
Microservice Architecture

Building microservices with JBoss EAP 6

Babak Mozaffari

Consulting Software Engineer

Systems Engineering

Version 1.0

May 2015

100 East Davie Street
Raleigh NC 27601 USA
Phone: +1 919 754 3700
Phone: 888 733 4281
Fax: +1 919 754 3701
PO Box 13588
Research Triangle Park NC 27709 USA

Linux is a registered trademark of Linus Torvalds. Red Hat, Red Hat Enterprise Linux, the Shadowman
logo, JBoss, MetaMatrix, Fedora, the Infinity Logo, and RHCE are trademarks of Red Hat, Inc.,
registered in the United States and other countries.

Apache, ServiceMix, Camel, CXF, and ActiveMQ are trademarks of Apache Software Foundation. Any
other names contained herein may be trademarks of their respective owners.

All other trademarks referenced herein are the property of their respective owners.

© 2015 by Red Hat, Inc. This material may be distributed only subject to the terms and conditions set
forth in the Open Publication License, V1.0 or later (the latest version is presently available at
http://www.opencontent.org/openpub/).

The information contained herein is subject to change without notice. Red Hat, Inc. shall not be liable
for technical or editorial errors or omissions contained herein.

Distribution of modified versions of this document is prohibited without the explicit permission of Red
Hat Inc.

Distribution of this work or derivative of this work in any standard (paper) book form for commercial
purposes is prohibited unless prior permission is obtained from Red Hat Inc.

The GPG fingerprint of the security@redhat.com key is:
CA 20 86 86 2B D6 9D FC 65 F6 EC C4 21 91 80 CD DB 42 A6 0E

www.redhat.com ii refarch-feedback@redhat.com

http://www.opencontent.org/openpub/
mailto:security@redhat.com

Comments and Feedback
In the spirit of open source, we invite anyone to provide feedback and comments on any reference
architectures. Although we review our papers internally, sometimes issues or typographical errors are
encountered. Feedback allows us to not only improve the quality of the papers we produce, but allows
the reader to provide their thoughts on potential improvements and topic expansion to the papers.

Feedback on the papers can be provided by emailing refarch-feedback@redhat.com. Please refer to
the title within the email.

Staying In Touch
Join us on some of the popular social media sites where we keep our audience informed on new
reference architectures as well as offer related information on things we find interesting.

Like us on Facebook:

https://www.facebook.com/rhrefarch

Follow us on Twitter:

https://twitter.com/RedHatRefArch

Plus us on Google+:

https://plus.google.com/114152126783830728030/

refarch-feedback@redhat.com III www.redhat.com

https://plus.google.com/114152126783830728030/
https://twitter.com/RedHatRefArch
https://www.facebook.com/rhrefarch
mailto:refarch-feedback@redhat.com?subject=JBoss%20Fuse%20Reference%20Architecture

Table of Contents
1 Executive Summary... 1

2 Microservice Architecture... 2

2.1 Definition.. 2

2.2 Tradeoffs.. 3

2.2.1 Advantages.. 3
2.2.2 Disadvantages... 3

2.3 Distributed Modularity Model... 4

2.3.1 Overview.. 4
2.3.2 Monolithic Applications.. 5
2.3.3 Tactical Microservices.. 7
2.3.4 Strategic Microservices.. 9
2.3.5 Business-Driven Microservices... 12

2.4 Cross-cutting concerns.. 14

2.4.1 Overview.. 14
2.4.2 Containerization... 14
2.4.3 Service Discovery.. 14
2.4.4 Load Balancer.. 15
2.4.5 Cache... 15
2.4.6 Throttling, Circuit Breaker, Composable Asynchronous Execution........................... 15
2.4.7 Security.. 16
2.4.8 Monitoring and Management... 16
2.4.9 Resilience Testing.. 16

2.5 Anatomy of a Microservice.. 17

3 Reference Architecture Environment.. 18

4 Creating the Environment... 19

4.1 Prerequisites.. 19

4.2 Downloads... 19

4.3 Installation... 20

4.4 Configuration... 20

4.4.1 Apache httpd Server.. 22
4.4.2 MySQL / MariaDB Database... 25
4.4.3 JBoss Enterprise Application Platform... 26

4.5 Deployment... 27

4.6 Execution... 28

www.redhat.com iv refarch-feedback@redhat.com

5 Design and Development... 35

5.1 Overview.. 35

5.2 Integrated Development Environment... 35

5.2.1 JBoss Developer Studio.. 35
5.2.2 Creating a Maven Project.. 36
5.2.3 Configuring Java 7... 38

5.3 Java Persistence API (JPA)... 39

5.3.1 Overview.. 39
5.3.2 Persistence Unit... 39
5.3.3 Persistence Entity.. 41
5.3.4 Database setup.. 44

5.4 RESTful API... 50

5.4.1 Enabling JAX-RS support.. 50
5.4.2 RESTful Service... 52
5.4.3 Transactional Behavior.. 54
5.4.4 Logging.. 55
5.4.5 Error handling.. 56
5.4.6 Resource API design... 62
5.4.7 Other RESTful operations.. 69
5.4.8 Pessimistic Locking... 71
5.4.9 Sales service.. 72
5.4.10 Sub-resources, RESTful relationships... 84
5.4.11 Billing Service... 91

5.5 Aggregation/Presentation Layer.. 93

6 Conclusion.. 127

refarch-feedback@redhat.com v www.redhat.com

1 Executive Summary
The Information Technology landscape is constantly shifting and evolving. Advancement in
computer hardware has continually increased processing power and storage capacity, while
network and internet connectivity has become faster and more widespread. Along with the
proliferation of mobile devices, these factors have resulted in a global user-base for a large
number of software services and applications.

Software designers and developers are not isolated from these changes; they must account
for the experiences of the past as well as the characteristics of this ever-changing landscape
to continually innovate in the way software is designed and delivered. The microservices
architectural style is one such effort, aiming to apply some of the best practices learned in the
past towards the requirements and the dynamically scalable deployment environments of
certain software and services of the present and near-future.

This reference architecture recites the basic tenets of a microservice architecture and
analyzes some of the advantages and disadvantages of this approach. This paper expressly
discourages a one size fits all mentality, instead envisioning various levels of modularity for
services and deployment units.

The sample application provided with this reference architecture demonstrates Business-
Driven Microservices. The design and development of this system is reviewed at length and
the steps to create the environment are documented.

refarch-feedback@redhat.com 1 www.redhat.com

2 Microservice Architecture

2.1 Definition
Microservice Architecture (MSA) is a software architectural style that combines a mixture of
well-established and modern patterns and technologies to achieve a number of desirable
goals.

Some aspects, for example a divide and conquer strategy to decrease system complexity by
increasing modularity, are universally accepted and have long been cornerstones of other
competing paradigms.

Other choices carry trade-offs that have to be justified based on the system requirements as
well as the overall system design.

General characteristics of microservices include:

• Applications are developed as a suite of small services, each running as an
independent process in its own logical machine1 (or Linux container)

• Services are built around capabilities2: single responsibility principle

• One can independently replace / upgrade / scale / deploy services

• Standard lightweight communication is used, often REST calls over HTTP

• Potentially heterogeneous environments are supported

1 http://martinfowler.com/articles/microservices.html#ComponentizationViaServices
2 http://martinfowler.com/articles/microservices.html#OrganizedAroundBusinessCapabilities

www.redhat.com 2 refarch-feedback@redhat.com

http://martinfowler.com/articles/microservices.html#OrganizedAroundBusinessCapabilities
http://martinfowler.com/articles/microservices.html#ComponentizationViaServices

2.2 Tradeoffs
The defining characteristic of a Microservice Architecture environment is that modular
services are deployed individually and each can be replaced independent of other services or
other instances of the same service. Modularity and other best practices yield a number of
advantages but the most unique tradeoffs from MSA are the result of this characteristic.

2.2.1 Advantages
• Faster and simpler deployment and rollback with smaller services. Taking advantage of

the divide and conquer paradigm in software delivery and maintenance.

• Ability to horizontally scale out individual services. Not sharing the same deployment
platform with other services allows each service to be scaled out as needed.

• Selecting the right tool, language and technology per service, without having to
conform to a homogeneous environment being dictated by shared infrastructure.

• Fault isolation at microservice level by shielding services from common infrastructure
failure due to the fault of one service. Where the failure of some microservices can be
tolerated by the system, this results in Higher Availability for the system.

• Well-suited for Continuous Delivery and Integration, given lower service granularity.

• Promotes DevOps culture with higher service self-containment and less common
infrastructure maintenance.

• More autonomous teams lead to faster/better development.

• Traditional divide and conquer benefits

2.2.2 Disadvantages
The downsides of MSA are direct results of higher service distribution. There is also a higher
cost to having less common infrastructure. Disadvantage may be enumerated as follows:

• Less tooling / IDE support given the distributed nature.

• QA, particularly integration testing can be difficult.

• Debugging is always more difficult for distributed systems.

• Higher complexity – higher fixed cost and overhead.

• Heterogenous environments are difficult and costly to maintain.

refarch-feedback@redhat.com 3 www.redhat.com

2.3 Distributed Modularity Model

2.3.1 Overview
While modular design is a common best practice that is appropriate in just about all
circumstances and environments, the logical and physical distribution of the modular units
greatly vary, depending on the system architecture.

Some factors to consider:

• The number of developers: The ideal size of a development team is between 5 and 10
people and each team can focus on one or more microservices.3 In an organization
with only 1 or 2 development teams, the case for decoupling the work is less
compelling and the resulting overhead from the architectural choices may be too costly.

• Are you comfortable on the cutting edge of technology? In its specific shape and form,
Microservice Architecture is a new paradigm with only a handful of success stories
behind it. The tools and infrastructure to support MSA are neither abundant nor mature,
and the cost of adoption is still high.

• Can you adapt your staffing to DevOps? One of the benefits of MSA is its amenability
to a DevOps method and the resulting higher agility. This requires lines to be blurred
between development and operations. Not every organization is prepared for the
required cultural change.

• How skilled are you at troubleshooting system errors? Like any distributed system, an
MSA environment can be very difficult to analyze and troubleshoot.

• Can you afford higher up-front costs?4 Just about every software methodology and
paradigm seeks to maximize the return on investment and minimize the costs.
However, costs are not always evenly distributed in various stages of the software
lifecycle. Individual service deployment and a distributed architecture increases
complexity and the fixed cost associated with the environment.

• Do you have a network that can support the architecture? The distributed nature of an
MSA environment puts more stress on the network and conversely, a more reliable
network is required to support such an architecture.

3 http://martinfowler.com/articles/microservices.html#HowBigIsAMicroservice
4 http://highscalability.com/blog/2014/4/8/microservices-not-a-free-lunch.html

www.redhat.com 4 refarch-feedback@redhat.com

http://highscalability.com/blog/2014/4/8/microservices-not-a-free-lunch.html
http://martinfowler.com/articles/microservices.html#HowBigIsAMicroservice

2.3.2 Monolithic Applications
While many Microservices advocates may use the term monolithic disparagingly, this paper
reserves judgement on this design and views it as the result of a series of legitimate trade-
offs. This style of architecture may be preferable for certain situations and not for others.

Monolithic applications may be just as modular as microservices, but those modules are
typically bundled as a single EAR or WAR file and deployed on a single application server and
therefore the same logical machine. In this model, all the modules take advantage of the
same infrastructure and maximize efficiency by minimize network traffic and latency. In some
situations, it may even be possible to pass arguments by reference and avoid serialization
and data transfer costs.

This diagram shows a traditional Java EE application deployed on a logical machine. It is
emphasized that this single application consists of two web applications as well as three
business services, each being modular (containing six embedded modules each):

This deployment model minimizes overhead by sharing the application server and
environment resources between various components.

refarch-feedback@redhat.com 5 www.redhat.com

Figure 2.3.2-1: Java Enterprise Application

Horizontal scaling of such an architecture is simple and often benefits from the clustering
capabilities of the underlying application server. Most often, the entire environment is
duplicated and the application server replicates any stateful application data that is held in
memory:

The uniformity and consistency of the replicated environment can be as much a handicap, as
it is an asset. Deployment, testing and maintenance is simplified and the consistency avoids
various technical and logistics issues.

Things begin to change when one service is much less stable and requires more resources
than others. Imagine that the first of the three business services is ten times more likely to
hang or otherwise display unpredictable behavior. If that service can crash and bring down
the server, it would also take down the other two services. Scaling out this service would
likewise require scaling out the entire environment including services that may not have as
much load or resource requirements. These issues are some of the biggest drivers of the
microservice architecture.

www.redhat.com 6 refarch-feedback@redhat.com

Figure 2.3.2-2: Clustered Java EE Application

2.3.3 Tactical Microservices
One possible strategy is to address the weaknesses of a traditional monolithic application
architecture while continuing to take advantage of its benefits. Instead of proactively
decomposing the application into microservices to potentially isolate them or separately scale
each out, one may prefer to take advantage of the common infrastructure and environment
uniformity where possible, while explicitly identifying and extracting components that warrant
isolation or individual scaling. For example, if one of the business services in the application
depicted in Figure 2.3.2-1: Java Enterprise Application is unstable or requires more
resources, or if it is best maintained as a small and separate unit that is managed by a
dedicated team, it may be deployed separately. Similarly, a component within another
business service may be extracted and separated:

Notice that in this architecture, each new deployment is self-encapsulated and includes its
own persistence. The business service continues to be called from the web application,
although new restrictions are imposed and this call is now necessarily a remote call. It is
preferable to follow RESTful practices and communicate using XML or JSON, over HTTP or a
similar transport.

refarch-feedback@redhat.com 7 www.redhat.com

Figure 2.3.3-1: Tactical Microservices

This architecture allows the business service and the newly independent microservice to be
scaled out separately:

In the simple (and unrealistic) scenario that the remainder of the application requires a single
instance while the business service needs two and the new microservice has three instances,
the application directs its calls to load balancer, which in turn distribute the load between
available services and provide the necessary failover.

The new services are isolated and the rest of the application is at least partially protected
from their failure. These services may be scaled out dynamically as required without the
overhead of replicating the entire environment.

www.redhat.com 8 refarch-feedback@redhat.com

Figure 2.3.3-2: Tactical Microservices, HA

2.3.4 Strategic Microservices
The architecture previously described in Tactical Microservices is either reactively separating
out microservices that require complete isolation or have separate scaling needs, or
anticipating such scenarios and proactively deploying them as individual microservices.

The Microservice Architecture paradigm can be fully embraced by decomposing entire
applications into microservices and implementing entire systems as separately deployed
microservices regardless of actual or anticipated isolation needs of individual services:

In this architecture, each microservice includes its own persistence, which is at least logically
encapsulated within the service. Each such service can be independently deployed, scaled,
upgraded and replaced. The environment is fundamentally heterogeneous, so while
frameworks and infrastructure services may be available to provide features and functions,
each microservice is free to use its preferred technology. Some of these microservices may
be running on a Java EE Server but overhead costs can be exorbitant and should be taken
into consideration.

refarch-feedback@redhat.com 9 www.redhat.com

Figure 2.3.4-1: Strategic Microservices

In this architecture, each microservice is easy to deploy, roll back and upgrade. Separate
teams can work on separate microservices and the divide and conquer philosophy is used in
full force. While the diagram depicts a single web application, there may in fact be zero, one,
or many web applications invoking these microservices. Microservices may also depend on a
data service layer for persistence, or may in fact not have any persistence requirements.

It is assumed that every microservice has multiple instances deployed but the number of
instances depends on the load and mission criticality of the service in question. It is no longer
necessary to deploy 10 copies of one service, because a different service needs 10 active
copies to serve its purpose:

www.redhat.com 10 refarch-feedback@redhat.com

Figure 2.3.4-2: Strategic Microservices, HA

Notice that in this architecture diagram, some microservices are depicted as having fewer
instances than others. Another obvious benefit of this approach is that the failure of a host
due to a misbehaving service can be tolerated with minimal impact on other services.

As shown in the diagram, each microservice has its own persistence store. This is of course a
logical data store to avoid creating dependency or coupling between the microservices. This
same objective can be achieved by abstracting away the data store with a data service layer.
This reference application makes a compromise in using a single database server, accessed
directly by the microservices, while using separate schemas to segregate the services.

However, with a large number of microservices, each service may depend on a number of
other services, each of which is deployed and scaled out in unknown locations. This leads to
the requirement for a comprehensive service discovery solution, where services are
registered as soon as they come up on a node and deregistered when they are taken offline.
To avoid a single point of failure, such a service discovery solution would have to be
replicated and highly available. Despite its HA nature, most services would also need to
cache the results and be prepared to work when unable to access this solution.

Load balancing can quickly get more complex when a large number of microservices are
scaled out in different numbers and the dependency graph gets more depth and breadth.
Services might require their own distinct load balancing strategy and an extra hop in such an
environment may prove costlier than usual.

The performance cost of making repeated remote calls typically leads to extensive caching
requirements. The most often requirement is to have a service cache so that repeated and
often expensive calls to the same microservice may be avoided.

High granularity along with a distributed deployment can also lead to orchestration
challenges. Because of network latency, parallel invocation of services often becomes
desirable, leading to the need for a queuing, asynchronous invocation and orchestration of
requests and responses.

In general, as the environment becomes more heterogeneous, using uniform tooling and
infrastructure becomes a less viable option.

refarch-feedback@redhat.com 11 www.redhat.com

2.3.5 Business-Driven Microservices
It must be emphasized that a microservice architectural style carries a lot of real benefits
along with very real costs. The complexity of the system can grow exponentially with a large
number of distributed components, each separately scaled out and perhaps dynamically auto-
scaled.

Like most decisions, this does not have be a binary choice. The modularity of the services
can determine the complexity of the environment as well as the benefits and costs that are
realized.

A distributed business-driven microservice architecture can achieve many of the benefits,
while avoiding some of the costs:

An important and distinguishing characteristic of this architecture is that microservices do not
communicate with one another. Instead, an aggregation layer is provided in the form of a web
application that provides the required coordination.

www.redhat.com 12 refarch-feedback@redhat.com

Figure 2.3.5-1: Business-Driven Microservices

The three services in this architecture diagram exist within a trust perimeter and the web
application is the only client permitted to directly access these services. To use a different
presentation technology, the web layer may be replaced with an aggregation layer that
exposes a REST or other API. For example, JavaScript and similar technology may replace
the Servlet layer and instead make direct calls to the server. In such a setup, the aggregation
layer would be the only service exposed to outside clients and it would carefully design and
expose an API where each operation would orchestrate and coordinate the underlying
services as needed.

The architecture presented in this diagram avoids certain costs and continues to benefit from
supported and familiar products and frameworks by constraining modularity and avoiding
complex dependency graphs.

In its simplest form, microservices in this architecture remain self-contained within the system
by avoiding any dependencies on other microservices. This does not include external
dependencies, but is an attempt to simplify the environment by avoiding a large and deep
dependency graph within the system.

When a certain component requires special consideration, either in its scaling requirements or
in terms of fault isolation, it can be broken out and deployed independently. This can lead to a
hybrid solution incorporating some of the tactical considerations of the previously described
architecture depicted in Figure 2.3.3-1: Tactical Microservices.

System requirements, willingness to be an early-adopter, in-house skill set, required agility
and other factors can determine the best fit for an environment. There are systems and
environments, for which a monolithic application architecture is the best fit. There are also
very agile software groups creating fast-evolving systems that receive a large return on
investment in strategic microservices. For a large group in-between, this approach can be a
safe and rewarding compromise to gain many of the benefits without paying all of the costs.

Application server clustering can be used in this model to provide high availability. When
employing horizontal scaling to provide redundancy and load balancing, service modularity
determines the pieces that can be scaled out separately.

In Figure 2.3.5-1: Business-Driven Microservices, Service 1 may be part of a 3-node cluster
while Service 2 is clustered as 10 nodes and Service 3 only has a single active backup.
Likewise, a catastrophic failure as a result of Service 1 would have no impact on Service 2
and Service 3, as they are separately packaged and deployed.

refarch-feedback@redhat.com 13 www.redhat.com

2.4 Cross-cutting concerns

2.4.1 Overview
Any system has a series of cross-cutting concerns, preferably addressed through consistent
and common solutions that result in easier maintenance and lower cost. There are mature
tools, frameworks and services that address such concerns and continue to be useful in
various architectural styles.

The distributed and modular nature of microservice architecture creates new priorities and
raises specific concerns that are not always adequately satisfied by traditional and available
solutions.

The nature and specifics of these cross-cutting concerns will depend on the modularity of a
microservice architecture. At one end of the spectrum, monolithic applications represent
traditional enterprise applications that have been successfully operated in production
environments for years and already benefit from a large array of established tools. At the
other end of the spectrum, a highly modular and distributed MSA environment, described as
strategic microservices in this document, introduces requirements that have not always
existed in other architectures and do not have established and mature solutions.

While the concept of a microservices platform is not a well-defined industry term at the time of
writing, it will inevitably emerge as the paradigm becomes more prevalent. Such a platform
would provide value by filling in the missing pieces and ease the burden that is placed on
early adopter today.

2.4.2 Containerization
An important feature and arguably the cornerstone of the microservice architecture is the
isolated and individual deployment of each service. It is important that every instance of each
microservice would have complete autonomy over the environment. Given the high
granularity and the relatively small size of each service, dedicating a physical machine to
each instance is not in consideration.

Virtualization reduces the overhead cost of each logical machine by sharing host resources
and is often an acceptable environment for microservices. However, Linux containers and
Docker technology in particular have improved on the benefits of virtualization by avoiding
the full cost of an operating system and sharing some of host services that would be
unnecessarily duplicated in each virtual machine.

Docker containers are emerging as the preferred units of deployment for microservices.

2.4.3 Service Discovery
Highly granular MSA environments typically involve dozens of services, each deployed as
multiple instances. The dependency graph for some service invocations may involve as many
as 10 to 20 calls and be up to 4 or 5 levels deep. This type of distribution makes a
comprehensive service discovery solution critical. To take advantage of service redundancy,
the caller needs to locate available and deployed instances of any given service at the
required time.

www.redhat.com 14 refarch-feedback@redhat.com

The service discovery solution would have to include a distributed and highly available service
registry where each service instance can register itself upon deployment and de-register on
shutdown. There often needs to be a health check mechanism to remove instances that have
suddenly dropped off, or be notified of failures to reach a service.

Communication with the service registry is best achieved through REST calls over HTTP to
ensure that the solution remains language and platform agnostic.

Red Hat JBoss Data Grid provides a large number of features including RESTful interfaces,
queries, customization and of course replication, that make it an attractive foundation for a
service registry.

2.4.4 Load Balancer
One of the obvious costs of microservice architecture is the network latency that is introduced
by the number of hops as a service dependency graph is traversed. Using a traditional load
balancer typically doubles this latency by introducing an extra hop on each microservice
invocation. For strategic microservices and in what is often an already chatty network
environment, these extra hops are typically not acceptable. This architecture benefits from a
load balancing solution that can be embedded in the client to eliminate the extra remote call.
Such a framework would benefit from an IoC approach, allowing each caller to determine the
load balancing strategy according to the circumstances.

2.4.5 Cache
In addition to common caching requirements in enterprise applications, typically used in front
of databases or other remote and expensive calls, the distribution of functionality in an
application often leads to repeated remote calls to a service, requesting the same information
and unnecessarily increasing its load.

In microservice architecture environments with a large number of fine-grained microservices,
it is prudent to identify those services that are often repeatedly called with the same request
and take advantage of a service cache to increase performance and reduce resource cost.

Red Hat JBoss Data Grid provides a powerful caching solution with support for geographically
distributed data, data sharding, consistent hashing algorithm and many other useful and
relevant features that make it a great fit for an MSA environment.

2.4.6 Throttling, Circuit Breaker, Composable Asynchronous
Execution
Complex dependency graphs along with network latency often make parallel invocation of
services a necessarily. To successfully orchestrate calls to dependencies while taking
advantage of parallel execution, a sync to async pattern is often required. Once such an
approach has been implemented, it becomes fairly easy to throttle calls to a service, or
outbound calls from a service. The JAX-RS 2.0 Specification provides an implementation of
asynchronous REST processing as well as REST clients.

Another critical design pattern for an MSA environment is the circuit breaker, which can limit
the number of threads stuck while attempting to call a single service and protect the rest of
the environment from faulty services.

refarch-feedback@redhat.com 15 www.redhat.com

2.4.7 Security
Authentication and Authorization requirements are ubiquitous in practically all software
environments.

One of the primary considerations in a microservice architecture environment is how the user
identity will be propagated through the distributed service call. While many such environments
may designate a security perimeter and not have each service be concerned with
authenticating the end user, this approach is neither advisable nor acceptable in all situations.

Industry standards such as OAuth2, SAML and similar token-based security solutions provide
a natural fit for RESTful services in a distributed environment. JBoss software provides
support for these standards and satisfies associated security requirements through the
PicketLink and Keycloak projects.

2.4.8 Monitoring and Management
The monitoring and management aspect of microservices are highly dependent on the
deployment environment.

Most microservice deployments occur on an on-premise or public cloud environment. These
cloud environment typically include native monitoring and management tools that can easily
be used for the deployed services.

2.4.9 Resilience Testing
Microservices are designed and built to have the overall system withstand the failure of
individual services. Like any feature or objective, this attribute needs to be tested and verified.

Test suites often need to be developed to verify the resilience of the system when unexpected
load is placed on one service or a defect causes some service instances to break down.

Available testing and environment frameworks are often adapted to created the necessary QA
tools for MSA environments.

www.redhat.com 16 refarch-feedback@redhat.com

2.5 Anatomy of a Microservice
The microservice architectural style lays out a set of principles on how application
functionality can be decomposed into modular services, how these services should be
deployed and the best practices around their inter-communication and other aspects of the
architecture.

It is no coincidence that the design and development of the microservice itself is not part of
this conversation. One of the stated goals of the microservice architectural style is to allow
choice for the developers of each microservice to use the best tools and technologies, without
the need to conform to an enterprise-wide or even a system-wide standard.

Despite this choice and the variety in both the requirements and their implementation from
one service to another, these services largely resemble other enterprise software
components. The term microservice may mislead some to view it as a trivial component but
any system justifying the adoption of microservice architecture is complicated enough that
each microservice will have its own significant dependencies and technical requirements.

Most microservices require persistence and need database connection pooling and
connection management. Some have external dependencies and need to integrate with
legacy system. Oftentimes, a microservice needs to enforce authentication and authorization;
it would therefore benefit from declarative security. When a service performs several tasks as
part of the same responsibility, even transactional behavior within the service may be required
or beneficial.

These requirements are fundamentally no different than common enterprise software
requirements that have led to the prevalence of application servers. The biggest impediment
of using a Java EE application server to host an individual microservice is the resource usage
and high fixed cost. Application servers are designed to act as shared infrastructure for a
large number of software components and with enough load, the overhead cost is diminished
in comparison. In microservice architecture where each service is deployed separately, this
overheard can become prohibitively large.

JBoss EAP 6 benefits from an exceptional level of modularity afforded to the platform by the
use of JBoss Modules. As a result, the platform can be configured to exclude modules that
are not used by a given microservice and minimize the overhead.

While the ultimate choice of structure and deployment for each microservice is made
separately, the benefits of creating a microservice as a JBoss EAP 6 application are well
worth considering.

refarch-feedback@redhat.com 17 www.redhat.com

3 Reference Architecture Environment
This reference architecture mainly serves to demonstrate the distributed architecture of the
application as multiple microservices and conversely, the composition of three microservices
along with a presentation aggregation layer to form a functioning application.

The layers of this reference architecture roughly follow the one depicted in the diagram for
Business-Driven Microservices.

The client, typically a web browser, makes calls to the load balancer layer. The load balancer
is an Apache httpd web server using mod_proxy to balance incoming requests between
the three nodes of the next layer. Load balancing uses a simple round-robin algorithm with
sticky behavior, ensuring that barring a server failure, a given user always reaches the same
server node.

The second layer serves as both the aggregation and presentation layer and is the client to
the microservices layer shown in the referenced architecture diagram. It is implemented as
three separate logical machines, each hosting their own EAP instance and deploying the
presentation.war application. With customer's shopping carts being persistent, the only in-
memory state held by this application is the logged in user's identity. While in-memory state
replication is offered by the EAP servers, the low impact of failure makes it optional. At worst
and in the event of a server failure, the users with active sessions on that server will have to
log in again to continue where they left off. This aggregation layer, mainly implemented in the
RestClient class, makes its calls to the three microservices through the load balancer in the
first layer.

The microservices layer consists of three sets of three logical machines, with each set hosting
one of the microservices. These microservices are completely stateless and use simple load
balancing by mod_proxy without any sticky session behavior.

The database layer consists of two logical database servers, one for the product and anther
for the sales microservice. In terms of the physical deployment, these two databases are
implemented as two schemas of the same MariaDB server, hosted on the same physical
machine as the Apache web server.

www.redhat.com 18 refarch-feedback@redhat.com

4 Creating the Environment

4.1 Prerequisites
Prerequisites for creating this reference architecture include a supported Operating System
and JDK. Refer to Red Hat documentation for supported environments.5

With minor changes, almost any RDBMS may be used in lieu of MySQL Database, but if
MySQL is used, the details of the download and installation are also considered a prerequisite
for this reference architecture.

On RHEL 7, use MariaDB, the community fork of MySQL:

yum install mariadb-server

This reference architecture also uses Apache web server to demonstrate load balancing. On
a RHEL machine, httpd can be installed by using yum:

yum install httpd

In a production environment, consider using JBoss EAP Apache HTTP Server. For
information on installing and configuring JBoss EAP Apache HTTP Server, refer to the JBoss
EAP 6 Clustering reference architecture. Clients with access to the Red Hat Customer Portal
may download the reference architecture and attachments from
https://access.redhat.com/site/articles/524633.

4.2 Downloads
The attachments to this document provide the Apache configuration file, module configuration
for MySQL drivers on EAP, a sample EAP server configuration file, and the source code for
the reference application. These files may be downloaded from:

https://access.redhat.com/node/1452603/40/1

If you do not have access to the Red Hat customer portal, See the Comments and Feedback
section to contact us for alternative methods of access to these files.

Download JBoss EAP 6.4 from Red Hat's Customer Support Portal6:

• Red Hat JBoss Enterprise Application Platform 6.4.0

You can also optionally download and set up native components7 for you operating system in
an effort to increase system performance. These components are available for download as
Red Hat JBoss Enterprise Application Platform 6.4.0 Native Components but their inclusion
has no direct impact on application functionality and is therefore not discussed in this
reference architecture.

5 https://access.redhat.com/articles/111663
6 https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?

downloadType=distributions&product=appplatform&version=6.4
7 https://access.redhat.com/solutions/222023

refarch-feedback@redhat.com 19 www.redhat.com

https://access.redhat.com/solutions/222023
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?downloadType=distributions&product=appplatform&version=6.4
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?downloadType=distributions&product=appplatform&version=6.4
https://access.redhat.com/node/1452603/40/1
https://access.redhat.com/site/articles/524633
https://access.redhat.com/articles/111663

4.3 Installation
Red Hat's JBoss EAP 6.4 does not require any installation steps. The archive file simply
needs to be extracted after the download:

unzip jboss-eap-6.4.0.zip

Place the EAP files in an appropriate location, for example: /opt/jboss-eap-6.4

4.4 Configuration
This reference architecture uses firewalld, the default Red Hat Firewall, to block all
network packets by default and only allow configured ports and addresses to communicate.
Refer to the Red Hat documentation on firewalld8 for further details on this tool.

Check the status of firewalld on each machine and make sure it is running:

systemctl status firewalld

This reference environment starts with the default and most restrictive firewall setting and only
opens the required ports. In particular, the machine hosting the httpd load balancer needs to
open port 80 to all incoming traffic:

firewall-cmd --zone=public --add-service=http --permanent

The machine hosting the database must allow connections to the database port, in this case
3306, from the hosts where microservices are deployed. In this reference environment, these
boxes use a sequence of IP addresses in the same subnet:

firewall-cmd --permanent --zone=public --add-rich-rule="rule family="ipv4"
source address="10.19.137.1/24" port protocol="tcp" port="3306" accept"

Using the permanent flag persists the firewall configuration but also requires a reload to have
the changes take effect immediately:

firewall-cmd --reload

On each of the hosts serving a microservice, open the JBoss EAP port for incoming traffic
from the load balancer. In the reference environment, the Apache load balancer is hosted at
10.19.137.30. Follow that up by reloading firewall configuration to have the change take
effect:

firewall-cmd --permanent --zone=public --add-rich-rule="rule family="ipv4"
source address="10.19.137.30/32" port protocol="tcp" port="8080" accept"

firewall-cmd --reload

8 https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Security_Guide/sec-
Using_Firewalls.html

www.redhat.com 20 refarch-feedback@redhat.com

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Security_Guide/sec-Using_Firewalls.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Security_Guide/sec-Using_Firewalls.html

This reference environment has been set up and tested with Security-Enhanced Linux
(SELinux) enabled in ENFORCING mode. Once again, refer to the Red Hat documentation on
SELinux for further details on using and configuring this feature.9 For any other operating
system, consult the respective documentation for security and firewall solutions to ensure that
maximum security is maintained while the ports required by your application are opened.

When enabled in ENFORCING mode, by default, SELinux prevents Apache web server from
establishing network connections. On the machine hosting Apache web server, configure
SELinux it to allow httpd network connections:

/usr/sbin/setsebool httpd_can_network_connect 1

This reference application uses Apache to host static content, in this case the images used by
the presentation layer. Create the images directory on the machine hosting httpd, copy the
images in there, and set security privileges as appropriate to allow them to be served:

mkdir -p /srv/msa/images
cp code/Presentation/images/* /srv/msa/images/
chmod 644 /srv/msa/images/*

Even with the correct security privileges, SELinux can stop the images from being served to
web users unless their extended attributes are properly set:

chcon -R -t httpd_sys_content_t /srv/msa/images

Various other types of configuration may be required for UDP and TCP communication. For
example, Linux operating systems typically have a low maximum socket buffer size
configured, which is lower than the default cluster JGroups buffer size. It may be important to
correct any such warnings observed in the EAP logs. For example, in this case for a Linux
operating system, the maximum socket buffer size may be configured as follows. Further
details are available on Red Hat's Customer Support Portal.10

sysctl -w net.core.rmem_max=26214400
sysctl -w net.core.wmem_max=1048576

The reference application uses a series of host names to make it more portable. These
hostnames are as follows:

• product-service: Load balancer front-ending product microservice nodes
• billing-service: Load balancer front-ending billing microservice nodes
• sales-service: Load balancer front-ending sales microservice nodes
• product-db: The location of the product database server
• sales-db: The location of the sales database server

9 https://access.redhat.com/documentation/en-
US/Red_Hat_Enterprise_Linux/7/html/SELinux_Users_and_Administrators_Guide/index.html

10 https://access.redhat.com/site/solutions/190643

refarch-feedback@redhat.com 21 www.redhat.com

https://access.redhat.com/site/solutions/190643
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/SELinux_Users_and_Administrators_Guide/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/SELinux_Users_and_Administrators_Guide/index.html

In the reference environment, the machine addressed 10.19.137.30 hosts the Apache web
server, effectively acting as the load balancer for all three microservices. This machine also
hosts the single database server with two separate schemas for sales and product, acting as
two logical database servers.

For testing purposes, it is easy enough to edit the hosts file on each of the thirteen machines
(three nodes for each of presentation, product, sales and billing applications, plus one for
database and load balancer):

vi /etc/hosts

Add the following lines to the hosts file:

10.19.137.30 product-service
10.19.137.30 billing-service
10.19.137.30 sales-service
10.19.137.30 product-db
10.19.137.30 sales-db

4.4.1 Apache httpd Server
The Apache web server used in this reference environment serves as the load balancer for
the presentation application as well three different microservices. This web server also serves
the static content (images) for the presentation layer.

Create a virtual host for the presentation layer. This environment uses msa-web as the host
name for the entry point:

<VirtualHost msa-web:80>
 ProxyPreserveHost On
 ProxyRequests off

 ServerName msa-web

Configure the location of static resources and allow access:

 # static files:
DocumentRoot /srv/msa/

<Directory /srv/msa>
Options All
AllowOverride All
Require all granted

</Directory>

www.redhat.com 22 refarch-feedback@redhat.com

Finally, configure mod_proxy as a load balancer to distribute load between the nodes of the
presentation application running on JBoss EAP.

 <Proxy balancer://presCluster>
 BalancerMember http://10.19.137.31:8080
 BalancerMember http://10.19.137.32:8080
 BalancerMember http://10.19.137.33:8080

 Order Deny,Allow
 Deny from none
 Allow from all

 ProxySet lbmethod=byrequests
 </Proxy>

 ProxyPass /presentation balancer://presCluster/presentation
stickysession=JSESSIONID|jsessionid scolonpathdelim=On
 ProxyPassReverse /presentation balancer://presCluster/presentation
</VirtualHost>

The load balancing method is set to byrequests to perform a default simple round-robin, but
sticky sessions are turned on using either the cookie name or URL rewriting with semicolon
as a separator.

The load balancer configuration for the the product microservice is much simpler, since no
static resources are being served and the application is completely stateless, so sticky
sessions are not applicable:

<VirtualHost product-service:80>
 ProxyPreserveHost On
 ProxyRequests off

 ServerName product-service

 <Proxy balancer://productCluster>
 BalancerMember http://10.19.137.34:8080
 BalancerMember http://10.19.137.35:8080
 BalancerMember http://10.19.137.36:8080

 Order Deny,Allow
 Deny from none
 Allow from all

 ProxySet lbmethod=byrequests
 </Proxy>

 ProxyPass /product balancer://productCluster/product
 ProxyPassReverse /product balancer://productCluster/product
</VirtualHost>

refarch-feedback@redhat.com 23 www.redhat.com

The load balancer configuration for the sales and billing microservices is similar:

<VirtualHost sales-service:80>
 ProxyPreserveHost On
 ProxyRequests off

 ServerName sales-service

 <Proxy balancer://salesCluster>
 BalancerMember http://10.19.137.37:8080
 BalancerMember http://10.19.137.38:8080
 BalancerMember http://10.19.137.39:8080

 Order Deny,Allow
 Deny from none
 Allow from all

 ProxySet lbmethod=byrequests
 </Proxy>

 ProxyPass /sales balancer://salesCluster/sales
 ProxyPassReverse /sales balancer://salesCluster/sales
</VirtualHost>

<VirtualHost billing-service:80>
 ProxyPreserveHost On
 ProxyRequests off

 ServerName billing-service

 <Proxy balancer://billingCluster>
 BalancerMember http://10.19.137.40:8080
 BalancerMember http://10.19.137.41:8080
 BalancerMember http://10.19.137.42:8080

 Order Deny,Allow
 Deny from none
 Allow from all

 ProxySet lbmethod=byrequests
 </Proxy>

 ProxyPass /billing balancer://billingCluster/billing
 ProxyPassReverse /billing balancer://billingCluster/billing
</VirtualHost>

Restart the web server after configuration is complete:

service httpd restart

www.redhat.com 24 refarch-feedback@redhat.com

4.4.2 MySQL / MariaDB Database
Start the database server:

systemctl start mariadb.service

Enable the database server at boot time:

systemctl enable mariadb.service

Initialize the database by running the included script:

mysql_secure_installation

The database root password is initially blank. Set a new password and remove anonymous
users and the test database, before reloading the privilege tables.

Once the database initialization is complete, run the database utility to set up the application
databases:

mysql -u root -p

Log in using the newly configured password and use MySQL DDL syntax to create the
database and the user that accesses it:

CREATE DATABASE product;
USE product;
CREATE USER 'product'@'%' IDENTIFIED BY 'password';
GRANT USAGE ON *.* TO 'product'@'%' IDENTIFIED BY 'password';

Create tables along with the sequence used by JPA, for example:

CREATE TABLE Product (SKU BIGINT NOT NULL AUTO_INCREMENT, DESCRIPTION
VARCHAR(255), HEIGHT NUMERIC(8,2) NOT NULL, LENGTH NUMERIC(8,2) NOT NULL,
NAME VARCHAR(255), WEIGHT NUMERIC(8,2) NOT NULL, WIDTH NUMERIC(8,2) NOT
NULL, FEATURED BOOLEAN, AVAILABILITY INTEGER NOT NULL, IMAGE VARCHAR(255),
PRICE NUMERIC(9,2) NOT NULL, PRIMARY KEY (SKU)) AUTO_INCREMENT = 10001;

Complete the setup of the databases by running the instructions in the provided SQL script
file:

setup.sql

refarch-feedback@redhat.com 25 www.redhat.com

4.4.3 JBoss Enterprise Application Platform
This reference architecture makes very few changes to JBoss EAP configuration. The only
required change is to set up MySQL JDBC drivers as a module and declare the module in the
configuration file.

The attachment includes a modules and standalone folder inside the jboss-eap-6.4 directory.
The modules directory includes the JDBC driver for MySQL or MariaDB, the attached driver
archive file is:

system/layers/base/com/mysql/main/mysql-connector-java-5.1.34-bin.jar

Also included is he module descriptor file at the following location:

system/layers/base/com/mysql/main/module.xml

This descriptor points to the driver archive and declares its dependencies:

<?xml version="1.0" encoding="UTF-8"?>
<module xmlns="urn:jboss:module:1.1" name="com.mysql">
 <resources>
 <resource-root path="mysql-connector-java-5.1.34-bin.jar"/>
 </resources>

 <dependencies>
 <module name="javax.api"/>
 <module name="javax.transaction.api"/>
 </dependencies>
</module>

Once the module has been set up, declare the driver in the server configuration. The final
server configuration file is provided in the attachment:

jboss-eap-6.4/standalone/configuration/standalone.xml

The only required change is to add a driver section for MySQL under the datasources
subsystem:

<subsystem xmlns="urn:jboss:domain:datasources:1.2">
 <datasources>
...
 <drivers>
...
 <driver name="mysql" module="com.mysql">
 <driver-class>com.mysql.jdbc.Driver</driver-class>
 <xa-datasource-class>com.mysql.jdbc.jdbc2.

optional.MysqlXADataSource</xa-datasource-class>
 </driver>
 </drivers>
 </datasources>
</subsystem>

Once the driver is declared, an application can simply include a -ds.xml file to declare a
datasource that uses this drvier.

www.redhat.com 26 refarch-feedback@redhat.com

4.5 Deployment
The application code for the presentation layer and all three microservice projects is included
under the code directory of the attachment.

At the top level of this directory is an aggregation POM that builds all four projects. To build
the projects, run maven from this directory:

cd code/
mvn install

Once the build completes successfully, the deployable web archive files are generated and
placed in the target directory of each project. Deploy each web application by dropping it into
the /opt/jboss-eap-6.4/standalone/deployments/ older of its respective servers. The web
application archives are as follows:

• The presentation layer: code/Presentation/target/presentation.war
• The product microservice: code/Product/target/product.war
• The sales microservice: code/Sales/target/sales.war
• The billing microservice: code/Billing/target/billing.war

While deploying the application, monitor the server log and make sure there are no errors.
The server log is located at /opt/jboss-eap-6.4/standalone/log/server.log

refarch-feedback@redhat.com 27 www.redhat.com

4.6 Execution
Open a browser and point it to the load balancer to reach the application. Assuming that the
hostname for the load balancer machine is msa-web, point the browser to:

http://msa-web/presentation/

The first request to the server returns the featured products from the database:

www.redhat.com 28 refarch-feedback@redhat.com

Figure 4.6-1: Featured Products

http://msa-web/presentation/

The provided search bar allows the user to filter the products by keyword. Each product in the
database may be associated with one or multiple keywords. The scope of this search is all
products, whether they are featured or not. Search the product database for TV:

refarch-feedback@redhat.com 29 www.redhat.com

Figure 4.6-2: Search Products

Click the Register button on the top right of the screen to register a new customer user:

www.redhat.com 30 refarch-feedback@redhat.com

Figure 4.6-3: Customer Registration

Once registered, the user will be automatically and implicitly signed in. Alternatively, in a new
browser session, the user can enter the same username and password to render the same
page.

This page shows the same featured products but notice that there is now a purchase button
underneath the product price and availability. Click on purchase button for a product to add it
to your shopping cart:

Notice that the shopping cart icon on the top right of the screen now includes the number of
items in the shopping cart:

refarch-feedback@redhat.com 31 www.redhat.com

Figure 4.6-4: User logged in

Figure 4.6-5: Shopping Cart Item Count

To view the content of your shopping cart, click on the cart icon:

www.redhat.com 32 refarch-feedback@redhat.com

Figure 4.6-6: Shopping Cart Content

Scroll down and click the checkout button to pay for the items in the cart:

After entering valid data and an expiration data that is in the future, click the submit button to
process the purchase.

refarch-feedback@redhat.com 33 www.redhat.com

Figure 4.6-7: Checkout

Once the purchase is completed, the application returns to the featured products page. From
this homepage, click the Order history link to view all the orders. The items in your shopping
cart are stored as an order that is in progress and has a status of Initial:

www.redhat.com 34 refarch-feedback@redhat.com

Figure 4.6-8: Customer Order History

5 Design and Development

5.1 Overview
This section performs a step by step walkthrough of the design and development of the
reference architecture application. A varying amount of focus is placed on different
components. For example, the database is not a focus of this reference architecture and while
the required SQL scripts are provided and described, the topic is not approached with a
similar level of depth as other components. Similarly, the presentation layer developed using
JSP technology is merely provided to demonstrate application functionality and is not a major
focus of this reference architecture.

5.2 Integrated Development Environment
This reference architecture uses JBoss Fuse IDE plugins for JBoss Developer Studio 8.

5.2.1 JBoss Developer Studio
Download the Stand-alone installer for JBoss Developer Studio (JBDS) 8.0.0 from
the Red Hat Customer Support Portal.11

The installer is an executable JAR file. Installing a recent version of the JDK and having the
java and associated commands in the execution path is a prerequisite to using JBDS and
JBoss Fuse itself.

In most operating systems, it is enough to simply double-click the JBoss Developer Studio
installation JAR file to start installing the IDE. You can also trigger the installation from the
command line:

java -jar jboss-devstudio-8.0.0.GA-v20141020-1042-B317-installer-
standalone.jar

Accept the license, choose a location to install the product and proceed with the installation.
Select the default or preferred JDK location. Is it not necessary to configure any platform or
server location while installing JBoss Developer Studio.

Start JBoss Developer Studio by locating the shortcut created in the designated location.
Select a location for the IDE workspace. Once started, an initial welcome screen appears.
Close this screen to enter the familiar Eclipse framework environment.

11 https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?
downloadType=distributions&product=jbossdeveloperstudio&version=8.0.0

refarch-feedback@redhat.com 35 www.redhat.com

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?downloadType=distributions&product=jbossdeveloperstudio&version=8.0.0
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?downloadType=distributions&product=jbossdeveloperstudio&version=8.0.0

5.2.2 Creating a Maven Project
Click the drop-down for the New toolbar icon at the top left of the JBoss Developer Studio
window and select Maven Project. Alternatively, you can click the icon to open the New wizard
dialog, open the group called Maven and select Maven Project from there.

Create a new project called product that will handle the definition and inventory management
of the products sold through the e-commerce site that is the subject of this reference
architecture's sample application.

The new project wizard prompts you to select a location for the project or use the default
workspace location. For temporary and testing purposes, it is easiest to let JBDS simply
create the project in the designated workspace. Select Next and choose the jboss javaee6
blank webapp archetype to create the basic structure for an EAP 6 Web Application project
based on Maven:

www.redhat.com 36 refarch-feedback@redhat.com

Figure 5.2.2-1: Maven Archetype

Use the next dialog to set the group and artifact Id of the project, as well as the version:

Click the finish button to complete the initial project setup.

refarch-feedback@redhat.com 37 www.redhat.com

Figure 5.2.2-2: Maven Project

5.2.3 Configuring Java 7
The project template is only a starting point and requires a number of additions, removals and
modifications to adapt to individual projects. This reference architecture uses and relies on
Java 7. Open the generated Maven Project Object Model (pom) file in JBoss Developer
Studio and change the Java version:

Change the Java version for both the source code and the generated artifacts to 1.7 by
modifying the value of the maven.compiler.source and maven.compiler.target properties. In
each case, double-click the property in the Overview window to open a dialog and edit the
value.

www.redhat.com 38 refarch-feedback@redhat.com

Figure 5.2.3-1: Java version in pom file

5.3 Java Persistence API (JPA)

5.3.1 Overview
The maven template includes support for JPA and creates a default persistence configuration
file to connect to a datasource.

5.3.2 Persistence Unit
This persistence configuration file is located at:
src/main/resources/persistence.xml

As part of the maven template, this file includes a single persistence unit called primary. The
name of the transactional datasource is derived from the project name. Review this
configuration by opening the persistence xml file in JBoss Developer Studio and navigating to
the Connection tab:

Rename the data source to simply use a capital letter at the beginning: ProductDS

refarch-feedback@redhat.com 39 www.redhat.com

Figure 5.3.2-1: Datasource Configuration

Change to the Hibernate tab. Configure hibernate to use your database of choice. This
reference architecture uses MySQL and sets the Database dialect accordingly:

For learning purposes, it can also be useful to turn on hibernate logging of SQL statements by
setting hibernate.show_sql to true. This can be configured from the Properties tab.

Also note the hibernate.hbm2ddl.auto property, concerning the mapping of JPA classes to
database tables. The template default value of create-drop results in non-persistent behavior
between application redeployment and server restarts. This property should be set to a value
of validate, or complete removed, when not in an early testing phase.

The remainder of this document assumes that this property has been removed. Instead,
database scripts are used to create the required tables.

www.redhat.com 40 refarch-feedback@redhat.com

Figure 5.3.2-2: Hibernate Dialect Setting

5.3.3 Persistence Entity
Create a JPA entity to represent a product that will be listed and sold through the e-commerce
application.

5.3.3.1 JavaBean
Start by creating a simple JavaBean with the required properties:

• Long sku: Product SKU and a unique identifier for the product

• String name: User friendly name and identifier of the product

• String description: Full description of the product

• Integer length: Product dimensions, length in inches

• Integer width: Product dimensions, width in inches

• Integer height: Product dimensions, height in inches

• Integer weight: Product weight in pounds

• Boolean featured: Flag to indicate if the product should be featured on the homepage

• Integer availability: Inventory, available units of the product for sale

• BigDecimal price: Sale price in US dollars

• String image: Partial path to the product image on file or content management system

Generate getter and setter methods for these properties by using the corresponding action in
the Source menu of JBoss Developer Studio. Make sure all the fields are selected before
generating the methods.

From the same menu, generate equals and hashCode methods for this JavaBean. This time,
only select the sku field and exclude all other fields. The SKU uniquely and distinctly identifies
the product and can be used to determine if any two objects represent the same product or
not.

Optionally, create a toString method for the JavaBean from the same menu to help log and
troubleshoot the application. Select all the bean properties for this action.

These steps produce a well-designed and standard JavaBean class that can be used for a
wide variety of purposes. Persistence entities provide Object-Relational Mapping (ORM) by
using a Java class to represent a database table, where each instance of the class represents
a row in the said table.

5.3.3.2 JPA Entity
Mark this JavaBean as a JPA bean by annotating the class with javax.persistence.Entity:

@Entity
public class Product
{

refarch-feedback@redhat.com 41 www.redhat.com

5.3.3.3 Primary key
The product SKU is a perfect fit as the primary key of the entity, since it is both required and
unique. Designate the sku field as the primary key by annotating it with javax.persistence.Id.
As long as the product SKU does not follow any specific pattern or convention, it can be
automatically generated by a sequence. Annotate it with javax.persistence.GeneratedValue to
have the value automatically generated and specify the strategy as IDENTITY to declare that
the field is mapped to the primary key of the corresponding table and that the database will
generate values for it:

@Id
@GeneratedValue(strategy = GenerationType.IDENTITY)
private Long sku;

5.3.3.4 Named Query
The featured flag is used to designate some products to be showcased on the home page of
the site. This leads to the requirement of a JPA query to find featured products. This query
can be defined and declared in the entity as a named query:

@NamedQuery(name = "Product.findFeatured",
 query = "SELECT p FROM Product p WHERE p.featured = true")

Given an entity manager object, using a named query to find products is straightforward:

List<Product> products = em.createNamedQuery("Product.findFeatured",
Product.class).getResultList();

5.3.3.5 Many to Many Relationship
Another mechanism to find and display products in the e-commerce application is to use a
query to find products of a specific type. While various search and indexing solutions may be
used to accomplish this application takes a more structured approach by classifying each
product with a set of keywords that can be used to search and find them.

Model this by creating a keyword entity with a many to many relationship with product. Each
product may be classified by multiple keywords, for example a given television is classified as
both TV and Electronics. Similarly, the TV keyword refers to more than one television product
in the database. Start by creating an entity with a single keyword field as its primary key:

@Entity
public class Keyword
{

@Id
private String keyword;

Generate getter and setter methods for this field.

For completeness, also create equals, hashCode and toString methods based on this field.

www.redhat.com 42 refarch-feedback@redhat.com

Declare a many to many relationship to the Product entity by declaring a list of Product
objects as a field of the Keyword class and annotating it accordingly:

@ManyToMany(fetch = FetchType.EAGER, mappedBy = "keywords")
private List<Product> products;

Annotating a field with javax.persistence.ManyToMany tells JPA to use a join table to establish
the relationship. The mappedBy element indicates that this class is not the OWNING side of this
BIDIRECTIONAL relationship. The value of this element is the name of the field in the Product class
that maps back to this class and declares the join table.

This relationship is bidirectional due to business and technical requirements. To find products
classified with a given keyword, the Keyword entity is looked up and a getter is used to
retrieve a list of products classified with that keyword. The Keyword entity must therefore be
aware of the relationship. Conversely, it would be more natural to classify products from the
Product side, than to look up multiple keyword objects and add the product to each of them.
In fact, should the Product entity be unaware of the relationship, removing a product would
involve searching for all keywords used to classify a product and updating them.

The relationship uses eager fetching. When a keyword is looked up, it is most often in
response to a search and to return a list of products that have been classified with it.

The owning side of the relationship in the Product entity also declares a list of Keyword
entities as a field and annotates this field:

@ManyToMany(fetch = FetchType.EAGER)
@JoinTable(name = "PRODUCT_KEYWORD",

joinColumns = @JoinColumn(name = "SKU", referencedColumnName = "SKU"),
inverseJoinColumns = @JoinColumn(name = "KEYWORD",

referencedColumnName = "KEYWORD"))
private List<Keyword> keywords;

The join table name is specified along with the two columns in the join table as well as the
columns in the entity table that they point to.

There is no requirement to query the keywords of a product in the application, hence a getter
method for the list of keywords is omitted. There is a need for a setter method in the Product
class to allow a product to be classified. Conversely, the Keyword class only has a getter
method and does not require a setter for its relationship.

In this application, there is no need to include the relationship field in any of the equals,
hashCode or toString methods. In cases where the inclusion of such fields in these methods
may be beneficial or even required, be careful to not include both sides of a bidirectional
relationship as it can cause infinite loops between the two objects.

refarch-feedback@redhat.com 43 www.redhat.com

5.3.3.6 Case-insensitive search
While the actual keyword is the primary key of its entity, a JPA lookup may not be the optimal
solution for finding products. That is because users often ignore the capitalization of a search
query while computers in general and databases in particular find them significant. For this
reason, the best solution is to do a case insensitive search to find keywords. Create a named
query in the Keyword entity that uses the Java Persistence Query Language (JPQL)
UPPER() function for this purpose:

@NamedQuery(name = "Keyword.findKeyword",
 query = "SELECT k FROM Keyword k WHERE UPPER(k.keyword) = UPPER(:query)")

5.3.4 Database setup

5.3.4.1 MySQL Database
Details of the database configuration remain outside the scope of this reference architecture,
but as an example, some of the scripts used to set up the database used with the reference
application and MySQL Database Server are provided in this document.

Create a new database for the product service:

CREATE DATABASE product;
USE product;

Create a database user and grant this user the required privileges. In the earliest phases of
development, this might be a user with full access to the databases, so that Hibernate can be
used to create and drop tables while the design of the entities and their corresponding tables
are being finalized:

CREATE USER 'product'@'localhost' IDENTIFIED BY 'password';
GRANT USAGE ON *.* TO 'product'@'localhost' IDENTIFIED BY 'password';
GRANT ALL PRIVILEGES ON product.* to product@localhost;

It is important to restrict user privileges in testing and staging environments, or even in the
later stages of development, to avoid making incorrect assumptions based on a level of
access that will not be granted to the application in a real production environment.

Create the product table to correspond to the entity. Once again, the syntax can be obtained
from Hibernate when configured to generate the schema and log the database statements.

CREATE TABLE PRODUCT (SKU BIGINT NOT NULL AUTO_INCREMENT, DESCRIPTION
VARCHAR(255), HEIGHT NUMERIC(5,2) NOT NULL, LENGTH NUMERIC(5,2) NOT NULL,
NAME VARCHAR(255), WEIGHT NUMERIC(5,2) NOT NULL, WIDTH NUMERIC(5,2) NOT
NULL, FEATURED BOOLEAN NOT NULL, AVAILABILITY INTEGER NOT NULL, IMAGE
VARCHAR(255), PRICE NUMERIC(7,2) NOT NULL, PRIMARY KEY (SKU)) AUTO_INCREMENT
= 10001;

Note that the primary key is set to automatically increment but to start at 10001, thereby
insuring that the product SKU will always be at least 5 digits long.

www.redhat.com 44 refarch-feedback@redhat.com

The syntax for creating the keyword table is quite simple:

CREATE TABLE KEYWORD (KEYWORD VARCHAR(255) NOT NULL, PRIMARY KEY (KEYWORD));

Create a join table for the many to many relationship between product and keyword. This
table has its own primary key, which has no business value and is not directly used in the
application:

CREATE TABLE PRODUCT_KEYWORD (ID BIGINT NOT NULL AUTO_INCREMENT, KEYWORD
VARCHAR(255) NOT NULL, SKU BIGINT NOT NULL, PRIMARY KEY (ID));

While JPA imposes restrictions to preserve the data integrity of your application, it can be
useful to also create database constraints to avoid incoherent data when it is loaded or
modified through other means:

ALTER TABLE PRODUCT_KEYWORD ADD INDEX FK_PRODUCT_KEYWORD_PRODUCT (SKU), add
constraint FK_PRODUCT_KEYWORD_PRODUCT FOREIGN KEY (SKU) REFERENCES PRODUCT
(SKU);
ALTER TABLE PRODUCT_KEYWORD ADD INDEX FK_PRODUCT_KEYWORD_KEYWORD (KEYWORD),
add constraint FK_PRODUCT_KEYWORD_KEYWORD FOREIGN KEY (KEYWORD) REFERENCES
KEYWORD (KEYWORD);

This application pre-populates a number of products into the database:

INSERT INTO PRODUCT (DESCRIPTION, HEIGHT, LENGTH, NAME, WEIGHT, WIDTH,
FEATURED, AVAILABILITY, IMAGE, PRICE) VALUES ('HD LED Picture
Quality<p/>ConnectShare Movie<p/>Wide Color Enhancement<p/>Clear Motion Rate
60', 17.5, 29.1, 'ABC HD32CS5002 32-inch LED TV', 17, 3.7, true, 52, 'TV',
249.99);
INSERT INTO PRODUCT (DESCRIPTION, HEIGHT, LENGTH, NAME, WEIGHT, WIDTH,
FEATURED, AVAILABILITY, IMAGE, PRICE) VALUES ('HD LED Picture
Quality<p/>ConnectShare Movie<p/>Wide Color Enhancement<p/>Clear Motion Rate
60', 22.3, 37.8, 'ABC HD42CS5002 42-inch LED TV', 20.9, 2.2, true, 64, 'TV',
424.95);
INSERT INTO PRODUCT (DESCRIPTION, HEIGHT, LENGTH, NAME, WEIGHT, WIDTH,
FEATURED, AVAILABILITY, IMAGE, PRICE) VALUES ('Inverter Technology for even
cooking<p/>Inverter Turbo Defrost for quick defrosting<p/>9-Menu Category
Sensor Cook system', 12, 22, 'Microtech MM-733N Microwave Oven, 1.6 Cubic
Feet', 38.8, 19.5, true, 32, 'Microwave', 178);
INSERT INTO PRODUCT (DESCRIPTION, HEIGHT, LENGTH, NAME, WEIGHT, WIDTH,
FEATURED, AVAILABILITY, IMAGE, PRICE) VALUES ('Intel Core i5-4210U 1.7 GHz
(3 MB Cache)<p/>4 GB DDR3L SDRAM<p/>0 GB 1 rpm 180 GB Solid-State
Drive<p/>14-Inch Screen, Intel HD Graphics 4400<p/>Fedora 21 Operating
System', 11.6, 20.4, 'HCM MegaBook 14-Inch Laptop', 6.2, 3.1, true, 213,
'Laptop', 1095.99);
INSERT INTO PRODUCT (DESCRIPTION, HEIGHT, LENGTH, NAME, WEIGHT, WIDTH,
FEATURED, AVAILABILITY, IMAGE, PRICE) VALUES ('Finished on all sides for
versatile placement<p/>Cinnamon Cherry finish<p/>Cinnamon Cherry', 19.5,
35.2, 'Coffee Table in Cinnamon Cherry Finish', 26.9, 17.1, true, 23,
'CoffeeTable', 44.73);
INSERT INTO PRODUCT (DESCRIPTION, HEIGHT, LENGTH, NAME, WEIGHT, WIDTH,
FEATURED, AVAILABILITY, IMAGE, PRICE) VALUES ('HD LED Picture
Quality<p/>ConnectShare Movie<p/>Wide Color Enhancement<p/>Clear Motion Rate

refarch-feedback@redhat.com 45 www.redhat.com

60', 33.5, 57.8, 'ABC HD65CS5002 65-inch LED TV', 72.5, 2.8, true, 76, 'TV',
999.00);
INSERT INTO PRODUCT (DESCRIPTION, HEIGHT, LENGTH, NAME, WEIGHT, WIDTH,
FEATURED, AVAILABILITY, IMAGE, PRICE) VALUES ('Intel Core i5-4210U 1.7 GHz
(3 MB Cache)<p/>4 GB DDR3L SDRAM<p/>0 GB 1 rpm 180 GB Solid-State
Drive<p/>15.6-Inch Screen, Intel HD Graphics 4400<p/>Fedora 21 Operating
System', 11.9, 21.9, 'HCM MegaBook 15.6-Inch Laptop', 6.9, 3, false, 251,
'Laptop', 1234.32);
INSERT INTO PRODUCT (DESCRIPTION, HEIGHT, LENGTH, NAME, WEIGHT, WIDTH,
FEATURED, AVAILABILITY, IMAGE, PRICE) VALUES ('HD LED Picture
Quality<p/>ConnectShare Movie<p/>Wide Color Enhancement<p/>Clear Motion Rate
60', 24.7, 42.2, 'ABC HD47CS5002 47-inch LED TV', 28, 2.2, false, 76, 'TV',
529.00);
INSERT INTO PRODUCT (DESCRIPTION, HEIGHT, LENGTH, NAME, WEIGHT, WIDTH,
FEATURED, AVAILABILITY, IMAGE, PRICE) VALUES ('HD LED Picture
Quality<p/>ConnectShare Movie<p/>Wide Color Enhancement<p/>Clear Motion Rate
60', 28.5, 48.9, 'ABC HD55CS5002 55-inch LED TV', 40.6, 2.2, false, 76,
'TV', 569.00);
INSERT INTO PRODUCT (DESCRIPTION, HEIGHT, LENGTH, NAME, WEIGHT, WIDTH,
FEATURED, AVAILABILITY, IMAGE, PRICE) VALUES ('Inverter Technology for even
cooking<p/>Inverter Turbo Defrost for quick defrosting<p/>9-Menu Category
Sensor Cook system', 14, 24, 'Microtech MM-733N Microwave Oven, 2.2 Cubic
Feet', 45.6, 19.5, false, 41, 'Microwave', 135);
INSERT INTO PRODUCT (DESCRIPTION, HEIGHT, LENGTH, NAME, WEIGHT, WIDTH,
FEATURED, AVAILABILITY, IMAGE, PRICE) VALUES ('Top lifts up and
forward<p/>Hidden storage beneath top<p/>Finished on all sides for versatile
placement', 19.4, 41.1, 'Black Finish Coffee Table', 67.6, 19, false, 6,
'CoffeeTable', 142.99);

Six keywords are defined to classify these products:

INSERT INTO KEYWORD VALUES('Electronics');
INSERT INTO KEYWORD VALUES('Furniture');
INSERT INTO KEYWORD VALUES('TV');
INSERT INTO KEYWORD VALUES('Microwave');
INSERT INTO KEYWORD VALUES('Laptop');
INSERT INTO KEYWORD VALUES('Table');

These keywords are mapped to the sample products by inserting the required rows into the
join table. In this example, use the product names to classify them without having a hard
constraint on the generated SKU of the products:

INSERT INTO PRODUCT_KEYWORD (SKU, KEYWORD) SELECT SKU, 'Electronics' FROM
PRODUCT WHERE IMAGE IN ('TV', 'Microwave', 'Laptop');
INSERT INTO PRODUCT_KEYWORD (SKU, KEYWORD) SELECT SKU, 'Furniture' FROM
PRODUCT WHERE IMAGE = 'CoffeeTable';
INSERT INTO PRODUCT_KEYWORD (SKU, KEYWORD) SELECT SKU, 'Microwave' FROM
PRODUCT WHERE IMAGE = 'Microwave';
INSERT INTO PRODUCT_KEYWORD (SKU, KEYWORD) SELECT SKU, 'TV' FROM PRODUCT
WHERE IMAGE = 'TV';
INSERT INTO PRODUCT_KEYWORD (SKU, KEYWORD) SELECT SKU, 'Laptop' FROM PRODUCT
WHERE IMAGE = 'Laptop';
INSERT INTO PRODUCT_KEYWORD (SKU, KEYWORD) SELECT SKU, 'Table' FROM PRODUCT
WHERE IMAGE = 'CoffeeTable';

www.redhat.com 46 refarch-feedback@redhat.com

refarch-feedback@redhat.com 47 www.redhat.com

5.3.4.2 Datasource
As part of the project template, JBoss Developer Studio generates a default datasource to be
used by the JPA component. This datasource uses the embedded H2 database in JBoss EAP
6 to configure in-memory tables:

<datasource jndi-name="java:jboss/datasources/productDS"
 pool-name="product" enabled="true"
 use-java-context="true">
 <connection-url>jdbc:h2:mem:product;DB_CLOSE_ON_EXIT=FALSE;

DB_CLOSE_DELAY=-1</connection-url>
 <driver>h2</driver>
 <security>
 <user-name>sa</user-name>
 <password>sa</password>
 </security>
</datasource>

Modify this datasource definition file to use an external MySQL database:

<?xml version="1.0" encoding="UTF-8"?>
<datasources xmlns="http://www.jboss.org/ironjacamar/schema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.jboss.org/ironjacamar/schema
http://docs.jboss.org/ironjacamar/schema/datasources_1_0.xsd">

 <datasource jndi-name="java:jboss/datasources/ProductDS"
 pool-name="ProductDS" enabled="true" use-java-context="true">

<connection-url>jdbc:mysql://product-db:3306/product</connection-url>
<driver>mysql</driver>
<security>

<user-name>product</user-name>
<password>password</password>

</security>
</datasource>

</datasources>
Note that this datasource relies on the mysql JDBC driver.

5.3.4.3 Database Driver
Download the MySQL JDBC driver JAR file and install it in your JBoss EAP environment as a
module. JBoss EAP 6 modules are located under

jboss-eap-6.4/modules/system/layers/base/

Create the proper directory structure for MySQL under the modules location:

jboss-eap-6.4/modules/system/layers/base/com/mysql/main/

Copy the MySQL JDBC driver archive into this location. This reference architecture
application uses version 5.1.34 of the driver, so the file is called:

mysql-connector-java-5.1.34-bin.jar

www.redhat.com 48 refarch-feedback@redhat.com

http://www.jboss.org/ironjacamar/schema

Also create a module descriptor file called module.xml in this same directory with the following
content:

<?xml version="1.0" encoding="UTF-8"?>
<module xmlns="urn:jboss:module:1.1" name="com.mysql">
 <resources>
 <resource-root path="mysql-connector-java-5.1.34-bin.jar"/>
 </resources>

 <dependencies>
 <module name="javax.api"/>
 <module name="javax.transaction.api"/>
 </dependencies>
</module>

Notice that the module name is specified as com.mysql. The resources section specifies the
driver archive as the only resource of this module while two other modules are listed as
dependencies in the corresponding section.

Modify the JBoss EAP server configuration and configure a driver called mysql. Database
drivers are configured in the datasources subsystem:

<subsystem xmlns="urn:jboss:domain:datasources:1.2">
 <datasources>
 <datasource jndi-name="java:jboss/datasources/ExampleDS"...
 ...
 </datasource>
 <drivers>
 <driver name="mysql" module="com.mysql">
 <driver-class>com.mysql.jdbc.Driver</driver-class>
 <xa-datasource-
class>com.mysql.jdbc.jdbc2.optional.MysqlXADataSource</xa-datasource-class>
 </driver>
 <driver name="h2" module="com.h2database.h2">
 <xa-datasource-class>org.h2.jdbcx.JdbcDataSource</xa-
datasource-class>
 </driver>
 </drivers>
 </datasources>
</subsystem>

Note that the driver definition refers to the module containing the database drivers.

Specify the fully qualified class name of both the XA and non-XA drivers.

This configuration is typically only required once per database and multiple datasources
configured either on the server or within various applications can then take advantage of the
same driver.

refarch-feedback@redhat.com 49 www.redhat.com

5.4 RESTful API

5.4.1 Enabling JAX-RS support
To enable support for the Java API for RESTful Web Services (JAX-RS), create a
web descriptor for your application and provide a mapping for the standard JAX-RS servlet,
which is javax.ws.rs.core.Application.

To create a web.xml descriptor, first navigate to the src/main/webapp/WEB-INF directory of
your project in JBoss Developer Studio. Using either the File menu or by right-clicking on the
folder, select to create a new artifact of type Other. Select Web Descriptor from the JBoss
Tools Web category and press Next. Change the Servlet version to 3.0 and type the name as
web.xml:

Click the Finish button to create the web.xml file. JBoss Developer Studio automatically opens
this file in the web descriptor editor.

www.redhat.com 50 refarch-feedback@redhat.com

Figure 5.4.1-1: Create Web Descriptor

Right-click on the web.xml file name in the editor and select to create a new Servlet Mapping.

Enter the fully qualified class name of the JAX-RS Servlet and map it to the web application
context root:

The mapping specified for the JAX-RS servlet determines the root context of REST requests.
The maven configuration of this web application has a project name of product and specifies
war as its packaging format. As a result, this web application will have a root context of
/product. Using a wildcard URL pattern means that this will also be the top context of REST
requests.

refarch-feedback@redhat.com 51 www.redhat.com

Figure 5.4.1-2: JAX-RS Servlet Mapping

5.4.2 RESTful Service
To create a RESTful service, simply create a Java class and annotate the class with
javax.ws.rs.Path.

Create a package called com.redhat.refarch.microservices.product.service in your project and
place the ProductService class in this package.

This will be the only RESTful service in the product web application and it can therefore
consume all requests targeted at the web application target. Set the service path to root:

package com.redhat.refarch.microservices.product.service;

import javax.ws.rs.Path;

@Path("/")
public class ProductService
{

}

To create an operation for this service, create a method and annotate it with a Path. For
example, create a method called addProduct that both takes and returns a product and
specify its relative context as /products.

Note that the URL of this operation will be a combination of the path to the server, the web
application, the JAX-RS servlet, the service and the operation itself. Assuming a local
development server listening on http://localhost:8080 and the current maven build file, which
generates a web application called product.war, along with the root relative context given to
the JAX-RS servlet and product service itself, the path pieces are http://localhost:8080 and
/product and / and / and /products.

The final path to this operation is: http://localhost:8080/product/products

Also use annotations to declare the HTTP method supported by this operation as well as the
media type consumed and produced.

Create this operation with the assumption that the product will be posted to the service in
JSON form and also returned in JSON form:

@Path("/products")
@POST
@Consumes(MediaType.APPLICATION_JSON)
@Produces(MediaType.APPLICATION_JSON)
public Product addProduct(Product product)
{

return product;
}

Build the project by running the install goal of maven, either through JBDS by choosing Run
As Maven build or in command line: mvn install

www.redhat.com 52 refarch-feedback@redhat.com

Once built, a product.war archive file will be generated in the target directory. Deploy this web
application archive to JBoss EAP.

Once deployed, test invoking the add product operation. Use a REST client of your choice.
For example, if using the cURL command line tool:

curl -X POST -H 'Content-Type: application/json'
-H 'Accept: application/json'
-d @request.json
http://localhost:8080/product/products

{"sku":null,"name":"Product","description":"The product
description","length":40,"width":40,"height":40,"weight":1040,"featured":tru
e,"availability":10,"price":19.95,"image":null}

In the above example, the request.json file would be created with the following content:

{
"name": "Product",
"description": "The product description",
"length": 40,
"width": 40,
"height": 40,
"weight": 1040,
"availability": 10,
"price": 19.95,
"featured": true
}

Notice that the JAX-RS implementation automatically deserializes the JSON request to the
provided Java type. The missing fields are left as null and this can be observed in the
response.

Deserializing XML to Java types requires an extra step. JBoss EAP 6.4 can use JAXB to
convert Java to XML and back, but Java classes must be annotated as XML types. Modify the
Product class and annotate it as a JAXB root element:

@Entity
@NamedQuery(name = "Product.findFeatured",

 query = "SELECT p FROM Product p WHERE p.featured = true")
@XmlRootElement
public class Product
{

Modify the add product annotation to include XML as an acceptable media type for both the
request and response:

@Path("/products")
@POST
@Consumes({MediaType.APPLICATION_JSON, MediaType.APPLICATION_XML})
@Produces({MediaType.APPLICATION_JSON, MediaType.APPLICATION_XML})
public Product addProduct(Product product)

Note the use of curly braces to specify a list of options instead of a single string value.

refarch-feedback@redhat.com 53 www.redhat.com

Redeploy the web application and issue a similar REST request in XML, specifying both the
request and response types as application/xml:. Once again, using the cURL command line
tool:

curl -X POST -H 'Content-Type: application/xml'
-H 'Accept: application/xml'
-d @request.xml
http://localhost:8080/product/products

<?xml version="1.0" encoding="UTF-8" standalone="yes"?
><product><description>The product
description</description><height>40</height><length>40</length><name>Product
</name><weight>1040</weight><width>40</width></product>

Note that while serializing the response, JAXB simply omits elements with a null value. The
request XML looks as follows:
<product>

<description>The product description</description>
<height>40</height>
<length>40</length>
<name>Product</name>
<weight>1040</weight>
<width>40</width>
<price>40</price>
<availability>40</availability>

</product>

5.4.3 Transactional Behavior
Some operations such as JPA persistence require a transactional context to proceed. The
Narayana 5 community project supports REST transactions, while EAP 6 provides support for
WS-BA and WS-AT. This reference application simply relies on transactions with the scoped
of individual REST services. To create a transactional context for a REST operation, you can
use either implicit container managed transactions or user transactions.

To leverage user transactions, declare the required dependencies on the transaction API and
inject a user transaction object. Once this is set up, you can start a transaction at any point by
calling the begin() method. The entity manager can enlist the database driver in the
transaction through its joinTransaction() method. After the success or failure of the operation,
either the commit() or the rollback() methods can be called to respectively commit or abandon
the transaction.

It is often much simpler to allow the application server to manage transactions. This
functionality is available for EJB3 session beans. Any class annotated as a REST service can
also be enhanced to act as a stateless session bean. Annotate the ProductService class as a
stateless session bean with no interface(therefore only a local bean):

@Path("/")
@Stateless
@LocalBean
public class ProductService
{

www.redhat.com 54 refarch-feedback@redhat.com

Inject an entity manager to find, query, save, update and delete JPA entities:

@PersistenceContext
private EntityManager em;

Modify the add product operation to use this entity manager and persist the supplied product:

@Path("/products")
@POST
@Consumes({MediaType.APPLICATION_JSON, MediaType.APPLICATION_XML})
@Produces({MediaType.APPLICATION_JSON, MediaType.APPLICATION_XML})
public Product addProduct(Product product)
{

em.persist(product);
return product;

}

Redeploy the application and test it again by invoking the add product operation. For
example, using cURL:

curl -X POST -H 'Content-Type: application/json'
-H 'Accept: application/json'
-d @request.json
http://localhost:8080/product/products

{"sku":10012,"name":"Product","description":"The product
description","length":40,"width":40,"height":40,"weight":1040,"featured":tru
e,"availability":10,"price":19.95,"image":null}

Notice that this time, the SKU has been filled in and returned as 10012. That is because the
object was persisted to the database and its primary key was auto generated. The table was
created with SKU as a primary key that is auto-incremented and starts with 10001:

...PRIMARY KEY (SKU)) AUTO_INCREMENT = 10001;

After inserting 11 sample products into the database using SQL scripts, the next inserted row
should indeed be assigned a primary key of 10012.

5.4.4 Logging
Use the Java Logging API to plug into the JBoss EAP logging mechanism. Create a logger
field in your service class and use the class name as the name:

@PersistenceContext
private EntityManager em;

private Logger logger = Logger.getLogger(getClass().getName());

refarch-feedback@redhat.com 55 www.redhat.com

For convenience, create logInfo and logError methods that log statements with the respective
verbosity levels:

private void logInfo(String message)
{

logger.log(Level.INFO, message);
}

private void logError(String message)
{

logger.log(Level.SEVERE, message);
}

Use these convenience methods to generate log statements that can help troubleshoot and
verify application functionality:

public Product addProduct(Product product)
{

logInfo("Will persist product " + product);
em.persist(product);
return product;

}

5.4.5 Error handling
Well-designed RESTful services use standard HTTP codes along with descriptive information
to communicate errors. The JAX-RS specification allows developers to return HTTP errors by
throwing javax.ws.rs.WebApplicationException.

To validate a request and return an error when invalid, use HTTP code 422:

throw new WebApplicationException(422);

While this simple approach succeeds in communicating a correct and meaningful HTTP error
code back to the client, it fails to provide any details or even return the response in the
expected format, which is typically either JSON or XML. To return the proper descriptive
response with the error, create a javax.ws.rs.core.Response object and pass it to the
constructor of javax.ws.rs.WebApplicationException.

Create an Error class to use to represent various potential errors.

Like other object types returned by the RESTful serivce, annotate this class as
javax.xml.bind.annotation.XmlRootElement so that it can be serialized to both JSON and
XML. Create the following fields in the Error class:

• int code: The HTTP error code that is returned

• String message: Descriptive message that explain the cause of the error

• String details: Further details about the error, for example the exception stack

www.redhat.com 56 refarch-feedback@redhat.com

The Error class would start as follows:

package com.redhat.refarch.microservices.product.model;

import javax.xml.bind.annotation.XmlRootElement;

@XmlRootElement
public class Error
{

private int code;
private String message;
private String details;

Provide convenient constructors to instantiate the class:

public Error(int code, String message, Throwable throwable)
{

this.code = code;
if(message != null)
{

this.message = message;
}
else if(throwable != null)
{

this.message = throwable.getMessage();
}
if(throwable != null)
{

StringWriter writer = new StringWriter();
throwable.printStackTrace(new PrintWriter(writer));
this.details = writer.toString();

}
}

public Error(int code, String message)
{

this(code, message, null);
}

public Error(int code, Throwable throwable)
{

this(code, null, throwable);
}

There is no legitimate use case for a default constructor with no arguments, however JAXB
requires such a constructor. Providing a private constructor allows you to satisfy this JAXB
requirement without promoting the incorrect use of the class:

@SuppressWarnings("unused")
private Error()
{
}

refarch-feedback@redhat.com 57 www.redhat.com

Remember that serialization to either JSON or XML is based on JavaBean properties. Provide
getter and setter methods for only the second and third field, to include them in the response:

public String getMessage()
{

return message;
}

public void setMessage(String message)
{

this.message = message;
}

public String getDetails()
{

return details;
}

public void setDetails(String details)
{

this.details = details;
}

Also provide a convenience method to return a WebApplicationException based on this Error
response:

public WebApplicationException asException()
{

ResponseBuilder responseBuilder = Response.status(code);
responseBuilder = responseBuilder.entity(this);
return new WebApplicationException(responseBuilder.build());

}

This class may now be used to return meaningful error messages. For example, try validating
that the product being added has its name, price and availability set:

@Path("/products")
@POST
@Consumes({MediaType.APPLICATION_JSON, MediaType.APPLICATION_XML})
@Produces({MediaType.APPLICATION_JSON, MediaType.APPLICATION_XML})
public Product addProduct(Product product)
{

if(product.getAvailability() == null ||
product.getName() == null || product.getPrice() == null)

{
throw new Error(422, "Validation Error").asException();

}

www.redhat.com 58 refarch-feedback@redhat.com

The Error class can also map any potential Java exceptions into a response code and
description that can be consumed by a RESTful client. For example, an attempt to store a
product that violates database constraints causes the entity manager to throw a
javax.persistence.PersistenceException, which is a runtime exception:

try
{

logInfo("Will persist product " + product);
em.persist(product);
return product;

}
catch(RuntimeException e)
{

logError("Got exception " + e.getMessage());
throw new Error(HttpURLConnection.HTTP_INTERNAL_ERROR,

e).asException();
}

Redeploy the application and test error handling. Try to add a product using JSON without
including the price, with a request.json file as follows:

{
"name": "Product",
"description": "The product description",
"length": 40,
"width": 40,
"height": 40,
"weight": 1040,
"availability": 10,
"featured": true
}

Use the -i parameter with cURL to include the response headers:

curl -X POST -H 'Content-Type: application/json'
-H 'Accept: application/json'
-d @request.json
-i
http://localhost:8080/product/products

HTTP/1.1 422 Unprocessable Entity
Server: Apache-Coyote/1.1
Content-Type: application/json
Transfer-Encoding: chunked
Date: ...

{"message":"Validation Error","details":null}

Notice that the error code 422 is included in the response along with its default HTTP
description.

refarch-feedback@redhat.com 59 www.redhat.com

Try the corresponding XML request:

<product>
<description>The product description</description>
<height>40</height>
<length>40</length>
<name>Product</name>
<weight>1040</weight>
<width>40</width>
<price>40</price>

</product>

The response looks a bit different this time:

curl -X POST -H 'Content-Type: application/xml'
-H 'Accept: application/xml'
-d @request.xml
-i
http://localhost:8080/product/products

HTTP/1.1 422 Unprocessable Entity
Server: Apache-Coyote/1.1
Content-Type: application/xml
Content-Length: 105
Date: Sat, 28 Mar 2015 00:28:48 GMT

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<error><message>Validation Error</message></error>

Most notably, the JSON response includes a null detail whereas the XML response omits it
entirely. These differences may be attributed to both the protocol as well as the serialization
libraries.

Include the price to pass validation but change one of the other fields to an invalid value that
will fail persistence. For example, set the weight to 9999999 which violates database
constraint for the corresponding column. The details of the response will include the full stack
of the exception:

HTTP/1.1 500 Internal Server Error
Server: Apache-Coyote/1.1
Content-Type: application/xml
Transfer-Encoding: chunked
Date: ...
Connection: close

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<error>

<details>javax.persistence.PersistenceException:
org.hibernate.exception.DataException: could not execute statement

at
org.hibernate.ejb.AbstractEntityManagerImpl.convert(AbstractEntityManagerImp
l.java:1387)

at
org.hibernate.ejb.AbstractEntityManagerImpl.convert(AbstractEntityManagerImp

www.redhat.com 60 refarch-feedback@redhat.com

l.java:1310)
at

org.hibernate.ejb.AbstractEntityManagerImpl.convert(AbstractEntityManagerImp
l.java:1316)

at
org.hibernate.ejb.AbstractEntityManagerImpl.persist(AbstractEntityManagerImp
l.java:881)

at
org.jboss.as.jpa.container.AbstractEntityManager.persist(AbstractEntityManag
er.java:563)

at
com.redhat.refarch.microservices.product.service.ProductService.addProduct(P
roductService.java:43)

at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at
... xxx more

Caused by: com.mysql.jdbc.MysqlDataTruncation: Data truncation: Out of range
value for column 'WEIGHT' at row 1

at com.mysql.jdbc.MysqlIO.checkErrorPacket(MysqlIO.java:3885)
at com.mysql.jdbc.MysqlIO.checkErrorPacket(MysqlIO.java:3823)
at com.mysql.jdbc.MysqlIO.sendCommand(MysqlIO.java:2435)
at com.mysql.jdbc.MysqlIO.sqlQueryDirect(MysqlIO.java:2582)
at com.mysql.jdbc.ConnectionImpl.execSQL(ConnectionImpl.java:2530)
at

com.mysql.jdbc.PreparedStatement.executeInternal(PreparedStatement.java:1907
)

at
com.mysql.jdbc.PreparedStatement.executeUpdate(PreparedStatement.java:2141)

at
com.mysql.jdbc.PreparedStatement.executeUpdate(PreparedStatement.java:2077)

at
com.mysql.jdbc.PreparedStatement.executeUpdate(PreparedStatement.java:2062)

at
org.jboss.jca.adapters.jdbc.WrappedPreparedStatement.executeUpdate(WrappedPr
eparedStatement.java:493)

at
org.hibernate.engine.jdbc.internal.ResultSetReturnImpl.executeUpdate(ResultS
etReturnImpl.java:186)

... 106 more
</details>

<message>org.hibernate.exception.DataException: could not execute
statement</message>

</error>

Note that simply catching and mapping Java exceptions to a service error risks exposing any
content contained in the exception stack. Employ caution to not inadvertently expose
vulnerabilities or any other information that you do not wish to expose as part of the exception
stack trace.

refarch-feedback@redhat.com 61 www.redhat.com

5.4.6 Resource API design
While no strict standards govern RESTful service API design, conventions and common
practice often go a long way in promoting consistent behavior. Familiar API design helps
increase productivity and reduce misunderstanding and developer error.

This document proposes a set of URL patterns that are combined with standard HTTP
methods to provide full create, read, update and delete (CRUD) capability for a resource
using RESTful API.

There is some disagreements on the details of this approach but a large number of systems
use some slight variation of this.

5.4.6.1 Relative context
Use the plural form of the resource name as the relative URL of each CRUD operation. For
operations involving products, use /products as the path or the first part of the path.

For example:

@Path("/products")
@POST
@Consumes({MediaType.APPLICATION_JSON, MediaType.APPLICATION_XML})
@Produces({MediaType.APPLICATION_JSON, MediaType.APPLICATION_XML})
public Product addProduct(Product product)

5.4.6.2 Create
Use HTTP POST to add a new resource instance. Specify the path to this operation as the
plural form of the resource name and receive the resource as the request content.

Return the persisted resource, which reflects any potential changes made to the entity upon
saving it, including any automatically generated or sequence identifier.

The previously created add product method is an example of this:

@Path("/products")
@POST
@Consumes({MediaType.APPLICATION_JSON, MediaType.APPLICATION_XML})
@Produces({MediaType.APPLICATION_JSON, MediaType.APPLICATION_XML})
public Product addProduct(Product product)
{

try
{

logInfo("Will persist product " + product);
em.persist(product);
return product;

}
catch(RuntimeException e)
{

logError("Got exception " + e.getMessage());
throw new Error(HttpURLConnection.HTTP_INTERNAL_ERROR,

e).asException();
}

}

www.redhat.com 62 refarch-feedback@redhat.com

5.4.6.3 Read

5.4.6.3.1 Search

Use HTTP GET with the same path (plural form of the resource name) to retrieve resources.
Query parameters may be used to filter the search results based on provided criteria:

@GET
@Path("/products")
@Produces({"application/json", "application/xml"})
public Collection<Product> getProducts(@Context UriInfo uriInfo)
{

try
{

MultivaluedMap<String, String> queryParams =
uriInfo.getQueryParameters();

The product service will look for the featured query parameter and if present, returns only the
products that are flagged as featured:

if(queryParams.containsKey("featured"))
{

return em.createNamedQuery("Product.findFeatured",
Product.class).getResultList();

}

In the absence of the featured flag, if one or more keywords are provided in the query,
products classified with these keywords will be returned. Use the named query in the
Keyword entity to perform a case-insensitive search for those keywords. If a keyword is not
found, there are no associated products to return. It is also possible that a keyword is
declared but no product has yet been classified with it:

else if(queryParams.containsKey("keyword"))
{

Collection<Product> products = new HashSet<Product>();
for(String keyword : queryParams.get("keyword"))
{

try
{

TypedQuery<Keyword> query =
em.createNamedQuery("Keyword.findKeyword", Keyword.class);

query.setParameter("query", keyword);
Keyword keywordEntity = query.getSingleResult();
List<Product> keywordProducts = keywordEntity.getProducts();
logInfo("Found " + keyword + ": " + keywordProducts);
products.addAll(keywordProducts);

}
catch(NoResultException e)
{ //keyword not found, which is acceptable
}

}
return products;

}

refarch-feedback@redhat.com 63 www.redhat.com

When searching for products by keyword, it is conceivable and sometimes even likely that a
single product will match two or more specified keywords. To avoid providing duplicates in the
results, use a HashSet class as the Collection implementation. The HashSet class ensures
unique contents by using the equals and hashCode methods of the provided type. In this
case, both equals and hashCode methods have been implemented for the Product class.

This method uses the JPA relationship between keywords and products to find all products
classified with each keyword, aggregating and returning a unique set of results.

If neither the featured nor keyword query parameters are provided, the client is presumably
requesting a list of all products. This may be an acceptable use case for some services, but
the product service does not support this feature. Return a descriptive error message with a
400 error code:

 else
 {
 throw new Error(HttpURLConnection.HTTP_BAD_REQUEST,

"All products cannot be returned").asException();
 }
}
catch(RuntimeException e)
{
 throw new Error(HttpURLConnection.HTTP_INTERNAL_ERROR, e).asException();
}

Once again, any unexpected error is mapped to an error response with HTTP error code 500.

5.4.6.3.2 Lookup

Another type of read operation is the direct lookup by a resource by its unique identifier. The
convention for retrieving a known resource is to issue a GET request to an address that
includes the relative URL of the resource type and is followed by the unique resource
identifier. In the case of products, this would be /products/sku.

Use the javax.ws.rs.PathParam annotation to use and specify a variable in the path of the
opeartion:

@GET
@Path("/products/{sku}")
@Produces({"application/json", "application/xml"})
public Product getProduct(@PathParam("sku") Long sku)
{

logInfo("SKU is " + sku);
Product product = em.find(Product.class, sku);
if(product == null)
{

throw new Error(HttpURLConnection.HTTP_NOT_FOUND,
"Product not found").asException();

}
return product;

}
If a product with the specified SKU is not found, an HTTP error code 404 is returned along
with a descriptive message in the accepted media type.

www.redhat.com 64 refarch-feedback@redhat.com

Note that the product SKU is expected to conform to the Java long format. The REST
framework is tasked with validating and converting the provided characters to the specified
type. While convenient, the disadvantage of this approach is that any validation error is
handled by the server. Providing a non-numeric value to the JAX-RS implementation provided
with JBoss EAP 6.4 returns a 400 HTTP error code, indicating a Bad Request. An error
message in the accepted media type cannot be returned alongside the error code.

5.4.6.4 Update
When updating a resource, the request does not always include every resource attribute. It is
critical to distinguish between the intent to only update the provided attributes without
modifying the others, versus removing all other attributes that were not included in the update
request. These two intents can be considered separate operations, where one is a full update
and the other a partial one.

While there is less agreement and consistency in the conventions used to distinguish
between a full and partial update in a RESTful API, one common approach is to use the
distinct HTTP methods of PUT and PATCH, with the latter indicating a partial update.

Create a utility class that uses the JavaBeans API to copy fields from one object to the other.
Start by using a map to cache the bean property descriptors:

package com.redhat.refarch.microservices.utils;

...
public class Utils
{

private static final Map<Class<?>, PropertyDescriptor[]>
beanDescriptors = new HashMap<Class<?>, PropertyDescriptor[]>();

Create a method to introspect bean classes and return the bean property descriptors, while
using the cache:

private static PropertyDescriptor[] getBeanDescriptors(Class<?> clazz)
{

PropertyDescriptor[] descriptors = beanDescriptors.get(clazz);
if(descriptors == null)
{

try
{

BeanInfo beanInfo = Introspector.getBeanInfo(clazz);
descriptors = beanInfo.getPropertyDescriptors();
beanDescriptors.put(clazz, descriptors);

}
catch(IntrospectionException e)
{

throw new IllegalStateException(e);
}

}
return descriptors;

}

refarch-feedback@redhat.com 65 www.redhat.com

Create a generic method that copies the properties of one bean to another.

Include a flag in the method signature to determine the behavior when a source bean property
is null. This flag provides the option to skip copying over null values, thereby leaving such
destination properties unchanged, or setting them to null:

public static <T> void copy(T source, T destination, boolean skipIfNull)
{

PropertyDescriptor[] descriptors = getBeanDescriptors(
source.getClass());

for(PropertyDescriptor descriptor : descriptors)
{

try
{

if("class".equals(descriptor.getName()))
{

//Class is not a regular JavaBeans property!
continue;

}
Method readMethod = descriptor.getReadMethod();
Method writeMethod = descriptor.getWriteMethod();
if(readMethod == null || writeMethod == null)
{

//Property must be read/write to copy
continue;

}
Object value = readMethod.invoke(source);
if(value == null && skipIfNull == true)
{

//As per the flag, do not copy null properties
continue;

}
else
{

writeMethod.invoke(destination, value);
}

}
catch(ReflectiveOperationException e)
{

throw new IllegalStateException(e);
}

}
}

5.4.6.4.1 Full update

Create a method that listens for PUT requests on an address that includes the relative URL of
the resource type and is followed by the unique resource identifier. In the case of products,
this would be /products/sku.

www.redhat.com 66 refarch-feedback@redhat.com

This method uses the product SKU to retrieve the product and update all its fields with the
provided product:

@PUT
@Path("/products/{sku}")
@Consumes({"application/json", "application/xml"})
@Produces({"application/json", "application/xml"})
public Product updateProduct(@PathParam("sku") Long sku, Product product)
{

Product entity = getProduct(sku);
try
{

//Ignore any attempt to update product SKU:
product.setSku(sku);
Utils.copy(product, entity, false);
em.merge(entity);
return product;

}
catch(RuntimeException e)
{

throw new Error(HttpURLConnection.HTTP_INTERNAL_ERROR,
e).asException();

}
}

This method uses the existing product lookup operation to load the JPA entity. Notice that this
calls takes place outside the try block so that it is not caught and wrapped again, but instead
directly bubbles up and results in the original HTTP error code and description.

It then calls the previously written utility method to update it. Providing false as the third
argument causes the method to overwrite all of the entity properties with the provided values,
even if some of the provided values are null.

The merge method of the entity manager updates the database.

5.4.6.4.2 Partial update

The REST API for partial update is similar to Full update, but instead uses the PATCH
method. JAX-RS does not provide native support for HTTP PATCH so you have to first
declare an annotation for this purpose:

@Target({ElementType.METHOD})
@Retention(RetentionPolicy.RUNTIME)
@HttpMethod("PATCH")
public @interface PATCH
{
}

refarch-feedback@redhat.com 67 www.redhat.com

Create a method identical to the one used for full update, with the different HTTP method and
a flag to ask the utility method to ignore null values:

@PATCH
@Path("/products/{sku}")
@Consumes({"application/json", "application/xml"})
@Produces({"application/json", "application/xml"})
public Product partiallyUpdateProduct(@PathParam("sku") Long sku,

Product product)
{

Product entity = getProduct(sku);
try
{

//Ignore any attempt to update product SKU:
product.setSku(sku);
Utils.copy(product, entity, true);
em.merge(entity);
return product;

}
catch(RuntimeException e)
{

throw new Error(HttpURLConnection.HTTP_INTERNAL_ERROR,
e).asException();

}
}

5.4.6.5 Delete
The REST API to delete a resource uses the same address of the resource type followed by
the unique identifier of the resource entity:

@DELETE
@Path("/products/{sku}")
@Consumes({"application/json", "application/xml"})
@Produces({"application/json", "application/xml"})
public void deleteProduct(@PathParam("sku") Long sku)
{

Product product = getProduct(sku);
try
{

em.remove(product);
}
catch(RuntimeException e)
{

throw new Error(HttpURLConnection.HTTP_INTERNAL_ERROR,
e).asException();

}
}

www.redhat.com 68 refarch-feedback@redhat.com

5.4.7 Other RESTful operations
Not all product requirements always neatly fit into the resource model. Model other operations
in a consistent and similar way.

Create a method to add a keyword to the database that can later be used to classify product.
This can be modeled after a Create resource operation:

@Path("/keywords")
@POST
@Consumes({MediaType.APPLICATION_JSON, MediaType.APPLICATION_XML})
@Produces({MediaType.APPLICATION_JSON, MediaType.APPLICATION_XML})
public Keyword addKeyword(Keyword keyword)
{

try
{

logInfo("Will persist keyword " + keyword);
em.persist(keyword);
return keyword;

}
catch(RuntimeException e)
{

logError("Got exception " + e.getMessage());
throw new Error(HttpURLConnection.HTTP_INTERNAL_ERROR,

e).asException();
}

}

Once keywords have been added using the above operation, they can be used to classify a
product:

@POST
@Path("/classify/{sku}")
@Consumes({"application/json", "application/xml"})
@Produces({"application/json", "application/xml"})
public void classifyProduct(@PathParam("sku") Long sku,

List<Keyword> keywords)
{

Product product = getProduct(sku);
logInfo("Asked to classify " + product + " as " + keywords);
try
{

product.setKeywords(keywords);
em.merge(product);

}
catch(RuntimeException e)
{

throw new Error(HttpURLConnection.HTTP_INTERNAL_ERROR,
e).asException();

}
}

Once again, keep calls to other methods outside the try loop so the exceptions are not caught
and wrapped inside an internal server error.

refarch-feedback@redhat.com 69 www.redhat.com

To adjust product availability in response to a purchase, the service client is expected to
match each product SKU with the quantity that's been ordered. Create a java bean to
represent the inventory adjustment:

package com.redhat.refarch.microservices.product.model;

public class Inventory
{

private long sku;
private int quantity;

public long getSku()
{

return sku;
}

public void setSku(long sku)
{

this.sku = sku;
}

public int getQuantity()
{

return quantity;
}

public void setQuantity(int quantity)
{

this.quantity = quantity;
}

@Override
public String toString()
{

return "Inventory [sku=" + sku + ", quantity=" + quantity + "]";
}

}

Create an operation to reduce product availability based on the order quantity:

@POST
@Path("/reduce/")
@Consumes({"application/json", "application/xml"})
@Produces({"application/json", "application/xml"})
public void reduceInventory(Inventory[] inventoryAdjustment)
{

…
}

www.redhat.com 70 refarch-feedback@redhat.com

5.4.8 Pessimistic Locking
Certain concurrency issues would benefit from pessimistic locking to avoid data modification
while a transaction is inflight.

Some distributed databases cannot support pessimistic locking but where the database
provides the required support, JPA exposes this capability through its API.

When fulfilling orders, product availability is checked against the order quantity. With the
potential for concurrent requests, it is crucial to ensure that the product availability is not
prone to changes until the transaction is completed and the availability is updated.

Specify the lock type while looking up the product:

Product product = em.find(Product.class, inventory.getSku(),
 LockModeType.PESSIMISTIC_WRITE);

This results in a SELECT FOR UPDATE database query that locks the affected rows until the
transaction is either committed or rolled back.

Compare the amount of inventory adjustment with the product availability and if the requested
quantity exceeds available inventory, return an HTTP error code 409 with a descriptive
message that states there was insufficient availability for the given product SKU:

try
{

logInfo("Asked to reduce inventory: " +
Arrays.toString(inventoryAdjustment));

for(Inventory inventory : inventoryAdjustment)
{

Product product = em.find(Product.class, inventory.getSku(),
 LockModeType.PESSIMISTIC_WRITE);

logInfo("Looked up product as " + product);
if(product == null)
{

throw new Error(HttpURLConnection.HTTP_NOT_FOUND,
"Product not found").asException();

}
int availability = product.getAvailability();
if(inventory.getQuantity() > availability)
{

String message = "Insufficient availability for "
 + inventory.getSku();

throw new Error(HttpURLConnection.HTTP_CONFLICT,
message).asException();

}
else
{

product.setAvailability(
availability - inventory.getQuantity());

em.merge(product);
logInfo("Saved " + product);

}
}

}
catch(WebApplicationException e)

refarch-feedback@redhat.com 71 www.redhat.com

{
throw e;

}
catch(RuntimeException e)
{

throw new Error(HttpURLConnection.HTTP_INTERNAL_ERROR,
e).asException();
}

5.4.9 Sales service
Create a second JBDS project called Sales to develop a second service that handles
customer data maintenance and order management.

Follow the same steps that were used to create the product project, starting by Creating a
Maven Project. Optionally, you can also duplicate the existing product project in JBoss
Developer Studio, renaming it to sales and making the necessary changes.

Use a datasource file called sales-ds.xml with the following content:

<?xml version="1.0" encoding="UTF-8"?>
<datasources xmlns="http://www.jboss.org/ironjacamar/schema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.jboss.org/ironjacamar/schema
http://docs.jboss.org/ironjacamar/schema/datasources_1_0.xsd">
<datasource jndi-name="java:jboss/datasources/SalesDS"

pool-name="SalesDS" enabled="true" use-java-context="true">
<connection-url>jdbc:mysql://sales-db:3306/sales</connection-url>
<driver>mysql</driver>
<security>

<user-name>sales</user-name>
<password>password</password>

</security>
</datasource>

</datasources>

Reference the new and correct datasource in the persistence.xml configuration file:

<?xml version="1.0" encoding="UTF-8"?>
<persistence version="2.1"

xmlns="http://xmlns.jcp.org/xml/ns/persistence"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="
 http://xmlns.jcp.org/xml/ns/persistence
 http://xmlns.jcp.org/xml/ns/persistence/persistence_2_1.xsd">

<persistence-unit name="primary">
<jta-data-source>java:jboss/datasources/SalesDS</jta-data-source>
<properties>

<property name="hibernate.dialect"
value="org.hibernate.dialect.MySQLDialect" />

</properties>
</persistence-unit>

</persistence>

www.redhat.com 72 refarch-feedback@redhat.com

Follow the same instructions provided in the Persistence Entity section to create a JPA bean
to represent a customer. Include JAXB annotations to allow XML serialization for this bean.

Also include a named query to find customers by their username, as they attempt to log in to
the application:

package com.redhat.refarch.microservices.sales.model;

import javax.persistence.Entity;
import javax.persistence.GeneratedValue;
import javax.persistence.GenerationType;
import javax.persistence.Id;
import javax.persistence.NamedQuery;
import javax.xml.bind.annotation.XmlRootElement;

@XmlRootElement
@Entity
@NamedQuery(name = "Customer.findByUsername",

 query = "SELECT c FROM Customer c WHERE c.username = :username")
public class Customer
{

@Id
@GeneratedValue(strategy = GenerationType.IDENTITY)
private Long id;
private String name;
private String address;
private String telephone;
private String email;
private String username;
private String password;

public Long getId()
{

return id;
}

public void setId(Long id)
{

this.id = id;
}

public String getName()
{

return name;
}

public void setName(String name)
{

this.name = name;
}

public String getAddress()
{

return address;

refarch-feedback@redhat.com 73 www.redhat.com

}

public void setAddress(String address)
{

this.address = address;
}

public String getTelephone()
{

return telephone;
}

public void setTelephone(String telephone)
{

this.telephone = telephone;
}

public String getEmail()
{

return email;
}

public void setEmail(String email)
{

this.email = email;
}

public String getUsername()
{

return username;
}

public void setUsername(String username)
{

this.username = username;
}

public String getPassword()
{

return password;
}

public void setPassword(String password)
{

this.password = password;
}

@Override
public String toString()
{

return "Customer [id=" + id + ", name=" + name +
", address=" + address + ", telephone=" + telephone + ", email=" +

email + ", username=" + username + ", password=" + password + "]";
}

}

www.redhat.com 74 refarch-feedback@redhat.com

Model orders as logically dependent on customers. In other words, an order can only be
created by a customer and exists only as part of the customer data. Similarly, order items are
parts of an order that exist within an order.

Use a Java enumeration to define the status of an order. Create two named queries for order,
allowing the service to find all orders for a customer or to find customer orders that are in a
given status.

Create one to many mapping between customer and order, as well as between order and
order item. When creating getters for bean properties, remember to omit those fields that you
do not want returned as part of the entity. Instead, use a different method name to allow
retrieval of the field or relationship by the service while excluding it from the default
serialization behavior. For example, use retrieveCustomer instead of getCustomer:

package com.redhat.refarch.microservices.sales.model;

import java.util.Date;
import java.util.List;

import javax.persistence.CascadeType;
import javax.persistence.Entity;
import javax.persistence.FetchType;
import javax.persistence.GeneratedValue;
import javax.persistence.GenerationType;
import javax.persistence.Id;
import javax.persistence.JoinColumn;
import javax.persistence.ManyToOne;
import javax.persistence.NamedQueries;
import javax.persistence.NamedQuery;
import javax.persistence.OneToMany;
import javax.xml.bind.annotation.XmlRootElement;

@XmlRootElement
@Entity(name = "Orders")
@NamedQueries({@NamedQuery(name = "Order.findByCustomer", query = "SELECT o
FROM Orders o WHERE o.customer = :customer"), @NamedQuery(name =
"Order.findByOrderStatus", query = "SELECT o FROM Orders o WHERE o.customer
= :customer AND o.status = :status")})
public class Order
{

public enum Status
{

Initial, InProgress, Canceled, Paid, Shipped, Completed
}

@Id
@GeneratedValue(strategy = GenerationType.IDENTITY)
private Long id;

private Status status;
private Long transactionNumber;
private Date transactionDate;

refarch-feedback@redhat.com 75 www.redhat.com

@ManyToOne(optional = false, fetch = FetchType.EAGER)
@JoinColumn(name = "CUSTOMER_ID", referencedColumnName = "ID")
private Customer customer;

@OneToMany(cascade = CascadeType.ALL, fetch = FetchType.EAGER, mappedBy
= "order")

private List<OrderItem> orderItems;

public Long getId()
{

return id;
}

public void setId(Long id)
{

this.id = id;
}

public Status getStatus()
{

return status;
}

public void setStatus(Status status)
{

this.status = status;
}

//Avoid getter so it is not included in automatic serialization
public Customer retrieveCustomer()
{

return customer;
}

public void setCustomer(Customer customer)
{

this.customer = customer;
}

public List<OrderItem> getOrderItems()
{

return orderItems;
}

public Long getTransactionNumber()
{

return transactionNumber;
}

public void setTransactionNumber(Long transactionNumber)
{

this.transactionNumber = transactionNumber;
}

public Date getTransactionDate()

www.redhat.com 76 refarch-feedback@redhat.com

{
return transactionDate;

}

public void setTransactionDate(Date transactionDate)
{

this.transactionDate = transactionDate;
}

@Override
public String toString()
{

return "Order [id=" + id + ", status=" + status + ",
transactionNumber=" + transactionNumber + ", transactionDate=" +
transactionDate

+ ", customer=" + customer + ", orderItems=" +
orderItems + "]";

}
}

The order item is very similar and only includes the SKU of the product being ordered along
with the order quantity:

package com.redhat.refarch.microservices.sales.model;

import javax.persistence.Entity;
import javax.persistence.FetchType;
import javax.persistence.GeneratedValue;
import javax.persistence.GenerationType;
import javax.persistence.Id;
import javax.persistence.JoinColumn;
import javax.persistence.ManyToOne;
import javax.xml.bind.annotation.XmlRootElement;

@XmlRootElement
@Entity
public class OrderItem
{

@Id
@GeneratedValue(strategy = GenerationType.IDENTITY)
private Long id;

private Long sku;
private Integer quantity;

@ManyToOne(optional = false, fetch = FetchType.EAGER)
@JoinColumn(name = "ORDER_ID", referencedColumnName = "ID")
private Order order;

public Long getId()
{

return id;
}

refarch-feedback@redhat.com 77 www.redhat.com

public void setId(Long id)
{

this.id = id;
}

public Long getSku()
{

return sku;
}

public void setSku(Long sku)
{

this.sku = sku;
}

public Integer getQuantity()
{

return quantity;
}

public void setQuantity(Integer quantity)
{

this.quantity = quantity;
}

//Avoid getter so it is not included in automatic serialization
public Order retrieveOrder()
{

return order;
}

public void setOrder(Order order)
{

this.order = order;
}

@Override
public int hashCode()
{

final int prime = 31;
int result = 1;
result = prime * result + ((id == null) ? 0 : id.hashCode());
return result;

}

@Override
public boolean equals(Object obj)
{

if(this == obj)
return true;

if(obj == null)
return false;

if(getClass() != obj.getClass())
return false;

www.redhat.com 78 refarch-feedback@redhat.com

OrderItem other = (OrderItem)obj;
if(id == null)
{

if(other.id != null)
return false;

}
else if(!id.equals(other.id))

return false;
return true;

}

@Override
public String toString()
{

return "OrderItem [id=" + id + ", sku=" + sku + ", quantity=" +
quantity + "]";

}
}

Set up the database for the sales service similar to the product service. No sample data is
required for this database to use the application:

CREATE DATABASE sales;

USE sales;
CREATE USER 'sales'@'localhost' IDENTIFIED BY 'password';
GRANT USAGE ON *.* TO 'sales'@'localhost' IDENTIFIED BY 'password';
GRANT ALL PRIVILEGES ON sales.* to sales@localhost;

CREATE TABLE CUSTOMER (ID BIGINT NOT NULL AUTO_INCREMENT, NAME VARCHAR(255)
NOT NULL, ADDRESS varchar(255), EMAIL varchar(255) NOT NULL, PASSWORD
varchar(255), TELEPHONE varchar(255), USERNAME varchar(255) NOT NULL UNIQUE,
PRIMARY KEY (ID)) AUTO_INCREMENT = 100001;

CREATE TABLE ORDERS (ID BIGINT NOT NULL AUTO_INCREMENT, STATUS INTEGER,
TRANSACTIONDATE DATETIME, TRANSACTIONNUMBER BIGINT, CUSTOMER_ID BIGINT NOT
NULL, PRIMARY KEY (ID)) AUTO_INCREMENT = 100001;

ALTER TABLE ORDERS ADD INDEX FK_ORDER_CUSTOMER (CUSTOMER_ID), add constraint
FK_ORDER_CUSTOMER FOREIGN KEY (CUSTOMER_ID) REFERENCES CUSTOMER (ID);

CREATE TABLE ORDERITEM (ID BIGINT NOT NULL AUTO_INCREMENT, SKU BIGINT NOT
NULL, QUANTITY INTEGER NOT NULL, ORDER_ID BIGINT NOT NULL, PRIMARY KEY (ID))
AUTO_INCREMENT = 1000001;

ALTER TABLE ORDERITEM ADD INDEX FK_ORDERITEM_ORDER (ORDER_ID), add
constraint FK_ORDERITEM_ORDER FOREIGN KEY (ORDER_ID) REFERENCES ORDERS (ID);

Database constraints provide further assurance that data integrity will be preserved, even if
JPA is bypassed when entering or modifying data.

refarch-feedback@redhat.com 79 www.redhat.com

Copy the same com.redhat.refarch.microservices.utils.Utils class over to this project to use for
full and partial updates to entities. The com.redhat.refarch.microservices.sales.model.Error
class is also reused to map various business and runtime exceptions to RESTful error
responses.

Create the sales service similar to the previously created RESTful Service for product:

package com.redhat.refarch.microservices.sales.service;

import java.lang.annotation.ElementType;
import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;
import java.lang.annotation.Target;
import java.net.HttpURLConnection;
import java.util.List;
import java.util.logging.Level;
import java.util.logging.Logger;

import javax.ejb.LocalBean;
import javax.ejb.Stateless;
import javax.persistence.EntityManager;
import javax.persistence.NoResultException;
import javax.persistence.PersistenceContext;
import javax.persistence.TypedQuery;
import javax.ws.rs.Consumes;
import javax.ws.rs.DELETE;
import javax.ws.rs.GET;
import javax.ws.rs.HttpMethod;
import javax.ws.rs.POST;
import javax.ws.rs.PUT;
import javax.ws.rs.Path;
import javax.ws.rs.PathParam;
import javax.ws.rs.Produces;
import javax.ws.rs.QueryParam;
import javax.ws.rs.WebApplicationException;

import com.redhat.refarch.microservices.sales.model.Customer;
import com.redhat.refarch.microservices.sales.model.Error;
import com.redhat.refarch.microservices.sales.model.Order;
import com.redhat.refarch.microservices.sales.model.Order.Status;
import com.redhat.refarch.microservices.sales.model.OrderItem;
import com.redhat.refarch.microservices.utils.Utils;

@Stateless
@LocalBean
@Path("/")
public class SalesService
{

private Logger logger = Logger.getLogger(getClass().getName());

@PersistenceContext
private EntityManager em;

www.redhat.com 80 refarch-feedback@redhat.com

Follow the same principles for RESTful Resource API design to create CRUD operations for
customer. Only allow the search for customers based on their username:

@POST
@Path("/customers")
@Consumes({"application/json", "application/xml"})
@Produces({"application/json", "application/xml"})
public Customer addCustomer(Customer customer)
{

try
{

em.persist(customer);
return customer;

}
catch(RuntimeException e)
{

throw new Error(HttpURLConnection.HTTP_INTERNAL_ERROR,
e).asException();

}
}

@GET
@Path("/customers")
@Produces({"application/json", "application/xml"})
public Customer getCustomer(@QueryParam("username") String username)
{

try
{

TypedQuery<Customer> query = em.createNamedQuery(
 "Customer.findByUsername", Customer.class);

Customer customer = query.setParameter(
"username", username).getSingleResult();

logInfo("Customer for " + username + ": " + customer);
return customer;

}
catch(NoResultException e)
{

throw new Error(HttpURLConnection.HTTP_NOT_FOUND,
"Customer not found").asException();

}
catch(RuntimeException e)
{

throw new Error(HttpURLConnection.HTTP_INTERNAL_ERROR,
e).asException();

}
}

refarch-feedback@redhat.com 81 www.redhat.com

@GET
@Path("/customers/{id}")
@Produces({"application/json", "application/xml"})
public Customer getCustomer(@PathParam("id") Long id)
{

try
{

logInfo("Customer Id is " + id);
Customer customer = em.find(Customer.class, id);
logInfo("Customer with ID " + id + " is " + customer);
if(customer == null)
{

throw new Error(HttpURLConnection.HTTP_NOT_FOUND,
"Customer not found").asException();

}
return customer;

}
catch(WebApplicationException e)
{

throw e;
}
catch(RuntimeException e)
{

throw new Error(HttpURLConnection.HTTP_INTERNAL_ERROR,
e).asException();

}
}

@PUT
@Path("/customers/{id}")
@Consumes({"application/json", "application/xml"})
@Produces({"application/json", "application/xml"})
public Customer updateCustomer(@PathParam("id") Long id,

Customer customer)
{

Customer entity = getCustomer(id);
try
{

//Ignore any attempt to update customer Id:
customer.setId(id);
Utils.copy(customer, entity, false);
em.merge(entity);
return entity;

}
catch(RuntimeException e)
{

throw new Error(HttpURLConnection.HTTP_INTERNAL_ERROR,
e).asException();

}
}

www.redhat.com 82 refarch-feedback@redhat.com

@PATCH
@Path("/customers/{id}")
@Consumes({"application/json", "application/xml"})
@Produces({"application/json", "application/xml"})
public Customer partiallyUpdateCustomer(@PathParam("id") Long id,

Customer customer)
{

Customer entity = getCustomer(id);
try
{

//Ignore any attempt to update customer Id:
customer.setId(id);
Utils.copy(customer, entity, true);
em.merge(entity);
return entity;

}
catch(RuntimeException e)
{

throw new Error(HttpURLConnection.HTTP_INTERNAL_ERROR,
e).asException();

}
}

@DELETE
@Path("/customers/{id}")
@Consumes({"application/json", "application/xml"})
@Produces({"application/json", "application/xml"})
public void deleteCustomer(@PathParam("id") Long id)
{

Customer entity = getCustomer(id);
try
{

em.remove(entity);
}
catch(RuntimeException e)
{

throw new Error(HttpURLConnection.HTTP_INTERNAL_ERROR,
e).asException();

}
}

refarch-feedback@redhat.com 83 www.redhat.com

5.4.10 Sub-resources, RESTful relationships
Orders are also modeled as resources, as described in the section on Resource API design,
but an order only exists in the context of a customer and the REST API can reflect this fact by
using the path to the parent customer as the relative context for the order.

The path for each REST operation therefore follows the same pattern, but is preceded by
/customers/{customerId}:

@POST
@Path("/customers/{customerId}/orders")
@Consumes({"application/json", "application/xml"})
@Produces({"application/json", "application/xml"})
public Order addOrder(@PathParam("customerId") Long customerId, Order

order)
{

Customer customer = getCustomer(customerId);
order.setCustomer(customer);
try
{

em.persist(order);
return order;

}
catch(RuntimeException e)
{

throw new Error(HttpURLConnection.HTTP_INTERNAL_ERROR,
e).asException();

}
}

@GET
@Path("/customers/{customerId}/orders")
@Produces({"application/json", "application/xml"})
public List<Order> getOrders(@PathParam("customerId") Long customerId,

@QueryParam("status") Status status)
{

logInfo("getOrders(" + customerId + ", " + status + ")");
Customer customer = getCustomer(customerId);
try
{

TypedQuery<Order> query;
if(status == null)
{

query = em.createNamedQuery("Order.findByCustomer",
Order.class);

}
else
{

query = em.createNamedQuery("Order.findByOrderStatus",
Order.class);

query.setParameter("status", status);
}
query.setParameter("customer", customer);
List<Order> orders = query.getResultList();

www.redhat.com 84 refarch-feedback@redhat.com

logInfo("Orders retrieved as " + orders);
return orders;

}
catch(RuntimeException e)
{

throw new Error(HttpURLConnection.HTTP_INTERNAL_ERROR,
e).asException();

}
}

@GET
@Path("/customers/{customerId}/orders/{orderId}")
@Produces({"application/json", "application/xml"})
public Order getOrder(@PathParam("customerId") Long customerId,

@PathParam("orderId") Long orderId)
{

try
{

Order order = em.find(Order.class, orderId);
logInfo("Order retrieved as " + order);
if(order != null && customerId.equals(

order.retrieveCustomer().getId()))
{

return order;
}
else
{

throw new Error(HttpURLConnection.HTTP_NOT_FOUND,
"Order not found").asException();

}
}
catch(WebApplicationException e)
{

throw e;
}
catch(RuntimeException e)
{

throw new Error(HttpURLConnection.HTTP_INTERNAL_ERROR,
e).asException();

}
}

@PUT
@Path("/customers/{customerId}/orders/{orderId}")
@Consumes({"application/json", "application/xml"})
@Produces({"application/json", "application/xml"})
public Order updateOrder(@PathParam("customerId") Long customerId,

@PathParam("orderId") Long orderId, Order order)
{

Order entity = getOrder(customerId, orderId);
try
{

//Ignore any attempt to update order Id:
order.setId(orderId);
Utils.copy(order, entity, false);

refarch-feedback@redhat.com 85 www.redhat.com

em.merge(entity);
return entity;

}
catch(RuntimeException e)
{

throw new Error(HttpURLConnection.HTTP_INTERNAL_ERROR,
e).asException();

}
}

@PATCH
@Path("/customers/{customerId}/orders/{orderId}")
@Consumes({"application/json", "application/xml"})
@Produces({"application/json", "application/xml"})
public Order partiallyUpdateOrder(@PathParam("customerId") Long

customerId, @PathParam("orderId") Long orderId, Order order)
{

Order entity = getOrder(customerId, orderId);
try
{

//Ignore any attempt to update order Id:
order.setId(orderId);
Utils.copy(order, entity, true);
em.merge(entity);
return entity;

}
catch(RuntimeException e)
{

throw new Error(HttpURLConnection.HTTP_INTERNAL_ERROR,
e).asException();

}
}

@DELETE
@Path("/customers/{customerId}/orders/{orderId}")
public void deleteOrder(@PathParam("customerId") Long customerId,

@PathParam("orderId") Long orderId)
{

Order entity = getOrder(customerId, orderId);
try
{

em.remove(entity);
}
catch(RuntimeException e)
{

throw new Error(HttpURLConnection.HTTP_INTERNAL_ERROR,
e).asException();

}
}

www.redhat.com 86 refarch-feedback@redhat.com

The order item is similarly treated as a resource underneath order. The path for its operations
are therefore preceded by /customers/{customerId}/orders/{orderId}/:

@POST
@Path("/customers/{customerId}/orders/{orderId}/orderItems")
@Consumes({"application/json", "application/xml"})
@Produces({"application/json", "application/xml"})
public OrderItem addOrderItem(@PathParam("customerId") Long customerId,

@PathParam("orderId") Long orderId, OrderItem orderItem)
{

Order order = getOrder(customerId, orderId);
orderItem.setOrder(order);
try
{

em.persist(orderItem);
return orderItem;

}
catch(RuntimeException e)
{

throw new Error(HttpURLConnection.HTTP_INTERNAL_ERROR,
e).asException();

}
}

@GET
@Path("/customers/{customerId}/orders/{orderId}/orderItems")
@Produces({"application/json", "application/xml"})
public List<OrderItem> getOrderItems(@PathParam("customerId") Long

customerId, @PathParam("orderId") Long orderId)
{

Order order = getOrder(customerId, orderId);
if(order == null)
{

throw new Error(HttpURLConnection.HTTP_NOT_FOUND,
"Order not found").asException();

}
try
{

return order.getOrderItems();
}
catch(RuntimeException e)
{

throw new Error(HttpURLConnection.HTTP_INTERNAL_ERROR,
e).asException();

}
}

@GET
@Path("/customers/{customerId}/orders/{orderId}/orderItems/

{orderItemId}")
@Produces({"application/json", "application/xml"})
public OrderItem getOrderItem(@PathParam("customerId") Long customerId,

@PathParam("orderId") Long orderId,
@PathParam("orderItemId") Long orderItemId)

{

refarch-feedback@redhat.com 87 www.redhat.com

try
{

OrderItem orderItem = em.find(OrderItem.class,
orderItemId);

if(orderItem != null && orderId.equals(
orderItem.retrieveOrder().getId())

&& customerId.equals(orderItem.retrieveOrder()
.retrieveCustomer().getId()))

{
return orderItem;

}
else
{

throw new Error(HttpURLConnection.HTTP_NOT_FOUND,
"Order Item not found").asException();

}
}
catch(WebApplicationException e)
{

throw e;
}
catch(RuntimeException e)
{

throw new Error(HttpURLConnection.HTTP_INTERNAL_ERROR,
e).asException();

}
}

@PUT
@Path("/customers/{customerId}/orders/{orderId}/orderItems/{orderItemId}")
@Consumes({"application/json", "application/xml"})
@Produces({"application/json", "application/xml"})
public OrderItem updateOrderItem(

@PathParam("customerId") Long customerId,
@PathParam("orderId") Long orderId,
@PathParam("orderItemId") Long orderItemId,
OrderItem orderItem)

{
OrderItem entity = getOrderItem(customerId, orderId, orderItemId);
try
{

//Ignore any attempt to update order item Id:
orderItem.setId(orderItemId);
Utils.copy(orderItem, entity, false);
em.merge(entity);
return entity;

}
catch(RuntimeException e)
{

throw new Error(HttpURLConnection.HTTP_INTERNAL_ERROR,
e).asException();

}
}

www.redhat.com 88 refarch-feedback@redhat.com

@PATCH
@Path("/customers/{customerId}/orders/{orderId}/orderItems/

{orderItemId}")
@Consumes({"application/json", "application/xml"})
@Produces({"application/json", "application/xml"})
public OrderItem partiallyUpdateOrderItem(

@PathParam("customerId") Long customerId,
@PathParam("orderId") Long orderId,
@PathParam("orderItemId") Long orderItemId,
OrderItem orderItem)

{
OrderItem entity = getOrderItem(customerId, orderId, orderItemId);
try
{

//Ignore any attempt to update order item Id:
orderItem.setId(orderItemId);
Utils.copy(orderItem, entity, true);
em.merge(entity);
return entity;

}
catch(RuntimeException e)
{

throw new Error(HttpURLConnection.HTTP_INTERNAL_ERROR,
e).asException();

}
}

@DELETE
@Path("/customers/{customerId}/orders/{orderId}/orderItems/

{orderItemId}")
public void deleteOrderItem(@PathParam("customerId") Long customerId,

@PathParam("orderId") Long orderId,
@PathParam("orderItemId") Long orderItemId)

{
Order order = getOrder(customerId, orderId);
OrderItem entity = getOrderItem(customerId, orderId, orderItemId);
try
{

em.remove(entity);
order.getOrderItems().remove(entity);
em.merge(order);

}
catch(RuntimeException e)
{

throw new Error(HttpURLConnection.HTTP_INTERNAL_ERROR,
e).asException();

}
}

refarch-feedback@redhat.com 89 www.redhat.com

The only other operation in the sales service is an authenticate method that verifies the
customer's credentials:

@POST
@Path("/authenticate")
@Consumes({"application/json", "application/xml"})
@Produces({"application/json", "application/xml"})
public Customer authenticate(Customer customer)
{

logInfo("Asked to authenticate " + customer);
Customer response = getCustomer(customer.getUsername());
try
{

if(response.getPassword().equals(customer.getPassword())
 == false)

{
throw new WebApplicationException(

 HttpURLConnection.HTTP_UNAUTHORIZED);
}
return response;

}
catch(WebApplicationException e)
{

throw e;
}
catch(RuntimeException e)
{

throw new Error(HttpURLConnection.HTTP_INTERNAL_ERROR,
e).asException();

}
}

The security aspect of this reference application is only for demonstration purposes. This
authentication example is not intended to provide a reference of security best practices and
the security aspect of these uses cases is beyond the scope of this reference architecture.

This service class also uses the JDK logging framework and declares the PATCH annotation
for partial updates:

private void logInfo(String message)
{

logger.log(Level.INFO, message);
}

@Target({ElementType.METHOD})
@Retention(RetentionPolicy.RUNTIME)
@HttpMethod("PATCH")
public @interface PATCH
{
}

}

www.redhat.com 90 refarch-feedback@redhat.com

5.4.11 Billing Service
This reference architecture assumes the existence of a third microservice to process credit
card transactions. This functionality is provided by an external system with a legacy interface,
wrapped by a microservice that exposes a REST API.

Once again, either create a new JBDS project called Billing and follow the same steps that
were used to create the product project, or optionally, you can also duplicate the existing
product project in JBoss Developer Studio, renaming it to billing and making the necessary
changes. This project does not require database and JPA dependencies.

The service models its request as a transaction object:

@XmlRootElement
public class Transaction
{

private Long creditCardNumber;
private Integer expMonth;
private Integer expYear;
private Integer verificationCode;
private String billingAddress;
private String customerName;
private Long orderNumber;
private Double amount;

...

A result type is defined to provide a response to a transaction processing request:

@XmlRootElement
public class Result
{

public enum Status
{

SUCCESS, FAILURE
}

private Status status;
private String name;
private Long orderNumber;
private Date transactionDate;
private Integer transactionNumber;

...

refarch-feedback@redhat.com 91 www.redhat.com

The main operation receives a transaction request, processes it and depending on the
outcome, returns the appropriate result:

@Path("/")
public class BillingService
{

private Logger logger = Logger.getLogger(getClass().getName());

private static final Random random = new Random();

@POST
@Path("/process")
@Consumes({"application/json", "application/xml"})
@Produces({"application/json", "application/xml"})
public Result process(Transaction transaction)
{

Result result = new Result();
result.setName(transaction.getCustomerName());
result.setOrderNumber(transaction.getOrderNumber());
logInfo("Asked to process credit card transaction: " +

transaction);
Calendar now = Calendar.getInstance();
Calendar calendar = Calendar.getInstance();
calendar.clear();
calendar.set(transaction.getExpYear(), transaction.getExpMonth(),

1);
if(calendar.after(now))
{

result.setTransactionNumber(random.nextInt(9000000) +
1000000);

result.setTransactionDate(now.getTime());
result.setStatus(Status.SUCCESS);

}
else
{

result.setStatus(Status.FAILURE);
}
return result;

}
For this mock-up service, the success of the credit card transaction only depends on the
credit card having a future expiration date. The transaction number is randomly generated as
a 7-digit number and the transaction date matches the time of the request.

Another operation is provided to reverse the transaction charge:

@POST
@Path("/refund/{transactionNumber}")
@Consumes({"*/*"})
@Produces({"application/json", "application/xml"})
public void refund(@PathParam("transactionNumber") int transactionNumber)
{

logInfo("Asked to refund credit card transaction: " + transactionNumber
);

www.redhat.com 92 refarch-feedback@redhat.com

5.5 Aggregation/Presentation Layer
This reference application uses a JSP layer to both generate client-side HTML and act as the
aggregator layer for the architecture.

The product, sales and billing services in this reference architecture must exist within a trust
perimeter. This JSP layer acts as the aggregation layer and is the only client permitted to
directly access these services and can coordinate the response from each services as
required.

JAX-RS 2.0 provides a REST client library but is not supported by JBoss EAP 6. Instead,
use Apache HttpClient and the Jettison JSON libraries to build a REST client.

Create a utility class with convenience methods to call various operations on the services and
orchestrate them as necessary:

package com.redhat.refarch.microservices.presentation;

import ...

public class RestClient
{

private enum Service
{

Product, Sales, Billing
};

Create a convenience method to help specify the address for each service call:

private static URIBuilder getUriBuilder(Service service, Object... path)
{

URIBuilder uriBuilder = new URIBuilder();
uriBuilder.setScheme("http");
StringWriter stringWriter = new StringWriter();
switch(service)
{

case Product:
uriBuilder.setHost("product-service");
stringWriter.append("/product");
break;

case Sales:
uriBuilder.setHost("sales-service");
stringWriter.append("/sales");
break;

case Billing:
uriBuilder.setHost("billing-service");
stringWriter.append("/billing");
break;

refarch-feedback@redhat.com 93 www.redhat.com

default:
throw new IllegalStateException("Unknown service");

}
uriBuilder.setPort(8080);
for(Object part : path)
{

stringWriter.append('/').append(String.valueOf(part));
}
uriBuilder.setPath(stringWriter.toString());
return uriBuilder;

}

This method assumes that the product, sales and billing service are respectively accessible
through the host names of product-service, sales-service and billing-service. It further
assumes a root context for each of these services and the port as 8080. Using an Apache
httpd or other load balancer, the root context may be unnecessary and the standard port of
80 is more likely to be used.

The remaining parts of the service address are passed to this method as arguments and used
to construct the remainder of the service URL path.

With the help of this convenience method, to retrieve a list of featured product:

private static List<Map<String, Object>> getFeaturedProducts() throws
IOException, JSONException, URISyntaxException, HttpErrorException

{
HttpClient client = new DefaultHttpClient();
URIBuilder uriBuilder = getUriBuilder(Service.Product, "products");
uriBuilder.addParameter("featured", "");
HttpGet get = new HttpGet(uriBuilder.build());
logInfo("Executing " + get);
HttpResponse response = client.execute(get);
if(isError(response))
{
 throw new HttpErrorException(response);
}
else
{
 String responseString = EntityUtils.toString(response.getEntity());
 JSONArray jsonArray = new JSONArray(responseString);
 List<Map<String, Object>> products = Utils.getList(jsonArray);
 return products;
}

}
Notice that query parameters can be added to the URIBuilder before the URI is built.

After executing the call, it is important to check the HTTP response status code for errors. If
there is an error, throw an exception that includes the error code and description. If the call is
successful, transform each JSON object in the response to a standard Java map and return
the list of these maps.

www.redhat.com 94 refarch-feedback@redhat.com

To determine if there is an error, use a convenience method that checks for HTTP status
codes 400 and greater:

private static boolean isError(HttpResponse response)
{

if(response.getStatusLine().getStatusCode() >=
 HttpStatus.SC_BAD_REQUEST)

{
return true;

}
else
{

return false;
}

}

While most errors will manifest themselves with a standard HTTP error code and a descriptive
message, there will also be system errors in either the services or the client that cannot be
anticipated. These errors are reported as standard Java exceptions and for consistency, you
can also use a Java exception to report known HTTP errors:

package com.redhat.refarch.microservices.presentation;

import java.io.IOException;
import org.apache.http.HttpResponse;
import org.apache.http.ParseException;
import org.apache.http.util.EntityUtils;

public class HttpErrorException extends Exception
{

private static final long serialVersionUID = 1L;
private int code;
private String content;

public HttpErrorException(HttpResponse response)
{

code = response.getStatusLine().getStatusCode();
try
{

content = EntityUtils.toString(response.getEntity());
}
catch(ParseException | IOException e)
{

content = "Unknown";
}

}

@Override
public String getMessage()
{

return "HTTP Error " + code + ": " + content;
}

}

refarch-feedback@redhat.com 95 www.redhat.com

When the call to retrieve featured products is successful, a JSON array is returned. Use a
utility class to convert this array to a list of Java maps, so they are easier to access in the
presentation layer:

package com.redhat.refarch.microservices.presentation;

import java.util.ArrayList;
import java.util.HashMap;
import java.util.Iterator;
import java.util.List;
import java.util.Map;

import javax.servlet.http.HttpServletRequest;

import org.codehaus.jettison.json.JSONArray;
import org.codehaus.jettison.json.JSONException;
import org.codehaus.jettison.json.JSONObject;

public class Utils
{

public static List<Map<String, Object>> getList(JSONArray jsonArray)
throws JSONException

{
List<Map<String, Object>> list =

new ArrayList<Map<String, Object>>();
for(int index = 0; index < jsonArray.length(); index++)
{

Map<String, Object> map = new HashMap<String, Object>();
JSONObject jsonObject = jsonArray.getJSONObject(index);
for(Iterator<?> jsonIterator = jsonObject.keys();

jsonIterator.hasNext();)
{

String jsonKey = (String)jsonIterator.next();
map.put(jsonKey, jsonObject.get(jsonKey));

}
list.add(map);

}
return list;

}

www.redhat.com 96 refarch-feedback@redhat.com

Searching for products based on one or more keywords is very similar and takes advantage
of the same convenience methods:

private static List<Map<String, Object>> searchProducts(String query)
 throws IOException, JSONException, URISyntaxException, HttpErrorException
{

HttpClient client = new DefaultHttpClient();
URIBuilder uriBuilder = getUriBuilder(Service.Product, "products");
for(String keyword : query.split("\\s+"))
{
 uriBuilder.addParameter("keyword", keyword);
}
HttpGet get = new HttpGet(uriBuilder.build());
logInfo("Executing " + get);
HttpResponse response = client.execute(get);
if(isError(response))
{
 throw new HttpErrorException(response);
}
else
{
 String responseString = EntityUtils.toString(response.getEntity());
 JSONArray jsonArray = new JSONArray(responseString);
 List<Map<String, Object>> products = Utils.getList(jsonArray);
 return products;
}

}
Any whitespaces found in the query are treated as separators between multiple keywords.
The keywords are passed to the service as a multi-valued query parameter.

Create a convenience method to retrieve products and set the result as a request attribute:

public static void setProductsAttribute(HttpServletRequest request)
{
 try
 {
 List<Map<String, Object>> products;
 String query = request.getParameter("query");
 if(query == null || query.isEmpty())
 {
 products = getFeaturedProducts();
 }
 else
 {
 products = searchProducts(query);
 }
 request.setAttribute("products", products);
 }
 catch(Exception e)
 {
 request.setAttribute("errorMessage",

"Failed to retrieve products: " + e.getMessage());
 }
}

refarch-feedback@redhat.com 97 www.redhat.com

Notice that in case of an error, the errorMessage request attribute is set.

Remember that the presentation layer of this reference architecture is only provided for demo
purposes and not intended to convey best practices in terms of the design and development
of web applications and presentation layers. As such, create a simple JSP to display the
products. This will be the main driver of the presentation layer. Place this file in the top
directory of the web application and call it index.jsp:

<%@page
import="com.redhat.refarch.microservices.presentation.RestClient"%>

<%@page import="java.util.Map"%>
<%@page import="java.util.List"%>
<%@ page language="java" contentType="text/html; charset=UTF-8"

pageEncoding="ISO-8859-1"%>
<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c"%>

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<title>Products</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<head>
<body>

<c:choose>
<c:when test="${param.register}">

<%@include file="register.jsp"%>
</c:when>
<c:when test="${param.cart}">

<%@include file="cart.jsp"%>
</c:when>
<c:when test="${param.checkout}">

<%@include file="checkout.jsp"%>
</c:when>
<c:when test="${param.history}">

<%@include file="history.jsp"%>
</c:when>
<c:otherwise>

<c:choose>
<c:when test="${param.purchase}">

<%
RestClient.purchase(request);

%>
</c:when>
<c:when test="${param.registration}">

<%
RestClient.register(request);

%>
</c:when>
<c:when test="${param.login}">

<%
RestClient.login(request);

%>
</c:when>
<c:when test="${param.logout}">

www.redhat.com 98 refarch-feedback@redhat.com

<%
RestClient.logout(request);

%>
</c:when>
<c:when test="${param.completeOrder}">

<%
RestClient.completeOrder(request);

%>
</c:when>

</c:choose>
<%

RestClient.setProductsAttribute(request);
%>

<%@include file="header.jsp"%>

<%@include file="products.jsp"%>
</c:otherwise>

</c:choose>
</body>
</html>

This index.jsp file gets resolved on every request. It uses the core tag library provided in JSTL
for conditional behavior and in case of the presence of certain request parameters, namely
register, cart, checkout, and history, the product list is not displayed and instead, the
corresponding JSP is used. In these cases, the index file simply delegates to another JSP.

When none of these four parameters are included in the request, this JSP still checks for 5
other request parameters, called purchase, registration, login, logout, and completeOrder.
While each of these parameters results in a method invocation on the same RestClient class,
they do not impact further processing of index.jsp and also result in products being listed on
the page. This is done through a call to RestClient.setProductsAttribute(request) so that the
products are retrieved and stored as a request attributed, followed by the inclusion of
products.jsp, which renders the list of products as HTML.

The products.jsp file is a simple JSP with two main functions. It provides a search box to allow
the user to search for products based on one or multiple keywords:

<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c"%>

<div style="margin-top: 5em;"></div>
<form target="_self" method="post" style="margin: 0px auto;">

<table style="margin: 0px auto; width: 30em; border: 0px;">
<tr>

<td><input type="text" name="query" size="50">
<button type="submit">Search</button></td>

</tr>
</table>

</form>

refarch-feedback@redhat.com 99 www.redhat.com

This JSP also uses the core tag library to loop through products stored as a request attribute,
if any are stored, and display them as HTML:

<c:forEach var="product" items="${products}">

 <table style="margin: 0px auto; width: 80%; border: 1px solid black;">
 <caption style="margin: 0px auto; font-size: 3em">

${product.name}</caption>
 <tr style="border: 1px solid black;">
 <td style="border: 1px solid black; padding: 5px">

 <img alt="${product.name}" src="/images/${product.image}.png"
height="144" width="144"></td>

 <td style="border: 1px solid black; padding: 5px">
${product.description}</td>

 <td style="border: 1px solid black; padding: 5px">
Product Dimensions:
 ${product.length} x ${product.width} x ${product.height}

Product Weight: ${product.weight}

 </td>
 <td style="border: 1px solid black; padding: 5px">
 <p style="font-size: 1.5em">$${product.price}</p>
 <p>Availability: ${product.availability}</p>

<c:if test="${sessionScope.customer != null}">
 <form target="_self" method="post">
 <input type="hidden" name="sku" value="${product.sku}">
 <button name="purchase" value="true" type="submit">

Purchase</button>
 </form>

</c:if>
 </td>
 </tr>
 </table>
</c:forEach>

This code also checks to see if the customer is logged in, indicated by the presence of a
customer object in the HTTP session. If the customer is in fact logged in, a purchase button is
also provided for each listed product.

Pressing the purchase button submits the form and reinvokes the same index.jsp file, but this
time, the purchase request parameter will be present (as the name of the button) and have a
value of true. This will trigger the invocation of RestClient.purchase(request).

Note that static resources are assumed to be served from a location accessible through
/images.

www.redhat.com 100 refarch-feedback@redhat.com

The header JSP provides a login bar that includes a register button for new customers. On
the left and at the beginning of this bar, a generic placeholder is included for any message
informing the user of success or failure. The request parameter potentially includes such a
success or failure message and is rendered in green or red color:

<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c"%>

<form id="headerForm" target="_self" method="post">
<table style="width: 100%;">

<tr>
<c:if test="${not empty successMessage}">

<td>
<div style="color: green">${successMessage}</div>

</td>
</c:if>
<c:if test="${not empty errorMessage}">

<td>
<div style="color: red">${errorMessage}</div>

</td>
</c:if>

If the user is logged in (customer object is present in the HTTP session), they are presented
with a welcome message that includes their name, as retrieved from the database and
returned in the customer object. Threre is also a hyperlink that takes the customer to their
order history page, by calling a JavaScript method at the end of this JSP file, which sets the
value of the hidden history input to true and submits the form.

The logout button also submits the form, while including a logout request parameter (button
name) with a value of true, that will result in a call to log the user out:

<c:if test="${not empty sessionScope.customer}">
 <td>
 <table style="float: right; border: 0; text-align: right;">
 <tr>
 <td style="margin-right: 20px;">Welcome back, ${customer.name}</td>
 <td style="padding-right: 20px; padding-left: 20px;">
 Order History

<input type="hidden" id="history" name="history" /> </td>
 <td>
 <button name="logout" value="true"
 style="margin-right: 20px; margin-left: 20px;">Log Out</button>
 </td>

refarch-feedback@redhat.com 101 www.redhat.com

If the customer has any items in their shopping cart, the shopping cart icon is displayed with
an opacity of 0.6, and the number of items in the cart is superimposed on top of the cart icon.
Clicking on either the cart or the number takes the customer to their shopping cart, by using
the clickCart() JavaScript method, which simply clicks the hidden cart button.

<c:if test="${itemCount > 0}">
 <td><button name="cart" id="cart" value="true"

style="visibility: hidden;"></button></td>
 <td style="margin-right: 10px; display: block; position: relative;">
 <img style="opacity: 0.6;" alt="Shopping Cart" onclick="clickCart();"

src="/images/shopping-cart.png" height="36" width="36" />
 <p style="opacity: 1; position: absolute; top: 0; left: 15px;"

onclick="clickCart();">
 <c:out value="${itemCount}" />
 </p>
 </td>
</c:if>

If the shopping cart is empty, the icon is displayed in full opacity and clicking on the icon is
disabled:

 <c:if test="${itemCount == 0}">
 <td
 style="margin-right: 10px; display: block; position: relative;">
 <img style="opacity: 01;" alt="Shopping Cart"

 src="/images/shopping-cart.png" height="36" width="36" />
 </td>
 </c:if>
 </tr>
 </table>
 </td>
</c:if>

If the customer is not logged in, user and password input fields are provided with a login
button for existing customers to log in, as well as a register button for new customers. Again,
any of these actions submits the form with appropriate request parameters that lead the
index.jsp file to react properly.

The simple JavaScript functions are provided at the end of the header file:

<script type="text/javascript">
 function history() {
 document.getElementById('history').value = true;
 document.getElementById("headerForm").submit();
 }
 function clickCart() {
 document.getElementById('cart').click();
 }
</script>

www.redhat.com 102 refarch-feedback@redhat.com

When a user clicks the register button, the corresponding JSP renders a form that can be
filled out and submitted to register a new customer:

<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c"%>

<form target="_self" method="post">
<table style="margin: 0px auto; border: 1px solid black;">

<caption style="margin: 0px auto; font-size: 2em">Customer
Registration</caption>

<tr style="border: 1px solid black;">
<td style="border: 1px solid black; padding: 5px; min-width:

8em;">Name:</td>
<td style="border: 1px solid black; padding: 5px;"><input

name="name" type="text" size="30" /></td>
</tr>
<tr style="border: 1px solid black;">

<td style="border: 1px solid black; padding: 5px; min-width:
8em;">Address:</td>

<td style="border: 1px solid black; padding: 5px;"><input
name="address" type="text" size="30" /></td>

</tr>
<tr style="border: 1px solid black;">

<td style="border: 1px solid black; padding: 5px; min-width:
8em;">Telephone:</td>

<td style="border: 1px solid black; padding: 5px;"><input
name="telephone" type="text" size="30" /></td>

</tr>
<tr style="border: 1px solid black;">

<td style="border: 1px solid black; padding: 5px; min-width:
8em;">Email:</td>

<td style="border: 1px solid black; padding: 5px;"><input
name="email" type="text" size="30" /></td>

</tr>
<tr style="border: 1px solid black;">

<td style="border: 1px solid black; padding: 5px; min-width:
8em;">Username:</td>

<td style="border: 1px solid black; padding: 5px;"><input
name="username" type="text" size="30" /></td>

</tr>
<tr style="border: 1px solid black;">

<td style="border: 1px solid black; padding: 5px; min-width:
8em;">Password:</td>

<td style="border: 1px solid black; padding: 5px;"><input
name="password" type="password" size="30" /></td>

</tr>
</table>
<div style="margin: 10px auto; width: 100%; text-align: center;">

<button name="registration" value="true">Register</button>
<button name="registration" value="false">Cancel</button>

</div>
</form>

refarch-feedback@redhat.com 103 www.redhat.com

Note that the Register and Cancel buttons both set a request parameter called registration,
but the value will be true or false depending on which button is pressed. When the value of
this parameter is true, the index JSP calls the register method:

public static void register(HttpServletRequest request) throws
JSONException, ClientProtocolException, IOException, URISyntaxException

{
 String[] customerAttributes = new String[] {"name", "address",

"telephone", "email", "username", "password"};
 JSONObject jsonObject = Utils.getJsonObject(request,customerAttributes);
 HttpClient client = new DefaultHttpClient();
 URIBuilder uriBuilder = getUriBuilder(Service.Sales, "customers");
 HttpPost post = new HttpPost(uriBuilder.build());
 post.setEntity(new StringEntity(jsonObject.toString(),

ContentType.APPLICATION_JSON));
 logInfo("Executing " + post);
 HttpResponse response = client.execute(post);
 if(isError(response))
 {
 request.setAttribute("errorMessage", "Failed to register customer");
 }
 else
 {
 String responseString = EntityUtils.toString(response.getEntity());
 logInfo("Got " + responseString);
 jsonObject.put("id", new JSONObject(responseString).getLong("id"));
 request.getSession().setAttribute("customer",

Utils.getCustomer(jsonObject));
 request.getSession().setAttribute("itemCount", 0);
 }
}

The register method uses a convenience method in Utils to read the specified request
parameters and create a JSON object based on their names and values:

public static JSONObject getJsonObject(HttpServletRequest request, String...
params) throws JSONException
{

JSONObject jsonObject = new JSONObject();
for(String attribute : params)
{

String value = request.getParameter(attribute);
jsonObject.put(attribute, value);

}
return jsonObject;

}

This method then proceed to post the JSON object to the /customers operation of the sales
service. In case of an error response, an appropriate error message is placed in a request
attribute and subsequently displayed to the user by the header file.

www.redhat.com 104 refarch-feedback@redhat.com

When the call to register a new customer is successful, the returned customer ID is added to
the original request object and the JSON object is converted to a map with the help of another
convenience method:

public static Map<String, Object> getCustomer(JSONObject jsonObject)
throws JSONException

{
Map<String, Object> customer = new HashMap<String, Object>();
customer.put("name", jsonObject.getString("name"));
customer.put("address", jsonObject.getString("address"));
customer.put("telephone", jsonObject.getString("telephone"));
customer.put("id", jsonObject.getLong("id"));
return customer;

}

This customer map is stored in the user's HTTP session and repeated check to determine if
the user is logged in. Since the customer just registered, the number of items in the customer
shopping cart is also initialized to a value of zero.

The login operation follows a similar path:

public static void login(HttpServletRequest request) throws JSONException,
ClientProtocolException, IOException, URISyntaxException
{
 HttpClient client = new DefaultHttpClient();
 JSONObject jsonObject = Utils.getJsonObject(request, "username",

"password");
 URIBuilder uriBuilder = getUriBuilder(Service.Sales, "authenticate");
 HttpPost post = new HttpPost(uriBuilder.build());
 post.setEntity(new StringEntity(jsonObject.toString(),

ContentType.APPLICATION_JSON));
 logInfo("Executing " + post);
 HttpResponse response = client.execute(post);
 if(isError(response))
 {
 int responseCode = response.getStatusLine().getStatusCode();
 if(responseCode == HttpStatus.SC_UNAUTHORIZED)
 {
 request.setAttribute("errorMessage", "Incorrect password");
 }
 else if(responseCode == HttpStatus.SC_NOT_FOUND)
 {
 request.setAttribute("errorMessage", "Customer not found");
 request.setAttribute("username",

request.getParameter("username"));
 }
 else
 {
 request.setAttribute("errorMessage", "Failed to login");
 }
 }
 else
 {
 String responseString = EntityUtils.toString(response.getEntity());

refarch-feedback@redhat.com 105 www.redhat.com

 logInfo("Got login response " + responseString);
 JSONObject jsonResponse = new JSONObject(responseString);
 request.getSession().setAttribute("customer",

Utils.getCustomer(jsonResponse));
 request.getSession().setAttribute("itemCount", 0);
 getPendingOrder(request, jsonResponse.getLong("id"));
 }
}

When login succeeds, another method is called to find any potential items in the user's
shopping cart. This application persists the content of the shopping cart in the database as an
order with a status of Initial. The web application creates its own Order and OrderItem
JavaBean types as needed:

package com.redhat.refarch.microservices.presentation;

import java.util.ArrayList;
import java.util.Date;
import java.util.List;

public class Order
{

private long id;
private String status;
private Long transactionNumber;
private Date transactionDate;
private List<OrderItem> orderItems = new ArrayList<OrderItem>();

public long getId()
{

return id;
}

public void setId(long id)
{

this.id = id;
}

public String getStatus()
{

return status;
}

public void setStatus(String status)
{

this.status = status;
}

...

...
}

www.redhat.com 106 refarch-feedback@redhat.com

The OrderItem type represents both a product and a sales order item, as understood by this
later:

package com.redhat.refarch.microservices.presentation;

public class OrderItem
{

private long id;
private long sku;
private int quantity;
private String name;
private String description;
private Integer length;
private Integer width;
private Integer height;
private Integer weight;
private Boolean featured;
private Integer availability;
private Double price;
private String image;

public long getId()
{

return id;
}

public void setId(long id)
{

this.id = id;
}

public long getSku()
{

return sku;
}

public void setSku(long sku)
{

this.sku = sku;
}

...

...
}

refarch-feedback@redhat.com 107 www.redhat.com

The method to retrieve pending orders queries the sales service and maps the response:

private static void getPendingOrder(HttpServletRequest request, long custId)
 throws ClientProtocolException, IOException, JSONException,URISyntaxException
{
 HttpClient client = new DefaultHttpClient();
 URIBuilder uriBuilder = getUriBuilder(Service.Sales, "customers",

customerId, "orders");
 uriBuilder.addParameter("status", "Initial");
 HttpGet get = new HttpGet(uriBuilder.build());
 logInfo("Executing " + get);
 HttpResponse response = client.execute(get);
 if(isError(response) == false)
 {
 String responseString = EntityUtils.toString(response.getEntity());
 logInfo("Got " + responseString);
 JSONArray orderArray = new JSONArray(responseString);
 if(orderArray.length() == 0)
 {
 request.getSession().removeAttribute("orderId");
 request.getSession().removeAttribute("orderItems");
 request.getSession().setAttribute("itemCount", 0);
 request.removeAttribute("cart");
 }
 else
 {
 JSONObject orderJson = orderArray.getJSONObject(0);
 request.getSession().setAttribute("orderId",

orderJson.getLong("id"));
 JSONArray jsonArray = orderJson.getJSONArray("orderItems");
 List<OrderItem> orderItems = new ArrayList<OrderItem>();
 for(int index = 0; index < jsonArray.length(); index++)
 {
 JSONObject orderItemJson = jsonArray.getJSONObject(index);
 OrderItem orderItem = new OrderItem();
 orderItem.setSku(orderItemJson.getLong("sku"));
 orderItem.setId(orderItemJson.getLong("id"));
 orderItem.setQuantity(orderItemJson.getInt("quantity"));
 populateProductInfo(orderItem);
 orderItems.add(orderItem);
 }
 request.getSession().setAttribute("orderItems", orderItems);
 int cartSize = 0;
 for(OrderItem orderItem : orderItems)
 {
 cartSize += orderItem.getQuantity();
 }
 request.getSession().setAttribute("itemCount", cartSize);
 if(cartSize == 0)
 {
 request.removeAttribute("cart");
 }
 }
 }
}

www.redhat.com 108 refarch-feedback@redhat.com

The sales service only includes the product SKU. The method above uses the
populateProductInfo convenience method to retrieve product details using the SKU and
populate the OrderItem object:

private static void populateProductInfo(OrderItem orderItem) throws
ClientProtocolException, IOException, JSONException, URISyntaxException

{
 HttpClient client = new DefaultHttpClient();
 URIBuilder uriBuilder = getUriBuilder(Service.Product, "products",

orderItem.getSku());
 HttpGet get = new HttpGet(uriBuilder.build());
 logInfo("Executing " + get);
 HttpResponse response = client.execute(get);
 String responseString = EntityUtils.toString(response.getEntity());
 JSONObject jsonResponse = new JSONObject(responseString);
 orderItem.setAvailability(jsonResponse.getInt("availability"));
 orderItem.setDescription(jsonResponse.getString("description"));
 orderItem.setFeatured(jsonResponse.getBoolean("featured"));
 orderItem.setHeight(jsonResponse.getInt("height"));
 orderItem.setImage(jsonResponse.getString("image"));
 orderItem.setLength(jsonResponse.getInt("length"));
 orderItem.setName(jsonResponse.getString("name"));
 orderItem.setPrice(jsonResponse.getDouble("price"));
 orderItem.setWeight(jsonResponse.getInt("weight"));
 orderItem.setWidth(jsonResponse.getInt("width"));
}

Logging out a customer in response to a click of the logout button is simply a matter of
clearing the session content:

 public static void logout(HttpServletRequest request)
 {
 HttpSession session = request.getSession();
 Enumeration<String> attrNames = session.getAttributeNames();
 while(attrNames.hasMoreElements())
 {
 session.removeAttribute(attrNames.nextElement());
 }
 }

The purchase operation, in response to the purchase button for a product, is one of the more
complicated tasks.

This method first gets the product inventory information and checks the availability of the
product. If not available, an error message is returned to the customer.

refarch-feedback@redhat.com 109 www.redhat.com

Otherwise, the customer information is retrieved and the order ID for the pending order,
representing the customer's shopping cart content, is requested. If no such order exists, an
initial order is created for the customer, effectively creating a new shopping cart, and adding
the selected product with a quantity of one, as the first order:

 public static void purchase(HttpServletRequest request) throws
ClientProtocolException, IOException, JSONException, URISyntaxException

 {
 long sku = Long.valueOf(request.getParameter("sku"));
 int availability = getProductAvailability(sku);
 if(availability == 0)
 {
 request.setAttribute("errorMessage",

"The selected item is not available for purchase!");
 return;
 }
 @SuppressWarnings("unchecked")
 Map<String, Object> customer = (Map<String, Object>)

request.getSession().getAttribute("customer");
 long customerId = (Long)customer.get("id");
 Long orderId = (Long)request.getSession().getAttribute("orderId");
 if(orderId == null)
 {
 orderId = addInitialOrder(customerId);
 addOrderItem(customerId, orderId, sku, 1);
 }

If a shopping cart already exists for this customer, the order items in the shopping cart are
requested and searched for the product being purchased. If the product was not previously
ordered, it is again added as a new order item with a quantity of one.

If the product is found in the customer shopping cart and has previously been ordered, the
updateOrderItem is used to request that the quantity of that order be increased by one count.

Finally, the updated shopping cart data is requested from the server to make sure it reflects
the correct information:

 else
 {
 @SuppressWarnings("unchecked")
 List<OrderItem> orderItems = (List<OrderItem>)

request.getSession().getAttribute("orderItems");
 OrderItem orderItem = null;
 for(OrderItem thisOrderItem : orderItems)
 {
 if(thisOrderItem.getSku() == sku)
 {
 orderItem = thisOrderItem;
 break;
 }
 }
 if(orderItem == null)
 {
 addOrderItem(customerId, orderId, sku, 1);

www.redhat.com 110 refarch-feedback@redhat.com

 }
 else
 {
 long orderItemId = orderItem.getId();
 int quantity = orderItem.getQuantity() + 1;
 updateOrderItem(request, customerId,

orderId, orderItemId, sku, quantity);
 }
 }
 getPendingOrder(request, customerId);
 }

To get the available inventory count for the product, use the product microservice:

private static int getProductAvailability(long sku) throws JSONException,
ClientProtocolException, IOException, URISyntaxException
{
 HttpClient client = new DefaultHttpClient();
 URIBuilder uriBuilder = getUriBuilder(Service.Product, "products",

sku);
 HttpGet get = new HttpGet(uriBuilder.build());
 logInfo("Executing " + get);
 HttpResponse response = client.execute(get);
 String responseString = EntityUtils.toString(response.getEntity());
 JSONObject jsonResponse = new JSONObject(responseString);
 return jsonResponse.getInt("availability");
}

To create a new shopping cart by adding an initial order, simply post an order object that has
a status of Initial:

private static long addInitialOrder(long customerId) throws JSONException,
ClientProtocolException, IOException, URISyntaxException
{
 HttpClient client = new DefaultHttpClient();
 JSONObject jsonObject = new JSONObject();
 jsonObject.put("status", "Initial");
 URIBuilder uriBuilder = getUriBuilder(Service.Sales, "customers",

customerId, "orders");
 HttpPost post = new HttpPost(uriBuilder.build());
 post.setEntity(new StringEntity(jsonObject.toString(),

ContentType.APPLICATION_JSON));
 logInfo("Executing " + post);
 HttpResponse response = client.execute(post);
 String responseString = EntityUtils.toString(response.getEntity());
 logInfo("Got response " + responseString);
 JSONObject jsonResponse = new JSONObject(responseString);
 return jsonResponse.getLong("id");
}

refarch-feedback@redhat.com 111 www.redhat.com

Adding an order item to a now-existing order is also straight-forward and uses the resource
REST API where an order item exists withing an order, which exists within a customer:

private static long addOrderItem(long customerId, long orderId, long sku,
int quantity) throws JSONException, IOException, URISyntaxException
{
 HttpClient client = new DefaultHttpClient();
 JSONObject jsonObject = new JSONObject();
 jsonObject.put("sku", sku);
 jsonObject.put("quantity", quantity);
 URIBuilder uriBuilder = getUriBuilder(Service.Sales, "customers",

 customerId, "orders", orderId, "orderItems");
 HttpPost post = new HttpPost(uriBuilder.build());
 post.setEntity(new StringEntity(jsonObject.toString(),

ContentType.APPLICATION_JSON));
 logInfo("Executing " + post);
 HttpResponse response = client.execute(post);
 String responseString = EntityUtils.toString(response.getEntity());
 logInfo("Got response " + responseString);
 JSONObject jsonResponse = new JSONObject(responseString);
 return jsonResponse.getLong("id");
}

To update the order quantity for an order item, first verify that there is available inventory and
if there isn't, set an appropriate error message. Then use a partial update to only update the
quantity of the order item:

private static void updateOrderItem(HttpServletRequest request, long
customerId, long orderId, long orderItemId, Long sku, int quantity)
 throws JSONException, IOException, URISyntaxException
{
 if(sku == null)
 {
 sku = getOrderedProductSku(customerId, orderId, orderItemId);
 }
 int availability = getProductAvailability(sku);
 if(quantity > availability)
 {
 quantity = availability;
 request.setAttribute("errorMessage",

"Requested quantity exceeds product availability");
 }
 HttpClient client = new DefaultHttpClient();
 JSONObject jsonObject = new JSONObject();
 jsonObject.put("quantity", quantity);
 URIBuilder uriBuilder = getUriBuilder(Service.Sales, "customers",

customerId, "orders", orderId, "orderItems", orderItemId);
 HttpPatch patch = new HttpPatch(uriBuilder.build());
 patch.setEntity(new StringEntity(jsonObject.toString(),

ContentType.APPLICATION_JSON));
 logInfo("Executing " + patch);
 HttpResponse response = client.execute(patch);
 String responseString = EntityUtils.toString(response.getEntity());
}

www.redhat.com 112 refarch-feedback@redhat.com

Note that the product SKU needs to be retrieved before inventory can be checked:

private static Long getOrderedProductSku(long customerId, long orderId, long
orderItemId) throws JSONException, IOException, URISyntaxException
{
 HttpClient client = new DefaultHttpClient();
 URIBuilder uriBuilder = getUriBuilder(Service.Sales, "customers",

customerId, "orders", orderId, "orderItems", orderItemId);
 HttpGet get = new HttpGet(uriBuilder.build());
 logInfo("Executing " + get);
 HttpResponse response = client.execute(get);
 String responseString = EntityUtils.toString(response.getEntity());
 JSONObject jsonResponse = new JSONObject(responseString);
 return jsonResponse.getLong("sku");
}

The cart JSP displays the content of the customer shopping cart and allows the user to delete
any order item or update its order quantity. The customer can also check out, provide a
payment method and request that the order be processed:

<%@page
import="com.redhat.refarch.microservices.presentation.RestClient"%>

<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c"%>

<c:if test="${param.updateQuantity}">
<%

RestClient.updateQuantity(request);
%>

</c:if>
<form target="_self" id="returnForm" method="post">

<table style="width: 100%;">
<tr>

<c:if test="${not empty errorMessage}">
<td>

<div style="color: red">${errorMessage}</div>
</td>

</c:if>
<td style="float: right; border: 0; text-align: right;">

<button name="home" id="home" value="true"
style="margin-right: 20px; margin-left:

20px;">Return</button>
</td>

</tr>
</table>
<c:if test="${itemCount == 0}">

<script type="text/javascript">
document.getElementById('returnForm').submit();

</script>
</c:if>

</form>
<div style="margin-top: 5em;">

<c:forEach var="product" items="${orderItems}">

refarch-feedback@redhat.com 113 www.redhat.com

<table style="margin: 0px auto; width: 80%; border: 1px solid
black;">

<caption style="margin: 0px auto; font-size: 2em">$
{product.name}</caption>

<tr style="border: 1px solid black;">
<td style="border: 1px solid black; padding: 5px"><img

alt="${product.name}" src="/images/$
{product.image}.png"

height="144" width="144"></td>
<td style="border: 1px solid black; padding: 5px">$

{product.description}</td>
<td style="border: 1px solid black; padding:

5px">Product
Dimensions: ${product.length} x ${product.width}

x
${product.height}
 Product Weight: $

{product.weight}
</td>
<td style="border: 1px solid black; padding: 5px">

<p style="font-size: 1.5em">$${product.price}</p>
<p>Availability: ${product.availability}</p>
<form target="_self" method="post">

<input type="hidden" name="cart"
value="true"> <input

type="hidden" name="orderItemId"
value="${product.id}"> <input

type="number" name="quantity"
size="5"

value="${product.quantity}">
<button name="updateQuantity"

id="updateQuantity" value="true"
type="submit">Update</button>

<button name="delete" type="button"

onclick="deleteItem(this.form);">Delete</button>
</form>

</td>
</tr>

</table>
</c:forEach>

</div>

<form target="_self" method="post">
<table style="width: 100%; margin-top: 3em">

<tr>
<td style="text-align: center;">

<button name="checkout" value="true"
style="background-color: LightBlue; font-size:

1.5em; padding: 5px;">Checkout</button>
</td>

</tr>
</table>

</form>

<script type="text/javascript">

www.redhat.com 114 refarch-feedback@redhat.com

function deleteItem(itemForm) {
itemForm.elements["quantity"].value = 0;
itemForm.elements["updateQuantity"].click();

}
</script>

In both cases of update and delete, the form is submitted with a request to update quantity.
The value for quantity is set to zero through a JavaScript function to imply a delete.

Once the form is submitted, the JSP will call the updateQuantity method:

public static void updateQuantity(HttpServletRequest request) throws
ClientProtocolException, IOException, JSONException, URISyntaxException
{
 @SuppressWarnings("unchecked")
 Map<String, Object> customer = (Map<String,
Object>)request.getSession().getAttribute("customer");
 long customerId = (Long)customer.get("id");
 Long orderId = (Long)request.getSession().getAttribute("orderId");
 Long orderItemId = Long.valueOf(request.getParameter("orderItemId"));
 int quantity = Integer.valueOf(request.getParameter("quantity"));
 if(quantity == 0)
 {
 deleteOrderItem(customerId, orderId, orderItemId);
 }
 else
 {
 updateOrderItem(request, customerId, orderId, orderItemId, null,

 quantity);
 }
 getPendingOrder(request, customerId);
}

In response to a zero quantity, another convenience method is called to delete the order item:

private static void deleteOrderItem(long customerId, long orderId, long
orderItemId) throws JSONException, IOException, URISyntaxException
{
 HttpClient client = new DefaultHttpClient();
 URIBuilder uriBuilder = getUriBuilder(Service.Sales, "customers",

customerId, "orders", orderId, "orderItems", orderItemId);
 HttpDelete delete = new HttpDelete(uriBuilder.build());
 logInfo("Executing " + delete);
 HttpResponse response = client.execute(delete);
 logInfo("Got response " + response.getStatusLine());
}

Updates to the order item quantity leverage the same convenience method previously used in
response to the purchase button.

refarch-feedback@redhat.com 115 www.redhat.com

When the customer decides to check out, the checkout.jsp uses the order items stored in the
session to display a table, showing the unit price, order quantity and total order prices:

<%@page
import="com.redhat.refarch.microservices.presentation.RestClient"%>

<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c"%>
<%@ taglib uri="http://java.sun.com/jsp/jstl/fmt" prefix="fmt"%>

<div style="margin-top: 5em; margin-bottom: 1em;">
<table style="margin: 0px auto;">

<caption style="margin: 0px auto; font-size: 2em; padding:
1em;">Order

Summary</caption>
<tr style="font-weight: bold;">

<td style="border: 1px solid black; padding:
5px">Product</td>

<td style="border: 1px solid black; padding: 5px">Unit
Price</td>

<td style="border: 1px solid black; padding:
5px">Quantity</td>

<td style="border: 1px solid black; padding: 5px">Product
Cost</td>

</tr>
<c:set var="total" value="${0}" />
<c:forEach var="product" items="${orderItems}">

<tr style="border: 1px solid black;">
<td

style="border: 1px solid black; padding: 5px;
text-align: right;">${product.name}</td>

<td
style="border: 1px solid black; padding: 5px;

text-align: right;"><fmt:formatNumber
value="${product.price}" type="currency"

groupingUsed="true" /></td>
<td

style="border: 1px solid black; padding: 5px;
text-align: right;"><fmt:formatNumber

value="${product.quantity}" type="currency"
groupingUsed="true" /></td>

<td
style="border: 1px solid black; padding: 5px;

text-align: right;"><fmt:formatNumber
value="${product.price * product.quantity}"

type="currency"
groupingUsed="true" /></td>

</tr>
<c:set var="total"

value="${total + product.price * product.quantity}" />
</c:forEach>
<tr style="font-weight: bold; margin-top: 1em;">

<td style="padding: 5px;"><div style="padding-top:
1em;">Grand

Total:</div></td>
<td style="padding: 5px;"></td>
<td style="padding: 5px;"></td>

www.redhat.com 116 refarch-feedback@redhat.com

<td style="padding: 5px; text-align: right;"><div
style="padding-top: 1em;">
<fmt:formatNumber value="${total}"

type="currency"
groupingUsed="true" />

</div></td>
</tr>

</table>
</div>

The JSP uses the core library and a total variable to add up product prices. It also uses the
formatting tag library to show prices in currency format, with grouping of every three digits.

This is followed by a credit card form to accept the customer's method of payment:

<form target="_self" method="post">
<input type="hidden" name="amount" value="${total}">
<table style="margin: 0em auto; border: 0px; padding: 2em;">

<tr>
<td style="padding: 5px;">Customer:</td>
<td style="padding: 5px;">${sessionScope.customer.name}</td>

</tr>
<tr>

<td style="padding: 5px;">Telephone:</td>
<td style="padding: 5px;">$

{sessionScope.customer.telephone}</td>
</tr>
<tr>

<td style="padding: 5px;">Address:</td>
<td style="padding: 5px;">$

{sessionScope.customer.address}</td>
</tr>
<tr>

<td style="padding: 5px;">Credit Card No:</td>
<td style="padding: 5px;"><input type="text"

name="creditCardNo"
size="18" maxlength="16" pattern="\d{16}"

required></td>
</tr>
<tr>

<td style="padding: 5px;">Expiration Date</td>
<td style="padding: 5px;"><select name='expirationMM'

id='expirationMM'>
<option value='01'>Janaury</option>
<option value='02'>February</option>
<option value='03'>March</option>
<option value='04'>April</option>
<option value='05'>May</option>
<option value='06'>June</option>
<option value='07'>July</option>
<option value='08'>August</option>
<option value='09'>September</option>
<option value='10'>October</option>
<option value='11'>November</option>

refarch-feedback@redhat.com 117 www.redhat.com

<option value='12'>December</option>
</select> <select name='expirationYY' id='expirationYY'>

<option value='2015'>2015</option>
<option value='2016'>2016</option>
<option value='2017'>2017</option>
<option value='2018'>2018</option>
<option value='2019'>2019</option>

</select></td>
</tr>
<tr>

<td style="padding: 5px;">Verification Code</td>
<td style="padding: 5px;"><input type="text"

name="verificationCode" max="999" size="4"
maxlength="3"

pattern="\d{3}" required></td>
</tr>

</table>

Submit and cancel buttons are provided. To bypass HTML5 validation, the cancel button uses
JavaScript to submit a different form:

<div style="margin: 0px auto; text-align: center;">
<button name="completeOrder" value="true"

style="background-color: LightBlue; font-size: 1em; padding:
5px; margin-left: 20px; margin-right: 20px;">Submit</button>

<button onclick="document.getElementById('cancel_form').submit();"
type="button"
style="background-color: LightBlue; font-size: 1em; padding:

5px; margin-left: 20px; margin-right: 20px;">Cancel</button>
</div>

</form>

<form id="cancel_form" target="_self" method="post"></form>

www.redhat.com 118 refarch-feedback@redhat.com

The button to submit the form has the name completeOrder, which will result in a request
parameter of the same name, prompting the index JSP file to call the corresponding
convenience method:

public static void completeOrder(HttpServletRequest request) throws
ClientProtocolException, IOException, JSONException, URISyntaxException

{
 JSONObject jsonResponse = processTransaction(request);
 String status = jsonResponse.getString("status");
 if("SUCCESS".equals(status))
 {
 @SuppressWarnings("unchecked")
 List<OrderItem> orderItems = (List<OrderItem>)request.getSession()

.getAttribute("orderItems");
 try
 {
 HttpResponse response = reduceInventory(orderItems);
 if(isError(response))
 {
 throw new HttpErrorException(response);
 }
 }
 catch(Exception e)
 {
 refundTransaction(jsonResponse.getInt("transactionNumber"));
 request.setAttribute("errorMessage",

"Insufficient inventory to fulfill order");
 return;
 }
 try
 {
 markOrderPayment(request, jsonResponse);
 request.setAttribute("successMessage",

"Your order has been processed");
 }
 catch(Exception e)
 {
 logInfo("Order " + request.getSession().getAttribute("orderId")

+ " processed but not updated in the database");
 request.setAttribute("errorMessage",

"Order processed. Allow some time for update!");
 }
 request.getSession().removeAttribute("orderId");
 request.getSession().removeAttribute("orderItems");
 request.getSession().setAttribute("itemCount", 0);
 }
 else if("FAILURE".equals(status))
 {
 request.setAttribute("errorMessage",

"Your credit card was declined");
 }
}

This method calls four other convenience methods to process an order.

refarch-feedback@redhat.com 119 www.redhat.com

The processTransaction method is called to process the credit and receive the payment.
Next, reduceInventory is called to try and adjust the availability of the product based on this
purchase and if successful, markOrderPayment is called to move the items from the shopping
cart to an order with a more advanced status. If inventory adjustment could not take place,
either due to unforeseen errors or because the product has sold out, the refundTransaction
method is invoked to refund the order amount to the same credit card.

To process the transaction, simply call the billing service. The response from this call will have
a status indicating the success or failure of the credit card transaction, while the transaction
number can be used to later cancel and refund the payment:

private static JSONObject processTransaction(HttpServletRequest request)
throws IOException, JSONException, URISyntaxException
{
 JSONObject jsonObject = new JSONObject();
 @SuppressWarnings("unchecked")
 Map<String, Object> customer = (Map<String, Object>)request.getSession()

.getAttribute("customer");
 jsonObject.put("amount", Double.valueOf(

request.getParameter("amount")));
 jsonObject.put("creditCardNumber",

Long.valueOf(request.getParameter("creditCardNo")));
 jsonObject.put("expMonth",

Integer.valueOf(request.getParameter("expirationMM")));
 jsonObject.put("expYear",

Integer.valueOf(request.getParameter("expirationYY")));
 jsonObject.put("verificationCode",

Integer.valueOf(request.getParameter("verificationCode")));
 jsonObject.put("billingAddress", (String)customer.get("address"));
 jsonObject.put("customerName", (String)customer.get("name"));
 jsonObject.put("orderNumber",

(Long)request.getSession().getAttribute("orderId"));
 logInfo(jsonObject.toString());
 HttpClient client = new DefaultHttpClient();
 URIBuilder uriBuilder = getUriBuilder(Service.Billing, "process");
 HttpPost post = new HttpPost(uriBuilder.build());
 post.setEntity(new StringEntity(jsonObject.toString(),

ContentType.APPLICATION_JSON));
 logInfo("Executing " + post);
 HttpResponse response = client.execute(post);
 String responseString = EntityUtils.toString(response.getEntity());
 logInfo("Transaction processed as: " + responseString);
 JSONObject jsonResponse = new JSONObject(responseString);
 return jsonResponse;
}

www.redhat.com 120 refarch-feedback@redhat.com

To reduce the inventory based on the ordered quantities, simply use the corresponding
method in the product service. This service operation uses Pessimistic Locking to ensure
concurrent transactions do not result in incorrect product availability:

private static HttpResponse reduceInventory(List<OrderItem> orderItems)
throws URISyntaxException, ClientProtocolException, IOException
{
 List<Map<String, Object>> list = new ArrayList<Map<String, Object>>();
 for(OrderItem orderItem : orderItems)
 {
 Map<String, Object> map = new HashMap<String, Object>();
 map.put("sku", orderItem.getSku());
 map.put("quantity", orderItem.getQuantity());
 list.add(map);
 }
 JSONArray jsonArray = new JSONArray(list);
 HttpClient client = new DefaultHttpClient();
 URIBuilder uriBuilder = getUriBuilder(Service.Product, "reduce");
 HttpPost post = new HttpPost(uriBuilder.build());
 post.setEntity(new StringEntity(jsonArray.toString(),

ContentType.APPLICATION_JSON));
 HttpResponse response = client.execute(post);
 return response;
}

The order status is updated to Paid using a partial update to the corresponding resource in
the sales service:

private static void markOrderPayment(HttpServletRequest request, JSONObject
jsonResponse) throws JSONException, URISyntaxException, IOException
{
 Long transactionNumber = jsonResponse.getLong("transactionNumber");
 Long transactionDate = jsonResponse.getLong("transactionDate");
 Long orderId = jsonResponse.getLong("orderNumber");
 @SuppressWarnings("unchecked")
 Map<String, Object> customer = (Map<String, Object>)request.getSession()

.getAttribute("customer");
 Long customerId = (Long)customer.get("id");

 HttpClient client = new DefaultHttpClient();
 JSONObject jsonObject = new JSONObject();
 jsonObject.put("status", "Paid");
 jsonObject.put("transactionNumber", transactionNumber);
 jsonObject.put("transactionDate", transactionDate);

 URIBuilder uriBuilder = getUriBuilder(Service.Sales, "customers",
customerId, "orders", orderId);
 HttpPatch patch = new HttpPatch(uriBuilder.build());
 patch.setEntity(new StringEntity(jsonObject.toString(),
ContentType.APPLICATION_JSON));
 HttpResponse response = client.execute(patch);
 String responseString = EntityUtils.toString(response.getEntity());
}

refarch-feedback@redhat.com 121 www.redhat.com

In case of failure after the payment has been collected, the refund call simply calls the
corresponding operation of the billing service:

private static void refundTransaction(int transactionNumber) throws
URISyntaxException, ClientProtocolException, IOException

{
 HttpClient client = new DefaultHttpClient();
 URIBuilder uriBuilder = getUriBuilder(Service.Billing, "refund",

transactionNumber);
 HttpPost post = new HttpPost(uriBuilder.build());
 logInfo("Executing " + post);
 HttpResponse response = client.execute(post);
 logInfo("Transaction refund response: " + response.getStatusLine());
}

Finally, the history.jsp file displays all customer orders in response to clicking the order history
link. This JSP calls a convenience method to retrieve customer orders and uses the tag library
to iterate through orders and order items.

For each order, the data is displayed in an HTML table within a formatted section that includes
a large margin to separate the orders:

%@page
import="com.redhat.refarch.microservices.presentation.RestClient"%>

<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c"%>
<%@ taglib uri="http://java.sun.com/jsp/jstl/fmt" prefix="fmt"%>

<%
RestClient.getOrderHistory(request);

%>
<c:forEach var="order" items="${orders}">

<div style="margin-top: 5em; margin-bottom: 1em;">
<table style="margin: 0px auto;">

The caption of the table includes the order number and status. The first line of the table prints
the headers for the content:

<caption style="margin: 0px auto; font-size: 1.5em; padding: 5px;">
Order ${order.id}, ${order.status}</caption>

<tr style="font-weight: bold;">
<td style="border: 1px solid black; padding: 5px;">Product</td>
<td style="border: 1px solid black; padding: 5px;">Unit Price</td>
<td style="border: 1px solid black; padding: 5px;">Quantity</td>
<td style="border: 1px solid black; padding: 5px;">Product Cost</td>

</tr>

www.redhat.com 122 refarch-feedback@redhat.com

Each order item is displayed in one row of the table, while a total variable is used to keep a
running total for the purchase:

<c:set var="total" value="${0}" />
<c:forEach var="product" items="${order.orderItems}">

<tr style="border: 1px solid black;">
<td style="border: 1px solid black; padding: 5px;

text-align: right; max-width: 15em; min-width: 15em;">
${product.name}</td>

<td style="border: 1px solid black; padding: 5px;
text-align: right;">

<fmt:formatNumber value="${product.price}"
type="currency" groupingUsed="true" />

</td>
<td

style="border: 1px solid black; padding: 5px;
text-align: right;">

<fmt:formatNumber value="${product.quantity}"
type="currency" groupingUsed="true" />

</td>
<td

style="border: 1px solid black; padding: 5px;
text-align: right; min-width: 12em;">

<fmt:formatNumber value="${product.price * product.quantity}"
type="currency" groupingUsed="true" />

</td>
</tr>
<c:set var="total" value="${total + product.price * product.quantity}"/>

</c:forEach>
The formatting tag library is used to display prices.

The total variable is then used to display the total price of the order:

<tr style="font-weight: bold; margin-top: 1em;">
<td style="padding: 5px;"><div style="padding-top: 1em;">

Grand Total:</div></td>
<td style="padding: 5px;"></td>
<td style="padding: 5px;"></td>
<td style="padding: 5px; text-align: right;">

<div style="padding-top: 1em;">
<fmt:formatNumber value="${total}" type="currency"

groupingUsed="true" />
</div>

</td>
</tr>

refarch-feedback@redhat.com 123 www.redhat.com

The transaction number and transaction date are also printed for orders that have already
been processed:

<c:if test="${not empty order.transactionNumber}">
<tr>

<td style="padding: 5px;">Transaction Number:</td>
<td style="padding: 5px;"></td>
<td style="padding: 5px;"></td>
<td style="padding: 5px; text-align: right;">

${order.transactionNumber}
</td>

</tr>
<tr>

<td style="padding: 5px;">Transaction Date:</td>
<td style="padding: 5px;"></td>
<td style="padding: 5px;"></td>
<td style="padding: 5px; text-align: right;">
 <fmt:formatDate type="both" value="${order.transactionDate}" />
</td>

</tr>
</c:if>

Finally, a return button is provided in an empty form that just resets back to the home page:

</table>
</div>

</c:forEach>

<form target="_self" method="post">
<div style="margin: 0px auto; text-align: center;">

<button style="background-color: LightBlue; font-size: 1em;
padding: 5px; margin-left: 20px; margin-right: 20px;">

 Return</button>
</div>

</form>

The convenience method to retrieve the customer order history uses the sales service REST
operation to get all orders:

public static void getOrderHistory(HttpServletRequest request) throws
URISyntaxException, ParseException, IOException, JSONException
{
 @SuppressWarnings("unchecked")
 Map<String, Object> customer = (Map<String,
Object>)request.getSession().getAttribute("customer");
 long customerId = (Long)customer.get("id");
 HttpClient client = new DefaultHttpClient();
 URIBuilder uriBuilder = getUriBuilder(Service.Sales, "customers",
customerId, "orders");
 HttpGet get = new HttpGet(uriBuilder.build());
 logInfo("Executing " + get);
 HttpResponse response = client.execute(get);

www.redhat.com 124 refarch-feedback@redhat.com

When the orders are successfully retrieved, create a local Order object and populate it:

 if(isError(response) == false)
 {
 String responseString = EntityUtils.toString(response.getEntity());
 logInfo("Got " + responseString);
 JSONArray orderArray = new JSONArray(responseString);
 List<Order> orders = new ArrayList<Order>();
 for(int index = 0; index < orderArray.length(); index++)
 {
 JSONObject orderJson = orderArray.getJSONObject(index);
 Order order = new Order();
 order.setId(orderJson.getLong("id"));
 order.setStatus(orderJson.getString("status"));
 if(orderJson.isNull("transactionNumber") == false)
 {
 order.setTransactionNumber(

orderJson.getLong("transactionNumber"));
 }
 if(orderJson.isNull("transactionDate") == false)
 {
 order.setTransactionDate(new Date(

orderJson.getLong("transactionDate")));
 }

The sales service does not have all the product details required to display the proper order
history. For this purpose, the SKU of each product is used to fetch other product details and
populate the object by calling the previously described populateProductInfo convenience
method:

 JSONArray orderItemArray = orderJson.getJSONArray("orderItems");
 for(int itemIndex = 0;

itemIndex < orderItemArray.length(); itemIndex++)
 {
 JSONObject orderItemJson = orderItemArray.getJSONObject(

itemIndex);
 OrderItem orderItem = new OrderItem();
 orderItem.setSku(orderItemJson.getLong("sku"));
 orderItem.setId(orderItemJson.getLong("id"));
 orderItem.setQuantity(orderItemJson.getInt("quantity"));
 populateProductInfo(orderItem);
 order.addOrderItem(orderItem);
 }
 orders.add(order);
 }

Finally, the orders are sorted in reverse chronological order and set as a request attribute:

 Collections.sort(orders, reverseOrderNumberComparator);
 request.setAttribute("orders", orders);
 }

refarch-feedback@redhat.com 125 www.redhat.com

To sort orders based on reverse order number, create a simple Comparator:

 private static Comparator<Order> reverseOrderNumberComparator =
new Comparator<Order>()

 {

 @Override
 public int compare(Order order1, Order order2)
 {
 return (int)(order2.getId() - order1.getId());
 }
 };

www.redhat.com 126 refarch-feedback@redhat.com

6 Conclusion
Microservice Architecture is an architectural style that provides a number of benefits by
adopting a divide and conquer approach to software design and deployment. Microservices
can be individually maintained, isolated, scaled up or down, or upgraded and replaced.

The modularity of microservices can affect both the requirements and the benefits of the
deployment. The best solution is not universal and entirely depends on the client environment
and application requirements.

After providing a thorough discussion on microservices and some of the factors that go into
determining a client's needs and cost to benefit parameters, this reference architecture
focuses on business-driven microservices that are not directly exposed to the outside world.
An aggregation layer provides a simple and familiar interface to clients, while taking
advantage of most benefits provided by this architectural style.

refarch-feedback@redhat.com 127 www.redhat.com

Appendix A: Revision History

Revision 1.0 Babak Mozaffari

Initial Release

www.redhat.com 128 refarch-feedback@redhat.com

Appendix B: Contributors
We would like to thank the following individuals for their time and patience as we collaborated
on this process. This document would not have been possible without their many
contributions.

Contributor Title Contribution

Mark Little Vice President of Middleware Engineering Requirements,
Technical Review

Rich Sharples Senior Director of Product Management Requirements,
Technical Review

Ken Johnson Senior Director of Product Management Requirements

Burr Sutter
Senior Principal Product Manager,
Technical Technical Contribution

Arun Gupta Director of Developer Advocacy Technical Contribution

Bilge Senior Product Manager (EAP 7) Technical Review

refarch-feedback@redhat.com 129 www.redhat.com

	1 Executive Summary
	2 Microservice Architecture
	2.1 Definition
	2.2 Tradeoffs
	2.2.1 Advantages
	2.2.2 Disadvantages

	2.3 Distributed Modularity Model
	2.3.1 Overview
	2.3.2 Monolithic Applications
	2.3.3 Tactical Microservices
	2.3.4 Strategic Microservices
	2.3.5 Business-Driven Microservices

	2.4 Cross-cutting concerns
	2.4.1 Overview
	2.4.2 Containerization
	2.4.3 Service Discovery
	2.4.4 Load Balancer
	2.4.5 Cache
	2.4.6 Throttling, Circuit Breaker, Composable Asynchronous Execution
	2.4.7 Security
	2.4.8 Monitoring and Management
	2.4.9 Resilience Testing

	2.5 Anatomy of a Microservice

	3 Reference Architecture Environment
	4 Creating the Environment
	4.1 Prerequisites
	4.2 Downloads
	4.3 Installation
	4.4 Configuration
	4.4.1 Apache httpd Server
	4.4.2 MySQL / MariaDB Database
	4.4.3 JBoss Enterprise Application Platform

	4.5 Deployment
	4.6 Execution

	5 Design and Development
	5.1 Overview
	5.2 Integrated Development Environment
	5.2.1 JBoss Developer Studio
	5.2.2 Creating a Maven Project
	5.2.3 Configuring Java 7

	5.3 Java Persistence API (JPA)
	5.3.1 Overview
	5.3.2 Persistence Unit
	5.3.3 Persistence Entity
	5.3.3.1 JavaBean
	5.3.3.2 JPA Entity
	5.3.3.3 Primary key
	5.3.3.4 Named Query
	5.3.3.5 Many to Many Relationship
	5.3.3.6 Case-insensitive search

	5.3.4 Database setup
	5.3.4.1 MySQL Database
	5.3.4.2 Datasource
	5.3.4.3 Database Driver

	5.4 RESTful API
	5.4.1 Enabling JAX-RS support
	5.4.2 RESTful Service
	5.4.3 Transactional Behavior
	5.4.4 Logging
	5.4.5 Error handling
	5.4.6 Resource API design
	5.4.6.1 Relative context
	5.4.6.2 Create
	5.4.6.3 Read
	5.4.6.3.1 Search
	5.4.6.3.2 Lookup

	5.4.6.4 Update
	5.4.6.4.1 Full update
	5.4.6.4.2 Partial update

	5.4.6.5 Delete

	5.4.7 Other RESTful operations
	5.4.8 Pessimistic Locking
	5.4.9 Sales service
	5.4.10 Sub-resources, RESTful relationships
	5.4.11 Billing Service

	5.5 Aggregation/Presentation Layer

	6 Conclusion
	Appendix A: Revision History
	Appendix B: Contributors

