

Performance & Scale Tuning of
Satellite 6.2 and capsules

Pradeep Surisetty

Jan Hutar

Archit Sharma

Version 1.0

September 2016

RHEL 7.2

100 East Davie Street
Raleigh NC 27601 USA
Phone: +1 919 754 4950
Fax: +1 919 800 3804

Linux is a registered trademark of Linus Torvalds. Red Hat, Red Hat Enterprise Linux and the Red Hat
"Shadowman" logo are registered trademarks of Red Hat, Inc. in the United States and other
countries.

Dell, the Dell logo and PowerEdge are trademarks of Dell, Inc.

Intel, the Intel logo and Xeon are registered trademarks of Intel Corporation or its subsidiaries in the
United States and other countries.

All other trademarks referenced herein are the property of their respective owners.

© 2016 by Red Hat, Inc. This material may be distributed only subject to the terms and conditions set
forth in the Open Publication License, V1.0 or later (the latest version is presently available at
http://www.opencontent.org/openpub/).

The information contained herein is subject to change without notice. Red Hat, Inc. shall not be liable
for technical or editorial errors or omissions contained herein.

Distribution of modified versions of this document is prohibited without the explicit permission of Red
Hat Inc.

Distribution of this work or derivative of this work in any standard (paper) book form for commercial
purposes is prohibited unless prior permission is obtained from Red Hat Inc.

The GPG fingerprint of the security@redhat.com key is:
CA 20 86 86 2B D6 9D FC 65 F6 EC C4 21 91 80 CD DB 42 A6 0E

www.redhat.com 2 Performance Engineering

http://www.opencontent.org/openpub/
mailto:security@redhat.com

Table of Contents
1 Executive Summary..6

2 Satellite 6.2 Overview..7
2.1 Content Management...7

2.2 Subscription Management..7

2.3 Provisioning Management..7

2.4 Configuration Management..8

2.5 Remote Execution (REx) Management..8

2.6 OpenSCAP Security Management...8

2.7 Docker 2.0 Container Management...8

2.8 Foreman...8

2.9 Katello...8

2.10 Candlepin...8

2.11 Pulp...9

2.12 Hammer..9

2.13 REST API..9

2.14 Capsule...9

3 Top Performance Considerations..10

4 Environment..10
4.1 Versions Tested..10

4.1.1 Satellite:..10
4.1.2 Capsule:..11

4.2 Hardware Considerations...11

4.2.1 CPU...11
4.2.2 Memory...11
4.2.3 Disk...11
4.2.4 Network...12
4.2.5 Server Power Management..12
4.2.6 AWS EC2..12

5 Tuning..14
5.1 RHEL 6.X versus RHEL 7.X...14

5.2 Tuned Profiles...14

5.3 Apache Configuration...15

Performance Engineering 3 www.redhat.com

5.4 Passenger Configuration..16

5.5 Candlepin...19

5.6 Pulp...20

5.7 Foreman...20

5.8 Puppet..21

5.9 External Capsules..21

5.10 Client Agent Scaling (katello-agent)...23

5.11 Scale: Hammer Timeout...23

5.12 qpid and qdrouterd Configuration...23

5.13 PostgreSQL Configuration..24

5.14 Storage Media for Database Workloads..25

5.15 MongoDB..25

5.16 Content View..26

5.17 Minimal Hardware Recommendations...26

5.18 Considerations for Capacity Planning..26

5.19 Remote Execution..26

6 Results..27
6.1 Tuned Profiles...27

6.2 Satellite on RHEL 7..29

6.3 Storage Media Preference for Database..30

6.4 Concurrent Content Host Registrations...31

6.5 Pulp Content Syncs..33

6.6 Pupet Integrated Capsule...33

6.7 Puppet External Capsule..34

6.8 Concurrent Puppet Agent Runs..34

6.9 Concurrent Errata Update on Content hosts..35

6.10 Systems per Capsule Considerations..35

7 Conclusion...35

8 Recommendations..36

Appendix A: Revision History...37

Appendix B: Contributors and Reviewers...37

Appendix C: References..38

Appendix D: Significant Apache Tunables..38

www.redhat.com 4 Performance Engineering

Appendix E: Significant Passenger Tunables...39

Appendix F: Significant PostgreSQL Tunables...39

Performance Engineering 5 www.redhat.com

1 Executive Summary

Information Technology is constantly evolving and the volume of change is exponentially
rising, while the time interval of change is shrinking. To keep up with the pace, the
infrastructure has to be capable of meeting the scaling and diversity challenges. It is key to
efficiently and effectively deploy and manage the IT infrastructure. Red Hat Satellite is a
complete system management product that enables system administrators to manage the full
life cycle of Red Hat deployments across physical, virtual, and private clouds. Red Hat
Satellite delivers system provisioning, configuration management, software management, and
subscription management, all while maintaining high Scalability and Security. Satellite 6.2 is
the third major release of the next generation Satellite with a raft of improvements that
continue to narrow the gaps in functionality found in Satellite 5 in many critical areas of the
product. Satellite 6.2 provides many refinements and new functionality to serve the needs of
the Linux System Engineer and Administrator in the following areas:

• Content Management
• Subscription Management
• Provisioning Management
• Configuration management
• Remote Execution (REx) Management
• OpenSCAP Security Management
• Scalability
• Docker 2.0 Container Management

This document provides basic guidelines and considerations for tuning Red Hat Satellite 6.2
for performance and Scalability. Many factors drive the performance of a Satellite 6.2
deployment and testing should be conducted before performing any of the suggested tuning.
There is no one-size-fits-all configuration as tuning will vary based on your environmental
factors, such as the hardware Satellite 6.2 is deployed on or the complexity of Puppet
manifests. It is important to establish a baseline within your environment in order to determine
how to scale Satellite 6.2 to meet your needs for life-cycle management of systems..

For further details on Red Hat Satellite Server, please refer to documentation at:

https://access.redhat.com/documentation/en/red-hat-satellite/?version=6.2

www.redhat.com 6 Performance Engineering

2 Satellite 6.2 Overview

Red Hat Satellite is a system management solution that makes Red Hat infrastructure easier
to deploy, scale, and manage across physical, virtual, and cloud environments. Satellite helps
users provision, configure, and update systems to ensure they run efficiently, securely, and in
compliance with various standards. By automating most tasks related to maintaining systems,
Satellite helps organizations increase efficiency, reduce operational costs, and enable IT to
better respond to strategic business needs. Red Hat Satellite automates many tasks related
to system management and easily integrates into existing work flow frameworks. The
centralized console provides administrators one place for accessing reports and for
provisioning, configuring, and updating systems.

2.1 Content Management
Red Hat Satellite helps ensure a systematic process is used to apply content, including
patches, to deployed systems (whether they are deployed on physical, virtual, or cloud
infrastructure) in all stages from development to production. This ensures better consistency
and availability of systems, freeing IT to quickly respond to business needs and
vulnerabilities.

• Content views are collections of RPMs, container content, or Puppet modules refined
with filters and rules. Content views are published and promoted through life cycle
environments, enabling end-to-end system management. While Satellite 5 used
channels and cloning, content views in Satellite 6.2 contain both software and
configuration content in one place, greatly simplifying the process of managing the life
cycles of systems.

• Integrated with the Red Hat CDN to let users control synchronization of Red Hat
content straight from the web UI.

• Distribution and federation of provisioning, configuration, and content delivery via Red
Hat Satellite Capsule Server.

2.2 Subscription Management
Easily report and map your Red Hat products to registered systems for end-to-end
subscription consumption visibility. Easily import and manage the distribution of your Red Hat
software subscriptions.

• Report and map your purchased products to registered systems within Red Hat
Satellite for end-to-end subscription usage visibility.

2.3 Provisioning Management
Provision RHEL host systems on bare-metal, on virt fabrics, and on private and public cloud

Performance Engineering 7 www.redhat.com

systems, with dynamic KickStart and seamless hand-off to Puppet Operations.

• Quickly provision and update your entire bare-metal infrastructure.
• Easily create and manage instances across virtualized infrastructure or private and

public clouds.
• Create complex Kickstart and PXE scenarios with powerful variables and snippets.
• Discover and search across non-provisioned hosts for rapid deployment.

2.4 Configuration Management
Mange RHEL host systems with Puppet Version 3.8, including interoperability with GIT repos,
the Puppet Forge, Hiera, R10K, and Puppet Enterprise.

2.5 Remote Execution (REx) Management
Use new and powerful workflows to control one or multiple managed hosts. The new REx
feature leverages all aspects of Satellite 6.2, including dynamic templates for scripting
commands with smart variables, dynamic host collections, scheduling of remote commands,
errata updating, and host services inquiry. All communication to managed hosts occurs over
SSH, orchestrated from the nearest Capsule with integrated Key and SUDO management.

2.6 OpenSCAP Security Management
Scan managed hosts for common vulnerabilities and exposures (CVE). OpenSCAP now uses
the Capsule for gathering host reports and forwarding them to the Satellite Server, where they
are decomposed into discrete database records for scoped search-based reporting.

2.7 Docker 2.0 Container Management
Work in concert with RHEL AtomicOS. Atomic OS trees are now conveyed across lifecycle
environments and deployable using the identical framework used for RHEL. After the Docker
Compute Resource is established on an Atomic OS or RHEL-based host, Satellite can
execute Docker Pull Requests to load containers from its content management system.

2.8 Foreman
Foreman is an open source application used for provisioning and lifecycle management of
physical and virtual systems. Foreman automatically configures these systems using various
methods, including kickstart and Puppet modules. Foreman also provides historical data for
reporting, auditing, and troubleshooting.

2.9 Katello
Katello is a subscription and repository management application. It provides a means to
subscribe to Red Hat repositories and download content. You can create and manage
different versions of this content and apply them to specific systems within user-defined
stages of the application lifecycle.

2.10 Candlepin
Candlepin is a service within Katello that handles subscription management.

www.redhat.com 8 Performance Engineering

2.11 Pulp
Pulp is a service within Katello that handles repository and content management.

2.12 Hammer
Hammer is a CLI tool that provides command line and shell equivalents of most web UI
functions

2.13 REST API
Red Hat Satellite 6 includes a REST-basedl API service that allows system administrators and
developers to write custom scripts and third-party applications that interface with Red Hat
Satellite.

2.14 Capsule
Red Hat Satellite Capsule Server acts as a proxy for some of the main Satellite functions
including repository storage, DNS, DHCP, and Puppet Master configuration. Each Satellite
Server also contains integrated Capsule Server services.

Performance Engineering 9 www.redhat.com

3 Top Performance Considerations
1. Deploy on RHEL 7 – Section 5.1
2. Confirm Tuned is running and configured – Section 5.2
3. Apache configuration – Section 5.3
4. Passenger configuration to increase concurrency – Section 5.4
5. Candlepin configuration – Section 5.5
6. Pulp Configuration – Section 5.6
7. Foreman’s performance and scalability – Section 5.7
8. Puppet and scalability – Section 5.8
9. Consider deploying external Capsule(s) in lieu of the integrated Capsule – Section 5.9
10.Katello-Agent scalability – Section 5.10
11.Hammer API timeouts related config changes – Section 5.11
12.qpidd and qdrouterd configuration – Section 5.12
13.PostgreSQL tunings to increase concurrent Registrations of hosts – Section 5.13
14.Disk for DB workloads – Section 5.14
15.Storage needs and Network compatibility with MongoDB – Section 5.15
16.Storage requirements while considering Content views – Section 5.16
17.Minimum Hardware Recommendations – Section 5.17
18.Considerations for capacity planning – Section 5.18
19.Remote execution – section 5.19

4 Environment
4.1 Versions Tested

4.1.1 Satellite:

• Satellite-6.2.1-1.3.el7sat.noarch
• kernel-3.10.0-327.el7.x86_64
• katello-3.0.0-11.el7sat.noarch
• foreman-1.11.0.51-1.el7sat.noarch
• candlepin-0.9.54.7-1.el7.noarch
• mongodb-2.6.11-2.el7sat.x86_64
• postgresql-9.2.15-1.el7_2.x86_64
• tfm-rubygem-passenger-4.0.18-22.el7sat.x86_64
• puppet-3.8.6-2.el7sat.noarch
• pulp-server-2.8.3.4-1.el7sat.noarch
• qpid-cpp-server-0.30-11.el7sat.x86_64
• qpid-dispatch-router-0.4-13.el7sat.x86_64
• ruby-2.0.0.598-25.el7_1.x86_64
• tomcat-7.0.54-2.el7_1.noarch
• python-2.7.5-34.el7.x86_64

www.redhat.com 10 Performance Engineering

4.1.2 Capsule:

• satellite-capsule-6.2.1-1.2.el7sat.noarch
• kernel-3.10.0-327.el7.x86_64
• mongodb-2.6.11-2.el7sat.x86_64
• pulp-server-2.8.3.4-1.el7sat.noarch
• puppet-3.8.6-2.el7sat.noarch
• python-2.7.5-34.el7.x86_64
• ruby-2.0.0.598-25.el7_1.x86_64
• qpid-cpp-server-0.30-11.el7sat.x86_64
• qpid-dispatch-router-0.4-13.el7sat.x86_64

4.2 Hardware Considerations

Selecting your hardware is the first component of setting up a well performing and scalable
Satellite 6 deployment.

4.2.1 CPU
A typical Satellite 6.2 deployment will run many tasks concurrently, which means that more
physical CPU cores available to Satellite 6.2 or a Capsule will allow for greater throughput of
tasks. Balancing throughput and task latency will be specific to each customer's needs,
however more CPU cores will improve the scale of a Satellite 6 deployment and should be the
first consideration in CPU hardware chosen.

4.2.2 Memory
Adequate memory should be provided. Satellite 6.2 contains many software components, all
of which need to be accounted for when deciding how much memory is required. Memory
should be accounted and monitored for the following processes: Apache, Foreman,
MongoDB, Postgres, Pulp, Puppet, Tomcat, Qpid, and the file system cache. A performant
system will not swap even when Apache, Foreman, Puppet and any other software is scaled
to its maximum on a single server.

4.2.3 Disk
In addition to disk capacity, Input/Output Operations Per Second (IOPS) must be a
consideration. The file system can be partitioned over separate disks as necessary to
increase capacity and IOPS on the directories most often accessed. Critical directories for
IOPS and monitoring are /var/lib/pulp, /var/lib/pgsql, and /var/lib/mongodb.

Performance Engineering 11 www.redhat.com

4.2.4 Network
Consistently in tests, network hardware has not been found to be a bottleneck before CPU or
configuration limits have been revealed. The hardware tested included a 10Gb network
between Satellite 6.2, Capsules, and an emulated Content Delivery Network (CDN). It is
likely that the Internet connection to the CDN will be a bottleneck, but that is outside the
scope of this brief.

4.2.5 Server Power Management
Servers usually have default settings in place to conserve power which often leads to less
than desirable performance. Prior to installing Red Hat Enterprise Linux, the server's BIOS
should be configured to allow OS Host Power Control which enables Red Hat Enterprise
Linux to control power consumption. Dependent upon customer requirements, performance
versus power consumption might need to be balanced when adjusting any power control
settings.

4.2.6 AWS EC2
Part of the testing was performed on AWS EC2 instances. Here are the flavors used for
testing:

• Satellite: c3.4xlarge
• Capsules: c3.4xlarge (but also tested with m4.large and it worked fine)

Because both Satellite and Capsule require significant amount of disk space, additional
storage was attached.

Satellite:
[
{
 "DeviceName": "/dev/sdf",
 "Ebs": {
 "VolumeSize": 100,
 "DeleteOnTermination": true,
 "VolumeType": "io1",
 "Iops": 3000,
 "Encrypted": false
 }
},
{
 "DeviceName": "/dev/sdg",
 "Ebs": {
 "VolumeSize": 40,
 "DeleteOnTermination": true,

 "VolumeType": "io1",
 "Iops": 1200,

 "Encrypted": false

www.redhat.com 12 Performance Engineering

 }

},
{
 "DeviceName": "/dev/sdh",
 "Ebs": {
 "VolumeSize": 40,
 "DeleteOnTermination": true,
 "VolumeType": "io1",
 "Iops": 1200,
 "Encrypted": false
 }
},
{
 "DeviceName": "/dev/sdi",
 "Ebs": {
 "VolumeSize": 50,
 "DeleteOnTermination": true,
 "VolumeType": "io1",
 "Iops": 1500,
 "Encrypted": false
 }
}
]

Capsule:
[
{
 "DeviceName": "/dev/sdf",
 "Ebs": {
 "VolumeSize": 100,
 "DeleteOnTermination": true,
 "VolumeType": "io1",
 "Iops": 3000,
 "Encrypted": false
 }
},
{
 "DeviceName": "/dev/sdg",
 "Ebs": {
 "VolumeSize": 40,
 "DeleteOnTermination": true,
 "VolumeType": "io1",
 "Iops": 1200,
 "Encrypted": false
 }

 }

]

Performance Engineering 13 www.redhat.com

5 Tuning
5.1 RHEL 6.X versus RHEL 7.X
Satellite 6.2 can be installed on both Red Hat Enterprise Linux 6 and on Red Hat Enterprise
Linux 7. RHEL 7 is the preferred operating system on which to have Satellite 6.2 installed.
Many enhancements have been made to improve the performance on RHEL 7 together with
updated major versions of software including Apache, Postgres, and Ruby. These major
versions typically have a number of performance improvements that might not be backported
into an older version.

5.2 Tuned Profiles
Satellite 6 should run with the tuning daemon tuned installed and running with the specific
profile that matches its deployment. With RHEL 6 you must install the tuned package to obtain
the performance tuning or equivalent tuning can be done manually. RHEL 7 enables the
tuned daemon by default during installation.

service tuned start
chkconfig tuned on
tuned-adm profile throughput-performance

RHEL 6 (virtual machine)
yum install -y tuned
service tuned start
chkconfig tuned on
tuned-adm profile virtual-guest

RHEL 7 (bare-metal):
tuned-adm active
Current active profile: throughput-performance

RHEL 7 (virtual machine)
tuned-adm active
Current active profile: virtual-guest

If Satellite 6.2 or a Capsule on RHEL 6 is installed on a virtual machine on Red Hat Enterprise
Virtualization, installing rhevm-guest-agent will also deploy Tuned and configure the virtual-
guest profile. On bare-metal, it is recommended that Satellite 6 and Capsules run the
‘throughput-performance’ tuned profile. While, if virtualized, they should run the ‘virtual-guest’
profile. If it is not certain the system is currently running the correct profile, check with the
‘tuned-adm active’ command as shown above. More information about tuned is located in the
Red Hat Enterprise Linux Performance Tuning Guide. Links to the RHEL 7 and RHEL 6
guides are available in Appendix C.

www.redhat.com 14 Performance Engineering

5.3 Apache Configuration

KeepAlive Settings
In order to reduce the number of TCP connections and Apache CPU usage, Apache’s
KeepAlive tunable should be turned on and appropriate values should be set for
KeepAliveTimeout and MaxKeepAliveRequests. The recommendation for KeepAliveTimeout
is between 2 to 5 seconds unless there is a latency between Satellite 6.2, Capsules, or end
clients that requires a higher or lower value. The recommendation for MaxKeepAliveRequests
is 0 to allow for each connection to request all its content over the same TCP connection.
Additionally, there is a reduction in page loading time on the web user interface with
KeepAlive on. The default configuration for KeepAlive for Satellite 6 is found in
/etc/httpd/conf.d/05-foreman-ssl.d/katello.conf :

Example Satellite 6 Apache configuration tuning:
KeepAlive On
MaxKeepAliveRequests 0
KeepAliveTimeout 5

Prefork Multi-Processing Module

Apache on Satellite 6 includes the prefork multi-processing module which scales Apache per
process. The default configuration for prefork for Satellite 6 is found in
/etc/httpd/conf.d/prefork.conf:

<IfModule mpm_prefork_module>
 StartServers 8
 MinSpareServers 5
 MaxSpareServers 20
 ServerLimit 256
 MaxClients 256
 MaxRequestsPerChild 4000

</IfModule>

It is likely that Apache's prefork configuration will not require adjustment until after tuning
Passenger for the size of the environment. If the environment is large enough and the number
of Apache processes is found to be a bottleneck at any point in time, the above values can be
adjusted to match the amount of available memory and specific load of the environment.

Max open files limit
Increasing max open files for Apache is also required when doing lots of registrations
(because of B ug 1328984) or when increasing scale of Capsules, content hosts, and content
views. The approach with limits.conf file is valid for RHEL7 only, there is a different way for

Performance Engineering 15 www.redhat.com

https://bugzilla.redhat.com/show_bug.cgi?id=1328984

RHEL6:

cat /etc/systemd/system/httpd.service.d/limits.conf
[Service]
LimitNOFILE=1000000
systemctl daemon-reload
katello-service restart

Max open files limit can be validated with:
systemctl status httpd | grep 'Main PID:'

Main PID: 13888 (httpd)
grep -e 'Limit' -e 'Max open files' /proc/13888/limits
Limit Soft Limit Hard Limit Units
Max open files 1000000 1000000 files

5.4 Passenger Configuration

Passenger configuration is specified within the Apache configuration files and can be used to
control the performance, scaling, and behavior of Foreman and Puppet.

Global Passenger Configuration Directives

The most important out-of-the box tunable that should be adjusted is the
PassengerMaxPoolSize. This should be adjusted to 1.5 * Physical CPU Cores available to
the Satellite server. This configures the maximum number of processes available for both
Foreman and Puppet on Satellite 6.2 and Capsules. PassengerMaxInstancesPerApp can be
used to prevent one application from consuming all available Passenger processes.

PassengerMaxRequestQueueSize determines the maximum number of queued requests
before Passenger will send a HTTP 503 Service Error to the requester. Depending upon the
maximum expected burst of requests, it will be necessary to adjust the Passenger Queue. A
queued request consumes an Apache process and setting the queue above Apache’s
MaxClients and ServerLimit configuration will force queued requests to wait within the
ListenBacklog queue in Apache. This will also block Apache from serving any other requests
that do not require Foreman or Puppet. It is recommended to adjust
PassengerMaxRequestQueueSize to the maximum expected burst in Foreman and Puppet
traffic, but below Apache’s MaxClients and ServerLimit configuration thus allowing other
requests to complete without waiting for Passenger to free up Apache processes such as a
client downloading content by running yum install or yum update.

Application Specific Configuration Directives

PassengerMinInstances should be configured to the minimum number of instances required
at start up. When a burst of requests comes in, Passenger will spawn additional application

www.redhat.com 16 Performance Engineering

processes up to PassengerMaxPoolSize or PassengerMaxInstancesPerApp if set. The
preloader handles spawning the new applications and thus should be available all the time to
reduce latency spent waiting for a new application process. This can be accomplished by
disabling the preloader’s time out with PassengerMaxPreloaderIdleTime. Enabling the
preloader means more memory will be consumed to keep a preloader process ready.

If the environment has an issue with continuous growth in memory from either Foreman or
Puppet, it is recommended to set PassengerMaxRequests such that those processes will be
recycled to free up memory. Preventing the Satellite 6 server from swapping is critical to its
performance and Scalability. An example tuned configuration of Passenger for Satellite 6.2 is
as follows:

Global Passenger configuration: /etc/httpd/conf.d/passenger.conf

LoadModule passenger_module modules/mod_passenger.so
<IfModule mod_passenger.c>

PassengerRoot /usr/share/gems/gems/passenger-
4.0.18/lib/phusion_passenger/locations.ini
PassengerRuby /usr/bin/ruby

 PassengerMaxPoolSize 24
 PassengerMaxRequestQueueSize 200
 PassengerStatThrottleRate 120
</IfModule>

Foreman Passenger application configuration: /etc/httpd/conf.d/05-foreman-ssl.conf

 PassengerAppRoot /usr/share/foreman
 PassengerRuby /usr/bin/ruby193-ruby
 PassengerMinInstances 6
 PassengerStartTimeout 90
 PassengerMaxPreloaderIdleTime 0
 PassengerMaxRequests 10000
 PassengerPreStart https://example.com

Puppet Passenger application configuration: /etc/httpd/conf.d/25-puppet.conf

 PassengerMinInstances 6
 PassengerStartTimeout 90
 PassengerMaxPreloaderIdleTime 0
 PassengerMaxRequests 10000
 PassengerPreStart https://example.com:8140

By using the passenger-status command, the Foreman and Puppet processes spawned by
Passenger can be obtained to confirm the PassengerMaxPoolSize.

Performance Engineering 17 www.redhat.com

Example passenger-status output:

passenger-status
Version : 4.0.18
Date : 2016-07-21 06:45:23 -0400
Instance: 32499
----------- General information -----------
Max pool size : 24
Processes : 24
Requests in top-level queue : 0
----------- Application groups -----------
/usr/share/foreman#default:
 App root: /usr/share/foreman
 Requests in queue: 0
 * PID: 615 Sessions: 0
Processehttp://weblogs.asp.net/jongalloway/performant-isn-t-a-wordd: 169
 Uptime: 8m 30s
 CPU: 5% Memory : 279M Last used: 3s ago
 [...]
 * PID: 2719 Sessions: 0 Processed: 174 Uptime: 5m 15s
 CPU: 13% Memory : 241M Last used: 3s ago
/etc/puppet/rack#default:
 App root: /etc/puppet/rack
 Requests in queue: 0
 * PID: 15780 Sessions: 1 Processed: 5 Uptime: 22s
 CPU: 1% Memory : 34M Last used: 2s ago

View the reported memory usage of Passenger using the passenger-memory-stats command.
Example passenger-memory-stats output:

passenger-memory-stats
Version: 4.0.18
Date : 2016-07-21 06:46:24 -0400
---------- Apache processes -----------
PID PPID VMSize Private Name

956 32499 193.6 MB 3.0 MB /usr/sbin/httpd -DFOREGROUND
1152 32499 193.5 MB 2.9 MB /usr/sbin/httpd -DFOREGROUND
1153 32499 193.7 MB 3.1 MB /usr/sbin/httpd -DFOREGROUND
1472 32499 193.6 MB 2.9 MB /usr/sbin/httpd -DFOREGROUND
1473 32499 193.6 MB 3.1 MB /usr/sbin/httpd -DFOREGROUND
1771 32499 0.0 MB ? [httpd] <defunct>
1778 32499 193.6 MB 3.0 MB /usr/sbin/httpd -DFOREGROUND
[...]
20577 32499 193.4 MB 2.7 MB /usr/sbin/httpd -DFOREGROUND
32499 1 191.1 MB 0.5 MB /usr/sbin/httpd -DFOREGROUND

www.redhat.com 18 Performance Engineering

32560 32499 1327.5 MB 79.3 MB (wsgi:pulp) -DFOREGROUND
32561 32499 1327.5 MB 80.0 MB (wsgi:pulp) -DFOREGROUND
32562 32499 1775.5 MB 89.3 MB (wsgi:pulp) -DFOREGROUND
32563 32499 524.2 MB 14.1 MB (wsgi:pulp-cont -DFOREGROUND
32564 32499 460.2 MB 14.1 MB (wsgi:pulp-cont -DFOREGROUND
32565 32499 460.2 MB 14.1 MB (wsgi:pulp-cont -DFOREGROUND
32566 32499 786.0 MB 49.1 MB (wsgi:pulp_forg -DFOREGROUND
32567 32499 850.0 MB 51.1 MB (wsgi:pulp_forg -DFOREGROUND
32568 32499 786.0 MB 47.1 MB (wsgi:pulp_forg -DFOREGROUND
Processes: 175
Total private dirty RSS: 914.23 MB (?)

-------- Nginx processes --------

Processes: 0
Total private dirty RSS: 0.00 MB
------ Passenger processes ------
PID VMSize Private Name

489 676.9 MB 178.3 MB Passenger AppPreloader: /usr/share/foreman
615 1919.3 MB 280.4 MB Passenger RackApp: /usr/share/foreman
[...]
2719 1986.4 MB 243.6 MB Passenger RackApp: /usr/share/foreman
15591 151.9 MB 30.6 MB Passenger AppPreloader: /etc/puppet/rack
15780 283.9 MB 37.4 MB Passenger RackApp: /etc/puppet/rack
32569 209.8 MB 0.3 MB PassengerWatchdog
32572 2290.8 MB 9.2 MB PassengerHelperAgent
32580 214.1 MB 0.9 MB PassengerLoggingAgent
Processes: 29
Total private dirty RSS: 6644.56 MB

All of the relevant Passenger tunables can be found in Appendix E and further documentation
can be found in the references.

5.5 Candlepin

Complexity around subscriptions can change the amount of latency required to complete a
registration. The process to register involves Candlepin and Foreman and therefore is subject
to the number of Foreman processes and Passenger queue size. A method to determine the
latency required for a specific environment would be to time subscription-manager
registrations such as:

time subscription-manager register --org="Default_Organization"
--activationkey="ak-dev"

By timing a specific registration and determining the minimum, average, and maximum

Performance Engineering 19 www.redhat.com

timings, the capacity of a specific environment can be determined. The default Passenger
configuration with Satellite 6.2 allows six concurrent registrations if Foreman consumes all of
the processes determined by PassengerMaxPoolSize and all application processes are
preloaded. If there is only one process spawned, then additional preloader latency will be
added to your registration time. More concurrent registrations experience additional latency
due to queueing for an available Foreman process. Any other tasks or workloads that also
involve Foreman will also wait on the queue and add delay to any other concurrent
registrations.

5.6 Pulp

Pulp handles content management of RPM content and Puppet modules. Pulp is responsible
for publishing content views and creating local repositories for Capsules and clients from
which to sync content. Pulp’s performance and scale to serve content relies on the
configuration of Apache and its configuration files.

Worker Concurrency
Pulp’s default behavior is to start 8 workers. The workers are responsible for asynchronous
tasks such as syncing and publishing content. The number of workers is adjustable in
/etc/default/pulp_workers by changing the value of PULP_CONCURRENCY. If many
repositories are attempted for syncing at once, then more workers can consume Satellite 6.2
resources. This can starve other components of Satellite 6.2 and therefore it can be
necessary to adjust the concurrency level of Pulp in an environment with a concurrent
workload such as Puppet.

NFS
Red Hat Satellite 6.2 uses /var/lib/pulp to store and manage repository content. Pulp uses
MongoDB which has issues with NFS. It is not recommended to run Pulp on NFS. Red Hat
recommends the usage of high-bandwidth, low-latency storage for the /var/lib/pulp file
system. Red Hat Satellite has many operations that are IO-intensive so usage of high-latency,
low-bandwidth storage could potentially have issues with performance degradation.

Store content
It is recommended to mount the Pulp directory onto a large local partition that you can easily
scale . Use Logical Volume Manager (LVM) to create this partition.

5.7 Foreman

Foreman is a Ruby application running inside the Passenger application server. Foreman’s
Performance and Scalability are directly affected by the Apache and Passenger configuration.
Follow the recommendations discussed in Section 5.4 . In addition to provisioning, Foreman
processes handle UI and API requests. Turning Apache’s KeepAlive on will improve the page
load time of the user interface and a properly configured tuned profile will improve the
response time of the CLI and API as represented in the commands shown in Section 5.3.

www.redhat.com 20 Performance Engineering

5.8 Puppet

Like Foreman, Puppet is a Ruby application running inside the Passenger application server.
There are several factors in Puppet which affect the overall Performance and Scalability of
your Satellite 6.2 deployment.

Runinterval – A non-deterministic run-interval that does not distribute the load throughout the
interval will cause scaling problems and errors within a Puppet environment. Evenly
distributing the load will allow a system to reliably scale and handle more requests with less
spikes. Depending upon the scale of an environment, run-interval can be distributed by:

● Puppet splay – Turn on splay for each Puppet client. This adds randomization to the
run-interval, however this does not accomplish a deterministic run-interval.

● A cron job – Run each Puppet agent as a cron job rather than a daemon. This makes
a run-interval deterministic however at scale this becomes difficult to manage when
adding and removing clients.

● Separation – Deploy a separate entity to manage when a Puppet agent run occurs.

Passenger – Configure Passenger to allow Puppet to have more processes. This allows for
greater concurrency by providing more processes to handle Puppet requests.

Manifest complexity – Measure manifest compilation time and seek to reduce it if possible.
Time Puppet runs without caching requests to see the impact each specific manifest in an
environment has on Satellite Server and Capsules. In order to test a greater number of
catalogs rapidly, invoke the Puppet API with a curl command to generate a similar workload
and benchmark the specific manifest and catalog. Reducing the complexity of a manifest will
reduce the load and improve scalability.

Other Puppet interactions – Measure other Puppet interactions that a specific environment
performs. Other interactions will place a load on Satellite Server and Capsules such as
submitting facts, serving files, and submitting a report. All these interactions have an
additional cost.

Run RHEL 7 – Analysis of Puppet runs on RHEL 7 have shown greater scalability and
improved performance over RHEL 6 on the same exact hardware.

5.9 External Capsules
External Capsules allow a Satellite 6.2 deployment to scale out and provide services local to
the machines that are managed by them.

Advantages of an external Capsule:
● Reduces the number of HTTP requests on Satellite 6.2.
● Provides more CPU and Memory resources for Puppet and Foreman.

Performance Engineering 21 www.redhat.com

● Places resources closer to end clients to reduce latency in requests.

Factors to consider for when to use an external Capsule:
● Runinterval – Timing between Puppet agent applies and even spread of workload

over the entire interval.
● Client workload – Amount of work for each Puppet client during a Puppet agent run.
● Hardware/Configuration – Amount of available resources for Puppet.

The determination of when to use an external Capsule versus an integrated Capsule depends
on hardware, configuration, and workload. This should be planned against the Puppet
requirements as a number of variables in the Puppet workload will directly affect the
scalability of Satellite 6.2 (in Section 5.8 testing results, Satellite 6.2 was scaled). Raising the
run-interval will directly increase the capacity but at a cost of increasing the interval between
which Puppet applies the configuration. Reducing the run-interval consequently reduces the
capacity. If the clients are not spread evenly, a large group of clients can fill the Passenger
queue and block other requests while leaving the Satellite Server under-utilized at other
times. The amount of work each Puppet client has to perform in order to complete a Puppet
run will also change scalability. Raising the configured number of Puppet processes will
improve scalability if there is physical hardware resources available. Due to these variables it
would not be constructive to provide a single one-size-fits all recommendation on when to
move to an external Capsule. The best recommendation is to benchmark a specific Puppet
workload to determine its scalability.

Hardware Considerations and Apache/Passenger Configuration:
The same considerations for hardware for Satellite 6.2 apply directly to a Capsule. A
virtualized Capsule provides the advantage of tuning the number of vCPUs and available
memory as long as the Capsule is not co-located on a host with virtual machines that over
commit the host’s resources. Apache and Passenger configuration considerations also apply
directly to the Capsule but in the context of Puppet.

Example Capsule Apache configuration tuning:

KeepAlive On
MaxKeepAliveRequests 0
KeepAliveTimeout 5

Example Capsule Passenger configuration: /etc/httpd/conf.d/passenger.conf:

LoadModule passenger_module modules/mod_passenger.so
<IfModule mod_passenger.c>
 PassengerRoot /usr/lib/ruby/gems/1.8/gems/passenger-
4.0.18/lib/phusion_passenger/locations.ini
 PassengerRuby /usr/bin/ruby
 PassengerMaxPoolSize 6
 PassengerMaxRequestQueueSize 200
 PassengerStatThrottleRate 120
</IfModule>

www.redhat.com 22 Performance Engineering

Example Capsule Puppet Passenger configuration tuning: /etc/httpd/conf.d/25-puppet.conf:

 PassengerMinInstances 2
 PassengerStartTimeout 90
 PassengerMaxPreloaderIdleTime 0
 PassengerMaxRequests 10000
 PassengerPreStart https :// example - capsule . com :8140

5.10 Client Agent Scaling (katello-agent)

First check “Scale: qpidd and qdrouterd configuration” (on both Satellite and Capsule if any).
Section Apache configuration: Max open files limitation might be also useful here.

You can increase the content_action_accept_timeout in Administer -> Settings -> Katello to
more than the default 20 seconds so clients have more time to answer (see
https :// access . redhat . com / solutions /2016943)

5.11 Scale: Hammer Timeout

During scale of Capsules, content hosts, or Content views hammer API requests can timeout.
Set time out to -1 in /etc/hammer/cli.modules.d/foreman.yml to set no timeout.

 :request_timeout: -1 #seconds

5.12 qpid and qdrouterd Configuration

Max open files limit
When you plan to have a big amount of clients with katello-agent, you need to tune qpidd and
qdrouterd settings to handle that load. The approach with limits.conf file is valid for RHEL7
only, there is a different way for RHEL6.

echo 1000000 > /proc/sys/fs/aio-max-nr # to set it permanently set it
in /etc/sysctl.conf
cat /etc/systemd/system/qpidd.service.d/limits.conf
[Service]
LimitNOFILE=1000000
cat /etc/systemd/system/qdrouterd.service.d/limits.conf
[Service]
LimitNOFILE=1000000
systemctl daemon-reload
katello-service restart

Performance Engineering 23 www.redhat.com

https://access.redhat.com/solutions/2016943
https://access.redhat.com/solutions/2016943
https://access.redhat.com/solutions/2016943
https://access.redhat.com/solutions/2016943
https://access.redhat.com/solutions/2016943
https://access.redhat.com/solutions/2016943
https://access.redhat.com/solutions/2016943
https://access.redhat.com/solutions/2016943
https://access.redhat.com/solutions/2016943
https://access.redhat.com/solutions/2016943
https://example-capsule.com:8140/
https://example-capsule.com:8140/
https://example-capsule.com:8140/
https://example-capsule.com:8140/
https://example-capsule.com:8140/
https://example-capsule.com:8140/
https://example-capsule.com:8140/
https://example-capsule.com:8140/

More details can be found in https :// access . redhat . com / solutions /1375253

Diskspace consideration

When you use katello-agent extensively, plan storage capacity for /var/lib/qpidd in advance.
Currently, in Satellite 6.2 /var/lib/qpidd requires 2MB disk space per a content host (see B ug
1366323).

mgmt-pub-interval settings

Also it might happen you are hitting this error in /var/log/messages (RHEL6) or journal
(RHEL7):

satellite.example.com qpidd[92464]: [Broker] error Channel exception: not-
attached: Channel 2 is not attached (/builddir/build/BUILD/qpid-cpp-
0.30/src/qpid/amqp_0_10/SessionHandler.cpp:39)

satellite.example.com qpidd[92464]: [Protocol] error Connection
qpid.10.1.10.1:5671-10.1.10.1:53790 timed out: closing

This is because qpid maintains management objects for queues, sessions, and connections
and recycles them every 10 seconds by default. Meanwhile, the same object with the same ID
is created, deleted, and created again. The old mgmt object is not purged yet and qpid raises
that error. The workaround is to lower mgmt-pub-interval parameter from the default 10s to
something lower (needs tuning). Add it to /etc/qpid/qpidd.conf and restart the qpidd service.
See Bu g 1335694# c 7.

5.13 PostgreSQL Configuration

PostgreSQL requirements depends on various requirements such as the number of
organizations, environments, registered systems, and content views. While registering
content hosts at scale to Satellite Server, shared_buffers needs to be set appropriately.
Recommended: 256MB

PostgreSQL configuration: /var/lib/pgsql/data/postgresql.conf

shared_buffers = 256MB

When registering content hosts at scale, it is recommended to increase max_connections
setting (set to 100 by default) as per your needs and HW profile. For example, you might
need to set the value to 200 when you are registering 200 content hosts in parallel.

max_connections = 200

www.redhat.com 24 Performance Engineering

https://bugzilla.redhat.com/show_bug.cgi?id=1335694#c7
https://bugzilla.redhat.com/show_bug.cgi?id=1335694#c7
https://bugzilla.redhat.com/show_bug.cgi?id=1335694#c7
https://bugzilla.redhat.com/show_bug.cgi?id=1335694#c7
https://bugzilla.redhat.com/show_bug.cgi?id=1335694#c7
https://bugzilla.redhat.com/show_bug.cgi?id=1366323
https://bugzilla.redhat.com/show_bug.cgi?id=1366323
https://bugzilla.redhat.com/show_bug.cgi?id=1366323
https://bugzilla.redhat.com/show_bug.cgi?id=1366323
https://access.redhat.com/solutions/1375253
https://access.redhat.com/solutions/1375253
https://access.redhat.com/solutions/1375253
https://access.redhat.com/solutions/1375253
https://access.redhat.com/solutions/1375253
https://access.redhat.com/solutions/1375253
https://access.redhat.com/solutions/1375253
https://access.redhat.com/solutions/1375253
https://access.redhat.com/solutions/1375253
https://access.redhat.com/solutions/1375253

5.14 Storage Media for Database Workloads

Pulp and MongoDB are good candidates for improved disk performance. Performance
improvements are noticed when these works loads are switched from spinning media to SSD.

Red Hat recommends the usage of high-bandwidth, low-latency storage for Pulp and
MongoDB. Red Hat Satellite has many operations that are IO-intensive, so usage of high-
latency, low-bandwidth storage could potentially have issues with performance degradation.

Directories that should be mounted on high performance storage:

● /var/lib/pulp – click here for relevant documentation and recommendations; Plan
for expansion over time as this will continue to grow as content is added to Satellite
Server.

● /var/lib/mongodb – click here for relevant documentation and recommendations; P
Plan for expansion over time as this will continue to grow as content is added to
Satellite Server.

● /var/lib/pgsql – click here for relevant documentation and recommendations.
● /var/lib/qpidd – requires 2MB disk space per a content host (see B ug 1366323).

Plan for expansion over time as this will continue to grow as content is added to
Satellite Server.

● /var/log - logs size can grow depending on your use case and your root volume size,
consider having a separate volume mounted here

5.15 MongoDB

Avoid NFS
MongoDB does not use conventional I/O to access the data files: it uses mmap(). NFS does
not perform well with mmap() call, especially with the way that MongoDB uses it (re-mapping
all of the data files 10 times per second). It is recommended not to run MongoDB over NFS
to avoid performance issues.

Size
The storage requirements depend on the number of packages and content views for Satellite
environment. Content view publishing to different versions consumes more MongoDB space.
Therefore effective capacity planning is recommended, based on the number of packages
and published versions.

Performance Engineering 25 www.redhat.com

https://bugzilla.redhat.com/show_bug.cgi?id=1366323
https://bugzilla.redhat.com/show_bug.cgi?id=1366323
https://bugzilla.redhat.com/show_bug.cgi?id=1366323
https://access.redhat.com/documentation/en/red-hat-satellite/6.2/paged/installation-guide/chapter-2-preparing-your-environment-for-installation#idm140461642242672
https://access.redhat.com/documentation/en/red-hat-satellite/6.2/paged/installation-guide/chapter-2-preparing-your-environment-for-installation#idm140461642242672
https://access.redhat.com/documentation/en/red-hat-satellite/6.2/paged/installation-guide/chapter-2-preparing-your-environment-for-installation#idm140461642242672

5.16 Content View
Red Hat Satellite 6.2 provides users with the ability to create content views. Content views act
as a snapshot of one or more repositories or Puppet modules. Content Views are ‘published’
in order to lock their contents in place. The content of the Content View is cloned and all filters
are applied. Publishing creates a new version of the Content View. Content Views can be
promoted and cloned to different life cycle environments (Dev, Test, Production). Content view
uses a symbolic link to the Media Library stored in the Pulp directory. Additionally, each
repository in a content view contains metadata about the content belonging to the content
view. This means a content view using a minimal number of packages and uses a small
amount of storage space. However, the storage size adds up once you use multiple content
views and a large number of packages per view.

While each content view is published, it consumes more and more space. To reduce
consumption and free storage, remove old and unused versions of content views in a lifecycle
environment. Also, monitor nodes and published directories under Pulp.

5.17 Minimal Hardware Recommendations
For minimal HW profile see I nstallation G uide (in short: 2 CPUs, 12 GB RAM, 4 GB swap).
Some basic numbers to expect:

● Sync 7589 pkgs 650 erratas: 15 minutes (syncing directly through local 10 GB
network)

● Publish new version of content view with that repo: 2 minutes
● Promote to Library: 1 minute

5.18 Considerations for Capacity Planning

Puppet master is mostly a CPU intensive server. If more CPU intensive modules are required
and more CPU and memory is made available, then Puppet would perform better. Also, it is a
good idea to use RHEL7 due to performance gain in Ruby 2.0 versus 1.87.

5.19 Remote Execution

Remote execution scales well. We have tested the simple command `date` on 6000 systems
and it worked well. Bigger scale might require some tuning or usage of Capsules.

www.redhat.com 26 Performance Engineering

https://access.redhat.com/documentation/en/red-hat-satellite/6.2/paged/installation-guide/chapter-2-preparing-your-environment-for-installation#hardware_requirements
https://access.redhat.com/documentation/en/red-hat-satellite/6.2/paged/installation-guide/chapter-2-preparing-your-environment-for-installation#hardware_requirements
https://access.redhat.com/documentation/en/red-hat-satellite/6.2/paged/installation-guide/chapter-2-preparing-your-environment-for-installation#hardware_requirements
https://access.redhat.com/documentation/en/red-hat-satellite/6.2/paged/installation-guide/chapter-2-preparing-your-environment-for-installation#hardware_requirements

6 Results

6.1 Tuned Profiles

Testing of Tuned on Satellite 6.2 on RHEL 6 shows that throughput-performance profile
consistently provided a reduction in latency with Satellite 6.2 API driven hammer commands
as well as syncing of content.

Figure 6.1 Comparison of Tuned Profiles

The above graph shows the improvements in response time to hammer commands by
comparing Tuned off, the default profile, and throughput-performance profile on Satellite 6.2
on RHEL 6.

Synchronization of RHEL5 repo to Satellite 6.2 on RHEL 6.X

The above graph shows the improvements in response time to hammer commands by
comparing Tuned off, the default profile, and throughput-performance profile on Satellite 6 on
RHEL 6.

Performance Engineering 27 www.redhat.com

Figure 6.2 RHEL 5 x86_64 Repo sync with tuned Profiles

The graph above is a comparison between Tuned off, the default profile, and throughput-
performance profile on Satellite 6.2 during sequential syncing of content.

www.redhat.com 28 Performance Engineering

6.2 Satellite on RHEL 7

Concurrent synchronization of RHEL5, 6, and 7 repositories to Satellite 6.2 on RHEL 6 &
RHEL 7

Figure 6.3 Concurrent Sync of 5 Repos

 The graph above is a comparison between running Satellite 6.2 on RHEL 6 & RHEL 7 during
concurrent syncing of content.

Performance Engineering 29 www.redhat.com

6.3 Storage Media Preference for Database

Concurrent synchronization of RHEL5, 6, and 7 repos to Satellite 6.2 with Pulp & MongoDB
on SSD and HDD

Figure 6.4 Concurrent Sync of Repos with SSD & HDD

The graph above is a comparison between running Satellite 6.2 on RHEL 7 with Pulp and
MongDB on SSD during concurrent syncing of content.

www.redhat.com 30 Performance Engineering

6.4 Concurrent Content Host Registrations

With the default configuration, Satellite 6.2 handles about 90 to 100 concurrent registrations in
optimal circumstances (no load on the system generated by other software or components,
sufficient HW profile). Note that registration is not a synchronous operation, so if you want to
register large number of systems, remember to add some delay between each of your
bunches. With all the tunings mentioned in the document, Satellite 6.2 can handle up to 200
concurrent registrations.

Figure 6.5: Concurrent Content Host Registrations

Testing the concurrency of Candlepin has shown that system registrations scale almost
linearly until filling the Passenger queue (in the graph above, we have tested with defaults
and with tuned configuration):

Performance Engineering 31 www.redhat.com

Figure 6.6: Concurrent Registration Timings

The graph does not contain values after 100 concurrent registration attempts (case without
tuning) and beyond 240 (case with tuning), because that started to encounter issues.
Additional concurrent registrations result in a longer time required to register.
It is also important to note that running subscriptions at the maximum rate leaves no room for
other tasks or workloads that require a Foreman process. Avoiding the Passenger queue is
essential to successful system registrations at scale as shown in the concurrency test results.

www.redhat.com 32 Performance Engineering

6.5 Pulp Content Syncs

The latency required for a repository to sync in an environment where network bandwidth is
not a bottleneck is largely dependent upon the number of files rather than the file size or
aggregate size of a repository. This is evident in the graph below, as a repository of the same
number of files but only a quarter of the file size requires nearly the same amount of time to
sync. This is a especially evident in smaller repositories where the effect of file size has little
to no impact on the latency of syncing.

Figure 6.7 Comparison of Content Syncs

The color of the bar indicates the size of individual packages. The x-axis shows the number of
packages. As the number of packages grows, the difference in sync latency due to file size
becomes more apparent. At 8192 packages, Pulp synced an aggregate of 8GiB of 1MiB
packages in 448.02s and an aggregate of 4GiB of 512KiB packages in 396.46s.

Pulp is also installed on the Capsules and used to sync content closer to the end clients.
Publishing or promoting a content view to a life cycle environment on a Capsule triggers that
Capsule to sync the content in the content view.

6.6 Pupet Integrated Capsule

Puppet scalability against Satellite 6.2 Integrated Capsule depends upon the life- cycle of the
client and changes to the Puppet configuration. Steady state operations of Puppet checking
an existing configuration is less resource intensive than Puppet applying a new configuration.

Performance Engineering 33 www.redhat.com

When tuning this, check Passenger configuration (especially the
PassengerMaxRequestQueueSize directive).
Also, it is important to note that running an environment at or near 100% capacity is strongly
discouraged. If anything adds more latency to each Puppet request, there is a risk of the
queue growing and HTTP 503 errors occurring when it fills. It would be better to scale out
Puppet via external Capsules to allow more room for requests to arrive for Foreman at the
Satellite 6.2 machine.

6.7 Puppet External Capsule

A Puppet workload with external Capsule is upload facts, compile the specific client’s Puppet
catalog and submit a report. RHEL 7 scales better compared to what RHEL 6 was able to
accomplish (in both scale of catalog compilation and latency required to compile).

6.8 Concurrent Puppet Agent Runs

When testing with the simplest possible Puppet module, one Capsule in default configuration
was able to handle about 320 clients concurrently running “puppet agent”. With more
concurrency some of the “puppet agent” runs were not served and the client failed to deploy
the given module. As a side effect, average run time decreased, but that can not be
considered a win when there are these failures.

Figure 6.8: Concurrent Puppet Client Registration

www.redhat.com 34 Performance Engineering

6.9 Concurrent Errata Update on Content hosts

With a strong Satellite (36 CPUs, 60 GB RAM, SSD for /var/lib/pulp, /var/lib/pgsql,
/var/lib/mongodb and /var/lib/qpidd), 3 Capsules and 6000 clients (2000 per Capsule), we
were able to apply errata to 6000 hosts with complete success. Configuration tweaks used on
all Satellite and Capsules were:

• Max open files limit for httpd increased (see section 5.3 Apache Configuration)
• Max open files limit for qpidd and qdrouterd increased (see section 5.12 qpid and

qdrouterd configuration)
• echo 1000000 > /proc/sys/fs/aio-max-nr (see section 5.12 qpid and qdrouterd

configuration again)
• SSD disk mounted as /var/lib/qpidd (see section 5.12 qpid and qdrouterd configuration

again)

6.10 Systems per Capsule Considerations

Using strong systems (36 CPUs, 60 GB RAM, SSD for /var/lib/pulp and /var/lib/mongodb) as
a Capsule server, we have tested 2000 clients per Capsule with clients using katello-agent.

7 Conclusion

Satellite 6.2 is a robust platform for life cycle management of systems that combines the best
of many open source projects. Efficiently planning, tuning, and monitoring of system
resources in Satellite 6.2 allows the combined platform to extend itself for scalability and
performance.

The goal of this performance brief is to provide basic guidelines and considerations for a well
performing and scaled Satellite 6.2 environment. Since each Satellite 6.2 deployment will vary
in its end goals, it is impossible to provide a one-size-fits-all configuration. Individual tuning
will expose the most resources on the tasks which are most important for a specific Satellite
6.2 deployment. Section 3. Top Performance Considerations, identifies the highest priority
items to consider when tuning and deploying Satellite 6.2 for optimal performance.

Performance Engineering 35 www.redhat.com

8 Recommendations

Prior to deployment of Satellite 6.2, after assessment of throughput and task latency
requirements has been completed, hardware selection should be done keeping in
mind:

• Greater number of CPU cores means better Scalability.
• To prevent swapping, sufficient memory should be provided that accounts for all the

software components of Satellite, namely Apache, Foreman, Katello, MongoDB,
Postgres, Pulp, Puppet, Tomcat, Qpid, and the file system cache.

• Proper partitioning of file system for critical directories such as /var/lib/
{pulp,pgsql,mongodb,qpidd} gives efficacious IOPS results, so use Logical Volume
Manager (LVM) for this purpose. Additionally, usage of high-bandwidth, low-latency
storage is recommended, preferably on SSD. We also recommend adding storage
with effective capacity planning based on required content view publishing to
different versions, which triggers mongodb to consume more space.

• Network connections to CDN should be robust, but as such, haven’t been found to
be much of a problem since we used direct 10g network path to CDN for testing.

• To counter performance issues due to a server’s default power conservation enable
OS Host Power Control in BIOS

• Satellite 6.2 performs best when deployed on a RHEL7 operating system, as it
includes many enhancements when compared to RHEL6 (refer to section 5.1).
Additionally:

• A tuned profile that’s equivalent of ‘throughput-performance’ on bare-metal and
‘virtual-guest’ in virtualized environments, is recommended. (refer to results in
graphs under section 6.1)

• For Apache, it would be wise to enable KeepAlive tunable, and set
KeepAliveTimeout value between 2-5 seconds and MaxKeepAliveRequests to be 0.
This in turn, helps Foreman, which handles UI and API requests. Also, depending
upon the amount of registrations expected, appropriate apache prefork multi-
processing module configurations and max open files limit in limits.conf should
suffice.

• For a foreseeable behavior of Foreman and Puppet, depending upon the maximum
burst of requests, global Passenger configuration directives as well as those
specific to an application, should be set as shown in section 5.4.

• A deterministic runinterval helps the case of performance and scalability, and the
same could be achieved by following guidelines enunciated under section 5.8,
which also states other tunables relevant to Puppet. The same also affects the use
case of an external Capsule vs an integrated Capsule, in addition to the
dependability on hardware, configuration, and workload, as stated under section
5.9

• To determine latency required for an environment during completion of
registrations, tuning of Candlepin requires recording the time of a subscription-
manager registration, as shown in section 5.5 and then, configuring Passenger

www.redhat.com 36 Performance Engineering

appropriately.
• Concurrency level of Pulp can be adjusted in /etc/default/pulp_workers, as it is

proportional to the number of available CPUs and is responsible for the time it takes
to sync a large number of repositories at once. Also, usage of NFS should be
avoided since it creates issues for mongodb (which is used by Pulp).

• For scaling up, following should be the priorities:
◦ Apache configurations, as listed under section 5.3
◦ For PostgreSQL, set shared_buffers to 15% - 25% of memory and

max_connections to the amount of content hosts being registered concurrently.
◦ To plan for large number of clients with katello-agent, follow scaling strategies

for katello-agent, hammer API and qpid/qdrouterd, as stated under section 5.10 ,
5.11 and 5.12 respectively.

• For minimum hardware recommendations, refer to section 5.17

Appendix A: Revision History

Revision 1.0 Pradeep Surisetty

Initial Release

Appendix B: Contributors and Reviewers
Contributor Title Contribution

Andy Bond Manager Review

Tim Wilkinson Sr. Software Engineer Review

Mike McCune Manager, Software Engineering Review

Stephen Wadeley Senior Technical Writer Review

Christopher Duryee Principal Software Engineer Review

David Caplan Product Manager Review

Douglas Shakshober Technical Director, Performance & Scale
Engineering

Review

Brian Riordan Director, Performance & Scale Engineering Review

Performance Engineering 37 www.redhat.com

Appendix C: References
1. https :// access . redhat . com / documentation / en - US / Red _ Hat _ Satellite /
2. https :// access . redhat . com / documentation / en -

US / Red _ Hat _ Enterprise _ Linux /7/ html / Performance _ Tuning _ Guide / index . html
3. https :// access . redhat . com / documentation / en -

US / Red _ Hat _ Enterprise _ Linux /6/ html / Performance _ Tuning _ Guide / index . html
4. http :// httpd . apache . org / docs /2.4/
5. http :// httpd . apache . org / docs /2.2/
6. https :// www . phusionpassenger . com / documentation / Users %20 guide %20 Apache . html
7. http :// www . candlepinproject . org / docs / candlepin
8. http :// www . pulpproject . org / docs /
9. http :// theforeman . org / manuals /1.6/ index . html
10.https :// docs . puppetlabs . com / puppet /
11. https://access.redhat.com/solutions/1375253
12. https :// wiki . postgresql . org / wiki / Tuning _ Your _ PostgreSQL _ Server

Appendix D: Significant Apache Tunables

KeepAlive – Allows multiple requests to be sent over a single TCP connection avoiding the
start up / tear down costs of a TCP socket when there are multiple requests occurring rapidly.

KeepAliveTimeout – Adjustment for how long keep alive connections are left open.

MaxKeepAliveRequests – Maximum number of requests allowed per connection when
KeepAlive is on.

StartServers – Number of processes created on server startup.

MinSpareServers – Minimum number of idle child server processes.

MaxSpareServers – Maximum number of idle child server processes.

ServerLimit – Sets the maximum number for MaxClients/MaxRequestWorkers.

MaxClients – Maximum number of concurrent requests that will be served. This tunable has
been renamed in Apache 2.4 to MaxRequestWorkers however the old name is still supported.

MaxRequestsPerChild – Maximum number of requests a child process will handle before
terminating. This tunable is used to prevent a process from continuously growing in memory
usage. This tunable has been renamed in Apache 2.4 to MaxConnectionsPerChild however
the old name is still supported.

www.redhat.com 38 Performance Engineering

https://wiki.postgresql.org/wiki/Tuning_Your_PostgreSQL_Server
https://wiki.postgresql.org/wiki/Tuning_Your_PostgreSQL_Server
https://wiki.postgresql.org/wiki/Tuning_Your_PostgreSQL_Server
https://wiki.postgresql.org/wiki/Tuning_Your_PostgreSQL_Server
https://wiki.postgresql.org/wiki/Tuning_Your_PostgreSQL_Server
https://wiki.postgresql.org/wiki/Tuning_Your_PostgreSQL_Server
https://wiki.postgresql.org/wiki/Tuning_Your_PostgreSQL_Server
https://wiki.postgresql.org/wiki/Tuning_Your_PostgreSQL_Server
https://wiki.postgresql.org/wiki/Tuning_Your_PostgreSQL_Server
https://wiki.postgresql.org/wiki/Tuning_Your_PostgreSQL_Server
https://wiki.postgresql.org/wiki/Tuning_Your_PostgreSQL_Server
https://wiki.postgresql.org/wiki/Tuning_Your_PostgreSQL_Server
https://wiki.postgresql.org/wiki/Tuning_Your_PostgreSQL_Server
https://wiki.postgresql.org/wiki/Tuning_Your_PostgreSQL_Server
https://wiki.postgresql.org/wiki/Tuning_Your_PostgreSQL_Server
https://wiki.postgresql.org/wiki/Tuning_Your_PostgreSQL_Server
https://wiki.postgresql.org/wiki/Tuning_Your_PostgreSQL_Server
https://access.redhat.com/solutions/1375253
https://docs.puppetlabs.com/puppet/
https://docs.puppetlabs.com/puppet/
https://docs.puppetlabs.com/puppet/
https://docs.puppetlabs.com/puppet/
https://docs.puppetlabs.com/puppet/
https://docs.puppetlabs.com/puppet/
https://docs.puppetlabs.com/puppet/
https://docs.puppetlabs.com/puppet/
https://docs.puppetlabs.com/puppet/
https://docs.puppetlabs.com/puppet/
http://theforeman.org/manuals/1.6/index.html
http://theforeman.org/manuals/1.6/index.html
http://theforeman.org/manuals/1.6/index.html
http://theforeman.org/manuals/1.6/index.html
http://theforeman.org/manuals/1.6/index.html
http://theforeman.org/manuals/1.6/index.html
http://theforeman.org/manuals/1.6/index.html
http://theforeman.org/manuals/1.6/index.html
http://theforeman.org/manuals/1.6/index.html
http://theforeman.org/manuals/1.6/index.html
http://theforeman.org/manuals/1.6/index.html
http://www.pulpproject.org/docs/
http://www.pulpproject.org/docs/
http://www.pulpproject.org/docs/
http://www.pulpproject.org/docs/
http://www.pulpproject.org/docs/
http://www.pulpproject.org/docs/
http://www.pulpproject.org/docs/
http://www.pulpproject.org/docs/
http://www.pulpproject.org/docs/
http://www.pulpproject.org/docs/
http://www.candlepinproject.org/docs/candlepin
http://www.candlepinproject.org/docs/candlepin
http://www.candlepinproject.org/docs/candlepin
http://www.candlepinproject.org/docs/candlepin
http://www.candlepinproject.org/docs/candlepin
http://www.candlepinproject.org/docs/candlepin
http://www.candlepinproject.org/docs/candlepin
http://www.candlepinproject.org/docs/candlepin
http://www.candlepinproject.org/docs/candlepin
http://www.candlepinproject.org/docs/candlepin
http://www.candlepinproject.org/docs/candlepin
https://www.phusionpassenger.com/documentation/Users%20guide%20Apache.html
https://www.phusionpassenger.com/documentation/Users%20guide%20Apache.html
https://www.phusionpassenger.com/documentation/Users%20guide%20Apache.html
https://www.phusionpassenger.com/documentation/Users%20guide%20Apache.html
https://www.phusionpassenger.com/documentation/Users%20guide%20Apache.html
https://www.phusionpassenger.com/documentation/Users%20guide%20Apache.html
https://www.phusionpassenger.com/documentation/Users%20guide%20Apache.html
https://www.phusionpassenger.com/documentation/Users%20guide%20Apache.html
https://www.phusionpassenger.com/documentation/Users%20guide%20Apache.html
https://www.phusionpassenger.com/documentation/Users%20guide%20Apache.html
https://www.phusionpassenger.com/documentation/Users%20guide%20Apache.html
https://www.phusionpassenger.com/documentation/Users%20guide%20Apache.html
https://www.phusionpassenger.com/documentation/Users%20guide%20Apache.html
https://www.phusionpassenger.com/documentation/Users%20guide%20Apache.html
https://www.phusionpassenger.com/documentation/Users%20guide%20Apache.html
https://www.phusionpassenger.com/documentation/Users%20guide%20Apache.html
https://www.phusionpassenger.com/documentation/Users%20guide%20Apache.html
http://httpd.apache.org/docs/2.2/
http://httpd.apache.org/docs/2.2/
http://httpd.apache.org/docs/2.2/
http://httpd.apache.org/docs/2.2/
http://httpd.apache.org/docs/2.2/
http://httpd.apache.org/docs/2.2/
http://httpd.apache.org/docs/2.2/
http://httpd.apache.org/docs/2.2/
http://httpd.apache.org/docs/2.2/
http://httpd.apache.org/docs/2.2/
http://httpd.apache.org/docs/2.4/
http://httpd.apache.org/docs/2.4/
http://httpd.apache.org/docs/2.4/
http://httpd.apache.org/docs/2.4/
http://httpd.apache.org/docs/2.4/
http://httpd.apache.org/docs/2.4/
http://httpd.apache.org/docs/2.4/
http://httpd.apache.org/docs/2.4/
http://httpd.apache.org/docs/2.4/
http://httpd.apache.org/docs/2.4/
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Performance_Tuning_Guide/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Performance_Tuning_Guide/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Performance_Tuning_Guide/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Performance_Tuning_Guide/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Performance_Tuning_Guide/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Performance_Tuning_Guide/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Performance_Tuning_Guide/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Performance_Tuning_Guide/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Performance_Tuning_Guide/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Performance_Tuning_Guide/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Performance_Tuning_Guide/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Performance_Tuning_Guide/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Performance_Tuning_Guide/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Performance_Tuning_Guide/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Performance_Tuning_Guide/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Performance_Tuning_Guide/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Performance_Tuning_Guide/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Performance_Tuning_Guide/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Performance_Tuning_Guide/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Performance_Tuning_Guide/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Performance_Tuning_Guide/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Performance_Tuning_Guide/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Performance_Tuning_Guide/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Performance_Tuning_Guide/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Performance_Tuning_Guide/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Performance_Tuning_Guide/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Performance_Tuning_Guide/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Performance_Tuning_Guide/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Performance_Tuning_Guide/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Performance_Tuning_Guide/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Performance_Tuning_Guide/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Performance_Tuning_Guide/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Performance_Tuning_Guide/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Performance_Tuning_Guide/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Performance_Tuning_Guide/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Performance_Tuning_Guide/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Performance_Tuning_Guide/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Performance_Tuning_Guide/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Performance_Tuning_Guide/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Performance_Tuning_Guide/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Performance_Tuning_Guide/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Performance_Tuning_Guide/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Performance_Tuning_Guide/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Performance_Tuning_Guide/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Performance_Tuning_Guide/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Performance_Tuning_Guide/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Performance_Tuning_Guide/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Performance_Tuning_Guide/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Performance_Tuning_Guide/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Performance_Tuning_Guide/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Performance_Tuning_Guide/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Performance_Tuning_Guide/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Performance_Tuning_Guide/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Performance_Tuning_Guide/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Performance_Tuning_Guide/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Performance_Tuning_Guide/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Performance_Tuning_Guide/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Performance_Tuning_Guide/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Performance_Tuning_Guide/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Performance_Tuning_Guide/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Performance_Tuning_Guide/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Performance_Tuning_Guide/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Performance_Tuning_Guide/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Performance_Tuning_Guide/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Performance_Tuning_Guide/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Performance_Tuning_Guide/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Performance_Tuning_Guide/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Performance_Tuning_Guide/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Satellite/
https://access.redhat.com/documentation/en-US/Red_Hat_Satellite/
https://access.redhat.com/documentation/en-US/Red_Hat_Satellite/
https://access.redhat.com/documentation/en-US/Red_Hat_Satellite/
https://access.redhat.com/documentation/en-US/Red_Hat_Satellite/
https://access.redhat.com/documentation/en-US/Red_Hat_Satellite/
https://access.redhat.com/documentation/en-US/Red_Hat_Satellite/
https://access.redhat.com/documentation/en-US/Red_Hat_Satellite/
https://access.redhat.com/documentation/en-US/Red_Hat_Satellite/
https://access.redhat.com/documentation/en-US/Red_Hat_Satellite/
https://access.redhat.com/documentation/en-US/Red_Hat_Satellite/
https://access.redhat.com/documentation/en-US/Red_Hat_Satellite/
https://access.redhat.com/documentation/en-US/Red_Hat_Satellite/
https://access.redhat.com/documentation/en-US/Red_Hat_Satellite/
https://access.redhat.com/documentation/en-US/Red_Hat_Satellite/
https://access.redhat.com/documentation/en-US/Red_Hat_Satellite/
https://access.redhat.com/documentation/en-US/Red_Hat_Satellite/
https://access.redhat.com/documentation/en-US/Red_Hat_Satellite/
https://access.redhat.com/documentation/en-US/Red_Hat_Satellite/
https://access.redhat.com/documentation/en-US/Red_Hat_Satellite/

Appendix E: Significant Passenger Tunables

PassengerMaxPoolSize – Maximum number of application processes that can concurrently
handle requests.

PassengerMaxInstancesPerApp – Prevent a single application from monopolizing the
maximum number of application processes Passenger will spawn.

PassengerMinInstances – Insures a minimum number of application processes are
available after an application is first accessed.

PassengerPoolIdleTime – Closes an idle application to conserve memory after a specified
amount of time.

PassengerMaxPreloaderIdleTime – Determines how long the application preloader will exist
if idle.

PassengerStartTimeout – If a Passenger application fails to start within the timeout,
forcefully kill it.
PassengerMaxRequests – Max number of requests before Passenger will restart an
application process. This is used as a workaround for memory leak prone applications to
prevent an application from consuming too much memory.

PassengerStatThrottleRate – Adjusts the rate at which Passenger checks for
application startup files and restart.txt.

PassengerPreStart – This tunable is used to start an application whenever Apache is
restarted.

PassengerHighPerformance - Enables Passenger’s high performance mode at expense
of specific Apache modules (mod_proxy, mod_rewrite, mod_autoindex, others...) from
working correctly.

PassengerMaxRequestQueueSize – Determines the maximum number of requests that
will be queued when all application processes are handling a request. If the queue is full,
Apache will return an HTTP 503 Error indicating that the server is too busy to queue the
request.

Appendix F: Significant PostgreSQL Tunables

max_connections – Maximum number of client connections allowed

shared_buffers – Determines how much memory is dedicated to PostgreSQL to use for
caching data

Performance Engineering 39 www.redhat.com

	1 Executive Summary
	2 Satellite 6.2 Overview
	2.1 Content Management
	2.2 Subscription Management
	2.3 Provisioning Management
	2.4 Configuration Management
	2.5 Remote Execution (REx) Management
	2.6 OpenSCAP Security Management
	2.7 Docker 2.0 Container Management
	2.8 Foreman
	2.9 Katello
	2.10 Candlepin
	2.11 Pulp
	2.12 Hammer
	2.13 REST API
	2.14 Capsule

	3 Top Performance Considerations
	4 Environment
	4.1 Versions Tested
	4.1.1 Satellite:
	4.1.2 Capsule:

	4.2 Hardware Considerations
	4.2.1 CPU
	4.2.2 Memory
	4.2.3 Disk
	4.2.4 Network
	4.2.5 Server Power Management
	4.2.6 AWS EC2

	5 Tuning
	5.1 RHEL 6.X versus RHEL 7.X
	5.2 Tuned Profiles
	5.3 Apache Configuration
	5.4 Passenger Configuration
	5.5 Candlepin
	5.6 Pulp
	5.7 Foreman
	5.8 Puppet
	5.9 External Capsules
	5.10 Client Agent Scaling (katello-agent)
	5.11 Scale: Hammer Timeout
	5.12 qpid and qdrouterd Configuration
	5.13 PostgreSQL Configuration
	5.14 Storage Media for Database Workloads
	5.15 MongoDB
	5.16 Content View
	5.17 Minimal Hardware Recommendations
	5.18 Considerations for Capacity Planning
	5.19 Remote Execution

	6 Results
	6.1 Tuned Profiles
	6.2 Satellite on RHEL 7
	6.3 Storage Media Preference for Database
	6.4 Concurrent Content Host Registrations
	6.5 Pulp Content Syncs
	6.6 Pupet Integrated Capsule
	6.7 Puppet External Capsule
	6.8 Concurrent Puppet Agent Runs
	6.9 Concurrent Errata Update on Content hosts
	6.10 Systems per Capsule Considerations

	7 Conclusion
	8 Recommendations
	Appendix A: Revision History
	Appendix B: Contributors and Reviewers
	Appendix C: References
	Appendix D: Significant Apache Tunables
	Appendix E: Significant Passenger Tunables
	Appendix F: Significant PostgreSQL Tunables

