
UEFI Secure Boot in Red Hat Enterprise Linux 7
Author Name: Yogesh Babar
Editor: Chris Negus
08/28/2014

The UEFI Secure Boot specification was created to secure the boot process by protecting attack points from

intrusion and preventing malicious component replacement. Red Hat Enterprise Linux 7 offers UEFI Secure

Boot support by including a kernel and all associated drivers that are signed by a UEFI CA certificate.

The Unified Extensible Firmware Interface Forum (www.uefi.org) developed the UEFI Secure Boot

specification with the support of many leading technology companies. Consumers who boot UEFI-enabled

systems can feel secure that the firmware, drivers, and operating system components that are used to boot

their computers have been certified to belong to reputable players in the computing industry and have not

been tampered with.

It is important to note that secure boot was not created as a Microsoft Windows 8 feature. However,

Microsoft has chosen to implement UEFI secure boot for their Windows 8 OS and requires all PCs that want

to have the Windows 8-certified logo to ship with the secure boot feature enabled. This has, of course,

become a bit of a pain for people who want to dual-boot, either with Linux or any other OS.

Although some have complained that Secure Boot can “lock out” other operating systems, the stated

purpose of UEFI is to prevent low-level malware from getting between the hardware and operating system.

WHAT IS SECURE BOOT?

Secure Boot is defined in Chapter 28 of the UEFI specification (http://www.uefi.org/specifications). It’s a

pretty clever mechanism. But what it does can be described very simply. It says the firmware can contain a

set of signatures and refuse to run EFI executables that are not signed with one of those signatures.

We at Red Hat do the same with our RPM packages: we sign them with our private key and put our public

key on website where everyone can access it or in our RPM database on the local system. That way,

whenever some one tries to install any RPM package its signature can be checked with the public key.

Secure boot works the same way.

Microsoft's role in secure boot

Just as Red Hat has its hardware certification program, Microsoft has its Windows Hardware Certification

Requirements. Microsoft's program says that it's compulsory to have Windows 8 with secure boot enabled.

That means if a hardware vendor wants to certify their PC hardware with Windows 8, then its UEFI must

have secure boot enabled. If, on the other hand, a system is not Microsoft certified, then it can boot

Windows 8 by disabling the secure boot feature. Computers complying with the Windows Hardware

Certification requirements must:

• Ship with Secure Boot turned on (except for servers).

• Have Microsoft’s key in the list of keys they trust.

• Disable BIOS compatibility mode when Secure Boot is enabled.

• Support signature blacklisting.

UEFI Secure Boot in Red Hat Enterprise Linux 7 | Yogesh Babar 1

Any x86 computers complying with the requirements must additionally:

• Allow a physically present person to disable Secure Boot

• Allow a physically present person to enable setup mode and be able to modify the list of keys the

firmware trusts.

The Microsoft certification requirements, for x86 machines, explicitly require implementers to give a

physically present user complete control over Secure Boot – turn it off, or completely control the list of keys it

trusts. Another important note here is that while the certification requirements state that the out-of-the-box

list of trusted keys must include Microsoft’s key, they don’t say, for example, that it must not include any

other keys. The requirements explicitly and intentionally allow for the system to ship with any number of

other trusted keys, too.

Using signed components

Secure Boot is a technology where the system firmware checks that the system boot loader is signed with a

cryptographic key authorized by a database contained in the UEFI firmware. With adequate signature

verification in the next-stage boot loader(s), kernel, and, potentially, user space, it is possible to prevent the

execution of unsigned code.

UEFI specification specifies the following for secure boot:

• A programming interface for cryptographically protected UEFI variables in non-volatile storage.

• How the trusted X.509 root certificates are stored in UEFI variables,

• Validation of UEFI applications (boot loaders and drivers) using AuthentiCode signatures

embedded in these applications

• Procedures to revoke known-bad certificates and application hashes.

RHEL 7 AND SECURE BOOT

Red Hat Enterprise Linux 7 includes support for the UEFI Secure Boot feature. This means that RHEL 7 can

be installed and run on systems where UEFI secure boot is enabled. (RHEL 7.0, however, does not require

the use of Secure Boot on UEFI systems.) When Secure Boot is enabled, the EFI OS boot loaders, the

RHEL kernel, and kernel modules must be signed with a private key and authenticated with the

corresponding public key.

Most of the PC hardware you can buy these days is Windows 8 certified and if the hardware comes with

pre-installed Windows 8, then secure boot will be enabled by default. Because this is the case, we as Red

Hat had the following options:

• Producing a Red Hat key and encourage hardware vendors to incorporate it. But:

➢ Its not possible to engage each and every hardware vendor.

➢ Creating a Red Hat specific key will create a problem for other Linux distributions.

• Producing a overall Linux key which will be applicable to all the distributions. This is very

expensive as we need to maintain the key along with its security (as we need to share it securely with

every distro).

UEFI Secure Boot in Red Hat Enterprise Linux 7 | Yogesh Babar 2

• Use the Microsoft’s signing service and sign our first stage boot loader with Microsoft’s key.

This looks like a more practical way and its less expensive as well, as the key Microsoft uses is

shipped on all known hardware. This should result in RHEL 7 being able to boot on this hardware

without issue. There are of course risks having to rely on a third party for this service. Red Hat is

committed to closely watching activity in this space and will respond to new information appropriately.

So RHEL 7 uses the Microsoft's signing service and signs the first stage boot loader with Microsoft’s key.

This raises a few questions:

• Can I use RHEL 7 by disabling the secure boot?

• How can I enable secure boot?

• Can I install RHEL 7 with secure boot and then can I disable it?

• What is a first stage boot loader? Is it GRUB 2 or something else?

• How do I validate that kernel, initramfs or kernel modules are not compromised?

Let's review these one by one.

Can I use RHEL 7 by disabling the secure boot?

Yes RHEL 7 does not require secure boot to be enabled.

How can I enable secure boot?

How you enable secure boot varies from vendor to vendor. The following example illustrates how to enable

secure boot on a Lenovo T440p:

1. From the BIOS screen select Security tab -> Secure Boot:

2. From Secure Boot, select the Enabled option.

UEFI Secure Boot in Red Hat Enterprise Linux 7 | Yogesh Babar 3

www.redhat.comCopyright © 2014 Red Hat, Inc. “Red Hat,” Red Hat Linux, the Red Hat “Shadowman” logo, and the products
listed are trademarks of Red Hat, Inc., registered in the U.S. and other countries. Linux® is the registered
trademark of Linus Torvalds in the U.S. and other countries.

3. Save and Exit (press F10).

Can I install RHEL 7 with secure boot and then can I disable it?

Yes, you can disable it. The system will boot in insecure mode.

What is first stage boot loader? Is it GRUB 2 or something else?

First stage loader is not GRUB 2. It is called as Shim. Shim will be signed with Microsoft's signing service

(Microsoft's key). The hardware will have Microsoft's key, so the shim will be allowed to run by

UEFI-Secure-Boot.

Why shim? Why not sign a GRUB itself with Microsoft's key?

Signing through the Microsoft signing service is a manual process, and that means it is time consuming. If

we use GRUB 2 instead of shim then we need to sign the GRUB all the time when we do small changes in

it. This will unnecessarily delay the boot loader updates. So Red Hat has chosen a multilayer approach.

Shim is used as a very simple bootloader, doing nothing other than loading a real boot loader (GRUB 2).

How do I validate that GRUB, kernel, initramfs and kernel modules aren't compromised?

The secure boot mechanism’s main purpose is to stop running untrusted programs during boot time. So far,

we understand that Shim will be signed with Microsoft's signing service, the key which is in firmware (UEFI)

will validate the Shim bootloader and Shim will call the GRUB bootloader. But how can you make sure that

GRUB is not compromised? Here is the trick:

The Red Hat public key is embedded inside the shim module. GRUB 2 is signed with a Red Hat Private key.

That embedded key from Shim is used to check the signature on GRUB 2. The kernel is again signed with

the Red Hat Private key. GRUB 2 then uses the same key from Shim to check the signature on the kernel.

Kernel modules are signed with a kernel-specific private key. The kernel’s public key is embedded inside the

kernel itself. When the kernel attempts to load modules, it checks their signature against the public key

embedded in the kernel image. That’s confusing, so lets make it easier:

1. Microsoft's public key is available in UEFI firmware.

2. Shim is signed with Microsoft’s private key with the help of Microsoft signing services. Red Hat

does not have control over this key.

3. Shim is shipped with Red Hat’s public key.

4. GRUB 2 is signed with Red Hat’s private key.

5. The kernel is signed with Red Hat’s private key.

6. GRUB 2 does not contain any key. It uses the public key shipped with shim to validate the kernel.

7. The kernel image is shipped with its own public key, which will be used to validate the modules. A

public/private key pair is generated during the kernel build process. The public key is embedded in

the kernel image. The modules are signed with the private key and the private key is destroyed at

the end of the kernel build process. The private key is not saved. A new key is used with each

kernel build.

Secure Boot protects code in kernel space, not user space. So initramfs validation does not fall under the

Secure Boot mechanism.

UEFI Secure Boot in Red Hat Enterprise Linux 7 | Yogesh Babar 4

INSTALLING A RHEL 7 BETA WITH SECURE BOOT

Remember that not every UEFI enabled system supports secure boot. While RHEL 7 supports secure boot,

RHEL 7 Beta only supported secure boot in standard mode. The following steps show how to check for

secure boot support, then install Red Hat Enterprise Linux 7 Beta with UEFI Secure Boot enabled in

standard mode:

1. Select the appropriate mode from UEFI firmware: There are two types of modes in UEFI secure

boot. Which is available depends upon the hardware vendor.

• Standard mode: In this mode UEFI firmware does not allow you to enroll your own Key to

validate the boot loader.

In this example, we are installing RHEL 7 Beta. Its shim is not signed with Microsoft's signing

service so for secure boot it's an unauthorized program. So secure boot prevents it from running.

Earlier on this computer, Fedora was installed by disabling the secure boot. You can display

information about the keys on the system key rings using the ‘keyctl’ utility. The following is an

abbreviated example output from a Fedora system where UEFI Secure Boot is not enabled:

To install a RHEL 7 Beta system, you would have to enable a secure boot in standard mode.

Installation fails with the typical error message from UEFI secure boot:

UEFI Secure Boot in Red Hat Enterprise Linux 7 | Yogesh Babar 5

• Setup mode: With the secure boot you can clear the current Platform key and can install your

own platform key. This allows you to customize the secure boot signature databases.

2. Put the system in setup mode. Consult system documentation provided by the hardware vendor for

assistance with this step.

3. Reboot the machine from Red Hat Enterprise Linux 7 Beta installation media. This time UEFI

firmware allows us to boot with the installation disk:

The fact that the system is booting in insecure mode means it has failed to verify the boot loader

because we have not enrolled the key yet. Once we include the key in UEFI, the firmware system

will not show this Message.

4. Select Secure Boot Lockdown. Select the entry on the installation media labeled Red Hat

Enterprise Linux 7.0 Secure Boot Lockdown:

The lockdown process will add a RHEL 7 specific platform key in UEFI firmware. Now this key will be

used to validate the shim boot loader of RHEL 7.

UEFI Secure Boot in Red Hat Enterprise Linux 7 | Yogesh Babar 6

NOTE: The final release of Red Hat Enterprise Linux 7.0 does not require these steps. This process is only
required for Red Hat Enterprise Linux 7.0 Beta because the Beta release has its own specific key. The final
release uses a key signed by the standard UEFI vendor certificate authority chain.

Once the lockdown process is complete, reboot the system. Completion of the lockdown process

may vary by hardware vendor. Consult system documentation provided by the hardware vendor for

assistance with this step.

5. Verify keys. Verify in your firmware that keys are enrolled and that thee computer is in enforcing

mode. Consult system documentation provided by the hardware vendor for assistance with this step.

The system which was used for this testing does not have facility to see the enrolled keys.

6. Reboot. Reboot from Red Hat Enterprise Linux 7 Beta installation media again.

7. Install. Perform the installation. When finished, remove the installation media and reboot the

system.

8. Check keys. The following is a abbreviated example output from a RHEL 7 beta system where

UEFI secure boot is enabled:

HOW DO YOU FLUSH EXISTING KEYS FROM UEFI FIRMWARE?

The steps depends on hardware vendor. For this demonstration, using a 'Lenovo T440p' system, select the

Security tab -> Restore Factory Keys, then choose Yes. This option is used to restore all keys and

certificates in Secure Boot databases to factory defaults. Any customized Secure Boot settings will be

erased, and the default Platform Key will be re-established along with the original signature databases

including certificate for Microsoft Windows 8.

Please note that secure boot is still enabled but there is only Microsoft's key available in firmware and the

RHEL 7 Beta key is erased. In this case, Secure boot should not allow RHEL 7 to boot and we should get:

UEFI Secure Boot in Red Hat Enterprise Linux 7 | Yogesh Babar 7

In this case, however, RHEL 7 beta still managed to boot. This is because you can see in the

screen shot below the selected mode is ‘Setup mode’ and secure boot mode is ‘custom mode’

(not enforcing mode). So secure boot allows the system to boot, but will be booted in ‘insecure

mode’.

That means that secure boot is enabled, but not enforced:

NOTE: Notice the ‘UEFI secure Boot OFF’ though Secure Boot is enabled in Startup Tab.

Remember these all tabs and their settings depend on the hardware vendor so please refer to the firmware

documentation for these steps.

After booting with RHEL-7 beta you will find the keys are flushed:

UEFI Secure Boot in Red Hat Enterprise Linux 7 | Yogesh Babar 8

 SIGNING KERNEL MODULES FOR RHEL 7 UEFI SECURE BOOT

If you wish to load your own kernel module on a system where UEFI Secure Boot is enabled, then you will

need to sign your kernel module and make sure that the corresponding public key is enrolled on that system.

There are three steps to this process:

1. Generate a private/public key pair.

2. Enroll your public key on each target system where you want to load your kernel module.

3. Build your kernel module the usual way, then sign your kernel module using the private key that you

generated.

Tools Required:

Tool Provided by Package Where Used Purpose

Openssl openssl Build system Generates a public/private key pair.

Sign-file kernel-devel Build system Perl script used to sign kernel modules.

Perl perl Build system Perl interpreter used to run the signing script.

Mokutil mokutil Target system Tool used to manually enroll a public key.

Keyctl keyutils Target system Tools used to display public keys in system key ring.

The build system, where you build and sign your kernel module, does not need to have UEFI Secure Boot

enabled and does not even need to be a UEFI-based system.

NOTE: At the time of boot kernel loads the keys from UEFI firmware to system key ring which we can see by
using the keyctl tool. For example:
 # keyctl list %:.system_keyring

In RHEL 7, when a kernel module is loaded the module's signature is checked using the public x.509 keys

on the kernel's system key ring, excluding those keys that are on the kernel's system black list key ring.

Sources of System key Ring:

Source of x.509 keys User Ability to

add Keys

UEFI secure

Boot state

Keys loaded during Boot

Embedded in kernel No -NA- .system_keyring

UEFI Secure Boot “db” Limited Enabled .system_keyring

UEFI Secure Boot “dbx” Limited Enabled .system_blacklist_keyring

Embedded in shim.efi boot loader No Enabled .system_keyring

Machine Owner Key (MOK) List Yes Enabled .system_keyring

Note that if the system is not UEFI-based or if UEFI Secure Boot is not enabled, then only the keys that are

embedded in the kernel are loaded onto the system key ring and you have no ability to augment that set of

keys without rebuilding the kernel. The system black list key ring is a list of X.509 keys which have been

revoked. If your module is signed by a key on the black list then it will fail authentication even if your public

key is in the system key ring.

You can display information about the keys on the system key rings using the keyctl utility. The following is

abbreviated example output from a RHEL 7 system where UEFI Secure Boot is not enabled.

UEFI Secure Boot in Red Hat Enterprise Linux 7 | Yogesh Babar 9

keyctl list %:.system_keyring
3 keys in keyring:
...asymmetric: Red Hat Enterprise Linux Driver Update Program (key 3): bf57f3e87...
...asymmetric: Red Hat Enterprise Linux kernel signing key: 4249689eefc77e95880b...
...asymmetric: Red Hat Enterprise Linux kpatch signing key: 4d38fd864ebe18c5f0b7...

The following is abbreviated example output from a RHEL 7 system where UEFI Secure Boot is enabled:

keyctl list %:.system_keyring
6 keys in keyring:
...asymmetric: Red Hat Enterprise Linux Driver Update Program (key 3): bf57f3e87...
...asymmetric: Red Hat Secure Boot (CA key 1): 4016841644ce3a810408050766e8f8a29...
...asymmetric: Microsoft Corporation UEFI CA 2011: 13adbf4309bd82709c8cd54f316ed...
...asymmetric: Microsoft Windows Production PCA 2011: a92902398e16c49778cd90f99e...
...asymmetric: Red Hat Enterprise Linux kernel signing key: 4249689eefc77e95880b...
...asymmetric: Red Hat Enterprise Linux kpatch signing key: 4d38fd864ebe18c5f0b7...

The above output shows the addition of two keys from the UEFI Secure Boot “db” keys plus the “Red Hat

Secure Boot (CA key 1)” which is embedded in the shim.efi boot loader. You can also look for the kernel

console messages that identify the keys with an UEFI Secure Boot related source (i.e. UEFI Secure Boot

db, embedded shim, and MOK list).

dmesg | grep 'EFI: Loaded cert'
[5.160660] EFI: Loaded cert 'Microsoft Windows Production PCA 2011: a9290239...
[5.160674] EFI: Loaded cert 'Microsoft Corporation UEFI CA 2011: 13adbf4309b...
[5.165794] EFI: Loaded cert 'Red Hat Secure Boot (CA key 1): 4016841644ce3a8...

MANUALLY ADDING A PUBLIC KEY TO THE MOK (THE MACHINE OWNER KEY)

The Machine Owner Key (MOK) facility is a feature that is supported by RHEL 7 and can be used to

augment the UEFI Secure Boot database. When RHEL 7 boots on a UEFI-enabled system with Secure Boot

enabled, the keys on the MOK list are also added to the system key ring in addition to the database keys.

Here are the steps that can be used to add your public key to the MOK list:

1. Create a Public/Private key pair and copy your public key to the /boot/efi/EFI/redhat directory. Then enroll

that key to the UEFI firmware with the help of the mokutil utility:

2. Reboot the system.

UEFI Secure Boot in Red Hat Enterprise Linux 7 | Yogesh Babar 10

3. The pending MOK key enrollment request will be noticed by shim.efi and will launch MokManager.efi to let

you complete the enrollment from the UEFI console. You need to enter the password you associated with

this request earlier and confirm the enrollment. Your public key is added to the MOK list, which is persistent.

The following screen shots illustrate that process:

UEFI Secure Boot in Red Hat Enterprise Linux 7 | Yogesh Babar 11

	What is Secure Boot?
	Microsoft's role in secure boot
	Using signed components

	RHEL 7 and Secure Boot
	Can I use RHEL 7 by disabling the secure boot?
	How can I enable secure boot?
	Can I install RHEL 7 with secure boot and then can I disable it?
	What is first stage boot loader? Is it GRUB 2 or something else?
	Why shim? Why not sign a GRUB itself with Microsoft's key?
	How do I validate that GRUB, kernel, initramfs and kernel modules aren't compromised?

	Installing a RHEL 7 Beta with Secure Boot
	How Do You flush existing keys from UEFI firmware?
	Signing Kernel Modules For RHEL 7 UEFI Secure Boot
	Manually adding a Public Key to the MOK (The machine owner key)

