificateAndKey:
certificate: source.crt
key: source.key
secretName: my-user-source
bootstrapServers: my-cluster-kafka-bootstrap:9092 6

tls: G

trustedCertificates:
- secretName: my-cluster-cluster-cert
certificate: ca.crt
- secretName: my-cluster-cluster-cert
certificate: ca2.crt
config: ﬂ
group.id: my-connect-cluster
offset.storage.topic: my-connect-cluster-offsets
config.storage.topic: my-connect-cluster-configs
status.storage.topic: my-connect-cluster-status
key.converter: org.apache.kafka.connect.json.JsonConverter
value.converter: org.apache.kafka.connect.json.JsonConverter
key.converter.schemas.enable: true
value.converter.schemas.enable: true
config.storage.replication.factor: 3
offset.storage.replication.factor: 3
status.storage.replication.factor: 3

build: @
output: €

type: docker
image: my-registry.io/my-org/my-connect-cluster:latest
pushSecret: my-registry-credentials
plugins:
- name: debezium-postgres-connector
artifacts:
- type: tgz
url: https://repo1.maven.org/maven2/io/debezium/debezium-connector-
postgres/2.1.3.Final/debezium-connector-postgres-2.1.3.Final-plugin.tar.gz
sha512sum:
c4ddc97846de561755dc0b021a62aba656098829c70eb3ade3b817ce06d852ca12ae50c0281cc791a5a
131cb7fc21fb15f4b8ee76c6cae5dd07f9c11cb7c6e79
- hame: camel-telegram
artifacts:
- type: tgz
url: https://repo.maven.apache.org/maven2/org/apache/camel/kafkaconnector/camel-
telegram-kafka-connector/0.11.5/camel-telegram-kafka-connector-0.11.5-package.tar.gz
sha512sum:
d6d9f45e0d1dbfccof6d1c7ca2046168c764389c78bcdb867dab32d24f710bb74ccf2a007d7d7a8af2dfcal
9d9a52ccbc2831fc715¢195a3634cca055185bd91
externalConfiguration: m
env:
- name: AWS_ACCESS_KEY_ID
valueFrom:
secretKeyRef:
name: aws-creds
key: awsAccessKey
- name: AWS_SECRET_ACCESS_KEY

valueFrom:
secretKeyRef:
name: aws-creds
key: awsSecretAccessKey
resources:
requests:
cpu: "1"
memory: 2Gi
limits:
cpu: "2"
memory: 2Gi
logging: @
type: inline
loggers:
log4j.rootLogger: INFO
readinessProbe:
initialDelaySeconds: 15
timeoutSeconds: 5
livenessProbe:
initialDelaySeconds: 15
timeoutSeconds: 5
metricsConfig: @
type: jmxPrometheusExporter
valueFrom:
configMapKeyRef:
name: my-config-map
key: my-key
jvmOptions:
"-Xmx": "1g"
"-Xms": "1g"
image: my-org/my-image:latest m
rack:
topologyKey: topology.kubernetes.io/zone @
template:
pod:
affinity:
podAntiAffinity:

requiredDuringSchedulinglgnoredDuringExecution:

- labelSelector:
matchExpressions:
- key: application
operator: In
values:
- postgresql
- mongodb
topologyKey: "kubernetes.io/hostname”
connectContainer:
env:
- name: OTEL_SERVICE_NAME
value: my-otel-service
-name: OTEL_EXPORTER_OTLP_ENDPOINT
value: "http://otlp-host:4317"
tracing:
type: opentelemetry @

CHAPTER 8. CONFIGURING A DEPLOYMENT

125

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

O O O 9090 9 9060 6006009°

® 9

@ O 9

126

Use KafkaConnect.
Enables KafkaConnectors for the Kafka Connect cluster.
The number of replica nodes for the workers that run tasks.

Authentication for the Kafka Connect cluster, specified as mTLS, token-based OAuth, SASL -
based SCRAM-SHA-256/SCRAM-SHA-512, or PLAIN. By default, Kafka Connect connects to
Kafka brokers using a plain text connection.

Bootstrap server for connection to the Kafka cluster.

TLS encryption with key names under which TLS certificates are stored in X.509 format for the
cluster. If certificates are stored in the same secret, it can be listed multiple times.

Kafka Connect configuration of workers (not connectors). Standard Apache Kafka configuration
may be provided, restricted to those properties not managed directly by AMQ Streams.

Build configuration properties for building a container image with connector plugins automatically.
(Required) Configuration of the container registry where new images are pushed.

(Required) List of connector plugins and their artifacts to add to the new container image. Each
plugin must be configured with at least one artifact.

External configuration for connectors using environment variables, as shown here, or volumes. You
can also use configuration provider plugins to load configuration values from external sources.

Requests for reservation of supported resources, currently cpu and memory, and limits to specify
the maximum resources that can be consumed.

Specified Kafka Connect loggers and log levels added directly (inline) or indirectly (external)
through a ConfigMap. A custom Log4j configuration must be placed under the log4j.properties or
log4j2.properties key in the ConfigMap. For the Kafka Connect log4j.rootLogger logger, you can
set the log level to INFO, ERROR, WARN, TRACE, DEBUG, FATAL or OFF.

Healthchecks to know when to restart a container (liveness) and when a container can accept
traffic (readiness).

Prometheus metrics, which are enabled by referencing a ConfigMap containing configuration for
the Prometheus JMX exporter in this example. You can enable metrics without further
configuration using a reference to a ConfigMap containing an empty file under
metricsConfig.valueFrom.configMapKeyRef.key.

JVM configuration options to optimize performance for the Virtual Machine (VM) running Kafka
Connect.

ADVANCED OPTION: Container image configuration, which is recommended only in special
situations.

SPECIALIZED OPTION: Rack awareness configuration for the deployment. This is a specialized
option intended for a deployment within the same location, not across regions. Use this option if
you want connectors to consume from the closest replica rather than the leader replica. In certain
cases, consuming from the closest replica can improve network utilization or reduce costs . The
topologyKey must match a node label containing the rack ID. The example used in this
configuration specifies a zone using the standard topology.kubernetes.io/zone label. To consume
from the closest replica, enable the RackAwareReplicaSelector in the Kafka broker configuration.

https://kubernetes.io/docs/reference/labels-annotations-taints/#topologykubernetesiozone

CHAPTER 8. CONFIGURING A DEPLOYMENT

@ Template customization. Here a pod is scheduled with anti-affinity, so the pod is not scheduled on
nodes with the same hostname.

@ Environment variables are set for distributed tracing.

@ Distributed tracing is enabled by using OpenTelemetry.

8.6.1. Configuring Kafka Connect user authorization

This procedure describes how to authorize user access to Kafka Connect.

When any type of authorization is being used in Kafka, a Kafka Connect user requires read/write access
rights to the consumer group and the internal topics of Kafka Connect.

The properties for the consumer group and internal topics are automatically configured by AMQ
Streams, or they can be specified explicitly in the spec of the KafkaConnect resource.

Example configuration properties in the KafkaConnect resource

apiVersion: kafka.strimzi.io/vibeta2
kind: KafkaConnect
metadata:
name: my-connect
spec:
#...
config:
group.id: my-connect-cluster ﬂ
offset.storage.topic: my-connect-cluster-offsets 9
config.storage.topic: my-connect-cluster-configs 6
status.storage.topic: my-connect-cluster-status
#...
#...

The Kafka Connect cluster ID within Kafka.
Kafka topic that stores connector offsets.
Kafka topic that stores connector and task status configurations.

Kafka topic that stores connector and task status updates.

0009

This procedure shows how access is provided when simple authorization is being used.
Simple authorization uses ACL rules, handled by the Kafka AclAuthorizer plugin, to provide the right

level of access. For more information on configuring a KafkaUser resource to use simple authorization,
see the AclRule schema reference.

NOTE

The default values for the consumer group and topics will differ when running multiple
instances.

Prerequisites

127

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index#type-AclRule-reference

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

® An OpenShift cluster

® Arunning Cluster Operator

Procedure

1. Edit the authorization property in the KafkaUser resource to provide access rights to the user.
In the following example, access rights are configured for the Kafka Connect topics and

consumer group using literal name values:

Property Name

offset.storage.topic
status.storage.topic

config.storage.topic

group

apiVersion: kafka.strimzi.io/vibeta2
kind: KafkaUser
metadata:
name: my-user
labels:
strimzi.io/cluster: my-cluster
spec:
#...
authorization:
type: simple
acls:
access to offset.storage.topic
- resource:
type: topic
name: connect-cluster-offsets
patternType: literal
operations:
- Create
- Describe
- Read
- Write
host: "*"
access to status.storage.topic
- resource:
type: topic
name: connect-cluster-status
patternType: literal
operations:
- Create
- Describe
- Read
- Write
host: "*"

128

connect-cluster-offsets

connect-cluster-status

connect-cluster-configs

connect-cluster

CHAPTER 8. CONFIGURING A DEPLOYMENT

access to config.storage.topic
- resource:
type: topic
name: connect-cluster-configs
patternType: literal
operations:
- Create
- Describe
- Read
- Write
host: "*"
consumer group
- resource:
type: group
name: connect-cluster
patternType: literal
operations:
- Read
host: "*"

2. Create or update the resource.

I oc apply -f KAFKA-USER-CONFIG-FILE

8.7. CONFIGURING KAFKA MIRRORMAKER 2
Update the spec properties of the KafkaMirrorMaker2 custom resource to configure your MirrorMaker
2 deployment. MirrorMaker 2 uses source cluster configuration for data consumption and target cluster

configuration for data output.

MirrorMaker 2 is based on the Kafka Connect framework, connectors managing the transfer of data
between clusters.

You configure MirrorMaker 2 to define the Kafka Connect deployment, including the connection details
of the source and target clusters, and then run a set of MirrorMaker 2 connectors to make the
connection.

MirrorMaker 2 supports topic configuration synchronization between the source and target clusters. You
specify source topics in the MirrorMaker 2 configuration. MirrorMaker 2 monitors the source topics.

MirrorMaker 2 detects and propagates changes to the source topics to the remote topics. Changes
might include automatically creating missing topics and partitions.

NOTE

In most cases you write to local topics and read from remote topics. Though write
operations are not prevented on remote topics, they should be avoided.

The configuration must specify:
® Each Kafka cluster
® Connection information for each cluster, including authentication

® The replication flow and direction

129

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

o Cluster to cluster
o Topic to topic

For a deeper understanding of the Kafka MirrorMaker 2 cluster configuration options, refer to the AMQ
Streams Custom Resource APl Reference.

NOTE

MirrorMaker 2 resource configuration differs from the previous version of MirrorMaker,
which is now deprecated. There is currently no legacy support, so any resources must be
manually converted into the new format.

Default configuration

MirrorMaker 2 provides default configuration values for properties such as replication factors. A minimal
configuration, with defaults left unchanged, would be something like this example:

Minimal configuration for MirrorMaker 2

apiVersion: kafka.strimzi.io/vibeta2
kind: KafkaMirrorMaker2
metadata:
name: my-mirror-maker2
spec:
version: 3.5.0
connectCluster: "my-cluster-target”
clusters:
- alias: "my-cluster-source"
bootstrapServers: my-cluster-source-kafka-bootstrap:9092
- alias: "my-cluster-target”
bootstrapServers: my-cluster-target-katka-bootstrap:9092
mirrors:
- sourceCluster: "my-cluster-source"
targetCluster: "my-cluster-target”
sourceConnector: {}

You can configure access control for source and target clusters using mTLS or SASL authentication.
This procedure shows a configuration that uses TLS encryption and mTLS authentication for the source
and target cluster.

You can specify the topics and consumer groups you wish to replicate from a source cluster in the

KafkaMirrorMaker2 resource. You use the topicsPattern and groupsPattern properties to do this. You

can provide a list of names or use a regular expression. By default, all topics and consumer groups are

replicated if you do not set the topicsPattern and groupsPattern properties. You can also replicate all
"wokw

topics and consumer groups by using ".*"" as a regular expression. However, try to specify only the topics
and consumer groups you need to avoid causing any unnecessary extra load on the cluster.

Handling high volumes of messages

You can tune the configuration to handle high volumes of messages. For more information, see
Handling high volumes of messages.

Example KafkaMirrorMaker2 custom resource configuration

I apiVersion: kafka.strimzi.io/vibeta2

130

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index

CHAPTER 8. CONFIGURING A DEPLOYMENT

kind: KafkaMirrorMaker2
metadata:

name: my-mirror-maker2

spec:

version: 3.5.0 0

replicas: 3 9

connectCluster: "my-cluster-target” 6

clusters:

- alias: "my-cluster-source" 9
authentication:

certificateAndKey:
certificate: source.crt
key: source.key
secretName: my-user-source
type: tls
bootstrapServers: my-cluster-source-kafka-bootstrap:9092 ﬂ
tls: 6
trustedCertificates:
- certificate: ca.crt
secretName: my-cluster-source-cluster-ca-cert
- alias: "my-cluster-target”
authentication:
certificateAndKey:
certificate: target.crt
key: target.key
secretName: my-user-target
type: tls
bootstrapServers: my-cluster-target-katka-bootstrap:9092 m
config: @
config.storage.replication.factor: 1
offset.storage.replication.factor: 1
status.storage.replication.factor: 1
tls:
trustedCertificates:
- certificate: ca.crt
secretName: my-cluster-target-cluster-ca-cert
mirrors:

- sourceCluster: "my-cluster-source" @
targetCluster: "my-cluster-target” @
sourceConnector:

tasksMax: 10 @

autoRestart: @
enabled: true

config:
replication.factor: 1 @
offset-syncs.topic.replication.factor: 1 @
sync.topic.acls.enabled: "false"
refresh.topics.interval.seconds: 60 @
replication.policy.class: "org.apache.kafka.connect.mirror.ldentityReplicationPolicy" @

heartbeatConnector:

autoRestart:
enabled: true

config:

131

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

heartbeats.topic.replication.factor: 1 @
replication.policy.class: "org.apache.kafka.connect.mirror.ldentityReplicationPolicy"
checkpointConnector:
autoRestart:
enabled: true
config:
checkpoints.topic.replication.factor: 1 @
refresh.groups.interval.seconds: 600 @
sync.group.offsets.enabled: true @
sync.group.offsets.interval.seconds: 60 @
emit.checkpoints.interval.seconds: 60 @
replication.policy.class: "org.apache.kafka.connect.mirror.ldentityReplicationPolicy"
topicsPattern: "topic1|topic2|topic3"
groupsPattern: "group1|group2|group3" @
resources:
requests:
cpu: "1"
memory: 2Gi
limits:
cpu: "2"
memory: 2Gi
logging: @
type: inline
loggers:
connect.root.logger.level: INFO
readinessProbe: @
initialDelaySeconds: 15
timeoutSeconds: 5
livenessProbe:
initialDelaySeconds: 15
timeoutSeconds: 5
jvmOptions: @
"-Xmx": "1g"
"-Xms": "1g"
image: my-org/my-image:latest @
rack:
topologyKey: topology.kubernetes.io/zone @
template:
pod:
affinity:
podAntiAffinity:
requiredDuringSchedulinglgnoredDuringExecution:
- labelSelector:
matchExpressions:
- key: application
operator: In
values:
- postgresq|l
- mongodb
topologyKey: "kubernetes.io/hostname”
connectContainer:
env:
- name: OTEL_SERVICE_NAME
value: my-otel-service

132

OO0 O 99 990 99 906 609

CHAPTER 8. CONFIGURING A DEPLOYMENT

-name: OTEL_EXPORTER_OTLP_ENDPOINT
value: "http://otlp-host:4317"
tracing:
type: opentelemetry @
externalConfiguration:
env:
- name: AWS_ACCESS_KEY_ID
valueFrom:
secretKeyRef:
name: aws-creds
key: awsAccessKey
- name: AWS_SECRET_ACCESS_KEY
valueFrom:
secretKeyRef:
name: aws-creds
key: awsSecretAccessKey

The Kafka Connect and Mirror Maker 2.0 version, which will always be the same.
The number of replica nodes for the workers that run tasks.

Kafka cluster alias for Kafka Connect, which must specify the target Kafka cluster. The Kafka
cluster is used by Kafka Connect for its internal topics.

Specification for the Kafka clusters being synchronized.
Cluster alias for the source Kafka cluster.

Authentication for the source cluster, specified as mTLS, token-based OAuth, SASL-based
SCRAM-SHA-256/SCRAM-SHA-512, or PLAIN.

Bootstrap server for connection to the source Kafka cluster.

TLS encryption with key names under which TLS certificates are stored in X.509 format for the
source Kafka cluster. If certificates are stored in the same secret, it can be listed multiple times.

Cluster alias for the target Kafka cluster.

Authentication for the target Kafka cluster is configured in the same way as for the source Kafka
cluster.

Bootstrap server for connection to the target Kafka cluster.

Kafka Connect configuration. Standard Apache Kafka configuration may be provided, restricted to
those properties not managed directly by AMQ Streams.

TLS encryption for the target Kafka cluster is configured in the same way as for the source Kafka
cluster.

MirrorMaker 2 connectors.
Cluster alias for the source cluster used by the MirrorMaker 2 connectors.
Cluster alias for the target cluster used by the MirrorMaker 2 connectors.

Configuration for the MirrorSourceConnector that creates remote topics. The config overrides
the default configuration options.

133

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

®

0 O 99 9O

@ 9 ® 0 9 9 99 99 O

134

The maximum number of tasks that the connector may create. Tasks handle the data replication
and run in parallel. If the infrastructure supports the processing overhead, increasing this value can

Enables automatic restarts of failed connectors and tasks. Up to seven restart attempts are made,
after which restarts must be made manually.

Replication factor for mirrored topics created at the target cluster.

Replication factor for the MirrorSourceConnector offset-syncs internal topic that maps the
offsets of the source and target clusters.

When ACL rules synchronization is enabled, ACLs are applied to synchronized topics. The default is
true. This feature is not compatible with the User Operator. If you are using the User Operator, set
this property to false.

Optional setting to change the frequency of checks for new topics. The default is for a check every
10 minutes.

Adds a policy that overrides the automatic renaming of remote topics. Instead of prepending the
name with the name of the source cluster, the topic retains its original name. This optional setting
is useful for active/passive backups and data migration. The property must be specified for all
connectors. For bidirectional (active/active) replication, use the DefaultReplicationPolicy class to
automatically rename remote topics and specify the replication.policy.separator property for all
connectors to add a custom separator.

Configuration for the MirrorHeartbeatConnector that performs connectivity checks. The config
overrides the default configuration options.

Replication factor for the heartbeat topic created at the target cluster.

Configuration for the MirrorCheckpointConnector that tracks offsets. The config overrides the
default configuration options.

Replication factor for the checkpoints topic created at the target cluster.

Optional setting to change the frequency of checks for new consumer groups. The default is for a
check every 10 minutes.

Optional setting to synchronize consumer group offsets, which is useful for recovery in an
active/passive configuration. Synchronization is not enabled by default.

If the synchronization of consumer group offsets is enabled, you can adjust the frequency of the
synchronization.

Adjusts the frequency of checks for offset tracking. If you change the frequency of offset
synchronization, you might also need to adjust the frequency of these checks.

Topic replication from the source cluster defined as a comma-separated list or regular expression
pattern. The source connector replicates the specified topics. The checkpoint connector tracks
offsets for the specified topics. Here we request three topics by name.

Consumer group replication from the source cluster defined as a comma-separated list or regular
expression pattern. The checkpoint connector replicates the specified consumer groups. Here we
request three consumer groups by name.

Requests for reservation of supported resources, currently cpu and memory, and limits to specify
the maximum resources that can be consumed.

CHAPTER 8. CONFIGURING A DEPLOYMENT

Specified Kafka Connect loggers and log levels added directly (inline) or indirectly (external)
through a ConfigMap. A custom Log4j configuration must be placed under the log4j.properties or

Healthchecks to know when to restart a container (liveness) and when a container can accept
traffic (readiness).

JVM configuration options to optimize performance for the Virtual Machine (VM) running Kafka
MirrorMaker.

ADVANCED OPTION: Container image configuration, which is recommended only in special
situations.

SPECIALIZED OPTION: Rack awareness configuration for the deployment. This is a specialized
option intended for a deployment within the same location, not across regions. Use this option if
you want connectors to consume from the closest replica rather than the leader replica. In certain
cases, consuming from the closest replica can improve network utilization or reduce costs . The
topologyKey must match a node label containing the rack ID. The example used in this
configuration specifies a zone using the standard topology.kubernetes.io/zone label. To consume
from the closest replica, enable the RackAwareReplicaSelector in the Kafka broker configuration.

O & O 9 9

Template customization. Here a pod is scheduled with anti-affinity, so the pod is not scheduled on
nodes with the same hostname.

Environment variables are set for distributed tracing.

Distributed tracing is enabled by using OpenTelemetry.

O 9

External configuration for an OpenShift Secret mounted to Kafka MirrorMaker as an environment
variable. You can also use configuration provider plugins to load configuration values from external
sources.

8.7.1. Configuring active/active or active/passive modes

You can use MirrorMaker 2 in active/passive or active/active cluster configurations.

active/active cluster configuration

An active/active configuration has two active clusters replicating data bidirectionally. Applications
can use either cluster. Each cluster can provide the same data. In this way, you can make the same
data available in different geographical locations. As consumer groups are active in both clusters,
consumer offsets for replicated topics are not synchronized back to the source cluster.

active/passive cluster configuration

An active/passive configuration has an active cluster replicating data to a passive cluster. The passive
cluster remains on standby. You might use the passive cluster for data recovery in the event of
system failure.

The expectation is that producers and consumers connect to active clusters only. A MirrorMaker 2
cluster is required at each target destination.

8.7.1.1. Bidirectional replication (active/active)

The MirrorMaker 2 architecture supports bidirectional replication in an active/active cluster
configuration.

135

https://kubernetes.io/docs/reference/labels-annotations-taints/#topologykubernetesiozone

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

Each cluster replicates the data of the other cluster using the concept of source and remote topics. As
the same topics are stored in each cluster, remote topics are automatically renamed by MirrorMaker 2 to
represent the source cluster. The name of the originating cluster is prepended to the name of the topic.

Figure 8.1. Topic renaming

Source topics Remote topics
| Data Source 1 Data Source 2 |
Cluster1 Cluster 2
Broker Broker
—> Topic-1.Partition-1 —»| Kafka —> Cluster-1-Topic-1.Partition-1
MirrorMaker
—> Topic-1.Partition-2 e ——» Cluster-1-Topic-1.Partition-2
Cluster-2-Topic-1.Partition-1 4— Kafka +“— Topic-1.Partition-1 <+—
MirrorMaker
Cluster-2-Topic-1.Partition-2 ~ €4—— “— Topic-1.Partition-2 “—

By flagging the originating cluster, topics are not replicated back to that cluster.
The concept of replication through remote topics is useful when configuring an architecture that

requires data aggregation. Consumers can subscribe to source and remote topics within the same
cluster, without the need for a separate aggregation cluster.

8.7.1.2. Unidirectional replication (active/passive)

The MirrorMaker 2 architecture supports unidirectional replication in an active/passive cluster
configuration.

You can use an active/passive cluster configuration to make backups or migrate data to another cluster.
In this situation, you might not want automatic renaming of remote topics.

You can override automatic renaming by adding IdentityReplicationPolicy to the source connector
configuration. With this configuration applied, topics retain their original names.

8.7.2. Configuring MirrorMaker 2 connectors

Use MirrorMaker 2 connector configuration for the internal connectors that orchestrate the
synchronization of data between Kafka clusters.

MirrorMaker 2 consists of the following connectors:

MirrorSourceConnector

136

CHAPTER 8. CONFIGURING A DEPLOYMENT

The source connector replicates topics from a source cluster to a target cluster. It also replicates
ACLs and is necessary for the MirrorCheckpointConnector to run.

MirrorCheckpointConnector

The checkpoint connector periodically tracks offsets. If enabled, it also synchronizes consumer group
offsets between the source and target cluster.

MirrorHeartbeatConnector

The heartbeat connector periodically checks connectivity between the source and target cluster.
The following table describes connector properties and the connectors you configure to use them.

Table 8.2. MirrorMaker 2 connector configuration properties

Property sourceConnector checkpointConne heartbeatConnec

ctor tor

admin.timeout.ms

Timeout for admin tasks, such as

detecting new topics. Default is
60000 (1 minute).

replication.policy.class

Policy to define the remote topic
naming convention. Default is
org.apache.kafka.connect.mirror
.DefaultReplicationPolicy.

replication.policy.separator

The separator used for topic naming in
the target cluster. By default, the
separator is set to a dot (.). Separator
configuration is only applicable to the
DefaultReplicationPolicy
replication policy class, which defines
remote topic names. The
IdentityReplicationPolicy class
does not use the property as topics
retain their original names.

consumer.poll.timeout.ms

Timeout when polling the source
cluster. Default is 1000 (1 second).

offset-syncs.topic.location

The location of the offset-syncs
topic, which can be the source
(default) or target cluster.

137

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

Property sourceConnector checkpointConne heartbeatConnec

ctor tor

topic.filter.class

Topic filter to select the topics to
replicate. Default is
org.apache.kafka.connect.mirror
.DefaultTopicFilter.

config.property.filter.class

Topic filter to select the topic
configuration properties to replicate.
Default is
org.apache.kafka.connect.mirror
.DefaultConfigPropertyFilter.

config.properties.exclude

Topic configuration properties that
should not be replicated. Supports
comma-separated property names
and regular expressions.

offset.lag.max

Maximum allowable (out-of-sync)
offset lag before a remote partition is
synchronized. Default is 100.

offset-syncs.topic.replication.factor

Replication factor for the internal
offset-syncs topic. Default is 3.

refresh.topics.enabled

Enables check for new topics and
partitions. Default is true.

refresh.topics.interval.seconds

Frequency of topic refresh. Default is
600 (10 minutes). By default, a check
for new topics in the source cluster is
made every 10 minutes. You can
change the frequency by adding
refresh.topics.interval.seconds
to the source connector configuration.

138

sourceConnector

Property

CHAPTER 8. CONFIGURING A DEPLOYMENT

heartbeatConnec
tor

checkpointConne
ctor

replication.factor

The replication factor for new topics.
Default is 2.

sync.topic.acls.enabled

Enables synchronization of ACLs from
the source cluster. Default is true. For
more information, see Section 8.7.5,
“Synchronizing ACL rules for remote
topics”.

sync.topic.acls.interval.seconds

Frequency of ACL synchronization.
Default is 600 (10 minutes).

sync.topic.configs.enabled

Enables synchronization of topic
configuration from the source cluster.
Default is true.

sync.topic.configs.interval.seconds

Frequency of topic configuration
synchronization. Default 600 (10
minutes).

checkpoints.topic.replication.factor

Replication factor for the internal
checkpoints topic. Default is 3.

emit.checkpoints.enabled

Enables synchronization of consumer
offsets to the target cluster. Default is
true.

emit.checkpoints.interval.seconds

Frequency of consumer offset
synchronization. Default is 60 (1
minute).

139

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

Property sourceConnector checkpointConne heartbeatConnec

ctor tor

group.filter.class

Group filter to select the consumer
groups to replicate. Default is
org.apache.kafka.connect.mirror
.DefaultGroupFilter.

refresh.groups.enabled

Enables check for new consumer
groups. Default is true.

refresh.groups.interval.seconds

Frequency of consumer group refresh.
Default is 600 (10 minutes).

sync.group.offsets.enabled

Enables synchronization of consumer
group offsets to the target cluster
__consumer_offsets topic. Default
is false.

sync.group.offsets.interval.seconds

Frequency of consumer group offset
synchronization. Default is 60 (1
minute).

v
emit.heartbeats.enabled
Enables connectivity checks on the
target cluster. Default is true.
v
emit.heartbeats.interval.seconds
Frequency of connectivity checks.
Defaultis 1 (1second).
v

heartbeats.topic.replication.factor

Replication factor for the internal
heartbeats topic. Defaultis 3.

8.7.2.1. Changing the location of the consumer group offsets topic

MirrorMaker 2 tracks offsets for consumer groups using internal topics.

140

CHAPTER 8. CONFIGURING A DEPLOYMENT

offset-syncs topic

The offset-syncs topic maps the source and target offsets for replicated topic partitions from
record metadata.

checkpoints topic

The checkpoints topic maps the last committed offset in the source and target cluster for
replicated topic partitions in each consumer group.

As they are used internally by MirrorMaker 2, you do not interact directly with these topics.

MirrorCheckpointConnector emits checkpoints for offset tracking. Offsets for the checkpoints topic
are tracked at predetermined intervals through configuration. Both topics enable replication to be fully
restored from the correct offset position on failover.

The location of the offset-syncs topic is the source cluster by default. You can use the offset-
syncs.topic.location connector configuration to change this to the target cluster. You need read/write
access to the cluster that contains the topic. Using the target cluster as the location of the offset-syncs
topic allows you to use MirrorMaker 2 even if you have only read access to the source cluster.

8.7.2.2. Synchronizing consumer group offsets

The __consumer_offsets topic stores information on committed offsets for each consumer group.
Offset synchronization periodically transfers the consumer offsets for the consumer groups of a source
cluster into the consumer offsets topic of a target cluster.

Offset synchronization is particularly useful in an active/passive configuration. If the active cluster goes
down, consumer applications can switch to the passive (standby) cluster and pick up from the last
transferred offset position.

To use topic offset synchronization, enable the synchronization by adding sync.group.offsets.enabled
to the checkpoint connector configuration, and setting the property to true. Synchronization is disabled
by default.

When using the IdentityReplicationPolicy in the source connector, it also has to be configured in the
checkpoint connector configuration. This ensures that the mirrored consumer offsets will be applied for
the correct topics.

Consumer offsets are only synchronized for consumer groups that are not active in the target cluster. If
the consumer groups are in the target cluster, the synchronization cannot be performed and an
UNKNOWN_MEMBER_ID error is returned.

If enabled, the synchronization of offsets from the source cluster is made periodically. You can change
the frequency by adding sync.group.offsets.interval.seconds and
emit.checkpoints.interval.seconds to the checkpoint connector configuration. The properties specify
the frequency in seconds that the consumer group offsets are synchronized, and the frequency of
checkpoints emitted for offset tracking. The default for both properties is 60 seconds. You can also
change the frequency of checks for new consumer groups using the refresh.groups.interval.seconds
property, which is performed every 10 minutes by default.

Because the synchronization is time-based, any switchover by consumers to a passive cluster will likely
result in some duplication of messages.

141

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

NOTE

If you have an application written in Java, you can use the RemoteClusterUtils.java
utility to synchronize offsets through the application. The utility fetches remote offsets
for a consumer group from the checkpoints topic.

8.7.2.3. Deciding when to use the heartbeat connector

The heartbeat connector emits heartbeats to check connectivity between source and target Kafka
clusters. An internal heartbeat topic is replicated from the source cluster, which means that the
heartbeat connector must be connected to the source cluster. The heartbeat topic is located on the
target cluster, which allows it to do the following:

e |dentify all source clusters it is mirroring data from
e Verify the liveness and latency of the mirroring process

This helps to make sure that the process is not stuck or has stopped for any reason. While the heartbeat
connector can be a valuable tool for monitoring the mirroring processes between Kafka clusters, it's not
always necessary to use it. For example, if your deployment has low network latency or a small number of
topics, you might prefer to monitor the mirroring process using log messages or other monitoring tools.
If you decide not to use the heartbeat connector, simply omit it from your MirrorMaker 2 configuration.

8.7.2.4. Aligning the configuration of MirrorMaker 2 connectors
To ensure that MirrorMaker 2 connectors work properly, make sure to align certain configuration
settings across connectors. Specifically, ensure that the following properties have the same value across
all applicable connectors:

e replication.policy.class

e replication.policy.separator

o offset-syncs.topic.location

® topic.filter.class
For example, the value for replication.policy.class must be the same for the source, checkpoint, and

heartbeat connectors. Mismatched or missing settings cause issues with data replication or offset
syncing, so it's essential to keep all relevant connectors configured with the same settings.

8.7.3. Configuring MirrorMaker 2 connector producers and consumers

MirrorMaker 2 connectors use internal producers and consumers. If needed, you can configure these
producers and consumers to override the default settings.

For example, you can increase the batch.size for the source producer that sends topics to the target
Kafka cluster to better accommodate large volumes of messages.

IMPORTANT

Producer and consumer configuration options depend on the MirrorMaker 2
implementation, and may be subject to change.

142

CHAPTER 8. CONFIGURING A DEPLOYMENT

The following tables describe the producers and consumers for each of the connectors and where you
can add configuration.

Table 8.3. Source connector producers and consumers

Type Description Configuration

Producer Sends topic mirrors.sourceConnector.config: producer.override.*
messages to the
target Kafka
cluster. Consider
tuning the
configuration of
this producer when
itis handling large
volumes of data.

Producer Writes to the mirrors.sourceConnector.config: producer.*
offset-syncs
topic, which maps
the source and
target offsets for
replicated topic
partitions.

Consumer Retrieves topic mirrors.sourceConnector.config: consumer.*
messages from the
source Kafka
cluster.

Table 8.4. Checkpoint connector producers and consumers

Type Description Configuration

Producer Emits consumer mirrors.checkpointConnector.config:
offset checkpoints. producer.override.*

Consumer Loads the offset- mirrors.checkpointConnector.config: consumer.*
syncs topic.

NOTE

You can set offset-syncs.topic.location to target to use the target Kafka cluster as the
location of the offset-syncs topic.

Table 8.5. Heartbeat connector producer

Type Description Configuration

Producer Emits heartbeats. mirrors.heartbeatConnector.config:
producer.override.*

143

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

Type Description Configuration

The following example shows how you configure the producers and consumers.

Example configuration for connector producers and consumers

apiVersion: kafka.strimzi.io/vibeta2
kind: KafkaMirrorMaker2
metadata:
name: my-mirror-maker2
spec:

version: 3.5.0

#...

mirrors:

- sourceCluster: "my-cluster-source"
targetCluster: "my-cluster-target”
sourceConnector:

tasksMax: 5
config:
producer.override.batch.size: 327680
producer.override.linger.ms: 100
producer.request.timeout.ms: 30000
consumer.fetch.max.bytes: 52428800
#...
checkpointConnector:
config:
producer.override.request.timeout.ms: 30000
consumer.max.poll.interval.ms: 300000
#...
heartbeatConnector:
config:
producer.override.request.timeout.ms: 30000
#...

8.7.4. Specifying a maximum number of data replication tasks

Connectors create the tasks that are responsible for moving data in and out of Kafka. Each connector
comprises one or more tasks that are distributed across a group of worker pods that run the tasks.
Increasing the number of tasks can help with performance issues when replicating a large number of
partitions or synchronizing the offsets of a large number of consumer groups.

Tasks run in parallel. Workers are assigned one or more tasks. A single task is handled by one worker pod,
so you don't need more worker pods than tasks. If there are more tasks than workers, workers handle

multiple tasks.

You can specify the maximum number of connector tasks in your MirrorMaker configuration using the
tasksMax property. Without specifying a maximum number of tasks, the default setting is a single task.

The heartbeat connector always uses a single task.

144

CHAPTER 8. CONFIGURING A DEPLOYMENT

The number of tasks that are started for the source and checkpoint connectors is the lower value
between the maximum number of possible tasks and the value for tasksMax. For the source connector,
the maximum number of tasks possible is one for each partition being replicated from the source cluster.
For the checkpoint connector, the maximum number of tasks possible is one for each consumer group
being replicated from the source cluster. When setting a maximum number of tasks, consider the
number of partitions and the hardware resources that support the process.

If the infrastructure supports the processing overhead, increasing the number of tasks can improve
throughput and latency. For example, adding more tasks reduces the time taken to poll the source
cluster when there is a high number of partitions or consumer groups.

Increasing the number of tasks for the source connector is useful when you have a large number of
partitions.

Increasing the number of tasks for the source connector

apiVersion: kafka.strimzi.io/vibeta2
kind: KafkaMirrorMaker2
metadata:
name: my-mirror-maker2
spec:

#...

mirrors:

- sourceCluster: "my-cluster-source"
targetCluster: "my-cluster-target”
sourceConnector:

tasksMax: 10

#...

Increasing the number of tasks for the checkpoint connector is useful when you have a large number of
consumer groups.

Increasing the number of tasks for the checkpoint connector

apiVersion: kafka.strimzi.io/vibeta2
kind: KafkaMirrorMaker2
metadata:
name: my-mirror-maker2
spec:

#...

mirrors:

- sourceCluster: "my-cluster-source"
targetCluster: "my-cluster-target”
checkpointConnector:

tasksMax: 10

#...

By default, MirrorMaker 2 checks for new consumer groups every 10 minutes. You can adjust the
refresh.groups.interval.seconds configuration to change the frequency. Take care when adjusting
lower. More frequent checks can have a negative impact on performance.

8.7.4.1. Checking connector task operations

145

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

If you are using Prometheus and Grafana to monitor your deployment, you can check MirrorMaker 2
performance. The example MirrorMaker 2 Grafana dashboard provided with AMQ Streams shows the
following metrics related to tasks and latency.

® The number of tasks
® Replication latency

® Offset synchronization latency

Additional resources

® Chapter 20, Setting up metrics and dashboards for AMQ Streams

8.7.5. Synchronizing ACL rules for remote topics

When using MirrorMaker 2 with AMQ Streams, it is possible to synchronize ACL rules for remote topics.
However, this feature is only available if you are not using the User Operator.

If you are using type: simple authorization without the User Operator, the ACL rules that manage
access to brokers also apply to remote topics. This means that users who have read access to a source
topic can also read its remote equivalent.

NOTE

OAuth 2.0 authorization does not support access to remote topics in this way.

8.7.6. Securing a Kafka MirrorMaker 2 deployment

This procedure describes in outline the configuration required to secure a MirrorMaker 2 deployment.

You need separate configuration for the source Kafka cluster and the target Kafka cluster. You also
need separate user configuration to provide the credentials required for MirrorMaker to connect to the
source and target Kafka clusters.

For the Kafka clusters, you specify internal listeners for secure connections within an OpenShift cluster
and external listeners for connections outside the OpenShift cluster.

You can configure authentication and authorization mechanisms. The security options implemented for
the source and target Kafka clusters must be compatible with the security options implemented for
MirrorMaker 2.

After you have created the cluster and user authentication credentials, you specify them in your
MirrorMaker configuration for secure connections.

NOTE

In this procedure, the certificates generated by the Cluster Operator are used, but you
can replace them by installing your own certificates. You can also configure your listener
to use a Kafka listener certificate managed by an external CA (certificate authority) .

Before you start

146

CHAPTER 8. CONFIGURING A DEPLOYMENT

Before starting this procedure, take a look at the example configuration files provided by AMQ Streams.
They include examples for securing a deployment of MirrorMaker 2 using mTLS or SCRAM-SHA-512
authentication. The examples specify internal listeners for connecting within an OpenShift cluster.

The examples provide the configuration for full authorization, including all the ACLs needed by
MirrorMaker 2 to allow operations on the source and target Kafka clusters.

Prerequisites

® AMQ Streams is running
® Separate namespaces for source and target clusters

The procedure assumes that the source and target Kafka clusters are installed to separate namespaces
If you want to use the Topic Operator, you'll need to do this. The Topic Operator only watches a single
cluster in a specified namespace.

By separating the clusters into namespaces, you will need to copy the cluster secrets so they can be
accessed outside the namespace. You need to reference the secrets in the MirrorMaker configuration.

Procedure

1. Configure two Kafka resources, one to secure the source Kafka cluster and one to secure the
target Kafka cluster.

You can add listener configuration for authentication and enable authorization.

In this example, an internal listener is configured for a Kafka cluster with TLS encryption and
mTLS authentication. Kafka simple authorization is enabled.

Example source Kafka cluster configuration with TLS encryption and mTLS
authentication

apiVersion: kafka.strimzi.io/vibeta2
kind: Kafka
metadata:
name: my-source-cluster
spec:
kafka:
version: 3.5.0
replicas: 1
listeners:
- name: tls
port: 9093
type: internal
tls: true
authentication:
type: tls
authorization:
type: simple
config:
offsets.topic.replication.factor: 1
transaction.state.log.replication.factor: 1
transaction.state.log.min.isr: 1
default.replication.factor: 1
min.insync.replicas: 1
inter.broker.protocol.version: "3.5"

147

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

storage:
type: jbod
volumes:
-id: 0
type: persistent-claim
size: 100Gi
deleteClaim: false
zookeeper:
replicas: 1
storage:
type: persistent-claim
size: 100Gi
deleteClaim: false
entityOperator:
topicOperator: {}
userOperator: {}

Example target Kafka cluster configuration with TLS encryption and mTLS
authentication

apiVersion: kafka.strimzi.io/vibeta2
kind: Kafka
metadata:
name: my-target-cluster
spec:
kafka:
version: 3.5.0
replicas: 1
listeners:
- name: tls
port: 9093
type: internal
tls: true
authentication:
type: tls
authorization:
type: simple
config:
offsets.topic.replication.factor: 1
transaction.state.log.replication.factor: 1
transaction.state.log.min.isr: 1
default.replication.factor: 1
min.insync.replicas: 1
inter.broker.protocol.version: "3.5"
storage:
type: jbod
volumes:
-id: 0
type: persistent-claim
size: 100Gi
deleteClaim: false
zookeeper:
replicas: 1
storage:
type: persistent-claim

148

CHAPTER 8. CONFIGURING A DEPLOYMENT

size: 100Gi
deleteClaim: false
entityOperator:
topicOperator: {}
userOperator: {}

2. Create or update the Kafka resources in separate namespaces.
I oc apply -f <kafka_configuration_file> -n <namespace>

The Cluster Operator creates the listeners and sets up the cluster and client certificate
authority (CA) certificates to enable authentication within the Kafka cluster.

The certificates are created in the secret <cluster_name>-cluster-ca-cert.

3. Configure two KafkaUser resources, one for a user of the source Kafka cluster and one for a
user of the target Kafka cluster.

a. Configure the same authentication and authorization types as the corresponding source
and target Kafka cluster. For example, if you used tls authentication and the simple
authorization type in the Kafka configuration for the source Kafka cluster, use the same in
the KafkaUser configuration.

b. Configure the ACLs needed by MirrorMaker 2 to allow operations on the source and target
Kafka clusters.
The ACLs are used by the internal MirrorMaker connectors, and by the underlying Kafka
Connect framework.

Example source user configuration for mTLS authentication

apiVersion: kafka.strimzi.io/vibeta2
kind: KafkaUser
metadata:
name: my-source-user
labels:
strimzi.io/cluster: my-source-cluster
spec:
authentication:
type: tls
authorization:
type: simple
acls:
MirrorSourceConnector
- resource: # Not needed if offset-syncs.topic.location=target
type: topic
name: mmz2-offset-syncs.my-target-cluster.internal
operations:
- Create
- DescribeConfigs
- Read
- Write
- resource: # Needed for every topic which is mirrored
type: topic
name: "*"
operations:
- DescribeConfigs

149

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

- Read
MirrorCheckpointConnector
- resource:
type: cluster
operations:
- Describe
- resource: # Needed for every group for which offsets are synced
type: group
name: "*"
operations:
- Describe
- resource: # Not needed if offset-syncs.topic.location=target
type: topic
name: mmz2-offset-syncs.my-target-cluster.internal
operations:
- Read

Example target user configuration for mTLS authentication

apiVersion: kafka.strimzi.io/vibeta2
kind: KafkaUser
metadata:
name: my-target-user
labels:
strimzi.io/cluster: my-target-cluster
spec:
authentication:
type: tls
authorization:
type: simple
acls:
Underlying Kafka Connect internal topics to store configuration, offsets, or status
- resource:
type: group
name: mirrormaker2-cluster
operations:
- Read
- resource:
type: topic
name: mirrormaker2-cluster-configs
operations:
- Create
- Describe
- DescribeConfigs
- Read
- Write
- resource:
type: topic
name: mirrormaker2-cluster-status
operations:
- Create
- Describe
- DescribeConfigs
- Read
- Write
- resource:

150

CHAPTER 8. CONFIGURING A DEPLOYMENT

type: topic
name: mirrormaker2-cluster-offsets
operations:
- Create
- Describe
- DescribeConfigs
- Read
- Write
MirrorSourceConnector
- resource: # Needed for every topic which is mirrored
type: topic
name: "*"
operations:
- Create
- Alter
- AlterConfigs
- Write
MirrorCheckpointConnector
- resource:
type: cluster
operations:
- Describe
- resource:
type: topic
name: my-source-cluster.checkpoints.internal
operations:
- Create
- Describe
- Read
- Write
- resource: # Needed for every group for which the offset is synced
type: group
name: "*"
operations:
- Read
- Describe
MirrorHeartbeatConnector
- resource:
type: topic
name: heartbeats
operations:
- Create
- Describe
- Write

NOTE

You can use a certificate issued outside the User Operator by setting type to tls-
external. For more information, see the KafkaUserSpec schema reference.

. Create or update a KafkaUser resource in each of the namespaces you created for the source
and target Kafka clusters.

I oc apply -f <kafka_user_configuration_file> -n <namespace>

151

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index#type-KafkaUserSpec-reference

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

The User Operator creates the users representing the client (MirrorMaker), and the security
credentials used for client authentication, based on the chosen authentication type.

The User Operator creates a new secret with the same name as the KafkaUser resource. The
secret contains a private and public key for mTLS authentication. The public key is contained in
a user certificate, which is signed by the clients CA.

5. Configure a KafkaMirrorMaker2 resource with the authentication details to connect to the
source and target Kafka clusters.

Example MirrorMaker 2 configuration with TLS encryption and mTLS authentication

apiVersion: kafka.strimzi.io/vibeta2
kind: KafkaMirrorMaker2
metadata:
name: my-mirror-maker-2
spec:
version: 3.5.0
replicas: 1
connectCluster: "my-target-cluster”
clusters:
- alias: "my-source-cluster”
bootstrapServers: my-source-cluster-kafka-bootstrap:9093
tls: ﬂ
trustedCertificates:
- secretName: my-source-cluster-cluster-ca-cert
certificate: ca.crt
authentication: g
type: tls
certificateAndKey:
secretName: my-source-user
certificate: user.crt
key: user.key
- alias: "my-target-cluster"
bootstrapServers: my-target-cluster-kafka-bootstrap:9093
tls: e
trustedCertificates:
- secretName: my-target-cluster-cluster-ca-cert
certificate: ca.crt
authentication: ﬂ
type: tls
certificateAndKey:
secretName: my-target-user
certificate: user.crt
key: user.key
config:
-1 means it will use the default replication factor configured in the broker
config.storage.replication.factor: -1
offset.storage.replication.factor: -1
status.storage.replication.factor: -1
mirrors:
- sourceCluster: "my-source-cluster”
targetCluster: "my-target-cluster"
sourceConnector:
config:

152

CHAPTER 8. CONFIGURING A DEPLOYMENT

replication.factor: 1
offset-syncs.topic.replication.factor: 1
sync.topic.acls.enabled: "false"
heartbeatConnector:
config:
heartbeats.topic.replication.factor: 1
checkpointConnector:
config:
checkpoints.topic.replication.factor: 1
sync.group.offsets.enabled: "true"
topicsPattern: "topic1|topic2|topic3"
groupsPattern: "group1|group2|group3"

The TLS certificates for the source Kafka cluster. If they are in a separate namespace, copy
the cluster secrets from the namespace of the Kafka cluster.

The user authentication for accessing the source Kafka cluster using the TLS mechanism.

The TLS certificates for the target Kafka cluster.

O0o0® 9O

The user authentication for accessing the target Kafka cluster.

6. Create or update the KafkaMirrorMaker2 resource in the same namespace as the target Kafka
cluster.

I oc apply -f <mirrormaker2_configuration_file> -n <namespace_of target _cluster>

8.8. CONFIGURING KAFKA MIRRORMAKER (DEPRECATED)

Update the spec properties of the KafkaMirrorMaker custom resource to configure your Kafka
MirrorMaker deployment.

You can configure access control for producers and consumers using TLS or SASL authentication. This
procedure shows a configuration that uses TLS encryption and mTLS authentication on the consumer
and producer side.

For a deeper understanding of the Kafka MirrorMaker cluster configuration options, refer to the AMQ
Streams Custom Resource API Reference.

IMPORTANT

Kafka MirrorMaker 1 (referred to as just MirrorMaker in the documentation) has been
deprecated in Apache Kafka 3.0.0 and will be removed in Apache Kafka 4.0.0. As a result,
the KafkaMirrorMaker custom resource which is used to deploy Kafka MirrorMaker 1 has
been deprecated in AMQ Streams as well. The KafkaMirrorMaker resource will be
removed from AMQ Streams when we adopt Apache Kafka 4.0.0. As a replacement, use
the KafkaMirrorMaker2 custom resource with the IdentityReplicationPolicy.

Example KafkaMirrorMaker custom resource configuration

apiVersion: kafka.strimzi.io/vibeta2
kind: KafkaMirrorMaker
metadata:

153

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

name: my-mirror-maker
spec:

replicas: 3

consumer:
bootstrapServers: my-source-cluster-kafka-bootstrap:9092 g
groupld: "my-group” 6
numStreams: 2
offsetCommitinterval: 120000 9

tls: G

trustedCertificates:
- secretName: my-source-cluster-ca-cert
certificate: ca.crt
authentication: ﬂ
type: tls
certificateAndKey:
secretName: my-source-secret
certificate: public.crt
key: private.key
config:
max.poll.records: 100
receive.buffer.bytes: 32768
producer:
bootstrapServers: my-target-cluster-kaftka-bootstrap:9092
abortOnSendFailure: false
tls:
trustedCertificates:
- secretName: my-target-cluster-ca-cert
certificate: ca.crt
authentication:
type: tls
certificateAndKey:
secretName: my-target-secret
certificate: public.crt
key: private.key
config:
compression.type: gzip
batch.size: 8192
include: "my-topic|other-topic” @
resources:
requests:
cpu: "1"
memory: 2Gi
limits:
cpu: "2"
memory: 2Gi
logging: @
type: inline
loggers:
mirrormaker.root.logger: INFO
readinessProbe:
initialDelaySeconds: 15
timeoutSeconds: 5
livenessProbe:
initialDelaySeconds: 15

154

O 90 9 990009

CHAPTER 8. CONFIGURING A DEPLOYMENT

timeoutSeconds: 5
metricsConfig: @
type: jmxPrometheusExporter
valueFrom:
configMapKeyRef:
name: my-config-map
key: my-key
jvmOptions:
"-Xmx": "1g"
"-Xms": "1g"
image: my-org/my-image:latest @
template:
pod:
affinity:
podAntiAffinity:
requiredDuringSchedulinglgnoredDuringExecution:
- labelSelector:
matchExpressions:
- key: application
operator: In
values:
- postgresq|l
- mongodb
topologyKey: "kubernetes.io/hostname”
mirrorMakerContainer:
env:
- name: OTEL_SERVICE_NAME
value: my-otel-service
-name: OTEL_EXPORTER_OTLP_ENDPOINT
value: "http://otlp-host:4317"
tracing:
type: opentelemetry

The number of replica nodes.

Bootstrap servers for consumer and producer.
Group ID for the consumer.

The number of consumer streams.

The offset auto-commit interval in milliseconds.

TLS encryption with key names under which TLS certificates are stored in X.509 format for
consumer or producer. If certificates are stored in the same secret, it can be listed multiple times.

Authentication for consumer or producer, specified as mTLS, token-based OAuth, SASL-based
SCRAM-SHA-256/SCRAM-SHA-512, or PLAIN.

Kafka configuration options for consumer and producer.

If the abortOnSendFailure property is set to true, Kafka MirrorMaker will exit and the container
will restart following a send failure for a message.

A list of included topics mirrored from source to target Kafka cluster.

155

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

m Requests for reservation of supported resources, currently cpu and memory, and limits to specify
the maximum resources that can be consumed.

@ Specified loggers and log levels added directly (inline) or indirectly (external) through a
ConfigMap. A custom Log4j configuration must be placed under the log4j.properties or
log4j2.properties key in the ConfigMap. MirrorMaker has a single logger called
mirrormaker.root.logger. You can set the log level to INFO, ERROR, WARN, TRACE, DEBUG,
FATAL or OFF.

o

Healthchecks to know when to restart a container (liveness) and when a container can accept
traffic (readiness).

Prometheus metrics, which are enabled by referencing a ConfigMap containing configuration for
the Prometheus JMX exporter in this example. You can enable metrics without further
configuration using a reference to a ConfigMap containing an empty file under
metricsConfig.valueFrom.configMapKeyRef.key.

o

JVM configuration options to optimize performance for the Virtual Machine (VM) running Kafka
MirrorMaker.

ADVANCED OPTION: Container image configuration, which is recommended only in special
situations.

Template customization. Here a pod is scheduled with anti-affinity, so the pod is not scheduled on
nodes with the same hostname.

Environment variables are set for distributed tracing.

Distributed tracing is enabled by using OpenTelemetry.

00 O 0 9

WARNING
A With the abortOnSendFailure property set to false, the producer attempts to

send the next message in a topic. The original message might be lost, as there
is no attempt to resend a failed message.

8.9. CONFIGURING THE KAFKA BRIDGE

Update the spec properties of the KafkaBridge custom resource to configure your Kafka Bridge
deployment.

In order to prevent issues arising when client consumer requests are processed by different Kafka Bridge
instances, address-based routing must be employed to ensure that requests are routed to the right
Kafka Bridge instance. Additionally, each independent Kafka Bridge instance must have a replica. A
Kafka Bridge instance has its own state which is not shared with another instances.

For a deeper understanding of the Kafka Bridge cluster configuration options, refer to the AMQ
Streams Custom Resource API Reference.

Example KafkaBridge custom resource configuration

156

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index

CHAPTER 8. CONFIGURING A DEPLOYMENT

apiVersion: kafka.strimzi.io/vibeta2
kind: KafkaBridge
metadata:
name: my-bridge
spec:

replicas: 3 ﬂ

bootstrapServers: <cluster_name>-cluster-kafka-bootstrap:9092 9

tls: 9

trustedCertificates:
- secretName: my-cluster-cluster-cert
certificate: ca.crt
- secretName: my-cluster-cluster-cert
certificate: ca2.crt
authentication: ﬂ
type: tls
certificateAndKey:
secretName: my-secret
certificate: public.crt
key: private.key
http: 6
port: 8080
cors: G
allowedOrigins: "https://strimzi.io"
allowedMethods: "GET,POST,PUT,DELETE,OPTIONS,PATCH"
consumer: ﬂ
config:
auto.offset.reset: earliest

producer: 6

config:
delivery.timeout.ms: 300000

resources: @)

requests:
cpu: "1"
memory: 2Gi

limits:
cpu: "2"
memory: 2Gi

logging: @

type: inline

loggers:
logger.bridge.level: INFO
enabling DEBUG just for send operation
logger.send.name: "http.openapi.operation.send”
logger.send.level: DEBUG

jvmOptions:
"_XmX": "1 gll
"_XmSll: "1 gll

readinessProbe: @
initialDelaySeconds: 15
timeoutSeconds: 5

livenessProbe:
initialDelaySeconds: 15
timeoutSeconds: 5

image: my-org/my-image:latest @

157

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

template: @

pod:
affinity:
podAntiAffinity:
requiredDuringSchedulinglgnoredDuringExecution:
- labelSelector:
matchExpressions:
- key: application
operator: In
values:
- postgresq|l
- mongodb
topologyKey: "kubernetes.io/hostname”
bridgeContainer:
env:
- name: OTEL_SERVICE_NAME
value: my-otel-service
-name: OTEL_EXPORTER_OTLP_ENDPOINT
value: "http://otlp-host:4317"
tracing:
type: opentelemetry @

The number of replica nodes.

Bootstrap server for connection to the target Kafka cluster. Use the name of the Kafka cluster as
the <cluster_name>.

TLS encryption with key names under which TLS certificates are stored in X.509 format for the
source Kafka cluster. If certificates are stored in the same secret, it can be listed multiple times.

Authentication for the Kafka Bridge cluster, specified as mTLS, token-based OAuth, SASL-based
SCRAM-SHA-256/SCRAM-SHA-512, or PLAIN. By default, the Kafka Bridge connects to Kafka
brokers without authentication.

HTTP access to Kafka brokers.

CORS access specifying selected resources and access methods. Additional HTTP headers in
requests describe the origins that are permitted access to the Kafka cluster.

Consumer configuration options.
Producer configuration options.

Requests for reservation of supported resources, currently cpu and memory, and limits to specify
the maximum resources that can be consumed.

Specified Kafka Bridge loggers and log levels added directly (inline) or indirectly (external)
through a ConfigMap. A custom Log4j configuration must be placed under the log4j.properties or
log4j2.properties key in the ConfigMap. For the Kafka Bridge loggers, you can set the log level to
INFO, ERROR, WARN, TRACE, DEBUG, FATAL or OFF.

O 909 906 o6 O 09

JVM configuration options to optimize performance for the Virtual Machine (VM) running the
Kafka Bridge.

® O

Healthchecks to know when to restart a container (liveness) and when a container can accept
traffic (readiness).

158

CHAPTER 8. CONFIGURING A DEPLOYMENT

Optional: Container image configuration, which is recommended only in special situations.

Template customization. Here a pod is scheduled with anti-affinity, so the pod is not scheduled on
nodes with the same hostname.

Environment variables are set for distributed tracing.

00 09

Distributed tracing is enabled by using OpenTelemetry.

Additional resources

® Using the AMQ Streams Kafka Bridge

8.10. CONFIGURING KAFKA AND ZOOKEEPER STORAGE

As stateful applications, Kafka and ZooKeeper store data on disk. AMQ Streams supports three storage
types for this data:

® Ephemeral (Recommended for development only)

® Persistent

e JBOD (Kafka only not ZooKeeper)
When configuring a Kafka resource, you can specify the type of storage used by the Kafka broker and its
corresponding ZooKeeper node. You configure the storage type using the storage property in the
following resources:

e Kafka.spec.kafka

e Kafka.spec.zookeeper
The storage type is configured in the type field.
Refer to the schema reference for more information on storage configuration properties:

o EphemeralStorage schema reference

e PersistentClaimStorage schema reference

o JbodStorage schema reference

' WARNING
A The storage type cannot be changed after a Kafka cluster is deployed.

8.10.1. Data storage considerations

159

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/using_the_amq_streams_kafka_bridge/index
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index#type-EphemeralStorage-reference
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index#type-PersistentClaimStorage-reference
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index#type-JbodStorage-reference

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

For AMQ Streams to work well, an efficient data storage infrastructure is essential. We strongly
recommend using block storage. AMQ Streams is only tested for use with block storage. File storage,
such as NFS, is not tested and there is no guarantee it will work.

Choose one of the following options for your block storage:
® A cloud-based block storage solution, such as Amazon Elastic Block Store (EBS)
® Persistent storage using local persistent volumes

® Storage Area Network (SAN) volumes accessed by a protocol such as Fibre Channel or iSCSI

NOTE

AMQ Streams does not require OpenShift raw block volumes.

8.10.1.1. File systems

Kafka uses a file system for storing messages. AMQ Streams is compatible with the XFS and ext4 file
systems, which are commonly used with Kafka. Consider the underlying architecture and requirements of
your deployment when choosing and setting up your file system.

For more information, refer to Filesystem Selection in the Kafka documentation.

8.10.1.2. Disk usage

Use separate disks for Apache Kafka and ZooKeeper.

Solid-state drives (SSDs), though not essential, can improve the performance of Kafka in large clusters
where data is sent to and received from multiple topics asynchronously. SSDs are particularly effective
with ZooKeeper, which requires fast, low latency data access.

NOTE
You do not need to provision replicated storage because Kafka and ZooKeeper both have
built-in data replication.

8.10.2. Ephemeral storage

Ephemeral data storage is transient. All pods on a node share a local ephemeral storage space. Data is
retained for as long as the pod that uses it is running. The data is lost when a pod is deleted. Although a
pod can recover data in a highly available environment.

Because of its transient nature, ephemeral storage is only recommended for development and testing.

Ephemeral storage uses emptyDir volumes to store data. An emptyDir volume is created when a pod is
assigned to a node. You can set the total amount of storage for the emptyDir using the sizeLimit
property .

IMPORTANT

Ephemeral storage is not suitable for single-node ZooKeeper clusters or Kafka topics
with a replication factor of 1.

160

https://aws.amazon.com/ebs/
https://kubernetes.io/docs/concepts/storage/volumes/#local
https://kafka.apache.org/documentation/#filesystems
https://kubernetes.io/docs/concepts/storage/volumes/#emptydir

CHAPTER 8. CONFIGURING A DEPLOYMENT

To use ephemeral storage, you set the storage type configuration in the Kafka or ZooKeeper resource
to ephemeral.

Example ephemeral storage configuration

apiVersion: kafka.strimzi.io/vibeta2
kind: Kafka
metadata:
name: my-cluster
spec:
kafka:
#...
storage:
type: ephemeral
#...
zookeeper:
#...
storage:
type: ephemeral
#...

8.10.2.1. Mount path of Kafka log directories

The ephemeral volume is used by Kafka brokers as log directories mounted into the following path:

I /var/lib/kafka/data/kafka-log /DX

Where IDXis the Kafka broker pod index. For example /var/lib/kafka/data/kafka-log0.

8.10.3. Persistent storage

Persistent data storage retains data in the event of system disruption. For pods that use persistent data
storage, data is persisted across pod failures and restarts.

A dynamic provisioning framework enables clusters to be created with persistent storage. Pod
configuration uses Persistent Volume Claims (PVCs) to make storage requests on persistent volumes
(PVs). PVs are storage resources that represent a storage volume. PVs are independent of the pods
that use them. The PVC requests the amount of storage required when a pod is being created. The
underlying storage infrastructure of the PV does not need to be understood. If a PV matches the
storage criteria, the PVC is bound to the PV.

Because of its permanent nature, persistent storage is recommended for production.

PVCs can request different types of persistent storage by specifying a StorageClass. Storage classes
define storage profiles and dynamically provision PVs. If a storage class is not specified, the default
storage class is used. Persistent storage options might include SAN storage types or local persistent

volumes.

To use persistent storage, you set the storage type configuration in the Kafka or ZooKeeper resource
to persistent-claim.

In the production environment, the following configuration is recommended:

e For Kafka, configure type: jbod with one or more type: persistent-claim volumes

161

https://kubernetes.io/docs/concepts/storage/dynamic-provisioning/
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/concepts/storage/volumes/#local

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

® For ZooKeeper, configure type: persistent-claim
Persistent storage also has the following configuration options:

id (optional)

A storage identification number. This option is mandatory for storage volumes defined in a JBOD
storage declaration. Default is 0.

size (required)
The size of the persistent volume claim, for example, "1000Gi".
class (optional)

The OpenShift StorageClass to use for dynamic volume provisioning. Storage class configuration
includes parameters that describe the profile of a volume in detail.

selector (optional)

Configuration to specify a specific PV. Provides key:value pairs representing the labels of the volume
selected.

deleteClaim (optional)

Boolean value to specify whether the PVC is deleted when the cluster is uninstalled. Default is false.

' WARNING
A Increasing the size of persistent volumes in an existing AMQ Streams cluster is only

supported in OpenShift versions that support persistent volume resizing. The
persistent volume to be resized must use a storage class that supports volume
expansion. For other versions of OpenShift and storage classes that do not support
volume expansion, you must decide the necessary storage size before deploying
the cluster. Decreasing the size of existing persistent volumes is not possible.

Example persistent storage configuration for Kafka and ZooKeeper

#...
spec:
kafka:
#...
storage:
type: jbod
volumes:
-id: 0
type: persistent-claim
size: 100Gi
deleteClaim: false
-id: 1
type: persistent-claim
size: 100Gi
deleteClaim: false
-id: 2
type: persistent-claim
size: 100Gi

162

https://kubernetes.io/docs/concepts/storage/storage-classes/

CHAPTER 8. CONFIGURING A DEPLOYMENT

deleteClaim: false
#...
zookeeper:
storage:
type: persistent-claim
size: 1000Gi
#...

If you do not specify a storage class, the default is used. The following example specifies a storage class.

Example persistent storage configuration with specific storage class

#...
storage:
type: persistent-claim
size: 1Gi
class: my-storage-class
#...

Use a selector to specify a labeled persistent volume that provides certain features, such as an SSD.

Example persistent storage configuration with selector

#...
storage:
type: persistent-claim
size: 1Gi
selector:
hdd-type: ssd
deleteClaim: true
#...

8.10.3.1. Storage class overrides

Instead of using the default storage class, you can specify a different storage class for one or more
Kafka brokers or ZooKeeper nodes. This is useful, for example, when storage classes are restricted to
different availability zones or data centers. You can use the overrides field for this purpose.

In this example, the default storage class is named my-storage-class:

Example AMQ Streams cluster using storage class overrides

apiVersion: kafka.strimzi.io/vibeta2
kind: Kafka
metadata:
labels:
app: my-cluster
name: my-cluster
namespace: myproject
spec:
#...
kafka:
replicas: 3
storage:

163

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

type: jbod
volumes:
-id: 0
type: persistent-claim
size: 100Gi
deleteClaim: false
class: my-storage-class
overrides:
- broker: 0
class: my-storage-class-zone-1a
- broker: 1
class: my-storage-class-zone-1b
- broker: 2
class: my-storage-class-zone-1c
#...

#...

zookeeper:
replicas: 3
storage:

deleteClaim: true
size: 100Gi
type: persistent-claim
class: my-storage-class
overrides:
- broker: 0
class: my-storage-class-zone-1a
- broker: 1
class: my-storage-class-zone-1b
- broker: 2
class: my-storage-class-zone-1c

#...

As a result of the configured overrides property, the volumes use the following storage classes:

The persistent volumes of ZooKeeper node O use my-storage-class-zone-1a.
The persistent volumes of ZooKeeper node 1use my-storage-class-zone-1b.
The persistent volumes of ZooKeeepr node 2 use my-storage-class-zone-1ic.
The persistent volumes of Kafka broker O use my-storage-class-zone-1a.
The persistent volumes of Kafka broker 1 use my-storage-class-zone-1b.

The persistent volumes of Kafka broker 2 use my-storage-class-zone-1ic.

The overrides property is currently used only to override storage class configurations. Overrides for
other storage configuration properties is not currently supported. Other storage configuration
properties are currently not supported.

8.10.3.2. PVC resources for persistent storage

When persistent storage is used, it creates PVCs with the following names:

data-cluster-name-kafka-idx

PVC for the volume used for storing data for the Kafka broker pod idx.

164

CHAPTER 8. CONFIGURING A DEPLOYMENT

data-cluster-name-zookeeper-idx
PVC for the volume used for storing data for the ZooKeeper node pod idx.

8.10.3.3. Mount path of Kafka log directories

The persistent volume is used by the Kafka brokers as log directories mounted into the following path:
I /var/lib/kafka/data/kafka-log /DX

Where IDXis the Kafka broker pod index. For example /var/lib/kafka/data/kafka-log0.

8.10.4. Resizing persistent volumes

Persistent volumes used by a cluster can be resized without any risk of data loss, as long as the storage
infrastructure supports it. Following a configuration update to change the size of the storage, AMQ
Streams instructs the storage infrastructure to make the change. Storage expansion is supported in
AMQ Streams clusters that use persistent-claim volumes.

Storage reduction is only possible when using multiple disks per broker. You can remove a disk after

moving all partitions on the disk to other volumes within the same broker (intra-broker) or to other
brokers within the same cluster (intra-cluster).

IMPORTANT

You cannot decrease the size of persistent volumes because it is not currently supported
in OpenShift.

Prerequisites

® An OpenShift cluster with support for volume resizing.
® The Cluster Operator is running.

e A Kafka cluster using persistent volumes created using a storage class that supports volume
expansion.

Procedure

1. Edit the Kafka resource for your cluster.

Change the size property to increase the size of the persistent volume allocated to a Kafka
cluster, a ZooKeeper cluster, or both.

e For Kafka clusters, update the size property under spec.kafka.storage.
® For ZooKeeper clusters, update the size property under spec.zookeeper.storage.

Kafka configuration to increase the volume size to 2000Gi

apiVersion: kafka.strimzi.io/vibeta2
kind: Kafka
metadata:
name: my-cluster
spec:
kafka:

165

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

#...

storage:
type: persistent-claim
size: 2000Gi
class: my-storage-class

#...

zookeeper:
#...

2. Create or update the resource:
I oc apply -f <kafka_configuration_file>

OpenShift increases the capacity of the selected persistent volumes in response to a request
from the Cluster Operator. When the resizing is complete, the Cluster Operator restarts all pods
that use the resized persistent volumes. This happens automatically.

3. Verify that the storage capacity has increased for the relevant pods on the cluster:
I oc get pv
Kafka broker pods with increased storage

NAME CAPACITY CLAIM

pvc-0ca459ce-... 2000Gi my-project/data-my-cluster-kafka-2
pvc-6e1810be-... 2000Gi my-project/data-my-cluster-kafka-0
pvc-82dc78c9-... 2000Gi my-project/data-my-cluster-kafka-1

The output shows the names of each PVC associated with a broker pod.

Additional resources

® For more information about resizing persistent volumes in OpenShift, see Resizing Persistent
Volumes using Kubernetes.

8.10.5. JBOD storage

You can configure AMQ Streams to use JBOD, a data storage configuration of multiple disks or
volumes. JBOD is one approach to providing increased data storage for Kafka brokers. It can also
improve performance.

NOTE

JBOD storage is supported for Kafka only not ZooKeeper.

A JBOD configuration is described by one or more volumes, each of which can be either ephemeral or
persistent. The rules and constraints for JBOD volume declarations are the same as those for ephemeral
and persistent storage. For example, you cannot decrease the size of a persistent storage volume after
it has been provisioned, or you cannot change the value of sizeLimit when the type is ephemeral.

To use JBOD storage, you set the storage type configuration in the Kafka resource to jbod. The

volumes property allows you to describe the disks that make up your JBOD storage array or
configuration.

166

https://kubernetes.io/blog/2018/07/12/resizing-persistent-volumes-using-kubernetes/

CHAPTER 8. CONFIGURING A DEPLOYMENT

Example JBOD storage configuration

#...
storage:
type: jbod
volumes:
-id: 0
type: persistent-claim
size: 100Gi
deleteClaim: false
-id: 1
type: persistent-claim
size: 100Gi
deleteClaim: false
#...

The IDs cannot be changed once the JBOD volumes are created. You can add or remove volumes from
the JBOD configuration.

8.10.5.1. PVC resource for JBOD storage

When persistent storage is used to declare JBOD volumes, it creates a PVC with the following name:

data-id-cluster-name-kafka-idx

PVC for the volume used for storing data for the Kafka broker pod idx. The idis the ID of the volume
used for storing data for Kafka broker pod.

8.10.5.2. Mount path of Kafka log directories

The JBOD volumes are used by Kafka brokers as log directories mounted into the following path:

I /varl/lib/kafka/data-id/kafka-logidx

Where idis the ID of the volume used for storing data for Kafka broker pod idx. For example
/var/lib/kafka/data-0/kafka-logO0.

8.10.6. Adding volumes to JBOD storage

This procedure describes how to add volumes to a Kafka cluster configured to use JBOD storage. It
cannot be applied to Kafka clusters configured to use any other storage type.

NOTE

When adding a new volume under an id which was already used in the past and removed,
you have to make sure that the previously used PersistentVolumeClaims have been
deleted.

Prerequisites

® An OpenShift cluster

® Arunning Cluster Operator

167

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

e A Kafka cluster with JBOD storage

Procedure

1. Edit the spec.kafka.storage.volumes property in the Kafka resource. Add the new volumes to
the volumes array. For example, add the new volume with id 2:

apiVersion: kafka.strimzi.io/vibeta2
kind: Kafka
metadata:
name: my-cluster
spec:
kafka:
#...
storage:
type: jbod
volumes:
-id: 0
type: persistent-claim
size: 100Gi
deleteClaim: false
-id: 1
type: persistent-claim
size: 100Gi
deleteClaim: false
-id: 2
type: persistent-claim
size: 100Gi
deleteClaim: false
#...
zookeeper:
#...

2. Create or update the resource:
I oc apply -f <kafka_configuration_file>
3. Create new topics or reassign existing partitions to the new disks.

TIP

Cruise Control is an effective tool for reassigning partitions. To perform an intra-broker disk
balance, you set rebalanceDisk to true under the KafkaRebalance.spec.

8.10.7. Removing volumes from JBOD storage

This procedure describes how to remove volumes from Kafka cluster configured to use JBOD storage. It
cannot be applied to Kafka clusters configured to use any other storage type. The JBOD storage always
has to contain at least one volume.

IMPORTANT

To avoid data loss, you have to move all partitions before removing the volumes.

168

CHAPTER 8. CONFIGURING A DEPLOYMENT

Prerequisites

® An OpenShift cluster
® Arunning Cluster Operator

e A Kafka cluster with JBOD storage with two or more volumes

Procedure

1. Reassign all partitions from the disks which are you going to remove. Any data in partitions still
assigned to the disks which are going to be removed might be lost.

TIP

You can use the kafka-reassign-partitions.sh tool to reassign the partitions.

2. Edit the spec.kafka.storage.volumes property in the Kafka resource. Remove one or more
volumes from the volumes array. For example, remove the volumes with ids 1 and 2:

apiVersion: kafka.strimzi.io/vibeta2
kind: Kafka
metadata:
name: my-cluster
spec:
kafka:
#...
storage:
type: jbod
volumes:
-id: 0
type: persistent-claim
size: 100Gi
deleteClaim: false
#...
zookeeper:
#...

3. Create or update the resource:

I oc apply -f <kafka_configuration_file>

8.1. CONFIGURING CPU AND MEMORY RESOURCE LIMITS AND
REQUESTS

By default, the AMQ Streams Cluster Operator does not specify CPU and memory resource requests
and limits for its deployed operands. Ensuring an adequate allocation of resources is crucial for
maintaining stability and achieving optimal performance in Kafka. The ideal resource allocation depends
on your specific requirements and use cases.

It is recommended to configure CPU and memory resources for each container by setting appropriate
requests and limits.

169

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index#con-common-configuration-resources-reference

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

8.12. CONFIGURING POD SCHEDULING
To avoid performance degradation caused by resource conflicts between applications scheduled on the

same OpenShift node, you can schedule Kafka pods separately from critical workloads. This can be
achieved by either selecting specific nodes or dedicating a set of nodes exclusively for Kafka.

8.12.1. Specifying affinity, tolerations, and topology spread constraints
Use affinity, tolerations and topology spread constraints to schedule the pods of kafka resources onto
nodes. Affinity, tolerations and topology spread constraints are configured using the affinity,
tolerations, and topologySpreadConstraint properties in following resources:

o Kafka.spec.kafka.template.pod

o Kafka.spec.zookeeper.template.pod

o Kafka.spec.entityOperator.template.pod

e KafkaConnect.spec.template.pod

o KafkaBridge.spec.template.pod

o KafkaMirrorMaker.spec.template.pod

o KafkaMirrorMaker2.spec.template.pod

The format of the affinity, tolerations, and topologySpreadConstraint properties follows the
OpenShift specification. The affinity configuration can include different types of affinity:

® Pod affinity and anti-affinity

® Node affinity

Additional resources

® Kubernetes node and pod affinity documentation
® Kubernetes taints and tolerations

® Controlling pod placement by using pod topology spread constraints

8.12.1.1. Use pod anti-affinity to avoid critical applications sharing nodes

Use pod anti-affinity to ensure that critical applications are never scheduled on the same disk. When
running a Kafka cluster, it is recommended to use pod anti-affinity to ensure that the Kafka brokers do
not share nodes with other workloads, such as databases.

8.12.1.2. Use node affinity to schedule workloads onto specific nodes

The OpenShift cluster usually consists of many different types of worker nodes. Some are optimized for
CPU heavy workloads, some for memory, while other might be optimized for storage (fast local SSDs) or
network. Using different nodes helps to optimize both costs and performance. To achieve the best
possible performance, it is important to allow scheduling of AMQ Streams components to use the right
nodes.

OpenShift uses node affinity to schedule workloads onto specific nodes. Node affinity allows you to

170

https://kubernetes.io/docs/concepts/configuration/assign-pod-node/
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/
https://docs.openshift.com/container-platform/latest/nodes/scheduling/nodes-scheduler-pod-topology-spread-constraints.html

CHAPTER 8. CONFIGURING A DEPLOYMENT

create a scheduling constraint for the node on which the pod will be scheduled. The constraint is
specified as a label selector. You can specify the label using either the built-in node label like
beta.kubernetes.io/instance-type or custom labels to select the right node.

8.12.1.3. Use node affinity and tolerations for dedicated nodes

Use taints to create dedicated nodes, then schedule Kafka pods on the dedicated nodes by configuring
node affinity and tolerations.

Cluster administrators can mark selected OpenShift nodes as tainted. Nodes with taints are excluded
from regular scheduling and normal pods will not be scheduled to run on them. Only services which can
tolerate the taint set on the node can be scheduled on it. The only other services running on such nodes
will be system services such as log collectors or software defined networks.

Running Kafka and its components on dedicated nodes can have many advantages. There will be no
other applications running on the same nodes which could cause disturbance or consume the resources
needed for Kafka. That can lead to improved performance and stability.

8.12.2. Configuring pod anti-affinity to schedule each Kafka broker on a different
worker node

Many Kafka brokers or ZooKeeper nodes can run on the same OpenShift worker node. If the worker
node fails, they will all become unavailable at the same time. To improve reliability, you can use
podAntiAffinity configuration to schedule each Kafka broker or ZooKeeper node on a different
OpenShift worker node.

Prerequisites

® An OpenShift cluster

® Arunning Cluster Operator

Procedure

1. Edit the affinity property in the resource specifying the cluster deployment. To make sure that
no worker nodes are shared by Kafka brokers or ZooKeeper nodes, use the strimzi.io/name
label. Set the topologyKey to kubernetes.io/hostname to specify that the selected pods are
not scheduled on nodes with the same hostname. This will still allow the same worker node to
be shared by a single Kafka broker and a single ZooKeeper node. For example:

apiVersion: kafka.strimzi.io/vibeta2
kind: Kafka
spec:
kafka:
#...
template:
pod:
affinity:
podAntiAffinity:
requiredDuringSchedulinglgnoredDuringExecution:
- labelSelector:
matchExpressions:
- key: strimzi.io/name
operator: In
values:

171

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

- CLUSTER-NAME-kafka
topologyKey: "kubernetes.io/hostname"
#...
zookeeper:
#...
template:
pod:
affinity:
podAntiAffinity:
requiredDuringSchedulinglgnoredDuringExecution:
- labelSelector:
matchExpressions:
- key: strimzi.io/name
operator: In
values:
- CLUSTER-NAME-zookeeper
topologyKey: "kubernetes.io/hostname"
#...

Where CLUSTER-NAME is the name of your Kafka custom resource.

2. If you even want to make sure that a Kafka broker and ZooKeeper node do not share the same
worker node, use the strimzi.io/cluster label. For example:

apiVersion: kafka.strimzi.io/vibeta2
kind: Kafka
spec:
kafka:
#...
template:
pod:
affinity:
podAntiAffinity:
requiredDuringSchedulinglgnoredDuringExecution:
- labelSelector:
matchExpressions:
- key: strimzi.io/cluster
operator: In
values:
- CLUSTER-NAME
topologyKey: "kubernetes.io/hostname"
#...
zookeeper:
#...
template:
pod:
affinity:
podAntiAffinity:
requiredDuringSchedulinglgnoredDuringExecution:
- labelSelector:
matchExpressions:
- key: strimzi.io/cluster
operator: In
values:

172

CHAPTER 8. CONFIGURING A DEPLOYMENT

- CLUSTER-NAME
topologyKey: "kubernetes.io/hostname"
#...

Where CLUSTER-NAME is the name of your Kafka custom resource.

3. Create or update the resource.

I oc apply -f <kafka_configuration_file>

8.12.3. Configuring pod anti-affinity in Kafka components

Pod anti-affinity configuration helps with the stability and performance of Kafka brokers. By using
podAntiAffinity, OpenShift will not schedule Kafka brokers on the same nodes as other workloads.
Typically, you want to avoid Kafka running on the same worker node as other network or storage
intensive applications such as databases, storage or other messaging platforms.

Prerequisites

® An OpenShift cluster

® Arunning Cluster Operator

Procedure

1. Edit the affinity property in the resource specifying the cluster deployment. Use labels to
specify the pods which should not be scheduled on the same nodes. The topologyKey should
be set to kubernetes.io/hostname to specify that the selected pods should not be scheduled
on nodes with the same hostname. For example:

apiVersion: kafka.strimzi.io/vibeta2
kind: Kafka
spec:
kafka:
#...
template:
pod:
affinity:
podAntiAffinity:
requiredDuringSchedulinglgnoredDuringExecution:
- labelSelector:
matchExpressions:
- key: application

operator: In
values:
- postgresql
- mongodb
topologyKey: "kubernetes.io/hostname"
#...
zookeeper:
#...

2. Create or update the resource.
This can be done using oc apply:

173

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift
I oc apply -f <kafka_configuration_file>

8.12.4. Configuring node affinity in Kafka components

Prerequisites

® An OpenShift cluster

® Arunning Cluster Operator

Procedure

1. Label the nodes where AMQ Streams components should be scheduled.
This can be done using oc label:

I oc label node NAME-OF-NODE node-type=fast-network

Alternatively, some of the existing labels might be reused.

2. Edit the affinity property in the resource specifying the cluster deployment. For example:

apiVersion: kafka.strimzi.io/vibeta2
kind: Kafka
spec:
kafka:
#...
template:
pod:
affinity:
nodeAffinity:
requiredDuringSchedulinglgnoredDuringExecution:
nodeSelectorTerms:
- matchExpressions:
- key: node-type

operator: In
values:
- fast-network
#...
zookeeper:
#...

3. Create or update the resource.
This can be done using oc apply:

I oc apply -f <kafka_configuration_file>

8.12.5. Setting up dedicated nodes and scheduling pods on them

Prerequisites

® An OpenShift cluster

174

CHAPTER 8. CONFIGURING A DEPLOYMENT

® Arunning Cluster Operator

Procedure

1. Select the nodes which should be used as dedicated.
2. Make sure there are no workloads scheduled on these nodes.

3. Set the taints on the selected nodes:
This can be done using oc adm taint:

I oc adm taint node NAME-OF-NODE dedicated=Kafka:NoSchedule

4. Additionally, add a label to the selected nodes as well.
This can be done using oc label:

I oc label node NAME-OF-NODE dedicated=Kafka

5. Edit the affinity and tolerations properties in the resource specifying the cluster deployment.
For example:

apiVersion: kafka.strimzi.io/vibeta2
kind: Kafka
spec:
kafka:
#...
template:
pod:
tolerations:
- key: "dedicated"”
operator: "Equal”
value: "Kafka"
effect: "NoSchedule"
affinity:
nodeAffinity:
requiredDuringSchedulinglgnoredDuringExecution:
nodeSelectorTerms:
- matchExpressions:
- key: dedicated

operator: In
values:
- Kafka
#...
zookeeper:
#...

6. Create or update the resource.
This can be done using oc apply:

I oc apply -f <kafka_configuration_file>

8.13. CONFIGURING LOGGING LEVELS

175

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

Configure logging levels in the custom resources of Kafka components and AMQ Streams operators.
You can specify the logging levels directly in the spec.logging property of the custom resource. Or you
can define the logging properties in a ConfigMap that's referenced in the custom resource using the
configMapKeyRef property.

The advantages of using a ConfigMap are that the logging properties are maintained in one place and
are accessible to more than one resource. You can also reuse the ConfigMap for more than one
resource. If you are using a ConfigMap to specify loggers for AMQ Streams Operators, you can also
append the logging specification to add filters.

You specify a logging type in your logging specification:
® inline when specifying logging levels directly
e external when referencing a ConfigMap

Example inline logging configuration

spec:
#...
logging:
type: inline
loggers:
kafka.root.logger.level: INFO

Example external logging configuration

spec:
#...
logging:
type: external
valueFrom:
configMapKeyRef:
name: my-config-map
key: my-config-map-key

Values for the name and key of the ConfigMap are mandatory. Default logging is used if the name or
key is not set.

8.13.1. Logging options for Kafka components and operators

For more information on configuring logging for specific Kafka components or operators, see the
following sections.

Kafka component logging

® Kafkalogging

® ZooKeeperlogging

® Kafka Connect and Mirror Maker 2.0 logging
® MirrorMaker logging

® Kafka Bridge logging

176

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index#property-kafka-logging-reference
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index#property-zookeeper-logging-reference
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index#property-kafka-connect-logging-reference
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index#property-mm-loggers-reference
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index#property-kafka-bridge-logging-reference

CHAPTER 8. CONFIGURING A DEPLOYMENT

® Cruise Control logging

Operator logging

® Cluster Operator logging
® Topic Operator logging

® User Operator logging

8.13.2. Creating a ConfigMap for logging

To use a ConfigMap to define logging properties, you create the ConfigMap and then reference it as
part of the logging definition in the spec of a resource.

The ConfigMap must contain the appropriate logging configuration.
® log4j.properties for Kafka components, ZooKeeper, and the Kafka Bridge
® log4j2.properties for the Topic Operator and User Operator

The configuration must be placed under these properties.

In this procedure a ConfigMap defines a root logger for a Kafka resource.

Procedure

1. Create the ConfigMap.
You can create the ConfigMap as a YAML file or from a properties file.

ConfigMap example with a root logger definition for Kafka:

kind: ConfigMap
apiVersion: vi
metadata:
name: logging-configmap
data:
log4j.properties:
kafka.root.logger.level="INFO"

If you are using a properties file, specify the file at the command line:
I oc create configmap logging-configmap --from-file=log4j.properties
The properties file defines the logging configuration:

Define the logger
kafka.root.logger.level="INFO"
#...

2. Define external logging in the spec of the resource, setting the
logging.valueFrom.configMapKeyRef.name to the name of the ConfigMap and
logging.valueFrom.configMapKeyRef.key to the key in this ConfigMap.

177

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index#property-cruise-control-logging-reference
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index#property-topic-operator-logging-reference
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index#property-user-operator-logging-reference

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

spec:
#...
logging:
type: external
valueFrom:
configMapKeyRef:
name: logging-configmap
key: log4j.properties

3. Create or update the resource.

I oc apply -f <kafka_configuration_file>

8.13.3. Configuring Cluster Operator logging

Cluster Operator logging is configured through a ConfigMap named strimzi-cluster-operator. A
ConfigMap containing logging configuration is created when installing the Cluster Operator. This
ConfigMap is described in the file install/cluster-operator/050-ConfigMap-strimzi-cluster-
operator.yaml. You configure Cluster Operator logging by changing the data.log4j2.properties values
in this ConfigMap.

To update the logging configuration, you can edit the 050-ConfigMap-strimzi-cluster-operator.yami
file and then run the following command:

I oc create -f install/cluster-operator/050-ConfigMap-strimzi-cluster-operator.yam!

Alternatively, edit the ConfigMap directly:

I oc edit configmap strimzi-cluster-operator

With this ConfigMap, you can control various aspects of logging, including the root logger level, log
output format, and log levels for different components. The monitorinterval setting, determines how
often the logging configuration is reloaded. You can also control the logging levels for the Kafka
AdminClient, ZooKeeper ZKTrustManager, Netty, and the OkHttp client. Netty is a framework used in
AMQ Streams for network communication, and OkHttp is a library used for making HTTP requests.

If the ConfigMap is missing when the Cluster Operator is deployed, the default logging values are used.

If the ConfigMap is accidentally deleted after the Cluster Operator is deployed, the most recently
loaded logging configuration is used. Create a new ConfigMap to load a new logging configuration.

9’ NOTE

Do not remove the monitorinterval option from the ConfigMap.

8.13.4. Adding logging filters to AMQ Streams operators

If you are using a ConfigMap to configure the (log4j2) logging levels for AMQ Streams operators, you
can also define logging filters to limit what's returned in the log.

Logging filters are useful when you have a large number of logging messages. Suppose you set the log

level for the logger as DEBUG (rootLogger.level="DEBUG"). Logging filters reduce the number of
logs returned for the logger at that level, so you can focus on a specific resource. When the filter is set,

178

CHAPTER 8. CONFIGURING A DEPLOYMENT

only log messages matching the filter are logged.

Filters use markers to specify what to include in the log. You specify a kind, namespace and name for the
marker. For example, if a Kafka cluster is failing, you can isolate the logs by specifying the kind as Kafka,
and use the namespace and name of the failing cluster.

This example shows a marker filter for a Kafka cluster named my-kafka-cluster.

Basic logging filter configuration

rootLogger.level="INFO"

appender.console filter.filter1.type=MarkerFilter ﬂ

appender.console filter.filter1.onMatch=ACCEPT 9
appender.console.filter.filter1.onMismatch=DENY 6

appender.console filter.filter1.marker=Kafka(my-namespace/my-kafka-cluster) ﬂ

ﬂ The MarkerFilter type compares a specified marker for filtering.
9 The onMatch property accepts the log if the marker matches.
9 The onMismatch property rejects the log if the marker does not match.

Q The marker used for filtering is in the format KIND(NAMESPACE/NAME-OF-RESOURCE).

You can create one or more filters. Here, the log is filtered for two Kafka clusters.

Multiple logging filter configuration

appender.console filter.filter1.type=MarkerFilter

appender.console filter.filter1.onMatch=ACCEPT
appender.console.filter.filter1.onMismatch=DENY

appender.console filter.filter1.marker=Kafka(my-namespace/my-kafka-cluster-1)
appender.console filter.filter2.type=MarkerFilter

appender.console filter.filter2.onMatch=ACCEPT
appender.console.filter.filter2.onMismatch=DENY

appender.console filter.filter2.marker=Kafka(my-namespace/my-kafka-cluster-2)

Adding filters to the Cluster Operator

To add filters to the Cluster Operator, update its logging ConfigMap YAML file (install/cluster-
operator/050-ConfigMap-strimzi-cluster-operator.yaml).

Procedure

1. Update the 050-ConfigMap-strimzi-cluster-operator.yaml file to add the filter properties to
the ConfigMap.
In this example, the filter properties return logs only for the my-kafka-cluster Kafka cluster:

kind: ConfigMap
apiVersion: vi
metadata:
name: strimzi-cluster-operator
data:
log4j2.properties:

179

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

#...

appender.console filter.filter1.type=MarkerFilter

appender.console filter.filter1.onMatch=ACCEPT

appender.console filter.filter1.onMismatch=DENY

appender.console filter.filter1.marker=Kafka(my-namespace/my-kafka-cluster)

Alternatively, edit the ConfigMap directly:
I oc edit configmap strimzi-cluster-operator

2. If you updated the YAML file instead of editing the ConfigMap directly, apply the changes by
deploying the ConfigMap:

I oc create -f install/cluster-operator/050-ConfigMap-strimzi-cluster-operator.yaml

Adding filters to the Topic Operator or User Operator

To add filters to the Topic Operator or User Operator, create or edit a logging ConfigMap.

In this procedure a logging ConfigMap is created with filters for the Topic Operator. The same approach
is used for the User Operator.

Procedure

1. Create the ConfigMap.
You can create the ConfigMap as a YAML file or from a properties file.

In this example, the filter properties return logs only for the my-topic topic:

kind: ConfigMap
apiVersion: vi
metadata:
name: logging-configmap
data:
log4j2.properties:
rootLogger.level="INFO"
appender.console filter.filter1.type=MarkerFilter
appender.console filter.filter1.onMatch=ACCEPT
appender.console filter.filter1.onMismatch=DENY
appender.console filter.filter1.marker=KafkaTopic(my-namespace/my-topic)

If you are using a properties file, specify the file at the command line:
I oc create configmap logging-configmap --from-file=log4j2.properties
The properties file defines the logging configuration:

Define the logger

rootLogger.level="INFO"

Set the filters

appender.console filter.filter1.type=MarkerFilter
appender.console filter.filter1.onMatch=ACCEPT

180

CHAPTER 8. CONFIGURING A DEPLOYMENT

appender.console.filter.filter1.onMismatch=DENY
appender.console filter.filter1.marker=KafkaTopic(my-namespace/my-topic)
#...

2. Define external logging in the spec of the resource, setting the
logging.valueFrom.configMapKeyRef.name to the name of the ConfigMap and
logging.valueFrom.configMapKeyRef.key to the key in this ConfigMap.

For the Topic Operator, logging is specified in the topicOperator configuration of the Kafka
resource.

spec:
#...
entityOperator:
topicOperator:
logging:
type: external
valueFrom:
configMapKeyRef:
name: logging-configmap
key: log4j2.properties

3. Apply the changes by deploying the Cluster Operator:

I create -f install/cluster-operator -n my-cluster-operator-namespace

Additional resources
® Configuring Katka
® Cluster Operator logging
® Topic Operator logging

® User Operator logging

8.14. USING CONFIGMAPS TO ADD CONFIGURATION
Add specific configuration to your AMQ Streams deployment using ConfigMap resources. ConfigMaps
use key-value pairs to store non-confidential data. Configuration data added to ConfigMaps is
maintained in one place and can be reused amongst components.
ConfigMaps can only store the following types of configuration data:

® | ogging configuration

® Metrics configuration

® External configuration for Kafka Connect connectors

You can’t use ConfigMaps for other areas of configuration.

When you configure a component, you can add a reference to a ConfigMap using the configMapKeyRef
property.

181

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index#property-topic-operator-logging-reference
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index#property-user-operator-logging-reference

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

For example, you can use configMapKeyRef to reference a ConfigMap that provides configuration for
logging. You might use a ConfigMap to pass a Log4j configuration file. You add the reference to the
logging configuration.

Example ConfigMap for logging

spec:
#...
logging:
type: external
valueFrom:
configMapKeyRef:
name: my-config-map
key: my-config-map-key

To use a ConfigMap for metrics configuration, you add a reference to the metricsConfig configuration
of the component in the same way.

ExternalConfiguration properties make data from a ConfigMap (or Secret) mounted to a pod available
as environment variables or volumes. You can use external configuration data for the connectors used
by Kafka Connect. The data might be related to an external data source, providing the values needed for
the connector to communicate with that data source.

For example, you can use the configMapKeyRef property to pass configuration data from a ConfigMap
as an environment variable.

Example ConfigMap providing environment variable values

apiVersion: kafka.strimzi.io/vibeta2
kind: KafkaConnect
metadata:
name: my-connect
spec:
#...
externalConfiguration:
env:
- name: MY_ENVIRONMENT_VARIABLE
valueFrom:
configMapKeyRef:
name: my-config-map
key: my-key

If you are using ConfigMaps that are managed externally, use configuration providers to load the data in
the ConfigMaps.

8.14.1. Naming custom ConfigMaps

AMQ Streams creates its own ConfigMaps and other resources when it is deployed to OpenShift. The
ConfigMaps contain data necessary for running components. The ConfigMaps created by AMQ
Streams must not be edited.

Make sure that any custom ConfigMaps you create do not have the same name as these default
ConfigMaps. If they have the same name, they will be overwritten. For example, if your ConfigMap has
the same name as the ConfigMap for the Kafka cluster, it will be overwritten when there is an update to
the Kafka cluster.

182

CHAPTER 8. CONFIGURING A DEPLOYMENT

Additional resources

e | ist of Kafka cluster resources (including ConfigMaps)

® | ogging configuration

metricsConfig

ExternalConfiguration schema reference

Loading configuration values from external sources

8.15. LOADING CONFIGURATION VALUES FROM EXTERNAL SOURCES

Use configuration providers to load configuration data from external sources. The providers operate
independently of AMQ Streams. You can use them to load configuration data for all Katka components,
including producers and consumers. You reference the external source in the configuration of the
component and provide access rights. The provider loads data without needing to restart the Kafka
component or extracting files, even when referencing a new external source. For example, use providers
to supply the credentials for the Kafka Connect connector configuration. The configuration must
include any access rights to the external source.

8.15.1. Enabling configuration providers

You can enable one or more configuration providers using the config.providers properties in the spec
configuration of a component.

Example configuration to enable a configuration provider

apiVersion: kafka.strimzi.io/vibeta2
kind: KafkaConnect
metadata:
name: my-connect
annotations:
strimzi.io/use-connector-resources: "true"
spec:
#...
config:
#...
config.providers: env
config.providers.env.class: io.strimzi.kafka.EnvVarConfigProvider
#...

KubernetesSecretConfigProvider

Loads configuration data from OpenShift secrets. You specify the name of the secret and the key
within the secret where the configuration data is stored. This provider is useful for storing sensitive
configuration data like passwords or other user credentials.

KubernetesConfigMapConfigProvider

Loads configuration data from OpenShift config maps. You specify the name of the config map and
the key within the config map where the configuration data is stored. This provider is useful for
storing non-sensitive configuration data.

EnvVarConfigProvider

Loads configuration data from environment variables. You specify the name of the environment

183

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index#con-common-configuration-prometheus-reference
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index#type-ExternalConfiguration-reference

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

variable where the configuration data is stored. This provider is useful for configuring applications
running in containers, for example, to load certificates or JAAS configuration from environment
variables mapped from secrets.

FileConfigProvider

Loads configuration data from a file. You specify the path to the file where the configuration data is
stored. This provider is useful for loading configuration data from files that are mounted into
containers.

DirectoryConfigProvider

Loads configuration data from files within a directory. You specify the path to the directory where
the configuration files are stored. This provider is useful for loading multiple configuration files and
for organizing configuration data into separate files.

To use KubernetesSecretConfigProvider and KubernetesConfigMapConfigProvider, which are part
of the OpenShift Configuration Provider plugin, you must set up access rights to the namespace that
contains the configuration file.

You can use the other providers without setting up access rights. You can supply connector
configuration for Kafka Connect or MirrorMaker 2 in this way by doing the following:

® Mount config maps or secrets into the Kafka Connect pod as environment variables or volumes

e Enable EnvVarConfigProvider, FileConfigProvider, or DirectoryConfigProvider in the Kafka
Connect or MirrorMaker 2 configuration

® Pass connector configuration using the externalConfiguration property in the spec of the
KafkaConnect or KafkaMirrorMaker2 resource

Using providers help prevent the passing of restricted information through the Kafka Connect REST
interface. You can use this approach in the following scenarios:

® Mounting environment variables with the values a connector uses to connect and communicate
with a data source

® Mounting a properties file with values that are used to configure Kafka Connect connectors

® Mounting files in a directory that contains values for the TLS truststore and keystore used by a
connector

NOTE

A restart is required when using a new Secret or ConfigMap for a connector, which can
disrupt other connectors.

Additional resources

ExternalConfiguration schema reference

8.15.2. Loading configuration values from secrets or config maps

Use the KubernetesSecretConfigProvider to provide configuration properties from a secret or the
KubernetesConfigMapConfigProvider to provide configuration properties from a config map.

184

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index#type-ExternalConfiguration-reference

CHAPTER 8. CONFIGURING A DEPLOYMENT

In this procedure, a config map provides configuration properties for a connector. The properties are
specified as key values of the config map. The config map is mounted into the Kafka Connect pod as a
volume.

Prerequisites

e AKafka cluster is running.
® The Cluster Operator is running.
® You have a config map containing the connector configuration.

Example config map with connector properties

apiVersion: vi
kind: ConfigMap
metadata:
name: my-connector-configuration
data:
option1: value
option2: value2

Procedure
1. Configure the KafkaConnect resource.

® Enable the KubernetesConfigMapConfigProvider
The specification shown here can support loading values from config maps and secrets.

Example Kafka Connect configuration to use config maps and secrets

apiVersion: kafka.strimzi.io/vibeta2
kind: KafkaConnect
metadata:
name: my-connect
annotations:
strimzi.io/use-connector-resources: "true"
spec:
#...
config:
#...
config.providers: secrets,configmaps ﬂ
config.providers.configmaps.class: io.strimzi.kafka.KubernetesConfigMapConfigProvider

config.providers.secrets.class: io.strimzi.kafka.KubernetesSecretConfigProviderG
#...

ﬂ The alias for the configuration provider is used to define other configuration parameters.
The provider parameters use the alias from config.providers, taking the form
config.providers.${alias}.class.

KubernetesConfigMapConfigProvider provides values from config maps.

o0

KubernetesSecretConfigProvider provides values from secrets.

185

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

2. Create or update the resource to enable the provider.

I oc apply -f <kaftka_connect_configuration_file>

3. Create arole that permits access to the values in the external config map.

Example role to access values from a config map

apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
name: connector-configuration-role
rules:
- apiGroups: [""]
resources: ["configmaps"]
resourceNames: ["'my-connector-configuration"]
verbs: ["get"]
#...

The rule gives the role permission to access the my-connector-configuration config map.
4. Create arole binding to permit access to the namespace that contains the config map.

Example role binding to access the namespace that contains the config map

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
name: connector-configuration-role-binding
subjects:
- kind: ServiceAccount
name: my-connect-connect
namespace: my-project
roleRef:
kind: Role
name: connector-configuration-role
apiGroup: rbac.authorization.k8s.io
#...

The role binding gives the role permission to access the my-project namespace.

The service account must be the same one used by the Kafka Connect deployment. The service
account name format is <cluster_name>-connect, where <cluster_names is the name of the
KafkaConnect custom resource.

5. Reference the config map in the connector configuration.

Example connector configuration referencing the config map

apiVersion: kafka.strimzi.io/vibeta2
kind: KafkaConnector
metadata:

name: my-connector

labels:

186

CHAPTER 8. CONFIGURING A DEPLOYMENT

strimzi.io/cluster: my-connect
spec:
#...
config:
option: ${configmaps:my-project/my-connector-configuration:option1}
#...
#...

The placeholder structure is configmaps:<path_and_file_name>:<propertys.
KubernetesConfigMapConfigProvider reads and extracts the option1 property value from
the external config map.

8.15.3. Loading configuration values from environment variables

Use the EnvVarConfigProvider to provide configuration properties as environment variables.
Environment variables can contain values from config maps or secrets.

In this procedure, environment variables provide configuration properties for a connector to
communicate with Amazon AWS. The connector must be able to read the AWS_ACCESS_KEY_ID and
AWS_SECRET_ACCESS_KEY. The values of the environment variables are derived from a secret
mounted into the Kafka Connect pod.

NOTE

The names of user-defined environment variables cannot start with KAFKA _ or
STRIMZI .

Prerequisites

® A Kafka cluster is running.
® The Cluster Operator is running.
® You have a secret containing the connector configuration.

Example secret with values for environment variables

apiVersion: vi

kind: Secret

metadata:
name: aws-creds

type: Opaque

data:
awsAccessKey: QUIJQVhYWFhYWFhYWFhYWFg=
awsSecretAccessKey: Ylhsd11YTnpkM]jI5WKE=

Procedure
1. Configure the KafkaConnect resource.

® FEnable the EnvVarConfigProvider
® Specify the environment variables using the externalConfiguration property.

Example Kafka Connect configuration to use external environment variables

187

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

apiVersion: kafka.strimzi.io/vibeta2
kind: KafkaConnect
metadata:
name: my-connect
annotations:
strimzi.io/use-connector-resources: "true"
spec:
#...
config:
#...
config.providers: env ﬂ
config.providers.env.class: io.strimzi.kaftka.EnvVarConfigProvider 9
#...
externalConfiguration:
env:
- name: AWS_ACCESS_KEY_ID 6
valueFrom:
secretKeyRef:
name: aws-creds
key: awsAccessKey 6
- name: AWS_SECRET_ACCESS_KEY
valueFrom:
secretKeyRef:
name: aws-creds
key: awsSecretAccessKey
#...

The alias for the configuration provider is used to define other configuration parameters.
The provider parameters use the alias from config.providers, taking the form
config.providers.${alias}.class.

EnvVarConfigProvider provides values from environment variables.

The environment variable takes a value from the secret.

The name of the secret containing the environment variable.

000 0O

The name of the key stored in the secret.

NOTE

The secretKeyRef property references keys in a secret. If you are using a config
map instead of a secret, use the configMapKeyRef property.

2. Create or update the resource to enable the provider.
I oc apply -f <kafka_connect_configuration_file>

3. Reference the environment variable in the connector configuration.

Example connector configuration referencing the environment variable

I apiVersion: kafka.strimzi.io/vibeta2

188

CHAPTER 8. CONFIGURING A DEPLOYMENT

kind: KafkaConnector
metadata:
name: my-connector
labels:
strimzi.io/cluster: my-connect
spec:
#...
config:
option: ${env:AWS_ACCESS_KEY_ID}
option: ${env:AWS_SECRET_ACCESS_KEY}
#...
#...

The placeholder structure is env:<environment_variable_name>. EnvVarConfigProvider
reads and extracts the environment variable values from the mounted secret.
8.15.4. Loading configuration values from a file within a directory

Use the FileConfigProvider to provide configuration properties from a file within a directory. Files can
be config maps or secrets.

In this procedure, a file provides configuration properties for a connector. A database name and
password are specified as properties of a secret. The secret is mounted to the Kafka Connect pod as a
volume. Volumes are mounted on the path /opt/kafka/external-configuration/<volume-names.

Prerequisites

e A Kafka cluster is running.
® The Cluster Operator is running.
® You have a secret containing the connector configuration.

Example secret with database properties

apiVersion: vi
kind: Secret
metadata:
name: mysecret
type: Opaque
stringData:
connector.properties: |- ﬂ
dbUsername: my-username g
dbPassword: my-password

ﬂ The connector configuration in properties file format.

9 Database username and password properties used in the configuration.

Procedure
1. Configure the KafkaConnect resource.

® FEnable the FileConfigProvider

189

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

e Specify the file using the externalConfiguration property.

Example Kafka Connect configuration to use an external property file

apiVersion: kafka.strimzi.io/vibeta2
kind: KafkaConnect
metadata:
name: my-connect
spec:
#...
config:
config.providers: file ﬂ
config.providers.file.class: org.apache.kafka.common.config.provider.FileConfigProvider

#..
externalConfiguration:
volumes:
- name: connector-config 6
secret:
secretName: mysecret ﬂ

The alias for the configuration provider is used to define other configuration parameters.

FileConfigProvider provides values from properties files. The parameter uses the alias
from config.providers, taking the form config.providers.${alias}.class.

The name of the volume containing the secret.

The name of the secret.

o0® 09

2. Create or update the resource to enable the provider.

I oc apply -f <kafka_connect_configuration_file>

3. Reference the file properties in the connector configuration as placeholders.

Example connector configuration referencing the file

apiVersion: kafka.strimzi.io/vibeta2
kind: KafkaConnector
metadata:
name: my-source-connector
labels:
strimzi.io/cluster: my-connect-cluster
spec:
class: io.debezium.connector.mysql.MySglConnector
tasksMax: 2
config:
database.hostname: 192.168.99.1
database.port: "3306"
database.user: "${file:/opt/kafka/external-configuration/connector-
config/mysecret:dbUsername}"
database.password: "${file:/opt/kafka/external-configuration/connector-

190

CHAPTER 8. CONFIGURING A DEPLOYMENT

config/mysecret:dbPassword}"
database.server.id: "184054"
#...

The placeholder structure is file:<path_and_file_name>:<property>. FileConfigProvider
reads and extracts the database username and password property values from the mounted
secret.

8.15.5. Loading configuration values from multiple files within a directory

Use the DirectoryConfigProvider to provide configuration properties from multiple files within a
directory. Files can be config maps or secrets.

In this procedure, a secret provides the TLS keystore and truststore user credentials for a connector.
The credentials are in separate files. The secrets are mounted into the Kafka Connect pod as volumes.
Volumes are mounted on the path /opt/kafka/external-configuration/<volume-names.

Prerequisites

® A Kafka cluster is running.
® The Cluster Operator is running.
® You have a secret containing the user credentials.

Example secret with user credentials

apiVersion: vi
kind: Secret
metadata:
name: my-user
labels:
strimzi.io/kind: KafkaUser
strimzi.io/cluster: my-cluster
type: Opaque
data:
ca.crt: <public_key> # Public key of the clients CA
user.crt: <user_certificate> # Public key of the user
user.key: <user_private_key> # Private key of the user
user.p12: <store> # PKCS #12 store for user certificates and keys
user.password: <password_for_store> # Protects the PKCS #12 store

The my-user secret provides the keystore credentials (user.crt and user.key) for the connector.

The <cluster_name>-cluster-ca-cert secret generated when deploying the Kafka cluster provides the
cluster CA certificate as truststore credentials (ca.crt).

Procedure
1. Configure the KafkaConnect resource.

® Enable the DirectoryConfigProvider

® Specify the files using the externalConfiguration property.

191

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

Example Kafka Connect configuration to use external property files

apiVersion: kafka.strimzi.io/vibeta2
kind: KafkaConnect
metadata:
name: my-connect
spec:
#...
config:
config.providers: directory 0
config.providers.directory.class:
org.apache.kafka.common.config.provider.DirectoryConfigProvider g
#...
externalConfiguration:
volumes: 6
- name: cluster-ca ﬂ
secret:
secretName: my-cluster-cluster-ca-cert 6
- name: my-user
secret:
secretName: my-user G

The alias for the configuration provider is used to define other configuration parameters.

DirectoryConfigProvider provides values from files in a directory. The parameter uses the
alias from config.providers, taking the form config.providers.${alias}.class.

The names of the volumes containing the secrets.
The name of the secret for the cluster CA certificate to supply truststore configuration.

The name of the secret for the user to supply keystore configuration.

00 09O

2. Create or update the resource to enable the provider.

I oc apply -f <kaftka_connect_configuration_file>

3. Reference the file properties in the connector configuration as placeholders.

Example connector configuration referencing the files

apiVersion: kafka.strimzi.io/vibeta2
kind: KafkaConnector
metadata:
name: my-source-connector
labels:
strimzi.io/cluster: my-connect-cluster
spec:
class: io.debezium.connector.mysql.MySglConnector
tasksMax: 2
config:
#...
database.history.producer.security.protocol: SSL

192

CHAPTER 8. CONFIGURING A DEPLOYMENT

database.history.producer.ssl.truststore.type: PEM

database.history.producer.ssl.truststore.certificates: "${directory:/opt/kafka/external-
configuration/cluster-ca:ca.crt}"

database.history.producer.ssl.keystore.type: PEM

database.history.producer.ssl.keystore.certificate.chain: "${directory:/opt/kafka/external-
configuration/my-user:user.crt}"

database.history.producer.ssl.keystore.key: "${directory:/opt/kafka/external-
configuration/my-user:user.key}"

#...

The placeholder structure is directory:<path>:<file_name>. DirectoryConfigProvider reads
and extracts the credentials from the mounted secrets.

8.16. CUSTOMIZING OPENSHIFT RESOURCES

An AMQ Streams deployment creates OpenShift resources, such as Deployment, Pod, and Service
resources. These resources are managed by AMQ Streams operators. Only the operator that is
responsible for managing a particular OpenShift resource can change that resource. If you try to

manually change an operator-managed OpenShift resource, the operator will revert your changes back.

Changing an operator-managed OpenShift resource can be useful if you want to perform certain tasks,
such as the following:

® Adding custom labels or annotations that control how Pods are treated by Istio or other
services

® Managing how Loadbalancer-type Services are created by the cluster

To make the changes to an OpenShift resource, you can use the template property within the spec
section of various AMQ Streams custom resources.

Here is a list of the custom resources where you can apply the changes:
e Kafka.spec.kafka
e Kafka.spec.zookeeper
o Kafka.spec.entityOperator
e Kafka.spec.kafkaExporter
e Kafka.spec.cruiseControl
e KafkaNodePool.spec
e KafkaConnect.spec
o KafkaMirrorMaker.spec
e KafkaMirrorMaker2.spec
e KafkaBridge.spec
e KafkaUser.spec

For more information about these properties, see the AMQ Streams Custom Resource AP| Reference.

193

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

The AMQ Streams Custom Resource API Reference provides more details about the customizable
fields.

In the following example, the template property is used to modify the labels in a Kafka broker’s pod.

Example template customization

apiVersion: kafka.strimzi.io/vibeta2
kind: Kafka
metadata:
name: my-cluster
labels:
app: my-cluster
spec:
kafka:
#...
template:
pod:
metadata:
labels:
mylabel: myvalue

8.16.1. Customizing the image pull policy

AMQ Streams allows you to customize the image pull policy for containers in all pods deployed by the
Cluster Operator. The image pull policy is configured using the environment variable
STRIMZI_IMAGE_PULL_POLICY in the Cluster Operator deployment. The
STRIMZI_IMAGE_PULL_POLICY environment variable can be set to three different values:

Always

Container images are pulled from the registry every time the pod is started or restarted.
IfNotPresent

Container images are pulled from the registry only when they were not pulled before.
Never

Container images are never pulled from the registry.
Currently, the image pull policy can only be customized for all Kafka, Kafka Connect, and Kafka

MirrorMaker clusters at once. Changing the policy will result in a rolling update of all your Kafka, Kafka
Connect, and Kafka MirrorMaker clusters.

Additional resources

® Disruptions.

8.16.2. Applying a termination grace period

Apply a termination grace period to give a Kafka cluster enough time to shut down cleanly.

Specify the time using the terminationGracePeriodSeconds property. Add the property to the
template.pod configuration of the Kafka custom resource.

194

https://kubernetes.io/docs/concepts/containers/images/#updating-images

CHAPTER 8. CONFIGURING A DEPLOYMENT

The time you add will depend on the size of your Kafka cluster. The OpenShift default for the
termination grace period is 30 seconds. If you observe that your clusters are not shutting down cleanly,
you can increase the termination grace period.

A termination grace period is applied every time a pod is restarted. The period begins when OpenShift
sends a term (termination) signal to the processes running in the pod. The period should reflect the
amount of time required to transfer the processes of the terminating pod to another pod before they
are stopped. After the period ends, a kill signal stops any processes still running in the pod.

The following example adds a termination grace period of 120 seconds to the Kafka custom resource.
You can also specify the configuration in the custom resources of other Kafka components.

Example termination grace period configuration

apiVersion: kafka.strimzi.io/vibeta2
kind: Kafka
metadata:
name: my-cluster
spec:
kafka:
#...
template:
pod:
terminationGracePeriodSeconds: 120
#...
#...

195

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

CHAPTER 9. USING THE TOPIC OPERATOR TO MANAGE
KAFKA TOPICS

The KafkaTopic resource configures topics, including partition and replication factor settings. When you
create, modify, or delete a topic using KafkaTopic, the Topic Operator ensures that these changes are
reflected in the Kafka cluster.

For more information on the KafkaTopic resource, see the KafkaTopic schema reference.

9.1. TOPIC MANAGEMENT MODES

The KafkaTopic resource is responsible for managing a single topic within a Kafka cluster. The Topic
Operator provides two modes for managing KafkaTopic resources and Kafka topics:

Bidirectional mode

Bidirectional mode requires ZooKeeper for cluster management. It is not compatible with using AMQ
Streams in KRaft mode.

(Preview) Unidirectional mode

Unidirectional mode does not require ZooKeeper for cluster management. It is compatible with using
AMQ Streams in KRaft mode.

NOTE
Unidirectional topic management is available as a preview. Unidirectional topic

management is not enabled by default, so you must enable the
UnidirectionalTopicOperator feature gate to be able to use it.

9.1.1. Bidirectional topic management

In bidirectional mode, the Topic Operator operates as follows:

e When a KafkaTopic is created, deleted, or changed, the Topic Operator performs the
corresponding operation on the Kafka topic.

e Similarly, when a topic is created, deleted, or changed within the Kafka cluster, the Topic
Operator performs the corresponding operation on the KafkaTopic resource.

TIP

Try to stick to one method of managing topics, either through the KafkaTopic resources or directly in
Kafka. Avoid routinely switching between both methods for a given topic.

9.1.2. (Preview) Unidirectional topic management

In unidirectional mode, the Topic Operator operates as follows:

e When a KafkaTopic is created, deleted, or changed, the Topic Operator performs the
corresponding operation on the Kafka topic.

If a topic is created, deleted, or modified directly within the Kafka cluster, without the presence of a

corresponding KafkaTopic resource, the Topic Operator does not manage that topic. The Topic
Operator will only manage Kafka topics associated with KafkaTopic resources and does not interfere

196

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index#type-KafkaTopic-reference

CHAPTER 9. USING THE TOPIC OPERATOR TO MANAGE KAFKA TOPICS

with topics managed independently within the Kafka cluster. If a KafkaTopic does exist for a Kafka topic,
any configuration changes made outside the resource are reverted.

9.2. TOPIC NAMING CONVENTIONS

A KafkaTopic resource includes a name for the topic and a label that identifies the name of the Kafka
cluster it belongs to.

Label identifying a Kafka cluster for topic handling

apiVersion: kafka.strimzi.io/vibeta2
kind: KafkaTopic
metadata:

name: topic-name-1

labels:

strimzi.io/cluster: my-cluster

spec:

topicName: topic-name-1

The label provides the cluster name of the Kafka resource. The Topic Operator uses the label as a
mechanism for determining which KafkaTopic resources to manage. If the label does not match the
Kafka cluster, the Topic Operator cannot see the KafkaTopic, and the topic is not created.

Kafka and OpenShift have their own naming validation rules, and a Kafka topic name might not be a valid
resource name in OpenShift. If possible, try and stick to a naming convention that works for both.

Consider the following guidelines:

® Use topic names that reflect the nature of the topic

® Be concise and keep the name under 63 characters

® Use all lower case and hyphens

® Avoid special characters, spaces or symbols
The KafkaTopic resource allows you to specify the Kafka topic name using the metadata.name field.
However, if the desired Kafka topic name is not a valid OpenShift resource name, you can use the
spec.topicName property to specify the actual name. The spec.topicName field is optional, and when
it's absent, the Kafka topic name defaults to the metadata.name of the topic. When a topic is created,

the topic name cannot be changed later.

Example of supplying a valid Kafka topic name

apiVersion: kafka.strimzi.io/vibeta2
kind: KafkaTopic
metadata:
name: my-topic-1 0
spec:
topicName: My.Topic.1 9
#...

ﬂ A valid topic name that works in OpenShift.

197

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift
9 A Kafka topic name that uses upper case and periods, which are invalid in OpenShift.

If more than one KafkaTopic resource refers to the same Kafka topic, the resource that was created
first is considered to be the one managing the topic. The status of the newer resources is updated to
indicate a conflict, and their Ready status is changed to False.

If a Kafka client application, such as Kafka Streams, automatically creates topics with invalid OpenShift
resource names, the Topic Operator generates a valid metadata.name when used in bidirectional mode.
It replaces invalid characters and appends a hash to the name. However, this behavior does not apply in
(preview) unidirectional mode.

Example of replacing an invalid topic name

apiVersion: kafka.strimzi.io/vibeta2

kind: KafkaTopic

metadata:
name: my-topic---c55e57fe2546a33f9e603caf57165db4072e827¢e
#...

NOTE

For more information on the requirements for identifiers and names in a cluster, refer to
the OpenShift documentation Object Names and IDs.

9.3. HANDLING CHANGES TO TOPICS
How the Topic Operator handles changes to topics depends on the mode of topic management.

® For bidirectional topic management, configuration changes are synchronized between the Kafka
topic and the KafkaTopic resource in both directions. Incompatible changes prioritize the Kafka
configuration, and the KafkaTopic resource is adjusted accordingly.

® For unidirectional topic management (currently in preview), configuration changes only go in
one direction: from the KafkaTopic resource to the Kafka topic. Any changes to a Kafka topic
managed outside the KafkaTopic resource are reverted.

9.3.1. Topic store for bidirectional topic management

For bidirectional topic management, the Topic Operator is capable of handling changes to topics when
there is no single source of truth. The KafkaTopic resource and the Kafka topic can undergo
independent modifications, where real-time observation of changes may not always be feasible,
particularly when the Topic Operator is not operational. To handle this, the Topic Operator maintains a
topic store that stores topic configuration information about each topic. It compares the state of the
Kafka cluster and OpenShift with the topic store to determine the necessary changes for
synchronization. This evaluation takes place during startup and at regular intervals while the Topic
Operator is active.

For example, if the Topic Operator is inactive, and a new KafkaTopic named my-topicis created, upon
restart, the Topic Operator recognizes the absence of my-topicin the topic store. It recognizes that the
KafkaTopic was created after its last operation. Consequently, the Topic Operator generates the
corresponding Kafka topic and saves the metadata in the topic store.

The topic store enables the Topic Operator to manage situations where the topic configuration is
altered in both Kafka topics and KafkaTopic resources, as long as the changes are compatible. When

198

https://kubernetes.io/docs/concepts/overview/working-with-objects/names

CHAPTER 9. USING THE TOPIC OPERATOR TO MANAGE KAFKA TOPICS

Kafka topic configuration is updated or changes are made to the KafkaTopic custom resource, the
topic store is updated after reconciling with the Kafka cluster, as long as the changes are compatible.

The topic store is based on the Kafka Streams key-value mechanism, which uses Kafka topics to persist
the state. Topic metadata is cached in-memory and accessed locally within the Topic Operator. Updates
from operations applied to the local in-memory cache are persisted to a backup topic store on disk. The
topic store is continually synchronized with updates from Kafka topics or OpenShift KafkaTopic custom
resources. Operations are handled rapidly with the topic store set up this way, but should the in-memory
cache crash it is automatically repopulated from the persistent storage.

Internal topics support the handling of topic metadata in the topic store.

__strimzi_store_topic
Input topic for storing the topic metadata
__strimzi-topic-operator-kstreams-topic-store-changelog

Retains a log of compacted topic store values

' WARNING
A Do not delete these topics, as they are essential to the running of the Topic

Operator.

9.3.2. Migrating topic metadata from ZooKeeper to the topic store

In previous releases of AMQ Streams, topic metadata was stored in ZooKeeper. The topic store
removes this requirement, bringing the metadata into the Kafka cluster, and under the control of the
Topic Operator.

When upgrading to AMQ Streams 2.5, the transition to Topic Operator control of the topic store is
seamless. Metadata is found and migrated from ZooKeeper, and the old store is deleted.

9.3.3. Downgrading to an AMQ Streams version that uses ZooKeeper to store topic
metadata

If you are reverting back to a version of AMQ Streams earlier than 1.7, which uses ZooKeeper for the
storage of topic metadata, you still downgrade your Cluster Operator to the previous version, then
downgrade Kafka brokers and client applications to the previous Kafka version as standard.

However, you must also delete the topics that were created for the topic store using a kafka-topics
command, specifying the bootstrap address of the Kafka cluster. For example:

oc run kafka-admin -ti --image=registry.redhat.io/amq-streams/kafka-35-rhel8:2.5.1 --rm=true --
restart=Never -- ./bin/kafka-topics.sh --bootstrap-server localhost:9092 --topic __strimzi-topic-
operator-kstreams-topic-store-changelog --delete && ./bin/kafka-topics.sh --bootstrap-server
localhost:9092 --topic __strimzi_store_topic --delete

The command must correspond to the type of listener and authentication used to access the Kafka
cluster.

199

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

The Topic Operator will reconstruct the ZooKeeper topic metadata from the state of the topics in
Kafka.

9.3.4. Automatic creation of topics

Applications can trigger the automatic creation of topics in the Kafka cluster. By default, the Kafka
broker configuration auto.create.topics.enable is set to true, allowing the broker to create topics
automatically when an application attempts to produce or consume from a non-existing topic.
Applications might also use the Kafka AdminClient to automatically create topics. When an application
is deployed along with its KafkaTopic resources, it is possible that automatic topic creation in the
cluster happens before the Topic Operator can react to the KafkaTopic.

For bidirectional topic management, the Topic Operator synchronizes the changes between the topics
and KafkaTopic resources.

If you are trying the unidirectional topic management preview, this can mean that the topics created for
an application deployment are initially created with default topic configuration. If the Topic Operator
attempts to reconfigure the topics based on KafkaTopic resource specifications included with the
application deployment, the operation might fail because the required change to the configuration is
not allowed. For example, if the change means lowering the number of topic partitions. For this reason,

it is recommended to disable auto.create.topics.enable in the Kafka cluster configuration when using
unidirectional topic management.

9.4. CONFIGURING KAFKA TOPICS

Use the properties of the KafkaTopic resource to configure Kafka topics. Changes made to topic
configuration in the KafkaTopic are propagated to Kafka.

You can use oc apply to create or modify topics, and oc delete to delete existing topics.
For example:

e oc apply -f <topic_config_file>

® oc delete KafkaTopic <topic_name>

To be able to delete topics, delete.topic.enable must be set to true (default) in the spec.kafka.config
of the Kafka resource.

This procedure shows how to create a topic with 10 partitions and 2 replicas.

NOTE

The procedure is the same for the bidirectional and (preview) unidirectional modes of
topic management.

Before you begin

The KafkaTopic resource does not allow the following changes:

® Renaming the topic defined in spec.topicName. A mismatch between spec.topicName and
status.topicName will be detected.

® Decreasing the number of partitions using spec.partitions (not supported by Kafka).

® Modifying the number of replicas specified in spec.replicas.

200

CHAPTER 9. USING THE TOPIC OPERATOR TO MANAGE KAFKA TOPICS

' WARNING
A Increasing spec.partitions for topics with keys will alter the partitioning of records,

which can cause issues, especially when the topic uses semantic partitioning.

Prerequisites

® A running Kafka cluster configured with a Kafka broker listener using mTLS authentication and
TLS encryption.

® A running Topic Operator (typically deployed with the Entity Operator).

e For deleting a topic, delete.topic.enable=true (default) in the spec.kafka.config of the Kafka
resource.

Procedure

1. Configure the KafkaTopic resource.

Example Kafka topic configuration

apiVersion: kafka.strimzi.io/vibeta2
kind: KafkaTopic
metadata:

name: my-topic-1

labels:

strimzi.io/cluster: my-cluster

spec:

partitions: 10

replicas: 2

TIP

When modifying a topic, you can get the current version of the resource using oc get
kafkatopic my-topic-1 -o yaml.

2. Create the KafkaTopic resource in OpenShift.
I oc apply -f <topic_config_file>

3. Wait for the ready status of the topic to change to True:
I oc get kafkatopics -0 wide -w -n <namespace>
Kafka topic status

NAME CLUSTER PARTITIONS REPLICATION FACTOR READY
my-topic-1 my-cluster 10 3 True
my-topic-2 my-cluster 10 3

201

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

I my-topic-3 my-cluster 10 3 True

Topic creation is successful when the READY output shows True.

4. If the READY column stays blank, get more details on the status from the resource YAML or
from the Topic Operator logs.
Status messages provide details on the reason for the current status.

I oc get kafkatopics my-topic-2 -o yaml
Details on a topic with a NotReady status

#...
status:

conditions:

- lastTransitionTime: "2022-06-13T10:14:43.351550Z"
message: Number of partitions cannot be decreased
reason: PartitionDecreaseException
status: "True"
type: NotReady

In this example, the reason the topic is not ready is because the original number of partitions
was reduced in the KafkaTopic configuration. Kafka does not support this.

After resetting the topic configuration, the status shows the topic is ready.

I oc get kafkatopics my-topic-2 -o wide -w -n <namespace>

Status update of the topic

I NAME CLUSTER PARTITIONS REPLICATION FACTOR READY
my-topic-2 my-cluster 10 3 True

Fetching the details shows no messages

I oc get kafkatopics my-topic-2 -o yaml

Details on a topic with a READY status

#...
status:
conditions:
- lastTransitionTime: '2022-06-13T10:15:03.761084Z'
status: 'True'
type: Ready

9.5. CONFIGURING TOPICS FOR REPLICATION AND NUMBER OF
PARTITIONS

The recommended configuration for topics managed by the Topic Operator is a topic replication factor
of 3, and a minimum of 2 in-sync replicas.

202

CHAPTER 9. USING THE TOPIC OPERATOR TO MANAGE KAFKA TOPICS

apiVersion: kafka.strimzi.io/vibeta2
kind: KafkaTopic
metadata:
name: my-topic
labels:
strimzi.io/cluster: my-cluster
spec:
partitions: 10 0
replicas: 3
config:
min.insync.replicas: 2 6
#..

The number of partitions for the topic.

The number of replica topic partitions. Currently, this cannot be changed in the KafkaTopic
resource, but it can be changed using the kafka-reassign-partitions.sh tool.

®9

o

The minimum number of replica partitions that a message must be successfully written to, or an
exception is raised.

NOTE

In-sync replicas are used in conjunction with the acks configuration for producer
applications. The acks configuration determines the number of follower partitions a
message must be replicated to before the message is acknowledged as successfully
received. The bidirectional Topic Operator runs with acks=all for its internal topics
whereby messages must be acknowledged by all in-sync replicas.

When scaling Kafka clusters by adding or removing brokers, replication factor configuration is not
changed and replicas are not reassigned automatically. However, you can use the kafka-reassign-
partitions.sh tool to change the replication factor, and manually reassign replicas to brokers.

Alternatively, though the integration of Cruise Control for AMQ Streams cannot change the replication

factor for topics, the optimization proposals it generates for rebalancing Kafka include commands that
transfer partition replicas and change partition leadership.

Additional resources
® Downgrading AMQ Streams
® Section 19.1, "Partition reassignment tool overview”

® Chapter 18, Rebalancing clusters using Cruise Control

9.6. (PREVIEW) MANAGING KAFKATOPIC RESOURCES WITHOUT
IMPACTING KAFKA TOPICS

This procedure describes how to convert Kafka topics that are currently managed through the
KafkaTopic resource into non-managed topics. This capability can be useful in various scenarios. For
instance, you might want to update the metadata.name of a KafkaTopic resource. You can only do that
by deleting the original KafkaTopic resource and recreating a new one.

203

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

By annotating a KafkaTopic resource with strimzi.io/managed=false, you indicate that the Topic
Operator should no longer manage that particular topic. This allows you to retain the Kafka topic while
making changes to the resource’s configuration or other administrative tasks.

You can perform this task if you are using unidirectional topic management.

NOTE

Unidirectional topic management is available as a preview. Unidirectional topic
management is not enabled by default, so you must enable the
UnidirectionalTopicOperator feature gate to be able to use it.

Prerequisites

® The Cluster Operator must be deployed.

Procedure

1. Annotate the KafkaTopic resource in OpenShift, setting strimzi.io/managed to false:
I oc annotate kafkatopic my-topic-1 strimzi.io/managed=false

Specify the metadata.name of the topic in your KafkaTopic resource, which is my-topic-1 in
this example.

2. Check the status of the KafkaTopic resource to make sure the request was successful:
I oc get kafkatopics my-topic-1 -o yaml
Example topic with a Ready status

apiVersion: kafka.strimzi.io/vibeta2
kind: KafkaTopic
metadata:
generation: 124
name: my-topic-1
finalizer:
strimzi.io/topic-operator
labels:
strimzi.io/cluster: my-cluster
spec:
partitions: 10
replicas: 2

#..
status:
observedGeneration: 124 ﬂ
topicName: my-topic-1
conditions:
- type: Ready
status: True
lastTransitionTime: 20230301T103000Z

ﬂ Successful reconciliation of the resource means the topic is no longer managed.

204

CHAPTER 9. USING THE TOPIC OPERATOR TO MANAGE KAFKA TOPICS

The value of metadata.generation (the current version of the deployment) must match
status.observedGeneration (the latest reconciliation of the resource).

3. You can now make changes to the KafkaTopic resource without it affecting the Kafka topic it
was managing.
For example, to change the metadata.name, do as follows:

a. Delete the original KafkTopic resource:

I oc delete kafkatopic <kafka_topic_name>

b. Recreate the KafkTopic resource with a different metadata.name, but use
spec.topicName to refer to the same topic that was managed by the original

4. If you haven't deleted the original KafkaTopic resource, and you wish to resume management
of the Kafka topic again, set the strimzi.io/managed annotation to true or remove the
annotation.

9.7. (PREVIEW) ENABLING TOPIC MANAGEMENT FOR EXISTING
KAFKA TOPICS

This procedure describes how to enable topic management for topics that are not currently managed
through the KafkaTopic resource. You do this by creating a matching KafkaTopic resource.

You can perform this task if you are using unidirectional topic management.

NOTE

Unidirectional topic management is available as a preview. Unidirectional topic
management is not enabled by default, so you must enable the
UnidirectionalTopicOperator feature gate to be able to use it.

Prerequisites

® The Cluster Operator must be deployed.

Procedure

1. Create a KafkaTopic resource with a metadata.name that is the same as the Kafka topic.
Or use spec.topicName if the name of the topic in Kafka would not be a legal OpenShift
resource name.

Example Kafka topic configuration

apiVersion: kafka.strimzi.io/vibeta2
kind: KafkaTopic
metadata:

name: my-topic-1

labels:

strimzi.io/cluster: my-cluster

spec:

partitions: 10

replicas: 2

205

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

In this example, the Kafka topic is named my-topic-1.

The Topic Operator checks whether the topic is managed by another KafkaTopic resource. If it
is, the older resource takes precedence and a resource conflict error is returned in the status of
the new resource.

. Apply the KafkaTopic resource:

I oc apply -f <topic_configuration_file>

. Wait for the operator to update the topic in Kafka.

The operator updates the Kafka topic with the spec of the KafkaTopic that has the same
name.

. Check the status of the KafkaTopic resource to make sure the request was successful:

I oc get kafkatopics my-topic-1 -o yaml
Example topic with a Ready status

apiVersion: kafka.strimzi.io/vibeta2
kind: KafkaTopic
metadata:
generation: 1
name: my-topic-1
labels:
strimzi.io/cluster: my-cluster
spec:
partitions: 10
replicas: 2
#...
status:
observedGeneration: 1 ﬂ
topicName: my-topic-1
conditions:
- type: Ready
status: True
lastTransitionTime: 20230301T103000Z

ﬂ Successful reconciliation of the resource means the topic is now managed.

The value of metadata.generation (the current version of the deployment) must match
status.observedGeneration (the latest reconciliation of the resource).

9.8. (PREVIEW) DELETING MANAGED TOPICS

Unidirectional topic management supports the deletion of topics managed through the KafkaTopic
resource with or without OpenShift finalizers. This is controlled by the STRIMZI_USE_FINALIZERS
Topic Operator environment variable. By default, this is set to true, though it can be set to false in the
Topic Operator env configuration if you do not want the Topic Operator to add finalizers.

206

CHAPTER 9. USING THE TOPIC OPERATOR TO MANAGE KAFKA TOPICS

NOTE

Unidirectional topic management is available as a preview. Unidirectional topic
management is not enabled by default, so you must enable the
UnidirectionalTopicOperator feature gate to be able to use it.

Finalizers ensure orderly and controlled deletion of KafkaTopic resources. A finalizer for the Topic
Operator is added to the metadata of the KafkaTopic resource:

Finalizer to control topic deletion

apiVersion: kafka.strimzi.io/vibeta2
kind: KafkaTopic
metadata:
generation: 1
name: my-topic-1
finalizer:
strimzi.io/topic-operator
labels:
strimzi.io/cluster: my-cluster

In this example, the finalizer is added for topic my-topic-1. The finalizer prevents the topic from being
fully deleted until the finalization process is complete. If you then delete the topic using oc delete
kafkatopic my-topic-1, a timestamp is added to the metadata:

Finalizer timestamp on deletion

apiVersion: kafka.strimzi.io/vibeta2
kind: KafkaTopic
metadata:
generation: 1
name: my-topic-1
finalizer:
strimzi.io/topic-operator
labels:
strimzi.io/cluster: my-cluster
deletionTimestamp: 20230301T000000.000

The resource is still present. If the deletion fails, it is shown in the status of the resource.

When the finalization tasks are successfully executed, the finalizer is removed from the metadata, and
the resource is fully deleted.

Finalizers also prevent related resources from being deleted. If the unidirectional Topic Operator is not
running, it won't be able to remove the metadata.finalizer. Consequently, an attempt to delete the
namespace that contains the KafkaTopic resource won't complete until either the operator is restarted,
or the finalizer is otherwise removed (for example using oc edit).

207

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

CHAPTER 10. USING THE USER OPERATOR TO MANAGE
KAFKA USERS

When you create, modify or delete a user using the KafkaUser resource, the User Operator ensures that
these changes are reflected in the Kafka cluster.

For more information on the KafkaUser resource, see the KafkaUser schema reference.

10.1. CONFIGURING KAFKA USERS
Use the properties of the KafkaUser resource to configure Kafka users.
You can use oc apply to create or modify users, and oc delete to delete existing users.
For example:
e oc apply -f <user_config_file>
o oc delete KafkaUser <user_name>

Users represent Kafka clients. When you configure Kafka users, you enable the user authentication and
authorization mechanisms required by clients to access Kafka. The mechanism used must match the
equivalent Kafka configuration. For more information on using Kafka and KafkaUser resources to
secure access to Kafka brokers, see Securing access to Kafka brokers.

Prerequisites

® A running Kafka cluster configured with a Kafka broker listener using mTLS authentication and
TLS encryption.

® Arunning User Operator (typically deployed with the Entity Operator).

Procedure

1. Configure the KafkaUser resource.
This example specifies mTLS authentication and simple authorization using ACLs.

Example Kafka user configuration

apiVersion: kafka.strimzi.io/vibeta2
kind: KaftkaUser
metadata:
name: my-user-1
labels:
strimzi.io/cluster: my-cluster
spec:
authentication:
type: tls
authorization:
type: simple
acls:
Example consumer Acls for topic my-topic using consumer group my-group
- resource:
type: topic

208

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index#type-KafkaUser-reference

CHAPTER 10. USING THE USER OPERATOR TO MANAGE KAFKA USERS

name: my-topic
patternType: literal
operations:
- Describe
- Read
host: ™"
- resource:
type: group
name: my-group
patternType: literal
operations:
- Read
host: ™"
Example Producer Acls for topic my-topic
- resource:
type: topic
name: my-topic
patternType: literal
operations:
- Create
- Describe
- Write
host: "*"

2. Create the KafkaUser resource in OpenShift.

I oc apply -f <user_config_file>

3. Wait for the ready status of the user to change to True:

I oc get kafkausers -0 wide -w -n <namespace>
Kafka user status

NAME CLUSTER AUTHENTICATION AUTHORIZATION READY

my-user-1 my-cluster tls simple True
my-user-2 my-cluster tls simple
my-user-3 my-cluster tls simple True

User creation is successful when the READY output shows True.

4. If the READY column stays blank, get more details on the status from the resource YAML or
User Operator logs.
Messages provide details on the reason for the current status.

I oc get kafkausers my-user-2 -0 yaml
Details on a user with a NotReady status

#...
status:
conditions:
- lastTransitionTime: "2022-06-10T10:07:37.2380652"

209

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

message: Simple authorization ACL rules are configured but not supported in the
Kafka cluster configuration.

reason: InvalidResourceException

status: "True"

type: NotReady

In this example, the reason the user is not ready is because simple authorization is not enabled in
the Kafka configuration.

Kafka configuration for simple authorization

apiVersion: kafka.strimzi.io/vibeta2
kind: Kafka
metadata:
name: my-cluster
spec:
kafka:
#...
authorization:
type: simple

After updating the Kafka configuration, the status shows the user is ready.
I oc get kafkausers my-user-2 -0 wide -w -n <namespace>
Status update of the user

NAME CLUSTER AUTHENTICATION AUTHORIZATION READY
my-user-2 my-cluster tls simple True

Fetching the details shows no messages.
I oc get kafkausers my-user-2 -0 yaml
Details on a user with a READY status

#...
status:
conditions:
- lastTransitionTime: "2022-06-10T10:33:40.166846Z7"
status: "True"
type: Ready

210

CHAPTER 11. VALIDATING SCHEMAS WITH THE RED HAT BUILD OF APICURIO REGISTRY

CHAPTER 11. VALIDATING SCHEMAS WITH THE RED HAT
BUILD OF APICURIO REGISTRY

You can use the Red Hat build of Apicurio Registry with AMQ Streams.

Apicurio Registry is a datastore for sharing standard event schemas and API designs across APl and
event-driven architectures. You can use Apicurio Registry to decouple the structure of your data from
your client applications, and to share and manage your data types and API descriptions at runtime using
a REST interface.

Apicurio Registry stores schemas used to serialize and deserialize messages, which can then be
referenced from your client applications to ensure that the messages that they send and receive are
compatible with those schemas. Apicurio Registry provides Kafka client serializers/deserializers for Kafka
producer and consumer applications. Kafka producer applications use serializers to encode messages
that conform to specific event schemas. Kafka consumer applications use deserializers, which validate
that the messages have been serialized using the correct schema, based on a specific schema ID.

You can enable your applications to use a schema from the registry. This ensures consistent schema
usage and helps to prevent data errors at runtime.

Additional resources

® Red Hat build of Apicurio Registry product documentation

® Red Hat build of Apicurio Registry is built on the Apicurio Registry open source community
project available on GitHub: Apicurio/apicurio-registry

21

https://access.redhat.com/documentation/en-us/red_hat_build_of_apicurio_registry
https://github.com/apicurio/apicurio-registry

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

CHAPTER 12. INTEGRATING WITH THE RED HAT BUILD OF
DEBEZIUM FOR CHANGE DATA CAPTURE

The Red Hat build of Debezium is a distributed change data capture platform. It captures row-level
changes in databases, creates change event records, and streams the records to Kafka topics.
Debezium is built on Apache Kafka. You can deploy and integrate the Red Hat build of Debezium with
AMQ Streams. Following a deployment of AMQ Streams, you deploy Debezium as a connector
configuration through Kafka Connect. Debezium passes change event records to AMQ Streams on
OpenShift. Applications can read these change event streams and access the change events in the
order in which they occurred.

Debezium has multiple uses, including:
® Datareplication
® Updating caches and search indexes
e Simplifying monolithic applications
® Dataintegration
® FEnabling streaming queries

To capture database changes, deploy Kafka Connect with a Debezium database connector. You
configure a KafkaConnector resource to define the connector instance.

For more information on deploying the Red Hat build of Debezium with AMQ Streams, refer to the
product documentation. The documentation includes a Getting Started with Debezium guide that guides
you through the process of setting up the services and connector required to view change event

records for database updates.

212

https://access.redhat.com/documentation/en-us/red_hat_build_of_debezium

CHAPTER13. SETTING UP CLIENT ACCESS TO A KAFKA CLUSTER

CHAPTER13. SETTING UP CLIENT ACCESS TO A KAFKA
CLUSTER

After you have deployed AMQ Streams, you can set up client access to your Kafka cluster. To verify the
deployment, you can deploy example producer and consumer clients. Otherwise, create listeners that
provide client access within or outside the OpenShift cluster.

13.1. DEPLOYING EXAMPLE CLIENTS

Deploy example producer and consumer clients to send and receive messages. You can use these
clients to verify a deployment of AMQ Streams.

Prerequisites

® The Kafka cluster is available for the clients.

Procedure

1. Deploy a Kafka producer.

oc run kafka-producer -ti --image=registry.redhat.io/amqg-streams/kafka-35-rhel8:2.5.1 --
rm=true --restart=Never -- bin/kafka-console-producer.sh --bootstrap-server cluster-name-
kafka-bootstrap:9092 --topic my-topic

2. Type a message into the console where the producer is running.

3. Press Enter to send the message.

I

. Deploy a Kafka consumer.

oc run kafka-consumer -ti --image=registry.redhat.io/amqg-streams/kaftka-35-rhel8:2.5.1 --
rm=true --restart=Never -- bin/kafka-console-consumer.sh --bootstrap-server cluster-name-
kafka-bootstrap:9092 --topic my-topic --from-beginning

ul

. Confirm that you see the incoming messages in the consumer console.

13.2. CONFIGURING LISTENERS TO CONNECT TO KAFKA BROKERS

Use listeners for client connection to Kafka brokers. AMQ Streams provides a generic
GenericKafkaListener schema with properties to configure listeners through the Kafka resource. The
GenericKafkaListener provides a flexible approach to listener configuration. You can specify
properties to configure internal listeners for connecting within the OpenShift cluster or external
listeners for connecting outside the OpenShift cluster.

Specify a connection type to expose Kafka in the listener configuration. The type chosen depends on
your requirements, and your environment and infrastructure. The following listener types are supported:

Internal listeners

e internal to connect within the same OpenShift cluster

e cluster-ip to expose Kafka using per-broker ClusterlP services

213

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

External listeners
® nodeport to use ports on OpenShift nodes
o |oadbalancer to use loadbalancer services

® ingress to use Kubernetes Ingress and the Ingress NGINX Controller for Kubernetes
(Kubernetes only)

® route to use OpenShift Route and the default HAProxy router (OpenShift only)

IMPORTANT

Do not use ingress on OpenShift, use the route type instead. The Ingress NGINX
Controller is only intended for use on Kubernetes. The route type is only supported on
OpenShift.

An internal type listener configuration uses a headless service and the DNS names given to the broker
pods. You might want to join your OpenShift network to an outside network. In which case, you can
configure an internal type listener (using the useServiceDnsDomain property) so that the OpenShift
service DNS domain (typically .cluster.local) is not used. You can also configure a cluster-ip type of
listener that exposes a Kafka cluster based on per-broker ClusterlP services. This is a useful option
when you can’t route through the headless service or you wish to incorporate a custom access
mechanism. For example, you might use this listener when building your own type of external listener for
a specific Ingress controller or the OpenShift Gateway API.

External listeners handle access to a Kafka cluster from networks that require different authentication
mechanisms. You can configure external listeners for client access outside an OpenShift environment
using a specified connection mechanism, such as a loadbalancer or route. For example, loadbalancers
might not be suitable for certain infrastructure, such as bare metal, where node ports provide a better
option.

Each listener is defined as an array in the Kafka resource.

Example listener configuration

apiVersion: kafka.strimzi.io/vibeta2
kind: Kafka
metadata:
name: my-cluster
spec:
kafka:
#...
listeners:
- name: plain
port: 9092
type: internal
tls: false
configuration:
useServiceDnsDomain: true
- name: tls
port: 9093
type: internal
tls: true
authentication:

214

https://github.com/kubernetes/ingress-nginx

CHAPTER13. SETTING UP CLIENT ACCESS TO A KAFKA CLUSTER

type: tls
- name: external
port: 9094
type: route
tls: true
configuration:
brokerCertChainAndKey:
secretName: my-secret
certificate: my-certificate.crt
key: my-key.key
#...

You can configure as many listeners as required, as long as their names and ports are unique. You can
also configure listeners for secure connection using authentication.

If you want to know more about the pros and cons of each connection type, refer to Accessing Apache
Kafka in Strimzi.

NOTE

If you scale your Kafka cluster while using external listeners, it might trigger a rolling
update of all Kafka brokers. This depends on the configuration.

Additional resources

o GenericKafkalListener schema reference

13.3. SETTING UP CLIENT ACCESS TO A KAFKA CLUSTER USING
LISTENERS

Using the address of the Kafka cluster, you can provide access to a client in the same OpenShift cluster;
or provide external access to a client on a different OpenShift namespace or outside OpenShift entirely.
This procedure shows how to configure client access to a Kafka cluster from outside OpenShift or from
another OpenShift cluster.

A Kafka listener provides access to the Kafka cluster. Client access is secured using the following
configuration:

1. An external listener is configured for the Kafka cluster, with TLS encryption and mTLS
authentication, and Kafka simple authorization enabled.

2. A KafkaUser is created for the client, with mTLS authentication, and Access Control Lists
(ACLs) defined for simple authorization.

You can configure your listener to use mutual tls, scram-sha-512, or oauth authentication. mTLS
always uses encryption, but encryption is also recommended when using SCRAM-SHA-512 and OAuth

2.0 authentication.

You can configure simple, oauth, opa, or custom authorization for Kafka brokers. When enabled,
authorization is applied to all enabled listeners.

When you configure the KafkaUser authentication and authorization mechanisms, ensure they match
the equivalent Kafka configuration:

o KafkaUser.spec.authentication matches Kafka.spec.kafka.listeners[*].authentication

215

https://developers.redhat.com/blog/2019/06/06/accessing-apache-kafka-in-strimzi-part-1-introduction/
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index#type-GenericKafkaListener-reference

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

e KafkaUser.spec.authorization matches Kafka.spec.kafka.authorization

You should have at least one listener supporting the authentication you want to use for the KafkaUser.

NOTE

Authentication between Kafka users and Kafka brokers depends on the authentication
settings for each. For example, it is not possible to authenticate a user with mTLS if it is
not also enabled in the Kafka configuration.

AMQ Streams operators automate the configuration process and create the certificates required for
authentication:

® The Cluster Operator creates the listeners and sets up the cluster and client certificate
authority (CA) certificates to enable authentication with the Kafka cluster.

® The User Operator creates the user representing the client and the security credentials used for
client authentication, based on the chosen authentication type.

You add the certificates to your client configuration.

In this procedure, the CA certificates generated by the Cluster Operator are used, but you can replace
them by installing your own certificates. You can also configure your listener to use a Kafka listener
certificate managed by an external CA (certificate authority).

Certificates are available in PEM (.crt) and PKCS #12 (.p12) formats. This procedure uses PEM
certificates. Use PEM certificates with clients that use certificates in X.509 format.

NOTE

Forinternal clients in the same OpenShift cluster and namespace, you can mount the
cluster CA certificate in the pod specification. For more information, see Configuring
internal clients to trust the cluster CA.

Prerequisites
® The Kafka cluster is available for connection by a client running outside the OpenShift cluster

® The Cluster Operator and User Operator are running in the cluster

Procedure
1. Configure the Kafka cluster with a Kafka listener.
e Define the authentication required to access the Kafka broker through the listener.

® Enable authorization on the Kafka broker.

Example listener configuration

apiVersion: kafka.strimzi.io/vibeta2
kind: Kafka
metadata:

name: my-cluster

namespace: myproject

216

o

o0 &9 9 ® o

CHAPTER13. SETTING UP CLIENT ACCESS TO A KAFKA CLUSTER

spec:

kafka:

#...
listeners: ﬂ
- name: external g
port: 9094 €)
type: <listener_type> ﬂ
tls: true
authentication:
type: tls G
configuration:
#...
authorization: 9
type: simple
superUsers:
- super-user-name Q
#...

Configuration options for enabling external listeners are described in the Generic
Kafka listener schema reference.

Name to identify the listener. Must be unique within the Kafka cluster.

Port number used by the listener inside Kafka. The port number has to be unique within
a given Kafka cluster. Allowed port numbers are 9092 and higher with the exception of
ports 9404 and 9999, which are already used for Prometheus and JMX. Depending on
the listener type, the port number might not be the same as the port number that
connects Kafka clients.

External listener type specified as route (OpenShift only), loadbalancer, nodeport or
ingress (Kubernetes only). An internal listener is specified as internal or cluster-ip.

Required. TLS encryption on the listener. For route and ingress type listeners it must
be set to true. For mTLS authentication, also use the authentication property.

Client authentication mechanism on the listener. For server and client authentication
using mTLS, you specify tls: true and authentication.type: tls.

(Optional) Depending on the requirements of the listener type, you can specify
additional listener configuration.

Authorization specified as simple, which uses the AclAuthorizer Kafka plugin.

(Optional) Super users can access all brokers regardless of any access restrictions
defined in ACLs.

217

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index#type-GenericKafkaListener-reference
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index#type-GenericKafkaListenerConfiguration-reference

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

' WARNING
A An OpenShift Route address comprises the name of the Kafka cluster,

the name of the listener, and the name of the namespace it is created
in. For example, my-cluster-kafka-listeneri-bootstrap-myproject
(CLUSTER-NAME-kaftka-LISTENER-NAME-bootstrap-NAMESPACE).
If you are using a route listener type, be careful that the whole length of
the address does not exceed a maximum limit of 63 characters.

2. Create or update the Kafka resource.
I oc apply -f <kafka_configuration_file>

The Kafka cluster is configured with a Kafka broker listener using mTLS authentication.
A service is created for each Kafka broker pod.
A service is created to serve as the bootstrap address for connection to the Kafka cluster.

A service is also created as the external bootstrap address for external connection to the Kafka
cluster using nodeport listeners.

The cluster CA certificate to verify the identity of the kafka brokers is also created in the secret
<cluster_name>-cluster-ca-cert.

NOTE

If you scale your Kafka cluster while using external listeners, it might trigger a
rolling update of all Kafka brokers. This depends on the configuration.

3. Retrieve the bootstrap address you can use to access the Kafka cluster from the status of the
Kafka resource.

oc get kafka <kafka_cluster_name> -o=jsonpath='{.status.listeners[?
(@.name=="<listener_name>")].bootstrapServers}{"\n"}'

For example:

oc get kafka my-cluster -o=jsonpath='{.status.listeners[?
(@.name=="external")].bootstrapServers}{"\n"}'

Use the bootstrap address in your Kafka client to connect to the Kafka cluster.

4. Create or modify a user representing the client that requires access to the Kafka cluster.

® Specify the same authentication type as the Kafka listener.
® Specify the authorization ACLs for simple authorization.

Example user configuration

218

CHAPTER13. SETTING UP CLIENT ACCESS TO A KAFKA CLUSTER

apiVersion: kafka.strimzi.io/vibeta2
kind: KafkaUser
metadata:
name: my-user
labels:
strimzi.io/cluster: my-cluster ﬂ
spec:
authentication:
type: tls 9
authorization:
type: simple
acls:
- resource:
type: topic
name: my-topic
patternType: literal
operations:
- Describe
- Read
- resource:
type: group
name: my-group
patternType: literal
operations:
- Read

The label must match the label of the Kafka cluster.

Authentication specified as mutual tls.

09

Simple authorization requires an accompanying list of ACL rules to apply to the user.
The rules define the operations allowed on Kafka resources based on the username
(my-user).

5. Create or modify the KafkaUser resource.
I oc apply -f USER-CONFIG-FILE

The user is created, as well as a secret with the same name as the KafkaUser resource. The
secret contains a public and private key for mTLS authentication.

Example secret

apiVersion: vi
kind: Secret
metadata:
name: my-user
labels:
strimzi.io/kind: KafkaUser
strimzi.io/cluster: my-cluster
type: Opaque
data:
ca.crt: <public_key> # Public key of the clients CA
user.crt: <user_certificate> # Public key of the user

219

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

220

1.

user.key: <user_private_key> # Private key of the user
user.p12: <store> # PKCS #12 store for user certificates and keys
user.password: <password_for_store> # Protects the PKCS #12 store

Extract the cluster CA certificate from the <cluster_name>-cluster-ca-cert secret of the Kafka
cluster.

I oc get secret <cluster_name>-cluster-ca-cert -o jsonpath='{.data.ca\.crt}' | base64 -d > ca.crt
Extract the user CA certificate from the <user_name> secret.

I oc get secret <user_name> -o jsonpath='{.data.user\.crt}' | base64 -d > user.crt

Extract the private key of the user from the <user_names secret.

I oc get secret <user_name> -o jsonpath="{.data.user\.key}' | base64 -d > user.key

Configure your client with the bootstrap address hostname and port for connecting to the Kafka
cluster:

I props.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "<hostname>:<port>");

. Configure your client with the truststore credentials to verify the identity of the Kafka cluster.

Specify the public cluster CA certificate.

Example truststore configuration

props.put(CommonClientConfigs.SECURITY_PROTOCOL_CONFIG, "SSL");
props.put(SslConfigs.SSL_TRUSTSTORE_TYPE_CONFIG, "PEM");
props.put(SslConfigs.SSL_TRUSTSTORE_CERTIFICATES_CONFIG,
"<ca.crt_file_content>");

—_—

SSL is the specified security protocol for mTLS authentication. Specify SASL_SSL for SCRAM-
SHA-512 authentication over TLS. PEM is the file format of the truststore.

Configure your client with the keystore credentials to verify the user when connecting to the
Kafka cluster.
Specify the public certificate and private key.

Example keystore configuration

props.put(CommonClientConfigs.SECURITY_PROTOCOL_CONFIG, "SSL");
props.put(SslConfigs.SSL_KEYSTORE_TYPE_CONFIG, "PEM");
props.put(SslConfigs.SSL_KEYSTORE_CERTIFICATE_CHAIN_CONFIG,
"<user.crt_file_content>");

props.put(SslConfigs.SSL_KEYSTORE_KEY_CONFIG, "<user.key _file_content>");

Add the keystore certificate and the private key directly to the configuration. Add as a single-
line format. Between the BEGIN CERTIFICATE and END CERTIFICATE delimiters, start with a
newline character (\n). End each line from the original certificate with \n too.

Example keystore configuration

CHAPTER13. SETTING UP CLIENT ACCESS TO A KAFKA CLUSTER

props.put(SslConfigs.SSL_KEYSTORE_CERTIFICATE_CHAIN_CONFIG, "-----BEGIN
CERTIFICATE-----

\n<user_certificate _content _line_1>\n<user_certificate _content_line_n>\n-----END
CERTIFICATE---");

props.put(SslConfigs.SSL_KEYSTORE_KEY_CONFIG, "----BEGIN PRIVATE KEY-----
\n<user_key content line_1>\n<user_key content line_n>\n-----END PRIVATE KEY-----");

Additional resources

® Section 14.1.1, “Listener authentication”
® Section 14.1.2, “Kafka authorization”

e |f you are using an authorization server, you can use token-based authentication and
authorization:

o Section 14.4, “Using OAuth 2.0 token-based authentication”

o Section 14.5, "Using OAuth 2.0 token-based authorization”

13.4. ACCESSING KAFKA USING NODE PORTS

Use node ports to access an AMQ Streams Kafka cluster from an external client outside the OpenShift
cluster.

To connect to a broker, you specify a hostname and port number for the Kafka bootstrap address, as well
as the certificate used for TLS encryption.

The procedure shows basic nodeport listener configuration. You can use listener properties to enable
TLS encryption (tls) and specify a client authentication mechanism (authentication). Add additional
configuration using configuration properties. For example, you can use the following configuration
properties with nodeport listeners:

preferredNodePortAddressType

Specifies the first address type that's checked as the node address.
externalTrafficPolicy

Specifies whether the service routes external traffic to node-local or cluster-wide endpoints.
nodePort

Overrides the assigned node port numbers for the bootstrap and broker services.

For more information on listener configuration, see the GenericKafkaListener schema reference.

Prerequisites

® Arunning Cluster Operator

In this procedure, the Kafka cluster name is my-cluster. The name of the listener is external.

Procedure

1. Configure a Kafka resource with an external listener set to the nodeport type.
For example:

221

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index#type-GenericKafkaListener-reference

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

222

apiVersion: kafka.strimzi.io/vibeta2
kind: Kafka
metadata:
labels:
app: my-cluster
name: my-cluster
namespace: myproject
spec:
kafka:
#...
listeners:

- name: external
port: 9094
type: nodeport
tls: true
authentication:

type: tls
#...
#...
zookeeper:
#...

2. Create or update the resource.
I oc apply -f <kafka_configuration_file>

A cluster CA certificate to verify the identity of the kafka brokers is created in the secret my-
cluster-cluster-ca-cert.

NodePort type services are created for each Kafka broker, as well as an external bootstrap
service.

Node port services created for the bootstrap and brokers

NAME TYPE CLUSTER-IP PORT(S)
my-cluster-kafka-external-0 NodePort 172.30.55.13 9094:31789/TCP
my-cluster-kafka-external-1 NodePort 172.30.250.248 9094:30028/TCP

my-cluster-kafka-external-2 NodePort 172.30.115.81 9094:32650/TCP
my-cluster-kafka-external-bootstrap NodePort 172.30.30.23 9094:32650/TCP

The bootstrap address used for client connection is propagated to the status of the Kafka
resource.

Example status for the bootstrap address

status:
clusterld: Y_RJQDGKRXmNF7fEcWIdJQ
conditions:
- lastTransitionTime: '2023-01-31T14:59:37.113630Z"
status: "True'
type: Ready
listeners:
#...
- addresses:

CHAPTER13. SETTING UP CLIENT ACCESS TO A KAFKA CLUSTER

- host: ip-10-0-224-199.us-west-2.compute.internal
port: 32650
bootstrapServers: 'ip-10-0-224-199.us-west-2.compute.internal:32650'
certificates:

name: external

type: external
observedGeneration: 2
#...

3. Retrieve the bootstrap address you can use to access the Kafka cluster from the status of the
Kafka resource.

oc get kafka my-cluster -o=jsonpath='{.status.listeners[?
(@.name=="external")].bootstrapServers}{"\n"}'

ip-10-0-224-199.us-west-2.compute.internal:32650

4. Extract the cluster CA certificate.
I oc get secret my-cluster-cluster-ca-cert -o jsonpath='{.data.ca\.crt}' | base64 -d > ca.crt

5. Configure your client to connect to the brokers.

a. Specify the bootstrap host and port in your Kafka client as the bootstrap address to connect
to the Kafka cluster. For example, ip-10-0-224-199.us-west-2.compute.internal:32650.

b. Add the extracted certificate to the truststore of your Kafka client to configure a TLS
connection.

If you enabled a client authentication mechanism, you will also need to configure it in your
client.

NOTE
If you are using your own listener certificates, check whether you need to add the CA

certificate to the client’s truststore configuration. If it is a public (external) CA, you usually
won't need to add it.

13.5. ACCESSING KAFKA USING LOADBALANCERS

Use loadbalancers to access an AMQ Streams Kafka cluster from an external client outside the
OpenShift cluster.

To connect to a broker, you specify a hostname and port number for the Kafka bootstrap address, as well
as the certificate used for TLS encryption.

The procedure shows basic loadbalancer listener configuration. You can use listener properties to
enable TLS encryption (tls) and specify a client authentication mechanism (authentication). Add
additional configuration using configuration properties. For example, you can use the following
configuration properties with loadbalancer listeners:

loadBalancerSourceRanges

223

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

Restricts traffic to a specified list of CIDR (Classless Inter-Domain Routing) ranges.
externalTrafficPolicy

Specifies whether the service routes external traffic to node-local or cluster-wide endpoints.
loadBalancerlP

Requests a specific IP address when creating a loadbalancer.

For more information on listener configuration, see the GenericKafkaListener schema reference.

Prerequisites

® Arunning Cluster Operator

In this procedure, the Kafka cluster name is my-cluster. The name of the listener is external.

Procedure

1. Configure a Kafka resource with an external listener set to the loadbalancer type.
For example:

apiVersion: kafka.strimzi.io/vibeta2
kind: Kafka
metadata:
labels:
app: my-cluster
name: my-cluster
namespace: myproject
spec:
kafka:
#...
listeners:
- name: external
port: 9095
type: loadbalancer
tls: true
authentication:
type: tls
#...
#...
zookeeper:
#...

2. Create or update the resource.
I oc apply -f <kafka_configuration_file>

A cluster CA certificate to verify the identity of the kafka brokers is also created in the secret
my-cluster-cluster-ca-cert.

loadbalancer type services and loadbalancers are created for each Kafka broker, as well as an
external bootstrap service.

Loadbalancer services and loadbalancers created for the bootstraps and brokers

224

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index#type-GenericKafkaListener-reference

CHAPTER13. SETTING UP CLIENT ACCESS TO A KAFKA CLUSTER

NAME TYPE CLUSTER-IP PORT(S)
my-cluster-kafka-external-0 LoadBalancer 172.30.204.234 9095:30011/TCP
my-cluster-kafka-external-1 LoadBalancer 172.30.164.89 9095:32544/TCP

my-cluster-kafka-external-2 LoadBalancer 172.30.73.151 9095:32504/TCP
my-cluster-kafka-external-bootstrap LoadBalancer 172.30.30.228 9095:30371/TCP

NAME EXTERNAL-IP (loadbalancer)
my-cluster-kafka-external-0 aB8a519e464b924000b6c0f0a05e19f0d-1132975133.us-
west-2.elb.amazonaws.com

my-cluster-kafka-external-1 abbadc22b556343afb0db5ea05d07347-611832211.us-
west-2.elb.amazonaws.com
my-cluster-kafka-external-2 a9173e8ccb1914778aeb17eca98713c0-777597560.us-

west-2.elb.amazonaws.com
my-cluster-kafka-external-bootstrap a8d4a6fb363bf447fb6e475fc3040176-36312313.us-
west-2.elb.amazonaws.com

The bootstrap address used for client connection is propagated to the status of the Kafka
resource.

Example status for the bootstrap address

status:
clusterld: Y_RJQDGKRXmNF7fEcWIdJQ
conditions:
- lastTransitionTime: '2023-01-31T714:59:37.113630Z"
status: "True'
type: Ready
listeners:
#...
- addresses:
- host: >-
a8d4a6fb363bf447fb6e475fc3040176-36312313.us-west-2.elb.amazonaws.com
port: 9095
bootstrapServers: >-
a8d4a6fb363bf447fb6e475fc3040176-36312313.us-west-2.elb.amazonaws.com:9095
certificates:

name: external

type: external
observedGeneration: 2
#...

The DNS addresses used for client connection are propagated to the status of each
loadbalancer service.

Example status for the bootstrap loadbalancer

status:
loadBalancer:
ingress:

225

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

- hostname: >-
a8d4a6fb363bf447fb6e475fc3040176-36312313.us-west-2.elb.amazonaws.com
#...

3. Retrieve the bootstrap address you can use to access the Kafka cluster from the status of the
Kafka resource.

oc get kaftka my-cluster -o=jsonpath='{.status.listeners[?
(@.name=="external")].bootstrapServers}{"\n"}'

a8d4a6fb363bf447fb6e475fc3040176-36312313.us-west-2.elb.amazonaws.com:9095

4. Extract the cluster CA certificate.

I oc get secret my-cluster-cluster-ca-cert -o jsonpath='{.data.ca\.crt}' | base64 -d > ca.crt

5. Configure your client to connect to the brokers.

a. Specify the bootstrap host and port in your Kafka client as the bootstrap address to connect
to the Kafka cluster. For example, a8d4a6fb363bf447fb6e475fc3040176-36312313.us-
west-2.elb.amazonaws.com:9095.

b. Add the extracted certificate to the truststore of your Kafka client to configure a TLS
connection.
If you enabled a client authentication mechanism, you will also need to configure it in your
client.

NOTE

If you are using your own listener certificates, check whether you need to add the CA
certificate to the client’s truststore configuration. If it is a public (external) CA, you usually
won't need to add it.

13.6. ACCESSING KAFKA USING OPENSHIFT ROUTES

Use OpenShift routes to access an AMQ Streams Kafka cluster from clients outside the OpenShift
cluster.

To be able to use routes, add configuration for a route type listener in the Kafka custom resource.
When applied, the configuration creates a dedicated route and service for an external bootstrap and
each broker in the cluster. Clients connect to the bootstrap route, which routes them through the
bootstrap service to connect to a broker. Per-broker connections are then established using DNS
names, which route traffic from the client to the broker through the broker-specific routes and services.

To connect to a broker, you specify a hostname for the route bootstrap address, as well as the certificate
used for TLS encryption. For access using routes, the port is always 443.

226

CHAPTER13. SETTING UP CLIENT ACCESS TO A KAFKA CLUSTER

WARNING
A An OpenShift route address comprises the name of the Kafka cluster, the name of

the listener, and the name of the project it is created in. For example, my-cluster-
kafka-external-bootstrap-myproject (<cluster_name>-kafka-<listener_name>-
bootstrap-<namespace>). Be careful that the whole length of the address does not
exceed a maximum limit of 63 characters.

The procedure shows basic listener configuration. TLS encryption (tls) must be enabled. You can also
specify a client authentication mechanism (authentication). Add additional configuration using
configuration properties. For example, you can use the host configuration property with route listeners
to specify the hostnames used by the bootstrap and per-broker services.

For more information on listener configuration, see the GenericKafkaListener schema reference.

TLS passthrough

TLS passthrough is enabled for routes created by AMQ Streams. Kafka uses a binary protocol over TCP,
but routes are designed to work with a HTTP protocol. To be able to route TCP traffic through routes,
AMQ Streams uses TLS passthrough with Server Name Indication (SNI).

SNI helps with identifying and passing connection to Kafka brokers. In passthrough mode, TLS
encryption is always used. Because the connection passes to the brokers, the listeners use TLS
certificates signed by the internal cluster CA and not the ingress certificates. To configure listeners to
use your own listener certificates, use the brokerCertChainAndKey property.

Prerequisites

® Arunning Cluster Operator

In this procedure, the Kafka cluster name is my-cluster. The name of the listener is external.

Procedure

1. Configure a Kafka resource with an external listener set to the route type.
For example:

apiVersion: kafka.strimzi.io/vibeta2
kind: Kafka
metadata:
labels:
app: my-cluster
name: my-cluster
namespace: myproject
spec:
kafka:
#...
listeners:
- name: external
port: 9094
type: route

227

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index#type-GenericKafkaListener-reference

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

228

tls: true 0

authentication:
type: tls
#...
#...
zookeeper:
#...

ﬂ For route type listeners, TLS encryption must be enabled (true).

2. Create or update the resource.

I oc apply -f <kafka_configuration_file>

A cluster CA certificate to verify the identity of the kafka brokers is created in the secret my-
cluster-cluster-ca-cert.

ClusterlP type services are created for each Kafka broker, as well as an external bootstrap
service.

Aroute is also created for each service, with a DNS address (host/port) to expose them using
the default OpenShift HAProxy router.

The routes are preconfigured with TLS passthrough.

Routes created for the bootstraps and brokers

NAME HOST/PORT SERVICES
PORT TERMINATION

my-cluster-kafka-external-0 my-cluster-kafka-external-0-my-project.router.com
my-cluster-kafka-external-0 9094 passthrough

my-cluster-kafka-external-1 my-cluster-kafka-external-1-my-project.router.com
my-cluster-kafka-external-1 9094 passthrough

my-cluster-kafka-external-2 my-cluster-kafka-external-2-my-project.router.com
my-cluster-kafka-external-2 9094 passthrough

my-cluster-kafka-external-bootstrap my-cluster-kafka-external-bootstrap-my-
project.router.com my-cluster-kafka-external-bootstrap 9094 passthrough

The DNS addresses used for client connection are propagated to the status of each route.

Example status for the bootstrap route

status:
ingress:
- host: >-
my-cluster-kafka-external-bootstrap-my-project.router.com
#...

3. Use a target broker to check the client-server TLS connection on port 443 using the OpenSSL

s_client.

openssl s_client -connect my-cluster-kafka-external-0-my-project.router.com:443 -
servername my-cluster-kafka-external-0-my-project.router.com -showcerts

CHAPTER13. SETTING UP CLIENT ACCESS TO A KAFKA CLUSTER

The server name is the SNI for passing the connection to the broker.
If the connection is successful, the certificates for the broker are returned.

Certificates for the broker

Certificate chain
0 s:0 =io.strimzi, CN = my-cluster-kafka
i:O = io.strimzi, CN = cluster-ca vO

4. Retrieve the address of the bootstrap service from the status of the Kafka resource.

oc get kafka my-cluster -o=jsonpath='{.status.listeners[?
(@.name=="external")].bootstrapServers}{"\n"}'

my-cluster-kafka-external-bootstrap-my-project.router.com:443

The address comprises the cluster name, the listener name, the project name and the domain of
the router (router.com in this example).

5. Extract the cluster CA certificate.

I oc get secret my-cluster-cluster-ca-cert -o jsonpath='{.data.ca\.crt}' | base64 -d > ca.crt

6. Configure your client to connect to the brokers.

a. Specify the address for the bootstrap service and port 443 in your Kafka client as the
bootstrap address to connect to the Kafka cluster.

b. Add the extracted certificate to the truststore of your Kafka client to configure a TLS
connection.

If you enabled a client authentication mechanism, you will also need to configure it in your
client.

NOTE

If you are using your own listener certificates, check whether you need to add the CA
certificate to the client’s truststore configuration. If it is a public (external) CA, you usually
won't need to add it.

229

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

CHAPTER 14. MANAGING SECURE ACCESS TO KAFKA

Secure your Kafka cluster by managing the access a client has to Kafka brokers. Specify configuration
options to secure Kafka brokers and clients

A secure connection between Kafka brokers and clients can encompass the following:

® Encryption for data exchange

® Authentication to prove identity

® Authorization to allow or decline actions executed by users
The authentication and authorization mechanisms specified for a client must match those specified for
the Kafka brokers. AMQ Streams operators automate the configuration process and create the

certificates required for authentication. The Cluster Operator automatically sets up TLS certificates for
data encryption and authentication within your cluster.

14.1. SECURITY OPTIONS FOR KAFKA

Use the Kafka resource to configure the mechanisms used for Kafka authentication and authorization.

14.1.1. Listener authentication

Configure client authentication for Kafka brokers when creating listeners. Specify the listener
authentication type using the Kafka.spec.kafka.listeners.authentication property in the Kafka
resource.

For clients inside the OpenShift cluster, you can create plain (without encryption) or tls internal
listeners. The internal listener type use a headless service and the DNS names given to the broker pods.
As an alternative to the headless service, you can also create a cluster-ip type of internal listener to
expose Kafka using per-broker ClusterlP services. For clients outside the OpenShift cluster, you create
external listeners and specify a connection mechanism, which can be nodeport, loadbalancer, ingress
(Kubernetes only), or route (OpenShift only).

For more information on the configuration options for connecting an external client, see Chapter 13,
Setting up client access to a Kafka cluster .

Supported authentication options:
1. mTLS authentication (only on the listeners with TLS enabled encryption)
2. SCRAM-SHA-512 authentication
3. OAuth 2.0 token-based authentication
4. Custom authentication

The authentication option you choose depends on how you wish to authenticate client access to Kafka
brokers.

230

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index#type-KafkaListenerAuthenticationCustom-reference

CHAPTER 14. MANAGING SECURE ACCESS TO KAFKA

NOTE

Try exploring the standard authentication options before using custom authentication.
Custom authentication allows for any type of kafka-supported authentication. It can
provide more flexibility, but also adds complexity.

Figure 14.1. Kafka listener authentication options

Kafka

Internal listener External listener
Internal Route (OpenShift)
Cluster IP Node port
Ingress
Loadbalancer

'

Authentication options
TLS
SCRAM-SHA-512
OAuth

Custom

The listener authentication property is used to specify an authentication mechanism specific to that
listener.

If no authentication property is specified then the listener does not authenticate clients which connect
through that listener. The listener will accept all connections without authentication.

Authentication must be configured when using the User Operator to manage KafkaUsers.
The following example shows:

® A plain listener configured for SCRAM-SHA-512 authentication

® Atls listener with mTLS authentication

o An external listener with mTLS authentication

231

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

Each listener is configured with a unique name and port within a Kafka cluster.

IMPORTANT

When configuring listeners for client access to brokers, you can use port 9092 or higher
(9093, 9094, and so on), but with a few exceptions. The listeners cannot be configured
to use the ports reserved for interbroker communication (9090 and 9091), Prometheus
metrics (9404), and JMX (Java Management Extensions) monitoring (9999).

Example listener authentication configuration

apiVersion: kafka.strimzi.io/vibeta2
kind: Kafka
metadata:
name: my-cluster
namespace: myproject
spec:
kafka:
#...
listeners:
- name: plain
port: 9092
type: internal
tls: true
authentication:
type: scram-sha-512
- name: tls
port: 9093
type: internal
tls: true
authentication:
type: tls
- name: external
port: 9094
type: loadbalancer
tls: true
authentication:
type: tls

14.1.1.1. mTLS authentication

mTLS authentication is always used for the communication between Kafka brokers and ZooKeeper
pods.

AMQ Streams can configure Kafka to use TLS (Transport Layer Security) to provide encrypted
communication between Kafka brokers and clients either with or without mutual authentication. For
mutual, or two-way, authentication, both the server and the client present certificates. When you
configure mTLS authentication, the broker authenticates the client (client authentication) and the client
authenticates the broker (server authentication).

mTLS listener configuration in the Kafka resource requires the following:

e tls: true to specify TLS encryption and server authentication

232

CHAPTER 14. MANAGING SECURE ACCESS TO KAFKA

e authentication.type: tls to specify the client authentication

When a Kafka cluster is created by the Cluster Operator, it creates a new secret with the name
<cluster_names>-cluster-ca-cert. The secret contains a CA certificate. The CA certificate isin PEM and
PKCS #12 format. To verify a Kafka cluster, add the CA certificate to the truststore in your client
configuration. To verify a client, add a user certificate and key to the keystore in your client
configuration. For more information on configuring a client for mTLS, see Section 14.2.2, “"User
authentication”.

NOTE

TLS authentication is more commonly one-way, with one party authenticating the identity
of another. For example, when HTTPS is used between a web browser and a web server,
the browser obtains proof of the identity of the web server.

14.1.1.2. SCRAM-SHA-512 authentication

SCRAM (Salted Challenge Response Authentication Mechanism) is an authentication protocol that can
establish mutual authentication using passwords. AMQ Streams can configure Kafka to use SASL
(Simple Authentication and Security Layer) SCRAM-SHA-512 to provide authentication on both
unencrypted and encrypted client connections.

When SCRAM-SHA-512 authentication is used with a TLS connection, the TLS protocol provides the
encryption, but is not used for authentication.

The following properties of SCRAM make it safe to use SCRAM-SHA-512 even on unencrypted
connections:

® The passwords are not sent in the clear over the communication channel. Instead the client and
the server are each challenged by the other to offer proof that they know the password of the
authenticating user.

® The server and client each generate a new challenge for each authentication exchange. This
means that the exchange is resilient against replay attacks.

When KafkaUser.spec.authentication.type is configured with scram-sha-512 the User Operator will
generate a random 12-character password consisting of upper and lowercase ASCII letters and numbers.

14.1.1.3. Network policies

By default, AMQ Streams automatically creates a NetworkPolicy resource for every listener that is
enabled on a Kafka broker. This NetworkPolicy allows applications to connect to listeners in all
namespaces. Use network policies as part of the listener configuration.

If you want to restrict access to a listener at the network level to only selected applications or
namespaces, use the networkPolicyPeers property. Each listener can have a different
networkPolicyPeers configuration. For more information on network policy peers, refer to the
NetworkPolicyPeer API reference.

If you want to use custom network policies, you can set the

STRIMZI_NETWORK_POLICY_GENERATION environment variable to false in the Cluster Operator
configuration. For more information, see Section 8.5, “Configuring the Cluster Operator”.

233

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index#configuration-listener-network-policy-reference
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#networkpolicypeer-v1-networking-k8s-io

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

NOTE

Your configuration of OpenShift must support ingress NetworkPolicies in order to use
network policies in AMQ Streams.

14.1.1.4. Providing listener certificates

You can provide your own server certificates, called Kafka listener certificates, for TLS listeners or
external listeners which have TLS encryption enabled. For more information, see Section 14.3.4,
“Providing your own Kafka listener certificates for TLS encryption”.

Additional resources

o GenericKafkalListener schema reference

14.1.2. Kafka authorization

Configure authorization for Kafka brokers using the Kafka.spec.kafka.authorization property in the
Kafka resource. If the authorization property is missing, no authorization is enabled and clients have no
restrictions. When enabled, authorization is applied to all enabled listeners. The authorization method is
defined in the type field.
Supported authorization options:

® Simple authorization

® OAuth 2.0 authorization (if you are using OAuth 2.0 token based authentication)

® Open Policy Agent (OPA) authorization

® Custom authorization

Figure 14.2. Kafka cluster authorization options

Kafka

Authorization

v v

Simple authorization OAuth authorization OPA authorization Custom authorization

14.1.2.1. Super users

Super users can access all resources in your Kafka cluster regardless of any access restrictions, and are
supported by all authorization mechanisms.

To designate super users for a Kafka cluster, add a list of user principals to the superUsers property. If a
user uses mTLS authentication, the username is the common name from the TLS certificate subject

234

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index#type-GenericKafkaListener-reference
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index#type-KafkaAuthorizationSimple-reference
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index#type-KafkaAuthorizationOpa-reference
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index#type-KafkaAuthorizationCustom-reference

CHAPTER 14. MANAGING SECURE ACCESS TO KAFKA

prefixed with CN=. If you are not using the User Operator and using your own certificates for mTLS, the
username is the full certificate subject. A full certificate subject can have the following fields:
CN=user,OU=my_ou,0=my_org,L=my_location,ST=my_state,C=my_country_code. Omit any fields
that are not present.

An example configuration with super users

apiVersion: kafka.strimzi.io/vibeta2
kind: Kafka
metadata:
name: my-cluster
namespace: myproject
spec:
kafka:
#...
authorization:
type: simple
superUsers:
- CN=client_1
- user_2
- CN=client_3
- CN=client_4,0U=my_ou,O=my_org,L=my_location,ST=my_state,C=US
- CN=client_5,0U=my_ou,0O=my_org,C=GB
- CN=client_6,0=my_org
#...

14.2. SECURITY OPTIONS FOR KAFKA CLIENTS

Use the KafkaUser resource to configure the authentication mechanism, authorization mechanism, and
access rights for Kafka clients. In terms of configuring security, clients are represented as users.

You can authenticate and authorize user access to Kafka brokers. Authentication permits access, and
authorization constrains the access to permissible actions.

You can also create super users that have unconstrained access to Kafka brokers.

The authentication and authorization mechanisms must match the specification for the listener used to
access the Kafka brokers.

For more information on configuring a KafkaUser resource to access Kafka brokers securely, see
Section 13.3, “Setting up client access to a Kafka cluster using listeners” .

14.2.1. Identifying a Kafka cluster for user handling

A KafkaUser resource includes a label that defines the appropriate name of the Kafka cluster (derived
from the name of the Kafka resource) to which it belongs.

apiVersion: kafka.strimzi.io/vibeta2
kind: KaftkaUser
metadata:
name: my-user
labels:
strimzi.io/cluster: my-cluster

235

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

The label is used by the User Operator to identify the KafkaUser resource and create a new user, and
also in subsequent handling of the user.

If the label does not match the Kafka cluster, the User Operator cannot identify the KafkaUser and the
user is not created.

If the status of the KafkaUser resource remains empty, check your label.

14.2.2. User authentication

Use the KafkaUser custom resource to configure authentication credentials for users (clients) that
require access to a Kafka cluster. Configure the credentials using the authentication property in
KafkaUser.spec. By specifying a type, you control what credentials are generated.

Supported authentication types:
e tls for mTLS authentication
e tls-external for mTLS authentication using external certificates
e scram-sha-512 for SCRAM-SHA-512 authentication

If tls or scram-sha-512 is specified, the User Operator creates authentication credentials when it
creates the user. If tls-external is specified, the user still uses mTLS, but no authentication credentials
are created. Use this option when you're providing your own certificates. When no authentication type is
specified, the User Operator does not create the user or its credentials.

You can use tls-external to authenticate with mTLS using a certificate issued outside the User
Operator. The User Operator does not generate a TLS certificate or a secret. You can still manage ACL
rules and quotas through the User Operator in the same way as when you're using the tls mechanism.
This means that you use the CN=USER-NAME format when specifying ACL rules and quotas. USER-
NAME is the common name given in a TLS certificate.

14.2.2.1. mTLS authentication

To use mTLS authentication, you set the type field in the KafkaUser resource to tls.

Example user with mTLS authentication enabled

apiVersion: kafka.strimzi.io/vibeta2
kind: KafkaUser
metadata:
name: my-user
labels:
strimzi.io/cluster: my-cluster
spec:
authentication:
type: tls
#...

The authentication type must match the equivalent configuration for the Kafka listener used to access
the Kafka cluster.

When the user is created by the User Operator, it creates a new secret with the same name as the

KafkaUser resource. The secret contains a private and public key for mTLS. The public key is contained
in a user certificate, which is signed by a clients CA (certificate authority) when it is created. All keys are

236

CHAPTER 14. MANAGING SECURE ACCESS TO KAFKA

in X.509 format.

NOTE

If you are using the clients CA generated by the Cluster Operator, the user certificates
generated by the User Operator are also renewed when the clients CA is renewed by the
Cluster Operator.

The user secret provides keys and certificates in PEM and PKCS #12 formats .

Example secret with user credentials

apiVersion: vi
kind: Secret
metadata:
name: my-user
labels:
strimzi.io/kind: KafkaUser
strimzi.io/cluster: my-cluster
type: Opaque
data:
ca.crt: <public_key> # Public key of the clients CA
user.crt: <user_certificate> # Public key of the user
user.key: <user_private_key> # Private key of the user
user.p12: <store> # PKCS #12 store for user certificates and keys
user.password: <password_for_store> # Protects the PKCS #12 store

When you configure a client, you specify the following:

® Truststore properties for the public cluster CA certificate to verify the identity of the Kafka
cluster

e Keystore properties for the user authentication credentials to verify the client

The configuration depends on the file format (PEM or PKCS #12). This example uses PKCS #12 stores,
and the passwords required to access the credentials in the stores.

Example client configuration using mTLS in PKCS #12 format

bootstrap.servers=<kafka_cluster_name>-kafka-bootstrap:9093 ﬂ
security.protocol=SSL 9

ssl.truststore.location=/tmp/ca.p12 6
ssl.truststore.password=<truststore_password> ﬂ
ssl.keystore.location=/tmp/user.p12
ssl.keystore.password=<keystore password> G

The bootstrap server address to connect to the Kafka cluster.
The security protocol option when using TLS for encryption.
The truststore location contains the public key certificate (ca.p12) for the Kafka cluster. A cluster

CA certificate and password is generated by the Cluster Operator in the <cluster_name>-cluster-
ca-cert secret when the Kafka cluster is created.

09

237

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

Q The password (ca.password) for accessing the truststore.
a The keystore location contains the public key certificate (user.p12) for the Kafka user.

6 The password (user.password) for accessing the keystore.

14.2.2.2. mTLS authentication using a certificate issued outside the User Operator

To use mTLS authentication using a certificate issued outside the User Operator, you set the type field
in the KafkaUser resource to tls-external. A secret and credentials are not created for the user.

Example user with mTLS authentication that uses a certificate issued outside the User
Operator

apiVersion: kafka.strimzi.io/vibeta2
kind: KafkaUser
metadata:
name: my-user
labels:
strimzi.io/cluster: my-cluster
spec:
authentication:
type: tls-external
#...

14.2.2.3. SCRAM-SHA-512 authentication

To use the SCRAM-SHA-512 authentication mechanism, you set the type field in the KafkaUser
resource to scram-sha-512.

Example user with SCRAM-SHA-512 authentication enabled

apiVersion: kafka.strimzi.io/vibeta2
kind: KafkaUser
metadata:
name: my-user
labels:
strimzi.io/cluster: my-cluster
spec:
authentication:
type: scram-sha-512
#...

When the user is created by the User Operator, it creates a new secret with the same name as the
KafkaUser resource. The secret contains the generated password in the password key, which is
encoded with base64. In order to use the password, it must be decoded.

Example secret with user credentials

apiVersion: vi

kind: Secret

metadata:
name: my-user

238

CHAPTER 14. MANAGING SECURE ACCESS TO KAFKA

labels:
strimzi.io/kind: KafkaUser
strimzi.io/cluster: my-cluster
type: Opaque
data:
password: Z2VuZXJhdGVkcGFzc3dvemQ= @)
sasl.jaas.config:
b3JnLmFwYWNoZS5rYWZrYS5jb21tb24uc2VjdXJpdHkuc2NyYWOuU2NyYW1Mb2dpbk1vZHVsZSByZ
XF1aXJlZCB1c2VybmFtZT0ibXktdXNIcilgcGFzc3dvemQ9ImdlibmVyYXRIZHBhc3N3b3JkljsK 9

ﬂ The generated password, base64 encoded.

9 The JAAS configuration string for SASL SCRAM-SHA-512 authentication, base64 encoded.

Decoding the generated password:

I echo "Z2VuzZXJhdGVkcGFzc3dvemQ=" | base64 --decode

14.2.2.3.1. Custom password configuration

When a user is created, AMQ Streams generates a random password. You can use your own password
instead of the one generated by AMQ Streams. To do so, create a secret with the password and
reference it in the KafkaUser resource.

Example user with a password set for SCRAM-SHA-512 authentication

apiVersion: kafka.strimzi.io/vibeta2
kind: KafkaUser
metadata:
name: my-user
labels:
strimzi.io/cluster: my-cluster
spec:
authentication:
type: scram-sha-512
password:
valueFrom:
secretKeyRef:
name: my-secret ﬂ
key: my-password
#...

ﬂ The name of the secret containing the predefined password.

9 The key for the password stored inside the secret.

14.2.3. User authorization

Use the KafkaUser custom resource to configure authorization rules for users (clients) that require
access to a Kafka cluster. Configure the rules using the authorization property in KafkaUser.spec. By
specifying a type, you control what rules are used.

239

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

To use simple authorization, you set the type property to simple in KafkaUser.spec.authorization. The
simple authorization uses the Kafka Admin API to manage the ACL rules inside your Kafka cluster.
Whether ACL management in the User Operator is enabled or not depends on your authorization
configuration in the Kafka cluster.

® Forsimple authorization, ACL management is always enabled.

® For OPA authorization, ACL management is always disabled. Authorization rules are configured
in the OPA server.

® For Red Hat Single Sign-On authorization, you can manage the ACL rules directly in Red Hat
Single Sign-On. You can also delegate authorization to the simple authorizer as a fallback option
in the configuration. When delegation to the simple authorizer is enabled, the User Operator will
enable management of ACL rules as well.

® For custom authorization using a custom authorization plugin, use the supportsAdminApi
property in the .spec.kafka.authorization configuration of the Kafka custom resource to
enable or disable the support.

Authorization is cluster-wide. The authorization type must match the equivalent configuration in the
Kafka custom resource.

If ACL management is not enabled, AMQ Streams rejects a resource if it contains any ACL rules.

If you're using a standalone deployment of the User Operator, ACL management is enabled by default.
You can disable it using the STRIMZI_ACLS_ADMIN_API_SUPPORTED environment variable.

If no authorization is specified, the User Operator does not provision any access rights for the user.

Whether such a KafkaUser can still access resources depends on the authorizer being used. For
example, for the AclAuthorizer this is determined by its allow.everyone.if.no.acl.found configuration.

14.2.3.1. ACL rules

AclAuthorizer uses ACL rules to manage access to Kafka brokers.
ACL rules grant access rights to the user, which you specify in the acls property.

For more information about the AclRule object, see the AclRule schema reference.

14.2.3.2. Super user access to Kafka brokers

If a user is added to a list of super users in a Kafka broker configuration, the user is allowed unlimited
access to the cluster regardless of any authorization constraints defined in ACLs in KafkaUser.

For more information on configuring super user access to brokers, see Kafka authorization.

14.2.3.3. User quotas

You can configure the spec for the KafkaUser resource to enforce quotas so that a user does not
exceed a configured level of access to Kafka brokers. You can set size-based network usage and time-
based CPU utilization thresholds. You can also add a partition mutation quota to control the rate at
which requests to change partitions are accepted for user requests.

An example KafkaUser with user quotas

I apiVersion: kafka.strimzi.io/vibeta2

240

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index#type-AclRule-reference

CHAPTER 14. MANAGING SECURE ACCESS TO KAFKA

kind: KafkaUser
metadata:
name: my-user
labels:
strimzi.io/cluster: my-cluster
spec:
#...
quotas:
producerByteRate: 1048576 ﬂ
consumerByteRate: 2097152 g
requestPercentage: 55 6
controllerMutationRate: 10

Byte-per-second quota on the amount of data the user can push to a Kafka broker
Byte-per-second quota on the amount of data the user can fetch from a Kafka broker
CPU utilization limit as a percentage of time for a client group

Number of concurrent partition creation and deletion operations (mutations) allowed per second

- -

For more information on these properties, see the KafkaUserQuotas schema reference.

14.3. SECURING ACCESS TO KAFKA BROKERS

To establish secure access to Kafka brokers, you configure and apply:

o A Kafka resource to:

o Create listeners with a specified authentication type
o Configure authorization for the whole Kafka cluster
e A KafkaUser resource to access the Kafka brokers securely through the listeners
Configure the Kafka resource to set up:
® Listener authentication
® Network policies that restrict access to Kafka listeners
e Kafka authorization
® Super users for unconstrained access to brokers

Authentication is configured independently for each listener. Authorization is always configured for the
whole Kafka cluster.

The Cluster Operator creates the listeners and sets up the cluster and client certificate authority (CA)
certificates to enable authentication within the Kafka cluster.

You can replace the certificates generated by the Cluster Operator by installing your own certificates.

You can also provide your own server certificates and private keys for any listener with TLS encryption
enabled. These user-provided certificates are called Kafka listener certificates. Providing Kafka listener

241

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index#type-KafkaUserQuotas-reference

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

certificates allows you to leverage existing security infrastructure, such as your organization’s private CA
or a public CA. Kafka clients will need to trust the CA which was used to sign the listener certificate. You
must manually renew Kafka listener certificates when needed. Certificates are available in PKCS #12
format (.p12) and PEM (.crt) formats.

Use KafkaUser to enable the authentication and authorization mechanisms that a specific client uses to
access Kafka.

Configure the KafkaUser resource to set up:
® Authentication to match the enabled listener authentication
® Authorization to match the enabled Kafka authorization
® Quotas to control the use of resources by clients

The User Operator creates the user representing the client and the security credentials used for client
authentication, based on the chosen authentication type.

Refer to the schema reference for more information on access configuration properties:
o Kafka schema reference
o KafkaUser schema reference

o GenericKafkalListener schema reference

14.3.1. Securing Kafka brokers

This procedure shows the steps involved in securing Kafka brokers when running AMQ Streams.

The security implemented for Kafka brokers must be compatible with the security implemented for the
clients requiring access.

o Kafka.spec.kafka.listeners[*].authentication matches KafkaUser.spec.authentication
o Kafka.spec.kafka.authorization matches KafkaUser.spec.authorization

The steps show the configuration for simple authorization and a listener using mTLS authentication. For
more information on listener configuration, see the GenericKafkaListener schema reference.

Alternatively, you can use SCRAM-SHA or OAuth 2.0 for listener authentication, and OAuth 2.0 or OPA
for Kafka authorization.

Procedure
1. Configure the Kafka resource.

a. Configure the authorization property for authorization.

b. Configure the listeners property to create a listener with authentication.
For example:

apiVersion: kafka.strimzi.io/vibeta2
kind: Kafka
spec:

kafka:

242

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index#type-Kafka-reference
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index#type-KafkaUser-reference
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index#type-GenericKafkaListener-reference
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index#type-GenericKafkaListener-reference

CHAPTER 14. MANAGING SECURE ACCESS TO KAFKA

#...
authorization: ﬂ
type: simple
superUsers:
- CN=client_1
- user_2
- CN=client_3
listeners:
- name: tls
port: 9093
type: internal
tls: true
authentication:

type:tlsg
#...

zookeeper:
#...

ﬂ Authorization enables simple authorization on the Kafka broker using the
AclAuthorizer Kafka plugin.

Q List of user principals with unlimited access to Kafka. CN is the common name from
the client certificate when mTLS authentication is used.

g Listener authentication mechanisms may be configured for each listener, and specified
as mTLS, SCRAM-SHA-512, or token-based OAuth 2.0.

If you are configuring an external listener, the configuration is dependent on the chosen
connection mechanism.

2. Create or update the Kafka resource.
I oc apply -f <kafka_configuration_file>

The Kafka cluster is configured with a Kafka broker listener using mTLS authentication.
A service is created for each Kafka broker pod.
A service is created to serve as the bootstrap address for connection to the Kafka cluster.

The cluster CA certificate to verify the identity of the kafka brokers is also created in the secret
<cluster_name>-cluster-ca-cert.

14.3.2. Securing user access to Kafka

Create or modify a KafkaUser to represent a client that requires secure access to the Kafka cluster.

When you configure the KafkaUser authentication and authorization mechanisms, ensure they match
the equivalent Kafka configuration:

o KafkaUser.spec.authentication matches Kafka.spec.kafka.listeners[*].authentication

e KafkaUser.spec.authorization matches Kafka.spec.kafka.authorization

243

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

This procedure shows how a user is created with mTLS authentication. You can also create a user with
SCRAM-SHA authentication.

The authentication required depends on the type of authentication configured for the Kafka broker
listener.

NOTE

Authentication between Kafka users and Kafka brokers depends on the authentication
settings for each. For example, it is not possible to authenticate a user with mTLS if it is
not also enabled in the Kafka configuration.

L

Prerequisites

® A running Kafka cluster configured with a Kafka broker listener using mTLS authentication and
TLS encryption.

® Arunning User Operator (typically deployed with the Entity Operator).

The authentication type in KafkaUser should match the authentication configured in Kafka brokers.

Procedure

1. Configure the KafkaUser resource.
For example:

apiVersion: kafka.strimzi.io/vibeta2
kind: KafkaUser
metadata:
name: my-user
labels:
strimzi.io/cluster: my-cluster
spec:
authentication: ﬂ
type: tls
authorization:
type: simple 9
acls:
- resource:
type: topic
name: my-topic
patternType: literal
operations:
- Describe
- Read
- resource:
type: group
name: my-group
patternType: literal
operations:
- Read

ﬂ User authentication mechanism, defined as mutual tls or scram-sha-512.

9 Simple authorization, which requires an accompanying list of ACL rules.

244

CHAPTER 14. MANAGING SECURE ACCESS TO KAFKA

2. Create or update the KafkaUser resource.
I oc apply -f <user_config_file>

The user is created, as well as a Secret with the same name as the KafkaUser resource. The
Secret contains a private and public key for mTLS authentication.

For information on configuring a Kafka client with properties for secure connection to Kafka brokers, see
Section 13.3, “Setting up client access to a Kafka cluster using listeners” .

14.3.3. Restricting access to Kafka listeners using network policies

You can restrict access to a listener to only selected applications by using the networkPolicyPeers
property.

Prerequisites
® An OpenShift cluster with support for Ingress NetworkPolicies.

® The Cluster Operator is running.

Procedure

1. Open the Kafka resource.

2. In the networkPolicyPeers property, define the application pods or namespaces that will be
allowed to access the Kafka cluster.
For example, to configure a tls listener to allow connections only from application pods with the
label app set to kafka-client:

apiVersion: kafka.strimzi.io/vibeta2
kind: Kafka
spec:
kafka:
#...
listeners:
- name: tls
port: 9093
type: internal
tls: true
authentication:
type: tls
networkPolicyPeers:
- podSelector:
matchLabels:
app: kafka-client
#...
zookeeper:
#...

3. Create or update the resource.
Use oc apply:

I oc apply -f your-file

245

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

Additional resources

® networkPolicyPeers configuration

® NetworkPolicyPeer API reference

14.3.4. Providing your own Kafka listener certificates for TLS encryption

Listeners provide client access to Kafka brokers. Configure listeners in the Kafka resource, including the
configuration required for client access using TLS.

By default, the listeners use certificates signed by the internal CA (certificate authority) certificates
generated by AMQ Streams. A CA certificate is generated by the Cluster Operator when it creates a
Kafka cluster. When you configure a client for TLS, you add the CA certificate to its truststore
configuration to verify the Kafka cluster. You can also install and use your own CA certificates. Or you
can configure a listener using brokerCertChainAndKey properties and use a custom server certificate.

The brokerCertChainAndKey properties allow you to access Kafka brokers using your own custom
certificates at the listener-level. You create a secret with your own private key and server certificate,
then specify the key and certificate in the listener's brokerCertChainAndKey configuration. You can
use a certificate signed by a public (external) CA or a private CA. If signed by a public CA, you usually
won't need to add it to a client’s truststore configuration. Custom certificates are not managed by AMQ
Streams, so you need to renew them manually.

NOTE

Listener certificates are used for TLS encryption and server authentication only. They are
not used for TLS client authentication. If you want to use your own certificate for TLS
client authentication as well, you must install and use your own clients CA.

Prerequisites
® The Cluster Operator is running.
® FEach listener requires the following:

o A compatible server certificate signed by an external CA. (Provide an X.509 certificate in
PEM format.)
You can use one listener certificate for multiple listeners.

o Subject Alternative Names (SANs) are specified in the certificate for each listener. For
more information, see Section 14.3.5, “Alternative subjects in server certificates for Kafka

listeners”.

If you are not using a self-signed certificate, you can provide a certificate that includes the whole CA
chain in the certificate.

You can only use the brokerCertChainAndKey properties if TLS encryption (tls: true) is configured for
the listener.

NOTE

AMQ Streams does not support the use of encrypted private keys for TLS. The private
key stored in the secret must be unencrypted for this to work.

246

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index#configuration-listener-network-policy-reference
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#networkpolicypeer-v1-networking-k8s-io

CHAPTER 14. MANAGING SECURE ACCESS TO KAFKA

Procedure

1. Create a Secret containing your private key and server certificate:

oc create secret generic my-secret --from-file=my-listener-key.key --from-file=my-listener-
certificate.crt

2. Edit the Kafka resource for your cluster.
Configure the listener to use your Secret, certificate file, and private key file in the
configuration.brokerCertChainAndKey property.

Example configuration for a loadbalancer external listener with TLS encryption
enabled

#...
listeners:
- name: plain
port: 9092
type: internal
tls: false
- name: external
port: 9094
type: loadbalancer
tls: true
configuration:
brokerCertChainAndKey:
secretName: my-secret
certificate: my-listener-certificate.crt
key: my-listener-key.key
#...

Example configuration for a TLS listener

#...
listeners:
- name: plain
port: 9092
type: internal
tls: false
- name: tls
port: 9093
type: internal
tls: true
configuration:
brokerCertChainAndKey:
secretName: my-secret
certificate: my-listener-certificate.crt
key: my-listener-key.key
#...

3. Apply the new configuration to create or update the resource:

I oc apply -f katka.yam/

247

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

The Cluster Operator starts a rolling update of the Kafka cluster, which updates the
configuration of the listeners.

NOTE

A rolling update is also started if you update a Kafka listener certificate in a
Secret that is already used by a listener.

-

14.3.5. Alternative subjects in server certificates for Kafka listeners

In order to use TLS hostname verification with your own Kafka listener certificates, you must use the
correct Subject Alternative Names (SANs) for each listener. The certificate SANs must specify
hostnames for the following:

e All of the Kafka brokers in your cluster
® The Kafka cluster bootstrap service

You can use wildcard certificates if they are supported by your CA.

14.3.5.1. Examples of SANs for internal listeners

Use the following examples to help you specify hostnames of the SANs in your certificates for your
internal listeners.

Replace <cluster-name> with the name of the Kafka cluster and <namespace> with the OpenShift
namespace where the cluster is running.

Wildcards example for a type: internal listener

//Kafka brokers
*.<cluster-name>-kafka-brokers
*.<cluster-name>-kafka-brokers.<namespace>.svc

// Bootstrap service
<cluster-name>kafka-bootstrap
<cluster-name>kafka-bootstrap.<namespace>.svc

Non-wildcards example for a type: internal listener

/I Kafka brokers

<cluster-name>kafka-0.<cluster-name>kafka-brokers
<cluster-name>kafka-0. <cluster-name>kafka-brokers.<namespace>.svc
<cluster-name>-kafka-1.<cluster-name>kafka-brokers
<cluster-name>kafka-1.<cluster-name>kafka-brokers.<namespace>.svc
#...

// Bootstrap service
<cluster-name>kafka-bootstrap
<cluster-name>kafka-bootstrap.<namespace>.svc

Non-wildcards example for a type: cluster-ip listener

I // Kafka brokers

248

CHAPTER 14. MANAGING SECURE ACCESS TO KAFKA

<cluster-name>-kafka- <listener-name>-0
<cluster-name>kafka- <listener-name>0.<namespace>.svc
<cluster-name>-kafka- <listener-name>-1
<cluster-name>kafka- <listener-name>1.<namespace>.svc
#...

// Bootstrap service
<cluster-name>-kafka- <listener-name>bootstrap
<cluster-name>kafka- <listener-name>bootstrap.<namespace>.svc

14.3.5.2. Examples of SANs for external listeners

For external listeners which have TLS encryption enabled, the hostnames you need to specify in
certificates depends on the external listener type.

Table 14.1. SANs for each type of external listener

External listener type In the SANs, specify...

ingress Addresses of all Kafka broker Ingress resources and
the address of the bootstrap Ingress.

You can use a matching wildcard name.

route Addresses of all Kafka broker Routes and the
address of the bootstrap Route.

You can use a matching wildcard name.

loadbalancer Addresses of all Kafka broker loadbalancers and
the bootstrap loadbalancer address.

You can use a matching wildcard name.

nodeport Addresses of all OpenShift worker nodes that the
Kafka broker pods might be scheduled to.

You can use a matching wildcard name.

Additional resources

® Section 14.3.4, "Providing your own Kafka listener certificates for TLS encryption”

14.4. USING OAUTH 2.0 TOKEN-BASED AUTHENTICATION

AMQ Streams supports the use of OAuth 2.0 authentication using the OAUTHBEARER and PLAIN
mechanisms.

OAuth 2.0 enables standardized token-based authentication and authorization between applications,
using a central authorization server to issue tokens that grant limited access to resources.

You can configure OAuth 2.0 authentication, then OAuth 2.0 authorization.

249

https://oauth.net/2/

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

Kafka brokers and clients both need to be configured to use OAuth 2.0. OAuth 2.0 authentication can
also be used in conjunction with simple or OPA-based Kafka authorization.

Using OAuth 2.0 token-based authentication, application clients can access resources on application
servers (called resource servers) without exposing account credentials.

The application client passes an access token as a means of authenticating, which application servers
can also use to determine the level of access to grant. The authorization server handles the granting of
access and inquiries about access.

In the context of AMQ Streams:
o Kafka brokers act as OAuth 2.0 resource servers
e Kafka clients act as OAuth 2.0 application clients

Kafka clients authenticate to Kafka brokers. The brokers and clients communicate with the OAuth 2.0
authorization server, as necessary, to obtain or validate access tokens.

For a deployment of AMQ Streams, OAuth 2.0 integration provides:
® Server-side OAuth 2.0 support for Kafka brokers

® Client-side OAuth 2.0 support for Kafka MirrorMaker, Kafka Connect and the Kafka Bridge

14.4.1. OAuth 2.0 authentication mechanisms

AMQ Streams supports the OAUTHBEARER and PLAIN mechanisms for OAuth 2.0 authentication.
Both mechanisms allow Kafka clients to establish authenticated sessions with Kafka brokers. The
authentication flow between clients, the authorization server, and Kafka brokers is different for each
mechanism.

We recommend that you configure clients to use OAUTHBEARER whenever possible. OAUTHBEARER
provides a higher level of security than PLAIN because client credentials are never shared with Kafka
brokers. Consider using PLAIN only with Kafka clients that do not support OAUTHBEARER.

You configure Kafka broker listeners to use OAuth 2.0 authentication for connecting clients. If
necessary, you can use the OAUTHBEARER and PLAIN mechanisms on the same oauth listener. The
properties to support each mechanism must be explicitly specified in the oauth listener configuration.

OAUTHBEARER overview

OAUTHBEARER is automatically enabled in the oauth listener configuration for the Kafka broker. You
can set the enableOauthBearer property to true, though this is not required.

#...
authentication:
type: oauth
#...
enableOauthBearer: true

Many Kafka client tools use libraries that provide basic support for OAUTHBEARER at the protocol
level. To support application development, AMQ Streams provides an OAuth callback handler for the
upstream Kafka Client Java libraries (but not for other libraries). Therefore, you do not need to write
your own callback handlers. An application client can use the callback handler to provide the access
token. Clients written in other languages, such as Go, must use custom code to connect to the
authorization server and obtain the access token.

250

CHAPTER 14. MANAGING SECURE ACCESS TO KAFKA

With OAUTHBEARER, the client initiates a session with the Kafka broker for credentials exchange, where
credentials take the form of a bearer token provided by the callback handler. Using the callbacks, you
can configure token provision in one of three ways:

® Client ID and Secret (by using the OAuth 2.0 client credentials mechanism)
® Along-lived access token, obtained manually at configuration time

® Along-lived refresh token, obtained manually at configuration time

NOTE

OAUTHBEARER authentication can only be used by Kafka clients that support the
OAUTHBEARER mechanism at the protocol level.

-

PLAIN overview

To use PLAIN, you must enable it in the oauth listener configuration for the Kafka broker.

In the following example, PLAIN is enabled in addition to OAUTHBEARER, which is enabled by default. If
you want to use PLAIN only, you can disable OAUTHBEARER by setting enableOauthBearer to false.

#...
authentication:
type: oauth
#...
enablePlain: true
tokenEndpointUri: https://OAUTH-SERVER-ADDRESS/auth/realms/external/protocol/openid-
connect/token

PLAIN is a simple authentication mechanism used by all Kafka client tools. To enable PLAIN to be used
with OAuth 2.0 authentication, AMQ Streams provides OAuth 2.0 over PLAIN server-side callbacks.

With the AMQ Streams implementation of PLAIN, the client credentials are not stored in ZooKeeper.
Instead, client credentials are handled centrally behind a compliant authorization server, similar to when

OAUTHBEARER authentication is used.

When used with the OAuth 2.0 over PLAIN callbacks, Kafka clients authenticate with Kafka brokers using
either of the following methods:

® Client ID and secret (by using the OAuth 2.0 client credentials mechanism)

® Along-lived access token, obtained manually at configuration time
For both methods, the client must provide the PLAIN username and password properties to pass
credentials to the Kafka broker. The client uses these properties to pass a client ID and secret or
username and access token.

Client IDs and secrets are used to obtain access tokens.

Access tokens are passed as password property values. You pass the access token with or without an
$accessToken: prefix.

e |f you configure a token endpoint (tokenEndpointUri) in the listener configuration, you need
the prefix.

251

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

® |f you don't configure a token endpoint (tokenEndpointUri) in the listener configuration, you
don't need the prefix. The Kafka broker interprets the password as a raw access token.

If the password is set as the access token, the username must be set to the same principal name that
the Kafka broker obtains from the access token. You can specify username extraction options in your
listener using the userNameClaim, fallbackUserNameClaim, fallbackUsernamePrefix, and

userlinfoEndpointUri properties. The username extraction process also depends on your authorization
server; in particular, how it maps client IDs to account names.

NOTE
OAuth over PLAIN does not support password grant mechanism. You can only 'proxy’

through SASL PLAIN mechanism the client credentials (clientld + secret) or the access
token as described above.

Additional resources

® Section 14.4.6.2, "Configuring OAuth 2.0 support for Kafka brokers”

14.4.2. OAuth 2.0 Kafka broker configuration

Kafka broker configuration for OAuth 2.0 involves:
® Creating the OAuth 2.0 client in the authorization server

e Configuring OAuth 2.0 authentication in the Kafka custom resource

NOTE

In relation to the authorization server, Kafka brokers and Kafka clients are both regarded
as OAuth 2.0 clients.

14.4.2.1. OAuth 2.0 client configuration on an authorization server

To configure a Kafka broker to validate the token received during session initiation, the recommended
approach is to create an OAuth 2.0 client definition in an authorization server, configured as confidential,
with the following client credentials enabled:

e Client ID of kafka (for example)

® ClientID and Secret as the authentication mechanism

NOTE
You only need to use a client ID and secret when using a non-public introspection

endpoint of the authorization server. The credentials are not typically required when using
public authorization server endpoints, as with fast local JWT token validation.

14.4.2.2. OAuth 2.0 authentication configuration in the Kafka cluster

To use OAuth 2.0 authentication in the Kafka cluster, you specify, for example, a tls listener
configuration for your Kafka cluster custom resource with the authentication method oauth:

Assigining the authentication method type for OAuth 2.0

252

CHAPTER 14. MANAGING SECURE ACCESS TO KAFKA

apiVersion: kafka.strimzi.io/vibeta2
kind: Kafka
spec:
kafka:
#...
listeners:
- name: tls
port: 9093
type: internal
tls: true
authentication:
type: oauth
#...

You can configure OAuth 2.0 authentication in your listeners. We recommend using OAuth 2.0
authentication together with TLS encryption (tls: true). Without encryption, the connection is
vulnerable to network eavesdropping and unauthorized access through token theft.

You configure an external listener with type: oauth for a secure transport layer to communicate with
the client.

Using OAuth 2.0 with an external listener

#...
listeners:
- name: external
port: 9094
type: loadbalancer
tls: true
authentication:
type: oauth

#..

The tls property is false by default, so it must be enabled.

When you have defined the type of authentication as OAuth 2.0, you add configuration based on the
type of validation, either as fast local JWT validation or token validation using an introspection endpoint.

The procedure to configure OAuth 2.0 for listeners, with descriptions and examples, is described in
Configuring OAuth 2.0 support for Kafka brokers.

14.4.2.3. Fast local JWT token validation configuration

Fast local JWT token validation checks a JWT token signature locally.

The local check ensures that a token:
e Conforms to type by containing a (typ) claim value of Bearer for an access token
® |svalid (not expired)
® Has an issuer that matches a validlssuerURI

You specify a validlssuerURI attribute when you configure the listener, so that any tokens not issued by
the authorization server are rejected.

253

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

The authorization server does not need to be contacted during fast local JWT token validation. You
activate fast local JWT token validation by specifying a jwksEndpointUri attribute, the endpoint
exposed by the OAuth 2.0 authorization server. The endpoint contains the public keys used to validate
signed JWT tokens, which are sent as credentials by Kafka clients.

NOTE

All communication with the authorization server should be performed using TLS
encryption.

You can configure a certificate truststore as an OpenShift Secret in your AMQ Streams project
namespace, and use a tlsTrustedCertificates attribute to point to the OpenShift Secret containing the
truststore file.

You might want to configure a userNameClaim to properly extract a username from the JWT token. If
required, you can use a JsonPath expression like "['user.info'].['user.id']" to retrieve the username
from nested JSON attributes within a token.

If you want to use Kafka ACL authorization, you need to identify the user by their username during
authentication. (The sub claim in JWT tokens is typically a unique ID, not a username.)

Example configuration for fast local JWT token validation

apiVersion: kafka.strimzi.io/vibeta2
kind: Kafka
spec:
kafka:
#..
listeners:
- name: tls
port: 9093
type: internal
tls: true
authentication:
type: oauth
validlssuerUri: <https://<auth_server_address>/auth/realms/tls>
jwksEndpointUri: <https://<auth_server_address>/auth/realms/tls/protocol/openid-
connect/certs>
userNameClaim: preferred_username
maxSecondsWithoutReauthentication: 3600
tisTrustedCertificates:
- secretName: oauth-server-cert
certificate: ca.crt

14.4.2.4. OAuth 2.0 introspection endpoint configuration

Token validation using an OAuth 2.0 introspection endpoint treats a received access token as opaque.
The Kafka broker sends an access token to the introspection endpoint, which responds with the token
information necessary for validation. Importantly, it returns up-to-date information if the specific access
token is valid, and also information about when the token expires.

To configure OAuth 2.0 introspection-based validation, you specify an introspectionEndpointUri

attribute rather than the jwksEndpointUri attribute specified for fast local JWT token validation.
Depending on the authorization server, you typically have to specify a clientld and clientSecret,

254

CHAPTER 14. MANAGING SECURE ACCESS TO KAFKA

because the introspection endpoint is usually protected.

Example configuration for an introspection endpoint

apiVersion: kafka.strimzi.io/vibeta2
kind: Kafka
spec:
kafka:
listeners:
- name: tls
port: 9093
type: internal
tls: true
authentication:
type: oauth
clientld: kafka-broker
clientSecret:
secretName: my-cluster-oauth
key: clientSecret
validlssuerUri: <https://<auth_server_-_address>/auth/realms/tls>
introspectionEndpointUri: <https://<auth_server_address>/auth/realms/tls/protocol/openid-
connect/token/introspect>
userNameClaim: preferred_username
maxSecondsWithoutReauthentication: 3600
tisTrustedCertificates:
- secretName: oauth-server-cert
certificate: ca.crt

14.4.3. Session re-authentication for Kafka brokers

You can configure oauth listeners to use Kafka session re-authentication for OAuth 2.0 sessions
between Kafka clients and Kafka brokers. This mechanism enforces the expiry of an authenticated
session between the client and the broker after a defined period of time. When a session expires, the
client immediately starts a new session by reusing the existing connection rather than dropping it.

Session re-authentication is disabled by default. To enable it, you set a time value for
maxSecondsWithoutReauthentication in the oauth listener configuration. The same property is used
to configure session re-authentication for OAUTHBEARER and PLAIN authentication. For an example
configuration, see Section 14.4.6.2, “Configuring OAuth 2.0 support for Kafka brokers” .

Session re-authentication must be supported by the Kafka client libraries used by the client.
Session re-authentication can be used with fast local JWT or introspection endpoint token validation.

Client re-authentication

When the broker's authenticated session expires, the client must re-authenticate to the existing session
by sending a new, valid access token to the broker, without dropping the connection.

If token validation is successful, a new client session is started using the existing connection. If the client
fails to re-authenticate, the broker will close the connection if further attempts are made to send or
receive messages. Java clients that use Kafka client library 2.2 or later automatically re-authenticate if
the re-authentication mechanism is enabled on the broker.

255

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

Session re-authentication also applies to refresh tokens, if used. When the session expires, the client
refreshes the access token by using its refresh token. The client then uses the new access token to re-
authenticate to the existing session.

Session expiry for OAUTHBEARER and PLAIN

When session re-authentication is configured, session expiry works differently for OAUTHBEARER and
PLAIN authentication.

For OAUTHBEARER and PLAIN, using the client ID and secret method:

® The broker’s authenticated session will expire at the configured
maxSecondsWithoutReauthentication.

® The session will expire earlier if the access token expires before the configured time.
For PLAIN using the long-lived access token method:

® The broker’s authenticated session will expire at the configured
maxSecondsWithoutReauthentication.

® Re-authentication will fail if the access token expires before the configured time. Although
session re-authentication is attempted, PLAIN has no mechanism for refreshing tokens.

If maxSecondsWithoutReauthentication is not configured, OAUTHBEARER and PLAIN clients can
remain connected to brokers indefinitely, without needing to re-authenticate. Authenticated sessions

do not end with access token expiry. However, this can be considered when configuring authorization,
for example, by using keycloak authorization or installing a custom authorizer.

Additional resources

® Section 14.4.2, "OAuth 2.0 Kafka broker configuration”
® Section 14.4.6.2, "Configuring OAuth 2.0 support for Kafka brokers”
e KafkaListenerAuthenticationOAuth schema reference

® K|P-368

14.4.4. OAuth 2.0 Kafka client configuration

A Kafka client is configured with either:

® The credentials required to obtain a valid access token from an authorization server (client ID
and Secret)

® Avalid long-lived access token or refresh token, obtained using tools provided by an
authorization server

The only information ever sent to the Kafka broker is an access token. The credentials used to
authenticate with the authorization server to obtain the access token are never sent to the broker.

When a client obtains an access token, no further communication with the authorization server is
needed.

256

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index#type-KafkaListenerAuthenticationOAuth-reference
https://cwiki.apache.org/confluence/display/KAFKA/KIP-368%3A+Allow+SASL+Connections+to+Periodically+Re-Authenticate

CHAPTER 14. MANAGING SECURE ACCESS TO KAFKA

The simplest mechanism is authentication with a client ID and Secret. Using a long-lived access token, or
a long-lived refresh token, adds more complexity because there is an additional dependency on
authorization server tools.

NOTE

If you are using long-lived access tokens, you may need to configure the client in the
authorization server to increase the maximum lifetime of the token.

.

If the Kafka client is not configured with an access token directly, the client exchanges credentials for an
access token during Kafka session initiation by contacting the authorization server. The Kafka client
exchanges either:

® (Client ID and Secret

® Client ID, refresh token, and (optionally) a secret

® Username and password, with client ID and (optionally) a secret

14.4.5. OAuth 2.0 client authentication flows

OAuth 2.0 authentication flows depend on the underlying Kafka client and Kafka broker configuration.
The flows must also be supported by the authorization server used.

The Kafka broker listener configuration determines how clients authenticate using an access token. The
client can pass a client ID and secret to request an access token.

If a listener is configured to use PLAIN authentication, the client can authenticate with a client ID and
secret or username and access token. These values are passed as the username and password
properties of the PLAIN mechanism.
Listener configuration supports the following token validation options:
® You can use fast local token validation based on JWT signature checking and local token
introspection, without contacting an authorization server. The authorization server provides a
JWKS endpoint with public certificates that are used to validate signatures on the tokens.
® You can use a call to a token introspection endpoint provided by an authorization server. Each
time a new Kafka broker connection is established, the broker passes the access token received

from the client to the authorization server. The Kafka broker checks the response to confirm
whether or not the token is valid.

NOTE

An authorization server might only allow the use of opaque access tokens, which means
that local token validation is not possible.

ol

Kafka client credentials can also be configured for the following types of authentication:
® Directlocal access using a previously generated long-lived access token

® Contact with the authorization server for a new access token to be issued (using a client ID and
a secret, or a refresh token, or a username and a password)

14.4.5.1. Example client authentication flows using the SASL OAUTHBEARER mechanism

257

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

You can use the following communication flows for Kafka authentication using the SASL
OAUTHBEARER mechanism.

® Client using client ID and secret, with broker delegating validation to authorization server

® Client using client ID and secret, with broker performing fast local token validation

® Client using long-lived access token, with broker delegating validation to authorization server
® Client using long-lived access token, with broker performing fast local validation

Client using client ID and secret, with broker delegating validation to authorization server

Kafka client

OAuth 2.0
Authorization
Server

Kafka broker

¢

1. The Kafka client requests an access token from the authorization server using a client ID and
secret, and optionally a refresh token. Alternatively, the client may authenticate using a
username and a password.

2. The authorization server generates a new access token.

3. The Kafka client authenticates with the Kafka broker using the SASL OAUTHBEARER
mechanism to pass the access token.

4. The Kafka broker validates the access token by calling a token introspection endpoint on the
authorization server using its own client ID and secret.

5. A Kafka client session is established if the token is valid.

Client using client ID and secret, with broker performing fast local token validation

Kafka client

OAuth 2.0
Authorization
Server

Kafka broker

1. The Kafka client authenticates with the authorization server from the token endpoint, using a
client ID and secret, and optionally a refresh token. Alternatively, the client may authenticate
using a username and a password.

2. The authorization server generates a new access token.

3. The Kafka client authenticates with the Kafka broker using the SASL OAUTHBEARER
mechanism to pass the access token.

258

CHAPTER 14. MANAGING SECURE ACCESS TO KAFKA

4. The Kafka broker validates the access token locally using a JWT token signature check, and
local token introspection.

Client using long-lived access token, with broker delegating validation to authorization
server

Kafka client

OAuth 2.0
Authorization
Server

K
afka broker E
+0—
1. The Kafka client authenticates with the Kafka broker using the SASL OAUTHBEARER

mechanism to pass the long-lived access token.

2. The Kafka broker validates the access token by calling a token introspection endpoint on the
authorization server, using its own client ID and secret.

3. A Kafka client session is established if the token is valid.

Client using long-lived access token, with broker performing fast local validation

Kafka client

OAuth 2.0
Authorization
Server

Kafka broker

1. The Kafka client authenticates with the Kafka broker using the SASL OAUTHBEARER
mechanism to pass the long-lived access token.

2. The Kafka broker validates the access token locally using a JWT token signature check and local
token introspection.

' WARNING
A Fast local JWT token signature validation is suitable only for short-lived tokens as

there is no check with the authorization server if a token has been revoked. Token
expiration is written into the token, but revocation can happen at any time, so
cannot be accounted for without contacting the authorization server. Any issued
token would be considered valid until it expires.

14.4.5.2. Example client authentication flows using the SASL PLAIN mechanism

259

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

You can use the following communication flows for Kafka authentication using the OAuth PLAIN
mechanism.

® Client using a client ID and secret, with the broker obtaining the access token for the client
® Client using a long-lived access token without a client ID and secret

Client using a client ID and secret, with the broker obtaining the access token for the client

Token validation options

Kafka client @ Token introspection endpoint

3 Local token validation

OAuth 2.0
Authorization

Kafka broker Server

Token validation

1. The Kafka client passes a clientld as a username and a secret as a password.

R 91

2. The Kafka broker uses a token endpoint to pass the clientld and secret to the authorization
server.

3. The authorization server returns a fresh access token or an error if the client credentials are not
valid.

4. The Kafka broker validates the token in one of the following ways:

a. If atoken introspection endpoint is specified, the Kafka broker validates the access token
by calling the endpoint on the authorization server. A session is established if the token
validation is successful.

b. If local token introspection is used, a request is not made to the authorization server. The
Kafka broker validates the access token locally using a JWT token signature check.

Client using a long-lived access token without a client ID and secret

Token validation options

Kafka client @ Token introspection endpoint

3 Local token validation

OAuth 2.0
Authorization
Kafka broker Server

(2 P ()

Token validation

1. The Kafka client passes a username and password. The password provides the value of an
access token that was obtained manually and configured before running the client.

260

CHAPTER 14. MANAGING SECURE ACCESS TO KAFKA
2. The password is passed with or without an $accessToken: string prefix depending on whether
or not the Kafka broker listener is configured with a token endpoint for authentication.

a. If the token endpoint is configured, the password should be prefixed by $accessToken: to
let the broker know that the password parameter contains an access token rather than a
client secret. The Kafka broker interprets the username as the account username.

b. If the token endpoint is not configured on the Kafka broker listener (enforcing a no-client-
credentials mode), the password should provide the access token without the prefix. The
Kafka broker interprets the username as the account username. In this mode, the client
doesn’t use a client ID and secret, and the password parameter is always interpreted as a
raw access token.

3. The Kafka broker validates the token in one of the following ways:

a. If atoken introspection endpoint is specified, the Kafka broker validates the access token
by calling the endpoint on the authorization server. A session is established if token
validation is successful.

b. If local token introspection is used, there is no request made to the authorization server.
Kafka broker validates the access token locally using a JWT token signature check.

14.4.6. Configuring OAuth 2.0 authentication

OAuth 2.0 is used for interaction between Kafka clients and AMQ Streams components.

In order to use OAuth 2.0 for AMQ Streams, you must:
1. Deploy an authorization server and configure the deployment to integrate with AMQ Streams
2. Deploy or update the Kafka cluster with Kafka broker listeners configured to use OAuth 2.0
3. Update your Java-based Kafka clients to use OAuth 2.0

4. Update Kafka component clients to use OAuth 2.0

14.4.6.1. Configuring an OAuth 2.0 authorization server

This procedure describes in general what you need to do to configure an authorization server for
integration with AMQ Streams.

These instructions are not product specific.

The steps are dependent on the chosen authorization server. Consult the product documentation for
the authorization server for information on how to set up OAuth 2.0 access.

NOTE

If you already have an authorization server deployed, you can skip the deployment step
and use your current deployment.

-

Procedure

1. Deploy the authorization server to your cluster.

261

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

2. Access the CLI or admin console for the authorization server to configure OAuth 2.0 for AMQ
Streams.

Now prepare the authorization server to work with AMQ Streams.
3. Configure a kafka-broker client.
4. Configure clients for each Kafka client component of your application.

What to do next

After deploying and configuring the authorization server, configure the Kafka brokers to use OAuth 2.0 .

14.4.6.2. Configuring OAuth 2.0 support for Kafka brokers

This procedure describes how to configure Kafka brokers so that the broker listeners are enabled to use
OAuth 2.0 authentication using an authorization server.

We advise use of OAuth 2.0 over an encrypted interface through through a listener with tls: true. Plain
listeners are not recommended.

If the authorization server is using certificates signed by the trusted CA and matching the OAuth 2.0
server hostname, TLS connection works using the default settings. Otherwise, you may need to

configure the truststore with proper certificates or disable the certificate hostname validation.

When configuring the Kafka broker you have two options for the mechanism used to validate the access
token during OAuth 2.0 authentication of the newly connected Kafka client:

® Configuring fast local JWT token validation
® Configuring token validation using an introspection endpoint

Before you start

For more information on the configuration of OAuth 2.0 authentication for Kafka broker listeners, see:
o KafkaListenerAuthenticationOAuth schema reference

® OAuth 2.0 authentication mechanisms

Prerequisites

® AMQ Streams and Kafka are running

® An OAuth 2.0 authorization server is deployed
Procedure
1. Update the Kafka broker configuration (Kafka.spec.kafka) of your Kafka resource in an editor.

I oc edit kafka my-cluster

2. Configure the Kafka broker listeners configuration.
The configuration for each type of listener does not have to be the same, as they are
independent.

The examples here show the configuration options as configured for external listeners.

262

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index#type-KafkaListenerAuthenticationOAuth-reference

CHAPTER 14. MANAGING SECURE ACCESS TO KAFKA

Example 1: Configuring fast local JWT token validation

#..
- name: external

® - -

@ 0 09009

port: 9094

type: loadbalancer

tls: true

authentication:
type: oauth ﬂ
validlssuerUri: https://<auth_server_address>/auth/realms/external 9
jwksEndpointUri: https://<auth_server_address>/auth/realms/external/protocol/openid-

connect/certs

userNameClaim: preferred_username ﬂ
maxSecondsWithoutReauthentication: 3600 9
tisTrustedCertificates: G
- secretName: oauth-server-cert

certificate: ca.crt
disableTIsHostnameVerification: true ﬂ
jwksExpirySeconds: 360 @)
jwksRefreshSeconds: 300 Q
jwksMinRefreshPauseSeconds: 1 @

Listener type set to oauth.
URI of the token issuer used for authentication.
URI of the JWKS certificate endpoint used for local JWT validation.

The token claim (or key) that contains the actual username used to identify the user. Its
value depends on the authorization server. If necessary, a JsonPath expression like "
['user.info'].['user.id']" can be used to retrieve the username from nested JSON
attributes within a token.

(Optional) Activates the Kafka re-authentication mechanism that enforces session expiry
to the same length of time as the access token. If the specified value is less than the time
left for the access token to expire, then the client will have to re-authenticate before the
actual token expiry. By default, the session does not expire when the access token expires,
and the client does not attempt re-authentication.

(Optional) Trusted certificates for TLS connection to the authorization server.
(Optional) Disable TLS hostname verification. Default is false.

The duration the JWKS certificates are considered valid before they expire. Default is 360
seconds. If you specify a longer time, consider the risk of allowing access to revoked
certificates.

The period between refreshes of JWKS certificates. The interval must be at least 60
seconds shorter than the expiry interval. Default is 300 seconds.

The minimum pause in seconds between consecutive attempts to refresh JWKS public
keys. When an unknown signing key is encountered, the JWKS keys refresh is scheduled
outside the regular periodic schedule with at least the specified pause since the last
refresh attempt. The refreshing of keys follows the rule of exponential backoff, retrying on
unsuccessful refreshes with ever increasing pause, until it reaches jwksRefreshSeconds.

263

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

The default valueis 1.

Example 2: Configuring token validation using an introspection endpoint

- -

®

- name: external
port: 9094
type: loadbalancer
tls: true
authentication:

type: oauth
validlssuerUri: https://<auth_server_address>/auth/realms/external
introspectionEndpointUri:

https://<auth_server_address>/auth/realms/external/protocol/openid-connect/token/introspect

clientld: kafka-broker 9
clientSecret: e
secretName: my-cluster-oauth
key: clientSecret
userNameClaim: preferred_username ﬂ
maxSecondsWithoutReauthentication: 3600 9

URI of the token introspection endpoint.
Client ID to identify the client.
Client Secret and client ID is used for authentication.

The token claim (or key) that contains the actual username used to identify the user. Its
value depends on the authorization server. If necessary, a JsonPath expression like "
['user.info'].['user.id']" can be used to retrieve the username from nested JSON
attributes within a token.

(Optional) Activates the Kafka re-authentication mechanism that enforces session expiry
to the same length of time as the access token. If the specified value is less than the time
left for the access token to expire, then the client will have to re-authenticate before the
actual token expiry. By default, the session does not expire when the access token expires,
and the client does not attempt re-authentication.

Depending on how you apply OAuth 2.0 authentication, and the type of authorization server,
there are additional (optional) configuration settings you can use:

264

#...
authentication:
type: oauth
#...
checklssuer: false ﬂ
checkAudience: true 9
fallbackUserNameClaim: client_id 6
fallobackUserNamePrefix: client-account- ﬂ
validTokenType: bearer 6
userlnfoEndpointUri: https://<auth_server_address>/auth/realms/external/protocol/openid-

connect/userinfo G

@ 9

CHAPTER 14. MANAGING SECURE ACCESS TO KAFKA

enableOauthBearer: false ﬂ
enablePlain: true G
tokenEndpointUri: https://<auth_server_address>/auth/realms/external/protocol/openid-

connect/token Q

customClaimCheck: "@.custom == 'custom-value
clientAudience: audience

clientScope: scope @

connectTimeoutSeconds: 60 @
readTimeoutSeconds: 60 @

httpRetries: 2 @

httpRetryPauseMs: 300 @

groupsClaim: "$.groups” m
groupsClaimDelimiter: "," @

If your authorization server does not provide an iss claim, it is not possible to perform an
issuer check. In this situation, set checklssuer to false and do not specify a
validlssuerUri. Default is true.

If your authorization server provides an aud (audience) claim, and you want to enforce an
audience check, set checkAudience to true. Audience checks identify the intended
recipients of tokens. As a result, the Kafka broker will reject tokens that do not have its
clientld in their aud claim. Default is false.

An authorization server may not provide a single attribute to identify both regular users
and clients. When a client authenticates in its own name, the server might provide a client
ID. When a user authenticates using a username and password to obtain a refresh token or
an access token, the server might provide a username attribute in addition to a client ID.
Use this fallback option to specify the username claim (attribute) to use if a primary user 1D
attribute is not available. If necessary, a JsonPath expression like "['client.info’].
[‘client.id']" can be used to retrieve the fallback username to retrieve the username from
nested JSON attributes within a token.

In situations where fallbackUserNameClaim is applicable, it may also be necessary to
prevent name collisions between the values of the username claim, and those of the
fallback username claim. Consider a situation where a client called producer exists, but
also a regular user called producer exists. In order to differentiate between the two, you
can use this property to add a prefix to the user ID of the client.

(Only applicable when using introspectionEndpointUri) Depending on the authorization
server you are using, the introspection endpoint may or may not return the token type
attribute, or it may contain different values. You can specify a valid token type value that
the response from the introspection endpoint has to contain.

(Only applicable when using introspectionEndpointUri) The authorization server may be
configured or implemented in such a way to not provide any identifiable information in an
Introspection Endpoint response. In order to obtain the user ID, you can configure the URI
of the userinfo endpoint as a fallback. The userNameClaim, fallbackUserNameClaim,

and fallbackUserNamePrefix settings are applied to the response of userinfo endpoint.

Set this to false to disable the OAUTHBEARER mechanism on the listener. At least one of
PLAIN or OAUTHBEARER has to be enabled. Default is true.

Set to true to enable PLAIN authentication on the listener, which is supported for clients
on all platforms.

265

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

o]
®

® 0 O

17

®

Additional configuration for the PLAIN mechanism. If specified, clients can authenticate
over PLAIN by passing an access token as the password using an $accessToken: prefix.

Additional custom rules can be imposed on the JWT access token during validation by
setting this to a JsonPath filter query. If the access token does not contain the necessary
data, it is rejected. When using the introspectionEndpointUri, the custom check is applied
to the introspection endpoint response JSON.

An audience parameter passed to the token endpoint. An audience is used when obtaining
an access token for inter-broker authentication. It is also used in the name of a client for
OAuth 2.0 over PLAIN client authentication using a clientld and secret. This only affects
the ability to obtain the token, and the content of the token, depending on the
authorization server. It does not affect token validation rules by the listener.

A scope parameter passed to the token endpoint. A scope is used when obtaining an
access token for inter-broker authentication. It is also used in the name of a client for
OAuth 2.0 over PLAIN client authentication using a clientld and secret. This only affects
the ability to obtain the token, and the content of the token, depending on the
authorization server. It does not affect token validation rules by the listener.

The connect timeout in seconds when connecting to the authorization server. The default
value is 60.

The read timeout in seconds when connecting to the authorization server. The default
value is 60.

The maximum number of times to retry a failed HTTP request to the authorization server.
The default value is 0, meaning that no retries are performed. To use this option
effectively, consider reducing the timeout times for the connectTimeoutSeconds and
readTimeoutSeconds options. However, note that retries may prevent the current worker
thread from being available to other requests, and if too many requests stall, it could make
the Kafka broker unresponsive.

The time to wait before attempting another retry of a failed HTTP request to the
authorization server. By default, this time is set to zero, meaning that no pause is applied.
This is because many issues that cause failed requests are per-request network glitches or
proxy issues that can be resolved quickly. However, if your authorization server is under
stress or experiencing high traffic, you may want to set this option to a value of 100 ms or
more to reduce the load on the server and increase the likelihood of successful retries.

A JsonPath query that is used to extract groups information from either the JWT token or
the introspection endpoint response. This option is not set by default. By configuring this
option, a custom authorizer can make authorization decisions based on user groups.

A delimiter used to parse groups information when it is returned as a single delimited string.
The default value is ', (comma).

3. Save and exit the editor, then wait for rolling updates to complete.

4. Check the update in the logs or by watching the pod state transitions:

oc logs -f ${POD_NAME]} -¢c ${CONTAINER_NAME}
oc get pod -w

The rolling update configures the brokers to use OAuth 2.0 authentication.

266

CHAPTER 14. MANAGING SECURE ACCESS TO KAFKA

What to do next

® Configure your Kafka clients to use OAuth 2.0

14.4.6.3. Configuring Kafka Java clients to use OAuth 2.0

Configure Kafka producer and consumer APIs to use OAuth 2.0 for interaction with Kafka brokers. Add a
callback plugin to your client pom.xml file, then configure your client for OAuth 2.0.

Specify the following in your client configuration:

® A SASL (Simple Authentication and Security Layer) security protocol:

o SASL_SSL for authentication over TLS encrypted connections

o SASL_PLAINTEXT for authentication over unencrypted connections

Use SASL_SSL for production and SASL_PLAINTEXT for local development only. When
using SASL_SSL, additional ssl.truststore configuration is needed. The truststore
configuration is required for secure connection (https://) to the OAuth 2.0 authorization
server. To verify the OAuth 2.0 authorization server, add the CA certificate for the
authorization server to the truststore in your client configuration. You can configure a
truststore in PEM or PKCS #12 format.

e A Kafka SASL mechanism:

o

o

OAUTHBEARER for credentials exchange using a bearer token

PLAIN to pass client credentials (clientld + secret) or an access token

® A JAAS (Java Authentication and Authorization Service) module that implements the SASL
mechanism:

o

org.apache.kafka.common.security.oauthbearer.OAuthBearerLoginModule
implements the OAUTHBEARER mechanism

org.apache.kafka.common.security.plain.PlainLoginModule implements the PLAIN
mechanism

® SASL authentication properties, which support the following authentication methods:

o

o

OAuth 2.0 client credentials
OAuth 2.0 password grant (deprecated)
Access token

Refresh token

Add the SASL authentication properties as JAAS configuration (sasl.jaas.config). How you configure
the authentication properties depends on the authentication method you are using to access the OAuth
2.0 authorization server. In this procedure, the properties are specified in a properties file, then loaded
into the client configuration.

267

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

NOTE

You can also specify authentication properties as environment variables, or as Java
system properties. For Java system properties, you can set them using setProperty and
pass them on the command line using the -D option.

Prerequisites

® AMQ Streams and Kafka are running

® An OAuth 2.0 authorization server is deployed and configured for OAuth access to Kafka
brokers

e Kafka brokers are configured for OAuth 2.0

Procedure

1. Add the client library with OAuth 2.0 support to the pom.xml file for the Kafka client:

<dependency>
<groupld>io.strimzi</groupld>
<artifactld>kafka-oauth-client</artifactld>
<version>0.13.0.redhat-00008</version>
</dependency>

2. Configure the client properties by specifying the following configuration in a properties file:

® The security protocol
® The SASL mechanism

® The JAAS module and authentication properties according to the method being used
For example, we can add the following to a client.properties file:

Client credentials mechanism properties

security.protocol=SASL_SSL ﬂ
sasl.mechanism=0OAUTHBEARER 9
ssl.truststore.location=/tmp/truststore.p12 6
ssl.truststore.password=$STOREPASS
ssl.truststore.type=PKCS12
sasl.jaas.config=org.apache.kafka.common.security.oauthbearer.OAuthBearerLoginModule
required \
oauth.token.endpoint.uri="<token_endpoint_url>" \ ﬂ
oauth.client.id="<client id>"\ €
oauth.client.secret="<client_secret>"\ G
oauth.ssl.truststore.location="/tmp/oauth-truststore.p12" \ ﬂ
oauth.ssl.truststore.password="$STOREPASS" \ 6
oauth.ssl.truststore.type="PKCS12" \ Q
oauth.scope="<scope>"\
oauth.audience="<audience>" ; m

SASL_SSL security protocol for TLS-encrypted connections. Use SASL_PLAINTEXT
over unencrypted connections for local development only.

268

O 9900 900060000

CHAPTER 14. MANAGING SECURE ACCESS TO KAFKA

The SASL mechanism specified as OAUTHBEARER or PLAIN.

The truststore configuration for secure access to the Kafka cluster.

URI of the authorization server token endpoint.

Client ID, which is the name used when creating the client in the authorization server.
Client secret created when creating the client in the authorization server.

The location contains the public key certificate (truststore.p12) for the authorization
server.

The password for accessing the truststore.
The truststore type.

(Optional) The scope for requesting the token from the token endpoint. An
authorization server may require a client to specify the scope.

(Optional) The audience for requesting the token from the token endpoint. An
authorization server may require a client to specify the audience.

Password grants mechanism properties

909

security.protocol=SASL_SSL
sasl.mechanism=0OAUTHBEARER
ssl.truststore.location=/tmp/truststore.p12
ssl.truststore.password=$STOREPASS
ssl.truststore.type=PKCS12
sasl.jaas.config=org.apache.kafka.common.security.oauthbearer.OAuthBearerLoginModule
required \
oauth.token.endpoint.uri="<token_endpoint_url>" \
oauth.client.id="<client_id>"\)
oauth.client.secret="<client_secret>"\ 9
oauth.password.grant.username="<username>"\ 6
oauth.password.grant.password="<password>" \ ﬂ
oauth.ssl.truststore.location="/tmp/oauth-truststore.p12" \
oauth.ssl.truststore.password="$STOREPASS" \
oauth.ssl.truststore.type="PKCS12" \
oauth.scope="<scope>"\
oauth.audience="<audience>" ;

Client ID, which is the name used when creating the client in the authorization server.
(Optional) Client secret created when creating the client in the authorization server.

Username for password grant authentication. OAuth password grant configuration
(username and password) uses the OAuth 2.0 password grant method. To use
password grants, create a user account for a client on your authorization server with
limited permissions. The account should act like a service account. Use in environments
where user accounts are required for authentication, but consider using a refresh token
first.

Password for password grant authentication.

269

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

NOTE

SASL PLAIN does not support passing a username and password
(password grants) using the OAuth 2.0 password grant method.

Access token properties

security.protocol=SASL_SSL
sasl.mechanism=0OAUTHBEARER
ssl.truststore.location=/tmp/truststore.p12
ssl.truststore.password=$STOREPASS
ssl.truststore.type=PKCS12
sasl.jaas.config=org.apache.kafka.common.security.oauthbearer.OAuthBearerLoginModule
required \
oauth.token.endpoint.uri="<token_endpoint_url>" \
oauth.access.token="<access token>" ;
oauth.ssl.truststore.location="/tmp/oauth-truststore.p12" \
oauth.ssl.truststore.password="$STOREPASS" \
oauth.ssl.truststore.type="PKCS12" \

ﬂ Long-lived access token for Kafka clients.

Refresh token properties

security.protocol=SASL_SSL
sasl.mechanism=OAUTHBEARER
ssl.truststore.location=/tmp/truststore.p12
ssl.truststore.password=$STOREPASS
ssl.truststore.type=PKCS12
sasl.jaas.config=org.apache.kafka.common.security.oauthbearer.OAuthBearerLoginModule
required \
oauth.token.endpoint.uri="<token_endpoint_url>" \
oauth.client.id="<client_id>"\)
oauth.client.secret="<client secret>"\ 9
oauth.refresh.token="<refresh token>" ;
oauth.ssl.truststore.location="/tmp/oauth-truststore.p12" \
oauth.ssl.truststore.password="$STOREPASS" \
oauth.ssl.truststore.type="PKCS12" \

ﬂ Client ID, which is the name used when creating the client in the authorization server.
9 (Optional) Client secret created when creating the client in the authorization server.

g Long-lived refresh token for Kafka clients.

3. Input the client properties for OAUTH 2.0 authentication into the Java client code.

Example showing input of client properties

Properties props = new Properties();
try (FileReader reader = new FileReader("client.properties”, StandardCharsets.UTF_8)) {

270

CHAPTER 14. MANAGING SECURE ACCESS TO KAFKA

I props.load(reader);
}

4. Verify that the Kafka client can access the Kafka brokers.

14.4.6.4. Configuring OAuth 2.0 for Kafka components

This procedure describes how to configure Kafka components to use OAuth 2.0 authentication using an
authorization server.

You can configure authentication for:
e Kafka Connect
e Kafka MirrorMaker
e Kafka Bridge
In this scenario, the Kafka component and the authorization server are running in the same cluster.

Before you start

For more information on the configuration of OAuth 2.0 authentication for Kafka components, see the
KafkaClientAuthenticationOAuth schema reference. The schema reference includes examples of
configuration options.

Prerequisites

® AMQ Streams and Kafka are running

® An OAuth 2.0 authorization server is deployed and configured for OAuth access to Kafka
brokers

e Kafka brokers are configured for OAuth 2.0

Procedure

1. Create a client secret and mount it to the component as an environment variable.
For example, here we are creating a client Secret for the Kafka Bridge:

apiVersion: kafka.strimzi.io/vibeta2

kind: Secret

metadata:

name: my-bridge-oauth

type: Opaque

data:

clientSecret: MGQ1OTRmMzYtZTIIZSOOMDY2LWISOGEtMTM5MzM2NjdIZjQw ﬂ

ﬂ The clientSecret key must be in base64 format.

2. Create or edit the resource for the Kafka component so that OAuth 2.0 authentication is
configured for the authentication property.
For OAuth 2.0 authentication, you can use the following options:

® C(ClientID and secret

271

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index#type-KafkaClientAuthenticationOAuth-reference

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

e Client ID and refresh token
® Access token

® Username and password

e TLS

For example, here OAuth 2.0 is assigned to the Kafka Bridge client using a client ID and secret,
and TLS:

apiVersion: kafka.strimzi.io/vibeta2
kind: KafkaBridge
metadata:
name: my-bridge
spec:
#...
authentication:
type: oauth ﬂ
tokenEndpointUri: https://<auth-server-address>/auth/realms/master/protocol/openid-
connect/token g
clientld: kafka-bridge
clientSecret:
secretName: my-bridge-oauth
key: clientSecret
tisTrustedCertificates: 6
- secretName: oauth-server-cert
certificate: tls.crt

ﬂ Authentication type set to oauth.
9 URI of the token endpoint for authentication.

g Trusted certificates for TLS connection to the authorization server.

Depending on how you apply OAuth 2.0 authentication, and the type of authorization server,
there are additional configuration options you can use:

#...
spec:
#...
authentication:
#...
disableTIsHostnameVerification: true ﬂ
checkAccessTokenType: false 9
accessTokenlsJwt: false
scope: any ﬂ
audience: kafka
connectTimeoutSeconds: 60 G
readTimeoutSeconds: 60 ﬂ
httpRetries: 2 6
httpRetryPauseMs: 300 Q

272

CHAPTER 14. MANAGING SECURE ACCESS TO KAFKA

(Optional) Disable TLS hostname verification. Default is false.

If the authorization server does not return a typ (type) claim inside the JWT token, you can
apply checkAccessTokenType: false to skip the token type check. Defaultis true.

If you are using opaque tokens, you can apply accessTokenlsJwt: false so that access
tokens are not treated as JWT tokens.

(Optional) The scope for requesting the token from the token endpoint. An authorization
server may require a client to specify the scope. In this case it is any.

(Optional) The audience for requesting the token from the token endpoint. An
authorization server may require a client to specify the audience. In this case it is kafka.

(Optional) The connect timeout in seconds when connecting to the authorization server.
The default value is 60.

(Optional) The read timeout in seconds when connecting to the authorization server. The
default value is 60.

@ &9 9 & 9 0 0

(Optional) The maximum number of times to retry a failed HTTP request to the
authorization server. The default value is 0, meaning that no retries are performed. To use
this option effectively, consider reducing the timeout times for the
connectTimeoutSeconds and readTimeoutSeconds options. However, note that retries
may prevent the current worker thread from being available to other requests, and if too
many requests stall, it could make the Kafka broker unresponsive.

@ (Optional) The time to wait before attempting another retry of a failed HTTP request to
the authorization server. By default, this time is set to zero, meaning that no pause is
applied. This is because many issues that cause failed requests are per-request network
glitches or proxy issues that can be resolved quickly. However, if your authorization server
is under stress or experiencing high traffic, you may want to set this option to a value of 100
ms or more to reduce the load on the server and increase the likelihood of successful
retries.

3. Apply the changes to the deployment of your Kafka resource.
I oc apply -f your-file
4. Check the update in the logs or by watching the pod state transitions:

oc logs -f ${POD_NAME]} -¢c ${CONTAINER_NAME}
oc get pod -w

The rolling updates configure the component for interaction with Kafka brokers using OAuth 2.0
authentication.

14.5. USING OAUTH 2.0 TOKEN-BASED AUTHORIZATION

If you are using OAuth 2.0 with Red Hat Single Sign-On for token-based authentication, you can also
use Red Hat Single Sign-On to configure authorization rules to constrain client access to Kafka brokers.
Authentication establishes the identity of a user. Authorization decides the level of access for that user.

AMQ Streams supports the use of OAuth 2.0 token-based authorization through Red Hat Single Sign-
On Authorization Services, which allows you to manage security policies and permissions centrally.

273

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

Security policies and permissions defined in Red Hat Single Sign-On are used to grant access to
resources on Kafka brokers. Users and clients are matched against policies that permit access to
perform specific actions on Kafka brokers.

Kafka allows all users full access to brokers by default, and also provides the AclAuthorizer plugin to
configure authorization based on Access Control Lists (ACLs).

ZooKeeper stores ACL rules that grant or deny access to resources based on username. However,
OAuth 2.0 token-based authorization with Red Hat Single Sign-On offers far greater flexibility on how
you wish to implement access control to Kafka brokers. In addition, you can configure your Kafka brokers
to use OAuth 2.0 authorization and ACLs.

Additional resources

® Using OAuth 2.0 token-based authentication
® Kafka Authorization

® Red Hat Single Sign-On documentation

14.5.1. OAuth 2.0 authorization mechanism

OAuth 2.0 authorization in AMQ Streams uses Red Hat Single Sign-On server Authorization Services
REST endpoints to extend token-based authentication with Red Hat Single Sign-On by applying
defined security policies on a particular user, and providing a list of permissions granted on different
resources for that user. Policies use roles and groups to match permissions to users. OAuth 2.0
authorization enforces permissions locally based on the received list of grants for the user from Red Hat
Single Sign-On Authorization Services.

14.5.1.1. Kafka broker custom authorizer

A Red Hat Single Sign-On authorizer (KeycloakAuthorizer) is provided with AMQ Streams. To be able
to use the Red Hat Single Sign-On REST endpoints for Authorization Services provided by Red Hat
Single Sign-On, you configure a custom authorizer on the Kafka broker.

The authorizer fetches a list of granted permissions from the authorization server as needed, and
enforces authorization locally on the Kafka Broker, making rapid authorization decisions for each client
request.

14.5.2. Configuring OAuth 2.0 authorization support

This procedure describes how to configure Kafka brokers to use OAuth 2.0 authorization using Red Hat
Single Sign-On Authorization Services.

Before you begin

Consider the access you require or want to limit for certain users. You can use a combination of Red Hat
Single Sign-On groups, roles, clients, and users to configure access in Red Hat Single Sign-On.

Typically, groups are used to match users based on organizational departments or geographical
locations. And roles are used to match users based on their function.

With Red Hat Single Sign-On, you can store users and groups in LDAP, whereas clients and roles cannot

be stored this way. Storage and access to user data may be a factor in how you choose to configure
authorization policies.

274

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on

CHAPTER 14. MANAGING SECURE ACCESS TO KAFKA

NOTE

Super users always have unconstrained access to a Kafka broker regardless of the
authorization implemented on the Kafka broker.

Prerequisites

® AMQ Streams must be configured to use OAuth 2.0 with Red Hat Single Sign-On for token-
based authentication. You use the same Red Hat Single Sign-On server endpoint when you set
up authorization.

® OAuth 2.0 authentication must be configured with the maxSecondsWithoutReauthentication
option to enable re-authentication.

Procedure

1. Access the Red Hat Single Sign-On Admin Console or use the Red Hat Single Sign-On Admin
CLI to enable Authorization Services for the Kafka broker client you created when setting up
OAuth 2.0 authentication.

2. Use Authorization Services to define resources, authorization scopes, policies, and permissions
for the client.

3. Bind the permissions to users and clients by assigning them roles and groups.

4. Configure the Kafka brokers to use Red Hat Single Sign-On authorization by updating the Kafka
broker configuration (Kafka.spec.kafka) of your Kafka resource in an editor.

I oc edit kafka my-cluster

5. Configure the Kafka broker kafka configuration to use keycloak authorization, and to be able to
access the authorization server and Authorization Services.
For example:

apiVersion: kafka.strimzi.io/vibeta2
kind: Kafka
metadata:
name: my-cluster
spec:
kafka:
#...
authorization:
type: keycloak ﬂ
tokenEndpointUri: <https.//<auth-server-address>/auth/realms/external/protocol/openid-
connect/token> g
clientld: kafka €))
delegateToKafkaAcls: false)
disableTIsHostnameVerification: false @)
superUsers: G
- CN=fred
- sam
- CN=edward
tisTrustedCertificates: ﬂ
- secretName: oauth-server-cert

275

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index#property-simple-authorization-superusers-reference

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

276

®9

® 9 9 0 9 0 9 0990® 6 o

certificate: ca.crt
grantsRefreshPeriodSeconds: 60 G
grantsRefreshPoolSize: 5 Q
grantsMaxIdleSeconds: 300 @
grantsGcPeriodSeconds: 300 m
grantsAlwaysLatest: false @
connectTimeoutSeconds: 60 @
readTimeoutSeconds: 60 @
httpRetries: 2 @
enableMetrics: false @

#...

Type keycloak enables Red Hat Single Sign-On authorization.

URI of the Red Hat Single Sign-On token endpoint. For production, always use https:/
urls. When you configure token-based oauth authentication, you specify a
jwksEndpointUri as the URI for local JWT validation. The hostname for the
tokenEndpointUri URI must be the same.

The client ID of the OAuth 2.0 client definition in Red Hat Single Sign-On that has
Authorization Services enabled. Typically, kafka is used as the ID.

(Optional) Delegate authorization to Kafka AclAuthorizer if access is denied by Red Hat
Single Sign-On Authorization Services policies. Default is false.

(Optional) Disable TLS hostname verification. Default is false.

(Optional) Designated super users.

(Optional) Trusted certificates for TLS connection to the authorization server.

(Optional) The time between two consecutive grants refresh runs. That is the maximum
time for active sessions to detect any permissions changes for the user on Red Hat Single

Sign-On. The default value is 60.

(Optional) The number of threads to use to refresh (in parallel) the grants for the active
sessions. The default value is 5.

(Optional) The time, in seconds, after which an idle grant in the cache can be evicted. The
default value is 300.

(Optional) The time, in seconds, between consecutive runs of a job that cleans stale grants
from the cache. The default value is 300.

(Optional) Controls whether the latest grants are fetched for a new session. When enabled,
grants are retrieved from Red Hat Single Sign-On and cached for the user. The default
value is false.

(Optional) The connect timeout in seconds when connecting to the Red Hat Single Sign-
On token endpoint. The default value is 60.

(Optional) The read timeout in seconds when connecting to the Red Hat Single Sign-On
token endpoint. The default value is 60.

(Optional) The maximum number of times to retry (without pausing) a failed HTTP request
to the authorization server. The default value is 0, meaning that no retries are performed.

CHAPTER 14. MANAGING SECURE ACCESS TO KAFKA

To use this option effectively, consider reducing the timeout times for the
connectTimeoutSeconds and readTimeoutSeconds options. However, note that retries
may prevent the current worker thread from being available to other requests, and if too
many requests stall, it could make the Kafka broker unresponsive.

@ (Optional) Enable or disable OAuth metrics. The default value is false.

6. Save and exit the editor, then wait for rolling updates to complete.
7. Check the update in the logs or by watching the pod state transitions:

oc logs -f ${POD_NAME} -c kafka
oc get pod -w

The rolling update configures the brokers to use OAuth 2.0 authorization.
8. Verify the configured permissions by accessing Kafka brokers as clients or users with specific

roles, making sure they have the necessary access, or do not have the access they are not
supposed to have.

14.5.3. Managing policies and permissions in Red Hat Single Sign-On Authorization
Services

This section describes the authorization models used by Red Hat Single Sign-On Authorization Services
and Kafka, and defines the important concepts in each model.

To grant permissions to access Kafka, you can map Red Hat Single Sign-On Authorization Services
objects to Kafka resources by creating an OAuth client specification in Red Hat Single Sign-On. Kafka
permissions are granted to user accounts or service accounts using Red Hat Single Sign-On
Authorization Services rules.

Examples are shown of the different user permissions required for common Kafka operations, such as
creating and listing topics.

14.5.3.1. Kafka and Red Hat Single Sign-On authorization models overview
Kafka and Red Hat Single Sign-On Authorization Services use different authorization models.

Kafka authorization model

Kafka's authorization model uses resource types. When a Kafka client performs an action on a broker, the
broker uses the configured KeycloakAuthorizer to check the client’s permissions, based on the action
and resource type.

Kafka uses five resource types to control access: Topic, Group, Cluster, Transactionalld, and
DelegationToken. Each resource type has a set of available permissions.

Topic
e (Create
o Write
® Read

o Delete

277

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

® Describe
® DescribeConfigs
e Alter

e AlterConfigs

® Read
® Describe
® Delete
Cluster
e (Create
® Describe
e Alter
® DescribeConfigs
e AlterConfigs
e |dempotentWrite
® (ClusterAction
Transactionalld
® Describe
o Write
DelegationToken
® Describe
Red Hat Single Sign-On Authorization Services model
The Red Hat Single Sign-On Authorization Services model has four concepts for defining and granting
permissions: resources, authorization scopes, policies, and permissions.

Resources

Aresource is a set of resource definitions that are used to match resources with permitted actions. A
resource might be an individual topic, for example, or all topics with names starting with the same
prefix. A resource definition is associated with a set of available authorization scopes, which
represent a set of all actions available on the resource. Often, only a subset of these actions is
actually permitted.

Authorization scopes

An authorization scope is a set of all the available actions on a specific resource definition. When you
define a new resource, you add scopes from the set of all scopes.

Policies

278

CHAPTER 14. MANAGING SECURE ACCESS TO KAFKA

A policy is an authorization rule that uses criteria to match against a list of accounts. Policies can
match:

® Service accounts based on client ID or roles

® (User accounts based on username, groups, or roles.

Permissions

A permission grants a subset of authorization scopes on a specific resource definition to a set of
users.

Additional resources

o Kafka authorization model

14.5.3.2. Map Red Hat Single Sign-On Authorization Services to the Kafka authorization
model

The Kafka authorization model is used as a basis for defining the Red Hat Single Sign-On roles and
resources that will control access to Kafka.

To grant Kafka permissions to user accounts or service accounts, you first create an OAuth client
specification in Red Hat Single Sign-On for the Kafka broker. You then specify Red Hat Single Sign-On
Authorization Services rules on the client. Typically, the client id of the OAuth client that represents the
broker is kafka. The example configuration files provided with AMQ Streams use kafka as the OAuth
clientid.

NOTE

If you have multiple Kafka clusters, you can use a single OAuth client (kafka) for all of
them. This gives you a single, unified space in which to define and manage authorization
rules. However, you can also use different OAuth client ids (for example, my-cluster-
kafka or cluster-dev-kafka) and define authorization rules for each cluster within each
client configuration.

The kafka client definition must have the Authorization Enabled option enabled in the Red Hat Single
Sign-On Admin Console.

All permissions exist within the scope of the kafka client. If you have different Kafka clusters configured
with different OAuth client IDs, they each need a separate set of permissions even though they're part
of the same Red Hat Single Sign-On realm.

When the Kafka client uses OAUTHBEARER authentication, the Red Hat Single Sign-On authorizer
(KeycloakAuthorizer) uses the access token of the current session to retrieve a list of grants from the
Red Hat Single Sign-On server. To retrieve the grants, the authorizer evaluates the Red Hat Single
Sign-On Authorization Services policies and permissions.

Authorization scopes for Kafka permissions

An initial Red Hat Single Sign-On configuration usually involves uploading authorization scopes to create
a list of all possible actions that can be performed on each Kafka resource type. This step is performed
once only, before defining any permissions. You can add authorization scopes manually instead of
uploading them.

Authorization scopes must contain all the possible Kafka permissions regardless of the resource type:

279

https://kafka.apache.org/documentation/#security_authz_primitives

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

e Create

o Write

® Read

® Delete

® Describe

e Alter

e DescribeConfig
e AlterConfig

® (ClusterAction

e |dempotentWrite

NOTE

If you're certain you won't need a permission (for example, IdempotentWrite), you can
omit it from the list of authorization scopes. However, that permission won't be available
to target on Kafka resources.

Resource patterns for permissions checks

Resource patterns are used for pattern matching against the targeted resources when performing
permission checks. The general pattern format is RESOURCE-TYPE:PATTERN-NAME.

The resource types mirror the Kafka authorization model. The pattern allows for two matching options:
® Exact matching (when the pattern does not end with *)
® Prefix matching (when the pattern ends with *)

Example patterns for resources

Topic:my-topic
Topic:orders-*
Group:orders-*
Cluster:*

Additionally, the general pattern format can be prefixed by kafka-cluster:CLUSTER-NAME followed by
a comma, where CLUSTER-NAME refers to the metadata.name in the Kafka custom resource.

Example patterns for resources with cluster prefix

kafka-cluster:my-cluster, Topic:*
kafka-cluster:*,Group:b_*

When the kafka-cluster prefix is missing, it is assumed to be kafka-cluster:*.

280

CHAPTER 14. MANAGING SECURE ACCESS TO KAFKA

When defining a resource, you can associate it with a list of possible authorization scopes which are
relevant to the resource. Set whatever actions make sense for the targeted resource type.

Though you may add any authorization scope to any resource, only the scopes supported by the
resource type are considered for access control.

Policies for applying access permission

Policies are used to target permissions to one or more user accounts or service accounts. Targeting can
refer to:

® Specific user or service accounts
® Realm roles or client roles
® User groups
® JavaScript rules to match a client IP address
A policy is given a unique name and can be reused to target multiple permissions to multiple resources.

Permissions to grant access

Use fine-grained permissions to pull together the policies, resources, and authorization scopes that
grant access to users.

The name of each permission should clearly define which permissions it grants to which users. For
example, Dev Team B can read from topics starting with x.

Additional resources

® For more information about how to configure permissions through Red Hat Single Sign-On
Authorization Services, see Section 14.5.4, “Trying Red Hat Single Sign-On Authorization
Services”.

14.5.3.3. Example permissions required for Kafka operations

The following examples demonstrate the user permissions required for performing common operations
on Kafka.

Create a topic

To create a topic, the Create permission is required for the specific topic, or for Cluster:kafka-cluster.

bin/kafka-topics.sh --create --topic my-topic \
--bootstrap-server my-cluster-kafka-bootstrap:9092 --command-config=/tmp/config.properties

List topics

If a user has the Describe permission on a specified topic, the topic is listed.

bin/kafka-topics.sh --list \
--bootstrap-server my-cluster-kafka-bootstrap:9092 --command-config=/tmp/config.properties

Display topic details

To display a topic's details, Describe and DescribeConfigs permissions are required on the topic.

281

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

bin/kafka-topics.sh --describe --topic my-topic \
--bootstrap-server my-cluster-kafka-bootstrap:9092 --command-config=/tmp/config.properties
Produce messages to a topic

To produce messages to a topic, Describe and Write permissions are required on the topic.

If the topic hasn't been created yet, and topic auto-creation is enabled, the permissions to create a
topic are required.

bin/kafka-console-producer.sh --topic my-topic \
--bootstrap-server my-cluster-kafka-bootstrap:9092 --producer.config=/tmp/config.properties

Consume messages from a topic

To consume messages from a topic, Describe and Read permissions are required on the topic.
Consuming from the topic normally relies on storing the consumer offsets in a consumer group, which
requires additional Describe and Read permissions on the consumer group.

Two resources are needed for matching. For example:

Topic:my-topic
Group:my-group-*

bin/kafka-console-consumer.sh --topic my-topic --group my-group-1 --from-beginning \
--bootstrap-server my-cluster-kafka-bootstrap:9092 --consumer.config /tmp/config.properties

Produce messages to a topic using an idempotent producer

As well as the permissions for producing to a topic, an additional IdempotentWrite permission is
required on the Cluster:kafka-cluster resource.

Two resources are needed for matching. For example:

Topic:my-topic
Cluster:kafka-cluster

bin/kafka-console-producer.sh --topic my-topic \
--bootstrap-server my-cluster-kafka-bootstrap:9092 --producer.config=/tmp/config.properties --
producer-property enable.idempotence=true --request-required-acks -1

List consumer groups

When listing consumer groups, only the groups on which the user has the Describe permissions are
returned. Alternatively, if the user has the Describe permission on the Cluster:kafka-cluster, all the
consumer groups are returned.

bin/kafka-consumer-groups.sh --list \
--bootstrap-server my-cluster-kafka-bootstrap:9092 --command-config=/tmp/config.properties

Display consumer group details

To display a consumer group’s details, the Describe permission is required on the group and the topics
associated with the group.

282

CHAPTER 14. MANAGING SECURE ACCESS TO KAFKA

bin/kafka-consumer-groups.sh --describe --group my-group-1\
--bootstrap-server my-cluster-kafka-bootstrap:9092 --command-config=/tmp/config.properties

Change topic configuration

To change a topic's configuration, the Describe and Alter permissions are required on the topic.

bin/kafka-topics.sh --alter --topic my-topic --partitions 2 \
--bootstrap-server my-cluster-kafka-bootstrap:9092 --command-config=/tmp/config.properties

Display Kafka broker configuration

In order to use kafka-configs.sh to get a broker’s configuration, the DescribeConfigs permission is
required on the Cluster:kafka-cluster.

bin/kafka-configs.sh --entity-type brokers --entity-name 0 --describe --all \
--bootstrap-server my-cluster-kafka-bootstrap:9092 --command-config=/tmp/config.properties

Change Kafka broker configuration

To change a Kafka broker’s configuration, DescribeConfigs and AlterConfigs permissions are required
on Cluster:kafka-cluster.

bin/kafka-configs --entity-type brokers --entity-name 0 --alter --add-config log.cleaner.threads=2 \
--bootstrap-server my-cluster-kafka-bootstrap:9092 --command-config=/tmp/config.properties

Delete a topic

To delete a topic, the Describe and Delete permissions are required on the topic.

bin/kafka-topics.sh --delete --topic my-topic \
--bootstrap-server my-cluster-kafka-bootstrap:9092 --command-config=/tmp/config.properties

Select a lead partition

To run leader selection for topic partitions, the Alter permission is required on the Cluster:kafka-
cluster.

bin/kafka-leader-election.sh --topic my-topic --partition 0 --election-type PREFERRED /
--bootstrap-server my-cluster-kafka-bootstrap:9092 --admin.config /tmp/config.properties

Reassign partitions

To generate a partition reassignment file, Describe permissions are required on the topics involved.
bin/kafka-reassign-partitions.sh --topics-to-move-json-file /tmp/topics-to-move.json --broker-list "0,1" -
-generate \

--bootstrap-server my-cluster-kafka-bootstrap:9092 --command-config /tmp/config.properties >
/tmp/partition-reassignment.json

To execute the partition reassignment, Describe and Alter permissions are required on Cluster:kafka-
cluster. Also, Describe permissions are required on the topics involved.

283

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

bin/kafka-reassign-partitions.sh --reassignment-json-file /timp/partition-reassignment.json --execute \
--bootstrap-server my-cluster-kafka-bootstrap:9092 --command-config /tmp/config.properties

To verify partition reassignment, Describe, and AlterConfigs permissions are required on
Cluster:kafka-cluster, and on each of the topics involved.

bin/kafka-reassign-partitions.sh --reassignment-json-file /tmp/partition-reassignment.json --verify \
--bootstrap-server my-cluster-kafka-bootstrap:9092 --command-config /tmp/config.properties

14.5.4. Trying Red Hat Single Sign-On Authorization Services

This example explains how to use Red Hat Single Sign-On Authorization Services with keycloak
authorization. Use Red Hat Single Sign-On Authorization Services to enforce access restrictions on
Kafka clients. Red Hat Single Sign-On Authorization Services use authorization scopes, policies and
permissions to define and apply access control to resources.

Red Hat Single Sign-On Authorization Services REST endpoints provide a list of granted permissions on
resources for authenticated users. The list of grants (permissions) is fetched from the Red Hat Single
Sign-On server as the first action after an authenticated session is established by the Kafka client. The
list is refreshed in the background so that changes to the grants are detected. Grants are cached and
enforced locally on the Kafka broker for each user session to provide fast authorization decisions.

AMQ Streams provides example configuration files. These include the following example files for
setting up Red Hat Single Sign-On:

kafka-ephemeral-oauth-single-keycloak-authz.yaml

An example Kafka custom resource configured for OAuth 2.0 token-based authorization using Red
Hat Single Sign-On. You can use the custom resource to deploy a Kafka cluster that uses keycloak
authorization and token-based oauth authentication.

kafka-authz-realm.json

An example Red Hat Single Sign-On realm configured with sample groups, users, roles and clients.
You can import the realm into a Red Hat Single Sign-On instance to set up fine-grained permissions
to access Kafka.

If you want to try the example with Red Hat Single Sign-On, use these files to perform the tasks outlined
in this section in the order shown.

1. Accessing the Red Hat Single Sign-On Admin Console

2. Deploying a Kafka cluster with Red Hat Single Sign-On authorization
3. Preparing TLS connectivity for a CLI Kafka client session

4. Checking authorized access to Kafka using a CLI Kafka client session

Authentication

When you configure token-based oauth authentication, you specify a jwksEndpointUri as the URI for
local JWT validation. When you configure keycloak authorization, you specify a tokenEndpointUri as
the URI of the Red Hat Single Sign-On token endpoint. The hostname for both URIs must be the same.

Targeted permissions with group or role policies

In Red Hat Single Sign-On, confidential clients with service accounts enabled can authenticate to the
server in their own name using a client ID and a secret. This is convenient for microservices that typically

284

CHAPTER 14. MANAGING SECURE ACCESS TO KAFKA

act in their own name, and not as agents of a particular user (like a web site). Service accounts can have
roles assigned like regular users. They cannot, however, have groups assigned. As a consequence, if you
want to target permissions to microservices using service accounts, you cannot use group policies, and
should instead use role policies. Conversely, if you want to limit certain permissions only to regular user
accounts where authentication with a username and password is required, you can achieve that as a side
effect of using the group policies rather than the role policies. This is what is used in this example for
permissions that start with ClusterManager. Performing cluster management is usually done
interactively using CLI tools. It makes sense to require the user to log in before using the resulting
access token to authenticate to the Kafka broker. In this case, the access token represents the specific
user, rather than the client application.

14.5.4.1. Accessing the Red Hat Single Sign-On Admin Console

Set up Red Hat Single Sign-On, then connect to its Admin Console and add the preconfigured realm.
Use the example kafka-authz-realm.json file to import the realm. You can check the authorization rules
defined for the realm in the Admin Console. The rules grant access to the resources on the Kafka cluster
configured to use the example Red Hat Single Sign-On realm.

Prerequisites

® A running OpenShift cluster.

e The AMQ Streams examples/security/keycloak-authorization/kafka-authz-realm.json file
that contains the preconfigured realm.

Procedure

1. Install the Red Hat Single Sign-On server using the Red Hat Single Sign-On Operator as
described in Server Installation and Configuration in the Red Hat Single Sign-On
documentation.

2. Wait until the Red Hat Single Sign-On instance is running.

3. Get the external hostname to be able to access the Admin Console.

NS=sso
oc get ingress keycloak -n $NS

In this example, we assume the Red Hat Single Sign-On server is running in the ss0 namespace.
4. Get the password for the admin user.
I oc get -n $NS pod keycloak-0 -o yaml | less

The password is stored as a secret, so get the configuration YAML file for the Red Hat Single
Sign-On instance to identify the name of the secret (secretKeyRef.name).

5. Use the name of the secret to obtain the clear text password.

SECRET_NAME=credential-keycloak
oc get -n $NS secret $SSECRET_NAME -o yaml | grep PASSWORD | awk '{print $2}' |
base64 -D

In this example, we assume the name of the secret is credential-keycloak.

285

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

286

6.

Login to the Admin Console with the username admin and the password you obtained.
Use https://HOSTNAME to access the Kubernetes Ingress.

You can now upload the example realm to Red Hat Single Sign-On using the Admin Console.
Click Add Realm to import the example realm.

Add the examples/security/keycloak-authorization/kafka-authz-realm.json file, and then
click Create.
You now have kafka-authz as your current realm in the Admin Console.

The default view displays the Master realm.

In the Red Hat Single Sign-On Admin Console, go to Clients > kafka > Authorization > Settings

and check that Decision Strategy is set to Affirmative.
An affirmative policy means that at least one policy must be satisfied for a client to access the
Kafka cluster.

. In the Red Hat Single Sign-On Admin Console, go to Groups, Users, Roles and Clients to view

the realm configuration.

Groups

Groups are used to create user groups and set user permissions. Groups are sets of users
with a name assigned. They are used to compartmentalize users into geographical,

organizational or departmental units. Groups can be linked to an LDAP identity provider. You

can make a user a member of a group through a custom LDAP server admin user interface,
for example, to grant permissions on Kafka resources.

Users

Users are used to create users. For this example, alice and bob are defined. aliceis a
member of the ClusterManager group and bob is a member of ClusterManager-my-
cluster group. Users can be stored in an LDAP identity provider.

Roles

Roles mark users or clients as having certain permissions. Roles are a concept analogous to
groups. They are usually used to tag users with organizational roles and have the requisite
permissions. Roles cannot be stored in an LDAP identity provider. If LDAP is a requirement,
you can use groups instead, and add Red Hat Single Sign-On roles to the groups so that
when users are assigned a group they also get a corresponding role.

Clients

Clients can have specific configurations. For this example, kafka, kafka-cli, team-a-client,
and team-b-client clients are configured.

o The kafka client is used by Kafka brokers to perform the necessary OAuth 2.0
communication for access token validation. This client also contains the authorization
services resource definitions, policies, and authorization scopes used to perform
authorization on the Kafka brokers. The authorization configuration is defined in the
kafka client from the Authorization tab, which becomes visible when Authorization
Enabled is switched on from the Settings tab.

e The kafka-cli client is a public client that is used by the Kafka command line tools when
authenticating with username and password to obtain an access token or a refresh
token.

e The team-a-client and team-b-client clients are confidential clients representing
services with partial access to certain Kafka topics.

CHAPTER 14. MANAGING SECURE ACCESS TO KAFKA

1. In the Red Hat Single Sign-On Admin Console, go to Authorization > Permissions to see the
granted permissions that use the resources and policies defined for the realm.
For example, the kafka client has the following permissions:

Dev Team A can write to topics that start with x_ on any cluster

Dev Team B can read from topics that start with x_ on any cluster

Dev Team B can update consumer group offsets that start with x_ on any cluster
ClusterManager of my-cluster Group has full access to cluster config on my-cluster
ClusterManager of my-cluster Group has full access to consumer groups on my-cluster
ClusterManager of my-cluster Group has full access to topics on my-cluster

Dev Team A

The Dev Team A realm role can write to topics that start with x_ on any cluster. This
combines a resource called Topic:x_* Describe and Write scopes, and the Dev Team A
policy. The Dev Team A policy matches all users that have a realm role called Dev Team A.

Dev Team B

The Dev Team B realm role can read from topics that start with X_ on any cluster. This
combines Topic:x_* Group:x_* resources, Describe and Read scopes, and the Dev Team
B policy. The Dev Team B policy matches all users that have a realm role called Dev Team
B. Matching users and clients have the ability to read from topics, and update the consumed
offsets for topics and consumer groups that have names starting with x_.

14.5.4.2. Deploying a Kafka cluster with Red Hat Single Sign-On authorization

Deploy a Kafka cluster configured to connect to the Red Hat Single Sign-On server. Use the example
kafka-ephemeral-oauth-single-keycloak-authz.yaml file to deploy the Kafka cluster as a Kafka
custom resource. The example deploys a single-node Kafka cluster with keycloak authorization and
oauth authentication.

Prerequisites

® The Red Hat Single Sign-On authorization server is deployed to your OpenShift cluster and
loaded with the example realm.

® The Cluster Operator is deployed to your OpenShift cluster.

® The AMQ Streams examples/security/keycloak-authorization/kafka-ephemeral-oauth-
single-keycloak-authz.yaml custom resource.

Procedure

1. Use the hostname of the Red Hat Single Sign-On instance you deployed to prepare a truststore
certificate for Kafka brokers to communicate with the Red Hat Single Sign-On server.

SSO_HOST=SSO-HOSTNAME
SSO_HOST_PORT=$SSO_HOST:443
STOREPASS=storepass

echo "Q" | openssl s_client -showcerts -connect $SSO_HOST_PORT 2>/dev/null | awk '
/BEGIN CERTIFICATE/,/END CERTIFICATE/ { print $0 } ' > /tmp/sso.pem

The certificate is required as Kubernetes Ingress is used to make a secure (HTTPS) connection.

287

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

Usually there is not one single certificate, but a certificate chain. You only have to provide the
top-mostissuer CA, which is listed last in the /tmp/sso.pem file. You can extract it manually or
using the following commands:

Example command to extract the top CA certificate in a certificate chain

split -p "-----BEGIN CERTIFICATE-----" sso.pem sso-
for f in $(Is sso-*); do mv $f $f.pem; done
cp $(Is sso-* | sort -r | head -n 1) sso-ca.crt

NOTE

A trusted CA certificate is normally obtained from a trusted source, and not by
using the openssl command.

2. Deploy the certificate to OpenShift as a secret.
I oc create secret generic oauth-server-cert --from-file=/tmp/sso-ca.crt -n $NS

3. Set the hostname as an environment variable

I SSO_HOST=SSO-HOSTNAME

4. Create and deploy the example Kafka cluster.

cat examples/security/keycloak-authorization/kafka-ephemeral-oauth-single-keycloak-
authz.yaml | sed -E 's#\${SSO_HOST}"#$SSO_HOST#" | oc create -n $NS -f -

14.5.4.3. Preparing TLS connectivity for a CLI Kafka client session

Create a new pod for an interactive CLI session. Set up a truststore with a Red Hat Single Sign-On
certificate for TLS connectivity. The truststore is to connect to Red Hat Single Sign-On and the Kafka
broker.

Prerequisites

® The Red Hat Single Sign-On authorization server is deployed to your OpenShift cluster and
loaded with the example realm.

In the Red Hat Single Sign-On Admin Console, check the roles assigned to the clients are
displayed in Clients > Service Account Roles

e The Kafka cluster configured to connect with Red Hat Single Sign-On is deployed to your
OpenShift cluster.

Procedure

1. Run a new interactive pod container using the AMQ Streams Kafka image to connect to a
running Kafka broker.

NS=sso

oc run -ti --restart=Never --image=registry.redhat.io/amqg-streams/kafka-35-rhel8:2.5.1 kafka-
cli -n $NS -- /bin/sh

288

CHAPTER 14. MANAGING SECURE ACCESS TO KAFKA

-

NOTE

If oc times out waiting on the image download, subsequent attempts may result
in an AlreadyExists error.

2. Attach to the pod container.

I oc attach -ti kafka-cli -n $NS

3. Use the hostname of the Red Hat Single Sign-On instance to prepare a certificate for client
connection using TLS.

SSO_HOST=SSO-HOSTNAME
SSO_HOST_PORT=$SSO_HOST:443
STOREPASS=storepass

echo "Q" | openssl s_client -showcerts -connect $SSO_HOST_PORT 2>/dev/null | awk '
/BEGIN CERTIFICATE/,/END CERTIFICATE/ { print $0 } ' > /tmp/sso.pem

Usually there is not one single certificate, but a certificate chain. You only have to provide the
top-mostissuer CA, which is listed last in the /tmp/sso.pem file. You can extract it manually or
using the following command:

Example command to extract the top CA certificate in a certificate chain

split -p "-----BEGIN CERTIFICATE-----" sso.pem sso-
for f in $(Is sso-*); do mv $f $f.pem; done
cp $(Is sso-* | sort -r | head -n 1) sso-ca.crt

g NOTE

A trusted CA certificate is normally obtained from a trusted source, and not by
using the openssl command.

4. Create a truststore for TLS connection to the Kafka brokers.

keytool -keystore /tmp/truststore.p12 -storetype pkcs12 -alias sso -storepass $STOREPASS
-import -file /tmp/sso-ca.crt -noprompt

5. Use the Kafka bootstrap address as the hostname of the Kafka broker and the tls listener port
(9093) to prepare a certificate for the Kafka broker.

KAFKA_HOST_PORT=my-cluster-kafka-bootstrap:9093
STOREPASS=storepass

echo "Q" | openssl s_client -showcerts -connect SKAFKA_HOST_PORT 2>/dev/null | awk '
/BEGIN CERTIFICATE/,/END CERTIFICATE/ { print $0 } ' > /tmp/my-cluster-kafka.pem

The obtained .pem file is usually not one single certificate, but a certificate chain. You only have
to provide the top-most issuer CA, which is listed last in the /tmp/my-cluster-kafka.pem file.

You can extract it manually or using the following command:

Example command to extract the top CA certificate in a certificate chain

289

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

split -p "-----BEGIN CERTIFICATE-----" /timp/my-cluster-kafka.pem kafka-
for f in $(Is kafka-*); do mv $f $f.pem; done
cp $(Is kafka-* | sort -r | head -n 1) my-cluster-kafka-ca.crt

NOTE

A trusted CA certificate is normally obtained from a trusted source, and not by
using the openssl command. For this example we assume the client is running in
a pod in the same namespace where the Kafka cluster was deployed. If the client
is accessing the Kafka cluster from outside the OpenShift cluster, you would have
to first determine the bootstrap address. In that case you can also get the cluster
certificate directly from the OpenShift secret, and there is no need for openssl.
For more information, see Chapter 13, Setting up client access to a Kafka cluster .

6. Add the certificate for the Kafka broker to the truststore.

keytool -keystore /tmp/truststore.p12 -storetype pkcs12 -alias my-cluster-kafka -storepass
$STOREPASS -import -file /tmp/my-cluster-kafka-ca.crt -noprompt

Keep the session open to check authorized access.

14.5.4.4. Checking authorized access to Kafka using a CLI Kafka client session

Check the authorization rules applied through the Red Hat Single Sign-On realm using an interactive
CLI session. Apply the checks using Kafka's example producer and consumer clients to create topics
with user and service accounts that have different levels of access.

Use the team-a-client and team-b-client clients to check the authorization rules. Use the alice admin
user to perform additional administrative tasks on Kafka.

The AMQ Streams Kafka image used in this example contains Kafka producer and consumer binaries.

Prerequisites

® ZooKeeper and Kafka are running in the OpenShift cluster to be able to send and receive
messages.

® The interactive CLI Kafka client session is started.
Apache Kafka download.

Setting up client and admin user configuration

1. Prepare a Kafka configuration file with authentication properties for the team-a-client client.
SSO_HOST=SSO-HOSTNAME

cat > /tmp/team-a-client.properties << EOF

security.protocol=SASL_SSL

ssl.truststore.location=/tmp/truststore.p12

ssl.truststore.password=$STOREPASS

ssl.truststore.type=PKCS12

sasl.mechanism=0OAUTHBEARER
sasl.jaas.config=org.apache.kafka.common.security.oauthbearer.OAuthBearerLoginModule
required \

290

http://kafka.apache.org/

CHAPTER 14. MANAGING SECURE ACCESS TO KAFKA

oauth.client.id="team-a-client" \

oauth.client.secret="team-a-client-secret" \

oauth.ssl.truststore.location="/tmp/truststore.p12" \

oauth.ssl.truststore.password="$STOREPASS" \

oauth.ssl.truststore.type="PKCS12" \

oauth.token.endpoint.uri="https://$SSO_HOST/auth/realms/kafka-authz/protocol/openid-
connect/token" ;
sasl.login.callback.handler.class=io.strimzi.kafka.oauth.client.JaasClientOauthLoginCallbackHat
dler
EOF

The SASL OAUTHBEARER mechanism is used. This mechanism requires a client ID and client
secret, which means the client first connects to the Red Hat Single Sign-On server to obtain an
access token. The client then connects to the Kafka broker and uses the access token to
authenticate.

2. Prepare a Kafka configuration file with authentication properties for the team-b-client client.

cat > /tmp/team-b-client.properties << EOF
security.protocol=SASL_SSL
ssl.truststore.location=/tmp/truststore.p12
ssl.truststore.password=$STOREPASS
ssl.truststore.type=PKCS12
sasl.mechanism=0OAUTHBEARER
sasl.jaas.config=org.apache.kafka.common.security.oauthbearer.OAuthBearerLoginModule
required \
oauth.client.id="team-b-client" \
oauth.client.secret="team-b-client-secret" \
oauth.ssl.truststore.location="/tmp/truststore.p12" \
oauth.ssl.truststore.password="$STOREPASS" \
oauth.ssl.truststore.type="PKCS12" \
oauth.token.endpoint.uri="https://$SSO_HOST/auth/realms/kafka-authz/protocol/openid-
connect/token" ;
sasl.login.callback.handler.class=io.strimzi.kafka.oauth.client.JaasClientOauthLoginCallbackHat
dler
EOF

3. Authenticate admin user alice by using curl and performing a password grant authentication to
obtain a refresh token.

USERNAME-=alice
PASSWORD=alice-password

GRANT_RESPONSE=$(curl -X POST "https://$SSO_HOST/auth/realms/kafka-
authz/protocol/openid-connect/token" -H 'Content-Type: application/x-www-form-urlencoded'
-d
"grant_type=password&username=$USERNAME&password=$PASSWORD&client_id=kafka-
cli&scope=offline_access" -s -k)

REFRESH_TOKEN=$(echo $GRANT_RESPONSE | awk -F "refresh_token\":\"" {printf $2}' |
awk -F "\"" {printf $1}')

The refresh token is an offline token that is long-lived and does not expire.

4. Prepare a Kafka configuration file with authentication properties for the admin user alice.

291

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

cat > /tmp/alice.properties << EOF
security.protocol=SASL_SSL
ssl.truststore.location=/tmp/truststore.p12
ssl.truststore.password=$STOREPASS
ssl.truststore.type=PKCS12
sasl.mechanism=0OAUTHBEARER
sasl.jaas.config=org.apache.kafka.common.security.oauthbearer.OAuthBearerLoginModule
required \
oauth.refresh.token="$REFRESH_TOKEN" \
oauth.client.id="kafka-cli" \
oauth.ssl.truststore.location="/tmp/truststore.p12" \
oauth.ssl.truststore.password="$STOREPASS" \
oauth.ssl.truststore.type="PKCS12" \
oauth.token.endpoint.uri="https://$SSO_HOST/auth/realms/kafka-authz/protocol/openid-
connect/token" ;
sasl.login.callback.handler.class=io.strimzi.kafka.oauth.client.JaasClientOauthLoginCallbackHat
dler
EOF

The kafka-cli public client is used for the oauth.client.id in the sasl.jaas.config. Since it's a
public client it does not require a secret. The client authenticates with the refresh token that was
authenticated in the previous step. The refresh token requests an access token behind the
scenes, which is then sent to the Kafka broker for authentication.

Producing messages with authorized access

Use the team-a-client configuration to check that you can produce messages to topics that start with
a_orx_.

292

1. Write to topic my-topic.

bin/kafka-console-producer.sh --bootstrap-server my-cluster-kaftka-bootstrap:9093 --topic
my-topic \

--producer.config=/tmp/team-a-client.properties
First message

This request returns a Not authorized to access topics: [my-topic] error.

team-a-client has a Dev Team A role that gives it permission to perform any supported actions
on topics that start with a_, but can only write to topics that start with x_. The topic named my-
topic matches neither of those rules.

2. Write to topic a_messages.

bin/kafka-console-producer.sh --bootstrap-server my-cluster-kaftka-bootstrap:9093 --topic
a_messages \
--producer.config /tmp/team-a-client.properties
First message
Second message

Messages are produced to Kafka successfully.

3. Press CTRL+C to exit the CLI application.

4. Check the Kafka container log for a debug log of Authorization GRANTED for the request.

CHAPTER 14. MANAGING SECURE ACCESS TO KAFKA

I oc logs my-cluster-kafka-0 -f -n $NS
Consuming messages with authorized access
Use the team-a-client configuration to consume messages from topic a_messages.

1. Fetch messages from topic a_messages.

bin/kafka-console-consumer.sh --bootstrap-server my-cluster-kafka-bootstrap:9093 --topic
a_messages \

--from-beginning --consumer.config /tmp/team-a-client.properties

The request returns an error because the Dev Team A role for team-a-client only has access to
consumer groups that have names starting witha_.

2. Update the team-a-client properties to specify the custom consumer group it is permitted to
use.

bin/kafka-console-consumer.sh --bootstrap-server my-cluster-kafka-bootstrap:9093 --topic
a_messages \

--from-beginning --consumer.config /tmp/team-a-client.properties --group
a_consumer_group_1

The consumer receives all the messages from the a_messages topic.

Administering Kafka with authorized access

The team-a-client is an account without any cluster-level access, but it can be used with some
administrative operations.

1. List topics.

bin/kafka-topics.sh --bootstrap-server my-cluster-kaftka-bootstrap:9093 --command-config
/tmp/team-a-client.properties --list

The a_messages topic is returned.

2. List consumer groups.

bin/kaftka-consumer-groups.sh --bootstrap-server my-cluster-kafka-bootstrap:9093 --
command-config /tmp/team-a-client.properties --list

The a_consumer_group_1 consumer group is returned.

Fetch details on the cluster configuration.

bin/kafka-configs.sh --bootstrap-server my-cluster-kafka-bootstrap:9093 --command-config
/tmp/team-a-client.properties \

--entity-type brokers --describe --entity-default

The request returns an error because the operation requires cluster level permissions that team-
a-client does not have.

Using clients with different permissions

Use the team-b-client configuration to produce messages to topics that start with b_.

293

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

1. Write to topic a_messages.

bin/kafka-console-producer.sh --bootstrap-server my-cluster-kaftka-bootstrap:9093 --topic
a_messages \

--producer.config /tmp/team-b-client.properties
Message 1

This request returns a Not authorized to access topics: [a_messages] error.

2. Write to topic b_messages.

bin/kafka-console-producer.sh --bootstrap-server my-cluster-kaftka-bootstrap:9093 --topic
b_messages \
--producer.config /tmp/team-b-client.properties
Message 1
Message 2
Message 3

Messages are produced to Kafka successfully.

3. Write to topic x_messages.

bin/kafka-console-producer.sh --bootstrap-server my-cluster-kaftka-bootstrap:9093 --topic
Xx_messages \

--producer.config /tmp/team-b-client.properties
Message 1

A Not authorized to access topics: [x_messages] error is returned, The team-b-client can
only read from topic x_messages.

4. Write to topic x_messages using team-a-client.

bin/kafka-console-producer.sh --bootstrap-server my-cluster-kafka-bootstrap:9093 --topic
Xx_messages \

--producer.config /tmp/team-a-client.properties
Message 1

This request returns a Not authorized to access topics: [x_messages] error. The team-a-

client can write to the x_messages topic, but it does not have a permission to create a topic if
it does not yet exist. Before team-a-client can write to the x_messages topic, an admin power
user must create it with the correct configuration, such as the number of partitions and replicas.

Managing Kafka with an authorized admin user

Use admin user alice to manage Kafka. alice has full access to manage everything on any Kafka cluster.

1. Create the x_messages topic as alice.

bin/kafka-topics.sh --bootstrap-server my-cluster-kaftka-bootstrap:9093 --command-config
/tmp/alice.properties \
--topic x_messages --create --replication-factor 1 --partitions 1

The topic is created successfully.

2. List all topics as alice.

294

CHAPTER 14. MANAGING SECURE ACCESS TO KAFKA

bin/kafka-topics.sh --bootstrap-server my-cluster-kaftka-bootstrap:9093 --command-config
/tmp/alice.properties --list

bin/kafka-topics.sh --bootstrap-server my-cluster-kaftka-bootstrap:9093 --command-config
/tmp/team-a-client.properties --list

bin/kafka-topics.sh --bootstrap-server my-cluster-kaftka-bootstrap:9093 --command-config
/tmp/team-b-client.properties --list

Admin user alice can list all the topics, whereas team-a-client and team-b-client can only list
the topics they have access to.

The Dev Team A and Dev Team B roles both have Describe permission on topics that start
with x_, but they cannot see the other team’s topics because they do not have Describe
permissions on them.

. Use the team-a-client to produce messages to the x_messages topic:

bin/kafka-console-producer.sh --bootstrap-server my-cluster-kafka-bootstrap:9093 --topic
Xx_messages \
--producer.config /tmp/team-a-client.properties
Message 1
Message 2
Message 3

As alice created the x_messages topic, messages are produced to Kafka successfully.

. Use the team-b-client to produce messages to the x_messages topic.

bin/kafka-console-producer.sh --bootstrap-server my-cluster-kaftka-bootstrap:9093 --topic
Xx_messages \
--producer.config /tmp/team-b-client.properties
Message 4
Message 5

This request returns a Not authorized to access topics: [x_messages] error.

. Use the team-b-client to consume messages from the x_messages topic:

bin/kafka-console-consumer.sh --bootstrap-server my-cluster-kafka-bootstrap:9093 --topic
Xx_messages \

--from-beginning --consumer.config /tmp/team-b-client.properties --group
X_consumer_group_b

The consumer receives all the messages from the x_messages topic.

. Use the team-a-client to consume messages from the x_messages topic.

bin/kafka-console-consumer.sh --bootstrap-server my-cluster-kafka-bootstrap:9093 --topic
Xx_messages \

--from-beginning --consumer.config /tmp/team-a-client.properties --group
X_consumer_group_a

This request returns a Not authorized to access topics: [x_messages] error.

. Use the team-a-client to consume messages from a consumer group that begins with a_.

295

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

bin/kafka-console-consumer.sh --bootstrap-server my-cluster-kafka-bootstrap:9093 --topic
Xx_messages \

--from-beginning --consumer.config /tmp/team-a-client.properties --group
a_consumer_group_a

This request returns a Not authorized to access topics: [x_messages] error.
Dev Team A has no Read access on topics that start witha x_.

8. Use alice to produce messages to the x_messages topic.

bin/kafka-console-consumer.sh --bootstrap-server my-cluster-kafka-bootstrap:9093 --topic
Xx_messages \

--from-beginning --consumer.config /tmp/alice.properties

Messages are produced to Kafka successfully.
alice can read from or write to any topic.

9. Usealice to read the cluster configuration.

bin/kafka-configs.sh --bootstrap-server my-cluster-kafka-bootstrap:9093 --command-config
/tmp/alice.properties \
--entity-type brokers --describe --entity-default
The cluster configuration for this example is empty.
Additional resources

® Server Installation and Configuration

® Map Red Hat Single Sign-On Authorization Services to the Kafka authorization model

296

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on

CHAPTER 15. MANAGING TLS CERTIFICATES

CHAPTER 15. MANAGING TLS CERTIFICATES

AMQ Streams supports TLS for encrypted communication between Kafka and AMQ Streams
components.

AMQ Streams establishes encrypted TLS connections for communication between the following
components:

e Kafka brokers and ZooKeeper nodes

e Kafka brokers (interbroker communication)

® ZooKeeper nodes (internodal communication)

® AMQ Streams operators and Kafka and ZooKeeper

® Cruise Control and Kafka

e Kafka Exporter and Kafka
Connections between clients and brokers use listeners that you must configure to use TLS-encrypted
communication. You configure these listeners in the Kafka custom resource and each listener name and
port number must be unique within the cluster. Communication between Kafka brokers and Kafka clients
is encrypted according to how the tls property is configured for the listener. For more information, see

Chapter 13, Setting up client access to a Kafka cluster .

The following diagram shows the connections for secure communication.

297

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

Figure 15.1. Kafka and ZooKeeper communication secured by TLS encryption

Kafka Cruise
Exporter Controller ool B
client client
| I I I
9091 9091 Listener name Listener name
an an
port (9092+) port (9092+)
Kafka cluster
Kafka broker
pod1 —l —l
9091 90S0 9050 9091 9091 9091
I I I |
Kafka broker 9090 Kafka broker
od?2 od N
P S0l P Entity Operator
|
21|81 Topic User
Operator Operator
ZooKeeper cluster
ZooKeeper
,7 pod1 —l
2888 3888 3888 2888 2181 2181
I I I |
ZooKeeper 3888 ZooKeeper
pod2 2888 pod N

—— TLS connection

The ports shown in the diagram are used as follows:

Control plane listener (9090)

Connections between the Kafka controller and brokers use an internal control plane listener on port
9090, facilitating interbroker communication. This listener is not accessible to Kafka clients.

Replication listener (9091)

Data replication between brokers, as well as internal connections from AMQ Streams operators,
Cruise Control, and the Kafka Exporter, use the replication listener on port 9091. This listener is not
accessible to Kafka clients.

Listeners for client connections (9092 or higher)

For TLS-encrypted communication (through configuration of the listener), internal and external
clients connect to Kafka brokers. External clients (producers and consumers) connect to the Kafka
brokers through the advertised listener port.

ZooKeeper Port (2181)
ZooKeeper port for connection to Kafka.
ZooKeeper internodal communication port (2888)
ZooKeeper port for internodal communication between ZooKeeper nodes.

ZooKeeper leader election port (3888)

298

CHAPTER 15. MANAGING TLS CERTIFICATES

ZooKeeper port for leader election among ZooKeeper nodes in a ZooKeeper cluster.

IMPORTANT

When configuring listeners for client access to brokers, you can use port 9092 or higher
(9093, 9094, and so on), but with a few exceptions. The listeners cannot be configured
to use the ports reserved for interbroker communication (9090 and 9091), Prometheus
metrics (9404), and JMX (Java Management Extensions) monitoring (9999).

15.1. INTERNAL CLUSTER CA AND CLIENTS CA

To support encryption, each AMQ Streams component needs its own private keys and public key
certificates. All component certificates are signed by an internal CA (certificate authority) called the
cluster CA.

CA (Certificate Authority) certificates are generated by the Cluster Operator to verify the identities of
components and clients.

Similarly, each Kafka client application connecting to AMQ Streams using mTLS needs to use private
keys and certificates. A second internal CA, named the clients CA, is used to sign certificates for the
Kafka clients.

Both the cluster CA and clients CA have a self-signed public key certificate.

Kafka brokers are configured to trust certificates signed by either the cluster CA or clients CA.
Components that clients do not need to connect to, such as ZooKeeper, only trust certificates signed by
the cluster CA. Unless TLS encryption for external listeners is disabled, client applications must trust
certificates signed by the cluster CA. This is also true for client applications that perform mTLS
authentication.

By default, AMQ Streams automatically generates and renews CA certificates issued by the cluster CA
or clients CA. You can configure the management of these CA certificates using Kafka.spec.clusterCa
and Kafka.spec.clientsCa properties.

NOTE

If you don’t want to use the CAs generated by the Cluster Operator, you can install your
own cluster and clients CA certificates. Any certificates you provide are not renewed by
the Cluster Operator.

15.2. SECRETS GENERATED BY THE OPERATORS

The Cluster Operator automatically sets up and renews TLS certificates to enable encryption and
authentication within a cluster. It also sets up other TLS certificates if you want to enable encryption or
mTLS authentication between Kafka brokers and clients.

Secrets are created when custom resources are deployed, such as Kafka and KafkaUser. AMQ Streams
uses these secrets to store private and public key certificates for Kafka clusters, clients, and users. The
secrets are used for establishing TLS encrypted connections between Kafka brokers, and between
brokers and clients. They are also used for mTLS authentication.

Cluster and clients secrets are always pairs: one contains the public key and one contains the private
key.

Cluster secret

299

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

A cluster secret contains the cluster CA to sign Kafka broker certificates. Connecting clients use the
certificate to establish a TLS encrypted connection with a Kafka cluster. The certificate verifies
broker identity.

Client secret

A client secret contains the clients CA for a user to sign its own client certificate. This allows mutual
authentication against the Kafka cluster. The broker validates a client’s identity through the
certificate.

User secret

A user secret contains a private key and certificate. The secret is created and signed by the clients
CA when a new user is created. The key and certificate are used to authenticate and authorize the
user when accessing the cluster.

NOTE

You can provide Kafka listener certificates for TLS listeners or external listeners that have
TLS encryption enabled. Use Kafka listener certificates to incorporate the security
infrastructure you already have in place.

15.2.1. TLS authentication using keys and certificates in PEM or PKCS #12 format

The secrets created by AMQ Streams provide private keys and certificates in PEM (Privacy Enhanced
Mail) and PKCS #12 (Public-Key Cryptography Standards) formats. PEM and PKCS #12 are OpenSSL-
generated key formats for TLS communications using the SSL protocol.

You can configure mutual TLS (mTLS) authentication that uses the credentials contained in the secrets
generated for a Kafka cluster and user.

To set up mTLS, you must first do the following:
® Configure your Kafka cluster with a listener that uses mTLS
® Create a KafkaUser that provides client credentials for mTLs

When you deploy a Kafka cluster, a <cluster_name>-cluster-ca-cert secret is created with public key to
verify the cluster. You use the public key to configure a truststore for the client.

When you create a KafkaUser, a <kafka_user_names secret is created with the keys and certificates to
verify the user (client). Use these credentials to configure a keystore for the client.

With the Kafka cluster and client set up to use mTLS, you extract credentials from the secrets and add
them to your client configuration.

PEM keys and certificates
For PEM, you add the following to your client configuration:

Truststore

e ca.crt from the <cluster_names-cluster-ca-cert secret, which is the CA certificate for
the cluster.

Keystore

e user.crt from the <kafka_user_name> secret, which is the public certificate of the user.

e user.key from the <kafka_user_names secret, which is the private key of the user.

300

CHAPTER 15. MANAGING TLS CERTIFICATES

PKCS #12 keys and certificates
For PKCS #12, you add the following to your client configuration:
Truststore

e ca.p12from the <cluster_name>-cluster-ca-cert secret, which is the CA certificate for
the cluster.

e ca.password from the <cluster_names>-cluster-ca-cert secret, which is the password to
access the public cluster CA certificate.

Keystore

e user.p12 from the <kafka_user_names secret, which is the public key certificate of the
user.

e user.password from the <kafka_user_names secret, which is the password to access
the public key certificate of the Kafka user.

PKCS #12 is supported by Java, so you can add the values of the certificates directly to your Java client
configuration. You can also reference the certificates from a secure storage location. With PEM files, you
must add the certificates directly to the client configuration in single-line format. Choose a format that's
suitable for establishing TLS connections between your Kafka cluster and client. Use PKCS #12 if you are
unfamiliar with PEM.

NOTE

All keys are 2048 bits in size and, by default, are valid for 365 days from the initial
generation. You can change the validity period.

15.2.2. Secrets generated by the Cluster Operator

The Cluster Operator generates the following certificates, which are saved as secrets in the OpenShift
cluster. AMQ Streams uses these secrets by default.

The cluster CA and clients CA have separate secrets for the private key and public key.

<cluster_names>-cluster-ca

Contains the private key of the cluster CA. AMQ Streams and Kafka components use the private key
to sign server certificates.

<cluster_name>-cluster-ca-cert

Contains the public key of the cluster CA. Kafka clients use the public key to verify the identity of the
Kafka brokers they are connecting to with TLS server authentication.

<cluster_names>-clients-ca

Contains the private key of the clients CA. Kafka clients use the private key to sign new user
certificates for mTLS authentication when connecting to Kafka brokers.

<cluster_name>-clients-ca-cert

Contains the public key of the clients CA. Kafka brokers use the public key to verify the identity of
clients accessing the Kafka brokers when mTLS authentication is used.

Secrets for communication between AMQ Streams components contain a private key and a public key
certificate signed by the cluster CA.

301

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

<cluster_names>-kafka-brokers

Contains the private and public keys for Kafka brokers.
<cluster_name>-zookeeper-nodes

Contains the private and public keys for ZooKeeper nodes.
<cluster_names>-cluster-operator-certs

Contains the private and public keys for encrypting communication between the Cluster Operator
and Kafka or ZooKeeper.

<cluster_name>-entity-topic-operator-certs

Contains the private and public keys for encrypting communication between the Topic Operator and
Kafka or ZooKeeper.

<cluster_name>-entity-user-operator-certs

Contains the private and public keys for encrypting communication between the User Operator and
Kafka or ZooKeeper.

<cluster_names>-cruise-control-certs

Contains the private and public keys for encrypting communication between Cruise Control and
Kafka or ZooKeeper.

<cluster_name>-kafka-exporter-certs

Contains the private and public keys for encrypting communication between Kafka Exporter and
Kafka or ZooKeeper.

NOTE

You can provide your own server certificates and private keys to connect to Kafka
brokers using Kafka listener certificates rather than certificates signed by the cluster CA.

15.2.3. Cluster CA secrets

Cluster CA secrets are managed by the Cluster Operator in a Kafka cluster.
Only the <cluster_name>-cluster-ca-cert secret is required by clients. All other cluster secrets are

accessed by AMQ Streams components. You can enforce this using OpenShift role-based access
controls, if necessary.

NOTE

The CA certificates in <cluster_names-cluster-ca-cert must be trusted by Kafka client
applications so that they validate the Kafka broker certificates when connecting to Kafka
brokers over TLS.

Table 15.1. Fields in the <cluster_name>-cluster-ca secret

Field Description

ca.key The current private key for the cluster CA.

Table 15.2. Fields in the<cluster_name>-cluster-ca-cert secret

302

CHAPTER 15. MANAGING TLS CERTIFICATES

Field Description

ca.pi12 PKCS #12 store for storing certificates and keys.
ca.password Password for protecting the PKCS #12 store.
ca.crt The current certificate for the cluster CA.

Table 15.3. Fields in the <cluster_name>-kafka-brokers secret

Field Description
<cluster_name>-kafka-<nums.p12 PKCS #12 store for storing certificates and keys.
<cluster_names- Password for protecting the PKCS #12 store.

kafka-<nums.password

<cluster_name>-kafka-<nums.crt Certificate for a Kafka broker pod <num>. Signed by a current or
former cluster CA private key in <cluster_names-cluster-ca.

<cluster_name>-kafka-<nums.key Private key for a Kafka broker pod <hums.

Table 15.4. Fields in the<cluster_name>-zookeeper-nodes secret

Field Description

<cluster_names- PKCS #12 store for storing certificates and keys.
zookeeper-<nums>.p12

<cluster_names- Password for protecting the PKCS #12 store.
zookeeper-<nums.password

<cluster_names>- Certificate for ZooKeeper node <num>. Signed by a current or
zookeeper-<nums.crt former cluster CA private key in <cluster_names-cluster-ca.
<cluster_names- Private key for ZooKeeper pod <nums.

zookeeper-<nums>.key

Table 15.5. Fields in the <cluster_name>-cluster-operator-certs secret

Field Description
cluster-operator.p12 PKCS #12 store for storing certificates and keys.
cluster-operator.password Password for protecting the PKCS #12 store.

303

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

Field Description

cluster-operator.crt Certificate for mTLS communication between the Cluster
Operator and Kafka or ZooKeeper. Signed by a current or former
cluster CA private key in <cluster_name>-cluster-ca.

cluster-operator.key Private key for mTLS communication between the Cluster
Operator and Kafka or ZooKeeper.

Table 15.6. Fields in the <cluster_name>-entity-topic-operator-certs secret

Field Description

entity-operator.p12 PKCS #12 store for storing certificates and keys.
entity-operator.password Password for protecting the PKCS #12 store.
entity-operator.crt Certificate for mTLS communication between the Topic

Operator and Kafka or ZooKeeper. Signed by a current or former
cluster CA private key in <cluster_name>-cluster-ca.

entity-operator.key Private key for mTLS communication between the Topic
Operator and Kafka or ZooKeeper.

Table 15.7. Fields in the <cluster_name>-entity-user-operator-certs secret

Field Description

entity-operator.p12 PKCS #12 store for storing certificates and keys.
entity-operator.password Password for protecting the PKCS #12 store.
entity-operator.crt Certificate for mTLS communication between the User

Operator and Kafka or ZooKeeper. Signed by a current or former
cluster CA private key in <cluster_name>-cluster-ca.

entity-operator.key Private key for mTLS communication between the User
Operator and Kafka or ZooKeeper.

Table 15.8. Fields in the <cluster_name>-cruise-control-certs secret

Field Description
cruise-control.p12 PKCS #12 store for storing certificates and keys.
cruise-control.password Password for protecting the PKCS #12 store.

304

CHAPTER 15. MANAGING TLS CERTIFICATES

Field Description

cruise-control.crt Certificate for mTLS communication between Cruise Control
and Kafka or ZooKeeper. Signed by a current or former cluster
CA private key in <cluster_names-cluster-ca.

cruise-control.key Private key for mTLS communication between the Cruise
Control and Kafka or ZooKeeper.

Table 15.9. Fields in the <cluster_name>-kafka-exporter-certs secret

Field Description

kafka-exporter.p12 PKCS #12 store for storing certificates and keys.
kafka-exporter.password Password for protecting the PKCS #12 store.
kafka-exporter.crt Certificate for mTLS communication between Kafka Exporter

and Kafka or ZooKeeper. Signed by a current or former cluster
CA private key in <cluster_names-cluster-ca.

kafka-exporter.key Private key for mTLS communication between the Kafka
Exporter and Kafka or ZooKeeper.

15.2.4. Clients CA secrets

Clients CA secrets are managed by the Cluster Operator in a Kafka cluster.

The certificates in <cluster_name>-clients-ca-cert are those which the Kafka brokers trust.

The <cluster_namex>-clients-ca secret is used to sign the certificates of client applications. This secret
must be accessible to the AMQ Streams components and for administrative access if you are intending
to issue application certificates without using the User Operator. You can enforce this using OpenShift

role-based access controls, if necessary.

Table 15.10. Fields in the <cluster_name>-clients-ca secret

Field Description

ca.key The current private key for the clients CA.

Table 15.11. Fields in the <cluster_name>-clients-ca-cert secret

Field Description
ca.pi12 PKCS #12 store for storing certificates and keys.
ca.password Password for protecting the PKCS #12 store.

305

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

Field Description

ca.crt The current certificate for the clients CA.

15.2.5. User secrets generated by the User Operator

User secrets are managed by the User Operator.
When a user is created using the User Operator, a secret is generated using the name of the user.

Table 15.12. Fields in theuser_name secret

Secret name Field within secret Description
<user_name> user.p12 PKCS #12 store for storing certificates
and keys.
user.password Password for protecting the PKCS #12
store.
user.crt Certificate for the user, signed by the
clients CA
user.key Private key for the user

15.2.6. Adding labels and annotations to cluster CA secrets

By configuring the clusterCaCert template property in the Kafka custom resource, you can add custom
labels and annotations to the Cluster CA secrets created by the Cluster Operator. Labels and
annotations are useful for identifying objects and adding contextual information. You configure
template properties in AMQ Streams custom resources.

Example template customization to add labels and annotations to secrets

apiVersion: kafka.strimzi.io/vibeta2
kind: Kafka
metadata:
name: my-cluster
spec:
kafka:
#...
template:
clusterCaCert:
metadata:
labels:
labell: value1
label2: value2
annotations:
annotation: value1
annotation2: value2

306

CHAPTER 15. MANAGING TLS CERTIFICATES

15.2.7. Disabling ownerReference in the CA secrets

By default, the cluster and clients CA secrets are created with an ownerReference property that is set
to the Kafka custom resource. This means that, when the Kafka custom resource is deleted, the CA
secrets are also deleted (garbage collected) by OpenShift.

If you want to reuse the CA for a new cluster, you can disable the ownerReference by setting the
generateSecretOwnerReference property for the cluster and clients CA secrets to false in the Kafka
configuration. When the ownerReference is disabled, CA secrets are not deleted by OpenShift when
the corresponding Kafka custom resource is deleted.

Example Kafka configuration with disabled ownerReference for cluster and clients CAs

apiVersion: kafka.strimzi.io/vibeta2
kind: Kafka
#...
spec:
#...
clusterCa:
generateSecretOwnerReference: false
clientsCa:
generateSecretOwnerReference: false
#...

Additional resources

e CertificateAuthority schema reference

15.3. CERTIFICATE RENEWAL AND VALIDITY PERIODS

Cluster CA and clients CA certificates are only valid for a limited time period, known as the validity
period. This is usually defined as a number of days since the certificate was generated.

For CA certificates automatically created by the Cluster Operator, you can configure the validity period
of:

e Cluster CA certificates in Kafka.spec.clusterCa.validityDays
e Clients CA certificates in Kafka.spec.clientsCa.validityDays

The default validity period for both certificates is 365 days. Manually-installed CA certificates should
have their own validity periods defined.

When a CA certificate expires, components and clients that still trust that certificate will not accept
connections from peers whose certificates were signed by the CA private key. The components and

clients need to trust the new CA certificate instead.

To allow the renewal of CA certificates without a loss of service, the Cluster Operator initiates
certificate renewal before the old CA certificates expire.

You can configure the renewal period of the certificates created by the Cluster Operator:
e Cluster CA certificates in Kafka.spec.clusterCa.renewalDays

e Clients CA certificates in Kafka.spec.clientsCa.renewalDays

307

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index#type-CertificateAuthority-reference

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

The default renewal period for both certificates is 30 days.
The renewal period is measured backwards, from the expiry date of the current certificate.

Validity period against renewal period

Not Before Not After

| -mmmmmm e validityDays --------------- >|
<--- renewalDays --->|

To make a change to the validity and renewal periods after creating the Kafka cluster, you configure and
apply the Kafka custom resource, and manually renew the CA certificates. If you do not manually renew
the certificates, the new periods will be used the next time the certificate is renewed automatically.

Example Kafka configuration for certificate validity and renewal periods

apiVersion: kafka.strimzi.io/vibeta2
kind: Kafka
#...
spec:
#...
clusterCa:
renewalDays: 30
validityDays: 365
generateCertificateAuthority: true
clientsCa:
renewalDays: 30
validityDays: 365
generateCertificateAuthority: true
#...

The behavior of the Cluster Operator during the renewal period depends on the settings for the
generateCertificate Authority certificate generation properties for the cluster CA and clients CA.

true

If the properties are set to true, a CA certificate is generated automatically by the Cluster Operator,
and renewed automatically within the renewal period.

false

If the properties are set to false, a CA certificate is not generated by the Cluster Operator. Use this
option if you are installing your own certificates.
15.3.1. Renewal process with automatically generated CA certificates

The Cluster Operator performs the following processes in this order when renewing CA certificates:

1. Generates a new CA certificate, but retains the existing key.
The new certificate replaces the old one with the name ca.crt within the corresponding Secret.

2. Generates new client certificates (for ZooKeeper nodes, Kafka brokers, and the Entity
Operator).
This is not strictly necessary because the signing key has not changed, but it keeps the validity
period of the client certificate in sync with the CA certificate.

308

CHAPTER 15. MANAGING TLS CERTIFICATES

3. Restarts ZooKeeper nodes so that they will trust the new CA certificate and use the new client
certificates.

4. Restarts Kafka brokers so that they will trust the new CA certificate and use the new client
certificates.

5. Restarts the Topic and User Operators so that they will trust the new CA certificate and use the
new client certificates.

User certificates are signed by the clients CA. User certificates generated by the User Operator
are renewed when the clients CA is renewed.

15.3.2. Client certificate renewal

The Cluster Operator is not aware of the client applications using the Kafka cluster.

When connecting to the cluster, and to ensure they operate correctly, client applications must:
® Trust the cluster CA certificate published in the <cluster>-cluster-ca-cert Secret.

® Use the credentials published in their <user-name> Secret to connect to the cluster.
The User Secret provides credentials in PEM and PKCS #12 format, or it can provide a password
when using SCRAM-SHA authentication. The User Operator creates the user credentials when a
user is created.

You must ensure clients continue to work after certificate renewal. The renewal process depends on
how the clients are configured.

If you are provisioning client certificates and keys manually, you must generate new client certificates
and ensure the new certificates are used by clients within the renewal period. Failure to do this by the
end of the renewal period could result in client applications being unable to connect to the cluster.

NOTE

For workloads running inside the same OpenShift cluster and namespace, Secrets can be
mounted as a volume so the client Pods construct their keystores and truststores from
the current state of the Secrets. For more details on this procedure, see Configuring
internal clients to trust the cluster CA.

15.3.3. Manually renewing Cluster Operator-managed CA certificates

Cluster and clients CA certificates generated by the Cluster Operator auto-renew at the start of their
respective certificate renewal periods. However, you can use the strimzi.io/force-renew annotation to
manually renew one or both of these certificates before the certificate renewal period starts. You might
do this for security reasons, or if you have changed the renewal or validity periods for the certificates.

A renewed certificate uses the same private key as the old certificate.

NOTE

If you are using your own CA certificates, the force-renew annotation cannot be used.
Instead, follow the procedure for renewing your own CA certificates.

Prerequisites

® The Cluster Operator must be deployed.

309

Red Hat AMQ Streams 2.5 Deploying and Managing AMQ Streams on OpenShift

e A Kafka cluster in which CA certificates and private keys are installed.
® The OpenSSL TLS management tool to check the period of validity for CA certificates.

In this procedure, we use a Kafka cluster named my-cluster within the my-project namespace.

Procedure

1. Apply the strimzi.io/force-renew annotation to the secret that contains the CA certificate that
you want to renew.

Renewing the Cluster CA secret
I oc annotate secret my-cluster-cluster-ca-cert -n my-project strimzi.io/force-renew=true
Renewing the Clients CA secret
I oc annotate secret my-cluster-clients-ca-cert -n my-project strimzi.io/force-renew=true

2. At the next reconciliation, the Cluster Operator generates new certificates.
If maintenance time windows are configured, the Cluster Operator generates the new CA
certificate at the first reconciliation within the next maintenance time window.

3. Check the period of validity for the new CA certificates.

Checking the period of validity for the new cluster CA certificate

oc get secret my-cluster-cluster-ca-cert -n my-project -o=jsonpath='{.data.ca\.crt}' | base64 -d
| openssl x509 -noout -dates

Checking the period of validity for the new clients CA certificate

oc get secret my-cluster-clients-ca-cert -n my-project -o=jsonpath="{.data.ca\.crt}' | base64 -d
| openssl x509 -noout -dates

The command returns a notBefore and notAfter date, which is the valid start and end date for
the CA certificate.

4. Update client configurations to trust the new cluster CA certificate.
See:

® Section 15.4, “Configuring internal clients to trust the cluster CA”

® Section 15.5, “Configuring external clients to trust the cluster CA”

15.3.4. Manually recovering from expired Cluster Operator-managed CA certificates

The Cluster Operator automatically renews the cluster and clients CA certificates when their renewal
periods begin. Nevertheless, unexpected operational problems or disruptions may prevent the renewal
process, such as prolonged downtime of the Cluster Operator or unavailability of the Kafka cluster. If CA
certificates expire, Kafka cluster components cannot communicate with each other and the Cluster
Operator cannot renew the CA certificates without manual intervention.

310

CHAPTER 15. MANAGING TLS CERTIFICATES

To promptly perform a recovery, follow the steps outlined in this procedure in the order given. You can
recover from expired cluster and clients CA certificates. The process involves deleting the secrets
containing the expired certificates so that new ones are generated by the Cluster Operator. For more
information on the secrets managed in AMQ Streams, see Section 15.2.2, “Secrets generated by the
Cluster Operator”.

NOTE
If you are using your own CA certificates and they expire, the process is similar, but you

need to renew the CA certificates rather than use certificates generated by the Cluster
Operator.

Prerequisites
® The Cluster Operator must be deployed.
® A Kafka cluster in which CA certificates and private keys are installed.
® The OpenSSL TLS management tool to check the period of validity for CA certificates.

In this procedure, we use a Kafka cluster named my-cluster within the my-project namespace.

Procedure

1. Delete the secret containing the expired CA certificate.

Deleting the Cluster CA secret
I oc delete secret my-cluster-cluster-ca-cert -n my-project
Deleting the Clients CA secret
I oc delete secret my-cluster-clients-ca-cert -n my-project

2. Wait