
Red Hat OpenStack Platform on Red Hat
Ceph Storage

Cinder Volume Performance at Scale

Performance and Scale Engineering

Version 1.0 February 2017

Table of Contents
1. Executive Summary. 2

2. Test Environment . 3

2.1. Hardware . 3

2.2. Software . 3

2.3. Red Hat Ceph Storage . 4

2.4. Red Hat OpenStack Platform . 6

3. Test Workload . 9

3.1. Test Design . 9

3.2. Performance Statistics. 12

3.3. Network . 12

3.4. Large File Random I/O. 12

4. Test Results . 15

4.1. Effect of I/O Block Size. 15

4.2. Instance Scaling . 17

4.3. RHCS Recovery . 17

4.4. Fault Insertion . 18

Appendix A: References . 22

Appendix B: Tuned Profiles . 23

B.1. throughput-performance . 23

B.2. virtual-host . 23

B.3. virtual-guest . 23

Appendix C: Issues . 24

Appendix D: ceph.conf . 25

Appendix E: puppet-ceph-external.yaml . 26

Appendix F: Network Testing Methodology . 27

100 East Davie Street
Raleigh NC 27601 USA
Phone: +1 919 754 3700
Phone: 888 733 4281
Fax: +1 919 754 3701
PO Box 13588
Research Triangle Park NC 27709 USA

Linux is a registered trademark of Linus Torvalds. Red Hat, Red Hat Enterprise
Linux, the Red Hat "Shadowman" logo and Ceph are registered trademarks of Red
Hat, Inc. in the United States and other countries.

Intel, the Intel logo and Xeon are registered trademarks of Intel Corporation or its
subsidiaries in the United States and other countries.

Supermicro and the Supermicro logo are trademarks of the Super Micro Computer,
Inc.

Dell, the Dell logo and PowerEdge are trademarks of Dell, Inc.

All other trademarks referenced herein are the property of their respective
owners.

© 2017 by Red Hat, Inc. This material may be distributed only subject to the terms
and conditions set forth in the Open Publication License, V1.0 or later (the latest
version is presently available at http://www.opencontent.org/openpub/).

The information contained herein is subject to change without notice. Red Hat, Inc.
shall not be liable for technical or editorial errors or omissions contained herein.

Distribution of modified versions of this document is prohibited without the
explicit permission of Red Hat Inc.

Distribution of this work or derivative of this work in any standard (paper) book
form for commercial purposes is prohibited unless prior permission is obtained
from Red Hat Inc.

The GPG fingerprint of the security@redhat.com key is: CA 20 86 86 2B D6 9D FC 65
F6 EC C4 21 91 80 CD DB 42 A6 0E

www.redhat.com 1 Performance and Scale Engineering

http://www.opencontent.org/openpub/
mailto:security@redhat.com

Chapter 1. Executive Summary
This document describes large-scale I/O characterization testing performed by the Red Hat
Performance Engineering group on:

• Red Hat Enterprise Linux (RHEL) 7.3

• Red Hat OpenStack Platform (RHOSP) 10

• Red Hat Ceph Storage (RHCS) 2.0

using Glance images, Nova instances, and Cinder volumes on RHCS. The authors are not aware of any
other RHOSP-RHCS test performed in Red Hat at this scale. Up to 1.8 PB of storage, in an external RHCS
cluster of 29 servers, and 20 RHOSP compute nodes were used to exercise as many as 1024 RHOSP
instances with FIO (Flexible I/O) benchmarks measuring application latency percentiles as a function
of time while the following operational events were simulated:

• OSD failure and recovery

• OSD node failure and recovery

• RHCS Monitor failure and recovery

The purpose of this testing was not to achieve world-record performance by extensive tuning, but to
document and understand the user experience for a normal configuration of this type with respect to
performance, and specifically to understand issues customers might experience with such a
configuration in production.

Some integration issues with RHOSP and RHCS were found and documented as bugzilla reports. These
problems have either been fixed or are being fixed in the upcoming release. See Appendix: Issues for
details.

Performance and Scale Engineering 2 www.redhat.com

Chapter 2. Test Environment
This section describes the hardware, software, RHCS, and RHOSP configurations used for the systems
under test.

2.1. Hardware
Table 1 identifies the specifications of the hardware used in testing.

Table 1. Hardware Configuration

RHCS OSD Node Supermicro SSG-6048R-E1CR36H with 256GB RAM, 2-socket
 (28) Intel Xeon E5-2660 v4 @2.00GHz (56 threads/server)
 Dual-port 40-GbE (SFP+) - Intel XL710
LSI 3108 disk controller
 (2) P3700 800GB NVMe (journals)
 (36) 2TB 7.2k SATA (OSDs)
 (2) 500GB 7.2k SATA (system)

RHCS Monitor Supermicro SSG-6018R-MON2 with 64GB RAM, 2-socket
 (20) Intel Xeon E5-2630 v4 @2.20GHz (40 threads/server)
 (2) 80GB SSD SATA (system)
 Dual-port 10-GbE (SFP+)

RHOSP Controller
RHOSP Compute

Dell PowerEdge R620 with 64GB RAM, 2-socket
 (12) Intel Xeon E5-2630 v4 @2.20GHz (24 threads/server)
 (4) 1TB SATA
 (1) Intel X520 Dual Port 10-GbE NIC

RHOSP Instance
(VM)

1 CPU, 1GB Memory, 20GB system disk

Network Juniper QFX5200 Switches, 100-GbE uplinks

2.2. Software
Table 2 lists the versions of relevant software packages used in testing.

Table 2. Software Configuration

RHCS OSD Nodes
(29)

RHEL 7.3
RHCS 2.0
tuned active profile: throughput-performance

RHOSP
Controllers (3)

RHEL 7.3
RHOSP 10
RHCS 2.0
tuned active profile: throughput-performance

www.redhat.com 3 Performance and Scale Engineering

RHOSP Computes
(20)

RHEL 7.3
RHOSP 10
RHCS 2.0
tuned active profile: virtual-host

RHOSP Instances
(1024)

RHEL 7.3
fio-2.14
tuned active profile: virtual-guest

See Appendix: Tuned Profiles for details of the profiles referenced in the Software Configuration table.

2.3. Red Hat Ceph Storage
The RHCS cluster was deployed separately using ceph-ansible (v1.0.5-32) prior to the RHOSP
configuration. See Appendix: References for the documentation used to enable the repository for the
Red Hat Storage Console and Ansible installer.

All OSDs were added in parallel deploying 1.8PB of RHCS in approximately 60 minutes. The testing was
performed using as many as 29 RHCS OSD nodes, 5 RHCS monitors and 20 RHOSP compute nodes. Each
RHCS OSD node allocated 35-36 2TB local disks as OSDs (788 total) and two NVMe SSDs for journaling.

The RHCS configuration file used during testing is in Appendix: RHCS Configuration File. Each RHOSP
instance had one 100GB cinder volume created, attached, pre-allocated, XFS formatted, and mounted
as /dev/vdb for all I/O tests.

2.3.1. PG Settings

The number of placement groups (PGs) for the pool (pg_num) as well as the number of PGs to use
when calculating data placement (pgp_num) were adjusted using the recommended
https://access.redhat.com/labs/cephpgc/Ceph [PGs per Pool Calculator] specifying OpenStack as the
Ceph use case with no erasure coding or cache tiering. Because this testing focused on Cinder volume
performance, no cinder-backup pool was used and the percentage of data for that pool was added to
that of Cinder volumes. Testing started with 29 OSD nodes and a total 1042 OSDs so the initial PG
counts were calculated as seen in Table 3.

Table 3. RHCS PG Calculations

Pool
Name

Pool Type Replica
Size

OSDs % Data Target
PGs/OSD

PG Count

volumes Replicated 3 1042 78 100 32768

vms Replicated 3 1042 15 100 4096

images Replicated 3 1042 7 100 2048

A ratio of 100 PGs/OSD was originally used in PGcalc, resulting in a PG count of 32768. This resulted in
quite a spread in the OSD disk utilization, as shown in the next figure, with the lowest utilization

Performance and Scale Engineering 4 www.redhat.com

https://access.redhat.com/labs/cephpgc/Ceph

approximately 20% and the highest at 100%. Assuming random I/O throughput is limited by the
maximum HDD utilization, then a much higher throughput could be achieved if all the HDDs had even
utilization.

Note the uneven disk utilization levels across the 36 OSDs.

OSD Disk Utilization

The PG count for the volumes pool was doubled to 65536 to better spread the data distribution more
evenly across the OSDs. The images pool PG count was decreased to 1024 as the pool was using less
percentage of data than initially estimated. Note the disk utilization levels are higher and more evenly
distributed.

OSD Disk Utilization

See the section on Performance Statistics for information regarding the statistic collection and graph
generation.

Some time after initial testing began, a rack consisting of seven OSD nodes was removed from the

www.redhat.com 5 Performance and Scale Engineering

configuration, reducing the total OSD count to 787. Because the count had been reduced by roughly
25%, the PG levels were then reduced by the same amount which resulted in using 49152, 3072 and 768
for volumes, vms and images, respectively.

2.3.2. Operating System Settings

Some RHEL 7.3 settings on the OSD nodes as well as RHOSP compute nodes were altered for use with a
RHCS cluster.

OSD Process Identifiers Limit - kernel.pid_max

The total number of available system threads (i.e., the number of simultaneous processes that can run
in separate memory spaces) is determined by kernel.pid_max which defaults to 32768 but a large
number of PGs can require a greater value. Although most of these threads are idle until an OSD
repair/backfill is initiated, they are still part of the ultimate limit. RHCS typically recommends
increasing kernel.pid_max to a very high value.

libvirt max_files and max_processes

In this RHOSP configuration, the the file descriptor limits for libvirtd had to be increased in order to
avoid problems with the computes communicating with the ceph monitors resulting in qemu-kvm I/O
hangs. The RHEL 7 default setting for libvirt max_files and max_processes is 1024, which is greatly
insufficient for deployment with a RHCS cluster. Both max_files and max_processes were increased by
a factor of 32.

2.4. Red Hat OpenStack Platform
RHOSP 10 was installed and configured via a RHOSP director (RHOSPd) node using Ansible playbooks
to deploy the undercloud and RHOSP configuration files. See Appendix: References for the location of
the playbook.

The overcloud consists of three highly available controller nodes and 20 compute nodes. This
configuration is somewhat sub-optimal in a couple areas:

1. It did not have a representative ratio of RHCS clients (i.e., RHOSP compute nodes) to RHCS servers.
Typically there are many more compute nodes than RHCS servers.

2. For observing sequential I/O performance, an optimal configuration would typically have network
bandwidth on clients greater than the bandwidth available to the servers.

RHOSPd was instructed to deploy no RHCS servers. Nova, Glance, and Cinder were configured to use
an existing, external RHCS cluster described in Section Red Hat Ceph Storage using the procedure
documented in Red Hat Ceph Storage for the Overcloud, specifically chapter 3: Integrating an Existing
Ceph Storage Cluster With an Overcloud. The .yaml file used to link to the external RHCS cluster can be
found in Appendix: puppet-ceph-external.yaml with the necessary changes highlighted.

Performance and Scale Engineering 6 www.redhat.com

https://github.com/redhat-performance/ops-tools/tree/master/ansible/undercloud
https://access.redhat.com/documentation/en/red-hat-openstack-platform/10/paged/red-hat-ceph-storage-for-the-overcloud/
https://access.redhat.com/documentation/en/red-hat-openstack-platform/10/paged/red-hat-ceph-storage-for-the-overcloud/chapter-3-integrating-an-existing-ceph-storage-cluster-with-an-overcloud
https://access.redhat.com/documentation/en/red-hat-openstack-platform/10/paged/red-hat-ceph-storage-for-the-overcloud/chapter-3-integrating-an-existing-ceph-storage-cluster-with-an-overcloud

Neutron was configured with:

• the control plane on a 10-GbE public interface with Jumbo Frames (MTU=9000).

• RHCS on a 40-GbE interface with Jumbo Frames (MTU=9000).

• tenant traffic using a 10-GbE interface with Jumbo Frames (MTU=9000).

• isolation using VXLAN.

To improve repeatability of the throughput test results to the thinly provisioned RBD volumes, blocks
are pre-allocated using dd prior to formatting them with an XFS filesystem. This is done because RHCS
does not allocate or initialize the RBD volume when it is created so the first write to a Cinder block will
incur greater overhead than subsequent writes where allocation is not required.

The following figure illustrates the RHOSP and RHCS connectivity.

Test Environment Connectivity

This figure identifies the RHOSP RHCS hardware used for each role.

Test Environment Hardware Roles

www.redhat.com 7 Performance and Scale Engineering

2.4.1. Issues

Some integration issues with RHSOP and RHCS have been found and documented as bugzilla reports.
These problems have either been fixed or are being fixed in an upcoming release. See Appendix: Issues
for further details. With the preceding exceptions, the system installed and performed well with
respect to hardware utilization for a variety of workloads in this particular configuration. That being
said, this configuration did not have a representative ratio of compute nodes to RHCS servers. See the
Test Workload section for additional discussion.

The remaining issues, maximum latency and uneven OSD utilization, were observed but are not yet
resolved. Aditional work will be required to better understand them. Note that no problems with 99%
latency percentile were observed, which were typically well under one second and only reached two
seconds briefly during simulated hardware failure/recovery events.

Performance and Scale Engineering 8 www.redhat.com

Chapter 3. Test Workload
This project used random reads and writes to measure the effect of scaling instances and a mixed
random read and write workload for all fault insertion tests. Due to the aforementioned sub-optimal
configuration, testing focused on random I/O performance with smaller transfer sizes rather than
sequential I/O performance to avoid being bottlenecked at the network layer.

3.1. Test Design
All I/O tests are designed to:

• represent steady state behavior by using random I/O test durations of 10 min + 10 sec/guest to
ensure run times are sufficient to fully utilize guest memory and force cache flushes to storage.
While the instance scaling tests utilized the calculated runtime durations, fault insertion testing did
not and instead ran for the duration of RHCS recovery.

• ensure data travels the full I/O path between persistent storage and application by:

• using vm.dirty_expire_centisecs in conjunction with vm.dirty_ratio.

• dropping all (server, compute, guest) caches prior to start of every test.

• ensuring workload generators do not read or write the same file or offset in a file more than
once, reducing opportunities for caching in memory.

• using O_DIRECT with random I/O to bypass guest caching.

• use a data set an order of magnitude larger than aggregate writeback cache size to ensure data is
written to disk by end of test.

• push I/O to its limits (excluding low instance count random I/O tests due to rate limiting) with no
regard for system operational safety margins that would normally be taken into consideration in
production environments.

To produce more repeatable test results and avoid RHCS caching data in memory, the following
modifications were applied to the test environment:

1. the cinder volume sizes were increased from 16GB to 100GB to avoid fitting within memory cache.

2. the FIO iodepth (how many I/Os it issues to the OS at any given time) was increased from 2 to 4.

3. the FIO ioengine was changed from sync to libaio.

www.redhat.com 9 Performance and Scale Engineering

The following figures highlight the RHCS memory (in KB) and OSD disk utilization before and after the
changes.

OSD Node Memory (KB) Usage (prior to workload changes) - 512 Instance Random I/O

Using all memory stabilized the workload results and eliminated data caching.

OSD Node Memory (KB) Usage - 512 Instance Random I/O

Performance and Scale Engineering 10 www.redhat.com

Before using libaio, only approximately 50% utilization was achieved from our HDDs on average.

OSD Disk Utilization (prior to workload changes) - 512 Instance Random I/O

The OSD utilization after altering the workload.

OSD Disk Utilization - 512 Instance Random I/O

With the partial exception of IOPS limited random I/O tests, all instances are running at the maximum
throughput that the hardware will allow. In a more real world example, instances often do not saturate
the RHCS cluster. The RHOSP RHCS hardware configuration should be designed to avoid the potential
for over-subscribing the storage system.

www.redhat.com 11 Performance and Scale Engineering

3.2. Performance Statistics
Performance statistics were collected during testing using the Pbench Benchmarking and Performance
Analysis tool. pbench-uperf was used to test network speeds before testing began and pbench-fio was
used to auto start and stop performance statistic collections (iostat, sar) before and after FIO tests.
Additionally, pbench auto-generates graphs for the duration of the test for each statistical tool
configured to execute.

3.3. Network
pbench-uperf (see the section on Performance Statistics) was used for verifying both stream and
request-response network speeds. The network flow was designed to correspond to the manner in
which RHCS works, where OSD hosts are both sending and receiving requests to which they must
respond. In the command syntax:

pbench-uperf -t rr -p tcp -i 8 -r 60 -m 4096,131072,4194304 -p tcp -C
host1,host2,host3,...,hostN -S hostN,host1,host2,...,hostN-1

host[k] sends traffic to host[k-1 mod N] using 4K, 128K and 4M request/response sizes. See Appendix:
Network Tests for a description of the network testing methodology and the issue discovered and
resolved resolved by doing so. Any multi-rack configuration should use a similar network testing
methodology to establish network performance prior to production.

3.4. Large File Random I/O
Large-file random multi-stream reads and writes using an FIO based workload for testing pure random
I/O on Cinder volumes. This workload executes a random I/O process inside each instance in parallel
using options to start and stop all threads at approximately the same time. This allows aggregation of
the per-thread results to achieve system-wide IOPS throughput for RHOSP on RHCS. Additionally, FIO
can rate limit throughput, run time and IOPS of individual processes to measure instance scaling
throughput as well as the OSD node’s aggregate RHOSP instance capacity.

The following rate limits were applied for scaling VM workloads:

• maximum 35 IOPS per instance

• maximum run time

/usr/local/bin/fio --client=/root/vms.list.512 --max-jobs=512 --output-format=json
fio.job

Performance and Scale Engineering 12 www.redhat.com

http://distributed-system-analysis.github.io/pbench/
http://distributed-system-analysis.github.io/pbench/

This is the FIO job file used with the previous FIO command where runtime is the calculated maximum
run time (10 minutes plus 10 seconds per instance).

[global]
ioengine=libaio
bs=4k
iodepth=4
direct=1
fsync_on_close=1
time_based=1
runtime=5720
clocksource=clock_gettime
ramp_time=10
startdelay=20

[fio]
rw=randrw
size=95g
write_bw_log=fio
write_iops_log=fio
write_lat_log=fio
write_hist_log=fio
numjobs=1
per_job_logs=1
log_avg_msec=60000
log_hist_msec=60000
directory=/mnt/ceph/fio

3.4.1. FIO Latency Histogram Logging

In order to capture for the first time a measurement of application latency percentiles as a function of
time, a brand-new measurement method was added to FIO by the Performance & Scale team, FIO
latency histogram logging.

The FIO benchmark has always had histograms for measuring latency percentiles over the duration of
the entire test and has a very creative way of generating histogram buckets that encompass the huge
range of possible latency values, from one microsecond up to seconds. This is documented in
fio/stat.h comments and the code to convert a latency to a histogram bucket array index is in a small
routine plat_val_to_idx() in stat.c. However, latency percentiles were only calculated at the end of
the test and consequently nothing could be said about how those latency percentiles varied over the
duration of the test. For example, to search for latency spikes when a simulated hardware failure
occurred, it would require many short FIO tests. This approach does not work for long-duration tests as
the RHCS backfill process can take up to 12 hours in some cases.

Instead, upstream FIO was changed to periodically output the in-memory histogram that each FIO

www.redhat.com 13 Performance and Scale Engineering

process was maintaining. Additionally, it output the change in the histogram buckets instead of the raw
counters. The resulting records have this CSV (comma-separated-value) format:

• field 1: timestamp in milliseconds

• field 2: I/O direction (0 = read, 1 = write)

• field 3: blocksize (I/O transfer size in bytes)

• fields 4-1218: histogram buckets

A typical histogram log record looks like this:

60020, 0, 4096, 0, 0, ... 1, 2, 2, 1,

where the timestamp is 60.02 seconds, the I/O direction is 'read', and the blocksize is 4KB.
Unfortunately this output format does not provide the location of the histogram bucket latency
boundaries. A dump-fio-histo-log.py program is available to generate the histogram latency bucket
boundaries aligned with the fields. When executed on a histogram log, the first row will contain the
lowest latency in each bucket and the bucket values will align with that row so each line contains the
latency for that bucket. When using this program, note that the maximum latency that can be precisely
measured by this histogram bucket approach is approximately 17 seconds. Latencies higher than that
are counted in the last histogram bucket. This is why some of the graphs below appear cut off at this
level. Some of the latencies observed in the fio_clat*log files were much higher, in the hundreds of
seconds. This can be resolved by recompiling FIO with more histogram bucket groups.

An fiologparser_hist.py tool was written to merge these histograms from different FIO processes for
calculation. See Appendix: References for the location of these tools. fiologparser_hist.py is also part of
the pbench-fio RPM available as part of the pbench toolset which postprocesses the output of
fiologparser_hist.py to generate graphs of latency percentiles as a function of time (see the section on
Performance Statistics).

These lines were added to the FIO job files:

write_hist_log=1
log_hist_msec=60000

which instruct FIO to output a histogram record into the log every 60 seconds resulting in a set of files
with names such as fio_clat_hist.1.log.vmNNN. There is a single job per virtual machine, thus
write_hist_log=1 is fixed. The Nova instance hostname is appended to the log file when it is copied to
the test driver. The interval of 60 seconds may seem like a long time, but when running a multi-hour
test and 512 processes are emitting these records, a longer interval is preferred so the merge tool
(fiologparser_hist.py), which is currently single-threaded, can process the results in a reasonable
amount of time. Even under these circumstances, the fiologparser_hist.py processing had to be
deferred until later so that the testbed could be made available for the next test. Future work will
include speedier post-processing as fiologparser_hist.py should be able to run with multiple cores.

Performance and Scale Engineering 14 www.redhat.com

https://github.com/bengland2/fio/blob/dump-fio-histo-log/tools/dump-fio-histo-log.py
https://github.com/axboe/fio/blob/master/tools/hist/fiologparser_hist.py
https://github.com/axboe/fio/blob/master/tools/hist/fiologparser_hist.py
https://github.com/axboe/fio/blob/master/tools/hist/fiologparser_hist.py
https://github.com/axboe/fio/blob/master/tools/hist/fiologparser_hist.py

Chapter 4. Test Results
Our traditional I/O scaling tests were performed using increasing instance counts. All multi-instance
tests ensured even distribution across compute nodes. The results of all testing are in the following
sections.

4.1. Effect of I/O Block Size
The following figures highlight the effect of varying block sizes on random read and write
performance.

Effect of Block Size - 512 Instance Random Reads

www.redhat.com 15 Performance and Scale Engineering

Effect of Block Size - 512 Instance Random Writes

Note that the 128KB random reads are close to 4KB random reads in performance. This is somewhat
logical given the seek time is so much larger than the transfer time and the networks are extremely
fast. Latencies are sub-millisecond for both but for 4MB random reads, latency starts to climb. At 512
instances, throughput is approximately 5000 IOPS which means transfers are occurring at 20 GB/sec,
close to line speed for the 20 compute hosts, each of which has a 10-GbE NIC.

At 512 instances, speeds approximately 4000 IOPS are achieved from the cluster, which corresponds to
16 GB/sec of application I/O. However, RHCS is doing 3-way replication so 48 GB/sec were actually
transmitting across the network, or roughly 1.65 GB/sec/server. The network inter-rack request-
response test was able to push 17 Gbit/sec/server (2.1 GB/s/server), so this is approximately 80% of line
speed. That’s not a bad result when considering the network is operating in full-duplex mode.

Given the results, a block size of 4KB was chosen for all scaling and fault insertion tests to avoid any
bottleneck in the network or compute node layer.

Performance and Scale Engineering 16 www.redhat.com

4.2. Instance Scaling
Unlike the fault insertion testing, for these tests the default RHCS deep-scrubbing was left enabled. This
graph shows guest scaling up to 1024 guests, unlike other graphs. It shows that we reached the
throughput capacity of the cluster for 512 guests. That’s why latency almost tripled for 1024 guests.
Note this test workload does nothing but I/O as fast as it can. In a real-world application, perhaps not
all guests would be doing I/O simultaneously so the system administrator might be able to go to 1024
guests without incurring additional latency.

Effect of Scaling on Random I/O & Latency

Note that by default, 'nova list' will display a maximum of 1000 instances. This limit is controlled by the
osapi_max_limit setting in /etc/nova/nova.conf. A setting of -1 disables the limit.

4.3. RHCS Recovery
RHCS recovery is made possible by its data replication across multiple OSDs. Replication occurs at the
PG layer, the degree of which (i.e., the number of copies) is asserted at the storage pool layer, and all
PGs in a pool will replicate stored objects into multiple OSDs. In our 3-way replicated test environment,
every object stored in a PG is written to three different OSDs.

When OSDs are added or removed in a cluster, RHCS will rebalance (redistribute objects across the
cluster) by moving PGs to or from RHCS OSDs to restore balance. The process of migrating PGs and the
objects they contain can reduce the operational performance of the cluster considerably. To maintain
operational performance, RHCS performs this migration with backfilling (scanning and synchronizing
the entire contents of a PG) which runs at a lower priority than read or write requests. RHCS uses
backfilling for rebalancing when a data loss is incurred and for repatriation (returning data to its
original location) when lost hardware is replaced.

www.redhat.com 17 Performance and Scale Engineering

4.4. Fault Insertion
This testing was performed to evaluate the impact of RHCS recovery on I/O performance. The test plan
included the loss of:

• a single OSD

• an entire OSD node

• a RHCS monitor node

during a mixed random read/write workload.

4.4.1. Tuning for Recovery

Initial fault insertion tests observed high maximum latencies. To better control the OSD disk utilization
levels, IOPS rate limiting (maximum 35 per instance) was used for fault insertion testing.

The following tuning was applied to the RHCS OSD nodes and the RHOSP compute nodes to prevent
queuing in front of application I/O requests in an effort to reduce the high maximum latencies.

• RHCS OSD nodes:

• disable RHCS deep scrubbing

• reduce vm.dirty_ratio from 40 to 10

• reduce vm.dirty_background_ratio from 10 to 5

• reduce /sys/block/sd*[a-z]/bdi/max_ratio from 100 to 10

• disable transparent hugepages (THP)

• set /sys/block/sd*[a-z]/queue/nr_requests to 64 (default 128)

• RHOSP compute nodes:

• disable THP and kernel shared memory (KSM)

Performance and Scale Engineering 18 www.redhat.com

The following figures graph the IOPS and call latencies during a mixed random read/write workload
including the loss and replacement of an OSD. As described above in FIO Latency Histogram Logging,
FIO reports a maximum 17 second latency regardless if the latency exceeded that time.

Effect of OSD Loss (untuned) - 512 Instance Random Reads/Writes

Note the spike in both maximum and 95th percentile latencies as well as its impact on IOPS in the
previous figure when the downed OSD is replaced (repatriation) as opposed to the following figure
after tuning for recovery.

Effect of OSD Loss (tuned) - 512 Instance Random Reads/Writes

In the tuned recovery test, when rebalance starts there is not as much of a latency spike in the 99th
percentile as there is in the untuned recovery. However, maximum latency seems worse.

Repatriation happens much sooner in the tuned recovery test because backfilling for the rebalance
completed more quickly. There seems to be much lower duration in the maximum latency spike for
repatriation in the tuned test. Additionally, there is no increase in 99% latency in the tuned test, unlike
the untuned test.

www.redhat.com 19 Performance and Scale Engineering

4.4.2. OSD Loss

This testing implemented a maximum 35 IOPS per instance rate limit (by adding rate_iops=35 to the
FIO job file) and used the aforementioned Tuning for Recovery for reducing maximum latency. Recall
that FIO reports a maximum 17 second latency regardless if the latency exceeded that time but only
two such cases are seen (this omits the case seen on the left X-axis boundary because of the cache drop
that occurs before each test).

Effect of OSD Loss - 512 Instance Random Reads/Writes

4.4.3. OSD Node Loss

This is an obviously very poor maximum latency result. As soon as the backfill begins, unacceptable
maximum latency is observed even though 99% latency is acceptable. For future study, this suggests
the need to have more PGs backfilling but with a limited rate of backfilling to reduce the maximum
latency.

Effect of OSD Node Loss - 512 Instance Random Reads/Writes

Performance and Scale Engineering 20 www.redhat.com

4.4.4. RHCS Monitor Loss

This figure indicates that the monitor loss did not seem to significantly affect latency at all. This test
halted a ceph monitor node, simulated the loss of its database, and brought it back (including database
restore). This occurred without application disruption.

Effect of Monitor Loss - 512 Instance Random Reads/Writes

www.redhat.com 21 Performance and Scale Engineering

Appendix A: References
1. Enabling Ceph Repositories - https://access.redhat.com/documentation/en/red-hat-ceph-

storage/2/paged/installation-guide-for-red-hat-enterprise-linux/chapter-2-prerequisites#prereq-
enable-ceph-ga-repo

2. Ceph PGs per Pool Calculator - https://access.redhat.com/labs/cephpgc/

3. Red Hat Ceph Storage for the Overcloud - https://access.redhat.com/documentation/en/red-hat-
openstack-platform/10/paged/red-hat-ceph-storage-for-the-overcloud/

4. Integrating an Existing Ceph Storage Cluster With an Overcloud -
https://access.redhat.com/documentation/en/red-hat-openstack-platform/10/paged/red-hat-ceph-
storage-for-the-overcloud/chapter-3-integrating-an-existing-ceph-storage-cluster-with-an-overcloud

5. Pbench Benchmarking and Performance Analysis Framework - http://distributed-system-
analysis.github.io/pbench/

6. bz 1388119: Can’t snapshot image from nova instance (on RHOSP10) -
https://bugzilla.redhat.com/show_bug.cgi?id=1388119

7. tr 17573: Librbd hangs because of failure to create socket - http://tracker.ceph.com/issues/17573

8. bz 1384079: Openstack OOO client disregards ceph keys from YAML -
https://bugzilla.redhat.com/show_bug.cgi?id=1384079

9. bz 1375378: Document ceph-ansible method for host with different block device names -
https://bugzilla.redhat.com/show_bug.cgi?id=1375378

10. bz 1389502: Director should increase kernel.pid_max on ceph-backed compute nodes -
https://bugzilla.redhat.com/show_bug.cgi?id=1389502

11. bz 1389503: Director should increase libvirtd FD limits on ceph-backed compute nodes -
https://bugzilla.redhat.com/show_bug.cgi?id=1389503

12. dump-fio-histo-log.py - https://github.com/bengland2/fio/blob/dump-fio-histo-log/tools/dump-fio-
histo-log.py

13. fiologparser_hist.py - https://github.com/axboe/fio/blob/master/tools/hist/fiologparser_hist.py

Performance and Scale Engineering 22 www.redhat.com

https://access.redhat.com/documentation/en/red-hat-ceph-storage/2/paged/installation-guide-for-red-hat-enterprise-linux/chapter-2-prerequisites#prereq-enable-ceph-ga-repo
https://access.redhat.com/documentation/en/red-hat-ceph-storage/2/paged/installation-guide-for-red-hat-enterprise-linux/chapter-2-prerequisites#prereq-enable-ceph-ga-repo
https://access.redhat.com/documentation/en/red-hat-ceph-storage/2/paged/installation-guide-for-red-hat-enterprise-linux/chapter-2-prerequisites#prereq-enable-ceph-ga-repo
https://access.redhat.com/labs/cephpgc/
https://access.redhat.com/documentation/en/red-hat-openstack-platform/10/paged/red-hat-ceph-storage-for-the-overcloud/
https://access.redhat.com/documentation/en/red-hat-openstack-platform/10/paged/red-hat-ceph-storage-for-the-overcloud/
https://access.redhat.com/documentation/en/red-hat-openstack-platform/10/paged/red-hat-ceph-storage-for-the-overcloud/chapter-3-integrating-an-existing-ceph-storage-cluster-with-an-overcloud
https://access.redhat.com/documentation/en/red-hat-openstack-platform/10/paged/red-hat-ceph-storage-for-the-overcloud/chapter-3-integrating-an-existing-ceph-storage-cluster-with-an-overcloud
http://distributed-system-analysis.github.io/pbench/
http://distributed-system-analysis.github.io/pbench/
https://bugzilla.redhat.com/show_bug.cgi?id=1388119
http://tracker.ceph.com/issues/17573
https://bugzilla.redhat.com/show_bug.cgi?id=1384079
https://bugzilla.redhat.com/show_bug.cgi?id=1375378
https://bugzilla.redhat.com/show_bug.cgi?id=1389502
https://bugzilla.redhat.com/show_bug.cgi?id=1389503
https://github.com/bengland2/fio/blob/dump-fio-histo-log/tools/dump-fio-histo-log.py
https://github.com/bengland2/fio/blob/dump-fio-histo-log/tools/dump-fio-histo-log.py
https://github.com/axboe/fio/blob/master/tools/hist/fiologparser_hist.py

Appendix B: Tuned Profiles
Below are the system settings applied by tuned for each profile. The differences from the default
throughput-performance profile are highlighted.

B.1. throughput-performance
CPU governor = performance
energy_perf_bias=performance
block device readahead = 4096
transparent hugepages = enabled
kernel.sched_min_granularity_ns = 10000000
kernel.sched_wakeup_granularity_ns = 15000000
kernel.sched_migration_cost_ns = 500000
vm.dirty_ratio = 40
vm.dirty_background_ratio = 10
vm.swappiness = 10

B.2. virtual-host
CPU governor = performance
energy_perf_bias=performance
block device readahead = 4096
transparent hugepages = enabled
kernel.sched_min_granularity_ns = 10000000
kernel.sched_wakeup_granularity_ns = 15000000
kernel.sched_migration_cost_ns = 5000000

vm.dirty_ratio = 40
vm.dirty_background_ratio = 5

vm.swappiness = 10

B.3. virtual-guest
CPU governor = performance
energy_perf_bias=performance
block device readahead = 4096
transparent hugepages = enabled
kernel.sched_min_granularity_ns = 10000000
kernel.sched_wakeup_granularity_ns = 15000000
kernel.sched_migration_cost = 500000
vm.dirty_ratio = 30

vm.dirty_background_ratio = 10
vm.swappiness = 30

www.redhat.com 23 Performance and Scale Engineering

Appendix C: Issues
Ceph tracker 17573 illustrates a problem with librbd where it hangs instead of returning an error
status, causing VMs to hang until an I/O timeout occurs, long after they are booted. This is due to RHCS
librbd opening TCP sockets only as they are needed instead of opening sockets to all the OSDs
immediately. The net effect is that the user thinks the guest is working, and then it stops. This problem
can be avoided if RHOSP deploys the guests with higher file descriptor and pid-max limits. This is
addressed in rows 5 and 6 of the next table.

Bug ID Status Description

bz 1388119 Fixed in RHOSP 10 All nova snapshot attempts (even as admin
user) fail to create new image.

tr 17573 Open librbd does not return a failure to the calling
application so the user experiences a hang
instead of receiving an error.

bz 1384079 Fixed in RHOSP 10 OOO client disregards the CephClusterFSID
and CephClientKey from supplied YAML file

bz 1375378 Fixed in RHCS 2.1 Document ceph-ansible method for host with
different block device names. If any disk in
the devices: list for ceph-ansible is
unavailable ceph-ansible will not start any
OSD on that host.

bz 1389502 Fixed in RHOSP 10 kernel.pid_max too low on ceph backed
compute nodes. See OSD Process Identifiers
Limit - kernel.pid_max for more detail.

bz 1389503 Fixed in RHOSP 11 Insufficient libvirtd file descriptors on ceph
backed compute nodes. See libvirt max_files
and max_processes for more detail.

Performance and Scale Engineering 24 www.redhat.com

https://bugzilla.redhat.com/show_bug.cgi?id=1388119
http://tracker.ceph.com/issues/17573
https://bugzilla.redhat.com/show_bug.cgi?id=1384079
https://bugzilla.redhat.com/show_bug.cgi?id=1375378
https://bugzilla.redhat.com/show_bug.cgi?id=1389502
https://bugzilla.redhat.com/show_bug.cgi?id=1389503

Appendix D: ceph.conf
[global]
fsid = ae48c07d-36c5-4f3e-bfce-fdb4158bbb07
max open files = 131072

[client]
admin socket = /var/run/ceph/$cluster-$type.$id.$pid.$cctid.asok
log file = /var/log/ceph/qemu-guest-$pid.log

[mon]
[mon.c04-h33-6018r]
host = c04-h33-6018r
mon addr = 172.18.65.121
[mon.c05-h33-6018r]
host = c05-h33-6018r
mon addr = 172.18.65.118
[mon.c07-h29-6018r]
host = c07-h29-6018r
mon addr = 172.18.64.226
[mon.c07-h30-6018r]
host = c07-h30-6018r
mon addr = 172.18.64.238
[mon.c06-h29-6018r]
host = c06-h29-6018r
mon addr = 172.18.64.251

[osd]
osd mkfs type = xfs
osd mkfs options xfs = -f -i size=2048
osd mount options xfs = noatime,largeio,inode64,swalloc
osd journal size = 5000
osd_max_backfills = 1
osd_recovery_op_priority = 1
osd_recovery_max_active = 1
cluster_network = 172.18.0.0/16
public_network = 172.18.0.0/16

www.redhat.com 25 Performance and Scale Engineering

Appendix E: puppet-ceph-external.yaml
resource_registry:
 OS::TripleO::Services::CephExternal: /usr/share/openstack-tripleo-heat-
 templates/puppet/services/ceph-external.yaml
 OS::TripleO::Services::CephMon: OS::Heat::None
 OS::TripleO::Services::CephClient: OS::Heat::None
 OS::TripleO::Services::CephOSD: OS::Heat::None
parameter_defaults:
 CephClusterFSID: 'ae48c07d-36c5-4f3e-bfce-fdb4158bbb07'
 CephClientKey: 'AQC5tz1YQBBWNxAAmR8mIpHuMZstFpaHRyIQtA=='
 CephAdminKey: 'AQApmT1YXW9aORAAesZLbNr6PbeOR6mUMwMKkQ=='
 CephExternalMonHost: '172.18.65.121, 172.18.65.118, 172.18.64.251, 172.18.64.226, 172.18.64.238'
 NovaEnableRbdBackend: true
 CinderEnableRbdBackend: true
 CinderBackupBackend: ceph
 GlanceBackend: rbd
 GnocchiBackend: rbd
 NovaRbdPoolName: vms
 CinderRbdPoolName: volumes
 GlanceRbdPoolName: images
 GnocchiRbdPoolName: metrics
 CephClientUserName: openstack
 CinderEnableIscsiBackend: false

Performance and Scale Engineering 26 www.redhat.com

Appendix F: Network Testing Methodology
Network validations included verifying I/O speeds within each rack (intra) as well as across racks
(inter) as illustrated in the next two figures.

Intra-Rack Network Testing

Inter-Rack Network Testing

A subset of initial tests produced speeds only half that of the rest where one switch was common to all
of the suspect results. This revealed an issue with one of the two 100-GbE ports in the top-of-rack
switch as seen in the results below.

www.redhat.com 27 Performance and Scale Engineering

Inter-Rack Network Throughput

Performance and Scale Engineering 28 www.redhat.com

	Red Hat OpenStack Platform on Red Hat Ceph Storage: Cinder Volume Performance at Scale
	Table of Contents
	Chapter 1. Executive Summary
	Chapter 2. Test Environment
	2.1. Hardware
	2.2. Software
	2.3. Red Hat Ceph Storage
	2.4. Red Hat OpenStack Platform

	Chapter 3. Test Workload
	3.1. Test Design
	3.2. Performance Statistics
	3.3. Network
	3.4. Large File Random I/O

	Chapter 4. Test Results
	4.1. Effect of I/O Block Size
	4.2. Instance Scaling
	4.3. RHCS Recovery
	4.4. Fault Insertion

	Appendix A: References
	Appendix B: Tuned Profiles
	B.1. throughput-performance
	B.2. virtual-host
	B.3. virtual-guest

	Appendix C: Issues
	Appendix D: ceph.conf
	Appendix E: puppet-ceph-external.yaml
	Appendix F: Network Testing Methodology

