
Red Hat Directory Server 10

Administration Guide

Updated for Directory Server 10.6

Last Updated: 2021-10-25

Red Hat Directory Server 10 Administration Guide

Updated for Directory Server 10.6

Marc Muehlfeld
Red Hat Customer Content Services
mmuehlfeld@redhat.com

Petr Bokoč
Red Hat Customer Content Services

Tomáš Čapek
Red Hat Customer Content Services

Petr Kovář
Red Hat Customer Content Services

Ella Deon Ballard
Red Hat Customer Content Services

Legal Notice

Copyright © 2020 Red Hat, Inc.

This document is licensed by Red Hat under the Creative Commons Attribution-ShareAlike 3.0
Unported License. If you distribute this document, or a modified version of it, you must provide
attribution to Red Hat, Inc. and provide a link to the original. If the document is modified, all Red Hat
trademarks must be removed.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide covers both GUI and command-line procedures for managing Directory Server instances
and databases. This documentation is no longer maintained. For details, see .

http://creativecommons.org/licenses/by-sa/3.0/

. .

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

DEPRECATED DOCUMENTATION

CHAPTER 1. BASIC RED HAT DIRECTORY SERVER SETTINGS

1.1. SYSTEM REQUIREMENTS

1.2. FILE LOCATIONS

1.3. STARTING THE DIRECTORY SERVER MANAGEMENT CONSOLE

1.4. STARTING AND STOPPING A DIRECTORY SERVER INSTANCE

1.5. STARTING AND STOPPING THE DIRECTORY SERVER ADMINISTRATION SERVER SERVICE

1.6. ENABLING LDAPI

1.7. CHANGING DIRECTORY SERVER PORT NUMBERS

1.8. MANAGING DIRECTORY SERVER INSTANCES

1.9. USING DIRECTORY SERVER PLUG-INS

1.10. SERVER CONFIGURATION ATTRIBUTES

CHAPTER 2. CONFIGURING DIRECTORY DATABASES

2.1. CREATING AND MAINTAINING SUFFIXES

2.2. CREATING AND MAINTAINING DATABASES

2.3. CREATING AND MAINTAINING DATABASE LINKS

2.4. CONFIGURING CASCADING CHAINING

2.5. USING REFERRALS

CHAPTER 3. MANAGING DIRECTORY ENTRIES

3.1. MANAGING ENTRIES USING THE COMMAND LINE

3.2. MANAGING ENTRIES USING THE DIRECTORY CONSOLE

CHAPTER 4. TRACKING MODIFICATIONS TO DIRECTORY ENTRIES

4.1. TRACKING MODIFICATIONS TO THE DATABASE THROUGH UPDATE SEQUENCE NUMBERS

4.2. TRACKING ENTRY MODIFICATIONS THROUGH OPERATIONAL ATTRIBUTES

4.3. TRACKING THE BIND DN FOR PLUG-IN INITIATED UPDATES

4.4. TRACKING PASSWORD CHANGE TIMES

CHAPTER 5. MAINTAINING REFERENTIAL INTEGRITY

5.1. HOW REFERENTIAL INTEGRITY WORKS

5.2. USING REFERENTIAL INTEGRITY WITH REPLICATION

5.3. ENABLING AND DISABLING REFERENTIAL INTEGRITY

5.4. MODIFYING THE UPDATE INTERVAL

5.5. MODIFYING THE ATTRIBUTE LIST

5.6. CONFIGURING SCOPE FOR THE REFERENTIAL INTEGRITY

CHAPTER 6. POPULATING DIRECTORY DATABASES

6.1. IMPORTING DATA

6.2. EXPORTING DATA

6.3. BACKING UP AND RESTORING DATA

CHAPTER 7. MANAGING ATTRIBUTES AND VALUES

7.1. ENFORCING ATTRIBUTE UNIQUENESS

7.2. ASSIGNING CLASS OF SERVICE

7.3. LINKING ATTRIBUTES TO MANAGE ATTRIBUTE VALUES

7.4. ASSIGNING AND MANAGING UNIQUE NUMERIC ATTRIBUTE VALUES

CHAPTER 8. ORGANIZING AND GROUPING ENTRIES

8.1. USING GROUPS

8.2. USING ROLES

6

7

7

7

7

9

11

12

13

16

17

22

24

24

33

43

66

77

86

86

96

112

112

115

116

117

119

119

120

120

121

122

123

124

124

132

136

146

146

151

174

178

188

188

210

Table of Contents

1

. .

. .

. .

. .

. .

. .

8.3. AUTOMATICALLY CREATING DUAL ENTRIES

8.4. USING VIEWS

CHAPTER 9. CONFIGURING SECURE CONNECTIONS

9.1. REQUIRING SECURE CONNECTIONS

9.2. SETTING A MINIMUM STRENGTH FACTOR

9.3. MANAGING THE NSS DATABASE USED BY DIRECTORY SERVER

9.4. ENABLING TLS

9.5. DISPLAYING THE ENCRYPTION PROTOCOLS ENABLED IN DIRECTORY SERVER

9.6. SETTING THE ENCRYPTION PROTOCOL VERSIONS

9.7. USING HARDWARE SECURITY MODULES

9.8. USING CERTIFICATE-BASED CLIENT AUTHENTICATION

9.9. SETTING UP SASL IDENTITY MAPPING

9.10. USING KERBEROS GSS-API WITH SASL

9.11. SETTING SASL MECHANISMS

9.12. USING SASL WITH LDAP CLIENTS

CHAPTER 10. CONFIGURING ATTRIBUTE ENCRYPTION

10.1. ENCRYPTION KEYS

10.2. ENCRYPTION CIPHERS

10.3. CONFIGURING ATTRIBUTE ENCRYPTION FROM THE CONSOLE

10.4. CONFIGURING ATTRIBUTE ENCRYPTION USING THE COMMAND LINE

10.5. ENABLING ATTRIBUTE ENCRYPTION FOR EXISTING ATTRIBUTE VALUES

10.6. GENERAL CONSIDERATIONS AFTER ENABLING ATTRIBUTE ENCRYPTION

10.7. EXPORTING AND IMPORTING AN ENCRYPTED DATABASE

10.8. UPDATING THE TLS CERTIFICATES USED FOR ATTRIBUTE ENCRYPTION

CHAPTER 11. MANAGING FIPS MODE SUPPORT

Enabling FIPS Mode Support

Disabling FIPS Mode Support

CHAPTER 12. MANAGING THE DIRECTORY SCHEMA

12.1. OVERVIEW OF SCHEMA

12.2. MANAGING OBJECT IDENTIFIERS

12.3. DIRECTORY SERVER ATTRIBUTE SYNTAXES

12.4. MANAGING CUSTOM SCHEMA IN THE CONSOLE

12.5. MANAGING SCHEMA USING LDAPMODIFY

12.6. CREATING CUSTOM SCHEMA FILES

12.7. DYNAMICALLY RELOADING SCHEMA

12.8. TURNING SCHEMA CHECKING ON AND OFF

12.9. USING SYNTAX VALIDATION

CHAPTER 13. MANAGING INDEXES

13.1. ABOUT INDEXES

13.2. CREATING STANDARD INDEXES

13.3. GENERATING NEW INDEXES TO EXISTING DATABASES

13.4. CREATING BROWSING (VLV) INDEXES

13.5. CHANGING THE INDEX SORT ORDER

13.6. CHANGING THE WIDTH FOR INDEXED SUBSTRING SEARCHES

13.7. DELETING INDEXES

CHAPTER 14. FINDING DIRECTORY ENTRIES

14.1. IMPROVING SEARCH PERFORMANCE THROUGH RESOURCE LIMITS

14.2. FINDING ENTRIES USING THE DIRECTORY SERVER CONSOLE

14.3. USING LDAPSEARCH

226

234

242

242

242

243

256

270

271

272

272

275

282

284

285

286

287

287

288

289

290

290

290

292

293

293

293

294

294

298

299

299

306

308

310

312

314

318

318

322

326

327

332

333

334

341

341

346

348

Administration Guide

2

. .

. .

. .

. .

14.4. LDAP SEARCH FILTERS

14.5. EXAMPLES OF COMMON LDAPSEARCHES

14.6. USING PERSISTENT SEARCH

14.7. SEARCHING WITH SPECIFIED CONTROLS

CHAPTER 15. MANAGING REPLICATION

15.1. REPLICATION OVERVIEW

15.2. CONFIGURING REPLICATION FROM THE COMMAND LINE

15.3. REPLICATION SCENARIOS

15.4. CREATING THE SUPPLIER BIND DN ENTRY

15.5. CONFIGURING SINGLE-MASTER REPLICATION

15.6. CONFIGURING MULTI-MASTER REPLICATION

15.7. CONFIGURING CASCADING REPLICATION

15.8. TEMPORARILY SUSPENDING REPLICATION

15.9. DISABLING AND RE-ENABLING A REPLICATION AGREEMENT

15.10. MANAGING ATTRIBUTES WITHIN FRACTIONAL REPLICATION

15.11. MAKING A READ-ONLY REPLICA UPDATABLE

15.12. REMOVING A SUPPLIER FROM THE REPLICATION TOPOLOGY

15.13. MANAGING DELETED ENTRIES WITH REPLICATION

15.14. CONFIGURING CHANGELOG ENCRYPTION

15.15. REMOVING THE CHANGELOG

15.16. MOVING THE REPLICATION CHANGELOG DIRECTORY

15.17. TRIMMING THE REPLICATION CHANGELOG

15.18. INITIALIZING CONSUMERS

15.19. FORCING REPLICATION UPDATES

15.20. REPLICATION OVER TLS

15.21. SETTING REPLICATION TIMEOUT PERIODS

15.22. REPLICATING O=NETSCAPEROOT FOR ADMINISTRATION SERVER FAILOVER

15.23. USING THE RETRO CHANGELOG PLUG-IN

15.24. MONITORING REPLICATION STATUS

15.25. COMPARING TWO DIRECTORY SERVER INSTANCES

15.26. SOLVING COMMON REPLICATION CONFLICTS

15.27. TROUBLESHOOTING REPLICATION-RELATED PROBLEMS

CHAPTER 16. SYNCHRONIZING RED HAT DIRECTORY SERVER WITH MICROSOFT ACTIVE DIRECTORY

16.1. ABOUT WINDOWS SYNCHRONIZATION

16.2. SUPPORTED ACTIVE DIRECTORY VERSIONS

16.3. SYNCHRONIZING PASSWORDS

16.4. STEPS FOR CONFIGURING WINDOWS SYNCHRONIZATION

16.5. SYNCHRONIZING USERS

16.6. SYNCHRONIZING GROUPS

16.7. CONFIGURING UNI-DIRECTIONAL SYNCHRONIZATION

16.8. CONFIGURING MULTIPLE SUBTREES AND FILTERS IN WINDOWS SYNCHRONIZATION

16.9. SYNCHRONIZING POSIX ATTRIBUTES FOR USERS AND GROUPS

16.10. DELETING AND RESURRECTING ENTRIES

16.11. SENDING SYNCHRONIZATION UPDATES

16.12. MODIFYING THE SYNCHRONIZATION AGREEMENT

16.13. MANAGING THE PASSWORD SYNC SERVICE

16.14. TROUBLESHOOTING

CHAPTER 17. SETTING UP CONTENT SYNCHRONIZATION

CHAPTER 18. MANAGING ACCESS CONTROL

351

365

370

370

377

377

380

389

393

395

404

416

428

428

429

431

432

434

435

436

437

438

440

444

445

447

447

449

451

455

457

463

467

467

470

470

471

486

493

500

501

502

503

504

507

513

515

517

519

Table of Contents

3

. .

. .

. .

18.1. ACCESS CONTROL PRINCIPLES

18.2. ACI PLACEMENT

18.3. ACI STRUCTURE

18.4. ACI EVALUATION

18.5. LIMITATIONS OF ACIS

18.6. HOW DIRECTORY SERVER HANDLES ACIS IN A REPLICATION TOPOLOGY

18.7. DISPLAYING ACIS

18.8. ADDING AN ACI

18.9. DELETING AN ACI

18.10. UPDATING AN ACI

18.11. DEFINING TARGETS

18.12. DEFINING PERMISSIONS

18.13. DEFINING BIND RULES

18.14. CHECKING ACCESS RIGHTS ON ENTRIES (GET EFFECTIVE RIGHTS)

18.15. LOGGING ACCESS CONTROL INFORMATION

18.16. ADVANCED ACCESS CONTROL: USING MACRO ACIS

18.17. SETTING ACCESS CONTROLS ON DIRECTORY MANAGER

18.18. COMPATIBILITY WITH PREVIOUS RELEASES

CHAPTER 19. MANAGING USER AUTHENTICATION

19.1. SETTING USER PASSWORDS

19.2. SETTING PASSWORD ADMINISTRATORS

19.3. CHANGING PASSWORDS STORED EXTERNALLY

19.4. MANAGING THE PASSWORD POLICY

19.5. UNDERSTANDING PASSWORD EXPIRATION CONTROLS

19.6. MANAGING THE DIRECTORY MANAGER PASSWORD

19.7. CHECKING ACCOUNT AVAILABILITY FOR PASSWORDLESS ACCESS

19.8. CONFIGURING A PASSWORD-BASED ACCOUNT LOCKOUT POLICY

19.9. CONFIGURING TIME-BASED ACCOUNT LOCKOUT POLICIES

19.10. REPLICATING ACCOUNT LOCKOUT ATTRIBUTES

19.11. ENABLING DIFFERENT TYPES OF BINDS

19.12. USING PASS-THROUGH AUTHENTICATION

19.13. USING ACTIVE DIRECTORY-FORMATTED USER NAMES FOR AUTHENTICATION

19.14. USING PAM FOR PASS-THROUGH AUTHENTICATION

19.15. MANUALLY INACTIVATING USERS AND ROLES

CHAPTER 20. MONITORING SERVER AND DATABASE ACTIVITY

20.1. TYPES OF DIRECTORY SERVER LOG FILES

20.2. DISPLAYING LOG FILES

20.3. CONFIGURING LOG FILES

20.4. GETTING ACCESS LOG STATISTICS

20.5. MONITORING THE LOCAL DISK FOR GRACEFUL SHUTDOWN

20.6. MONITORING SERVER ACTIVITY

20.7. MONITORING DATABASE ACTIVITY

20.8. MONITORING DATABASE LINK ACTIVITY

20.9. ENABLING AND DISABLING COUNTERS

CHAPTER 21. MONITORING DIRECTORY SERVER USING SNMP

21.1. ABOUT SNMP

21.2. CONFIGURING THE DIRECTORY SERVER FOR SNMP

21.3. SETTING UP AN SNMP AGENT FOR DIRECTORY SERVER

21.4. CONFIGURING SNMP TRAPS

21.5. USING THE MANAGEMENT INFORMATION BASE

519

519

520

520

521

521

522

522

526

527

528

536

539

555

566

567

572

574

575

575

575

576

577

587

588

592

594

596

603

605

611

619

620

626

630

630

630

631

639

642

644

651

657

658

659

659

659

660

661

662

Administration Guide

4

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

CHAPTER 22. MAKING A HIGH-AVAILABILITY AND DISASTER RECOVERY PLAN

22.1. IDENTIFYING POTENTIAL SCENARIOS

22.2. DEFINING THE TYPE OF ROLLOVER

22.3. IDENTIFYING USEFUL DIRECTORY SERVER FEATURES FOR DISASTER RECOVERY

22.4. DEFINING THE RECOVERY PROCESS

22.5. BASIC EXAMPLE: PERFORMING A RECOVERY

APPENDIX A. USING LDAP CLIENT TOOLS

A.1. RUNNING EXTENDED OPERATIONS

A.2. COMPARING ENTRIES

A.3. CHANGING PASSWORDS

A.4. GENERATING LDAP URLS

APPENDIX B. LDAP DATA INTERCHANGE FORMAT

B.1. ABOUT THE LDIF FILE FORMAT

B.2. CONTINUING LINES IN LDIF

B.3. REPRESENTING BINARY DATA

B.4. SPECIFYING DIRECTORY ENTRIES USING LDIF

B.5. DEFINING DIRECTORIES USING LDIF

B.6. STORING INFORMATION IN MULTIPLE LANGUAGES

APPENDIX C. LDAP URLS

C.1. COMPONENTS OF AN LDAP URL

C.2. ESCAPING UNSAFE CHARACTERS

C.3. EXAMPLES OF LDAP URLS

APPENDIX D. INTERNATIONALIZATION

D.1. ABOUT LOCALES

D.2. SUPPORTED LOCALES

D.3. SUPPORTED LANGUAGE SUBTYPES

D.4. SEARCHING AN INTERNATIONALIZED DIRECTORY

D.5. TROUBLESHOOTING MATCHING RULES

APPENDIX E. MANAGING THE ADMINISTRATION SERVER

E.1. INTRODUCTION TO RED HAT ADMINISTRATION SERVER

E.2. ADMINISTRATION SERVER CONFIGURATION

APPENDIX F. USING ADMIN EXPRESS

F.1. MANAGING SERVERS IN ADMIN EXPRESS

F.2. CONFIGURING ADMIN EXPRESS

APPENDIX G. USING THE CONSOLE

G.1. OVERVIEW OF THE DIRECTORY SERVER CONSOLE

G.2. CHANGING THE CONSOLE APPEARANCE

G.3. MANAGING SERVER INSTANCES

G.4. MANAGING DIRECTORY SERVER USERS AND GROUPS

G.5. SETTING ACCESS CONTROLS

INDEX

APPENDIX H. REVISION HISTORY

667

667

668

668

670

670

672

672

673

674

675

678

678

679

680

681

685

687

689

689

690

691

693

693

693

694

696

701

702

702

703

722

722

724

732

732

740

750

753

768

775

817

Table of Contents

5

DEPRECATED DOCUMENTATION

IMPORTANT

Note that as of November 30, 2020, the support for Red Hat Directory Server 10 has
ended. For details, see “Red Hat Directory Server Life Cycle policy”. Red Hat
recommends users of Directory Server 10 to update to the latest version.

Due to the end of the maintenance phase of this product, this documentation is no
longer updated. Use it only as a reference!

Administration Guide

6

https://access.redhat.com/support/policy/updates/directory/

CHAPTER 1. BASIC RED HAT DIRECTORY SERVER SETTINGS

The Red Hat Directory Server includes a directory service, an administration server to manage multiple
server instances, and a Java-based console to manage server instances through a graphical interface.
This chapter provides an overview of the basic tasks for administering a directory service.

The Directory Server is a robust, scalable server designed to manage an enterprise-wide directory of
users and resources. It is based on an open-systems server protocol called the Lightweight Directory
Access Protocol (LDAP). The server manages the directory databases and responds to client requests.

Directory Server is comprised of several components, which work in tandem:

The Directory Server is the core LDAP server daemon. It is compliant with LDAP v3 standards.
This component includes command-line server management and administration programs and
scripts for common operations like export and backing up databases.

The Directory Server Console is the user interface that simplifies management of users, groups,
and other LDAP data. The Console is used for all aspects of the server management, including
backups; security, replication, or databases configuration; server monitoring; and viewing
statistics.

The Administration Server is the management agent which administers Directory Server
instances. It communicates with the Directory Server Console and performs operations on the
Directory Server instances. It also provides a simple HTML interface and online help pages.

You can administer Directory Server by using command-line utilities, but it is also possible to use the
Directory Server Console.

1.1. SYSTEM REQUIREMENTS

See the corresponding section in the Red Hat Directory Server 10 Release Notes.

1.2. FILE LOCATIONS

See the corresponding section in the Red Hat Directory Server Configuration, Command, and File

Reference.

1.3. STARTING THE DIRECTORY SERVER MANAGEMENT CONSOLE

The Management Console provides a graphical user interface that enables you to perform
administrative tasks, such as:

Managing Directory Server instances

Managing the Administration Server

Managing users and groups

NOTE

The Management Console uses Java. For details about the supported Java runtime
environments and versions, see the Red Hat Directory Server Release Notes.

To open the Management Console, enter:

CHAPTER 1. BASIC RED HAT DIRECTORY SERVER SETTINGS

7

https://access.redhat.com/documentation/en-us/red_hat_directory_server/10/html/release_notes/index
https://access.redhat.com/documentation/en-us/red_hat_directory_server/10/html/configuration_command_and_file_reference/file_locations_overview
https://access.redhat.com/documentation/en-us/red_hat_directory_server/10/html/release_notes/index

redhat-idm-console

For supported command-line options, see the corresponding section in the Red Hat Directory Server

Configuration, Command, and File Reference.

1.3.1. Opening the Directory Server Console

1. Start the Directory Server Management Console:

redhat-idm-console

2. Log in as the cn=Directory Manager user:

3. On the Servers and Applications tab, navigate to administration_domain_name →
host_name → Server Group → Directory Server (instance_name), and click Open.

1.3.2. Opening the Administration Server Console

1. Start the Directory Server Management Console:

redhat-idm-console

2. Log in as the cn=Directory Manager user:

Administration Guide

8

https://access.redhat.com/documentation/en-US/Red_Hat_Directory_Server/10/html/Configuration_Command_and_File_Reference/GUI_utilities#redhat-idm-console

3. On the Servers and Applications tab, navigate to administration_domain_name →
host_name → Server Group → Administration Server, and click Open.

1.4. STARTING AND STOPPING A DIRECTORY SERVER INSTANCE

1.4.1. Starting and Stopping a Directory Server Instance Using the Command Line

Use the systemctl utility to start, stop, or restart an instance:

To start an instance:

systemctl start dirsrv@instance_name

To stop an instance:

systemctl stop dirsrv@instance_name

To restart an instance:

systemctl restart dirsrv@instance_name

Optionally, you can enable Directory Server instances to automatically start when the system boots:

for a single instance:

systemctl enable dirsrv@instance_name

for all instances on a server:

systemctl enable dirsrv.target

For further details, see the Managing System Services section in the Red Hat System Administrator's

CHAPTER 1. BASIC RED HAT DIRECTORY SERVER SETTINGS

9

For further details, see the Managing System Services section in the Red Hat System Administrator's

Guide.

1.4.2. Starting and Stopping a Directory Server Instance Using the Console

Besides the command line, you can use the Directory Server Console to start, stop, or restart instances.

IMPORTANT

If you run SELinux in enforcing mode, you cannot use the Console to start or stop an
instance. To work around the problem, use the command line to manage the services.
See Section 1.4, “Starting and Stopping a Directory Server Instance” .

IMPORTANT

If you enabled TLS encryption for an instance, Directory Server prompts for the TLS
certificate password when the instance starts. The Directory Server Console does not
support displaying this password prompt in the GUI. To work around the problem:

use the command line to manage the service. See Section 1.4.1, “Starting and
Stopping a Directory Server Instance Using the Command Line”.

create a password file. See Section 9.4.1.5, “Creating a Password File for
Directory Server”.

To start, stop, or restart a Directory Server instance:

1. Start the Directory Server Console and log in using the cn=Directory Manager user name.

For details, see Section E.2.2, “Opening the Administration Server Console” .

2. On the Servers and Applications tab, navigate to administration_domain_name →
host_name → Server Group → Directory Server (instance_name), and click Open.

3. On the Tasks tab, click the task you want to execute:

Administration Guide

10

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/sect-Managing_Services_with_systemd-Services.html

4. Click Yes to confirm.

After the task finished, the console displays a message if the operation was successful or failed.

1.5. STARTING AND STOPPING THE DIRECTORY SERVER
ADMINISTRATION SERVER SERVICE

The Administration Server provides the Directory Server Console — a GUI to manage Directory Server.

1.5.1. Starting and Stopping the Administration Server Service Using the Command
Line

Use the systemctl utility to start, stop, or restart the Administration Server service:

To start the service:

systemctl start dirsrv-admin

To stop the service:

systemctl stop dirsrv-admin

To restart the service:

systemctl restart dirsrv-admin

Optionally, enable the Administration Server to automatically start when the system boots:

systemctl enable dirsrv-admin

For further details, see the Managing System Services section in the Red Hat System Administrator's

Guide.

1.5.2. Restarting and Stopping the Administration Server Service Using the Console

To restart or stop the Administration Server service:

1. Start the Directory Server Console and log in using the cn=Directory Manager user name.

For details, see Section E.2.2, “Opening the Administration Server Console” .

2. On the Servers and Applications tab, navigate to administration_domain_name →

CHAPTER 1. BASIC RED HAT DIRECTORY SERVER SETTINGS

11

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/sect-Managing_Services_with_systemd-Services.html

2. On the Servers and Applications tab, navigate to administration_domain_name →
host_name → Server Group → Administration Server, and click Open.

3. On the Tasks tab, click the task you want to execute:

4. Click Yes to confirm.

After the task finished, the console displays a message if the operation was successful or failed.

1.6. ENABLING LDAPI

Inter-process communication (IPC) is a way for separate processes on a Unix machine or a network to
communicate directly with each other. LDAPI allows LDAP connections to run over IPC connections,
meaning that LDAP operations can run over Unix sockets. These connections are much faster and more
secure than regular LDAP connections.

LDAPI is enabled through two configuration attributes:

nsslapd-ldapilisten to enable LDAPI for Directory Server

nsslapd-ldapifilepath to point to the Unix socket file

To enable LDAPI:

1. Modify the nsslapd-ldapilisten to turn LDAPI on and add the socket file attribute.

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x

dn: cn=config

changetype: modify

replace: nsslapd-ldapilisten

nsslapd-ldapilisten: on

-

add: nsslapd-ldapifilepath

nsslapd-ldapifilepath: /var/run/slapd-example.socket

2. Restart the server to apply the new configuration.

Administration Guide

12

systemctl restart dirsrv@instance

1.7. CHANGING DIRECTORY SERVER PORT NUMBERS

The standard and secure LDAP port numbers used by Directory Server can be changed through the
Directory Server Console or by changing the value of the nsslapd-port or nsslapd-secureport

attribute under the cn=config entry in the dse.ldif.

NOTE

Modifying the standard or secure port numbers for a Configuration Directory Server,
which maintains the o=NetscapeRoot subtree, should be done through the
Directory Server Console.

1.7.1. Changing Standard Port Numbers

1. In the Directory Server Console, select the Configuration tab, and then select the top entry in
the navigation tree in the left pane.

2. Select the Settings tab in the right pane.

3. Change the port numbers. The port number for the server to use for non-TLS communications
in the Port field, with a default value of 389.

4. Click Save.

5. The Console returns a warning, You are about to change the port number for the Configuration

Directory. This will affect all Administration Servers that use this directory and you'll need to

update them with the new port number. Are you sure you want to change the port number? Click
Yes.

6. Then a dialog appears, reading that the changes will not take effect until the server is restarted.
Click OK.

NOTE

Do not restart the Directory Server at this point. If you do, you will not be able to
make the necessary changes to the Administration Server through the Console.

7. Open the Administration Server Console.

8. In the Configuration tab, select the Configuration DS tab.

CHAPTER 1. BASIC RED HAT DIRECTORY SERVER SETTINGS

13

9. In the LDAP Port field, type in the new LDAP port number for your Directory Server instance.

10. Change the SELinux labels for the Directory Server ports so that the new port number is used in
the Directory Server policies. For example:

semanage port -a -t ldap_port_t -p tcp 1389

WARNING

If the SELinux label is not reset, then the Directory Server will not be able to
be restarted.

11. In the Tasks tab of the Directory Server Console, click Restart Directory Server. A dialog to
confirm that you want to restart the server. Click Yes.

12. Open the Configuration DS tab of the Administration Server Console and select Save.

A dialog will appear, reading The Directory Server setting has been modified. You must shutdown

and restart your Administration Server and all the servers in the Server Group for the changes to

take effect. Click OK.

13. In the Tasks tab of the Administration Server Console, click Restart Admin Server. A dialog
opens reading that the Administration Server has been successfully restarted. Click Close.

NOTE

You must close and reopen the Console before you can do anything else in the
Console. Refresh may not update the Console, and, if you try to do anything, you
will get a warning that reads Unable to contact LDAP server.

1.7.2. Changing the LDAPS Port Numbers

Changing the configuration directory or user directory port or secure port numbers has the following
repercussions:

The Directory Server port number must also be updated in the Administration Server

Administration Guide

14

The Directory Server port number must also be updated in the Administration Server
configuration.

If there are other Directory Server instances that point to the configuration or user directory,
update those servers to point to the new port number.

To modify the LDAPS port:

1. Make sure that the CA certificate used to issue the Directory Server instance's certificate is in
the Administration Server certificate database. Importing CA certificates for the
Administration Server is the same as the Directory Server process described in Section 9.3.3,
“Installing a CA Certificate”.

2. The secure port can be configured using the Directory Server Console, much like the process in
Section 1.7.1, “Changing Standard Port Numbers” (only setting the value in the Encrypted Port

field). However, in some circumstances, such as if there are multiple Directory Server instances
on the same machine, where changing port numbers may not be possible through the
Directory Server Console. It may be be better to use ldapmodify to change the port number.

For example:

ldapmodify -x -h server.example.com -p 1389 -D "cn=Directory Manager" -W

dn: cn=config

replace: nsslapd-securePort

nsslapd-securePort: 1636

3. Edit the corresponding port configuration for the Directory Server instance in th
Administration Server configuration (o=netscaperoot).

First, search for the current configuration:

ldapsearch -x -h config-ds.example.com -p 389 -D "cn=Directory Manager" -W -b

"cn=slapd-ID,cn=389 Directory Server,cn=Server

Group,cn=server.example.com,ou=example.com,o=NetscapeRoot" -s base "(objectclass=*)"

nsSecureServerPort

dn: cn=slapd-ID,cn=389 Directory Server,cn=Server

Group,cn=server.example.com,ou=example.com,o=NetscapeRoot

nsSecureServerPort: 636

Then, edit the configuration:

ldapmodify -x -h config-ds.example.com -p 389 -D "cn=Directory Manager" -W

dn: cn=slapd-ID,cn=389 Directory Server,cn=Server

Group,cn=server.example.com,ou=example.com,o=NetscapeRoot

replace: nsSecureServerPort

nsSecureServerPort: 1636

4. Start the Directory Server Console for the instance and confirm that the new LDAPS port
number is listed in the Configuration tab.

5. Optionally, select the Use SSL in Console check box.

6. Change the SELinux labels for the Directory Server ports so that the new port number is used in

CHAPTER 1. BASIC RED HAT DIRECTORY SERVER SETTINGS

15

6. Change the SELinux labels for the Directory Server ports so that the new port number is used in
the Directory Server policies. For example:

semanage port -a -t ldap_port_t -p tcp 1636

WARNING

If the SELinux label is not reset, then the Directory Server will not be able to
be restarted.

7. Restart the Directory Server instance.

1.8. MANAGING DIRECTORY SERVER INSTANCES

1.8.1. Creating a New Directory Server Instance

For details, see the corresponding sections in the Red Hat Directory Server Installation Guide:

Creating a new instance using the command line

Creating a new instance using the Console

1.8.2. Removing a Directory Server Instance

1.8.2.1. Removing a Directory Server Instance Using the Command Line

It is possible to remove a single instance of Directory Server without uninstalling all other instances,
removing an Administration Server instance, or removing the packages.

remove-ds.pl -i slapd-instance_name -a

The remove-ds.pl script removes any related files and directories if the -a (all) option is specified. But
the Directory Server instance is not unregistered from the Configuration Directory Server.

By default, the key and cert files are left in the instance configuration directory, and the configuration
directory is renamed slapd-instance-name.removed. Using the -a option (as shown) removes the
security databases, as well.

NOTE

If there is a problem with the Directory Server, like the installation failed or the server
cannot be restarted, then running remove-ds.pl script fails. In this case, try the -f option
to force the removal process.

1.8.2.1.1. Removing a Directory Server Instance and Administration Server

It is possible to remove both the Directory Server and the Administration Server (if configured on the

Administration Guide

16

https://access.redhat.com/documentation/en-us/red_hat_directory_server/10/html/installation_guide/creating_a_new_ds_instance#Creating_a_New_DS_Instance-CLI
https://access.redhat.com/documentation/en-us/red_hat_directory_server/10/html/installation_guide/creating_a_new_ds_instance#Creating_a_New_DS_Instance-Console

It is possible to remove both the Directory Server and the Administration Server (if configured on the
same system).

The -y option is required for the script to perform the removal operation. Otherwise, the remove-ds-

admin.pl script performs a dry-run but does not remove any servers.

The -a option is not required, but it is recommended if a Directory Server or Administration Server
instance may be re-configured on the system later. By default, all of the security databases are
preserved by the removal script. The -a option removes the security databases, as well.

NOTE

The Directory Server instance must be running for the script to bind to the server.

NOTE

If there is a problem with the Directory Server, like the installation failed or the server
cannot be restarted, then running remove-ds-admin.pl script fails. In this case, try the -f

option to force the removal process.

1.8.3. Removing a Directory Server Instance Using the Console

1. Open the Directory Server Console. For details, see Section 1.3.1, “Opening the
Directory Server Console”.

2. Right-click the server instance, and select Remove Server.

3. Click Yes to confirm.

1.9. USING DIRECTORY SERVER PLUG-INS

Directory Server has a number of default plug-ins which configure core Directory Server functions, such
as replication, classes of service, and even attribute syntaxes. Core plug-ins are enabled and completely
configured by default.

Other default plug-ins extend the functionality of the Directory Server by providing consistent, but

CHAPTER 1. BASIC RED HAT DIRECTORY SERVER SETTINGS

17

Other default plug-ins extend the functionality of the Directory Server by providing consistent, but
user-defined, behaviors, as with DNA, attribute uniqueness, and attribute linking. These plug-ins are
available, but not all are enabled or configured by default.

Using plug-ins also allows the Directory Server to be easily extended, so customers can write and deploy
their own server plug-ins to perform whatever directory operations they need for their specific
deployment.

For further details, see:

Section 1.9, “Using Directory Server Plug-ins”

The Plug-in Implemented Server Functionality Reference section in the Red Hat Directory Server

Configuration, Command, and File Reference

Red Hat Directory Server Plug-in Guide

1.9.1. Enabling Plug-ins Dynamically

Directory Server supports dynamic plug-ins that can be enabled without restarting the Directory Server.
Allowing for dynamically enabled plug-ins makes server administration significantly easier. By using
dynamic plug-ins, you can avoid restarting the server multiple times to install and configure the plug-ins.
This makes deploying software applications for the Directory Server much faster.

Each plug-in can be enabled or disabled by switching the value of the nsslapd-pluginEnabled attribute.
For example:

ldapmodify -x -D 'cn=Directory Manager' -W

dn: cn=Plug-in_name,cn=plugins,cn=config

changetype: modify

replace: nsslapd-pluginEnabled

nsslapd-pluginEnabled: on

Restarting the Directory Server when plug-ins are reconfigured is not required if you specify the
nsslapd-dynamic-plugins switch under the cn=config entry. To enable the dynamic plug-in feature,
set the nsslapd-dynamic-plugins attribute to on:

dn: cn=config

nsslapd-dynamic-plugins: on

To disable the dynamic plug-in feature, set the nsslapd-dynamic-plugins attribute to off:

dn: cn=config

nsslapd-dynamic-plugins: off

By default, nsslapd-dynamic-plugins is set to off.

1.9.2. Enabling Plug-ins

1.9.2.1. Enabling Plug-ins in the Command Line

To disable or enable a plug-in through the command line, use the ldapmodify utility to edit the value of
the nsslapd-pluginEnabled attribute. For example:

Administration Guide

18

https://access.redhat.com/documentation/en-us/red_hat_directory_server/10/html/plug-in_guide/index

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x

dn: cn=ACL Plugin,cn=plugins,cn=config

changetype: modify

replace: nsslapd-pluginEnabled

nsslapd-pluginEnabled: on

1.9.2.2. Enabling Plug-ins in the Directory Server Console

To enable and disable plug-ins using the Directory Server Console:

1. In the Directory Server Console, select the Configuration tab.

2. Double-click the Plugins folder in the navigation tree.

3. Select the plug-in from the Plugins list.

4. To disable the plug-in, clear the Enabled check box. To enable the plug-in, check this check
box.

5. Click Save.

6. Restart the Directory Server.

systemctl restart dirsrv@instance

NOTE

When a plug-in is disabled, all of the details about the plug-in — such as its version and its
vendor — are not displayed in the Directory Server Console; all details fields show NONE.

Once a plug-in is enabled, those details will not be displayed in the Console until the
Directory Server is restarted (loading the new plug-in configuration) and the
Directory Server Console is refreshed.

1.9.3. Configuring Plug-ins

In Directory Server 9 and earlier, you configured plug-ins using the nsslapd-pluginarg* attributes.
Directory Server 10 added support for specific configuration attributes for certain plug-ins.

IMPORTANT

CHAPTER 1. BASIC RED HAT DIRECTORY SERVER SETTINGS

19

IMPORTANT

If both the plug-in-specific configuration attributes and the deprecated nsslapd-

pluginarg* attributes are set in a plug-in's configuration, Directory Server only uses
settings in plug-in-specific attributes.

The following two examples use the same settings for the Referential Integrity plug-in but using the
different configuration options:

Example 1.1. Plug-in Configuration using Configuration Attributes

referint-update-delay: 0

referint-logfile: /var/log/dirsrv/slapd-localhost/referint

referint-logchanges: 0

referint-membership-attr: member

referint-membership-attr: uniquemember

referint-membership-attr: owner

referint-membership-attr: seeAlso

NOTE

Red Hat recommends using only the configuration plug-in-specific attributes. For plug-
in-specific attributes, see the corresponding section in the Red Hat Directory Server

Configuration, Command, and File Reference.

Example 1.2. Plug-in Configuration using Plug-in Argument Attributes (Deprecated)

nsslapd-pluginarg0: 0

nsslapd-pluginarg1: /var/log/dirsrv/slapd-localhost/referint

nsslapd-pluginarg2: 0

nsslapd-pluginarg3: member

nsslapd-pluginarg4: uniquemember

nsslapd-pluginarg5: owner

nsslapd-pluginarg6: seeAlso

1.9.3.1. Configuring Plug-ins using the Command Line

To use the ldapmodify utility to configure settings of a plug-in:

1. Identify the distinguished name (DN) of the plug-in's configuration. For details, see the
corresponding section in the Red Hat Directory Server Configuration, Command, and File

Reference.

2. Set the new value. For example, to set the update delay of the Referential Integrity plug-in to
0:

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x

dn: cn=referential integrity postoperation,cn=plugins,cn=config

Administration Guide

20

https://access.redhat.com/documentation/en-us/red_hat_directory_server/10/html/configuration_command_and_file_reference/plug_in_implemented_server_functionality_reference
https://access.redhat.com/documentation/en-us/red_hat_directory_server/10/html/configuration_command_and_file_reference/plug_in_implemented_server_functionality_reference

changetype: modify

replace: referint-update-delay

referint-update-delay: 0

3. Restart the Directory Server instance:

systemctl restart dirsrv@instance_name

1.9.3.2. Configuring Plug-ins using the Console

To use the Directory Server Console to configure settings of a plug-in:

1. Start the Directory Server Console and log in using the cn=Directory Manager user name.

For details, see Section E.2.2, “Opening the Administration Server Console” .

2. On the Servers and Applications tab, navigate to administration_domain_name →
host_name → Server Group → Directory Server (instance_name), and click Open.

3. Navigate to Plug-ins and select the plug-in to configure.

4. Click the Advanced button in the right panel.

NOTE

Red Hat recommends to configure the plug-in using the Property Editor, which
uses the plug-in-specific attributes.

5. Set the plug-in-specific attributes.

6. Click OK to close the Property Editor.

7. Restart Directory Server. For details, see Section 1.5.2, “Restarting and Stopping the
Administration Server Service Using the Console”.

1.9.4. Setting the Plug-in Precedence

The plug-in precedence is the priority it has in the execution order of plug-ins. For pre- and post-
operation plug-ins, this allows one plug-in to be executed and complete before the next plug-in is
initiated, which lets the second plug-in take advantage of the first plug-in's results.

Plug-in precedence is configured in the nsslapd-pluginPrecedence attribute on the plug-in's
configuration entry. This attribute has a value of 1 (highest priority) to 99 (lowest priority). If the
attribute is not set, it has a default value of 50.

CHAPTER 1. BASIC RED HAT DIRECTORY SERVER SETTINGS

21

IMPORTANT

Do not set the plug-in precedence for the default Directory Server plug-ins unless told to
do so by Red Hat support. The plug-in precedence attribute is primarily to govern the
behavior of custom plug-ins, not to change the behavior of the core Directory Server
plug-ins.

The nsslapd-pluginPrecedence attribute is set using the ldapmodify command. For example:

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x

dn: cn=My Example Plugin,cn=plugins,cn=config

changetype: modify

replace: nsslapd-pluginPrecedence

nsslapd-pluginPrecedence: 1

1.10. SERVER CONFIGURATION ATTRIBUTES

Directory Server stores the configuration maintained in the cn=config entry in the
/etc/dirsrv/slapd-instance_name/dse.ldif file. If you set up a new instance, Directory Server only stores
configuration attributes that have been modified in this file. Attributes that are not listed, use their
default value.

This enables you to:

Identify all configuration parameters set in this instance by displaying the
/etc/dirsrv/slapd-instance_name/dse.ldif file.

Restore a default value by deleting the parameter.

If you delete a configuration parameter, the parameter is no longer listed in the
/etc/dirsrv/slapd-instance_name/dse.ldif file. However, the parameter and its default value is
displayed when you search the parameter in the cn=config entry using the LDAP protocol.

Note that you cannot delete the parameters listed in Table 1.1, “Configuration Attributes That
Cannot Be Deleted” to reset them to their default. If you try to delete them, the server will reject
the request with a Server is unwilling to perform (53) error.

Use the latest default values provided by a new Directory Server version.

New versions often provide optimized settings and increased security. For example, if you do
not set the passwordStorageScheme attribute, Directory Server automatically uses the
strongest supported password storage scheme available. If a future update changes the default
value to increase security, passwords will be automatically encrypted using the new storage
scheme when a user set a passwords.

NOTE

If you manually set a parameter to the same value as its default, the value is not
updated. This happens, when a newer version uses a different default value.

Table 1.1. Configuration Attributes That Cannot Be Deleted

Administration Guide

22

nsslapd-accesslog nsslapd-auditlog nsslapd-bakdir

nsslapd-certdir nsslapd-certmap-basedn nsslapd-conntablesize

nsslapd-errorlog nsslapd-instancedir nsslapd-ldifdir

nsslapd-localhost nsslapd-localuser nsslapd-lockdir

nsslapd-rootpw nsslapd-referral nsslapd-referralmode

nsslapd-rundir nsslapd-saslpath nsslapd-schemadir

nsslapd-tmpdir nsslapd-workingdir

CHAPTER 1. BASIC RED HAT DIRECTORY SERVER SETTINGS

23

CHAPTER 2. CONFIGURING DIRECTORY DATABASES

The directory is made up of databases, and the directory tree is distributed across the databases. This
chapter describes how to create suffixes, the branch points for the directory tree, and how to create the
databases associated with each suffix. This chapter also describes how to create database links to
reference databases on remote servers and how to use referrals to point clients to external sources of
directory data.

2.1. CREATING AND MAINTAINING SUFFIXES

Different pieces of the directory tree can be stored in different databases, and then these databases
can be distributed across multiple servers. The directory tree contains branch points called nodes. These
nodes may be associated with databases. A suffix is a node of the directory tree associated with a
particular database. For example, a simple directory tree might appear as illustrated in Figure 2.1, “A
Directory Tree with One Root Suffix”.

Figure 2.1. A Directory Tree with One Root Suffix

The ou=people suffix and all the entries and nodes below it might be stored in one database, the
ou=groups suffix in another database, and the ou=contractors suffix in yet another database.

2.1.1. Creating Suffixes

A root suffix is the parent of a sub suffix. It can be part of a larger tree designed for the Directory Server.
A sub suffix is a branch underneath a root suffix. Both root and sub suffixes are used to organize the
contents of the directory tree. The data for root and sub suffixes are contained in databases.

A directory might contain more than one root suffix. For example, an ISP might host several websites,
one for example.com and one for redhat.com. Here, two root suffixes are required, one corresponding
to the dc=example,dc=com naming context and one corresponding to the dc=redhat,dc=com naming
context, as shown in Figure 2.2, “A Directory Tree with Two Root Suffixes” .

Administration Guide

24

Figure 2.2. A Directory Tree with Two Root Suffixes

It is also possible to create root suffixes to exclude portions of the directory tree from search
operations. For example, Example Corporation wants to exclude their European office from a search on
the general Example Corporation directory. To do this, they create two root suffixes. One root suffix
corresponds to the general Example Corporation directory tree, dc=example,dc=com, and one root
suffix corresponds to the European branch of their directory tree, l=europe,dc=example,dc=com.
From a client application's perspective, the directory tree looks as illustrated in Figure 2.3, “A Directory
Tree with a Root Suffix Off Limits to Search Operations”.

Figure 2.3. A Directory Tree with a Root Suffix Off Limits to Search Operations

Searches performed by client applications on the dc=example,dc=com branch of the directory will not
return entries from the l=europe,dc=example,dc=com branch of the directory, as it is a separate root
suffix.

If you wanted to include entries in the European branch of the directory tree in general searches, you
could make the European branch a sub suffix of the general branch. To do this, create a root suffix for
Example Corporation, dc=example,dc=com, and then create a sub suffix beneath it for the European
directory entries, l=europe,dc=example,dc=com. From a client application's perspective, the directory
tree would appear as illustrated in Figure 2.4, “A Directory Tree with a Sub Suffix” .

CHAPTER 2. CONFIGURING DIRECTORY DATABASES

25

Figure 2.4. A Directory Tree with a Sub Suffix

This section describes creating root and sub suffixes for the directory using either the
Directory Server Console or the command line.

2.1.1.1. Creating a New Root Suffix Using the Console

1. In the Directory Server Console, select the Configuration tab.

2. Right-click Data in the left navigation pane, and select New Root Suffix from the pop-up menu.

3. Enter a unique suffix in the New suffix field.

The suffix must be named in line with dc naming conventions, such as dc=example,dc=com.

Administration Guide

26

4. Select the Create associated database automatically to create a database at the same time
as the new root suffix, and enter a unique name for the new database in the Database name

field, such as example2. The name can be a combination of alphanumeric characters, dashes (-),
and underscores (_). No other characters are allowed.

Deselect the check box to create a database for the new root suffix later. This option specifies a
directory where the database will be created. The new root suffix will be disabled until a
database is created.

The new root suffix is listed under the Data folder.

2.1.1.2. Creating a New Sub Suffix Using the Console

1. In the Directory Server Console, select the Configuration tab.

2. Under the Data in the left navigation pane, select the suffix under which to add a new sub suffix.
Right-click the suffix, and select New Sub Suffix from the pop-up menu.

CHAPTER 2. CONFIGURING DIRECTORY DATABASES

27

The Create new sub suffix dialog box is displayed.

3. Enter a unique suffix name in the New suffix field. The suffix must be named in line with dc

naming conventions, for example ou=groups.

The root suffix is automatically added to the name. For example, if the sub suffix ou=groups is
created under the dc=example,dc=com suffix, the Console automatically names it
ou=groups,dc=example,dc=com.

4. Select the Create associated database automatically check box to create a database at the
same time as the new sub suffix, and enter a unique name for the new database in the Database

name field, such as example2. The name can be a combination of alphanumeric characters,
dashes (-), and underscores (_). No other characters are allowed.

If the check box is not selected, than the database for the new sub suffix must be created later.
The new sub suffix is disabled until a database is created.

Administration Guide

28

The suffix appears automatically under its root suffix in the Data tree in the left navigation pane.

2.1.1.3. Creating Root and Sub Suffixes using the Command Line

The suffix configuration information is stored in the cn=mapping tree,cn=config entry. Use the
ldapmodify utility to add new suffixes to the directory.

For a list of all parameters you can set when creating a suffix, see the corresponding section in the
Red Hat Directory Server Configuration, Command, and File Reference .

Creating a Root Suffix
For example, to add the dc=example,dc=com root suffix:

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x

dn: cn="dc=example,dc=com",cn=mapping tree,cn=config

changetype: add

cn: dc=example,dc=com

objectclass: top

objectclass: extensibleObject

objectclass: nsMappingTree

nsslapd-state: backend

nsslapd-backend: UserData

Creating a Sub Suffix
Creating a sub suffix is similar to creating a root suffix. The difference is that you additionally set the
parent suffix in the nsslapd-parent-suffix.

For example, to create the ou=groups sub suffix under the dc=example,dc=com root suffix:

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x

CHAPTER 2. CONFIGURING DIRECTORY DATABASES

29

https://access.redhat.com/documentation/en-us/red_hat_directory_server/10/html/configuration_command_and_file_reference/core_server_configuration_reference#Suffix_Configuration_Attributes_under_cnsuffixName

dn: cn="ou=groups,dc=example,dc=com",cn=mapping tree,cn=config

changetype: add

cn: ou=groups,dc=example,dc=com

objectclass: top

objectclass: extensibleObject

objectclass: nsMappingTree

nsslapd-state: backend

nsslapd-backend: GroupData

nsslapd-parent-suffix: dc=example,dc=com

2.1.2. Maintaining Suffixes

2.1.2.1. Viewing the Default Naming Context

A naming context is analogous to the suffix; it is the root structure for naming directory entries. There
can be multiple naming contexts, depending on the directory and data structure. For example, a
standard Directory Server configuration has a user suffix such as dc=example,dc=com, a configuration
suffix in cn=config, and an administrative configuration suffix in o=netscaperoot.

Many directory trees have multiple naming contexts to be used with different types of entries or with
logical data divisions. Clients which access the Directory Server may not know what naming context they
need to use. The Directory Server has a server configuration attribute which signals to clients what the
default naming context is, if they have no other naming context configuration known to them.

The default naming context is set in the nsslapd-defaultnamingcontext attribute in cn=config. This
value is propagated over to the root DSE (Directory Server Agent Service Entry) and can be queried by
clients anonymously by checking the defaultnamingcontext attribute in the root DSE:

ldapsearch -p 389 -h server.example.com -x -b "" -s base | egrep namingcontext

namingContexts: dc=example,dc=com

namingContexts: dc=example,dc=net

namingContexts: dc=redhat,dc=com

defaultnamingcontext: dc=example,dc=com

IMPORTANT

To maintain configuration consistency, do not remove the nsslapd-

defaultnamingcontext attribute from the nsslapd-allowed-to-delete-attrs list.

By default, the nsslapd-defaultnamingcontext attribute is included in the list of
attributes which can be deleted, in the nsslapd-allowed-to-delete-attrs attribute. This
allows the current default suffix to be deleted and then update the server configuration
accordingly.

If for some reason the nsslapd-defaultnamingcontext attribute is removed from the list
of configuration attributes which can be deleted, then no changes to that attribute are
preserved. If the default suffix is deleted, that change cannot be propagated to the
server configuration. This means that the nsslapd-defaultnamingcontext attribute
retains the old information instead of being blank (removed), which is the correct and
current configuration.

2.1.2.2. Disabling a Suffix

In certain situations, a suffix in the directory needs to be disabled. If a suffix is disabled, the content of

Administration Guide

30

In certain situations, a suffix in the directory needs to be disabled. If a suffix is disabled, the content of
the database related to the suffix are no longer accessible by clients.

2.1.2.2.1. Disabling a Suffix Using the Command Line

To disable a suffix using the command line, set the nsslapd-state attribute of the corresponding suffix
entry to disabled:

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x

dn: cn=suffix_DN,cn=mapping tree,cn=config

changetype: modify

replace: nsslapd-state

nsslapd-state: disabled

2.1.2.2.2. Disabling a Suffix Using the Console

To disable a suffix using the Console:

1. In the Directory Server Console, select the Configuration tab.

2. Under Data in the left navigation pane, click the suffix to disable.

3. Click the Suffix Setting tab, and deselect the Enable this suffix check box.

2.1.2.3. Deleting a Suffix

If a suffix is no longer required, delete it from the database.

CHAPTER 2. CONFIGURING DIRECTORY DATABASES

31

WARNING

Deleting a suffix also deletes all database entries and replication information
associated with that suffix.

2.1.2.3.1. Deleting a Suffix Using the Command Line

To delete a suffix using the command line:

1. Delete the suffix from the mapping tree:

ldapdelete -D "cn=Directory Manager" -W -p 389 -h server.example.com -x

"cn="suffix_DN",cn=mapping tree,cn=config"

2. If the suffix uses a separate database, delete the database:

ldapdelete -D "cn=Directory Manager" -W -p 389 -h server.example.com -x

"cn=database_name,cn=ldbm database,cn=plugins,cn=config"

2.1.2.3.2. Deleting a Suffix Using the Console

To delete a suffix using the Console:

1. In the Directory Server Console, select the Configuration tab.

2. Under Data in the left navigation pane, select the suffix to delete.

3. Right-click the suffix, and select Delete from the menu.

4. Select either Delete this suffix and all of its sub suffixes or Delete this suffix only.

Administration Guide

32

2.2. CREATING AND MAINTAINING DATABASES

After creating suffixes to organizing the directory data, create databases to contain data of that
directory.

2.2.1. Creating Databases

The directory tree can be distributed over multiple Directory Server databases. There are two ways to
distribute data across multiple databases:

One database per suffix. The data for each suffix is contained in a separate database.

Three databases are added to store the data contained in separate suffixes:

This division of the tree units corresponds to three databases, for example:

CHAPTER 2. CONFIGURING DIRECTORY DATABASES

33

In this example, DB1 contains the data for ou=people and the data for dc=example,dc=com, so that
clients can conduct searches based at dc=example,dc=com. However, DB2 only contains the data
for ou=groups, and DB3 only contains the data for ou=contractors:

Multiple databases for one suffix.

Suppose the number of entries in the ou=people branch of the directory tree is so large that two
databases are needed to store them. In this case, the data contained by ou=people could be
distributed across two databases:

Administration Guide

34

DB1 contains people with names from A-K, and DB2 contains people with names from L-Z. DB3
contains the ou=groups data, and DB4 contains the ou=contractors data.

A custom plug-in distributes data from a single suffix across multiple databases. Contact Red Hat
Consulting for information on how to create distribution logic for Directory Server.

2.2.1.1. Creating a New Database for an Existing Suffix Using the Console

1. In the Directory Server Console, select the Configuration tab.

2. In the left pane, expand Data, then click the suffix to which to add the new database.

3. Right-click the suffix, and select New Database from the pop-up menu.

CHAPTER 2. CONFIGURING DIRECTORY DATABASES

35

4. Enter a unique name for the database, such as example2. The database name can be a
combination of alphanumeric characters, dashes (-), and underscores (_).

The Create database in field is automatically filled with the default database directory
(/var/lib/dirsrv/slapd-instance/db) and the name of the new database. It is also possible to
enter or browse for a different directory location.

2.2.1.2. Creating a New Database for a Single Suffix from the Command Line

Use the ldapmodify command-line utility to add a new database to the directory configuration file. The
database configuration information is stored in the cn=ldbm database,cn=plugins,cn=config entry.
For example, add a new database to the server example1:

1. Run ldapmodify and create the entry for the new database.

ldapmodify -a -D "cn=Directory Manager" -W -p 389 -h server.example.com -x

dn: cn=UserData,cn=ldbm database,cn=plugins,cn=config

changetype: add

objectclass: extensibleObject

objectclass: nsBackendInstance

nsslapd-suffix: ou=people,dc=example,dc=com

The added entry corresponds to a database named UserData that contains the data for the
root or sub suffix ou=people,dc=example,dc=com.

2. Create a root or a sub-suffix, as described in Section 2.1.1.3, “Creating Root and Sub Suffixes
using the Command Line”. The database name, given in the DN attribute, must correspond with
the value in the nsslapd-backend attribute of the suffix entry.

2.2.1.3. Adding Multiple Databases for a Single Suffix

A single suffix can be distributed across multiple databases. However, to distribute the suffix, a custom
distribution function has to be created to extend the directory. For more information on creating a
custom distribution function, contact Red Hat Consulting.

NOTE

Administration Guide

36

NOTE

Once entries have been distributed, they cannot be redistributed. The following
restrictions apply:

The distribution function cannot be changed once entry distribution has been
deployed.

The LDAP modrdn operation cannot be used to rename entries if that would
cause them to be distributed into a different database.

Distributed local databases cannot be replicated.

The ldapmodify operation cannot be used to change entries if that would cause
them to be distributed into a different database.

Violating these restrictions prevents Directory Server from correctly locating and
returning entries.

After creating a custom distribution logic plug-in, add it to the directory.

The distribution logic is a function declared in a suffix. This function is called for every operation reaching
this suffix, including subtree search operations that start above the suffix. A distribution function can be
inserted into a suffix using both the Console and the command line interface.

2.2.1.3.1. Adding the Custom Distribution Function to a Suffix Using the Directory Server Console

1. In the Directory Server Console, select the Configuration tab.

2. Expand Data in the left navigation pane. Select the suffix to which to apply the distribution
function.

3. Select the Databases tab in the right window.

4. The databases associated with the suffix are already listed in the Databases tab. Click Add to
associate additional databases with the suffix.

5. Enter the path to the distribution library.

6. Enter the name of the distribution function in the Function name field.

CHAPTER 2. CONFIGURING DIRECTORY DATABASES

37

2.2.1.3.2. Adding the Custom Distribution Function to a Suffix Using the Command Line

1. Run ldapmodify.

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x

2. Add the following attributes to the suffix entry itself, supplying the information about the
custom distribution logic:

dn: suffix

changetype: modify

add: nsslapd-backend

nsslapd-backend: Database1

-

add: nsslapd-backend

nsslapd-backend: Database2

-

add: nsslapd-backend

nsslapd-backend: Database3

-

add: nsslapd-distribution-plugin

nsslapd-distribution-plugin: /full/name/of/a/shared/library

-

add: nsslapd-distribution-funct

nsslapd-distribution-funct: distribution-function-name

The nsslapd-backend attribute specifies all databases associated with this suffix. The
nsslapd-distribution-plugin attribute specifies the name of the library that the plug-in uses.
The nsslapd-distribution-funct attribute provides the name of the distribution function itself.

For more information about using the ldapmodify command-line utility, see Section 3.1, “Managing
Entries Using the Command Line”.

2.2.2. Maintaining Directory Databases

Section 2.2.2.1, “Placing a Database in Read-Only Mode”

Section 2.2.2.2, “Deleting a Database”

Section 2.2.2.3, “Changing the Transaction Log Directory”

2.2.2.1. Placing a Database in Read-Only Mode

When a database is in read-only mode, you cannot create, modify, or delete any entries. One of the
situations when read-only mode is useful is for manually initializing a consumer or before backing up or
exporting data from the Directory Server. Read-only mode ensures a faithful image of the state of
these databases at a given time.

The Directory Server Console and the command-line utilities do not automatically put the directory in
read-only mode before export or backup operations because this would make your directory unavailable
for updates. However, with multi-master replication, this might not be a problem.

Section 2.2.2.1.1, “Making a Database Read-Only Using the Console”

Section 2.2.2.1.2, “Making a Database Read-Only from the Command Line”

Administration Guide

38

Section 2.2.2.1.3, “Placing the Entire Directory Server in Read-Only Mode”

2.2.2.1.1. Making a Database Read-Only Using the Console

1. In the Directory Server Console, select the Configuration tab.

2. Expand Data in the left pane. Expand the suffix containing the database to put in read-only
mode.

3. Select the database to put into read-only mode.

4. Select the Database Settings tab in the right pane.

5. Select the database is read-only check box.

The change takes effect immediately.

Before importing or restoring the database, ensure that the databases affected by the operation are not

in read-only mode.

To disable read-only mode, open the database up in the Directory Server Console again and uncheck
the database is read-only check box.

2.2.2.1.2. Making a Database Read-Only from the Command Line

To manually place a database into read-only mode:

1. Run ldapmodify.

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x

2. Change the read-only attribute to on

dn: cn=database_name,cn=ldbm database,cn=plugins,cn=config

changetype: modify

replace: nsslapd-readonly

nsslapd-readonly: on

NOTE

CHAPTER 2. CONFIGURING DIRECTORY DATABASES

39

NOTE

By default, the name of the database created at installation time is userRoot.

2.2.2.1.3. Placing the Entire Directory Server in Read-Only Mode

If the Directory Server maintains more than one database and all databases need to be placed in read-
only mode, this can be done in a single operation.

WARNING

This operation also makes the Directory Server configuration read-only; therefore,
you cannot update the server configuration, enable or disable plug-ins, or even
restart the Directory Server while it is in read-only mode. Once read-only mode is
enabled, it cannot cannot be undone from the Console; you must modify the
configuration files.

NOTE

If Directory Server contains replicas, do not use read-only mode because it will disable
replication.

To put the Directory Server in read-only mode:

1. In the Directory Server Console, select the Configuration tab, and then select the top entry in
the navigation tree in the left pane.

2. Select the Settings tab in the right pane.

Administration Guide

40

3. Select the Make Entire Server Read-Only check box.

4. Click Save, and then restart the server.

2.2.2.2. Deleting a Database

Deleting a database deletes the configuration information and entries for that database only, not the
physical database itself.

1. In the Directory Server Console, select the Configuration tab.

2. Expand the Data folder, and then select the suffix.

3. Select the database to delete.

4. Right-click the database and select Delete from the pop-up menu.

CHAPTER 2. CONFIGURING DIRECTORY DATABASES

41

5. Confirm that the database should be deleted in the Delete Database dialog box.

2.2.2.3. Changing the Transaction Log Directory

The transaction log enables Directory Server to recover the database, after an instance shut down
unexpectedly. In certain situations, administrators want to change the path to the transaction logs. For
example, to store them on a different physical disk than the Directory Server database.

NOTE

To achieve higher performance, mount a faster disk to the directory that contains the
transaction logs, instead of changing the location. For details, see the corresponding
section in the Red Hat Directory Server Performance Tuning Guide .

To change the location of the transaction log directory:

1. Stop the Directory Server instance:

systemctl stop dirsrv@instance_name

2. Create a new location for the transaction logs. For example:

mkdir -p /srv/dirsrv/instance_name/db/

3. Set permissions to enable only Directory Server to access the directory:

chown dirsrv:dirsrv /srv/dirsrv/instance_name/db/

chmod 770 /srv/dirsrv/instance_name/db/

Administration Guide

42

https://access.redhat.com/documentation/en-us/red_hat_directory_server/10/html/performance_tuning_guide/tuning_database_performance-tuning_transaction_logging#moving_the_database_directory_to_a_separate_disk_or_partition

4. Remove all __db.* files from the previous transaction log directory. For example:

rm /var/lib/dirsrv/slapd-instance_name/db/__db.*

5. Move all log.* files from the previous to the new transaction log directory. For example:

mv /var/lib/dirsrv/slapd-instance_name/db/log.* \

 /srv/dirsrv/instance_name/db/

6. If SELinux is running in enforcing mode, set the dirsrv_var_lib_t context on the directory:

semanage fcontext -a -t dirsrv_var_lib_t /srv/dirsrv/instance_name/db/

restorecon -Rv /srv/dirsrv/instance_name/db/

7. Edit the /etc/dirsrv/slapd-instance_name/dse.ldif file, and update the nsslapd-db-

logdirectory parameter under the cn=config,cn=ldbm database,cn=plugins,cn=config entry.
For example:

dn: cn=config,cn=ldbm database,cn=plugins,cn=config

...

nsslapd-db-logdirectory: /srv/dirsrv/instance_name/db/

8. Start the instance:

systemctl start dirsrv@instance_name

2.3. CREATING AND MAINTAINING DATABASE LINKS

Chaining means that a server contacts other servers on behalf of a client application and then returns
the combined results. Chaining is implemented through a database link, which points to data stored
remotely. When a client application requests data from a database link, the database link retrieves the
data from the remote database and returns it to the client.

Section 2.3.1, “Creating a New Database Link”

Section 2.3.2, “Configuring the Chaining Policy”

Section 2.3.3, “Maintaining Database Links”

Section 2.3.4, “Configuring Database Link Defaults”

Section 2.3.5, “Deleting Database Links”

Section 2.3.6, “Database Links and Access Control Evaluation”

For more general information about chaining, see the chapter "Designing the Directory Topology," in the
Red Hat Directory Server Deployment Guide. Section 20.8, “Monitoring Database Link Activity” covers
how to monitor database link activity.

2.3.1. Creating a New Database Link

The basic database link configuration requires four piece of information:

Suffix information. A suffix is created in the directory tree that is managed by the database link,

CHAPTER 2. CONFIGURING DIRECTORY DATABASES

43

Suffix information. A suffix is created in the directory tree that is managed by the database link,
not a regular database. This suffix corresponds to the suffix on the remote server that contains
the data.

Bind credentials. When the database link binds to a remote server, it impersonates a user, and
this specifies the DN and the credentials for each database link to use to bind with remote
servers.

LDAP URL. This supplies the LDAP URL of the remote server to which the database link
connects. The URL consists of the protocol (ldap or ldaps), the host name or IP address (IPv4 or
IPv6) for the server, and the port.

List of failover servers. This supplies a list of alternative servers for the database link to contact
in the event of a failure. This configuration item is optional.

NOTE

If secure binds are required for simple password authentication (Section 19.11.1, “Requiring
Secure Binds”), then any chaining operations will fail unless they occur over a secure
connection. Using a secure connection (TLS and Start TLS connections or SASL
authentication) is recommended, anyway.

2.3.1.1. Creating a New Database Link Using the Console

1. In the Directory Server Console, select the Configuration tab.

2. Create a new suffix as described in Section 2.1.1, “Creating Suffixes”.

Deselect the Create associated database automatically check box. It is simpler to configure a
database link on a suffix without a database associated with it because having both a database
and database link requires custom distribution functions to distribute directory data.

3. In the left pane, right-click the new suffix, and select New Database Link from the pop-up
menu.

Administration Guide

44

4. Fill in the database link name. The name can be a combination of alphanumeric characters,
dashes (-), and underscores (_). No other characters, like spaces, are allowed.

5. Set the radio button for the appropriate method for authentication.

CHAPTER 2. CONFIGURING DIRECTORY DATABASES

45

There are four authentication methods:

Simple means that the server connects over the standard port with no encryption. The only
required information is the bind DN and password for the user as whom the server connects
to the remote server.

Server TLS/SSL Certificate uses the local server's TLS certificate to authenticate to the
remote server. A certificate must be installed on the local server for certificate-based
authentication, and the remote server must have certificate mapping configured so that it
can map the subject DN in the local server's certificate to the corresponding user entry.

Configuring TLS and certificate mapping is described in Section 9.4, “Enabling TLS” .

NOTE

When the database link and remote server are configured to communicate
using TLS, this does not mean that the client application making the
operation request must also communicate using TLS. The client can bind
using a normal port.

SASL/DIGEST-MD5 requires only the bind DN and password to authenticate.

SASL/GSSAPI requires the local server to have a Kerberos keytab (as in Section 9.10.2.2,

Administration Guide

46

“About the KDC Server and Keytabs”), and the remote server to have a SASL mapping to
map the local server's principal to the real user entry (as in Section 9.9.3.1, “Configuring
SASL Identity Mapping from the Console”).

6. In the Remote Server Information section, select the connection type for the local server to
use to connect to the remote server. There are three options:

Use LDAP . This sets a standard, unencrypted connection.

Use TLS/SSL . This uses a secure connection over the server's secure LDAPS port, such as
636. This setting is required to use TLS/TLS.

When using TLS, make sure that the remote server's port number is set to its secure port.

Use Start TLS . This uses Start TLS to establish a secure connection over the server's
standard port.

NOTE

If secure binds are required for simple password authentication (Section 19.11.1,
“Requiring Secure Binds”), then any chaining operations will fail unless they occur
over a secure connection. Using a secure connection (TLS and Start TLS
connections or SASL authentication) is recommended, anyway.

7. In the Remote Server Information section, fill in the name (host name, IPv4 address, or IPv6
address) and port number for the remote server.

For any failover servers, fill in the host name and port number, and click the Add button. A
failover server is a backup server, so that if the primary remote server fails, the database link
contacts the first server in the failover servers list and cycles through the list until a server is
accessed.

The new database link is listed under the suffix, in place of the database.

NOTE

The Console provides a checklist of information that needs to be present on the remote

server for the database link to bind successfully. To view this checklist, click the new
database link, and click the Authentication tab. The checklist is in the Remote server

checklist box.

2.3.1.2. Creating a Database Link from the Command Line

1. Use the ldapmodify command-line utility to create a new database link. The new instance must
be located in the cn=chaining database,cn=plugins,cn=config entry.

ldapmodify -a -D "cn=Directory Manager" -W -p 389 -h server.example.com -x

CHAPTER 2. CONFIGURING DIRECTORY DATABASES

47

2. Specify the configuration information for the database link:

dn: cn=examplelink,cn=chaining database,cn=plugins,cn=config

changetype: add

objectclass: top

objectclass: extensibleObject

objectclass: nsBackendInstance

nsslapd-suffix: ou=people,dc=example,dc=com suffix being chained

nsfarmserverurl: ldap://people.example.com:389/ LDAP URL to remote server

nsMultiplexorBindDN: cn=proxy admin,cn=config bind DN

nsMultiplexorCredentials: secret bind password

cn: examplelink

NOTE

If secure binds are required for simple password authentication (Section 19.11.1, “Requiring
Secure Binds”), then any chaining operations will fail unless they occur over a secure
connection. Using a secure connection (TLS and Start TLS connections or SASL
authentication) is recommended, anyway.

Default configuration attributes are contained in the cn=default instance config,cn=chaining

database,cn=plugins,cn=config entry. These configuration attributes apply to all database links at
creation time. Changes to the default configuration only affect new database links. The default
configuration attributes on existing database links cannot be changed.

Each database link contains its own specific configuration information, which is stored with the database
link entry itself, cn=database_link, cn=chaining database,cn=plugins,cn=config. For more information
about configuration attributes, see the Red Hat Directory Server

Configuration, Command, and File Reference.

Section 2.3.1.2.1, “Providing Suffix Information”

Section 2.3.1.2.2, “Providing Bind Credentials”

Section 2.3.1.2.3, “Providing an LDAP URL”

Section 2.3.1.2.4, “Providing a List of Failover Servers”

Section 2.3.1.2.5, “Using Different Bind Mechanisms”

Section 2.3.1.2.6, “Summary of Database Link Configuration Attributes”

Section 2.3.1.2.7, “Database Link Configuration Example”

2.3.1.2.1. Providing Suffix Information

Use the nsslapd-suffix attribute to define the suffix managed by the database link. For example, for the
database link to point to the people information for a remote site of the company, enter the following
suffix information:

nsslapd-suffix: l=Zanzibar,ou=people,dc=example,dc=com

The suffix information is stored in the cn=database_link, cn=chaining database,cn=plugins,cn=config

entry.

Administration Guide

48

NOTE

After creating the database link, any alterations to the nsslapd-nsslapd-suffix attribute
are applied only after the server containing the database link is restarted.

2.3.1.2.2. Providing Bind Credentials

For a request from a client application to be chained to a remote server, special bind credentials can be
supplied for the client application. This gives the remote server the proxied authorization rights needed
to chain operations. Without bind credentials, the database link binds to the remote server as
anonymous.

Providing bind credentials involves the following steps:

1. On the remote server:

Create an administrative user for the database link.

For information on adding entries, see Chapter 3, Managing Directory Entries .

Provide proxy access rights for the administrative user created in step 1 on the subtree
chained to by the database link.

For more information on configuring ACIs, see Chapter 18, Managing Access Control

2. On the server containing the database link, use ldapmodify to provide a user DN for the
database link in the nsMultiplexorBindDN attribute of the cn=database_link,cn=chaining

database,cn=plugins,cn=config entry.

WARNING

The nsMultiplexorBindDN cannot be that of the Directory Manager.

Use ldapmodify to provide a user password for the database link in the
nsMultiplexorCredentials attribute of the cn=database_link,cn=chaining

database,cn=plugins,cn=config entry.

For example, a client application sends a request to Server A. Server A contains a database link that
chains the request to a database on Server B.

CHAPTER 2. CONFIGURING DIRECTORY DATABASES

49

The database link on Server A binds to Server B using a special user as defined in the
nsMultiplexorBindDN attribute and a user password as defined in the nsMultiplexorCredentials

attribute. In this example, Server A uses the following bind credentials:

nsMultiplexorBindDN: cn=proxy admin,cn=config

nsMultiplexorCredentials: secret

Server B must contain a user entry corresponding to the nsMultiplexorBindDN, and set the proxy
authentication rights for this user. To set the proxy authorization correctly, set the proxy ACI as any
other ACI.

WARNING

Carefully examine access controls when enabling chaining to avoid giving access to
restricted areas of the directory. For example, if a default proxy ACI is created on a
branch, the users that connect using the database link will be able to see all entries
below the branch. There may be cases when not all of the subtrees should be
viewed by a user. To avoid a security hole, create an additional ACI to restrict access
to the subtree.

Administration Guide

50

For more information on ACIs, see Chapter 18, Managing Access Control .

NOTE

When a database link is used by a client application to create or modify entries, the
attributes creatorsName and modifiersName do not reflect the real creator or modifier
of the entries. These attributes contain the name of the administrative user granted
proxied authorization rights on the remote data server.

2.3.1.2.3. Providing an LDAP URL

On the server containing the database link, identify the remote server that the database link connects
with using an LDAP URL. Unlike the standard LDAP URL format, the URL of the remote server does not
specify a suffix. It takes the form ldap://server:port, where the server can be a host name, IPv4 address,
or IPv6 address.

The URL of the remote server using the nsFarmServerURL attribute is set in the cn=database_link,

cn=chaining database,cn=plugins,cn=config entry of the configuration file.

nsFarmServerURL: ldap://example.com:389/

NOTE

Do not forget to use the trailing slash (/) at the end of the URL.

For the database link to connect to the remote server using LDAP over TLS, the LDAP URL of the
remote server uses the protocol LDAPS instead of LDAP in the URL and points to the secure port of the
server. For example:

nsFarmServerURL: ldaps://africa.example.com:636/

NOTE

TLS has to be enabled on the local Directory Server and the remote Directory Server to
be chained over TLS. For more information on enabling TLS, see Section 9.4, “Enabling
TLS”.

When the database link and remote server are configured to communicate using TLS, this
does not mean that the client application making the operation request must also
communicate using TLS. The client can bind using a normal port.

2.3.1.2.4. Providing a List of Failover Servers

There can be additional LDAP URLs for servers included to use in the case of failure. Add alternate
servers to the nsFarmServerURL attribute, separated by spaces.

nsFarmServerURL: ldap://example.com us.example.com:389 africa.example.com:1000/

In this sample LDAP URL, the database link first contacts the server example.com on the standard port
to service an operation. If it does not respond, the database link then contacts the server
us.example.com on port 389. If this server fails, it then contacts africa.example.com on port 1000.

CHAPTER 2. CONFIGURING DIRECTORY DATABASES

51

2.3.1.2.5. Using Different Bind Mechanisms

The local server can connect to the remote server using several different connection types and
authentication mechanisms.

There are three ways that the local server can connect to the remote server:

Over the standard LDAP port

Over a dedicated LDAPS port

Using Start TLS, which is a secure connection over a standard port

NOTE

If secure binds are required for simple password authentication (Section 19.11.1, “Requiring
Secure Binds”), then any chaining operations will fail unless they occur over a secure
connection. Using a secure connection (TLS and Start TLS connections or SASL
authentication) is recommended, anyway.

Ultimately, there are two connection settings. The TLS option signifies that both of the servers are
configured to run and accept connections over TLS, but there is no separate configuration attribute for
enforcing TLS.

The connection type is identified in the nsUseStartTLS attribute. When this is on, then the server
initiates a Start TLS connect over the standard port. If this is off, then the server either uses the LDAP
port or the LDAPS port, depending on what is configured for the remote server in the
nsFarmServerURL attribute.

For example, to use Start TLS:

nsUseStartTLS: on

For example, to use a standard connection or TLS connection:

nsUseStartTLS: off

There are four different methods which the local server can use to authenticate to the farm server.

empty. If there is no bind mechanism set, then the server performs simple authentication and
requires the nsMultiplexorBindDN and nsMultiplexorCredentials attributes to give the bind
information.

EXTERNAL. This uses an TLS certificate to authenticate the farm server to the remote server.
Either the farm server URL must be set to the secure URL (ldaps) or the nsUseStartTLS

attribute must be set to on.

Additionally, the remote server must be configured to map the farm server's certificate to its
bind identity, as described in the certmap.conf section in the Red Hat Directory Server

Configuration, Command, and File Reference.

DIGEST-MD5. This uses SASL authentication with DIGEST-MD5 encryption. As with simple
authentication, this requires the nsMultiplexorBindDN and nsMultiplexorCredentials

attributes to give the bind information.

Administration Guide

52

https://access.redhat.com/documentation/en-us/red_hat_directory_server/10/html/configuration_command_and_file_reference/configuration_file_reference#certmap_conf

GSSAPI. This uses Kerberos-based authentication over SASL.

The farm server must be configured with a Kerberos keytab, and the remote server must have a
defined SASL mapping for the farm server's bind identity. Setting up Kerberos keytabs and
SASL mappings is described in Section 9.9, “Setting up SASL Identity Mapping” .

NOTE

SASL connections can be established over standard connections or TLS connections.

For example:

nsBindMechanism: EXTERNAL

NOTE

If SASL is used, then the local server must also be configured to chain the SASL and
password policy components. Add the components for the database link configuration, as
described in Section 2.3.2, “Configuring the Chaining Policy” . For example:

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x

dn: cn=config,cn=chaining database,cn=plugins,cn=config

changetype: modify

add: nsActiveChainingComponents

nsActiveChainingComponents: cn=password policy,cn=components,cn=config

-

add: nsActiveChainingComponents

nsActiveChainingComponents: cn=sasl,cn=components,cn=config

^D

2.3.1.2.6. Summary of Database Link Configuration Attributes

The following table lists the attributes available for configuring a database link. Some of these attributes
were discussed in the earlier sections. All instance attributes are defined in the cn=database_link,
cn=chaining database,cn=plugins,cn=config entry.

Values defined for a specific database link take precedence over the global attribute value.

Table 2.1. Database Link Configuration Attributes

Attributes Value

nsTransmittedControls [†] Gives the OID of LDAP controls forwarded by the database link to the
remote data server.

nsslapd-suffix The suffix managed by the database link. Any changes to this attribute after
the entry has been created take effect only after the server containing the
database link is restarted.

CHAPTER 2. CONFIGURING DIRECTORY DATABASES

53

nsslapd-timelimit Default search time limit for the database link, given in seconds. The default
value is 3600 seconds.

nsslapd-sizelimit Default size limit for the database link, given in number of entries. The
default value is 2000 entries.

nsFarmServerURL Gives the LDAP URL of the remote server (or farm server) that contains the
data. This attribute can contain optional servers for failover, separated by
spaces. If using cascading chaining, this URL can point to another database
link.

nsUseStartTLS Sets whether to use Start TLS to establish a secure connection over a
standard port. The default is off, which is used for both simple (standard)
connections and TLS connections.

nsBindMechanism Sets the authentication method to use to authenticate (bind) to the remote
server. If you set an empty value, simple bind is used
(LDAP_SASL_SIMPLE).

nsMultiplexorBindDN DN of the administrative entry used to communicate with the remote
server. The term multiplexor in the name of the attribute means the
server which contains the database link and communicates with the remote
server. This bind DN cannot be the Directory Manager. If this attribute is not
specified, the database link binds as anonymous.

nsMultiplexorCredentials Password for the administrative user, given in plain text. If no password is
provided, it means that users can bind as anonymous. The password is
encrypted in the configuration file.

nsCheckLocalACI Reserved for advanced use only. Controls whether ACIs are evaluated on
the database link as well as the remote data server. Takes the values on or
off. Changes to this attribute occur only after the server has been restarted.
The default value is off.

nsProxiedAuthorization Reserved for advanced use only. Disables proxied authorization. A value of
off means proxied authorization is disabled. The default value is on.

nsActiveChainingComponents
[†]

Lists the components using chaining. A component is any functional unit in
the server. The value of this attribute in the database link instance overrides
the value in the global configuration attribute. To disable chaining on a
particular database instance, use the value none. The default policy is not
to allow chaining. For more information, see Section 2.3.2.1, “Chaining
Component Operations”.

nsReferralOnScopedSearch Controls whether referrals are returned by scoped searches. This attribute
is for optimizing the directory because returning referrals in response to
scoped searches is more efficient. Takes the values on or off. The default
value is off.

Attributes Value

Administration Guide

54

nsHopLimit Maximum number of times a request can be forwarded from one database
link to another. The default value is 10.

[†] Can be both a global and instance attribute. This global configuration attribute is located in the

cn=config,cn=chaining database,cn=plugins,cn=config entry. The global attributes are dynamic, meaning
any changes made to them automatically take effect on all instances of the database link within the directory.

Attributes Value

For further details, see the parameter descriptions in the Red Hat Directory Server Configuration,

Command, and File Reference.

2.3.1.2.7. Database Link Configuration Example

Suppose a server within the us.example.com domain contains the subtree l=Walla

Walla,ou=people,dc=example,dc=com on a database and that operation requests for the
l=Zanzibar,ou=people,dc=example,dc=com subtree should be chained to a different server in the
africa.example.com domain.

1. Run ldapmodify to add a database link to Server A:

ldapmodify -a -D "cn=Directory Manager" -W -p 389 -h server.example.com -x

2. Specify the configuration information for the database link:

CHAPTER 2. CONFIGURING DIRECTORY DATABASES

55

https://access.redhat.com/documentation/en-us/red_hat_directory_server/10/html/configuration_command_and_file_reference/database_link_plug_in_attributes_chaining_attributes#Database_Link_Plug_in_Attributes_chaining_attributes-Database_Link_Attributes_under_cndatabase_link_instance_name_cnchaining_database_cnplugins_cnconfig

dn: cn=DBLink1,cn=chaining database,cn=plugins,cn=config

changetype: add

objectclass: top

objectclass: extensibleObject

objectclass: nsBackendInstance

nsslapd-suffix: c=africa,ou=people,dc=example,dc=com

nsfarmserverurl: ldap://africa.example.com:389/

nsMultiplexorBindDN: cn=proxy admin,cn=config

nsMultiplexorCredentials: secret

cn: DBLink1

dn: cn="c=africa,ou=people,dc=example,dc=com",cn=mapping tree,cn=config

objectclass: top

objectclass: extensibleObject

objectclass: nsMappingTree

nsslapd-state: backend

nsslapd-backend: DBLink1

nsslapd-parent-suffix: ou=people,dc=example,dc=com

cn: c=africa,ou=people,dc=example,dc=com

In the first entry, the nsslapd-suffix attribute contains the suffix on Server B to which to chain
from Server A. The nsFarmServerURL attribute contains the LDAP URL of Server B.

The second entry creates a new suffix, allowing the server to route requests made to the new
database link. The cn attribute contains the same suffix specified in the nsslapd-suffix

attribute of the database link. The nsslapd-backend attribute contains the name of the
database link. The nsslapd-parent-suffix attribute specifies the parent of this new suffix,
ou=people,dc=example,dc=com.

3. Create an administrative user on Server B, as follows:

dn: cn=proxy admin,cn=config

objectclass: person

objectclass: organizationalPerson

objectclass: inetOrgPerson

cn: proxy admin

sn: proxy admin

userPassword: secret

description: Entry for use by database links

WARNING

Do not use the Directory Manager user as the proxy administrative user on
the remote server. This creates a security hole.

4. Add the following proxy authorization ACI to the l=Zanzibar,ou=people,dc=example,dc=com

entry on Server B:

Administration Guide

56

aci: (targetattr = "*")(version 3.0; acl "Proxied authorization

 for database links"; allow (proxy) userdn = "ldap:///cn=proxy

 admin,cn=config";)

This ACI gives the proxy admin user read-only access to the data contained on the remote
server within the l=Zanzibar,ou=people,dc=example,dc=com subtree only.

NOTE

When a user binds to a database link, the user's identity is sent to the remote
server. Access controls are always evaluated on the remote server. For the user
to modify or write data successfully to the remote server, set up the correct
access controls on the remote server. For more information about how access
controls are evaluated in the context of chained operations, see Section 2.3.6,
“Database Links and Access Control Evaluation”.

2.3.2. Configuring the Chaining Policy

These procedures describe configuring how Directory Server chains requests made by client applications
to Directory Servers that contain database links. This chaining policy applies to all database links created
on Directory Server.

2.3.2.1. Chaining Component Operations

A component is any functional unit in the server that uses internal operations. For example, plug-ins are
considered to be components, as are functions in the front-end. However, a plug-in may actually be
comprised of multiple components (for example, the ACI plug-in).

Some components send internal LDAP requests to the server, expecting to access local data only. For
such components, control the chaining policy so that the components can complete their operations
successfully. One example is the certificate verification function. Chaining the LDAP request made by
the function to check certificates implies that the remote server is trusted. If the remote server is not
trusted, then there is a security problem.

By default, all internal operations are not chained and no components are allowed to chain, although this
can be overridden.

Additionally, an ACI must be created on the remote server to allow the specified plug-in to perform its
operations on the remote server. The ACI must exist in the suffix assigned to the database link.

The following lists the component names, the potential side-effects of allowing them to chain internal
operations, and the permissions they need in the ACI on the remote server:

ACI plug-in

This plug-in implements access control. Operations used to retrieve and update ACI attributes are
not chained because it is not safe to mix local and remote ACI attributes. However, requests used to
retrieve user entries may be chained by setting the chaining components attribute:

nsActiveChainingComponents: cn=ACI Plugin,cn=plugins,cn=config

Permissions: Read, search, and compare

Resource limit component

This component sets server limits depending on the user bind DN. Resource limits can be applied on

CHAPTER 2. CONFIGURING DIRECTORY DATABASES

57

This component sets server limits depending on the user bind DN. Resource limits can be applied on
remote users if the resource limitation component is allowed to chain. To chain resource limit
component operations, add the chaining component attribute:

nsActiveChainingComponents: cn=resource limits,cn=components,cn=config

Permissions: Read, search, and compare

Certificate-based authentication checking component

This component is used when the external bind method is used. It retrieves the user certificate from
the database on the remote server. Allowing this component to chain means certificate-based
authentication can work with a database link. To chain this component's operations, add the chaining
component attribute:

nsActiveChainingComponents: cn=certificate-based authentication,cn=components,cn=config

Permissions: Read, search, and compare

Password policy component

This component is used to allow SASL binds to the remote server. Some forms of SASL
authentication require authenticating with a user name and password. Enabling the password policy
allows the server to verify and implement the specific authentication method requested and to apply
the appropriate password policies. To chain this component's operations, add the chaining
component attribute:

nsActiveChainingComponents: cn=password policy,cn=components,cn=config

Permissions: Read, search, and compare

SASL component

This component is used to allow SASL binds to the remote server. To chain this component's
operations, add the chaining component attribute:

nsActiveChainingComponents: cn=password policy,cn=components,cn=config

Permissions: Read, search, and compare

Referential Integrity plug-in

This plug-in ensures that updates made to attributes containing DNs are propagated to all entries
that contain pointers to the attribute. For example, when an entry that is a member of a group is
deleted, the entry is automatically removed from the group. Using this plug-in with chaining helps
simplify the management of static groups when the group members are remote to the static group
definition. To chain this component's operations, add the chaining component attribute:

nsActiveChainingComponents: cn=referential integrity postoperation,cn=plugins,cn=config

Permissions: Read, search, and compare

Attribute Uniqueness plug-in

This plug-in checks that all the values for a specified attribute are unique (no duplicates). If this plug-

Administration Guide

58

This plug-in checks that all the values for a specified attribute are unique (no duplicates). If this plug-
in is chained, it confirms that attribute values are unique even on attributes changed through a
database link. To chain this component's operations, add the chaining component attribute:

nsActiveChainingComponents: cn=attribute uniqueness,cn=plugins,cn=config

Permissions: Read, search, and compare

Roles component

This component chains the roles and roles assignments for the entries in a database. Chaining this
component maintains the roles even on chained databases. To chain this component's operations,
add the chaining component attribute:

nsActiveChainingComponents: cn=roles,cn=components,cn=config

Permissions: Read, search, and compare

NOTE

The following components cannot be chained:

Roles plug-in

Password policy component

Replication plug-ins

Referential Integrity plug-in

When enabling the Referential Integrity plug-in on servers issuing chaining requests, be
sure to analyze performance, resource, and time needs as well as integrity needs.
Integrity checks can be time-consuming and draining on memory and CPU. For further
information on the limitations surrounding ACIs and chaining, see Section 18.5,
“Limitations of ACIs”.

2.3.2.1.1. Chaining Component Operations Using the Console

1. In the Directory Server Console, select the Configuration tab.

2. Expand Data in the left pane, and click Database Link Settings.

3. Select the Settings tab in the right window.

CHAPTER 2. CONFIGURING DIRECTORY DATABASES

59

4. Click the Add button in the Components allowed to chain section.

5. Select the component to chain from the list, and click OK.

6. Restart the server in order for the change to take effect.

After allowing the component to chain, create an ACI in the suffix on the remote server to which the
operation will be chained. For example, this creates an ACI for the Referential Integrity plug-in:

aci: (targetattr "*")(target="ldap:///ou=customers,l=us,dc=example,dc=com")

 (version 3.0; acl "RefInt Access for chaining"; allow

 (read,write,search,compare) userdn = "ldap:///cn=referential integrity

 postoperation,cn=plugins,cn=config";)

2.3.2.1.2. Chaining Component Operations from the Command Line

1. Specify components to include in chaining using the nsActiveChainingComponents attribute
in the cn=config,cn=chaining database,cn=plugins,cn=config entry of the configuration file.

For example, to allow the referential integrity component to chain operations, add the following
to the database link configuration file:

Administration Guide

60

nsActiveChainingComponents: cn=referential integrity

postoperation,cn=components,cn=config

See Section 2.3.2.1, “Chaining Component Operations” for a list of the components which can
be chained.

2. Restart the server for the change to take effect.

systemctl restart dirsrv@instance_name

3. Create an ACI in the suffix on the remote server to which the operation will be chained. For
example, this creates an ACI for the Referential Integrity plug-in:

aci: (targetattr "*")(target="ldap:///ou=customers,l=us,dc=example,dc=com")

 (version 3.0; acl "RefInt Access for chaining"; allow

 (read,write,search,compare) userdn = "ldap:///cn=referential

 integrity postoperation,cn=plugins,cn=config";)

2.3.2.2. Chaining LDAP Controls

It is possible to not chain operation requests made by LDAP controls. By default, requests made by the
following controls are forwarded to the remote server by the database link:

Virtual List View (VLV). This control provides lists of parts of entries rather than returning all
entry information.

Server-side sorting. This control sorts entries according to their attribute values, usually using a
specific matching rule.

Dereferencing. This control tracks back over references in entry attributes in a search and pulls
specified attribute information from the referenced entry and returns it with the rest of the
search results.

Managed DSA. This controls returns smart referrals as entries, rather than following the referral,
so the smart referral itself can be changed or deleted.

Loop detection. This control keeps track of the number of times the server chains with another
server. When the count reaches the configured number, a loop is detected, and the client
application is notified. For more information about using this control, see Section 2.4.4,
“Detecting Loops”.

NOTE

Server-side sorting and VLV controls are supported only when a client application request
is made to a single database. Database links cannot support these controls when a client
application makes a request to multiple databases.

2.3.2.2.1. Chaining LDAP Controls Using the Console

1. In the Directory Server Console, select the Configuration tab.

2. Expand the Data folder in the left pane, and click Database Link Settings.

3. Select the Settings tab in the right window.

CHAPTER 2. CONFIGURING DIRECTORY DATABASES

61

4. Click the Add button in the LDAP Controls forwarded by the database link section to add an
LDAP control to the list.

5. Select the OID of a control to add to the list, and click OK.

2.3.2.2.2. Chaining LDAP Controls from the Command Line

To chain controls, alter the controls that the database link forwards by changing the
nsTransmittedControls attribute of the cn=config,cn=chaining database,cn=plugins,cn=config

entry. For example, to forward the virtual list view control, add the following to the database link entry in
the configuration file:

nsTransmittedControls: 2.16.840.1.113730.3.4.9

In addition, if clients of the Directory Server create their own controls and their operations should be
chained to remote servers, add the OID of the custom control to the nsTransmittedControls attribute.

The LDAP controls which can be chained and their OIDs are listed in the following table:

Table 2.2. LDAP Controls and Their OIDs

Control Name OID

Virtual list view (VLV) 2.16.840.1.113730.3.4.9

Administration Guide

62

Server-side sorting 1.2.840.113556.1.4.473

Managed DSA 2.16.840.1.113730.3.4.2

Loop detection 1.3.6.1.4.1.1466.29539.12

Dereferencing searches 1.3.6.1.4.1.4203.666.5.16

Control Name OID

2.3.3. Maintaining Database Links

All of the information for the database link for the connection to the remote server.

1. In the Directory Server Console, select the Configuration tab.

2. In the left pane, expand the Data folder, and select the database link under the suffix.

3. In the right navigation pane, click the Authentication tab.

4. Change the connection information.

The LDAP URL for the remote server.[]

The bind DN and password used by the database link to bind to the remote server.

2.3.4. Configuring Database Link Defaults

Configuring the default settings for database links defines the settings used for cascading chaining (the
number of hops allowed for a client request), the connection rules for the remote server, and how the
server responds to client requests.

1. Select the Configuration tab.

2. Expand the Data folder in the left pane, and click Database Link Settings. Open the Default

CHAPTER 2. CONFIGURING DIRECTORY DATABASES

63

2. Expand the Data folder in the left pane, and click Database Link Settings. Open the Default

Creation Parameters tab.

3. Fill in the new configuration parameters.

NOTE

Changes made to the default settings of a database link are not applied retroactively.
Only the database links created after changes are made to the default settings will
reflect the changes.

2.3.5. Deleting Database Links

To delete a database link, right-click the database link, and select Delete from the pop-up menu.
Confirm the delete when prompted.

1. In the Directory Server Console, select the Configuration tab.

2. Under Data in the left navigation pane, open the suffix and select the database link to delete.

3. Right-click the database link, and select Delete from the menu.

Administration Guide

64

2.3.6. Database Links and Access Control Evaluation

When a user binds to a server containing a database link, the database link sends the user's identity to
the remote server. Access controls are always evaluated on the remote server. Every LDAP operation
evaluated on the remote server uses the original identity of the client application passed using the
proxied authorization control. Operations succeed on the remote server only if the user has the correct
access controls on the subtree contained on the remote server. This requires adding the usual access
controls to the remote server with a few restrictions:

Not all types of access control can be used.

For example, role-based or filter-based ACIs need access to the user entry. Because the data
are accessed through database links, only the data in the proxy control can be verified. Consider
designing the directory in a way that ensures the user entry is located in the same database as
the user's data.

All access controls based on the IP address or DNS domain of the client may not work since the
original domain of the client is lost during chaining. The remote server views the client
application as being at the same IP address and in the same DNS domain as the database link.

NOTE

Directory Server supports both IPv4 and IPv6 IP addresses.

The following restrictions apply to the ACIs used with database links:

ACIs must be located with any groups they use. If the groups are dynamic, all users in the group
must be located with the ACI and the group. If the group is static, it links to remote users.

ACIs must be located with any role definitions they use and with any users intended to have
those roles.

ACIs that link to values of a user's entry (for example, userattr subject rules) will work if the user
is remote.

Though access controls are always evaluated on the remote server, they can also be evaluated on both

CHAPTER 2. CONFIGURING DIRECTORY DATABASES

65

Though access controls are always evaluated on the remote server, they can also be evaluated on both
the server containing the database link and the remote server. This poses several limitations:

During access control evaluation, contents of user entries are not necessarily available (for
example, if the access control is evaluated on the server containing the database link and the
entry is located on a remote server).

For performance reasons, clients cannot do remote inquiries and evaluate access controls.

The database link does not necessarily have access to the entries being modified by the client
application.

When performing a modify operation, the database link does not have access to the full entry
stored on the remote server. If performing a delete operation, the database link is only aware of
the entry's DN. If an access control specifies a particular attribute, then a delete operation will
fail when being conducted through a database link.

NOTE

By default, access controls set on the server containing the database link are not
evaluated. To override this default, use the nsCheckLocalACI attribute in the
cn=database_link, cn=chaining database,cn=plugins,cn=config entry. However,
evaluating access controls on the server containing the database link is not
recommended except with cascading chaining.

2.4. CONFIGURING CASCADING CHAINING

The database link can be configured to point to another database link, creating a cascading chaining
operation. A cascading chain occurs any time more than one hop is required to access all of the data in a
directory tree.

Section 2.4.1, “Overview of Cascading Chaining”

Section 2.4.2, “Configuring Cascading Chaining Using the Console”

Section 2.4.3, “Configuring Cascading Chaining from the Command Line”

Section 2.4.4, “Detecting Loops”

Section 2.4.5, “Summary of Cascading Chaining Configuration Attributes”

Section 2.4.6, “Cascading Chaining Configuration Example”

2.4.1. Overview of Cascading Chaining

Cascading chaining occurs when more than one hop is required for the directory to process a client
application's request.

Administration Guide

66

The client application sends a modify request to Server 1. Server one contains a database link that
forwards the operation to Server 2, which contains another database link. The database link on Server 2
forwards the operations to server three, which contains the data the clients wants to modify in a
database. Two hops are required to access the piece of data the client want to modify.

During a normal operation request, a client binds to the server, and then any ACIs applying to that client
are evaluated. With cascading chaining, the client bind request is evaluated on Server 1, but the ACIs
applying to the client are evaluated only after the request has been chained to the destination server, in
the above example Server 2.

For example, on Server A, a directory tree is split:

The root suffix dc=example,dc=comand the ou=people and ou=groups sub suffixes are stored on
Server A. The l=europe,dc=example,dc=com and ou=groups suffixes are stored in on Server B, and
the ou=people branch of the l=europe,dc=example,dc=com suffix is stored on Server C.

With cascading configured on servers A, B, and C, a client request targeted at the
ou=people,l=europe,dc=example,dc=com entry would be routed by the directory as follows:

CHAPTER 2. CONFIGURING DIRECTORY DATABASES

67

First, the client binds to Server A and chains to Server B using Database Link 1. Then Server B chains to
the target database on Server C using Database Link 2 to access the data in the
ou=people,l=europe,dc=example,dc=com branch. Because at least two hops are required for the
directory to service the client request, this is considered a cascading chain.

2.4.2. Configuring Cascading Chaining Using the Console

1. Select the Configuration tab. Expand the Data folder in the left pane, and select the suffix,
then the database link.

Administration Guide

68

2. Click the Limits and Controls tab in the right navigation pane.

3. Select the Check local ACI check box to enable the evaluation of local ACIs on the
intermediate database links involved in the cascading chain. Selecting this check box may
require adding the appropriate local ACIs to the database link.

4. Enter the maximum number of times a database link can point to another database link in the
Maximum hops field.

By default, the maximum is ten hops. After ten hops, a loop is detected by the server, and an
error is returned to the client application.

2.4.3. Configuring Cascading Chaining from the Command Line

To configure a cascade of database links through the command line:

1. Point one database link to the URL of the server containing the intermediate database link.

To create a cascading chain, the nsFarmServerURL attribute of one database link must contain
the URL of the server containing another database link. Suppose the database link on the server
called example1.com points to a database link on the server called africa.example.com. For
example, the cn=database_link, cn=chaining database,cn=plugins,cn=config entry of the
database link on Server 1 would contain the following:

nsFarmServerURL: ldap://africa.example.com:389/

CHAPTER 2. CONFIGURING DIRECTORY DATABASES

69

2. Configure the intermediate database link or links (in the example, Server 2) to transmit the
Proxy Authorization Control.

By default, a database link does not transmit the Proxy Authorization Control. However, when
one database link contacts another, this control is used to transmit information needed by the
final destination server. The intermediate database link needs to transmit this control. To
configure the database link to transmit the proxy authorization control, add the following to the
cn=config,cn=chaining database,cn=plugins,cn=config entry of the intermediate database
link:

nsTransmittedControls: 2.16.840.1.113730.3.4.12

The OID value represents the Proxy Authorization Control. For more information about chaining
LDAP controls, see Section 2.3.2.2, “Chaining LDAP Controls”.

3. Create a proxy administrative user ACI on all intermediate database links.

The ACI must exist on the server that contains the intermediate database link that checks the
rights of the first database link before translating the request to another server. For example, if
Server 2 does not check the credentials of Server 1, then anyone could bind as anonymous and
pass a proxy authorization control allowing them more administrative privileges than
appropriate. The proxy ACI prevents this security breach.

1. Create a database, if one does not already exist, on the server containing the intermediate
database link. This database will contain the admin user entry and the ACI. For information
about creating a database, see Section 2.2.1, “Creating Databases”.

2. Create an entry that corresponds to the administrative user in the database.

3. Create an ACI for the administrative user that targets the appropriate suffix. This ensures
the administrator has access only to the suffix of the database link. For example:

aci: (targetattr = "*")(version 3.0; acl "Proxied authorization for database links";

 allow (proxy) userdn = "ldap:///cn=proxy admin,cn=config";)

This ACI is like the ACI created on the remote server when configuring simple chaining.

WARNING

Carefully examine access controls when enabling chaining to avoid giving
access to restricted areas of the directory. For example, if a default proxy
ACI is created on a branch, the users that connect through the database
link will be able to see all entries below the branch. There may be cases
when not all of the subtrees should be viewed by a user. To avoid a security
hole, create an additional ACI to restrict access to the subtree.

4. Enable local ACI evaluation on all intermediate database links.

To confirm that the proxy administrative ACI is used, enable evaluation of local ACIs on all
intermediate database links involved in chaining. Add the following attribute to the

Administration Guide

70

cn=database_link, cn=chaining database,cn=plugins,cn=config entry of each intermediate
database link:

nsCheckLocalACI: on

Setting this attribute to on in the cn=default instance config,cn=chaining

database,cn=plugins,cn=config entry means that all new database link instances will have the
nsCheckLocalACI attribute set to on in their cn=database_link, cn=chaining

database,cn=plugins,cn=config entry.

5. Create client ACIs on all intermediate database links and the final destination database.

Because local ACI evaluation is enabled, the appropriate client application ACIs must be created
on all intermediate database links, as well as the final destination database. To do this on the
intermediate database links, first create a database that contains a suffix that represents a root
suffix of the final destination suffix.

For example, if a client request made to the c=africa,ou=people,dc=example,dc=com suffix is
chained to a remote server, all intermediate database links need to contain a database
associated with the dc=example,dc=com suffix.

Add any client ACIs to this superior suffix entry. For example:

aci: (targetattr = "*")(version 3.0; acl "Client authentication for database link users";

 allow (all) userdn = "ldap:///uid=* ,cn=config";)

This ACI allows client applications that have a uid in the cn=config entry of Server 1 to perform
any type of operation on the data below the ou=people,dc=example,dc=com suffix on server
three.

2.4.4. Detecting Loops

An LDAP control included with Directory Server prevents loops. When first attempting to chain, the
server sets this control to be the maximum number of hops, or chaining connections, allowed. Each
subsequent server decrements the count. If a server receives a count of 0, it determines that a loop has
been detected and notifies the client application.

The number of hops allowed is defined using the nsHopLimit attribute. If not specified, the default value
is 10.

To use the control, add the following OID to the nsTransmittedControl attribute in the
cn=config,cn=chaining database,cn=plugins,cn=config entry:

nsTransmittedControl: 1.3.6.1.4.1.1466.29539.12

If the control is not present in the configuration file of each database link, loop detection will not be
implemented.

2.4.5. Summary of Cascading Chaining Configuration Attributes

The following describes the attributes used to configure intermediate database links in a cascading
chain:

nsFarmServerURL

CHAPTER 2. CONFIGURING DIRECTORY DATABASES

71

URL of the server containing the next database link in the cascading chain.

nsTransmittedControls

Enter the following OIDs to the database links involved in the cascading chain:

nsTransmittedControls: 2.16.840.1.113730.3.4.12

nsTransmittedControls: 1.3.6.1.4.1.1466.29539.12

aci

This attribute must contain the following ACI:

aci: (targetattr = "*")(version 3.0; acl "Proxied

 authorization for database links";

 allow (proxy) userdn = "ldap:///cn=proxy admin,cn=config";)

nsCheckLocalACI

To enable evaluation of local ACIs on all database links involved in chaining, turn local ACI evaluation
on, as follows:

nsCheckLocalACI: on

2.4.6. Cascading Chaining Configuration Example

To create a cascading chain involving three servers as in the diagram below, the chaining components
must be configured on all three servers.

Administration Guide

72

Section 2.4.6.1, “Configuring Server One”

Section 2.4.6.2, “Configuring Server Two”

Section 2.4.6.3, “Configuring Server Three”

2.4.6.1. Configuring Server One

1. Run ldapmodify and specify the configuration information for the database link, DBLink1, on
Server 1:

ldapmodify -a -D "cn=Directory Manager" -W -p 389 -h server.example.com -x

dn: cn=DBLink1,cn=chaining database,cn=plugins,cn=config

changetype: add

objectclass: top

CHAPTER 2. CONFIGURING DIRECTORY DATABASES

73

objectclass: extensibleObject

objectclass: nsBackendInstance

nsslapd-suffix: c=africa,ou=people,dc=example,dc=com

nsfarmserverurl: ldap://africa.example.com:389/

nsMultiplexorBindDN: cn=server1 proxy admin,cn=config

nsMultiplexorCredentials: secret

cn: DBLink1

nsCheckLocalACI:off

dn: cn="c=africa,ou=people,dc=example,dc=com",cn=mapping tree,cn=config

changetype: add

objectclass: nsMappingTree

nsslapd-state: backend

nsslapd-backend: DBLink1

nsslapd-parent-suffix: ou=people,dc=example,dc=com

cn: c=africa,ou=people,dc=example,dc=com

The first section creates the entry associated with DBLink1. The second section creates a new
suffix, allowing the server to direct requests made to the database link to the correct server. The
nsCheckLocalACI attribute does not need to be configured to check local ACIs, as this is only
required on the database link, DBLink2, on Server 2.

2. To implement loop detection, to specify the OID of the loop detection control in the
nsTransmittedControl attribute stored in cn=config,cn=chaining

database,cn=plugins,cn=config entry on Server 1.

dn: cn=config,cn=chaining database,cn=plugins,cn=config

changetype: modify

add: nsTransmittedControl

nsTransmittedControl: 1.3.6.1.4.1.1466.29539.12

As the nsTransmittedControl attribute is usually configured by default with the loop detection
control OID 1.3.6.1.4.1.1466.29539.12 value, it is wise to check beforehand whether it already
exists. If it does exist, this step is not necessary.

2.4.6.2. Configuring Server Two

1. Create a proxy administrative user on Server 2. This administrative user will be used to allow
Server 1 to bind and authenticate to Server 2. It is useful to choose a proxy administrative user
name which is specific to Server 1, as it is the proxy administrative user which will allow server one

to bind to Server 2. Create the proxy administrative user, as follows:

dn: cn=server1 proxy admin,cn=config

objectclass: person

objectclass: organizationalPerson

objectclass: inetOrgPerson

cn: server1 proxy admin

sn: server1 proxy admin

userPassword: secret

description: Entry for use by database links

Administration Guide

74

WARNING

Do not use the Directory Manager or Administrator ID user as the proxy
administrative user on the remote server. This creates a security hole.

2. Configure the database link, DBLink2, on Server 2:

dn: cn=DBLink2,cn=chaining database,cn=plugins,cn=config

objectclass: top

objectclass: extensibleObject

objectclass: nsBackendInstance

nsslapd-suffix: l=Zanzibar,c=africa,ou=people,dc=example,dc=com

nsfarmserverurl: ldap://zanz.africa.example.com:389/

nsMultiplexorBindDN: cn=server2 proxy admin,cn=config

nsMultiplexorCredentials: secret

cn: DBLink2

nsCheckLocalACI:on

dn: cn="l=Zanzibar,c=africa,ou=people,dc=example,dc=com",cn=mapping tree,cn=config

objectclass: top

objectclass: extensibleObject

objectclass: nsMappingTree

nsslapd-state: backend

nsslapd-backend: DBLink2

nsslapd-parent-suffix: c=africa,ou=people,dc=example,dc=com

cn: l=Zanzibar,c=africa,ou=people,dc=example,dc=com

Since database link DBLink2 is the intermediate database link in the cascading chaining
configuration, set the nsCheckLocalACI attribute to on to allow the server to check whether it
should allow the client and proxy administrative user access to the database link.

3. The database link on Server 2 must be configured to transmit the proxy authorization control
and the loop detection control. To implement the proxy authorization control and the loop
detection control, specify both corresponding OIDs. Add the following information to the
cn=config,cn=chaining database,cn=plugins,cn=config entry on Server 2:

dn: cn=config,cn=chaining database,cn=plugins,cn=config

changetype: modify

add: nsTransmittedControl

nsTransmittedControl: 2.16.840.1.113730.3.4.12

nsTransmittedControl: 1.3.6.1.4.1.1466.29539.12

nsTransmittedControl: 2.16.840.1.113730.3.4.12 is the OID for the proxy authorization
control. nsTransmittedControl: 1.3.6.1.4.1.1466.29539.12 is the or the loop detection control.

Check beforehand whether the loop detection control is already configured, and adapt the
above command accordingly.

4. Configure the ACIs. On Server 2, ensure that a suffix exists above the

CHAPTER 2. CONFIGURING DIRECTORY DATABASES

75

4. Configure the ACIs. On Server 2, ensure that a suffix exists above the
l=Zanzibar,c=africa,ou=people,dc=example,dc=com suffix, so that the following actions are
possible:

Add the database link suffix

Add a local proxy authorization ACI to allow Server 1 to connect using the proxy
authorization administrative user created on Server 2

Add a local client ACI so the client operation succeeds on Server 2, and it can be forwarded
to server three. This local ACI is needed because local ACI checking is turned on for the
DBLink2 database link.

Both ACIs will be placed on the database that contains the
c=africa,ou=people,dc=example,dc=com suffix.

NOTE

To create these ACIs, the database corresponding to the
c=africa,ou=people,dc=example,dc=com suffix must already exist to hold the
entry. This database needs to be associated with a suffix above the suffix
specified in the nsslapd-suffix attribute of each database link. That is, the suffix
on the final destination server should be a sub suffix of the suffix specified on the
intermediate server.

1. Add the local proxy authorization ACI to the c=africa,ou=people,dc=example,dc=com

entry:

aci:(targetattr="*")(target="l=Zanzibar,c=africa,ou=people,dc=example,dc=com")

 (version 3.0; acl "Proxied authorization for database links"; allow (proxy)

 userdn = "ldap:///cn=server1 proxy admin,cn=config";)

2. Then add the local client ACI that will allow the client operation to succeed on Server 2,
given that ACI checking is turned on. This ACI is the same as the ACI created on the
destination server to provide access to the
l=Zanzibar,c=africa,ou=people,dc=example,dc=com branch. All users within
c=us,ou=people,dc=example,dc=com may need to have update access to the entries in
l=Zanzibar,c=africa,ou=people,dc=example,dc=com on server three. Create the
following ACI on Server 2 on the c=africa,ou=people,dc=example,dc=com suffix to allow
this:

aci:(targetattr="*")(target="l=Zanzibar,c=africa,ou=people,dc=example,dc=com")

 (version 3.0; acl "Client authorization for database links"; allow (all)

 userdn = "ldap:///uid=*,c=us,ou=people,dc=example,dc=com";)

This ACI allows clients that have a UID in c=us,ou=people,dc=example,dc=com on Server
1 to perform any type of operation on the
l=Zanzibar,c=africa,ou=people,dc=example,dc=com suffix tree on server three. If there
are users on Server 2 under a different suffix that will require additional rights on server
three, it may be necessary to add additional client ACIs on Server 2.

2.4.6.3. Configuring Server Three

1. Create an administrative user on server three for Server 2 to use for proxy authorization:

Administration Guide

76

dn: cn=server2 proxy admin,cn=config

objectclass: person

objectclass: organizationalPerson

objectclass: inetOrgPerson

cn: server2 proxy admin

sn: server2 proxy admin

userPassword: secret

description: Entry for use by database links

2. Then add the same local proxy authorization ACI to server three as on Server 2. Add the
following proxy authorization ACI to the l=Zanzibar,ou=people,dc=example,dc=com entry:

aci: (targetattr = "*")(version 3.0; acl "Proxied authorization

 for database links"; allow (proxy) userdn = "ldap:///cn=server2

 proxy admin,cn=config";)

This ACI gives the Server 2 proxy admin read-only access to the data contained on the remote
server, server three, within the l=Zanzibar,ou=people,dc=example,dc=com subtree only.

3. Create a local client ACI on the l=Zanzibar,ou=people,dc=example,dc=com subtree that
corresponds to the original client application. Use the same ACI as the one created for the client
on Server 2:

aci: (targetattr ="*")(target="l=Zanzibar,c=africa,ou=people,dc=example,dc=com")

 (version 3.0; acl "Client authentication for database link users"; allow (all)

 userdn = "ldap:///uid=*,c=us,ou=people,dc=example,dc=com";)

The cascading chaining configuration is now set up. This cascading configuration allows a user to bind to
Server 1 and modify information in the l=Zanzibar,c=africa,ou=people,dc=example,dc=com branch on
server three. Depending on your security needs, it may be necessary to provide more detailed access
control.

2.5. USING REFERRALS

Referrals tell client applications which server to contact for a specific piece of information. This
redirection occurs when a client application requests a directory entry that does not exist on the local
server or when a database has been taken off-line for maintenance. This section contains the following
information about referrals:

Section 2.5.1, “Starting the Server in Referral Mode”

Section 2.5.2, “Setting Default Referrals”

Section 2.5.3, “Creating Smart Referrals”

Section 2.5.4, “Creating Suffix Referrals”

For conceptual information on how to use referrals in the directory, see the Red Hat Directory Server

Deployment Guide.

2.5.1. Starting the Server in Referral Mode

Referrals are used to redirect client applications to another server while the current server is unavailable
or when the client requests information that is not held on the current server. For example, starting

CHAPTER 2. CONFIGURING DIRECTORY DATABASES

77

Directory Server in referral mode while there are configuration changes being made to the
Directory Server will refer all clients to another supplier while that server is unavailable. Starting the
Directory Server in referral mode is done with the refer command.

Run nsslapd with the refer option.

ns-slapd refer -D /etc/dirsrv/slapd-instance_name [-p port] -r referral_url

/etc/dirsrv/slapd-instance_name/ is the directory where the Directory Server configuration
files are. This is the default location on Red Hat Enterprise Linux 7.

port is the optional port number of the Directory Server to start in referral mode.

referral_url is the referral returned to clients. The format of an LDAP URL is covered in
Appendix C, LDAP URLs .

2.5.2. Setting Default Referrals

Default referrals are returned to client applications that submit operations on a DN not contained within
any of the suffixes maintained by the directory. The following procedures describes setting a default
referral for the directory using the console and the command-line utilities.

2.5.2.1. Setting a Default Referral Using the Console

1. In the Directory Server Console, select the Configuration tab.

2. Select the top entry in the navigation tree in the left pane.

3. Select the Settings tab in the right pane.

4. Enter an LDAP URL for the referral.

Enter multiple referral URLs separated by spaces and in quotes:

"ldap://dir1.example.com:389/dc=example,dc=com" "ldap://dir2.example.com/"

Administration Guide

78

For more information about LDAP URLs, see Appendix C, LDAP URLs .

2.5.2.2. Setting a Default Referral from the Command Line

ldapmodify can add a default referral to the cn=config entry in the directory's configuration file. For
example, to add a new default referral from one Directory Server, dir1.example.com, to a server named
dir2.example.com, add a new line to the cn=config entry.

1. Run the ldapmodify utility and add the default referral to the dir2.example.com server:

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x

dn: cn=config

changetype: modify

replace: nsslapd-referral

nsslapd-referral: ldap://dir2.example.com/

After adding the default referral to the cn=config entry of the directory, the directory will return the
default referral in response to requests made by client applications. The Directory Server does not need
to be restarted.

2.5.3. Creating Smart Referrals

Smart referrals map a directory entry or directory tree to a specific LDAP URL. Using smart referrals,
client applications can be referred to a specific server or a specific entry on a specific server.

For example, a client application requests the directory entry
uid=jdoe,ou=people,dc=example,dc=com. A smart referral is returned to the client that points to the
entry cn=john doe,o=people,l=europe,dc=example,dc=com on the server
directory.europe.example.com.

The way the directory uses smart referrals conforms to the standard specified in RFC 2251 section 4.1.11.
The RFC can be downloaded at http://www.ietf.org/rfc/rfc2251.txt.

2.5.3.1. Creating Smart Referrals Using the Directory Server Console

1. In the Directory Server Console, select the Directory tab.

2. Browse through the tree in the left navigation pane, and select the entry for which to add the
referral.

3. Right-click the entry, and select Set Smart Referrals.

CHAPTER 2. CONFIGURING DIRECTORY DATABASES

79

http://www.ietf.org/rfc/rfc2251.txt

4. Select the Enable Smart Referral check box. (Unchecking the option removes all smart
referrals from the entry and deletes the referral object class from the entry.)

5. In the Enter a new Smart Referral field, enter a referral in the LDAP URL format, and then click
Add. The LDAP URL must be in the following format:

ldap://server:port/[optional_dn]

server can be the host name, IPv4 address, or IPv6 address for the server. optional_dn is the

Administration Guide

80

server can be the host name, IPv4 address, or IPv6 address for the server. optional_dn is the
explicit DN for the server to return to the requesting client application.

Construct opens a wizard to direct the process of adding a referral.

The Smart Referral List lists the referrals currently in place for the selected entry. The entire
list of referrals is returned to client applications in response to a request with the Return

Referrals for All Operations or Return Referrals for Update Operations options in the Suffix

Settings tab, which is available under the Configuration tab.

To modify the list, click Edit to edit the selected referral or Delete to delete the selected
referral.

6. To set the referral to use different authentication credentials, click Authentication, and specify
the appropriate DN and password. This authentication remains valid only until the Console is
closed; then it is reset to the same authentication used to log into the Console.

CHAPTER 2. CONFIGURING DIRECTORY DATABASES

81

2.5.3.2. Creating Smart Referrals from the Command Line

Use the ldapmodify command-line utility to create smart referrals from the command line.

To create a smart referral, create the relevant directory entry, and add the referral object class. This
object class allows a single attribute, ref. The ref attribute must contain an LDAP URL.

For example, add the following to return a smart referral for an existing entry, uid=jdoe:

dn: uid=jdoe,ou=people,dc=example,dc=com

objectclass: referral

ref: ldap://directory.europe.example.com/cn=john%20doe,ou=people,l=europe,dc=example,dc=com

NOTE

Any information after a space in an LDAP URL is ignored by the server. For this reason,
use %20 instead of spaces in any LDAP URL used as a referral.

To add the entry uid=jdoe,ou=people,dc=example,dc=com with a referral to
directory.europe.example.com, include the following in the LDIF file before importing:

dn: uid=jdoe,ou=people,dc=example,dc=com

objectclass: top

objectclass: person

objectclass: organizationalPerson

objectclass: inetOrgPerson

objectclass: referral

cn: john doe

sn: doe

uid: jdoe

ref: ldap://directory.europe.example.com/cn=john%20doe,ou=people,l=europe,dc=example,dc=com

Use the -M option with ldapmodify when there is already a referral in the DN path. For more information
on smart referrals, see the Red Hat Directory Server Deployment Guide.

2.5.4. Creating Suffix Referrals

Administration Guide

82

The following procedure describes creating a referral in a suffix. This means that the suffix processes
operations using a referral rather than a database or database link.

WARNING

When a suffix is configured to return referrals, the ACIs contained by the database
associated with the suffix are ignored.

2.5.4.1. Creating Suffix Referrals Using the Console

Referrals can be used to point a client application temporarily to a different server. For example, adding
a referral to a suffix so that the suffix points to a different server allows the database associated with
the suffix is taken off-line for maintenance without affecting the users of the Directory Server database.

To set referrals in a suffix:

1. In the Directory Server Console, select the Configuration tab.

2. Under Data in the left pane, select the suffix for which to add a referral.

3. Click the Suffix Settings tab, and select the Return Referrals for ... Operations radio button.

Selecting Return Referrals for Update Operations means that the directory redirects only
update and write requests to a read-only database. For example, there may be a local copy of
directory data, and that data should be available for searches but not for updates, so it is
replicated across several servers. Enabling referrals for that Directory Server only for update
requests means that when a client asks to update an entry, the client is referred to the server
that owns the data, where the modification request can proceed.

4. Click the Referrals tab. Enter an LDAP URL in the [1] in the Enter a new referral field, or click

CHAPTER 2. CONFIGURING DIRECTORY DATABASES

83

4. Click the Referrals tab. Enter an LDAP URL in the [1] in the Enter a new referral field, or click
Construct to create an LDAP URL.

5. Click Add to add the referral to the list.

You can enter multiple referrals. The directory returns the entire list of referrals in response to
requests from client applications.

2.5.4.2. Creating Suffix Referrals from the Command Line

Add a suffix referral to the root or sub suffix entry in the directory configuration file under the
cn=mapping tree,cn=config branch.

Run ldapmodify and add a suffix referral to the ou=people,dc=example,dc=com root suffix:

ldapmodify -a -D "cn=Directory Manager" -W -p 389 -h server.example.com -x

dn: cn=ou=people,dc=example,dc=com,cn=mapping tree,cn=config

changetype: add

objectclass: extensibleObject

objectclass: nsMappingTree

nsslapd-state: referral

nsslapd-referral: ldap://zanzibar.com/

The nsslapd-state attribute is set to referral, meaning that a referral is returned for requests made to
this suffix. The nsslapd-referral attribute contains the LDAP URL of the referral returned by the suffix,
in this case a referral to the zanzibar.com server.

The nsslapd-state attribute can also be set to referral on update. This means that the database is used

Administration Guide

84

The nsslapd-state attribute can also be set to referral on update. This means that the database is used
for all operations except update requests. When a client application makes an update request to a suffix
set to referral on update, the client receives a referral.

For more information about the suffix configuration attributes, see Section 2.1.1.3, “Creating Root and
Sub Suffixes using the Command Line”.

[] Unlike the standard LDAP URL format, the URL of the remote server does not specify a suffix. It has the form
ldap://server:port/, where server can be the host name, IPv4 address, or IPv6 address.

[1] Appendix C, LDAP URLs has more information about the structure of LDAP URLs.

CHAPTER 2. CONFIGURING DIRECTORY DATABASES

85

CHAPTER 3. MANAGING DIRECTORY ENTRIES

This chapter discusses how to use the Directory Server Console and the ldapmodify and ldapdelete

command-line utilities to modify the contents of your directory.

Entries stored in Active Directory can be added to the Directory Server through Windows Sync; see
Chapter 16, Synchronizing Red Hat Directory Server with Microsoft Active Directory for more information
on adding or modifying synchronized entries through Windows User Sync.

3.1. MANAGING ENTRIES USING THE COMMAND LINE

To perform LDAP operations using the command line, install the openldap-clients package. The utilities
installed by this package enable you to:

Add new entries

Add new attributes to existing entries

Update existing entries and attributes

Delete entries and attributes from entries

Perform bulk operations

To install the openldap-clients package:

yum install openldap-clients

NOTE

To perform LDAP operations, you need the appropriate permissions. For details about
access control, see Chapter 18, Managing Access Control .

3.1.1. Providing Input to the ldapadd, ldapmodify, and ldapdelete Utilities

When you add, update, or delete entries or attributes in your directory, you can either use the interactive
mode of the utilities to enter LDAP Data Interchange Format (LDIF) statements or pass an LDIF file to
them.

For further details about LDIF, see Section B.1, “About the LDIF File Format” .

3.1.1.1. Providing Input Using the Interactive Mode

In the interactive mode, the ldapadd, ldapmodify, and ldapdelete utilities read the input from the
command line. To exit the interactive mode, press the Ctrl+D (^D) key combination to send the End Of
File (EOF) escape sequence.

In interactive mode, the utility sends the statements to the LDAP server when you press Enter twice or
when you send the EOF sequence.

Use the interactive mode:

To enter LDIF statements without creating a file:

Administration Guide

86

Example 3.1. Using the ldapmodify Interactive Mode to Enter LDIF Statements

The following example starts ldapmodify in interactive mode, deletes the
telephoneNumber attribute, and adds the manager attribute with the
cn=manager_name,ou=people,dc=example,dc=com value to the
uid=user,ou=people,dc=example,dc=com entry. Press Ctrl+D after the last statement to
exit the interactive mode.

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x

dn: uid=user,ou=people,dc=example,dc=com

changetype: modify

delete: telephoneNumber

-

add: manager

manager: cn=manager_name,ou=people,dc=example,dc=com

^D

To redirect LDIF statements, outputted by another command, to Directory Server:

Example 3.2. Using the ldapmodify Interactive Mode with Redirected Content

The following example redirects the output of the command_that_outputs_LDIF command
to ldapmodify. The interactive mode exits automatically after the redirected command
exits.

command_that_outputs_LDIF | ldapmodify -D "cn=Directory Manager" \

 -W -p 389 -h server.example.com -x

3.1.1.2. Providing Input Using an LDIF File

In the interactive mode, the ldapadd, ldapmodify, and ldapdelete utilities read the LDIF statements
from a file. Use this mode to send a larger number of LDIF statements to Directory Server.

Example 3.3. Passing a File with LDIF Statements to ldapmodify

1. Create a file with the LDIF statements. For example, create the ~/example.ldif file with the
following statements:

dn: uid=user,ou=people,dc=example,dc=com

changetype: modify

delete: telephoneNumber

-

add: manager

manager: cn=manager_name,ou=people,dc=example,dc=com

This example deletes the telephoneNumber attribute and to adds the manager attribute
with the cn=manager_name,ou=people,dc=example,dc=com value to the
uid=user,ou=people,dc=example,dc=com entry

2. Pass the file to the ldapmodify command using the -f file_name option:

CHAPTER 3. MANAGING DIRECTORY ENTRIES

87

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x \

 -f ~/example.ldif

3.1.2. The Continuous Operation Mode

If you send multiple LDIF statements to Directory Server and one operation fails, the process stops.
However, entries processed before the error occurred were successfully added, modified, or deleted.

To ignore errors and continue processing further LDIF statements in a batch, pass the -c option to
ldapadd and ldapmodify. For example:

ldpamodify -c -D "cn=Directory Manager" -W -p 389 -h server.example.com -x

3.1.3. Adding an Entry

To add a new entry to the directory, use the ldapadd or ldapmodify utility. Note that ldapadd is a
symbolic link to /bin/ldapmodify. Therefore, ldapadd performs the same operation as ldapmodify -a.

NOTE

You can only add a new directory entry, if the parent entry already exists. For example,
you cannot add the cn=user,ou=people,dc=example,dc=com entry, if the
ou=people,dc=example,dc=com parent entry does not exist.

3.1.3.1. Adding an Entry Using ldapadd

To use the ldapadd utility to add, for example, the cn=user,ou=people,dc=example,dc=com user
entry:

ldapadd -D "cn=Directory Manager" -W -p 389 -h server.example.com -x

dn: uid=user,ou=People,dc=example,dc=com

uid: user

givenName: given_name

objectClass: top

objectClass: person

objectClass: organizationalPerson

objectClass: inetorgperson

sn: surname

cn: user

NOTE

Running ldapadd automatically performs a changetype: add operation. Therefore, you
do not need to specify changetype: add in the LDIF statement.

For further details on the parameters used in the command, see the ldapadd(1) man page.

3.1.3.2. Adding an Entry Using ldapmodify

To use the ldapmodify utility to add, for example, the cn=user,ou=people,dc=example,dc=com user

Administration Guide

88

To use the ldapmodify utility to add, for example, the cn=user,ou=people,dc=example,dc=com user
entry:

ldapmodify -a -D "cn=Directory Manager" -W -p 389 -h server.example.com -x

dn: uid=user,ou=People,dc=example,dc=com

uid: user

givenName: given_name

objectClass: top

objectClass: person

objectClass: organizationalPerson

objectClass: inetorgperson

sn: surname

cn: user

NOTE

When passing the -a option to the ldapmodify command, the utility automatically
performs a changetype: add operation. Therefore, you do not need to specify
changetype: add in the LDIF statement.

For further details on the parameters used in the command, see the ldapmodify(1) man page.

3.1.3.3. Creating a Root Entry

To create the root entry of a database suffix, such as dc=example,dc=com, bind as the cn=Directory

Manager user and add the entry.

The DN corresponds to the DN of the root or sub-suffix of the database.

For example, to add the dc=example,dc=com suffix:

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x

dn: dc=example,dc=com

changetype: add

objectClass: top

objectClass: domain

dc: example

NOTE

You can add root objects only if you have one database per suffix. If you create a suffix
that is stored in several databases, you must use the ldif2db utility with the -n back_end

option to set the database that will hold the new entries. For details, see Section 6.1.4,
“Importing from the Command Line”.

3.1.4. Updating a Directory Entry

When you modify a directory entry, use the changetype: modify statement. Depending on the change
operation, you can add, change, or delete attributes from the entry.

Use the ldapmodify utility to send the LDIF statements to Directory Server. For example, in interactive

CHAPTER 3. MANAGING DIRECTORY ENTRIES

89

Use the ldapmodify utility to send the LDIF statements to Directory Server. For example, in interactive
mode:

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x

For further details on the parameters used in ldapmodify commands, see the ldapmodify(1) man page.

3.1.4.1. Adding Attributes to an Entry

To add an attribute to an entry, use the add operation.

For example, to add the telephoneNumber attribute with the 555-1234567 value to the
uid=user,dc=people,dc=example,dc=com entry:

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x

dn: uid=user,dc=people,dc=example,dc=com

changetype: modify

add: telephoneNumber

telephoneNumber: 555-1234567

If an attribute is multi-valued, you can specify the attribute name multiple times to add all the values in a
single operation. For example, to add two telephoneNumber attributes at once to the
uid=user,dc=people,dc=example,dc=com:

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x

dn: uid=user,dc=people,dc=example,dc=com

changetype: modify

add: telephoneNumber

telephoneNumber: 555-1234567

telephoneNumber: 555-7654321

3.1.4.2. Updating an Attribute's Value

The procedure for updating an attribute's value depends on if the attribute is single-valued or multi-
valued.

Updating a Single-value Attribute
When updating a single-value attribute, use the replace operation to override the existing value. The
following command updates the manager attribute of the uid=user,dc=people,dc=example,dc=com

entry:

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x

dn: uid=user,dc=people,dc=example,dc=com

changetype: modify

replace: manager

manager: uid=manager_name,dc=people,dc=example,dc=com

Updating a Specific Value of a Multi-value Attribute
To update a specific value of a multi-value attribute, you must first delete the entry you want to replace,
and then add the new value. The following command updates only the telephoneNumber attribute that
is currently set to 555-1234567 in the uid=user,dc=people,dc=example,dc=com entry:

Administration Guide

90

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x

dn: uid=user,dc=people,dc=example,dc=com

changetype: modify

delete: telephoneNumber

telephoneNumber: 555-1234567

-

add: telephoneNumber

telephoneNumber: 555-9876543

3.1.4.3. Deleting Attributes from an Entry

To delete an attribute from an entry, use the delete operation.

Deleting an Attribute
For example, to delete the manager attribute from the uid=user,dc=people,dc=example,dc=com

entry:

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x

dn: uid=user,dc=people,dc=example,dc=com

changetype: modify

delete: manager

NOTE

If the attribute contains multiple values, this operation deletes all of them.

Deleting a Specific Value of a Multi-value Attribute
If you want to delete a specific value from a multi-value attribute, list the attribute and its value in the
LDIF statement. For example, to delete only the telephoneNumber attribute that is set to 555-1234567

from the uid=user,dc=people,dc=example,dc=com entry:

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x

dn: uid=user,dc=people,dc=example,dc=com

changetype: modify

delete: telephoneNumber

telephoneNumber: 555-1234567

3.1.5. Deleting an Entry

Deleting an entry removes the entry from the directory.

NOTE

You can only delete entries that have no child entries. For example, you cannot delete the
ou=People,dc=example,dc=com entry, if the
uid=user,ou=People,dc=example,dc=com entry still exists.

3.1.5.1. Deleting an Entry Using ldapdelete

CHAPTER 3. MANAGING DIRECTORY ENTRIES

91

The ldapdelete utility enables you to delete one or multiple entries. For example, to delete the
uid=user,ou=People,dc=example,dc=com entry:

ldapdelete -D "cn=Directory Manager" -W -p 389 -h server.example.com -x

"uid=user,ou=People,dc=example,dc=com"

To delete multiple entries in one operation, append them to the command. For example:

ldapdelete -D "cn=Directory Manager" -W -p 389 -h server.example.com -x \

 "uid=user1,ou=People,dc=example,dc=com" \

 "uid=user2,ou=People,dc=example,dc=com"

For further details on the parameters used, see the ldapdelete(1) man page.

3.1.5.2. Deleting an Entry Using ldapmodify

To delete an entry using the ldapmodify utility, use the changetype: delete operation. For example, to
delete the uid=user,ou=People,dc=example,dc=com entry:

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x

dn: uid=user,dc=people,dc=example,dc=com

changetype: delete

3.1.6. Renaming and Moving an Entry

Use the ldapmodify utility to send the LDIF statements to Directory Server when you rename an entry.
For example, in interactive mode:

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x

For further details on the parameters used in ldapmodify commands, see the ldapmodify(1) man page.

NOTE

Use the moddn Access Control List (ACL) to grant permissions to move entries. For
details, see Section 18.11.2.1, “Targeting Source and Destination DNs” .

3.1.6.1. Types of Rename Operations

The following rename operations exist:

Renaming an Entry

If you rename a entry, the modrdn operation changes the Relative Distinguished Name (RDN) of the
entry:

Administration Guide

92

Renaming a Subentry

For subtree entries, the modrdn operation renames the subtree and also the DN components of
child entries:

Note that for large subtrees, this process can take a lot of time and resources.

Moving an Entry to a New Parent

A similar action to renaming a subtree is moving an entry from one subtree to another. This is an
expanded type of the modrdn operation, which simultaneously renames the entry and sets a
newSuperior attribute which moves the entry from one parent to another:

3.1.6.2. Considerations for Renaming Entries

Keep the following in mind when performing rename operations:

You cannot rename the root suffix.

Subtree rename operations have minimal effect on replication. Replication agreements are

CHAPTER 3. MANAGING DIRECTORY ENTRIES

93

applied to an entire database, not a subtree within the database. Therefore, a subtree rename
operation does not require reconfiguring a replication agreement. All name changes after a
subtree rename operation are replicated as normal.

Renaming a subtree might require any synchronization agreements to be reconfigured.
Synchronization agreements are set at the suffix or subtree level. Therefore, renaming a
subtree might break synchronization.

Renaming a subtree requires that any subtree-level Access Control Instructions (ACI) set for
the subtree be reconfigured manually, as well as any entry-level ACIs set for child entries of the
subtree.

Trying to change the component of a subtree, such as moving from ou to dc, might fail with a
schema violation. For example, the organizationalUnit object class requires the ou attribute. If
that attribute is removed as part of renaming the subtree, the operation fails.

If you move a group, the MemberOf plug-in automatically updates the memberOf attributes.
However, if you move a subtree that contain groups, you must manually create a task in the
cn=memberof task entry or use the fixup-memberof.pl to update the related memberOf

attributes.

For details about cleaning up memberOf attribute references, see Section 8.1.4.7,
“Synchronizing memberOf Values”.

3.1.6.3. The deleteOldRDN Parameter

When you rename an entry, the deleteOldRDN parameter controls whether the old RDN will be deleted
or retained.

deleteOldRDN: 0

The existing RDN is retained as a value in the new entry. The resulting entry contains two cn

attributes: one with the old and one with the new common name (CN).

For example, the following attributes belong to a group that was renamed from
cn=old_group,dc=example,dc=com to cn=new_group,dc=example,dc=com with the
deleteOldRDN: 0 parameter set.

dn: cn=new_group,ou=Groups,dc=example,dc=com

objectClass: top

objectClass: groupOfUniqueNames

cn: old_group

cn: new_group

deleteOldRDN: 1

Directory Server deletes the old entry and creates a new entry using the new RDN. The new entry
only contains the cn attribute of the new entry.

For example, the following group was renamed to cn=new_group,dc=example,dc=com with the
deleteOldRDN: 1 parameter set:

dn: cn=new_group,ou=Groups,dc=example,dc=com

objectClass: top

objectClass: groupofuniquenames

cn: new_group

Administration Guide

94

3.1.6.4. Renaming an Entry or Subtree

To rename an entry or subtree, use the changetype: modrdn operation and set the new RDN in the
newrdn attribute.

For example, to rename the cn=old_group,ou=Groups,dc=example,dc=com entry to
cn=new_group,ou=Groups,dc=example,dc=com:

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x

dn: cn=old_group,ou=Groups,dc=example,dc=com

changetype: modrdn

newrdn: cn=new_group

deleteOldRDN: 1

For details about the deleteOldRDN, see Section 3.1.6.3, “The deleteOldRDN Parameter”.

3.1.6.5. Moving an Entry to a New Parent

To move an entry to a new parent, use the changetype: modrdn operation and set the following to
attributes:

newrdn

Sets the RDN of the moved entry. You must set this entry, even if the RDN remains the same.

newSuperior

Sets the DN of the new parent entry.

For example, to move the uid=user entry from ou=Engineering,ou=People,dc=example,dc=com to
ou=Marketing,ou=People,dc=example,dc=com:

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x

dn: uid=user,ou=Engineering,ou=People,dc=example,dc=com

changetype: modrdn

newrdn: uid=user

newSuperior= ou=Marketing,ou=People,dc=example,dc=com

deleteOldRDN: 1

For details about the deleteOldRDN, see Section 3.1.6.3, “The deleteOldRDN Parameter”.

3.1.7. Using Special Characters

When using the command line, enclose characters that have a special meaning to the command-line
interpreter, such as space (), asterisk (*), or backslash (\), with quotation marks. Depending on the
command-line interpreter, use single or double quotation marks.

For example, to authenticate as the cn=Directory Manager user, enclose the user's DN in quotation
marks:

ldapmodify -a -D "cn=Directory Manager" -W -p 389 -h server.example.com -x

Additionally, if a DN contains a comma in a component, escape it using a backslash. For example, to

CHAPTER 3. MANAGING DIRECTORY ENTRIES

95

Additionally, if a DN contains a comma in a component, escape it using a backslash. For example, to
authenticate as the uid=user,ou=People,dc=example.com Chicago, IL user:

ldapmodify -a -D "cn=uid=user,ou=People,dc=example.com Chicago\, IL" \

 -W -p 389 -h server.example.com -x

3.1.8. Using Binary Attributes

Certain attributes support binary values, such as the jpegPhoto attribute. When you add or update such
an attribute, the utility reads the value for the attribute from a file. To add or update such an attribute,
you can use the ldapmodify utility.

For example, to add the jpegPhoto attribute to the uid=user,ou=People,dc=example,dc=com entry,
and read the value for the attribute from the /home/user_name/photo.jpg file, enter:

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x

dn: uid=user,ou=People,dc=example,dc=com

changetype: modify

add: jpegPhoto

jpegPhoto:< file:///home/user_name/photo.jpg

IMPORTANT

Note that there is no space between : and <.

3.1.9. Updating an Entry in an Internationalized Directory

To use attribute values with languages other than English, associate the attribute's value with a
language tag.

When using ldapmodify to update an attribute that has a language tag set, you must match the value
and language tag exactly or the operation will fail.

For example, to modify an attribute value that has the lang-fr language tag set, include the tag in the
modify operation:

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x

dn: uid=user,ou=People,dc=example,dc=com

changetype: modify

replace: homePostalAddress;lang-fr

homePostalAddress;lang-fr: 34 rue de Seine

3.2. MANAGING ENTRIES USING THE DIRECTORY CONSOLE

You can use the Directory tab and the Property Editor on the Directory Server Console to add, modify,
or delete entries individually.

To add several entries simultaneously, use the command-line utilities described in Section 3.1,
“Managing Entries Using the Command Line”.

Section 3.2.1, “Creating a Root Entry”

Administration Guide

96

Section 3.2.2, “Creating Directory Entries”

Section 3.2.3, “Modifying Directory Entries”

Section 3.2.4, “Deleting Directory Entries”

NOTE

You cannot modify your directory unless the appropriate access control rules have been
set. For information on creating access control rules for your directory, see Chapter 18,
Managing Access Control .

3.2.1. Creating a Root Entry

Each time a new database is created, it is associated with the suffix that will be stored in the database.
The directory entry representing that suffix is not automatically created.

To create a root entry for a database:

1. In the Directory Server Console, select the Configuration tab.

2. Right-click on the Data entry in the left menu, and select New Root Suffix from the menu.

3. Fill in the new suffix and database information.

CHAPTER 3. MANAGING DIRECTORY ENTRIES

97

4. In the Directory tab, right-click the top object representing the Directory Server, and choose
New Root Object.

The secondary menu under New Root Object displays the new suffixes without a corresponding
directory entry. Choose the suffix corresponding to the entry to create.

5. In the New Object window, select the object class corresponding to the new entry.

Administration Guide

98

The object class must contain the attribute used to name the suffix. For example, if the entry
corresponds to the suffix ou=people,dc=example,dc=com, then choose the
organizationalUnit object class or another object class that allows the ou attribute.

6. Click OK in the New Object window.

The Property Editor for the new entry opens. You can either accept the current values by clicking OK or
modify the entry, as explained in Section 3.2.3, “Modifying Directory Entries” .

3.2.2. Creating Directory Entries

Directory Server Console offers predefined templates, with preset forms, for new directory entries.
Table 3.1, “Entry Templates and Corresponding Object Classes” shows what type of object class is used
for each template.

Table 3.1. Entry Templates and Corresponding Object Classes

Template Object Class

User inetOrgPerson

Group groupOfUniqueNames

Organizational Unit organizationalUnit

Role nsRoleDefinition

CHAPTER 3. MANAGING DIRECTORY ENTRIES

99

Class of Service cosSuperDefinition

Template Object Class

Another type, Other allows any kind of entry to be created by allowing users to select the specific object
classes and attributes to apply.

1. In the Directory Server Console, select the Directory tab.

2. In the left pane, right-click the main entry to add the new entry, and select the type of entry:
User, Group, Organizational Unit, Role, Class of Service, or Other.

3. If the new entry type was Other, then a list of object classes opens. Select an object class from
the list to define the new entry.

4. Supply a value for all the listed attributes. Required attributes are marked with an asterisk (*).

Administration Guide

100

5. To display the full list of attributes available for the object class (entry type), click the
Advanced button.

CHAPTER 3. MANAGING DIRECTORY ENTRIES

101

In the Property Editor, select any additional attributes, and fill in the attribute values.

6. Click OK to save the entry. The new entry is listed in the right pane.

3.2.3. Modifying Directory Entries

Modifying directory entries in Directory Server Console uses a dialog window called the Property Editor.
The Property Editor contains the list of object classes and attributes belonging to an entry and can be
used to edit the object classes and attributes belonging to that entry by adding and removing object
classes, attributes and attribute values, and attribute subtypes.

Administration Guide

102

The Property Editor can be opened in several ways:

From the Directory tab, by right-clicking an entry, and selecting Advanced Properties from the
pop-up menu.

From the Directory tab, by double-clicking an entry and clicking the Advanced button

From the Create... new entry forms, by clicking the Advanced button

From the New Object window, by clicking OK

3.2.3.1. Adding or Removing an Object Class to an Entry

To add an object class to an entry:

1. In the Directory tab of the Directory Server Console, right-click the entry to modify, and select
Advanced from the pop-up menu.

2. Select the object class field, and click Add Value.

The Add Object Class window opens. It shows a list of object classes that can be added to the
entry.

3. Select the object class to add, and click OK.

CHAPTER 3. MANAGING DIRECTORY ENTRIES

103

To remove an object class from an entry, click the text box for the object class to remove, and then click
Delete Value.

3.2.3.2. Adding an Attribute to an Entry

Before you can add an attribute to an entry, the entry must contain an object class that either requires or
allows the attribute. See Section 3.2.3.1, “Adding or Removing an Object Class to an Entry” and
Chapter 12, Managing the Directory Schema for more information.

To add an attribute to an entry:

1. In the Directory tab of the Directory Server Console, right-click the entry to modify, and select
Advanced from the pop-up menu.

Administration Guide

104

2. Click Add Attribute.

3. Select the attribute to add from the list, and click OK.

CHAPTER 3. MANAGING DIRECTORY ENTRIES

105

NOTE

If the attribute you want to add is not listed, add the object class containing the
attribute first, then add the attribute. See Section 3.2.3.1, “Adding or Removing
an Object Class to an Entry” for instructions on adding an object class. If you do
not know which object class contains the attribute you need, look up the attribute
in the Red Hat Directory Server 10 Configuration, Command, and File Reference .,
which lists the object classes which use that attribute.

4. Type in the value for the new attribute in the field to the right of the attribute name.

To remove the attribute and all its values from the entry, select Delete Attribute from the Edit menu.

3.2.3.3. Adding Very Large Attributes

The configuration attribute nsslapd-maxbersize sets the maximum size limit for LDAP requests. The

Administration Guide

106

https://access.redhat.com/site/documentation/en-US/Red_Hat_Directory_Server/10/html/Configuration_Command_and_File_Reference/index.html

The configuration attribute nsslapd-maxbersize sets the maximum size limit for LDAP requests. The
default configuration of Directory Server sets this attribute at 2 megabytes. LDAP add or modify
operations will fail when attempting to add very large attributes that result in a request that is larger
than 2 megabytes. However, the limit is not applied to replication processes.

To add very large attributes, first change the setting for the nsslapd-maxbersize configuration
attribute to a value larger than the largest LDAP request you will make.

When determining the value to set, consider all elements of the LDAP add and modify operations used
to add the attributes, not just the single attribute. There are a number of different factors to consider,
including the following:

The size of each attribute name in the request

The size of the values of each of the attributes in the request

The size of the DN in the request

Some overhead, usually 10 kilobytes

One common issue that requires increasing the nsslapd-maxbersize setting is using attributes which
hold CRL values, such as certificateRevocationList, authorityRevocationList, and
deltaRevocationList.

For further information about the nsslapd-maxbersize attribute, see the corresponding section in the
Red Hat Directory Server Configuration, Command, and File Reference .

3.2.3.4. Adding Attribute Values

Multi-valued attributes allow multiple value for one attribute to be added to an entry.

1. In the Directory tab of the Directory Server Console, right-click the entry to modify, and select
Advanced from the pop-up menu.

2. Select the attribute to which to add a value, and then click Add Value.

CHAPTER 3. MANAGING DIRECTORY ENTRIES

107

https://access.redhat.com/documentation/en-us/red_hat_directory_server/10/html/configuration_command_and_file_reference/core_server_configuration_reference#cnconfig-nsslapd_maxbersize_Maximum_Message_Size

3. Type in the new attribute value.

To remove an attribute value from an entry, click the text box of the attribute value to remove, and click
Delete Value.

3.2.3.5. Adding an Attribute Subtype

A subtype allows the same entry value to be represented in different ways, such as providing a foreign-
characterset version. There three different kinds of subtypes to attributes which can be added to an
entry: language, binary, and pronunciation.

To add a subtype to an entry:

1. In the Directory tab of the Directory Server Console, right-click the entry to modify, and select
Properties from the pop-up menu.

2. Click Add Attribute, and select the attribute to add from the list.

3. Add a language subtype by selecting a value from the Language drop-down list. Add either a
binary or pronunciation subtype by selecting a value from the Subtype drop-down list.

Administration Guide

108

Language Subtype

Sometimes a user's name can be more accurately represented in characters of a language other than
the default language. For example, a user, Noriko, has a name in Japanese and prefers that her name be
represented by Japanese characters when possible. You can select Japanese as a language subtype for
the givenname attribute so that other users can search for her name in Japanese as well as English. For
example:

givenname;lang-ja

To specify a language subtype for an attribute, add the subtype to the attribute name as follows:

attribute;lang-subtype:attribute value

attribute is the attribute being added to the entry and subtype is the two character abbreviation for the
language. The supported language subtypes are listed in Table D.1, “Supported Language Subtypes” .

Only one language subtype can be added per attribute instance in an entry. To assign multiple language
subtypes, add another attribute instance to the entry, and then assign the new language subtype. For
example, the following is illegal:

cn;lang-ja;lang-en-GB:value

Instead, use:

CHAPTER 3. MANAGING DIRECTORY ENTRIES

109

cn;lang-ja:ja-value

cn;lang-en-GB:value

Binary Subtype

Assigning the binary subtype to an attribute indicates that the attribute value is binary, such as user
certificates (usercertificate;binary).

Although you can store binary data within an attribute that does not contain the binary subtype (for
example, jpegphoto), the binary subtype indicates to clients that multiple variants of the attribute type
may exist.

Pronunciation Subtype

Assigning the pronunciation subtype to an attribute indicates that the attribute value is a phonetic
representation. The subtype is added to the attribute name as attribute;phonetic. This subtype is
commonly used in combination with a language subtype for languages that have more than one
alphabet, where one is a phonetic representation.

This subtype is useful with attributes that are expected to contain user names, such as cn or
givenname. For example, givenname;lang-ja;phonetic indicates that the attribute value is the
phonetic version of the user's Japanese name.

3.2.4. Deleting Directory Entries

1. In the Directory Server Console, select the Directory tab.

2. Right-click the entry to delete, and select Delete from the right-click menu.

Administration Guide

110

WARNING

The server deletes the entry or entries immediately. There is no way to undo the
delete operation.

CHAPTER 3. MANAGING DIRECTORY ENTRIES

111

CHAPTER 4. TRACKING MODIFICATIONS TO DIRECTORY
ENTRIES

It can be useful to track when changes are made to entries. There are two aspects of entry modifications
that the Directory Server tracks:

Using change sequence numbers to track changes to the database. This is similar to change
sequence numbers used in replication and synchronization. Every normal directory operation
triggers a sequence number.

Assigning creation and modification information. These attributes record the names of the user
who created and most recently modified an entry, as well as the timestamps of when it was
created and modified.

NOTE

The entry USN, modify time and name, and create time and name are all operational
attributes and are not returned in a regular ldapsearch. For details on running a search
for operational attributes, see Section 14.5.7, “Searching for Operational Attributes” .

4.1. TRACKING MODIFICATIONS TO THE DATABASE THROUGH
UPDATE SEQUENCE NUMBERS

The USN Plug-in provides a way for LDAP clients to know that something — anything — in the database
has changed.

4.1.1. An Overview of the Entry Sequence Numbers

When the USN Plug-in is enabled, update sequence numbers (USNs) are sequential numbers that are
assigned to an entry whenever a write operation is performed against the entry. (Write operations
include add, modify, modrdn, and delete operations. Internal database operations, like export
operations, are not counted in the update sequence.) A USN counter keeps track of the most recently
assigned USN.

4.1.1.1. Local and Global USNs

The USN is evaluated globally, for the entire database, not for the single entry. The USN is similar to the
change sequence number for replication and synchronization, in that it simply ticks upward to track any
changes in the database or directory. However, the entry USN is maintained separately from the CSNs,
and USNs are not replicated.

The entry shows the change number for the last modification to that entry in the entryUSN operational
attribute. (For details on running a search for operational attributes, see Section 14.5.7, “Searching for
Operational Attributes”.)

Example 4.1. Example Entry USN

 dn: uid=jsmith,ou=People,dc=example,dc=com

 mail: jsmith@example.com

 uid: jsmith

 givenName: John

 objectClass: top

 objectClass: person

Administration Guide

112

 objectClass: organizationalPerson

 objectClass: inetorgperson

 sn: Smith

 cn: John Smith

 userPassword: {SSHA}EfhKCI4iKl/ipZMsWlITQatz7v2lUnptxwZ/pw==

 entryusn: 1122

The USN Plug-in has two modes, local mode and global mode:

In local mode, each back end database has an instance of the USN Plug-in with a USN counter
specific to that back end database. This is the default setting.

In global mode, there is a global instance of the USN Plug-in with a global USN counter that
applies to changes made to the entire directory.

When the USN Plug-in is set to local mode, results are limited to the local back end database. When the
USN Plug-in is set to global mode, the returned results are for the entire directory.

The root DSE shows the most recent USN assigned to any entry in the database in the lastusn attribute.
When the USN Plug-in is set to local mode, so each database has its own local USN counter, the
lastUSN shows both the database which assigned the USN and the USN:

lastusn;database_name:USN

For example:

lastusn;example1: 2130

lastusn;example2: 2070

In global mode, when the database uses a shared USN counter, the lastUSN attribute shows the latest
USN only:

lastusn: 4200

4.1.1.2. Importing USN Entries

When entries are imported, the USN Plug-in uses the nsslapd-entryusn-import-initval attribute to
check if the entry has an assigned USN. If the value of nsslapd-entryusn-import-initval is numerical,
the imported entry will use this numerical value as the entry's USN. If the value of nsslapd-entryusn-

import-initval is not numerical, the USN Plug-in will use the value of the lastUSN attribute and
increment it by one as the USN for the imported entry.

4.1.2. Configuring the USN Plug-in

The USN Plug-in must be enabled for USNs to be recorded on entries, as described in Section 1.9.2.2,
“Enabling Plug-ins in the Directory Server Console”. The plug-in can be enabled through the
Directory Server Console or through the command line. For example:

ldapmodify -D "cn=Directory Manager" -W -x

dn: cn=USN,cn=plugins,cn=config

changetype: modify

CHAPTER 4. TRACKING MODIFICATIONS TO DIRECTORY ENTRIES

113

replace: nsslapd-pluginEnabled

nsslapd-pluginEnabled: on

Then restart the server to apply the changes.

4.1.3. Enabling Global USN

With the default settings, Directory Server uses unique update sequence numbers (USN) for each back
end database. To enable unique USNs across all back end databases:

1. Enable the USN plug-in. See Section 4.1.2, “Configuring the USN Plug-in” .

2. Set the nsslapd-entryusn-global parameter to on:

ldapmodify -D "cn=Directory Manager" -W -x

dn: cn=config

changetype: modify

replace: nsslapd-entryusn-global

nsslapd-entryusn-global: on

4.1.4. Cleaning up USN Tombstone Entries

The USN Plug-in moves entries to tombstone entries when the entry is deleted. If replication is enabled,
then separate tombstone entries are kept by both the USN and Replication Plug-ins. Both tombstone
entries are deleted by the replication process, but for server performance, it can be beneficial to delete
the USN tombstones before converting a server to a replica or to free memory for the server.

The usn-tombstone-cleanup.pl command deletes USN tombstone entries for a specific database back
end or specific suffix. Optionally, it can delete all of tombstone entries up to a certain USN. For example:

/usr/lib64/dirsrv/instance/usn-tombstone-cleanup.pl -D "cn=Directory Manager" -w secret -s

"ou=people,dc=example,dc=com" -m 1100

Either the back end must be specified using the -n option or the suffix, using the -s option. If both are
given, then the suffix in the -s option is used.

The options for usn-tombstone-cleanup.pl command are listed in Table 4.1, “usn-tombstone-
cleanup.pl Options”. More details for this tool are in the Configuration, Command, and File Reference.

Table 4.1. usn-tombstone-cleanup.pl Options

Option Description

-D rootdn Gives the user DN with root permissions, such as Directory Manager. The
default is the DN of the Directory Manager, which is read from the
nsslapd-root attribute under cn=config.

-m maximum_USN Sets the upper bound for entries to delete. All tombstone entries with an
entryUSN value up to the specified maximum (inclusive) are deleted, but
not past that USN value. If no maximum USN value is set, then all back end
tombstone entries are deleted.

-n backendInstance Gives the name of the database containing the entries to clean (delete).

Administration Guide

114

-s suffix Gives the name of the suffix containing the entries to clean (delete).

-w password The password associated with the user DN.

Option Description

4.2. TRACKING ENTRY MODIFICATIONS THROUGH OPERATIONAL
ATTRIBUTES

Using the default settings, Directory Server tracks the following operational attributes for every entry:

creatorsName: The distinguished name (DN) of the user who initially created the entry.

createTimestamp: The times stamp in Greenwich Mean Time (GMT) format when the entry was
created.

modifiersName: The distinguished name of the user who last modified the entry.

modifyTimestamp: The time stamp in the GMT format for when the entry was last modified.

Note that operational attributes are not returned in default searches. You must explicitly request these
attributes in queries. For details, see Section 14.5.7, “Searching for Operational Attributes” .

IMPORTANT

Red Hat recommends not disabling tracking these operational attributes. If disabled,
entries do not get a unique ID assigned in the nsUniqueID attribute and replication does
not work.

4.2.1. Entries Modified or Created by a Database Link

When an entry is created or modified over a database link, the creatorsName and modifiersName

attributes contain the name of the user who is granted proxy authorization rights on the remote server.
In this case, the attributes do not display the original creator or latest modifier of the entry. However, the
access logs show both the proxy user (dn) and the original user (authzid). For example:

[23/May/2011:18:13:56.145747965 +051800] conn=1175 op=0 BIND dn="cn=proxy

admin,ou=People,dc=example,dc=com" method=128 version=3

[23/May/2011:18:13:56.575439751 +051800] conn=1175 op=0 RESULT err=0 tag=97 nentries=0

etime=0 dn="cn=proxy admin,ou=people,dc=example,dc=com"

[23/May/2011:18:13:56.744359706 +051800] conn=1175 op=1 SRCH base="dc=example,dc=com"

scope=2 filter="(objectClass=*)" attrs=ALL

authzid="uid=user_name,ou=People,dc=example,dc=com"

For further details about proxy authorization, see Section 2.3.1.2.2, “Providing Bind Credentials” .

4.2.2. How to Enable Tracking Of Modifications Using the Command Line

Modification tracking is enabled by default, and Red Hat recommends not disabling this feature. To re-
enable tracking of entry modifications using the command line:

1. Set the nsslapd-lastmod to on:

CHAPTER 4. TRACKING MODIFICATIONS TO DIRECTORY ENTRIES

115

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x

dn: cn=config

nsslapd-lastmod: on

2. Optionally, to regenerate the missing nsUniqueID attributes:

a. Export the database to an LDAP Data Interchange Format (LDIF) file. See Section 6.2.3,
“Exporting a Database to LDIF Using the Command Line”.

b. Import the database from the LDIF file. See Section 6.1.4, “Importing from the Command
Line”.

4.2.3. How to Enable Tracking Of Modifications Using the Console

Modification tracking is enabled by default, and Red Hat recommends not disabling this feature. To re-
enable tracking of entry modifications using the Console:

1. Open the Directory Server Console. See Section 1.3.1, “Opening the Directory Server Console” .

2. On the Configuration tab, select the server name.

3. On the Settings tab, select the Track Entry Modification Times check box.

4. Optionally, to regenerate the missing nsUniqueID attributes:

a. Export the database to an LDAP Data Interchange Format (LDIF) file. See Section 6.2.3,
“Exporting a Database to LDIF Using the Command Line”.

b. Import the database from the LDIF file. See Section 6.1.4, “Importing from the Command
Line”.

4.3. TRACKING THE BIND DN FOR PLUG-IN INITIATED UPDATES

One change to an entry can trigger other, automatic changes across the directory tree. When a user is

Administration Guide

116

One change to an entry can trigger other, automatic changes across the directory tree. When a user is
deleted, for example, that user is automatically removed from any groups it belonged to by the
Referential Integrity Postoperation plug-in.

The initial action is shown in the entry as being performed by whatever user account is bound to the
server, but all related updates (by default) are shown as being performed by the plug-in, with no
information about which user initiated that update. For example, using the MemberOf Plug-in to update
user entries with group membership, the update to the group account is shown as being performed by
the bound user, while the edit to the user entry is shown as being performed by the MemberOf Plug-in:

dn: cn=my_group,ou=groups,dc=example,dc=com

modifiersname: uid=jsmith,ou=people,dc=example,dc=com

dn: uid=bjensen,ou=people,dc=example,dc=com

modifiersname: cn=memberOf plugin,cn=plugins,cn=config

The nsslapd-plugin-binddn-tracking attribute allows the server to track which user originated an
update operation, as well as the internal plug-in which actually performed it. The bound user is shown in
the modifiersname and creatorsname operational attributes, while the plug-in which performed it is
shown in the internalModifiersname and internalCreatorsname operational attributes. For example:

dn: uid=bjensen,ou=people,dc=example,dc=com

modifiersname: uid=jsmith,ou=people,dc=example,dc=com

internalModifiersname: cn=memberOf plugin,cn=plugins,cn=config

The nsslapd-plugin-binddn-tracking attribute tracks and maintains the relationship between the
bound user and any updates performed for that connection.

NOTE

The internalModifiersname and internalCreatorsname attributes always show a plug-in
as the identity. This plug-in could be an additional plug-in, such as the MemberOf Plug-in.
If the change is made by the core Directory Server, then the plug-in is the database plug-
in, cn=ldbm database,cn=plugins,cn=config.

The nsslapd-plugin-binddn-tracking attribute is disabled by default. To allow the server to track
operations based on bind DN, enable that attribute using ldapmodify:

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x

dn: cn=config

changetype: modify

replace: nsslapd-plugin-binddn-tracking

nsslapd-plugin-binddn-tracking: on

4.4. TRACKING PASSWORD CHANGE TIMES

Password change operations are normally treated as any other modification to an entry, so the update
time is recorded in the lastModified operational attribute. However, there can be times when the time
of the last password change needs to be recorded separately, to make it easier to update passwords in
Active Directory synchronization or to connect with other LDAP clients.

The passwordTrackUpdateTime attribute within the password policy tells the server to record a

CHAPTER 4. TRACKING MODIFICATIONS TO DIRECTORY ENTRIES

117

timestamp for the last time that the password was updated for an entry. The password change time
itself is stored as an operational attribute on the user entry, pwdUpdateTime (which is separate from
the modifyTimestamp or lastModified operational attributes).

The passwordTrackUpdateTime attribute can be set as part of the global password policy or on a
subtree or user-level policy, depending on what clients need to access the password change time.
Setting password policies is described in Section 19.4, “Managing the Password Policy” .

Administration Guide

118

CHAPTER 5. MAINTAINING REFERENTIAL INTEGRITY

Referential Integrity is a database mechanism that ensures relationships between related entries are
maintained. In the Directory Server, the Referential Integrity can be used to ensure that an update to
one entry in the directory is correctly reflected in any other entries that reference to the updated entry.

For example, if a user's entry is removed from the directory and Referential Integrity is enabled, the
server also removes the user from any groups of which the user is a member. If Referential Integrity is
not enabled, the user remains a member of the group until manually removed by the administrator. This
is an important feature if you are integrating the Directory Server with other products that rely on the
directory for user and group management.

5.1. HOW REFERENTIAL INTEGRITY WORKS

When the Referential Integrity Postoperation plug-in is enabled, it performs integrity updates on
specified attributes immediately after a delete or rename operation. By default, the Referential
Integrity Postoperation plug-in is disabled.

NOTE

Enable the Referential Integrity Postoperation plug-in only on one supplier replica in a
multi-master replication environment, because the operations generated by the plug-in
will be replicated. If you enable the plug-in on multiple masters, the servers have to
manage and reapply already performed operations.

When a user or group entry is deleted, updated, renamed, or moved within the directory, the operation is
logged to the Referential Integrity log file. For the distinguished names (DN) in the log file,
Directory Server searches and updates in intervals the attributes set in the plug-in configuration:

For entries, marked in the log file as deleted, the corresponding attribute in the directory is
deleted.

For entries, marked in the log file as updated, the corresponding attribute in the directory is
updated.

For entries, marked in the log file as renamed or moved, the value of the corresponding
attribute in the directory is renamed.

By default, when the Referential Integrity Postoperationplug-in is enabled, it performs integrity
updates on the member, uniquemember, owner, and seeAlso attributes immediately after a delete or
rename operation. However, the behavior of the Referential Integrity Postoperation plug-in can be
configured to suit the needs of the directory in several different ways:

Record Referential Integrity updates in the replication change log.

Modify the update interval.

Select the attributes to which to apply Referential Integrity.

Disable Referential Integrity.

All attributes used in referential integrity must be indexed for presence and equality; not indexing those
attributes results poor server performance for modify and delete operations.

CHAPTER 5. MAINTAINING REFERENTIAL INTEGRITY

119

nsIndexType: pres

nsIndexType: eq

nsIndexType: sub

See Section 13.2, “Creating Standard Indexes” for more information about checking and creating
indexes.

5.2. USING REFERENTIAL INTEGRITY WITH REPLICATION

There are certain limitations when using the Referential Integrity Postoperation plug-in in a replication
environment:

Never enable it on a dedicated consumer server (a server that contains only read-only replicas).

Never enable it on a server that contains a combination of read-write and read-only replicas.

It is possible to enable it on a supplier server that contains only read-write replicas.

With multi-master replication, enable the plug-in on just one supplier.

If the replication environment satisfies the all of those condition, you can enable the Referential
Integrity Postoperation plug-in.

1. Enable the Referential Integrity Postoperation plug-in as described in Section 5.3, “Enabling
and Disabling Referential Integrity”.

2. Configure the plug-in to record any integrity updates in the changelog.

3. Ensure that the Referential Integrity Postoperation plug-in is disabled on all consumer
servers.

NOTE

Because the supplier server sends any changes made by the Referential
Integrity Postoperation Integrity plug-in to consumer servers, it is unnecessary
to run the Referential Integrity Postoperation plug-in on consumer servers.

5.3. ENABLING AND DISABLING REFERENTIAL INTEGRITY

5.3.1. Enabling and Disabling Referential Integrity from the Command Line

To enable or disable the Referential Integrity Postoperation plug-in, set the nsslapd-pluginEnabled

parameter in the plug-in's configuration entry:

For example, to enable the plug-in:

1. Set the nsslapd-pluginEnabled parameter to on:

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x

dn: cn=,cn=plugins,cn=config

changetype: modify

replace: nsslapd-pluginEnabled

nsslapd-pluginEnabled: on

Administration Guide

120

2. Restart the instance:

systemctl restart dirsrv@instance_name

5.3.2. Enabling and Disabling Referential Integrity in the Console

To enable the Referential Integrity Postoperation plug-in, follow the procedure in Section 1.9.2.2,
“Enabling Plug-ins in the Directory Server Console”.

5.4. MODIFYING THE UPDATE INTERVAL

By default, the server performs Referential Integrity updates immediately after a delete or a modrdn

operation. Depending on the amount of operations, this can cause a performance impact. To reduce the
performance impact, you can increase the amount of time between updates.

Set the interval in seconds. Alternatively, you can set the following values:

0: The check for referential integrity is performed immediately.

-1: No check for referential integrity is performed.

IMPORTANT

If you set the update interval to 0, you can only enable the plug-in on all masters in a
multi-master replication environment if you also set their Referential Integrity
Postoperation plug-in's update interval to 0. However, if you configure a positive value
on one master, you must not enable the plug-in on any other master to prevent
replication loops and directory inconsistencies.

If you want to enable the plug-in in a multi-master replication environment, Red Hat
recommends setting the update interval to 0 and to enable the plug-in on all masters.

5.4.1. Modifying the Update Interval Using the Command Line

To set the update interval using the command line to, for example, to update immediately:

1. Set the interval in seconds in the referint-update-delay parameter:

ldapmodify -D "cn=Directory Manager" -W -x

dn: cn=referential integrity postoperation,cn=plugins,cn=config

changetype: modify

replace: referint-update-delay

referint-update-delay: 0

2. Restart the Directory Server instance:

systemctl restart dirsrv@instance_name

Referential Integrity can only be enabled on one master. If you set the interval to 0, Directory Server
cleans up references replicates these changes to all consumers immediately. If you set the interval to a
value greater than 0, and the master who has Referential Integrity enabled is offline, the references are
not cleaned up before this master is up again.

CHAPTER 5. MAINTAINING REFERENTIAL INTEGRITY

121

5.4.2. Modifying the Update Interval using the Console

To set the update interval using the Console:

1. Open the Property Editor in the Referential Integrity Postoperation plug-in's configuration.
For details, see Section 1.9.3.2, “Configuring Plug-ins using the Console” .

2. Set the interval in seconds in the referint-update-delay parameter.

3. Restart the Directory Server instance. See Section 1.4.2, “Starting and Stopping a
Directory Server Instance Using the Console”.

5.5. MODIFYING THE ATTRIBUTE LIST

By default, the Referential Integrity plug-in is set up to check for and update the member,
uniquemember, owner, and seeAlso attributes. You can add or delete attributes to be updated using
the command line or the Console.

NOTE

Attributes set in the Referential Integrity plug-in's parameter list, must have equality
indexing on all databases. Otherwise, the plug-in scans every entry of the database for
matching the deleted or modified DN. This can have a significant performance impact.
For details about checking and creating indexes, see Section 13.2, “Creating Standard
Indexes”.

5.5.1. Modifying the Attribute List Using the Console

1. Open the Property Editor in the Referential Integrity Postoperation plug-in's configuration.
For details, see Section 1.9.3.2, “Configuring Plug-ins using the Console” .

2. Update the attributes in the referint-membership-attr attribute.

You can add additional values or delete existing ones using the Add Value and Delete Value

buttons.

3. Restart the Directory Server instance. See Section 1.4.2, “Starting and Stopping a
Directory Server Instance Using the Console”.

5.5.2. Configuring the Attribute List from the Command Line

1. Update the attribute list:

To add an additional attribute that should be checked and updated by the plug-in:

ldapmodify -D "cn=Directory Manager" -W -x

dn: cn=referential integrity postoperation,cn=plugins,cn=config

add: referint-membership-attr

referint-membership-attr: attribute_name

To delete an attribute that should no longer be checked and updated by the plug-in:

ldapmodify -D "cn=Directory Manager" -W -x

Administration Guide

122

dn: cn=referential integrity postoperation,cn=plugins,cn=config

delete: referint-membership-attr

referint-membership-attr: attribute_name

2. Restart the Directory Server instance:

systemctl restart dirsrv@instance_name

5.6. CONFIGURING SCOPE FOR THE REFERENTIAL INTEGRITY

If an entry is deleted, the references to it are deleted or modified to reflect the change. When this
update is applied to all entries and all groups, it can impact performance and prevents flexibility of
restricting the referential integrity to selected subtrees. Defining a scope addresses this problem.

For example, there may be one suffix, dc=example,dc=com, containing two subtrees: ou=active

users,dc=example,dc=com and ou=deleted users,dc=example,dc=com. Entries in deleted users

should not be handled for purposes of referential integrity.

The following three attributes can be used to define the scope in the Referential Integrity
Postoperation plug-in configuration.

The nsslapd-pluginEntryScope attribute

This multi-value attribute controls the scope of the entry that is deleted or renamed. It defines the
subtree in which the Referential Integrity Postoperation plug-in looks for the delete or rename
operations of a user entry. If a user is deleted or renamed that does not exist under the defined
subtree, the plug-in ignores the operation. The attribute allows you to specify to which branches of
the database the plug-in should apply the operation.

nsslapd-pluginEntryScope: dn

The nsslapd-pluginExcludeEntryScope attribute

This attribute also controls the scope of the entry that is deleted or renamed. It defines the subtree
in which the Referential Integrity Postoperation plug-in ignores any operations for deleting or
renaming a user.

nsslapd-pluginExcludeEntryScope: dn

The nsslapd-pluginContainerScope attribute

This attribute controls the scope of groups in which references are updated. After a user is deleted,
the Referential Integrity Postoperation plug-in looks for the groups to which the user belongs and
updates them accordingly. This attribute specifies which branch the plug-in searches for the groups
to which the user belongs. The Referential Integrity Postoperation plug-in only updates groups
that are under the specified container branch, and leaves all other groups not updated.

nsslapd-pluginContainerScope: dn

CHAPTER 5. MAINTAINING REFERENTIAL INTEGRITY

123

CHAPTER 6. POPULATING DIRECTORY DATABASES

Databases contain the directory data managed by the Red Hat Directory Server.

6.1. IMPORTING DATA

Directory Server can populate a database with data in one of two ways: by importing data (either
through the Directory Server Console or using the import tools) or by initializing a database for
replication.

Table 6.1, “Import Method Comparison” describes the differences between an import and initializing
databases.

Table 6.1. Import Method Comparison

Action Import Initialize Database

Overwrites database No Yes

LDAP operations Add, modify, delete Add only

Performance More time-consuming Fast

Partition specialty Works on all partitions Local partitions only

Response to server failure Best effort (all changes made up
to the point of the failure remain)

Atomic (all changes are lost after
a failure)

LDIF file location Local to Console Local to Console or local to server

Imports configuration information
(cn=config)

Yes No

6.1.1. Setting EntryUSN Initial Values During Import

Entry update sequence numbers (USNs) are not preserved when entries are exported from one server
and imported into another. As Section 4.1, “Tracking Modifications to the Database through Update
Sequence Numbers” explains, entry USNs are assigned for operations that happen on a local server, so it
does not make sense to import those USNs onto another server.

However, it is possible to configure an initial entry USN value for entries when importing a database or
initializing a database (such as when a replica is initialized for replication). This is done by setting the
nsslapd-entryusn-import-initval attribute, which sets a starting USN for all imported entries.

There are two possible values for nsslapd-entryusn-import-initval:

An integer, which is the explicit start number used for every imported entry.

next, which means that every imported entry uses whatever the highest entry USN value was on
the server before the import operation, incremented by one.

If nsslapd-entryusn-import-initval is not set, then all entry USNs begin at zero.

Administration Guide

124

For example, if the highest value on the server is 1000 before the import or initialization operation, and
the nsslapd-entryusn-import-initval value is next, then every imported entry is assigned a USN of 1001:

ldapsearch -D "cn=Directory Manager" -W -p 389 -h server.example.com -x "(cn=*)" entryusn

dn: dc=example,dc=com

entryusn: 1001

dn: ou=Accounting,dc=example,dc=com

entryusn: 1001

dn: ou=Product Development,dc=example,dc=com

entryusn: 1001

...

dn: uid=jsmith,ou=people,dc=example,dc=com

entryusn: 1001

...

To set an initial value for entry USNs, simply add the nsslapd-entryusn-import-initval attribute to the
server into which data are being imported or to the master server which will perform the initialization.

ldapmodify -D "cn=Directory Manager" -W -x -D "cn=directory manager" -W -p 389 -h

server.example.com -x

dn: cn=config

changetype: modify

add: nsslapd-entryusn-import-initval

nsslapd-entryusn-import-initval: next

NOTE

In multi-master replication, the nsslapd-entryusn-import-initval attribute is not

replicated between servers. This means that the value must be set specifically on
whichever supplier server is being used to initialize a replica.

For example, if Supplier1 has nsslapd-entryusn-import-initval set to next and is used to
initialize a replica, then the entry USNs for imported entries have the highest value plus
one. If Supplier2 does not have nsslapd-entryusn-import-initval set and is used to
initialize a replica, then all entry USNs for imported entries begin at zero — even if
Supplier1 and Supplier 2 have a multi-master replication agreement between them.

6.1.2. Importing a Database from the Console

When performing an import operation from the Directory Server Console, an ldapmodify operation is
executed to append data, as well as to modify and delete entries. The operation is performed on all of
the databases managed by the Directory Server and on remote databases to which the Directory Server
has a configured database link.

Import operations can be run on a server instance that is local to the Directory Server Console or on a
different host machine (a remote import operation).

You must be logged in as the Directory Manager in order to perform an import.

NOTE

CHAPTER 6. POPULATING DIRECTORY DATABASES

125

NOTE

The LDIF files used for import operations must use UTF-8 character set encoding. Import
operations do not convert data from local character set encoding to UTF-8 characterset
encoding.

WARNING

All imported LDIF files must also contain the root suffix.

To import data from the Directory Server Console:

1. Select the Tasks tab. Scroll to the bottom of the screen, and select Import Database.

Alternatively, open the Configuration tab and select Import from the Console menu.

2. In the Import Database dialog box, enter the full path to the LDIF file to import in the LDIF file

field, or click Browse to select the file to import.

If the Console is running on a machine remote to the directory, the field name appears as LDIF

file (on the machine running the Console). When browsing for a file, you are not browsing the
current directory for the Directory Server host, but the filesystem of the machine running the
Console.

When importing a database through a remote Console, do not use a relative path to the
database. For remote imports, the operation fails with the error Cannot write to file... if a relative
path is given for the file. Always use an absolute path for remote import operations.

Administration Guide

126

3. In the Options box, select one or both of the following options:

Add Only. The LDIF file may contain modify and delete instructions in addition to the
default add instructions. For the server to ignore operations other than add, select the Add

only check box.

Continue on Error. Select the Continue on error check box for the server to continue with
the import even if errors occur. For example, use this option to import an LDIF file that
contains some entries that already exist in the database in addition to new ones. The server
notes existing entries in the rejects file while adding all new entries.

4. In the File for Rejects field, enter the full path to the file in which the server is to record all
entries it cannot import, or click Browse to select the file which will contain the rejects.

A reject is an entry which cannot be imported into the database; for example, the server cannot
import an entry that already exists in the database or an entry that has no parent object. The
Console will write the error message sent by the server to the rejects file.

Leaving this field blank means the server will not record rejected entries.

The server performs the import and also creates indexes.

NOTE

Trailing spaces are dropped during a remote Console import but are preserved during
both local Console or ldif2db import operations.

6.1.3. Initializing a Database from the Console

The existing data in a database can be overwritten by initializing databases.

You must be logged in as the Directory Manager in order to initialize a database because an LDIF file
that contains a root entry cannot be imported into a database except as the Directory Manager (root
DN). Only the Directory Manager has access to the root entry, such as dc=example,dc=com.

WARNING

When initializing databases from an LDIF file, be careful not to overwrite the
o=NetscapeRoot suffix unless you are restoring data. Otherwise, initializing the
database deletes information and may require re-installing the Directory Server.

To initialize a database using the Directory Server Console:

1. Select the Configuration tab.

2. Expand the Data tree in the left navigation pane. Expand the suffix of the database to initialize,
then click the database itself.

3. Right-click the database, and select Initialize Database.

CHAPTER 6. POPULATING DIRECTORY DATABASES

127

Alternatively, select Initialize Database from the Object menu.

4. In the LDIF file field, enter the full path to the LDIF file to import, or click Browse.

5. If the Console is running from a machine local to the file being imported, click OK and proceed
with the import immediately. If the Console is running from a machine remote to the server
containing the LDIF file, select one of the following options, then click OK:

From local machine. Indicates that the LDIF file is located on the local machine.

From server machine. Indicates that the LDIF file is located on a remote server.

The default LDIF directory is /var/lib/dirsrv/slapd-instance/ldif.

6.1.4. Importing from the Command Line

There are four methods for importing data through the command line:

Using ldif2db. This import method overwrites the contents of the database and requires the
server to be stopped; see Section 6.1.4.1, “Importing Using the ldif2db Command-Line Script” .

Using ldif2db.pl. This import method overwrites the contents of the database while the server is
still running; see Section 6.1.4.2, “Importing Using the ldif2db.pl Perl Script” .

Administration Guide

128

Using ldif2ldap. This method appends the LDIF file through LDAP. This method is useful to
append data to all of the databases; see Section 6.1.4.3, “Importing Using the ldif2ldap
Command-Line Script”.

Creating a cn=tasks entry. This method creates a temporary task entry which automatically
launches an import operation. This is functionally like running ldif2db. See Section 6.1.4.4,
“Importing through the cn=tasks Entry”.

NOTE

The LDIF files used for import operations must use UTF-8 character set encoding. Import
operations do not convert data from local character set encoding to UTF-8 characterset
encoding.

WARNING

All imported LDIF files must also contain the root suffix.

NOTE

To import a database that has been encrypted, use the -E option with the script. See
Section 10.7, “Exporting and Importing an Encrypted Database” for more information.

6.1.4.1. Importing Using the ldif2db Command-Line Script

The ldif2db script overwrites the data in the specified database. Also, the script requires that the
Directory Server be stopped when the import begins.

By default, the script first saves and then merges any existing o=NetscapeRoot configuration
information with the o=NetscapeRoot configuration information in the files being imported.

WARNING

This script overwrites the data in the database.

To import an LDIF:

1. Stop the server:

systemctl stop dirsrv@instance

2. Run the ldif2db command-line script:

CHAPTER 6. POPULATING DIRECTORY DATABASES

129

ldif2db -Z instance_name -n Database1 -i /var/lib/dirsrv/slapd-instance/ldif/demo.ldif -i

/var/lib/dirsrv/slapd-instance/ldif/demo2.ldif

For information about the parameters used in the example, see the description of the ldif2db

script in the Red Hat Directory Server Configuration, Command, and File Reference .

WARNING

If the database specified in the -n option does not correspond with the
suffix contained by the LDIF file, all of the data contained by the database
is deleted, and the import fails. Make sure that the database name is not
misspelled.

3. Start the server:

systemctl start dirsrv@instance

6.1.4.2. Importing Using the ldif2db.pl Perl Script

As with the ldif2db script, the ldif2db.pl script overwrites the data in the specified database. This script
requires the server to be running in order to perform the import.

WARNING

This script overwrites the data in the database.

Run the ldif2db.pl script:

ldif2db.pl -Z instance_name -D "cn=Directory Manager" -w secret -i

/var/lib/dirsrv/slapd-instance/ldif/demo.ldif -n Database1

For information about the parameters used in the example, see the description of the ldif2db.pl script in
the Red Hat Directory Server Configuration, Command, and File Reference .

NOTE

You do not need root privileges to run the script, but you must authenticate as the
Directory Manager.

6.1.4.3. Importing Using the ldif2ldap Command-Line Script

The ldif2ldap script appends the LDIF file through LDAP. Using this script, data are imported to all

Administration Guide

130

https://access.redhat.com/documentation/en-us/red_hat_directory_server/10/html/configuration_command_and_file_reference/shell_scripts#Shell_Scripts-ldif2db_Import
https://access.redhat.com/documentation/en-us/red_hat_directory_server/10/html/configuration_command_and_file_reference/Perl_Scripts#Perl_Scripts-ldif2db.pl_Import

The ldif2ldap script appends the LDIF file through LDAP. Using this script, data are imported to all
directory databases at the same time. The server must be running in order to import using ldif2ldap.

To import LDIF using ldif2ldap:

[root@server ~]# ldif2ldap -Z instance_name -D "cn=Directory Manager" -w secretpwd

/var/lib/dirsrv/slapd-instance/ldif/demo.ldif

The ldif2ldap script requires the DN of the administrative user, the password of the administrative user,
and the absolute path and filename of the LDIF files to be imported.

For information about the parameters used in the example, see the description of the ldif2ldap script in
the Red Hat Directory Server Configuration, Command, and File Reference .

6.1.4.4. Importing through the cn=tasks Entry

The cn=tasks,cn=config entry in the Directory Server configuration is a container entry for temporary
entries that the server uses to manage tasks. Several common directory tasks have container entries
under cn=tasks,cn=config. Temporary task entries can be created under
cn=import,cn=tasks,cn=config to initiate an import operation.

As with the ldif2db and ldif2db.pl scripts, an import operation in cn=tasks overwrites all of the
information in the database.

This task entry requires three attributes:

A unique name (cn)

The filename of the LDIF file to import (nsFilename)

The name of the database into which to import the file (nsInstance)

It is also possible to supply the DNs of suffixes to include or exclude from the import, analogous to the -
s and -x options, respectively, for the ldif2db and ldif2db.pl scripts.

The entry is simply added using ldapmodify, as described in Section 3.1.3.2, “Adding an Entry Using
ldapmodify”. For example:

ldapmodify -a -D "cn=Directory Manager" -W -p 389 -h server.example.com -x

dn: cn=example import,cn=import,cn=tasks,cn=config

changetype: add

objectclass: extensibleObject

cn: example import

nsFilename: /home/files/example.ldif

nsInstance: userRoot

nsIncludeSuffix: ou=People,dc=example,dc=com

nsExcludeSuffix: ou=Groups,dc=example,dc=com

As soon as the task is completed, the entry is removed from the directory configuration.

For details about the attributes used in the example and other attributes you can set in this entry, see
the cn=import,cn=tasks,cn=config entry description in the Red Hat Directory Server Configuration,

Command, and File Reference

CHAPTER 6. POPULATING DIRECTORY DATABASES

131

https://access.redhat.com/documentation/en-us/red_hat_directory_server/10/html/configuration_command_and_file_reference/shell_scripts#Shell_Scripts-ldif2ldap_Perform_import_operation_over_LDAP
https://access.redhat.com/documentation/en-us/red_hat_directory_server/10/html/configuration_command_and_file_reference/Core_Server_Configuration_Reference#cn-import

6.2. EXPORTING DATA

LDAP Data Interchange Format (LDIF) files are used to export database entries from the
Directory Server databases. LDIF is a standard format described in RFC 2849, The LDAP Data

Interchange Format (LDIF) - Technical Specification.

Exporting data can be useful for the following:

Backing up the data in the database.

Copying data to another Directory Server.

Exporting data to another application.

Repopulating databases after a change to the directory topology.

For example, if a directory contains one database, and its contents are split into two databases, then the
two new databases receive their data by exporting the contents of the old databases and importing it
into the two new databases, as illustrated in Figure 6.1, “Splitting a Database Contents into Two
Databases”.

NOTE

The export operations do not export the configuration information (cn=config), schema
information (cn=schema), or monitoring information (cn=monitor).

Figure 6.1. Splitting a Database Contents into Two Databases

The Directory Server Console or command-line utilities can be used to export data.

Administration Guide

132

Section 6.2.1, “Exporting Directory Data to LDIF Using the Console”

Section 6.2.2, “Exporting a Single Database to LDIF Using the Console”

Section 6.2.3, “Exporting a Database to LDIF Using the Command Line”

WARNING

Do not stop the server during an export operation.

6.2.1. Exporting Directory Data to LDIF Using the Console

Some or all of directory data can be exported to LDIF, depending upon the location of the final exported
file. When the LDIF file is on the server, only the data contained by the databases local to the server can
be exported. If the LDIF file is remote to the server, all of the databases and database links can be
exported.

Export operations can be run to get data from a server instance that is local to the
Directory Server Console or from a different host machine (a remote export operation).

Export directory data to LDIF from the Directory Server Console while the server is running:

1. Select the Tasks tab. Scroll to the bottom of the screen, and click Export Database(s).

Alternatively, select the Configuration tab and click the Export from the Console menu.

2. Enter the full path and filename of the LDIF file in the LDIF File field, or click Browse to locate
the file.

Browse is not enabled if the Console is running on a remote server. When the Browse button is
not enabled, the file is stored in the default directory, /var/lib/dirsrv/slapd-instance/ldif.

3. If the Console is running on a machine remote to the server, two radio buttons are displayed
beneath the LDIF File field.

Select To local machine to export the data to an LDIF file on the machine from which the

CHAPTER 6. POPULATING DIRECTORY DATABASES

133

Select To local machine to export the data to an LDIF file on the machine from which the
Console is running.

Select To server machine to export to an LDIF file located on the server's machine.

4. To export the whole directory, select the Entire database radio button.

To export only a single subtree of the suffix contained by the database, select the Subtree radio
button, and then enter the name of the suffix in the Subtree text box. This option exports a
subtree that is contained by more than one database.

Alternatively, click Browse to select a suffix or subtree.

6.2.2. Exporting a Single Database to LDIF Using the Console

It is also possible to export a single database to LDIF. Do the following while the server is running:

1. Select the Configuration tab.

2. Expand the Data tree in the left navigation pane. Expand the suffix, and select the database
under the suffix.

3. Right-click the database, and select Export Database.

Alternatively, select Export Database from the Object menu.

4. In the LDIF file field, enter the full path to the LDIF file, or click Browse.

Administration Guide

134

When the Browse button is not enabled, the file is stored in the default directory,
/var/lib/dirsrv/slapd-instance/ldif.

6.2.3. Exporting a Database to LDIF Using the Command Line

Directory Server supports the following ways to export data into LDIF files:

6.2.3.1. Exporting a Database While Directory Server is Running

To export a database while Directory Server is running, create an export task. You can either use the
db2ldif.pl script to create it or create the task manually. After the task is completed, Directory Server
automatically removes the task entry from the cn=export,cn=tasks,cn=config entry.

For a comparison of which db2ldif.pl command-line option sets which attribute in the task entry, see the
Red Hat Directory Server Configuration, Command, and File Reference .

6.2.3.1.1. Exporting a Database Using the db2ldif.pl Script

The db2ldif.pl script creates a task to export a database while Directory Server is running. For example,
to export the userRoot database:

db2ldif.pl -Z instance_name -D "cn=Directory Manager" -w - -n userRoot

By default, the script stores the exported data in the /var/lib/dirsrv/slapd-instance_name/ldif/

directory. The created file is named instance_name-database_or_suffix_name-time_stamp.ldif.
Alternatively, you can pass the -a file_name option to the script to set a different location. Note that the
Directory Server user requires write permissions in the destination directory.

For details about the available command-line options, see the description of the script in the
Red Hat Directory Server Configuration, Command, and File Reference .

To export an encrypted database, see Section 10.7, “Exporting and Importing an Encrypted Database” .

6.2.3.1.2. Manually Creating an Export Task

Instead of using the db2ldif.pl script to create an export task, you can create the task entry manually.
For example, to create a task that exports the userRoot database to the /tmp/export.ldif file:

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x

dn: cn=task_name,cn=export,cn=tasks,cn=config

objectclass: extensibleObject

CHAPTER 6. POPULATING DIRECTORY DATABASES

135

https://access.redhat.com/documentation/en-us/red_hat_directory_server/10/html/configuration_command_and_file_reference/core_server_configuration_reference#tbl.db2ldif_pl_attributes
https://access.redhat.com/documentation/en-us/red_hat_directory_server/10/html/configuration_command_and_file_reference/shell_scripts#Shell_Scripts-db2ldif_Export_database_contents_to_LDIF

cn: task_name

nsInstance: userRoot

nsFilename: /tmp/export.ldif

For a list of settings which you can use in export task entries, see the Red Hat Directory Server

Configuration, Command, and File Reference.

6.2.3.2. Exporting a Database While Directory Server is Stopped

To export a database while the Directory Server instance is stopped, use the db2ldif script. The script
takes the same options as the db2ldif.pl script, which can export data while the instance is running.

For example, to export the userRoot database while the instance is stopped:

db2ldif -Z instance_name -n userRoot

By default, the script stores the exported data in the /var/lib/dirsrv/slapd-instance_name/ldif/

directory. The created file is named instance_name-database_or_suffix_name-time_stamp.ldif.
Alternatively, you can pass the -a file_name option to the script to set a different location. Note that the
Directory Server user requires write permissions in the destination directory.

For details about the available command-line options, see the description of the script in the
Red Hat Directory Server Configuration, Command, and File Reference .

6.3. BACKING UP AND RESTORING DATA

Databases can be backed up and restored using the Directory Server Console or a command-line script.
A backup contains, for example:

All database files, such as for userRoot and NetscapeRoot, including the data stored within
these databases

The transaction logs

The Indices

In contrast to a backup, you can export data as described in Section 6.2, “Exporting Data” . Use the
export feature to export specific data, such as a subtree, from a server in the LDAP Data Interchange
Format (LDIF) format.

This section describes the following procedures:

Section 6.3.1, “Backing up All Databases”

Section 6.3.2, “Backing up the dse.ldif Configuration File”

Section 6.3.3, “Restoring All Databases”

Section 6.3.4, “Restoring a Single Database”

Section 6.3.5, “Restoring Databases That Include Replicated Entries”

Section 6.3.6, “Restoring the dse.ldif Configuration File”

Administration Guide

136

https://access.redhat.com/documentation/en-us/red_hat_directory_server/10/html/configuration_command_and_file_reference/core_server_configuration_reference#tbl.db2ldif_pl_attributes
https://access.redhat.com/documentation/en-us/red_hat_directory_server/10/html/configuration_command_and_file_reference/shell_scripts#Shell_Scripts-db2ldif_Export_database_contents_to_LDIF

WARNING

Do not stop the server during a backup or restore operation.

6.3.1. Backing up All Databases

The following procedures describe backing up all of the databases in the directory using the
Directory Server Console and from the command line.

NOTE

These backup methods cannot be used to back up the data contained by databases on a
remote server that are chained using database links.

6.3.1.1. Backing up All Databases from the Console

When backing up databases from the Directory Server Console, the server copies all of the database
contents and associated index files to a backup location. A backup can be performed while the server is
running.

To back up databases from the Directory Server Console:

1. Select the Tasks tab.

2. Click Back Up Directory Server.

3. Enter the full path of the directory to store the backup file in the Directory text box, or click
Use default, and the server provides a name for the backup directory.

If the Console is running on the same machine as the directory, click Browse to select a local
directory.

CHAPTER 6. POPULATING DIRECTORY DATABASES

137

With the default location, the backup files are placed in /var/lib/dirsrv/slapd-instance/bak. By
default, the backup directory name contains the name of the server instance and the time and
date the backup was created (instance-YYYY_MM_DD_hhmmss).

6.3.1.2. Backing up All Databases from the Command Line

Databases can be backed up from the command line using either the db2bak command-line script or
the db2bak.pl Perl script. The command-line script works when the server is running or when the server
is stopped; the Perl script can only be used when the server is running.

IMPORTANT

If the database being backed up is a master database, meaning it keeps a changelog, then
it must be backed up using the db2bak.pl Perl script or using the
Directory Server Console if the server is kept running. The changelog only writes its RUV
entries to the database when the server is shut down; while the server is running, the
changelog keeps its changes in memory. For the Perl script and the Console, these
changelog RUVs are written to the database before the backup process runs. However,
that step is not performed by the command-line script.

The db2bak should not be run on a running master server. Either use the Perl script or
stop the server before performing the backup.

Configuration information cannot be backed up using this backup method. For information on backing
up the configuration information, see Section 6.3.2, “Backing up the dse.ldif Configuration File” .

To back up the directory from the command line using the db2bak.pl script, run the db2bak.pl Perl
script, specifying the backup filename and directory.

db2bak.pl -Z instance_name -D "cn=Directory Manager" -w password -a /var/lib/dirsrv/slapd-

example/bak/instance-2020_04_30_16_27_5-custom-name

NOTE

Do not use a trailing slash character ("/") when using the -a option to specify the default
backup directory that is configured using the nsslapd-bakdir directive. For example:

db2bak.pl -Z instance_name -D "cn=Directory Manager" -w password -a

/var/lib/dirsrv/slapd-example/bak

Note the lack of slash after slapd-example/bak.

This limitation only applies when specifying exactly the same directory which is configured
in nsslapd-bakdir. Any other directory, even inside the default backup directory (for
example, bak/custom-name/) can be specified with or without a trailing slash.

The backup directory where the server saves the backed up databases can be specified with the script. If
a directory is not specified, the backup file is stored in /var/lib/dirsrv/slapd-instance/bak. By default,
the backup directory is named with the Directory Server instance name and the date of the backup
(serverID-YYYY_MM_DD_hhmmss).

For information about ldif2db, see the script's description in the Red Hat Directory Server Configuration,

Command, and File Reference.

Administration Guide

138

https://access.redhat.com/documentation/en-us/red_hat_directory_server/10/html/configuration_command_and_file_reference/shell_scripts#Shell_Scripts-db2bak_Create_backup_of_database

6.3.1.3. Backing up the Database through the cn=tasks Entry

The cn=tasks,cn=config entry in the Directory Server configuration is a container entry for temporary
entries that the server uses to manage tasks. Several common directory tasks have container entries
under cn=tasks,cn=config. Temporary task entries can be created under
cn=backup,cn=tasks,cn=config to initiate a backup operation.

The backup task entry requires three attributes:

A unique name (cn).

The directory to write the backup file to (nsArchiveDir). The backup file is named with the
Directory Server instance name and the date of the backup (serverID-YYYY_MM_DD_hhmmss).

The type of database (nsDatabaseType); the only option is ldbm database.

The entry is simply added using ldapmodify, as described in Section 3.1.3.2, “Adding an Entry Using
ldapmodify”. For example:

ldapmodify -a -D "cn=Directory Manager" -W -p 389 -h server.example.com -x

dn: cn=example backup,cn=backup,cn=tasks,cn=config

changetype: add

objectclass: extensibleObject

cn: example backup

nsArchiveDir: /export/backups/

nsDatabaseType: ldbm database

As soon as the task is completed, the entry is removed from the directory configuration.

For details about the attributes used in the example and other attributes you can set in this entry, see
the cn=backup,cn=tasks,cn=config entry description in the Red Hat Directory Server Configuration,

Command, and File Reference

6.3.2. Backing up the dse.ldif Configuration File

Directory Server automatically backs up the dse.ldif configuration file. When the Directory Server is
started, the directory creates a backup of the dse.ldif file automatically in a file named dse.ldif.startOK

in the /etc/dirsrv/slapd-instance directory.

When the dse.ldif file is modified, the file is first backed up to a file called dse.ldif.bak in the
/etc/dirsrv/slapd-instance directory before the directory writes the modifications to the dse.ldif file.

6.3.3. Restoring All Databases

The following procedures describe restoring all of the databases in the directory using the
Directory Server Console and from the command line.

NOTE

Restoring a database from backup also restores the changelog.

IMPORTANT

CHAPTER 6. POPULATING DIRECTORY DATABASES

139

https://access.redhat.com/documentation/en-us/red_hat_directory_server/10/html/configuration_command_and_file_reference/core_server_configuration_reference#cn-backup

IMPORTANT

While restoring databases, the server must be running. However, the databases will be
unavailable for processing operations during the restore.

Therefore, stop all replication processes before restoring a database. For details, see
Section 15.9, “Disabling and Re-enabling a Replication Agreement” .

6.3.3.1. Restoring All Databases from the Console

If the databases become corrupted, restore data from a previously generated backup using the
Directory Server Console. This process consists of stopping the server and then copying the databases
and associated index files from the backup location to the database directory.

WARNING

Restoring databases overwrites any existing database files.

IMPORTANT

While restoring databases, the server must be running. However, the databases will be
unavailable for processing operations during the restore.

Therefore, stop all replication processes before restoring a database. For details, see
Section 15.9, “Disabling and Re-enabling a Replication Agreement” .

To restore databases from a previously created backup:

1. In the Directory Server Console, select the Tasks tab.

2. Click Restore Directory Server.

3. Select the backup from the Available Backups list, or enter the full path to a valid backup in

Administration Guide

140

3. Select the backup from the Available Backups list, or enter the full path to a valid backup in
the Directory text box.

The Available Backups list shows all backups located in the default directory,
/var/lib/dirsrv/slapd-instance/bak/backup_directory. backup_directory is the directory of the
most recent backup, in the form serverID-YYYY_MM_DD_hhmmss.

6.3.3.2. Restoring Databases from the Command Line

There are three ways to restore databases from the command line:

Using the bak2db command-line script. This script requires the server to be shut down.

Using the bak2db.pl Perl script. This script works while the server is running.

Creating a temporary entry under cn=restore,cn=tasks,cn=config. This method can also be
run while the server is running.

IMPORTANT

While restoring databases, the server must be running (with the exception of running the
bak2db command-line script). However, the databases will be unavailable for processing
operations during the restore.

Therefore, stop all replication processes before restoring a database. For details, see
Section 15.9, “Disabling and Re-enabling a Replication Agreement” .

6.3.3.2.1. Using the bak2db Command-Line Script

1. If the Directory Server is running, stop it:

systemctl stop dirsrv@instance

2. Run the bak2db command-line script. The bak2db script requires the full path and name of the
input file.

bak2db -Z instance_name /var/lib/dirsrv/slapd-instance/bak/instance-

2020_04_30_11_48_30

For information about the parameters used in the example, see the description of the bak2db

script in the Red Hat Directory Server Configuration, Command, and File Reference .

CHAPTER 6. POPULATING DIRECTORY DATABASES

141

https://access.redhat.com/documentation/en-us/red_hat_directory_server/10/html/configuration_command_and_file_reference/shell_scripts#Shell_Scripts-bak2db_Restore_database_from_backup

6.3.3.2.2. Using bak2db.pl Perl Script

Run the bak2db.pl Perl script.

bak2db.pl -Z instance_name -D "cn=Directory Manager" -w secret -a

/var/lib/dirsrv/slapd-instance/bak/instance-2020_04_30_11_48_30

For information about the parameters used in the example, see the description of the bak2db.pl script
in the Red Hat Directory Server Configuration, Command, and File Reference .

IMPORTANT

While restoring databases, the server must be running. However, the databases will be
unavailable for processing operations during the restore.

Therefore, stop all replication processes before restoring a database. For details, see
Section 15.9, “Disabling and Re-enabling a Replication Agreement” .

6.3.3.2.3. Restoring the Database through the cn=tasks Entry

The cn=tasks,cn=config entry in the Directory Server configuration is a container entry for temporary
entries that the server uses to manage tasks. Several common directory tasks have container entries
under cn=tasks,cn=config. Temporary task entries can be created under
cn=restore,cn=tasks,cn=config to initiate a restore operation.

IMPORTANT

While restoring databases, the server must be running. However, the databases will be
unavailable for processing operations during the restore.

Therefore, stop all replication processes before restoring a database. For details, see
Section 15.9, “Disabling and Re-enabling a Replication Agreement” .

The restore task entry requires three attributes, the same as the backup task:

A unique name (cn).

The directory from which to retrieve the backup file (nsArchiveDir).

The type of database (nsDatabaseType); the only option is ldbm database.

The entry is simply added using ldapmodify, as described in Section 3.1.3.2, “Adding an Entry Using
ldapmodify”. For example:

ldapmodify -a -D "cn=Directory Manager" -W -p 389 -h server.example.com -x

dn: cn=example restore,cn=restore,cn=tasks,cn=config

changetype: add

objectclass: extensibleObject

cn: example restore

nsArchiveDir: /export/backups/

nsDatabaseType: ldbm database

As soon as the task is completed, the entry is removed from the directory configuration.

Administration Guide

142

https://access.redhat.com/documentation/en-us/red_hat_directory_server/10/html/configuration_command_and_file_reference/Perl_Scripts#Perl_Scripts-bak2db.pl_Restore_database_from_backup

For details about the attributes used in the example and other attributes you can set in this entry, see
the cn=restore,cn=tasks,cn=config entry description in the Red Hat Directory Server Configuration,

Command, and File Reference

6.3.4. Restoring a Single Database

It is possible to restore a single database through the command line, but not in the
Directory Server Console. To restore a single database:

1. Stop the Directory Server if it is running.

systemctl stop dirsrv@instance

2. Restore the back end from the /var/lib/dirsrv/slapd-instance/bak archives with the bak2db

script, using the -n parameter to specify the database name. For example:

bak2db -Z instance_name /var/lib/dirsrv/slapd-instance/bak/backup_file -n userRoot

3. Restart the Directory Server.

systemctl start dirsrv@instance

NOTE

If the Directory Server fails to start, remove the database transaction log files in
/var/lib/dirsrv/slapd-instance/db/log.###, then retry starting the server.

6.3.5. Restoring Databases That Include Replicated Entries

Several situations can occur when a supplier server is restored:

The consumer servers are also restored.

For the very unlikely situation, that all databases are restored from backups taken at exactly the
same time (so that the data are in sync), the consumers remain synchronized with the supplier,
and it is not necessary to do anything else. Replication resumes without interruption.

Only the supplier is restored.

If only the supplier is restored or if the consumers are restored from backups taken at a different
times, reinitialize the consumers for the supplier to update the data in the database. If only the
supplier is restored or if the consumers are restored from backups taken at a different times,
reinitialize the consumers for the supplier to update the data in the database.

Changelog entries have not yet expired on the supplier server.

If the supplier's changelog has not expired since the database backup was taken, then restore
the local consumer and continue with normal operations. This situation occurs only if the backup
was taken within a period of time that is shorter than the value set for the maximum changelog
age attribute, nsslapd-changelogmaxage, in the cn=changelog5,cn=config entry. For more
information about this option, see the Red Hat Directory Server

Configuration, Command, and File Reference.

Directory Server automatically detects the compatibility between the replica and its changelog.

CHAPTER 6. POPULATING DIRECTORY DATABASES

143

https://access.redhat.com/documentation/en-us/red_hat_directory_server/10/html/configuration_command_and_file_reference/core_server_configuration_reference#cn-restore

Directory Server automatically detects the compatibility between the replica and its changelog.
If a mismatch is detected, the server removes the old changelog file and creates a new, empty
one.

Changelog entries have expired on the supplier server since the time of the local backup.

If changelog entries have expired, reinitialize the consumer. For more information on
reinitializing consumers, see Section 15.18, “Initializing Consumers” .

Example 6.1. Restoring a Directory Server Replication Topology

For example, to restore all servers in a replication environment, consisting of two masters and two
consumer server:

1. Restore the first master. Use the ldif2db utility without the -r option to import the data. See
Section 6.1.4, “Importing from the Command Line” .

2. Online-initialize the remaining servers by using replication:

a. Initialize the second master from the first one.

b. Initialize the consumers from the master.

For details, see Section 15.18, “Initializing Consumers” .

3. On each server, display the nsds5replicaLastUpdateStatus attribute to verify that
replication works correctly:

ldapsearch -D "cn=Directory Manager" -W -p 389 -h server.example.com -b

"cn=example_agreement,cn=replica,cn=dc\=example\,dc\=com,cn=mapping

tree,cn=config" nsds5replicaLastUpdateStatus

For details about possible statuses, see the Replication Agreement Status appendix in the
Red Hat Directory Server Configuration, Command, and File Reference .

The changelog associated with the restored database will be erased during the restore operation. A
message will be logged to the supplier servers' log files indicating that reinitialization is required.

For information on managing replication, see Chapter 15, Managing Replication.

6.3.6. Restoring the dse.ldif Configuration File

The directory creates two backup copies of the dse.ldif file in the /etc/dirsrv/slapd-instance directory.
The dse.ldif.startOK file records a copy of the dse.ldif file at server start up. The dse.ldif.bak file
contains a backup of the most recent changes to the dse.ldif file. Use the version with the most recent
changes to restore the directory.

To restore the dse.ldif configuration file:

1. Stop the server.

systemctl stop dirsrv@instance

2. Restore the database as outlined in Section 6.3.4, “Restoring a Single Database” to copy the

Administration Guide

144

https://access.redhat.com/documentation/en-us/red_hat_directory_server/10/html/configuration_command_and_file_reference/replication_agreement_status

2. Restore the database as outlined in Section 6.3.4, “Restoring a Single Database” to copy the
backup copy of the dse.ldif file into the directory.

3. Restart the server.

systemctl restart dirsrv@instance

CHAPTER 6. POPULATING DIRECTORY DATABASES

145

CHAPTER 7. MANAGING ATTRIBUTES AND VALUES

Red Hat Directory Server provides several different mechanisms for dynamically and automatically
maintaining some types of attributes on directory entries. These plug-ins and configuration options
simplify managing directory data and expressing relationships between entries.

Part of the characteristic of entries are their relationships to each other. Obviously, a manager has an
employee, so those two entries are related. Groups are associated with their members. There are less
apparent relationships, too, like between entries which share a common physical location.

Red Hat Directory Server provides several different ways that these relationships between entries can
be maintained smoothly and consistently. There are several plug-ins can apply or generate attributes
automatically as part of the data within the directory, including classes of service, linking attributes, and
generating unique numeric attribute values.

7.1. ENFORCING ATTRIBUTE UNIQUENESS

To ensure that the value of an attribute is unique across the directory or subtree, use the Attribute
Uniqueness plug-in.

If you want multiple attributes to be unique or if you want to use different conditions, create multiple
configuration records of the plug-in.

7.1.1. Creating a New Configuration Record of the Attribute Uniqueness Plug-in

For each attribute whose values must be unique, create a new configuration record of the Attribute
Uniqueness plug-in.

NOTE

You can only create a new configuration record of the plug-in from the command line.

To create a new unconfigured and disabled configuration record of the plug-in named Example

Attribute Uniqueness:

ldapadd -D "cn=Directory Manager" -W -p 389 -h server.example.com -x

dn: cn=Example Attribute Uniqueness,cn=plugins,cn=config

objectClass: top

objectClass: nsSlapdPlugin

objectClass: extensibleObject

cn: Example Attribute Uniqueness

nsslapd-pluginPath: libattr-unique-plugin

nsslapd-pluginInitfunc: NSUniqueAttr_Init

nsslapd-pluginType: betxnpreoperation

nsslapd-pluginEnabled: off

nsslapd-plugin-depends-on-type: database

nsslapd-pluginId: NSUniqueAttr

nsslapd-pluginVersion: none

nsslapd-pluginVendor: 389 Project

nsslapd-pluginDescription: Enforce unique attribute values

uniqueness-attribute-name: uid

7.1.2. Configuring Attribute Uniqueness over Suffixes or Subtrees

Administration Guide

146

You can configure the Attribute Uniqueness plug-in to ensure that values of an attribute are unique in
certain suffixes, subtrees, or over suffixes and subtrees.

7.1.2.1. Configuring Attribute Uniqueness over Suffixes or Subtrees Using the Command
Line

To configure, for example, that values stored in mail attributes are unique:

1. Create a new configuration record of the Attribute Uniqueness plug-in named, for example,
mail Attribute Uniqueness. For details, see Section 7.1.1, “Creating a New Configuration Record
of the Attribute Uniqueness Plug-in”.

2. Enable the plug-in configuration record and configure that values stored in mail attributes must
be unique inside, for example, the ou=Engineering,dc=example,dc=com and
ou=Sales,dc=example,dc=com subtrees:

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x

dn: cn=mail Attribute Uniqueness,cn=plugins,cn=config

changetype: modify

replace: nsslapd-pluginEnabled

nsslapd-pluginEnabled: on

-

add: uniqueness-attribute-name

uniqueness-attribute-name: mail

-

add: uniqueness-subtrees

uniqueness-subtrees: ou=Engineering,dc=example,dc=com

uniqueness-subtrees: ou=Sales,dc=example,dc=com

3. Optionally, to configure uniqueness across all subtrees configured in this plug-in configuration
record:

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x

dn: cn=mail Attribute Uniqueness,cn=plugins,cn=config

changetype: modify

add: uniqueness-across-all-subtrees

uniqueness-across-all-subtrees: on

4. Restart the instance:

systemctl restart dirsrv@instance_name

7.1.2.2. Configuring Attribute Uniqueness over Suffixes or Subtrees Using the Console

To configure, for example, that values stored in mail attributes are unique:

1. Create a new configuration record of the Attribute Uniqueness plug-in. See Section 7.1.1,
“Creating a New Configuration Record of the Attribute Uniqueness Plug-in”.

2. Open the Property Editor in the plug-in configuration record's configuration. For details, see
Section 1.9.3.2, “Configuring Plug-ins using the Console” .

CHAPTER 7. MANAGING ATTRIBUTES AND VALUES

147

3. To enable the plug-in, set:

nsslapd-pluginEnabled: on

4. Set that the mail attribute must be unique:

uniqueness-attribute-name: mail

5. Set the subtrees in which the attribute's value must be unique:

uniqueness-subtrees: ou=Engineering,dc=example,dc=com

uniqueness-subtrees: ou=Sales,dc=example,dc=com

Select the value field of the uniqueness-subtrees attribute and click the Add Value button to
add the second uniqueness-subtrees attribute.

6. Optionally, to configure uniqueness across all subtrees configured in this plug-in configuration
record, add the uniqueness-across-all-subtrees attribute and set it to on:

uniqueness-across-all-subtrees: on

7. Click OK to close the Property Editor

8. Restart the Directory Server instance. See Section 1.4.2, “Starting and Stopping a
Directory Server Instance Using the Console”.

7.1.3. Configuring Attribute Uniqueness over Object Classes

You can configure the Attribute Uniqueness plug-in to ensure that values of an attribute are unique in
subtree entries that contain a specific object class. Directory Server searches for this object class in the
parent entry of the updated object. If Directory Server did not find the object class, the search continues
at the next higher level entry up to the root of the directory tree. If the object class was found,
Directory Server verifies that the value of the attribute set in uniqueness-attribute-name is unique in
this subtree.

NOTE

You can configure this scenario only using the command line.

To configure, for example, that values stored in mail attributes are unique under the entry that contains
the nsContainer object class:

1. Create a new configuration record of the Attribute Uniqueness plug-in named, for example,
mail Attribute Uniqueness. For details, see Section 7.1.1, “Creating a New Configuration Record
of the Attribute Uniqueness Plug-in”.

2. Enable the plug-in configuration record and configure that values stored in mail attributes must
be unique under the entry that contains the nsContainer object class:

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x

dn: cn=mail Attribute Uniqueness,cn=plugins,cn=config

changetype: modify

Administration Guide

148

replace: nsslapd-pluginEnabled

nsslapd-pluginEnabled: on

-

add: uniqueness-top-entry-oc

uniqueness-top-entry-oc: nsContainer

3. Optionally, you can limit the scope of objects being checked. If you want the server to check only
a subset of entries under the entry that contains the nsContainer object class, set an additional
object class in the uniqueness-subtree-entries-oc parameter. This additional class will also
have to be present.

For example, the mail attribute must be unique in all entries under the entry that contains the
nsContainer object class set. However, you want that the plug-in only searches the mail in
entries that contain a object class that provides this attribute, such as inetOrgPerson. In this
situation enter:

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x

dn: cn=mail Attribute Uniqueness,cn=plugins,cn=config

add: uniqueness-subtree-entries-oc

uniqueness-subtree-entries-oc: inetOrgPerson

4. Restart the instance:

systemctl restart dirsrv@instance_name

7.1.4. Attribute Uniqueness Plug-in Configuration Parameters

To configure an Attribute Uniqueness plug-in configuration record, set the plug-in's configuration
attributes in the cn=attribute_uniqueness_configuration_record_name,cn=plugins,cn=config

entry.

You can configure this plug-in using the new plug-in-specific attribute names (Example 7.1, “Attribute
Uniqueness Plug-in Configuration Using Plug-in-specific Attributes”) or using the deprecated nsslapd-

plugarg* attributes (Example 7.2, “Attribute Uniqueness Plug-in Configuration Using nsslapd-

pluginarg* Attributes”).

IMPORTANT

Red Hat recommends using only the plug-in-specific attribute names to configure the
Attribute Uniqueness plug-in.

Example 7.1. Attribute Uniqueness Plug-in Configuration Using Plug-in-specific Attributes

dn: cn=Example Attribute Uniqueness,cn=plugins,cn=config

nsslapd-pluginEnabled: on

uniqueness-attribute-name: attribute_name

uniqueness-top-entry-oc: objectclass1

uniqueness-subtree-entries-oc: objectclass2

Example 7.2. Attribute Uniqueness Plug-in Configuration Using nsslapd-pluginarg* Attributes

CHAPTER 7. MANAGING ATTRIBUTES AND VALUES

149

dn: cn=Example Attribute Uniqueness,cn=plugins,cn=config

nsslapd-pluginEnabled: on

nsslapd-pluginarg0: attribute=mail

nsslapd-pluginarg1: markerObjectClass=objectclass1

nsslapd-pluginarg2: requiredObjectClass=objectclass2

Table 7.1. Attribute Uniqueness Plug-in Configuration Parameters

Parameter New or Old
Syntax

Definition

cn Both Sets the name of the Attribute Uniqueness plug-
in configuration record. You can use any string,
but Red Hat recommends naming the
configuration record attribute_name Attribute

Uniqueness.

nsslapd-pluginEnabled Both Enables (on) or disables (off) the plug-in
configuration record.

uniqueness-attribute-name New Sets the name of the attribute whose values must
be unique. This attribute is multi-valued.

uniqueness-subtrees New Sets the DN under which the plug-in checks for
uniqueness of the attribute's value. This attribute
is multi-valued.

uniqueness-across-all-subtrees New If enabled (on), the plug-in checks that the
attribute is unique across all subtrees set. If you
set the attribute to off, uniqueness is only
enforced within the subtree of the updated entry.

uniqueness-top-entry-oc New Directory Server searches this object class in the
parent entry of the updated object. If it was not
found, the search continues at the next higher
level entry up to the root of the directory tree. If
the object class was found, Directory Server
verifies that the value of the attribute set in
uniqueness-attribute-name is unique in this
subtree.

uniqueness-subtree-entries-oc New Optionally, when using the uniqueness-top-

entry-oc parameter, you can configure that the
Attribute Uniqueness plug-in only verifies if an
attribute is unique, if the entry contains the object
class set in this parameter. For details, see
Section 7.1.3, “Configuring Attribute Uniqueness
over Object Classes”.

Administration Guide

150

nsslapd-pluginarg0 Old The plug-in-specific attribute equivalent of this
nsslapd-pluginarg* parameter is uniqueness-
attribute-name. See this parameter for a
description.

Set the attribute to attribute=attribute_name.

nsslapd-pluginarg[1-9] Old The plug-in-specific attribute equivalent of this
nsslapd-pluginarg* parameter is uniqueness-
top-entry-oc. See this parameter for a
description.

Set the attribute to
markerObjectClass=object_class.

nsslapd-pluginarg[1-9] Old The equivalent plug-in-specific attribute is
uniqueness-subtree-entries-oc. See this
parameter for a description.

Set the attribute to
requiredObjectClass=object_class.

Parameter New or Old
Syntax

Definition

7.2. ASSIGNING CLASS OF SERVICE

A class of service definition (CoS) shares attributes between entries in a way that is transparent to
applications. CoS simplifies entry management and reduces storage requirements.

Clients of the Directory Server read the attributes in a user's entry. With CoS, some attribute values may
not be stored within the entry itself. Instead, these attribute values are generated by class of service
logic as the entry is sent to the client application.

Each CoS is comprised of two types of entry in the directory:

CoS definition entry. The CoS definition entry identifies the type of CoS used. Like the role
definition entry, it inherits from the LDAPsubentry object class. The CoS definition entry is
below the branch at which it is effective.

Template entry. The CoS template entry contains a list of the shared attribute values. Changes
to the template entry attribute values are automatically applied to all the entries within the
scope of the CoS. A single CoS might have more than one template entry associated with it.

The CoS definition entry and template entry interact to provide attribute information to their target
entries, any entry within the scope of the CoS.

7.2.1. About the CoS Definition Entry

The CoS definition entry is an instance of the cosSuperDefinition object class. The CoS definition
entry also contains one of three object class that specifies the type of template entry it uses to
generate the entry. The target entries which interact with the CoS share the same parent as the CoS
definition entry.

There are three types of CoS, defined using three types of CoS definition entries:

CHAPTER 7. MANAGING ATTRIBUTES AND VALUES

151

Pointer CoS. A pointer CoS identifies the template entry using the template DN only.

Indirect CoS. An indirect CoS identifies the template entry using the value of one of the target
entry's attributes. For example, an indirect CoS might specify the manager attribute of a target
entry. The value of the manager attribute is then used to identify the template entry.

The target entry's attribute must be single-valued and contain a DN.

Classic CoS. A classic CoS identifies the template entry using a combination of the template
entry's base DN and the value of one of the target entry's attributes.

For more information about the object classes and attributes associated with each type of CoS, see
Section 7.2.11, “Managing CoS from the Command Line” .

If the CoS logic detects that an entry contains an attribute for which the CoS is generating values, the
CoS, by default, supplies the client application with the attribute value in the entry itself. However, the
CoS definition entry can control this behavior.

7.2.2. About the CoS Template Entry

The CoS template entry contains the value or values of the attributes generated by the CoS logic. The
CoS template entry contains a general object class of cosTemplate. The CoS template entries for a
given CoS are stored in the directory tree along with the CoS definition.

The relative distinguished name (RDN) of the template entry is determined by one of the following:

The DN of the template entry alone. This type of template is associated with a pointer CoS
definition.

The value of one of the target entry's attributes. The attribute used to provide the relative DN
to the template entry is specified in the CoS definition entry using the cosIndirectSpecifier

attribute. This type of template is associated with an indirect CoS definition.

By a combination of the DN of the subtree where the CoS performs a one level search for
templates and the value of one of the target entry's attributes. This type of template is
associated with a classic CoS definition.

7.2.3. How a Pointer CoS Works

An administrator creates a pointer CoS that shares a common postal code with all of the entries stored
under dc=example,dc=com. The three entries for this CoS appear as illustrated in Figure 7.1, “Sample
Pointer CoS”.

Administration Guide

152

Figure 7.1. Sample Pointer CoS

In this example, the template entry is identified by its DN, cn=exampleUS,cn=data, in the CoS definition
entry. Each time the postalCode attribute is queried on the entry
cn=wholiday,ou=people,dc=example,dc=com, the Directory Server returns the value available in the
template entry cn=exampleUS,cn=data.

7.2.4. How an Indirect CoS Works

An administrator creates an indirect CoS that uses the manager attribute of the target entry to identify
the template entry. The three CoS entries appear as illustrated in Figure 7.2, “Sample Indirect CoS”.

CHAPTER 7. MANAGING ATTRIBUTES AND VALUES

153

Figure 7.2. Sample Indirect CoS

In this example, the target entry for William Holiday contains the indirect specifier, the manager

attribute. William's manager is Carla Fuentes, so the manager attribute contains a pointer to the DN of
the template entry, cn=Carla Fuentes,ou=people,dc=example,dc=com. The template entry in turn
provides the departmentNumber attribute value of 318842.

7.2.5. How a Classic CoS Works

An administrator creates a classic CoS that uses a combination of the template DN and a CoS specifier
to identify the template entry containing the postal code. The three CoS entries appear as illustrated in
Figure 7.3, “Sample Classic CoS” :

Administration Guide

154

Figure 7.3. Sample Classic CoS

In this example, the CoS definition entry's cosSpecifier attribute specifies the employeeType attribute.
This attribute, in combination with the template DN, identify the template entry as
cn=sales,cn=exampleUS,cn=data. The template entry then provides the value of the postalCode

attribute to the target entry.

7.2.6. Handling Physical Attribute Values

The cosAttribute attribute contains the name of another attribute which is governed by the class of
service. This attribute allows an override qualifier after the attribute value which sets how the CoS
handles existing attribute values on entries when it generates attribute values.

cosAttribute: attribute_name override

There are four override qualifiers:

default: Only returns a generated value if there is no corresponding attribute value stored with
the entry.

override: Always returns the value generated by the CoS, even when there is a value stored with
the entry.

operational: Returns a generated attribute only if it is explicitly requested in the search.
Operational attributes do not need to pass a schema check in order to be returned. When
operational is used, it also overrides any existing attribute values.

NOTE

CHAPTER 7. MANAGING ATTRIBUTES AND VALUES

155

NOTE

An attribute can only be made operational if it is defined as operational in the
schema. For example, if the CoS generates a value for the description attribute,
it is not possible to use the operational qualifier because this attribute is not
marked operational in the schema.

operational-default: Only returns a generated value if there is no corresponding attribute value
stored with the entry and if it is explicitly requested in the search.

If no qualifier is set, default is assumed.

For example, this pointer CoS definition entry indicates that it is associated with a template entry,
cn=exampleUS,ou=data,dc=example,dc=com, that generates the value of the postalCode attribute.
The override qualifier indicates that this value will take precedence over the value stored by the entries
for the postalCode attribute:

dn: cn=pointerCoS,dc=example,dc=com

objectclass: top

objectclass: cosSuperDefinition

objectclass: cosPointerDefinition

cosTemplateDn: cn=exampleUS,ou=data,dc=example,dc=com

cosAttribute: postalCode override

NOTE

If an entry contains an attribute value generated by a CoS, the value of the attribute
cannot be manually updated if it is defined with the operational or override qualifiers.

For more information about the CoS attributes, see the Red Hat Directory Server

Configuration, Command, and File Reference.

7.2.7. Handling Multi-valued Attributes with CoS

Any attribute can be generated using a class of service — including multi-valued attributes. That
introduces the potential for confusion. Which CoS supplies a value? Any of them or all of them? How is
the value selected from competing CoS templates? Does the generated attribute use a single value or
multiple values?

There are two ways to resolve this:

Creating a rule to merge multiple CoS-generated attributes into the target entry. This results in
multiple values in the target entry.

Setting a priority to select one CoS value out of competing CoS definitions. This generates one
single value for the target entry.

NOTE

Indirect CoS do not support the cosPriority attribute.

The way that the CoS handles multiple values for a CoS attribute is defined in whether it uses a merge-

schemes qualifier.

Administration Guide

156

cosAttribute: attribute override merge-schemes

NOTE

The merge-schemes qualifier does not affect how the CoS handles physical attribute
values or the override qualifier. If there are multiple competing CoS templates or
definitions, then the same merge-schemes and override qualifiers have to be set on every
cosAttribute for every competing CoS definition. Otherwise, one combination is chosen
arbitrarily from all possible CoS definitions.

Using the merge-schemes qualifier tells the CoS that it will, or can, generate multiple values for the
managed attribute. There are two possible scenarios for having a multi-valued CoS attribute:

One CoS template entry contains multiple instances of the managed CoS attribute, resulting in
multiple values on the target entry. For example:

dn: cn=server access template,dc=example,dc=com

objectclass: top

objectclass: extensibleObject

objectclass: cosTemplate

accessTo: mail.example.com

accessTo: irc.example.com

NOTE

This method only works with classic CoS.

Multiple CoS definitions may define a class of service for the same target attribute, so there are
multiple template entries. For example:

dn: cn=mail template,dc=example,dc=com

objectclass: top

objectclass: extensibleObject

objectclass: cosTemplate

accessTo: mail.example.com

dn: cn=chat template,dc=example,dc=com

objectclass: top

objectclass: extensibleObject

objectclass: cosTemplate

accessTo: irc.example.com

However, it may be that even if there are multiple CoS definitions, only one value should be generated
for the attribute. If there are multiple CoS definitions, then the value is chosen arbitrarily. This is an
unpredictable and unwieldy option. The way to control which CoS template to use is to set a ranking on
the template — a priority — and the highest prioritized CoS always "wins" and provides the value.

It is fairly common for there to be multiple templates completing to provide a value. For example, there
can be a multi-valued cosSpecifier attribute in the CoS definition entry. The template priority is set
using the cosPriority attribute. This attribute represents the global priority of a particular template. A
priority of zero is the highest priority.

CHAPTER 7. MANAGING ATTRIBUTES AND VALUES

157

For example, a CoS template entry for generating a department number appears as follows:

dn: cn=data,dc=example,dc=com

objectclass: top

objectclass: extensibleObject

objectclass: cosTemplate

departmentNumber: 71776

cosPriority: 0

This template entry contains the value for the departmentNumber attribute. It has a priority of zero,
meaning this template takes precedence over any other conflicting templates that define a different
departmentNumber value.

Templates that contain no cosPriority attribute are considered the lowest priority. Where two or more
templates are considered to supply an attribute value and they have the same (or no) priority, a value is
chosen arbitrarily.

NOTE

The behavior for negative cosPriority values is not defined in Directory Server; do not
enter negative values.

7.2.8. Searches for CoS-Specified Attributes

CoS definitions provide values for attributes in entries. For example, a CoS can set the postalCode

attribute for every entry in a subtree. Searches against those CoS-defined attributes, however, do not
behave like searches against regular entries.

If the CoS-defined attribute is indexed with any kind of index (including presence), then any attribute
with a value set by the CoS is not returned with a search. For example:

The postalCode attribute for Ted Morris is defined by a CoS.

The postalCode attribute for Barbara Jensen is set in her entry.

The postalCode attribute is indexed.

If an ldapsearch command uses the filter (postalCode=*), then Barbara Jensen's entry is returned,
while Ted Morris's is not.

If the CoS-defined attribute is not indexed, then every matching entry is returned in a search, regardless
of whether the attribute value is set locally or with CoS. For example:

The postalCode attribute for Ted Morris is defined by a CoS.

The postalCode attribute for Barbara Jensen is set in her entry.

The postalCode attribute is not indexed.

If an ldapsearch command uses the filter (postalCode=*), then both Barbara Jensen's and Ted Morris's
entries are returned.

CoS allows for an override, an identifier given to the cosAttribute attribute in the CoS entry, which
means that local values for an attribute can override the CoS value. If an override is set on the CoS, then
an ldapsearch operation will return a value for an entry even if the attribute is indexed, as long as there

Administration Guide

158

is a local value for the entry. Other entries which possess the CoS but do not have a local value will still
not be returned in the ldapsearch operation.

Because of the potential issues with running LDAP search requests on CoS-defined attributes, take
care when deciding which attributes to generate using a CoS.

7.2.9. Access Control and CoS

The server controls access to attributes generated by a CoS in exactly the same way as regular stored
attributes. However, access control rules depending upon the value of attributes generated by CoS will
not work. This is the same restriction that applies to using CoS-generated attributes in search filters.

7.2.10. Managing CoS Using the Console

This section describes creating and editing CoS through the Directory Server Console:

Section 7.2.10.1, “Creating a New CoS”

Section 7.2.10.2, “Creating the CoS Template Entry”

7.2.10.1. Creating a New CoS

1. In the Directory Server Console, select the Directory tab.

2. Browse the tree in the left navigation pane, and select the parent entry for the new class of
service.

3. Go to the Object menu, and select New > Class of Service.

CHAPTER 7. MANAGING ATTRIBUTES AND VALUES

159

Alternatively, right-click the entry and select New > Class of Service.

4. Select General in the left pane. In the right pane, enter the name of the new class of service in
the Class Name field. Enter a description of the class in the Description field.

5. Click Attributes in the left pane. The right pane displays a list of attributes generated on the
target entries.

Click Add to browse the list of possible attributes and add them to the list.

Administration Guide

160

6. After an attribute is added to the list, a drop-down list appears in the Class of Service

Behavior column.

Select Does not override target entry attribute to tell the directory to only return a
generated value if there is no corresponding attribute value stored with the entry.

Select Overrides target entry attribute to make the value of the attribute generated by
the CoS override the local value.

Select Overrides target entry attribute and is operational to make the attribute override

CHAPTER 7. MANAGING ATTRIBUTES AND VALUES

161

Select Overrides target entry attribute and is operational to make the attribute override
the local value and to make the attribute operational, so that it is not visible to client
applications unless explicitly requested.

Select Does not override target entry attribute and is operational to tell the directory to
return a generated value only if there is no corresponding attribute value stored with the
entry and to make the attribute operational (so that it is not visible to client applications
unless explicitly requested).

NOTE

An attribute can only be made operational if it is also defined as operational in the
schema. For example, if a CoS generates a value for the description attribute,
you cannot select Overrides target entry attribute and is operational because
this attribute is not marked operational in the schema.

7. Click Template in the left pane. In the right pane, select how the template entry is identified.

By its DN. To have the template entry identified by only its DN (a pointer CoS), enter the
DN of the template in the Template DN field. Click Browse to locate the DN on the local
server. This will be an exact DN, such as cn=CoS

template,ou=People,dc=example,dc=com.

Using the value of one of the target entry's attribute. To have the template entry identified
by the value of one of the target entry's attributes (an indirect CoS), enter the attribute
name in the Attribute Name field. Click Change to select a different attribute from the list
of available attributes.

Using both its DN and the value of one of the target entry's attributes. To have the template
entry identified by both its DN and the value of one of the target entry's attributes (a classic
CoS), enter both a template DN and an attribute name. The template DN in a classic CoS is
more general than for a pointer CoS; it references the suffix or subsuffix where the
template entries will be. There can be more than one template for a classic CoS.

Administration Guide

162

8. Click OK.

7.2.10.2. Creating the CoS Template Entry

For a pointer CoS or a classic CoS, there must be a template entry, according to the template DN set
when the class of service was created. Although the template entries can be placed anywhere in the
directory as long as the cosTemplateDn attribute reflects that DN, it is best to place the template
entries under the CoS itself.

For a pointer CoS, make sure that this entry reflects the exact DN given when the CoS was
created.

For a classic CoS, the template DN should be recursive, pointing back to the CoS entry itself as
the base suffix for the template.

1. In the Directory Server Console, select the Directory tab.

2. Browse the tree in the left navigation pane, and select the parent entry that contains the class
of service.

The CoS appears in the right pane with other entries.

3. Right-click the CoS, and select New > Other.

CHAPTER 7. MANAGING ATTRIBUTES AND VALUES

163

Alternatively, select the CoS in the right pane, click Object in the menu at the top, and select
New > Other.

4. Select cosTemplate from the list of object classes.

NOTE

Administration Guide

164

NOTE

The LDAPsubentry object class can be added to a new template entry. Making
the CoS template entry an instance of the LDAPsubentry object class allows
ordinary searches to be performed unhindered by the configuration entries.
However, if the template entry already exists and is used for something else (for
example, if it is a user entry), the LDAPsubentry object class does not need to be
added to the template entry.

5. Select the object classes attribute, and click Add Value.

6. Add the extensibleObject object class. This makes it possible to add any attribute available in
the directory.

CHAPTER 7. MANAGING ATTRIBUTES AND VALUES

165

7. Click the Add Attribute button.

8. Add the cn attribute, and give it a value that corresponds to the attribute value in the target
entry. For example, if the manager attribute is used to set the value for a classic CoS, give the

Administration Guide

166

cn a value of a manager's DN, such as uid=bparker,ou=people,dc=example,dc=com.
Alternatively, set it to a role, such as cn=QA Role,dc=example,dc=com or a regular attribute
value. For example, if the employeeType attribute is selected, it can be full time or temporary.

9. Click the Change button in the lower right corner to change the naming attribute.

10. Use the cn of the entry as the naming attribute instead of cospriority.

CHAPTER 7. MANAGING ATTRIBUTES AND VALUES

167

11. Click the Add Attribute button, and add the attributes listed in the CoS. The values used here
will be used throughout the directory in the targeted entries.

12. Set the cospriority. There may be more than one CoS that applies to a given attribute in an
entry; the cospriority attribute ranks the importance of that particular CoS. The higher
cospriority will take precedence in a conflict. The highest priority is 0.

Templates that contain no cosPriority attribute are considered the lowest priority. In the case
where two or more templates could supply an attribute value and they have the same (or no)
priority, a value is chosen arbitrarily.

NOTE

The behavior for negative cosPriority values is not defined in Directory Server;
do not enter negative values.

NOTE

The cosPriority attribute is not supported by indirect CoS.

Administration Guide

168

The CoS is visible in the left navigation pane once there are entries beneath it. For classic CoS, there
can be multiple entries, according to the different potential values of the attribute specifier.

To edit the description or attributes generated on the target entry of an existing CoS, simply double-
click the CoS entry listed in the Directory tab, and make the appropriate changes in the editor window.

7.2.11. Managing CoS from the Command Line

Because all configuration information and template data is stored as entries in the directory, standard
LDAP tools can be used for CoS configuration and management.

Section 7.2.11.1, “Creating the CoS Definition Entry from the Command Line”

Section 7.2.11.2, “Creating the CoS Template Entry from the Command Line”

Section 7.2.11.3, “Example of a Pointer CoS”

Section 7.2.11.4, “Example of an Indirect CoS”

Section 7.2.11.5, “Example of a Classic CoS”

Section 7.2.11.6, “Searching for CoS Entries”

7.2.11.1. Creating the CoS Definition Entry from the Command Line

Each type of CoS requires a particular object class to be specified in the definition entry. All CoS
definition object classes inherit from the LDAPsubentry object class and the cosSuperDefinition

object class.

A pointer CoS uses the cosPointerDefinition object class. This object class identifies the template
entry using an entry DN value specified in the cosTemplateDn attribute, as shown in Example 7.3, “An
Example Pointer CoS Entry”.

Example 7.3. An Example Pointer CoS Entry

 dn: cn=pointerCoS,dc=example,dc=com

 objectclass: top

 objectclass: cosSuperDefinition

 objectclass: cosPointerDefinition

 cosTemplateDn:DN_string

 cosAttribute:list_of_attributes qualifier

 cn: pointerCoS

An indirect CoS uses the cosIndirectDefinition object class. This type of CoS identifies the template
entry based on the value of one of the target entry's attributes, as specified in the cosIndirectSpecifier

attribute. This is illustrated in Example 7.4, “An Example Indirect CoS Entry”.

Example 7.4. An Example Indirect CoS Entry

 dn: cn=indirectCoS,dc=example,dc=com

 objectclass: top

 objectclass: cosSuperDefinition

 objectclass: cosIndirectDefinition

CHAPTER 7. MANAGING ATTRIBUTES AND VALUES

169

 cosIndirectSpecifier:attribute_name

 cosAttribute:list_of_attributes qualifier

 cn: indirectCoS

A classic CoS uses the cosClassicDefinition object class. This identifies the template entry using both
the template entry's DN (set in the cosTemplateDn attribute) and the value of one of the target entry's
attributes (set in the cosSpecifier attribute). This is illustrated in Example 7.5, “An Example Classic CoS
Entry”.

Example 7.5. An Example Classic CoS Entry

 dn: cn=classicCoS,dc=example,dc=com

 objectclass: top

 objectclass: cosSuperDefinition

 objectclass: cosClassicDefinition

 cosTemplateDn:DN_string

 cosSpecifier:attribute_name

 cosAttribute:list_of_attributes qualifier

 cn: classicCoS

For a class of service, the object class defines the type of CoS, and the supporting attributes identify
which directory entries are affected by defining the CoS template. Every CoS has one additional
attribute which can be defined for it: cosAttribute. The purpose of a CoS is to supply attribute values
across multiple entries; the cosAttribute attribute defines which attribute the CoS generates values for.

7.2.11.2. Creating the CoS Template Entry from the Command Line

Each template entry is an instance of the cosTemplate object class.

NOTE

Consider adding the LDAPsubentry object class to a new template entry. Making the
CoS template entry an instance of the LDAPsubentry object classes allows ordinary
searches to be performed unhindered by the configuration entries. However, if the
template entry already exists and is used for something else, such as a user entry, the
LDAPsubentry object class does not need to be added to the template entry.

The CoS template entry also contains the attribute generated by the CoS (as specified in the
cosAttribute attribute of the CoS definition entry) and the value for that attribute.

For example, a CoS template entry that provides a value for the postalCode attribute follows:

dn:cn=exampleUS,ou=data,dc=example,dc=com

objectclass: top

objectclass: extensibleObject

objectclass: cosTemplate

postalCode: 44438

The following sections provide examples of template entries along with examples of each type of CoS
definition entry.

Administration Guide

170

Section 7.2.11.3, “Example of a Pointer CoS”

Section 7.2.11.4, “Example of an Indirect CoS”

Section 7.2.11.5, “Example of a Classic CoS”

7.2.11.3. Example of a Pointer CoS

Example Corporation's administrator is creating a pointer CoS that shares a common postal code with
all entries in the dc=example,dc=com tree.

1. Add a new pointer CoS definition entry to the dc=example,dc=com suffix using ldapmodify:

dn: cn=pointerCoS,dc=example,dc=com

changetype: add

objectclass: top

objectclass: cosSuperDefinition

objectclass: cosPointerDefinition

cosTemplateDn: cn=exampleUS,ou=data,dc=example,dc=com

cosAttribute: postalCode

2. Create the template entry:

dn: cn=exampleUS,ou=data,dc=example,dc=com

changetype: add

objectclass: top

objectclass: extensibleObject

objectclass: cosTemplate

postalCode: 44438

The CoS template entry (cn=exampleUS,ou=data,dc=example,dc=com) supplies the value stored in
its postalCode attribute to any entries located under the dc=example,dc=com suffix. These entries are
the target entries.

7.2.11.4. Example of an Indirect CoS

This indirect CoS uses the manager attribute of the target entry to identify the CoS template entry,
which varies depending on the different values of the attribute.

1. Add a new indirect CoS definition entry to the dc=example,dc=com suffix using ldapmodify:

dn: cn=indirectCoS,dc=example,dc=com

changetype: add

objectclass: top

objectclass: cosSuperDefinition

objectclass: cosIndirectDefinition

cosIndirectSpecifier: manager

cosAttribute: departmentNumber

If the directory or modify the manager entries already contain the departmentNumber attribute, then
no other attribute needs to be added to the manager entries. The definition entry looks in the target
suffix (the entries under dc=example,dc=com) for entries containing the manager attribute because
this attribute is specified in the cosIndirectSpecifier attribute of the definition entry). It then checks
the departmentNumber value in the manager entry that is listed. The value of the departmentNumber

CHAPTER 7. MANAGING ATTRIBUTES AND VALUES

171

attribute will automatically be relayed to all of the manager's subordinates that have the manager

attribute. The value of departmentNumber will vary depending on the department number listed in the
different manager's entries.

7.2.11.5. Example of a Classic CoS

The Example Corporation administrator is creating a classic CoS that automatically generates postal
codes using a combination of the template DN and the attribute specified in the cosSpecifier attribute.

1. Add a new classic CoS definition entry to the dc=example,dc=com suffix using ldapmodify:

dn: cn=classicCoS,dc=example,dc=com

changetype: add

objectclass: top

objectclass: cosSuperDefinition

objectclass: cosClassicDefinition

cosTemplateDn: cn=classicCoS,dc=example,dc=com

cosSpecifier: businessCategory

cosAttribute: postalCode override

2. Create the template entries for the sales and marketing departments. Add the CoS attributes
to the template entry. The cn of the template sets the value of the businessCategory

attribute in the target entry, and then the attributes are added or overwritten according to the
value in the template:

dn: cn=sales,cn=classicCoS,dc=example,dc=com

changetype: add

objectclass: top

objectclass: extensibleObject

objectclass: cosTemplate

postalCode: 44438

dn: cn=marketing,cn=classicCoS,dc=example,dc=com

changetype: add

objectclass: top

objectclass: extensibleObject

objectclass: cosTemplate

postalCode: 99111

The classic CoS definition entry applies to all entries under the dc=example,dc=com suffix. Depending
upon the combination of the businessCategory attribute found in the entry and the cosTemplateDn,
it can arrive at one of two templates. One, the sales template, provides a postal code specific to
employees in the sales department. The marketing template provides a postal code specific to
employees in the marketing department.

7.2.11.6. Searching for CoS Entries

CoS definition entries are operational entries and are not returned by default with regular searches. This
means that if a CoS is defined under ou=People,dc=example,dc=com, for example, the following
ldapsearch command will not return them:

ldapsearch -x -s sub -b ou=People,dc=example,dc=com "(objectclass=*)"

To return the CoS definition entries, add the ldapSubEntry object class to the CoS definition entries.

Administration Guide

172

To return the CoS definition entries, add the ldapSubEntry object class to the CoS definition entries.
For example:

dn: cn=pointerCoS,ou=People,dc=example,dc=com

objectclass: top

objectclass: cosSuperDefinition

objectclass: cosPointerDefinition

objectclass: ldapSubEntry

cosTemplateDn: cn=exampleUS,ou=data,dc=example,dc=com

cosAttribute: postalCode override

Then use a special search filter, (objectclass=ldapSubEntry), with the search. This filter can be added
to any other search filter using OR (|):

ldapsearch -x -s sub -b ou=People,dc=example,dc=com "(|(objectclass=*)

(objectclass=ldapSubEntry))"

This search returns all regular entries in addition to CoS definition entries in the
ou=People,dc=example,dc=com subtree.

NOTE

The Console automatically shows CoS entries.

7.2.12. Creating Role-Based Attributes

Classic CoS schemes generate attribute values for an entry based on the role possessed by the entry.
For example, role-based attributes can be used to set the server look-through limit on an entry-by-entry
basis.

To create a role-based attribute, use the nsRole attribute as the cosSpecifier in the CoS definition
entry of a classic CoS. Because the nsRole attribute can be multi-valued, CoS schemes can be defined
that have more than one possible template entry. To resolve the ambiguity of which template entry to
use, include the cosPriority attribute in the CoS template entry.

For example, this CoS allows members of the manager role to exceed the standard mailbox quota. The
manager role entry is:

dn: cn=ManagerRole,ou=people,dc=example,dc=com

objectclass: top

objectclass: nsRoleDefinition

objectclass: nsComplexRoleDefinition

objectclass: nsFilteredRoleDefinition

cn: ManagerRole

nsRoleFilter: ou=managers

Description: filtered role for managers

IMPORTANT

The nsRoleFilter attribute cannot accept virtual attribute values.

The classic CoS definition entry looks like:

CHAPTER 7. MANAGING ATTRIBUTES AND VALUES

173

dn: cn=managerCOS,dc=example,dc=com

objectclass: top

objectclass: cosSuperDefinition

objectclass: cosClassicDefinition

cosTemplateDn: cn=managerCOS,dc=example,dc=com

cosSpecifier: nsRole

cosAttribute: mailboxquota override

The cosTemplateDn attribute provides a value that, in combination with the attribute specified in the
cosSpecifier attribute (in the example, the nsRole attribute of the target entry), identifies the CoS
template entry. The CoS template entry provides the value for the mailboxquota attribute. An
additional qualifier of override tells the CoS to override any existing mailboxquota attributes values in
the target entry.

The corresponding CoS template entry looks as follows:

dn:cn="cn=ManagerRole,ou=people,dc=example,dc=com",cn=managerCOS,dc=example,dc=com

objectclass: top

objectclass: extensibleObject

objectclass: cosTemplate

mailboxquota: 1000000

The template provides the value for the mailboxquota attribute, 1000000.

NOTE

The role entry and the CoS definition and template entries should be located at the same
level in the directory tree.

7.3. LINKING ATTRIBUTES TO MANAGE ATTRIBUTE VALUES

A class of service dynamically supplies attribute values for entries which all have attributes with the same

value, like building addresses, postal codes, or main office numbers. These are shared attribute values,
which are updated in a single template entry.

Frequently, though, there are relationships between entries where there needs to be a way to express
linkage between them, but the values (and possibly even the attributes) that express that relationship
are different. Red Hat Directory Server provides a way to link specified attributes together, so that when
one attribute in one entry is altered, a corresponding attribute on a related entry is automatically
updated. (The link and managed attributes both have DN values. The value of the link attribute contains
the DN of the entry for the plug-in to update; the managed attribute in the second entry has a DN value
which points back to the original link entry.)

7.3.1. About Linking Attributes

The Linked Attributes Plug-in, allows multiple instances of the plug-in. Each instance configures one
attribute which is manually maintained by the administrator (linkType) and one attribute which is
automatically maintained by the plug-in (managedType).

Administration Guide

174

Figure 7.4. Basic Linked Attribute Configuration

NOTE

To preserve data consistency, only the plug-in process should maintain the managed
attribute. Consider creating an ACI that will restrict all write access to any managed
attribute. See Section 18.8, “Adding an ACI” for information on setting ACIs.

A Linked Attribute Plug-in instance can be restricted to a single subtree within the directory. This can
allow more flexible customization of attribute combinations and affected entries. If no scope is set, then
the plug-in operates in the entire directory.

Figure 7.5. Restricting the Linked Attribute Plug-in to a Specific Subtree

When configuring the Linked Attribute Plug-in instance, certain configurations are required:

Both the managed attribute and linked attribute must require the Distinguished Name syntax in
their attribute definitions. The linked attributes are essentially managed cross-references, and
the way that the plug-in handles these cross-references is by pulling the DN of the entry from
the attribute value.

For information on planning custom schema elements, see Chapter 12, Managing the Directory

Schema.

CHAPTER 7. MANAGING ATTRIBUTES AND VALUES

175

Each Linked Attribute Plug-in instance must be local and any managed attributes must be
blocked from replication using fractional replication.

Any changes that are made on one supplier will automatically trigger the plug-in to manage the
values on the corresponding directory entries, so the data stay consistent across servers.
However, the managed attributes must be maintained by the plug-in instance for the data to be
consistent between the linked entries. This means that managed attribute values should be
maintained solely by the plug-in processes, not the replication process, even in a multi-master
replication environment.

For information on using fractional replication, see Section 15.1.7, “Replicating a Subset of
Attributes with Fractional Replication”.

7.3.2. Looking at the Linking Attributes Plug-in Syntax

The default Linked Attributes Plug-in entry is a container entry for each plug-in instance, similar to the
password syntax plug-ins or the DNA Plug-in in the next section. Each entry beneath this container entry
defines a different link-managed attribute pair.

To create a new linking attribute pair, then, create a new plug-in instance beneath the container entry. A
basic linking attribute plug-in instance required defining two things:

The attribute that is managed manually by administrators, in the linkType attribute

The attribute that is created dynamically by the plug-in, in the managedType attribute

Optionally, a scope that restricts the plug-in to a specific part of the directory tree, in the
linkScope attribute

Example 7.6. Example Linked Attributes Plug-in Instance Entry

dn: cn=Manager Link,cn=Linked Attributes,cn=plugins,cn=config

objectClass: top

objectClass: extensibleObject

cn: Manager Link

linkType: directReport

managedType: manager

linkScope: ou=people,dc=example,dc=com

All of the attributes available for an instance of the Linked Attributes Plug-in instance are listed in
Table 7.2, “Linked Attributes Plug-in Instance Attributes” .

Table 7.2. Linked Attributes Plug-in Instance Attributes

Plug-in Attribute Description

cn Gives a unique name for the plug-in instance.

linkScope Contains the DN of a suffix to which to restrict the function of the plug-in instance.

Administration Guide

176

linkType Gives the attribute which is maintained by an administrator. This attribute is manually
maintained and is used as the reference for the plug-in. This attribute must have a DN
value format. When the attribute is added, modified, or deleted, then its value contains
the DN of the target entry for the plug-in to update.

managedType Gives the attribute which is maintained by the plug-in. This attribute is created and
updated on target entries. This attribute must have a DN value format. When the
attribute is added to the entry, its value will point back as a cross-reference to the
managed entry.

Plug-in Attribute Description

7.3.3. Configuring Attribute Links

NOTE

The Linked Attribute Plug-in instance can be created in the Directory Server Console,
but only through the Advanced Property Editor for the directory entry, by manually
adding all of the required attributes, the same as creating the entry manually through the
command line.

1. If it is not already enabled, enable the Linked Attributes Plug-in, as described in Section 1.9.2.2,
“Enabling Plug-ins in the Directory Server Console” or Section 1.9.1, “Enabling Plug-ins
Dynamically”.

2. Create the plug-in instance. Both the managedType and linkType attributes are required. The
plug-in syntax is covered in Section 7.3.2, “Looking at the Linking Attributes Plug-in Syntax” .
The following example shows the plug-in instance created by using ldapmodify:

dn: cn=Manager Link,cn=Linked Attributes,cn=plugins,cn=config

changetype: add

objectClass: top

objectClass: extensibleObject

cn: Manager Link

linkType: directReport

managedType: manager

3. If the server is not configured to enable dynamic plug-ins using nsslapd-dynamic-plugins,
restart the server to apply the new plug-in instance:

systemctl restart dirsrv.target

7.3.4. Cleaning up Attribute Links

The managed-linked attributes can get out of sync. For instance, a linked attribute could be imported or
replicated over to a server, but the corresponding managed attribute was not because the link attribute
was not properly configured. The managed-linked attribute pairs can be fixed by running a script (fixup-

linkedattrs.pl) or by launching a fix-up task.

The fixup task removes any managed attributes (attributes managed by the plug-in) that do not have a

CHAPTER 7. MANAGING ATTRIBUTES AND VALUES

177

The fixup task removes any managed attributes (attributes managed by the plug-in) that do not have a
corresponding link attribute (attributes managed by the administrator) on the referenced entry.
Conversely, the task adds any missing managed attributes if the link attribute exists in an entry.

7.3.4.1. Regenerating Linked Attributes Using fixup-linkedattrs.pl

The fixup-linkedattrs.pl script launches a special task to regenerate all of the managed-link attribute
pairs on directory entries. One or the other may be lost in certain situations. If the link attribute exists in
an entry, the task traces the cross-referenced DN in the available attribute and creates the
corresponding configured managed attribute on the referenced entry. If a managed attribute exists with
no corresponding link attribute, then the managed attribute value is removed.

To repair all configured link attribute pairs for the entire scope of the plug-in, then simply run the
command as the Directory Manager:

fixup-linkedattrs.pl -D "cn=Directory Manager" -w password

It is also possible to limit the fixup task to a single link-managed attribute pair, using the -l option to
specify the target plug-in instance DN:

fixup-linkedattrs.pl -D "cn=Directory Manager" -w password -l "cn=Manager Link,cn=Linked

Attributes,cn=plugins,cn=config"

For information about the parameters used in the examples, see the description of the fixup-

linkedattrs.pl script in the Red Hat Directory Server Configuration, Command, and File Reference .

7.3.4.2. Regenerating Linked Attributes Using ldapmodify

Repairing linked attributes is one of the tasks which can be managed through a special task
configuration entry. Task entries occur under the cn=tasks configuration entry in the dse.ldif file, so it is
also possible to initiate a task by adding the entry using ldapmodify. When the task is complete, the
entry is removed from the directory.

This task is the same one created automatically by the fixup-linkedattrs.pl script when it is run.

To initiate a linked attributes fixup task, add an entry under the cn=fixup linked

attributes,cn=tasks,cn=config entry. The only required attribute is the cn for the specific task, though
it also allows the ttl attribute to set a timeout period. Using ldapmodify:

dn: cn=example,cn=fixup linked attributes,cn=tasks,cn=config

changetype: add

cn:example

ttl: 5

Once the task is completed, the entry is deleted from the dse.ldif configuration, so it is possible to
reuse the same task entry continually.

The cn=fixup linked attributes task configuration is described in more detail in the
Configuration, Command, and File Reference.

7.4. ASSIGNING AND MANAGING UNIQUE NUMERIC ATTRIBUTE
VALUES

Some entry attributes require having a unique number, such as uidNumber and gidNumber. The

Administration Guide

178

https://access.redhat.com/documentation/en-us/red_hat_directory_server/10/html/configuration_command_and_file_reference/perl_scripts#fixup-linkedattrs.pl
https://access.redhat.com/documentation/en-us/red_hat_directory_server/10/html/configuration_command_and_file_reference/core_server_configuration_reference#cn-fixup-linked-attributes

Some entry attributes require having a unique number, such as uidNumber and gidNumber. The
Directory Server can automatically generate and supply unique numbers for specified attributes using
the Distributed Numeric Assignment (DNA) Plug-in.

NOTE

Attribute uniqueness is not necessarily preserved with the DNA Plug-in. The plug-in only
assigns non-overlapping ranges, but it does allow manually-assigned numbers for its
managed attributes, and it does not verify or require that the manually-assigned numbers
are unique.

The issue with assigning unique numbers is not with generating the numbers but in effectively avoiding
replication conflicts. The DNA Plug-in assigns unique numbers across a single back end. For multi-
master replication, when each master is running a local DNA Plug-in instance, there has to be a way to
ensure that each instance is using a truly unique set of numbers. This is done by assigning different
ranges of numbers to each server to assign.

7.4.1. About Dynamic Number Assignments

The DNA Plug-in for a server assigns a range of available numbers that that instance can issue. The
range definition is very simple and is set by two attributes: the server's next available number (the low
end of the range) and its maximum value (the top end of the range). The initial bottom range is set when
the plug-in instance is configured. After that, the bottom value is updated by the plug-in. By breaking
the available numbers into separate ranges on each replica, the servers can all continually assign
numbers without overlapping with each other.

7.4.1.1. Filters, Searches, and Target Entries

The server performs a sorted search, internally, to see if the next specified range is already taken,
requiring the managed attribute to have an equality index with the proper ordering matching rule (as
described in Section 13.2, “Creating Standard Indexes”).

The DNA Plug-in is applied, always, to a specific area of the directory tree (the scope) and to specific
entry types within that subtree (the filter).

IMPORTANT

The DNA Plug-in only works on a single back end; it cannot manage number assignments
for multiple databases. The DNA plug-in uses the sort control when checking whether a
value has already been manually allocated outside of the DNA Plug-in. This validation,
using the sort control, only works on a single back end.

7.4.1.2. Ranges and Assigning Numbers

There are several different ways that the Directory Server can handle generating attribute values:

In the simplest case, a user entry is added to the directory with an object class which requires the
unique-number attribute, but without the attribute present. Adding an entry with no value for
the managed attribute triggers the DNA Plug-in to assign a value. This option only works if the
DNA Plug-in has been configured to assign unique values to a single attribute.

A similar and more manageable option is to use a magic number. This magic number is a
template value for the managed attribute, something outside the server's range, a number or
even a word, that the plug-in recognizes it needs to replace with a new assigned value. When an

CHAPTER 7. MANAGING ATTRIBUTES AND VALUES

179

entry is added with the magic value and the entry is within the scope and filter of the configured
DNA Plug-in, then using the magic number automatically triggers the plug-in to generate a new
value. The following example, based on using ldapmodify, adds 0 as a magic number:

dn: uid=jsmith,ou=people,dc=example,dc=com

 changetype: add

 objectClass: top

 objectClass: person

 objectClass: posixAccount

 uid: jsmith

 cn: John Smith

 uidNumber: 0

 gidNumber: 0

The DNA Plug-in only generates new, unique values. If an entry is added or modified to use a
specific value for an attribute controlled by the DNA Plug-in, the specified number is used; the
DNA Plug-in will not overwrite it.

7.4.1.3. Multiple Attributes in the Same Range

The DNA Plug-in can assign unique numbers to a single attribute type or across multiple attribute types
from a single range of unique numbers.

This provides several options for assigning unique numbers to attributes:

A single number assigned to a single attribute type from a single range of unique numbers.

The same unique number assigned to two attributes for a single entry.

Two different attributes assigned two different numbers from the same range of unique
numbers.

In many cases, it is sufficient to have a unique number assigned per attribute type. When assigning an
employeeID to a new employee entry, it is important each employee entry is assigned a unique
employeeID.

However, there are cases where it may be useful to assign unique numbers from the same range of
numbers to multiple attributes. For example, when assigning a uidNumber and a gidNumber to a
posixAccount entry, the DNA Plug-in will assign the same number to both attributes. To do this, then
pass both managed attributes to the modify operation, specifying the magic value. Using ldapmodify:

ldapmodify -D "cn=Directory Manager" -W -x

dn: uid=jsmith,ou=people,dc=example,dc=com

changetype: modify

add: uidNumber

uidNumber: 0

-

add:gidNumber

gidNumber: 0

When multiple attributes are handled by the DNA Plug-in, the plug-in can assign a unique value to only
one of those attributes if the object class only allows one of them. For example, the posixGroup object
class does not allow a uidNumber attribute but it does allow gidNumber. If the DNA Plug-in manages

Administration Guide

180

both uidNumber and gidNumber, then when a posixGroup entry is created, a unique number for
gidNumber is assigned from the same range as the uidNumber and gidNumber attributes. Using the
same pool for all attributes manged by the plug-in keeps the assignment of unique numbers aligned and
prevents situations where a uidNumber and a gidNumber on different entries are assigned from
different ranges and result in the same unique number.

If multiple attributes are handled by the DNA Plug-in, then the same value will be assigned to all of the
given managed attributes in an entry in a single modify operation. To assign different numbers from the
same range, then you must perform separate modify operations. The following example uses
ldapmodify to do so:

ldapmodify -D "cn=Directory Manager" -W -x

dn: uid=jsmith,ou=people,dc=example,dc=com

changetype: modify

add: uidNumber

uidNumber: 0

^D

ldapmodify -D "cn=Directory Manager" -W -x

dn: uid=jsmith,ou=people,dc=example,dc=com

changetype: modify

add: employeeId

employeeId: magic

IMPORTANT

When the DNA Plug-in is configured to assign unique numbers to multiple attributes, it is
necessary to specify the magic value for each attribute that requires the unique number.
While this is not necessary when the DNA plug-in has been configured to provide unique
numbers for a single attribute, it is necessary for multiple attributes. There may be
instances where an entry does not allow each type of attribute defined for the range, or,
more important, an entry allow all of the attributes types defined, but only a subset of the
attributes require the unique value.

Example 7.7. DNA and Unique Bank Account Numbers

Example Bank wants to use the same unique number for a customer's primaryAccount and
customerID attributes. The Example Bank administrator configured the DNA Plug-in to assign
unique values for both attributes from the same range.

The bank also wants to assign numbers for secondary accounts from the same range as the customer
ID and primary account numbers, but these numbers cannot be the same as the primary account
numbers. The Example Bank administrator configures the DNA Plug-in to also manage the
secondaryAccount attribute, but will only add the secondaryAccount attribute to an entry after

the entry is created and the primaryAccount and customerID attributes are assigned. This ensures
that primaryAccount and customerID share the same unique number, and any secondaryAccount

numbers are entirely unique but still from the same range of numbers.

7.4.2. Looking at the DNA Plug-in Syntax

The DNA Plug-in itself is a container entry, similar to the Password Storage Schemes Plug-in. Each DNA
entry underneath the DNA Plug-in entry defines a new managed range for the DNA Plug-in.

CHAPTER 7. MANAGING ATTRIBUTES AND VALUES

181

To set new managed ranges for the DNA Plug-in, create entries beneath the container entry.

The most basic configuration is to set up distributed numeric assignments on a single server, meaning
the ranges will not be shared or transferred between servers. A basic DNA configuration entry defines
four things:

The attribute that value is being managed, set in the dnaType attribute

The entry DN to use as the base to search for entries, set in the dnaScope attribute

The search filter to use to identify entries to manage, set in the dnaFilter attribute

The next available value to assign, set in the dnaNextValue attribute (after the entry is created,
this is handled by the plug-in)

For a list of attributes supported in the cn=DNA_config_entry,cn=Distributed Numeric Assignment

Plugin,cn=plugins,cn=config entry, see the Red Hat Directory Server Configuration, Command, and

File Reference.

To configure distributed numeric assignment on a single server for a single attribute type:

dn: cn=Account UIDs,cn=Distributed Numeric Assignment Plugin,cn=plugins,cn=config

objectClass: top

objectClass: dnaPluginConfig

cn: Account UIDs

dnatype: uidNumber

dnafilter: (objectclass=posixAccount)

dnascope: ou=people,dc=example,dc=com

dnaNextValue: 1

If multiple suppliers are configured for distributed numeric assignments, then the entry must contain the
required information to transfer ranges:

The maximum number that the server can assign; this sets the upward bound for the range,
which is logically required when multiple servers are assigning numbers. This is set in the
dnaMaxValue attribute.

The threshold where the range is low enough to trigger a range transfer, set in the
dnaThreshold attribute. If this is not set, the default value is 1.

A timeout period so that the server does not hang waiting for a transfer, set in the
dnaRangeRequestTimeout attribute. If this is not set, the default value is 10, meaning 10
seconds.

A configuration entry DN which is shared among all supplier servers, which stores the range
information for each supplier, set in the dnaSharedCfgDN attribute.

The specific number range which could be assigned by the server is defined in the dnaNextRange

attribute. This shows the next available range for transfer and is managed automatically by the plug-in,
as ranges are assigned or used by the server. This range is just "on deck." It has not yet been assigned to
another server and is still available for its local Directory Server to use.

dn: cn=Account UIDs,cn=Distributed Numeric Assignment Plugin,cn=plugins,cn=config

objectClass: top

objectClass: dnaPluginConfig

cn: Account UIDs

Administration Guide

182

https://access.redhat.com/documentation/en-us/red_hat_directory_server/10/html/configuration_command_and_file_reference/dna-attributes

dnatype: uidNumber

dnafilter: (objectclass=posixAccount)

dnascope: ou=People,dc=example,dc=com

dnanextvalue: 1

dnaMaxValue: 1300

dnasharedcfgdn: cn=Account UIDs,ou=Ranges,dc=example,dc=com

dnathreshold: 100

dnaRangeRequestTimeout: 60

dnaNextRange: 1301-2301

The dnaNextRange attribute should be set explicitly only if a separate, specific range has to be
assigned to other servers. Any range set in the dnaNextRange attribute must be unique from the
available range for the other servers to avoid duplication. If there is no request from the other servers
and the server where dnaNextRange is set explicitly has reached its set dnaMaxValue, the next set of
values (part of the dnaNextRange) is allocated from this deck.

The dnaNextRange allocation is also limited by the dnaThreshold attribute that is set in the DNA
configuration. Any range allocated to another server for dnaNextRange cannot violate the threshold for
the server, even if the range is available on the deck of dnaNextRange.

NOTE

If the dnaNextRange attribute is handled internally if it is not set explicitly. When it is
handled automatically, the dnaMaxValue attribute serves as upper limit for the next
range.

Each supplier keeps a track of its current range in a separate configuration entry which contains
information about its range and its connection settings. This entry is a child of the location in
dnasharedcfgdn. The configuration entry is replicated to all of the other suppliers, so each supplier can
check that configuration to find a server to contact for a new range. For example:

dn: dnaHostname=ldap1.example.com+dnaPortNum=389,cn=Account

UIDs,ou=Ranges,dc=example,dc=com

objectClass: dnaSharedConfig

objectClass: top

dnahostname: ldap1.example.com

dnaPortNum: 389

dnaSecurePortNum: 636

dnaRemainingValues: 1000

7.4.3. Configuring Unique Number Assignments

The unique number distribution is configured by creating different instances of the DNA Plug-in. These
DNA Plug-in instances can only be created through the command line, but they can be edited through
the Directory Server Console.

7.4.3.1. Configuring Unique Number Assignments

NOTE

CHAPTER 7. MANAGING ATTRIBUTES AND VALUES

183

NOTE

Any attribute which has a unique number assigned to it must have an equality index set
for it. The server must perform a sorted search, internally, to see if the dnaNextvalue is
already taken, which requires an equality index on an integer attribute, with the proper
ordering matching rule.

Creating indexes is described in Section 13.2, “Creating Standard Indexes” .

NOTE

Set up the DNA Plug-in on every supplier server, and be careful not to overlap the
number range values.

1. Create the shared container entry in the replicated subtree. The following example uses
ldapmodify to do so:

dn: ou=Ranges,dc=example,dc=coma

changetype: add

objectclass: top

objectclass: extensibleObject

objectclass: organizationalUnit

ou: Ranges

dn: cn=Account UIDs,ou=Ranges,dc=example,dc=coma

changetype: add

objectclass: top

objectclass: extensibleObject

cn: Account UIDs

2. Enable the DNA Plug-in and configure it as dynamic. By default, the plug-in entry (which is the
container entry) is disabled. For details on configuring dynamic plug-ins, see Section 1.9.1,
“Enabling Plug-ins Dynamically”.

3. Create the new DNA Plug-in instance beneath the container entry. For example:

NOTE

The plug-in attribute which sets which entry attributes have unique number
assignments, dnaType, is multi-valued. If multiple attributes are set in the same
plug-in instance, then their number assignments are taken from the same range.
To use different ranges, configure different plug-in instances.

Using ldapmodify:

dn: cn=Account UIDs,cn=Distributed Numeric Assignment Plugin,cn=plugins,cn=config

changetype: add

objectClass: top

objectClass: dnaPluginConfig

cn: Account UIDs

dnatype: uidNumber

dnafilter: (objectclass=posixAccount)

Administration Guide

184

dnascope: ou=People,dc=example,dc=com

dnanextvalue: 1

dnaMaxValue: 1300

dnasharedcfgdn: cn=Account UIDs,ou=Ranges,dc=example,dc=com

dnathreshold: 100

dnaRangeRequestTimeout: 60

dnaMagicRegen: magic

For a list of attributes supported in the cn=DNA_config_entry,cn=Distributed Numeric

Assignment Plugin,cn=plugins,cn=config entry, see the Red Hat Directory Server

Configuration, Command, and File Reference.

4. For servers in multi-master replication, create a configuration entry for the host, which specifies
its connection information and range.

The DN of the entry is a combination of the host name and the port number
(dnaHostname+dnaPortNum).

Using ldapmodify:

dn: dnaHostname=ldap1.example.com+dnaPortNum=389,cn=Account

UIDs,ou=Ranges,dc=example,dc=com

changetype: add

objectClass: dnaSharedConfig

objectClass: top

dnahostname: ldap1.example.com

dnaPortNum: 389

dnaSecurePortNum: 636

dnaRemainingValues: 1000

5. If the server is not configured to enable dynamic plug-in, restart the server to load the new
plug-in instance.

systemctl restart dirsrv@instance

7.4.3.2. Editing the DNA Plug-in in the Console

NOTE

Any attribute which has a unique number assigned to it must have an equality index set
for it. The server must perform a sorted search, internally, to see if the dnaNextvalue is
already taken, which requires an equality index on an integer attribute, with the proper
ordering matching rule.

Creating indexes is described in Section 13.2, “Creating Standard Indexes” .

The Directory Server Console can be used to edit the DNA Plug-in instances.

1. Click the Directory tab.

2. Open the config folder, and then expand the plugins folder.

3. Click the Distributed Numeric Assignment plug-in folder. All of the DNA Plug-in instances are
listed in the main window.

CHAPTER 7. MANAGING ATTRIBUTES AND VALUES

185

https://access.redhat.com/documentation/en-us/red_hat_directory_server/10/html/configuration_command_and_file_reference/dna-attributes

4. Highlight the DNA instance entry, and right-click on the Advanced link to open the property
editor.

5. Edit the DNA-related attributes.

Administration Guide

186

7.4.4. Distributed Number Assignment Plug-in Performance Notes

There can be thread locking issues as DNA configuration is changed dynamically, so that new operations
which access the DNA configuration (such as a DNA task or additional changes to the DNA
configuration) will access the old configuration because the thread with the new configuration has not
yet been released. This can cause operations to use old configuration or simply cause operations to
hang.

To avoid this, preserve an interval between dynamic DNA configuration changes of 35 seconds. This
means have a sleep or delay between both DNA configuration changes and any directory entry changes
which would trigger a DNA plug-in operation.

CHAPTER 7. MANAGING ATTRIBUTES AND VALUES

187

CHAPTER 8. ORGANIZING AND GROUPING ENTRIES

Entries contained within the directory can be grouped in different ways to simplify the management of
user accounts. Red Hat Directory Server supports a variety of methods for grouping entries and sharing
attributes between entries. To take full advantage of the features offered by roles and class of service,
determine the directory topology when planning the directory deployment.

8.1. USING GROUPS

Similar to the operating system, you can add users to groups in Directory Server. Groups work the other
way around as roles. If you are using roles, the DN of the assigned role is stored in the nsRoleDN

attribute in the user object. If you use groups, then the DN of the users who are members of this group
are stored in member attributes in the group object. If you enabled the memberOf plug-in, then the
groups the user is a member of, are additionally stored in memberOf attribute in the user object. With
this plug-in enabled, groups additionally have the benefit of roles, that you can list the group
memberships of a user, similar as when using roles. Additionally, groups are faster than roles.

For further details about using the memberOf plug-in, see Section 8.1.4, “Listing Group Membership in
User Entries”.

8.1.1. Creating Static Groups in the Console

Static groups organize entries by specifying the same group value in the DN attribute of any number of
users.

NOTE

If a user has an entry on a remote Directory Server (for example, in a chained database),
different from the Directory Server which has the entry that defines the static group, then
use the Referential Integrity plug-in to ensure that deleted user entries are automatically
deleted from the static group.

There are some performance and access control considerations with the Referential
Integrity plug-in. For more information about using referential integrity with chaining, see
Section 2.3.2, “Configuring the Chaining Policy” .

1. In the Directory Server Console, select the Directory tab.

2. In the left pane, right-click the entry under which to add a new group, and select New > Group.

Administration Guide

188

Alternatively, go to the Object menu, and select New > Group.

3. Click General in the left pane. Type a name for the new group in the Group Name field (the
name is required), and enter a description of the new group in the Description field.

4. Click Members in the left pane. In the right pane, select the Static Group tab. Click Add to add
new members to the group.

5. In the Search drop-down list, select what sort of entries to search for (users, groups, or both)
then click Search.

CHAPTER 8. ORGANIZING AND GROUPING ENTRIES

189

6. Select the members from the returned entries, and click OK.

7. Click Languages in the left pane to add language-specific information for the group.

Administration Guide

190

8. Click OK to create the new group. It appears in the right pane.

To edit a static group, double-click the group entry, and make the changes in the editor window. To view
the changes, go to the View menu, and select Refresh.

NOTE

The Console for managing static groups may not display all possible selections during a
search operation if there is no VLV index for users' search. This problem occurs only when
the number of users is 1000 or more and there is no VLV index for search. To work
around the problem, create a VLV index for the users suffix with the filter
(objectclass=person) and scope sub-tree. See Section 13.4.2, “Creating Browsing
Indexes from the Command Line”.

8.1.2. Creating Dynamic Groups in the Console

Dynamic groups filter users based on their DN and include them in a single group.

1. In the Directory Server Console, select the Directory tab.

2. In the left pane, right-click the entry under which to add a new group, and select New > Group.

CHAPTER 8. ORGANIZING AND GROUPING ENTRIES

191

Alternatively, go to the Object menu, and select New > Group.

3. Click General in the left pane. Type a name for the new group in the Group Name field (the
name is required), and enter a description of the new group in the Description field.

4. Click Members in the left pane. In the right pane, select the Dynamic Group tab. Click Add to
create a LDAP URL for querying the database.

5. Enter an LDAP URL in the text field or select Construct to be guided through the construction
of an LDAP URL.

Administration Guide

192

The results show the current entries (group members) which correspond to the filter.

6. Click Languages in the left pane to add language-specific information for the group.

7. Click OK. The new group appears in the right pane.

To edit a dynamic group, double-click the group entry to open the editor window, and make whatever
changes to the dynamic group. To view the changes to the group, go to the View menu, and select
Refresh.

NOTE

The Console for managing dynamic groups may not display all possible selections during
a search operation if there is no VLV index for users' search. This problem can occur when
the number of users is 1000 or more and there is no VLV index for search. To work
around the problem, create a VLV index for the users suffix with the filter
(objectclass=person) and scope sub-tree. See Section 13.4.2, “Creating Browsing
Indexes from the Command Line”.

8.1.3. Creating Groups in the Command Line

Creating both static and dynamic groups from the command line is a similar process. A group entry
contains the group name, the type of group, and a members attribute.

There are several different options for the type of group; these are described in more detail in the
Red Hat Directory Server 10 Configuration, Command, and File Reference . The type of group in this case
refers to the type of defining member attribute it has:

groupOfNames (recommended) is a simple group, that allows any entry to be added. The
attribute used to determine members for this is member.

groupOfUniqueNames, like groupOfNames, simply lists user DNs as members, but the
members must be unique. This prevents users being added more than once as a group member,
which is one way of preventing self-referential group memberships. The attribute used to

CHAPTER 8. ORGANIZING AND GROUPING ENTRIES

193

https://access.redhat.com/documentation/en-us/red_hat_directory_server/10/html/configuration_command_and_file_reference/index

determine members for this is uniqueMember.

groupOfURLs uses a list of LDAP URLs to filter and generate its membership list. This object
class is required for any dynamic group and can be used in conjunction with groupOfNames

and groupOfUniqueNames.

groupOfCertificates is similar to groupOfURLs in that it uses an LDAP filter to search for and
identify certificates (or, really, certificate names) to identify group members. This is useful for
group-based access control, since the group can be given special access permissions. The
attribute used to determine members for this is memberCertificate.

Table 8.1, “Dynamic and Static Group Schema” lists the default attributes for groups as they are created
from the command line.

Table 8.1. Dynamic and Static Group Schema

Type of Group Group Object Classes Member Attributes

Static groupOfUniqueNames uniqueMember

Dynamic groupOfUniqueNames

groupOfURLs

memberURL

A static group entry lists the specific members of the group. For example, using ldapmodify:

dn: cn=static group,ou=Groups,dc=example,dc=com

changetype: add

objectClass: top

objectClass: groupOfUniqueNames

cn: static group

description: Example static group.

uniqueMember: uid=mwhite,ou=People,dc=example,dc=com

uniqueMember: uid=awhite,ou=People,dc=example,dc=com

A dynamic group uses at least one LDAP URL to identify entries belonging to the group and can specify
multiple LDAP URLs or, if used with another group object class like groupOfUniqueNames, can
explicitly list some group members along with the dynamic LDAP URL. For example, using ldapmodify:

dn: cn=dynamic group,ou=Groups,dc=example,dc=com

changetype: add

objectClass: top

objectClass: groupOfUniqueNames

objectClass: groupOfURLs

cn: dynamic group

description: Example dynamic group.

memberURL: ldap:///dc=example,dc=com??sub?(&(objectclass=person)(cn=*sen*))

NOTE

Administration Guide

194

NOTE

The memberOf plug-in does not support dynamically generated group memberships. If
you set the memberURL attribute instead of listing the group members in an attribute,
the memberOf plug-in does not add the memberOf attribute to the user objects that
match the filter.

8.1.4. Listing Group Membership in User Entries

The entries which belong to a group are defined, in some way, in the group entry itself. This makes it very
easy to look at a group and see its members and to manage group membership centrally. However,
there is no good way to find out what groups a single user belongs to. There is nothing in a user entry
which indicates its memberships, as there are with roles.

The MemberOf Plug-in correlates group membership lists to the corresponding user entries.

The MemberOf Plug-in analyzes the member attribute in a group entry and automatically writes a
corresponding memberOf attribute in the member's entry. (By default, this checks the member

attribute, but multiple attribute instances can be used to support multiple different group types.)

As membership changes, the plug-in updates the memberOf attributes on the user entries. The
MemberOf Plug-in provides a way to view the groups to which a user belongs simply by looking at the
entry, including nested group membership. It can be very difficult to backtrack memberships through
nested groups, but the MemberOf Plug-in shows memberships for all groups, direct and indirect.

The MemberOf Plug-in manages member attributes for static groups, not dynamic groups or circular
groups.

8.1.4.1. Considerations When Using the memberOf Plug-in

This section describes important considerations when you want to use the memberOf plug-in.

Using the memberOf Plug-in in a Replication Topology

There are two approaches to manage the memberOf attribute in a replication topology:

Enable the memberOf plug-in on all master and read-only replica servers in the topology. In
this case, you must exclude the memberOf attribute from replication in all replication
agreements. For details about about excluding attributes, see Section 15.1.7, “Replicating a
Subset of Attributes with Fractional Replication”.

Enable the memberOf plug-in only on all master servers in the topology. For this:

You must disable replication of the memberOf attribute to all write-enabled masters in
the replication agreement. For details about about excluding attributes, see
Section 15.1.7, “Replicating a Subset of Attributes with Fractional Replication” .

You must Enable replication of the memberOf attribute to all read-only replicas in their
replication agreement.

You must not enable the memberOf plug-in on read-only replicas.

Using the memberOf plug-in With Distributed Databases

As described in Section 2.2.1, “Creating Databases”, you can store sub-trees of your directory in
individual databases. By default, the memberOf plug-in only updates user entries which are stored
within the same database as the group. To enable the plug-in to also update users in different

CHAPTER 8. ORGANIZING AND GROUPING ENTRIES

195

databases as the group, you must set the memberOfAllBackends parameter to on. See
Section 8.1.4.4.1, “Editing the MemberOf Plug-in from the Console” .

8.1.4.2. Required Object Classes by the memberOf Plug-In

By default, the memberOf plug-in will add the nsMemberOf object class to objects to provide the
memberOf attribute. This object class is safe to add to any object for this purpose, and no further action
is required to enable this plug-in to operate correctly. Alternatively, you can create user objects that
contain the inetUser or inetAdmin, object class. Both object classes support the memberOf attribute
as well.

To configure nested groups, the group must use the extensibleObject object class.

NOTE

If directory entries do not contain an object class that supports the required attributes,
operations fail with the following error:

LDAP: error code 65 - Object Class Violation

8.1.4.3. The MemberOf Plug-in Syntax

The MemberOf Plug-in instance defines two attributes, one for the group member attribute to poll
(memberOfGroupAttr) and the other for the attribute to create and manage in the member's user entry
(memberOfAttr).

The memberOfGroupAttr attribute is multi-valued. Because different types of groups use different
member attributes, using multiple memberOfGroupAttr attributes allows the plug-in to manage
multiple types of groups.

The plug-in instance also gives the plug-in path and function to identify the MemberOf Plug-in and
contains a state setting to enable the plug-in, both of which are required for all plug-ins. The default
MemberOf Plug-in is shown in Example 8.1, “Default MemberOf Plug-in Entry” .

Example 8.1. Default MemberOf Plug-in Entry

 dn: cn=MemberOf Plugin,cn=plugins,cn=config

 objectClass: top

 objectClass: nsSlapdPlugin

 objectClass: extensibleObject

 cn: MemberOf Plugin

 nsslapd-pluginPath: libmemberof-plugin

 nsslapd-pluginInitfunc: memberof_postop_init

 nsslapd-pluginType: postoperation

 nsslapd-pluginEnabled: on

 nsslapd-plugin-depends-on-type: database

 memberOfGroupAttr: member

 memberOfGroupAttr: uniqueMember

 memberOfAttr: memberOf

 memberOfAllBackends: on

 nsslapd-pluginId: memberOf

Administration Guide

196

 nsslapd-pluginVersion: X.Y.Z

 nsslapd-pluginVendor: Red Hat, Inc.

 nsslapd-pluginDescription: memberOf plugin

For details about the parameters used in the example and other parameters you can set, see the
MemberOf Plug-in Attributes section in the Red Hat Directory Server Command, Configuration, and File

Reference.

NOTE

To maintain backwards compatibility with older versions of Directory Server, which only
allowed a single member attribute (by default, member), it may be necessary to include
the member group attribute or whatever previous member attribute was used, in
addition any new member attributes used in the plug-in configuration.

 memberOfGroupAttr: member

 memberOfGroupAttr: uniqueMember

8.1.4.4. Configuring an Instance of the MemberOf Plug-in

The attributes defined in the MemberOf Plug-in can be changed, depending on the types of groups
used in the directory.

8.1.4.4.1. Editing the MemberOf Plug-in from the Console

1. Select the Configuration tab, and expand to the Plugins folder.

2. Scroll to the Memberof Plugin entry.

3. Make sure that the plug-in is enabled. This is disabled by default.

4. Click the Advanced button to open the Advanced Properties Editor.

5. The memberOfGroupAttr attribute sets the attribute in the group entry which the server uses
to identify member entries; this attribute can be used multiple times for different
group/member types. The memberOfAttr attribute sets the attribute which the plug-in creates
and manages on user entries.

CHAPTER 8. ORGANIZING AND GROUPING ENTRIES

197

https://access.redhat.com/documentation/en-us/red_hat_directory_server/10/html-single/configuration_command_and_file_reference/index#memberof-attributes

6. Save the changes.

7. If the Directory Server is not configured to enable dynamic plug-ins, restart the server to update
the plug-in.

8.1.4.4.2. Editing the MemberOf Plug-in from the Command Line

1. Enable the MemberOf Plug-in. Using ldapmodify:

dn: cn=MemberOf Plugin,cn=plugins,cn=config

changetype: modify

replace: nsslapd-pluginEnabled

nsslapd-pluginEnabled: on

2. Set the attribute to use for the group member entry attribute. The default attribute is member,
which can be changed using the replace command, or, since the memberOfGroupAttr attribute
is multi-valued, additional member types can be added to the definition. For example, using
ldapmodify:

dn: cn=MemberOf Plugin,cn=plugins,cn=config

changetype: modify

add: memberOfGroupAttr

memberOfGroupAttr: uniqueMember

add: memberOfGroupAttr

memberOfGroupAttr: customMember-

3. Set the attribute to set on the user entries to show group membership. For example, using
ldapmodify:

dn: cn=MemberOf Plugin,cn=plugins,cn=config

changetype: modify

replace: memberOfAttr

memberOfAttr: memberOf

4. Optional. If the deployment uses distributed databases, then enable the

Administration Guide

198

4. Optional. If the deployment uses distributed databases, then enable the
memberOfAllBackends attribute to search through all databases, not just the local one, for
user entries. Using ldapmodify:

dn: cn=MemberOf Plugin,cn=plugins,cn=config

changetype: modify

replace: memberOfAllBackends

memberOfAllBackends: on

5. If the Directory Server is not configured to enable dynamic plug-ins, restart the server to load
the modified new plug-in instance.

8.1.4.5. The memberOf Plug-In Shared Configuration

Replicating plug-in configuration helps maintain consistent configuration on the network, which is
especially useful in large deployments. You only need to update the configuration on a master
replication server, and the change is then replicated to all other servers.

The memberOf plug-in configuration can be stored in a shared configuration entry in any back end or
suffix, outside of the cn=config suffix.

In the plug-in entry, the nsslapd-pluginConfigArea attribute is used to specify the location of the
shared configuration:

nsslapd-pluginConfigArea: entry_DN

After you set the nsslapd-pluginConfigArea attribute to the same plug-in entry on all replicas, the
replication then handles all future configuration changes.

The following table described attributes that you can use in the shared configuration entry.

Table 8.2. Attributes of the memberOf Plug-in Shared Configuration

Configuration Attribute Value Example

memberOfAttr (required) Attribute Name memberOf

memberOfGroupAttr (required) Attribute Name uniqueMember

memberOfAllBackends on|off off

memberOfEntryScope Entry DN ou=people,dc=example,dc=com

memberOfSkipNested on|off on

memberOfEntryScopeExcludeSu
btree

Entry DN ou=other,dc=example,dc=com

In the following example, nsslapd-pluginConfigArea is set. Therefore, the configuration in the plug-in
entry is ignored.

dn: cn=MemberOf Plugin,cn=plugins,cn=config

CHAPTER 8. ORGANIZING AND GROUPING ENTRIES

199

objectClass: top

objectClass: nsSlapdPlugin

objectClass: extensibleObject

cn: MemberOf Plugin

nsslapd-pluginPath: libmemberof-plugin

nsslapd-pluginInitfunc: memberof_postop_init

nsslapd-pluginType: postoperation

nsslapd-pluginEnabled: on

nsslapd-plugin-depends-on-type: database

memberOfGroupAttr: member

memberOfAttr: memberOf

nsslapd-pluginConfigArea: cn=memberOf plugin configuration,dc=example,dc=com

In this example, the memberOf plug-in will use the uniquemember group attribute, rather than
member.

dn: cn=memberOf plugin configuration,dc=example,dc=com

objectClass: top

objectClass: extensibleObject

cn: MemberOf Plugin Configuration

memberOfGroupAttr: uniquemember

memberOfAttr: memberOf

8.1.4.6. Setting the Scope of the MemberOf Plug-in

If you configured several back ends or multiple-nested suffixes, you can use the memberOfEntryScope

and memberOfEntryScopeExcludeSubtree parameters to set what suffixes the MemberOf plug-in
works on.

If you add a user to a group, the MemberOf plug-in only adds the memberOf attribute to the group if
both the user and the group are in the plug-in's scope. For example, to configure the MemberOf plug-in
to work on all entries in dc=example,dc=com, but to exclude entries in
ou=private,dc=example,dc=com, set:

memberOfEntryScope: dc=example,dc=com

memberOfEntryScopeExcludeSubtree: ou=private,dc=example,dc=com

If you moved a user entry out of the scope set in the memberOfEntryScope parameter:

The membership attribute, such as member, is updated in the group entry to remove the user
DN value.

The memberOf attribute is updated in the user entry to remove the group DN value.

NOTE

The value set in the memberOfEntryScopeExcludeSubtree parameter has a higher
priority than values set in memberOfEntryScope. If the scopes set in both parameters
overlap, the MemberOf plug-in only works on the non-overlapping directory entries.

8.1.4.7. Synchronizing memberOf Values

The MemberOf Plug-in automatically manages the memberOf attribute on group member entries,
based on the configuration in the group entry itself. However, the memberOf attribute can be edited on

Administration Guide

200

a user entry directly (which is improper) or new entries can be imported or replicated over to the server
that have a memberOf attribute already set. These situations create inconsistencies between the
memberOf configuration managed by the server plug-in and the actual memberships defined for an
entry.

Directory Server has a memberOf repair task which manually runs the plug-in to make sure the
appropriate memberOf attributes are set on entries. There are three ways to trigger this task:

In the Directory Server Console

Using the fixup-memberof.pl script

Running a cn=memberof task,cn=tasks,cn=config tasks entry

NOTE

The memberOf regeneration tasks are run locally, even if the entries themselves are
replicated. This means that the memberOf attributes for the entries on other servers are
not updated until the updated entry is replicated.

8.1.4.7.1. Initializing and Regenerating memberOf Attributes Using fixup-memberof.pl

fixup-memberof.pl is a Perl script wrapper used to regenerate memberOf attributes as described in
Section 8.1.4.7.2, “Initializing and Regenerating memberOf Attributes Using ldapmodify” .

For more details, see also man fixup-memberof.pl.

8.1.4.7.2. Initializing and Regenerating memberOf Attributes Using ldapmodify

Regenerating memberOf attributes is one of the tasks which can be managed through a special task
configuration entry. Task entries occur under the cn=tasks configuration entry in the dse.ldif file, so it is
also possible to initiate a task by adding the entry using ldapmodify. As soon as the task is complete, the
entry is removed from the directory.

The fixup-memberof.pl script creates a special task entry in a Directory Server instance which
regenerates the memberOf attributes.

To initiate a memberOf fixup task, add an entry under the cn=memberof task, cn=tasks,cn=config

entry. The only required attribute is the cn for the specific task. Using ldapmodify:

dn: cn=example memberOf,cn=memberof task,cn=tasks,cn=config

changetype: add

cn:example memberOf

As soon as the task is completed, the entry is deleted from the dse.ldif configuration, so it is possible to
reuse the same task entry continually.

The cn=memberof task configuration is described in more detail in the
Configuration, Command, and File Reference.

8.1.5. Automatically Adding Entries to Specified Groups

Section 8.1.5.1, “Looking at the Structure of an Automembership Rule”

Section 8.1.5.2, “Examples of Automembership Rules”

CHAPTER 8. ORGANIZING AND GROUPING ENTRIES

201

https://access.redhat.com/documentation/en-us/red_hat_directory_server/10/html/configuration_command_and_file_reference/core_server_configuration_reference#cn-memberof-task

Section 8.1.5.3, “Creating Automembership Definitions”

Group management can be a critical factor for managing directory data, especially for clients which use
Directory Server data and organization or which use groups to apply functionality to entries. Groups
make it easier to apply policies consistently and reliably across the directory. Password policies, access
control lists, and other rules can all be based on group membership.

Being able to assign new entries to groups, automatically, at the time that an account is created ensures
that the appropriate policies and functionality are immediately applied to those entries — without
requiring administrator intervention.

Dynamic groups are one method of creating groups and assigning members automatically because any
matching entry is automatically included in the group. For applying Directory Server policies and
settings, this is sufficient. However, LDAP applications and clients commonly need a static and explicit
list of group members in order to perform whatever operation is required. And all of the members in
static groups have to be manually added to those groups.

The static group itself cannot search for members like a dynamic group, but there is a way to allow a
static group to have members added to it automatically — the Auto Membership Plug-in .

Automembership essentially allows a static group to act like a dynamic group. Different
automembership definitions create searches that are automatically run on all new directory entries. The
automembership rules search for and identify matching entries — much like the dynamic search filters —
and then explicitly add those entries as members to the static group.

NOTE

By default, the autoMemberProcessModifyOps parameter in the cn=Auto

Membership Plugin,cn=plugins,cn=config entry is set to on. With this setting, the
Automembership plug-in also updates group memberships when an administrator moves
a user to a different group by editing a user entry.

If you set autoMemberProcessModifyOps to off, Directory Server invokes the plug-in
only when you add a group entry to the user, and you must manually run a fix-up task to
update the group membership.

The Auto Membership Plug-in can target any type of object stored in the directory: users, machines and
network devices, customer data, or other assets.

NOTE

The Auto Membership Plug-in adds a new entry to an existing group based on defined
criteria. It does not create a group for the new entry.

To create a corresponding group entry when a new entry of a certain type is created, use
the Managed Entries Plug-in. This is covered in Section 8.3, “Automatically Creating Dual
Entries”.

8.1.5.1. Looking at the Structure of an Automembership Rule

The Auto Membership Plug-in itself is a container entry in cn=plugins,cn=config. Group assignments
are defined through child entries.

8.1.5.1.1. The Automembership Configuration Entry

Administration Guide

202

Automembership assignments are created through a main definition entry, a child of the Auto
Membership Plug-in entry. Each definition entry defines three elements:

An LDAP search to identify entries, including both a search scope and a search filter
(autoMemberScope and autoMemberFilter)

A default group to which to add the member entries (autoMemberDefaultGroup)

The member entry format, which is the attribute in the group entry, such as member, and the
attribute value, such as dn (autoMemberGroupingAttr)

The definition is the basic configuration for an automember rule. It identifies all of the required
information: what a matching member entry looks like and a group for that member to belong to.

For example, this definition assigns all Windows users to the cn=windows-users group:

dn: cn=Windows Users,cn=Auto Membership Plugin,cn=plugins,cn=config

objectclass: autoMemberDefinition

autoMemberScope: ou=People,dc=example,dc=com

autoMemberFilter: objectclass=ntUser

autoMemberDefaultGroup: cn=windows-group,cn=groups,dc=example,dc=com

autoMemberGroupingAttr: member:dn

For details about the attributes used in the example and other attributes you can set in this entry, see
the cn=Auto Membership Plugin,cn=plugins,cn=config entry description in the
Red Hat Directory Server Configuration, Command, and File Reference .

8.1.5.1.2. Additional Regular Expression Entries

For something like a users group, where more than likely all matching entries should be added as
members, a simple definition is sufficient. However, there can be instances where entries that match the
LDAP search filter should be added to different groups, depending on the value of some other attribute.
For example, machines may need to be added to different groups depending on their IP address or
physical location; users may need to be in different groups depending on their employee ID number.

The automember definition can use regular expressions to provide additional conditions on what entries
to include or exclude from a group, and then a new, specific group to add those selected entries to.

For example, an automember definition sets all machines to be added to a generic host group.

Example 8.2. Automember Definition for a Host Group

dn: cn=Hostgroups,cn=Auto Membership Plugin,cn=plugins,cn=config

objectclass: autoMemberDefinition

cn: Hostgroups

autoMemberScope: dc=example,dc=com

autoMemberFilter: objectclass=ipHost

autoMemberDefaultGroup: cn=systems,cn=hostgroups,dc=example,dc=com

autoMemberGroupingAttr: member:dn

A regular expression rule is added so that any machine with a fully-qualified domain name within a given
range is added to a web server group.

Example 8.3. Regular Expression Condition for a Web Server Group

CHAPTER 8. ORGANIZING AND GROUPING ENTRIES

203

https://access.redhat.com/documentation/en-us/red_hat_directory_server/10/html/configuration_command_and_file_reference/automember-attributes

dn: cn=webservers,cn=Hostgroups,cn=Auto Membership Plugin,cn=plugins,cn=config

objectclass: autoMemberRegexRule

description: Group for webservers

cn: webservers

autoMemberTargetGroup: cn=webservers,cn=hostgroups,dc=example,dc=com

autoMemberInclusiveRegex: fqdn=^www\.web[0-9]+\.example\.com

So, any host machine added with a fully-qualified domain name that matches the expression
^www\.web[0-9]+\.example\.com, such as www.web1.example.com, is added to the cn=webservers

group, defined for that exact regular expression. Any other machine entry, which matches the LDAP
filter objectclass=ipHost but with a different type of fully-qualified domain name, is added to the
general host group, cn=systems, defined in the main definition entry.

The group in the definition, then, is a fallback for entries which match the general definition, but do not
meet the conditions in the regular expression rule.

Regular expression rules are child entries of the automember definition.

Figure 8.1. Regular Expression Conditions

Each rule can include multiple inclusion and exclusion expressions. (Exclusions are evaluated first.) If an
entry matches any inclusion rule, it is added to the group.

There can be only one target group given for the regular expression rule.

Table 8.3. Regular Expression Condition Attributes

Attribute Description

autoMemberRegexRule (required
object class)

Identifies the entry as a regular expression rule. This entry must be a
child of an automember definition (objectclass:

autoMemberDefinition).

Administration Guide

204

autoMemberInclusiveRegex Sets a regular expression to use to identify entries to include. Only
matching entries are added to the group. Multiple regular expressions
could be used, and if an entry matches any one of those expressions, it
is included in the group.
The format of the expression is a Perl-compatible regular expression
(PCRE). For more information on PCRE patterns, see the
pcresyntax(3) man page.

This is a multi-valued attribute.

autoMemberExclusiveRegex Sets a regular expression to use to identify entries to exclude. If an
entry matches the exclusion condition, then it is not included in the
group. Multiple regular expressions could be used, and if an entry
matches any one of those expressions, it is excluded in the group.
The format of the expression is a Perl-compatible regular expression
(PCRE). For more information on PCRE patterns, see the
pcresyntax(3) man page.

This is a multi-valued attribute.

NOTE

Exclude conditions are evaluated first and take
precedence over include conditions.

autoMemberTargetGroup Sets which group to add the entry to as a member, if it meets the
regular expression conditions.

Attribute Description

8.1.5.2. Examples of Automembership Rules

Automembership rules are usually going to applied to users and to machines (although they can be
applied to any type of entry). There are a handful of examples that may be useful in planning
automembership rules:

Different host groups based on IP address

Windows user groups

Different user groups based on employee ID

Example 8.4. Host Groups by IP Address

The automember rule first defines the scope and target of the rule. The example in Section 8.1.5.1.2,
“Additional Regular Expression Entries” uses the configuration group to define the fallback group
and a regular expression entry to sort out matching entries.

The scope is used to find all host entries. The plug-in then iterates through the regular expression
entries. If an entry matches an inclusive regular expression, then it is added to that host group. If it
does not match any group, it is added to the default group.

CHAPTER 8. ORGANIZING AND GROUPING ENTRIES

205

The actual plug-in configuration entries are configured like this, for the definition entry and two
regular expression entries to filter hosts into a web servers group or a mail servers group.

configuration entry

dn: cn=Hostgroups,cn=Auto Membership Plugin,cn=plugins,cn=config

objectclass: autoMemberDefinition

cn: Hostgroups

autoMemberScope: dc=example,dc=com

autoMemberFilter: objectclass=bootableDevice

autoMemberDefaultGroup: cn=orphans,cn=hostgroups,dc=example,dc=com

autoMemberGroupingAttr: member:dn

regex entry #1

dn: cn=webservers,cn=Hostgroups,cn=Auto Membership Plugin,cn=plugins,cn=config

objectclass: autoMemberRegexRule

description: Group placement for webservers

cn: webservers

autoMemberTargetGroup: cn=webservers,cn=hostgroups,dc=example,dc=com

autoMemberInclusiveRegex: fqdn=^www[0-9]+\.example\.com

autoMemberInclusiveRegex: fqdn=^web[0-9]+\.example\.com

autoMemberExclusiveRegex: fqdn=^www13\.example\.com

autoMemberExclusiveRegex: fqdn=^web13\.example\.com

regex entry #2

dn: cn=mailservers,cn=Hostgroups,cn=Auto Membership Plugin,cn=plugins,cn=config

objectclass: autoMemberRegexRule

description: Group placement for mailservers

cn: mailservers

autoMemberTargetGroup: cn=mailservers,cn=hostgroups,dc=example,dc=com

autoMemberInclusiveRegex: fqdn=^mail[0-9]+\.example\.com

Administration Guide

206

autoMemberInclusiveRegex: fqdn=^smtp[0-9]+\.example\.com

autoMemberExclusiveRegex: fqdn=^mail13\.example\.com

autoMemberExclusiveRegex: fqdn=^smtp13\.example\.com

Example 8.5. Windows User Group

The basic users group shown in Section 8.1.5.1.1, “The Automembership Configuration Entry” uses the
posixAccount attribute to identify all new users. All new users created within Directory Server are
created with the posixAccount attribute, so that is a safe catch-all for new Directory Server users.
However, when user accounts are synchronized over from the Windows domain to the
Directory Server, the Windows user accounts are created without the posixAccount attribute.

Windows users are identified by the ntUser attribute. The basic, all-users group rule can be modified
to target Windows users specifically, which can then be added to the default all-users group or to a
Windows-specific group.

dn: cn=Windows Users,cn=Auto Membership Plugin,cn=plugins,cn=config

objectclass: autoMemberDefinition

autoMemberScope: dc=example,dc=com

autoMemberFilter: objectclass=ntUser

autoMemberDefaultGroup: cn=Windows Users,cn=groups,dc=example,dc=com

autoMemberGroupingAttr: member:dn

Example 8.6. User Groups by Employee Type

The Auto Membership Plug-in can work on custom attributes, which can be useful for entries which
are managed by other applications. For example, a human resources application may create and then
reference users based on the employee type, in a custom employeeType attribute.

Much like Example 8.4, “Host Groups by IP Address” , the user type rule uses two regular expression
filters to sort full time and temporary employees, only this example uses an explicit value rather than
a true regular expression. For other attributes, it may be more appropriate to use a regular
expression, like basing the filter on an employee ID number range.

configuration entry

dn: cn=Employee groups,cn=Auto Membership Plugin,cn=plugins,cn=config

objectclass: autoMemberDefinition

cn: Hostgroups

autoMemberScope: ou=employees,ou=people,dc=example,dc=com

autoMemberFilter: objectclass=inetorgperson

autoMemberDefaultGroup: cn=general,cn=employee groups,ou=groups,dc=example,dc=com

autoMemberGroupingAttr: member:dn

regex entry #1

dn: cn=full time,cn=Employee groups,cn=Auto Membership Plugin,cn=plugins,cn=config

objectclass: autoMemberRegexRule

description: Group for full time employees

cn: full time

autoMemberTargetGroup: cn=full time,cn=employee groups,ou=groups,dc=example,dc=com

autoMemberInclusiveRegex: employeeType=full

regex entry #2

CHAPTER 8. ORGANIZING AND GROUPING ENTRIES

207

dn: cn=temporary,cn=Employee groups,cn=Auto Membership Plugin,cn=plugins,cn=config

objectclass: autoMemberRegexRule

description: Group placement for interns, contractors, and seasonal employees

cn: temporary

autoMemberTargetGroup: cn=temporary,cn=employee groups,ou=groups,dc=example,dc=com

autoMemberInclusiveRegex: employeeType=intern

autoMemberInclusiveRegex: employeeType=contractor

autoMemberInclusiveRegex: employeeType=seasonal

8.1.5.3. Creating Automembership Definitions

1. If necessary, enable the Auto Membership Plug-in. Using ldapmodify:

dn: cn=Auto Membership Plugin,cn=plugins,cn=config

changetype: replace

replace: nsslapd-pluginEnabled

nsslapd-pluginEnabled: on

2. Create the new plug-in instance below the cn=Auto Membership

Plugin,cn=plugins,cn=config container entry. This entry must belong to the
autoMemberDefinition object class. Using ldapmodify:

dn: cn=Example Automember Definition,cn=Auto Membership Plugin,cn=plugins,cn=config

objectclass: autoMemberDefinition

...

The required attributes for the definition are listed in the Red Hat Directory Server

Configuration, Command, and File Reference.

3. Set the scope and filter for the definition. This is used for the initial search for matching entries.

For example, for new entries added to the ou=People subtree and containing the ntUser

attribute:

autoMemberScope: ou=People,dc=example,dc=com

autoMemberFilter: objectclass=ntUser

4. Set the group to which to add matching entries (as the default or fallback group) and the format
of the member entries for that group type.

autoMemberDefaultGroup: cn=windows-group,cn=groups,dc=example,dc=com

autoMemberGroupingAttr: member:dn

5. Optional. Create inclusive or exclusive regular expression filters and set a group to use for
entries matching those filters.

The attributes for the regular expression condition are listed in Table 8.3, “Regular Expression
Condition Attributes”.

Regular expression conditions are added as children of the automember definition. These
conditions must belong to the autoMemberRegexRule object class.

Administration Guide

208

https://access.redhat.com/documentation/en-us/red_hat_directory_server/10/html/configuration_command_and_file_reference/automember-attributes

Using ldapmodify:

dn: cn=Example Regex,cn=Example Automember Definition,cn=Auto Membership

Plugin,cn=plugins,cn=config

objectclass: autoMemberRegexRule

...

Then add the target group name and any inclusive or exclusive regular expressions. Both
include and exclude conditions can be used, and multiple expressions of both types can be
used.

autoMemberTargetGroup: cn=windows-admin-group,cn=groups,dc=example,dc=com

autoMemberInclusiveRegex: cn=\.* Administrator *

If a new entry matches a regular expression condition, it is added to that group instead of the
default group set in the automember definition.

6. If the Directory Server is not configured to enable dynamic plug-ins, restart the server to load
the modified new plug-in instance.

8.1.5.4. Updating Existing Entries for Automembership Definitions

The Auto Member Plug-in only runs when new entries are added to the directory. The plug-in ignores
existing entries or entries which are edited to match an automembership rule.

There is a directory task operation which can be run to check existing entries against automembership
rules and then update group membership accordingly. This task (cn=automember rebuild

membership) requires three elements to run, based on LDAP search parameters to identify which
existing entries to process:

The search filter

The search scope

The base DN from which to begin the search

The specific task run also needs a name.

The task entry can be created using ldapmodify; when the task completes, the entry is automatically
removed. For example:

dn: cn=my rebuild task, cn=automember rebuild membership,cn=tasks,cn=config

objectClass: top

objectClass: extensibleObject

cn: my rebuild task

basedn: dc=example,dc=com

filter: (uid=*)

scope: sub

8.1.5.5. Testing Automembership Definitions

Because each instance of the Auto Member Plug-in is a set of related-but-separate entries for the
definition and regular expression, it can be difficult to see exactly how users are going to be mapped to
groups. This becomes even more difficult when there are multiple rules which target different subsets of
users.

CHAPTER 8. ORGANIZING AND GROUPING ENTRIES

209

There are two dry-run tasks which can be useful to determine whether all of the different Auto Member
Plug-in definitions are assigning groups properly as designed.

Testing with Existing Entries

cn=automember export updates runs against existing entries in the directory and exports the results
of what users would have been added to what groups, based on the rules. This is useful for testing
existing rules against existing users to see how your real deployment are performing.

This task requires the same information as the cn=automember rebuild membership task — the base
DN to search, search filter, and search scope — and has an additional parameter to specify an export
LDIF file to record the proposed entry updates.

Using ldapmodify:

dn: cn=test export, cn=automember export updates,cn=tasks,cn=config

objectClass: top

objectClass: extensibleObject

cn: test export

basedn: dc=example,dc=com

filter: (uid=*)

scope: sub

ldif: /tmp/automember-updates.ldif

Testing with an Import LDIF

cn=automember map updates takes an import LDIF of new users and then runs the new users against
the current automembership rules. This can be very useful for testing a new rule, before applying it to
(real) new or existing user entries.

This is called a map task because it maps or relates changes for proposed new entries to the existing
rules.

This task only requires two attributes: the location of the input LDIF (which must contain at least some
user entries) and an output LDIF file to which to write the proposed entry updates. Both the input and
output LDIF files are absolute paths on the local machine.

For example, using ldapmodify:

dn: cn=test mapping, cn=automember map updates,cn=tasks,cn=config

objectClass: top

objectClass: extensibleObject

cn: test mapping

ldif_in: /tmp/entries.ldif

ldif_out: /tmp/automember-updates.ldif

8.2. USING ROLES

Roles are an entry grouping mechanism that unify the static and dynamic groups described in the
previous sections. Roles are designed to be more efficient and easier to use for applications. For
example, an application can get the list of roles of which an entry is a member by querying the entry
itself, rather than selecting a group and browsing the members list of several groups.

8.2.1. About Roles

Administration Guide

210

Red Hat has two kinds of groups. Static groups have a finite and defined list of members. Dynamic

groups used filters to recognize which entries are members of the group, so the group membership is
constantly changed as the entries which match the group filter change. (Both kinds of groups are
described in Section 8.1, “Using Groups” .)

Roles are a sort of hybrid group, behaving as both a static and a dynamic group. With a group, entries are
added to a group entry as members. With a role, the role attribute is added to an entry and then that
attribute is used to identify members in the role entry automatically.

Role members are entries that possess the role. Members can be specified either explicitly or
dynamically. How role membership is specified depends upon the type of role. Directory Server supports
three types of roles:

Managed roles have an explicit enumerated list of members.

Filtered roles are assigned entries to the role depending upon the attribute contained by each
entry, specified in an LDAP filter. Entries that match the filter possess the role.

Nested roles are roles that contain other roles.

Managed roles can do everything that can normally be done with static groups. The role members can
be filtered using filtered roles, similarly to the filtering with dynamic groups. Roles are easier to use than
groups, more flexible in their implementation, and reduce client complexity.

When a role is created, determine whether a user can add themselves or remove themselves from the
role. See Section 8.2.10, “Using Roles Securely” for more information about roles and access control.

NOTE

Evaluating roles is more resource-intensive for the Directory Server than evaluating
groups because the server does the work for the client application. With roles, the client
application can check role membership by searching for the nsRole attribute. The
nsRole attribute is a computed attribute, which identifies to which roles an entry belongs;
the nsRole attribute is not stored with the entry itself. From the client application point
of view, the method for checking membership is uniform and is performed on the server
side.

Considerations for using roles are covered in the Red Hat Directory Server

Deployment Guide.

8.2.2. Creating a Managed Role

Managed roles have an explicit enumerated list of members. Managed roles are added to entries by
adding the nsRoleDN attribute to the entry.

8.2.2.1. Creating a Managed Role in the Console

1. In the Directory Server Console, select the Directory tab.

2. Browse the tree in the left navigation pane, and select the parent entry for the new role.

3. Go to the Object menu, and select New > Role.

CHAPTER 8. ORGANIZING AND GROUPING ENTRIES

211

Alternatively, right-click the entry and select New > Role.

4. Click General in the left pane. Type a name for the new role in the Role Name field. The role
name is required.

5. Enter a description of the new role in the Description field.

6. Click Members in the left pane.

Administration Guide

212

7. In the right pane, select Managed Role. Click Add to add new entries to the list of members.

8. In the Search drop-down list, select Users from the Search drop-down list, then click Search.
Select one of the entries returned, and click OK.

9. After adding all of the entries, click OK.

8.2.2.2. Creating Managed Roles through the Command Line

Roles inherit from the ldapsubentry object class, which is defined in the ITU X.509 standard. In addition,
each managed role requires two object classes that inherit from the nsRoleDefinition object class:

nsSimpleRoleDefinition

nsManagedRoleDefinition

A managed role also allows an optional description attribute.

Members of a managed role have the nsRoleDN attribute in their entry.

This example creates a role which can be assigned to the marketing department.

1. Use ldapmodify with the -a option to add the managed role entry. The new entry must contain
the nsManagedRoleDefinition object class, which in turn inherits from the LdapSubEntry,
nsRoleDefinition, and nsSimpleRoleDefinition object classes.

dn: cn=Marketing,ou=people,dc=example,dc=com

objectclass: top

objectclass: LdapSubEntry

objectclass: nsRoleDefinition

objectclass: nsSimpleRoleDefinition

CHAPTER 8. ORGANIZING AND GROUPING ENTRIES

213

objectclass: nsManagedRoleDefinition

cn: Marketing

description: managed role for marketing staff

2. Assign the role to the marketing staff members, one by one, using ldapmodify:

dn: cn=Bob,ou=people,dc=example,dc=com

changetype: modify

add: nsRoleDN

nsRoleDN: cn=Marketing,ou=people,dc=example,dc=com

The nsRoleDN attribute in the entry indicates that the entry is a member of a managed role,
cn=Marketing,ou=people,dc=example,dc=com.

8.2.3. Creating a Filtered Role

Entries are assigned to a filtered role depending whether the entry possesses a specific attribute defined
in the role. The role definition specifies an LDAP filter for the target attributes. Entries that match the
filter possess (are members of) the role.

8.2.3.1. Creating a Filtered Role in the Console

1. In the Directory Server Console, select the Directory tab.

2. Browse the tree in the left navigation pane, and select the parent entry for the new role.

3. Go to the Object menu, and select New > Role.

Administration Guide

214

Alternatively, right-click the entry and select New > Role.

4. Click General in the left pane. Type a name for the new role in the Role Name field. The role
name is required.

5. Enter a description of the new role in the Description field.

6. Click Members in the left pane.

CHAPTER 8. ORGANIZING AND GROUPING ENTRIES

215

A search dialog box appears briefly.

7. In the right pane, select Filtered Role.

8. Enter an LDAP filter in the text field, or click Construct to be guided through the construction
of an LDAP filter.

The Construct opens the standard LDAP URL construction dialog. Ignore the fields for LDAP

Server Host, Port, Base DN, and Search (since the search scope cannot be set filtered role
definitions).

Select the types of entries to filter from the For drop-down list. The entries can be users,
groups, or both.

Select an attribute from the Where drop-down list. The two fields following it refine the
search by selecting one of the qualifiers from the drop-down list, such as contains, does

not contain, is, or is not. Enter an attribute value in the text box. To add additional filters,
click More. To remove unnecessary filters, click Fewer.

9. Click Test to try the filter.

Administration Guide

216

10. Click OK.

8.2.3.2. Creating a Filtered Role through the Command Line

Roles inherit from the ldapsubentry object class, which is defined in the ITU X.509 standard. In addition,
each filtered role requires two object classes that inherit from the nsRoleDefinition object class:

nsComplexRoleDefinition

nsFilteredRoleDefinition

A filtered role entry also requires the nsRoleFilter attribute to define the LDAP filter to determine role
members. Optionally, the role can take a description attribute.

Members of a filtered role are entries that match the filter specified in the nsRoleFilter attribute.

CHAPTER 8. ORGANIZING AND GROUPING ENTRIES

217

This example creates a filtered role which is applied to all sales managers.

1. Run ldapmodify with the -a option to add a new entry.

2. Create the filtered role entry.

The role entry has the nsFilteredRoleDefinition object class, which inherits from the
LdapSubEntry, nsRoleDefinition, and nsComplexRoleDefinition object classes.

The nsRoleFilter attribute sets a filter for o (organization) attributes that contain a value of
sales managers.

dn: cn=SalesManagerFilter,ou=people,dc=example,dc=com

changetype: add

objectclass: top

objectclass: LDAPsubentry

objectclass: nsRoleDefinition

objectclass: nsComplexRoleDefinition

objectclass: nsFilteredRoleDefinition

cn: SalesManagerFilter

nsRoleFilter: o=sales managers

Description: filtered role for sales managers

The following entry matches the filter (possesses the o attribute with the value sales managers), and,
therefore, it is a member of this filtered role automatically:

dn: cn=Pat Smith,ou=people,dc=example,dc=com

objectclass: person

cn: Pat

sn: Smith

userPassword: secret

o: sales managers

8.2.4. Creating a Nested Role

Nested roles are roles that contain other roles. Before it is possible to create a nested role, another role
must exist. When a nested role is created, the Console displays a list of the roles available for nesting.
The roles nested within the nested role are specified using the nsRoleDN attribute.

8.2.4.1. Creating a Nested Role in the Console

1. In the Directory Server Console, select the Directory tab.

2. Browse the tree in the left navigation pane, and select the parent entry for the new role.

3. Go to the Object menu, and select New > Role.

Administration Guide

218

Alternatively, right-click the entry and select New > Role.

4. Click General in the left pane. Type a name for the new role in the Role Name field. The role
name is required.

5. Click Members in the left pane.

6. In the right pane, select Nested Role.

CHAPTER 8. ORGANIZING AND GROUPING ENTRIES

219

7. Click Add to add roles to the list. The members of the nested role are members of other existing
roles.

8. Select a role from the Available roles list, and click OK.

8.2.4.2. Creating Nested Role through the Command Line

Roles inherit from the ldapsubentry object class, which is defined in the ITU X.509 standard. In addition,
each nested role requires two object classes that inherit from the nsRoleDefinition object class:

nsComplexRoleDefinition

nsNestedRoleDefinition

A nested role entry also requires the nsRoleDN attribute to identify the roles to nest within the
container role. Optionally, the role can take a description attribute.

Members of a nested role are members of the roles specified in the nsRoleDN attributes of the nested
role definition entry.

This example creates a single role out of the managed marketing role and filtered sales manager role.

1. Run ldapmodify with the -a option to add a new entry.

2. Create the nested role entry. The nested role has four object classes:

nsNestedRoleDefinition

LDAPsubentry (inherited)

nsRoleDefinition (inherited)

nsComplexRoleDefinition (inherited)

The nsRoleDN attributes contain the DNs for both the marketing managed role and the sales

Administration Guide

220

The nsRoleDN attributes contain the DNs for both the marketing managed role and the sales
managers filtered role.

dn: cn=MarketingSales,ou=people,dc=example,dc=com

objectclass: top

objectclass: LDAPsubentry

objectclass: nsRoleDefinition

objectclass: nsComplexRoleDefinition

objectclass: nsNestedRoleDefinition

cn: MarketingSales

nsRoleDN: cn=SalesManagerFilter,ou=people,dc=example,dc=com

nsRoleDN: cn=Marketing,ou=people,dc=example,dc=com

Both of the users in the previous examples, Bob and Pat, are members of this new nested role.

8.2.5. Editing and Assigning Roles to an Entry

The entries which belong to a role are assigned on the role entry itself. For managed roles, user entries
are added explicitly; for filtered roles, they are added through the results of an LDAP filter.

User entries are assigned to the role through the command line by editing the role entry, either by
adding the entry as a member or adjusting the filter so it is included. In the Directory Server Console,
however, there is a shortcut to add entries to a role by apparently editing the required user entry (but,
functionally, this really edits the role entry).

1. Select the Directory tab.

2. In the left navigation pane, browse the tree, and select the entry for which to view or edit a role.

3. Select Set Roles from the Object menu.

4. Select the Managed Roles tab to display the managed roles to which this entry belongs.

CHAPTER 8. ORGANIZING AND GROUPING ENTRIES

221

5. To add a new managed role, click Add, and select an available role from the Role Selector

window.

NOTE

The configuration for a managed role associated with an entry can be edited by
clicking the Edit button. The Edit Entry dialog box opens, and the general
information or members for the role can be changed.

6. Select the Other Roles tab to view the filtered or nested roles to which this entry belongs.

Click Edit to make changes to any filtered or nested roles associated with the entry.

8.2.6. Viewing Roles for an Entry through the Command Line

Role assignments are always visible for an entry when it is displayed in the Directory Server Console.
Role assignments are not returned automatically through the command line, however.

The nsRole attribute is an operational attribute. In LDAP, operational attributes must be requested
explicitly. They are not returned by default with the regular attributes in the schema of the entry. You
can either explicitly request single operational attributes by listing them or use + to output all operational

Administration Guide

222

attributes for result objects. For example, this ldapsearch command returns the list of roles of which
uid=scarter is a member, in addition to the regular attributes for the entry:

ldapsearch -D "cn=Directory Manager" -W -p 389 -h server.example.com -b "dc=example,dc=com"

-s sub -x "(uid=scarter)" * nsRole

 dn: uid=scarter,ou=people,dc=example,dc=com

 objectClass: inetorgperson

 objectClass: top

 objectClass: person

 objectClass: organizationalPerson

 uid: scarter

 cn: Sam Carter

 sn: Carter

 givenName: Sam

 mail: scarter@example.com

 userPassword: {SSHA}6BE31mhTfcYyIQF60kWlnEL8sIvPZ59hvFTRKw==

 manager: uid=lbrown,ou=people,dc=example,dc=com

 nsRole: cn=Role for Managers,dc=example,dc=com

 nsRole: cn=Role for Accounting,dc=example,dc=com

IMPORTANT

Be sure to use the nsRole attribute, not the nsRoleDN attribute, to evaluate role
membership.

8.2.7. Making a Role Inactive or Active

The concept of activating/inactivating roles allows entire groups of entries to be activated or inactivated
in just one operation. That is, the members of a role can be temporarily disabled by inactivating the role
to which they belong.

When a role is inactivated, it does not mean that the user cannot bind to the server using that role entry.
The meaning of an inactivated role is that the user cannot bind to the server using any of the entries
that belong to that role; the entries that belong to an inactivated role will have the nsAccountLock

attribute set to true.

Members of a role can be temporarily disabled by inactivating the role to which they belong. Inactivating
a role inactivates the entries possessed by the role, not the role itself.

1. Select the Directory tab.

2. Browse the navigation tree in the left pane to locate the base DN for the role. Roles appear in
the right pane with other entries.

CHAPTER 8. ORGANIZING AND GROUPING ENTRIES

223

3. Double-click the role, open the Account tab, and click the Inactivate button.

Alternatively, select the role. Right-click the role and select Inactivate from the menu.

The role is inactivated.

To reactivate a disabled role, re-open the role configuration or open the Object menu, and select
Activate. All of the members of the role are re-enabled.

8.2.8. Viewing the Activation Status for Entries

When a nested role is inactivated, a user cannot bind to the server if it is a member of any role within the
nested role. All the entries that belong to a role that directly or indirectly are members of the nested role
have nsAccountLock set to true. There can be several layers of nested roles, and inactivating a nested
role at any point in the nesting will inactivate all roles and users beneath it.

The Directory Server Console automatically shows the active or inactive status of entries.

To see the inactivated entries, select Inactivation State from the View menu. Members of an
inactivated role have a red slash through them. For example, John Smith is a member of the inactive
Example Role.

The nsAccountLock attribute is an operational attribute and must be explicitly requested in the search

Administration Guide

224

The nsAccountLock attribute is an operational attribute and must be explicitly requested in the search
command in the list of search attributes or specify + to request all operational attributes. For example:

ldapsearch -D "cn=Directory Manager" -W -p 389 -h server.example.com -b "dc=example,dc=com"

-s sub -x "(uid=scarter)" nsAccountLock

8.2.9. About Deleting Roles

Deleting a role deletes the role entry but does not delete the nsRoleDN attribute for each role member.
To delete the nsRoleDN attribute for each role member, enable the Referential Integrity plug-in, and
configure it to manage the nsRoleDN attribute. For more information on the Referential Integrity plug-
in, see Chapter 5, Maintaining Referential Integrity .

8.2.10. Using Roles Securely

Not every role is suitable for use in a security context. When creating a new role, consider how easily the
role can be assigned to and removed from an entry. Sometimes it is appropriate for users to be able to
add or remove themselves easily from a role. For example, if there is an interest group role called
Mountain Biking, interested users should be able to add themselves or remove themselves easily.

However, it is inappropriate to have such open roles for some security situations. One potential security
risk is inactivating user accounts by inactivating roles. Inactive roles have special ACIs defined for their
suffix. If an administrator allows users to add and remove themselves from roles freely, then in some
circumstance, they may be able to remove themselves from an inactive role to prevent their accounts
from being locked.

For example, user A possesses the managed role, MR. The MR role has been locked using account
inactivation. This means that user A cannot bind to the server because the nsAccountLock attribute is
computed as true for that user. However, if user A was already bound to Directory Server and noticed
that he is now locked through the MR role, the user can remove the nsRoleDN attribute from his entry
and unlock himself if there are no ACIs preventing him.

To prevent users from removing the nsRoleDN attribute, use the following ACIs depending upon the
type of role being used.

Managed roles. For entries that are members of a managed role, use the following ACI to
prevent users from unlocking themselves by removing the appropriate nsRoleDN:

aci: (targetattr="nsRoleDN") (targattrfilters= add=nsRoleDN:(!

(nsRoleDN=cn=AdministratorRole,dc=example,dc=com)), del=nsRoleDN:(!

(nsRoleDN=cn=nsManagedDisabledRole,dc=example,dc=com))) (version3.0;acl "allow mod

of nsRoleDN by self but not to critical values"; allow(write) userdn=ldap:///self;)

Filtered roles. The attributes that are part of the filter should be protected so that the user
cannot relinquish the filtered role by modifying an attribute. The user should not be allowed to
add, delete, or modify the attribute used by the filtered role. If the value of the filter attribute is
computed, then all attributes that can modify the value of the filter attribute should be
protected in the same way.

Nested roles. A nested role is comprised of filtered and managed roles, so both ACIs should be
considered for modifying the attributes (nsRoleDN or something else) of the roles that
comprise the nested role.

For more information about account inactivation, see Section 19.15, “Manually Inactivating Users and
Roles”.

CHAPTER 8. ORGANIZING AND GROUPING ENTRIES

225

8.3. AUTOMATICALLY CREATING DUAL ENTRIES

Some clients and integration with Red Hat Directory Server require dual entries. For example, both Posix
systems typically have a group for each user. The Directory Server's Managed Entries Plug-in creates a
new managed entry, with accurate and specific values for attributes, automatically whenever an
appropriate origin entry is created.

8.3.1. About Managed Entries

The basic idea behind the Managed Entries Plug-in is that there are situations when Entry A is created
and there should automatically be an Entry B with related attribute values. For example, when a Posix
user (posixAccount entry) is created, a corresponding group entry (posixGroup entry) should also be
created. An instance of the Managed Entries Plug-in identifies what entry (the origin entry) triggers the
plug-in to automatically generate a new entry (the managed entry).

The plug-in works within a defined scope of the directory tree, so only entries within that subtree and
that match the given search filter trigger a Managed Entries operation.

Much like configuring a class of service, a managed entry is configured through two entries:

A definition entry, that identifies the scope of the plug-in instance and the template to use

A template entry, that models what the final managed entry will look like

8.3.1.1. About the Instance Definition Entry

As with the Linked Attributes and DNA Plug-ins, the Managed Entries Plug-in has a container entry in
cn=plugins,cn=config, and each unique configuration instance of the plug-in has a definition entry
beneath that container.

An instance of the Managed Entries Plug-in defines three things:

The search criteria to identify the origin entries (using a search scope and a search filter)

The subtree under which to create the managed entries (the new entry location)

The template entry to use for the managed entries

Administration Guide

226

Figure 8.2. Defining Managed Entries

For example:

dn: cn=Posix User-Group,cn=Managed Entries,cn=plugins,cn=config

objectclass: extensibleObject

cn: Posix User-Group

originScope: ou=people,dc=example,dc=com

originFilter: objectclass=posixAccount

managedBase: ou=groups,dc=example,dc=com

managedTemplate: cn=Posix User-Group Template,ou=Templates,dc=example,dc=com

The origin entry does not have to have any special configuration or settings to create a managed entry; it
simply has to be created within the scope of the plug-in and match the given search filter.

8.3.1.2. About the Template Entry

Each instance of the plug-in uses a template entry which defines the managed entry configuration. The
template effectively lays out the entry, from the object classes to the entry values.

NOTE

CHAPTER 8. ORGANIZING AND GROUPING ENTRIES

227

NOTE

Since the template is referenced in the definition entry, it can be located anywhere in the
directory. However, it is recommended that the template entry be under the replicated
suffix so that any other masters in multi-master replication all use the same template for
their local instances of the Managed Entries Plug-in.

The concept of a template entry is similar to the templates used in CoS, but there are some important
differences. The managed entry template is slightly different than the type of template used for a class
of service. For a class of service, the template contains a single attribute with a specific value that is fed
into all of the entries which belong to that CoS. Any changes to the class of service are immediately
reflected in the associated entries, because the CoS attributes in those entries are virtual attributes, not
truly attributes set on the entry.

The template entry for the Managed Entries Plug-in, on the other hand, is not a central entry that
supplies values to associated entries. It is a true template — it lays out what is in the entry. The template
entry can contain both static attributes (ones with pre-defined values, similar to a CoS) and mapped
attributes (attributes that pull their values or parts of values from the origin entry). The template is
referenced when the managed entry is created and then any changes are applied to the managed entry
only when the origin entry is changed and the template is evaluated again by the plug-in to apply those
updates.

Figure 8.3. Templates, Managed Entries, and Origin Entries

The template can provide a specific value for an attribute in the managed entry by using a static

attribute in the template. The template can also use a value that is derived from some attribute in the
origin entry, so the value may be different from entry to entry; that is a mapped attribute, because it
references the attribute type in the origin entry, not a value.

A mapped value use a combination of token (dynamic values) and static values, but it can only use one

token in a mapped attribute.

dn: cn=Posix User-Group Template,ou=Templates,dc=example,dc=com

objectclass: mepTemplateEntry

Administration Guide

228

cn: Posix User-Group Template

mepRDNAttr: cn

mepStaticAttr: objectclass: posixGroup

mepMappedAttr: cn: $cn Group Entry

mepMappedAttr: gidNumber: $gidNumber

mepMappedAttr: memberUid: $uid

The mapped attributes in the template use tokens, prepended by a dollar sign ($), to pull in values from
the origin entry and use it in the managed entry. (If a dollar sign is actually in the managed attribute
value, then the dollar sign can be escaped by using two dollar signs in a row.)

A mapped attribute definition can be quoted with curly braces, such as Attr: ${cn}test. Quoting a token
value is not required if the token name is not immediately followed by a character that is valid in an
attribute name, such as a space or comma. For example, $cn test is acceptable in an attribute definition
because a space character immediately follow the attribute name, but $cntest is not valid because the
Managed Entries Plug-in attempts to look for an attribute named cntest in the origin entry. Using curly
braces identifies the attribute token name.

NOTE

Make sure that the values given for static and mapped attributes comply with the
required attribute syntax.

8.3.1.3. Entry Attributes Written by the Managed Entries Plug-in

Both the origin entry and the managed entry have special managed entries attributes which indicate that
they are being managed by an instance of the Managed Entries Plug-in. For the origin entry, the plug-in
adds links to associated managed entries.

dn: uid=jsmith,ou=people,dc=example,dc=com

objectclass: mepOriginEntry

objectclass: posixAccount

...

sn: Smith

mail: jsmith@example.com

mepManagedEntry: cn=jsmith Posix Group,ou=groups,dc=example,dc=com

On the managed entry, the plug-in adds attributes that point back to the origin entry, in addition to the
attributes defined in the template.

dn: cn=jsmith Posix Group,ou=groups,dc=example,dc=com

objectclass: mepManagedEntry

objectclass: posixGroup

...

mepManagedBy: uid=jsmith,ou=people,dc=example,dc=com

Using special attributes to indicate managed and origin entries makes it easy to identify the related
entries and to assess changes made by the Managed Entries Plug-in.

8.3.1.4. Managed Entries Plug-in and Directory Server Operations

The Managed Entries Plug-in has some impact on how the Directory Server carries out common
operations, like add and delete operations.

CHAPTER 8. ORGANIZING AND GROUPING ENTRIES

229

Table 8.4. Managed Entries Plug-in and Directory Server Operations

Operation Effect by the Managed Entries Plug-in

Add With every add operation, the server checks to see if the new entry is within the scope
of any Managed Entries Plug-in instance. If it meets the criteria for an origin entry, then
a managed entry is created and managed entry-related attributes are added to both
the origin and managed entry.

Modify If an origin entry is modified, it triggers the plug-in to update the managed entry.
Changing a template entry, however, does not update the managed entry automatically.
Any changes to the template entry are not reflected in the managed entry until after
the next time the origin entry is modified.

The mapped managed attributes within a managed entry cannot be modified manually,
only by the Managed Entry Plug-in. Other attributes in the managed entry (including
static attributes added by the Managed Entry Plug-in) can be modified manually.

Delete If an origin entry is deleted, then the Managed Entries Plug-in will also delete any
managed entry associated with that entry. There are some limits on what entries can
be deleted.

A template entry cannot be deleted if it is currently referenced by a plug-in
instance definition.

A managed entry cannot be deleted except by the Managed Entries Plug-in.

Rename If an origin entry is renamed, then plug-in updates the corresponding managed entry. If
the entry is moved out of the plug-in scope, then the managed entry is deleted, while if
an entry is moved into the plug-in scope, it is treated like an add operation and a new
managed entry is created. As with delete operations, there are limits on what entries
can be renamed or moved.

A configuration definition entry cannot be moved out of the Managed Entries
Plug-in container entry. If the entry is removed, that plug-in instance is
inactivated.

If an entry is moved into the Managed Entries Plug-in container entry, then it is
validated and treated as an active configuration definition.

A template entry cannot be renamed or moved if it is currently referenced by
a plug-in instance definition.

A managed entry cannot be renamed or moved except by the Managed
Entries Plug-in.

Replication The Managed Entries Plug-in operations are not initiated by replication updates. If an
add or modify operation for an entry in the plug-in scope is replicated to another
replica, that operation does not trigger the Managed Entries Plug-in instance on the
replica to create or update an entry. The only way for updates for managed entries to
be replicated is to replicate the final managed entry over to the replica.

8.3.2. Creating the Managed Entries Template Entry

The first entry to create is the template entry. The template entry must contain all of the configuration

Administration Guide

230

The first entry to create is the template entry. The template entry must contain all of the configuration
required for the generated, managed entry. This is done by setting the attribute-value assertions in
static and mapped attributes in the template:

mepStaticAttr: attribute: specific_value

mepMappedAttr: attribute: $token_value

The static attributes set an explicit value; mapped attributes pull some value from the originating entry
is used to supply the given attribute. The values of these attributes will be tokens in the form attribute:

$attr. As long as the syntax of the expanded token of the attribute does not violate the required
attribute syntax, then other terms and strings can be used in the attribute. For example:

mepMappedAttr: cn: Managed Group for $cn

There are some syntax rules that must be followed for the managed entries:

A mapped value use a combination of token (dynamic values) and static values, but it can only
use one token per mapped attribute .

The mapped attributes in the template use tokens, prepended by a dollar sign ($), to pull in
values from the origin entry and use it in the managed entry. (If a dollar sign is actually in the
managed attribute value, then the dollar sign can be escaped by using two dollar signs in a row.)

A mapped attribute definition can be quoted with curly braces, such as Attr: ${cn}test. Quoting
a token value is not required if the token name is not immediately followed by a character that is
valid in an attribute name, such as a space or comma. For example, $cn test is acceptable in an
attribute definition because a space character immediately follow the attribute name, but
$cntest is not valid because the Managed Entries Plug-in attempts to look for an attribute
named cntest in the origin entry. Using curly braces identifies the attribute token name.

Make sure that the values given for static and mapped attributes comply with the required
attribute syntax.

NOTE

Make sure that the values given for static and mapped attributes comply with the
required attribute syntax. For example, if one of the mapped attributes is gidNumber,
then the mapped value should be an integer.

Table 8.5. Attributes for the Managed Entry Template

Attribute Description

mepTemplateEntry (object
class)

Identifies the entry as a template.

cn Gives the common name of the entry.

mepMappedAttr Contains an attribute-token pair that the plug-in uses to create an attribute
in the managed entry with a value taken from the originating entry.

CHAPTER 8. ORGANIZING AND GROUPING ENTRIES

231

mepRDNAttr Specifies which attribute to use as the naming attribute in the managed
entry. The attribute used as the RDN must be a mapped attribute for the
configuration to be valid.

mepStaticAttr Contains an attribute-value pair that will be used, with that specified value,
in the managed entry.

Attribute Description

To create a template entry:

1. Run ldapmodify to add the entry. This entry can be located anywhere in the directory tree.

dn: cn=Posix User Template,ou=templates,dc=example,dc=com

cn: Posix User Template

...

You can also use the Directory Server Console to create the entry, as described in Section 3.2.2,
“Creating Directory Entries”.

2. Give it the mepTemplateEntry object class to indicate that it is a template entry.

objectClass: top

objectclass: mepTemplateEntry

...

3. Set the attributes for the entry; these are described in Table 8.5, “Attributes for the Managed
Entry Template”. The RDN attribute (mepRDNAttr) is required. The attribute parameters are
optional and the values depend on the type of entry that the plug-in will create. Make sure that
whatever attribute you use for the naming attribute is also contained in the template entry as a
mapped attribute.

NOTE

Attributes which will be the same for each managed entry — like the object class
for the entries — should use the mepStaticAttr attribute to set the values
manually.

mepRDNAttr: cn

mepStaticAttr: objectclass: posixGroup

mepMappedAttr: cn: $cn Group Entry

mepMappedAttr: gidNumber: $gidNumber

mepMappedAttr: memberUid: $uid

8.3.3. Creating the Managed Entries Instance Definition

Once the template entry is created, then it is possible to create a definition entry that points to that
template. The definition entry is an instance of the Managed Entries Plug-in.

NOTE

Administration Guide

232

NOTE

When the definition is created, the server checks to see if the specified template entry
exists. If the template does not exist, then the server returns a warning that the definition
configuration is invalid.

The definition entry must define the parameters to recognize the potential origin entry and the
information to create the managed entry. The attributes available for the plug-in instance are listed in
Table 8.6, “Attributes for the Managed Entries Definition Entry” .

Table 8.6. Attributes for the Managed Entries Definition Entry

Attribute Name Description

originFilter The search filter to use to search for and identify the entries within the
subtree which require a managed entry. The syntax is the same as a regular
search filter.

originScope The base subtree which contains the potential origin entries for the plug-in
to monitor.

managedTemplate Identifies the template entry to use to create the managed entry. This entry
can be located anywhere in the directory tree.

managedBase The subtree under which to create the managed entries.

NOTE

The Managed Entries Plug-in is enabled by default. If this plug-in is disabled, then re-
enable it as described in Section 1.9.2.2, “Enabling Plug-ins in the
Directory Server Console”.

To create an instance:

1. Create the new plug-in instance below the cn=Managed Entries,cn=plugins,cn=config

container entry using ldapmodify.

dn: cn=instance,cn=Managed Entries,cn=plugins,cn=config

...

2. Set the scope and filter for the origin entry search, the location of the new managed entries, and
the template entry to use. These required attributes are listed in Table 8.6, “Attributes for the
Managed Entries Definition Entry”.

objectClass: top

objectClass: extensibleObject

cn: Posix User-Group

originScope: ou=people,dc=example,dc=com

originFilter: objectclass=posixAccount

managedBase: ou=groups,dc=example,dc=com

managedTemplate: cn=Posix User-Group Template,ou=Templates,dc=example,dc=com

CHAPTER 8. ORGANIZING AND GROUPING ENTRIES

233

3. If the Directory Server is not configured to enable dynamic plug-ins, restart the server to load
the modified new plug-in instance.

8.3.4. Putting Managed Entries Plug-in Configuration in a Replicated Database

As Section 8.3.1, “About Managed Entries” highlights, different instances of the Managed Entries Plug-
in are created as children beneath the container plug-in entry in cn=plugins,cn=com. (This is common
for plug-ins which allow multiple instances.) The drawback to this is that the configuration entries in
cn=plugins,cn=com are not replicated, so the configuration has to be re-created on each
Directory Server instance.

The Managed Entries Plug-in entry allows the nsslapd-pluginConfigArea attribute. This attribute to
another container entry, in the main database area, which contains the plug-in instance entries. This
container entry can be in a replicated database, which allows the plug-in configuration to be replicated.

1. Using ldapmodify, create a container entry in a subtree that is replicated.

dn: cn=managed entries container,ou=containers,dc=example,dc=com

objectclass: top

objectClass: extensibleObject

objectClass: nsContainer

cn: managed entries container

2. Using ldapmodify, add the nsslapd-pluginConfigArea attribute to the Managed Entries Plug-
in entry that points back to the container entry.

dn: cn=Managed Entries,cn=plugins,cn=config

changetype: modify

add: nsslapd-pluginConfigArea

nsslapd-pluginConfigArea: cn=managed entries

container,ou=containers,dc=example,dc=com

3. Move or create the definition (Section 8.3.3, “Creating the Managed Entries Instance
Definition”) and template (Section 8.3.2, “Creating the Managed Entries Template Entry”)
entries under the new container entry.

8.4. USING VIEWS

Virtual directory tree views, or views, create a virtual directory hierarchy, so it is easy to navigate entries,
without having to make sure those entries physically exist in any particular place. The view uses
information about the entries to place them in the view hierarchy, similarly to members of a filtered role
or a dynamic group. Views superimpose a DIT hierarchy over a set of entries, and to client applications,
views appear as ordinary container hierarchies.

8.4.1. About Views

Views create a directory tree similar to the regular hierarchy, such as using organizational unit entries for
subtrees, but views entries have an additional object class (nsview) and a filter attribute (nsviewfilter)
that set up a filter for the entries which belong in that view. Once the view container entry is added, all of
the entries that match the view filter instantly populate the view. The target entries only appear to exist
in the view; their true location never changes. For example, a view may be created as ou=Location

Views, and a filter is set for l=Mountain View. Every entry, such as cn=Jane Smith,l=Mountain

View,ou=People,dc=example,dc=com, is immediately listed under the ou=Location Views entry, but
the real cn=Jane Smith entry remains in the ou=People,dc=example,dc=com subtree.

Administration Guide

234

Figure 8.4. A Directory Tree with a Virtual DIT View hierarchy

Virtual DIT views behave like normal DITs in that a subtree or a one-level search can be performed with
the expected results being returned.

NOTE

There is a sample LDIF file with example views entries, Example-views.ldif, installed with
Directory Server. This file is in the /usr/share/dirsrv/data/ directory on Red Hat
Enterprise Linux 7. The sections in this chapter assume Example-views.ldif is imported
to the server.

The Red Hat Directory Server Deployment Guide has more information on how to integrate views with
the directory tree hierarchy.

8.4.2. Creating Views in the Console

1. Select the Directory tab.

2. In the left navigation tree, create an organizational unit suffix to hold the views. For instance, for
views based on the locality (l) attribute, name this organizational unit Location Views. Creating
sub suffixes is described in Section 2.1.1.2, “Creating a New Sub Suffix Using the Console” .

3. Right-click ou=Location Views, and select New > Other.

CHAPTER 8. ORGANIZING AND GROUPING ENTRIES

235

4. Select nsview from the New Object menu, and click OK.

Administration Guide

236

5. In the Property Editor window, click the Add Value button, and add the organization unit object
class.

CHAPTER 8. ORGANIZING AND GROUPING ENTRIES

237

6. Name the organization unit according to how to organize the views. For instance,
ou=Sunnyvale. Make the ou attribute the naming attribute.

7. Click the Add Attribute button, and add the nsviewfilter attribute.

Administration Guide

238

8. Create a filter that reflects the views, such as (l=Sunnyvale).

CHAPTER 8. ORGANIZING AND GROUPING ENTRIES

239

9. Click the Change button in the lower right corner to change the naming attribute.

Use the ou of the entry as the naming attribute instead of description.

10. Click OK to close the attributes box, and click OK again to save the new view entry.

The new view is immediately populated with any entries matching the search filter, and any new entries
added to directory are automatically included in the view.

8.4.3. Creating Views from the Command Line

1. Use the ldapmodify utility to bind to the server and prepare it to add the new view entry to the
configuration file.

2. Assuming the view container ou=Location Views,dc=example,dc=com from the Example-

views.ldif file is in the Directory Server, add the new views container entry, in this example,
under the dc=example,dc=com root suffix. This entry must have the nsview object class and
the nsViewFilter attribute. The nsViewFilter attribute sets the attribute-value which identifies
entries that belong in the view.

dn: ou=Mountain View,ou=Location Views,dc=example,dc=com

changetype: add

objectClass: top

objectClass: organizationalUnit

objectClass: nsview

ou: Mountain View

nsViewFilter: l=Mountain View

description: views categorized by location

8.4.4. Improving Views Performance

As Section 8.4.1, “About Views” describes, views are derived from search results based on a given filter.
Part of the filter is the attribute defined in the nsViewFilter attribute; the rest of the filter is based on
the entry hierarchy, looking for the entryid and parentid of the real entries included in the view.

Administration Guide

240

(|(parentid=search_base_id)(entryid=search_base_id)

If any of the searched-for attributes — entryid, parentid, or the attribute set in nsViewFilter — are not
indexed, then the views search becomes an unindexed search because the views operation searches the
entire tree for matching entries.

To improve views performance, create equality indexes for entryid, parentid, and the attribute set
in nsViewFilter.

Creating equality indexes is covered in Section 13.2, “Creating Standard Indexes” , and updating existing
indexes to include new attributes is covered in Section 13.3, “Generating New Indexes to Existing
Databases”.

CHAPTER 8. ORGANIZING AND GROUPING ENTRIES

241

CHAPTER 9. CONFIGURING SECURE CONNECTIONS

By default, clients and users connect to the Red Hat Directory Server over a standard connection.
Standard connections do not use any encryption, so information is sent back and forth between the
server and client in the clear.

Directory Server supports TLS connections, StartTLS connection, and SASL authentication, which
provide layers of encryption and security that protect directory data from being read even if it is
intercepted.

9.1. REQUIRING SECURE CONNECTIONS

Directory Server provides the following ways of using encrypted connections:

LDAPS

When you use the LDAPS protocol, the connection starts using encryption and either succeeds or
fails. However, no unencrypted data is ever send over the network. For this reason, prefer LDAPS
instead of using StartTLS over unencrypted LDAP.

StartTLS over LDAP

Clients establish an unencrypted connection over the LDAP protocol and then send the StartTLS

command. If the command succeeds, all further communication is encrypted.

WARNING

If the StartTLS command fails and the client does not cancel the connection, all
further data, including authentication information, is sent unencrypted over the
network.

SASL

Simple Authentication and Security Layer (SASL) enables you to authenticate a user using external
authentication methods, such as Kerberos. For details, see Section 9.9, “Setting up SASL Identity
Mapping”.

9.2. SETTING A MINIMUM STRENGTH FACTOR

For additional security, the Directory Server can be configured to require a certain level of encryption
before it allows a connection. The Directory Server can define and require a specific Security Strength
Factor (SFF) for any connection. The SSF sets a minimum encryption level, defined by its key strength,
for any connection or operation.

To require a minimum SSF for any and all directory operations, set the nsslapd-minssf configuration
attribute. When enforcing a minimum SSF, Directory Server looks at each available encryption type for
an operation — TLS or SASL — and determines which has the higher SSF value and then compares the
higher value to the minimum SSF. It is possible for both SASL authentication and TLS to be configured
for some server-to-server connections, such as replication.

NOTE

Administration Guide

242

NOTE

Alternatively, use the nsslapd-minssf-exclude-rootdse configuration attribute. This sets
a minimum SSF setting for all connections to the Directory Server except for queries
against the root DSE. A client may need to obtain information about the server
configuration, like its default naming context, before initiating an operation. The
nsslapd-minssf-exclude-rootdse attribute allows the client to get that information
without having to establish a secure connection first.

The SSF for a connection is evaluated when the first operation is initiated on a connection. This allows
StartTLS and SASL binds to succeed, even though those two connections initially open a regular
connection. After the TLS or SASL session is opened, then the SSF is evaluated. Any connection which
does not meet the SSF requirements is closed with an LDAP unwilling to perform error.

Set a minimum SSF to disable insecure connections to a directory.

WARNING

If you connect to the directory using the unencrypted LDAP protocol without SASL,
the first LDAP message can contain the bind request. In this case, the credentials
are sent unencrypted over the network before the server cancels the connection,
because the SSF did not met the minimum value set.

Use the LDAPS protocol or SASL binds to ensure that the credentials are never
sent unencrypted.

The default nsslapd-minssf attribute value is 0, which means there is no minimum SSF for server
connections. The value can be set to any reasonable positive integer. The value represents the required
key strength for any secure connection.

The following example adds the nsslapd-minssf attribute to the cn=config entry:

ldapmodify -D "cn=Directory Manager" -W -x

dn: cn=config

changetype: modify

replace: nsslapd-minssf

nsslapd-minssf: 128

NOTE

An ACI can be set to require an SSF for a specific type of operation, as in
Section 18.13.2.4, “Requiring a Certain Level of Security in Connections” .

Secure connections can be required for bind operations by turning on the nsslapd-

require-secure-binds attribute, as in Section 19.11.1, “Requiring Secure Binds” .

9.3. MANAGING THE NSS DATABASE USED BY DIRECTORY SERVER

CHAPTER 9. CONFIGURING SECURE CONNECTIONS

243

When you set up TLS encryption or certificate-based authentication, you must manage the certificates
which are stored in a Network Security Services (NSS). This section describes the most frequent actions
about managing the Directory Server's NSS database.

9.3.1. Creating the NSS Database for a Directory Server Instance

Directory Server stores the certificates in an NSS database in the /etc/dirsrv/slapd-instance_name/

directory. Before you can manage the certificates, you must create the database.

NOTE

For security reasons, Red Hat recommends setting a strong password on the database.

9.3.1.1. Creating the NSS Database Using the Command Line

To create the NSS database using the command line:

1. Create the NSS database and set a password:

certutil -d /etc/dirsrv/slapd-instance_name/ -N

Enter a password which will be used to encrypt your keys.

The password should be at least 8 characters long,

and should contain at least one non-alphabetic character.

Enter new password:

Re-enter password:

2. Set the permissions:

chown dirsrv:dirsrv /etc/dirsrv/slapd-instance_name/*.db

chown dirsrv:dirsrv /etc/dirsrv/slapd-instance_name/pkcs11.txt

chmod 600 /etc/dirsrv/slapd-instance_name/*.db

chmod 600 /etc/dirsrv/slapd-instance_name/pkcs11.txt

9.3.1.2. Creating the NSS Database Using the Console

Directory Server automatically creates the NSS database when you open the Manage Certificates task
entry in the Directory Server Console the first time.

To open the Manage Certificates task entry:

1. Open the Directory Server Console.

2. On the Tasks tab, click Manage Certificates, and set a password to protect the database.

Administration Guide

244

9.3.2. Creating a Certificate Signing Request

The Certificate Signing Request (CSR) is a request to the Certificate Authority (CA) to sign the key of
the server. This section describes how to create the CSR including the private key.

9.3.2.1. Creating a Certificate Signing Request Using the Command Line

To create the key and a CSR, use the certutil utility:

certutil -d instance_directory -R -g key_size -a \

 -o output_file -8 FQDN -s "certificate_subject"

Example 9.1. Creating a Private Key and CSR for a Single Host Name

The following command generates a 4096 bit private key for the server.example.com host and
stores the CSR in the /root/instance_name.csr file:

certutil -d /etc/dirsrv/slapd-instance_name/ -R -g 4096 -a \

 -o /root/instance_name.csr -8 server.example.com \

 -s "CN=server.example.com,O=example_organization,OU=IT,ST=North Carolina,C=US"

The -8 server.example.com option adds the subject alternative name (SAN) extension with the
DNS:server.example.com entry to the CSR. The string specified in the -s parameter must be a valid
subject name according to RFC 1485. The CN field is required, and you must set it to the Fully
Qualified Domain Name (FQDN) of the server. The other fields are optional.

Example 9.2. Creating a Private Key and CSR for a Multi-homed Host

If a Directory Server host has multiple names, create a CSR with all host names in the SAN extension
of the CSR. The following command generates a 4096 bit private key and a CSR for the
server.example.com and server.example.net host names. The command stores the CSR in the
/root/instance_name.csr file.

CHAPTER 9. CONFIGURING SECURE CONNECTIONS

245

https://tools.ietf.org/html/rfc1485

certutil -d /etc/dirsrv/slapd-instance_name/ -R -g 4096 -a \

 -o /root/instance_name.csr -8 server.example.com,server.example.net \

 -s "CN=server.example.com,O=example_organization,OU=IT,ST=North Carolina,C=US"

The -8 server.example.com,server.example.net option adds the SAN extension with the
DNS:server.example.com, DNS:server.example.net entries to the CSR. The string specified in the
-s parameter must be a valid subject name according to RFC 1485. The CN field is required, and you
must set it to one of the FQDNs of the server. The other fields are optional.

For further details about certutil and extended usage information, see the certutil(1) man page.

After you have generated the CSR, submit it to the CA to get a certificate issued. For further details, see
your CA's documentation.

9.3.2.2. Creating a Certificate Signing Request Using the Console

To create the keys and a CSR using the Console:

1. Open the Directory Server Console.

2. On the Tasks tab, click Manage Certificates.

3. On the Server Certs tab, click the Request button.

4. Select if you want to request the certificate manually or from one of the displayed CAs and click
Next.

5. Enter the requested information and click Next.

Administration Guide

246

https://tools.ietf.org/html/rfc1485

IMPORTANT

Enter the Fully-qualified Domain Name (FQDN) of the server into the Server

name field.

6. Select the key size and signing algorithm. Click Next.

For security reasons:

an RSA key size of 2048 bits or higher

a strong signing algorithm, such as SHA-256 or higher

7. Enter the password of the Network Security Services (NSS) database and click Done.

CHAPTER 9. CONFIGURING SECURE CONNECTIONS

247

If you use an Hardware Security Module (HSM) to store the certificates, the device is plugged in,
and the module has been installed as described in Section 9.7, “Using Hardware Security
Modules”, then the module is available in the Active Encryption Token menu.

8. Copy the CSR to the clipboard or save it into a file.

9. Click Done.

After you generated the CSR, submit it to the CA to get a certificate issued. For further details, see your
CA's documentation.

9.3.3. Installing a CA Certificate

To enable Directory Server to trust the Certificate Authority (CA) you must install the certificate of the
CA into the Network Security Services (NSS) database. During this process, you must set which
certificates issued by the CA should be trusted:

Table 9.1. CA Trust Options

Console Option certutil Option Description

Accepting connections from clients

(Client Authentication)

T,, The server trusts this CA certificate for
issuing client certificates suitable for TLS
EXTERNAL binds.

Accepting connections to other

servers (Server Authentication)

C,, The server verifies that certificates, used
to establish an encrypted connection to a
replication partner, have been issued by a
trusted CA.

You can set both options for a CA. When you use certutil, pass the -T "CT,," parameter to the utility.

9.3.3.1. Installing a CA Certificate Using the Command Line

To install a CA certificate in the Directory Server's NSS database, use the certutil utility. For example, to

Administration Guide

248

To install a CA certificate in the Directory Server's NSS database, use the certutil utility. For example, to
import the CA certificate stored in the /etc/pki/CA/nss/ca.crt file:

certutil -d /etc/dirsrv/slapd-instance_name/ -A -n "certificate_nickname" \

 -t "C,," -i /etc/pki/CA/nss/ca.crt

The -t trust_options parameter sets which certificates issued by the CA should be trusted. See
Table 9.1, “CA Trust Options” .

For further details about the parameters used in the previous command, see the certutil(1) man page.

9.3.3.2. Installing a CA Certificate Using the Console

To install a CA certificate using the Directory Server Console:

1. Open the Directory Server Console.

2. On the Tasks tab, click Manage Certificates.

3. Select the CA Certs tab and click the Install button.

4. Either select the file that contains the server certificate or paste the certificate into the field.
Click Next.

5. Verify the certificate details and click Next.

6. Verify the certificate nickname and click Next.

7. Set which certificates issued by the CA should be trusted. You can select one or both of the
options. See Table 9.1, “CA Trust Options” .

CHAPTER 9. CONFIGURING SECURE CONNECTIONS

249

9.3.4. Installing a Certificate

After the Certificate Authority (CA) issued the requested certificate, you must install it in the Network
Security Services (NSS) database.

9.3.4.1. Installing a Server Certificate Using the Command Line

To install a server certificate in the Directory Server's NSS database, use the certutil utility. For
example:

1. Install the CA certificate. See Section 9.3.3, “Installing a CA Certificate” .

2. Import the certificate. For example to import the certificate stored in the
/root/instance_name.crt file:

certutil -d /etc/dirsrv/slapd-instance_name/ -A \

 -n "server-cert" -t ",," -a -i /root/instance_name.crt

3. Optionally, verify the certificate:

certutil -d /etc/dirsrv/slapd-instance_name/ -V -n "server-cert" -u V

For further details about the parameters used in the previous certutil commands, see the certutil(1)
man page.

9.3.4.2. Installing a Certificate Using the Console

To install a server certificate using the Console:

1. Install the CA certificate. See Section 9.3.3, “Installing a CA Certificate” .

2. Open the Directory Server Console.

3. On the Tasks tab, click Manage Certificates.

4. Click the Install button.

5. Select the file that contains the server certificate or, alternatively, paste the certificate into the
field. Click Next.

Administration Guide

250

6. Verify the certificate details and click Next.

7. Set a certificate nickname and click Next.

NOTE

The Directory Server Console does not support installing a certificate that uses
the same nickname as an existing one. To work around the problem, install the
certificate using the command line. See Section 9.3.4.1, “Installing a Server
Certificate Using the Command Line”.

8. Enter the password of the NSS database and click Done.

9.3.5. Generating and Installing a Self-signed Certificate

In certain situations, administrators want to use a self-signed certificate for encrypted connections to
Directory Server.

NOTE

You can only perform this operation using the command line.

To create and install a self-signed certificate:

1. Verify if the Network Security Services (NSS) database is already initialized:

certutil -d /etc/dirsrv/slapd-instance_name -L

If the command fails, initalize the database. For details, see Section 9.3.1, “Creating the NSS
Database for a Directory Server Instance”.

2. Generate a noise file with random data. For example, to generate a file with a size of 4096 bits:

openssl rand -out /tmp/noise.bin 4096

CHAPTER 9. CONFIGURING SECURE CONNECTIONS

251

3. Create the self-signed certificate and add it to the NSS database:

certutil -S -x -d /etc/dirsrv/slapd-instance_name/ -z /tmp/noise.bin \

 -n "server-cert" -s "CN=$HOSTNAME" -t "CT,C,C" -m $RANDOM \

 --keyUsage digitalSignature,nonRepudiation,keyEncipherment,dataEncipherment

Red Hat Enterprise Linux automatically replaces the $HOSTNAME variable with the Fully
Qualified Domain Name (FQDN) and $RANDOM with a randomly-generated number. For
further details about the parameters used in the previous commands, see the certutil(1) man
page.

4. Optionally, verify that the generated certificate is self-signed:

certutil -L -d /etc/dirsrv/slapd-instance_name/ -n "server-cert" | egrep "Issuer|Subject"

 Issuer: "CN=server.example.com"

 Subject: "CN=server.example.com"

The output of this command must display the FQDN of the Directory Server host for both the
issuer and subject of the certificate.

9.3.6. Renewing a Certificate

If a certificate will expire in the near future, you must renew it in time to continue establishing secure
connections.

9.3.6.1. Renewing a Certificate Using the Command Line

To renew a certificate:

1. Create a new Certificate Signing Request (CSR) with the same options, such as key size, host
name, and subject. For details about creating a CSR, see Section 9.3.2.1, “Creating a Certificate
Signing Request Using the Command Line”

2. After you received the issued certificate from your CA, install it in the database using the same
nickname. See Section 9.3.3.1, “Installing a CA Certificate Using the Command Line” .

Directory Server will automatically use the newer issued certificate.

9.3.6.2. Renewing a Certificate Using the Console

The process for renewing is similar to generating a Certificate Signing Request (CSR). Follow the
procedure in Section 9.3.3.2, “Installing a CA Certificate Using the Console” , but click the Renew instead
of the Request button in the Manage Certificates task.

9.3.7. Removing a Certificate

If a certificate is no longer needed, for example, because it has been exposed, remove it from the
database.

9.3.7.1. Removing a Certificate Using the Command Line

To remove a certificate using the command line:

1. Remove the private key. See Section 9.3.8, “Removing a Private Key”.

Administration Guide

252

2. Optionally, display the certificates in the database:

certutil -d /etc/dirsrv/slapd-instance_name/ -L

Certificate Nickname Trust Attributes

 SSL,S/MIME,JAR/XPI

Example CA CT,,

server-cert u,u,u

3. Remove the certificate. For example, to remove the certificate with the server-cert nickname:

certutil -d /etc/dirsrv/slapd-instance_name/ -D -n "server-cert"

9.3.7.2. Removing a Certificate Using the Console

To remove a certificate using the Console:

1. Open the Directory Server Console.

2. On the Tasks tab, click Manage Certificates.

3. On the Server Certs tab, select the certificate and click the Delete button.

4. Click Yes to confirm.

9.3.8. Removing a Private Key

If a private key is no longer needed, for example, because you created a stronger key, remove it from the
database.

WARNING

If you remove a private key, certificates based on this key are no longer working.

9.3.8.1. Removing a Private Key Using the Command Line

To remove a private key:

1. Remove all certificates based on the key you want to delete. See Section 9.3.7, “Removing a
Certificate”.

2. Optionally, display the keys in the database:

certutil -d /etc/dirsrv/slapd-instance_name/ -K

certutil: Checking token "NSS Certificate DB" in slot "NSS User Private Key and Certificate

Services"

Enter Password or Pin for "NSS Certificate DB":

< 0> rsa 7a2fb6c269d83c4036eac7e4edb6aaf2ed08bc4a server-cert

< 1> rsa 662b826aa3dd4ca7fd7e6883558cf3866c42f4e2 example-cert

CHAPTER 9. CONFIGURING SECURE CONNECTIONS

253

3. Remove the private key. For example, to remove the private key with the example-cert

nickname:

certutil -d /etc/dirsrv/slapd-instance_name/ -F -n "example-cert"

9.3.8.2. Removing a Private Key Using the Console

Removing a private key using the Console is not supported. However, if you request a new certificate
using the Console according to Section 9.3.2.2, “Creating a Certificate Signing Request Using the
Console”, the Console automatically generates a new private key and uses it.

9.3.9. Changing the CA Trust Options

In certain situations you need to update the trust option of a Certificate Authority (CA). This section
describes this procedure.

9.3.9.1. Changing the CA Trust Options Using the Command Line

To change the trust options of a CA, pass the new options in the -t parameter to the certutil utility.

For example, to set that Directory Server trusts only client authentication certificates issued by the CA
named example-CA:

certutil -d /etc/dirsrv/slapd-instance_name/ -M -t "T,," -n "example-CA"

The -t trust_options parameter sets which certificates issued by the CA should be trusted. See
Table 9.1, “CA Trust Options” .

For further details about the parameters and trust options, see the certutil(1) man page.

9.3.9.2. Changing the CA Trust Options Using the Console

To change the trust options of a CA using the Console:

1. Open the Directory Server Console.

2. On the Tasks tab, click Manage Certificates.

3. Select the CA Certs tab.

4. Select the CA to edit, click the Edit Trust button, and set which certificates issued by the CA
should be trusted. You can select one or both of the options. See Table 9.1, “CA Trust Options” .

Administration Guide

254

9.3.10. Changing the Password of the NSS Database

In certain situations, administrators want to change the password of the Network Security Services
(NSS) database. This section describes this process.

IMPORTANT

If you use a password file to enable Directory Server to automatically open the Network
Security Services (NSS) database, you must update the file after you set the new
password. See Section 9.4.1.5, “Creating a Password File for Directory Server” .

9.3.10.1. Changing the Password of the NSS Database Using the Command Line

To change the password of the NSS database:

certutil -d /etc/dirsrv/slapd-instance_name -W

Enter Password or Pin for "NSS Certificate DB":

Enter a password which will be used to encrypt your keys.

The password should be at least 8 characters long,

and should contain at least one non-alphabetic character.

Enter new password:

Re-enter password:

Password changed successfully.

9.3.10.2. Changing the Password of the NSS Database Using the Console

To change the password of the NSS database using the Console:

1. Open the Directory Server Console.

2. On the Tasks tab, click Manage Certificates.

3. Click the Change Password button.

CHAPTER 9. CONFIGURING SECURE CONNECTIONS

255

4. Enter the current and the new password and click OK

9.3.11. Adding a Certificate Revocation List

If a Certificate Authority (CA) revokes a certificate, the CA adds the certificate to its Certificate
Revocation Lists (CRL). Directory Server can use this list to identify which certificates are no longer
trusted by the CA and to deny access.

9.3.11.1. Adding a Certificate Revocation List Using the Command Line

To add a CRL using certutil, pass the -4 URL_to_CRL_file parameter to the utility when you install the
CA certificate.

For details about installing a CA certificate, see Section 9.3.3.1, “Installing a CA Certificate Using the
Command Line”.

9.3.11.2. Adding a Certificate Revocation List Using the Console

To add a CRL using the Console:

1. Open the Directory Server Console.

2. On the Tasks tab, click Manage Certificates.

3. Select the Revoked Certs tab and click the Add button.

4. Enter the path to the file, select the list format, and click OK.

9.4. ENABLING TLS

Directory Server supports encrypted connections between clients and the server, as well as between

Administration Guide

256

Directory Server supports encrypted connections between clients and the server, as well as between
servers in a replication environment. For this, Directory Server supports:

The LDAPS protocol: TLS encryption is used directly after the connection has been established.

The STARTTLS command over the LDAP protocol: The connection is unencrypted until the
client sends the STARTTLS command.

IMPORTANT

For security reasons, Red Hat recommends enabling TLS encryption.

You can use TLS with simple authentication using a bind Distinguished Name (DN) and password, or
using certificate-based authentication.

Directory Server's cryptographic services are provided by Mozilla Network Security Services (NSS), a
library of TLS and base cryptographic functions. NSS includes a software-based cryptographic token
which is Federal Information Processing Standard (FIPS) 140-2 certified.

9.4.1. Enabling TLS in Directory Server

This section describes how to enable TLS in Directory Server.

9.4.1.1. Enabling TLS in Directory Server Using the Command Line

To enable TLS using the command line:

1. Verify if the NSS database for Directory Server already exists:

ls -1 /etc/dirsrv/slapd-instance_name/*.db

Create the databases if they do not exist. See Section 9.3.1.1, “Creating the NSS Database Using
the Command Line”.

2. Request and install the certificate:

For a certificate issued by a Certificate Authority (CA):

1. Create a Certificate Signing Request (CSR). See Section 9.3.2.1, “Creating a Certificate
Signing Request Using the Command Line”

2. Import the CA certificate. See Section 9.3.3.1, “Installing a CA Certificate Using the
Command Line”.

3. Import the server certificate issued by the CA. See Section 9.3.4.1, “Installing a Server
Certificate Using the Command Line”.

For a self-signed certificate, see Section 9.3.5, “Generating and Installing a Self-signed
Certificate”.

3. Enable TLS and set the LDAPS port:

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x

dn: cn=config

changetype: modify

CHAPTER 9. CONFIGURING SECURE CONNECTIONS

257

replace: nsslapd-securePort

nsslapd-securePort: 636

-

replace: nsslapd-security

nsslapd-security: on

4. Display the nickname of the server certificate in the NSS database:

certutil -L -d /etc/dirsrv/slapd-instance_name/

Certificate Nickname Trust Attributes

 SSL,S/MIME,JAR/XPI

Example CA CT,,

server-cert u,u,u

You need the nickname in the next step.

5. To enable the RSA cipher family, setting the NSS database security device, and the server
certificate nickname, add the following entry to the directory:

ldapadd -D "cn=Directory Manager" -W -p 389 -h server.example.com -x

dn: cn=RSA,cn=encryption,cn=config

cn: RSA

objectClass: top

objectClass: nsEncryptionModule

nsSSLToken: internal (software)

nsSSLPersonalitySSL: server-cert

nsSSLActivation: on

NOTE

By default, the name of the security device in the NSS database is internal

(software).

If the previous command fails, because the cn=RSA,cn=encryption,cn=config entry already
exists, update the corresponding attributes:

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x

dn: cn=RSA,cn=encryption,cn=config

changetype: modify

replace: nsSSLToken

nsSSLToken: internal (software)

-

replace: nsSSLPersonalitySSL

nsSSLPersonalitySSL: server-cert

-

replace: nsSSLActivation

nsSSLActivation: on

6. Optionally, update the list of ciphers Directory Server supports. For details, see Section 9.4.1.3.1,
“Displaying and Setting the Ciphers Used by Directory Server Using the Command Line”.

7. Optionally, enable certificate-based authentication. For details, see Section 9.8, “Using

Administration Guide

258

7. Optionally, enable certificate-based authentication. For details, see Section 9.8, “Using
Certificate-based Client Authentication”.

8. Optionally, create a password file to enable Directory Server to start without prompting for the
password of the NSS database. For details, see Section 9.4.1.5, “Creating a Password File for
Directory Server”.

9. Restart the Directory Server instance:

systemctl restart dirsrv@instance_name

If you set a password on the NSS database and did not create a password file, Directory Server
prompts for the password of the NSS database. For details, see Section 9.4.1.4, “Starting
Directory Server Without a Password File”.

10. Optionally, enable the Directory Server Console to use TLS when connecting to the server. See
Section 9.4.2.1, “Enabling TLS for Connections from the Console to Directory Server Using the
Command Line”.

11. Optionally, enable TLS for the Red Hat Identity Management Console to use TLS. See
Section 9.4.3, “Enabling TLS in the Administration Server” .

9.4.1.2. Enabling TLS in Directory Server Using the Console

To enable TLS in Directory Server using the Console:

1. Create a CSR. See Section 9.3.2.2, “Creating a Certificate Signing Request Using the Console” .

2. Import the Certificate Authority (CA) certificate. See Section 9.3.3.2, “Installing a CA Certificate
Using the Console”.

3. Import the server certificate issued by the CA. See Section 9.3.4.2, “Installing a Certificate Using
the Console”.

4. Open the Directory Server Console and select the host name on the Configuration tab.

5. On the Settings tab in the right pane, enter the LDAPS port into the Encrypted port field and
click the Save button.

The default port for LDAPS is 636.

NOTE

The LDAPS port must be different to the one set for unencrypted connections in
the Port field.

CHAPTER 9. CONFIGURING SECURE CONNECTIONS

259

6. On the Encryption tab in the right pane:

a. Select Enable SSL for this server.

b. Enable Use this cipher family: RSA, select the security device and certificate from the list.

c. Optionally, click the Settings button to update the list of ciphers Directory Server supports.
For details, see Section 9.4.1.3.2, “Displaying and Setting the Ciphers Used by
Directory Server Using the Console”.

d. Optionally, enable users to authenticate using certificates. For details, see Section 9.8,
“Using Certificate-based Client Authentication”.

IMPORTANT

If TLS is only enabled in Directory Server and not in the Directory Server
Console, do not select Require client authentication.

e. Select the Check host name against name in certificate for outbound SSL

connections option to verify that the host name matches the cn attribute in the subject
name of the certificate the client presents to the server for authentication.

IMPORTANT

Red Hat recommends enabling this option in a replication environment to
protect outgoing TLS connections against a man-in-the-middle attack
(MITM).

f. Make sure that the Use SSL in Console option is not selected.

Administration Guide

260

WARNING

Do not enable the Use SSL in Console option before you finished this
procedure, because it takes effect immediately after you save the
setting. As a consequence, the Console fails to connect to the server.

If you accidentally enabled this option and the Console fails to connect
to the server, disable the option using the command line:

ldapmodify -D "cn=Directory Manager" -W -p 389 -h

server.example.com -x

dn: cn=slapd-instance_name,cn=Red Hat Directory Server,

 cn=Server

Group,cn=server.example.com,ou=example.com,o=NetscapeRoot

changetype: modify

replace: nsServerSecurity

nsServerSecurity: off

g. Click Save.

7. Optionally, create a password file to enable Directory Server to start without prompting for the
password of the NSS database. For details, see Section 9.4.1.5, “Creating a Password File for
Directory Server”.

8. Restart the Directory Server instance:

systemctl restart dirsrv@instance_name

If you set a password on the NSS database and did not create a password file, Directory Server
prompts for the password of the NSS database. For details, see Section 9.4.1.4, “Starting
Directory Server Without a Password File”.

9. Optionally, enable the Directory Server Console to use TLS when connecting to the server. See
Section 9.4.2.2, “Enabling TLS for Connections from the Console to Directory Server Using the
Console”.

10. Optionally, enable that the Red Hat Identity Management Console uses TLS. See
Section 9.4.3, “Enabling TLS in the Administration Server” .

9.4.1.3. Setting Encryption Ciphers

Directory Server supports different ciphers, and you can enable or disable them. A cipher is the
algorithm used in encryption. When a client initiates a TLS connection with a server, the client tells the
server what ciphers it prefers to encrypt information. If the server supports at least one of these ciphers,
the encrypted connection can be established using this algorithm.

If you enabled encryption according to Section 9.4, “Enabling TLS” , you can display and update the
ciphers Directory Server uses.

9.4.1.3.1. Displaying and Setting the Ciphers Used by Directory Server Using the Command Line

CHAPTER 9. CONFIGURING SECURE CONNECTIONS

261

Displaying all Available Ciphers
To display the list of all available ciphers supported in Directory Server:

ldapsearch -xLLL -H ldap://server.example.com:389 -D "cn=Directory Manager" -W \

 -b 'cn=encryption,cn=config' -s base nsSSLSupportedCiphers -o ldif-wrap=no

dn: cn=encryption,cn=config

nsSSLSupportedCiphers: TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256::AES-

GCM::AEAD::128

...

nsSSLSupportedCiphers: SSL_CK_RC2_128_CBC_EXPORT40_WITH_MD5::RC2::MD5::128

This is only a list of available ciphers you can enable or disable. The list does not display the ciphers
Directory Server currently uses.

Displaying the Ciphers Directory Server Uses
The ciphers Directory Server currently uses are stored in the nsSSLEnabledCiphers read-only
attribute. To display them:

ldapsearch -xLLL -H ldap://server.example.com:389 -D "cn=Directory Manager" -W \

 -b 'cn=encryption,cn=config' -s base nsSSLEnabledCiphers -o ldif-wrap=no

dn: cn=encryption,cn=config

nsSSLEnabledCiphers: TLS_RSA_WITH_AES_256_CBC_SHA::AES::SHA1::256

nsSSLEnabledCiphers: TLS_RSA_WITH_AES_128_CBC_SHA::AES::SHA1::128

...

Additionally, you can display the ciphers which are configured to be enabled and disabled:

ldapsearch -xLLL -H ldap://server.example.com:389 -D "cn=Directory Manager" -W \

 -b 'cn=encryption,cn=config' -s base nsSSL3Ciphers -o ldif-wrap=no

dn: cn=encryption,cn=config

nsSSL3Ciphers: -all,+tls_rsa_aes_128_sha,+tls_rsa_aes_256_sha,...

IMPORTANT

Directory Server uses the settings from the nsSSL3Ciphers attribute to generate the
list of ciphers which are actually used. However, if you enabled weak ciphers in
nsSSL3Ciphers, but set the allowWeakCiphers parameter to off, which is the default,
Directory Server only uses the strong ciphers and displays them in the
nsSSLSupportedCiphers read-only attribute.

Updating the List of Enabled Ciphers
To update the list of enabled ciphers:

1. Display the list of currently enabled ciphers. See the section called “Displaying the Ciphers
Directory Server Uses”.

2. To enable only specific ciphers, update the nsSSL3Ciphers attribute. For example, to enable
only the TLS_RSA_WITH_AES_128_GCM_SHA256 cipher:

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x

Administration Guide

262

dn: cn=encryption,cn=config

changetype: modify

add: nsSSL3Ciphers

nsSSL3Ciphers: -all,+TLS_RSA_WITH_AES_128_GCM_SHA256

3. Restart the Directory Server instance:

systemctl restart dirsrv@instance_name

4. Optionally, display the list of enabled ciphers to verify the result. See the section called
“Displaying the Ciphers Directory Server Uses”.

9.4.1.3.2. Displaying and Setting the Ciphers Used by Directory Server Using the Console

To select and optionally update the ciphers using the Console:

1. Open the Directory Server Console.

2. On the Configuration tab, select the server name.

3. Select the Encryption tab in the right pane and click the Settings button.

4. Optionally, update the list of ciphers. For example:

CHAPTER 9. CONFIGURING SECURE CONNECTIONS

263

5. Click OK.

6. Click Save.

7. If you updated the list of ciphers, restart the Directory Server instance:

systemctl restart dirsrv@instance_name

9.4.1.4. Starting Directory Server Without a Password File

If you start Directory Server with encryption enabled and a password set on the NSS database:

If the ns-slapd Directory Server process is started by the systemctl command, systemd

prompts for the password and automatically passes the input to the systemd-tty-ask-

password-agent utility. For example:

systemctl start dirsrv

Enter PIN for Internal (Software) Token:

In rare cases, when the ns-slapd Directory Server process is not started by the systemctl utility
and is detached from the terminal, a message is send to all terminals using the wall command.
For example:

Broadcast message from root@server (Fri 2017-01-01 06:00:00 CET):

Password entry required for 'Enter PIN for Internal (Software) Token:' (PID 1234).

Please enter password with the systemd-tty-ask-password-agent tool!

To enter the password, run:

systemd-tty-ask-password-agent

Enter PIN for Internal (Software) Token:

9.4.1.5. Creating a Password File for Directory Server

If encryption is enabled and a password set on the NSS database, Directory Server prompts for this
password when the service starts. See Section 9.4.1.4, “Starting Directory Server Without a Password
File”.

To bypass this prompt, you can store the NSS database password in the
/etc/dirsrv/slapd-instance_name/pin.txt file. This enables Directory Server to start automatically
without prompting for this password.

WARNING

The password is stored in clear text. Do not use a password file if the server is
running in an unsecured environment.

Administration Guide

264

To create the password file:

1. Create the /etc/dirsrv/slapd-instance_name/pin.txt file with the following content:

If you use the NSS software cryptography module, which is the default:

Internal (Software) Token:password

If you use a Hardware Security Module (HSM):

name_of_the_token:password

2. Set the permissions:

chown dirsrv:dirsrv /etc/dirsrv/slapd-instance_name/pin.txt

chmod 400 /etc/dirsrv/slapd-instance_name/pin.txt

9.4.1.6. Managing How Directory Server Behaves If the Certificate Has Been Expired

By default, if encryption is enabled and the certificate has expired, Directory Server logs a warning and
the service starts. To change this behavior, set the nsslapd-validate-cert attribute in the cn=config

entry. You can set it to the following values:

warn: The Directory Server instance starts and log a warning about the expired certificate into
the /var/log/dirsrv/slapd-instance_name/error log file. This is the default setting.

on: Directory Server validates the certificate and the instance fails to start if the certificate has
expired.

off: Directory Server does not validate the certificate expiration date. The instance starts and no
warning will be logged.

Example 9.3. Preventing Directory Server to Start If the Certificate Has Been Expired

To prevent Directory Server from starting if the certificate has expired:

1. Set the nsslapd-validate-cert attribute to on:

ldapmodify -D "cn=Directory Manager" -W -p 636 -h server.example.com -x

dn: cn=config

changetype: modify

replace: nsslapd-validate-cert

nsslapd-validate-cert: on

2. Restart the Directory Server instance:

systemctl restart dirsrv@instance_name

9.4.2. Enabling TLS for Connections from the Console to Directory Server

This section describes how you configure the Directory Server Console to use TLS to access the
directory.

CHAPTER 9. CONFIGURING SECURE CONNECTIONS

265

IMPORTANT

Before you can enable TLS in the Console, enable encryption in Directory Server
according to Section 9.4.1, “Enabling TLS in Directory Server” and restart the instance.

To configure an encrypted connection to the Red Hat Identity Management Console, see
Section 9.4.3, “Enabling TLS in the Administration Server” .

9.4.2.1. Enabling TLS for Connections from the Console to Directory Server Using the
Command Line

To enable TLS for connections from the Console to Directory Server:

ldapmodify -D "cn=Directory Manager" -W -p 636 -h server.example.com -x

dn: cn=slapd-instance_name,cn=Red Hat Directory Server,

 cn=Server Group,cn=server.example.com,ou=example.com,o=NetscapeRoot

changetype: modify

replace: nsServerSecurity

nsServerSecurity: on

When you start the Console the next time, it automatically uses TLS for connections to Directory Server.

9.4.2.2. Enabling TLS for Connections from the Console to Directory Server Using the
Console

To enable TLS for connections from the Console to Directory Server:

1. Open the Directory Server Console and select the host name on the Configuration tab.

2. On the Encryption tab in the right pane:

a. Select Use SSL in the Console.

b. Click Save

3. Restart the Directory Server Console.

9.4.3. Enabling TLS in the Administration Server

This section describes how to:

Enable the HTTPS protocol when connecting to the Red Hat Identity Management Console
application

Set that the Administration Server stores its data in the o=NetscapeRoot entry using an
encrypted connection to Directory Server

Enable the Red Hat Identity Management Console application to use the LDAPS protocol to
manage users and groups stored in the directory

IMPORTANT

Before you can enable these features, enable encryption in Directory Server according to
Section 9.4.1, “Enabling TLS in Directory Server” and restart the instance.

Administration Guide

266

To enable TLS in the Administration Server:

1. Import the required certificates. Select one of the following ways:

To use the same private key and certificate for the Administration Server as for
Directory Server, see Section E.2.7.1.1, “Using the Directory Server Private Key and
Certificate for the Admin Server”.

To use a separate key and certificate for Administration Server, see:

1. Section 9.3.2, “Creating a Certificate Signing Request”

2. Section 9.3.3, “Installing a CA Certificate”

3. Section 9.3.4, “Installing a Certificate”

IMPORTANT

Perform the steps in the Manage Certificates menu of the
Administration Server Console instead of the Directory Server Console.

The Administration Server and Directory Server must share at least one CA certificate to trust
the other's non-shared certificates.

2. Open the Administration Server Console.

3. On the Configuration tab, select the Administration Server entry in the left pane.

4. Select the Encryption tab in the right pane to enable encryption for the Red Hat Identity
Management Console:

a. Select Enable SSL for this server.

b. Enable Use this cipher family: RSA, select the security device and certificate from the list.

c. Optionally, click the Settings button to update the list of ciphers the Administration Server
supports.

d. Optionally, enable client authentication using certificates. For details, see Section 9.8,
“Using Certificate-based Client Authentication”.

e. Click Save.

5. Select the Configuration DS tab in the right pane to configure that the Administration Server
stores its data in the o=NetscapeRoot entry using the LDAP protocol:

CHAPTER 9. CONFIGURING SECURE CONNECTIONS

267

a. Set the LDAPS port of the Directory Server instance that stores the o=NetscapeRoot

entry. By default, LDAPS uses the 636 port.

b. Select Secure Connection.

c. Click Save.

6. Select the User DS tab in the right pane to configure that the Red Hat Identity Management
Console uses an encrypted connection to manage users and groups:

a. Select Set User Directory and fill the fields. For encrypted connections, the Secure

Connections option must be selected and the port port specified in the LDAP Host and

Port field must support LDAPS.

b. Click Save.

7. Optionally, set the minimum and maximum TLS version for connections from the Console to the
server in the ~/.redhat-idm-console/Console.version.Login.preferences file. For example:

sslVersionMin: TLS1.1

sslVersionMax: TLS1.2

8. Optionally, create a password file to enable the Administration Server to start without

Administration Guide

268

8. Optionally, create a password file to enable the Administration Server to start without
prompting for the password of the Network Security Services (NSS) database. For details, see
Section E.2.7.3, “Creating a Password File for the Administration Server” .

9. Restart the Administration Server:

systemctl restart dirsrv-admin

If you did not create a password file, the system prompts for the password of the NSS database.

10. To configure that the Console trusts the certificate, see Section 9.4.3.1, “Managing Certificates
Used by the Directory Server Console”.

After you completed this procedure, you can connect to the Red Hat Identity Management Console
using the HTTPS protocol. For example:

redhat-idm-console -a https://server.example.com:9830

9.4.3.1. Managing Certificates Used by the Directory Server Console

The certificates and keys used by the server are stored in NSS security databases in the
/etc/dirsrv/slapd-instance_name/ directory. The Directory Server Console itself also uses certificates
and keys for TLS connections; these certificates are stored in a separate database in the user's home
directory. If the Directory Server Console is used to connect to multiple instances of Directory Server
over TLS, then it is necessary to trust every CA which issued the certificates for every Directory Server
instance.

When TLS is enabled for the Directory Server Console, the Directory Server Console must have a copy
of the issuing CA certificate for it to trust the server's client certificates. Otherwise, the Console will
return errors about not trusting the CA which issued the certificate.

NOTE

Only the CA certificates for the CA which issued the server's certificate is required. The
Directory Server Console does not require its own client certificate.

Importing a CA Certificate When Using the Console on Linux
For example, to add the CA certificate stored in the /root/ca.crt file to the database:

certutil -d ~/.redhat-idm-console/ -A -n "Example CA" -t CT,, -a -i /root/ca.crt

Importing a CA Certificate When Using the Console on Windows
For example, to add the CA certificate stored in the C:\ca.crt file to the database:

> cd C:\Program Files\Red Hat Identity Management Console\

> certutil.exe -d "C:\Documents and Settings\user_name\.389-console\" -A -n "Example CA" -t CT,, -a

-i C:\ca.crt

9.4.4. Adding the CA Certificate Used By Directory Server to the Trust Store of
Red Hat Enterprise Linux

When you enabled TLS encryption in Directory Server, you configured the instance to use a certificate
issued by a CA. If a client now establishes a connection to the server using the LDAPS protocol or the

CHAPTER 9. CONFIGURING SECURE CONNECTIONS

269

STARTTLS command over LDAP, Directory Server uses this certificate to encrypt the connection.
Client utilities use the CA certificate to verify if the server's certificate is valid. By default, these utilities
cancel the connection if they do not trust the certificate of the server.

Example 9.4. Possible Connection Error If a Client Utility Does Not Use the CA Certificate

If client utilities do not use the CA certificate, the utilities cannot validate the server's certificate
when using TLS encryption. As a consequence, the connection to the server fails. For example:

ldapsearch -H ldaps://server.example.com:636 -D "cn=Directory Manager" -W -b

"dc=example,dc=com" -x

Enter LDAP Password:

ldap_sasl_bind(SIMPLE): Can't contact LDAP server (-1)

To enable client utilities on Red Hat Enterprise Linux to verify the certificate that Directory Server uses,
add the CA certificate to the trust store of the operating system:

1. If you do not have a local copy of the CA certificate used by Directory Server:

a. List the certificates in the server's NSS database:

certutil -d /etc/dirsrv/slapd-instance_name/ -L

Certificate Nickname Trust Attributes

 SSL,S/MIME,JAR/XPI

Example CA C,,

server-cert u,u,u

b. Use the nickname of the CA certificate in the NSS database to export the CA certificate:

certutil -d /etc/dirsrv/slapd-instance_name/ -L -n "Example CA" -a > /tmp/ds-ca.crt

2. Copy the CA certificate to the /etc/pki/ca-trust/source/anchors/ directory. For example:

cp /tmp/ds-ca.crt /etc/pki/ca-trust/source/anchors/

3. Rebuild the CA trust database:

update-ca-trust

9.5. DISPLAYING THE ENCRYPTION PROTOCOLS ENABLED IN
DIRECTORY SERVER

To display the enabled encryption protocols in Directory Server:

ldapsearch -D "cn=Directory Manager" -W -p 389 -h server.example.com -x \

 -s base -b 'cn=encryption,cn=config' sslVersionMin sslVersionMax

Administration Guide

270

dn: cn=encryption,cn=config

sslVersionMin: TLS1.0

sslVersionMax: TLS1.2

The sslVersionMin and sslVersionMax parameter control which encryption protocol versions
Directory Server uses. By default, only TLS 1.0 and later versions of the protocol are enabled.

IMPORTANT

For security reasons, none of the parameters should be set to the insecure SSL2 or SSL3

protocol versions.

9.6. SETTING THE ENCRYPTION PROTOCOL VERSIONS

Update the sslVersionMin and sslVersionMax parameters to set which encryption protocols
Directory Server uses.

IMPORTANT

To always use the strongest supported encryption protocol version in the sslVersionMax

parameter, do not set this parameter. See Section 9.6.1, “Automatically Using the
Strongest Protocol in the sslVersionMax Parameter”.

For example, to enable only TLS 1.1 and 1.2:

1. Update the sslVersionMin and sslVersionMax parameters:

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x

dn: cn=encryption,cn=config

changetype: modify

replace: sslVersionMin

sslVersionMin: TLS1.1

-

replace: sslVersionMax

sslVersionMax: TLS1.2

2. Restart the Directory Server instance:

systemctl restart dirsrv@instance_name

9.6.1. Automatically Using the Strongest Protocol in the sslVersionMax Parameter

If the sslVersionMax parameter is not set, which is the default, Directory Server uses the strongest
supported encryption protocol version for this parameter. This enables you to always have the strongest
protocol version enabled after an update.

Identifying if sslVersionMax is Not Set
Even if sslVersionMax is not set, the parameter is returned in a search. To identify if the parameter is
not set:

grep sslVersionMax /etc/dirsrv/slapd-instance_name/dse.ldif

CHAPTER 9. CONFIGURING SECURE CONNECTIONS

271

If the command displays no output, the parameter is not set and uses the default, which is the strongest
supported encryption protocol.

Removing the sslVersionMax Parameter
Remove the sslVersionMax parameter to use its default setting:

1. Remove the sslVersionMax parameter:

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x

dn: cn=encryption,cn=config

changetype: modify

delete: sslVersionMax

2. Restart the Directory Server instance:

systemctl restart dirsrv@instance_name

9.7. USING HARDWARE SECURITY MODULES

A security module serves as a medium between the Directory Server and the TLS layer. The module
stores the keys and certificates used for encryption and decryption. The standard which defines these
modules is Public Key Cryptography Standard (PKCS) #11, so these modules are PKCS#11 modules.

By default, Directory Server uses built-in security databases, key3.db and cert8.db, to store the keys
and certificates used by the servers.

It is also possible to use external security devices to store Directory Server certificates and keys. For
Directory Server to use an external PKCS#11 module, the module's drivers must be installed in
Directory Server.

For more information, consult the documentation for your hardware security module.

9.8. USING CERTIFICATE-BASED CLIENT AUTHENTICATION

Directory Server supports certificate-based authentication of LDAP clients and for server-to-server
connection, such as replication.

Depending on the configuration, the client can or must authenticate using a certificate, if you enabled
certificate-based authentication. After verifying the certificate, the server searches for the user in the
directory, based on the attributes in the subject field of the certiticate. If the search return exactly one
user entry, Directory Server uses this user for all further operations. Optionally, you can configure that
the certifiate used for authentication must match the Distinguished Encoding Rules (DER)-formatted
certificate stored in the userCertificate attribute of the user.

Benefits of using certificate-based authentication:

Improved efficiency. When using applications that prompt once for the certificate database
password and then use that certificate for all subsequent bind or authentication operations, it is
more efficient than continuously providing a bind DN and password.

Improved security. The use of certificate-based authentication is more secure than non-
certificate bind operations because certificate-based authentication uses public-key
cryptography. Bind credentials cannot be intercepted across the network. If the certificate or

Administration Guide

272

device is lost, it is useless without the PIN, so it is immune from third-party interference like
phishing attacks.

9.8.1. Setting up Certificate-based Authentication

To enable certificate-based authentication:

1. Enable encrypted connections. For details, see Section 9.4, “Enabling TLS” .

2. Install the CA certificate and set the trust options for client and server connections. See
Section 9.3.3, “Installing a CA Certificate” .

3. Optionally, verify that the CT,, trust options for client and server are set for the CA certificate:

certutil -d /etc/dirsrv/slapd-instance_name/ -L

Certificate Nickname Trust Attributes

 SSL,S/MIME,JAR/XPI

Example CA CT,,

4. Create the /etc/dirsrv/slapd-instance_name/certmap.conf file to map information from the
certificate to Directory Server users. For example:

certmap default default

default:DNComps dc

default:FilterComps mail,cn

default:VerifyCert on

certmap example o=Example Inc.,c=US

example:DNComps

This configures that for authenticating users who use a certificate that has the o=Example

Inc.,c=US issuer Distinguished Name (DN) set, Directory Server does not generate a base DN
from the subject of the certificate, because the DNComps parameter is set empty for this
issuer. Additionally, the settings for the FilterComps and VerifyCert are inherited from the
default entry.

Certificates that have a different issuer DN than the specified one will use the settings from the
default entry and generate the base DN based on the cn attributes in the subject of the
certificate. This enables Directory Server to start the search under a specific DN, without
searching the whole directory.

For all certificates, Directory Server generates the search filter using the mail and the cn

attribute from the certificate's subject. However, if the mail does not exist in the subject,
Directory Server will automatically use the value of the certificate's e attribute in the subject.

For further details and descriptions of the available parameters, see the description of the
certmap.conf file in the Red Hat Directory Server Configuration, Command, and File Reference .

5. Enable client authentication. For example, to configure that client authentication is optional:

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x -Z

dn: cn=encryption,cn=config

CHAPTER 9. CONFIGURING SECURE CONNECTIONS

273

https://access.redhat.com/documentation/en-us/red_hat_directory_server/10/html/configuration_command_and_file_reference/configuration_file_reference#certmap_conf

changetype: modify

replace: nsSSLClientAuth

nsSSLClientAuth: allowed

Alternatively, set the nsSSLClientAuth parameter to required to configure that clients must
use a certificate to authenticate.

IMPORTANT

The Directory Server Console does not support client authentication. If you set
nsSSLClientAuth to required, you cannot use the Console to manage the
instance.

6. If you enabled that the authenticating certificate must match the one stored in the
userCertificate attribute of the user by setting alias_name:VerifyCert on in the
/etc/dirsrv/slapd-instance_name/certmap.conf file, add the certificates to the user entries.
See Section 9.8.2, “Adding a Certificate to a User” .

9.8.2. Adding a Certificate to a User

When you set up certificate-based authentication, you can set that the certificate used to authenticate
must match the one stored in the userCertificate binary attribute of the user. If you enabled this feature
by setting alias_name:VerifyCert on in the /etc/dirsrv/slapd-instance_name/certmap.conf file, you
must add the certificate of the affected users to their directory entry.

IMPORTANT

You must store the certificate in the Distinguished Encoding Rules (DER) format in the
userCertificate attribute.

To store a certificate in the userCertificate attribute of a user:

1. If the certificate is not DER-formatted, convert it. For example:

openssl x509 -in /root/certificate.pem -out /root/certificate.der -outform DER

2. Add the certificate to the user's userCertificate attribute. For example:

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x

dn: uid=user_name,ou=People,dc=example,dc=com

changetype: modify

add: userCertificate

userCertificate: < /root/example.der

For further details about using binary attributes, see Section 3.1.8, “Using Binary Attributes” .

9.8.3. Forcing the EXTERNAL SASL Mechanism for Bind Requests

At the beginning of a TLS session, the client sends its certificate to the server. Then, it sends its bind
request. Most clients issue the bind request using the EXTERNAL SASL mechanism, which signals
Directory Server that it needs to use the identity in the certificate for the bind, instead of the credentials

Administration Guide

274

in the bind request.

However, if a client uses simple authentication or anonymous credentials, this information is missing. In
this case, the TLS session fails with invalid credentials, even if the certificate and the client identity in the
certificate was valid.

To configure that Directory Server forces clients to use the EXTERNAL SASL mechanism and to ignore
any other bind method in the request:

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x

dn: cn=config

changetype: modify

replace: nsslapd-force-sasl-external

nsslapd-force-sasl-external: on

9.8.4. Authenticating Using a Certificate

To use the OpenLDAP client tools, to authenticate to a Directory Server instance that supports
authentication using a certificate:

1. Set the following environment variables to the corresponding paths for the CA certificate, the
user key, and the user certificate. For example:

LDAPTLS_CACERT=/home/user_name/CA.crt

LDAPTLS_KEY=/home/user_name/user.key

LDAPTLS_CERT=/home/user_name/user.crt

Alternatively, set the TLS_CACERT, TLS_KEY, and TLS_CERT parameters in the ~/.ldaprc

file. For details, see the TLS OPTIONS section in the ldap.conf(5) man page.

2. Connect to the server. For example:

ldapwhoami -H ldaps://server.example.com:636

If you use a different client, see the client application's documentation for how to connect using
certificate-based authentication.

9.9. SETTING UP SASL IDENTITY MAPPING

Red Hat Directory Server supports LDAP client authentication through the Simple Authentication and
Security Layer (SASL), an alternative to TLS and a native way for some applications to share information
securely.

Simple Authentication and Security Layer (SASL) is an abstraction layer between protocols like LDAP
and authentication methods like GSS-API which allows any protocol which can interact with SASL to
utilize any authentication mechanism which can work with SASL. Simply put, SASL is an intermediary
that makes authenticating to applications using different mechanisms easier. SASL can also be used to
establish an encrypted session between a client and server.

The SASL framework allows different mechanisms to be used to authenticate a user to the server,
depending on what mechanism is enabled in both client and server applications. SASL also creates a
layer for encrypted (secure) sessions. Using GSS-API, Directory Server utilizes Kerberos tickets to
authenticate sessions and encrypt data.

CHAPTER 9. CONFIGURING SECURE CONNECTIONS

275

9.9.1. About SASL Identity Mapping

When processing a SASL bind request, the server matches, or maps, the SASL authentication ID used to
authenticate to the Directory Server with an LDAP entry stored within the server. When using Kerberos,
the SASL user ID usually has the format userid@REALM, such as scarter@EXAMPLE.COM. This ID must
be converted into the DN of the user's Directory Server entry, such as
uid=scarter,ou=people,dc=example,dc=com.

If the authentication ID clearly corresponds to the LDAP entry for a person, it is possible to configure
the Directory Server to map the authentication ID automatically to the entry DN. Directory Server has
some pre-configured default mappings which handle most common configurations, and customized
maps can be created. By default, during a bind attempt, only the first matching mapping rule is applied if
SASL mapping fallback is not enabled. For further details about SASL mapping fallback, see
Section 9.9.4, “Enabling SASL Mapping Fallback” .

Be sure to configure SASL maps so that only one mapping rule matches the authentication string.

SASL mappings are configured by entries under a container entry:

dn: cn=sasl,cn=config

objectClass: top

objectClass: nsContainer

cn: sasl

SASL identity mapping entries are children of this entry:

dn: cn=mapping,cn=sasl,cn=config

objectClass: top

objectClass: nsContainer

cn: mapping

Mapping entries are defined by the following attributes:

nsSaslMapRegexString: The regular expression which is used to map the elements of the
supplied authid.

nsSaslMapFilterTemplate: A template which applies the elements of the
nsSaslMapRegexString to create the DN.

nsSaslMapBaseDNTemplate: Provides the search base or a specific entry DN to match against
the constructed DN.

Optional: nsSaslMapPriority: Sets the priority of this SASL mapping. The priority value is used,
if nsslapd-sasl-mapping-fallback is enabled in cn=config. For details, see Section 9.9.4.1,
“Setting SASL Mapping Priorities”.

For further details, see the corresponding section in the Red Hat Directory Server Configuration,

Command, and File Reference.

For example:

dn: cn=mymap,cn=mapping,cn=sasl,cn=config

objectclass:top

objectclass:nsSaslMapping

cn: mymap

Administration Guide

276

https://access.redhat.com/documentation/en-us/red_hat_directory_server/10/html/configuration_command_and_file_reference/core_server_configuration_reference#cn-sasl

nsSaslMapRegexString: \(.*\)@\(.*\)\.\(.*\)

nsSaslMapFilterTemplate: (objectclass=inetOrgPerson)

nsSaslMapBaseDNTemplate: uid=\1,ou=people,dc=\2,dc=\3

The nsSaslMapRegexString attribute sets variables of the form \1, \2, \3 for bind IDs which are filled
into the template attributes during a search. This example sets up a SASL identity mapping for any user
in the ou=People,dc=example,dc=com subtree who belongs to the inetOrgPerson object class.

When a Directory Server receives a SASL bind request with mconnors@EXAMPLE.COM as the user ID
(authid), the regular expression fills in the base DN template with
uid=mconnors,ou=people,dc=EXAMPLE,dc=COM as the user ID, and authentication proceeds from
there.

NOTE

The dc values are not case sensitive, so dc=EXAMPLE and dc=example are equivalent.

The Directory Server can also use a more inclusive mapping scheme, such as the following:

dn: cn=example map,cn=mapping,cn=sasl,cn=config

objectclass: top

objectclass: nsSaslMapping

cn: example map

nsSaslMapRegexString: \(.*\)

nsSaslMapBaseDNTemplate: ou=People,dc=example,dc=com

nsSaslMapFilterTemplate: (cn=\1)

This matches any user ID and map it an entry under the ou=People,dc=example,dc=com subtree which
meets the filter cn=userId.

Mappings can be confined to a single realm by specifying the realm in the nsSaslMapRegexString

attribute. For example:

dn: cn=example map,cn=mapping,cn=sasl,cn=config

objectclass: top

objectclass: nsSaslMapping

cn: example map

nsSaslMapRegexString: \(.*\)@US.EXAMPLE.COM

nsSaslMapBaseDNTemplate: ou=People,dc=example,dc=com

nsSaslMapFilterTemplate: (cn=\1)

This mapping is identical to the previous mapping, except that it only applies to users authenticating
from the US.EXAMPLE.COM realm. (Realms are described in Section 9.10.2.1, “About Principals and
Realms”.)

When a server connects to another server, such as during replication or with chaining, the default
mappings for the will not properly map the identities. This is because the principal (SASL identity) for
one server does not match the principal on the server where authentication is taking place, so it does not
match the mapping entries.

To allow server to server authentication using SASL, create a mapping for the specific server principal to
a specific user entry. For example, this mapping matches the ldap1.example.com server to the
cn=replication manager,cn=config entry. The mapping entry itself is created on the second server,
such as ldap2.example.com.

CHAPTER 9. CONFIGURING SECURE CONNECTIONS

277

dn: cn=z,cn=mapping,cn=sasl,cn=config

objectclass: top

objectclass: nsSaslMapping

cn: z

nsSaslMapRegexString: ldap/ldap1.example.com@EXAMPLE.COM

nsSaslMapBaseDNTemplate: cn=replication manager,cn=config

nsSaslMapFilterTemplate: (objectclass=*)

Sometimes, the realm name is not included in the principal name in SASL GSS-API configuration. A
second mapping can be created which is identical to the first, only without specifying the realm in the
principal name. For example:

dn: cn=y,cn=mapping,cn=sasl,cn=config

objectclass: top

objectclass: nsSaslMapping

cn: y

nsSaslMapRegexString: ldap/ldap1.example.com

nsSaslMapBaseDNTemplate: cn=replication manager,cn=config

nsSaslMapFilterTemplate: (objectclass=*)

Because the realm is not specified, the second mapping is more general (meaning, it has the potential to
match more entries than the first. The best practice is to have more specific mappings processed first
and gradually progress through more general mappings.

If a priority is not set for a SASL mapping using the nsSaslMapPriority parameter, there is no way to
specify the order that mappings are processed. However, there is a way to control how SASL mappings
are processed: the name. The Directory Server processes SASL mappings in reverse ASCII order. In the
past two example, then the cn=z mapping (the first example) is processed first. If there is no match, the
server processes the cn=y mapping (the second example).

NOTE

SASL mappings can be added when an instance is created during a silent installation by
specifying the mappings in an LDIF file and adding the LDIF file with the ConfigFile

directive. Using silent installation is described in the Installation Guide.

9.9.2. Default SASL Mappings for Directory Server

The Directory Server has pre-defined SASL mapping rules to handle some of the most common usage.

Kerberos UID Mapping

This matches a Kerberos principal using a two part realm, such as user@example.com. The realm is then
used to define the search base, and the user ID (authid) defines the filter. The search base is
dc=example,dc=com and the filter of (uid=user).

dn: cn=Kerberos uid mapping,cn=mapping,cn=sasl,cn=config

objectClass: top

objectClass: nsSaslMapping

cn: Kerberos uid mapping

nsSaslMapRegexString: \(.*\)@\(.*\)\.\(.*\)

nsSaslMapBaseDNTemplate: dc=\2,dc=\3

nsSaslMapFilterTemplate: (uid=\1)

RFC 2829 DN Syntax

Administration Guide

278

This mapping matches an authid that is a valid DN (defined in RFC 2829) prefixed by dn:. The authid

maps directly to the specified DN.

dn: cn=rfc 2829 dn syntax,cn=mapping,cn=sasl,cn=config

objectClass: top

objectClass: nsSaslMapping

cn: rfc 2829 dn syntax

nsSaslMapRegexString: ^dn:\(.*\)

nsSaslMapBaseDNTemplate: \1

nsSaslMapFilterTemplate: (objectclass=*)

RFC 2829 U Syntax

This mapping matches an authid that is a UID prefixed by u:. The value specified after the prefix defines
a filter of (uid=value). The search base is hard-coded to be the suffix of the default userRoot

database.

dn: cn=rfc 2829 u syntax,cn=mapping,cn=sasl,cn=config

objectClass: top

objectClass: nsSaslMapping

cn: rfc 2829 u syntax

nsSaslMapRegexString: ^u:\(.*\)

nsSaslMapBaseDNTemplate: dc=example,dc=com

nsSaslMapFilterTemplate: (uid=\1)

UID Mapping

This mapping matches an authid that is any plain string that does not match the other default mapping
rules. It use this value to define a filter of (uid=value). The search base is hard-coded to be the suffix of
the default userRoot database.

dn: cn=uid mapping,cn=mapping,cn=sasl,cn=config

objectClass: top

objectClass: nsSaslMapping

cn: uid mapping

nsSaslMapRegexString: ^[^:@]+$

nsSaslMapBaseDNTemplate: dc=example,dc=com

nsSaslMapFilterTemplate: (uid=&)

9.9.3. Configuring SASL Identity Mapping

SASL identity mapping can be configured from either the Directory Server or the command line. For
SASL identity mapping to work for SASL authentication, the mapping must return one, and only one,
entry that matches and Kerberos must be configured on the host machine.

9.9.3.1. Configuring SASL Identity Mapping from the Console

1. In the Directory Server Console, open the Configuration tab.

2. Select the SASL Mapping tab.

CHAPTER 9. CONFIGURING SECURE CONNECTIONS

279

3. To add a new SASL identity mapping, select the Add button, and fill in the required values.

Name. This field sets the unique name of the SASL mapping.

Regular expression. This field sets the regular expression used to match the DN
components, such as \(.*\). This field corresponds to the nsSaslMapRegexString value in
the SASL mapping LDIF entry.

Search base DN. This field gives the base DN to search to map entries, such as
ou=People,dc=example,dc=com. This field corresponds to the
nsSaslMapBaseDNTemplate value in the SASL mapping LDIF entry.

Search filter. This field gives the search filter for the components to replace, such as
(objectclass=*). This field corresponds to the nsSaslMapFilterTemplate value in the SASL
mapping LDIF entry.

To edit a SASL identity mapping, highlight that identity in the SASL Mapping tab, and click Modify.
Change any values, and save.

Administration Guide

280

To delete a SASL identity mapping, highlight it and hit Delete. A dialog box comes up to confirm the
deletion.

9.9.3.2. Configuring SASL Identity Mapping from the Command Line

To configure SASL identity mapping from the command line, use the ldapmodify utility to add the
identity mapping scheme. For example:

ldapmodify -a -D "cn=Directory Manager" -W -p 389 -h server.example.com -x

dn: cn=example map,cn=mapping,cn=sasl,cn=config

changetype: add

objectclass: top

objectclass: nsSaslMapping

cn: example map

nsSaslMapRegexString: \(.*\)

nsSaslMapBaseDNTemplate: ou=People,dc=example,dc=com

nsSaslMapFilterTemplate: (cn=\1)

This matches any user's common name and maps it to the result of the subtree search with base
ou=People,dc=example,dc=com, based on the filter cn=userId.

NOTE

When SASL maps are added over LDAP, they are not used by the server until it is
restarted. Adding the SASL map with ldapmodify adds the mapping to the end of the list,
regardless of its ASCII order.

9.9.4. Enabling SASL Mapping Fallback

Using the default settings, Directory Server verifies only the first matching SASL mapping. If this first
matching mapping fails, the bind operation fails and no further matching mappings are verified.

However, you can configure Directory Server to verify all matching mappings by enabling the nsslapd-

sasl-mapping-fallback parameter:

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x

dn: cn=config

changetype: modify

replace: nsslapd-sasl-mapping-fallback

nsslapd-sasl-mapping-fallback: on

If fallback is enabled and only one user identity is returned, the bind succeeds. If no user, or more than
one user is returned, the bind fails.

9.9.4.1. Setting SASL Mapping Priorities

If you enabled SASL mapping fallback using the nsslapd-sasl-mapping-fallback attribute, you can
optionally set the nsSaslMapPriority attribute in mapping configurations to prioritize them. The
nsSaslMapPriority attribute supports values from 1 (highest priority) to 100 (lowest priority). The
default is 100.

For example, to set the highest priority for the cn=Kerberos uid

CHAPTER 9. CONFIGURING SECURE CONNECTIONS

281

For example, to set the highest priority for the cn=Kerberos uid

mapping,cn=mapping,cn=sasl,cn=config mapping:

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x

dn: cn=Kerberos uid mapping,cn=mapping,cn=sasl,cn=config

changetype: modify

replace: nsSaslMapPriority

nsSaslMapPriority: 1

9.10. USING KERBEROS GSS-API WITH SASL

Kerberos v5 must be deployed on the host for Directory Server to utilize the GSS-API mechanism for
SASL authentication. GSS-API and Kerberos client libraries must be installed on the Directory Server
host to take advantage of Kerberos services.

9.10.1. Authentication Mechanisms for SASL in Directory Server

Directory Server support the following SASL encryption mechanisms:

PLAIN. PLAIN sends cleartext passwords for simple password-based authentication.

EXTERNAL. EXTERNAL, as with TLS, performs certificate-based authentication. This method
uses public keys for strong authentication.

CRAM-MD5. CRAM-MD5 is a weak, simple challenge-response authentication method. It does
not establish any security layer.

WARNING

Red Hat recommends not using the insecure CRAM-MD5 mechanism.

DIGEST-MD5. DIGEST-MD5 is a weak authentication method for LDAPv3 servers.

WARNING

Red Hat recommends not using the insecure DIGGEST-MD5 mechanism.

Generic Security Services (GSS-API). Generic Security Services (GSS) is a security API that is
the native way for UNIX-based operating systems to access and authenticate Kerberos
services. GSS-API also supports session encryption, similar to TLS. This allows LDAP clients to
authenticate with the server using Kerberos version 5 credentials (tickets) and to use network
session encryption.

For Directory Server to use GSS-API, Kerberos must be configured on the host machine. See

Administration Guide

282

For Directory Server to use GSS-API, Kerberos must be configured on the host machine. See
Section 9.10, “Using Kerberos GSS-API with SASL”.

NOTE

GSS-API and, thus, Kerberos are only supported on platforms that have GSS-API
support. To use GSS-API, it may be necessary to install the Kerberos client
libraries; any required Kerberos libraries will be available through the operating
system vendor.

9.10.2. About Kerberos in Directory Server

On Red Hat Enterprise Linux, the supported Kerberos libraries are MIT Kerberos version 5.

The concepts of Kerberos, as well as using and configuring Kerberos, are covered at the MIT Kerberos
website, http://web.mit.edu/Kerberos/.

9.10.2.1. About Principals and Realms

A principal is a user or service in the Kerberos environment. A realm defines what Kerberos manages in
terms of who can access what. The client, the KDC, and the host or service you want to access must use
the same realm.

NOTE

Kerberos realms are only supported for GSS-API authentication and encryption, not for
DIGEST-MD5.

Realms are used by the server to associate the DN of the client in the following form, which looks like an
LDAP DN:

uid=user_name/[server_instance],cn=realm,cn=mechanism,cn=auth

For example, Mike Connors in the engineering realm of the European division of example.com uses the
following association to access a server in the US realm:

uid=mconnors/cn=Europe.example.com,cn=engineering,cn=gssapi,cn=auth

Babara Jensen, from the accounting realm of US.example.com, does not have to specify a realm when
to access a local server:

uid=bjensen,cn=accounting,cn=gssapi,cn=auth

If realms are supported by the mechanism and the default realm is not used to authenticate to the
server, then the realm must be specified in the Kerberos principal. Otherwise, the realm can be omitted.

NOTE

Kerberos systems treat the Kerberos realm as the default realm; other systems default to
the server.

9.10.2.2. About the KDC Server and Keytabs

CHAPTER 9. CONFIGURING SECURE CONNECTIONS

283

http://web.mit.edu/Kerberos/

The Key Distribution Center (KDC) authenticates users and issues Ticket Granting Tickets (TGT) for
them. This enables users to authenticate to Directory Server using GSS-API. To respond to Kerberos
operations, Directory Server requires access to its keytab file. The keytab contains the cryptographic
key that Directory Server uses to authenticate to other servers.

Directory Server uses the ldap service name in a Kerberos principal. For example:

ldap/server.example.com/EXAMPLE.COM

For details about creating the keytab, see your Kerberos documentation.

NOTE

You must create a Simple Authentication and Security Layer (SASL) mapping for the
Directory Server Kerberos principal that maps to an existing entry Distinguished Name
(DN).

9.10.3. Configuring SASL Authentication at Directory Server Startup

SASL GSS-API authentication has to be activated in Directory Server so that Kerberos tickets can be
used for authentication. This is done by supplying a system configuration file for the init scripts to use
which identifies the variable to set the keytab file location. When the init script runs at Directory Server
startup, SASL authentication is then immediately active.

The default SASL configuration is stored in the /etc/sysconfig/dirsrv file.

If there are multiple Directory Server instances and not all of them will use SASL authentication, then
there can be instance-specific configuration files created in the /etc/sysconfig/ directory named
dirsrv-instance. For example, dirsrv-example. The default dirsrv file can be used if there is a single
instance on a host.

To enable SASL authentication, uncomment the KRB5_KTNAME line in the /etc/sysconfig/dirsrv (or
instance-specific) file, and set the keytab location for the KRB5_KTNAME variable. For example:

In order to use SASL/GSSAPI the directory

server needs to know where to find its keytab

file - uncomment the following line and set

the path and filename appropriately

KRB5_KTNAME=/etc/dirsrv/krb5.keytab

9.11. SETTING SASL MECHANISMS

Per default, Directory Server enables all mechanisms the simple authentication and security layer
(SASL) library supports. These are listed in the root dse supportedSASLMechanisms parameter. To
enable specific SASL mechanisms, set the nsslapd-allowed-sasl-mechanisms attribute in the
cn=config entry. For example, to enable only the GSSAPI and DIGEST-MD5 mechanism, run:

ldapmodify -D "cn=Directory Manager" -W -x

dn: cn=config

changetype: modify

replace: nsslapd-allowed-sasl-mechanisms

nsslapd-allowed-sasl-mechanisms: GSSAPI, DIGEST-MD5

Administration Guide

284

NOTE

Even if EXTERNAL is not listed in the nsslapd-allowed-sasl-mechanisms attribute, this
mechanism is always enabled.

For further details, see the corresponding section in the Red Hat Directory Server Configuration,

Command, and File Reference.

9.12. USING SASL WITH LDAP CLIENTS

To use SASL with the LDAP clients, such as ldapsearch, pass the -Y SASL_mechanism to the
command. For example:

To use the GSSAPI SASL mechanism over the LDAP protocol:

ldapsearch -Y GSSAPI -U "dn:uid=user_name,ou=people,dc=example,dc=com" -R

EXAMPLE.COM -H ldap://server.example.com -b "dc=example,dc=com"

To use the PLAIN SASL mechanism over the LDAPS protocol:

ldapsearch -Y PLAIN -D "uid=user_name,ou=people,dc=example,dc=com" -W -H

ldaps://server.example.com -b "dc=example,dc=com"

NOTE

SASL proxy authorization is not supported in Directory Server. Therefore,
Directory Server ignores any SASL authzid value supplied by the client.

CHAPTER 9. CONFIGURING SECURE CONNECTIONS

285

https://access.redhat.com/documentation/en-us/red_hat_directory_server/10/html/configuration_command_and_file_reference/core_server_configuration_reference#nsslapd-allowed-sasl-mechanisms

CHAPTER 10. CONFIGURING ATTRIBUTE ENCRYPTION

The Directory Server offers a number of mechanisms to secure access to sensitive data, such as access
control rules to prevent unauthorized users from reading certain entries or attributes within entries and
TLS to protect data from eavesdropping and tampering on untrusted networks. However, if a copy of
the server's database files should fall into the hands of an unauthorized person, they could potentially
extract sensitive information from those files. Because information in a database is stored in plain text,
some sensitive information, such as government identification numbers or passwords, may not be
protected enough by standard access control measures.

For highly sensitive information, this potential for information loss could present a significant security
risk. In order to remove that security risk, Directory Server allows portions of its database to be
encrypted. Once encrypted, the data are safe even in the event that an attacker has a copy of the
server's database files.

Database encryption allows attributes to be encrypted in the database. Both encryption and the
encryption cipher are configurable per attribute per back end. When configured, every instance of a
particular attribute, even index data, is encrypted for every entry stored in that database.

An additional benefit of attribute encryption is, that encrypted values can only be sent to a clients with a
Security Strength Factor (SSF) greater than 1.

NOTE

There is one exception to encrypted data: any value which is used as the RDN for an entry
is not encrypted within the entry DN. For example, if the uid attribute is encrypted, the
value is encrypted in the entry but is displayed in the DN:

entry-id: 16

dn: uid=jsmith1234,ou=People,dc=example,dc=com

nsUniqueId: ee91ea82-1dd111b2-9f36e9bc-39fb8550

objectClass: top

objectClass: person

objectClass: organizationalPerson

objectClass: inetorgperson

givenName: John

sn: Smith

uid:: Sf04P9nJWGU1qiW9JJCGRg==

That would allow someone to discover the encrypted value.

Any attribute used within the entry DN cannot be effectively encrypted, since it will
always be displayed in the DN. Be aware of what attributes are used to build the DN and
design the attribute encryption model accordingly.

Indexed attributes may be encrypted, and attribute encryption is fully compatible with eq and pres

indexing. The contents of the index files that are normally derived from attribute values are also
encrypted to prevent an attacker from recovering part or all of the encrypted data from an analysis of
the indexes.

Since the server pre-encrypts all index keys before looking up an index for an encrypted attribute, there
is some effect on server performance for searches that make use of an encrypted index, but the effect
is not serious enough that it is no longer worthwhile to use an index.

Administration Guide

286

10.1. ENCRYPTION KEYS

In order to use attribute encryption, the server must be configured for TLS and have TLS enabled
because attribute encryption uses the server's TLS encryption key and the same PIN input methods as
TLS. The PIN must either be entered manually upon server startup or a PIN file must be used.

Randomly generated symmetric cipher keys are used to encrypt and decrypt attribute data. A separate
key is used for each configured cipher. These keys are wrapped using the public key from the server's
TLS certificate, and the resulting wrapped key is stored within the server's configuration files. The
effective strength of the attribute encryption is never higher than the strength of the server's TLS key
used for wrapping. Without access to the server's private key, it is not possible to recover the symmetric
keys from the wrapped copies.

WARNING

There is no mechanism for recovering a lost key. Therefore, it is especially important
to back up the server's certificate database safely. If the server's certificate were
lost, it would not be possible to decrypt any encrypted data stored in its database.

WARNING

If the TLS certificate is expiring and needs to be renewed, export the encrypted
back end instance before the renewal. Update the certificate, then re-import the
exported LDIF file.

10.2. ENCRYPTION CIPHERS

The encryption cipher is configurable on a per-attribute basis and must be selected by the administrator
at the time encryption is enabled for an attribute. Configuration can be done through the Console or
through the command line.

The following ciphers are supported:

Advanced Encryption Standard (AES)

Triple Data Encryption Standard (3DES)

NOTE

For strong encryption, Red Hat recommends using only AES ciphers.

All ciphers are used in Cipher Block Chaining mode.

Once the encryption cipher is set, it should not be changed without exporting and re-importing the data.

CHAPTER 10. CONFIGURING ATTRIBUTE ENCRYPTION

287

10.3. CONFIGURING ATTRIBUTE ENCRYPTION FROM THE CONSOLE

1. In the Configuration tab, select the Data node.

2. Expand the suffix, and select the database to edit.

3. Select the Attribute Encryption tab.

4. Click the Add Attribute button to open the list of attributes. Select the attribute to encrypt.

NOTE

Administration Guide

288

NOTE

For existing attribute values to be encrypted, the information must be exported
from the database, then re-imported. See Section 10.7, “Exporting and Importing
an Encrypted Database”.

5. Select which encryption cipher to use.

NOTE

The encryption cipher to use is set separately for each attribute, so attribute encryption
is applied to each attribute one at a time.

To remove encryption from attributes, select them from the list of encrypted attributes in the Attribute

Encryption table, click the Delete button, and then click Save to apply the changes. Any deleted
attributes have to be manually re-added after saving.

10.4. CONFIGURING ATTRIBUTE ENCRYPTION USING THE COMMAND
LINE

1. Run the ldapmodify command:

ldapmodify -a -D "cn=Directory Manager" -W -p 389 -h server.example.com -x

2. Add an encryption entry for the attribute being encrypted. For example, this entry encrypts the
telephoneNumber attribute with the AES cipher:

dn: cn=telephoneNumber,cn=encrypted attributes,cn=Database1,cn=ldbm

database,cn=plugins,cn=config

changetype: add

objectclass: top

objectclass: nsAttributeEncryption

cn: telephoneNumber

nsEncryptionAlgorithm: AES

3. For existing attributes in entries to be encrypted, the information must be exported, then re-
imported. See Section 10.7, “Exporting and Importing an Encrypted Database” .

For more information on attribute encryption configuration schema, see "Database Attributes under

CHAPTER 10. CONFIGURING ATTRIBUTE ENCRYPTION

289

For more information on attribute encryption configuration schema, see "Database Attributes under
cn=attributeName,cn=encrypted attributes,cn=database_name,cn=ldbm
database,cn=plugins,cn=config" in the Red Hat Directory Server

Configuration, Command, and File Reference.

10.5. ENABLING ATTRIBUTE ENCRYPTION FOR EXISTING ATTRIBUTE
VALUES

To enable attribute encryption on an attribute with existing stored data, export the database to LDIF
first, then make the configuration change, then re-import the data to the database. The server does not
enforce consistency between encryption configuration and stored data; therefore, pay careful attention
that all existing data are exported before enabling or disabling encryption.

10.6. GENERAL CONSIDERATIONS AFTER ENABLING ATTRIBUTE
ENCRYPTION

When you enable encryption for data that is already in the database:

Unencrypted data can persist in the server's database page pool backing file. To remove this
data:

1. Stop the instance:

systemctl stop dirsrv@instance_name

2. Delete the /var/lib/dirsrv/slapd-instance_name/db/guardian file:

rm /var/lib/dirsrv/slapd-instance_name/db/guardian

3. Start the instance:

systemctl start dirsrv@instance_name

After you enabled encryption and successfully imported the data, delete the LDIF file with the
unencrypted data.

After enabling encryption, the Directory Server deletes and creates a new database when re-
importing the data.

The replication log file is not encrypted. To protect this data, store it on an encrypted disk.

Data in the server's memory (RAM) is unencrypted and can be temporarily stored in swap
partitions. To protect this data, set up encrypted swap space.

IMPORTANT

Even if you delete files that contain unencrypted data, this data can be restored under
certain circumstances.

10.7. EXPORTING AND IMPORTING AN ENCRYPTED DATABASE

Exporting and importing encrypted databases is similar to exporting and importing regular databases.

Administration Guide

290

Exporting and importing encrypted databases is similar to exporting and importing regular databases.
However, the encrypted information must be decrypted when you export the data and re-encrypted
when you re-import it to the database.

10.7.1. Exporting an Encrypted Database

To export data from an encrypted database, pass the -E parameter to the db2ldif script. The script uses
the password stored in the Directory Sever configuration to decrypt the database.

To encrypt a complete database:

db2ldif -Z instance_name -n database_name -E -a /tmp/data.ldif

Alternatively, you can export only a specific subtree. For example, to export all data from the
ou=People,dc=example,dc=com entry into the /tmp/export.ldif file:

db2ldif -Z instance_name -n database_name -E -s "ou=people,dc=example,dc=com" \

 -a /tmp/data.ldif

IMPORTANT

The db2ldif script exports the content using the operating system account of the
Directory Server instance. Therefore, this account must be able to write to the file set in
the -a option.

10.7.2. Importing an LDIF File into an Encrypted Database

To import data to a database when encryption is enabled:

1. Stop the Directory Server instance:

systemctl stop dirsrv@instance_name

2. If you replaced the certificate database between the last export and this import, edit the
/etc/dirsrv/slapd-instance_name/dse.ldif file and remove the following entries including their
attributes:

cn=AES,cn=encrypted attribute keys,cn=database_name,cn=ldbm

database,cn=plugins,cn=config

cn=3DES,cn=encrypted attribute keys,cn=database_name,cn=ldbm

database,cn=plugins,cn=config

IMPORTANT

Remove the entries for all databases. If any entry that contains the
nsSymmetricKey attribute is left in the
/etc/dirsrv/slapd-instance_name/dse.ldif file, Directory Server will fail to start.

3. Import the LDIF file. For example:

ldif2db -Z instance_name -n database_name -E -i /tmp/data.ldif

CHAPTER 10. CONFIGURING ATTRIBUTE ENCRYPTION

291

The -E parameter enables the script to encrypt attributes configure for encryption during the
import.

4. Start the instance:

systemctl start dirsrv@instance_name

10.8. UPDATING THE TLS CERTIFICATES USED FOR ATTRIBUTE
ENCRYPTION

Attribute encryption is based on the TLS certificate. To prevent that attribute encryption fails after
renewing or replacing the TLS certificate:

1. Export the database with decrypted attributes. See Section 10.7.1, “Exporting an Encrypted
Database”.

2. Delete the existing private key and certificate from the Network Security Services (NSS)
database. See Section 9.3.8, “Removing a Private Key”

3. Create a new Certificate Signing Request (CSR). See Section 9.3.2, “Creating a Certificate
Signing Request”.

4. Install the new certificate. See Section 9.3.4, “Installing a Certificate” .

5. Stop the Directory Server instance:

systemctl stop dirsrv@instance_name

6. Edit the /etc/dirsrv/slapd-instance_name/dse.ldif file and remove the following entries
including their attributes:

cn=AES,cn=encrypted attribute keys,cn=database_name,cn=ldbm

database,cn=plugins,cn=config

cn=3DES,cn=encrypted attribute keys,cn=database_name,cn=ldbm

database,cn=plugins,cn=config

IMPORTANT

Remove the entries for all databases. If any entry that contains the
nsSymmetricKey attribute is left in the
/etc/dirsrv/slapd-instance_name/dse.ldif file, Directory Server will fail to start.

7. Import the database. See Section 10.7.2, “Importing an LDIF File into an Encrypted Database” .

8. Start the instance:

systemctl start dirsrv@instance_name

Administration Guide

292

CHAPTER 11. MANAGING FIPS MODE SUPPORT

Red Hat Directory Server fully supports the Federal Information Processing Standard (FIPS) 140-2.
When Directory Server runs in FIPS mode, security-related settings change. For example, SSL is
automatically disabled and only TLS 1.1 and 1.2 encryption is used.

For general details about FIPS, see Federal Information Processing Standard (FIPS) in the
Red Hat Enterprise Linux Security Guide.

Enabling FIPS Mode Support
To enable FIPS mode support for Directory Server:

1. Optionally, enable FIPS mode in Red Hat Enterprise Linux. For details, see the corresponding
section in the Red Hat Enterprise Linux Security Guide.

2. Enable FIPS mode for the network security services (NSS) database:

modutil -dbdir /etc/dirsrv/slapd-instance_name/ -fips true

3. Restart the Directory Server instance:

systemctl restart dirsrv@instance_name

Disabling FIPS Mode Support
To disable FIPS mode support for Directory Server:

1. Disable FIPS mode for the network security services (NSS) database:

modutil -dbdir /etc/dirsrv/slapd-instance_name/ -fips false

2. Restart the Directory Server instance:

systemctl restart dirsrv@instance_name

3. Optionally, disable FIPS mode in Red Hat Enterprise Linux. For details, see the corresponding
section in the Red Hat Enterprise Linux Security Guide.

CHAPTER 11. MANAGING FIPS MODE SUPPORT

293

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Security_Guide/chap-Federal_Standards_and_Regulations.html#sect-Federal_Information_Processing_Standard
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Security_Guide/chap-Federal_Standards_and_Regulations.html#sec-Enabling-FIPS-Mode
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Security_Guide/chap-Federal_Standards_and_Regulations.html#sec-Enabling-FIPS-Mode

	Table of Contents
	DEPRECATED DOCUMENTATION
	CHAPTER 1. BASIC RED HAT DIRECTORY SERVER SETTINGS
	1.1. SYSTEM REQUIREMENTS
	1.2. FILE LOCATIONS
	1.3. STARTING THE DIRECTORY SERVER MANAGEMENT CONSOLE
	1.3.1. Opening the Directory Server Console
	1.3.2. Opening the Administration Server Console

	1.4. STARTING AND STOPPING A DIRECTORY SERVER INSTANCE
	1.4.1. Starting and Stopping a Directory Server Instance Using the Command Line
	1.4.2. Starting and Stopping a Directory Server Instance Using the Console

	1.5. STARTING AND STOPPING THE DIRECTORY SERVER ADMINISTRATION SERVER SERVICE
	1.5.1. Starting and Stopping the Administration Server Service Using the Command Line
	1.5.2. Restarting and Stopping the Administration Server Service Using the Console

	1.6. ENABLING LDAPI
	1.7. CHANGING DIRECTORY SERVER PORT NUMBERS
	1.7.1. Changing Standard Port Numbers
	1.7.2. Changing the LDAPS Port Numbers

	1.8. MANAGING DIRECTORY SERVER INSTANCES
	1.8.1. Creating a New Directory Server Instance
	1.8.2. Removing a Directory Server Instance
	1.8.2.1. Removing a Directory Server Instance Using the Command Line

	1.8.3. Removing a Directory Server Instance Using the Console

	1.9. USING DIRECTORY SERVER PLUG-INS
	1.9.1. Enabling Plug-ins Dynamically
	1.9.2. Enabling Plug-ins
	1.9.2.1. Enabling Plug-ins in the Command Line
	1.9.2.2. Enabling Plug-ins in the Directory Server Console

	1.9.3. Configuring Plug-ins
	1.9.3.1. Configuring Plug-ins using the Command Line
	1.9.3.2. Configuring Plug-ins using the Console

	1.9.4. Setting the Plug-in Precedence

	1.10. SERVER CONFIGURATION ATTRIBUTES

	CHAPTER 2. CONFIGURING DIRECTORY DATABASES
	2.1. CREATING AND MAINTAINING SUFFIXES
	2.1.1. Creating Suffixes
	2.1.1.1. Creating a New Root Suffix Using the Console
	2.1.1.2. Creating a New Sub Suffix Using the Console
	2.1.1.3. Creating Root and Sub Suffixes using the Command Line
	Creating a Root Suffix
	Creating a Sub Suffix

	2.1.2. Maintaining Suffixes
	2.1.2.1. Viewing the Default Naming Context
	2.1.2.2. Disabling a Suffix
	2.1.2.3. Deleting a Suffix

	2.2. CREATING AND MAINTAINING DATABASES
	2.2.1. Creating Databases
	2.2.1.1. Creating a New Database for an Existing Suffix Using the Console
	2.2.1.2. Creating a New Database for a Single Suffix from the Command Line
	2.2.1.3. Adding Multiple Databases for a Single Suffix

	2.2.2. Maintaining Directory Databases
	2.2.2.1. Placing a Database in Read-Only Mode
	2.2.2.2. Deleting a Database
	2.2.2.3. Changing the Transaction Log Directory

	2.3. CREATING AND MAINTAINING DATABASE LINKS
	2.3.1. Creating a New Database Link
	2.3.1.1. Creating a New Database Link Using the Console
	2.3.1.2. Creating a Database Link from the Command Line

	2.3.2. Configuring the Chaining Policy
	2.3.2.1. Chaining Component Operations
	2.3.2.2. Chaining LDAP Controls

	2.3.3. Maintaining Database Links
	2.3.4. Configuring Database Link Defaults
	2.3.5. Deleting Database Links
	2.3.6. Database Links and Access Control Evaluation

	2.4. CONFIGURING CASCADING CHAINING
	2.4.1. Overview of Cascading Chaining
	2.4.2. Configuring Cascading Chaining Using the Console
	2.4.3. Configuring Cascading Chaining from the Command Line
	2.4.4. Detecting Loops
	2.4.5. Summary of Cascading Chaining Configuration Attributes
	2.4.6. Cascading Chaining Configuration Example
	2.4.6.1. Configuring Server One
	2.4.6.2. Configuring Server Two
	2.4.6.3. Configuring Server Three

	2.5. USING REFERRALS
	2.5.1. Starting the Server in Referral Mode
	2.5.2. Setting Default Referrals
	2.5.2.1. Setting a Default Referral Using the Console
	2.5.2.2. Setting a Default Referral from the Command Line

	2.5.3. Creating Smart Referrals
	2.5.3.1. Creating Smart Referrals Using the Directory Server Console
	2.5.3.2. Creating Smart Referrals from the Command Line

	2.5.4. Creating Suffix Referrals
	2.5.4.1. Creating Suffix Referrals Using the Console
	2.5.4.2. Creating Suffix Referrals from the Command Line

	CHAPTER 3. MANAGING DIRECTORY ENTRIES
	3.1. MANAGING ENTRIES USING THE COMMAND LINE
	3.1.1. Providing Input to the ldapadd, ldapmodify, and ldapdelete Utilities
	3.1.1.1. Providing Input Using the Interactive Mode
	3.1.1.2. Providing Input Using an LDIF File

	3.1.2. The Continuous Operation Mode
	3.1.3. Adding an Entry
	3.1.3.1. Adding an Entry Using ldapadd
	3.1.3.2. Adding an Entry Using ldapmodify
	3.1.3.3. Creating a Root Entry

	3.1.4. Updating a Directory Entry
	3.1.4.1. Adding Attributes to an Entry
	3.1.4.2. Updating an Attribute's Value
	Updating a Single-value Attribute
	Updating a Specific Value of a Multi-value Attribute
	3.1.4.3. Deleting Attributes from an Entry
	Deleting an Attribute
	Deleting a Specific Value of a Multi-value Attribute

	3.1.5. Deleting an Entry
	3.1.5.1. Deleting an Entry Using ldapdelete
	3.1.5.2. Deleting an Entry Using ldapmodify

	3.1.6. Renaming and Moving an Entry
	3.1.6.1. Types of Rename Operations
	3.1.6.2. Considerations for Renaming Entries
	3.1.6.3. The deleteOldRDN Parameter
	3.1.6.4. Renaming an Entry or Subtree
	3.1.6.5. Moving an Entry to a New Parent

	3.1.7. Using Special Characters
	3.1.8. Using Binary Attributes
	3.1.9. Updating an Entry in an Internationalized Directory

	3.2. MANAGING ENTRIES USING THE DIRECTORY CONSOLE
	3.2.1. Creating a Root Entry
	3.2.2. Creating Directory Entries
	3.2.3. Modifying Directory Entries
	3.2.3.1. Adding or Removing an Object Class to an Entry
	3.2.3.2. Adding an Attribute to an Entry
	3.2.3.3. Adding Very Large Attributes
	3.2.3.4. Adding Attribute Values
	3.2.3.5. Adding an Attribute Subtype

	3.2.4. Deleting Directory Entries

	CHAPTER 4. TRACKING MODIFICATIONS TO DIRECTORY ENTRIES
	4.1. TRACKING MODIFICATIONS TO THE DATABASE THROUGH UPDATE SEQUENCE NUMBERS
	4.1.1. An Overview of the Entry Sequence Numbers
	4.1.1.1. Local and Global USNs
	4.1.1.2. Importing USN Entries

	4.1.2. Configuring the USN Plug-in
	4.1.3. Enabling Global USN
	4.1.4. Cleaning up USN Tombstone Entries

	4.2. TRACKING ENTRY MODIFICATIONS THROUGH OPERATIONAL ATTRIBUTES
	4.2.1. Entries Modified or Created by a Database Link
	4.2.2. How to Enable Tracking Of Modifications Using the Command Line
	4.2.3. How to Enable Tracking Of Modifications Using the Console

	4.3. TRACKING THE BIND DN FOR PLUG-IN INITIATED UPDATES
	4.4. TRACKING PASSWORD CHANGE TIMES

	CHAPTER 5. MAINTAINING REFERENTIAL INTEGRITY
	5.1. HOW REFERENTIAL INTEGRITY WORKS
	5.2. USING REFERENTIAL INTEGRITY WITH REPLICATION
	5.3. ENABLING AND DISABLING REFERENTIAL INTEGRITY
	5.3.1. Enabling and Disabling Referential Integrity from the Command Line
	5.3.2. Enabling and Disabling Referential Integrity in the Console

	5.4. MODIFYING THE UPDATE INTERVAL
	5.4.1. Modifying the Update Interval Using the Command Line
	5.4.2. Modifying the Update Interval using the Console

	5.5. MODIFYING THE ATTRIBUTE LIST
	5.5.1. Modifying the Attribute List Using the Console
	5.5.2. Configuring the Attribute List from the Command Line

	5.6. CONFIGURING SCOPE FOR THE REFERENTIAL INTEGRITY

	CHAPTER 6. POPULATING DIRECTORY DATABASES
	6.1. IMPORTING DATA
	6.1.1. Setting EntryUSN Initial Values During Import
	6.1.2. Importing a Database from the Console
	6.1.3. Initializing a Database from the Console
	6.1.4. Importing from the Command Line
	6.1.4.1. Importing Using the ldif2db Command-Line Script
	6.1.4.2. Importing Using the ldif2db.pl Perl Script
	6.1.4.3. Importing Using the ldif2ldap Command-Line Script
	6.1.4.4. Importing through the cn=tasks Entry

	6.2. EXPORTING DATA
	6.2.1. Exporting Directory Data to LDIF Using the Console
	6.2.2. Exporting a Single Database to LDIF Using the Console
	6.2.3. Exporting a Database to LDIF Using the Command Line
	6.2.3.1. Exporting a Database While Directory Server is Running
	6.2.3.2. Exporting a Database While Directory Server is Stopped

	6.3. BACKING UP AND RESTORING DATA
	6.3.1. Backing up All Databases
	6.3.1.1. Backing up All Databases from the Console
	6.3.1.2. Backing up All Databases from the Command Line
	6.3.1.3. Backing up the Database through the cn=tasks Entry

	6.3.2. Backing up the dse.ldif Configuration File
	6.3.3. Restoring All Databases
	6.3.3.1. Restoring All Databases from the Console
	6.3.3.2. Restoring Databases from the Command Line

	6.3.4. Restoring a Single Database
	6.3.5. Restoring Databases That Include Replicated Entries
	6.3.6. Restoring the dse.ldif Configuration File

	CHAPTER 7. MANAGING ATTRIBUTES AND VALUES
	7.1. ENFORCING ATTRIBUTE UNIQUENESS
	7.1.1. Creating a New Configuration Record of the Attribute Uniqueness Plug-in
	7.1.2. Configuring Attribute Uniqueness over Suffixes or Subtrees
	7.1.2.1. Configuring Attribute Uniqueness over Suffixes or Subtrees Using the Command Line
	7.1.2.2. Configuring Attribute Uniqueness over Suffixes or Subtrees Using the Console

	7.1.3. Configuring Attribute Uniqueness over Object Classes
	7.1.4. Attribute Uniqueness Plug-in Configuration Parameters

	7.2. ASSIGNING CLASS OF SERVICE
	7.2.1. About the CoS Definition Entry
	7.2.2. About the CoS Template Entry
	7.2.3. How a Pointer CoS Works
	7.2.4. How an Indirect CoS Works
	7.2.5. How a Classic CoS Works
	7.2.6. Handling Physical Attribute Values
	7.2.7. Handling Multi-valued Attributes with CoS
	7.2.8. Searches for CoS-Specified Attributes
	7.2.9. Access Control and CoS
	7.2.10. Managing CoS Using the Console
	7.2.10.1. Creating a New CoS
	7.2.10.2. Creating the CoS Template Entry

	7.2.11. Managing CoS from the Command Line
	7.2.11.1. Creating the CoS Definition Entry from the Command Line
	7.2.11.2. Creating the CoS Template Entry from the Command Line
	7.2.11.3. Example of a Pointer CoS
	7.2.11.4. Example of an Indirect CoS
	7.2.11.5. Example of a Classic CoS
	7.2.11.6. Searching for CoS Entries

	7.2.12. Creating Role-Based Attributes

	7.3. LINKING ATTRIBUTES TO MANAGE ATTRIBUTE VALUES
	7.3.1. About Linking Attributes
	7.3.2. Looking at the Linking Attributes Plug-in Syntax
	7.3.3. Configuring Attribute Links
	7.3.4. Cleaning up Attribute Links
	7.3.4.1. Regenerating Linked Attributes Using fixup-linkedattrs.pl
	7.3.4.2. Regenerating Linked Attributes Using ldapmodify

	7.4. ASSIGNING AND MANAGING UNIQUE NUMERIC ATTRIBUTE VALUES
	7.4.1. About Dynamic Number Assignments
	7.4.1.1. Filters, Searches, and Target Entries
	7.4.1.2. Ranges and Assigning Numbers
	7.4.1.3. Multiple Attributes in the Same Range

	7.4.2. Looking at the DNA Plug-in Syntax
	7.4.3. Configuring Unique Number Assignments
	7.4.3.1. Configuring Unique Number Assignments
	7.4.3.2. Editing the DNA Plug-in in the Console

	7.4.4. Distributed Number Assignment Plug-in Performance Notes

	CHAPTER 8. ORGANIZING AND GROUPING ENTRIES
	8.1. USING GROUPS
	8.1.1. Creating Static Groups in the Console
	8.1.2. Creating Dynamic Groups in the Console
	8.1.3. Creating Groups in the Command Line
	8.1.4. Listing Group Membership in User Entries
	8.1.4.1. Considerations When Using the memberOf Plug-in
	8.1.4.2. Required Object Classes by the memberOf Plug-In
	8.1.4.3. The MemberOf Plug-in Syntax
	8.1.4.4. Configuring an Instance of the MemberOf Plug-in
	8.1.4.5. The memberOf Plug-In Shared Configuration
	8.1.4.6. Setting the Scope of the MemberOf Plug-in
	8.1.4.7. Synchronizing memberOf Values

	8.1.5. Automatically Adding Entries to Specified Groups
	8.1.5.1. Looking at the Structure of an Automembership Rule
	8.1.5.2. Examples of Automembership Rules
	8.1.5.3. Creating Automembership Definitions
	8.1.5.4. Updating Existing Entries for Automembership Definitions
	8.1.5.5. Testing Automembership Definitions

	8.2. USING ROLES
	8.2.1. About Roles
	8.2.2. Creating a Managed Role
	8.2.2.1. Creating a Managed Role in the Console
	8.2.2.2. Creating Managed Roles through the Command Line

	8.2.3. Creating a Filtered Role
	8.2.3.1. Creating a Filtered Role in the Console
	8.2.3.2. Creating a Filtered Role through the Command Line

	8.2.4. Creating a Nested Role
	8.2.4.1. Creating a Nested Role in the Console
	8.2.4.2. Creating Nested Role through the Command Line

	8.2.5. Editing and Assigning Roles to an Entry
	8.2.6. Viewing Roles for an Entry through the Command Line
	8.2.7. Making a Role Inactive or Active
	8.2.8. Viewing the Activation Status for Entries
	8.2.9. About Deleting Roles
	8.2.10. Using Roles Securely

	8.3. AUTOMATICALLY CREATING DUAL ENTRIES
	8.3.1. About Managed Entries
	8.3.1.1. About the Instance Definition Entry
	8.3.1.2. About the Template Entry
	8.3.1.3. Entry Attributes Written by the Managed Entries Plug-in
	8.3.1.4. Managed Entries Plug-in and Directory Server Operations

	8.3.2. Creating the Managed Entries Template Entry
	8.3.3. Creating the Managed Entries Instance Definition
	8.3.4. Putting Managed Entries Plug-in Configuration in a Replicated Database

	8.4. USING VIEWS
	8.4.1. About Views
	8.4.2. Creating Views in the Console
	8.4.3. Creating Views from the Command Line
	8.4.4. Improving Views Performance

	CHAPTER 9. CONFIGURING SECURE CONNECTIONS
	9.1. REQUIRING SECURE CONNECTIONS
	9.2. SETTING A MINIMUM STRENGTH FACTOR
	9.3. MANAGING THE NSS DATABASE USED BY DIRECTORY SERVER
	9.3.1. Creating the NSS Database for a Directory Server Instance
	9.3.1.1. Creating the NSS Database Using the Command Line
	9.3.1.2. Creating the NSS Database Using the Console

	9.3.2. Creating a Certificate Signing Request
	9.3.2.1. Creating a Certificate Signing Request Using the Command Line
	9.3.2.2. Creating a Certificate Signing Request Using the Console

	9.3.3. Installing a CA Certificate
	9.3.3.1. Installing a CA Certificate Using the Command Line
	9.3.3.2. Installing a CA Certificate Using the Console

	9.3.4. Installing a Certificate
	9.3.4.1. Installing a Server Certificate Using the Command Line
	9.3.4.2. Installing a Certificate Using the Console

	9.3.5. Generating and Installing a Self-signed Certificate
	9.3.6. Renewing a Certificate
	9.3.6.1. Renewing a Certificate Using the Command Line
	9.3.6.2. Renewing a Certificate Using the Console

	9.3.7. Removing a Certificate
	9.3.7.1. Removing a Certificate Using the Command Line
	9.3.7.2. Removing a Certificate Using the Console

	9.3.8. Removing a Private Key
	9.3.8.1. Removing a Private Key Using the Command Line
	9.3.8.2. Removing a Private Key Using the Console

	9.3.9. Changing the CA Trust Options
	9.3.9.1. Changing the CA Trust Options Using the Command Line
	9.3.9.2. Changing the CA Trust Options Using the Console

	9.3.10. Changing the Password of the NSS Database
	9.3.10.1. Changing the Password of the NSS Database Using the Command Line
	9.3.10.2. Changing the Password of the NSS Database Using the Console

	9.3.11. Adding a Certificate Revocation List
	9.3.11.1. Adding a Certificate Revocation List Using the Command Line
	9.3.11.2. Adding a Certificate Revocation List Using the Console

	9.4. ENABLING TLS
	9.4.1. Enabling TLS in Directory Server
	9.4.1.1. Enabling TLS in Directory Server Using the Command Line
	9.4.1.2. Enabling TLS in Directory Server Using the Console
	9.4.1.3. Setting Encryption Ciphers
	Displaying all Available Ciphers
	Displaying the Ciphers Directory Server Uses
	Updating the List of Enabled Ciphers
	9.4.1.4. Starting Directory Server Without a Password File
	9.4.1.5. Creating a Password File for Directory Server
	9.4.1.6. Managing How Directory Server Behaves If the Certificate Has Been Expired

	9.4.2. Enabling TLS for Connections from the Console to Directory Server
	9.4.2.1. Enabling TLS for Connections from the Console to Directory Server Using the Command Line
	9.4.2.2. Enabling TLS for Connections from the Console to Directory Server Using the Console

	9.4.3. Enabling TLS in the Administration Server
	9.4.3.1. Managing Certificates Used by the Directory Server Console
	Importing a CA Certificate When Using the Console on Linux
	Importing a CA Certificate When Using the Console on Windows

	9.4.4. Adding the CA Certificate Used By Directory Server to the Trust Store of Red Hat Enterprise Linux

	9.5. DISPLAYING THE ENCRYPTION PROTOCOLS ENABLED IN DIRECTORY SERVER
	9.6. SETTING THE ENCRYPTION PROTOCOL VERSIONS
	9.6.1. Automatically Using the Strongest Protocol in the sslVersionMax Parameter
	Identifying if sslVersionMax is Not Set
	Removing the sslVersionMax Parameter

	9.7. USING HARDWARE SECURITY MODULES
	9.8. USING CERTIFICATE-BASED CLIENT AUTHENTICATION
	9.8.1. Setting up Certificate-based Authentication
	9.8.2. Adding a Certificate to a User
	9.8.3. Forcing the EXTERNAL SASL Mechanism for Bind Requests
	9.8.4. Authenticating Using a Certificate

	9.9. SETTING UP SASL IDENTITY MAPPING
	9.9.1. About SASL Identity Mapping
	9.9.2. Default SASL Mappings for Directory Server
	9.9.3. Configuring SASL Identity Mapping
	9.9.3.1. Configuring SASL Identity Mapping from the Console
	9.9.3.2. Configuring SASL Identity Mapping from the Command Line

	9.9.4. Enabling SASL Mapping Fallback
	9.9.4.1. Setting SASL Mapping Priorities

	9.10. USING KERBEROS GSS-API WITH SASL
	9.10.1. Authentication Mechanisms for SASL in Directory Server
	9.10.2. About Kerberos in Directory Server
	9.10.2.1. About Principals and Realms
	9.10.2.2. About the KDC Server and Keytabs

	9.10.3. Configuring SASL Authentication at Directory Server Startup

	9.11. SETTING SASL MECHANISMS
	9.12. USING SASL WITH LDAP CLIENTS

	CHAPTER 10. CONFIGURING ATTRIBUTE ENCRYPTION
	10.1. ENCRYPTION KEYS
	10.2. ENCRYPTION CIPHERS
	10.3. CONFIGURING ATTRIBUTE ENCRYPTION FROM THE CONSOLE
	10.4. CONFIGURING ATTRIBUTE ENCRYPTION USING THE COMMAND LINE
	10.5. ENABLING ATTRIBUTE ENCRYPTION FOR EXISTING ATTRIBUTE VALUES
	10.6. GENERAL CONSIDERATIONS AFTER ENABLING ATTRIBUTE ENCRYPTION
	10.7. EXPORTING AND IMPORTING AN ENCRYPTED DATABASE
	10.7.1. Exporting an Encrypted Database
	10.7.2. Importing an LDIF File into an Encrypted Database

	10.8. UPDATING THE TLS CERTIFICATES USED FOR ATTRIBUTE ENCRYPTION

	CHAPTER 11. MANAGING FIPS MODE SUPPORT
	Enabling FIPS Mode Support
	Disabling FIPS Mode Support

