
Red Hat Satellite 6.9 tuning
Guide
RED HAT PERFORMANCE ENGINEERING

0

Performance Tuning for Red Hat Satellite 6.9

Pradeep Surisetty <psuriset@redhat.com>

Jan Hutar <jhutar@redhat.com>

Mike McCune <mmccune@redhat.com>

Imaanpreet Kaur <ikaur@redhat.com>

1

mailto:psuriset@redhat.com
mailto:jhutar@redhat.com
mailto:mmccune@redhat.com
mailto:ikaur@redhat.com

Legal Notice

Copyright © 2021 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons

Attribution–Share Alike 3.0 Unported license ("CC-BY-SA").

An explanation of CC-BY-SA is available at

http://creativecommons.org/licenses/by-sa/3.0/

In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must provide

the URL for the original version. Red Hat, as the licensor of this document, waives the right to
enforce, and agrees not to assert, Section 4d of CC-BY-SA to the fullest extent permitted by
applicable law. Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora,
the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States

and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and other

countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to or

endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks or

trademarks/service marks of the OpenStack Foundation, in the United States and other countries
and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or
sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners

2

Abstract

The performance tuning guide aims to cover the set of tunings and tips that can be used as
a reference to scale up your Red Hat Satellite 6.9 environment.

3

Table of Contents
Legal Notice 2

Abstract 3

Table of Contents 4

Chapter 1: Introduction 6

Chapter 2: System Requirements 7

2.1 Using custom-hiera.yaml 7

2.2 Quick Tuning Guide 7

Chapter 3: Top Performance Considerations 9

Chapter 4: Configuring your environment for Performance 10

4.1. CPU 10

4.2. Memory 10

4.3. Disk 10

4.3.1 Benchmarking disk performance 10

4.4. Network 11

4.5. Server Power Management 11

Chapter 5: Satellite Configuration Tuning 13

5.1 Tuned profile 13

5.2 Apache HTTPD Performance Tuning 13

5.2.1 Configuring how many processes can be launched by Apache httpd 13

5.2.2 Increasing the MaxOpenFiles Limit 14

5.2.3 Calculating the maximum open files limit for qdrouterd 15

5.2.4 Calculating the maximum open files limit for qpidd 15

5.2.5 Maximum asynchronous input-output (AIO) requests 15

5.2.6 Storage Considerations 16

5.2.7 mgmt-pub-interval setting 16

5.3 Puma Tuning 17

5.4 Dynflow Tuning 18

5.5 PostgreSQL Tuning 19

5.5.1 Benchmarking raw DB performance 19

5.6 MongoDb Tuning 20

4

5.6.1 Benchmarking raw performance 20

5

Chapter 1: Introduction

This document aims to provide the guidelines for tuning Red Hat Satellite 6 for performance and
scalability. Although a lot of care has been given to make the content applicable to cover a wide set
of use cases, if there is some use case which has not been covered, please feel free to reach out to
Red Hat for support for the undocumented use case.

Red Hat Satellite is a complete system management product that enables system administrators to

manage the full life cycle of Red Hat product deployments. Red Hat Satellite can manage these
deployments across physical, virtual and private clouds. Red Hat Satellite delivers system
provisioning, configuration management, software management, subscription management, and
does so while maintaining high scalability and security.

For more information on Red Hat Satellite 6, please visit:

https://access.redhat.com/documentation/en/red-hat-satellite/

6

https://access.redhat.com/documentation/en-us/red_hat_satellite/6.9/

Chapter 2: System Requirements

For details of Red Hat Satellite 6 hardware and software requirements, please take a look at
Preparing your environment for installation, inside the installation guide.

2.1 Using custom-hiera.yaml

Whenever you need to permanently change the default configuration of some of Satellite’s services,
prefer changing satellite-installer configuration above changing services configuration files, because
these changes would be overwritten on the next satellite-installer run (e.g. because of upgrade).
More details on how to do that properly can be found in Applying Custom Configuration to Red Hat
Satellite 6.9 appendix of Installer Guide.

In short, you need to edit /etc/foreman-installer/custom-hiera.yaml file and then run

satellite-installer command. Note that you have to first test changes in the non-production
environment.

2.2 Quick Tuning Guide

Users who wish to tune their Satellite based on expected managed host counts and hardware
allocation can utilize the built in tuning profiles included in Satellite 6.9 and later that are available
via the installation routine's new tuning flag (see information in installation guide):

satellite-installer --help

Usage:

satellite-installer [OPTIONS]

Options:

[....]

--tuning INSTALLATION_SIZE Tune for an installation size. Choices: default,
medium, large, extra-large, extra-extra-large (default: "default")

There are 4 custom sizes provided based on estimates of the number of managed hosts your Satellite

will be hosting.

Name Number of managed
hosts

Recommend RAM Recommend Cores

DEFAULT 0-5000 20G 4

MEDIUM 5000-10000 32G 8

LARGE 10000-20000 64G 16

7

https://access.redhat.com/documentation/en-us/red_hat_satellite/6.9/html/installing_satellite_server_from_a_connected_network/preparing-environment-for-satellite-installation#system-requirements_satellite
https://access.redhat.com/documentation/en-us/red_hat_satellite/6.9/html/installing_satellite_server_from_a_connected_network/applying-custom-configuration_satellite
https://access.redhat.com/documentation/en-us/red_hat_satellite/6.9/html/installing_satellite_server_from_a_connected_network/applying-custom-configuration_satellite
https://github.com/RedHatSatellite/satellite-support/tree/master/tuning-profiles

X-LARGE 20000-60000 128G 32

2X-LARGE 60000+ 256G+ 48+

Instructions for use:

1. Determine the profile you wish to use.
2. Run satellite-installer --tuning large. This will apply to the chosen tuning profile.
3. The Ruby app server will need to be tuned directly via the Puma Tuning section:

:ref:`puma_tuning`.
4. Resume operations.

NOTE: The specific tuning settings for each profile can be viewed in the configuration files contained
in /usr/share/foreman-installer/config/foreman.hiera/tuning/sizes

8

https://github.com/RedHatSatellite/satellite-performance-tuning/blob/devel/docs/system-requirements.rst#id1
https://github.com/RedHatSatellite/satellite-performance-tuning/blob/devel/docs/system-requirements.rst#id1

Chapter 3: Top Performance Considerations

This is the list of things that you can do to improve the performance and scalability of Red Hat
Satellite 6:

● Configuring httpd
● Configuring puma to increase concurrency
● Configure candlepin
● Configure pulp
● Configure Foreman’s performance and scalability
● Configure Dynflow
● Deploy external Capsule(s) in lieu of internal capsules
● Configure katello-agent for scalability
● Configure hammer to reduce API timeouts
● Configure qpid and qdrouterd
● Improve PostgreSQL to handle more concurrent loads
● Configure the storage for DB workloads
● Consider storage needs and network for compatibility with MongoDB
● Ensure the storage requirements for Content Views are met
● Ensure the system requirements are met
● Improve the environment for remote execution

9

Chapter 4: Configuring your environment for Performance

4.1. CPU

The more physical cores that are available to Satellite 6.9, the higher throughput can be achieved for
the tasks. Some of the Satellite components such as Puppet, MongoDB, PostgreSQL are CPU intensive
applications and can really benefit from the higher number of available CPU cores.

4.2. Memory

The higher amount of memory available in the system running Satellite, the better will be the
response times for the Satellite operations. Since Satellite uses PostgreSQL and MongoDB as the
database solutions, any additional memory coupled with the tunings will provide a boost to the
response times of the applications due to increased data retention in the memory.

4.3. Disk

With Satellite doing heavy IOPS due to repository synchronizations, package data retrieval, high
frequency database updates for the subscription records of the content hosts, it is advised that
Satellite be installed on a high speed SSD drive so as to avoid performance bottlenecks which may
happen due to increased Disk reads or writes. Satellite 6 requires disk IO to be at or above 60-80
megabytes per second of average throughput for read operations. Anything below this value can
have severe implications for the operation of the Satellite.

4.3.1 Benchmarking disk performance

We are working to update foreman-maintain to only warn the users when its internal quick 'fio'
benchmark results in numbers below our recommended throughput but will not require a whitelist
parameter to continue.

Also working on an updated benchmark script you can run (which will likely be integrated into

foreman-maintain in the future) to get a more accurate real-world storage information.

Note:

● One may have to temporarily reduce the RAM in order to run the io benchmark, aka if the

box has 256GB that is a lot of pulp space, so add mem=20G kernel option in grub. This is
needed because the script will execute a series of fio based IO tests against a targeted
directory specified in its execution. This test will create a very large file that is double (2x) the
size of the physical RAM on this system to ensure that we are not just testing the caching at
the OS level of the storage.

● Please bear above in mind when benchmarking other filesystems if you have them (like

PostgreSQL or MongoDB storage) which might have significantly smaller capacity than Pulp
storage and perhaps on different sets of storage (SAN, iSCSI, etc).

This test does not use directio and will utilize the OS + caching as normal operations would.

10

You can find our first version of the script storage-benchmark. To execute just download to your

Satellite, chmod +x the script and run:

./storage-benchmark /var/lib/pulp
This test creates a test file that is double (2X) the size of this system's
RAM in GB. This benchmark will create a test file of size:

64 Gigabytes

in the: [/var/lib/pulp/storage-benchmark] location. This is to ensure that the test
utilizes
a combination of cached and non-cached data during the test.

**** WARNING! Please verify you have enough free space to create a 64 GB
file in this location before proceeding.

Do you wish to proceed? (Y/N) Y

Starting IO tests via the 'fio' command. This may take up to an hour or more
depending on the size of the files being tested. Be patient!

************* Running READ test via fio:

read-test: (g=0): rw=read, bs=(R) 4096B-4096B, (W) 4096B-4096B, (T) 4096B-4096B,
ioengine=psync, iodepth=1
fio-3.1
Starting 1 process
…

As noted in the README block in the script: generally you wish to see on average 100MB/sec or

higher in the tests below:

● Local SSD based storage should values of 600MB/sec or higher

● Spinning disks should see values in the range of 100-200MB/sec or higher

If you see values below this, please open a support ticket for assistance.

Refer this blog for more detailed info.

4.4. Network

The communication between the Satellite and Capsules is impacted by the network performance. A
decent network with a minimum jitter and low latency is required to enable hassle free operations
such as Satellite and Capsule synchronization (at least make sure it is not causing connection resets,
etc).

4.5. Server Power Management

Your server by default is likely to be configured to conserve power. While this is a good approach to
keep the max power consumption in check, it also has a side effect of lowering the performance that
Satellite may be able to achieve. For a server running Satellite, it is recommended to set the BIOS to

11

https://github.com/RedHatSatellite/satellite-support/blob/master/storage-benchmark
https://access.redhat.com/solutions/3397771

enable the system to be run in performance mode to boost the maximum performance levels that
Satellite can achieve.

12

Chapter 5: Satellite Configuration Tuning

Red Hat Satellite as a product comes with a number of components that communicate with each
other to produce a final outcome. All these components can be tuned independently of each other
to achieve the maximum possible performance for the scenario desired.

5.1 Tuned profile

Red Hat Enterprise Linux 7 enables the tuned daemon by default during installation. On bare-metal,
it is recommended that Red Hat Satellite 6 and capsule servers run the ‘throughput-performance’
tuned profile. While, if virtualized, they should run the ‘virtual-guest’ profile. If it is not certain the
system is currently running the correct profile, check with the ‘tuned-adm active’ command as
shown above. More information about tuned is located in the Red Hat Enterprise Linux Performance
Tuning Guide.

service tuned start

chkconfig tuned on

RHEL 7 (bare-metal):

tuned-adm profile throughput-performance

RHEL 7 (virtual machine)

tuned-adm profile virtual-guest

Transparent Huge Pages is a memory management technique used by the Linux kernel which reduces

the overhead of using Translation Lookaside Buffer (TLB) by using larger sized memory pages. Due to
databases having Sparse Memory Access patterns instead of Contiguous Memory access patterns,
database workloads often perform poorly when Transparent Huge Pages is enabled.

To improve performance of MongoDB, Red Hat recommends Transparent Huge Pages be disabled.

For details on disabling Transparent Huge Pages, see Red Hat Solution 1320153.

5.2 Apache HTTPD Performance Tuning

Apache httpd forms a core part of the Satellite and acts as a web server for handling the requests
that are being made through the Satellite Web UI or exposed APIs. To increase the concurrency of
the operations, httpd forms the first point where tuning can help to boost the performance of the
Satellite.

5.2.1 Configuring how many processes can be launched by Apache httpd

The version of Apache httpd that ships with Red Hat Satellite 6 by default uses prefork request
handling mechanism. With the prefork model of handling the requests, httpd will launch a new
process to handle the incoming connection by the client.

13

https://access.redhat.com/solutions/1320153

When the number of requests to the apache exceeds the maximum number of child processes that

can be launched to handle the incoming connections, an HTTP 503 Service Unavailable Error is raised
by Apache.

Amidst httpd running out of processes to handle the incoming connections can also result in multiple

component failure on the Satellite side due to the dependency of components like Pulp on the
availability of httpd processes.

Based on your expected peak load, you might want to modify the configuration of apache prefork to

enable it to handle more concurrent requests.

An example modification to the prefork configuration for a server which may desire to handle 150

concurrent content host registrations to Satellite may look like the configuration file example that
follows (see how to use custom-hiera.yaml file; this will modify config file
/etc/httpd/conf.modules.d/prefork.conf):

File: /etc/foreman-installer/custom-hiera.yaml

apache::mod::prefork::serverlimit: 582

apache::mod::prefork::maxclients: 582

apache::mod::prefork::startservers: 10

In the above example, the ServerLimit parameter is set only to be able to raise MaxClients value.

The MaxClients (see MaxRequestWorker which is a new name in Apache docs) parameter is being

used to set the maximum number of child processes that httpd can launch to handle the incoming
requests.

The StartServers parameter defines how many server processes will be launched by default when the

httpd process is started.

5.2.2 Increasing the MaxOpenFiles Limit

With the tuning in place, apache httpd can easily open a lot of file descriptors on the server which
may exceed the default limit of most of the linux systems in place. To avoid any kind of issues that
may arise as a result of exceeding max open files limit on the system, please create the following file
and directory and set the contents of the file as specified in the below given example:

File: /etc/systemd/system/httpd.service.d/limits.conf

[Service]

LimitNOFILE=640000

Once the file has been edited, the following commands need to be run to make the tunings come

into effect:

systemctl daemon-reload

foreman-maintain service restart

14

5.2.3 Calculating the maximum open files limit for qdrouterd

Calculate the limit for open files in qdrouterd using this formula: (Nx3) + 100, where N is the number
of content hosts. Each content host may consume up to three file descriptors in the router, and 100
filedescriptors are required to run the router itself.

The following settings permit Satellite to scale up to 10,000 content hosts.

5.2.3.1 qdrouterd settings

Add/Update qpid::router::open_file_limit in custom-hiera.yaml as shown below.

File: /etc/foreman-installer/custom-hiera.yaml

qpid::router::open_file_limit: 150100

Note The change must be applied via:

satellite-installer

systemctl daemon-reload

foreman-maintain service restart

5.2.4 Calculating the maximum open files limit for qpidd

Calculate the limit for open files in qpidd using this formula: (Nx4) + 500, where N is the number of
content hosts. A single content host can consume up to four file descriptors and 500 file descriptors
are required for the operations of Broker (a component of qpidd).

5.2.4.1 qpidd settings

Add/Update qpid::open_file_limit in /etc/foreman-installer/custom-hiera.yaml as shown below.

File: /etc/foreman-installer/custom-hiera.yaml

qpid::open_file_limit: 65536

Note The change must be applied via:

satellite-installer

systemctl daemon-reload

foreman-maintain service restart

5.2.5 Maximum asynchronous input-output (AIO) requests

Increase the maximum number of allowable concurrent AIO requests by increasing the kernel
parameter fs.aio-max-nr.1. Edit configuration file /etc/sysctl.conf, setting the value of
fs.aio-max-nr to the desired maximum.

15

fs.aio-max-nr=23456

In this example, 23456 is the maximum number of allowable concurrent AIO requests.

This number should be bigger than 33 multiplied by the maximum number of the content hosts
planned to be registered to Satellite. To apply the changes:

sysctl -p

Rebooting the machine also ensures that this change is applied.

5.2.6 Storage Considerations

Plan to have enough storage capacity for directory /var/lib/qpidd in advance when you are planning
an installation that will use katello-agent extensively. In Red Hat Satellite 6, /var/lib/qpidd requires
2MB disk space per content host. See this bug for more details.

5.2.7 mgmt-pub-interval setting

You might see the following error in /var/log/journal in Red Hat Enterprise Linux 7:

satellite.example.com qpidd[92464]: [Broker] error Channel exception:
not-attached: Channel 2 is not
attached(/builddir/build/BUILD/qpid-cpp-0.30/src/qpid/amqp_0_10/SessionHandle
r.cpp: 39)satellite.example.com qpidd[92464]: [Protocol] error
Connectionqpid.10.1.10.1:5671-10.1.10.1:53790 timed out: closing

This error message appears because qpid maintains management objects for queues, sessions, and

connections and recycles them every ten seconds by default. The same object with the same ID is
created, deleted, and created again. The old management object is not yet purged, which is why qpid
throws this error. Here’s a workaround: lower the mgmt-pub-interval parameter from the default
10seconds to something lower. Add it to /etc/qpid/qpidd.conf and restart the qpidd service. See also
Bug 1335694 comment 7.

5.3 Puma Tuning

Puma is a ruby application server which is used for serving the Foreman related requests to the
clients.

For any Satellite configuration that is supposed to handle a large number of clients or frequent
operations, it is important for the Puma to be tuned appropriately.

Threads min effects

Less threads will lead to more memory usage for different scales on the Satellite server.

16

https://bugzilla.redhat.com/show_bug.cgi?id=1366323
https://bugzilla.redhat.com/show_bug.cgi?id=1335694#c7

For example, we have compared these two setups:

Satellite VM with 8 CPUs, 40 GB RAM Satellite VM with 8 CPUs, 40 GB RAM

--foreman-foreman-service-puma-threads-min=0 --foreman-foreman-service-puma-threads-min=16

--foreman-foreman-service-puma-threads-min=0 --foreman-foreman-service-puma-threads-max=16

--foreman-foreman-service-puma-workers=2 --foreman-foreman-service-puma-workers=2

When we tune the puma server with t_min=16 puma will consume about 12% less memory as
compared to t_min=0.

Setting threads min, max & workers

More workers will allow for lower time to register hosts in parallel.

For example, we have compared these two setups:

Satellite VM with 8 CPUs, 40 GB RAM Satellite VM with 8 CPUs, 40 GB RAM

--foreman-foreman-service-puma-threads-min=16 --foreman-foreman-service-puma-threads-min=8

--foreman-foreman-service-puma-threads-max=16 --foreman-foreman-service-puma-threads-max=8

--foreman-foreman-service-puma-workers=2 --foreman-foreman-service-puma-workers=4

In the second case with more workers but the same total number of threads, we have seen about
11% of speedup in highly concurrent registrations scenario. Moreover, adding more workers did not
consume more cpu and memory but will get more performance.

Setting right number of workers for different number of CPUs

If you have enough CPUs, adding more workers adds more performance.

For example, we have compared Satellite setups with 8 and 16 CPUs.

Satellite VM with 8 CPUs, 40 GB RAM Satellite VM with 16 CPUs, 40 GB RAM

--foreman-foreman-service-puma-threads-min=16 --foreman-foreman-service-puma-threads-min=16

--foreman-foreman-service-puma-threads-max=16 --foreman-foreman-service-puma-threads-max=16

--foreman-foreman-service-puma-workers=2,4,8 and
16

--foreman-foreman-service-puma-workers=2,4,8
and 16

17

In 8 CPUs setup, changing the number of workers from 2 to 16, improved concurrent registration
time by 36%. In 16 CPU setup, the same change caused 55% improvement.

Adding more workers can also help with total registration concurrency Satellite can handle. In our
measurements, setups with 2 workers were able to handle up to 480 concurrent registrations, but
adding more workers improved the situation.

5.4 Dynflow & Sidekiq Tuning

Dynflow is the workflow management system and task orchestrator which is built as a plugin inside
Foreman and is used to execute the different tasks of Satellite in an out-of-order execution manner.
Under the conditions when there are a lot of clients checking in on Satellite and running a number of
tasks, the Dynflow can take some help from an added tuning specifying how many executors can it
launch.

The following configuration snippet provides more information about the tunings involved related to

Dynflow:

https://satellite.example.com/foreman_tasks/sidekiq

5.5 PostgreSQL Tuning

PostgreSQL is the primary SQL based database that is used by Satellite for the storage of persistent
context across a wide variety of tasks that Satellite does. The database sees an extensive usage is
usually working on to provide the Satellite with the data which it needs for its smooth functioning.
This makes PostgreSQL a heavily used process which if tuned can have a number of benefits on the
overall operational response of Satellite.

The below set of tunings can be applied to PostgreSQL to improve its response times (see how to use

custom-hiera.yaml file; this will modify /var/lib/pgsql/data/postgresql.conf file)

File: /etc/foreman-installer/custom-hiera.yaml

postgresql::server::config_entries:

max_connections: 1000

shared_buffers: 2GB

work_mem: 8MB

autovacuum_vacuum_cost_limit: 2000

In the above tuning configuration, there are a certain set of keys which we have altered:

max_connections: The key defines the maximum number of connections that can be accepted by the

PostgreSQL processes that are running. An optimal value for the parameter will be equal to the
nearest multiple of 100 of the ServerLimit value of Apache httpd2 multiplied by 2. For example, if
ServerLimit is set to 582, we can set the max_connections to 1000.

18

shared_buffers: The shared buffers define the memory used by all the active connections inside

postgresql to store the data for the different database operations. An optimal value for this will vary
between 2 GB to a maximum of 25% of your total system memory depending upon the frequency of
the operations being conducted on Satellite.

work_mem: The work_mem is the memory that is allocated on a per process basis for Postgresql and

is used to store the intermediate results of the operations that are being performed by the process.
Setting this value to 8 MB should be more than enough for most of the intensive operations on
Satellite.

autovacuum_vacuum_cost_limit: The key defines the cost limit value for the vacuuming operation

inside the autovacuum process to clean up the dead tuples inside the database relations. The cost
limit defines the number of tuples that can be processed in a single run by the process. An optimal
value for this is 2000 based on the general load that Satellite pushes on the PostgreSQL server
process.

Note - With the upgrade to Postgres 12, ‘checkpoint_segments’ configuration is not supported. For

more details, please refer to this bugzilla.

5.5.1 Benchmarking raw DB performance

To get a list of the top table sizes in disk space for both Candlepin and Foreman, check
postgres-size-report script in satellite-support git repository.

PGbench utility (note you may need to resize PostgreSQL data directory /var/lib/pgsql/ directory to

100GB or what does benchmark take to run) might be used to measure PostgreSQL performance on
your system. Use yum install postgresql-contrib to install it. Some resources are:

● https://blog.codeship.com/tuning-postgresql-with-pgbench/

Choice of filesystem for PostgreSQL data directory might matter as well:

● https://blog.pgaddict.com/posts/postgresql-performance-on-ext4-and-xfs

Note:

● Never do any testing on production systems and without valid backup.

● Before you start testing, see how big the database files are. Testing with a really small
database would not produce any meaningful results. E.g. if the DB is only 20G and the buffer
pool is 32G, it won't show problems with a large number of connections because the data
will be completely buffered.

5.6 MongoDb Tuning

Under certain circumstances, mongod consumes randomly high memory (up to 1/2 of all RAM) and
this aggressive memory usage limits other processes or can cause OOM killer to kill mongod. In order
to overcome this situation,tune the cache size by referring the following steps:

19

https://bugzilla.redhat.com/show_bug.cgi?id=1867311#c12
https://github.com/RedHatSatellite/satellite-support/blob/master/postgres-size-report
https://github.com/RedHatSatellite/satellite-support
https://blog.codeship.com/tuning-postgresql-with-pgbench/
https://blog.pgaddict.com/posts/postgresql-performance-on-ext4-and-xfs

Update custom-hiera.yaml:

• Edit /etc/foreman-installer/custom-hiera.yaml and add the entry below inserting the value that is

20% of the physical RAM while keeping in mind the guidelines in this case, approximately 6GB for a
32GB server:

mongodb::server::config_data: storage.wiredTiger.engineConfig.cacheSizeGB: 6

• Run installer to apply changes:

satellite-installer

For more details, please refer to this Kbase article.

5.6.1 Benchmarking raw performance

To get a size report of MongoDB, use mongo-size-report from satellite-support repository.

Utility used for checking IO speed specific to MongoDB:

● https://www.mongodb.com/blog/post/checking-disk-performance-with-the-mongoperf

For MongoDB benchmark meant to run on (stage) Satellite installs, check mongo-benchmark tool in

satellite-support git repository.

Depending on a disk drive type, file system choice (ext4 or xfs) for MongoDB storage directory might

be important:

● https://scalegrid.io/blog/xfs-vs-ext4-comparing-mongodb-performance-on-aws-ec2/

Note:

● Never do any testing on production systems and without valid backup.

20

https://access.redhat.com/solutions/4505561
https://github.com/RedHatSatellite/satellite-support/blob/master/mongo-size-report
https://github.com/RedHatSatellite/satellite-support/
https://www.mongodb.com/blog/post/checking-disk-performance-with-the-mongoperf
https://github.com/RedHatSatellite/satellite-support/blob/master/mongo-benchmark
https://github.com/RedHatSatellite/satellite-support
https://scalegrid.io/blog/xfs-vs-ext4-comparing-mongodb-performance-on-aws-ec2/

