
Red Hat OpenShift Documentation
Team

OpenShift Enterprise
3.0
Architecture

OpenShift Enterprise 3.0 Architecture Information

OpenShift Enterprise 3.0 Architecture

OpenShift Enterprise 3.0 Architecture Information

Legal Notice

Copyright © 2016 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other countries
and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or
sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract
Learn the architecture of OpenShift Enterprise 3.0 including the infrastructure and core components.
These topics also cover authentication, networking and source code management.

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. OVERVIEW
1.1. WHAT ARE THE LAYERS?
1.2. WHAT IS THE OPENSHIFT ARCHITECTURE?
1.3. HOW IS OPENSHIFT SECURED?

CHAPTER 2. INFRASTRUCTURE COMPONENTS
2.1. KUBERNETES INFRASTRUCTURE
2.2. IMAGE REGISTRY
2.3. WEB CONSOLE

CHAPTER 3. CORE CONCEPTS
3.1. OVERVIEW
3.2. CONTAINERS AND IMAGES
3.3. PODS AND SERVICES
3.4. PROJECTS AND USERS
3.5. BUILDS AND IMAGE STREAMS
3.6. DEPLOYMENTS
3.7. ROUTES
3.8. TEMPLATES

CHAPTER 4. ADDITIONAL CONCEPTS
4.1. NETWORKING
4.2. OPENSHIFT SDN
4.3. AUTHENTICATION
4.4. AUTHORIZATION
4.5. PERSISTENT STORAGE
4.6. REMOTE COMMANDS
4.7. PORT FORWARDING
4.8. THROTTLING
4.9. SOURCE CONTROL MANAGEMENT
4.10. OTHER API OBJECTS

CHAPTER 5. REVISION HISTORY: ARCHITECTURE
5.1. THU MAY 19 2016
5.2. TUE MAY 03 2016
5.3. WED APR 27 2016
5.4. TUE APR 19 2016
5.5. MON APR 04 2016
5.6. THU FEB 25 2016
5.7. MON FEB 15 2016
5.8. MON FEB 01 2016
5.9. TUE JUN 23 2015

3
3
3
4

5
5
9

11

16
16
16
17
22
24
32
34
44

47
47
48
50
54
60
65
66
66
66
67

76
76
76
76
76
77
77
77
77
78

Table of Contents

1

OpenShift Enterprise 3.0 Architecture

2

CHAPTER 1. OVERVIEW

OpenShift v3 is a layered system designed to expose underlying Docker and Kubernetes concepts
as accurately as possible, with a focus on easy composition of applications by a developer. For
example, install Ruby, push code, and add MySQL.

Unlike OpenShift v2, more flexibility of configuration is exposed after creation in all aspects of the
model. The concept of an application as a separate object is removed in favor of more flexible
composition of "services", allowing two web containers to reuse a database or expose a database
directly to the edge of the network.

1.1. WHAT ARE THE LAYERS?

Docker provides the abstraction for packaging and creating Linux-based, lightweight containers.
Kubernetes provides the cluster management and orchestrates Docker containers on multiple hosts.

OpenShift adds:

Source code management, builds, and deployments for developers

Managing and promoting images at scale as they flow through your system

Application management at scale

Team and user tracking for organizing a large developer organization

Figure 1.1. OpenShift Architecture Overview

1.2. WHAT IS THE OPENSHIFT ARCHITECTURE?

OpenShift has a microservices-based architecture of smaller, decoupled units that work together. It
can run on top of (or alongside) a Kubernetes cluster, with data about the objects stored in etcd, a
reliable clustered key-value store. Those services are broken down by function:

REST APIs, which expose each of the core objects.

CHAPTER 1. OVERVIEW

3

https://www.docker.com/
http://kubernetes.io/
https://access.redhat.com/documentation/en/openshift-enterprise/version-3.0/openshift-enterprise-30-whats-new/#whats-new-applications
https://access.redhat.com/documentation/en/openshift-enterprise/version-3.0/openshift-enterprise-30-rest-api-reference/#rest-api-index

Controllers, which read those APIs, apply changes to other objects, and report status or write
back to the object.

Users make calls to the REST API to change the state of the system. Controllers use the REST API
to read the user’s desired state, and then try to bring the other parts of the system into sync. For
example, when a user requests a build they create a "build" object. The build controller sees that a
new build has been created, and runs a process on the cluster to perform that build. When the build
completes, the controller updates the build object via the REST API and the user sees that their build
is complete.

The controller pattern means that much of the functionality in OpenShift is extensible. The way that
builds are run and launched can be customized independently of how images are managed, or how
deployments happen. The controllers are performing the "business logic" of the system, taking user
actions and transforming them into reality. By customizing those controllers or replacing them with
your own logic, different behaviors can be implemented. From a system administration perspective,
this also means the API can be used to script common administrative actions on a repeating
schedule. Those scripts are also controllers that watch for changes and take action. OpenShift
makes the ability to customize the cluster in this way a first-class behavior.

To make this possible, controllers leverage a reliable stream of changes to the system to sync their
view of the system with what users are doing. This event stream pushes changes from etcd to the
REST API and then to the controllers as soon as changes occur, so changes can ripple out through
the system very quickly and efficiently. However, since failures can occur at any time, the controllers
must also be able to get the latest state of the system at startup, and confirm that everything is in the
right state. This resynchronization is important, because it means that even if something goes
wrong, then the operator can restart the affected components, and the system double checks
everything before continuing. The system should eventually converge to the user’s intent, since the
controllers can always bring the system into sync.

1.3. HOW IS OPENSHIFT SECURED?

The OpenShift and Kubernetes APIs authenticate users who present credentials, and then authorize
them based on their role. Both developers and administrators can be authenticated via a number of
means, primarily OAuth tokens and SSL certificate authorization.

Developers (clients of the system) typically make REST API calls from a client program like oc or to
the web console via their browser, and use OAuth bearer tokens for most communications.
Infrastructure components (like nodes) use client certificates generated by the system that contain
their identities. Infrastructure components that run in containers use a token associated with their
service account to connect to the API.

Authorization is handled in the OpenShift policy engine, which defines actions like "create pod" or
"list services" and groups them into roles in a policy document. Roles are bound to users or groups
by the user or group identifier. When a user or service account attempts an action, the policy engine
checks for one or more of the roles assigned to the user (e.g., cluster administrator or administrator
of the current project) before allowing it to continue.

Since every container that runs on the cluster is associated with a service account, it is also possible
to associate secrets to those service accounts and have them automatically delivered into the
container. This enables the infrastructure to manage secrets for pulling and pushing images, builds,
and the deployment components, and also allows application code to easily leverage those secrets.

OpenShift Enterprise 3.0 Architecture

4

https://access.redhat.com/documentation/en/openshift-enterprise/version-3.0/openshift-enterprise-30-cli-reference/#cli-reference-index
https://access.redhat.com/documentation/en/openshift-enterprise/version-3.0/openshift-enterprise-30-developer-guide/#dev-guide-service-accounts
https://access.redhat.com/documentation/en/openshift-enterprise/version-3.0/openshift-enterprise-30-developer-guide/#dev-guide-secrets

CHAPTER 2. INFRASTRUCTURE COMPONENTS

2.1. KUBERNETES INFRASTRUCTURE

2.1.1. Overview

Within OpenShift, Kubernetes manages containerized applications across a set of containers or
hosts and provides mechanisms for deployment, maintenance, and application-scaling. Docker
packages, instantiates, and runs containerized applications.

A Kubernetes cluster consists of one or more masters and a set of nodes.

2.1.2. Masters

The master is the host or hosts that contain the master components, including the API server,
controller manager server, and etcd. The master manages nodes in its Kubernetes cluster and
schedules pods to run on nodes.

Table 2.1. Master Components

Component Description

API Server The Kubernetes API server validates and configures the data for pods, services, and
replication controllers. It also assigns pods to nodes and synchronizes pod
information with service configuration.

etcd etcd stores the persistent master state while other components watch etcd for
changes to bring themselves into the desired state. etcd can be optionally
configured for high availability, typically deployed with 2n+1 peer services.

Controller
Manager Server

The controller manager server watches etcd for changes to replication controller
objects and then uses the API to enforce the desired state.

Pacemaker Optional, used when configuring highly-available masters.

Pacemaker is the core technology of the High Availability Add-on for Red Hat
Enterprise Linux, providing consensus, fencing, and service management. It can be
run on all master hosts to ensure that all active-passive components have one
instance running.

CHAPTER 2. INFRASTRUCTURE COMPONENTS

5

http://kubernetes.io
https://www.docker.com/
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/High_Availability_Add-On_Overview/index.html

Virtual IP Optional, used when configuring highly-available masters.

The virtual IP (VIP) is the single point of contact, but not a single point of failure, for
all OpenShift clients that:

cannot be configured with all master service endpoints, or

do not know how to load balance across multiple masters nor retry failed master
service connections.

There is one VIP and it is managed by Pacemaker.

Component Description

2.1.2.1. High Availability Masters

While in a single master configuration, the availability of running applications remains if the master
or any of its services fail. However, failure of master services reduces the ability of the system to
respond to application failures or creation of new applications. You can optionally configure your
masters for high availability to ensure that the cluster has no single point of failure.

To mitigate concerns about availability of the master, two activities are recommended:

1. A runbook entry should be created for reconstructing the master. A runbook entry is a
necessary backstop for any highly-available service. Additional solutions merely control the
frequency that the runbook must be consulted. For example, a cold standby of the master
host can adequately fulfill SLAs that require no more than minutes of downtime for creation
of new applications or recovery of failed application components.

2. Use a high availability solution to configure your masters and ensure that the cluster has no
single point of failure. The advanced installation method provides specific examples using
Pacemaker as the management technology, which Red Hat recommends. However, you
can take the concepts and apply them towards your existing high availability solutions.

Note

Moving from a single master cluster to multiple masters after installation is not supported.

When using Pacemaker, master components have the following availability:

Table 2.2. Availability Matrix

Role Style Notes

etcd Active-active Fully redundant deployment with load balancing

OpenShift Enterprise 3.0 Architecture

6

https://en.wikipedia.org/wiki/Runbook
https://access.redhat.com/documentation/en/openshift-enterprise/version-3.0/installation-and-configuration/#install-config-install-advanced-install

Master service Active-passive One active at a time, managed by Pacemaker

Pacemaker Active-active Fully redundant deployment

Virtual IP Active-passive One active at a time, managed by Pacemaker

Role Style Notes

Figure 2.1. Highly-available Masters Using Pacemaker

2.1.3. Nodes

A node provides the runtime environments for containers. Each node in a Kubernetes cluster has
the required services to be managed by the master. Nodes also have the required services to run
pods, including Docker, a kubelet, and a service proxy.

OpenShift creates nodes from a cloud provider, physical systems, or virtual systems. Kubernetes
interacts with node objects that are a representation of those nodes. The master uses the
information from node objects to validate nodes with health checks. A node is ignored until it passes
the health checks, and the master continues checking nodes until they are valid. The Kubernetes
documentation has more information on node management.

CHAPTER 2. INFRASTRUCTURE COMPONENTS

7

https://github.com/GoogleCloudPlatform/kubernetes/blob/master/docs/admin/node.md#node-management

Administrators can manage nodes in an OpenShift instance using the CLI. To define full
configuration and security options when launching node servers, use dedicated node configuration
files.

2.1.3.1. Kubelet

Each node has a kubelet that updates the node as specified by a container manifest, which is a
YAML file that describes a pod. The kubelet uses a set of manifests to ensure that its containers are
started and that they continue to run. A sample manifest can be found in the Kubernetes
documentation.

A container manifest can be provided to a kubelet by:

A file path on the command line that is checked every 20 seconds.

An HTTP endpoint passed on the command line that is checked every 20 seconds.

The kubelet watching an etcd server, such as /registry/hosts/$(hostname -f), and acting on
any changes.

The kubelet listening for HTTP and responding to a simple API to submit a new manifest.

2.1.3.2. Service Proxy

Each node also runs a simple network proxy that reflects the services defined in the API on that
node. This allows the node to do simple TCP and UDP stream forwarding across a set of back ends.

2.1.3.3. Node Object Definition

The following is an example node object definition in Kubernetes:

apiVersion: v1

kind: Node

metadata:
 creationTimestamp: null

 labels:

 kubernetes.io/hostname: node1.example.com

 name: node1.example.com

spec:

 externalID: node1.example.com

status:
 nodeInfo:
 bootID: ""
 containerRuntimeVersion: ""
 kernelVersion: ""
 kubeProxyVersion: ""
 kubeletVersion: ""
 machineID: ""
 osImage: ""
 systemUUID: ""

1

1

2

3

4

5

OpenShift Enterprise 3.0 Architecture

8

https://access.redhat.com/documentation/en/openshift-enterprise/version-3.0/openshift-enterprise-30-administrator-guide/#admin-guide-manage-nodes
https://access.redhat.com/documentation/en/openshift-enterprise/version-3.0/openshift-enterprise-30-administrator-guide/#admin-guide-master-node-configuration
https://cloud.google.com/compute/docs/containers/container_vms#container_manifest

apiVersion defines the API version to use.

kind set to Node identifies this as a definition for a node object.

metadata.labels lists any labels that have been added to the node.

metadata.name is a required value that defines the name of the node object. This value is
shown in the NAME column when running the oc get nodes command.

spec.externalID defines the fully-qualified domain name where the node can be
reached. Defaults to the metadata.name value when empty.

The REST API Reference has more details on these definitions.

2.2. IMAGE REGISTRY

2.2.1. Overview

OpenShift can utilize any server implementing the Docker registry API as a source of images,
including the canonical Docker Hub, private registries run by third parties, and the integrated
OpenShift registry.

2.2.2. Integrated OpenShift Registry

OpenShift provides an integrated Docker registry that adds the ability to provision new image
repositories on the fly. This allows users to automatically have a place for their builds to push the
resulting images.

Whenever a new image is pushed to the integrated registry, the registry notifies OpenShift about the
new image, passing along all the information about it, such as the namespace, name, and image
metadata. Different pieces of OpenShift react to new images, creating new builds and deployments.

2.2.3. Third Party Registries

OpenShift can create containers using images from third party registries, but it is unlikely that these
registries offer the same image notification support as the integrated OpenShift registry. In this
situation OpenShift will fetch tags from the remote registry upon imagestream creation. Refreshing
the fetched tags is as simple as running oc import-image <stream>. When new images are
detected, the previously-described build and deployment reactions occur.

2

3

4

5

CHAPTER 2. INFRASTRUCTURE COMPONENTS

9

https://access.redhat.com/documentation/en/openshift-enterprise/version-3.0/openshift-enterprise-30-rest-api-reference/#rest-api-kubernetes-v1

To create an image stream from an external registry, set the spec.dockerImageRepository
field appropriately. For example:

{
 "apiVersion": "v1",
 "kind": "ImageStream",
 "metadata": {
 "name": "ruby"
 },
 "spec": {
 "dockerImageRepository": "openshift/ruby-20-centos7"
 }
}

After OpenShift synchronizes the tag and image metadata, it looks something like this:

{
 "kind": "ImageStream",
 "apiVersion": "v1",
 "metadata": {
 "name": "ruby",
 "namespace": "default",
 "selfLink": "/osapi/v1/namespaces/default/imagestreams/ruby",
 "uid": "9990ea5f-f35a-11e4-937e-001c422dcd49",
 "resourceVersion": "53",
 "creationTimestamp": "2015-05-05T19:11:57Z",
 "annotations": {
 "openshift.io/image.dockerRepositoryCheck": "2015-05-
05T19:12:00Z"
 }
 },
 "spec": {
 "dockerImageRepository": "openshift/ruby-20-centos7"
 },
 "status": {
 "dockerImageRepository": "openshift/ruby-20-centos7",
 "tags": [
 {
 "tag": "latest",
 "items": [
 {
 "created": "2015-05-05T19:11:58Z",
 "dockerImageReference": "openshift/ruby-20-
centos7:latest",
 "image":
"94439378e4546d72ef221c47fe2ac30065bcc3a98c25bc51bed77ec00efabb95"
 }
]
 },
 {
 "tag": "v0.4",
 "items": [
 {
 "created": "2015-05-05T19:11:59Z",
 "dockerImageReference": "openshift/ruby-20-centos7:v0.4",
 "image":

OpenShift Enterprise 3.0 Architecture

10

"c7dbf059225847a7bfb4f40bc335ad7e70defc913de1a28aabea3a2072844a3f"
 }
]
 }
]
 }
}

Note

Querying external registries to synchronize tag and image metadata is not currently an
automated process. To resynchronize manually, run oc import-image <stream>.
Within a short amount of time, OpenShift will communicate with the external registry to get
up to date information about the Docker image repository associated with the image
stream.

2.2.3.1. Authentication

OpenShift can communicate with registries to access private image repositories using credentials
supplied by the user. This allows OpenShift to push and pull images to and from private repositories.
The Authentication topic has more information.

2.3. WEB CONSOLE

2.3.1. Overview

The OpenShift web console is a user interface accessible from a web browser. Developers can use
the web console to visualize, browse, and manage the contents of projects.

The web console is started as part of the master. All static assets required to run the web console
are served from the openshift binary. Administrators can also customize the web console using
extensions, which let you run scripts and load custom stylesheets when the web console loads. You
can change the look and feel of nearly any aspect of the user interface in this way.

When you access the web console from a browser, it first loads all required static assets. It then
makes requests to the OpenShift APIs using the values defined from the openshift start option
--public-master, or from the related master configuration file parameter masterPublicURL.
The web console uses WebSockets to maintain a persistent connection with the API server and
receive updated information as soon as it is available.

Note

JavaScript must be enabled to use the web console. For the best experience, use a web
browser that supports WebSockets.

Figure 2.2. Web Console Request Architecture

CHAPTER 2. INFRASTRUCTURE COMPONENTS

11

https://access.redhat.com/documentation/en/openshift-enterprise/version-3.0/openshift-enterprise-30-administrator-guide/#admin-guide-web-console-customization
https://access.redhat.com/documentation/en/openshift-enterprise/version-3.0/openshift-enterprise-30-administrator-guide/#master-configuration-files
http://caniuse.com/#feat=websockets

The configured host names and IP addresses for the web console are whitelisted to access the API
server safely even when the browser would consider the requests to be cross-origin. To access the
API server from a web application using a different host name, you must whitelist that host name by
specifying the --cors-allowed-origins option on openshift start or from the related
master configuration file parameter corsAllowedOrigins.

2.3.2. Browser Requirements

Review the tested integrations for OpenShift Enterprise. The following browser versions and
operating systems can be used to access the web console.

Table 2.3. Browser Requirements

Browser (Latest Stable) Operating System

Firefox Fedora 23, Windows 8

Internet Explorer Windows 8

Chrome Fedora 23, Windows 8, and MacOSX

Safari MacOSX, iPad 2, iPhone 4

2.3.3. Project Overviews

After logging in, the web console provides developers with an overview for the currently selected
project:

Figure 2.3. Web Console Project Overview

OpenShift Enterprise 3.0 Architecture

12

http://www.w3.org/TR/cors/
https://access.redhat.com/documentation/en/openshift-enterprise/version-3.0/openshift-enterprise-30-administrator-guide/#master-configuration-files
https://access.redhat.com/articles/2176281
https://access.redhat.com/documentation/en/openshift-enterprise/version-3.0/openshift-enterprise-30-developer-guide/#dev-guide-authentication
https://access.redhat.com/documentation/en/openshift-enterprise/version-3.0/openshift-enterprise-30-developer-guide/#dev-guide-projects

The project selector allows you to switch between projects you have access to.

Filter the contents of a project page by using the labels of a resource.

Create new applications using a source repository or using a template.

The Overview tab (currently selected) visualizes the contents of your project with a high-
level view of each component.

The Browse tab explores the different objects types within your project: Builds,
Deployments, Image Streams, Pods, and Services.

The Settings tab provides general information about your project, as well as the quota and
resource limits that are set on your project.

When you click on one of your objects in the Overview page, the Details pane displays
detailed information about that object. In this example, the cakephp-mysql-example
deployment is selected, and the Details pane is displaying details on the related replication
controller.

2.3.4. JVM Console

CHAPTER 2. INFRASTRUCTURE COMPONENTS

13

https://access.redhat.com/documentation/en/openshift-enterprise/version-3.0/openshift-enterprise-30-developer-guide/#view-projects
https://access.redhat.com/documentation/en/openshift-enterprise/version-3.0/openshift-enterprise-30-developer-guide/#filtering-by-labels
https://access.redhat.com/documentation/en/openshift-enterprise/version-3.0/openshift-enterprise-30-developer-guide/#using-the-web-console-na
https://access.redhat.com/documentation/en/openshift-enterprise/version-3.0/openshift-enterprise-30-developer-guide/#creating-from-templates-using-the-web-console
https://access.redhat.com/documentation/en/openshift-enterprise/version-3.0/openshift-enterprise-30-developer-guide/#dev-guide-quota
https://access.redhat.com/documentation/en/openshift-enterprise/version-3.0/openshift-enterprise-30-developer-guide/#dev-guide-limits

Note

This feature is currently in Technology Preview and not intended for production use.

For pods based on Java images, the web console also exposes access to a hawt.io-based JVM
console for viewing and managing any relevant integration components. A Connect link is displayed
in the pod’s details on the Browse → Pods page, provided the container has a port named jolokia.

Figure 2.4. Pod with a Link to the JVM Console

After connecting to the JVM console, different pages are displayed depending on which components
are relevant to the connected pod.

Figure 2.5. JVM Console

OpenShift Enterprise 3.0 Architecture

14

https://access.redhat.com/documentation/en/openshift-enterprise/version-3.0/openshift-enterprise-30-whats-new/#technology-preview
http://hawt.io/

The following pages are available:

Page Description

JMX View and manage JMX domains and mbeans.

Threads View and monitor the state of threads.

ActiveMQ View and manage Apache ActiveMQ brokers.

Camel View and and manage Apache Camel routes and dependencies.

CHAPTER 2. INFRASTRUCTURE COMPONENTS

15

CHAPTER 3. CORE CONCEPTS

3.1. OVERVIEW

The following topics provide high-level, architectural information on core concepts and objects you
will encounter when using OpenShift. Many of these objects come from Kubernetes, which is
extended by OpenShift to provide a more feature-rich development lifecycle platform.

Containers and images are the building blocks for deploying your applications.

Pods and services allow for containers to communicate with each other and proxy connections.

Projects and users provide the space and means for communities to organize and manage their
content together.

Builds and image streams allow you to build working images and react to new images.

Deployments add expanded support for the software development and deployment lifecycle.

Routes announce your service to the world.

Templates allow for many objects to be created at once based on customized parameters.

3.2. CONTAINERS AND IMAGES

3.2.1. Containers

The basic units of OpenShift applications are called containers. Linux container technologies are
lightweight mechanisms for isolating running processes so that they are limited to interacting with
only their designated resources. Many application instances can be running in containers on a
single host without visibility into each others' processes, files, network, and so on. Typically, each
container provides a single service (often called a "micro-service"), such as a web server or a
database, though containers can be used for arbitrary workloads.

The Linux kernel has been incorporating capabilities for container technologies for years. More
recently the Docker project has developed a convenient management interface for Linux containers
on a host. OpenShift and Kubernetes add the ability to orchestrate Docker containers across multi-
host installations.

Though you do not directly interact with Docker tools when using OpenShift, understanding Docker’s
capabilities and terminology is important for understanding its role in OpenShift and how your
applications function inside of containers. Docker is available as part of RHEL 7, as well as CentOS
and Fedora, so you can experiment with it separately from OpenShift. Refer to the article Get
Started with Docker Formatted Container Images on Red Hat Systems for a guided introduction.

3.2.2. Docker Images

Docker containers are based on Docker images. A Docker image is a binary that includes all of the
requirements for running a single Docker container, as well as metadata describing its needs and
capabilities. You can think of it as a packaging technology. Docker containers only have access to
resources defined in the image, unless you give the container additional access when creating it. By
deploying the same image in multiple containers across multiple hosts and load balancing between
them, OpenShift can provide redundancy and horizontal scaling for a service packaged into an
image.

OpenShift Enterprise 3.0 Architecture

16

https://access.redhat.com/articles/1353593
https://www.docker.com/whatisdocker/
https://access.redhat.com/articles/881893

You can use Docker directly to build images, but OpenShift also supplies builders that assist with
creating an image by adding your code or configuration to existing images.

Since applications develop over time, a single image name can actually refer to many different
versions of the "same" image. Each different image is referred to uniquely by its hash (a long
hexadecimal number e.g. fd44297e2ddb050ec4f…) which is usually shortened to 12 characters
(e.g. fd44297e2ddb). Rather than version numbers, Docker allows applying tags (such as v1,
v2.1, GA, or the default latest) in addition to the image name to further specify the image desired,
so you may see the same image referred to as centos (implying the latest tag),
centos:centos7, or fd44297e2ddb.

3.2.3. Docker Registries

A Docker registry is a service for storing and retrieving Docker images. A registry contains a
collection of one or more Docker image repositories. Each image repository contains one or more
tagged images. Docker provides its own registry, the Docker Hub, but you may also use private or
third-party registries. Red Hat provides a Docker registry at registry.access.redhat.com for
subscribers. OpenShift can also supply its own internal registry for managing custom Docker
images.

The relationship between Docker containers, images, and registries is depicted in the following
diagram:

3.3. PODS AND SERVICES

3.3.1. Pods

CHAPTER 3. CORE CONCEPTS

17

https://registry.hub.docker.com/

OpenShift leverages the Kubernetes concept of a pod, which is one or more containers deployed
together on one host, and the smallest compute unit that can be defined, deployed, and managed.

Pods are the rough equivalent of OpenShift v2 gears, with containers the rough equivalent of v2
cartridge instances. Each pod is allocated its own internal IP address, therefore owning its entire
port space, and containers within pods can share their local storage and networking.

Pods have a lifecycle; they are defined, then they are assigned to run on a node, then they run until
their container(s) exit or they are removed for some other reason. Pods, depending on policy and
exit code, may be removed after exiting, or may be retained in order to enable access to the logs of
their containers.

OpenShift treats pods as largely immutable; changes cannot be made to a pod definition while it is
running. OpenShift implements changes by terminating an existing pod and recreating it with
modified configuration, base image(s), or both. Pods are also treated as expendable, and do not
maintain state when recreated. Therefore pods should usually be managed by higher-level
controllers, rather than directly by users.

Below is an example definition of a pod that provides a long-running service, which is actually a part
of the OpenShift infrastructure: the private Docker registry. It demonstrates many features of pods,
most of which are discussed in other topics and thus only briefly mentioned here:

Example 3.1. Pod Object Definition (YAML)

apiVersion: v1
kind: Pod
metadata:
 annotations: { ... }

 labels:

 deployment: docker-registry-1
 deploymentconfig: docker-registry
 docker-registry: default

 generateName: docker-registry-1-

spec:

 containers:

 - env:

 - name: OPENSHIFT_CA_DATA
 value: ...
 - name: OPENSHIFT_CERT_DATA
 value: ...
 - name: OPENSHIFT_INSECURE
 value: "false"
 - name: OPENSHIFT_KEY_DATA
 value: ...
 - name: OPENSHIFT_MASTER
 value: https://master.example.com:8443

 image: openshift/origin-docker-registry:v0.6.2

 imagePullPolicy: IfNotPresent
 name: registry

 ports:

 - containerPort: 5000
 protocol: TCP
 resources: {}

1

2

3

4

5

6

OpenShift Enterprise 3.0 Architecture

18

Pods can be "tagged" with one or more labels, which can then be used to select and
manage groups of pods in a single operation. The labels are stored in key/value format in
the metadata hash. One label in this example is docker-registry=default.

Pods must have a unique name within their namespace. A pod definition may specify the
basis of a name with the generateName attribute, and random characters will be added
automatically to generate a unique name.

containers specifies an array of container definitions; in this case (as with most), just
one.

Environment variables can be specified to pass necessary values to each container.

Each container in the pod is instantiated from its own Docker image.

 securityContext: { ... }

 volumeMounts:

 - mountPath: /registry
 name: registry-storage
 - mountPath: /var/run/secrets/kubernetes.io/serviceaccount
 name: default-token-br6yz
 readOnly: true
 dnsPolicy: ClusterFirst
 imagePullSecrets:
 - name: default-dockercfg-at06w
 restartPolicy: Always

 serviceAccount: default

 volumes:
 - emptyDir: {}
 name: registry-storage
 - name: default-token-br6yz
 secret:
 secretName: default-token-br6yz

1

2

3

4

5

6

7

8

9

1
0

CHAPTER 3. CORE CONCEPTS

19

The container can bind to ports which will be made available on the pod’s IP.

OpenShift defines a security context for containers which specifies whether they are allowed
to run as privileged containers, run as a user of their choice, and more. The default context
is very restrictive but administrators can modify this as needed.

The container specifies where external storage volumes should be mounted within the
container. In this case, there is a volume for storing the registry’s data, and one for access to
credentials the registry needs for making requests against the OpenShift API.

Pods making requests against the OpenShift API is a common enough pattern that there is
a serviceAccount field for specifying which service account user the pod should
authenticate as when making the requests. This enables fine-grained access control for
custom infrastructure components.

The pod defines storage volumes that are available to its container(s) to use. In this case, it
provides an ephemeral volume for the registry storage and a secret volume containing the
service account credentials.

Note

This pod definition does not include attributes that are filled by OpenShift automatically
after the pod is created and its lifecycle begins. The Kubernetes API documentation has
complete details of the pod REST API object attributes, and the Kubernetes pod
documentation has details about the functionality and purpose of pods.

3.3.2. Services

A Kubernetes service serves as an internal load balancer. It identifies a set of replicated pods in
order to proxy the connections it receives to them. Backing pods can be added to or removed from
a service arbitrarily while the service remains consistently available, enabling anything that depends
on the service to refer to it at a consistent internal address.

Services are assigned an IP address and port pair that, when accessed, proxy to an appropriate
backing pod. A service uses a label selector to find all the containers running that provide a certain
network service on a certain port.

Like pods, services are REST objects. The following example shows the definition of a service for
the pod defined above:

Example 3.2. Service Object Definition (YAML)

7

8

9

10

OpenShift Enterprise 3.0 Architecture

20

https://access.redhat.com/documentation/en/openshift-enterprise/version-3.0/openshift-enterprise-30-developer-guide/#dev-guide-service-accounts
https://access.redhat.com/documentation/en/openshift-enterprise/version-3.0/openshift-enterprise-30-rest-api-reference/#rest-api-kubernetes-v1
https://github.com/GoogleCloudPlatform/kubernetes/blob/master/docs/user-guide/pods.md

The service name docker-registry is also used to construct an environment variable
with the service IP that is inserted into other pods in the same namespace. The
maximum name length is 63 characters.

The label selector identifies all pods with the docker-registry=default label attached as
its backing pods.

Virtual IP of the service, allocated automatically at creation from a pool of internal IPs.

Port the service listens on.

Port on the backing pods to which the service forwards connections.

The Kubernetes documentation has more information on services.

3.3.3. Labels

Labels are used to organize, group, or select API objects. For example, pods are "tagged" with
labels, and then services use label selectors to identify the pods they proxy to. This makes it
possible for services to reference groups of pods, even treating pods with potentially different
Docker containers as related entities.

apiVersion: v1
kind: Service
metadata:

 name: docker-registry

spec:

 selector:

 docker-registry: default

 portalIP: 172.30.136.123

 ports:
 - nodePort: 0

 port: 5000

 protocol: TCP
 targetPort: 5000

1

2

3

4

1

2

3

4

CHAPTER 3. CORE CONCEPTS

21

https://github.com/GoogleCloudPlatform/kubernetes/blob/master/docs/user-guide/services.md

Most objects can include labels in their metadata. So labels can be used to group arbitrarily-related
objects; for example, all of the pods, services, replication controllers, and deployment configurations
of a particular application can be grouped.

Labels are simple key/value pairs, as in the following example:

Consider:

A pod consisting of an nginx Docker container, with the label role=webserver.

A pod consisting of an Apache httpd Docker container, with the same label role=webserver.

A service or replication controller that is defined to use pods with the role=webserver label treats
both of these pods as part of the same group.

The Kubernetes documentation has more information on labels.

3.4. PROJECTS AND USERS

3.4.1. Users

Interaction with OpenShift is associated with a user. An OpenShift user object represents an actor
which may be granted permissions in the system by adding roles to them or to their groups.

Several types of users can exist:

Regular users This is the way most interactive OpenShift users will be represented. Regular users
are created automatically in the system upon first login, or can be created via the
API. Regular users are represented with the User object. Examples: joe alice

System users Many of these are created automatically when the infrastructure is defined, mainly
for the purpose of enabling the infrastructure to interact with the API securely. They
include a cluster administrator (with access to everything), a per-node user, users
for use by routers and registries, and various others. Finally, there is an
anonymous system user that is used by default for unauthenticated requests.
Examples: system:admin system:openshift-registry
system:node:node1.example.com

Service
accounts

These are special system users associated with projects; some are created
automatically when the project is first created, while project administrators can
create more for the purpose of defining access to the contents of each project.
Service accounts are represented with the ServiceAccount object. Examples:
system:serviceaccount:default:deployer
system:serviceaccount:foo:builder

labels:
 key1: value1
 key2: value2

OpenShift Enterprise 3.0 Architecture

22

https://github.com/GoogleCloudPlatform/kubernetes/blob/master/docs/user-guide/labels.md
https://access.redhat.com/documentation/en/openshift-enterprise/version-3.0/openshift-enterprise-30-administrator-guide/#managing-role-bindings

Every user must authenticate in some way in order to access OpenShift. API requests with no
authentication or invalid authentication are authenticated as requests by the anonymous system
user. Once authenticated, policy determines what the user is authorized to do.

3.4.2. Namespaces

A Kubernetes namespace provides a mechanism to scope resources in a cluster. In OpenShift, a
project is a Kubernetes namespace with additional annotations.

Namespaces provide a unique scope for:

Named resources to avoid basic naming collisions.

Delegated management authority to trusted users.

The ability to limit community resource consumption.

Most objects in the system are scoped by namespace, but some are excepted and have no
namespace, including nodes and users.

The Kubernetes documentation has more information on namespaces.

3.4.3. Projects

A project is a Kubernetes namespace with additional annotations, and is the central vehicle by which
access to resources for regular users is managed. A project allows a community of users to organize
and manage their content in isolation from other communities. Users must be given access to
projects by administrators, or if allowed to create projects, automatically have access to their own
projects.

Projects can have a separate name, displayName, and description.

The mandatory name is a unique identifier for the project and is most visible when using the CLI
tools or API. The maximum name length is 63 characters.

The optional displayName is how the project is displayed in the web console (defaults to
name).

The optional description can be a more detailed description of the project and is also visible
in the web console.

Each project scopes its own set of:

Objects Pods, services, replication controllers, etc.

Policies Rules for which users can or cannot perform actions on objects.

Constraints Quotas for each kind of object that can be limited.

CHAPTER 3. CORE CONCEPTS

23

https://github.com/GoogleCloudPlatform/kubernetes/blob/master/docs/admin/namespaces.md

Service
accounts

Service accounts act automatically with designated access to objects in the project.

Cluster administrators can create projects and delegate administrative rights for the project to any
member of the user community. Cluster administrators can also allow developers to create their own
projects.

Developers and administrators can interact with projects using the CLI or the web console.

3.5. BUILDS AND IMAGE STREAMS

3.5.1. Builds

A build is the process of transforming input parameters into a resulting object. Most often, the
process is used to transform input parameters or source code into a runnable image. A BuildConfig
object is the definition of the entire build process.

OpenShift leverages Kubernetes by creating Docker containers from build images and pushing them
to a Docker registry.

Build objects share common characteristics: inputs for a build, the need to complete a build process,
logging the build process, publishing resources from successful builds, and publishing the final
status of the build. Builds take advantage of resource restrictions, specifying limitations on resources
such as CPU usage, memory usage, and build or pod execution time.

The OpenShift build system provides extensible support for build strategies that are based on
selectable types specified in the build API. There are three build strategies available:

Docker build

Source-to-Image (S2I) build

Custom build

By default, Docker builds and S2I builds are supported.

The resulting object of a build depends on the builder used to create it. For Docker and S2I builds,
the resulting objects are runnable images. For Custom builds, the resulting objects are whatever the
builder image author has specified.

For a list of build commands, see the Developer’s Guide.

For more information on how OpenShift leverages Docker for builds, see the upstream
documentation.

3.5.1.1. Docker Build

The Docker build strategy invokes the plain docker build command, and it therefore expects a
repository with a Dockerfile and all required artifacts in it to produce a runnable image.

3.5.1.2. Source-to-Image (S2I) Build

Source-to-Image (S2I) is a tool for building reproducible Docker images. It produces ready-to-run

OpenShift Enterprise 3.0 Architecture

24

https://access.redhat.com/documentation/en/openshift-enterprise/version-3.0/openshift-enterprise-30-developer-guide/#dev-guide-projects
https://access.redhat.com/documentation/en/openshift-enterprise/version-3.0/openshift-enterprise-30-administrator-guide/#managing-role-bindings
https://access.redhat.com/documentation/en/openshift-enterprise/version-3.0/openshift-enterprise-30-administrator-guide/#admin-guide-selfprovisioned-projects
https://access.redhat.com/documentation/en/openshift-enterprise/version-3.0/openshift-enterprise-30-developer-guide/#dev-guide-projects
https://access.redhat.com/documentation/en/openshift-enterprise/version-3.0/openshift-enterprise-30-cli-reference/#cli-reference-index
https://access.redhat.com/documentation/en/openshift-enterprise/version-3.0/openshift-enterprise-30-developer-guide/#dev-guide-builds
https://access.redhat.com/documentation/en/openshift-enterprise/version-3.0/openshift-enterprise-30-developer-guide/#defining-a-buildconfig
https://access.redhat.com/documentation/en/openshift-enterprise/version-3.0/openshift-enterprise-30-developer-guide/#dev-guide-builds
https://github.com/openshift/origin/blob/master/docs/builds.md#how-it-works
https://docs.docker.com/engine/reference/commandline/build/
https://access.redhat.com/documentation/en/openshift-enterprise/version-3.0/openshift-enterprise-30-creating-images/#creating-images-s2i

images by injecting application source into a Docker image and assembling a new Docker image.
The new image incorporates the base image (the builder) and built source and is ready to use with
the docker run command. S2I supports incremental builds, which re-use previously downloaded
dependencies, previously built artifacts, etc.

The advantages of S2I include the following:

Image
flexibility

S2I scripts can be written to inject application code into almost any existing Docker image,
taking advantage of the existing ecosystem. Note that, currently, S2I relies on tar to
inject application source, so the image needs to be able to process tarred content.

Speed With S2I, the assemble process can perform a large number of complex operations
without creating a new layer at each step, resulting in a fast process. In addition, S2I
scripts can be written to re-use artifacts stored in a previous version of the application
image, rather than having to download or build them each time the build is run.

Patchability S2I allows you to rebuild the application consistently if an underlying image needs a patch
due to a security issue.

Operational
efficiency

By restricting build operations instead of allowing arbitrary actions, as a Dockerfile would
allow, the PaaS operator can avoid accidental or intentional abuses of the build system.

Operational
security

Building an arbitrary Dockerfile exposes the host system to root privilege escalation. This
can be exploited by a malicious user because the entire Docker build process is run as a
user with Docker privileges. S2I restricts the operations performed as a root user and can
run the scripts as a non-root user.

User
efficiency

S2I prevents developers from performing arbitrary yum install type operations,
which could slow down development iteration, during their application build.

Ecosystem S2I encourages a shared ecosystem of images where you can leverage best practices for
your applications.

3.5.1.3. Custom Build

The Custom build strategy allows developers to define a specific builder image responsible for the
entire build process. Using your own builder image allows you to customize your build process.

The Custom builder image is a plain Docker image with embedded build process logic, such as
building RPMs or building base Docker images. The openshift/origin-custom-docker-builder image
is used by default.

3.5.2. Image Streams

CHAPTER 3. CORE CONCEPTS

25

https://access.redhat.com/documentation/en/openshift-enterprise/version-3.0/openshift-enterprise-30-creating-images/#creating-images-custom
https://registry.hub.docker.com/u/openshift/origin-custom-docker-builder/

An image stream can be used to automatically perform an action, such as updating a deployment,
when a new image, such as a new version of the base image that is used in that deployment, is
created.

An image stream comprises one or more Docker images identified by tags. It presents a single
virtual view of related images, similar to a Docker image repository, and may contain images from
any of the following:

1. Its own image repository in OpenShift’s integrated Docker Registry

2. Other image streams

3. Docker image repositories from external registries

OpenShift components such as builds and deployments can watch an image stream to receive
notifications when new images are added and react by performing a build or a deployment.

Example 3.3. Image Stream Object Definition

{
 "kind": "ImageStream",
 "apiVersion": "v1",
 "metadata": {
 "name": "origin-ruby-sample",
 "namespace": "p1",
 "selfLink": "/osapi/v1/namesapces/p1/imageStreams/origin-ruby-
sample",
 "uid": "480dfe73-f340-11e4-97b5-001c422dcd49",
 "resourceVersion": "293",
 "creationTimestamp": "2015-05-05T16:03:34Z",
 "labels": {
 "template": "application-template-stibuild"
 }
 },
 "spec": {},
 "status": {
 "dockerImageRepository": "172.30.30.129:5000/p1/origin-ruby-
sample",
 "tags": [
 {
 "tag": "latest",
 "items": [
 {
 "created": "2015-05-05T16:05:47Z",
 "dockerImageReference": "172.30.30.129:5000/p1/origin-
ruby-
sample@sha256:4d3a646b58685449179a0c61ad4baa19a8df8ba668e0f0704b9ad16f5
e16e642",
 "image":
"sha256:4d3a646b58685449179a0c61ad4baa19a8df8ba668e0f0704b9ad16f5e16e64
2"
 }
]

OpenShift Enterprise 3.0 Architecture

26

3.5.2.1. Image Stream Mappings

When the integrated OpenShift Docker Registry receives a new image, it creates and sends an
ImageStreamMapping to OpenShift. This informs OpenShift of the image’s namespace, name,
tag, and Docker metadata. OpenShift uses this information to create a new image (if it does not
already exist) and to tag the image into the image stream. OpenShift stores complete metadata
about each image (e.g., command, entrypoint, environment variables, etc.). Note that images in
OpenShift are immutable. Also, note that the maximum name length is 63 characters.

The example ImageStreamMapping below results in an image being tagged as test/origin-
ruby-sample:latest.

Example 3.4. Image Stream Mapping Object Definition

 }
]
 }
}

{
 "kind": "ImageStreamMapping",
 "apiVersion": "v1",
 "metadata": {
 "name": "origin-ruby-sample",
 "namespace": "test"
 },
 "image": {
 "metadata": {
 "name":
"a2f15cc10423c165ca221f4a7beb1f2949fb0f5acbbc8e3a0250eb7d5593ae64"
 },
 "dockerImageReference": "172.30.17.3:5001/test/origin-ruby-
sample:a2f15cc10423c165ca221f4a7beb1f2949fb0f5acbbc8e3a0250eb7d5593ae64
",
 "dockerImageMetadata": {
 "kind": "DockerImage",
 "apiVersion": "1.0",
 "Id":
"a2f15cc10423c165ca221f4a7beb1f2949fb0f5acbbc8e3a0250eb7d5593ae64",
 "Parent":
"3bb14bfe4832874535814184c13e01527239633627cdc38f18fa186e73a6b62c",
 "Created": "2015-01-23T21:47:04Z",
 "Container":
"f81db8980c62d7650683326173a361c3b09f3bc41471918b6319f7df67943b54",
 "ContainerConfig": {
 "Hostname": "f81db8980c62",
 "User": "ruby",
 "AttachStdout": true,
 "ExposedPorts": {
 "9292/tcp": {}
 },
 "OpenStdin": true,
 "StdinOnce": true,

CHAPTER 3. CORE CONCEPTS

27

 "Env": [
 "OPENSHIFT_BUILD_NAME=4bf65438-a349-11e4-bead-001c42c44ee1",
 "OPENSHIFT_BUILD_NAMESPACE=test",
 "OPENSHIFT_BUILD_SOURCE=https://github.com/openshift/ruby-
hello-world",

"PATH=/opt/ruby/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/
sbin:/bin",

"STI_SCRIPTS_URL=https://raw.githubusercontent.com/openshift/sti-
ruby/master/2.0/.sti/bin",
 "APP_ROOT=.",
 "HOME=/opt/ruby"
],
 "Cmd": [
 "/bin/sh",
 "-c",
 "tar -C /tmp -xf - \u0026\u0026 /tmp/scripts/assemble"
],
 "Image": "openshift/ruby-20-centos7",
 "WorkingDir": "/opt/ruby/src"
 },
 "DockerVersion": "1.4.1-dev",
 "Config": {
 "User": "ruby",
 "ExposedPorts": {
 "9292/tcp": {}
 },
 "Env": [
 "OPENSHIFT_BUILD_NAME=4bf65438-a349-11e4-bead-001c42c44ee1",
 "OPENSHIFT_BUILD_NAMESPACE=test",
 "OPENSHIFT_BUILD_SOURCE=https://github.com/openshift/ruby-
hello-world",

"PATH=/opt/ruby/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/
sbin:/bin",

"STI_SCRIPTS_URL=https://raw.githubusercontent.com/openshift/sti-
ruby/master/2.0/.sti/bin",
 "APP_ROOT=.",
 "HOME=/opt/ruby"
],
 "Cmd": [
 "/tmp/scripts/run"
],
 "WorkingDir": "/opt/ruby/src"
 },
 "Architecture": "amd64",
 "Size": 11710004
 },
 "dockerImageMetadataVersion": "1.0"
 },
 "tag": "latest"
}

OpenShift Enterprise 3.0 Architecture

28

3.5.2.2. Referencing Images in Image Streams

An ImageStreamTag is used to reference or retrieve an image for a given image stream and tag. It
uses the following convention for its name: <image stream name>:<tag>.

An ImageStreamImage is used to reference or retrieve an image for a given image stream and
image name. It uses the following convention for its name: <image stream name>@<name>.

The sample image below is from the ruby image stream and was retrieved by asking for the
ImageStreamImage with the name ruby@371829c:

Example 3.5. Definition of an Image Object retrieved via ImageStreamImage

{
 "kind": "ImageStreamImage",
 "apiVersion": "v1",
 "metadata": {
 "name": "ruby@371829c",
 "uid": "a48b40d7-18e2-11e5-9ba2-001c422dcd49",
 "resourceVersion": "1888",
 "creationTimestamp": "2015-06-22T13:29:00Z"
 },
 "image": {
 "metadata": {
 "name":
"371829c6d5cf05924db2ab21ed79dd0937986a817c7940b00cec40616e9b12eb",
 "uid": "a48b40d7-18e2-11e5-9ba2-001c422dcd49",
 "resourceVersion": "1888",
 "creationTimestamp": "2015-06-22T13:29:00Z"
 },
 "dockerImageReference": "openshift/ruby-20-centos7:latest",
 "dockerImageMetadata": {
 "kind": "DockerImage",
 "apiVersion": "1.0",
 "Id":
"371829c6d5cf05924db2ab21ed79dd0937986a817c7940b00cec40616e9b12eb",
 "Parent":
"8c7059377eaf86bc913e915f064c073ff45552e8921ceeb1a3b7cbf9215ecb66",
 "Created": "2015-06-20T23:02:23Z",
 "ContainerConfig": {},
 "DockerVersion": "1.6.0",
 "Author": "Jakub Hadvig \u003cjhadvig@redhat.com\u003e",
 "Config": {
 "User": "1001",
 "ExposedPorts": {
 "8080/tcp": {}
 },
 "Env": [

"PATH=/opt/openshift/src/bin:/opt/openshift/bin:/usr/local/sti:/usr/loc
al/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin",
 "STI_SCRIPTS_URL=image:///usr/local/sti",
 "HOME=/opt/openshift/src",
 "BASH_ENV=/opt/openshift/etc/scl_enable",
 "ENV=/opt/openshift/etc/scl_enable",

CHAPTER 3. CORE CONCEPTS

29

3.5.2.3. Image Pull Policy

Each container in a pod has a Docker image. Once you have created an image and pushed it to a
registry, you can then refer to it in the pod.

When OpenShift creates containers, it uses the container’s imagePullPolicy to determine if the
image should be pulled prior to starting the container. There are three possible values for
imagePullPolicy:

Always - always pull the image.

IfNotPresent - only pull the image if it does not already exist on the node.

Never - never pull the image.

If a container’s imagePullPolicy parameter is not specified, OpenShift sets it based on the
image’s tag:

1. If the tag is latest, OpenShift defaults imagePullPolicy to Always.

2. Otherwise, OpenShift defaults imagePullPolicy to IfNotPresent.

3.5.2.4. Importing Tag and Image Metadata

An image stream can be configured to import tag and image metadata from an image repository in
an external Docker image registry. See Image Registry for more details.

3.5.2.5. Tag Tracking

 "PROMPT_COMMAND=. /opt/openshift/etc/scl_enable",
 "RUBY_VERSION=2.0"
],
 "Cmd": [
 "usage"
],
 "Image":
"8c7059377eaf86bc913e915f064c073ff45552e8921ceeb1a3b7cbf9215ecb66",
 "WorkingDir": "/opt/openshift/src",
 "Labels": {
 "io.openshift.s2i.scripts-url":
"image:///usr/local/sti",
 "k8s.io/description": "Platform for building and
running Ruby 2.0 applications",
 "k8s.io/display-name": "Ruby 2.0",
 "openshift.io/expose-services": "8080:http",
 "openshift.io/tags": "builder,ruby,ruby20"
 }
 },
 "Architecture": "amd64",
 "Size": 53950504
 },
 "dockerImageMetadataVersion": "1.0"
 }
}

OpenShift Enterprise 3.0 Architecture

30

3.5.2.5. Tag Tracking

An image stream can also be configured so that a tag "tracks" another one. For example, you can
configure the latest tag to always refer to the current image for the tag "2.0":

$ oc tag ruby:latest ruby:2.0

3.5.2.6. Tag Removal

You can stop tracking a tag by removing it. For example, you can stop tracking the latest tag you
set above:

$ oc tag -d ruby:latest

Important

The above command removes the tag from the image stream spec, but not from the image
stream status. The image stream spec is user-defined, whereas the image stream status
reflects the information the system has from the specification. To remove a tag completely
from an image stream:

$ oc delete istag/ruby:latest

You can also do the same using the oc tag command:

oc tag ruby:latest ruby:2.0

3.5.2.7. Importing Images from Insecure Registries

{
 "kind": "ImageStream",
 "apiVersion": "v1",
 "metadata": {
 "name": "ruby"
 },
 "spec": {
 "tags": [
 {
 "name": "latest",
 "from": {
 "kind": "ImageStreamTag",
 "name": "2.0"
 }
 }
]
 }
}

CHAPTER 3. CORE CONCEPTS

31

An image stream can be configured to import tag and image metadata from an image repository that
is signed with a self-signed certificate or from one using plain http instead of https. To do that, add
openshift.io/image.insecureRepository annotation set to true. This setting will bypass
certificate validation when connecting to registry.

Important

The above definition will only affect importing tag and image metadata. For this image to
be used in the cluster (be able to do docker pull) each node needs to have docker
configured with --insecure-registry flag. See Installing Docker in Host Preparation
for information on the topic.

3.6. DEPLOYMENTS

3.6.1. Replication Controllers

A replication controller ensures that a specified number of replicas of a pod are running at all times. If
pods exit or are deleted, the replica controller acts to instantiate more up to the desired number.
Likewise, if there are more running than desired, it deletes as many as necessary to match the
number.

The definition of a replication controller consists mainly of:

1. The number of replicas desired (which can be adjusted at runtime).

2. A pod definition for creating a replicated pod.

3. A selector for identifying managed pods.

The selector is just a set of labels that all of the pods managed by the replication controller should
have. So that set of labels is included in the pod definition that the replication controller instantiates.
This selector is used by the replication controller to determine how many instances of the pod are
already running in order to adjust as needed.

It is not the job of the replication controller to perform auto-scaling based on load or traffic, as it does
not track either; rather, this would require its replica count to be adjusted by an external auto-scaler.

Replication controllers are a core Kubernetes object, ReplicationController. The Kubernetes
documentation has more details on replication controllers.

Here is an example ReplicationController definition with some omissions and callouts:

kind: ImageStream
apiVersion: v1
metadata:
 name: ruby
 annotations:
 openshift.io/image.insecureRepository: "true"
 spec:
 dockerImageRepository: "my.repo.com:5000/myimage"

apiVersion: v1

OpenShift Enterprise 3.0 Architecture

32

https://access.redhat.com/documentation/en/openshift-enterprise/version-3.0/installation-and-configuration/#host-preparation
https://github.com/GoogleCloudPlatform/kubernetes/blob/master/docs/user-guide/replication-controller.md

1. The number of copies of the pod to run.

2. The label selector of the pod to run.

3. A template for the pod the controller creates.

4. Labels on the pod should include those from the label selector.

5. The maximum name length after expanding any parameters is 63 characters.

3.6.2. Deployments and Deployment Configurations

Building on replication controllers, OpenShift adds expanded support for the software development
and deployment lifecycle with the concept of deployments. In the simplest case, a deployment just
creates a new replication controller and lets it start up pods. However, OpenShift deployments also
provide the ability to transition from an existing deployment of an image to a new one and also define
hooks to be run before or after creating the replication controller.

The OpenShift DeploymentConfiguration object defines the following details of a deployment:

1. The elements of a ReplicationController definition.

2. Triggers for creating a new deployment automatically.

3. The strategy for transitioning between deployments.

4. Life cycle hooks.

Each time a deployment is triggered, whether manually or automatically, a deployer pod manages
the deployment (including scaling down the old replication controller, scaling up the new one, and
running hooks). The deployment pod remains for an indefinite amount of time after it completes the
deployment in order to retain its logs of the deployment. When a deployment is superseded by
another, the previous replication controller is retained to enable easy rollback if needed.

For detailed instructions on how to create and interact with deployments, refer to Deployments.

kind: ReplicationController
metadata:
 name: frontend-1
spec:

 replicas: 1

 selector:

 name: frontend

 template:

 metadata:

 labels:

 name: frontend

 spec:
 containers:
 - image: openshift/hello-openshift
 name: helloworld
 ports:
 - containerPort: 8080
 protocol: TCP
 restartPolicy: Always

1

2

3

4

5

CHAPTER 3. CORE CONCEPTS

33

https://access.redhat.com/documentation/en/openshift-enterprise/version-3.0/openshift-enterprise-30-developer-guide/#dev-guide-deployments

Here is an example DeploymentConfiguration definition with some omissions and callouts:

1. A ConfigChange trigger causes a new deployment to be created any time the replication
controller template changes.

2. An ImageChange trigger causes a new deployment to be created each time a new version
of the backing image is available in the named image stream.

3. The default Rolling strategy makes a downtime-free transition between deployments.

3.7. ROUTES

3.7.1. Overview

An OpenShift route is a way to expose a service by giving it an externally-reachable hostname like
www.example.com.

A defined route and the endpoints identified by its service can be consumed by a router to provide
named connectivity that allows external clients to reach your applications. Each route consists of a
route name (limited to 63 characters), service selector, and (optionally) security configuration.

3.7.2. Routers

An OpenShift administrator can deploy routers in an OpenShift cluster, which enable routes created
by developers to be used by external clients. The routing layer in OpenShift is pluggable, and two
available router plug-ins are provided and supported by default.

OpenShift routers provide external host name mapping and load balancing to services over
protocols that pass distinguishing information directly to the router; the host name must be present
in the protocol in order for the router to determine where to send it.

apiVersion: v1
kind: DeploymentConfig
metadata:
 name: frontend
spec:
 replicas: 5
 selector:
 name: frontend
 template: { ... }
 triggers:

 - type: ConfigChange

 - imageChangeParams:
 automatic: true
 containerNames:
 - helloworld
 from:
 kind: ImageStreamTag
 name: hello-openshift:latest

 type: ImageChange

 strategy:

 type: Rolling

1

2

3

OpenShift Enterprise 3.0 Architecture

34

https://access.redhat.com/documentation/en/openshift-enterprise/version-3.0/installation-and-configuration/#install-config-install-deploy-router
https://access.redhat.com/documentation/en/openshift-enterprise/version-3.0/openshift-enterprise-30-developer-guide/#creating-routes

Router plug-ins assume they can bind to host ports 80 and 443. This is to allow external traffic to
route to the host and subsequently through the router. Routers also assume that networking is
configured such that it can access all pods in the cluster.

Routers support the following protocols:

HTTP

HTTPS (with SNI)

WebSockets

TLS with SNI

Note

WebSocket traffic uses the same route conventions and supports the same TLS
termination types as other traffic.

A router uses the service selector to find the service and the endpoints backing the service. Service-
provided load balancing is bypassed and replaced with the router’s own load balancing. Routers
watch the cluster API and automatically update their own configuration according to any relevant
changes in the API objects. Routers may be containerized or virtual. Custom routers can be
deployed to communicate modifications of API objects to an external routing solution.

In order to reach a router in the first place, requests for host names must resolve via DNS to a router
or set of routers. The suggested method is to define a cloud domain with a wildcard DNS entry
pointing to a virtual IP backed by multiple router instances on designated nodes. Router VIP
configuration is described in the Administration Guide. DNS for addresses outside the cloud domain
would need to be configured individually. Other approaches may be feasible.

3.7.2.1. Template Routers

A template router is a type of router that provides certain infrastructure information to the underlying
router implementation, such as:

A wrapper that watches endpoints and routes.

Endpoint and route data, which is saved into a consumable form.

Passing the internal state to a configurable template and executing the template.

Calling a reload script.

3.7.3. Available Router Plug-ins

The following router plug-ins are provided and supported in OpenShift. Instructions on deploying
these routers are available in Deploying a Router.

3.7.3.1. HAProxy Template Router

The HAProxy template router implementation is the reference implementation for a template router
plug-in. It uses the openshift3/ose-haproxy-router repository to run an HAProxy instance
alongside the template router plug-in.

CHAPTER 3. CORE CONCEPTS

35

https://access.redhat.com/documentation/en/openshift-enterprise/version-3.0/openshift-enterprise-30-administrator-guide/#configuring-a-highly-available-routing-service
https://access.redhat.com/documentation/en/openshift-enterprise/version-3.0/installation-and-configuration/#install-config-install-deploy-router

The following diagram illustrates how data flows from the master through the plug-in and finally into
an HAProxy configuration:

Figure 3.1. HAProxy Router Data Flow

Sticky Sessions

Implementing sticky sessions is up to the underlying router configuration. The default HAProxy
template implements sticky sessions using the balance source directive which balances based
on the source IP. In addition, the template router plug-in provides the service name and namespace
to the underlying implementation. This can be used for more advanced configuration such as
implementing stick-tables that synchronize between a set of peers.

Specific configuration for this router implementation is stored in the haproxy-config.template file
located in the /var/lib/haproxy/conf directory of the router container.

Note

The balance source directive does not distinguish between external client IP
addresses; because of the NAT configuration, the originating IP address (HAProxy
remote) is the same. Unless the HAProxy router is running with hostNetwork: true,
all external clients will be routed to a single pod.

3.7.3.2. F5 Router

OpenShift Enterprise 3.0 Architecture

36

Note

The F5 router plug-in is available starting in OpenShift Enterprise 3.0.2.

The F5 router plug-in integrates with an existing F5 BIG-IP® system in your environment. F5 BIG-
IP® version 11.4 or newer is required in order to have the F5 iControl REST API. The F5 router
supports unsecured, edge terminated, re-encryption terminated, and passthrough terminated routes
matching on HTTP vhost and request path.

The F5 router has feature parity with the HAProxy template router, which means it has feature
parity, and then additional features, compared to to the F5 BIG-IP® support in OpenShift Enterprise
2. When comparing with the OpenShift routing-daemon used in earlier versions, the F5 router
additionally supports:

path-based routing (using policy rules),

re-encryption (implemented using client and server SSL profiles), and

passthrough of encrypted connections (implemented using an iRule that parses the SNI protocol
and uses a data group that is maintained by the F5 router for the servername lookup).

Note

Passthrough routes are a special case: path-based routing is technically impossible with
passthrough routes because F5 BIG-IP® itself does not see the HTTP request, so it
cannot examine the path. The same restriction applies to the template router; it is a
technical limitation of passthrough encryption, not a technical limitation of OpenShift.

Routing Traffic to Pods Through the SDN

Because F5 BIG-IP® is external to the OpenShift SDN, a cluster administrator must create a peer-
to-peer tunnel between F5 BIG-IP® and a host that is on the SDN, typically an OpenShift node host.
This ramp node can be configured as unschedulable for pods so that it will not be doing anything
except act as a gateway for the F5 BIG-IP® host. It is also possible to configure multiple such hosts
and use the OpenShift ipfailover feature for redundancy; the F5 BIG-IP® host would then need to
be configured to use the ipfailover VIP for its tunnel’s remote endpoint.

F5 Integration Details

The operation of the F5 router is similar to that of the OpenShift routing-daemon used in earlier
versions. Both use REST API calls to:

create and delete pools,

add endpoints to and delete them from those pools, and

configure policy rules to route to pools based on vhost.

Both also use scp and ssh commands to upload custom TLS/SSL certificates to F5 BIG-IP®.

The F5 router configures pools and policy rules on virtual servers as follows:

When a user creates or deletes a route on OpenShift, the router creates a pool to F5 BIG-IP® for
the route (if no pool already exists) and adds a rule to, or deletes a rule from, the policy of the
appropriate vserver: the HTTP vserver for non-TLS routes, or the HTTPS vserver for edge or re-
encrypt routes. In the case of edge and re-encrypt routes, the router also uploads and configures

CHAPTER 3. CORE CONCEPTS

37

https://access.redhat.com/documentation/en/openshift-enterprise/version-3.0/openshift-enterprise-30-administrator-guide/#establishing-a-tunnel-using-a-ramp-node
https://access.redhat.com/documentation/en/openshift-enterprise/version-3.0/openshift-enterprise-30-administrator-guide/#marking-nodes-as-unschedulable-or-schedulable

the TLS certificate and key. The router supports host- and path-based routes.

Note

Passthrough routes are a special case: to support those, it is necessary to write an
iRule that parses the SNI ClientHello handshake record and looks up the servername
in an F5 data-group. The router creates this iRule, associates the iRule with the
vserver, and updates the F5 data-group as passthrough routes are created and
deleted. Other than this implementation detail, passthrough routes work the same way
as other routes.

When a user creates a service on OpenShift, the router adds a pool to F5 BIG-IP® (if no pool
already exists). As endpoints on that service are created and deleted, the router adds and
removes corresponding pool members.

When a user deletes the route and all endpoints associated with a particular pool, the router
deletes that pool.

3.7.4. Route Host Names

In order for services to be exposed externally, an OpenShift route allows you to associate a service
with an externally-reachable host name. This edge host name is then used to route traffic to the
service.

When two routes claim the same host, the oldest route wins. If additional routes with different path
fields are defined in the same namespace, those paths will be added. If multiple routes with the
same path are used, the oldest takes priority.

Example 3.6. A Route with a Specified Host:

Specifies the externally-reachable host name used to expose a service.

Example 3.7. A Route Without a Host:

apiVersion: v1
kind: Route
metadata:
 name: host-route
spec:

 host: www.example.com

 to:
 kind: Service
 name: service-name

1 1 1

apiVersion: v1

1

OpenShift Enterprise 3.0 Architecture

38

If a host name is not provided as part of the route definition, then OpenShift automatically generates
one for you. The generated host name is of the form:

<route-name>[-<namespace>].<suffix>

The following example shows the OpenShift-generated host name for the above configuration of a
route without a host added to a namespace mynamespace:

Example 3.8. Generated Host Name

no-route-hostname-mynamespace.router.default.svc.cluster.local

The generated host name suffix is the default routing subdomain
router.default.svc.cluster.local.

A cluster administrator can also customize the suffix used as the default routing subdomain for their
environment.

3.7.5. Route Types

Routes can be either secured or unsecured. Secure routes provide the ability to use several types of
TLS termination to serve certificates to the client. Routers support edge, passthrough, and re-
encryption termination.

Example 3.9. Unsecured Route Object YAML Definition

kind: Route
metadata:
 name: no-route-hostname
spec:
 to:
 kind: Service
 name: service-name

1

1

apiVersion: v1
kind: Route
metadata:
 name: route-unsecured
spec:
 host: www.example.com
 to:
 kind: Service
 name: service-name

CHAPTER 3. CORE CONCEPTS

39

https://access.redhat.com/documentation/en/openshift-enterprise/version-3.0/installation-and-configuration/#customizing-the-default-routing-subdomain

Unsecured routes are simplest to configure, as they require no key or certificates, but secured
routes offer security for connections to remain private.

A secured route is one that specifies the TLS termination of the route. The available types of
termination are described below.

3.7.6. Path Based Routes

Path based routes specify a path component that can be compared against a URL (which requires
that the traffic for the route be HTTP based) such that multiple routes can be served using the same
hostname, each with a different path. Routers should match routes based on the most specific path
to the least; however, this depends on the router implementation. The following table shows
example routes and their accessibility:

Table 3.1. Route Availability

Route When Compared to Accessible

www.example.com/test www.example.com/test Yes

www.example.com No

www.example.com/test and
www.example.com

www.example.com/test Yes

www.example.com Yes

www.example.com www.example.com/test Yes (Matched by the host, not
the route)

www.example.com Yes

Example 3.10. An Unsecured Route with a Path:

apiVersion: v1
kind: Route
metadata:
 name: route-unsecured
spec:
 host: www.example.com

OpenShift Enterprise 3.0 Architecture

40

The path is the only added attribute for a path-based route.

Note

Path-based routing is not available when using passthrough TLS, as the router does not
terminate TLS in that case and cannot read the contents of the request.

3.7.7. Secured Routes

Secured routes specify the TLS termination of the route and, optionally, provide a key and
certificate(s).

Note

TLS termination in OpenShift relies on SNI for serving custom certificates. Any non-SNI
traffic received on port 443 is handled with TLS termination and a default certificate (which
may not match the requested hostname, resulting in validation errors).

Secured routes can use any of the following three types of secure TLS termination.

Edge Termination

With edge termination, TLS termination occurs at the router, prior to proxying traffic to its destination.
TLS certificates are served by the front end of the router, so they must be configured into the route,
otherwise the router’s default certificate will be used for TLS termination.

Example 3.11. A Secured Route Using Edge Termination

 path: "/test"

 to:
 kind: Service
 name: service-name

1

apiVersion: v1
kind: Route
metadata:

 name: route-edge-secured

spec:
 host: www.example.com
 to:
 kind: Service

 name: service-name

 tls:

 termination: edge

1

1

2

3

CHAPTER 3. CORE CONCEPTS

41

https://en.wikipedia.org/wiki/Server_Name_Indication
https://access.redhat.com/documentation/en/openshift-enterprise/version-3.0/installation-and-configuration/#using-wildcard-certificates

The name of the object, which is limited to 63 characters.

The termination field is edge for edge termination.

The key field is the contents of the PEM format key file.

The certificate field is the contents of the PEM format certificate file.

An optional CA certificate may be required to establish a certificate chain for validation.

Because TLS is terminated at the router, connections from the router to the endpoints over the
internal network are not encrypted.

Passthrough Termination

With passthrough termination, encrypted traffic is sent straight to the destination without the router
providing TLS termination. Therefore no key or certificate is required.

Example 3.12. A Secured Route Using Passthrough Termination

 key: |-

 -----BEGIN PRIVATE KEY-----
 [...]
 -----END PRIVATE KEY-----

 certificate: |-

 -----BEGIN CERTIFICATE-----
 [...]
 -----END CERTIFICATE-----

 caCertificate: |-

 -----BEGIN CERTIFICATE-----
 [...]
 -----END CERTIFICATE-----

1 2

3

4

5

6

apiVersion: v1
kind: Route
metadata:

4

5

6

OpenShift Enterprise 3.0 Architecture

42

The name of the object, which is limited to 63 characters. <2>The termination field is
set to passthrough. No other encryption fields are needed.

The destination pod is responsible for serving certificates for the traffic at the endpoint. This is
currently the only method that can support requiring client certificates (also known as two-way
authentication).

Re-encryption Termination

Re-encryption is a variation on edge termination where the router terminates TLS with a certificate,
then re-encrypts its connection to the endpoint which may have a different certificate. Therefore the
full path of the connection is encrypted, even over the internal network. The router uses health
checks to determine the authenticity of the host.

Example 3.13. A Secured Route Using Re-Encrypt Termination

 name: route-passthrough-secured

spec:
 host: www.example.com
 to:
 kind: Service

 name: service-name

 tls:

 termination: passthrough

1 2

apiVersion: v1
kind: Route
metadata:

 name: route-pt-secured

spec:
 host: www.example.com
 to:
 kind: Service

 name: service-name

 tls:

 termination: reencrypt

 key: [as in edge termination]
 certificate: [as in edge termination]
 caCertificate: [as in edge termination]

 destinationCACertificate: |-

 -----BEGIN CERTIFICATE-----
 [...]
 -----END CERTIFICATE-----

1 2

1

2

3

1

2

3

4

CHAPTER 3. CORE CONCEPTS

43

The name of the object, which is limited to 63 characters.

The termination field is set to reencrypt. Other fields are as in edge termination.

The destinationCACertificate field specifies a CA certificate to validate the
endpoint certificate, securing the connection from the router to the destination. This field
is required, but only for re-encryption.

3.8. TEMPLATES

3.8.1. Overview

A template describes a set of objects that can be parameterized and processed to produce a list of
objects for creation by OpenShift. The objects to create can include anything that users have
permission to create within a project, for example services, build configurations, and deployment
configurations. A template may also define a set of labels to apply to every object defined in the
template.

Example 3.14. A Simple Template Object Definition (YAML)

3

4

apiVersion: v1
kind: Template
metadata:

 name: redis-template

 annotations:

 description: "Description"

 iconClass: "icon-redis"

 tags: "database,nosql"

objects:

- apiVersion: v1
 kind: Pod
 metadata:
 name: redis-master
 spec:
 containers:
 - env:
 - name: REDIS_PASSWORD

 value: ${REDIS_PASSWORD}

 image: dockerfile/redis
 name: master
 ports:
 - containerPort: 6379
 protocol: TCP

1

2

3

4

5

6

OpenShift Enterprise 3.0 Architecture

44

The name of the template

Optional description for the template

The icon that will be shown in the UI for this template; the name of a CSS class defined
in the web console source (search content for "openshift-logos-icon").

A list of arbitrary tags that this template will have in the UI

A list of objects the template will create (in this case, a single pod)

Parameter value that will be substituted during processing

A list of parameters for the template

An expression used to generate a random password if not specified

A list of labels to apply to all objects on create

parameters:

- description: Password used for Redis authentication

 from: '[A-Z0-9]{8}'

 generate: expression
 name: REDIS_PASSWORD

labels:

 redis: master

1

2

3

4

5

6

7

8

9

7

8

9

CHAPTER 3. CORE CONCEPTS

45

https://raw.githubusercontent.com/openshift/origin/master/pkg/assets/bindata.go

A template describes a set of related object definitions to be created together, as well as a set of
parameters for those objects. For example, an application might consist of a frontend web
application backed by a database; each consists of a service object and deployment configuration
object, and they share a set of credentials (parameters) for the frontend to authenticate to the
backend. The template can be processed, either specifying parameters or allowing them to be
automatically generated (for example, a unique DB password), in order to instantiate the list of
objects in the template as a cohesive application.

Templates can be processed from a definition in a file or from an existing OpenShift API object.
Cluster administrators can define standard templates in the API that are available for all users to
process, while users can define their own templates within their own projects.

Administrators and developers can interact with templates using the CLI and web console.

3.8.2. Parameters

Templates allow you to define parameters which take on a value. That value is then substituted
wherever the parameter is referenced. References can be defined in any text field in the objects list
field.

Each parameter describes a variable and the variable value which can be referenced in any text
field in the objects list field. During processing, the value can be set explicitly or it can be
generated by OpenShift.

An explicit value can be set as the parameter default using the value field:

parameters:
 - name: USERNAME
 description: "The user name for Joe"
 value: joe

The generate field can be set to 'expression' to specify generated values. The from field should
specify the pattern for generating the value using a pseudo regular expression syntax:

parameters:
 - name: PASSWORD
 description: "The random user password"
 generate: expression
 from: "[a-zA-Z0-9]{12}"

In the example above, processing will generate a random password 12 characters long consisting of
all upper and lowercase alphabet letters and numbers.

The syntax available is not a full regular expression syntax. However, you can use \w, \d, and \a
modifiers:

[\w]{10} produces 10 alphabet characters, numbers, and underscores. This follows the PCRE
standard and is equal to [a-zA-Z0-9_]{10}.

[\d]{10} produces 10 numbers. This is equal to [0-9]{10}.

[\a]{10} produces 10 alphabetical characters. This is equal to [a-zA-Z]{10}.

OpenShift Enterprise 3.0 Architecture

46

https://access.redhat.com/documentation/en/openshift-enterprise/version-3.0/installation-and-configuration/#creating-instantapp-templates
https://access.redhat.com/documentation/en/openshift-enterprise/version-3.0/openshift-enterprise-30-developer-guide/#uploading-a-template
https://access.redhat.com/documentation/en/openshift-enterprise/version-3.0/openshift-enterprise-30-developer-guide/#dev-guide-templates

CHAPTER 4. ADDITIONAL CONCEPTS

4.1. NETWORKING

Kubernetes ensures that pods are able to network with each other, and allocates each pod an IP
address from an internal network. This ensures all containers within the pod behave as if they were
on the same host. Giving each pod its own IP address means that pods can be treated like physical
hosts or virtual machines in terms of port allocation, networking, naming, service discovery, load
balancing, application configuration, and migration.

Creating links between pods is unnecessary. However, it is not recommended that you have a pod
talk to another directly by using the IP address. Instead, we recommend that you create a service,
then interact with the service.

4.1.1. OpenShift DNS

If you are running multiple services, such as frontend and backend services for use with multiple
pods, in order for the frontend pods to communicate with the backend services, environment
variables are created for user names, service IP, and more. If the service is deleted and recreated, a
new IP address can be assigned to the service, and requires the frontend pods to be recreated in
order to pick up the updated values for the service IP environment variable. Additionally, the
backend service has to be created before any of the frontend pods to ensure that the service IP is
generated properly and that it can be provided to the frontend pods as an environment variable.

For this reason, OpenShift has a built-in DNS so that the services can be reached by the service
DNS as well as the service IP/port. OpenShift supports split DNS by running SkyDNS on the master
that answers DNS queries for services. The master listens to port 53 by default.

When the node starts, the following message indicates the Kubelet is correctly resolved to the
master:

0308 19:51:03.118430 4484 node.go:197] Started Kubelet for node
openshiftdev.local, server at 0.0.0.0:10250
I0308 19:51:03.118459 4484 node.go:199] Kubelet is setting
10.0.2.15 as a
DNS nameserver for domain "local"

If the second message does not appear, the Kubernetes service may not be available.

On a node host, each Docker container’s nameserver has the master name added to the front, and
the default search domain for the container will be .<pod_namespace>.cluster.local. The
container will then direct any nameserver queries to the master before any other nameservers on
the node, which is the default Docker behavior. The master will answer queries on the
.cluster.local domain that have the following form:

Table 4.1. DNS Example Names

Object Type Example

Default <pod_namespace>.cluster.local

CHAPTER 4. ADDITIONAL CONCEPTS

47

https://github.com/skynetservices/skydns

Services <service>.<pod_namespace>.svc.cluster.local

Endpoints <name>.<namespace>.endpoints.cluster.local

Object Type Example

This prevents having to restart frontend pods in order to pick up new services, which creates a new
IP for the service. This also removes the need to use environment variables, as pods can use the
service DNS. Also, as the DNS does not change, you can reference database services as
db.local in config files. Wildcard lookups are also supported, as any lookups resolve to the
service IP, and removes the need to create the backend service before any of the frontend pods,
since the service name (and hence DNS) is established upfront.

This DNS structure also covers headless services, where a portal IP is not assigned to the service
and the kube-proxy does not load-balance or provide routing for its endpoints. Service DNS can still
be used and responds with multiple A records, one for each pod of the service, allowing the client to
round-robin between each pod.

4.1.2. OpenShift SDN

OpenShift deploys a software-defined networking (SDN) approach for connecting Docker containers
in an OpenShift cluster. The OpenShift SDN connects all containers across all node hosts, providing
a unified cluster network.

OpenShift SDN is automatically installed and configured as part of the Ansible-based installation
procedure. Further administration should not be required; however, further details on the design and
operation of OpenShift SDN are provided for those who are curious or need to troubleshoot
problems.

4.2. OPENSHIFT SDN

4.2.1. Overview

OpenShift uses a software-defined networking (SDN) approach to provide a unified cluster network
that enables communication between containers across the OpenShift cluster. This cluster network
is established and maintained by the OpenShift SDN, which configures an overlay network using
Open vSwitch (OVS).

OpenShift SDN includes the ovssubnet SDN plug-in for configuring the network, which provides a
"flat" pod network where every pod can communicate with every other pod and service.

Following is a detailed discussion of the design and operation of OpenShift SDN, which may be
useful for troubleshooting.

4.2.2. Design on Masters

On an OpenShift master, OpenShift SDN maintains a registry of nodes, stored in etcd. When the
system administrator registers a node, OpenShift SDN allocates an unused subnet from the cluster
network and stores this subnet in the registry. When a node is deleted, OpenShift SDN deletes the
subnet from the registry and considers the subnet available to be allocated again.

OpenShift Enterprise 3.0 Architecture

48

In the default configuration, the cluster network is the 10.1.0.0/16 class B network, and nodes are
allocated /24 subnets (i.e., 10.1.0.0/24, 10.1.1.0/24, 10.1.2.0/24, and so on). This means that the
cluster network has 256 subnets available to assign to nodes, and a given node is allocated 254
addresses that it can assign to the containers running on it. The size and address range of the
cluster network are configurable, as is the host subnet size.

Note that OpenShift SDN on a master does not configure the local (master) host to have access to
any cluster network. Consequently, a master host does not have access to containers via the cluster
network, unless it is also running as a node.

4.2.3. Design on Nodes

On a node, OpenShift SDN first registers the local host with the SDN master in the aforementioned
registry so that the master allocates a subnet to the node.

Next, OpenShift SDN creates and configures six network devices:

br0, the OVS bridge device that containers will be attached to. OpenShift SDN also configures a
set of non-subnet-specific flow rules on this bridge. The ovssubnet plug-in waits to do so until
the SDN master announces the creation of the new node subnet.

lbr0, a Linux bridge device, which is configured as Docker’s bridge and given the cluster subnet
gateway address (eg, 10.1.x.1/24).

tun0, an OVS internal port (port 2 on br0). This also gets assigned the cluster subnet gateway
address, and is used for external network access. OpenShift SDN configures netfilter and
routing rules to enable access from the cluster subnet to the external network via NAT.

vlinuxbr and vovsbr, two Linux peer virtual Ethernet interfaces. vlinuxbr is added to lbr0 and
vovsbr is added to br0 (port 9), to provide connectivity for containers created directly with
Docker outside of OpenShift.

vxlan0, the OVS VXLAN device (port 1 on br0), which provides access to containers on remote
nodes.

Each time a pod is started on the host, OpenShift SDN:

1. moves the host side of the pod’s veth interface pair from the lbr0 bridge (where Docker
placed it when starting the container) to the OVS bridge br0.

2. adds OpenFlow rules to the OVS database to route traffic addressed to the new pod to the
correct OVS port.

The pod is allocated an IP address in the cluster subnet by Docker itself because Docker is told to
use the lbr0 bridge, which OpenShift SDN has assigned the cluster gateway address (eg.
10.1.x.1/24). Note that the tun0 is also assigned the cluster gateway IP address because it is the
default gateway for all traffic destined for external networks, but these two interfaces do not conflict
because the lbr0 interface is only used for IPAM and no OpenShift SDN pods are connected to it.

OpenShift SDN nodes also watch for subnet updates from the SDN master. When a new subnet is
added, the node adds OpenFlow rules on br0 so that packets with a destination IP address the
remote subnet go to vxlan0 (port 1 on br0) and thus out onto the network.

4.2.3.1. Packet Flow

Suppose we have two containers A and B where the peer virtual Ethernet device for container A’s
eth0 is named vethA and the peer for container B’s eth0 is named vethB.

CHAPTER 4. ADDITIONAL CONCEPTS

49

Note

If Docker’s use of peer virtual Ethernet devices is not already familiar to you, review
Docker’s advanced networking documentation.

Now suppose first that container A is on the local host and container B is also on the local host.
Then the flow of packets from container A to container B is as follows:

eth0 (in A’s netns) → vethA → br0 → vethB → eth0 (in B’s netns)

Next, suppose instead that container A is on the local host and container B is on a remote host on
the cluster network. Then the flow of packets from container A to container B is as follows:

eth0 (in A’s netns) → vethA → br0 → vxlan0 → network [1] → vxlan0 → br0 → vethB → eth0 (in
B’s netns)

Finally, if container A connects to an external host, the traffic looks like:

eth0 (in A’s netns) → vethA → br0 → tun0 → (NAT) → eth0 (physical device) → Internet

Almost all packet delivery decisions are performed with OpenFlow rules in the OVS bridge br0,
which simplifies the plug-in network architecture and provides flexible routing.

4.2.3.2. External Access to the Cluster Network

If a host that is external to OpenShift requires access to the cluster network, you have two options:

1. Configure the host as an OpenShift node but mark it unschedulable so that the master does
not schedule containers on it.

2. Create a tunnel between your host and a host that is on the cluster network.

Both options are presented as part of a practical use-case in the documentation for configuring
routing from an edge load-balancer to containers within OpenShift SDN.

4.3. AUTHENTICATION

4.3.1. Overview

The authentication layer identifies the user associated with requests to the OpenShift API. The
authorization layer then uses information about the requesting user to determine if the request
should be allowed.

As an administrator, you can configure authentication using a master configuration file.

4.3.2. Users and Groups

A user in OpenShift is an entity that can make requests to the OpenShift API. Typically, this
represents the account of a developer or administrator that is interacting with OpenShift.

OpenShift Enterprise 3.0 Architecture

50

https://docs.docker.com/articles/networking
https://access.redhat.com/documentation/en/openshift-enterprise/version-3.0/openshift-enterprise-30-administrator-guide/#marking-nodes-as-unschedulable-or-schedulable
https://access.redhat.com/documentation/en/openshift-enterprise/version-3.0/openshift-enterprise-30-administrator-guide/#admin-guide-routing-from-edge-lb
https://access.redhat.com/documentation/en/openshift-enterprise/version-3.0/openshift-enterprise-30-administrator-guide/#admin-guide-configuring-authentication
https://access.redhat.com/documentation/en/openshift-enterprise/version-3.0/openshift-enterprise-30-administrator-guide/#admin-guide-master-node-configuration

A user can be assigned to one or more groups, each of which represent a certain set of users.
Groups are useful when managing authorization policies to grant permissions to multiple users at
once, for example allowing access to objects within a project, versus granting them to users
individually.

In addition to explicitly defined groups, there are also system groups, or virtual groups, that are
automatically provisioned by OpenShift. These can be seen when viewing cluster bindings.

In the default set of virtual groups, note the following in particular:

Virtual Group Description

system:authenticated Automatically associated with any currently-authenticated users.

system:unauthenticated Automatically associated with any currently-unauthenticated users.

4.3.3. API Authentication

Requests to the OpenShift API are authenticated using the following methods:

OAuth Access Tokens

Obtained from the OpenShift OAuth server using the <master>/oauth/authorize
and <master>/oauth/token endpoints.

Sent as an Authorization: Bearer… header or an access_token=… query
parameter

X.509 Client Certificates

Requires a HTTPS connection to the API server.

Verified by the API server against a trusted certificate authority bundle.

The API server creates and distributes certificates to controllers to authenticate
themselves.

Any request with an invalid access token or an invalid certificate is rejected by the authentication
layer with a 401 error.

If no access token or certificate is presented, the authentication layer assigns the
system:anonymous virtual user and the system:unauthenticated virtual group to the request.
This allows the authorization layer to determine which requests, if any, an anonymous user is
allowed to make.

4.3.4. OAuth

The OpenShift master includes a built-in OAuth server. Users obtain OAuth access tokens to
authenticate themselves to the API.

CHAPTER 4. ADDITIONAL CONCEPTS

51

https://access.redhat.com/documentation/en/openshift-enterprise/version-3.0/openshift-enterprise-30-administrator-guide/#admin-guide-manage-authorization-policy
https://access.redhat.com/documentation/en/openshift-enterprise/version-3.0/openshift-enterprise-30-administrator-guide/#viewing-cluster-bindings

When a person requests a new OAuth token, the OAuth server uses the configured identity provider
to determine the identity of the person making the request.

It then determines what user that identity maps to, creates an access token for that user, and returns
the token for use.

OAuth Clients

Every request for an OAuth token must specify the OAuth client that will receive and use the token.
The following OAuth clients are automatically created when starting the OpenShift API:

OAuth Client Usage

openshift-web-console Requests tokens for the web console.

openshift-browser-client Requests tokens at
<master>/oauth/token/request with a
user-agent that can handle interactive logins.

openshift-challenging-client Requests tokens with a user-agent that can handle
WWW-Authenticate challenges.

To register additional clients:

$ oc create -f <(echo '
{
 "kind": "OAuthClient",
 "apiVersion": "v1",
 "metadata": {

 "name": "demo"

 },

 "secret": "...",

 "redirectURIs": [

 "http://www.example.com/"

]
}')

The name of the OAuth client is used as the client_id parameter when making requests
to <master>/oauth/authorize and <master>/oauth/token.

1

2

3

1

2

OpenShift Enterprise 3.0 Architecture

52

https://access.redhat.com/documentation/en/openshift-enterprise/version-3.0/openshift-enterprise-30-administrator-guide/#admin-guide-configuring-authentication

The secret is used as the client_secret parameter when making requests to
<master>/oauth/token.

The redirect_uri parameter specified in requests to <master>/oauth/authorize
and <master>/oauth/token must be equal to (or prefixed by) one of the URIs in
redirectURIs.

Integrations

All requests for OAuth tokens involve a request to <master>/oauth/authorize. Most
authentication integrations place an authenticating proxy in front of this endpoint, or configure
OpenShift to validate credentials against a backing identity provider.

Requests to <master>/oauth/authorize can come from user-agents that cannot display
interactive login pages, such as the CLI. Therefore, OpenShift supports authenticating using a WWW-
Authenticate challenge in addition to interactive login flows.

If an authenticating proxy is placed in front of the <master>/oauth/authorize endpoint, it
should send unauthenticated, non-browser user-agents WWW-Authenticate challenges, rather
than displaying an interactive login page or redirecting to an interactive login flow.

Note

To prevent cross-site request forgery (CSRF) attacks against browser clients, Basic
authentication challenges should only be sent if a X-CSRF-Token header is present on
the request. Clients that expect to receive Basic WWW-Authenticate challenges should
set this header to a non-empty value.

If the authenticating proxy cannot support WWW-Authenticate challenges, or if
OpenShift is configured to use an identity provider that does not support WWW-
Authenticate challenges, users can visit <master>/oauth/token/request using a
browser to obtain an access token manually.

Obtaining OAuth Tokens

The OAuth server supports standard authorization code grant and the implicit grant OAuth
authorization flows.

When requesting an OAuth token using the implicit grant flow (response_type=token) with a
client_id configured to request WWW-Authenticate challenges (like openshift-challenging-
client), these are the possible server responses from /oauth/authorize, and how they should
be handled:

Status Content Client response

302 Location header containing an
access_token parameter in the URL
fragment (RFC 4.2.2)

Use the access_token value as the
OAuth token

3

CHAPTER 4. ADDITIONAL CONCEPTS

53

https://access.redhat.com/documentation/en/openshift-enterprise/version-3.0/openshift-enterprise-30-administrator-guide/#admin-guide-configuring-authentication
https://access.redhat.com/documentation/en/openshift-enterprise/version-3.0/openshift-enterprise-30-administrator-guide/#admin-guide-configuring-authentication
https://tools.ietf.org/html/rfc6749#section-4.1
https://tools.ietf.org/html/rfc6749#section-4.2
https://tools.ietf.org/html/rfc6749#section-4.2.2

302 Location header containing an error
query parameter (RFC 4.1.2.1)

Fail, optionally surfacing the error (and
optional error_description) query
values to the user

302 Other Location header Follow the redirect, and process the result
using these rules

401 WWW-Authenticate header present Respond to challenge if type is recognized
(e.g. Basic, Negotiate, etc), resubmit
request, and process the result using these
rules

401 WWW-Authenticate header missing No challenge authentication is possible. Fail
and show response body (which might
contain links or details on alternate methods
to obtain an OAuth token)

Other Other Fail, optionally surfacing response body to
the user

Status Content Client response

4.4. AUTHORIZATION

4.4.1. Overview

Authorization policies determine whether a user is allowed to perform a given action within a project.
This allows platform administrators to use the cluster policy to control who has various access levels
to the OpenShift platform itself and all projects. It also allows developers to use local policy to
control who has access to their projects. Note that authorization is a separate step from
authentication, which is more about determining the identity of who is taking the action.

Authorization is managed using:

Rules Sets of permitted verbs on a set of objects. For example, whether something can create
pods.

Roles Collections of rules. Users and groups can be associated with, or bound to, multiple roles at
the same time.

OpenShift Enterprise 3.0 Architecture

54

https://tools.ietf.org/html/rfc6749#section-4.1.2.1

Bindings Associations between users and/or groups with a role.

Rules, roles, and bindings can be visualized using the CLI. For example, consider the following
excerpt from viewing a policy, showing rule sets for the admin and basic-userdefault roles:

admin Verbs Resources Resource Names Extension
 [create delete get list update watch] [projects
resourcegroup:exposedkube resourcegroup:exposedopenshift
resourcegroup:granter secrets] []
 [get list watch] [resourcegroup:allkube resourcegroup:allkube-
status resourcegroup:allopenshift-status resourcegroup:policy] []
basic-user Verbs Resources Resource Names Extension
 [get] [users] [~]
 [list] [projectrequests] []
 [list] [projects] []
 [create] [subjectaccessreviews] []
IsPersonalSubjectAccessReview

The following excerpt from viewing policy bindings shows the above roles bound to various users
and groups:

RoleBinding[admins]:
 Role: admin
 Users: [alice system:admin]
 Groups: []
RoleBinding[basic-user]:
 Role: basic-user
 Users: [joe]
 Groups: [devel]

4.4.2. Evaluating Authorization

Several factors are combined to make the decision when OpenShift evaluates authorization:

Identity In the context of authorization, both the user name and list of groups the user belongs to.

CHAPTER 4. ADDITIONAL CONCEPTS

55

https://access.redhat.com/documentation/en/openshift-enterprise/version-3.0/openshift-enterprise-30-administrator-guide/#viewing-roles-and-bindings
https://access.redhat.com/documentation/en/openshift-enterprise/version-3.0/openshift-enterprise-30-administrator-guide/#viewing-roles-and-bindings
https://access.redhat.com/documentation/en/openshift-enterprise/version-3.0/openshift-enterprise-30-administrator-guide/#viewing-roles-and-bindings

Action The action being performed. In most cases, this consists of:

Project The project being accessed.

Verb Can be get, list, create, update, delete, or watch.

Resource
Name

The API endpoint being accessed.

Bindings The full list of bindings.

OpenShift evaluates authorizations using the following steps:

1. The identity and the project-scoped action is used to find all bindings that apply to the user
or their groups.

2. Bindings are used to locate all the roles that apply.

3. Roles are used to find all the rules that apply.

4. The action is checked against each rule to find a match.

5. If no matching rule is found, the action is then denied by default.

4.4.3. Cluster Policy and Local Policy

There are two levels of authorization policy:

Cluster policy Roles and bindings that are applicable across all projects. Roles that exist in the
cluster policy are considered cluster roles. Cluster bindings can only reference
cluster roles.

Local policy Roles and bindings that are scoped to a given project. Roles that exist only in a local
policy are considered local roles . Local bindings can reference both cluster and
local roles.

This two-level hierarchy allows re-usability over multiple projects through the cluster policy while
allowing customization inside of individual projects through local policies.

OpenShift Enterprise 3.0 Architecture

56

During evaluation, both the cluster bindings and the local bindings are used. For example:

1. Cluster-wide "allow" rules are checked.

2. Locally-bound "allow" rules are checked.

3. Deny by default.

4.4.4. Roles

Roles are collections of policy rules, which are sets of permitted verbs that can be performed on a
set of resources. OpenShift includes a set of default roles that can be added to users and groups in
the cluster policy or in a local policy.

Default Role Description

admin A project manager. If used in a local binding, an admin user will have rights to view
any resource in the project and modify any resource in the project except for role
creation and quota. If the cluster-admin wants to allow an admin to modify roles,
the cluster-admin must create a project-scoped Policy object using JSON.

basic-user A user that can get basic information about projects and users.

cluster-admin A super-user that can perform any action in any project. When granted to a user
within a local policy, they have full control over quota and roles and every action on
every resource in the project.

cluster-status A user that can get basic cluster status information.

edit A user that can modify most objects in a project, but does not have the power to
view or modify roles or bindings.

self-provisioner A user that can create their own projects.

view A user who cannot make any modifications, but can see most objects in a project.
They cannot view or modify roles or bindings.

Tip

Remember that users and groups can be associated with, or bound to, multiple roles at the same
time.

CHAPTER 4. ADDITIONAL CONCEPTS

57

These roles, including a matrix of the verbs and resources each are associated with, can be
visualized in the cluster policy by using the CLI to view the cluster roles. Additional system: roles
are listed as well, which are used for various OpenShift system and component operations.

By default in a local policy, only the binding for the admin role is immediately listed when using the
CLI to view local bindings. However, if other default roles are added to users and groups within a
local policy, they become listed in the CLI output, as well.

If you find that these roles do not suit you, a cluster-admin user can create a policyBinding
object named <projectname>:default with the CLI using a JSON file. This allows the project
admin to bind users to roles that are defined only in the <projectname> local policy.

4.4.4.1. Updating Cluster Roles

After any OpenShift cluster upgrade, the recommended default roles may have been updated. See
the Administrator Guide for instructions on updating the policy definitions to the new
recommendations using:

$ oadm policy reconcile-cluster-roles

4.4.5. Security Context Constraints

In addition to authorization policies that control what a user can do, OpenShift provides security
context constraints (SCC) that control the actions that a pod can perform and what it has the ability
to access. Administrators can manage SCCs using the CLI.

SCCs are objects that define a set of conditions that a pod must run with in order to be accepted
into the system. They allow an administrator to control the following:

1. Running of privileged containers.

2. Capabilities a container can request to be added.

3. Use of host directories as volumes.

4. The SELinux context of the container.

5. The user ID.

Two SCCs are added to the cluster by default, privileged and restricted, which are viewable by
cluster administrators using the CLI:

$ oc get scc
NAME PRIV CAPS HOSTDIR SELINUX RUNASUSER
privileged true [] true RunAsAny RunAsAny
restricted false [] false MustRunAs MustRunAsRange

The definition for each SCC is also viewable by cluster administrators using the CLI. For example,
for the privileged SCC:

oc export scc/privileged
allowHostDirVolumePlugin: true
allowPrivilegedContainer: true
apiVersion: v1

OpenShift Enterprise 3.0 Architecture

58

https://access.redhat.com/documentation/en/openshift-enterprise/version-3.0/openshift-enterprise-30-administrator-guide/#viewing-cluster-roles
https://access.redhat.com/documentation/en/openshift-enterprise/version-3.0/openshift-enterprise-30-administrator-guide/#viewing-local-bindings
https://access.redhat.com/documentation/en/openshift-enterprise/version-3.0/installation-and-configuration/#install-config-upgrades
https://access.redhat.com/documentation/en/openshift-enterprise/version-3.0/installation-and-configuration/#updating-policy-definitions
https://access.redhat.com/documentation/en/openshift-enterprise/version-3.0/openshift-enterprise-30-administrator-guide/#admin-guide-manage-scc
https://access.redhat.com/documentation/en/openshift-enterprise/version-3.0/installation-and-configuration/#security-warning

groups:

- system:cluster-admins
- system:nodes
kind: SecurityContextConstraints
metadata:
 creationTimestamp: null
 name: privileged
runAsUser:

 type: RunAsAny

seLinuxContext:

 type: RunAsAny

users:

- system:serviceaccount:openshift-infra:build-controller

The groups that have access to this SCC

The run as user strategy type which dictates the allowable values for the Security Context

The SELinux context strategy type which dictates the allowable values for the Security
Context

The users who have access to this SCC

The users and groups fields on the SCC control which SCCs can be used. By default, cluster
administrators, nodes, and the build controller are granted access to the privileged SCC. All
authenticated users are granted access to the restricted SCC.

The privileged SCC:

allows privileged pods.

allows host directories to be mounted as volumes.

allows a pod to run as any user.

allows a pod to run with any MCS label.

The restricted SCC:

ensures pods cannot run as privileged.

ensures pods cannot use host directory volumes.

requires that a pod run as a user in a pre-allocated range of UIDs.

1

2

3

4

1

2

3

4

CHAPTER 4. ADDITIONAL CONCEPTS

59

requires that a pod run with a pre-allocated MCS label.

SCCs are comprised of settings and strategies that control the security features a pod has access
to. These settings fall into three categories:

Controlled by a
boolean

Fields of this type default to the most restrictive value. For example,
AllowPrivilegedContainer is always set to false if unspecified.

Controlled by an
allowable set

Fields of this type are checked against the set to ensure their value is allowed.

Controlled by a
strategy

Items that have a strategy to generate a value provide:

A mechanism to generate the value, and

A mechanism to ensure that a specified value falls into the set of allowable
values.

4.4.5.1. Admission

Admission control with SCCs allows for control over the creation of resources based on the
capabilities granted to a user.

In terms of the SCCs, this means that an admission controller can inspect the user information made
available in the context to retrieve an appropriate set of SCCs. Doing so ensures the pod is
authorized to make requests about its operating environment or to generate a set of constraints to
apply to the pod.

The set of SCCs that admission uses to authorize a pod are determined by the user identity and
groups that the user belongs to. Additionally, if the pod specifies a service account, the set of
allowable SCCs includes any constraints accessible to the service account.

Admission uses the following approach to create the final security context for the pod:

1. Retrieve all SCCs available for use.

2. Generate field values for any security context setting that was not specified on the request.

3. Validate the final settings against the available constraints.

If a matching set of constraints is found, then the pod is accepted. If the request cannot be matched
to an SCC, the pod is rejected.

4.5. PERSISTENT STORAGE

4.5.1. Overview

OpenShift Enterprise 3.0 Architecture

60

Managing storage is a distinct problem from managing compute resources. OpenShift leverages the
Kubernetes PersistentVolume subsystem, which provides an API for users and administrators
that abstracts details of how storage is provided from how it is consumed. This subsystem uses the
PersistentVolume and PersistentVolumeClaim API objects.

A PersistentVolume (PV) object represents a piece of existing networked storage in the cluster
that has been provisioned by an administrator. It is a resource in the cluster just like a node is a
cluster resource. PVs are volume plug-ins like Volumes, but have a lifecycle independent of any
individual pod that uses the PV. PV objects capture the details of the implementation of the storage,
be that NFS, iSCSI, or a cloud-provider-specific storage system.

Important

High-availability of storage in the infrastructure is left to the underlying storage provider.

A PersistentVolumeClaim (PVC) object represents a request for storage by a user. It is similar
to a pod in that pods consume node resources and PVCs consume PV resources. For example,
pods can request specific levels of resources (e.g., CPU and memory), while PVCs can request
specific storage capacity and access modes (e.g, they can be mounted once read/write or many
times read-only).

4.5.2. Lifecycle of a Volume and Claim

PVs are resources in the cluster. PVCs are requests for those resources and also act as claim
checks to the resource. The interaction between PVs and PVCs have the following lifecycle.

4.5.2.1. Provisioning

A cluster administrator creates some number of PVs. They carry the details of the real storage that is
available for use by cluster users. They exist in the API and are available for consumption.

4.5.2.2. Binding

A user creates a PersistentVolumeClaim with a specific amount of storage requested and with
certain access modes. A control loop in the master watches for new PVCs, finds a matching PV (if
possible), and binds them together. The user will always get at least what they asked for, but the
volume may be in excess of what was requested.

Claims remain unbound indefinitely if a matching volume does not exist. Claims are bound as
matching volumes become available. For example, a cluster provisioned with many 50Gi volumes
would not match a PVC requesting 100Gi. The PVC can be bound when a 100Gi PV is added to the
cluster.

4.5.2.3. Using

Pods use claims as volumes. The cluster inspects the claim to find the bound volume and mounts
that volume for a pod. For those volumes that support multiple access modes, the user specifies
which mode is desired when using their claim as a volume in a pod.

Once a user has a claim and that claim is bound, the bound PV belongs to the user for as long as
they need it. Users schedule pods and access their claimed PVs by including a
persistentVolumeClaim in their pod’s volumes block. See below for syntax details.

CHAPTER 4. ADDITIONAL CONCEPTS

61

4.5.2.4. Releasing

When a user is done with a volume, they can delete the PVC object from the API which allows
reclamation of the resource. The volume is considered "released" when the claim is deleted, but it is
not yet available for another claim. The previous claimant’s data remains on the volume which must
be handled according to policy.

4.5.2.5. Reclaiming

The reclaim policy of a PersistentVolume tells the cluster what to do with the volume after it is
released. Currently, volumes can either be retained or recycled.

Retention allows for manual reclamation of the resource. For those volume plug-ins that support it,
recycling performs a basic scrub on the volume (e.g., rm -rf /<volume>/*) and makes it
available again for a new claim.

4.5.3. Persistent Volumes

Each PV contains a spec and status, which is the specification and status of the volume.

Example 4.1. Persistent Volume Object Definition

4.5.3.1. Types of Persistent Volumes

OpenShift Enterprise currently supports the following PersistentVolume plug-ins:

NFS

HostPath (single node testing only)

More plug-ins are available but are currently in Technology Preview:

GCE Persistent Disks

AWS Elastic Block Stores (EBS)

GlusterFS

iSCSI

 apiVersion: v1
 kind: PersistentVolume
 metadata:
 name: pv0003
 spec:
 capacity:
 storage: 5Gi
 accessModes:
 - ReadWriteOnce
 persistentVolumeReclaimPolicy: Recycle
 nfs:
 path: /tmp
 server: 172.17.0.2

OpenShift Enterprise 3.0 Architecture

62

https://access.redhat.com/documentation/en/openshift-enterprise/version-3.0/openshift-enterprise-30-administrator-guide/#admin-guide-persistent-storage-nfs
https://access.redhat.com/documentation/en/openshift-enterprise/version-3.0/openshift-enterprise-30-rest-api-reference/#v1-hostpathvolumesource
https://access.redhat.com/documentation/en/openshift-enterprise/version-3.0/openshift-enterprise-30-whats-new/#technology-preview
https://access.redhat.com/documentation/en/openshift-enterprise/version-3.0/openshift-enterprise-30-rest-api-reference/#v1-gcepersistentdiskvolumesource
https://access.redhat.com/documentation/en/openshift-enterprise/version-3.0/openshift-enterprise-30-rest-api-reference/#v1-awselasticblockstorevolumesource
https://access.redhat.com/documentation/en/openshift-enterprise/version-3.0/openshift-enterprise-30-rest-api-reference/#v1-glusterfsvolumesource
https://access.redhat.com/documentation/en/openshift-enterprise/version-3.0/openshift-enterprise-30-rest-api-reference/#v1-iscsivolumesource

RBD (Ceph Block Device)

4.5.3.2. Capacity

Generally, a PV will have a specific storage capacity. This is set using the PV’s capacity attribute.
See the Kubernetes Resource Model to understand the units expected by capacity.

Currently, storage capacity is the only resource that can be set or requested. Future attributes may
include IOPS, throughput, etc.

4.5.3.3. Access Modes

A PersistentVolume can be mounted on a host in any way supported by the resource provider.
Providers will have different capabilities and each PV’s access modes are set to the specific modes
supported by that particular volume. For example, NFS can support multiple read/write clients, but a
specific NFS PV might be exported on the server as read-only. Each PV gets its own set of access
modes describing that specific PV’s capabilities.

The access modes are:

Access Mode CLI Abbreviation Description

ReadWriteOnce RWO The volume can be mounted as read-write by a single node.

ReadOnlyMany ROX The volume can be mounted read-only by many nodes.

ReadWriteMany RWX The volume can be mounted as read-write by many nodes.

Important

A volume can only be mounted using one access mode at a time, even if it supports
many. For example, a GCE Persistent Disk can be mounted as ReadWriteOnce by a
single node or ReadOnlyMany by many nodes, but not at the same time.

4.5.3.4. Recycling Policy

The current recycling policies are:

Recycling Policy Description

Retain Manual reclamation

CHAPTER 4. ADDITIONAL CONCEPTS

63

https://access.redhat.com/documentation/en/openshift-enterprise/version-3.0/openshift-enterprise-30-rest-api-reference/#v1-rbdvolumesource
https://github.com/GoogleCloudPlatform/kubernetes/blob/master/docs/design/resources.md

Recycle Basic scrub (e.g, rm -rf /<volume>/*)

Recycling Policy Description

Currently, NFS and HostPath support recycling.

4.5.3.5. Phase

A volumes can be found in one of the following phases:

Phase Description

Available A free resource that is not yet bound to a claim.

Bound The volume is bound to a claim.

Released The claim has been deleted, but the resource is not yet reclaimed by
the cluster.

Failed The volume has failed its automatic reclamation.

The CLI shows the name of the PVC bound to the PV.

4.5.4. Persistent Volume Claims

Each PVC contains a spec and status, which is the specification and status of the claim.

Example 4.2. Persistent Volume Claim Object Definition

kind: PersistentVolumeClaim
apiVersion: v1
metadata:
 name: myclaim
spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 8Gi

OpenShift Enterprise 3.0 Architecture

64

4.5.4.1. Access Modes

Claims use the same conventions as volumes when requesting storage with specific access modes.

4.5.4.2. Resources

Claims, like pods, can request specific quantities of a resource. In this case, the request is for
storage. The same resource model applies to both volumes and claims.

4.5.4.3. Claims As Volumes

Pods access storage by using the claim as a volume. Claims must exist in the same namespace as
the pod using the claim. The cluster finds the claim in the pod’s namespace and uses it to get the
PersistentVolume backing the claim. The volume is then mounted to the host and into the pod:

4.6. REMOTE COMMANDS

4.6.1. Overview

OpenShift takes advantage of a feature built into Kubernetes to support executing commands in
containers. This is implemented using HTTP along with a multiplexed streaming protocol such as
SPDY or HTTP/2.

Developers can use the CLI to execute remote commands in containers.

4.6.2. Server Operation

The Kubelet handles remote execution requests from clients. Upon receiving a request, it upgrades
the response, evaluates the request headers to determine what streams (stdin, stdout, and/or
stderr) to expect to receive, and waits for the client to create the streams.

After the Kubelet has received all the streams, it executes the command in the container, copying
between the streams and the command’s stdin, stdout, and stderr, as appropriate. When the
command terminates, the Kubelet closes the upgraded connection, as well as the underlying one.

Architecturally, there are options for running a command in a container. The supported

kind: Pod
apiVersion: v1
metadata:
 name: mypod
spec:
 containers:
 - name: myfrontend
 image: dockerfile/nginx
 volumeMounts:
 - mountPath: "/var/www/html"
 name: mypd
 volumes:
 - name: mypd
 persistentVolumeClaim:
 claimName: myclaim

CHAPTER 4. ADDITIONAL CONCEPTS

65

https://github.com/GoogleCloudPlatform/kubernetes/blob/master/docs/design/resources.md
http://www.chromium.org/spdy
https://http2.github.io/
https://access.redhat.com/documentation/en/openshift-enterprise/version-3.0/openshift-enterprise-30-developer-guide/#dev-guide-executing-remote-commands

implementation currently in OpenShift invokes nsenter directly on the node host to enter the
container’s namespaces prior to executing the command. However, custom implementations could
include using docker exec, or running a "helper" container that then runs nsenter so that
nsenter is not a required binary that must be installed on the host.

4.7. PORT FORWARDING

4.7.1. Overview

OpenShift takes advantage of a feature built into Kubernetes to support port forwarding to pods. This
is implemented using HTTP along with a multiplexed streaming protocol such as SPDY or HTTP/2.

Developers can use the CLI to port forward to a pod. The CLI listens on each local port specified by
the user, forwarding via the described protocol.

4.7.2. Server Operation

The Kubelet handles port forward requests from clients. Upon receiving a request, it upgrades the
response and waits for the client to create port forwarding streams. When it receives a new stream,
it copies data between the stream and the pod’s port.

Architecturally, there are options for forwarding to a pod’s port. The supported implementation
currently in OpenShift invokes nsenter directly on the node host to enter the pod’s network
namespace, then invokes socat to copy data between the stream and the pod’s port. However, a
custom implementation could include running a "helper" pod that then runs nsenter and socat, so
that those binaries are not required to be installed on the host.

4.8. THROTTLING

4.8.1. Overview

OpenShift clusters will orchestrate many potentially large applications that could be co-located on a
set of shared nodes. Throttling refers to the act of controlling pod start order and resource
consumption to provide:

1. Optimal start-up time when the system has to start large numbers of pods at once

2. Resource control so that a single container cannot monopolize the resources of an entire
node

4.9. SOURCE CONTROL MANAGEMENT

OpenShift takes advantage of preexisting source control management (SCM) systems hosted either
internally (such as an in-house Git server) or externally (for example, on GitHub, Bitbucket, etc.).
Currently, OpenShift only supports Git solutions.

SCM integration is tightly coupled with builds, the two points being:

Creating a BuildConfig using a repository, which allows building your application inside of
OpenShift. You can create a BuildConfigmanually or let OpenShift create it automatically by
inspecting your repository.

OpenShift Enterprise 3.0 Architecture

66

http://www.chromium.org/spdy
https://http2.github.io/
https://access.redhat.com/documentation/en/openshift-enterprise/version-3.0/openshift-enterprise-30-developer-guide/#dev-guide-port-forwarding
https://access.redhat.com/documentation/en/openshift-enterprise/version-3.0/openshift-enterprise-30-developer-guide/#protocol
https://github.com/
https://bitbucket.org/
https://git-scm.com/
https://access.redhat.com/documentation/en/openshift-enterprise/version-3.0/openshift-enterprise-30-developer-guide/#defining-a-buildconfig
https://access.redhat.com/documentation/en/openshift-enterprise/version-3.0/openshift-enterprise-30-developer-guide/#dev-guide-new-app

Triggering a build upon repository changes.

4.10. OTHER API OBJECTS

4.10.1. LimitRange

A limit range provides a mechanism to enforce min/max limits placed on resources in a Kubernetes
namespace.

By adding a limit range to your namespace, you can enforce the minimum and maximum amount of
CPU and Memory consumed by an individual pod or container.

See the Kubernetes documentation for more information.

4.10.2. ResourceQuota

Kubernetes can limit both the number of objects created in a namespace, and the total amount of
resources requested across objects in a namespace. This facilitates sharing of a single Kubernetes
cluster by several teams, each in a namespace, as a mechanism of preventing one team from
starving another team of cluster resources.

See the Developer’s Guide and Kubernetes documentation for more information on
ResourceQuota.

4.10.3. Resource

A Kubernetes Resource is something that can be requested by, allocated to, or consumed by a
pod or container. Examples include memory (RAM), CPU, disk-time, and network bandwidth.

See the Developer’s Guide and Kubernetes documentation for more information.

4.10.4. Secret

Secrets are storage for sensitive information, such as keys, passwords, and certificates. They are
accessible by the intended pod(s), but held separately from their definitions.

4.10.5. PersistentVolume

A persistent volume is an object (PersistentVolume) in the infrastructure provisioned by the
cluster administrator. Persistent volumes provide durable storage for stateful applications.

See the Kubernetes documentation for more information.

4.10.6. PersistentVolumeClaim

A PersistentVolumeClaim object is a request for storage by a pod author. Kubernetes matches
the claim against the pool of available volumes and binds them together. The claim is then used as a
volume by a pod. Kubernetes makes sure the volume is available on the same node as the pod that
requires it.

See the Kubernetes documentation for more information.

CHAPTER 4. ADDITIONAL CONCEPTS

67

https://access.redhat.com/documentation/en/openshift-enterprise/version-3.0/openshift-enterprise-30-developer-guide/#webhook-triggers
https://github.com/GoogleCloudPlatform/kubernetes/blob/master/docs/design/admission_control_limit_range.md
https://access.redhat.com/documentation/en/openshift-enterprise/version-3.0/openshift-enterprise-30-developer-guide/#dev-guide-quota
https://github.com/GoogleCloudPlatform/kubernetes/blob/master/docs/admin/resource-quota.md
https://access.redhat.com/documentation/en/openshift-enterprise/version-3.0/openshift-enterprise-30-developer-guide/#dev-guide-limits
https://github.com/GoogleCloudPlatform/kubernetes/blob/master/docs/design/resources.md
https://access.redhat.com/documentation/en/openshift-enterprise/version-3.0/openshift-enterprise-30-developer-guide/#dev-guide-secrets
https://access.redhat.com/documentation/en/openshift-enterprise/version-3.0/openshift-enterprise-30-developer-guide/#dev-guide-persistent-volumes
https://github.com/GoogleCloudPlatform/kubernetes/blob/master/docs/design/persistent-storage.md
https://access.redhat.com/documentation/en/openshift-enterprise/version-3.0/openshift-enterprise-30-developer-guide/#dev-guide-persistent-volumes
https://github.com/GoogleCloudPlatform/kubernetes/blob/master/docs/design/persistent-storage.md

4.10.7. OAuth Objects

4.10.7.1. OAuthClient

An OAuthClient represents an OAuth client, as described in RFC 6749, section 2.

The following OAuthClient objects are automatically created:

openshif
t-web-
console

Client used to request tokens for the web console

openshif
t-
browser-
client

Client used to request tokens at /oauth/token/request with a user-agent that can handle
interactive logins

openshif
t-
challeng
ing-
client

Client used to request tokens with a user-agent that can handle WWW-Authenticate
challenges

Example 4.3. OAuthClient Object Definition

The name is used as the client_id parameter in OAuth requests.

{
 "kind": "OAuthClient",
 "apiVersion": "v1",
 "metadata": {

 "name": "openshift-web-console",

 "selfLink": "/osapi/v1/oAuthClients/openshift-web-console",
 "resourceVersion": "1",
 "creationTimestamp": "2015-01-01T01:01:01Z"
 },

 "respondWithChallenges": false,

 "secret": "45e27750-a8aa-11e4-b2ea-3c970e4b7ffe",

 "redirectURIs": [

 "https://localhost:8443"

]
}

1

1

2

3

4

OpenShift Enterprise 3.0 Architecture

68

https://tools.ietf.org/html/rfc6749#section-2

When respondWithChallenges is set to true, unauthenticated requests to
/oauth/authorize will result in WWW-Authenticate challenges, if supported by the
configured authentication methods.

The value in the secret parameter is used as the client_secret parameter in an
authorization code flow.

One or more absolute URIs can be placed in the redirectURIs section. The
redirect_uri parameter sent with authorization requests must be prefixed by one of
the specified redirectURIs.

4.10.7.2. OAuthClientAuthorization

An OAuthClientAuthorization represents an approval by a User for a particular
OAuthClient to be given an OAuthAccessToken with particular scopes.

Creation of OAuthClientAuthorization objects is done during an authorization request to the
OAuth server.

Example 4.4. OAuthClientAuthorization Object Definition

4.10.7.3. OAuthAuthorizeToken

An OAuthAuthorizeToken represents an OAuth authorization code, as described in RFC 6749,
section 1.3.1.

2

3

4

{
 "kind": "OAuthClientAuthorization",
 "apiVersion": "v1",
 "metadata": {
 "name": "bob:openshift-web-console",
 "resourceVersion": "1",
 "creationTimestamp": "2015-01-01T01:01:01-00:00"
 },
 "clientName": "openshift-web-console",
 "userName": "bob",
 "userUID": "9311ac33-0fde-11e5-97a1-3c970e4b7ffe"
 "scopes": []
}

CHAPTER 4. ADDITIONAL CONCEPTS

69

https://tools.ietf.org/html/rfc6749#section-1.3.1

An OAuthAuthorizeToken is created by a request to the /oauth/authorize endpoint, as described
in RFC 6749, section 4.1.1.

An OAuthAuthorizeToken can then be used to obtain an OAuthAccessToken with a request to
the /oauth/token endpoint, as described in RFC 6749, section 4.1.3.

Example 4.5. OAuthAuthorizeToken Object Definition

name represents the token name, used as an authorization code to exchange for an
OAuthAccessToken.

The clientName value is the OAuthClient that requested this token.

The expiresIn value is the expiration in seconds from the creationTimestamp.

The redirectURI value is the location where the user was redirected to during the
authorization flow that resulted in this token.

userName represents the name of the User this token allows obtaining an
OAuthAccessToken for.

{
 "kind": "OAuthAuthorizeToken",
 "apiVersion": "v1",
 "metadata": {

 "name": "MDAwYjM5YjMtMzM1MC00NDY4LTkxODItOTA2OTE2YzE0M2Fj",

 "resourceVersion": "1",
 "creationTimestamp": "2015-01-01T01:01:01-00:00"
 },

 "clientName": "openshift-web-console",

 "expiresIn": 300,

 "scopes": [],

 "redirectURI": "https://localhost:8443/console/oauth",

 "userName": "bob",

 "userUID": "9311ac33-0fde-11e5-97a1-3c970e4b7ffe"

}

1

2

3

4

5

1

2

3

4

5

6

OpenShift Enterprise 3.0 Architecture

70

https://tools.ietf.org/html/rfc6749#section-4.1.1
https://tools.ietf.org/html/rfc6749#section-4.1.3

userUID represents the UID of the User this token allows obtaining an
OAuthAccessToken for.

4.10.7.4. OAuthAccessToken

An OAuthAccessToken represents an OAuth access token, as described in RFC 6749, section
1.4.

An OAuthAccessToken is created by a request to the /oauth/token endpoint, as described in RFC
6749, section 4.1.3.

Access tokens are used as bearer tokens to authenticate to the API.

Example 4.6. OAuthAccessToken Object Definition

name is the token name, which is used as a bearer token to authenticate to the API.

The clientName value is the OAuthClient that requested this token.

The expiresIn value is the expiration in seconds from the creationTimestamp.

6

{
 "kind": "OAuthAccessToken",
 "apiVersion": "v1",
 "metadata": {

 "name": "ODliOGE5ZmMtYzczYi00Nzk1LTg4MGEtNzQyZmUxZmUwY2Vh",

 "resourceVersion": "1",
 "creationTimestamp": "2015-01-01T01:01:02-00:00"
 },

 "clientName": "openshift-web-console",

 "expiresIn": 86400,

 "scopes": [],

 "redirectURI": "https://localhost:8443/console/oauth",

 "userName": "bob",

 "userUID": "9311ac33-0fde-11e5-97a1-3c970e4b7ffe",

 "authorizeToken": "MDAwYjM5YjMtMzM1MC00NDY4LTkxODItOTA2OTE2YzE0M2Fj"

}

1

2

3

1

2

3

4

5

6

7

CHAPTER 4. ADDITIONAL CONCEPTS

71

https://tools.ietf.org/html/rfc6749#section-1.4
https://tools.ietf.org/html/rfc6749#section-4.1.3

The redirectURI is where the user was redirected to during the authorization flow that
resulted in this token.

userName represents the User this token allows authentication as.

userUID represents the User this token allows authentication as.

authorizeToken is the name of the OAuthAuthorizationToken used to obtain this
token, if any.

4.10.8. User Objects

4.10.8.1. Identity

When a user logs into OpenShift, they do so using a configured identity provider. This determines
the user’s identity, and provides that information to OpenShift.

OpenShift then looks for a UserIdentityMapping for that Identity:

If the Identity already exists, but is not mapped to a User, login fails.

If the Identity already exists, and is mapped to a User, the user is given an
OAuthAccessToken for the mapped User.

If the Identity does not exist, an Identity, User, and UserIdentityMapping are
created, and the user is given an OAuthAccessToken for the mapped User.

Example 4.7. Identity Object Definition

4

5

6

7

{
 "kind": "Identity",
 "apiVersion": "v1",
 "metadata": {

 "name": "anypassword:bob",

 "uid": "9316ebad-0fde-11e5-97a1-3c970e4b7ffe",
 "resourceVersion": "1",
 "creationTimestamp": "2015-01-01T01:01:01-00:00"
 },

1

OpenShift Enterprise 3.0 Architecture

72

https://access.redhat.com/documentation/en/openshift-enterprise/version-3.0/openshift-enterprise-30-administrator-guide/#identity-providers

The identity name must be in the form providerName:providerUserName.

providerName is the name of the identity provider.

providerUserName is the name that uniquely represents this identity in the scope of
the identity provider.

The name in the user parameter is the name of the user this identity maps to.

The uid represents the UID of the user this identity maps to.

4.10.8.2. User

A User represents an actor in the system. Users are granted permissions by adding roles to users
or to their groups.

User objects are created automatically on first login, or can be created via the API.

Example 4.8. User Object Definition

 "providerName": "anypassword",

 "providerUserName": "bob",

 "user": {

 "name": "bob",

 "uid": "9311ac33-0fde-11e5-97a1-3c970e4b7ffe"

 }
}

1

2

3

4

5

{
 "kind": "User",
 "apiVersion": "v1",
 "metadata": {

 "name": "bob",

 "uid": "9311ac33-0fde-11e5-97a1-3c970e4b7ffe",
 "resourceVersion": "1",

2

3

4

5

1

CHAPTER 4. ADDITIONAL CONCEPTS

73

https://access.redhat.com/documentation/en/openshift-enterprise/version-3.0/openshift-enterprise-30-administrator-guide/#managing-role-bindings

name is the user name used when adding roles to a user.

The values in identities are Identity objects that map to this user. May be null or
empty for users that cannot log in.

The fullName value is an optional display name of user.

4.10.8.3. UserIdentityMapping

A UserIdentityMapping maps an Identity to a User.

Creating, updating, or deleting a UserIdentityMapping modifies the corresponding fields in the
Identity and User objects.

An Identity can only map to a single User, so logging in as a particular identity unambiguously
determines the User.

A User can have multiple identities mapped to it. This allows multiple login methods to identify the
same User.

Example 4.9. UserIdentityMapping Object Definition

 "creationTimestamp": "2015-01-01T01:01:01-00:00"
 },
 "identities": [

 "anypassword:bob"

],

 "fullName": "Bob User"

}

1

2

3

{
 "kind": "UserIdentityMapping",
 "apiVersion": "v1",
 "metadata": {

 "name": "anypassword:bob",

 "uid": "9316ebad-0fde-11e5-97a1-3c970e4b7ffe",
 "resourceVersion": "1"
 },
 "identity": {
 "name": "anypassword:bob",
 "uid": "9316ebad-0fde-11e5-97a1-3c970e4b7ffe"
 },

2

3

1

OpenShift Enterprise 3.0 Architecture

74

UserIdentityMapping name matches the mapped Identity name

4.10.8.4. Group

A Group represents a list of users in the system. Groups are granted permissions by adding roles to
users or to their groups.

Example 4.10. Group Object Definition

name is the group name used when adding roles to a group.

The values in users are the names of User objects that are members of this group.

[1] After this point, device names refer to devices on container B’s host.

 "user": {
 "name": "bob",
 "uid": "9311ac33-0fde-11e5-97a1-3c970e4b7ffe"
 }
}

1

{
 "kind": "Group",
 "apiVersion": "v1",
 "metadata": {

 "name": "developers",

 "creationTimestamp": "2015-01-01T01:01:01-00:00"
 },
 "users": [

 "bob"

]
}

1

2

1

2

CHAPTER 4. ADDITIONAL CONCEPTS

75

https://access.redhat.com/documentation/en/openshift-enterprise/version-3.0/openshift-enterprise-30-administrator-guide/#managing-role-bindings

CHAPTER 5. REVISION HISTORY: ARCHITECTURE

5.1. THU MAY 19 2016

Affected Topic Description of Change

Core Concepts →
Builds and Image
Streams

Updated the example in the Image Stream Mappings section to use https
for GitHub access.

5.2. TUE MAY 03 2016

Affected Topic Description of Change

Infrastructure
Components → Web
Console

Added a link to the OpenShift and Atomic Enterprise Platform Tested
Integrations article in the Browser Requirements section.

5.3. WED APR 27 2016

Affected Topic Description of Change

Core Concepts →
Routes

Corrected footnote placement in the Secured Routes section.

Core Concepts →
Builds and Image
Streams

Added information about maximum name lengths for objects.

Core Concepts →
Projects and Users

Added information about maximum name lengths for objects.

Core Concepts →
Pods and Services

Added information about maximum name lengths for objects.

5.4. TUE APR 19 2016

OpenShift Enterprise 3.0 Architecture

76

https://access.redhat.com/articles/2176281

Affected Topic Description of Change

Infrastructure
Components → Web
Console

Added a Browser Requirements section, which outlines browser versions and
operating systems that can be used to access the web console.

5.5. MON APR 04 2016

Affected Topic Description of Change

Core Concepts →
Routes

Fixed typo of the destinationCACertificate parameter name.

5.6. THU FEB 25 2016

Affected Topic Description of Change

Infrastructure
Components →
Kubernetes
Infrastructure

Added a note indicating that moving from a single master cluster to multiple
masters after installation is not supported.

5.7. MON FEB 15 2016

Affected Topic Description of Change

Core Concepts →
Routes

Updated to clarify that destinationCaCertificate is required, but only
for re-encryption.

5.8. MON FEB 01 2016

Affected Topic Description of Change

Core Concepts →
Builds and Image
Streams

Added more information on how builds work behind the scenes.

CHAPTER 5. REVISION HISTORY: ARCHITECTURE

77

Additional Concepts →
Persistent Storage

Added an Important box about providing high-availability.

Affected Topic Description of Change

5.9. TUE JUN 23 2015

OpenShift Enterprise 3.0 release.

OpenShift Enterprise 3.0 Architecture

78

	Table of Contents
	CHAPTER 1. OVERVIEW
	1.1. WHAT ARE THE LAYERS?
	1.2. WHAT IS THE OPENSHIFT ARCHITECTURE?
	1.3. HOW IS OPENSHIFT SECURED?

	CHAPTER 2. INFRASTRUCTURE COMPONENTS
	2.1. KUBERNETES INFRASTRUCTURE
	2.1.1. Overview
	2.1.2. Masters
	2.1.2.1. High Availability Masters

	2.1.3. Nodes
	2.1.3.1. Kubelet
	2.1.3.2. Service Proxy
	2.1.3.3. Node Object Definition

	2.2. IMAGE REGISTRY
	2.2.1. Overview
	2.2.2. Integrated OpenShift Registry
	2.2.3. Third Party Registries
	2.2.3.1. Authentication

	2.3. WEB CONSOLE
	2.3.1. Overview
	2.3.2. Browser Requirements
	2.3.3. Project Overviews
	2.3.4. JVM Console

	CHAPTER 3. CORE CONCEPTS
	3.1. OVERVIEW
	3.2. CONTAINERS AND IMAGES
	3.2.1. Containers
	3.2.2. Docker Images
	3.2.3. Docker Registries

	3.3. PODS AND SERVICES
	3.3.1. Pods
	3.3.2. Services
	3.3.3. Labels

	3.4. PROJECTS AND USERS
	3.4.1. Users
	3.4.2. Namespaces
	3.4.3. Projects

	3.5. BUILDS AND IMAGE STREAMS
	3.5.1. Builds
	3.5.1.1. Docker Build
	3.5.1.2. Source-to-Image (S2I) Build
	3.5.1.3. Custom Build

	3.5.2. Image Streams
	3.5.2.1. Image Stream Mappings
	3.5.2.2. Referencing Images in Image Streams
	3.5.2.3. Image Pull Policy
	3.5.2.4. Importing Tag and Image Metadata
	3.5.2.5. Tag Tracking
	3.5.2.6. Tag Removal
	3.5.2.7. Importing Images from Insecure Registries

	3.6. DEPLOYMENTS
	3.6.1. Replication Controllers
	3.6.2. Deployments and Deployment Configurations

	3.7. ROUTES
	3.7.1. Overview
	3.7.2. Routers
	3.7.2.1. Template Routers

	3.7.3. Available Router Plug-ins
	3.7.3.1. HAProxy Template Router
	3.7.3.2. F5 Router

	3.7.4. Route Host Names
	3.7.5. Route Types
	3.7.6. Path Based Routes
	3.7.7. Secured Routes

	3.8. TEMPLATES
	3.8.1. Overview
	3.8.2. Parameters

	CHAPTER 4. ADDITIONAL CONCEPTS
	4.1. NETWORKING
	4.1.1. OpenShift DNS
	4.1.2. OpenShift SDN

	4.2. OPENSHIFT SDN
	4.2.1. Overview
	4.2.2. Design on Masters
	4.2.3. Design on Nodes
	4.2.3.1. Packet Flow
	4.2.3.2. External Access to the Cluster Network

	4.3. AUTHENTICATION
	4.3.1. Overview
	4.3.2. Users and Groups
	4.3.3. API Authentication
	4.3.4. OAuth

	4.4. AUTHORIZATION
	4.4.1. Overview
	4.4.2. Evaluating Authorization
	4.4.3. Cluster Policy and Local Policy
	4.4.4. Roles
	4.4.4.1. Updating Cluster Roles

	4.4.5. Security Context Constraints
	4.4.5.1. Admission

	4.5. PERSISTENT STORAGE
	4.5.1. Overview
	4.5.2. Lifecycle of a Volume and Claim
	4.5.2.1. Provisioning
	4.5.2.2. Binding
	4.5.2.3. Using
	4.5.2.4. Releasing
	4.5.2.5. Reclaiming

	4.5.3. Persistent Volumes
	4.5.3.1. Types of Persistent Volumes
	4.5.3.2. Capacity
	4.5.3.3. Access Modes
	4.5.3.4. Recycling Policy
	4.5.3.5. Phase

	4.5.4. Persistent Volume Claims
	4.5.4.1. Access Modes
	4.5.4.2. Resources
	4.5.4.3. Claims As Volumes

	4.6. REMOTE COMMANDS
	4.6.1. Overview
	4.6.2. Server Operation

	4.7. PORT FORWARDING
	4.7.1. Overview
	4.7.2. Server Operation

	4.8. THROTTLING
	4.8.1. Overview

	4.9. SOURCE CONTROL MANAGEMENT
	4.10. OTHER API OBJECTS
	4.10.1. LimitRange
	4.10.2. ResourceQuota
	4.10.3. Resource
	4.10.4. Secret
	4.10.5. PersistentVolume
	4.10.6. PersistentVolumeClaim
	4.10.7. OAuth Objects
	4.10.7.1. OAuthClient
	4.10.7.2. OAuthClientAuthorization
	4.10.7.3. OAuthAuthorizeToken
	4.10.7.4. OAuthAccessToken

	4.10.8. User Objects
	4.10.8.1. Identity
	4.10.8.2. User
	4.10.8.3. UserIdentityMapping
	4.10.8.4. Group

	CHAPTER 5. REVISION HISTORY: ARCHITECTURE
	5.1. THU MAY 19 2016
	5.2. TUE MAY 03 2016
	5.3. WED APR 27 2016
	5.4. TUE APR 19 2016
	5.5. MON APR 04 2016
	5.6. THU FEB 25 2016
	5.7. MON FEB 15 2016
	5.8. MON FEB 01 2016
	5.9. TUE JUN 23 2015

