
RED HAT® ENTERPRISE LINUX® 7:
OPTIMIZING MEMORY SYSTEM
PERFORMANCE

Red Hat Performance Engineering

Version 1.0

November 2014

 1

100 East Davie Street
Raleigh NC 27601USA
Phone: +1 919 754 4950
Phone: 888 733 4281
Fax: +1 919 800-3804

Linux is a registered trademark of Linus Torvalds. Red Hat, Red Hat Enterprise Linux and the Red Hat
"Shadowman" logo are registered trademarks of Red Hat, Inc. in the United States and other countries.

All other trademarks referenced herein are the property of their respective owners.

© 2014 by Red Hat, Inc. This material may be distributed only subject to the terms and conditions set
forth in the Open Publication License, V1.0 or later (the latest version is presently available at
http://www.opencontent.org/openpub/).

The information contained herein is subject to change without notice. Red Hat, Inc. shall not be liable
for technical or editorial errors or omissions contained herein.

Distribution of modified versions of this document is prohibited without the explicit permission of Red
Hat Inc.

Distribution of this work or derivative of this work in any standard (paper) book form for commercial
purposes is prohibited unless prior permission is obtained from Red Hat Inc.

The GPG fingerprint of the security@redhat.com key is:
CA 20 86 86 2B D6 9D FC 65 F6 EC C4 21 91 80 CD DB 42 A6 0E

Send feedback to refarch-feedback@redhat.com

www.redhat.co m 2 refarch-feedback@redhat.com

http://www.redhat.com/
http://www.redhat.com/
mailto:refarch-feedback@redhat.com?subject=Feedback%20on
mailto:security@redhat.com
http://www.opencontent.org/openpub/

TABLE OF CONTENTS

1. Introduction.. 4

1.1 What is NUMA?.. 5
1.2 Why is NUMA System Memory Management Necessary?..5

2. NUMA System Management Tools...7

2.1 Manual NUMA Binding with taskset and numactl...12
2.2 Automatic NUMA Binding with numad (Red Hat Enterprise Linux 6 and 7)...14
2.3 Kernel Automatic NUMA Balancing (Red Hat Enterprise Linux 7)...17
2.4 Performance Comparison of numactl, numad, Automatic NUMA Balancing, no-NUMA..19

3. General NUMA Guidance... 20

4. Conclusion... 21

4.1 Next Steps.. 21

www.redhat.co m 3 refarch-feedback@redhat.com

http://www.redhat.com/
http://www.redhat.com/

1. Introduction
The memory subsystem is one of the most critical components of modern server systems. It stores and
supplies critical run-time data and instructions to applications and to the operating system. With today's
faster processors, distributing physical system memory across multiple CPU sockets greatly increases
memory bandwidth by enabling multiple CPUs to simultaneously access memory without contention,
improving overall system performance.

However, from the perspective of any given CPU, only a fraction of system memory will be local to that
CPU, while the rest of system memory will be remote to the given CPU and must be accessed over
some kind of interconnect. Since modern systems have local memory directly connected to each
processor while making memory attached to other CPUs accessible—but at reduced performance—the
result is that memory access times are “non-uniform.” Practically all modern multi-socket server
systems are non-uniform memory access (NUMA) machines. Figure 1 shows a typical four-socket
NUMA system design.

www.redhat.co m 4 refarch-feedback@redhat.com

Figure 1: Typical NUMA architecture

Processor 2

M
e
m
o
r
y

core

core

core

core

core core

core core

Processor 0
M
e
m
o
r
y

core

core

core

core

core core

core core

Processor 1
M
e
m
o
r
y

core

core

core

core

core core

core core

Processor 3

M
e
m
o
r
y

core

core

core

core

core core

core core

NUMA Node 0

NUMA Node 2 NUMA Node 3

NUMA Node 1

Interconnect Interconnect

InterconnectInterconnect

http://www.redhat.com/
http://www.redhat.com/

Ever-growing demand for memory bandwidth resulting from an increasing number of fast processors,
cores, and associated caches found in a typical server system makes effective memory management
an important system task. Using local memory is essential for peak performance, and applications will
suffer a higher memory latency when accessing data from remote NUMA nodes. System administrators
and application users must somehow manage the NUMA characteristics of their servers for optimal
application performance.

The good news for users of Red Hat® Enterprise Linux® is that Red Hat has been increasingly
automating NUMA memory management optimization tasks with each new release of Red Hat
Enterprise Linux. Now, with Red Hat Enterprise Linux 7, most users will get good NUMA system
memory management for most applications out of the box. System administrators and application users
no longer need to do anything special to achieve good, efficient NUMA system memory management.
Read on for background information and details about various NUMA memory management tools,
techniques and features available in Red Hat Enterprise Linux.

1.1 What is NUMA?

Practically all modern multi-socket server systems have fractions of system memory distributed among
the various CPU sockets. The memory which is local to each socket can be accessed efficiently from
the cores in the local CPU. Each CPU socket and its local memory are collectively known as a NUMA
node. (More precisely: a NUMA node is a collection of memory and CPU cores which all access the
memory with the same latency. Note that some modern systems actually have multiple NUMA nodes on
a single CPU socket.)

The NUMA nodes are connected together by one or more buses or interconnects which allow CPUs to
access remote memory but at a slower rate. In addition to the higher latency cost of accessing memory
one or more hops away from the local CPU, interconnect buses can become bogged down as
contended resources if there is significant cross-node memory traffic. (While this paper discusses
mostly CPU and memory affinity, it is important to note that I/O devices and associated interrupts can
also be local or remote. For applications with a heavy I/O load, remote devices can also significantly
bog down node interconnects.)

1.2 Why is NUMA System Memory Management
Necessary?

Memory is allocated by default on NUMA nodes containing the cores where application threads are
currently executing. Prior to Red Hat Enterprise Linux 7 however, operating system schedulers typically

www.redhat.co m 5 refarch-feedback@redhat.com

http://www.redhat.com/
http://www.redhat.com/

optimized for best overall CPU utilization –rather than for CPU and memory affinity–so subsequent
load balancing management might cause execution threads to migrate away from the NUMA nodes
where memory was initially allocated. This means that application threads would frequently be
scheduled across various CPUs on a NUMA system without consideration for the negative impact on
latency associated with accessing data in remote memory. Also, processes with multiple threads might
start up with threads running on multiple NUMA nodes, resulting in allocated process memory
distributed across the system as shown in the numastat output in Figure 2.

www.redhat.co m 6 refarch-feedback@redhat.com

numastat -cm qemu

Per-node process memory usage (in MBs)
PID Node 0 Node 1 Node 2 Node 3 Total
--------------- ------ ------ ------ ------ ------
8249 (qemu-kvm) 12083 13884 12250 6513 44730
8267 (qemu-kvm) 1870 23764 13977 5120 44732
8285 (qemu-kvm) 15751 1486 1841 25649 44726
8303 (qemu-kvm) 11552 10444 18815 3916 44727
--------------- ------ ------ ------ ------ ------
Total 41256 49578 46883 41198 178915

Per-node system memory usage (in MBs):
 Node 0 Node 1 Node 2 Node 3 Total
 ------ ------ ------ ------ ------
MemTotal 65416 65536 65536 65536 262024
MemFree 22318 14315 16766 22064 75462
MemUsed 43098 51221 48770 43472 186561
Active 41211 49470 46813 41174 178668
Inactive 46 1 3 12 62
Active(anon) 41209 49469 46810 41164 178652
Inactive(anon) 8 0 0 3 13
Active(file) 2 1 3 10 16
Inactive(file) 37 1 3 8 49
Unevictable 0 0 0 0 0
Mlocked 0 0 0 0 0
Dirty 0 0 0 0 0
Writeback 0 0 0 0 0
FilePages 47 2 6 22 78
Mapped 10 1 3 17 31
AnonPages 41253 49585 46886 41236 178960
Shmem 8 0 0 3 13
KernelStack 3 1 1 1 5
PageTables 82 96 93 86 356
NFS_Unstable 0 0 0 0 0
Bounce 0 0 0 0 0
WritebackTmp 0 0 0 0 0
Slab 32 32 32 55 151
SReclaimable 6 11 8 12 37
SUnreclaim 26 21 24 43 114
AnonHugePages 41238 49570 46842 41180 178830
HugePages_Total 0 0 0 0 0
HugePages_Free 0 0 0 0 0
HugePages_Surp 0 0 0 0 0

Figure 2: "numastat -cm qemu" output showing dispersed
memory

http://www.redhat.com/
http://www.redhat.com/

numastat is a NUMA system memory monitoring tool greatly enhanced by Red Hat with new features

released in Red Hat Enterprise Linux 6.4. numastat shows per-NUMA-node memory statistics for

processes and the operating system. By default, numastat displays per-node kernel memory allocator

hit and miss statistics. Any command-line arguments to numastat will invoke this recently enhanced

behavior. In Figure 2, numastat is showing per-NUMA-node memory quantities for processes which

match the specified command-line search target pattern "qemu", as well as per-node system memory

quantities. numastat makes it clear to see that each of these virtual guests has some memory

distributed across all the NUMA nodes. If any given thread needs to access arbitrary process memory,
some of the memory accesses will necessarily be remote and the guests will suffer from poor
performance due to high memory-access latency. Information provided by numastat has been

traditionally used by performance experts to manually place and bind application processes to the most
suitable system resources based on a specific server topology.

2. NUMA System Management Tools
There are many other useful system tools and
utilities that can be helpful in monitoring and
managing a NUMA server environment. One
of the most basic but very frequently used
tools is lscpu. Figure 3 shows lscpu output

from a 4 NUMA node, 40 core system (with
hyper-threading disabled). lscpu gives a

quick view of the CPU topology: how many
sockets, nodes, cores and threads are present
in the system. lscpu also provides

information about the caches and their sizes,
as well as displaying which CPUs are part of
which NUMA nodes.

www.redhat.co m 7 refarch-feedback@redhat.com

lscpu
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
CPU(s): 40
On-line CPU(s) list: 0-39
Thread(s) per core: 1
Core(s) per socket: 10
Socket(s): 4
NUMA node(s): 4
Vendor ID: GenuineIntel
CPU family: 6
Model: 47
Model name: Intel(R) Xeon(R) CPU E7- 4870
@ 2.40GHz
Stepping: 2
CPU MHz: 2393.986
BogoMIPS: 4787.86
Virtualization: VT-x
L1d cache: 32K
L1i cache: 32K
L2 cache: 256K
L3 cache: 30720K
NUMA node0 CPU(s): 0,4,8,12,16,20,24,28,32,36
NUMA node1 CPU(s): 2,6,10,14,18,22,26,30,34,38
NUMA node2 CPU(s): 1,5,9,13,17,21,25,29,33,37
NUMA node3 CPU(s): 3,7,11,15,19,23,27,31,35,39

Figure 3: lscpu output

http://www.redhat.com/
http://www.redhat.com/

Figure 4 shows the output from "numactl ­­hardware" (aka "numactl ­H") for the same system as

above. The numactl command shows which CPUs are in which NUMA nodes, but also shows the

amount of system memory installed and available
in each of the NUMA nodes. The bottom of the
"numactl ­­hardware" output is the ACPI

System Locality Information Table (SLIT) data
showing the node distances. The SLIT data
reports from the BIOS the expected relative
latencies for accessing memory from various
NUMA nodes (normalized to 1 and scaled by a
factor of 10x). If the row header on the left edge of
the table is the NUMA node where a thread is
executing, each column to the right in the same
row shows the relative cost of accessing memory
from that remote NUMA node. Note that accessing
memory from the same node where the thread is
executing has a relative cost value of 1 (as shown
by the diagonal 10 values), but accessing memory
from remote nodes on this particular system is
expected be 2.1 times slower.

www.redhat.co m 8 refarch-feedback@redhat.com

numactl --hardware
available: 4 nodes (0-3)
node 0 cpus: 0 4 8 12 16 20 24 28 32 36
node 0 size: 65415 MB
node 0 free: 22313 MB
node 1 cpus: 2 6 10 14 18 22 26 30 34 38
node 1 size: 65536 MB
node 1 free: 14312 MB
node 2 cpus: 1 5 9 13 17 21 25 29 33 37
node 2 size: 65536 MB
node 2 free: 16755 MB
node 3 cpus: 3 7 11 15 19 23 27 31 35 39
node 3 size: 65536 MB
node 3 free: 22055 MB
node distances:
node 0 1 2 3
 0: 10 21 21 21
 1: 21 10 21 21
 2: 21 21 10 21
 3: 21 21 21 10

Figure 4: "numactl --hardware" output

http://www.redhat.com/
http://www.redhat.com/

Another excellent tool for visualizing the NUMA topology of a system can be found in the hwloc and
hwloc-gui packages. Figure 5 shows the partial output of the lstopo command which draws a picture

of the system hardware including the cores and caches in each NUMA node.

top is an excellent tool for seeing what is running on a system and what kind of resources various

processes are consuming. In Red Hat Enterprise Linux 7, there are summary area interactive
commands that make it easier to see which NUMA nodes are particularly busy. Pressing '1' while
running top will show a per-CPU breakdown of utilization statistics. See Figure 6 for an example of

top per-CPU output.

www.redhat.co m 9 refarch-feedback@redhat.com

Figure 5: Partial lstopo output (CPUs)

http://www.redhat.com/
http://www.redhat.com/

www.redhat.co m 10 refarch-feedback@redhat.com

top - 14:50:23 up 23:47, 1 user, load average: 15.24, 6.99, 2.76
Tasks: 556 total, 1 running, 555 sleeping, 0 stopped, 0 zombie
%Cpu0 : 0.3 us, 0.0 sy, 0.0 ni, 99.7 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%Cpu1 : 0.0 us, 0.0 sy, 0.0 ni,100.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%Cpu2 :100.0 us, 0.0 sy, 0.0 ni, 0.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%Cpu3 :100.0 us, 0.0 sy, 0.0 ni, 0.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%Cpu4 : 0.0 us, 61.9 sy, 0.0 ni, 38.1 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%Cpu5 : 0.0 us, 0.0 sy, 0.0 ni,100.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%Cpu6 :100.0 us, 0.0 sy, 0.0 ni, 0.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%Cpu7 :100.0 us, 0.0 sy, 0.0 ni, 0.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%Cpu8 : 0.3 us, 0.0 sy, 0.0 ni, 99.7 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%Cpu9 : 0.0 us, 0.0 sy, 0.0 ni,100.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%Cpu10 :100.0 us, 0.0 sy, 0.0 ni, 0.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%Cpu11 :100.0 us, 0.0 sy, 0.0 ni, 0.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%Cpu12 : 0.0 us, 0.0 sy, 0.0 ni,100.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%Cpu13 : 0.0 us, 0.0 sy, 0.0 ni,100.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%Cpu14 : 0.0 us, 0.0 sy, 0.0 ni,100.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%Cpu15 :100.0 us, 0.0 sy, 0.0 ni, 0.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%Cpu16 : 0.0 us, 0.0 sy, 0.0 ni,100.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%Cpu17 : 0.0 us, 0.0 sy, 0.0 ni,100.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%Cpu18 :100.0 us, 0.0 sy, 0.0 ni, 0.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%Cpu19 :100.0 us, 0.0 sy, 0.0 ni, 0.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%Cpu20 : 0.0 us, 0.3 sy, 0.0 ni, 99.7 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%Cpu21 : 0.0 us, 0.0 sy, 0.0 ni,100.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%Cpu22 :100.0 us, 0.0 sy, 0.0 ni, 0.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%Cpu23 :100.0 us, 0.0 sy, 0.0 ni, 0.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%Cpu24 : 0.3 us, 0.0 sy, 0.0 ni, 99.7 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%Cpu25 : 0.0 us, 0.0 sy, 0.0 ni,100.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%Cpu26 :100.0 us, 0.0 sy, 0.0 ni, 0.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%Cpu27 : 0.0 us, 0.3 sy, 0.0 ni, 99.7 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%Cpu28 : 0.0 us, 0.0 sy, 0.0 ni, 99.7 id, 0.3 wa, 0.0 hi, 0.0 si, 0.0 st
%Cpu29 : 0.0 us, 0.0 sy, 0.0 ni,100.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%Cpu30 : 0.0 us, 0.0 sy, 0.0 ni,100.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%Cpu31 :100.0 us, 0.0 sy, 0.0 ni, 0.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%Cpu32 : 0.0 us, 0.0 sy, 0.0 ni,100.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%Cpu33 : 0.0 us, 0.0 sy, 0.0 ni,100.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%Cpu34 :100.0 us, 0.0 sy, 0.0 ni, 0.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%Cpu35 :100.0 us, 0.0 sy, 0.0 ni, 0.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%Cpu36 : 0.0 us, 0.0 sy, 0.0 ni,100.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%Cpu37 : 0.0 us, 0.0 sy, 0.0 ni,100.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%Cpu38 :100.0 us, 0.0 sy, 0.0 ni, 0.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%Cpu39 : 0.0 us, 0.0 sy, 0.0 ni,100.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
KiB Mem: 26384816+total, 18723772+used, 76610440 free, 28372 buffers
KiB Swap: 21268912+total, 0 used, 21268912+free. 86676 cached Mem

Figure 6: top per-cpu output <1>

http://www.redhat.com/
http://www.redhat.com/

In Red Hat Enterprise Linux 7, pressing '2' while running top will show the utilization statistics on a

per-NUMA-node basis as shown in Figure 7.

It is also possible to highlight exclusively the activity of a specified NUMA node in the summary area.
Pressing '3' while running top will invite selection of a NUMA node to highlight, and the summary area

display will look like Figure 8.

www.redhat.co m 11 refarch-feedback@redhat.com

top - 15:05:08 up 1 day, 1 min, 1 user, load average: 8.07, 3.02, 2.78
Tasks: 556 total, 2 running, 554 sleeping, 0 stopped, 0 zombie
%Node3 : 80.1 us, 0.0 sy, 0.0 ni, 19.9 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%Cpu3 :100.0 us, 0.0 sy, 0.0 ni, 0.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%Cpu7 : 0.0 us, 0.0 sy, 0.0 ni,100.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%Cpu11 :100.0 us, 0.0 sy, 0.0 ni, 0.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%Cpu15 :100.0 us, 0.0 sy, 0.0 ni, 0.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%Cpu19 :100.0 us, 0.0 sy, 0.0 ni, 0.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%Cpu23 :100.0 us, 0.0 sy, 0.0 ni, 0.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%Cpu27 :100.0 us, 0.0 sy, 0.0 ni, 0.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%Cpu31 : 0.0 us, 0.0 sy, 0.0 ni,100.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%Cpu35 :100.0 us, 0.0 sy, 0.0 ni, 0.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%Cpu39 :100.0 us, 0.0 sy, 0.0 ni, 0.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
KiB Mem: 26384816+total, 18723700+used, 76611160 free, 28556 buffers
KiB Swap: 21268912+total, 0 used, 21268912+free. 86708 cached Mem

Figure 8: top highlighted NUMA-node output <3>

top - 14:51:02 up 23:47, 1 user, load average: 15.63, 8.00, 3.26
Tasks: 556 total, 1 running, 555 sleeping, 0 stopped, 0 zombie
%Cpu(s): 40.1 us, 0.2 sy, 0.0 ni, 59.8 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%Node0 : 0.1 us, 0.1 sy, 0.0 ni, 99.9 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%Node1 : 80.1 us, 0.0 sy, 0.0 ni, 19.9 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%Node2 : 0.0 us, 0.5 sy, 0.0 ni, 99.5 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
%Node3 : 80.2 us, 0.0 sy, 0.0 ni, 19.8 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
KiB Mem: 26384816+total, 18723627+used, 76611888 free, 28404 buffers
KiB Swap: 21268912+total, 0 used, 21268912+free. 86676 cached Mem

Figure 7: top per-NUMA-node output <2>

http://www.redhat.com/
http://www.redhat.com/

2.1 Manual NUMA Binding with taskset and numactl

The taskset command can be used to get or set the CPU affinity of a process or thread so that the

specified execution threads will run only on the permitted CPUs, and the Linux scheduler will never
subsequently migrate the threads away from the permitted CPUs. When combined with the default
memory-allocation policy of allocating memory on the current node where the thread is executing,
taskset can be used to manually launch processes on specified CPUs anticipating that memory will

be allocated on the same nodes to achieve CPU and memory affinity. This would enable processes to
execute with efficient memory latencies. taskset can also be used to move execution threads to other

CPUs after they are already running, but note that memory previously allocated by that point will remain
on the NUMA nodes where it was originally allocated.

Using the numactl command to explicitly

specify both the CPUs and the memory
resources is a better way to manually bind and
manage processes on a NUMA machine
(rather than using taskset to set the CPU

affinity, and relying on the default memory
allocation policy). As shown in Figure 9, the
numactl command can be used to show the

binding information of the current process. The
numactl process in Figure 9 is unbound and

permitted to use any of the memory and CPU
resources on the system.

The numactl command can also be used to launch commands with specific NUMA memory and

execution thread alignment. For example, "numactl -m <NODES> -N <NODES> <COMMAND>
{arguments ...}" will run <COMMAND> exclusively on the <NODES> specified. The CPU and memory
affinity will be explicit for <COMMAND> and inherited by all of its children.

Figure 10 shows how to bind a launching process and guarantee CPU and memory affinity on the
specified NUMA nodes. The Figure 10 example does this via an inline shell script that uses "numactl -m
<NODE> -N <NODE>" to do the binding and using "numactl ­­show" to show the effect. Note that

cpubind, nodebind, and membind all directly reflect the node where the "numactl ­­show"

process is bound. The physcpubind output shows a list of individual CPU numbers that comprise the

cores on that same node.

www.redhat.co m 12 refarch-feedback@redhat.com

numactl --show
policy: default
preferred node: current
physcpubind: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39
cpubind: 0 1 2 3
nodebind: 0 1 2 3
membind: 0 1 2 3

Figure 9: "numactl --show" of unbound process

http://www.redhat.com/
http://www.redhat.com/

Using numactl to bind processes with explicit NUMA alignment will sometimes lead to superior

performance. However, using numactl requires detailed architecture knowledge and careful planning

for specific server systems. Furthermore, manual binding like this inherently creates a static
arrangement, and when workloads or available resources fluctuate, the original binding may no longer
be optimal. Hence, manual placement and binding are best suited for well-defined, static workloads. If
the application demand on the system changes or additional hardware resources become available, the
planning and resource allocation work will need to be redone—making this approach less effective for
dynamic, unpredictable workloads often running in today’s datacenters.

www.redhat.co m 13 refarch-feedback@redhat.com

for i in 0 1 2 3; do echo; echo "Binding to NUMA node $i";
numactl -m$i -N$i numactl --show; done

Binding to NUMA node 0
policy: bind
preferred node: 0
physcpubind: 0 4 8 12 16 20 24 28 32 36
cpubind: 0
nodebind: 0
membind: 0

Binding to NUMA node 1
policy: bind
preferred node: 1
physcpubind: 2 6 10 14 18 22 26 30 34 38
cpubind: 1
nodebind: 1
membind: 1

Binding to NUMA node 2
policy: bind
preferred node: 2
physcpubind: 1 5 9 13 17 21 25 29 33 37
cpubind: 2
nodebind: 2
membind: 2

Binding to NUMA node 3
policy: bind
preferred node: 3
physcpubind: 3 7 11 15 19 23 27 31 35 39
cpubind: 3
nodebind: 3
membind: 3

Figure 10: Manual binding with numactl

http://www.redhat.com/
http://www.redhat.com/

2.2 Automatic NUMA Binding with numad (Red Hat
Enterprise Linux 6 and 7)

Red Hat created numad to automatically improve NUMA system performance in both static and

dynamic workload environments. numad is an optional user-level daemon that provides process

management and placement advice for efficient use of memory and CPUs on systems with NUMA
topology. It is implemented as a CPU-and-memory-affinity management daemon that monitors
resource-consuming processes and available NUMA resources. numad will attempt to place significant

processes (like application workloads and KVM guests) in optimal NUMA locations, dynamically making
subsequent adjustments as system conditions change. With the numad tool, you can achieve processor

and memory affinity—and the resulting superior performance—without requiring repeated human
interaction.

numad is primarily intended for server consolidation environments, where there might be multiple

applications or multiple virtual guests running on the same server system. Because numad attempts to

align both CPU and memory resources used by running processes on the same NUMA node(s), numad

is most likely to have a positive effect when processes can be localized and isolated in a fractional
subset of the system's NUMA nodes. If the entire system is dedicated to a single large application that
necessarily consumes the majority of resources on the system, numad is unlikely to improve

performance because it would be difficult to localize and isolate multiple processes in their own
dedicated subsets of the system resources.

Figure 11 illustrates conceptually how numad aligns and consolidates process memory to a single

NUMA node. The image on the left depicts how memory is allocated prior to running the numad utility,

in which processes execute and use
memory resources across multiple
nodes. The image on the right
reflects memory allocation after
numad has aligned the processes

with NUMA nodes. As a result of
that alignment, the workloads will no
longer interfere with each other and
will use the local node’s memory
optimized for latency, thus boosting
overall system performance.

www.redhat.co m 14 refarch-feedback@redhat.com

Figure 11: Conceptual affinity alignment

http://www.redhat.com/
http://www.redhat.com/

Figure 12 demonstrates the same
"numastat ­cm qemu" command as in

Figure 2, however this output is from after
numad was running on the system. Notice

that almost all the memory for each of the
four virtual guests running on this system
has been localized to a different NUMA
node. (Although numastat doesn't show it,

the KVM guests vCPU threads have also
been localized to the same NUMA nodes
respectively.) This will optimize the system
performance because each virtual guest will
effectively have its own resources, and the
guests will not interfere with each other.

numad maintains a specified target

utilization level of NUMA node resources
while it attempts to localize and isolate
processes to particular NUMA nodes. This
is intended to preserve a resource margin
for additional loads that might need to run.
The desired maximum consumption
percentage of a NUMA node can be
adjusted with the numad "-u <percent>"

option. The default is 85%. Decrease the
target value to maintain more available
resource margin on each node. Increase
the target value to more exhaustively
consume node resources. If you have sized
your workloads to precisely fit inside a
NUMA node, specifying "-u 100" might
improve system performance by telling
numad to go ahead and consume all the

resources in each node.

Another numad option that can significantly

influence performance is "-H <THP_scan_sleep_ms>". By default, numad changes the transparent

hugepage scan interval from 10,000ms to 1,000ms. This can be important for applications that use
transparent hugepages because hugepages must be reconstructed after memory contents is moved
between NUMA nodes. For some workloads, it might be helpful for the hugepage daemon to be even
more aggressive when memory moves between nodes. For example, setting this value to 100ms (-H

www.redhat.co m 15 refarch-feedback@redhat.com

numastat -cm qemu

Per-node process memory usage (in MBs)
PID Node 0 Node 1 Node 2 Node 3 Total
--------------- ------ ------ ------ ------ ------
8249 (qemu-kvm) 44750 0 7 0 44757
8267 (qemu-kvm) 0 44727 7 0 44734
8285 (qemu-kvm) 0 0 7 44720 44727
8303 (qemu-kvm) 0 0 44727 0 44727
--------------- ------ ------ ------ ------ ------
Total 44750 44727 44749 44720 178946

Per-node system memory usage (in MBs):
 Node 0 Node 1 Node 2 Node 3 Total
 ------ ------ ------ ------ ------
MemTotal 65416 65536 65536 65536 262024
MemFree 18746 19117 18869 18485 75217
MemUsed 46669 46419 46667 47051 186807
Active 44761 44725 44735 44773 178994
Inactive 43 4 7 13 67
Active(anon) 44759 44724 44729 44765 178977
Inactive(anon) 8 0 0 3 13
Active(file) 2 1 6 9 17
Inactive(file) 34 4 7 10 55
Unevictable 0 0 0 0 0
Mlocked 0 0 0 0 0
Dirty 0 0 0 0 0
Writeback 0 0 0 0 0
FilePages 45 5 13 22 85
Mapped 6 1 9 15 32
AnonPages 44763 44630 44729 44765 178887
Shmem 8 1 0 3 13
KernelStack 3 1 1 1 5
PageTables 82 96 93 86 357
NFS_Unstable 0 0 0 0 0
Bounce 0 0 0 0 0
WritebackTmp 0 0 0 0 0
Slab 35 33 34 57 158
SReclaimable 6 10 8 12 37
SUnreclaim 28 23 26 45 121
AnonHugePages 6822 684 0 4 7510
HugePages_Total 0 0 0 0 0
HugePages_Free 0 0 0 0 0
HugePages_Surp 0 0 0 0 0

Figure 12: Aligned numastat output

http://www.redhat.com/
http://www.redhat.com/

100) might improve the performance of some workloads which use many transparent hugepages.
(Specifying (-H 0) will cause numad to retain the system default value.)

Due to dynamic load variations in long-running applications, numad is more likely to have a positive

effect on system performance when it runs continuously as a daemon. However, numad could also be

run on demand to isolate workloads and determine NUMA nodes where they should be bound.
Moreover, numad has an interface that can be queried by various management applications like the

virtualization
management tool
libvirt. numad

provides pre-placement
guidance to assist
management
applications with initial
manual binding of CPU
and memory resources
for their processes.

Using this interface,
management
applications can receive
guidance about the
optimal initial binding of
CPU and memory
resources for the
processes that are
managed. For details
about how to use this
pre-placement service,
see the numad

reference page and
read about the "-w"
option. Figure 13
demonstrates the effect
of good workload
placement by using the
numad "-w" option in a

psuedo-benchmark that
places simulated virtual
guest "pig" processes.
Note that the average

www.redhat.co m 16 refarch-feedback@redhat.com

./pig_place_test.sh 6 5 8
Trying 6 fake 'guests' with 5 VCPUs and 8 GB each.
Note average work accomplished -- displayed in a few minutes.
numad advises to use nodes: 1 -- but ignoring that and not binding.
../pig_tool/pig -t 5 -Gm 8000 -s 60 -l mem
numad advises to use nodes: 1 -- but ignoring that and not binding.
../pig_tool/pig -t 5 -Gm 8000 -s 60 -l mem
numad advises to use nodes: 7 -- but ignoring that and not binding.
../pig_tool/pig -t 5 -Gm 8000 -s 60 -l mem
numad advises to use nodes: 7 -- but ignoring that and not binding.
../pig_tool/pig -t 5 -Gm 8000 -s 60 -l mem
numad advises to use nodes: 7 -- but ignoring that and not binding.
../pig_tool/pig -t 5 -Gm 8000 -s 60 -l mem
numad advises to use nodes: 7 -- but ignoring that and not binding.
../pig_tool/pig -t 5 -Gm 8000 -s 60 -l mem
Sleeping while the fake guests finish up...
Threads: 5 Avg: 21.2 Stddev: 10.0 Min: 15 Max: 41
Threads: 5 Avg: 23.8 Stddev: 9.8 Min: 16 Max: 42
Threads: 5 Avg: 33.2 Stddev: 8.6 Min: 16 Max: 38
Threads: 5 Avg: 29.4 Stddev: 11.8 Min: 15 Max: 39
Threads: 5 Avg: 19.2 Stddev: 3.1 Min: 16 Max: 25
Threads: 5 Avg: 18.2 Stddev: 2.0 Min: 16 Max: 21

OK, now trying same size fake 'guests' using numad placement advice.
Average work accomplished should be higher, stddev might be better too.
numad advises to use nodes: 1
numactl -N 1 -m 1 ../pig_tool/pig -t 5 -Gm 8000 -s 60 -l mem
numad advises to use nodes: 3
numactl -N 3 -m 3 ../pig_tool/pig -t 5 -Gm 8000 -s 60 -l mem
numad advises to use nodes: 7
numactl -N 7 -m 7 ../pig_tool/pig -t 5 -Gm 8000 -s 60 -l mem
numad advises to use nodes: 4
numactl -N 4 -m 4 ../pig_tool/pig -t 5 -Gm 8000 -s 60 -l mem
numad advises to use nodes: 6
numactl -N 6 -m 6 ../pig_tool/pig -t 5 -Gm 8000 -s 60 -l mem
numad advises to use nodes: 5
numactl -N 5 -m 5 ../pig_tool/pig -t 5 -Gm 8000 -s 60 -l mem
Sleeping while the fake guests finish up...
Threads: 5 Avg: 44.0 Stddev: 0.0 Min: 44 Max: 44
Threads: 5 Avg: 45.0 Stddev: 0.0 Min: 45 Max: 45
Threads: 5 Avg: 44.0 Stddev: 0.0 Min: 44 Max: 44
Threads: 5 Avg: 44.0 Stddev: 0.0 Min: 44 Max: 44
Threads: 5 Avg: 44.0 Stddev: 0.0 Min: 44 Max: 44
Threads: 5 Avg: 45.0 Stddev: 0.0 Min: 45 Max: 45

Figure 13: pig pre-placement output

http://www.redhat.com/
http://www.redhat.com/

work accomplished in this pseudo-benchmark almost doubles, and the standard deviation of the
amount accomplished becomes a non-issue. Good NUMA job placement yields consistent high
performance!

libvirt will use the numad pre-placement advice feature if the "auto" placement parameters are

specified in the virtual guest's XML as seen in Figure 14.

The vcpu XML element specifies the maximum number of virtual CPUs allocated for the virtual guest.

The optional XML attribute placement can be used to indicate the CPU placement mode for the virtual
guest. If "placement='auto'" is specified, the virtual guest vcpus will be pinned to the set of nodes
returned by querying numad for pre-placement advice. The optional numatune XML element specifies

the NUMA memory strategy libvirt should use

when starting the virtual guest on a NUMA system;
specifying where and how libvirt should

allocate memory for the guest on a NUMA host.
When the "placement='auto'" attribute is set,
libvirt will limit the virtual guest to using

memory only from the set of nodes returned by
querying numad for pre-placement advice. If

placement of vcpu is 'auto', and numatune is not

specified, a default numatune with placement

'auto' and mode 'strict' will be added implicitly.

2.3 Kernel Automatic NUMA Balancing (Red Hat Enterprise
Linux 7)

Although numad can do a good job providing NUMA process management and placement advice for

efficient use of CPU and memory resources on NUMA systems, it is far from perfect. As a user-level
daemon, numad is limited to somewhat coarse-grained process management. It moves entire

processes, and does not know which execution threads are accessing which parts of process memory.
numad has no knowledge of internal kernel data structures or kernel scheduler details that might

facilitate better NUMA process management. Fortunately, the great news for Red Hat Enterprise Linux
7 users is that Red Hat is now building automatic NUMA balancing inside the kernel! This enables
much more sophisticated NUMA management even in subtle situations where numad might be

ineffective.

In Red Hat Enterprise Linux 7, the kernel monitors remote memory accesses and implements multiple
strategies to eliminate them. The kernel tracks memory locations by periodically unmapping different

www.redhat.co m 17 refarch-feedback@redhat.com

<domain>
 ...
 <vcpu placement='auto'>2</vcpu>
 <numatune>
 <memory mode='strict' placement='auto'/>
 </numatune>
 ...
</domain>

Figure 14: Virtual Guest auto-placement XML

http://www.redhat.com/
http://www.redhat.com/

parts of process memory and intercepting relatively low-cost page faults to see where the memory is
located. This sampling technique has the important benefit that only memory which is actively being
used is considered for NUMA remediation. After all, memory which is not being accessed has no
memory latency at all.

If NUMA location changes are warranted to improve NUMA efficiency, the scheduler can move
execution threads to NUMA nodes with the memory being used by the threads, and it can also move
memory to the NUMA nodes where consumer execution threads are executing. Obviously the in-kernel
NUMA code has full access to all the internal kernel data structures and knowledge about task
scheduling status. It recognizes whether memory is shared or private. If the NUMA balancing feature
determines it is necessary to move the memory contents, an efficient "lazy" page migration is utilized
that moves memory contents in the background at page fault time.

Already the in-kernel automatic NUMA balancing has achieved excellent results, but Red Hat continues
to actively improve the automatic NUMA features. Current improvements underway include changes to
better handle large processes and KVM guests which necessarily span more than one NUMA node.
The automatic NUMA balancing feature can be turned off by using sysctl to disable

“kernel.numa_balancing”, but it is enabled and active by default. Red Hat expects most NUMA
workloads will perform very well out-of-the-box on Red Hat Enterprise Linux 7 systems without any
additional action by users or administrators.

www.redhat.co m 18 refarch-feedback@redhat.com

http://www.redhat.com/
http://www.redhat.com/

2.4 Performance Comparison of numactl, numad,
Automatic NUMA Balancing, no-NUMA

Figure 15 illustrates results of various NUMA management techniques on a Java workload executed on
x86 hardware. The dark blue line at the bottom shows the throughput when no NUMA management is
used at all. The yellow line—which is mostly hidden under other lines—shows the significant
improvement that Red Hat Enterprise Linux 7 brings by default with automatic NUMA balancing. No
user or administrator effort is necessary at all, and the automatic NUMA balancing feature achieves
almost optimal results for this workload on this system. (Note the system is oversubscribed after 10
warehouses, so most of the results tend to fall off after that point.) The default, out-of-the-box results on
Red Hat Enterprise Linux 7 are now good enough that most users with similar loads should just run
their workload and let the kernel automatic NUMA balancing functionality optimize the NUMA system
performance.

www.redhat.co m 19 refarch-feedback@redhat.com

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

50000

100000

150000

200000

250000

300000

350000

400000

450000

Comparing NUMA Management Techniques

No NUMA management

numad (no options)

Auto NUMA Balancing

numad -u100

numad -u100 -H100

numactl

Warehouses

T
h

ro
u

g
h

p
u

t B
O

P
s

Figure 15: Results of various NUMA management techniques

http://www.redhat.com/
http://www.redhat.com/

The light-blue line shows what can be achieved by an expert performance engineer using static manual
binding via the numactl command. The brown line (mostly hidden under the light-blue line), the green

line, and the red line show numad results with different options. The red line on the graph shows the

performance with numad running with no options specified. It starts to fall off after 9 warehouses

because numad tries to preserve an available resource margin when the utilization reaches 85%.

Default numad results rapidly degrade in this case when the CPUs are oversubscribed. If the user

specifies that numad should aim for 100% utilization—shown by the green line—numad achieves about

the same peak performance improvement as the kernel automatic NUMA balancing functionality does
for 10 warehouses. (Note the kernel automatic NUMA performance is better for less than 10
warehouses, where the yellow line is actually under the light-blue line). The "numad -u100"
performance degrades much more slowly as resources are oversubscribed. This is shown by the green
line being relatively flat towards the right edge of the graph.

For absolute best performance of this particular workload on this particular system, one should either
manually bind the processes with numactl, or use numad specifying both "-u 100" and "-H 100". (The

"-H" option sets the khugepaged scan_sleep_millisecs to 100 in this case. Because numad causes

memory to move from one node to another, it is important to quickly rebuild transparent huge pages.)
Since this particular workload is a relatively straight-forward NUMA test, the gross process movements
initiated by numad are able to achieve the same peak performance improvement accrued by using

manual numad binding in this case. Using the automatic NUMA balancing features in Red Hat

Enterprise Linux 7 is much easier, gives nearly optimal results, and will also work with more subtle and
more complicated workloads.

3. General NUMA Guidance

It is a very good idea to size workload processes and virtual guests so they can fit in a single NUMA
node whenever possible. This makes it possible for all execution threads in the process to have the
lowest possible memory-access latency, and it greatly simplifies optimal NUMA-sensitive placement on
the server system. f larger guests or processes are necessary, consider sizing them for even multiples
of the resources in NUMA nodes.

For best performance, do not oversubscribe the CPUs or memory on the server system. In many cases
it is fine to oversubscribe the resources on the system, but you will not achieve peak performance for
individual jobs, especially if many are simultaneously active. The KSM daemon can help with memory
oversubscription, but it has additional performance costs of its own. If you must use the KSM daemon

www.redhat.co m 20 refarch-feedback@redhat.com

http://www.redhat.com/
http://www.redhat.com/

on a NUMA system, consider disabling the merge_across_nodes tunable to get better NUMA sensitive
performance with KSM.

4. Conclusion
Because almost all modern servers are NUMA systems, Red Hat is continually improving and
automating NUMA management tools and features. The NUMA tools in Red Hat Enterprise Linux 6 and
7 help organizations improve application performance on modern hardware systems. For absolute peak
performance, expert NUMA tuning might still be useful. But now, in Red Hat Enterprise Linux 7,
automatic NUMA balancing should satisfy with the out-of-the-box performance. In many cases the
default performance will be near optimal.

4.1 Next Steps

If you are looking for ways to simplify day-to-day management tasks in your current IT infrastructure or
are experiencing exponential datacenter growth, Red Hat can help you with new tools, award-winning
support, training, and consulting services. Learn more about why Red Hat is the world’s most trusted
provider of Linux and open source technology today. Visit www.redhat.com.

www.redhat.co m 21 refarch-feedback@redhat.com

http://www.redhat.com/
http://www.redhat.com/
http://www.redhat.com/

