Red Hat Reference Architecture Series

Deploying OpenShift Container
Platform 3 on Amazon Web Services

Ryan Cook, Scott Collier

Version 1.3, 2016-09-30

Table of Contents

Comments and Feedback 2
1. EXECULIVE SUIMIMATY . .« o ottt ettt ettt e et e et e e e e e et e e e et e e et e et e ie e e e eae e 3
2. Components and Configurationttt e et 4
2.1. Elastic Compute Cloud Instance Detailsottt e 5
2.2. Elastic Load Balancers DetailS. e 5
2.3. Software Version DetailS. e 6
2.4.Required Channels o e e 6
2.5. TOOLNG PrereqUISIteS . . . oottt t ettt ettt e et e e e et e e e i 7
2.5.0. ANSIDIE S U . . ottt e 7
2.5, 2. GIt REPOSIIOTY ..ttt ittt e et e e e e e e e 7
2.5.3. AWS Region ReqUITeIMENTSottt ettt ettt e et ie e i eiiaaees 8
2.5.4. Permissions for Amazon Web Servicesttt 8
2.6. Virtual Private Cloud (VPC)ottt e e e 9
2.7 NAT Ga O AY . . e v ottt ettt et et e e e e e e e e e e e e 10
2.8. SECUTILY GIOUPS .+« v v vttt ttee ettt e et e et e e e et e e e e e et e e e e et e e e e e e e iee e 10
2.8.1. Master ELB SeCUTItY GIOUP ..o tvvuit ettt ettt ee e et e e e iee e e iaee e ianeeans 11
2.8.2. Internal Master ELB SeCUIItY GIOUP . ..o vvvtttttie et et iiie e iiie e eiiae e eans 12
2.8.3. BAStiON SECULTLY GIOUP . . vt oi ettt ittt ettt e e et e e e e e e et e iie e eans 13
2.8.4. MaSter SECUTILY GIOUP. « « vt vttt ettt et ettt e et e e e e et e et e e e e e iee e iaeeeans 14
2.8.5. ETCD SECUTILY GIOUP &« v vtot ettt et ettt e e e et et e e e e et et ee e e iee e e eeans 15
2.8.6. Router ELB SECUTItY GIOUP ..t vvtte ettt e te et et ee et e iee e e ieae e iaeeeans 16
2.8.7. Infrastructure Nodes SECUTItY GIOUPttt ettt i iiie e eiiaeeeans 17
2.8.8. NOAES SECUTILY GIOUPD .« vt vot ettt et ettt e e e et e e e et e e e et e e e iia e iae e 18
2.9, ROULES S . .o e e e e 18
2.9.1. PUBLIC ZOME. . . o oot 19
2.9.2. HOSEEA ZOME SEIUP . .ottt ettt ettt et et e e ettt e e et e 19
2.9.3. Amazon Machine IMagesottt e e i 19
2.9.4. Identity and AcCess ManageImentuuut ettt et ttiae et eiae e eiae e 20
200, BASTIOI . oottt e 20
2.11. DYNamiC INVENTOTY . . .o ottt ettt ettt e et e e e ettt et e e et 21
2. L2, NS, oottt e 21
2.12.0. MaSter MOGES . . o o ettt e et 21
2.12.2. InfrastruCture NOAESttt ettt ettt ettt e et et 21
2.12.3. ApPLiCAtiON NOGES. . . oottt ettt et e e e e e 22
2.12.4. Node labels. . ..o 22

2.13. OPenShift POAS . ..ottt e e e 22

2., ROUL T . ottt e e e e e e 22

0 B TR 2= 4 3 0 o228 P 23
2.16. AUtNENTICATION . ..ottt ettt e e e e e e e 23
3. Provisioning the INfrastruCturettt e e et eas 24
3.1. Provisioning the Infrastructure with Ansible o i i 24
3.1.1. Authentication PrereqUiSite.ttt et e e i eans 24
3.1.2. SSH PrereqUISITe . . . vttt ettt ettt et e e et e e e 29
3.1.3. AWS Authentication PrerequiSitettt i eiiae e eans 30
3.1.4. Red Hat Subscription Prerequisitettt e eans 31
3.1.5. Deploying the ENVIronmMent.ttt e e 31
3.2. Post Provisioning ReSUlts oo e e e 37
4. Operational ManageImMentttt ettt ettt ettt e e e e ie e i 39
4.1. Validate the Deploymentttt e et i e 39
4.2. Gathering hoStNamMesottt ettt et e e et i e e eaas 40
4.3. RUNNING DIAZNOSTICS . o vttt ettt ettt ettt et e et e e e e e i e i eiaeeeans 40
4.4. Checking the Health Of ETCDo oot e et i e eaas 49
4.5. Default Node Selectorottt e 50
4.6. Management of Maximum Pod Sizettt e e 50
4. 7. YUIN REPOSITOTIES . . o oottt ettt et ettt et e e et e e e e e et 52
4.8. COMSOLE ACCESS. . . ettt ettt ettt ettt e ettt e e e e e e e 52
4.8.1. Log into GUI console and deploy an application.c.coiiiiiiinninnneennnn. 52
4.8.2. Log into CLI and Deploy an Applicationcouutiuinn ittt 53
4.9. Explore the ENVIFONIMENT.ttt ettt et e e e e e e e e i iiaaeeans 55
4.9.1. List Nodes and Set PermiSSIONS. ovutttttt ittt 55
4.9.2. List Router and RegIStry ovtti ettt et i et 56
4.9.3. Explore the DoCKer RegiStry.ttt e et e 57
4.9.4. EXPlore DOCKET STOTAZE . . . oottt ettt et ettt et e e 58
4.9.5. EXPlOTE SECUTITY GIOUPS . . v vt vttt et ettt ettt e e e et ee e et ee e e iaa e inneeeennns 61
4.9.6. Explore the AWS Elastic Load Balancersc.uiuiiiiinriiiineeeinnneennnn. 61
4.9.7. EXplore the AWS VP Cttt et e et et et e 62
4.10. Persistent VOIUINESttt et 62
4.10.1. Node Labels for Persistent VOIUMESt eeee 63
4.10.2. Creating a Persistent VOIUIMESottt e et 63
4.10.3. Creating a Persistent Volumes Claimouiiiiinntiiii i, 64
411, TeSting FAIlUTeottt et et e et e ettt e 66
4.11.1. Generate @ Master OULAgettt et et ettt e e 66
4.11.2. Observe the Behavior of ETCD with a Failed Master Nodeoovviiia.... 66

4.11.3. Generate an Infrastruture Node OUtagecovtttiinr ettt i 67

LS 000} s Lol 11 13 o) o 71

Appendix A: ReVISION HiStOTYttt e e e ettt i 72
Appendix B: CONtIIDULOTS. . . . oottt e e et e et i 73
6. Installation FaIlure e 74
6. 0. IV O Y . .ot e e 75
6.2. Running the Uninstall PlaybooK e e 76

6.3. Manually Launching the Installation of OpenShift i i, 76

Q redhat.
100 East Davie Street
Raleigh NC 27601 USA
Phone: +1 919 754 3700
Phone: 888 733 4281
PO Box 13588
Research Triangle Park NC 27709 USA

Intel, the Intel logo and Xeon are registered trademarks of Intel Corporation or its
subsidiaries in the United States and other countries. All other trademarks
referenced herein are the property of their respective owners.

© 2015 by Red Hat, Inc. This material may be distributed only subject to the terms
and conditions set forth in the Open Publication License, V1.0 or later (the latest
version is presently available at http://www.opencontent.org/openpub/).

The information contained herein is subject to change without notice. Red Hat, Inc.
shall not be liable for technical or editorial errors or omissions contained herein.

Distribution of modified versions of this document is prohibited without the
explicit permission of Red Hat Inc.

Distribution of this work or derivative of this work in any standard (paper) book
form for commercial purposes is prohibited unless prior permission is obtained
from Red Hat Inc.

The GPG fingerprint of the security@redhat.com key is: CA 20 86 86 2B D6 9D FC 65
F6 EC C4 21 91 80 CD DB 42 A6 OE

Send feedback to refarch-feedback@redhat.com

www.redhat.com 1 refarch-feedback@redhat.com

http://www.opencontent.org/openpub/
mailto:security@redhat.com
mailto:refarch-feedback@redhat.com

Qredhat
Comments and Feedback

In the spirit of open source, we invite anyone to provide feedback and comments on any reference
architecture. Although we review our papers internally, sometimes issues or typographical errors are
encountered. Feedback allows us to not only improve the quality of the papers we produce, but allows
the reader to provide their thoughts on potential improvements and topic expansion to the papers.
Feedback on the papers can be provided by emailing refarch-feedback@redhat.com. Please refer to the
title within the email.

refarch-feedback@redhat.com 2 www.redhat.com

mailto:refarch-feedback@redhat.com

Q redhat.
1. Executive Summary

Red Hat OpenShift Container Platform 3 is built around a core of application containers powered by
Docker, with orchestration and management provided by Kubernetes, on a foundation of Atomic Host
and Red Hat Enterprise Linux. OpenShift Origin is the upstream community project that brings it all
together along with extensions, to accelerate application development and deployment.

This reference environment provides a comprehensive example demonstrating how OpenShift
Container Platform 3 can be set up to take advantage of the native high availability capabilities of
Kubernetes and Amazon Web Services in order to create a highly available OpenShift Container
Platform 3 environment. The configuration consists of three OpenShift Container Platform masters,
two OpenShift Container Platform infrastructure nodes, two OpenShift Container Platform application
nodes, and native Amazon Web Services integration. In addition to the configuration, operational
management tasks are shown to demonstrate functionality.

www.redhat.com 3 refarch-feedback@redhat.com

Qredhat
2. Components and Configuration

This chapter describes the reference architecture environment that is deployed that enables the
configuration of a highly available OpenShift Compute Platform 3 environment on Amazon Web
Services (AWS).

The image below provides a high-level representation of the components within this reference
architecture. Using Amazon Web Services (AWS), resources are highly available using a combination
of multiple availability zones, Elastic Load Balancers(ELB), and an S3 bucket. Instances deployed are
given specific roles to support OpenShift. The Bastion host limits the external access to internal servers
by ensuring that all SSH traffic passes through the Bastion host. The master instances host the
OpenShift master components such as etcd and the OpenShift API. The Application instances are for
users to deploy their containers while the Infrastructure instances are used for the OpenShift router
and registry. Authentication is managed by Google OAuth. OpenShift on AWS has two cloud native
storage options; Elastic Block Storage is used for the filesystem of instances but can also be used for
persistent storage in containers. The other storage option is S3 which is object based storage. S3 is used
for the persistent storage of the OpenShift registry. The network is configured to leverage three AWS
ELBs for access to the OpenShift API, OpenShift console, and the OpenShift routers. The first ELB is for
the OpenShift API and console access originating from outside of the cluster. The second ELB is for API
access within the cluster. The third ELB is for accessing services deployed in the cluster that have been
exposed through routes. Finally, the image shows that DNS is handled by Route53. In this case the
systems engineering team is managing all DNS entries through Route53.

on
Router ELB to Router pods.
External Load Balancer Console and AP| Traffic

s E

l
Smmm= ----- ===
Object Storage

‘

.
| J U R R U ———

This reference architecture breaks down the deployment into separate phases.

¢ Phase 1: Provision the infrastructure on AWS

 Phase 2: Provision OpenShift Compute Platform on AWS

refarch-feedback@redhat.com 4 www.redhat.com

Q redhat.

* Phase 3: Post deployment activities

For Phase 1, the provisioning of the environment is done using a series of Ansible playbooks that are
provided in the openshift-ansible-contrib github repo. Once the infrastructure is deployed the
playbooks will flow automatically into Phase 2. Phase 2 is the provisioning of OpenShift Container
Platform which is done via the Ansible playbooks installed by the openshift-ansible-playbooks rpm
package. The playbooks in openshift-ansible-contrib utilize the playbooks defined by the openshift-
ansible-playbooks package to perform the installation of OpenShift and also to configure AWS specific
parameters. During Phase 2 the router and registry are deployed. The last phase, Phase 3, concludes
the deployment by confirming the environment was deployed properly. This is done by running tools
like oadm diagnostics and the systems engineering teams validation Ansible playbook.

o The scripts provided in the github repo are not supported by Red Hat. They merely
provide a mechanism that can be used to build out your own infrastructure.

2.1. Elastic Compute Cloud Instance Details

Within this reference environment, the instances are deployed in multiple availability zones in the
us-east-1region by default. Although the default region can be changed, the reference architecture
deployment can only be used in Regions with three or more availability zones. The master instances
for the OpenShift environment are m4.1large and contain two extra disks used for Docker storage and
ETCD. The node instances are t2.medium and contain two extra disks used for Docker storage and
OpenShift ephermal volumes. The bastion host is a t2.micro. Instance sizing can be changed in the
variable files for each installer which is covered in later chapters.

2.2. Elastic Load Balancers Details

Three load balancers are used in the reference environment. The table below describes the load
balancer DNS name, the instances in which the ELB is attached, and the port monitored by the load
balanacer to state whether an instance is in or out of service.

Table 1. Elastic Load Balancers
openshift-master.sysdeseng.com master01-3 443

internal-openshift- master01-3 443
master.sysdeseng.com

*apps.sysdeseng.com infra-nodes01-2 80 and 443
Both the internal-openshift-master, and the openshift-master ELB utilize the OpenShift Master API port
for communication. The internal-openshift-master ELB uses the private subnets for internal cluster

communication with the API in order to be more secure. The openshift-master ELB is used for
externally accessing the OpenShift environment through the API or the web interface. The openshift-

www.redhat.com 5 refarch-feedback@redhat.com

https://github.com/openshift/openshift-ansible-contrib/tree/master/reference-architecture

Q redhat.

master ELB uses the public subnets to allow communication from anywhere over port 443. The *apps
ELB uses the public subnets and maps to infrastructure nodes. The infrastructure nodes run the router
pod which then directs traffic directly from the outside world into OpenShift pods with external routes

defined.

2.3. Software Version Details

The following tables provide the installed software versions for the different servers that make up the
Red Hat OpenShift highly available reference environment.

Table 2. RHEL OSEv3 Details

Red Hat Enterprise Linux 7.2 x86_64 kernel-3.10.0-327
Atomic-OpenShift{master/clients/node/sdn- 3.3.xxX

ovs/utils}

Docker 1.10.x

Ansible 2.2.0-0.5.prerelease.el7.noarch

2.4. Required Channels

A subscription to the following channels is required in order to deploy this reference environment’s

configuration.

Table 3. Required Channels - OSEv3 Master and Node Instances

Red Hat Enterprise Linux 7 Server (RPMs) rhel-7-server-rpms
Red Hat OpenShift Enterprise 3.3 (RPMs) rhel-7-server-ose-3.3-rpms

Red Hat Enterprise Linux 7 Server - Extras (RPMs) rhel-7-server-extras-rpms

refarch-feedback@redhat.com 6 www.redhat.com

Q redhat.
2.5. Tooling Prerequisites

This section describes how the environment should be configured to use Ansible to provision the
infrastructure, install OpenShift, and perform post installation tasks.

2.5.1. Ansible Setup

Install the following packages on the system performing the provisioning of AWS infrastructure and
installation OpenShift.

$ rpm -q python-2.7
$ subscription-manager repos --enable rhel-7-server-optional-rpms
$ subscription-manager repos --enable rhel-7-server-ose-3.2-rpms
$ subscription-manager repos --enable rhel-7-server-ose-3.3-rpms
$ rpm -Uvh https://dl.fedoraproject.org/pub/epel/epel-release-latest-7.noarch.rpm
$ yum -y install atomic-openshift-utils \

python2-boto \

git \

ansible-2.2.0-0.5.prerelease.el7.noarch |

python-netaddr \

python-httplib2

The Extra Packages for Enterprise Linux (EPEL) repository is being used for the
o installation of the python2-boto packages specific for this installation. While EPEL is
not explicitly supported by Red Hat, it is how Ansible interacts with AWS.

2.5.2. Git Repository

GitHub Repositories

The code in the openshift-ansible-contrib repository referenced below handles the installation of
OpenShift and the accompanying infrastructure. The openshift-ansible-contrib repository is not
explicitly supported by Red Hat but the Reference Architecture team performs testing to ensure the
code operates as defined and is secure.

The following task should be performed on the server that the Ansible playbooks
o will be launched from.

www.redhat.com 7 refarch-feedback@redhat.com

Q redhat.

Directory Setup

$ cd /home/<user>/git
$ git clone https://github.com/openshift/openshift-ansible-contrib.git

To verify the repository was cloned the tree command can be used to display all of the contents of the
git repository.

$ yum -y install tree
$ tree /home/<user>/git/

. content abbreviated ...

|-- openshift-ansible-contrib

2.5.3. AWS Region Requirements

The reference architecture environment must be deployed in a Region containing at least 3
availibility zones and have 2 free elastic IPs. The environment requires 3 public and 3 private
subnets. The usage of 3 public and 3 private subnets allows for the OpenShift deployment to be highly-
available and only exposes the required components externally. The subnets can be created during the
installation of the reference architecture environment deployment.

2.5.4. Permissions for Amazon Web Services

The deployment of OpenShift requires a user that has the proper permissions by the AWS IAM
administrator. The user must be able to create accounts, S3 buckets, roles, policies, Route53 entries, and
deploy ELBs and EC2 instances. It is helpful to have delete permissions in order to be able to redeploy
the environment while testing.

refarch-feedback@redhat.com 8 www.redhat.com

Qredhat
2.6. Virtual Private Cloud (VPC)

An AWS VPC provides the ability to set up custom virtual networking which includes subnets, IP address
ranges, route tables and gateways. In this reference implementation guide, a dedicated VPC is created
with all its accompanying services to provide a stable network for the OpenShift v3 deployment.

A VPC is created as a logical representation of a networking environment in the AWS cloud. The
following subnets and CIDR listed below are used. Substitute the values to ensure no conflict with an
existing CIDR or subnet in the environment. The values are defined in /home/git/openshift-ansible-
contrib/reference-architecture/aws-ansible/playbooks/vars/main.yaml.

Table 4. VPC Networking

CIDR 10.20.0.0/16
Private Subnet 1 10.20.1.0/24
Private Subnet 2 10.20.2.0/24
Private Subnet 3 10.20.3.0/24
Public Subnet 1 10.20.4.0/24
Public Subnet 2 10.20.5.0/24
Public Subnet 3 10.20.6.0/24

The VPC is created and a human readable tag is assigned. Six subnets are created and tagged in the VPC.
Three subnets are considered public and three subnets are private. The design of one public and one
private subnet per Availability Zone allows for high availibility(HA). The public subnets are used for
the bastion instance and the two external ELBs. The bastion instance is part of the public subnet due to
its role as the SSH jumpbox. The two external ELBs allow access to the OpenShift master and the routing
of application traffic. In the public route table, an internet gateway and routes are defined and
attached to the VPC. The route table has a destination internet gateway associated so that traffic can exit
the VPC. The private subnets use the NAT Gateway to communicate to the internet for packages,
container images, and Github repositories. The private subnets are assigned their own route table with
the NAT Gateway defined. The master, infrastructure, and application nodes are in the private
network, as well as, the internal-openshift-master which ensures the nodes cannot be accessed
externally.

For more information see https://aws.amazon.com/vpc/

www.redhat.com 9 refarch-feedback@redhat.com

https://aws.amazon.com/vpc/

Q redhat.
2.7. NAT Gateway

The reference architecture deployment utilizes the AWS NAT Gateway Service to ensure that instances
in the private subnets have the ability to download packages, container images, and Github
repositories. The NAT Gateway Service funnels all external traffic from private subnets to the outside
world. This allows for a smaller external footprint and does not use unneeded public IP and public DNS
entries.

2.8. Security Groups

In this reference architecture, eight groups are created. The purpose of the security groups is to
restrict traffic from outside of the VPC to servers inside of the VPC . The security groups also are used to
restrict server to server communications inside the VPC. Security groups provide an extra layer of
security similar to a firewall. In the event a port is opened on an instance, the security group will not
allow the communication to the port unless explicitly stated in a security group. See the tables below
for details on each security group.

refarch-feedback@redhat.com 10 www.redhat.com

Q redhat.
2.8.1. Master ELB Security Group
The Master ELB security group allows inbound access on port 443 from the internet to the ELB. The

traffic is then allowed to be forwarded to the master instances. See AWS Master ELB Security Group
Details - Inbound diagram and AWS Master ELB Security Group Details - Inbound table below.

Master ELE Security Group
(ose_elb_master_sg)

al

Port: 8443 TCP
Source: 0.0.0.0/0

, Master ELB
2 pse_elb_master_sg

Figure 1. AWS Master ELB Security Group Details - Inbound

Table 5. AWS Master ELB Security Group Details - Inbound

443 | TCP Anywhere

Table 6. AWS Master ELB Security Group Details - Outbound

443 ose_master_sg

www.redhat.com 11 refarch-feedback@redhat.com

Q. redhat.

2.8.2. Internal Master ELB Security Group

The Internal Master ELB is in the private subnet and utilizes the NAT Gateway. Traffic external from the

VPC cannot acess the Internal Master ELB.

Internal Master ELE Security
Group
(ose_internal_elb_master_sg)

Port: 8443/ TCP
Source:

- ose_node_sg

- ose_maslar_sg

—

Internal Master ELB
| " Fose_internal_elb_master_s,

/

-
----- -"-':--u._l agzmntonta, e 1 a2 L e, -2 T
Fm o a0 i e
Master Nodes Application and Infrastruciure
ose_master_sg Modes
oz node sg

Figure 2. AWS Internal Master ELB Security Group Details - Inbound

443 | TCP

443 | TCP

ose_node_sg

ose_master_sg

Table 7. AWS Internal Master ELB Security Group Details - Outbound

443

refarch-feedback@redhat.com

ose_master_sg

12 www.redhat.com

2.8.3. Bastion Security Group

Q redhat.

The bastion security group allows inbound port SSH traffic from outside the VPC. Any connectivity via
SSH to the master, application or infrastructure nodes must go through the bastion host. Ensure the

bastion host is secured per your companies security requirements.

Bastion Security
Group
(bastion_sg)

Port: 22TCP
Source: 0.0.0.0/0 I

Application and Infrastructure Nodes

Bastion 3G
bastion_sg

Table 8. AWS Bastion Security Group Details - Inbound

22 | TCP Anywhere

Table 9. AWS Bastion Security Group Details - Outbound

All All

www.redhat.com 13

refarch-feedback@redhat.com

Q. redhat.
2.8.4. Master Security Group

The master security group allows traffic to the master instances from the two ELBs and nodes to contact
the OpenShift API and SkyDNS.

Master Security Group
(ose_master_sg)

Port: 8443/TCP
Source;
- ose_internal_elb_master_sqg
- ose_elb_master_sg
- 0s58_node_sg
- 058_master_sg

Internal Master ELB Internal Master ELB
ose_internal_slb_master_sg ose_elb_master_sg

Port: 8053/TCP & BO53/UDP

Source: ose_node_sg Master Node

0se_master_sq

Applicabon ghd TAfrasiicine
nodes
ose_node sg

Figure 3. AWS Master Security Group Details - Inbound

8053 / TCP ose_node_sg

8053 / UDP ose_node_sg

443 | TCP ose_internal_elb_master_sg
443 | TCP ose_elb_master_sg

443 | TCP ose_node_sg

443 | TCP ose_master_sg

Table 10. AWS Master Security Group Details - Outbound

All All

refarch-feedback@redhat.com 14 www.redhat.com

Q redhat.
2.8.5. ETCD Security Group
The ETCD security group allows for the ETCD service running on the master instances to reach a quorum.

The security group allows for the ose-master-sg to communication with the ETCD for the OpenShift
master services.

ETCD Security Graup
(ose_slc_sqg)
Port: 2379/TCP
Source:
- 05&_master_sg
- 0se_eted_sg

Port: 2380/ TCP e =
D 1]

Source: ose_etcd_sg E|=| |=uu'| 7"'“";;‘:

1
........... Vet e

| Master Nodes "
[ose_etcd _sg 1

Master Security Group
ose_masler_sg

Table 11. ETCD Security Group Details - Inbound

2379 | TCP ose-etcd-sg
2379 | TCP ose-master-sg
2380/ TCP ose-etcd-sg

Table 12. ETCD Security Group Details - Outbound

All All

www.redhat.com 15 refarch-feedback@redhat.com

Q. redhat.
2.8.6. Router ELB Security Group

The Router ELB security group allows inbound access on port 80 and 443. If the applications running on
the OpenShift cluster are using different ports this can be adjusted as needed.

Router ELE Security
Group

ose_router_sg Q

Part BNTCP &
443TCP
Source: 0,0,0,0/0
_ Router ELB I
ose_router_sg |

Infrastructure Modes

Figure 4. AWS Router ELB Security Group Details - Inbound

443 | TCP Anywhere
80/ TCP Anywhere

Table 13. AWS Router ELB Security Group Details - Outbound

80 ose_infra_node_sg

443 ose_infra_node_sg

refarch-feedback@redhat.com 16 www.redhat.com

Q redhat.

2.8.7. Infrastructure Nodes Security Group

The infrastructure nodes security group allows traffic from the router security group.

Infrastructure Node
Security Group
(ose_infra_node_sg)

Port: 80 & 443/TCP ———— - ——

Source: ose_router_sg Router
ose_rouler_sg

Infrastructure Modes
ose_infra_node_sg

Figure 5. AWS Infrastructure Nodes Security Group Details - Inbound

80/ TCP ose_router_sg

443 | TCP ose_router_sg

Table 14. AWS Infrastructure Nodes Security Group Details - Outbound

All All

www.redhat.com 17 refarch-feedback@redhat.com

Q redhat.
2.8.8. Nodes Security Group

The node security group only allows traffic from the bastion and traffic relating to OpenShift node
services.

Mode Security Group
(ose_node_sg)

| Bastion
Port: 22/TCP | bastion_sg |
Source: bastion.sg T T . T 7
f
Port; 10250/TCP f
Source:; ose_master_sg I|
- f
Port: 4789/UDP (
Source: ose_node_sg -

- .I'II

= =, anmalin an
A s, - -
as =

Application and
Infrastructure Nodes
ose_node _sg

Figure 6. AWS Nodes Security Group Details - Inbound

22 | TCP bastion_sg
10250/ TCP ose_master_sg
4789 /| UDP ose_node_sg

Table 15. AWS Application Nodes Security Group Details - Outbound

All All

2.9. Route53

DNS is an integral part of a successful OpenShift Compute Platform deployment/environment. AlS has a
DNS web service, per Amazon; "Amazon Route 53 is a highly available and scalable cloud DNS web
service. It is designed to give developers and businesses an extremely reliable and cost effective way to
route end users to internet applications by translating names like www.example.com into numeric IP
addresses like 192.0.2.1 that computers use to connect to each other.”

OpenShift Compute Platform requires a properly configured wildcard DNS zone that resolves to the IP
address of the OpenShift router. For more information, please refer to the OpenShift Container
Platform DNS. In this reference architecture Route53 will manage DNS records for the OpenShift
Container Platform environment.

refarch-feedback@redhat.com 18 www.redhat.com

https://docs.openshift.com/container-platform/3.3/install_config/install/prerequisites.html#prereq-dns
https://docs.openshift.com/container-platform/3.3/install_config/install/prerequisites.html#prereq-dns

Q redhat.

For more information see https://aws.amazon.com/route53/

2.9.1. Public Zone

The Public Routeb53 zone requires a domain name either purchased through AWS or another external
provider such as Google Domains or GoDaddy. Once the zone in created in Route53, the name servers
provided by Amazon will need to be added to the registrar.

2.9.2. Hosted Zone Setup

In this reference implementation guide a domain called sysdeseng.com domain was purchased through
AWS and managed by Route53. In the example below, the domain sysdeseng.com will be the hosted zone
used for the installation of OpenShift. Follow the below instructions to add the main hosted zone.
* From the main AWS dashboard, in the Networking section click Route53
* Click Hosted Zones
* Click Create Hosted Zone

* Input a Domain Name: sysdeseng.com

* Input a Comment: Public Zone for RH Reference Architecture

» Type: Public Hosted Zone

e Click Create

Once the Pubic Zone is created select the radio button for the Domain and copy the Name Servers from
the right and add those to the external registrar if applicable.

o A subdomain can also be used. The same steps listed above are applicable when
using a subdomain.
2.9.3. Amazon Machine Images

Amazon Machine Images (AMIs) provide the required information to launch an instance. In this guide,
the gold image provided by Red Hat is used. The AMI is shared to a specific AWS account which is priced
less than the Red Hat Enterprise Linux image provided by AWS.

For more information see AWS Documentation.

Red Hat Gold Image

The Red Hat Cloud Access provided gold image allows Instances to be run at a cheaper cost than using
the Amazon provided RHEL image. Since a subscription is required to install OpenShift then it is not
necessary to use the Amazon provided image which has a built in charge back for the RHEL
subscription.

www.redhat.com 19 refarch-feedback@redhat.com

https://aws.amazon.com/route53/
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html

Q redhat.

To register for the Red Hat Cloud Access Gold Image please see Red Hat’s Website and select the tab for
Red Hat Gold Image.

2.9.4. Identity and Access Management

AWS provides IAM to securely control access to AWlS services and resources for users. IAM can allow or
deny access to certain resources for user accounts and for roles within the AWS environment. For this
reference architecture, an IAM account will need access to create roles, instances, Route53 entries, ELBs,
and many more components. The predefined policy AdministratorAccess has been proven to provide
all of the access required to create the environment defined in the this document.

During the installation of OpenShift Container Platform, one account is automatically be created to
manage a S3 bucket used for the Docker registry. A role and policy are also created to allow for
attaching and detaching of EBS volumes for persistent storage within the environment.

For more information see https://aws.amazon.com/iam/

2.10. Bastion

As shown in the Bastion Diagram the bastion server in this reference architecture provides a secure
way to limit SSH access to the AWS environment. The master and node security groups only allow for SSH
connectivity between nodes inside of the Security Group while the bastion allows SSH access from
everywhere. The bastion host is the only ingress point for SSH in the cluster from external entities.
When connecting to the OpenShift Container Platform infrastructure, the bastion forwards the request
to the appropriate server. Connecting through the bastion server requires specific SSH configuration.
The .ssh/configis outlined in the deployment section of the reference architecture guide.

ol

Bastion Instance

Figure 7. Bastion Diagram

refarch-feedback@redhat.com 20 www.redhat.com

https://www.redhat.com/en/technologies/cloud-computing/cloud-access
https://aws.amazon.com/iam/

Q redhat.
2.11. Dynamic Inventory

Ansible relies on inventory files and variables to perform playbook runs. As part of the reference
architecture provided Ansible playbooks, the inventory is scanned automatically using a dynamic
inventory script which generates an Ansible host file is generated in memory. The dynamic inventory
script provided queries the Amazon API to display information about EC2 instances. The dynamic
inventory script is also referred to as an Ansible Inventory script and the AWS specific script is written
in python. The script can manually be executed to provide information about the environment but for
this reference architecture, it is automatically called to generate the Ansible Inventory. For the
OpenShift installation, the python script and the Ansible module add_host allow for instances to be
grouped based on their purpose to be used in later playbooks. The reason the instances can be grouped
is because during Phase 1 when the infrastructure was provisioned AWS EC2 tags were applied to each
instance. The masters were assigned the master tag, the infrastructure nodes were assigned the infra
tag, and the application nodes were assigned the app tag.

For more information see For more information see
http://docs.ansible.com/ansible/intro_dynamic_inventory.html

2.12. Nodes

Nodes are AWS instances that serve a specific purpose for OpenShift. OpenShift masters are also
considered nodes. Nodes deployed on AllS can be vertically scaled before or after the OpenShift
installation using the AWS EC2 console. All OpenShift specific nodes are assigned an IAM role which
allows for cloud specific tasks to occur against the environment such as adding persistent volumes or
removing a node from the OpenShift Container Platform cluster automatically. There are three types of
nodes as described below.

2.12.1. Master nodes

The master nodes contain the master components, including the API server, controller manager server
and ETCD. The master maintains the clusters configuration, manages nodes in its OpenShift cluster. The
master assigns pods to nodes and synchronizes pod information with service configuration. The
master is used to define routes, services, and volume claims for pods deployed within the OpenShift
environment.

2.12.2. Infrastructure nodes

The infrastructure nodes are used for the router and registry pods. These nodes could be used if the
optional components Kibana and Hawkular metrics are required. The storage for the Docker registry
that is deployed on the infrastructure nodes is S3 which allows for multiple pods to use the same
storage. AWS S3 storage is used because it is synchronized between the availablity zones, providing data
redundancy.

www.redhat.com 21 refarch-feedback@redhat.com

http://docs.ansible.com/ansible/intro_dynamic_inventory.html

Q redhat.
2.12.3. Application nodes

The Application nodes are the instances where non-infrastructure based containers run. Depending on
the application, AWS specific storage can be applied such as a Elastic Block Storage which can be
assigned using a Persistent Volume Claimfor application data that needs to persist between container
restarts. A configuration parameter is set on the master which ensures that OpenShift Container
Platform user containers will be placed on the application nodes by default.

2.12.4. Node labels

All OpenShift Container Platform nodes are assigned a label. This allows certain pods to be deployed
on specific nodes. For example, nodes labeled infra are Infrastucture nodes. These nodes run the
router and registry pods. Nodes with the label app are nodes used for end user Application pods. The
configuration parameter 'defaultNodeSelector: "role=app"in /etc/origin/master/master-config.yaml
ensures all projects automatically are deployed on Application nodes.

2.13. OpenShift Pods

OpensShift leverages the Kubernetes concept of a pod, which is one or more containers deployed
together on one host, and the smallest compute unit that can be defined, deployed, and managed. For
example, a pod could be just a single php application connecting to a database outside of the OpenShift
environment or a pod could be a php application that has an ephemeral database. OpenShift pods
have the ability to be scaled at runtime or at the time of launch using the OpenShift console or the oc
CLItool. Any container running in the environment is considered a pod. The pods containing the
OpenShift router and registry are required to be deployed in the OpenShift environment.

2.14. Router

Pods inside of an OpenShift cluster are only reachable via their IP addresses on the cluster network. An
edge load balancer can be used to accept traffic from outside networks and proxy the traffic to pods
inside the OpenShift cluster.

An OpenShift administrator can deploy routers in an OpenShift cluster. These enable routes created by
developers to be used by external clients.

OpenShift routers provide external hostname mapping and load balancing to services over protocols
that pass distinguishing information directly to the router; the hostname must be present in the
protocol in order for the router to determine where to send it. Routers support the following protocols:

* HTTP

e HTTPS (with SNI)

* WebSockets

* TLS with SNI

refarch-feedback@redhat.com 22 www.redhat.com

Q redhat.

The router utilizes the wildcard zone specified during the installation and configuration of OpenShift.
This wildcard zone is used by the router to create routes for a service running within the OpenShift
environment to a publically accessible URL. The wildcard zone itself is a wildcard entry in Route53
which is linked using a CNAME to an ELB which performs a health check and forwards traffic to router
pods on port 80 and 443.

2.15. Registry

OpensShift can build Docker images from your source code, deploy them, and manage their lifecycle. To
enable this, OpenShift provides an internal, integrated Docker registry that can be deployed in your
OpenShift environment to manage images.

The registry stores Docker images and metadata. For production environment, you should use
persistent storage for the registry, otherwise any images anyone has built or pushed into the registry
would disappear if the pod were to restart.

Using the installation methods described in this document the registry is deployed using a S3 bucket.
The S3 bucket allows for multiple pods to be deployed at once for HA but also use the same persistent
backend storage. S3 is object based storage which does not get assigned to nodes in the same way that
EBS volumes are attached and assigned to a node. The bucket does not mount as block based storage
to the node so commands like fdisk or 1sblk will not show information in regards to the S3 bucket. The
configuration for the S3 bucket and credentials to login to the bucket are stored as OpenShift secrets
and applied to the pod. The registry can be scaled to many pods and even have multiple instances of
the registry running on the same host due to the use of S3.

2.16. Authentication

There are several options when it comes to authentication of users in OpenShift Container Plaform.
OpenShift can leverage an existing identity providerwithin an organization such as LDAP or OpenShift
can use external identity providers like GitHub, Google, and GitLab. The configuration of identification
providers occurs on the OpenShift master instances. OpenShift allows for multiple identity providers
to be specified. The reference architecture document uses GitHub as the authentication provider but
any of the other mechanisms would be an acceptable choice. Roles can be added to user accounts to
allow for extra priveleges such as the ability to list nodes or assign persistent storage volumes to a
project.

For more information on GitHub Oauth and other authentication methods see the OpenShift
documentation.

www.redhat.com 23 refarch-feedback@redhat.com

https://docs.openshift.com/container-platform/3.3/admin_solutions/authentication.html
https://docs.openshift.com/container-platform/3.3/admin_solutions/authentication.html

Qredhat
3. Provisioning the Infrastructure

This chapter focuses on Phase 1 of the process. The prerequisites defined below are required for a
successful deployment of infrastucture and the installation of OpenShift.

3.1. Provisioning the Infrastructure with Ansible

The script and playbooks provided within the git repository deploys infrastructure, installs and
configures OpenShift, and performs post installation tasks such as scaling the router and registry. The
playbooks create specific roles, policies, and users required for cloud provider configuration in
OpenShift and management of a newly created S3 bucket to manage container images.

3.1.1. Authentication Prerequisite

As mentioned in the previous section, Authentication for the reference architecture deployment is
handled by GitHub OAuth. The steps below descibe both the process for creating an organization and
peforming the configuration steps required for GitHub athentication.

Create an Organization

An existing organization can be used when using GitHub authentication. If an organization does not
exist then it is highly advised to create one. If an organization is not created anyone on GitHub can use
the installation of OpenShift.

An example is provided below.

refarch-feedback@redhat.com 24 www.redhat.com

Create an organization

Completed Step 2:

Set up a personal account Set up the organization

Set up the organization

Organization name

sysdeseng-openshift v

The organization will live at https:¥github.com/sysdeseng-openshift
Billing email

rcookedredhat.com

Feceipts will be sent here

Plan

® Unlimited members and public repositories for free.

Unlimited private repositories at $25/month for your first 5
users. $9/month for each additional user

| Create organization

Q redhat.

Organizations

+ Repository management
+" Fine-grained permissions

+ Focused dashboard

The credit card and plan you
choose on this screen will be billed
to the organization — not your
user account (cooktheryan).

Learn maore

Figure 8. GitHub New Organization

* Insert an Organization name

Insert a Billing email

* Click Create organization

www.redhat.com 25

Select a Plan (The Unlimited members and public repositories for free is an acceptable option)

refarch-feedback@redhat.com

Q.redhat.
Invite organization members

Completed n Step 2: Step 3:

Set up a personal account Set up the arganization Invite members

Search by username, full name or email address
Organization members

« See all repositories 3

scollier Invited X
« Create repositories
Scott Collier

+ Organize into teams
ﬁ + Foview code
+ Communicate via @mentions

As an organization owner, you'll
hawve complete access to all of
the organization’s repositories
and have control of what members
have access using fine-grainsd
PErmMIssions.

You'll also be able to change
billing info and cancel organization
plans.

Learn more

WMembers will receive their invitation via email.
They can also visit
hitps Fgithub.com/sysdeseng-openshift to
accept the invitation right away
Figure 9. GitHub Invite organization members

OPTIONAL

* Add additional GitHub accounts to the organization

* Click Finish
Configuring OAuth

Browse to https://github.com/settings/applications/new and login to GitHub

refarch-feedback@redhat.com 26 www.redhat.com

https://github.com/settings/applications/new

Q redhat.

The image below will provide an example configuration. Insert values that will be used during the
OpenShift deployment.

Register a new OAuth application

Application name
Openshift-3.2-Reference-Arch
Soemething users will recognize and trust
Homepage URL
https://openshift-master. sysdeseng. com
The full UBL to your application homepage
Application dezcription

Qpenshilt 3.2

This Is displayed to all potentlal users af your application
Authorization callback URL

https:/fopenshift-master . sysdeseng. com/oauthzecal loack/github

Your application’s callback URL. Raad our OAuth documentation far more infarmation

Register application Cancel

Figure 10. GitHub OAuth Application

Insert an Application name
* Insert a Homepage URL (This will be the URL used when accessing OpenShift)
* Insert an Application description (Optional)

* Insert an Authorization callback URL (The entry will be the Homepage URL +
/oauth2callback/github

* Click Register application

www.redhat.com 27 refarch-feedback@redhat.com

Q redhat.
OpenShift-3.2-Reference-Arch

H:‘ cooktheryan owns this applieation. Transfer ownership.

0 users

Client ID

CEEOThOZ2427FR487900a

Client Secret
fof225503a%9a45a7b95557h37d30fdb feelg3447

Revoke all user tokens Reset client secret

Figure 11. GitHub OAuth Client ID

A Client ID and Client Secret will be presented. These values will be used as variables during the
installation of Openshift.

OAuth Variable

Modify the file openshift-setup.yaml changing the clientID and clientSecret values using the
information presented after registering OpenShift as a OAuth application.

$ vim /home/<user>/git/openshift-ansible-contrib/reference-architecture/aws-
ansible/playbooks/openshift-setup.yaml
. ommitted ...
openshift_master_identity_providers:
- name: github
kind: GitHubIdentityProvider
login: true
challenge: false
mapping_method: claim
clientID: 3390715d36470ad14a9c
clientSecret: 47a0c61f7095b351839675ed78aectb7876925f9
organizations:
- openshift
. ommitted ...

refarch-feedback@redhat.com 28 www.redhat.com

Q redhat.
3.1.2. SSH Prerequisite

SSH Configuration

Before beginning the deployment of the AWlS infrastucture and the deployment of OpenShift, a specific
SSH configuration must be in place to ensure that SSH traffic passes through the bastion instance. If this
configuration is not in place the deployment of the infrastructure will be successful but the
deployment of OpenShift will fail.

The following task should be performed on the server that the Ansible playbooks
0 will be launched.

$ cat /home/<user>/.ssh/config

Host bastion

Hostname bastion.sysdeseng.com

user ec2-user
StrictHostKeyChecking no

ProxyCommand none

CheckHostIP no

ForwardAgent yes

IdentityFile /home/<user>/.ssh/id_rsa

Host *.sysdeseng.com

ProxyCommand ssh ec2-user@bastion -W %h:%p
user ec2-user
IdentityFile /home/<user>/.ssh/id_rsa

www.redhat.com 29 refarch-feedback@redhat.com

Q redhat.

Table 16. SSH Configuration

Host Bastion
Hostname
user

StrictHostKeyChecking

ProxyCommand
CheckHostIP
ForwardAgent
IdentityFile

Host *.sysdeseng.com

ProxyCommand
IdentityFile

3.1.3. AWS Authentication Prerequisite

AWS Configuration

Configuration Alias
Hostname of the bastion instance
Remote user to access the bastion instance

Automatically add new host keys to known host
file

Not required for the bastion

Key checking is against hostname rather than IP
Used to forward the SSH connection

Key used to access bastion instance

Wildcard for all *sysdeseng instances

SSH command used to jump from the bastion host
to another host in the environment

Key used for all *sysdeseng instances

The AWS Access Key ID and Secret Access Key must be exported on the workstation executing the
Ansible playbooks. This account must have the ability to create IAM users, IAM Policies, and S3 buckets.

If the ACCESS KEY ID and SECRET ACCESS KEY were not already created follow the steps provided by AWS.

http://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSGettingStartedGuide/AWSCredentials.

html

To export the Access Key ID and Secret perform the following on the workstation performing the

deployment of AWS and OpenShift:

$ export AWS_ACCESS_KEY_ID=<key_id>
$ export AWS_SECRET_ACCESS_KEY=<access_key>

refarch-feedback@redhat.com

30

www.redhat.com

http://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSGettingStartedGuide/AWSCredentials.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSGettingStartedGuide/AWSCredentials.html

Q redhat.
3.1.4. Red Hat Subscription Prerequisite

The installation of OCP requires a valid Red Hat subscription. For the installation of 0CP on AWS the
following items are required:

Red Hat Subscription Manager User: rhsm-se
Red Hat Subscription Manager Password: SecretPass
Subscription Name or Pool ID: Red Hat OpenShift Container Platform, Standard, 2-Core

The items above are examples and should reflect subscriptions relevant to the account performing the
installation. There are a few different varients of the OpenShift Subscription Name. It is advised to visit
https://access.redhat.com/management/subscriptions to find the specific Pool ID and Subscription
Name as the values will be used below during the deployment.

Subscription Name or Pool ID can be used. An example Pool ID value would be
O 8b85a9813e313e4a013e47f6chel6ee.

3.1.5. Deploying the Environment

Within the openshift-ansible-contrib git repository is a python script called ose-on-aws.py that
launches AWS resources and installs OpenShift on the new resources. Intelligence is built into the
playbooks to allow for certain variables to be set using options provided by the ose-on-aws.py script.
The script allows for deployment into an existing environment(brownfield) or a new
environment(greenfield) using a series of Ansible playbooks. Once the Ansible playbooks begin, the
installation automatically flows from the AWlS deployment to the OpenShift deployment and post
installation tasks.

Introduction to ose-on-aws.py

The ose-on-aws.py script contains many different configuration options such as changing the AMI,
instance size, and the ability to use a currently deployed bastion host. The region can be changed but
keep in mind the AMI may need to be changed if the Red Hat Cloud Access gold image AMI ID is
different. To see all of the potential options the --help trigger is available.

www.redhat.com 31 refarch-feedback@redhat.com

https://access.redhat.com/management/subscriptions

Q redhat.

Usage: ose-on-aws.py [OPTIONS]

Options:
--console-port INTEGER RANGE
--deployment-type TEXT

--region TEXT

--ami TEXT
--master-instance-type TEXT
--node-instance-type TEXT
--keypair TEXT

--create-key TEXT
--key-path TEXT

--create-vpe TEXT
--vpc-id TEXT
--private-subnet-id1 TEXT
--private-subnet-id2 TEXT
--private-subnet-id3 TEXT
--public-subnet-id1 TEXT
--public-subnet-id2 TEXT
--public-subnet-id3 TEXT
--public-hosted-zone TEXT
--app-dns-prefix TEXT
--rhsm-user TEXT
--rhsm-password TEXT
--rhsm-pool TEXT
--byo-bastion TEXT
--bastion-sg TEXT
--no-confirm

-h, --help
-v, --verbose

Greenfield Deployment

OpenShift web console port [default: 443]
OpenShift deployment type [default:
openshift-enterprise]

ec2 region [default: us-east-1]

ec2 ami [default: ami-10251c7a]

ec? instance type [default: m4.large]

ec2 instance type [default: t2.medium]

ec2 keypair name

Create SSH keypair [default: no]

Path to SSH public key. Default is /dev/null

which will skip the step [default: /dev/null]

Create VPC [default: yes]

Specify an already existing VPC

Specify a Private subnet within the existing
VPC

Specify a Private subnet within the existing
VPC

Specify a Private subnet within the existing
VPC

Specify a Public subnet within the existing
VPC

Specify a Public subnet within the existing
VPC

Specify a Public subnet within the existing
VPC

hosted zone for accessing the environment
application dns prefix [default: apps]

Red Hat Subscription Management User

Red Hat Subscription Management Password

Red Hat Subscription Management Pool ID or
Subscription Name

skip bastion install when one exists within
the cloud provider [default: no]

Specify Bastion Security group used with byo-
bastion [default: /dev/null]

Skip confirmation prompt

Show this message and exit.

For deploying OpenShift into a new environment, ose-on-aws. py creates instances, load balancers,
Route53 entries, and IAM users an ssh key can be entered to be uploaded and used with the new

refarch-feedback@redhat.com

32

www.redhat.com

Q redhat.

instances. Once the values have been entered into the ose-on-aws.py script all values will be presented
and the script will prompt to continue with the values or exit. By default, the Red Hat gold image AMI
Amazon Machine Images is used when provisioning instances but can be changed when executing the
ose-on-aws.py. The keypair in the example below 0SE-key is the keypair name as it appears within the
AWS EC2 dashboard. If a keypair has not been created and uploaded to AWS perform the steps below to
create, upload, and name the SSH keypair.

Create a Public/Private key

If a user does not currently have a public and private SSH key perform the following.

$ ssh-keygen

Generating public/private rsa key pair.

Enter file in which to save the key (/home/user/.ssh/id_rsa):
Created directory '/home/user/.ssh'.

Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Your identification has been saved in /home/user/.ssh/id_rsa.
Your public key has been saved in /home/user/.ssh/id_rsa.pub.
The key fingerprint is:

SHA256: SpfGaSv23aDasVsIRPfTNsXaO0AbfiuSJ1Pj+e5tN52Y user@goku.rdu.redhat.com
The key's randomart image is:

+---[RSA 2048]----+

ooo+*
0 BoX 0
0

|

|

|

| =

| ==, @.
| o . o.+
|

+

.00E.
————[SHA256] ————— +

Create a Public/Private key

To deploy the environment using the newly created private/public SSH key which currently does not
exist within AWS perform the following.

$ export AWS_ACCESS_KEY_ID=<key_id>

$ export AWS_SECRET_ACCESS_KEY=<access_key>

$./ose-on-aws.py --create-key=yes --rhsm-user=rhsm-user --rhsm-password=rhsm-password \
--public-hosted-zone=sysdeseng.com --key-path=/home/<user>/.ssh/id_rsa.pub \
--keypair=0SE-key --rhsm-pool="Red Hat OpenShift Container Platform, Standard, 2-Core"

www.redhat.com 33 refarch-feedback@redhat.com

Q redhat.

If an SSH key has already been uploaded to AWS specify the name of the keypair as it appears within the

AWS EC2 dashboard.

$./ose-on-aws.py --rhsm-user=rhsm-user --rhsm-password=rhsm-password \
--public-hosted-zone=sysdeseng.com --keypair=0SE-key \
--rhsm-pool="Red Hat OpenShift Container Platform, Standard, 2-Core"

Example of Greenfield Deployment values

Confiqured value

ami: ami-10251c7a

region: us-east-1
master_instance_type: t2.medium
node_instance_type: t2.medium
keypair: OSE-key

create_key: no
key_path: /dev/null
create_vpc: yes
vpc_id: None
subnet_id1: None
subnet_id2: None
subnet_id3: None
subnet_id4: None
subnet_id5: None
subnet_id6: None

byo_bastion:

console port: 443

deployment_type: openshift-enterprise

public_hosted_zone: sysdeseng.com

app_dns_prefix: apps

apps_dns: apps.sysdeseng.com

rhsm_user: rhsm-user

rhsm_password: ***¥*¥**

rhsm_pool: Red Hat OpenShift Container Platform, Standard, 2-Core

Continue using these values? [y/N]:y

refarch-feedback@redhat.com

S.

no

34

www.redhat.com

Q redhat.

Brownfield Deployment

The ose-on-aws.py script allows for deployments into an existing environment in which a VPC already
exists and subnets are already created. The script expects three public and three private subnets are
created. The private subnets must be able to connect externally. By default, the Red Hat gold image
AMI is used when provisioning instances but can be changed when executing the ose-on-aws.py.

Running the following will prompt for subnets and the VPC to deploy the instances and OpenShift.

$./ose-on-aws.py --create-vpc=no --rhsm-user=rhsm-user --rhsm-password=rhsm-password \
--public-hosted-zone=sysdeseng.com --keypair=0SE-key \ --rhsm-pool="Red Hat OpenShift
Container Platform, Standard, 2-Core"

Specify
Specify
Specify
Specify
Specify
Specify
Specify

the
the
the
the
the
the
the

VPC ID: vpc-11d06976

first Private subnet within the existing VPC: subnet-3e406466
second Private subnet within the existing VPC: subnet-66ae905b
third Private subnet within the existing VPC: subnet-4edfd438
first Public subnet within the existing VPC: subnet-1f416547
second Public subnet within the existing VPC: subnet-c2a3e90ff
third Public subnet within the existing VPC: subnet-1ddfd46b

In the case that a bastion instance has already been deployed an option within ose-on-aws.py exists to
not deploy the bastion instance.

i

If the bastion instance is already deployed supply the security group id of the bastion
security group.

$./ose-on-aws.py --create-vpc=no --rhsm-user=rhsm-user --rhsm-password=rhsm-password \
--public-hosted-zone=sysdeseng.com --keypair=0SE-key --byo-bastion=yes \
--bastion-sg=sg-a34ff3af --rhsm-pool="Red Hat OpenShift Container Platform, Standard, 2-

Core"

Specify
Specify
Specify
Specify
Specify
Specify
Specify
Specify

the
the
the
the
the
the
the
the

VPC ID: vpc-11d06976

first Private subnet within the existing VPC: subnet-3e406466
second Private subnet within the existing VPC: subnet-66ae9@5b
third Private subnet within the existing VPC: subnet-4edfd438
first Public subnet within the existing VPC: subnet-1f416547
second Public subnet within the existing VPC: subnet-c2ae90ff
third Public subnet within the existing VPC: subnet-1ddfd46b
the Bastion Security group(example: sg-4afdd24): sg-a34ff3af

www.redhat.com 35 refarch-feedback@redhat.com

Q redhat.

As stated in the Greenfield deployment the option exists to not use the Red Hat Cloud Access provided
gold image AMI. Using the same command from above the ami trigger allows the default value to be

changed.

$./ose-on-aws.py --create-vpc=no --rhsm-user=rhsm-user --rhsm-password=rhsm-password \
--public-hosted-zone=sysdeseng.com --keypair=0SE-key --byo-bastion=yes \
--bastion-sg=sg-a34ff3af --ami=ami-2051294a --rhsm-pool="Red Hat OpenShift Container
Platform, Standard, 2-Core"

Specify
Specify
Specify
Specify
Specify
Specify
Specify
Specify

the
the
the
the
the
the
the
the

VPC ID: vpc-11d06976

first Private subnet within the existing VPC: subnet-3e406466
second Private subnet within the existing VPC: subnet-66ae905b
third Private subnet within the existing VPC: subnet-4edfd438
first Public subnet within the existing VPC: subnet-1f416547
second Public subnet within the existing VPC: subnet-c2ae90ff
third Public subnet within the existing VPC: subnet-1ddfd46b
the Bastion Security group(example: sg-4afdd24): sg-a34ff3af

Example of Brownfield Deployment values

refarch-feedback@redhat.com 36 www.redhat.com

Configured values:

ami: ami-2051294a

region: us-east-1
master_instance_type: t2.medium
node_instance_type: t2.medium
keypair: OSE-key

create_key: no

key_path: /dev/null

create_vpc: no

vpc_id: vpc-11d06976
private_subnet_id1: subnet-3e406466
private_subnet_id2: subnet-66ae905b
private_subnet_id3: subnet-4edfd438
public_subnet_id1: subnet-1f416547
public_subnet_id2: subnet-c2a3e90ff
public_subnet_id3: subnet-1ddfd46b
byo_bastion: yes

console port: 443

deployment_type: openshift-enterprise

public_hosted_zone: sysdeseng.com
app_dns_prefix: apps

apps_dns: apps.sysdeseng.com
rhsm_user: rhsm-user
rhsm_password: *

Q redhat.

rhsm_pool: Red Hat OpenShift Container Platform, Standard, 2-Core

Continue using these values? [y/N]:y

Post Ansible Deployment

Once the playbooks have successfully completed the next steps will be to perform the steps defined in
Operational Management. In the event that OpenShift failed to install, follow the steps in Appendix C:

Installation Failure to restart the installation of OpenShift.

3.2. Post Provisioning Results

At this point the infrastructure and Red Hat OpenShift Container Platform have been deployed. Log
into the AWS console and check the resources. In the AWS console, check for the following resources:

e 3 Master nodes

2 Infrastructure nodes
2 Application nodes
1 Unique VPC with the required components

8 Security groups

www.redhat.com

37

refarch-feedback@redhat.com

Q redhat.

e 2 Elastic IPs

1 NAT Gateway
* 1 Key pair
* 3ELBs

1 IAMrole

1 IAM Policy

1 S3 Bucket

1 IAM user

e 2 Zones in Routeb3

At this point, the OpenShift public URL will be available using the public hosted zone URL provided
while running the ose-on-aws.py. For example, https://openshift-master.sysdeseng.com.

When installing using this method the browser certificate must be accepted three

times. The certificate must be accepted three times due to the number of masters in
the cluster.

refarch-feedback@redhat.com 38 www.redhat.com

https://openshift-master.sysdeseng.com

Q redhat.
4. Operational Management

With the successful deployment of OpenShift, the following section demonstrates how to confirm
proper functionality of the Red Hat OpenShift Container Platform.

4.1. Validate the Deployment

With the successful deployment of OpenShift, the following section demonstrates how to confirm
proper functionality of the OpenShift environment. An Ansible script in the git repository will allow
for an application to be deployed which will test the functionality of the master, nodes, registry, and
router. The playbook will test the deployment and clean up any projects and pods created during the
validation run.

The playbook will perform the following steps:
Environment Validation

 Validate the public OpenShift ELB address from the installation system

* Validate the public OpenShift ELB address from the master nodes

* Validate the internal OpenShift ELB address from the master nodes
 Validate the master local master address

» Validate the health of the ETCD cluster to ensure all ETCD nodes are healthy
* Create a project in OpenShift called validate

* Create an OpenShift Application

* Add a route for the Application

 Validate the URL returns a status code of 200 or healthy

* Delete the validation project

Ensure the URLs below and the tag variables match the variables used during
O deployment.

$ cd /home/<user>/git/openshift-ansible-contrib/reference-architecture/aws-ansible
$ ansible-playbook -i inventory/aws/hosts/ -e 'public_hosted_zone=sysdeseng.com
wildcard_zone=apps.sysdeseng.com console_port=443"' playbooks/validation.yaml

www.redhat.com 39 refarch-feedback@redhat.com

Q redhat.
4.2. Gathering hostnames

With all of the steps that occur during the installation of OpenShift it is possible to lose track of the
names of the instances in the recently deployed environment. One option to get these hostnames is to
browse to the AWS EC2 dashboard and select Running Instances under Resources. Selecting Running
Resources shows all instances currently running within EC2. To view only instances specific to the
reference architecture deployment filters can be used. Under Instances — Instances within EC2 click
beside the magnifying glass. Select a Tag Key such as openshift-role and click A11 values. The filter
shows all instances relating to the reference architecture deployment.

To help facilitate the Operational Management Chapter the following hostnames will be used.

* ose-master0O1.sysdeseng.com

* ose-master02.sysdeseng.com

* ose-master03.sysdeseng.com

* ose-infra-node01.sysdeseng.com
* ose-infra-node02.sysdeseng.com
* ose-app-node01.sysdeseng.com

* ose-app-node02.sysdeseng.com

4.3. Running Diagnostics

Perform the following steps from the first master node.

To run diagnostics, SSH into the first master node (ose-master01.sysdeseng.com). Direct access is
provided to the first master node because of the configuration of the local ~/.ssh/conf1ig file.

$ ssh ec2-user@ose-master@1.sysdeseng.com
$ sudo -i

refarch-feedback@redhat.com 40 www.redhat.com

Q redhat.

Connectivity to the first master node (ose-master01.sysdeseng.com) as the root user should have been
established. Run the diagnostics that are included as part of the install.

oadm diagnostics

[Note] Determining if client configuration exists for client/cluster diagnostics
Info: Successfully read a client config file at '/root/.kube/config'

Info: Using context for cluster-admin access: 'default/internal-openshift-master-
sysdeseng-com:443/system:admin’

[Note] Performing systemd discovery

[Note] Running diagnostic: ConfigContexts[default/internal-openshift-master-sysdeseng-
com:443/system:admin]
Description: Validate client config context is complete and has connectivity

Info: The current client config context is 'default/internal-openshift-master-sysdeseng-
com:443/system:admin’:

The server URL is 'https://internal-openshift-master.sysdeseng.com'

The user authentication is 'system:admin/internal-openshift-master-sysdeseng-
com:443'

The current project is 'default'

Successfully requested project list; has access to project(s):

[management-infra openshift openshift-infra test default kube-system logging]

[Note] Running diagnostic: ConfigContexts[default/openshift-master-sysdeseng-
com:443/system:admin]
Description: Validate client config context is complete and has connectivity

Info: For client config context 'default/openshift-master-sysdeseng-
com:443/system:admin’ :

The server URL is "https://openshift-master.sysdeseng.com'

The user authentication is 'system:admin/internal-openshift-master-sysdeseng-
com:443'

The current project is 'default'

Successfully requested project list; has access to project(s):

[test default kube-system logging management-infra openshift openshift-infra]

[Note] Running diagnostic: DiagnosticPod
Description: Create a pod to run diagnostics from the application standpoint

Info: Output from the diagnostic pod (image openshift3/ose-deployer:v3.3.0.32):
[Note] Running diagnostic: PodCheckAuth
Description: Check that service account credentials authenticate as
expected

Info: Service account token successfully authenticated to master
Info: Service account token was authenticated by the integrated registry.

www.redhat.com 41 refarch-feedback@redhat.com

Q redhat.
[Note] Running diagnostic: PodCheckDns
Description: Check that DNS within a pod works as expected

[Note] Summary of diagnostics execution (version v3.3.0.32):
[Note] Completed with no errors or warnings seen.

[Note] Running diagnostic: ClusterRegistry
Description: Check that there is a working Docker registry

Info: The "docker-registry" service has multiple associated pods each mounted with
ephemeral storage, but also has a custom config /etc/registryconfig/config.yml
mounted; assuming storage config is as desired.

WARN: [DC1u1012 from diagnostic
ClusterRegistry@openshift/origin/pkg/diagnostics/cluster/registry.go:300]
The pod logs for the "docker-registry-2-whjg6" pod belonging to
the "docker-registry" service indicated unknown errors.
This could result in problems with builds or deployments.
Please examine the log entries to determine if there might be
any related problems:

time="2016-09-30T11:17:19-04:00" level=error msg="obsolete configuration detected,
please add openshift registry middleware into registry config file"

time="2016-09-30T11:17:19-04:00" level=error msg="obsolete configuration detected,
please add openshift storage middleware into registry config file"

time="2016-09-30T11:26:26.480496017-04:00" level=error msg="error authorizing
context: authorization header required" go.version=go1.6.2
http.request.host="172.30.146.134:5000" http.request.id=0ecad92c-849a-4e0d-954d-
2b137d581e90 http.request.method=GET http.request.remoteaddr="172.16.6.1:53710"
http.request.uri="/v2/" http.request.useragent="docker/1.10.3 go/go1.6.2 git-
commit/5206701-unsupported kernel/3.10.0-327.10.1.e17.x86_64 os/linux arch/amd64"
instance.id=a%2b8db-aff3-4bab-baba-5611e953bca9

time="2016-09-30T11:26:26.620574914-04:00" level=error msg="response completed
with error" err.code="blob unknown"
err.detail=sha256:e95563b12733327cceebc9f46d31d3d785fbcd255e479afdbebaeed17228129f
err.message="blob unknown to registry" go.version=go1.6.2
http.request.host="172.30.146.134:5000" http.request.id=62978d37-d1ef-4457-3e92-
06786806b828 http.request.method=HEAD http.request.remoteaddr="172.16.6.1:53713"
http.request.uri="/v2/test/ruby/blobs/sha256:e95563b12733327cceebc9f46d31d3d785fbcd255e47
9afdbebaee@17228f29f" http.request.useragent="docker/1.10.3 go/go1.6.2 git-
commit/5206701-unsupported kernel/3.10.0-327.10.1.e17.x86_64 os/linux arch/amd64"
http.response.contenttype="application/json; charset=utf-8"
http.response.duration=122.872562ms http.response.status=404 http.response.written=157
instance.id=a%2b8db-aff3-4bab-baba-5611e953bcag
vars.digest="sha256:e95563b12733327cceebc9f46d31d3d785fbcd255e479afdbebaeed17228f29f"
vars.name="test/ruby"

time="2016-09-30T11:26:26.628583093-04:00" level=error msg="response completed
with error" err.code="blob unknown"

refarch-feedback@redhat.com 42 www.redhat.com

Q redhat.
err.detail=sha256:27723e0d9360d210b6349b96f9e340ecbcbbdath813a87814199112119d4c862
err.message="blob unknown to registry" go.version=go1.6.2
http.request.host="172.30.146.134:5000" http.request.id=25a1b861-ec5e-4aef-bdbe-
b3eb55d927dd http.request.method=HEAD http.request.remoteaddr="172.16.6.1:53714"
http.request.uri="/v2/test/ruby/blobs/sha256:2772ae0d9360d210b6349b96f9e340ecbHcbbdatb813a
878141991f2119d4c862" http.request.useragent="docker/1.10.3 go/go1.6.2 git-
commit/5206701-unsupported kernel/3.10.0-327.10.1.e17.x86_64 os/linux arch/amd64"
http.response.contenttype="application/json; charset=utf-8"
http.response.duration=125.700888ms http.response.status=404 http.response.written=157
instance.id=a%e2b8db-aff3-4bald-baba-5611e953bca9
vars.digest="sha256:27723e0d9360d210b6349b96f9e340ecbcbbdatb813a878141991f2119d4c862"
vars.name="test/ruby"

time="2016-09-30T11:26:26.632076376-04:00" level=error msg="response completed
with error" err.code="blob unknown"
err.detail=sha256:30cf2e26a24f2a8426cbe8444f8af2ech7023bd468b@5¢1b6fd0b2797b@F9f 9
err.message="blob unknown to registry" go.version=go1.6.2
http.request.host="172.30.146.134:5000" http.request.id=09eb7bc4-4f85-4ec8-83f1-
d78935ee259b http.request.method=HEAD http.request.remoteaddr="172.16.6.1:53716"
http.request.uri="/v2/test/ruby/blobs/sha256:30cf2e26a24f2a8426cbe8444f8af2ecb7023bd468b0
5c¢1b6fdOb2797b0f9ff9" http.request.useragent="docker/1.10.3 go/go1.6.2 git-
commit/5206701-unsupported kernel/3.10.0-327.10.1.e17.x86_64 os/linux arch/amd64"
http.response.contenttype="application/json; charset=utf-8"
http.response.duration=134.340197ms http.response.status=404 http.response.written=157
instance.id=a%e2b8db-aff3-4bald-baba-5611e953bca9
vars.digest="sha256:30cf2e26a24f2a8426cbe8444f8af2ecb7023bd468b@5¢1b6fd0b2797b0FIFF9"
vars.name="test/ruby"

time="2016-09-30T11:26:26.707144372-04:00" level=error msg="response completed
with error" err.code="blob unknown"
err.detail=sha256:99dd41655d8a45c2fb74f9eeb73e327b3ad4796f0ff0d602c575e32e9804baed
err.message="blob unknown to registry" go.version=go1.6.2
http.request.host="172.30.146.134:5000" http.request.id=00e147a6-78b3-4e68-911d-
70d34137dc@f http.request.method=HEAD http.request.remoteaddr="172.16.6.1:53715"
http.request.uri="/v2/test/ruby/blobs/sha256:99dd41655d8a45c2fb74f9eeb73e327b3ad4796f0f 0
d602c575e32e9804baed" http.request.useragent="docker/1.10.3 go/go1.6.2 git-
commit/5206701-unsupported kernel/3.10.0-327.10.1.e17.x86_64 os/linux arch/amd64"
http.response.contenttype="application/json; charset=utf-8"
http.response.duration=201.651374ms http.response.status=404 http.response.written=157
instance.id=a%e2b8db-aff3-4bald-baba-5611e953bca9
vars.digest="sha256:99dd41655d8a45c2fb74f9eeb73e327b3ad4796f0ff@d602c575e32e9804baed"
vars.name="test/ruby"

time="2016-09-30T11:27:07.424507327-04:00" level=error msg="response completed
with error" err.code="blob unknown"
err.detail=sha256:12d39f69f188b6010c2d6dc8e45d86cd4f36bbcded4942620b3cae2802a35253
err.message="blob unknown to registry" go.version=go1.6.2
http.request.host="172.30.146.134:5000" http.request.id=bb29115e-a2270-41fa-8238-
6f9c344c2d78 http.request.method=HEAD http.request.remoteaddr="172.16.6.1:53753"
http.request.uri="/v2/test/ruby/blobs/sha256:12d39f69f188b6010c2dbdc8e45d86cd4f36bbcded49
42620b3cae2802a335253" http.request.useragent="docker/1.10.3 go/go1.6.2 git-

www.redhat.com 43 refarch-feedback@redhat.com

Q redhat.

commit/5206701-unsupported kernel/3.10.0-327.10.1.e17.x86_64 os/linux arch/amd64"
http.response.contenttype="application/json; charset=utf-8"
http.response.duration=32.413514ms http.response.status=404 http.response.written=157
instance.id=a9%e2b8db-aff3-4bad-baba-5611€953bca9
vars.digest="sha256:12d39f69f188b6010c2d6dc8e45d86cd4f36bbcded4942620b3cae2802a35253"
vars.name="test/ruby"

time="2016-09-30T11:27:08.471372091-04:00" level=error msg="response completed
with error" err.code=unknown err.detail="manifest invalid: manifest invalid"
err.message="unknown error" go.version=go1.6.2
http.request.contenttype="application/vnd.docker.distribution.manifest.v2+json"
http.request.host="172.30.146.134:5000" http.request.id=4a168355-b2cc-44e3-a7d2-
9417ab47c024 http.request.method=PUT http.request.remoteaddr="172.16.6.1:53759"
http.request.uri="/v2/test/ruby/manifests/latest" http.request.useragent="docker/1.10.3
go/go1.6.2 git-commit/5206701-unsupported kernel/3.10.0-327.10.1.e17.x86_64 os/1linux
arch/amd64" http.response.contenttype="application/json; charset=utf-8"
http.response.duration=9.195356ms http.response.status=500 http.response.written=136
instance.id=a%e2b8db-aff3-4bad-baba-5611e953bca9 vars.name="test/ruby"
vars.reference=latest

time="2016-09-30T11:27:17.053093202-04:00" level=error msg="error authorizing
context: authorization header required" go.version=go1.6.2
http.request.host="172.30.146.134:5000" http.request.id=bf905049-e31f-4581-8865-
cc734f01cd5f http.request.method=GET http.request.remoteaddr="172.16.6.1:53765"
http.request.uri="/v2/" http.request.useragent="docker/1.10.3 go/go1.6.2 git-
commit/5206701-unsupported kernel/3.10.0-327.10.1.e17.x86_64 os/linux arch/amd64"
instance.id=a9%e2b8db-aff3-4bad-baba-5611€953bca9

WARN: [DC1u1012 from diagnostic
ClusterRegistry@openshift/origin/pkg/diagnostics/cluster/registry.go:300]
The pod logs for the "docker-registry-2-yzq@7" pod belonging to
the "docker-registry" service indicated unknown errors.
This could result in problems with builds or deployments.
Please examine the log entries to determine if there might be
any related problems:

time="2016-09-30T11:17:10-04:00" level=error msg="obsolete configuration detected,
please add openshift registry middleware into registry config file"
time="2016-09-30T11:17:10-04:00" level=error msg="obsolete configuration detected,
please add openshift storage middleware into registry config file"
time="2016-09-30T11:22:42.268428221-04:00" level=error msg="error authorizing
context: authorization header required" go.version=go1.6.2
http.request.host="172.30.146.134:5000" http.request.id=22ce3dfe-3070-4e58-8d32-
df8ef3bc8al2 http.request.method=GET http.request.remoteaddr="172.16.1.1:46819"
http.request.uri="/v2/" http.request.useragent="docker/1.10.3 go/go1.6.2 git-
commit/5206701-unsupported kernel/3.10.0-327.10.1.e17.x86_64 os/linux arch/amd64"
instance.id=e2aa8dd4-89f4-4b51-93bd-8c681e842eba
time="2016-09-30T11:22:42.417097654-04:00" level=error msg="response completed
with error" err.code="blob unknown"
err.detail=sha256:30cf2e26a24f2a8426cbe8444f8af2ecb7023bd468b@5¢1b6fd@b2797b@F9f 9

refarch-feedback@redhat.com 44 www.redhat.com

Q redhat.
err.message="blob unknown to registry" go.version=go1.6.2
http.request.host="172.30.146.134:5000" http.request.id=c37e0eba-1723-49b0-abe8-
cbcb3abb70e1 http.request.method=HEAD http.request.remoteaddr="172.16.1.1:46825"
http.request.uri="/v2/validate/cakephp-
example/blobs/sha256:30cf2e26a24f2a8426cbe8444f8af2ech7023bd468b@5¢1b6fd@b2797b0F9FF9"
http.request.useragent="docker/1.10.3 go/go1.6.2 git-commit/5206701-unsupported
kernel/3.10.0-327.10.1.e17.x86_64 os/linux arch/amd64"
http.response.contenttype="application/json; charset=utf-8"
http.response.duration=121.549543ms http.response.status=404 http.response.written=157
instance.id=e2aa8dd4-89f4-4b51-93bd-8c681e842eba
vars.digest="sha256:30cf2e26a24f2a8426cbe8444f8af2ecb7023bd468b@5c1b6fd@b2797b@FIFF9"
vars.name="validate/cakephp-example"

time="2016-09-30711:22:42.417806241-04:00" level=error msg="response completed
with error" err.code="blob unknown"
err.detail=sha256:2772ae0d9360d210b6349b96f9e340ecbcbbdatb813a87814199112119d4c862
err.message="blob unknown to registry" go.version=go1.6.2
http.request.host="172.30.146.134:5000" http.request.id=5708d5e9-df4e-4b5a-alfc-
b43912dee898 http.request.method=HEAD http.request.remoteaddr="172.16.1.1:46824"
http.request.uri="/v2/validate/cakephp-
example/blobs/sha256:27723e0d9360d210b6349b96f9e340ecbcbbdatb813a87814f99112119d4c862"
http.request.useragent="docker/1.10.3 go/go1.6.2 git-commit/5206701-unsupported
kernel/3.10.0-327.10.1.e17.x86_64 os/linux arch/amd64"
http.response.contenttype="application/json; charset=utf-8"
http.response.duration=124.092336ms http.response.status=404 http.response.written=157
instance.id=e23a8dd4-89f4-4b51-93bd-8c681e842eba
vars.digest="sha256:27723e0d9360d210b6349b96f9e340ecbcbbdatb813a878141991f2119d4c862"
vars.name="validate/cakephp-example"

time="2016-09-30T11:22:42.420944307-04:00" level=error msg="response completed
with error" err.code="blob unknown"
err.detail=sha256:f6db1d2870e85d05aa@8cb2d769e18847e5dc321cda780c6d5952f8152¢9229
err.message="blob unknown to registry" go.version=go1.6.2
http.request.host="172.30.146.134:5000" http.request.id=812c064a-cbba-4c671-abad-
8cf771c23633 http.request.method=HEAD http.request.remoteaddr="172.16.1.1:46822"
http.request.uri="/v2/validate/cakephp-
example/blobs/sha256:f6db1d2870e85d05aa@8cb2d769e18847e5dc321cda780c6d5952F8f52¢92219"
http.request.useragent="docker/1.10.3 go/go1.6.2 git-commit/5206701-unsupported
kernel/3.10.0-327.10.1.e17.x86_64 os/linux arch/amd64"
http.response.contenttype="application/json; charset=utf-8"
http.response.duration=132.329049ms http.response.status=404 http.response.written=157
instance.id=e2aa8dd4-89f4-4b51-93bd-8c681e842eba
vars.digest="sha256:f6db1d2870e85d053a08cb2d769e18847e5dc321cda780c6d595218f52¢922f9"
vars.name="validate/cakephp-example"

time="2016-09-30T11:22:42.421132455-04:00" level=error msg="response completed
with error" err.code="blob unknown"
err.detail=sha256:99dd41655d8a45c2fb74f9eeb73e327b3ad4796f0ff0d602c575e32e9804baed
err.message="blob unknown to registry" go.version=go1.6.2
http.request.host="172.30.146.134:5000" http.request.id=9c3840e8-d085-4968-b870-
fd358f36e394 http.request.method=HEAD http.request.remoteaddr="172.16.1.1:46823"

www.redhat.com 45 refarch-feedback@redhat.com

Q redhat.

http.request.uri="/v2/validate/cakephp-
example/blobs/sha256:99dd41655d8a45c2fb74f9eeb73e327b3ad4796f0ff@d602c575e32e9804baed"
http.request.useragent="docker/1.10.3 go/go1.6.2 git-commit/5206701-unsupported
kernel/3.10.0-327.10.1.e17.x86_64 os/linux arch/amd64"
http.response.contenttype="application/json; charset=utf-8"
http.response.duration=130.629462ms http.response.status=404 http.response.written=157
instance.id=e23a8dd4-89f4-4b51-93bd-8c681e842eba
vars.digest="sha256:99dd41655d8a45c2fb74f9eeb73e327b3ad4796f0ff0d602c575e32e9804baed"
vars.name="validate/cakephp-example"

time="2016-09-30T11:23:25.459368181-04:00" level=error msg="response completed
with error" err.code="blob unknown"
err.detail=sha256:a8b77515dce134a9%ac9ce832085d214fd7a45439ae14935¢c7fa2abd788f3fdbb
err.message="blob unknown to registry" go.version=go1.6.2
http.request.host="172.30.146.134:5000" http.request.id=7b5307e9-4d9b-4dab-97fb-
adffc926c521 http.request.method=HEAD http.request.remoteaddr="172.16.1.1:46861"
http.request.uri="/v2/validate/cakephp-
example/blobs/sha256:a8b77515dce134a9ac9ce832085d214fd7a45439ae14935¢7fa2abd788f3fdbb"
http.request.useragent="docker/1.10.3 go/go1.6.2 git-commit/5206701-unsupported
kernel/3.10.0-327.10.1.e17.x86_64 os/linux arch/amd64"
http.response.contenttype="application/json; charset=utf-8"
http.response.duration=604.990389ms http.response.status=404 http.response.written=157
instance.id=e2aa8dd4-89f4-4b51-93bd-8c681e842eba
vars.digest="sha256:a8b77515dce134a%ac9ce832085d214fd7345439ae14935¢c7fa2abd788f3fdbb"
vars.name="validate/cakephp-example"

time="2016-09-30T11:23:27.414434085-04:00" level=error msg="response completed
with error" err.code=unknown err.detail="manifest invalid: manifest invalid"
err.message="unknown error" go.version=go1.6.2
http.request.contenttype="application/vnd.docker.distribution.manifest.v2+json"
http.request.host="172.30.146.134:5000" http.request.id=438ead9d-5c2a-4401-9bd7-
768d22cd6572 http.request.method=PUT http.request.remoteaddr="172.16.1.1:46870"
http.request.uri="/v2/validate/cakephp-example/manifests/latest"
http.request.useragent="docker/1.10.3 go/go1.6.2 git-commit/5206701-unsupported
kernel/3.10.0-327.10.1.e17.x86_64 os/linux arch/amd64"
http.response.contenttype="application/json; charset=utf-8"
http.response.duration=11.024697ms http.response.status=500 http.response.written=136
instance.id=e2aa8dd4-89f4-4b51-93bd-8c681e842eba vars.name="validate/cakephp-example"
vars.reference=latest

time="2016-09-30T11:24:14.322762876-04:00" level=error msg="error authorizing
context: authorization header required" go.version=go1.6.2
http.request.host="172.30.146.134:5000" http.request.id=3aef73ab-5138-42c2-ba3f-
c4388a8a0a13 http.request.method=GET http.request.remoteaddr="172.16.1.1:46883"
http.request.uri="/v2/" http.request.useragent="docker/1.10.3 go/go1.6.2 git-
commit/5206701-unsupported kernel/3.10.0-327.10.1.e17.x86_64 os/linux arch/amd64"
instance.id=e23a8dd4-89f4-4b51-93bd-8c681e842eba

[Note] Running diagnostic: ClusterRoleBindings

Description: Check that the default ClusterRoleBindings are present and contain
the expected subjects

refarch-feedback@redhat.com 46 www.redhat.com

Q redhat.

Info: clusterrolebinding/cluster-readers has more subjects than expected.

Use the oadm policy reconcile-cluster-role-bindings command to update the role
binding to remove extra subjects.

Info: clusterrolebinding/cluster-readers has extra subject {ServiceAccount management-
infra management-admin }.

[Note] Running diagnostic: ClusterRoles
Description: Check that the default ClusterRoles are present and contain the
expected permissions

[Note] Running diagnostic: ClusterRouterName
Description: Check there is a working router

[Note] Running diagnostic: MasterNode
Description: Check if master is also running node (for Open vSwitch)

WARN: [DClu3004 from diagnostic
MasterNode@openshift/origin/pkg/diagnostics/cluster/master_node.go:175]
Unable to find a node matching the cluster server IP.
This may indicate the master is not also running a node, and is unable
to proxy to pods over the Open vSwitch SDN.

[Note] Skipping diagnostic: MetricsApiProxy

Description: Check the integrated heapster metrics can be reached via the API
proxy

Because: The heapster service does not exist in the openshift-infra project at
this time,

so it is not available for the Horizontal Pod Autoscaler to use as a source of
metrics.

[Note] Running diagnostic: NodeDefinitions
Description: Check node records on master

WARN: [DC1u0003 from diagnostic
NodeDefinition@openshift/origin/pkg/diagnostics/cluster/node_definitions.go:112]
Node ip-10-20-4-244.ec2.internal is ready but is marked Unschedulable.
This is usually set manually for administrative reasons.
An administrator can mark the node schedulable with:
oadm manage-node ip-10-20-4-244.ec2.internal --schedulable=true

While in this state, pods should not be scheduled to deploy on the node.
Existing pods will continue to run until completed or evacuated (see

other options for 'oadm manage-node').

WARN: [DClu@003 from diagnostic

www.redhat.com 47 refarch-feedback@redhat.com

Q redhat.
NodeDefinition@openshift/origin/pkg/diagnostics/cluster/node_definitions.go:112]
Node ip-10-20-5-57.ec2.internal is ready but is marked Unschedulable.
This is usually set manually for administrative reasons.
An administrator can mark the node schedulable with:
oadm manage-node ip-10-20-5-57.ec2.internal --schedulable=true

While in this state, pods should not be scheduled to deploy on the node.
Existing pods will continue to run until completed or evacuated (see
other options for 'oadm manage-node').

WARN: [DC1u0003 from diagnostic
NodeDefinition@openshift/origin/pkg/diagnostics/cluster/node_definitions.go:112]
Node ip-10-20-6-152.ec2.internal is ready but is marked Unschedulable.
This is usually set manually for administrative reasons.
An administrator can mark the node schedulable with:
oadm manage-node ip-10-20-6-152.ec2.internal --schedulable=true

While in this state, pods should not be scheduled to deploy on the node.
Existing pods will continue to run until completed or evacuated (see
other options for 'oadm manage-node').

[Note] Running diagnostic: ServiceExternalIPs
Description: Check for existing services with ExternalIPs that are disallowed by
master config

[Note] Running diagnostic: Analyzelogs
Description: Check for recent problems in systemd service logs

Info: Checking journalctl logs for 'atomic-openshift-node' service

WARN: [DS2005 from diagnostic
Analyzelogs@openshift/origin/pkg/diagnostics/systemd/analyze_logs.go:120]
Found 'atomic-openshift-node' journald log message:
We930 11:12:51.277122 5787 subnets.go:236] Could not find an allocated subnet
for node: ip-10-20-4-244.ec2.internal, Waiting...

This warning occurs when the node is trying to request the
SDN subnet it should be configured with according to the master,
but either can't connect to it or has not yet been assigned a subnet.

This can occur before the master becomes fully available and defines a
record for the node to use; the node will wait until that occurs,

so the presence of this message in the node log isn't necessarily a
problem as long as the SDN is actually working, but this message may
help indicate the problem if it is not working.

If the master is available and this log message persists, then it may
be a sign of a different misconfiguration. Check the master's URL in

refarch-feedback@redhat.com 48 www.redhat.com

Q redhat.

the node kubeconfig.
* Is the protocol http? It should be https.
* Can you reach the address and port from the node using curl -k?

Info: Checking journalctl logs for 'docker' service

[Note] Running diagnostic: MasterConfigCheck
Description: Check the master config file

WARN: [DH@0O5 from diagnostic
MasterConfigCheck@openshift/origin/pkg/diagnostics/host/check_master_config.go:52]
Validation of master config file '/etc/origin/master/master-config.yaml' warned:
assetConfig.loggingPublicURL: Invalid value: "": required to view aggregated
container logs in the console
assetConfig.metricsPublicURL: Invalid value:
in the console

: required to view cluster metrics
[Note] Running diagnostic: NodeConfigCheck

Description: Check the node config file
Info: Found a node config file: /etc/origin/node/node-config.yaml

[Note] Running diagnostic: UnitStatus
Description: Check status for related systemd units

[Note] Summary of diagnostics execution (version v3.3.0.32):
[Note] Warnings seen: 8

t’ The warnings will not cause issues in the environment

Based on the results of the diagnostics, actions can be taken to alleviate any issues.

4.4. Checking the Health of ETCD

This section focuses on the ETCD cluster. It describes the different commands to ensure the cluster is
healthy. The internal DNS names of the nodes running ETCD must be used.

SSH into the first master node (ose-master01.sysdeseng.com). Using the output of the command hostname
issue the etcdctl command to confirm that the cluster is healthy.

$ ssh ec2-user@ose-master@1.sysdeseng.com
$ sudo -i

www.redhat.com 49 refarch-feedback@redhat.com

Q redhat.

hostname

ip-10-20-1-106.ec2.internal

etcdctl -C https://ip-10-20-1-106.ec2.internal:2379 --ca-file /etc/etcd/ca.crt --cert
-file=/etc/origin/master/master.etcd-client.crt --key-file=/etc/origin/master/master.etcd
-client.key cluster-health

member 82c895b7b0de4330 is healthy: got healthy result from https://10.20.1.%06:2379
member c8e7ac98bb93fe8c is healthy: got healthy result from https://10.20.3.74:2379
member f7bbfc4285f239ba is healthy: got healthy result from https://10.20.2.157:2379

o In this configuration the ETCD services are distributed among the OpenShift master
nodes.

4.5. Default Node Selector

As explained in section 2.12.4 node labels are an important part of the OpenShift environment. By
default of the reference architecture installation, the default node selector is set to "role=apps" in
/etc/origin/master/master-config.yaml on all of the master nodes. This configuration parameter is set
by the Ansible role openshift-default-selector on all masters and the master API service is restarted
that is required when making any changes to the master configuration.

SSH into the first master node (ose-master01.sysdeseng.com) to verify the defaultNodeSelector is
defined.

vi /etc/origin/master/master-config.yaml
...omitted...
projectConfig:
defaultNodeSelector: "role=app"
projectRequestMessage: ""
projectRequestTemplate:
...omitted...

If making any changes to the master configuration then the master API service must
be restarted or the configuration change will not take place. Any changes and the
subsequent restart must be done on all masters.

4.6. Management of Maximum Pod Size

Quotas are set on ephemeral volumes within pods to prohibit a pod from becoming to large and
impacting the node. There are three places where sizing restrictions should be set. When persistent
volume claims are not set a pod has the ability to grow as large as the underlying filesystem will allow.
The required modifcations are set by Ansible. The roles below will be the specific Ansible role that
defines the parameters along with the locations on the nodes in which the parameters are set.

refarch-feedback@redhat.com 50 www.redhat.com

Q redhat.

Openshift Volume Quota

At launch time user-data creates a xfs partition on the /dev/xvdc block device, adds an entry in fstab,
and mounts the volume with the option of gquota. If gquota is not set the OpenShift node will not be
able to start with the "perFSGroup" parameter defined below. This disk and configuration is done on
the infrastructure and application nodes. The configuration is not done on the masters due to the
master nodes being unschedulable.

SSH into the first infrastructure node (ose-infra-node01.sysdeseng.com) to verify the entry exists within
fstab.

vi /ete/fstab
/dev/xvdc /var/lib/origin/openshift.local.volumes xfs gquota @ 0

Docker Storage Setup

The docker-storage-setup file is created at luanch time by user-data. This file tells the Docker service to
use /dev/xvdb and create the volume group of docker-vol. The extra Docker storage options ensures
that a container can grow no larger than 3G. Docker storage setup is performed on all master,
infrastructure, and application nodes.

SSH into the first infrastructure node (ose-infra-node01.sysdeseng.com) to verify /etc/sysconfig/docker-
storage-setup matches the information below.

vi /etc/sysconfig/docker-storage-setup

DEVS=/dev/xvdb

VG=docker-vol

DATA_SIZE=95%VG

EXTRA_DOCKER_STORAGE _OPTIONS="--storage-opt dm.basesize=3G"

OpenShift Emptydir Quota

The role openshift-emptydir-quota sets a parameter within the node configuration. The perFSGroup
setting restricts the ephemeral emptyDir volume from growing larger than 512Mi. This empty dir
quota is done on the infrastructure and application nodes. The configuration is not done on the
masters due to the master nodes being unschedulable.

SSH into the first infrastructure node (ose-infra-node01.sysdeseng.com) to verify /etc/origin/node/node-
config.yml matches the information below.

www.redhat.com 51 refarch-feedback@redhat.com

Q redhat.

vi /etc/origin/node/node-config.yml
...omitted...
volumeConfig:
localQuota:
perFSGroup: 512Mi

4.7. Yam Repositories

In section 2.3 Required Channels the specific repositories for a successful OpenShift installation were
defined. All systems except for the bastion host should have the same subscriptions. To verify
subscriptions match those defined in Required Channels perfom the following. The repositories below
are enabled during the rhsm-repos playbook during the installation. The installation will be
unsuccessful if the repositories are missing from the system.

yum repolist
Loaded plugins: amazon-id, rhui-1b, search-disabled-repos, subscription-manager

repo id repo name

status

rhel-7-server-extras-rpms/x86_64 Red Hat Enterprise Linux 7 Server
- Extras (RPMs) 249

rhel-7-server-ose-3.3-rpms/x86_64 Red Hat OpenShift Enterprise 3.3
(RPMs) 569

rhel-7-server-rpms/7Server/x86_64 Red Hat Enterprise Linux 7 Server
(RPMs) 11,088

Irhui-REGION-client-config-server-7/x86_64 Red Hat Update Infrastructure 2.0
Client Configuration Server 7 §

Irhui-REGION-rhel-server-releases/7Server/x86_6 Red Hat Enterprise Linux Server 7
(RPMs) 11,088

Irhui-REGION-rhel-server-rh-common/7Server/x86_ Red Hat Enterprise Linux Server 7
RH Common (RPMs) 196

repolist: 23,196

All rhui repositories are disabled and only those repositories defined in the Ansible
O role rhsm-repos are enabled.

4.8. Console Access

This section will cover logging into the OpenShift Container Platform management console via the GUI
and the CLI. After logging in via one of these methods applications can then be deployed and managed.

4.8.1. Log into GUI console and deploy an application

Perform the following steps from the local workstation.

refarch-feedback@redhat.com 52 www.redhat.com

Q redhat.

Open a browser and access https://openshift-master.sysdeseng.com/console. When logging into the
OpenShift web interface the first time the page will redirect and prompt for GitHub credentials. Log
into GitHub using an account that is a member of the Organization specified during the install. Next,
GitHub will prompt to grant access to authorize the login. If GitHub access is not granted the account
will not be able to login to the OpenShift web console.

To deploy an application, click on the New Project button. Provide a Name and click Create. Next, deploy
the jenkins-ephemeral instant app by clicking the corresponding box. Accept the defaults and click
Create. Instructions along with a URL will be provided for how to access the application on the next
screen. Click Continue to Overview and bring up the management page for the application. Click on the
link provided and access the appliction to confirm functionality.

4.8.2. Log into CLI and Deploy an Application
Perform the following steps from your local workstation.

Install the oc client by visiting the public URL of the OpenShift deployment. For example,
https://openshift-master.sysdeseng.com/console/command-line and click latest release. When directed
to https://access.redhat.com, login with the valid Red Hat customer credentials and download the client
relevant to the current workstation. Follow the instructions located on the production documentation
site for getting started with the cli.

A token is required to login using GitHub OAuth and OpenShift. The token is presented on the
https://openshift-master.sysdeseng.com/console/command-line page. Click the click to show token
hyperlink and perform the following on the workstation in which the oc client was installed.

$ oc login https://openshift-master.sysdeseng.com
--token=fEAjn7LnZE6v5500cCSRVMUWGBNIIEKbjD9h-Fv7p09

www.redhat.com 53 refarch-feedback@redhat.com

https://openshift-master.sysdeseng.com/console
https://openshift-master.sysdeseng.com/console/command-line
https://access.redhat.com
https://docs.openshift.com/container-platform/3.3/cli_reference/get_started_cli.html
https://openshift-master.sysdeseng.com/console/command-line

Q redhat.

After the oc client is configured, create a new project and deploy an application.

$ oc new-project test-app

$ oc new-app https://github.com/openshift/cakephp-ex.git --name=php
--> Found image 2997627 (7 days old) in image stream "php" in project "openshift" under
tag "5.6" for "php"

Apache 2.4 with PHP 5.6

Platform for building and running PHP 5.6 applications
Tags: builder, php, php56, rh-php56

* The source repository appears to match: php
* A source build using source code from https://github.com/openshift/cakephp-ex.git
will be created
* The resulting image will be pushed to image stream "php:latest"”
* This image will be deployed in deployment config "php"
* Port 8080/tcp will be load balanced by service "php"
* Other containers can access this service through the hostname "php"

--> Creating resources with 1label app=php ...
imagestream "php" created
buildconfig "php" created
deploymentconfig "php" created
service "php" created
--> Success
Build scheduled, use 'oc logs -f bc/php' to track its progress.
Run 'oc status' to view your app.

$ oc expose service php
route "php" exposed

refarch-feedback@redhat.com 54 www.redhat.com

Q redhat.

Display the status of the application.

$ oc status
In project test-app on server https://openshift-master.sysdeseng.com

http://test-app.apps.sysdeseng.com to pod port 8080-tcp (svc/php)
dc/php deploys istag/php:latest <- bc/php builds https://github.com/openshift/cakephp-
ex.git with openshift/php:5.6
deployment #1 deployed about a minute ago - 1 pod

1 warning identified, use 'oc status -v' to see details.

Access the application by accessing the URL provided by oc status. The CakePHP application should be
visible now.

4.9. Explore the Environment

4.9.1. List Nodes and Set Permissions

If you try to run the following command, it should fail.

oc get nodes --show-labels
Error from server: User "user@redhat.com" cannot list all nodes in the cluster

The reason it is failing is because the permissions for that user are incorrect. Get the username and
configure the permissions.

$ oc whoami

Once the username has been established, log back into a master node and enable the appropriate
permissions for your user. Perform the following step from the first master (ose-
master01.sysdeseng.com).

oadm policy add-cluster-role-to-user cluster-admin user@redhat.com

www.redhat.com 55 refarch-feedback@redhat.com

Q redhat.

Attempt to list the nodes again and show the labels.

oc get nodes --show-labels

NAME STATUS AGE
ip-10-30-1-164.ec2.internal Ready 1d
ip-10-30-1-231.ec2.internal Ready 1d
ip-10-30-1-251.ec2.internal Ready,SchedulingDisabled 1d
ip-10-30-2-142.ec2.internal Ready 1d
ip-10-30-2-157.ec2.internal Ready,SchedulingDisabled 1d
ip-10-30-2-97.ec2.internal Ready 1d
ip-10-30-3-74.ec2.internal Ready, SchedulingDisabled 1d

4.9.2. List Router and Registry

List the router and registry by changing to the default project.

ﬂ Perform the following steps from your the workstation.

oc project default

oc get all

NAME REVISION DESIRED CURRENT TRIGGERED BY
dc/docker-registry 1 2 2 config

dc/router 1 2 2 config

NAME DESIRED CURRENT AGE

rc/docker-registry-1 2 2 10m

rc/router-1 2 2 10m

NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE
svc/docker-registry 172.30.243.63 <none> 5000/TCP 10m
sve/kubernetes 172.30.0.1 <none> 443/TCP,53/UDP,53/TCP 20m
sve/router 172.30.224.41 <none> 80/TCP,443/TCP,1936/TCP 10m
NAME READY STATUS RESTARTS AGE
po/docker-registry-1-2alho 1/1 Running 0 8m
po/docker-registry-1-krpix 1/1 Running 0 8m
po/router-1-1g84e 1/1 Running 0 8m
po/router-1-t84cy 1/1 Running 0 8m

Observe the output of oc get all

refarch-feedback@redhat.com 56 www.redhat.com

Q redhat.
4.9.3. Explore the Docker Registry

The OpenShift Ansible playbooks configure two infrastructure nodes that have two registries running.
In order to understand the configuration and mapping process of the registry pods, the command 'oc
describe' is used. Oc describe details how registries are configured and mapped to the Amazon S3
buckets for storage. Using Oc describe should help explain how HA works in this environment.

0 Perform the following steps from your the workstation.

$ oc describe svc/docker-registry

Name: docker-registry

Namespace: default

Labels: docker-registry=default
Selector: docker-registry=default

Type: ClusterIP

IP: 172.30.110.31

Port: 5000-tcp 5000/TCP

Endpoints: 172.16.4.2:5000,172.16.4.3:5000
Session Affinity: ClientIP

No events.

Notice that the registry has two endpoints listed. Each of those endpoints represents a Docker container.
The ClusterIP listed is the actual ingress point for the registries.

ﬂ Perform the following steps from the infrastructure node.

www.redhat.com 57 refarch-feedback@redhat.com

Q redhat.

Once the endpoints are known, go to one of the infra nodes running a registry and grab some
information about it. Capture the container UID in the leftmost column of the output.

docker ps | grep ose-docker-registry

073d869f0d5f openshift3/ose-docker-registry:v3.3.0.32 "/bin/sh -c 'DOCKER_R" 6
hours ago Up 6 hours k8s_registry.90479e7d_docker-
registry-2-jueep_default_d5882b1f-5595-11e6-a247-0eaf3ad438f1_ffc47696

docker exec -it d40901ea1240 cat /etc/registryconfig/config.yml
version: 0.1
log:
level: debug
http:
addr: :5000
storage:
cache:
layerinfo: inmemory
s3:
accesskey: "AKIAIP6SRGIHSX3AS2IQ"
secretkey: "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"
region: us-east-1
bucket: "1469667928-openshift-docker-registry"
encrypt: true
secure: true
vdauth: true
rootdirectory: /registry
auth:
openshift:
realm: openshift
middleware:
repository:
- name: openshift

Observe the S3 stanza. Confirm the bucket name is listed, and access the AWS console. Click on the S3
AWS and locate the bucket. The bucket should contain content. Confirm that the same bucket is mounted
to the other registry via the same steps.

4.9.4. Explore Docker Storage
This section will explore the Docker storage on an infrastructure node.

The example below can be performed on any node but for this example the infrastructure node(ose-
infra-node01.sysdeseng.com) is used.

The output below verifies docker storage is not using a loop back device.

refarch-feedback@redhat.com 58 www.redhat.com

Q redhat.

$ docker info
Containers: 2

Running: 2
Paused: 0
Stopped: 0
Images: 4

Server Version: 1.10.3

Storage Driver: devicemapper

Pool Name: docker--vol-docker--pool

Pool Blocksize: 524.3 kB

Base Device Size: 3.221 GB

Backing Filesystem: xfs

Data file:

Metadata file:

Data Space Used: 1.221 GB

Data Space Total: 25.5 GB

Data Space Available: 24.28 GB

Metadata Space Used: 307.2 kB

Metadata Space Total: 29.36 MB

Metadata Space Available: 29.05 MB

Udev Sync Supported: true

Deferred Removal Enabled: true

Deferred Deletion Enabled: true

Deferred Deleted Device Count: 0

Library Version: 1.02.107-RHEL7 (2016-06-09)
Execution Driver: native-0.2

Logging Driver: json-file

Plugins:

Volume: local

Network: bridge null host

Authorization: rhel-push-plugin

Kernel Version: 3.10.0-327.10.1.e17.x86_64
Operating System: Employee SKU

0SType: linux
Architecture: x86_64

Number of Docker Hooks: 2

CPUs: 2

Total Memory: 7.389 GiB

Name: ip-10-20-3-46.ec2.internal

ID: XDCD:7NAA:N2S5:AMYW:EF33:P2WM:NF5M:XOLN:JHAD:SIHC: IZXP:MOT3
WARNING: bridge-nf-call-iptables is disabled
WARNING: bridge-nf-call-ipbtables is disabled
Registries: registry.access.redhat.com (secure), docker.io (secure)

Verify 3 disks are attached to the instance. The disk /dev/xvda is used for the OS, /dev/xvdb is used for
docker storage, and /dev/xvdc is used for emptyDir storage for containers that do not use a persistent

www.redhat.com 59 refarch-feedback@redhat.com

Q redhat.

volume.

$ fdisk -1
WARNING: fdisk GPT support is currently new, and therefore in an experimental phase. Use
at your own discretion.

Disk /dev/xvda: 26.8 GB, 26843545600 bytes, 52428800 sectors
Units = sectors of 1 * 512 = 512 bytes

Sector size (logical/physical): 512 bytes / 512 bytes

I/0 size (minimum/optimal): 512 bytes / 512 bytes

Disk label type: gpt

Start End Size Type Name
1 2048 4095 1M BIOS boot parti
2 4096 52428766 256G Microsoft basic

Disk /dev/xvdc: 53.7 GB, 53687091200 bytes, 104857600 sectors
Units = sectors of 1 * 512 = 512 bytes

Sector size (logical/physical): 512 bytes / 512 bytes

I/0 size (minimum/optimal): 512 bytes / 512 bytes

Disk /dev/xvdb: 26.8 GB, 26843545600 bytes, 52428800 sectors
Units = sectors of 1 * 512 = 512 bytes

Sector size (logical/physical): 512 bytes / 512 bytes

I/0 size (minimum/optimal): 512 bytes / 512 bytes

Disk label type: dos

Disk identifier: 0x00000000

Device Boot Start End Blocks Id System
/dev/xvdb1 2048 52428799 26213376 8e Linux LVM

Disk /dev/mapper/docker--vol-docker--pool_tmeta: 29 MB, 29360128 bytes, 57344 sectors
Units = sectors of 1 * 512 = 512 bytes

Sector size (logical/physical): 512 bytes / 512 bytes

I/0 size (minimum/optimal): 512 bytes / 512 bytes

Disk /dev/mapper/docker--vol-docker--pool_tdata: 25.5 GB, 25497174016 bytes, 49799168
sectors

Units = sectors of 1 * 512 = 512 bytes

Sector size (logical/physical): 512 bytes / 512 bytes

I/0 size (minimum/optimal): 512 bytes / 512 bytes

Disk /dev/mapper/docker--vol-docker--pool: 25.5 GB, 25497174016 bytes, 49799168 sectors

refarch-feedback@redhat.com 60 www.redhat.com

Q redhat.
Units = sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/0 size (minimum/optimal): 131072 bytes / 524288 bytes

Disk /dev/mapper/docker-202:2-75507787-
43813770697f04b1a4e8f5cdaf29ff52073eabb6b72a2fbe2546c469b479da9b5: 3221 MB, 3221225472
bytes, 6291456 sectors

Units = sectors of 1 * 512 = 512 bytes

Sector size (logical/physical): 512 bytes / 512 bytes

I/0 size (minimum/optimal): 131072 bytes / 524288 bytes

Disk /dev/mapper/docker-202:2-75507787-
260bdab02f4e740451c428af19bfec870a47270f446ddf7cb427eee52caafdfo: 3221 MB, 3221225472
bytes, 6291456 sectors

Units = sectors of 1 * 512 = 512 bytes

Sector size (logical/physical): 512 bytes / 512 bytes

I/0 size (minimum/optimal): 131072 bytes / 524288 bytes

4.9.5. Explore Security Groups

As mentioned earlier in the document several security groups have been created. The purpose of this
section is to encourage exploration of the security groups that were created.

0 Perform the following steps from the AWS web console.

On the main AWS console, click on EC2. Next on the left hand navigation panel select the Security Groups.
Click through each group and check out both the Inbound and Outbound rules that were created as part
of the infrastructure provisioning. For example, notice how the Bastion security group only allows SSH
traffic inbound. That can be further restricted to a specific network or host if required. Next take a
look at the Master security group and explore all the Inbound and Outbound TCP and UDP rules and the
networks from which traffic is allowd.

4.9.6. Explore the AWS Elastic Load Balancers

As mentioned earlier in the document several ELBs have been created. The purpose of this section is to
encourage exploration of the ELBs that were created.

0 Perform the following steps from the AWS web console.
On the main AWS console, click on EC2. Next on the left hand navigation panel select the Load Balancers.
Select the ose-master load balancer and on the Description page note the Port Configuration and how it

is configured for port 443. That is for the OpenShift web console traffic. On the same tab, check the
Availability Zones, note how those are Public subnets. Move to the Instances tab. There should be

www.redhat.com 61 refarch-feedback@redhat.com

Q redhat.

three master instances running with a Status of InService. Next check the Health Check tab and the
options that were configured. Further details of the configuration can be viewed by exploring the
Ansible playbooks to see exactly what was configured. Finally, change to the ose-internal-master and
compare the subnets. The subnets for the ose-internal-master are all private. They are private because
that ELB is reserved for traffic coming from the OpenShift infrastructure to the master servers. This
results in reduced charges from Amazon because the packets do not have to be processed by the public
facing ELB.

4.9.7. Explore the AWS VPC

As mentioned earlier in the document a Virtual Private Cloud was created. The purpose of this section
is to encourage exploration of the VPC that was created.

ﬁ Perform the following steps from the AWS web console.

On the main Amazon Web Services console, click on VPC. Next on the left hand navigation panel select
the Your VPCs. Select the VPC recently created and explore the Summary and Tags tabs. Next, on the left
hand navigation panel, explore the Subnets, Route Tables, Internet Gateways, DHCP Options Sets, NAT
Gateways, Security Groups and Network ACLs. More detail can be looked at with the configuration by
exploring the Ansible playbooks to see exactly what was configured.

4.10. Persistent Volumes

Persistent volumes (pv) are OpenShift objects that allow for storage to be defined and then claimed by
pods to allow for data persistence. The most common persistent volume source on AWS is EBS. EBS
volumes can only be mounted or claimed by one pod at a time. Mounting of persistent volumes is done
by using a persistent volume claim (pvc). This claim will mount the persistent storage to a specific
directory within a pod. This directory is referred to as the mountPath.

refarch-feedback@redhat.com 62 www.redhat.com

Q redhat.
4.10.1. Node Labels for Persistent Volumes

One important item to remember when creating persitent volumes within AWS is that the EBS volume
must be in the same AZ as the OpenShift application node that will run the pod. To ensure that a pod is
mounted on an application node in the same AZ the node selector can be modified at the time of
project creation. The node selector can also be modified on a previously defined project by using oc
edit namespace $project

The example below performed on the first OpenShift master will create a project and set the node
selector. The AZ will be used as part of the node label to ensure the pod is created within that AZ.

$ oc get nodes --show-labels | grep us-east-1c | grep app

ip-10-20-5-31.ec2.internal Ready 2h
beta.kubernetes.io/instance-type=t2.medium, failure-domain.beta.kubernetes.io/region=us-
east-1,failure-domain.beta.kubernetes.io/zone=us-east-1c,kubernetes.io/hostname=ip-10-20-
5-31.ec2.internal, role=app

$ oadm new-project persistent --node-selector="failure-domain.beta.kubernetes.io/zone=us
-east-1c,role=app’

Created project persistent

$ oc project persistent

Now using project "persistent” on server "https://internal-openshift-
master.sysdeseng.com".

& oc describe project persistent

Name: persistent

Created: About a minute ago

Labels: <none>

Annotations: openshift.io/description=

openshift.io/display-name=
openshift.io/node-selector=role=app,zone=us-east-1lc
openshift.io/sa.scc.mes=s0:c8,c2
openshift.io/sa.scc.supplemental-groups=1000060000/10000
openshift.io/sa.scc.uid-range=1000060000/10000

Display Name: <none>

Description: <none>

Status: Active

Node Selector: failure-domain.beta.kubernetes.io/zone=us-east-
1c,kubernetes.io/hostname=ip-10-20-5-31.ec2.internal,role=app
Quota: <none>

Resource limits: <none>

4.10.2. Creating a Persistent Volumes

Log into the AWS console. On the dashboard, click on the EC2 web service and then click Volumes under
Elastic Block Store. Click Create Volume and modify the size and the Availability Zone. Using the
information above the Availability Zone of us-east-1c will be used. Due to this being an example, the
size of the volume will be set to 10Gib. Once the size and Availability Zone are defined click Create.

www.redhat.com 63 refarch-feedback@redhat.com

Q redhat.

Record the Volume ID as it will be used when creating the OpenShift persistent volume.

Login to the first OpenShift master to define the persistent volume. Creating persistent volumes
requires privileges that a default user account does not have. For this example, the system:admin
account will be used due to the account having cluster-admin privileges.

$ oc project persistent
$ vi pv.yaml
apiVersion: "v1"
kind: "PersistentVolume"
metadata:
name: "persistent”
spec:
capacity:
storage: "10Gi"
accesshodes:
- ReadWriteOnce
awsElasticBlockStore:
fsType: "ext4"
volumeID: "vol-02c1cbd@"
$ oc create -f pv.yaml
persistentvolume "persistent" created

$ oc get pv
NAME CAPACITY ACCESSMODES STATUS CLAIM REASON AGE
persistent 10Gi RWO Available 47s

4.10.3. Creating a Persistent Volumes Claim

The persitent volume claim will change the pod from using EmptyDir non-persistent storage to storage
backed by an EBS volume. To claim space from the persistent volume a database server will be used to
demostrate a persistent volume claim.

refarch-feedback@redhat.com 64 www.redhat.com

Q redhat.

$ oc new-app --docker-image registry.access.redhat.com/openshift3/mysql-55-rhel7
--name=db -e 'MYSQL_USER=rcook,MYSQL_PASSWORD=d@nth@x,MYSQL_DATABASE=persistent’

. ommitted ...
$ oc get pods
NAME READY STATUS RESTARTS AGE
db-1-dwa7o0 1/1 Running 0 5m
$ oc describe pod db-1-dwa7o
. ommitted ...
Volumes:
db-volume-1:
Type: EmptyDir (a temporary directory that shares a pod's lifetime)
Medium:
. ommitted ...
$ oc volume dc/db --add --overwrite --name=db-volume-1 --type=persistentVolumeClaim

--claim-size=10Gi
persistentvolumeclaims/pvc-ic@mu

deploymentconfigs/db

$ oc get pvc

NAME STATUS VOLUME CAPACITY ACCESSMODES AGE
pvc-icdmu Bound persistent 10Gi RWO 4s

$ oc get pods
NAME READY STATUS RESTARTS AGE
db-2-0srls 1/1 Running @ 23s

$ oc describe pod db-2-0srls
. ommitted
Volumes:
db-volume-1:
Type: PersistentVolumeClaim (a reference to a PersistentVolumeClaim in the same
namespace)
ClaimName: pvc-icOmu

ReadOnly: false

. ommitted

www.redhat.com 65 refarch-feedback@redhat.com

Q redhat.

The above has created a database pod with a persistent volume claim named database and has
attached the claim to the previously EmptyDir volume.

4.11. Testing Failure

In this section, reactions to failure are explored. After a sucessful install and some of the smoke tests
noted above have been completed, failure testing is executed.

4.11.1. Generate a Master Outage
ﬂ Perform the following steps from the AWS web console and the OpenShift public URL.

Log into the AWS console. On the dashboard, click on the EC2 web service and then click Instances.
Locate your running ose-master(02.sysdeseng.com instance, select it, right click and change the state to
stopped.

Ensure the console can still be accessed by opening a browser and accessing openshift-
master.sysdeseng.com. At this point, the cluster is in a degraded state because only 2/3 master nodes
are running, but complete funcionality remains.

4.11.2. Observe the Behavior of ETCD with a Failed Master Node

SSH into the first master node (ose-master01.sysdeseng.com). Using the output of the command hostname
issue the etcdctl command to confirm that the cluster is healthy.

$ ssh ec2-user@ose-master@1.sysdeseng.com
$ sudo -i

hostname

ip-10-20-1-106.ec2.internal

etcdctl -C https://ip-10-20-1-106.ec2.internal:2379 --ca-file /etc/etcd/ca.crt --cert
-file=/etc/origin/master/master.etcd-client.crt --key-file=/etc/origin/master/master.etcd
-client.key cluster-health

failed to check the health of member 82¢895b7b0de4330 on https://10.20.2.251:2379: Get
https://10.20.1.251:2379/health: dial tcp 10.20.1.251:2379: i/0 timeout

member 82¢895b7b0de4330 is unreachable: [https://10.20.1.251:2379] are all unreachable
member c8e7ac98bb93fe8c is healthy: got healthy result from https://10.20.3.74:2379
member f7bbfc4285f239ba is healthy: got healthy result from https://10.20.1.106:2379
cluster is healthy

Notice how one member of the ETCD cluster is now unreachable. Restart ose-master02.sysdeseng.com
by following the same steps in the AWS web console as noted above.

refarch-feedback@redhat.com 66 www.redhat.com

Q redhat.

4.11.3. Generate an Infrastruture Node outage

This section shows what to expect when an infrastructure node fails or is brought down intentionally.
Confirm Application Accessibility

0 Perform the following steps from the browser on a local workstation.

Before bringing down an infrastructure node, check behavior and ensure things are working as
expected. The goal of testing an infrastructure node outage is to see how the OpenShift routers and
registries behave. Confirm the simple application deployed from before is still functional. If it is not,
deploy a new version. Access the application to confirm connectivity. As a reminder, to find the
required information the ensure the application is still running, list the projects, change to the project
that the application is deployed in, get the status of the application which including the URL and access
the application via that URL.

$ oc get projects

NAME DISPLAY NAME STATUS
openshift Active
openshift-infra Active
ttester Active
test-app1 Active
default Active
management-infra Active

$ oc project test-app1
Now using project "test-app1" on server "https://openshift-master.sysdeseng.com".

$ oc status
In project test-app1 on server https://openshift-master.sysdeseng.com

http://php-test-app1.apps.sysdeseng.com to pod port 8080-tcp (svc/php-prod)
dc/php-prod deploys istag/php-prod:latest <-
be/php-prod builds https://github.com/openshift/cakephp-ex.git with openshift/php:5.6
deployment #1 deployed 27 minutes ago - 1 pod

1 warning identified, use 'oc status -v' to see details.

Open a browser and ensure the application is still accessible.

Confirm Registry Funtionality

This section is another step to take before initiating the outage of the infrastructure node to ensure that
the registry is functioning properly. The goal is to push to the OpenShift registry.

www.redhat.com 67 refarch-feedback@redhat.com

Q redhat.

o Perform the following steps from a CLI on a local workstation and ensure that the oc
client has been configured.

A token is needed so that the Docker registry can be logged into.

oc whoami -t
feAeAgL139uFFF_72bcJ1boTv7gi_bo373kf1byaAT8

Pull a new docker image for the purposes of test pushing.

docker pull fedora/apache
docker images

Capture the registry endpoint. The svc/docker-registry shows the endpoint.

oc status
In project default on server https://openshift-master.sysdeseng.com

svc/docker-registry - 172.30.237.147:5000
dc/docker-registry deploys docker.io/openshift3/ose-docker-registry:v3.3.0.32
deployment #2 deployed 51 minutes ago - 2 pods
deployment #1 deployed 53 minutes ago
svc/kubernetes - 172.30.0.1 ports 443, 53->8053, 53->8053
svc/router - 172.30.144.227 ports 80, 443, 1936
dc/router deploys docker.io/openshift3/ose-haproxy-router:v3.3.0.32
deployment #1 deployed 55 minutes ago - 2 pods

View details with 'oc describe <resource>/<name>' or list everything with 'oc get all'.
Tag the docker image with the endpoint from the previous step.

docker tag docker.io/fedora/apache 172.30.110.31:5000/0penshift/prodapache
Check the images and ensure the newly tagged image is available.

docker images

refarch-feedback@redhat.com 68 www.redhat.com

Issue a Docker login.

docker login -u prod@redhat.com -e prod@redhat.com -p
_7TyJenXfeRtAbJVEaQwPwXreEh1V56TkgDwZ6UEUDWW 172.30.110.31:5000

oadm policy add-role-to-user admin prod@redhat.com -n openshift
oadm policy add-role-to-user system:registry prod@redhat.com

Q redhat.

oadm policy add-role-to-user system:image-builder prod@redhat.com

Push the image to the OpenShift registry now.

docker push 172.30.110.222:5000/openshift/prodapache

The push refers to a repository [172.30.110.222:5000/0penshift/prodapache]

389eb3601e55:
c56d9d429ea9:
236c028a91ff:
112841349477 :
6c99230e818a:

Layer
Layer
Layer
Layer
Layer

already
already
already
already
already

exists
exists
exists
exists
exists

latest: digest: sha256:cab66f8321243cce9c5dbab48dc79b7c31cfle1d7e94984deb1d37dfdac4e381f

size: 6186

www.redhat.com

69

refarch-feedback@redhat.com

Q redhat.

Get Location of Router and Registry.

ﬂ Perform the following steps from the CLI of a local workstation.

Change to the default OpenShift project and check the router and registry pod locations.

$ oc project default
Now using project "default" on server "https://openshift-master.sysdeseng.com".

$ oc get pods

NAME READY STATUS RESTARTS AGE
docker-registry-2-gmvdr 1/1 Running 1 21h
docker-registry-2-jueep 1/1 Running @ 7h
router-1-6y5td 1/1 Running 1 21h
router-T-rlcwj 1/1 Running 1 21h

$ oc describe pod docker-registry-2-jueep | grep -i node

Node: ip-10-30-1-17.ec2.internal/10.30.1.17

$ oc describe pod docker-registry-2-gmvdr | grep -i node
Node: 1p-10-30-2-208.ec2.internal/10.30.2.208

$ oc describe pod router-1-6y5td | grep -i node

Node: ip-10-30-1-17.ec2.internal/10.30.1.17

$ oc describe pod router-1-rlcwj | grep -i node

Node: ip-10-30-2-208.ec2.internal/10.30.2.208

Initiate the Failure and Confirm Functionality

t’ Perform the following steps from the AWS web console and a browser.

Log into the AWS console. On the dashboard, click on the EC2 web service. Locate your running infra01
instance, select it, right click and change the state to stopped. Wait a minute or two for the registry and
pod to migrate over to infra01. Check the registry locations and confirm that they are on the same
node.

$ oc describe pod docker-registry-2-fwlet | grep -i node

Node: ip-10-30-2-208.ec2.internal/10.30.2.208
$ oc describe pod docker-registry-2-gmvdr | grep -i node
Node: ip-10-30-2-208.ec2.internal/10.30.2.208

Follow the proceedures above to ensure a Docker image can still be pushed to the registry now that
infra01 is down.

refarch-feedback@redhat.com 70 www.redhat.com

Q redhat.
5. Conclusion

Red Hat solutions involving the OpenShift Container Platform are created to deliver a production-
ready foundation that simplifies the deployment process, shares the latest best practices, and provides
a stable highly available environment on which to run your production applications.

This reference architecture covered the following topics:

* A completely provisioned infrastructure in AWS

OpenShift Masters in Multiple Availability Zones

* Infrastructure nodes in Multiple Availability Zones with Router and Registry pods scaled
accordingly

Native integration with AWS services like Route53, EBS, S3, IAM, EC2
* Elastic Load Balancers for the Master instances and for the Infrastructure instances
* S3 storage for persistent storage of container images
* EBS storage for /var/lib/docker on each node

» Arole assigned to instances that will allow OpenShift to mount EBS volumes

* Creation of applications
* Validating the environment

* Testing failover

For any questions or concerns, please email refarch-feedback@redhat.com and ensure to visit the Red
Hat Reference Architecture page to find about all of our Red Hat solution offerings.

www.redhat.com 71 refarch-feedback@redhat.com

mailto:refarch-feedback@redhat.com
http://red.ht/1IEYbQT
http://red.ht/1IEYbQT

Qredhat
Appendix A: Revision History

1.0 Tuesday September 8, 2016 Scott Collier / Ryan Cook
1.1 Tuesday September 20, 2016 Scott Collier / Ryan Cook
1.2 Tuesday September 27, 2016 Scott Collier / Ryan Cook
1.3 Friday September 30, 2016 Scott Collier / Ryan Cook

PDF generated by Asciidoctor PDF

Reference Architecture Theme version 1.2

refarch-feedback@redhat.com 72 www.redhat.com

https://github.com/asciidoctor/asciidoctor-pdf

Q redhat.
Appendix B: Contributors

Jason DeTiberus, content provider
Erik Jacobs, content reviewer

Matt Woodson, content reviewer
Rayford Johnson, content reviewer

Roger Lopez, content reviewer

www.redhat.com 73 refarch-feedback@redhat.com

Q redhat.
6. Installation Failure

In the event of an OpenShift installation failure perform the following steps. The first step is to create
an inventory file and run the uninstall playbook.

refarch-feedback@redhat.com 74 www.redhat.com

6.1. Inventory

Q redhat.

The manual inventory is used with the uninstall playbook to identify OpenShift nodes.

vi /home/user/inventory
[0SEv3:children]
masters

eted

nodes

[0SEv3:vars]

openshift_master_cluster_hostname="1internal-openshift-master.{{ public_hosted_zone }}"
openshift_master_cluster_public_hostname="openshift-master.{{ public_hosted_zone }}"
osm_default_subdomain="{{ wildcard_zone }}"
deployment_type=openshift-enterprise
openshift_debug_level="{{ debug_level }}"
openshift_node_debug_level="{{ node_debug_level | default(debug_level, true) }}"
openshift_master_debug_level="{{ master_debug_level | default(debug_level, true) }}"
openshift_master_access_token_max_seconds=2419200
openshift_master_api_port="{{ console_port }}"
openshift_master_console_port="{{ console_port }}"
osm_cluster_network cidr=172.16.0.0/16

osm_use_cockpit=false

openshift_registry_selector="role=infra"
openshift_router_selector="role=infra"
openshift_master_cluster_method=native
openshift_cloudprovider_kind=aws

[masters]

ose-master@1.sysdeseng.
ose-master@2.sysdeseng.
ose-master@3.sysdeseng.

[eted]
ose-master@1.sysdeseng.
ose-master@2.sysdeseng.
ose-master@3.sysdeseng.
[nodes]
ose-master@1.sysdeseng.
ose-master@2.sysdeseng.
ose-master@3.sysdeseng.
ose-infra-node@1.sysdes
ose-infra-node@2.sysdes

www.redhat.com

com
com
com

com
com
com

com
com
com
eng
eng

openshift_node_labels="{'role":
openshift_node_labels="{'role":
openshift_node_labels="{'role":

openshift_node_labels="{'role":
openshift_node_labels="{'role":
openshift_node_labels="{'role":

'master'}"
"master'}"
'master'}"

'master'}"
"master'}"
"master'}"

.com openshift_node_labels="{'role': "infra'}"
.com openshift_node_labels="{'role': "infra'}"
ose-app-noded1.sysdeseng.com openshift_node_labels="{'role': 'app'}"
ose-app-noded?2.sysdeseng.com openshift_node_labels="{'role': 'app'}"

75

refarch-feedback@redhat.com

Qredhat
6.2. Running the Uninstall Playbook

The uninstall playbook removes OpenShift related packages, ETCD, and removes any certificates that
were created during the failed install.

ansible-playbook -1 /home/user/inventory /usr/share/ansible/openshift-
ansible/playbooks/adhoc/uninstall.yml

6.3. Manually Launching the Installation of OpenShift

The playbook below is the same playbook that is ran once the deployment of AWS resources is
completed. Replace the rhsm user and password, set the wildcard_zone and public_hosted_zone
relevant to the information in Route53 and optionally modify the AWS region in the event us-east-1 was
not used..

ansible-playbook -i inventory/aws/hosts -e 'public_hosted_zone=sysdeseng.com
wildcard_zone=apps.sysdeseng.com console_port=443 deployment_type=openshift-enterprise
rhsm_user=RHSM_USER rhsm_password=RHSM_PASSWORD region=us-east-1 s3_username=openshift-
s3-docker-registry byo_bastion=no --keypair=0SE-key rhsm_pool=Red Hat OpenShift Container
Platform, Standard, 2-Core' playbooks/openshift-install.yaml

refarch-feedback@redhat.com 76 www.redhat.com

	Deploying OpenShift Container Platform 3 on Amazon Web Services
	Table of Contents
	Comments and Feedback
	1. Executive Summary
	2. Components and Configuration
	2.1. Elastic Compute Cloud Instance Details
	2.2. Elastic Load Balancers Details
	2.3. Software Version Details
	2.4. Required Channels
	2.5. Tooling Prerequisites
	2.5.1. Ansible Setup
	2.5.2. Git Repository
	2.5.3. AWS Region Requirements
	2.5.4. Permissions for Amazon Web Services

	2.6. Virtual Private Cloud (VPC)
	2.7. NAT Gateway
	2.8. Security Groups
	2.8.1. Master ELB Security Group
	2.8.2. Internal Master ELB Security Group
	2.8.3. Bastion Security Group
	2.8.4. Master Security Group
	2.8.5. ETCD Security Group
	2.8.6. Router ELB Security Group
	2.8.7. Infrastructure Nodes Security Group
	2.8.8. Nodes Security Group

	2.9. Route53
	2.9.1. Public Zone
	2.9.2. Hosted Zone Setup
	2.9.3. Amazon Machine Images
	2.9.4. Identity and Access Management

	2.10. Bastion
	2.11. Dynamic Inventory
	2.12. Nodes
	2.12.1. Master nodes
	2.12.2. Infrastructure nodes
	2.12.3. Application nodes
	2.12.4. Node labels

	2.13. OpenShift Pods
	2.14. Router
	2.15. Registry
	2.16. Authentication

	3. Provisioning the Infrastructure
	3.1. Provisioning the Infrastructure with Ansible
	3.1.1. Authentication Prerequisite
	3.1.2. SSH Prerequisite
	3.1.3. AWS Authentication Prerequisite
	3.1.4. Red Hat Subscription Prerequisite
	3.1.5. Deploying the Environment

	3.2. Post Provisioning Results

	4. Operational Management
	4.1. Validate the Deployment
	4.2. Gathering hostnames
	4.3. Running Diagnostics
	4.4. Checking the Health of ETCD
	4.5. Default Node Selector
	4.6. Management of Maximum Pod Size
	4.7. Yum Repositories
	4.8. Console Access
	4.8.1. Log into GUI console and deploy an application
	4.8.2. Log into CLI and Deploy an Application

	4.9. Explore the Environment
	4.9.1. List Nodes and Set Permissions
	4.9.2. List Router and Registry
	4.9.3. Explore the Docker Registry
	4.9.4. Explore Docker Storage
	4.9.5. Explore Security Groups
	4.9.6. Explore the AWS Elastic Load Balancers
	4.9.7. Explore the AWS VPC

	4.10. Persistent Volumes
	4.10.1. Node Labels for Persistent Volumes
	4.10.2. Creating a Persistent Volumes
	4.10.3. Creating a Persistent Volumes Claim

	4.11. Testing Failure
	4.11.1. Generate a Master Outage
	4.11.2. Observe the Behavior of ETCD with a Failed Master Node
	4.11.3. Generate an Infrastruture Node outage

	5. Conclusion
	Appendix A: Revision History
	Appendix B: Contributors
	6. Installation Failure
	6.1. Inventory
	6.2. Running the Uninstall Playbook
	6.3. Manually Launching the Installation of OpenShift

