
Booting with GRUB Legacy, GRUB 2 and UEFI
Author: Yogesh Babar
Technical Reviewer: Chris Negus
10/20/2015

INTRODUCTION
GRUB is a separate world itself. It's so amazing and so huge that someone could write a

whole book on it.

The first stable release of GRUB 2 was in June, 2012. It started shipping in

enterprise systems with Red Hat Enterprise Linux 7 (December, 2013) and CentOS 7 (July,

2014). Its release created a buzz, but was also confusing to users when they tried to use,

understand, or configure GRUB 2. Users tried to compare it with the original GRUB (now

called GRUB legacy), but nothing matched the way that GRUB 2 worked.

So, first of all, do not compare it with GRUB legacy. The GRUB community has

changed the entire structure for GRUB 2, as I will discuss soon. First let's try to understand

why GRUB 2.

Why GRUB 2?

“Because GRUB Legacy has become unmaintainable, due to messy code and

design failures. We received many feature requests, and extended GRUB beyond the

original scope, without redesigning the framework. This resulted in the state that it was

impossible to extend GRUB any further without rethinking everything from the ground.”

-- GNU GRUB FAQ (https://www.gnu.org/software/grub/grub-faq.html)

In short, the GNU GRUB project decide to stop supporting the original version of

GRUB because:

• New feature requests were being made against an old code base

• Newer hardware, boot environments needed to be supported

• The original GRUB code is more than a decade old

• The original code was unmaintainable going forward

It was not users, but rather the GRUB developers who decided to write something

from a scratch to give extra features. Before we start to see what was developed, lets see

what developers have planned for GRUB 2 in future. Its simply amazing. Below are some of

the ideas which they might develop:

Booting with GRUB, GRUB 2 and UEFI | Yogesh Babar 1

• Full USB support

• LUKS support

• A very fancy menu implementation, which supports animations, colorful effects, style

sheets, etc.

• Adding the parted tool to the GRUB architecture. That means if you are in trouble at

boot time, from the grub command prompt you can really play with your disks

(creation, resize, deletion of partitions). Isn’t this amazing?

As you may know, GRUB 2 works on BIOS as well as on UEFI firmwares. So here in

this tech brief I use two systems: one is BIOS based and another one is UEFI based system.

Also we would focus more on GRUB 2 with UEFI combination.

On BIOS-based systems

GRUB legacy keep all of its files in the /boot/grub directory but GRUB 2 keeps its

configuration and binary files at 3 different locations:

• /boot/grub2/ or /boot/efi/EFI (only on UEFI system)

• /etc/default/

• /etc/grub.d/

Let's see some examples of the contents of these files. On a system that boots from

BIOS, type the following:

ls /boot/grub2/

device.map fonts grub.cfg grubenv i386-pc locale themes

The main configuration file for GRUB 2 is grub.cfg. For GRUB legacy, this file was

called grub.conf. Here is an example of the contents of the first part of a grub.cfg file:

#
DO NOT EDIT THIS FILE
#
It is automatically generated by grub2-mkconfig using templates
from /etc/grub.d and settings from /etc/default/grub
#

BEGIN /etc/grub.d/00_header
set pager=1

if [-s $prefix/grubenv]; then
 load_env
fi
if ["${next_entry}"] ; then

Booting with GRUB, GRUB 2 and UEFI | Yogesh Babar 2

 set default="${next_entry}"
 set next_entry=
 save_env next_entry
 set boot_once=true
else
 set default="${saved_entry}"
fi

if [x"${feature_menuentry_id}" = xy]; then
 menuentry_id_option="--id"
else
 menuentry_id_option=""
fi

export menuentry_id_option

if ["${prev_saved_entry}"]; then
 set saved_entry="${prev_saved_entry}"
 save_env saved_entry
 set prev_saved_entry=
 save_env prev_saved_entry
 set boot_once=true
fi

function savedefault {
 if [-z "${boot_once}"]; then
 saved_entry="${chosen}"
 save_env saved_entry
 fi
}

function load_video {
 if [x$feature_all_video_module = xy]; then
 insmod all_video
 else
 insmod efi_gop
 insmod efi_uga
 insmod ieee1275_fb
 insmod vbe
 insmod vga
 insmod video_bochs
 insmod video_cirrus
 fi
}

terminal_output console
if [x$feature_timeout_style = xy] ; then
 set timeout_style=menu
 set timeout=5
Fallback normal timeout code in case the timeout_style feature is
unavailable.
...

The grub.cfg file is a script file and it's harder to understand than GRUB legacy's

grub.conf file. Also it is not recommended to edit this file directly, because it is created from

the content of other configuration files. So any changes you make directly to grub.cfg will be

overwritten and lost eventually.

To add custom entries to your GRUB 2 configuration, there are other files you should

Booting with GRUB, GRUB 2 and UEFI | Yogesh Babar 3

look at. Here are some examples of those files:
cat /etc/default/grub

GRUB_TIMEOUT=5

GRUB_DISTRIBUTOR="$(sed 's, release .*$,,g' /etc/system-release)"

GRUB_DEFAULT=saved

GRUB_DISABLE_SUBMENU=true

GRUB_TERMINAL_OUTPUT="console"

GRUB_CMDLINE_LINUX="rd.lvm.lv=rhel_unused/root crashkernel=auto

 rd.lvm.lv=rhel_unused/swap vconsole.font=latarcyrheb-sun16

 vconsole.keymap=us rhgb quiet"

GRUB_DISABLE_RECOVERY="true"

The /etc/default/grub file is used for customization like changing the font type or

size, adding a different background or even passing a kernel parameter. To create the

grub.cfg file itself, there is a set of files in the /etc/grub.d/ directory:

ls /etc/grub.d/

00_header 20_linux_xen 30_os-prober 41_custom

10_linux 20_ppc_terminfo 40_custom README

The files in /etc/grub.d/ directory are script files that have executable permissions

and each runs based on the number prefix on its name. That means first 10_linux file will

run and then 30_os-prober.

On UEFI based systems

There are different GRUB configuration files for UEFI based-systems. First, check the

/boot/grub2/ directory:
ls /boot/grub2/

grubenv themes

Notice there is no grub.cfg file here. For that, you need to look in the

/boot/efi/EFI/redhat/ directory:

ls /boot/efi/EFI/redhat/

BOOT.CSV gcdx64.efi grubx64.efi shim.efi

fonts grub.cfg MokManager.efi shim-redhat.efi

Notice the grub.cfg file has been shifted to this location. The other *.efi files in this

directory are GRUB 2 binaries which will be used by UEFI firmware at the time of boot.

ls /etc/grub.d/

Booting with GRUB, GRUB 2 and UEFI | Yogesh Babar 4

00_header 20_linux_xen 30_os-prober 41_custom

10_linux 20_ppc_terminfo 40_custom README

Let's talk about these files:

• 00_header: Is for internal GRUB 2's usage, which I will not be covering.

• 10_linux: Is an interesting script file. It is responsible for finding the pre-installed Linux

based operating system. That means it will be finding kernel and initramfs files from the

harddrive and will be adding the entries into grub.cfg file. Does that mean you do not

need to add the other Linux OS entries manually? Yes, it does.

• 20_linux_xen: Will find xen kernels and add their entries into grub.cfg.

• 20_ppc_terminfo: Is related to PPC architecture, which I will not be covering.

• 30_os-prober: Is the most interesting executable file. This script file is responsible for

finding the non-linux-based operating systems. Does that mean a Windows OS? Yes,

when it runs, 30_os-prober finds any non-Linux operating systems from your hard drive

and adds appropriate entries into grub.cfg file. That also means that if multiple

operating systems are already on your systems, including Linux, Windows, or UNIX

systems, if you are installing RHEL 7, CentOS 7 or Fedora, you do not need to add

your earlier OS entries in GRUB. GRUB 2 will run these scripts and it will find out the

other pre-installed operating systems on its own, then add the appropriate entries into

the main configuration file (grub.cfg). This is simply amazing.

• 40_custom and 41_custom: As we have discussed earlier it is not recommended to

edit the grub.cfg file directly. But what if you want to add some custom entries into

grub.cfg. These two files provide the answer for this. If you want to add custom entries,

add them to 40_custom’ or in 41_custom file. When you re-create a grub.cfg file it will

execute these files and add your custom entries into grub.cfg. We see how to

re-create a grub,cfg file later on.

Also note that you can create your own script file for your custom entry. No need to

depend on 40_custom or 41_custom files. Just make sure to assign a number to it

along with executable permission.

Since we will be dealing with GRUB 2 on UEFI systems then we need to first

understand the way UEFI firmware boots the Linux operating system.

UEFI firmware booting

Before beginning to work with GRUB on your computer, let's try to figure out whether your

system has UEFI firmware or BIOS. There are a few ways you can check your system to see

if it uses UEFI boot firmware:

1. A very simple trick is to go to your firmware. If you are able to use a mouse, it is a

Booting with GRUB, GRUB 2 and UEFI | Yogesh Babar 5

UEFI system. In that case, you might see a nice graphical interface like the one

shown in Figure 1:

 Figure 1: UEFI firmware system with an Intel Visual BIOS GUI.

2. A way to check an installed Linux system to see if it has UEFI support is to run

efibootmgr -v. The output here indicates that you have UEFI firmware:

efibootmgr -v

BootCurrent: 0005

BootOrder: 0005,0000,0001,0002,0003,0004

Boot0000* EFI VMware Virtual SCSI Hard Drive (0.0)

 ACPI(a0341d0,0)PCI(10,0)SCSI(0,0)

Boot0001* EFI VMware Virtual SATA CDROM Drive (0.0)

 ACPI(a0341d0,0)PCI(11,0)PCI(5,0)03120a00000000000000

Boot0002* EFI VMware Virtual SATA CDROM Drive (1.0)

 ACPI(a0341d0,0)PCI(11,0)PCI(5,0)03120a00010000000000

Boot0003* EFI Network ACPI(a0341d0,0)PCI(11,0)PCI(1,0)MAC(000c2927a8fd,0)

Boot0004* EFI Internal Shell (Unsupported option) MM(b,e1a2000,e42ffff)

Boot0005* Red Hat Enterprise Linux

 HD(1,800,64000,a17c521e-8435-4859-83c0-cb923874a846)File(\EFI\redhat\shim.efi)

Here BootCurrent, BootOrder, and so on, are called as environment variables. If you

fire up the same command on a BIOS-based system, you get something like this:
efibootmgr -v

efibootmgr: EFI variables are not supported on this system.

Booting with GRUB, GRUB 2 and UEFI | Yogesh Babar 6

UEFI firmware booting structure
UEFI firmware requires one FAT32 partition referred to as the EFI System Partition (ESP).

The operating system has to put the bootloader into this partition.

The operating system has to maintain its own directory in the ESP and install a

bootloader there. Red Hat use the following directory names for its operating systems:
For fedora OS ⇒ fedora

For cent OS ⇒ centos

For RHEL OS ⇒ redhat

All files related to GRUB 2 are in the directory that is associated with the operating

system you want to run. Figure 2 illustrates a hard disk on a UEFI system that has three

operating systems installed (RHEL 7, CentOS 7, and Fedora 22):

Figure 2: UEFI disk partitioning

For the three operating systems installed on this system, each has to either create or

use the existing FAT-32 formatted ESP partition. At the time of installation, every OS installs

their respective boot loaders (grub2) into their respective directories (inside ESP). On

BIOS-based systems, the same boot loaders used to get installed in the boot sector (which is

a 512-bytes reserved space at the beginning of partition). BIOS systems also used to have

stage1, stage1.5 and stage2. GRUB 2 with UEFI does not have such stages.

A /boot/efi directory is mounted automatically at boot time inside each operating

system's ESP partition, based on an entry in the /etc/fstab file:
/etc/fstab

Created by anaconda on Wed Oct 8 13:37:36 2014

#

Accessible filesystems, by reference, are maintained under '/dev/disk'

See man pages fstab(5), findfs(8), mount(8) and/or blkid(8) for more info

/dev/mapper/rhel_unused-root / xfs defaults 1 1

UUID=ef0e8997-77a0-4bfd-830d-eb9bc26ca3e3 /boot xfs defaults 1 2

UUID=918D-4200 /boot/efi xfs defaults 1 2

/dev/mapper/rhel_unused-swap swap swap defaults 0 0

To see all the files related to GRUB boot loader for a UEFI system, you can run the

tree command as follows:

Booting with GRUB, GRUB 2 and UEFI | Yogesh Babar 7

Copyright © 2015 Red Hat, Inc. “Red Hat,” Red Hat Linux, the Red Hat “Shadowman” logo, and the products
listed are trademarks of Red Hat, Inc., registered in the U.S. and other countries. Linux® is the registered
trademark of Linus Torvalds in the U.S. and other countries.

www.redhat.com

tree /boot/

/boot/

├── config-3.10.0-121.el7.x86_64

├── efi

│ ├── EFI

│ │ ├── BOOT

│ │ ├── BOOTX64.EFI

│ │ └── fallback.efi

| |── redhat

│ ├── BOOT.CVS

│ ├── fonts

│ │ └── unicode.pf2

│ ├── gcdx64.efi

│ ├── grub.cfg

│ ├── grubx64.efi

│ ├── MokManager.efi

│ ├── shim.efi

│ └── shim-redhat.efi

├── grub2

│ ├── grubenv

│ ├── themes

│ │ └── system

├── initramfs-0-rescue-7099d5868c48473c993b85d60bafd021.img

├── initramfs-3.10.0-121.el7.x86_64.img

├── initramfs-3.10.0-121.el7.x86_64kdump.img

├── initrd-plymouth.img

├── symvers-3.10.0-121.el7.x86_64.gz

├── System.map-3.10.0-121.el7.x86_64

├── vmlinuz-0-rescue-7099d5868c48473c993b85d60bafd021

└── vmlinuz-3.10.0-121.el7.x86_64

Notice that the kernel (vmlinuz) and initial RAM filesystem (initramfs) files are inside

/boot but the GRUB configuration files are inside the /boot/efi directory, which is mounted

from a separate partition. You can see this by running the df command:
df

Filesystem 1K-blocks Used Available Use% Mounted on

...

/dev/sda2 508588 113272 395316 23% /boot

/dev/sda1 204580 9744 194836 5% /boot/efi

UEFI firmware booting sequence
When computer starts, UEFI firmware checks environment variables and gets the bootloader

location from ESP. For example:

Booting with GRUB, GRUB 2 and UEFI | Yogesh Babar 8

Boot0005* Red Hat Enterprise Linux

HD(1,800,64000,a17c521e-8435-4859-83c0-cb923874a846)File(\EFI\redhat\grubx64.efi)

It goes inside that particular directory and calls the bootloader. In this case, the bootloader is

GRUB 2:

(\EFI\redhat\grubx64.efi)

Manual booting with GRUB
To understand GRUB, we need to understand first what it does in the background. Learning

to boot an operating system manually from GRUB will help us in that. Here I will be using

three systems. First we will see how to manually boot a system with GRUB legacy. Then we

will see how to boot a system manually with GRUB 2, on BIOS as well as on UEFI system.

GRUB Legacy Manual Booting

First let's find out the root device name. We can get it by running blkid and df, and looking at

the /etc/fstab file. On this RHEL 6 BIOS-based system, /dev/sda2 is the root device:

blkid

/dev/sda1: UUID="ef0e8997-77a0-4bfd-830d-eb9bc26ca3e3" TYPE="ext4"

/dev/sda2: UUID="PpR3qi-SGTa-j70a-Insi-FpYW-cQyV-qwYQE8" TYPE="ext4"

/dev/sda3: UUID="23c7864c-7247-4a24-8824-6765b35bbcc9" TYPE="swap"

cat /etc/fstab

...

UUID=PpR3qi-SGTa-j70a-Insi-FpYW-cQyV-qwYQE8 / ext4 defaults 1 1

UUID=ef0e8997-77a0-4bfd-830d-eb9bc26ca3e3 /boot ext4 defaults 1 2

UUID=23c7864c-7247-4a24-8824-6765b35bbcc9 swap ext4 defaults 1 2

...

df

Filesystem 1K-blocks Used Available Use% Mounted on

/dev/sda2 8985528 2693084 5835996 32% /

tmpfs 548284 224 548060 1% /dev/shm

/dev/sda1 297485 34690 247435 13% /boot

When you first boot your computer, the moment the GRUB screen comes up, you need to

press c to drop to a grub> prompt. At the grub> prompt we need run three commands, as

illustrated in Figure 3:

Booting with GRUB, GRUB 2 and UEFI | Yogesh Babar 9

Figure 3: Booting from the grub> prompt

Here is what those three GRUB commands do:

root (hd0,0)

This command tells a GRUB legacy system where is the kernel (vmlinuz) and

initramfs files stored. Remember do not get confused with the word root. In this

case, it does not mean the root device where the operating system has been

installed. Rather it means the /boot device where the vmlinuz and initramfs files

are stored. Now if the /boot mount point is not a separate device, then you need to

mention the root filesystem’s device name. But if you have /boot on a different

device (as is the default with RHEL) then you need to mention the /boot device

name. In this example you can see in above screenshot that /boot is a separate

device (/dev/sda1).

kernel /vmlinuz-2.6.32-431.el6.x86_64 ro root=/dev/sda2

As the name suggest here you need to mention the location of the kernel file

(vmlinuz-XX) in relation to the root of the /boot filesystem (root=/dev/sda2).

initrd /initramfs-2.6.32-431.el6.x86_64.img

Here we specify the initramfs-xxx.img file name (relative to its location in the root of

the /boot filesystem).

When we enter the boot command, GRUB legacy goes to the hard disk number 1,

partition number 1 (remember in GRUB hard disk and partition number starts from 0) which

holds the /boot filesystem. From there, it will copy the kernel and initramfs files to RAM. After

this, the kernel mounts the root filesystem (/dev/sda2) in read only mode and start the init

process. This init process will read the /etc/fstab file from mounted root filesystem and will

Booting with GRUB, GRUB 2 and UEFI | Yogesh Babar 10

remount the root filesystem in read-write mode.

If you do not interrupt GRUB legacy, as we just did, then GRUB takes root, kernel,

and initramfs inputs from the /boot/grub/grub.conf file:

cat /boot/grub/grub.conf

grub.conf generated by anaconda

#

Note that you do not have to rerun grub after making changes to this file

NOTICE: You have a /boot partition. This means that

all kernel and initrd paths are relative to /boot/, eg.

root (hd0,0)

kernel /vmlinuz-version ro root=/dev/sda2

initrd /initrd-[generic-]version.img

#boot=/dev/sda

default=0

timeout=5

splashimage=(hd0,0)/grub/splash.xpm.gz

hiddenmenu

title Red Hat Enterprise Linux Workstation (2.6.32-431.el6.x86_64)

root (hd0,0)

kernel /vmlinuz-2.6.32-573.7.1.el6.x86_64 ro root=/dev/mapper/HelpDeskRHEL6-Root

rd_LVM_LV=HelpDeskRHEL6/Swap rd_LUKS_UUID=luks-6806f875-ee29-47d5-8f59-cc3c32731cd9

rd_NO_MD SYSFONT=latarcyrheb-sun16 crashkernel=auto LANG=en_US.UTF-8 KEYBOARDTYPE=pc

KEYTABLE=us rd_LVM_LV=HelpDeskRHEL6/Root rd_NO_DM rhgb quiet vga=0x318 rhgb quiet

initrd /initramfs-2.6.32-431 .el6.x86_64.img

GRUB 2 on BIOS

On this RHEL 7 BIOS-based system root device name is /dev/mapper/rhel-root. It's a LVM

device:
blkid

/dev/sda1: UUID="5baf9cbb-6b75-4733-bbb0-eb4389cda038" TYPE="ufs"

/dev/sda2: UUID="66Vk22-HGHS-3sH0-w7Zr-omJ0-xbtn-JOZRs0" TYPE="LVM2_member"

/dev/mapper/rhel-root: UUID="a997c74e-3dc2-4b1d-a7cc-c1abe40c1352" TYPE="xfs"

/dev/mapper/rhel-swap: UUID"6e877193-2b68-43c1-95d6-ca55433f91ce" TYPE="swap"

cat /etc/fstab

...

/dev/mapper/rhel-root / xfs defaults 1 1

UUID=5baf9cbb-6b75-4733-bbb0-eb4389cda038 /boot xfs defaults 1 2

/dev/mapper/rhel-swap swap swap defaults 0 0

Booting with GRUB, GRUB 2 and UEFI | Yogesh Babar 11

df

Filesystem 1K-blocks Used Available Use% Mounted on

/dev/mapper/rhel-root 8910848 3926964 4983884 45% /

...

/dev/sda1 508588 4138442 2777912 24% /boot

As with GRUB legacy, on a GRUB 2 system you need to press c when GRUB 2’s splash

screen comes up. It will drop to GRUB 2’s prompt. After that, there are three commands you

need to type that are very similar to the GRUB legacy commands, but with a slight change.

Figure 4 shows you an example of those commands on a GRUB 2 boot screen:

Figure 4: Booting GRUB 2 from the grub> prompt

Here are descriptions of those commands:

set root=(hd0,msdos1)

This is just like GRUB legacy root command. Here, it specifies the partition

containing the /boot device (/dev/sda1). In GRUB 2 hard disk numbers still start with

0, but partition number starts from 1. Partition numbers will be like msdos1,

msdos2, and so on. The msdos name tells BIOS firmware that the partition uses an

msdos partition table.

linux16 /vmlinuz-3.10.0-121.el7.x86_64 ro root=/dev/mapper/rhel-root

 The kernel filename is identified here along with the name of the partition containing

the root (/) filesystem (/dev/mapper/rhel-root).

initrd16 /initramfs-3.10.0-121.el7.x86_64.img

The initramfs file identifies the location of the initial filename used to boot the kernel.

On BIOS-based systems, if we do not interrupt GRUB then it will take inputs for set

root, linux16, and initrd16 from /boot/grub2/grub.cfg. Here is an example of some of the

contents of a grub.cfg file:

Fallback normal timeout code in case the timeout_style feature is

unavailable.

else

 set timeout=5

Booting with GRUB, GRUB 2 and UEFI | Yogesh Babar 12

fi

END /etc/grub.d/00_header

BEGIN /etc/grub.d/10_linux

menuentry 'Red Hat Enterprise Linux Server (3.10.0-229.4.2.el7.x86_64) 7.0 (Maipo)'

--class red --class gnu-linux --class gnu --class os --unrestricted $menuentry_id_option

'gnulinux-3.10.0-123.el7.x86_64-advanced-64e5e9df-80a1-401f-9ddf-2db389f89fe8' {

load_video

set gfxpayload=keep

insmod gzio

insmod part_msdos

insmod xfs

set root='hd0,msdos1'

if [x$feature_platform_search_hint = xy]; then

 search --no-floppy --fs-uuid --set=root --hint-bios=hd0,msdos1

--hint-efi=hd0,msdos1 --hint-baremetal=ahci0,msdos1 --hint='hd0,msdos1'

ef0e8997-77a0-4bfd-830d-eb9bc26ca3e3

else

 search --no-floppy --fs-uuid --set=root ef0e8997-77a0-4bfd-830d-eb9bc26ca3e3

fi

linux16 /vmlinuz-3.10.0-229.4.2.el7.x86_64 root=/dev/mapper/rhel_unused-root ro

rd.lvm.lv=rhel_unused/root rd.lvm.lv=rhel_unused/swap vconsole.font=latarcyrheb-sun16

vconsole.keymap=us rhgb quiet LANG=en_US.UTF-8

initrd16 /initramfs-3.10.0-229.4.2.el7.x86_64.img

}

...

After some default settings, content from the /etc/grub.d/10_linux file is included to

create the menuentry for "Red Hat Enterpise Linux...". The linux16 and initrd16 lines under

that menuentry identify the kernel and initramfs to use when that item is selected.

GRUB 2 on UEFI:

On this RHEL 7 UEFI-based system, the root device name is again /dev/mapper/rhel-root

which is an LVM device:
blkid

/dev/sda1: SEC_TYPE="msdos" UUID="91BD-420D" TYPE="vfat" PARTLABEL="EFI SystemPartition"

 PARTUUID="a17c521e-8435-4859-83c0-cb923874a846"

/dev/sda2: UUID="d2f1962d-2210-437e-b6ac-9c6afc8e462e" TYPE="xfs"

 PARTUUID="65d20f6e-cdd4-4a19-b51a-43075801c1"

/dev/sda3: UUID="d81Gqz-8Vd0-kLNI-9ICX-CThF-DEnW-xGskF1" TYPE="LVM2_member"

 PARTUUID="91a01233-5152-4a67-9a16-fffec2a8c286"

/dev/mapper/rhel-root: UUID="f99eeed5-f108-4ece-9361-3c49c8da3d8c" TYPE="xfs"

/dev/mapper/rhel-swap: UUID"bdfbd2c1-93ac-42a8-a011-40c08046aacb" TYPE="swap"

Booting with GRUB, GRUB 2 and UEFI | Yogesh Babar 13

cat /etc/fstab

...

/dev/mapper/rhel-root / xfs defaults 1 1

UUID=d2f1962d-2210-437e-b6ac-9c6afc8e462e /boot xfs defaults 1 2

UUID="91BD-420D" /boot/efi vfat umask=0077,shortname=winnt 0 0

/dev/mapper/rhel-swap swap swap defaults 0 0

df

Filesystem 1K-blocks Used Available Use% Mounted on

/dev/mapper/rhel-root 8706048 3947040 4759008 46% /

...

/dev/sda2 508588 113272 395316 24% /boot

/dev/sda1 204580 9744 194836 24% /boot/efi

On UEFI systems, commands to boot from a GRUB command prompt are just about

the same, with only a few slight change as illustrated in Figure 5:

Figure 5: Booting GRUB 2 from the grub> prompt in UEFI

Here are descriptions of those commands:

set root=(hd0,gpt2)

As usual we need to mention a device name where the kernel (vmlinuz) and

initramfs files have been stored. The hard disk number starts from 0 but the partition

number starts from 1. The UEFI firmware uses a gpt partition table so the partition

names will be gpt1, gpt2, and so on. On this system, partition number 1 is our ESP

mounted on /boot/efi and partition number 2 is a /boot device which is /dev/sda2.

linuxefi /vmlinuz-3.10.0-121.el7.x86_64 ro root=/dev/mapper/rhel-root

As usual we need to pass the kernel filename (vmlinuz) along with the device that

host the root (/) filesystem. In this system root device is /dev/mapper/rhel-root

which is an LVM device.

initrdefi /initramfs-3.10.0.121.el7.x86_64.img

Here we need to pass initramfs file name. Its location is relative to the root of the

/boot/efi directory.

Booting with GRUB, GRUB 2 and UEFI | Yogesh Babar 14

On UEFI-based systems, if we do not interrupt GRUB then it will take inputs of

set root, linuxefi, and initrdefi from /boot/efi/EFI/redhat/grub.cfg. Here is an example of

the grub.cfg file on a UEFI-based system:

Fallback normal timeout code in case the timeout_style feature is

unavailable.

else

 set timeout=5

fi

END /etc/grub.d/00_header

BEGIN /etc/grub.d/10_linux

menuentry 'Red Hat Enterprise Linux Server (3.10.0-229.4.2.el7.x86_64) 7.0 (Maipo)'

--class red --class gnu-linux --class gnu --class os --unrestricted $menuentry_id_option

'gnulinux-3.10.0-123.el7.x86_64-advanced-f99eeed5-f108-4ece-9361-3c49c8da3d8c' {

load_video

set gfxpayload=keep

insmod gzio

insmod part_gpt

insmod xfs

set root='hd0,gpt2'

if [x$feature_platform_search_hint = xy]; then

 search --no-floppy --fs-uuid --set=root --hint-bios=hd0,gpt2 --hint-efi=hd0,gpt2

--hint-baremetal=ahci0,gpt2 d2f1962d-2210-437e-b6ac-9c6afc8e462e

else

 search --no-floppy --fs-uuid --set=root d2f1962d-2210-437e-b6ac-9c6afc8e462e

fi

linuxefi /vmlinuz-3.10.0-229.4.2.el7.x86_64

root=UUID=f99eeed5-f108-4ece-9361-3c49c8da3d8c ro rc.lvm.lv=rhel/root rd.lvm.lv=rhel/swap

vconsole rd.lvm.lv=rhel_unused/root rd.lvm.lv=rhel_unused/swap

vconsole.font=latarcyrheb-sun16 vconsole.keymap=us rhgb quiet LANG=en_US.UTF-8

initrd16 /initramfs-3.10.0-121.4.2.el7.x86_64.img

}

..

GRUB 2 is so smartly designed that you can even explore any particular partition

from grub> prompt itself. Here are examples of commands run from the GRUB prompt to

investigate file systems.

1. GRUB 2 has its own ls command that lists the attached storage devices along with

its partitions:

2. The same ls command can show us the any particular partition's filesystem:

Booting with GRUB, GRUB 2 and UEFI | Yogesh Babar 15

3. The GRUB ls command can even list the contents of the partition and directories:

GRUB 2 and UEFI firmware

GRUB 2 and UEFI together form an amazing combination. Just keep some things in mind:

1. GRUB 2 understands msdos and gpt partition tables.

2. UEFI firmware understands msdos and gpt partition tables.

3. Using UEFI, GRUB 2, and gpt together works like a charm and is recommended.

4. Using UEFI, GRUB 2, and msdos together is not recommended. It does not mean it

does not work but it will make life very difficult.

5. Using BIOS, GRUB 2, and msdos together works like a charm.

6. Using BIOS, GRUB 2, and gpt works, but can make your life difficult.

Let's try to first understand the way UEFI firmware works. As we all know BIOS is

deprecated. That means there will not be new BIOS development happening. BIOS had

many limitations, such as:

1. You can only create 4 primary partitions. If you want to create 5th one then create the

secondary/extended partition and inside that container you can create a fixed number

of logical partition (16 is the maximum).

2. A partition size can not be more than 2.2 TB.

3. It takes a long time to boot an operating system.

4. It is dumb. It does not understand operating systems or boot loaders. It only knows to

jump on a hard disk's first 512 bytes. This area of a disk is called the boot sector.

5. It does not have GUI or even a mouse support.

Booting with GRUB, GRUB 2 and UEFI | Yogesh Babar 16

6. It struggles to initialize USB devices.

7. It has CPU and memory level limitations.

But UEFI is really smart and nicely designed. It has tremendous features like:

1. It is smart. It understands the operating system and boot loaders.

2. It is fast and robust. It handles USB devices smoothly.

3. It has maintenance tools.

4. A partition limit for UEFI is 8.2 zeta bytes, which is really huge.

5. It has very nice GUI implementation along with mouse support.

6. It can use the full CPU and all attached RAM.

7. It treats the bootloader as a simple application.

8. There are standards from the UEFI forum (uefi.org) that every operating system

vendor has to follow.

9. The 'Secure Boot’ feature can secure you from bootable viruses or, in other words, it

can secure boot loaders from viruses.

10.It does not jump on the boot sector. Rather it jumps on a ESP partition which has

much much bigger space than 512 bytes which BIOS used to use at the time of boot.

11. It provides a shell.

So as we have seen earlier, on a UEFI system GRUB 2 gets installed inside the

/etc/efi/EFI directory. In the /etc/efi/EFI directory, the operating system creates its own

sub-directory and there it will install the GRUB 2 bootloader. Red Hat installs its bootloader in

/boot/efi/EFI/redhat/. Here's what the contents of that directory looks like:

ls /boot/efi/EFI/redhat

BOOT.CSV gcdx64.efi grubx64.efi shim.efi

fonts grub.cfg MokManager.efi shim-redhat.efi

Notice the files that end with the .efi extension. These files are binaries/executables

that are executed by UEFI firmware:

grubx64.efi:

This is the actual GRUB 2 file. UEFI firmware executes this file. The grubx64.efi file

reads the grub.cfg file. The contents of the grub.cfg file determines the options displayed

on the boot menu that let the user choose the appropriate kernel or operating system.

shim-redhat.efi and shim.efi:

This is a separate boot loader. You may wonder how you can have a boot loader

inside a boot loader. Let me explain. UEFI has a secure boot feature. Every vendor has to

Booting with GRUB, GRUB 2 and UEFI | Yogesh Babar 17

lock their bootloaders with their private key and need to ship public key within the UEFI

firmware. Whenever the UEFI-based system starts booting, it will check the environment

variables and will go inside the ESP and run the respective boot loader's particular .efi file.

But before running that file, it gets the public key of that bootloader. If the key matches, it will

allow the bootloader to run. If the key does not match, the bootloader is considered to be

malicious code and execution stops.

This sounds like a good approach, but the glitch is that the Microsoft bootloader key

will not match Red Hat’s grubx64.efi file. So UEFI firmware will consider it as malicious code

and GRUB 2 will not be allowed to run. So, when it comes to Linux, there are the following

options:

1. Each Linux distribution could create its own key pair and start shipping the public key

with every hardware vendor. But as you may know, there are more than 250 Linux

distributions available. Obviously it's not possible to put every distro's key in UEFI

firmware.

2. All the Linux distributions could sign their boot loaders with only one key pair. But it

will be very hard to secure such key pairs.

3. Vendors could provide a secure boot disable feature in their UEFI firmware

implementation. But we do not have control of that.

4. For Microsoft, it's very easy to ship their key with every hardware vendor because of

its business model. But for Linux community, it's difficult to ship the key with every

vendor. So the option is to sign the GRUB 2 bootloader with Microsoft's key. The

problem with relying on Microsoft to sign the GRUB 2 bootloader is that the GRUB 2

implementation becomes dependent on Microsoft. To make this work, a Linux vendor

can build a smaller, dumb, initial bootloader which will be signed by Microsoft's key

and it will call the original GRUB 2 bootloader.

The last choice is what Red Hat has done. The initial bootloader is called a shim bootloader.

If the secure boot feature is enabled, then either shim-redhat.efi or shim.efi is called first

and that shim bootloader will then call the original GRUB 2 bootloader (grubx64.efi).

MokManager.efi:

If you want to add your own custom key in UEFI firmware then you need to execute

this binary to do that.

UEFI Shell

The UEFI shell is an amazing feature. As we discussed earlier, UEFI firmware considers the

Booting with GRUB, GRUB 2 and UEFI | Yogesh Babar 18

bootloader to be an application. In the same way, the UEFI shell is another application that is

shipped with the firmware. Now why are we discussing the UEFI shell here? Because by

understanding the UEFI shell we can understand the way GRUB 2 is called by the firmware.

Another benefit of understanding the UEFI shell is if you are facing issues with your GRUB

bootlooader at the time of boot. In that case, you can use the UEFI shell for debugging.

Here's how you can call a GRUB 2 bootloader from a UEFI shell:

1. Boot the system, go to the boot menu, and select EFI shell, as shown in Figure 6:

Figure 6: Getting to the UEFI shell

2. After the UEFI shell appears, run a map command. It will list filesystems and storage

devices available on the system, as shown in Figure 7:

Booting with GRUB, GRUB 2 and UEFI | Yogesh Babar 19

Figure 7: Run map to see storage devices from the UEFI shell

3. Choose the first filesystem, which is fs0. It's our ESP. That means if we list the

contents of ESP, you will find the EFI directory in it. Inside that directory, you will find

the directory named redhat, as shown in Figure 8:

Figure 8: View the redhat directory inside the EFI filesystem

4. The redhat directory is where GRUB 2 has been installed, as you can see by typing

ls. From there, you can run the grubx64.efi bootloader, as shown in Figure 9:

Booting with GRUB, GRUB 2 and UEFI | Yogesh Babar 20

Figure 9: List GRUB 2 files and run grubx64.efi from the UEFI shell

5. When you run grubx64.efi, it will read the grub.cfg and display the contents as a

splash screen, as shown in Figure 10:

Figure 10: Display the GRUB 2 splash screenl

Understanding UEFI default boot behavior

Inside the EFI directory, there is a directory named BOOT as well. Let's look at the contents

of that directory:

ls /boot/efi/EFI/BOOT/

BOOTX64.EFI fallback.efi

Booting with GRUB, GRUB 2 and UEFI | Yogesh Babar 21

When the system starts up, UEFI firmware checks the environment variable called as

BootOrder and tries to boot every OS/bootloader/application/*.efi from it until it runs out of

options. Figure 11 shows the output of the efibootmgr command to list the BootOrder and the

currently booted system (BootCurrent):

Figure 11: Run efibootmgr to see BootOrder and BootCurrent

If every option provided by the BootOrder variable fails to boot, then UEFI firmware

goes to its default boot behavior, in which it runs the /EFI/Boot/BOOTX64.EFI file. Now this

is a default boot behavior of UEFI. Red Hat's default boot behavior is, if everything fails, then

it runs fallback.efi from same directory. The fallback.efi file is a copy of shim.efi, with some

small changes. The job of the fallback.efi executable is to go into UEFI firmware and set the

proper values of environment variables. For example:

1. Add GRUB 2’s entry in the BootOrder variable.

BootOrder: 0005,0000,0001,0002,0003,0004

2. Make GRUB 2’s entry in the appropriate BootXXXX variable. By referring the

‘BOOT.CSV’ file which is at ‘/boot/efi/EFI/redhat/BOOT.CSV’:
cat /boot/efi/EFI/redhat/BOOT.CSV

��shim.efi,Red Hat Enterprise Linux,,This is the boot entry for Red Hat

Enterprise Linux

You will find the similar entries in 'efibootmgr -v' output which are made by

'fallback.efi' by referring the BOOT.CSV file:

Boot0005* Red Hat Enterprise Linux

HD(1,800,64000,a17c521e-8435-4859-83c0-cb923874a846)File(\EFI\redhat\shim.efi)

The fallback.efi file is not used for booting purpose. This file will try to fix the

environment variables if the system is failing to boot.

Repairing/Fixing GRUB 2

This section covers what to do if GRUB 2 is not working on your system or if GRUB 2

itself is missing.

Issue 1: GRUB 2 itself is missing.

 If GRUB 2 is missing, the first thing comes in mind is a grub-install command. This is

Booting with GRUB, GRUB 2 and UEFI | Yogesh Babar 22

what we used to do with GRUB legacy. But with GRUB 2 on a UEFI-based system, the

grub2-install command is not really a good idea. The grub2-install command will only

restore grubx64.efi. It will neither create a grub.cfg file nor fix any other *.efi file if they are

missing. For example:

ls /boot/efi/EFI/

BOOT redhat

rm -rf /boot/efi/EFI/redhat/ boot/efi/EFI/BOOT/

ls /boot/efi/EFI/

grub2-install --efi-directory=/boot/efi

Installing for x86_64-efi platform.

Installation finished. No error reported.

ls /boot/efi/EFI/

red

ls /boot/efi/EFI/red/

grubx64.efi

Above, I deleted the redhat and BOOT directories from the ESP, then used the

grub2-install command. But it does not really fix anything. If we reboot this system now it

will not be able to boot. So the conclusion is that the grub2-install command will not be

helpful on UEFI systems to fix GRUB 2. It might help on a BIOS based system though. First

let’s try to understand the grub2-install command on a BIOS based system:

1. Remove the /boot/grub2 directory and try to restore it as follows:

rm -rf /boot/grub2/

grub2-install /dev/sda

Installing for i386-pc platform.

Installation finished. No error reported.

ls /boot/grub2/

fonts grubenv i386-pc locale

grub2-mkconfig -o /boot/grub2/grub.cfg

Generating grub configuration file ...

Found linux image: /boot/vmlinuz-3.10.0.121.el7.x86_64

Found initrd image: /boot/initramfs-3.10.0.121.el7.x86_64.img

Found linux image: /boot/vmlinuz-0-rescue-a99e84d440954c708469fab5ac324a61

Found initrd image: /boot/initramfs-0-rescue-a99e84d440954c708469fab5ac324a61.img

done

reboot

Booting with GRUB, GRUB 2 and UEFI | Yogesh Babar 23

2. Above I deleted the grub2 home directory itself, which is /boot/grub2 and I tried to fix

it. The grub2-install command placed the missing root directory of grub2 but it did

create a grub.cfg which we need to create with the help of grub2-mkconfig and

after reboot grub2 came back:

3. We can also install GRUB 2 on a different disk. Below you can see that this system

has another disk attached called sdb. I want to install GRUB 2 on that new disk:

ls -l /dev/sd*

brw-rw----. 1 root disk 8, 0 Sep 28 05:39 /dev/sda

brw-rw----. 1 root disk 8, 1 Sep 28 05:39 /dev/sda1

brw-rw----. 1 root disk 8, 2 Sep 28 05:39 /dev/sda2

brw-rw----. 1 root disk 8, 16 Sep 28 05:39 /dev/sdb

brw-rw----. 1 root disk 8, 17 Sep 28 05:39 /dev/sdb1

mount /dev/sdb1 /mnt/

mkdir /mnt/boot

grub2-install --boot-directory=/mnt/boot /dev/sdb

Installing for i386-pc platform.

Installation finished. No error reported.

ls /mnt/boot/

grub2

ls /mnt/boot/grub2

fonts brubenv i386-pc locale

dd if=/dev/sdb of=first.sector bs=512 count=1

1+0 records in

1+0 records outstanding512 bytes (512 B) copied, 0.00184271 s, 2.8 MB/s

hexdump first.sector | less

Booting with GRUB, GRUB 2 and UEFI | Yogesh Babar 24

So I needed to just use the --boot-directory’ option. Basically, the grub2-install

command on BIOS-based system fixes all the stages which we have seen earlier:

stage1 From the first 512 bytes

stage1.5 From the first 512 bytes

stage2 From grub2’s root directory which is

 /boot/grub2. If you use --boot-directory, the directory

you identify is used as the path to GRUB 2's root

Just to cross verify, If you open the first 512 bytes with the help of dd and hexdump

commands, you will find it added the necessary data (stage1 and stage1.5) in first sector of

the second hard drive (/dev/sdb). See Figure 11 for an example of the hexdump output:

Figure 11: Run hexdump to view boot sector contents

Booting with GRUB, GRUB 2 and UEFI | Yogesh Babar 25

This is all about fixing GRUB 2 with the grub2-install command on a BIOS based

system. But as we have seen earlier the same grub2-install command is not really helpful

on a UEFI-based system. What could be done here, is that you can take another identical

system and copy the /boot/efi/ contents to your system by booting in rescue mode or you

can install the binaries with the help of yum command. For example:

yum install grub2-efi shim

The grub2-efi package provides the following files:

fonts

gcdx64.efi

grubx64.efi

The shim package installs the below-mentioned binaries:

BOOTX64.efi

fallback.efi

MockManager.efi

shim.efi

shim-redhat.efi

Here's how to see those files:
ls /boot/efi/EFI/

BOOT redhat

ls /boot/efi/EFI/BOOT/

BOOTX64.EFI fallback.efi

ls /boot/efi/EFI/redhat/

BOOT.CSV MokManager.efi shim.efi shim-redhat.efi

You may have noticed there is no grub.cfg file and without grub.cfg, GRUB 2 will

not be able to boot without manual intervention. So we need to recreate it with the help of the

grub2-mkconfig command:

grub2-mkconfig -o /boot/efi/EFI/redhat/grub.cfg

Generating grub configuration file ...

Found linux image: /boot/vmlinuz-3.10.0.121.el7.x86_64

Found initrd image: /boot/initramfs-3.10.0.121.el7.x86_64.img

Found linux image: /boot/vmlinuz-0-rescue-7099d5868c48473c993b85d60bafd021

Found initrd image: /boot/initramfs-0-rescue-7099d5868c48473c993b85d60bafd021.img

done

ls /boot/efi/EFI/redhat

BOOT.CSV gcdx64.efi grubenv MokManager.efi shim-redhat.efi

fonts grub.cfg grubx64.efi shim.efi

Booting with GRUB, GRUB 2 and UEFI | Yogesh Babar 26

Now if we reboot system it should boot, as shown here:

Issue 2: grub2.cfg file does not contain all the entries.

Whenever the grub2-mkconfig command runs, it goes to the /etc/grub.d directory and it

runs all the scripts that are available. Now if the scripts gets corrupted or misplaced or are

not at their default locations, then obviously the resultant grub.cfg file will not have all the

entries into it. In that case, we need to reinstall the grub2-tools package, which will copy the

correct script files to the /etc/grub.d directory:

rm -rf /etc/grub.d/*

ls /etc/grub.d/

yum reinstall grub2-tools

ls /etc/grub.d/

00_header 10_linux 20_ppc_terminfo 40_custom README

01_users 20_linux_xen 30_os-prober 41_custom

The grub2-tools package is an important package. Besides providing the above

discussed scripts, the package also provides all the commands related to GRUB 2, including:

grub2-bios-setup grub2-mkfont grub2-reboot

grub2-editenv grub2-mkimage grub2-render-label

grub2-file grub2-mklayout grub2-rpm-sort

grub2-fstest grub2-mknetdir grub2-script-check

grub2-glue-efi grub2-mkpasswd-pbkdf2 grub2-set-default

grub2-install grub2-mkrelpath grub2-setpassword

grub2-kbdcomp grub2-mkrescue grub2-sparc64-setup

grub2-macbless grub2-mkstandalone grub2-syslinux2cfg

grub2-menulst2cfg grub2-ofpathname

grub2-mkconfig grub2-probe

Tweaking GRUB 2

As we have seen, if one has multiple operating systems installed on a computer and runs

the grub2-mkconfig command, GRUB 2 executes the scripts that are available from the

Booting with GRUB, GRUB 2 and UEFI | Yogesh Babar 27

/etc/grub.d directory. Scripts including 10_linux will find installed kernels (meaning

Linux-based operating systems), 30_os-prober will find non-Linux operating systems, such

as Windows and it will add their entries into the grub.cfg file. This does not mean that the

scripts will find every operating system from hard drive. They will try hard to find each

operating system, but there is no guarantee. In case the scripts do not find a particular

operating system, for example Oracle Solaris in this case, then you need to add its entry in

either the 40_custom or 41_custom file as shown below:

1. Boot into the UEFI shell.

2. Go to fs0: -> EFI -> Oracle -> grubx64.efi and make sure Oracle Solaris is booting.

3. Reboot and select RHEL, Centos, or Fedora Linux. (I am considering RHEL in this

case).

4. Open the /etc/grub.d/40_custom file for editing (using vi in this example) then add

an entry for the operating system you want to boot (highlighted in this example):

vi /etc/grub.d/40_custom

#!/bin/sh

exec tail -n +3 $0

This file provides an easy way to add custom menu entries. Simply type

menu entries you want to add after this comment. Be careful not to change

the 'exec tail' line above.

menuentry "Solaris" {

set root=(hd0,gpt2)

chainloader /efi/oracle/grubx64.efi

}

Here is a description of the entry for Solaris:

menuentry “solaris” {

In the GRUB Legacy configuration file, it uses the word ‘Title’ for displayting an operating

system name. GRUB 2 uses the word ‘menuentry’ instead. After the menu name, the

operating system name has to be passed in quotes. After that an open curly bracket is

needed. Note that the open curly bracket *has to be* on the same menuentry line otherwise

it will result in an error.

set root=(hd0,gpt2)

This identifies the location of the disk partition that contains the bootable operating system

(hd0) and the type of file system (gpt2).

Booting with GRUB, GRUB 2 and UEFI | Yogesh Babar 28

chainloader /efi/oracle/grubx64.efi

To boot any operating system we need to pass the location of the kernel and the file

containing its drivers (usually the initial RAM disk) to the bootloader. In this case we do not

know the Solaris filenames, but its bootloader knows the files. So the trick is let GRUB 2 call

the Solaris boot loader (GRUB again). Once GRUB 2 runs the Solaris executable, it knows

what to do next.

In GRUB Legacy, we used to call chainloader as chainloader +1. It used to go to the

VBR (virtual boot record) of a particular partition to run that particular operating system’s

bootloader. In UEFI it's even easier. We just need to reach to the bootloader’s .efi file in ESP.

5. After the new entry has been added, rebuild the grub.cfg file as follows:

grub2-mkconfig -o /boot/efi/EFI/redhat/grub.cfg

Generating gurb configuration file...

Found linux image: /boot/vmlinuz-3.10.0-121.el7.x86_64

Found initrd image: /boot/initramfs-3.10.0.121.el7.x86_64.img

Found linux image: /boot/vmlinuz-0-rescue-7099d5868c48473c993b85d60bafd021

Found initrd image: /boot/initramfs-0-rescue-7099d5868c48473c993b85d60bafd021.img

7. After reboot, we can see ‘solaris’ entry has been added:

 When we select that entry it calls/chainloads the Solaris bootloader, which is also a

GRUB boot loader:

Booting with GRUB, GRUB 2 and UEFI | Yogesh Babar 29

Passing parameters to user space and the init process

The topic title is somewhat confusing. We have seen so far that GRUB passes parameters to

the kernel and that the moment the kernel takes control, GRUB goes away. So, in other

words, when user space processes start, GRUB is not even available.

If GRUB has exited, how will it pass parameters to user space. Let me clear the

confusion. Suppose you want to boot in single user mode. With the latest Linux distributions,

such as RHEL 7. The ideal way is to reboot the system into single user mode, emergency

mode or rescue mode with the help of systemd. For example. run either of the two following

commands:

systemctl rescue

systemctl emergency

If you want to boot into single user mode at the time of the boot itself, with GRUB

Legacy, you would pass 1 or s to the kernel stanza from GRUB interface. This is irrespective

of GRUB 1 or GRUB 2. In GRUB, this 1 or s parameter is not a kernel parameter so the

kernel does not understand it. However, the kernel saves it and passes it to init/systemd (or

other initialization process) when it forks that process. The init/systemd process is a first user

space process started. The 1 or s tells init/systemd to go into single user mode. In case of a

GRUB 2 and the latest linux systems, single user mode can be considered as rescue mode

or emergency mode. Here is an example of going into single user mode with GRUB 2:

1. Interrupt GRUB 2 when the splash screen appears:

2. Press e (stands for edit), search for the kernel stanza (vmlinuz) and attach 1 at the

end of it:

Booting with GRUB, GRUB 2 and UEFI | Yogesh Babar 30

3. Press Ctrl + X to execute. It will drop into rescue or a single user mode:

Booting with GRUB, GRUB 2 and UEFI | Yogesh Babar 31

	INTRODUCTION
	Why GRUB 2?
	On BIOS-based systems
	On UEFI based systems
	UEFI firmware booting
	UEFI firmware booting structure
	UEFI firmware booting sequence
	Manual booting with GRUB
	GRUB 2 on BIOS
	GRUB 2 on UEFI:

