
Red Hat Customer Content
Services

Red Hat Mobile Application Platform
4.2
Mobile Developer Guide

For Red Hat Mobile Application Platform 4.2





Red Hat Mobile Application Platform 4.2 Mobile Developer Guide

For Red Hat Mobile Application Platform 4.2



Legal Notice

Copyright © 2016 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other countries
and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or
sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract
This document provides guides for development of mobile client apps in Red Hat Mobile Application
Platform 4.2.



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table of Contents

CHAPTER 1. ANDROID
1.1. DEPLOYING AN APP ON ANDROID

CHAPTER 2. IOS
2.1. DEPLOYING AN APP ON IOS
2.2. BUILDING APPS FOR IOS 7

CHAPTER 3. WINDOWS
3.1. DEPLOYING AN APP ON WINDOWS PHONE 8
3.2. SUPPORT FOR WINDOWS PLATFORMS
3.3. DEVELOPING FORMS APPS AND CORDOVA APPS FOR WINDOWS

CHAPTER 4. FORMS
4.1. INTEGRATING FORMS INTO A CORDOVA APP
4.2. ENABLING FORMS SUPPORT IN OPENSHIFT 2 TARGETS

CHAPTER 5. DEVELOPING CLIENT APPS
5.1. DEVELOPING AN ANGULAR APP USING RHMAP
5.2. DEVELOPING A BACKBONE APP USING RHMAP
5.3. DEVELOPING AN IONIC APP USING RHMAP
5.4. DEVELOPING A PUSH NOTIFICATION APPLICATION USING AEROGEAR UNIFIEDPUSH SERVER
5.5. USING CORDOVA PLUG-INS
5.6. USING SECURE KEYS IN YOUR APP
5.7. ICONS AND SPLASHSCREENS
5.8. DEBUGGING APPS

CHAPTER 6. PUBLISHING APPS
6.1. SUBMITTING AN APP TO GOOGLE PLAY
6.2. SUBMITTING AN APP TO THE APP STORE
6.3. APP CREDENTIALS BUNDLES

3
3

4
4
5

7
7

10
12

15
15
21

24
24
27
31
34
53
57
59
66

74
74
77
79

Table of Contents

1



Red Hat Mobile Application Platform 4.2 Mobile Developer Guide

2



CHAPTER 1. ANDROID

1.1. DEPLOYING AN APP ON ANDROID

There are many ways to get an APK file installed on an Android device or emulator. Some of them
are detailed here. If you don’t have an Android device, the emulator can be installed as part of the
Android SDK.

1.1.1. Browser Method

If you are using the FHC command line tool to generate your binary, the output will contain a URL
value for example,

http://[your-studio-
domain].redhatmobile.com/digman/A/B/C/android~2.2~50~MyApp.apk

This is the download URL of the binary. By navigating to this URL on the device browser, the binary
can be downloaded and installed.

Tip

Using a URL shortener like bit.ly makes entering the download URL a lot easier

1.1.2. Dropbox Method

If you have a Dropbox account, there is a Dropbox app available in the Google Play Store. Placing
the APK file in your Dropbox folder (on your PC/Mac) will make the file available through the
Dropbox app, allowing you to open and install.

1.1.3. Android Tools Method

If you have the android tools installed, you can follow the instructions for sending the APK file to the
device over a USB cable.

CHAPTER 1. ANDROID

3

http://developer.android.com/guide/developing/tools/emulator.html
https://access.redhat.com/documentation/en/red-hat-mobile-application-platform/4.2/single/local-development-guide/#local-development-guide-setting-up-fhc
https://bitly.com/
https://www.dropbox.com
http://developer.android.com
http://developer.android.com/guide/developing/tools/adb.html#move


CHAPTER 2. IOS

2.1. DEPLOYING AN APP ON IOS

Note

Steps 1 to 4 below are for App Developers only.

App Testers who have been sent a build to test can skip straight to step 5.

1. Get the UDID of your test device.

2. Log on to your iPhone Provisioning Portal. Create a device using the UDID you got from
your iPhone, and create a provisioning profile with that device.

3. Upload the provisioning profile through My Account section of the RHMAP Studio
(https://<your-studio-domain>.redhatmobile.com).

4. Build the application in Studio (https://<your-studio-
domain>.redhatmobile.com) and download the binary for iPhone.

5. Add the provisioning profile and the app to your iTunes.

Red Hat Mobile Application Platform 4.2 Mobile Developer Guide

4

http://developer.apple.com/iphone/manage/overview/index.action
https:
https:


6. Install the app to your iPhone.

2.2. BUILDING APPS FOR IOS 7

Apple has announced that all the apps submitted to the App Store after February 1st will have to be
built with the iOS 7 SDK. We have been working on our app building infrastructure to make sure the
transition is as smooth as possible for our developers.

We have done most of the heavy lifting. However, there are still a few things need to be done by
developers to ensure the apps are fully compatible with iOS 7.

2.2.1. Status Bar

CHAPTER 2. IOS

5



From iOS 7, a UI view will use full screen by default which means the status bar will cover the top
part of the application. Depending the application’s user interface, it may become a problem when
running on iOS 7. To help developers deal with this issue, we added a new configuration option in
the App Studio called Old Style Status Bar (iOS destinations only). When this option is checked, we
will make sure the app uses the old style status bar as seen on iOS 6 devices and it won’t overlap
with the application. It won’t change anything if the app is running on pre iOS 7 devices.

This is done by using a Cordova plugin called Statusbar. It also provides some APIs to allow
developers to change the style and behavior of the status bar programmatically. Check out the link
for more details.

2.2.2. New Icon Dimensions

The dimensions of icons on iOS 7 have been changed as well. Check out the Icons and
Splashscreens page for updated icon requirements.

These are the things you need to do to make sure the apps are fully compatible with iOS 7. We also
suggest you to have a look at the iOS 7 Human Interface Guidelines from Apple and make any other
necessary changes.

Red Hat Mobile Application Platform 4.2 Mobile Developer Guide

6

https://github.com/apache/cordova-plugin-statusbar
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/MobileHIG/index.html#//apple_ref/doc/uid/TP40006556


CHAPTER 3. WINDOWS

3.1. DEPLOYING AN APP ON WINDOWS PHONE 8

Different deployment options are available depending on the types of the Windows Phone 8 apps.

3.1.1. Non-company Windows Phone 8 Apps

Unless an app binary is signed by a Windows Phone company certificate, the app will be non-
company app. Non-company Windows Phone 8 apps cannot be OTA installed on to devices
directly.

3.1.1.1. Building

Using Visual Studio

In Visual Studio, if no signing options are specified, the final binary will be a non-company app.

Using the App Studio

When using the App Studio to build for Windows Phone, if the "Don’t sign the binary" option is
selected, the final app binary won’t be signed and it will be a non-company app.

3.1.1.2. Distribution & Deployment

Normally you will have two options to distribute and deploy this type of apps:

Using the Application Deployment Tool provided by the Windows Phone SDK

This option is mainly for development testing. If you have Windows Phone SDK installed on a
computer, and the target device is a developer registered device, you can deploy WP apps using
the Application Deployment Tool.

Using the Windows Phone App Store

You can publish the app to the Windows Phone App Store and distribute from there.

3.1.2. Company Windows Phone 8 Apps

A non-company app will become a company app once it’s been signed by a Windows Phone

CHAPTER 3. WINDOWS

7

http://msdn.microsoft.com/en-us/library/windowsphone/develop/ff769508%28v=vs.105%29.aspx
http://msdn.microsoft.com/en-us/library/windowsphone/develop/ff402565%28v=vs.105%29.aspx#BKMK_tool
https://dev.windowsphone.com/en-us/AppSubmission/Hub


Enterprise Certificate. Company apps can be OTA installed on to devices directly and bypassing the
app store completely.

To build company apps using the App Studio, you should follow these steps:

3.1.2.1. Acquiring the enterprise certificate

Following these steps to get your enterprise certificate:

Follow the steps in the Publish Windows apps guide to create a company Windows Phone
developer account. Make sure the account type is "Company". This will cost $99 per year. It may
take a few days to process as your company information will be validated.

Once your developer account is setup, visit the Enterprise Mobile Code Signing Certificate to
apply for the certificate file. Specify the "Publisher ID" field as provided by your Windows Phone
developer account. This will cost $299 per year.

Once the process is completed, Symantec will deliver a certificate that can be imported into the
certificate store on a computer. See Certificate install instructions.

Tip

Use the same computer when requesting and picking up the certificate from Symantec.

Finally, you should export the certificate with its private key as a PFX file and protect it with a
password. See the Export a Certificate with the Private Key guide for instructions.

Check out the Company app distribution for Windows Phone guide for more details.

3.1.2.2. Generating the application enrollment token (AET)

Only the phones enrolled in your company account can OTA install apps signed by your enterprise
certificate. To enroll devices, you need to generate the application enrollment token (AET) and install
it on those devices.

You can follow the steps in the How to generate an application enrollment token for Windows Phone
guide to generate the AET file manually.

Alternatively, the App Studio can generate the AET file for you during the next step.

To install the AET file on to devices, the easiest way is to store the AET on a web server and ask
your users to download it using their devices' web browser. The App Studio can help with that as
you will see in the next few steps.

3.1.2.3. Creating a credential bundle for Windows Phone

Once the certificate is available, you can create a new credential bundle in the App Studio.

Red Hat Mobile Application Platform 4.2 Mobile Developer Guide

8

https://developer.microsoft.com/en-us/store/publish-apps
https://products.websecurity.symantec.com/orders/enrollment/microsoftCert.do
https://knowledge.verisign.com/support/code-signing-support/index?page=content&id=SO20770&actp=search&viewlocale=en_US
http://technet.microsoft.com/en-us/library/cc754329.aspx
http://msdn.microsoft.com/en-us/library/windowsphone/develop/jj206943%28v=vs.105%29.aspx
http://msdn.microsoft.com/en-us/library/windowsphone/develop/jj735576%28v=vs.105%29.aspx


As you can see in the screenshot, the App Studio can generate the AET file for you. However, if you
have the AET file already, you can choose to upload it instead. If you choose to manage the AET file
yourself, make sure the AET file is installed on your users' devices.

3.1.2.4. Build the app and sign it with the credential bundle

When building an app for Windows Phone in the App Studio, you will have the options to sign the
app binary with the credential bundles you just uploaded.

3.1.2.5. Distribution & Deployment

Once the app finishes building, there will be OTA link and QR code on the download page to easily
install it to the users' devices. If the AET file is available as part of the credential bundle, there will be
download link & QR code for it as well.

CHAPTER 3. WINDOWS

9



3.2. SUPPORT FOR WINDOWS PLATFORMS

Red Hat Mobile Application Platfrom (RHMAP) supports the development of client apps for
Windows-based devices. For a detailed tutorial, see Developing Forms Apps and Cordova Apps for
Windows.

3.2.1. Supported Platforms

The current version of RHMAP targets Windows Phone version 8 and higher. Workarounds for
platform-specific issues are provided further in this guide.

Windows 10 Universal Apps (Phone, Tablet and Desktop):

Full support, except:

Apps can’t be built in the RHMAP and must be built locally

Windows 8.1 Universal Apps (Phone, Tablet and Desktop):

Full support, except:

Apps can’t be built in the RHMAP and must be built locally

Cordova apps need a small workaround to enable support for dynamic content

Windows Phone 8:

Full support

Red Hat Mobile Application Platform 4.2 Mobile Developer Guide

10



Windows Phone 7,7.5 and older,

Windows 8 Pro for Tablets,

Windows 8 RT for Tablets,

Windows 7 and 8 Desktop:

No support

3.2.2. Building Windows Apps Locally

Due to changes in Microsoft’s licensing of its development tools, it is currently not possible to build
Apps for Windows 8.1 and Windows 10 directly in RHMAP. Windows 8 apps are not affected by
this. RHMAP apps for the affected platforms have to be built manually in your local development
environment.

1. First, clone the repository of your client app.

2. Locate the solution file (.sln) in the project folder and open it in Visual Studio.

3. In Visual Studio, select a solution configuration and platform and build the project by
pressing the F7 key. For more details, see the official documentation: Building a Windows
Phone app in Visual Studio.

4. Once the build is finished, a binary with a .xap or .appx extension will be located at 
<project_name>/<solution_name>/Bin/<solution_configuration>. The binary
file can be deployed to Windows devices or uploaded to the RHMAP App Store.

3.2.3. Enabling Dynamic Content in Cordova on Windows 8.1

On Windows 8.1, security restrictions are in place that prevent apps from using properties such as 
innerHTML and outerHTML. This in turn prevents any dynamic content to be injected and most
JavaScript frameworks will therefore fail to function properly. This also prevents Cordova apps and
RHMAP drag and drop apps from functioning.

A workaround for this issue is to reference a single JavaScript file provided by Microsoft, which
relaxes the security restriction:

1. Download the winstore-jscompat.js file:
https://raw.githubusercontent.com/MSOpenTech/winstore-jscompat/master/winstore-
jscompat.js.

2. Copy the winstore-jscompat.js file into the www folder of your project

3. Reference the file from any HTML that requires dynamic content manipulation. winstore-
jscompat.js must be referenced before any other JavaScript framework including 
cordova.js or feedhenry.js.

For more information about this workaround, see the description in the MSOpenTech/winstore-

git clone <Git_URL>

<!-- above feedhenry.js or cordova.js-->
<script src="winstore-jscompat.js" type="text/javascript"></script>

CHAPTER 3. WINDOWS

11

https://msdn.microsoft.com/en-us/library/windows/apps/ff928362%28v=vs.105%29.aspx#BKMK_vs
https://raw.githubusercontent.com/MSOpenTech/winstore-jscompat/master/winstore-jscompat.js
https://github.com/MSOpenTech/winstore-jscompat


jscompat repository.

3.3. DEVELOPING FORMS APPS AND CORDOVA APPS FOR
WINDOWS

Overview

This tutorial shows you how to create a Forms app targeting the Windows platform using Red Hat
Mobile Application Platform (RHMAP). The same steps as demonstrated in this tutorial also apply to
any Cordova app, not just Forms apps.

Currently, there are several issues preventing support for the Windows platform equivalent to the
other platforms, as described in Support for Windows Platforms. Specifically, native Windows 8.1
and Windows 10 apps can’t be built by the Platform and have to be built manually. Also, Cordova
apps need a small workaround to work properly in Windows 8.1.

Tip

This tutorial is also available as a quick video walkthrough.

Requirements

Windows 8.1 or Windows 10

32 or 64-bit machine with minimum 4 GB of RAM

Visual Studio 2013 Express or higher

An existing Forms app or a Cordova app in the Platform. See the Create a Forms Project guide
for help with creating a Forms app.

3.3.1. Steps

3.3.1.1. Initial Setup

1. Download and install Node.js: https://nodejs.org/en/download/.

There’s an installer available which guides you through the setup. Make sure to include the
npm package manager in the installation. It’s a core component which will also be required
further in this guide.

2. Download and install a git client: https://git-scm.com/download/win
Aside from the git executable itself, the installer of Git for Windows also provides an
emulated Bash shell (called Git Bash) and a set of command-line tools in order to provide a
familiar development environment. To learn more about the Git for Windows project, see the
official website of Git for Windows.

Red Hat Mobile Application Platform 4.2 Mobile Developer Guide

12

https://vimeo.com/130214184
http://www.visualstudio.com/downloads/download-visual-studio-vs#d-express-windows-8
https://access.redhat.com/documentation/en/red-hat-mobile-application-platform/4.2/single/drag-and-drop-apps-guide/#create-a-forms-project
https://nodejs.org/en/download/
https://git-scm.com/download/win
https://git-for-windows.github.io/


Note

Most steps in this guide involving the use of command line can use cmd or
PowerShell, unless otherwise noted. However, we suggest using the Git Bash
command line installed in this step for all the steps.

3. Install the Cordova package

This installs the Cordova package including a cordova executable globally and thus makes
it available to all Node.js applications.

4. Clone the repository of your app from the Platform.

First, you need to upload your SSH key to the platform for git access to work properly. See
SSH Key Setup for details.

Clone the repository of your app:

The Git SSH Clone URL of your app can be found in the App Details.

3.3.1.2. Cordova Setup

Normally, Cordova projects are automatically created for your Cordova apps during build in the
Platform and the Cordova-specific files and folders are not available in the app’s repository.
However, when building manually, the Cordova files need to be created and command invoked
manually.

Forms apps are based on Cordova and as such they need the same procedure for building as
Cordova apps.

1. Create a Cordova project

We use the name winforms in this example, but it can be an arbitrary name.

This creates a new Cordova project and copies the assets from the www directory into the
newly created project’s www directory.

2. Windows 8.1 only: Apply workaround for dynamic content manipulation in Cordova apps.

See Enabling Dynamic Content in Cordova on Windows 8.1 for more information.

The winstore-jscompat.js must be included in every HTML file in your Cordova app
which does dynamic content manipulation.

npm install -g cordova

git clone <git-ssh-clone-url-of-your-app>

cordova create winforms --copy-from <location-of-forms-app>\www

git clone https://github.com/MSOpenTech/winstore-jscompat.git
copy winstore-jscompat\winstore-jscompat.js forms\www

CHAPTER 3. WINDOWS

13

https://access.redhat.com/documentation/en/red-hat-mobile-application-platform/4.2/single/local-development-guide/#ssh-key-setup


3. Add the windows platform to the Cordova project.

This creates all the source files necessary to build the binary, including a Solution File (.sln)
which can be used to import the project into Visual Studio.

4. Add the default Cordova plugins.

3.3.1.3. Building the Binary

The app binary can be built from the command line using Cordova or from Visual Studio and
supports both Windows 8.1 and Windows 10.

To build using Cordova:

To build using Visual Studio, import the solution file (.sln) created in previous step into Visual Studio
and build the solution. See Building Windows Apps Locally for details.

Cordova also provides the ability to start an emulator to quickly see the app running:

<meta name="format-detection" content="telephone=no">
<!-- these three js files should be included exactly in this order 
-->
<script src="winstore-jscompat.js" type="text/javascript"></script>
<script src="cordova.js" type="text/javascript"></script>
<script src="feedhenry.js" type="text/javascript"></script>

cd winforms
cordova platform add windows

cordova plugin add \
    cordova-plugin-file \
    cordova-plugin-camera \
    cordova-plugin-file-transfer \
    cordova-plugin-device \
    cordova-plugin-network-information \
    cordova-plugin-battery-status \
    cordova-plugin-device-motion \
    cordova-plugin-device-orientation \
    cordova-plugin-geolocation \
    cordova-plugin-media \
    cordova-plugin-media-capture \
    cordova-plugin-dialogs \
    cordova-plugin-vibration \
    cordova-plugin-contacts \
    cordova-plugin-globalization \
    cordova-plugin-inappbrowser \
    cordova-plugin-console \
    https://github.com/fheng/fh-cordova-plugins-api.git

cordova build

cordova emulate

Red Hat Mobile Application Platform 4.2 Mobile Developer Guide

14



CHAPTER 4. FORMS

4.1. INTEGRATING FORMS INTO A CORDOVA APP

Forms functionality can be integrated into existing apps. This guide demonstrates the integration on
an example of a workforce management application — a supervisor assigns jobs, a worker receives
the assignments on their mobile device, and sends back information about the job.

The procedures in this guide use a Cordova app and a cloud app. These apps can be imported into
a project to demonstrate the working example described in this guide.

4.1.1. Working Example

4.1.1.1. Overview

The following requirements are set for the example application:

A supervisor creates a job for a worker to remove a fallen tree after a storm. The supervisor asks
the worker for details of the job such as photos of the tree, location, comments, and the time started
and finished. This can be achieved using forms apps.

The supervisor creates a job by:

Selecting the form for the worker to complete.

Selecting and filling out a form with the details for the job.

Giving the job a unique ID.

The requirements for the application include:

Jobs are created by an admin by filling out a creation form.

New jobs are available to both admin and non-admin users. App users can view the completed
creation form.

App users can complete a job by filling in a separate completion form.

The completion form must be visible to any app user to review.

The client app user can mark the job as either "In Progress" or "Complete" by saving the
completion form as a draft.

4.1.1.2. Cordova App

The client app is based on the following technologies:

Backbone: The Cordova app uses backbone models and views to manage the creation and
update of jobs.

Handlebars: Used for view templating.

Boostrap: Used for styling.

Font-Awesome: Used for icons.

The Cordova app is responsible for:

CHAPTER 4. FORMS

15

https://github.com/feedhenry-templates/appforms-integration-client
https://github.com/feedhenry-templates/appforms-integration-cloud
http://www.backbonejs.org
http://handlebarsjs.com/
http://getbootstrap.com/
http://fortawesome.github.io/Font-Awesome/


Managing the listing of jobs in various states.

Managing the rendering of any forms.

Managing the submission and upload of any form submissions.

Managing the creation of jobs containing form and submission data.

4.1.1.2.1. Job Model

The job model is a simple Backbone model describing a job.

The jobs collection is a collection of job models.

A custom URL is included for synchronizing jobs between the client and cloud. This custom URL is
used to access RESTful /jobs endpoints on the cloud app.

4.1.1.3. Cloud App

The cloud app consists of RESTful endpoints (/jobs) for performing CRUD operations on job data
using the $fh.db API.

Note

There is no visible logic in the cloud app to deal with forms, because all cloud-based
forms logic is contained in the cloud APIs.

4.1.2. Creating A Working Example

1. Create a new project in the App Studio.

2. Import an app into your project. For example, the examples in this guide use the Cordova
app and cloud app.

3. Create forms and themes for the project. Any created forms and themes associated with the
project will now be visible in the Cordova app.

4. Optionally, add users and field codes to the project. For example:

Admin: Able to create and complete jobs.

User: Able to complete jobs.

A user has the userId and userName fields that are automatically added to a submission
before rendering the related form. Add two text fields to any forms associated with this
working example.

When the fields have been added, add two users to the users collection in your Data
Browser.

Admin

Red Hat Mobile Application Platform 4.2 Mobile Developer Guide

16

https://github.com/feedhenry-templates/appforms-integration-cloud
https://github.com/feedhenry-templates/appforms-integration-cloud/blob/master/lib/jobs.js
https://access.redhat.com/documentation/en/red-hat-mobile-application-platform/4.2/single/cloud-api/#fh-db
https://access.redhat.com/documentation/en/red-hat-mobile-application-platform/4.2/single/cloud-api/
https://github.com/feedhenry-templates/appforms-integration-client
https://github.com/feedhenry-templates/appforms-integration-cloud
https://access.redhat.com/documentation/en/red-hat-mobile-application-platform/4.2/single/drag-and-drop-apps-guide/#create-a-simple-form
https://access.redhat.com/documentation/en/red-hat-mobile-application-platform/4.2/single/drag-and-drop-apps-guide/#create-a-form-theme


User

4.1.3. Implementation Guide

Use the following to integrate forms functionality into an app.

1. Add Forms Initialization by adding the $fh.forms.init function to the client. This
initializes forms on the client app to enable the usage of the $fh.forms Client API in the rest
of the app.

The $fh.forms.init function is part of the log in process for the app.

2. As an admin user, select a completion form. This specifies the form that needs to be
completed in order to complete the job. List all of the forms available to the app using the 
$fh.forms.getForms client API function.

Note

The $fh.forms.getForms client API call only downloads a list of forms, it does
not download the entire form definition for each form.

3. Download a form to the client using the $fh.forms.getForm client API.

As forms are used in job creation, viewing job details, and completing jobs, this function is
abstracted to a set of helper functions here.

The $fh.forms.getForm client API usage can be seen here as part of the loadForm
function in FormFunctions.js.

4. Load a submission into your app. This process is illustrated using the loadSubmission
function in the FormFunctions.js file.

Forms are related to submissions, in that any data entered into a form is populated to a
submission. However, a submission is validated against a form before being upload to the
cloud.

There are three ways to create a submission:

From Local Memory: Save a submission as a draft to local memory then edit later using
the saveDraft function on the submission model. The implementation of this
functionality is shown in the loadLocalSubmission function.

Download From Remote: Download a submission from the cloud. For example, when

{
    "userId": "admin",
    "userName": "<<Any Name>>"
}

{
    "userId": "user",
    "userName": "<<Any Name>>"
}

CHAPTER 4. FORMS

17

https://access.redhat.com/documentation/en/red-hat-mobile-application-platform/4.2/single/client-api/#fh-forms
https://github.com/feedhenry-templates/appforms-integration-client/blob/master/www/js/router.js#L61-81
https://github.com/feedhenry-templates/appforms-integration-client/blob/master/www/js/views/JobCreateView.js#L26-38
https://github.com/feedhenry-templates/appforms-integration-client/blob/master/www/js/FormFunctions/FormFunctions.js
https://github.com/feedhenry-templates/appforms-integration-client/blob/master/www/js/FormFunctions/FormFunctions.js#L22-40
https://github.com/feedhenry-templates/appforms-integration-client/blob/master/www/js/FormFunctions/FormFunctions.js#L42-83
https://github.com/feedhenry-templates/appforms-integration-client/blob/master/www/js/FormFunctions/FormFunctions.js
https://github.com/feedhenry-templates/appforms-integration-client/blob/master/www/js/FormFunctions/FormFunctions.js#L84-135


the supervisor completes a form to describe the details of the job, the ID of the
submission is saved to the job model. When the app user downloads the job model, they
have access to the remote submission ID of the form submitted by the admin user. This
remote submission ID is used to download the full submission definition from the cloud.
The implementation of this functionality is shown in the downloadSubmission function.

Note

The form definition for the submission is contained in the submission downloaded
from the cloud. This is because the form definition may have been edited between
submissions.

Note

Downloaded submissions should not be edited on the client. They are intended for
read-only access. Any attempt to submit a downloaded submission to the cloud
will return an error.

Create A New Submission: If there is no submission associated with a form, a new
submission can be created. In this case, the submission is created from a form model.
This ensures that the submission is automatically related to the correct form.

5. Render the form into the view for editing by a user.

There are two methods of rendering a form into an existing Cordova app:

Rendering the form using the $fh.forms.backbone API, which includes a
backbone/bootstrap SDK ($fh.forms.backbone), by downloading the Appforms
Backbone file and include it as part of your Cordova app. In addition, the Cordova app
must satisfy the following JavaScript and CSS dependencies:

Backbone

Bootstrap

Font-Awesome

The CSS and JavaScript dependencies are included in the example Cordova app.

The FormViewSDK.js file contains the Backbone SDK version of the form view. The
Cordova app contains an option in the "Settings" tab to switch between the Backbone
SDK and manual form rendering.

Note

The Backbone SDK is intended to speed up forms apps integration for
Backbone/Bootstrap based Cordova apps. However, the $fh.forms client
API will work with any Cordova app. The rendering of the form and managing
the population of user data to a submission will be the responsibility of the
developer.

Rendering a form manually.

Red Hat Mobile Application Platform 4.2 Mobile Developer Guide

18

https://github.com/feedhenry-templates/appforms-integration-client/blob/master/www/js/FormFunctions/FormFunctions.js#L136-172
https://github.com/feedhenry-templates/appforms-integration-client/blob/master/www/js/FormFunctions/FormFunctions.js#L69-81
https://github.com/feedhenry-templates/fh-js-sdk/blob/master/dist/appForms-backbone.js
https://github.com/feedhenry-templates/appforms-integration-client/tree/master/www/css
https://github.com/feedhenry-templates/appforms-integration-client/tree/master/www/lib


Note

Rendering a form to the user is the simplest method of completing a
submission. However, field input values can be added to a submission from
any source. The submission is still required to be valid against any field or
page rules.

The $fh.forms SDK does not depend on any framework, and can therefore be added
to any Cordova app. This app is based on Backbone and Bootstrap, however it is
equally possible to use the $fh.forms API with other javascript-based UI frameworks
(for example, Angular).

A basic Bootstrap form is rendered based on the form definition. This form is defined in
the FormView.js file. All of the rendering, submission input, and validation logic of the
form is defined in the app using the $fh.forms API and models.

Note

The manually rendered form is implemented for illustration purposes only.
Only the text and number fields are manually implemented. However, all
available form field types can be rendered using the $fh.forms.backbone
SDK.

The rendering logic for the custom form view is located in the FormView.js file. Here,
you can see that the view handles all of the events related to rendering the form to the
user.

In addition, the FormView.js file contains logic for:

Validating field data when entered.

Checking field and page rules.

Populating data to a submission.

Saving a submission as a draft.

Submitting a form to the cloud.

The following steps illustrate how the Cordova app addresses these requirements when
manually integrating the $fh.forms SDK into a custom rendered form.

6. Define the validation parameters that restrict the data that can be entered into the field (for
example, a text field can specify a minimum/maximum number of characters that can be
entered into the field). Adding this functionality to the client app reflects the restrictions of the
field.

To satisfy this requirement, the validateInput function is registered to the blur event of an
input in the FormView.js file.

CHAPTER 4. FORMS

19

https://github.com/feedhenry-templates/appforms-integration-client/blob/master/www/js/views/FormView.js#L181-234
https://github.com/feedhenry-templates/appforms-integration-client/blob/master/www/js/views/FormView.js#L44-115


Note

Validation parameters influence whether a submission is valid. Even if field
validation is not performed on the client app, all submission fields will be validated
before saving to the database.

7. Form apps include field and page rules. In the Studio, forms editors can create field rules to
show and hide fields based on field input data and page rules to show and skip pages
based on field input data.

This functionality is reflected in the implementation of the $fh.forms API. By processing a
submission using a rules engine, the submission can identify fields or pages that need to be
shown or hidden.

This is implemented in the checkRules function in the FormView.js file.

Note

Field and page rules influence whether a submission is valid. Even if field and
page rules are not checked on the client app, the submission will be checked
against all rules before saving to the database.

8. Add data to a submission model using the addInputValue function. The source of this
data can either be the form rendered to the user, external data available to the app, or a
mixture of both.

From a rendered form: In this case, a form is rendered for the user to input data using
the $fh.forms.backbone SDK or by manually rendering a form.

When manually integrating the $fh.forms API into a custom rendered forms, it is
necessary to handle the migration of data from the view to the submission model.

This is illustrated by the saveFieldInputsToSubmission function in the FormView.js
file.

From an external source using field codes: You can add field codes to form fields to
uniquely identify a field within a form. This field code can relate to an external data
source (for example, a header in a CSV file). Using this functionality, it is possible to
import external data into a form submission.

This functionality is demonstrated in the example Cordova app by the
addSubmissionData function. In this example, a user has userId and userName fields.
If a form contains fields with fields codes userId and userName, these fields will be
populated with the data from the User model.

Note

Field codes must be unique within a form. However, the same field code can
be present in multiple forms.

9. Save a submission as a draft. This functionality is illustrated by the saveDraft function in the
FormView.js file.

Red Hat Mobile Application Platform 4.2 Mobile Developer Guide

20

https://github.com/feedhenry-templates/appforms-integration-client/blob/master/www/js/views/FormView.js#L116-180
https://github.com/feedhenry-templates/appforms-integration-client/blob/master/www/js/views/FormView.js#L456-479
https://github.com/feedhenry-templates/appforms-integration-client/blob/master/www/js/FormFunctions/FormFunctions.js#L181-230
https://github.com/feedhenry-templates/appforms-integration-client/blob/master/www/js/views/FormView.js#L284-315


10. Having added validation and rules functionality to the form, we can now submit valid
submissions to the cloud for viewing/editing on the submission editor.

The form view listens for submission-related events (validationerror, queued, progress,
error, submitted) emitted by the submission model as the data is being processed and
uploaded.

The submission process has two distinct steps:

Submit: Calling the submit function on a submission model validates the submission
against the local form definition and changes the submission status to pending.

Upload: Calling the upload function on a submission model will queue the submission for
upload to the forms database.

4.1.4. Related Sections

$fh.forms Client API

$fh.db Cloud API

Creating A Form

Creating A Theme

Creating A Forms Project

4.2. ENABLING FORMS SUPPORT IN OPENSHIFT 2 TARGETS

Support for using Forms in cloud apps deployed to OpenShift 2 targets is not immediately available.
It can be enabled by following the steps outlined in this document.

Note

This guide only applies to Platform instances with support for OpenShift 2 targets, for
example openshift.feedhenry.com. Other targets have Forms support available without
any extra configuration.

4.2.1. What’s behind Forms in the Platform

There’s a service in the back end of the Platform responsible for handling Forms-related operations,
called fh-mbaas. Its functions are exposed through the $fh.forms API and include access to
form definitions, submissions and deployment of forms.

With FeedHenry MBaaS targets an instance of the fh-mbaas is always available and doesn’t need
to be manually enabled. This is however not the case for OpenShift 2 targets which, by default, don’t
have the fh-mbaas service deployed. This functionality is provided separately as a service
template in the Platform which can be deployed to an OpenShift 2 target to enable Forms support.

CHAPTER 4. FORMS

21

https://github.com/feedhenry-templates/appforms-integration-client/blob/master/www/js/views/FormView.js#L338-387
https://github.com/feedhenry-templates/appforms-integration-client/blob/master/www/js/views/FormView.js#L389-395
https://github.com/feedhenry-templates/appforms-integration-client/blob/master/www/js/views/FormView.js#L397-411
https://github.com/feedhenry-templates/appforms-integration-client/blob/master/www/js/views/FormView.js#L413-418
https://github.com/feedhenry-templates/appforms-integration-client/blob/master/www/js/views/FormView.js#L420-431
https://github.com/feedhenry-templates/appforms-integration-client/blob/master/www/js/views/FormView.js#L438
https://github.com/feedhenry-templates/appforms-integration-client/blob/master/www/js/views/FormView.js#L447
https://access.redhat.com/documentation/en/red-hat-mobile-application-platform/4.2/single/client-api/#fh-forms
https://access.redhat.com/documentation/en/red-hat-mobile-application-platform/4.2/single/cloud-api/#fh-db
https://access.redhat.com/documentation/en/red-hat-mobile-application-platform/4.2/single/drag-and-drop-apps-guide/#create-a-simple-form
https://access.redhat.com/documentation/en/red-hat-mobile-application-platform/4.2/single/drag-and-drop-apps-guide/#create-a-form-theme
https://access.redhat.com/documentation/en/red-hat-mobile-application-platform/4.2/single/drag-and-drop-apps-guide/#getting-started-drag-drop-apps
http://openshift.feedhenry.com


On the OpenShift side the Forms support is implemented through a cartridge. This cartridge is
hosted, along with a Node.js runtime and database cartridges, in a separate application in your
OpenShift account and exposes its functionality to all of your Forms-based applications.

4.2.2. How to enable Forms support for OpenShift 2 targets

Prerequisites:

a RHMAP account with support for OpenShift 2 targets

an existing OpenShift 2 target and an associated environment

The following steps will guide you through the process of enabling your app to use Forms in an
OpenShift 2 target:

1. Create and deploy an instance of the OpenShift mBaaS Service.

a. In the Services & APIs section of the Studio, click Provision MBaas Service/API

b. From the list of available services, choose OpenShift mBaaS Service, enter any
suitable name for the service instance and click Next

c. Wait until the log window shows Service is ready! and click Finish. The Service
Details page will be displayed.

d. Navigate to the Deploy section in the left-hand side menu

e. Select an appropriate OpenShift-backed environment from the dropdown menu on
the right-hand side of the screen

f. Click Deploy Cloud App

g. Wait until the service gets deployed. In the Deploy History section at the bottom of
the screen, the deployment status and result are displayed. It might happen that
these indicators don’t reflect the immediate state. Reload the page to update the
status and check that the correct environment is selected. After the deployment is

Red Hat Mobile Application Platform 4.2 Mobile Developer Guide

22



finished, reload the page again and check that there’s a Current Host field in Deploy
Options at the top of the screen.

Note

It may take several minutes for the service to get deployed, as this
involves creating a gear, provisioning several cartridges, cloning a git
repository and other setup operations. This is only performed once for an
OpenShift 2 target. Similarly, the first deployment of a cloud app might
take longer than any subsequent deployments.

h. Write down or copy the value of Current Host field of the Deploy Options section of
the screen. The URL points to the newly created OpenShift application which acts
as the fh-mbaas service.

2. Set the correct fh-mbaas host URL in an OpenShift 2 target.

a. Navigate to the Admin / MBaaS Targets section of Studio and open an existing
OpenShift 2 MBaaS target.

b. Enter the URL of the fh-mbaas service that you saved earlier into the fh-mbaas
Host field.

c. Click Save MBaaS.

Any cloud app deployed to this new OpenShift-backed environment will have access to Forms
functionality.

A single fh-mbaas service can be used to provide Forms support to multiple OpenShift 2 MBaaS
targets and can reside on a different OpenShift instance than the OpenShift 2 MBaaS targets using
it. Cloud apps using Forms can be deployed to any OpenShift 2 target as long as that target has a
valid fh-mbaas Host set.

CHAPTER 4. FORMS

23



CHAPTER 5. DEVELOPING CLIENT APPS

5.1. DEVELOPING AN ANGULAR APP USING RHMAP

Overview

This guide will introduce you to using the RHMAP Javascript SDK within a HTML5 AngularJS
Cordova App.

This guide includes the steps necessary to create a new AngularJS Hello World Project and
highlights the code necessary to interact with a Cloud Code App.

Requirements

RHMAP Account

Knowledge of HTML, JavaScript, AngularJS and Node.js

GitHub User Account

FHC.

A useful AngularJS Tutorial is available for users wishing to start with AngularJS.

5.1.1. Sample Project Overview

The example project is a simple project containing one Client App and one Cloud App.

5.1.1.1. Client App

The Client App is a simple AngularJS App that includes the RHMAP Javascript SDK. The Client
App asks the user to enter their name into a text box and click a Say Hello From The Cloud
button. The Client App then uses the $fh.cloud function to send the text entered to the Cloud Code
App.

5.1.1.2. Cloud Code App

The Cloud Code App exposes a hello endpoint to recieve a request from the Client App, change
the text sent to add Hello and return the response to the client.

5.1.2. Create A New AngularJS Hello World Project

Use the following steps to create a new AngularJS Hello World Project.

1. Log into the Studio.

2. Select the Projects tab located at top-left of the screen.

3. Select the + New Project button located at the top of the screen. You will then see a list
of Project Templates.

4. Select the AngularJS Hello World Project Template and give the new project a
name.

Red Hat Mobile Application Platform 4.2 Mobile Developer Guide

24

https://angularjs.org/
https://access.redhat.com/documentation/en/red-hat-mobile-application-platform/4.2/single/local-development-guide/#installing-fhc
https://docs.angularjs.org/tutorial


5. Select the Next button. The new project will now be created.

6. When the project has been created, select the Finish button.

You now have a new Project containing an AngularJS Client App and a Cloud Code App that it will
communicate with.

To Preview the app:

1. Select the Apps, Cloud Apps & Services tab.

2. Select the Client App under the Apps section. This will take you to the Details Screen.

3. The App Preview contains a working version of the AngularJS Client App that will
communicate with the Cloud Code App.

5.1.3. Build The Client App For An Android Device

Now that you have tested your app and are happy that it is working correctly, you can now build the
Client App using the RHMAP Studio.

Use the following steps to build the Client App for an Android device:

1. From the Client App interface selected the Build tab.

2. Select Android, the master branch, a Debug build type, the Dev Cloud Code App and
then click the Build button. An Android build of the Client App will now be built.

3. When the Android build has completed, you will be presented with a QR Code, simply open
a QR Code Scanner app on your Android device and install the build. Alternatively, type the
short URL into your phone’s browser.

Note

You can build Android debug binaries without any certificates but you will need the
requisite credentials to build any type of iOS/Windows Phone binaries.

Note

The branch selector allows you to select which branch of the Client App you wish to
build. In this case, the default master branch is the correct branch.

Congratulations. You have just created an AngularJS HTML5 Cordova App using RHMAP.

5.1.4. Development Overview

This section will highlight the code necessary for the example solution to work correctly.

5.1.4.1. Cloud Code App

CHAPTER 5. DEVELOPING CLIENT APPS

25



First, let’s consider the Cloud Code App. In this example, we want the Cloud Code App to recieve a
request from the Client App, change the hello parameter and respond to the Client App using a
JSON object containing the following parameters:

To implement this functionality in the Cloud Code App:

1. In the application.js file, a new /hello route is added which requires a hello.js file
located in the lib directory.

2. The hello.js file creates two routes. Both routes perform the same operation of changing the
hello parameter.

A GET request where the hello parameter is appended as a query string.

A POST request where the hello parameter is sent in the body of a POST request.

Note

This Cloud Code App is completely independent of the AngularJS Client App. The Cloud
Code App can be shared between any number of Client Apps within a project.

5.1.4.2. AngularJS Client App

Having created the /hello endpoint in the Cloud Code App, we now proceed to examine the
functionality added to the AngularJS Client App to allow it to send requests to the /hello endpoint
exposed in the Cloud Code App.

The Client App is a simple AngularJS App with a single input that accepts some text and a single
button that sends the input to the cloud and displays the result to the user.

5.1.4.2.1. RHMAP SDK

Firstly, as in all HTML5 Cordova Apps, the RHMAP Javascript SDK (feedhenry.js) is included in
the index.html file. This allows access to all of the $fh Client API functions.

Note

You will notice that the feedhenry.js file is empty in the template repository. When a Client
App is created, if the feedhenry.js file is present in the www directory, the latest
RHMAP Javascript SDK will be added to the file automatically.

5.1.4.2.2. fhconfig.json

The Client App also contains a fhconfig.json file. This file contains the information needed for the
RHMAP Javascript SDK to communicate with the cloud app.

{
    msg: "Hello <<hello parameter sent by the client app>>"
}

Red Hat Mobile Application Platform 4.2 Mobile Developer Guide

26

https://github.com/feedhenry-templates/helloworld-cloud/blob/master/application.js
https://github.com/feedhenry-templates/helloworld-cloud/blob/master/lib/hello.js
https://github.com/feedhenry-templates/quickstart-angular-app/blob/master/www/index.html
https://access.redhat.com/documentation/en/red-hat-mobile-application-platform/4.2/single/client-api/
https://github.com/feedhenry-templates/quickstart-angular-app/blob/master/www/feedhenry.js
https://github.com/feedhenry-templates/quickstart-angular-app/blob/master/www/fhconfig.json


Note

All HTML5 Client Apps must contain a fhconfig.json file to use the $fh Client API
functions. This file is automatically populated with the required information when the app is
created in the Studio.

5.1.4.2.3. $fh.cloud

In this example, the $fh.cloud Client API function is used to send requests to the hello endpoint in
the Cloud Code App.

The $fh.cloud function is located in the cloud.js file. Here, the $fh.cloud function is exposed as a
reusable service for the MainCtrl Controller to use.

There is a single controller in the AngularJS App called MainCtrl. This controller is responsible for

1. Accepting the input from the user from the example.html view.

2. Using the fhcloud service to call the hello endpoint in the Cloud Code App.

3. Processing the response from the Cloud Code App using the success or error functions,
depending on whether the $fh.cloud call was successful.

Note

In this case, the Client App is using a GET request type. As the Cloud Code App exposes
both a GET and POST version of the hello endpoint, a POST request type will also work.
This is especially useful when dealing with RESTful applications.

5.2. DEVELOPING A BACKBONE APP USING RHMAP

Overview

This guide will introduce you to using the RHMAP Javascript SDK within a HTML5 Backbone
Cordova App.

This guide includes the steps necessary to create a new Backbone Hello World Project and
highlights the code necessary to interact with a Cloud Code App.

Requirements

RHMAP Account

Knowledge of HTML, JavaScript, Backbone and Node.js

GitHub User Account

FHC.

A Backbone Tutorial is available for users wishing to start with Backbone.

5.2.1. Sample Project Overview

CHAPTER 5. DEVELOPING CLIENT APPS

27

https://github.com/feedhenry-templates/quickstart-angular-app/blob/master/www/app/modules/cloud.js
https://github.com/feedhenry-templates/quickstart-angular-app/blob/master/www/app/controllers.js
https://github.com/feedhenry-templates/quickstart-angular-app/blob/master/www/views/example.html
http://backbonejs.org/
https://access.redhat.com/documentation/en/red-hat-mobile-application-platform/4.2/single/local-development-guide/#installing-fhc
https://www.codeschool.com/courses/anatomy-of-backbone-js


The example project is a simple project containing one Client App and one Cloud App.

5.2.1.1. Client App

The Client App is a simple Backbone App that includes the RHMAP Javascript SDK. The Client App
asks the user to enter their name into a text box and click a Say Hello From The Cloud button.
The Client App then uses the $fh.cloud function to send the text entered to the Cloud Code App.

5.2.1.2. Cloud Code App

The Cloud Code App exposes a hello endpoint to recieve a request from the Client App, change
the text sent to add Hello and return the response to the client.

5.2.2. Create A New Backbone Hello World Project

Use the following steps to create a new Backbone Hello World Project.

1. Log into the Studio.

2. Select the Projects tab located at top-left of the screen.

3. Select the + New Project button located at the top of the screen. You will then see a list
of Project Templates.

4. Select the Backbone Hello World Project Template and give the new project a
name.

5. Select the Next button. The new project will now be created.

6. When the project has been created, select the Finish button.

You now have a new Project containing an Backbone Client App and a Cloud Code App that it will
communicate with.

To Preview the app:

1. Select the Apps, Cloud Apps & Services tab.

2. Select the Client App under the Apps section. This will take you to the Details Screen.

3. The App Preview contains a working version of the Backbone Client App that will
communicate with the Cloud Code App.

5.2.3. Build The Client App For An Android Device

Now that you have tested your app and are happy that it is working correctly, you can now build the
Client App using the RHMAP Studio.

Use the following steps to build the Client App for an Android device:

1. From the Client App interface selected the Build tab.

2. Select Android, the master branch, a Debug build type, the Dev Cloud Code App and
then click the Build button. An Android build of the Client App will now be built.

Red Hat Mobile Application Platform 4.2 Mobile Developer Guide

28



3. When the Android build has completed, you will be presented with a QR Code, simply open
a QR Code Scanner app on your Android device and install the build. Alternatively, type the
short URL into your phone’s browser.

Note

You can build Android debug binaries without any certificates but you will need the
requisite credentials to build any type of iOS/Windows Phone binaries.

Note

The branch selector allows you to select which branch of the Client App you wish to
build. In this case, the default master branch is the correct branch.

Congratulations. You have just created an Backbone HTML5 Cordova App using RHMAP.

5.2.4. Development Overview

This section will highlight the code necessary for the example solution to work correctly.

5.2.4.1. Cloud Code App

First, let’s consider the Cloud Code App. In this example, we want the Cloud Code App to recieve a
request from the Client App, change the hello parameter and respond to the Client App using a
JSON object containing the following parameters:

To implement this functionality in the Cloud Code App:

1. In the application.js file, a new /hello route is added which requires a hello.js file
located in the lib directory.

2. The hello.js file creates two routes. Both routes perform the same operation of changing the
hello parameter.

A GET request where the hello parameter is appended as a query string.

A POST request where the hello parameter is sent in the body of a POST request.

Note

This Cloud Code App is completely independent of the Backbone Client App. The Cloud
Code App can be shared between any number of Client Apps within a project.

5.2.4.2. Backbone Client App

{
    msg: "Hello <<hello parameter sent by the client app>>"
}

CHAPTER 5. DEVELOPING CLIENT APPS

29

https://github.com/feedhenry-templates/helloworld-cloud/blob/master/application.js
https://github.com/feedhenry-templates/helloworld-cloud/blob/master/lib/hello.js


Having created the /hello endpoint in the Cloud Code App, we now proceed to examine the
functionality added to the Backbone Client App to allow it to send requests to the /hello endpoint
exposed in the Cloud Code App.

The Client App is a simple Backbone App with a single input that accepts some text and a single
button that sends the input to the cloud and displays the result to the user.

5.2.4.2.1. RHMAP SDK

Firstly, as in all HTML5 Cordova Apps, the RHMAP Javascript SDK (feedhenry.js) is included in
the index.html file. This allows access to all of the $fh Client API functions.

Note

You will notice that the feedhenry.js file is empty in the template repository. When a Client
App is created, if the feedhenry.js file is present in the www directory, the latest
RHMAP Javascript SDK will be added to the file automatically.

5.2.4.2.2. fhconfig.json

The Client App also contains a fhconfig.json file. This file contains the information needed for the
RHMAP Javascript SDK to communicate with the cloud app.

Note

All HTML5 Client Apps must contain a fhconfig.json file to use the $fh Client API
functions. This file is automatically populated with the required information when the app is
created in the Studio.

5.2.4.2.3. $fh.cloud

In this Backbone Client App, there is a single Count View. This view is bound to the hello div in the
index.html file.

The Count View listens for the click event of the Get No. of Characters button. When the
button is clicked:

1. The Count View will use the Cloud Helper Function to call the $fh.cloud Client API function.

2. The $fh.cloud function will then send a GET request to the hello endpoint of the Cloud
Code App.

3. The $fh.cloud function will call the success function with the result of the counting
operation or the error function if the request has failed.

4. The Count View is then updated with the relevant message.

Red Hat Mobile Application Platform 4.2 Mobile Developer Guide

30

https://github.com/feedhenry-templates/quickstart-backbone-app/blob/master/www/index.html
https://access.redhat.com/documentation/en/red-hat-mobile-application-platform/4.2/single/client-api/
https://github.com/feedhenry-templates/quickstart-backbone-app/blob/master/www/feedhenry.js
https://github.com/feedhenry-templates/quickstart-backbone-app/blob/master/www/fhconfig.json
https://github.com/feedhenry-templates/quickstart-backbone-app/blob/master/www/js/views/hello.js
https://github.com/feedhenry-templates/quickstart-backbone-app/blob/master/www/index.html
https://github.com/feedhenry-templates/quickstart-backbone-app/blob/master/www/js/helpers/cloud.js


Note

In this case, the Client App is using a GET request type. As the Cloud Code App exposes
both a GET and POST version of the hello endpoint, a POST request type will also work.
This is especially useful when dealing with RESTful Backbone Models.

5.3. DEVELOPING AN IONIC APP USING RHMAP

Overview

This guide will introduce you to using the RHMAP Javascript SDK within a HTML5 Ionic Cordova
App.

This guide includes the steps necessary to create a new Ionic Hello World Project and highlights the
code necessary to interact with a Cloud Code App.

Requirements

RHMAP Account

Knowledge of HTML, JavaScript, Ionic and Node.js

GitHub User Account

FHC installed.

The Ionic Documentation contains all of the information needed to start developing Ionic Apps.

5.3.1. Sample Project Overview

The example project is a simple project containing one Client App and one Cloud App.

5.3.1.1. Client App

The Client App is a simple Ionic App that includes the RHMAP Javascript SDK. The Client App asks
the user to enter their name into a text box and click a Say Hello From The Cloud button. The
Client App then uses the $fh.cloud function to send the text entered to the Cloud Code App.

5.3.1.2. Cloud Code App

The Cloud Code App exposes a hello endpoint to recieve a request from the Client App, change
the text sent to add Hello and return the response to the client.

5.3.2. Create A New Ionic Hello World Project

Use the following steps to create a new Ionic Hello World Project.

1. Log into the Studio.

2. Select the Projects tab located at top-left of the screen.

CHAPTER 5. DEVELOPING CLIENT APPS

31

http://ionicframework.com/
https://access.redhat.com/documentation/en/red-hat-mobile-application-platform/4.2/single/local-development-guide/#installing-fhc
http://ionicframework.com/docs/


3. Select the + New Project button located at the top of the screen. You will then see a list
of Project Templates.

4. Select the Ionic Hello World Project Template and give the new project a name.

5. Select the Next button. The new project will now be created.

6. When the project has been created, select the Finish button.

You now have a new Project containing an Ionic Client App and a Cloud Code App that it will
communicate with.

To Preview the app:

1. Select the Apps, Cloud Apps & Services tab.

2. Select the Client App under the Apps section. This will take you to the Details Screen.

3. The App Preview contains a working version of the Ionic Client App that will communicate
with the Cloud Code App.

5.3.3. Build The Client App For An Android Device

Now that you have tested your app and are happy that it is working correctly, you can now build the
Client App using the RHMAP Studio.

Use the following steps to build the Client App for an Android device:

1. From the Client App interface selected the Build tab.

2. Select Android, the master branch, a Debug build type, the Dev Cloud Code App and
then click the Build button. An Android build of the Client App will now be built.

3. When the Android build has completed, you will be presented with a QR Code, simply open
a QR Code Scanner app on your Android device and install the build. Alternatively, type the
short URL into your phone’s browser.

Note

You can build Android debug binaries without any certificates but you will need the
requisite credentials to build any type of iOS/Windows Phone binaries.

Note

The branch selector allows you to select which branch of the Client App you wish to
build. In this case, the default master branch is the correct branch.

Congratulations. You have just created an Ionic HTML5 Cordova App using RHMAP.

5.3.4. Development Overview

This section will highlight the code necessary for the example solution to work correctly.

Red Hat Mobile Application Platform 4.2 Mobile Developer Guide

32



5.3.4.1. Cloud Code App

First, let’s consider the Cloud Code App. In this example, we want the Cloud Code App to recieve a
request from the Client App, change the hello parameter and respond to the Client App using a
JSON object containing the following parameters:

To implement this functionality in the Cloud Code App:

1. In the application.js file, a new /hello route is added which requires a hello.js file
located in the lib directory.

2. The hello.js file creates two routes. Both routes perform the same operation of changing the
hello parameter.

A GET request where the hello parameter is appended as a query string.

A POST request where the hello parameter is sent in the body of a POST request.

Note

This Cloud Code App is completely independent of the Ionic Client App. The Cloud Code
App can be shared between any number of Client Apps within a project.

5.3.4.2. Ionic Client App

Having created the /hello endpoint in the Cloud Code App, we now proceed to examine the
functionality added to the Ionic Client App to allow it to send requests to the /hello endpoint
exposed in the Cloud Code App.

The Client App is a simple Ionic App with a single input that accepts some text and a single button
that sends the input to the cloud and displays the result to the user.

5.3.4.2.1. RHMAP SDK

Firstly, as in all HTML5 Cordova Apps, the RHMAP Javascript SDK (feedhenry.js) is included in
the index.html file. This allows access to all of the $fh Client API functions.

Note

You will notice that the feedhenry.js file is empty in the template repository. When a Client
App is created, if the feedhenry.js file is present in the www directory, the latest
RHMAP Javascript SDK will be added to the file automatically.

5.3.4.2.2. fhconfig.json

The Client App also contains a fhconfig.json file. This file contains the information needed for the
RHMAP Javascript SDK to communicate with the cloud app.

{
    msg: "Hello <<hello parameter sent by the client app>>"
}

CHAPTER 5. DEVELOPING CLIENT APPS

33

https://github.com/feedhenry-templates/helloworld-cloud/blob/master/application.js
https://github.com/feedhenry-templates/helloworld-cloud/blob/master/lib/hello.js
https://github.com/feedhenry-templates/quickstart-ionic-app/blob/master/www/index.html
https://access.redhat.com/documentation/en/red-hat-mobile-application-platform/4.2/single/client-api/
https://github.com/feedhenry-templates/quickstart-ionic-app/blob/master/www/feedhenry.js
https://github.com/feedhenry-templates/quickstart-ionic-app/blob/master/www/fhconfig.json


Note

All HTML5 Client Apps must contain a fhconfig.json file to use the $fh Client API
functions. This file is automatically populated with the required information when the app is
created in the Studio.

5.3.4.2.3. $fh.cloud

In this example, the $fh.cloud Client API function is used to send requests to the hello endpoint
in the Cloud Code App.

The $fh.cloud function is located in the cloud.js file. Here, the $fh.cloud function is exposed as a
reusable service for the MainCtrl Controller to use.

There is a single controller in the Ionic App called MainCtrl. This controller is responsible for

1. Accepting the input from the user from the example.html view.

2. Using the fhcloud service to call the hello endpoint in the Cloud Code App.

3. Processing the response from the Cloud Code App using the success or error functions,
depending on whether the $fh.cloud call was successful.

Note

In this case, the Client App is using a GET request type. As the Cloud Code App exposes
both a GET and POST version of the hello endpoint, a POST request type will also work.
This is especially useful when dealing with RESTful applications.

5.4. DEVELOPING A PUSH NOTIFICATION APPLICATION USING
AEROGEAR UNIFIEDPUSH SERVER

Overview

This tutorial illustrates how to connect the community version of AeroGear UnifiedPush Server
(UPS) deployed in your OpenShift instance to the Red Hat Mobile Application Platform (RHMAP).

You will build a set of sample applications for receiving sports news:

Mobile application (Push Notifications Mobile Client): lets users subscribe to categories and
receive a push notification whenever a new story is posted in any of the chosen categories.

Web application (Push Console App): lets administrators create and update the category list,
as well as create news stories and push them to clients.

Server application (Push Cloud App): This cloud app is the back end, containing the server-side
logic. It exposes API methods to manage categories (that is, different sports) and news stories
associated with one or more categories. The API of this app is called by the web and mobile
application. This app communicates with the UnifiedPush Server.

Red Hat Mobile Application Platform 4.2 Mobile Developer Guide

34

https://github.com/feedhenry-templates/quickstart-ionic-app/blob/master/www/app/modules/cloud.js
https://github.com/feedhenry-templates/quickstart-ionic-app/blob/master/www/app/controllers.js
https://github.com/feedhenry-templates/quickstart-ionic-app/blob/master/www/views/example.html


Requirements

RHMAP account

OpenShift Online account

Mobile platform developer accounts (Google, Apple)

5.4.1. Create a Project using the AeroGear Community Push Template

To create a project using the push template in the Studio:

1. Log into the Studio.

2. Select the Projects tab located at top-left of the screen.

3. Select the New Project button located at top-left of the screen.

4. Find the AeroGear Community Push template and click the corresponding Choose button
on the right side of the screen.

Warning

The community version of UPS is not supported. For the officially supported way to use
push notifications in your apps, see Developing An Application Using Push Notifications

CHAPTER 5. DEVELOPING CLIENT APPS

35

https://access.redhat.com/documentation/en/red-hat-mobile-application-platform/4.2/single/server-side-developer-guide/#developing-an-application-using-push-notifications


5. Enter a name for the project in the Name your Project box and click the Create button on the
right side of the screen.

6. Once the project creation has completed, click the Finish button at the bottom of the screen.

At this point, your project contains three apps:

Push Cloud App: a simple CRUD application for storing categories and news,

Push Console App: a management interface where administrators can create and delete
categories,

Push Notifications Mobile Client: a client app where users subscribe to categories and receive
push notifications when new stories are created.

5.4.2. Create an instance of UPS

In order for the application to send and receive push notifications, an instance of the UnifiedPush
Server (UPS) must be set up.

To create an instance of UPS running on Openshift Online:

1. Log into your Openshift Online account

2. Create a new AeroGear Push 1.x Quickstart application. For more details on creating, see
the AeroGear Documentation

Red Hat Mobile Application Platform 4.2 Mobile Developer Guide

36

https://www.openshift.com
https://aerogear.org/docs/unifiedpush/ups_userguide/index/#openshift


3. Log into your AeroGear Push 1.x Quickstart application and click on Applications on the left
side of the screen.

Note

The default username and password can be found in the AeroGear
documentation.

4. Click on Create Application on the right side of the screen.

5. Enter a name and description for the application and click Create

6. Once the application has been created, reveal its details by clicking on its name in the list of
applications in the middle of the screen.

CHAPTER 5. DEVELOPING CLIENT APPS

37

https://aerogear.org/docs/unifiedpush/ups_userguide/index/#_login_and_landing_page


7. Note the following fields since this information will be used later:

Server URL

Application ID

Master Secret

8. You will also need to set up a Variant for each targeted platform (for example, iOS or
Android). For more details on creating a Variant, see the AeroGear documentation for iOS
and documentation for Android. After setting up variants, you will need to note down the
following information for each specific variant since it will be used later:

Server URL

Variant ID

Secret

Project Number (Android only, used for senderID)

5.4.3. Create a Push Connector instance

In order to connect the Push Cloud App to UPS, a cloud service must be instantiated in RHMAP and
configured to connect to the UPS instance created in the previous step.

Red Hat Mobile Application Platform 4.2 Mobile Developer Guide

38

https://aerogear.org/docs/unifiedpush/aerogear-push-ios/
https://aerogear.org/docs/unifiedpush/aerogear-push-android/


1. Click on Services and APIs at the top of the screen.

2. Click on the Provision MBaaS Service/API button at the top left of the screen.

3. Locate AeroGear Community Push Connector  from the list and click the Choose button on
the right of the screen.

4. Enter a name and click Next on the right side of the screen.

5. Enter the Server URL, Application ID and Master Secret from step 2.7 and click the Next
button.

CHAPTER 5. DEVELOPING CLIENT APPS

39



6. Once the creation process is complete, click on the Finish button.

5.4.4. Associate the Push Connector with your project

After the Push Connector has been created and configured, your project must be configured to use
it.

1. Select the Projects tab located at top-left of the screen.

2. Click on your project to open it.

3. Click on the + symbol in the MBaaS Services column on the right side of the screen.

Red Hat Mobile Application Platform 4.2 Mobile Developer Guide

40



4. Click on the Push Connector instantiated in the previous step and then click on the
Associate Services button at the bottom of the screen.

CHAPTER 5. DEVELOPING CLIENT APPS

41



5. You will be returned to the Apps, Cloud Apps & Services page of your project and the Push
Connector should appear in the MBaaS Services column.

5.4.5. Configure the Push Cloud App to use the Push Connector

1. If you are not already on the Apps, Cloud Apps & Services page of your project, navigate to
it.

2. Click on the Push Connector in the MBaaS Services column to reveal its details.

3. Note the Service ID (GUID) of the Push Connector since it will be used later. Also, ensure
that your project name appears under the Access Control section in the middle of the
screen.

Red Hat Mobile Application Platform 4.2 Mobile Developer Guide

42



Note

Verify that your project has been added in the Access Control area. Failure to do
so will result in the Push Cloud App being unable to send push notifications.

4. If any changes were made, click Save Service at the bottom of the screen.

5. Click on Environment Variables on the left side of the screen.

6. Click on Push Environment Variables on the right side of the screen and click Confirm when
prompted.

7. Return to the Apps, Cloud Apps & Services page of your project.

8. Click on the Push Cloud App application under the Cloud Code Apps column in the middle
of the screen.

9. Click on Environment Variables on the left side of the screen.

CHAPTER 5. DEVELOPING CLIENT APPS

43



10. Click on Add Variable on the top right side of the App Environment Variables  box.

11. Enter AEROGEAR_SERVICE_GUID for Name and paste the Service ID of the Push
Connector (noted in step 3) for Development

12. Click the Push Environment Variables button on the top right side of the App Environment
Variables box to publish the variables. Upon completion, AEROGEAR_SERVICE_GUID
should appear in both the App Environment Variables  section as well as the Deployed
Environment Variables section.

Note

Ensure that both the Service Connector and Push Cloud App are running. The
status for each of these may be found under the Cloud App Status field on the
Details page of each. Both of these items must be deployed, running, and the
environment variable pushed for push notifications to be properly sent.

5.4.6. Configure the mobile client

The Push Notifications Mobile Client app must be updated with the previously noted credentials for
access to the UPS. These credentials authorize the client to register with the push server.

1. If you are not already on the Apps, Cloud Apps & Services page of your project, navigate to
it.

2. Click on the Push Notifications Mobile Client under the Apps column on the left side of the
screen.

3. Click on Editor on the left side of the screen.

Red Hat Mobile Application Platform 4.2 Mobile Developer Guide

44



4. Expand the www directory and click on the push-config.json file.

5. For each client platform (for example, Android, iOS), update the following fields using the
appropriate variant from step 2.8:

for pushServerURL enter the Server URL

for variantID enter the Variant ID

for variantSecret enter the Secret

for senderID (Android only) enter the Project Number

6. In the Editor menu, click File then Save to save the changes.

5.4.7. Set up build credentials

This step is only required if you’re building for iOS. If your target platform is Android, skip to Step 8.

5.4.7.1. Create a credential bundle

After you have obtained all necessary keys, certificates, and provisioning profiles from the mobile
platform’s developer portals, a Credential Bundle must be created to use them.

Note

These are the Developer private keys and certificates for the mobile platform (that is, iOS,
Android, etc) which are not the same as the push certificate and private keys for the
platform. For iOS, you will also need the Provisioning Profile for the application. If you did
not already create one in step 2, see these instructions. For more details on obtaining the
Developer private keys and certificates see each platform’s documentation.

To create a credential bundle:

1. If you are not already on the Apps, Cloud Apps & Services page of your project, navigate to
it.

CHAPTER 5. DEVELOPING CLIENT APPS

45

https://aerogear.org/docs/unifiedpush/aerogear-push-ios/guides/#provisioning-profiles


2. Click on the Push Notifications Mobile Client under the Apps column on the left side of the
screen.

3. Click on Credentials in the menu on the left side of the screen.

4. Click on the Create New Bundle button on the right side of the screen

5. Choose the desired platform, enter the relevant information, and upload any profiles, keys,
or certificates.

6. Click the Create Bundle button at the bottom of the screen.

Red Hat Mobile Application Platform 4.2 Mobile Developer Guide

46



Note

Ensure that you upload the correct profiles, keys, and certificates intended for the mobile
client. In addition, if any of those items are secured with passwords, you will need to enter
that information when building the client using any credential bundle with that secured
item. If any of this information (profiles, keys, certificates, passwords, etc) is incorrect or
not properly configured, your mobile client may not build or install on your device.

5.4.7.2. Set up the Bundle Identifier or Package Name

Before building, depending on the desired platform, the Bundle Identifier or Package Name
information must be set.

To set the Bundle Identifier or Package Name:

1. If you are not already on the Apps, Cloud Apps & Services page of your project, navigate to
it.

2. Click on the Push Notifications Mobile Client under the Apps column on the left side of the
screen.

3. Click on Config in the menu on the left side of the screen.

4. Choose the desired platform (for example, iOS, Android, etc) from the menu on the left side
of the screen.

5. Enter the Bundle Identifier or Package Name in the appropriate text area and click the
Update Config button at the bottom of the screen.

CHAPTER 5. DEVELOPING CLIENT APPS

47



Note

Depending on the platform, you may need to set the same Bundle Identifier or Package
Name in multiple locations. For example, depending on how an iOS app is built, the
Bundle Identifier may need to be set in a combination of the iPhone, iPad, and/or iOS
sections. When setting the Bundle Identifier or Package Name in multiple locations, you
will need to click the Update Config button on each screen before moving to the next
location. If you change locations before clicking Update Config, your updates will be lost.

5.4.8. Build the app

Once all the certificates and credentials have been configured, the Push Notifications Mobile Client
may be built for a platform.

To build the Push Notifications Mobile Client for a platform:

1. If you are not already on the Apps, Cloud Apps & Services page of your project, navigate to
it.

2. Click on the Push Notifications Mobile Client under the Apps column on the left side of the
screen.

3. Click on Build in the menu on the left side of the screen.

4. Choose the desired platform.

5. Ensure that the proper Build Type is configured.

6. On certain platforms, other fields (for example, Credential Bundle, Private Key Password,
etc.) may also need to be entered.

Red Hat Mobile Application Platform 4.2 Mobile Developer Guide

48



7. Click the Build button at the bottom of the screen.

Note

If any item in the credential bundle being used is secured with a password, it
must be entered when performing the build.

8. Wait until the app is built. You can monitor progress at the bottom of the screen in the
Artifact History section.

9. Once the build is finished, click Download in the first line of the table.

10. With your mobile device, scan the presented QR code and install the app.

5.4.9. Test the app

At this point, the Push Notifications Mobile Client is built for the desired platforms and is ready to
receive push notifications sent from the Push Console App, which uses the Push Cloud App
connected through the Push Connector to the UPS deployed on OpenShift.

To test if this is working:

1. Navigate to the Apps, Cloud Apps & Services page of your project.

2. Click on the Push Console App application under the Apps column.

3. Use the App Preview box on the right side of the screen to test the application. You could
also navigate to the URL listed next to Current Host.

CHAPTER 5. DEVELOPING CLIENT APPS

49



4. Create a couple of categories (for example, Football, Rugby and Basketball).

5. Open the application on the device and select the categories you want to receive.

6. In the studio, navigate to the Apps, Cloud Apps & Services page of your project.

7. Return to the Push Console App and use the App Preview box (or visit the Current Host
URL) to create a news story and associate it with a category you subscribed to on your
mobile device.

Red Hat Mobile Application Platform 4.2 Mobile Developer Guide

50



8. Click Send Push Notification and your mobile device should receive a push notification
shortly.

CHAPTER 5. DEVELOPING CLIENT APPS

51



Note

In addition to building this example exercise, this template may also be used as a starting
point to create your own application that integrates with UPS.

5.4.10. Common Issues

5.4.10.1. Checking the Logs

If you are seeing issues during testing, review the RHMAP and UnifiedPush Server (in OpenShift
Online) logs for more details. The Push Cloud App and Push Console App logs can be found by
navigating to each app in the project and clicking on Logs on the left side of the screen. To access
the logs in OpenShift Online, consult the Openshift Online documentation. For more information on
debugging UPS, see Debugging the UnifiedPush Server.

5.4.10.2. Errors being logged in Push Cloud App and push messages not reaching

Red Hat Mobile Application Platform 4.2 Mobile Developer Guide

52

https://access.redhat.com/documentation/en-US/OpenShift_Online/2.0/html/User_Guide/index.html
https://aerogear.org/docs/unifiedpush/ups_userguide/index/#debugging


client

If push messages are being sent from the Push Console App, but not reaching the client apps,
check the logs in the Push Cloud App for the following:

AeroGear Community Push Connector - err =  null  :: data =  code=401, 
message=You do not have permission to access this service.

This is most likely the result of the project not being added to the Access Control area of the Service
Connector. Make sure you have completed Step 5, all environment variables have been pushed,
and that both the Service Connector and Push Cloud App are deployed and running. In the Service
Connector, try updating the Access Control area, saving the changes, re-pushing the environment
variables, and restarting the service. Additionally, you could try re-pushing the environment variables
for the Push Cloud App as well as restarting it.

5.4.10.3. Mobile client build failing due to No matching provisioning profiles found

If your client app is failing to build with the following error message:

[BUILD] 'Code Sign error: No matching provisioning profiles found: No 
provisioning profiles matching the bundle identifier 
"com.feedhenry.fhPushNotificationsMobileClient" were found.'

you may not have your Bundle IDs properly configured. Revisit section Set up the Bundle Identifier
or Package Name and ensure:

your bundle ID is correct and matches what you set up in the platform’s (for example, Apple,
Google, etc.) developer portal,

your bundle ID is specified for every platform that you’re building for (for example, make sure
that your bundle ID is set in iOS, iPhone, and iPad if building for those platforms).

5.5. USING CORDOVA PLUG-INS

Cordova plug-ins provide a platform-independent JavaScript interface to mobile device capabilities in
hybrid mobile apps. There are several official Apache plug-ins for basic device functions such as
storage, camera, or geolocation, and other third-party plug-ins. For example, the RHMAP Push
Notification functionality in Cordova apps is implemented using the aerogear-cordova-push
plug-in.

The official registry and distribution channel for Cordova plug-ins is npm and the plug-in ID
corresponds to the npm package ID. The Cordova Plugins page contains the official plug-in list and
acts as a filter for npm packages with the keyword ecosystem:cordova.

5.5.1. Supported Platforms

You can use Cordova plug-ins with all platforms supported by RHMAP. However, not all Cordova
plug-ins support all platforms. Platforms supported by a plug-in are specified in a plug-in’s 
package.json file in the cordova.platforms object, or on the Cordova Plug-ins search page.

5.5.2. Adding Plug-ins to Apps

CHAPTER 5. DEVELOPING CLIENT APPS

53

https://www.npmjs.com/package/aerogear-cordova-push
http://cordova.apache.org/plugins/


When developing Cordova applications, plug-ins are added using cordova plugin add, which
downloads the plug-in from the repository, creates the necessary folder structure, and adds an entry
in the config.xml file. See Platforms and Plugins Version Management in the official Cordova
documentation for more information.

In RHMAP, however, plug-ins can also be declared in an RHMAP-specific JSON file config.json,
which allows Cordova Light apps to declare plug-ins, and makes the apps future-proof in case the
plug-in specification format changes. The necessary changes can be implemented once in the
RHMAP Build Farm instead of forcing all developers to update their apps.

Three plug-ins are specified in the above example: the Device plug-in and Geolocation plug-in,
which are available through npm, and the Local WebServer plug-in which is available only from the
indicated Github repository.

5.5.2.1. Specification

The config.json file must be located in the www folder of a Cordova app, or in the root of a
Cordova Light app.

The file must contain a key called plugins, the value of which is an array of JSON objects, which
can define the following properties:

id (Required)

This is the globally unique ID of the Cordova plug-in, which corresponds to its npm package ID. It
can also be found in the plug-in’s plugin.xml file, as described in the Cordova Plugin
Specification.

version (Required)

The version of the plug-in to use. Corresponds to the npm package version. For plug-ins
distributed through Git only, you can find the version of a plug-in in its plugin.xml.

{
  "plugins": [
    {
      "id": "cordova-plugin-device",
      "version": "latest"
    },
    {
      "id": "cordova-plugin-geolocation",
      "version": "1.0.1"
    },
    {
      "id": "cordova-labs-local-webserver",
      "url": "https://github.com/apache/cordova-plugins#master:local-
webserver",
      "version": "2.3.1",
      "preferences": {
          "CordovaLocalWebServerStartOnSimulator": "false"
      }
    }
  ]
}

Red Hat Mobile Application Platform 4.2 Mobile Developer Guide

54

http://cordova.apache.org/docs/en/latest/platform_plugin_versioning_ref/index.html
https://cordova.apache.org/docs/en/5.4.0/plugin_ref/spec.html#link-1


For plug-ins distributed through npm, you can also use the latest value to always use the
latest available version. We strongly advise you to use a specific version that is proved to work
with your app, since a plug-in upgrade could break backward compatibility.

url

The URL of a public Git repository, containing a valid Cordova plugin (contains a plugin.xml
file).

The provided value for this field is used to download the plug-in, regardless of the values of the 
id and version fields. If this field is not provided, the plug-in will be downloaded from npm with
the values of id and version fields.

You can also specify a particular Git ref and a path to the plug-in within the repository, as
described in official Cordova CLI documentation.

A Git ref object can be specified by appending #<git-ref> in the URL. We strongly
recommend using a tag or other stable ref that is tested as working with your app. Using 
master as the ref could result in the plug-in code changing on every build and potentially
breaking your application.

Path to the directory containing the plug-in can be specified with :<path> in the URL.

For example, if we want to get a plug-in that resides in the plugin subdirectory in the release
branch of the repository, the URL should have the following format:

https://example.com/example.git#release:plugin

After the plug-in is downloaded, its plugin.xml file will be parsed to make sure the plug-in ID
matches the id field specified in the config.json.

preferences

To provide plug-in configuration, use key-value pairs in the preferences object, like 
CordovaLocalWebServerStartOnSimulator in the example above.

variables

Some plug-ins use variables in plugin.xml to parameterize string values. You can provide
values for variables as key-value pairs in this field. See official documentation for more
information on variables.

5.5.3. Considerations For Cordova Light Apps

To preserve the backward compatibility of Cordova Light apps, if a valid config.json file is not
provided, a default set of plug-ins will be applied when building the app in the Build Farm. We
strongly advise you to provide the config.json file and to specify only the Cordova plug-ins
needed by your app. By doing that, you will be able to:

Prevent unexpected changes of plug-ins affecting your apps.

The list of default plug-ins is not guaranteed to stay unchanged and any possible changes to it
may not be backward-compatible. By providing your own config.json file, you ensure that
your apps will always use a stable list of plugin versions, thus making builds more stable.

Reduce app build time and size of binary.

CHAPTER 5. DEVELOPING CLIENT APPS

55

https://cordova.apache.org/docs/en/latest/guide/cli/index.html#link-8
https://cordova.apache.org/docs/en/latest/plugin_ref/spec.html#link-24


Plug-ins are downloaded and installed during app build time, and included in the built binary.
Therefore, reducing the number of plug-ins also reduces the build time and size of binary.

5.5.3.1. Default Plugins

Official plug-ins

cordova-plugin-device (1.1.2)

cordova-plugin-network-information (1.2.1)

cordova-plugin-battery-status (1.1.2)

cordova-plugin-device-motion (1.2.1)

cordova-plugin-device-orientation (1.0.3)

cordova-plugin-geolocation (2.2.0)

cordova-plugin-file (4.2.0)

cordova-plugin-camera (2.2.0)

cordova-plugin-media (2.3.0)

cordova-plugin-media-capture (1.3.0)

cordova-plugin-file-transfer (1.5.1)

cordova-plugin-dialogs (1.2.1)

cordova-plugin-vibration (2.1.1)

cordova-plugin-contacts (2.1.0)

cordova-plugin-globalization (1.0.3)

cordova-plugin-inappbrowser (1.4.0)

cordova-plugin-console (1.0.3)

cordova-plugin-whitelist (1.2.2)

cordova-plugin-splashscreen (3.2.2)

Optional

cordova-sms-plugin (v0.1.9)

com.arnia.plugins.smsbuilder (0.1.1)

cordova-plugin-statusbar (2.1.3)

Custom RHMAP plug-ins:

com.feedhenry.plugins.apis (0.0.6)

com.feedhenry.plugins.apkdownloader (0.0.1)

com.feedhenry.plugin.device (0.0.2)

Red Hat Mobile Application Platform 4.2 Mobile Developer Guide

56

https://github.com/fheng/fh-cordova-plugins-api.git#fh0.0.6
https://github.com/feedhenry/fh-cordova-plugin-apkdownloader.git#fh0.0.1
https://github.com/feedhenry/fh-cordova-plugin-device.git#fh0.0.2


com.feedhenry.plugins.ftputil

5.5.4. Testing Apps in the Browser

If a plug-in is specified in the config.json file, the JavaScript object of the plug-in won’t be
available until it is built and installed on the device. So if you reference the plug-in’s JavaScript object
in your app, and try to load your app in App Preview in the Studio, you may get object undefined
errors.

To solve this, use defensive checking when calling the plug-in APIs. For example, the following call
to the Cordova camera API would result in an "object undefined" error:

However, checking whether the API is defined lets you handle the error gracefully:

5.6. USING SECURE KEYS IN YOUR APP

$fh.sec APIs provides the functionality to generate keys and data encryption/decryption. However,
after the keys are generated, you may need to save them somewhere for future usage. For
example, you have some data that needs to be encrypted with a secret key and saved on the
device. Next time, when the app starts again, you need to get the same secret key and decrypt the
data.

The best practice to achieve this is to save the keys on the cloud side, and associate the keys with
the client using the client unique id (CUID) and app id.

5.6.1. CUID and App Id

Both the CUID and app id are sent by the client SDK in every $fh.act request. They are accessible
via a special JSON object called __fh. The CUID is unique for each device and remain unchanged
even if the app is deleted and re-installed. The app id is generated when the app is created on the
platform and remain unchanged. You can use the following code to access them in the cloud code:

navigator.camera.getPicture(success, fail, opts);

if(typeof navigator.camera !== "undefined"){
  navigator.camera.getPicture(success, fail, opts);
} else {
  //fail gracefully
  fail();
}

getKeyId = function(params){
  var cuid = params.__fh.cuid;
  var appid = params.__fh.appid;
  var keyid = cuid + "_" + appid;
  return keyid;
}

exports.getKey = function(params, callback){
  var keyid = getKeyId(params);
  //get a key using this keyid
  ....
}

CHAPTER 5. DEVELOPING CLIENT APPS

57

https://github.com/feedhenry/fh-cordova-plugin-ftputil.git#fh0.0.1
https://access.redhat.com/documentation/en/red-hat-mobile-application-platform/4.2/single/client-api/#fh-sec


5.6.2. Key Persistence

You can use whatever persistent mechanism you like to save the keys in the cloud. One
recommended approach is to use $fh.db. Here is some example code to show how to save and
retrieve keys using $fh.db:

//read a key using $fh.db
var getKey = function(params, cb){
  if(typeof $fh !== "undefined" && $fh.db){
    $fh.db({
      act:'list',
      'type': 'securityKeys',
      eq: {
        "id": getKeyId(params),  //The id is generated using the above 
example code
        "keyType": params.type
      }
    }, function(err, data){
      if(err) return cb(err);
      if(data.count > 0){
        return cb(undefined, data.list[0].fields.keyValue);
      } else {
        return cb(undefined, undefined);
      }
    });
  } else {
    console.log("$fh.db not defined");
    cb("$fh.db not defined");
  }
}

//save a key using $fh.db
var saveKey = function(params, cb){
  if(typeof $fh !== "undefined" && $fh.db){
    //first check if a key with the same id and type already exsists
    $fh.db({
      act:'list',
      'type': 'securityKeys',
      eq: {
        "id": getKeyId(params),
        "keyType": params.type
      }
    }, function(err, data){
      if(err) return cb(err);
      //a key with the same id and type already exists, update it
      if(data.count > 0){
        $fh.db({
          'act':'update',
          'type': 'securityKeys',
          'guid': data.list[0].guid,
          'fields' : {
            'id': getKeyId(params),
            'keyType': params.type,
            'keyValue' : params.value
          }
        }, function(err, result){

Red Hat Mobile Application Platform 4.2 Mobile Developer Guide

58



5.6.3. Sample Code

A reference application has been created which fully demonstrates how to use $fh.sec APIs. The
code for this application is available on GitHub: https://github.com/feedhenry-training/fh-security-
demo-app.

5.7. ICONS AND SPLASHSCREENS

Apps can be installed on a number of different platforms including iOS, Android, and Windows
Phone, and each has a different requirement for their app icons, and splashscreen and launch
images. This topic outlines the naming conventions for icons and splashscreen images for each
platform.

Note

This topic is for Cordova Light apps only. For Cordova apps, icons and splashscreen
images can be configured in each platform’s native projects.

5.7.1. Image File Locations

Place icons and splashscreen images in the following locations:

Icons: /www/res/icons/<platform_name>

Splashscreens: /www/res/splash/<platform_name>

          if(err) return cb(err);
          return cb(undefined, result);
        })
      } else {
        //a key with the same id and type is not found, create it
        $fh.db({
          'act': 'create',
          'type': 'securityKeys',
          'fields': {
            'id' : getKeyId(params),
            'keyType': params.type,
            'keyValue': params.value
          }
        }, function(err, result){
          if(err) return cb(err);
          return cb(undefined, result);
        });
      }
    });
  } else {
    console.log("$fh.db not defined");
    cb("$fh.db not defined");
  }
}

CHAPTER 5. DEVELOPING CLIENT APPS

59

https://github.com/feedhenry-training/fh-security-demo-app


Note

To reduce the size of the binary file, the res/icons and res/splash directories are
removed once the image resources are copied to their correct locations. Do not reference
files in those directories in your app.

5.7.2. iOS

iOS devices include a range of differing display types (retina/non-retina) and resolutions.

5.7.2.1. Icons

The following table displays the file names and paths to specific icon types expected by the build
farm. Binaries (or exports) compiled for iOS look for icons in these locations to enable them. Note
that the file names are case sensitive.

File name (case
sensitive)

Target(s) OS Version Expected
Location

Dimensions

Icon.png iPhone (Non-
Retina), iPad
(Non-Retina)

iOS 7 or earlier /www/res/ico
ns/ios/Icon.
png

57 x 57

Icon@2x.png iPhone (Retina),
iPad (Retina)

iOS 7 or earlier /www/res/ico
ns/ios/Icon@
2x.png

114 x 114

Icon-72.png iPad (Non-Retina) iOS 7 or earlier /www/res/ico
ns/ios/Icon-
72.png

72 x 72

Icon@2x~ipad
.png

iPad (Retina) iOS 7 or earlier /www/res/ico
ns/ios/Icon@
2x~ipad.png

144 x 144

Icon-
60@2x.png

iPhone (Retina) iOS 7 or later /www/res/ico
ns/ios/Icon-
60@2x.png

120 x 120

Icon-76.png iPad (Non-Retina) iOS 7 or later /www/res/ico
ns/ios/Icon-
76.png

76 x 76

Red Hat Mobile Application Platform 4.2 Mobile Developer Guide

60



Icon-
76@2x.png

iPad (Retina) iOS 7 or later /www/res/ico
ns/ios/Icon-
76@2x.png

152 x 152

Icon-
60@3x.png

iPhone 6 Plus iOS 8 or later /www/res/ico
ns/ios/Icon-
60@3x.png

180 x 180

File name (case
sensitive)

Target(s) OS Version Expected
Location

Dimensions

Note

If none of the above icons are provided, a default set of icons is included automatically. To
avoid that, provide at least one icon.

5.7.2.2. App Launch Image and Splashscreens

The following table displays file names and paths to specific app launch image types as expected by
the build farm. Binaries (or exports) compiled for iOS look for app launch images in these locations
to enable them. Note that the file names are case sensitive.

File name (case
sensitive)

Target(s) Expected Location Dimensions

Default.png iPhone 3.5" (Non-
Retina)

/www/res/splash
/ios/Default.pn
g

320 x 480

Default@2x.png iPhone 3.5" (Retina) /www/res/splash
/ios/Default@2x
.png

640 x 960

Default-
568h@2x.png*

iPhone 4" (Retina) /www/res/splash
/ios/Default-
568h@2x.png

640 x 1136

Default-
Landscape.png

iPad (Non-Retina) /www/res/splash
/ios/Default-
Landscape.png

1024 x 768

CHAPTER 5. DEVELOPING CLIENT APPS

61



Default-
Portrait.png

iPad (Non-Retina) /www/res/splash
/ios/Default-
Portrait.png

768 x 1004

Default-
Landscape@2x~ip
ad.png

iPad (Retina) /www/res/splash
/ios/Default-
Landscape@2x~ip
ad.png

2048 x 1496

Default-
Portrait@2x~ipa
d.png

iPad (Retina) /www/res/splash
/ios/Default-
Portrait@2x~ipa
d.png

1536 x 2008

Default-
667h.png

iPhone 6 /www/res/splash
/ios/Default-
667h.png

750 x 1334

Default-
736h.png

iPhone 6 Plus /www/res/splash
/ios/Default-
736h.png

1242 x 2208

Default-
Landscape-
736h.png

iPhone 6 Plus
Landscape

/www/res/splash
/ios/Default-
Landscape-
736h.png

2208 x 1242

File name (case
sensitive)

Target(s) Expected Location Dimensions

5.7.2.2.1. Supporting 4" Retina Displays (iPhone 5)

In order for your build to support iOS devices with 4" screens (for example, the iPhone 5), you must
include a Default-568h@2x.png splashscreen image in your app.

5.7.2.2.2. Supporting iPhone 6 and iPhone 6 Plus

To avoid app zooming on iPhone 6 and iPhone 6 Plus, include Default-667h.png, Default-
736h.png, and Default-Landscape-736h.png splashscreen images in your app.

5.7.2.3. Icons for Spotlight and Settings (Optional)

Red Hat Mobile Application Platform 4.2 Mobile Developer Guide

62



The following table displays file names and paths to specific icons for Spotlight or settings as
expected by the build farm. Binaries (or exports) compiled for iOS look for icon files in these
locations to enable them. Note that the file names are case sensitive.

File name (case
sensitive)

Target(s) OS Version Expected
Location

Dimensions

Icon-
small.png

iPhone (Non-
Retina)

iOS 7 or earlier /www/res/ico
ns/ios/Icon-
small.png

29 x 29

Icon-
small@2x.png

iPhone (Retina) iOS 7 or earlier /www/res/ico
ns/ios/Icon-
small@2x.png

58 x 58

Icon-50.png iPad (Non-Retina) iOS 7 or earlier /www/res/ico
ns/ios/Icon-
50.png

50 x 50

Icon-
50@2x.png

iPad (Retina) iOS 7 or earlier /www/res/ico
ns/ios/Icon-
50@2x.png

100 x 100

Icon-40.png iPad (Non-Retina) iOS 7 or later /www/res/ico
ns/ios/Icon-
40.png

40 x 40

Icon-
40@2x.png

iPad (Retina),
iPhone (Retina)

iOS 7 or later /www/res/ico
ns/ios/Icon-
40@2x.png

80 x 80

5.7.3. Android

5.7.3.1. Icons

The Android platform allows specifying image resources using qualifiers to provide the best possible
image resources for a particular device. To support that, you can provide your app’s image
resources using qualifiers as well:

CHAPTER 5. DEVELOPING CLIENT APPS

63



File name (case
sensitive)

Expected Location DPI Recommended
Dimensions

icon.png /www/res/icons/a
ndroid/icon.png

auto scale 48 x 48

icon-ldpi.png /www/res/icons/a
ndroid/icon-
ldpi.png

~120dpi 36 x 36

icon-mdpi.png /www/res/icons/a
ndroid/icon-
mdpi.png

~160dpi 48 x 48

icon-hdpi.png /www/res/icons/a
ndroid/icon-
hdpi.png

~240dpi 72 x 72

icon-xhdpi.png /www/res/icons/a
ndroid/icon-
xhdpi.png

~320dpi 96 x 96

Note

If none of the above icons are provided, a default set of icons will be included
automatically. To avoid that, provide at lease one icon.

5.7.3.2. Splashscreen

Similar to icons, you can use qualifiers for splashscreen images as well.

File name (case
sensitive)

Expected Location DPI Recommended
Dimensions

splash.png /www/res/splash/
android/splash.p
ng

auto scale 320 x 480

Red Hat Mobile Application Platform 4.2 Mobile Developer Guide

64



splash-ldpi.png /www/res/splash/
android/splash-
ldpi.png

~120dpi 240 x 320

splash-mdpi.png /www/res/splash/
android/splash-
mdpi.png

~160dpi 320 x 480

splash-hdpi.png /www/res/splash/
android/splash-
hdpi.png

~240dpi 480 x 800

splash-xhdpi.png /www/res/splash/
android/splash-
xhdpi.png

~320dpi 640 x 960

File name (case
sensitive)

Expected Location DPI Recommended
Dimensions

To make the same image fit different screen sizes, you can use nine-patch images. Follow the same
conventions above to use nine-patch images, but use .9.png as the extension.

You can use other qualifiers as part of the file name, for example, icon-tvdpi.png, icon-
small.png, icon-normal.png, etc. More details about the available qualifiers can be found at
Providing Resources.

5.7.4. Windows Phone

5.7.4.1. Icons

Only one small icon and one tile icon can be specified for the Windows Phone platform:

File name (case sensitive) Expected Location Recommended Dimensions

icon.png /www/res/icons/windows
phone/icon.png

62 x 62

icon-tile.png /www/res/icons/windows
phone/icon-tile.png

173 x 173

CHAPTER 5. DEVELOPING CLIENT APPS

65

http://developer.android.com/guide/topics/graphics/2d-graphics.html#nine-patch
http://developer.android.com/guide/topics/resources/providing-resources.html


Note

If none of the above icons are provided, a default set of icons will be included
automatically. To avoid that, provide all icons.

5.7.4.2. Splashscreen

File name (case sensitive) Expected Location Recommended Dimensions

splash.jpg /www/res/splash/window
sphone/splash.jpg

480 x 800

5.7.4.3. Additional Documentation

Apple Developer Documentation - App Icon

Apple Developer Documentation - Launch Files

Android Providing Resources Guide

5.8. DEBUGGING APPS

Debugging is an essential part of app development. With web applications this can be as simple as
using the alert() function to show the value of a variable at a certain point in the code. For
browsers that have a console, the console.log function can be used to log this kind of information
passively. More advanced forms of debugging web applications include inspecting the state of the
DOM, breakpointing JavaScript code and stepping through it, or updating the DOM and the
associated styles on the fly.

This page gives an explanation of the debugging tools that can be used while developing cross
platform apps. These tools can be used in the Studio or on device.

5.8.1. Studio console

Most browsers support the console logger. Various log levels can be called with a message for
example,

To debug this console output, you will need to open the relevant web debugging tools in your
browser.

For debugging cloud code, simply use console.log() and console.error(). The
corresponding log files can be viewed in the Studio under the 'Logs' section, or using FHC.

console.log(message);
console.error(message);

console.log('this goes to stdout.log');
console.error('this goes to stderr.log');

Red Hat Mobile Application Platform 4.2 Mobile Developer Guide

66

https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/MobileHIG/AppIcons.html#//apple_ref/doc/uid/TP40006556-CH19-SW1
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/MobileHIG/LaunchImages.html#//apple_ref/doc/uid/TP40006556-CH22-SW1_
http://developer.android.com/guide/topics/resources/providing-resources.html


5.8.2. Firebug

If your browser of choice for development is Firefox, the http://getfirebug.com/[Firebug^] tool makes
debugging very easy. Firebug is an add-on for Firefox that is quite active and has many updates to
it. Here are some of the things that can be done using Firebug:

view console output

view resource requests

debug script execution

dynamically run code, even when breakpoint debugging

view/update the DOM

view/update styles

view/update local storage (DB)

Using these features, debugging an app is made very easy. Getting an app working without Firebug
showing any errors or problems gives the app a good chance of working cross platform.

5.8.3. Web Inspector with Chrome

Web Inspector is very similar to Firebug. It offers more or less the same features as Firebug, but
has the advantage of being included with WebKit browsers out of the box. This means the Web
Inspector can be used with Google Chrome and Safari. The tool is enabled by default with Chrome
and can be started by context clicking any object on a web page, and selecting Inspect Element.

5.8.4. Safari / iOS 6+

Note

Remote debugging on iOS with Safari can only be enabled for applications built with a
Development provisioning profile. Ad Hoc and Distribution apps cannot be debugged this
way.

1. Go to the Settings app on your iOS device.

2. Navigate to Safari → Advanced, and then toggle on the Web Inspector switch.

CHAPTER 5. DEVELOPING CLIENT APPS

67



3. In desktop Safari, go to Safari → Preferences, select Advanced, then check the Show
Develop menu in menu bar check box.

4. Connect your iOS device to your development machine via USB.

Red Hat Mobile Application Platform 4.2 Mobile Developer Guide

68



5. Open the app you want to debug, it will be available in Safari’s Develop menu.

6. The Develop menu has additional tools such as the User Agent switcher. This allows the
browser to pretend to be a different browser for example, Mobile Safari. This feature can be
useful if developing a mobile Internet version of an app.

5.8.5. Chrome / Android 4.0+

Note

Remote debugging on Android with Chrome can only be enabled for applications that
flagged debuggable. If you are using Cordova 3.3 or newer, add 
android:debuggable="true" inside the <application> element in the 
AndroidManifest.xml file. If you are using Cordova 3.2 or older version, you have to
enable WebView debugging.

1. Enable USB debugging on your Android device On Android 4.2 and newer versions, the
developer option is hidden. To make it available, navigate to Settings → About phone, and
tap the Build number seven times.

CHAPTER 5. DEVELOPING CLIENT APPS

69



2. Go back to the previous screen to find Developer options, then check the USB debugging
check box. Choosing the Stay awake option is also recommended.

Red Hat Mobile Application Platform 4.2 Mobile Developer Guide

70



3. In the desktop Chrome browser, in the menu on the upper-right corner select Tools →
Inspect Devices

4. Check Discover USB devices, if it is not selected.

5. Connect your Android device via USB

6. If it is the first time you attached this device for developing, you may see an alert on device
requesting permission for USB debugging from your development machine. To avoid
appearing this alert every time you debug, check Always allow from this computer, then
tap OK.

7. To debug your app, you need to run it on device.

8. In Chrome, click the Inspect link to open the DevTools.

CHAPTER 5. DEVELOPING CLIENT APPS

71



5.8.6. On-Device

Debugging on device is still in an early stage compared to debugging in a desktop browser. Some
platforms, such as iOS, make the console available and show any javascript errors when Developer
mode is enabled, but it is nowhere near as fully featured as Firebug or Web Inspector.

5.8.6.1. Weinre

Weinre is probably the best on-device debugging tool available at the moment. It officially only
supports webkit browsers. This means it will work for Android, iOS and Blackberry. The full list and
version numbers are available on its site.

Weinre works by setting up a remote debugging session from the app on the device to the Weinre
server. Weinre runs a web server which can be used to access the Web Inspector, and remotely
debug the app. At the time of writing, the features of this Web Inspector session allow debugging the
DOM and updating it. The remote console is also shown, and the developer can dynamically run
code in the app from the console.

To enable Weinre debugging in an application, there are a few steps.

1. Get the Weinre jar up and running on a machine that the device can connect to. There are 2
ways of doing this:

Run the jar file on a machine accessible over the Internet

Run the jar on a machine on the same network as the device, that is, device connected
via WiFi to the same router/access point as the developers machine.

Note that when running the jar from the command line, it is advised to use the value -all- for
the boundHost so that it is listening on all interfaces.

2. Add a script to the HTML of the app before building and deploying it to the device. According
to the documentation, the script include will look something like this.

The address used, some.server.xyz, must match the address (ip address should work too)
of the machine that is running the Weinre server.

<script src="http://some.server.xyz/target/target-script-
min.js#anonymous"></script>

Red Hat Mobile Application Platform 4.2 Mobile Developer Guide

72

https://www.npmjs.com/package/weinre/


3. Deploy the app to the device and launch it. Opening the web page of the Weinre server (on
the developer machine) should present a link to the debug user interface. This link opens up
the Web Inspector and allows remote debugging of the app.

As these instructions are for a third party tool, it is best to check with the official site for any
updates around this setup process.

CHAPTER 5. DEVELOPING CLIENT APPS

73



CHAPTER 6. PUBLISHING APPS

6.1. SUBMITTING AN APP TO GOOGLE PLAY

6.1.1. Prerequisites

A Release build of an app (APK file) is generated (either from the Platform or from the Android
IDE/Command line tools)

The developer has a high resolution application icon file

512x512 JPEG or 24 bit PNG (no Alpha)

The developer has at least one screenshot of the app

320x480 or 480x854 JPEG or 24 bit PNG (no Alpha) format

Note

Screenshots must be full bleed, have no border and landscape thumbnails will be
cropped. All measurements WxH for example, 320wx480h

6.1.2. Overview

There are a number of steps for publishing an app to Google Play, all of which are done with a web
browser. They are:

Upload an Application

Upload Assets

Listing Details

Publishing Options

Contact Information

Consent

6.1.3. Uploading an Application

Log into Google Play at https://play.google.com/apps using your Developer Login

You will be presented with a list of apps you already have in Google Play

Click on the Upload Application button

You will now be brought to the Upload an Application Screen

6.1.4. Upload Assets

Draft application APK file

Upload your APK file

Red Hat Mobile Application Platform 4.2 Mobile Developer Guide

74



Screenshots

Upload your screenshot(s) -- JPEG or 24-bit PNG (Alpha Transparency is unsupported)

High Resolution Application Icon

Upload your App Icon — JPEG or 24-bit PNG (Alpha Transparency is unsupported)

Promotional Graphic

This is optional to be used in Google Play on devices with 1.6 or higher

Feature Graphic

This is optional

Promotional Video

This is optional to supply a YouTube URL to your promotional video

Marketing Opt-out

There is also the option to opt out of Google marketing/ promoting your app

6.1.5. Listing Details

Language

Select the Language for your app

Title

The name for your application as it will appear in Google Play

Description

Enter the description of your to appear in Google Play

Recent Changes

Enter the changes as you are uploading updates of your application

Promo text

This will be used in conjunction with the Promotional Graphic

Application Type

Select the type of application it is "Applications" / "Games"

Category

Select the category you want the app to be displayed in based on choice of application type

Applications

Comics

Communication

Entertainment

CHAPTER 6. PUBLISHING APPS

75



Finance

Health

Lifestyle

Multimedia

News & Weather

Productivity

Reference

Shopping

Social

Sports

Themes

Tools

Travel

Demo

Software libraries

Games

Arcade & Action

Brain & Puzzle

Cards & Casino

Casual

Price

Price is automatically set to Free. If you want to charge for apps you must set up a merchant
account at Google Checkout.

6.1.6. Publishing Options

Copy Protection

Protect apps being copied from the device - Soon to be deprecated and superceded by
the Licensing Service

Locations

Select Google Play markets you want the app to appear in

6.1.7. Contact Information

Website

Red Hat Mobile Application Platform 4.2 Mobile Developer Guide

76



Your website URL

Email

Your Email address

Phone

Your phone number

6.1.8. Consent

You must verify that the application meets the Android Content Guidelines and that your app may be
subjected to US laws regardless of your location or nationality and that, as such, your application is
authorised for export from the US under these laws.

Finally, You must choose to Save what you have entered, delete what you have entered or Publish
the application (This will publish the app and make it available in Google Play)

6.2. SUBMITTING AN APP TO THE APP STORE

Prerequisites

This guide assumes that a number of things have already been done by the developer. They are:

A 'Release' App has been build either form the Platform or using xCode

The developer has 2 icon files for the application

57x57 PNG format

512x512 PNG format

The developer has at least one screenshot of the app 320x480 PNG format

Overview

There are a number of steps for publishing an app to the iPhone App Store, all of which are done
with a web browser. They are:

Create a new Application

Set up any in-app purchasing

Submit Application for Sale

6.2.1. Creating a new Application

1. Log into iTunes Connect at http://itunesconnect.apple.com using your Developer Login (that
is, email address)

a. Click on Manage Your Applications

b. Click on Add New Application

CHAPTER 6. PUBLISHING APPS

77

http://itunesconnect.apple.com/


c. Select a choice for the "Export Laws and Encryption" question

2. Overview Tab

a. Fill in the Overview section using your app details

b. Select a choice for "Restrict this binary to a specific platform" question

c. Enter a Version Number for example, 1.0

d. Enter a unique value for the SKU Number: for example, the current date and time

e. Click the (blue) Continue button at the end of the screen.

3. Ratings Tab

a. Select the appropriate check boxes for you application

b. Click (blue) Save Changes button

4. Upload Tab

a. Click the Upload application binary later option

b. Upload the icons and screen shots mentioned in the Prerequisites (Large Icon and
Primary Screen Shot are mandatory). TIP: When adding additional screen shots,
you may like to select them in reverse order so that they appear in the correct order
when added by the uploader (which seems to add/upload them in the opposite
order that you selected them).

c. Click the (blue) Continue button

5. Localization Tab

a. Choose the appropriate language for you app

b. Click the Continue button

6. Pricing Tab

a. Choose the Availability Date (Start Date) of your app for example, today

b. Choose the appropriate Price Tier

c. Select the stores you want your app to be available in and continue

7. Review Tab

a. Choose the appropriate review store (for example, the country your company
resides in)

b. Click the (black) Submit Application button.

6.2.2. Submit Application for Sale

Red Hat Mobile Application Platform 4.2 Mobile Developer Guide

78



1. Upload Application Binary

a. Once logged into iTunes Connect, click Manager your Applications

b. Click the application you want to submit for approval by Apple (Note the current
status should be orange, indicating the Application binary is yet to be uploaded)

c. Click the Upload Binary button

d. Click Choose File and locate your binary zip file mentioned in the Prerequisites.

e. Click Upload File

f. Click the Save Changes button in the bottom right

2. Confirm Review App Store

a. Click Manager your Applications

b. Click your application that was submitted for approval

c. Click the Edit Information button and open the Review Tab

d. Verify that the Review App Store is set to the country selected while creating the
application (necessary due to a suspected bug in iTunes Connect)

e. Click Done and your application is now ready for approval by Apple

6.2.3. External Links

In depth information on managing apps

6.3. APP CREDENTIALS BUNDLES

A Credentials Bundle consists of a number of resources needed to perform a particular build. Here,
the different resources are listed, along with a brief explanation of their purpose.

6.3.1. Resources

When performing build operations, a Credentials bundle can sometimes be required (depending on
the build). A Credential bundle is a combination of resources, such as certificates, provisioning
profiles, and private keys, necessary for performing specific types of builds, be it a development
build, distribution build, debug build etc. Depending on both the platform, and the build type, different
resources will be grouped together to constitute a bundle.

Listed below is a breakdown of resources that can be added to a Credentials Bundle, along with a
brief description of what they are used for.

6.3.1.1. All Platforms

Private Key

This is a file whose contents are known only to the owner. During the app building process,
the app is digitally signed using this key. This means the developers digital signature is left on
the App, allowing the App to be tied back to the developer.

CHAPTER 6. PUBLISHING APPS

79

https://developer.apple.com/library/ios/documentation/LanguagesUtilities/Conceptual/iTunesConnect_Guide/Chapters/About.html


6.3.1.2. Android Only

Android Distribution Certificate (Android only)

Used to build Apps for upload to the Google Play Store. This certificate is used to identify you
as the developer upon upload to the market.

6.3.1.3. iOS Only

iOS Development Certificate

Used to run an iOS App on devices during development.

iOS Distribution Certificate

Used for submitting your iOS App to the App Store, and for distributing the App for On-Device
testing. This is also used to identify you as the developer.

Provisioning Profile

Necessary in order to install development applications on iOS devices.

6.3.2. Apple Developer and Enterprise Accounts

In order to publish an app in the Apple App Store you must have an active apple account (developer
or enterprise). This account will need to be renewed annually in order for associated apps to
continue to be available in the App Store.

6.3.2.1. Developer Account

A developer account is used create an iOS distribution certificates used to publish apps to the apple
App Store.

When a distribution certificate expires, if the iOS Developer account is still active, existing apps on
the App Store will not be affected, they will continue be available within the App Store and apps
already on device will continue to function as expected.

6.3.2.2. Enterprise Account

An enterprise account is used to create (in-house) distribution certificates which are needed to
publish apps to the RHMAP app store or customer in-house MDM.

When an existing in-house certificate expires all apps built with that certificate will not run and further
installs of this version of the app will not be possible.

Warning

If you use an enterprise distribution certificate to sign a Swift-based iOS app built
using the build farm, the resulting app may crash upon startup. If you encounter
this problem, refer to the Red Hat Knowledge Base article Swift-based iOS
application crashes upon startup when signed using an enterprise distribution
certificate without Organisational Unit field for detailed instructions on how to
resolve the problem.

Red Hat Mobile Application Platform 4.2 Mobile Developer Guide

80

https://access.redhat.com/solutions/2292651


The app will need to be rebuilt, signed with a new certificate, republished to the relevant store and
then re-downloaded by all users.

6.3.2.3. iOS Certificate Renewal

Apple enterprise and developer certificates must be recreated every three years.

The customer email address associated with the developer account will receive advance notification
of the impending renewal requirement.

While the FeedHenry team may have been involved in assisting a customer with the initial setup of
an Apple developer or enterprise account the ownership and responsibility for the apple account and
the certificates created remains with the customer.

Upon receiving the certificate expiry notification it is recommended that the customer proactively
renew the certificate in order to avoid interruption to their apps availability.

CHAPTER 6. PUBLISHING APPS

81


	Table of Contents
	CHAPTER 1. ANDROID
	1.1. DEPLOYING AN APP ON ANDROID
	1.1.1. Browser Method
	1.1.2. Dropbox Method
	1.1.3. Android Tools Method


	CHAPTER 2. IOS
	2.1. DEPLOYING AN APP ON IOS
	2.2. BUILDING APPS FOR IOS 7
	2.2.1. Status Bar
	2.2.2. New Icon Dimensions


	CHAPTER 3. WINDOWS
	3.1. DEPLOYING AN APP ON WINDOWS PHONE 8
	3.1.1. Non-company Windows Phone 8 Apps
	3.1.1.1. Building
	3.1.1.2. Distribution & Deployment

	3.1.2. Company Windows Phone 8 Apps
	3.1.2.1. Acquiring the enterprise certificate
	3.1.2.2. Generating the application enrollment token (AET)
	3.1.2.3. Creating a credential bundle for Windows Phone
	3.1.2.4. Build the app and sign it with the credential bundle
	3.1.2.5. Distribution & Deployment


	3.2. SUPPORT FOR WINDOWS PLATFORMS
	3.2.1. Supported Platforms
	3.2.2. Building Windows Apps Locally
	3.2.3. Enabling Dynamic Content in Cordova on Windows 8.1

	3.3. DEVELOPING FORMS APPS AND CORDOVA APPS FOR WINDOWS
	3.3.1. Steps
	3.3.1.1. Initial Setup
	3.3.1.2. Cordova Setup
	3.3.1.3. Building the Binary



	CHAPTER 4. FORMS
	4.1. INTEGRATING FORMS INTO A CORDOVA APP
	4.1.1. Working Example
	4.1.1.1. Overview
	4.1.1.2. Cordova App
	4.1.1.3. Cloud App

	4.1.2. Creating A Working Example
	4.1.3. Implementation Guide
	4.1.4. Related Sections

	4.2. ENABLING FORMS SUPPORT IN OPENSHIFT 2 TARGETS
	4.2.1. What’s behind Forms in the Platform
	4.2.2. How to enable Forms support for OpenShift 2 targets


	CHAPTER 5. DEVELOPING CLIENT APPS
	5.1. DEVELOPING AN ANGULAR APP USING RHMAP
	5.1.1. Sample Project Overview
	5.1.1.1. Client App
	5.1.1.2. Cloud Code App

	5.1.2. Create A New AngularJS Hello World Project
	5.1.3. Build The Client App For An Android Device
	5.1.4. Development Overview
	5.1.4.1. Cloud Code App
	5.1.4.2. AngularJS Client App


	5.2. DEVELOPING A BACKBONE APP USING RHMAP
	5.2.1. Sample Project Overview
	5.2.1.1. Client App
	5.2.1.2. Cloud Code App

	5.2.2. Create A New Backbone Hello World Project
	5.2.3. Build The Client App For An Android Device
	5.2.4. Development Overview
	5.2.4.1. Cloud Code App
	5.2.4.2. Backbone Client App


	5.3. DEVELOPING AN IONIC APP USING RHMAP
	5.3.1. Sample Project Overview
	5.3.1.1. Client App
	5.3.1.2. Cloud Code App

	5.3.2. Create A New Ionic Hello World Project
	5.3.3. Build The Client App For An Android Device
	5.3.4. Development Overview
	5.3.4.1. Cloud Code App
	5.3.4.2. Ionic Client App


	5.4. DEVELOPING A PUSH NOTIFICATION APPLICATION USING AEROGEAR UNIFIEDPUSH SERVER
	5.4.1. Create a Project using the AeroGear Community Push Template
	5.4.2. Create an instance of UPS
	5.4.3. Create a Push Connector instance
	5.4.4. Associate the Push Connector with your project
	5.4.5. Configure the Push Cloud App to use the Push Connector
	5.4.6. Configure the mobile client
	5.4.7. Set up build credentials
	5.4.7.1. Create a credential bundle
	5.4.7.2. Set up the Bundle Identifier or Package Name

	5.4.8. Build the app
	5.4.9. Test the app
	5.4.10. Common Issues
	5.4.10.1. Checking the Logs
	5.4.10.2. Errors being logged in Push Cloud App and push messages not reaching client
	5.4.10.3. Mobile client build failing due to No matching provisioning profiles found


	5.5. USING CORDOVA PLUG-INS
	5.5.1. Supported Platforms
	5.5.2. Adding Plug-ins to Apps
	5.5.2.1. Specification

	5.5.3. Considerations For Cordova Light Apps
	5.5.3.1. Default Plugins

	5.5.4. Testing Apps in the Browser

	5.6. USING SECURE KEYS IN YOUR APP
	5.6.1. CUID and App Id
	5.6.2. Key Persistence
	5.6.3. Sample Code

	5.7. ICONS AND SPLASHSCREENS
	5.7.1. Image File Locations
	5.7.2. iOS
	5.7.2.1. Icons
	5.7.2.2. App Launch Image and Splashscreens
	5.7.2.3. Icons for Spotlight and Settings (Optional)

	5.7.3. Android
	5.7.3.1. Icons
	5.7.3.2. Splashscreen

	5.7.4. Windows Phone
	5.7.4.1. Icons
	5.7.4.2. Splashscreen
	5.7.4.3. Additional Documentation


	5.8. DEBUGGING APPS
	5.8.1. Studio console
	5.8.2. Firebug
	5.8.3. Web Inspector with Chrome
	5.8.4. Safari / iOS 6+
	5.8.5. Chrome / Android 4.0+
	5.8.6. On-Device
	5.8.6.1. Weinre



	CHAPTER 6. PUBLISHING APPS
	6.1. SUBMITTING AN APP TO GOOGLE PLAY
	6.1.1. Prerequisites
	6.1.2. Overview
	6.1.3. Uploading an Application
	6.1.4. Upload Assets
	6.1.5. Listing Details
	6.1.6. Publishing Options
	6.1.7. Contact Information
	6.1.8. Consent

	6.2. SUBMITTING AN APP TO THE APP STORE
	6.2.1. Creating a new Application
	6.2.2. Submit Application for Sale
	6.2.3. External Links

	6.3. APP CREDENTIALS BUNDLES
	6.3.1. Resources
	6.3.1.1. All Platforms
	6.3.1.2. Android Only
	6.3.1.3. iOS Only

	6.3.2. Apple Developer and Enterprise Accounts
	6.3.2.1. Developer Account
	6.3.2.2. Enterprise Account
	6.3.2.3. iOS Certificate Renewal




