
APACHE HTTPD – VIRTUAL HOSTS,
CACHING, SECURING, CONNECTING
TO EAP

Joel Tosi
02/03/2011

This technical whitepaper covers Apache HTTPD from installation to configuring it to be used with JBoss

EAP. Topics include what is the Apache HTTPD; installing HTTPD from JBoss EWS; setting up virtual

hosts; configuring caching; securing your environment; logging and debugging; setting up SSL; and various

ways to connect Apache HTTPD to JBoss EAP. The paper wraps up with some recommendations on best

practices.

Contents
1. Apache HTTPD...1
2. Apache HTTPD Inclusion in JBoss EWS..2
3. Limitations of Apache HTTPD...2
4. Installing and Configuring Apache HTTPD – Common Practices...2

4.1 Installation (as rpm from JBoss)..2
4.2 Installation (as zip from JBoss EWS)..5
4.3 Setting up Virtual Hosts...7
4.4 Configuring Caching..10
4.5 Securing your Environment...16
4.6 Logging and Debugging..21
4.7 Connecting to JBoss ...24
4.8 Putting it all Together...45

Resources...60
Apache Directives Reference..60
Mod_jk Reference...60
Mod_cluster Reference...60

1. APACHE HTTPD

Apache HTTPD – also called Apache Web Server – is the most popular, web server on the Internet. It is a

project of the Apache Software Foundation.

Apache HTTPD – virtual hosts, Caching, securing, connecting to EAP | Joel Tosi1

2. APACHE HTTPD INCLUSION IN JBOSS EWS

Although JBoss does not require a web server running in front of it, for best performance and as best

practice, a web server is recommended. The web server can serve a multitude of functions including

serving up static content and caching content which will result in reduced load to your application server.

Additionally a web server serves to further separate your application layer from the web, resulting in

increased security. JBoss EWS includes a pre-built version of Apache HTTPD along with the Apache

Tomcat connector (mod_jk). A default configuration file is delivered as well. This configuration will need to

be modified to meet your application needs, though the major points will be covered in the remainder of this

document.

3. LIMITATIONS OF APACHE HTTPD

Apache HTTPD is the leading web server in use today. However, it is limited to serving up static content

and cannot host your Java applications. There are also limitations as to how many requests each web

server can handle. This depends on your configuration as well as resources (memory, CPU) available to the

web server. Scaling Apache HTTPD is outside the scope of this technical whitepaper.

4. INSTALLING AND CONFIGURING APACHE HTTPD – COMMON PRACTICES

The steps listed below are not complete or wholistic. It is only intended to show common practices for front-

ending JBoss with Apache .

4.1 Installation (as rpm from JBoss)

The recommended approach for installing Apache HTTPD in a manner most supported by RedHat / Jboss is

using the rpm. To download the rpm manually, execute the following steps:

1. Login to access.redhat.com with your customer account information

Apache HTTPD – virtual hosts, Caching, securing, connecting to EAP | Joel Tosi2

Illustration 1: Logging into RedHat Customer portal to download HTTPD

2. Switch the browser url from access.redhat.com to rhn.redhat.com. This will take you to the redhat

network where rpms can be found.

3. Click on the ‘channels’ tab

4. Select ‘Package’ from the dropdown and enter the rpm name. Choose httpd22:

Apache HTTPD – virtual hosts, Caching, securing, connecting to EAP | Joel Tosi3

www.redhat.comCopyright © 2011 Red Hat, Inc. “Red Hat,” Red Hat Linux, the Red Hat “Shadowman” logo, and the products
listed are trademarks of Red Hat, Inc., registered in the U.S. and other countries. Linux® is the registered
trademark of Linus Torvalds in the U.S. and other countries.

Illustration 2: Switching over to rhn.redhat.com

Illustration 3: Channels tab on rhn

Illustration 4: Select Package from dropdown and enter rpm name

5. Download the appropriate version for your environment

Apache HTTPD – virtual hosts, Caching, securing, connecting to EAP | Joel Tosi4

Illustration 5: Results for httpd rpm search

Illustration 6: HTTPD downloads available - different versions and chip architectures

Illustration 7: Downloading appropriate version for my environment

6. Install the rpm as root.

4.2 Installation (as zip from JBoss EWS)

NOTE – If you already have an instance of Apache HTTPD installed and just want to configure it, please

skip this section.

JBoss EWS comes with a version of Apache HTTPD web server. To install it, execute the following steps.

If you haven’t done so already, download JBoss EWS from the customer support portal -

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?

product=webserver&downloadType=distributions&productChanged=yes&version=5.0.2%20GA

Unzip this download. For the sake of consistency we will refer to the location where you unzipped this file to

as $EWS_HOME.

Copy recursively the httpd directory to the location on your filesystem where you want Apache HTTPD

installed at. In this example we install to /var/local/httpd:

The version of Apache that ships with EWS comes ready with SSL. Because of this dependency, you will

need to make sure that distcache and pcre are installed on your system (*nix)

rpm -q distcache pcre

If you get a version number back, then you are fine. If either is not installed, then you will need to install

them, for example

yum install distcache

Once installation is complete, run the following again to make sure you see both installed:

Apache HTTPD – virtual hosts, Caching, securing, connecting to EAP | Joel Tosi5

Illustration 8: Run this as root to install the rpm

Illustration 9: Copying ews httpd download to a new directory

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?product=webserver&downloadType=distributions&productChanged=yes&version=5.0.2%20GA
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?product=webserver&downloadType=distributions&productChanged=yes&version=5.0.2%20GA

If you see the above (or similar / higher version numbers) then continue on.

Go to the $EWS_HOME/httpd directory (in these examples it is /var/local/httpd)

Execute the postinstall script: (note you will need to have root access for this)

If you do not see any errors, then the script has executed successfully. This script creates an SSL certificate

to use when you first start up apache. NOTE – you will need to apply an enterprise level SSL certificate for

proper use. The script also sets up some environment variables to be used as well as updates the

configuration file with installation location information. The configuration file will be covered in upcoming

sections:

At this point in time, we should verify that we can start up Apache HTTPD and that it starts without error.

Go to the logs directory and make sure the following log files are present:

Apache HTTPD – virtual hosts, Caching, securing, connecting to EAP | Joel Tosi6

Illustration 10: Verifying distcache and pcre are installed

Illustration 11: Running postinstall script

Illustration 12: Inside the postinstall script, looking at what values are being set

Illustration 13: Start up Apache HTTPD

Illustration 14: Verify logs are being written to

Finally verify that you can access the web server through a browser by hitting http://localhost. NOTE – you

will get a 403 error because of the default HTTPD configuration shipped with EWS.

If you have confirmed that your Apache HTTPD instance is up, stop the server now so we can finish

configuring it. Do this by executing the following command:

4.3 Setting up Virtual Hosts

Virtual Hosts allow your web server to respond to request from multiple domains. Using Virtual Hosts, you

can have a smaller web server farm fronting a large and diverse application layer. Virtual Hosts can be

setup in one of 2 different ways (or blended):

• Name based – Allows you to respond to multiple domains with one IP address. With this approach,

you define the domain that a configuration will apply to

• IP based – Only one domain per IP address

To setup Virtual Hosts, we will modify the httpd.conf file located at $EWS_HOME/httpd/conf

Name based Example:

##Listen on all IPS, NameVirtualHost is required for name based

##virtual hosting

NOTE IPv6 addresses must be in brackets:

NameVirtualHost [2001:db8::a00:20ff:fea7:ccea]:80

NameVirtualHost *:80

##If you only have one domain, you don’t need a virtual host

Apache HTTPD – virtual hosts, Caching, securing, connecting to EAP | Joel Tosi7

Illustration 15: First time accessing HTTPD through a browser

Illustration 16: Stop Apache HTTPD

http://localhost/

##As soon as you add a second, the original domain must be added as

##a virtual host

##First defined virtual host will be the default

<VirtualHost *:80>

 ServerName www.jboss.org

 ServerAlias jboss.org *.jboss.org

 DocumentRoot /www/jboss_org

</VirtualHost>

<VirtualHost *:80>

 ServerName www.jboss.com

 DocumentRoot /www/jboss_com

</VirtualHost>

2 IP based Example:

##If you only have one domain, you don’t need a virtual host

##As soon as you add a second, the original domain must be added as

##a virtual host

##First defined virtual host will be the default

<VirtualHost 127.0.0.1:80>

 ServerName www.jboss.org

 ServerAlias jboss.org *.jboss.org

 DocumentRoot /www/jboss_org

</VirtualHost>

<VirtualHost 127.0.0.2:80>

 ServerName www.jboss.com

 DocumentRoot /www/jboss_com

</VirtualHost>

In the example below, we modified $EWS_HOME/httpd/conf/httpd.conf with the following changes,

resulting in two different domains being served up from one server.

<VirtualHost 127.0.0.1>

 DocumentRoot /home/jtosi/website1

 ServerName www.site1.com

 ErrorLog logs/site1-error.log

 CustomLog logs/site1-access.log common

Apache HTTPD – virtual hosts, Caching, securing, connecting to EAP | Joel Tosi8

http://www.jboss.org/
http://www.jboss.org/

 <Directory "/home/jtosi/website1">

 Order allow,deny

 Allow from all

 </Directory>

</VirtualHost>

<VirtualHost 192.168.1.102>

 DocumentRoot /home/jtosi/website2

 ServerName www.site2.come

 ErrorLog logs/site2-error.log

 CustomLog logs/site2-access.log common

 <Directory "/home/jtosi/website2">

 Order allow,deny

 Allow from all

 </Directory>

</VirtualHost>

Hitting the first IP in a browser:

Hitting the second IP:

Apache HTTPD – virtual hosts, Caching, securing, connecting to EAP | Joel Tosi9

Illustration 17: Accessing first virtual host through a browser

The rest of this paper will continue expanding on one VirtualHost.

4.4 Configuring Caching

Apache HTTPD can perform caching in two different ways – either by caching to disk the header and body

of a response (mod_cache_disk) or by opening a file(s) at httpd start and saving that file handle in memory

(mod_file_cache). Mod_cache disk allows you to cache different request types, including ones with query

strings whereas mod_file_cache will not allow this since it just is caching filehandles for quicker access.

Most importantly, if you are not very careful with mod_file_cache, you can create a very large number of

open file handles, resulting in an unresponsive system. Therefore most organizations choose to leverage

mod_cache_disk.

In the example below, we do the following configuration with mod_cache_disk:

1) Wrap our configuration in an IfModule clause. We do this because we don’t want the directives to attempt

to be ran if the module isn’t available. This way our configuration will be syntactically correct even if the

module isn’t available.

2) Define where on disk this cache should reside. NOTE – this directory must be writable by the user that

apache is running under, otherwise caching will not work.

3) Enable caching of type disk and configure what should be cached. This can be a complete file path

(relative to domain root), wildcarded for extension types, or a regular expression. This directive can also be

repeated.

4) Put bounds on the size of the cache in terms of the number of directories on disc as well as how large the

directory names can be and finally the total size of the cache. If we want deep caches, we want a high value

of CacheDirLevels and a low value for length. NOTE – the product of CacheDirLevels and CacheDirLength

cannot exceed 20.

5) Put upper and lower bounds on the size of the items to cache. Small items (like images that are just 1K)

will not give you that much performance gain by caching and will also fill up your cache (think depth of tree)

Apache HTTPD – virtual hosts, Caching, securing, connecting to EAP | Joel Tosi10

Illustration 18: Accessing second virtual host through a browser

with small items. On the flip side, large files that are cached won’t boost performance much because the

majority of the latency in performance would be do to transmission, not file I/O. Because of these reasons,

reasonable upper and lower bounds should be set.

6) A default time for cached items to expire is set. This is applied if an expiry header is not created for the

items that explicitly sets its time to live.

7) Logging is configured so we can get visibility into our cache hits and misses.

8) Finally, we explicitly disable caching for some volatile content.

##Best Practice – check module defined / available before using

##directives

<IfModule mod_cache_disk>

##Where on disk we are going to store the cache

 CacheRoot /usr/apache/cacheroot

##Enabling caching to disk of all content start at root. Can also use

##wildcards to narrow down what is cached, i.e. CacheEnable disk /*.css

 CacheEnable disk /

How many directories to have in cache

 CacheDirLevels 5

##Length of directory names in the cache

 CacheDirLength 3

Put a cap on how much cache space we want to use in Kbytes

CacheSize 2000000

Only cache files between 64 and 64K bytes

CacheMinFileSize 64

Apache HTTPD – virtual hosts, Caching, securing, connecting to EAP | Joel Tosi11

CacheMaxFileSize 64000

If an item doesn’t have an expiry header, expire it from cache after

##1 day

CacheDefaultExpire 86400

##Setup logging so we can see cache hits, misses, and revalidate cache

##items

CustomLog cached-reqeusts.log common env=cache-hit

CustomLog uncached-requests.log common env=cache-miss

CustomLog revalidated-requests.log common env=cache-revalidate

</IfModule>

We don’t want to cache highly volatile content

CacheDisable http://www.somedomain.com/real-time-stock-market-quotes/

To verify our cache, we will use Apache Benchmark (included with EWS at $EWS_HOME/sbin/ab). Apache

Benchmark is a relatively robust tool that can handle authentication as well as posting data. However, for

this example, we are simply looking at creating a large concurrent load. To do this, we will use ab with 2

flags:

1) -c for the number of concurrent users

2) -n for the number of requests to run

Apache HTTPD – virtual hosts, Caching, securing, connecting to EAP | Joel Tosi12

http://www.somedomain.com/real-time

First we run this without caching enabled. Below is the command with the output (mean times not shown).

Note that when you run ab, you have to go against either a complete url to an asset or a complete domain

with trailing slash:We can verify that no cache was used by checking our cache folder:

Next, we enable the caching with the directives we showed earlier and rerun the same test:

Apache HTTPD – virtual hosts, Caching, securing, connecting to EAP | Joel Tosi13

Illustration 19: Running Apache Benchmark against site without cache

Illustration 20: Checking cache folder

Apache HTTPD – virtual hosts, Caching, securing, connecting to EAP | Joel Tosi14

We verify again our cache directory on disc to make sure items were being cached:

Apache HTTPD – virtual hosts, Caching, securing, connecting to EAP | Joel Tosi15

Illustration 21: Running Apache Benchmark with Caching enabled

This confirms that we are caching our content. Also note that in our second load test the same amount of

html was transferred, but our performance times were halved while our requests per second was doubled.

We are getting significant gains with simple caching.

Other items to consider with caching:

• Static content as well as output from dynamic applications can be cache.

• When leveraging virtual includes in your pages or site, be sure to use ‘include virtual’ instead of

‘include file’ to be able to take advantage of caching (since caching is URL based, not file reference

based)

• Highly time-sensitive content should not be cached

• Only GET requests with a response code of 200, 203, 300, 301, or 410 can be cached

4.5 Securing your Environment

Apache should be installed and configured only by a root user or with sudo permissions. The thread that

apache httpd runs under is defined by the User and Group directives. This user / group combination should

not have access to any other system resources. If you do nothing else, be sure to do this.

Apache HTTPD – virtual hosts, Caching, securing, connecting to EAP | Joel Tosi16

Illustration 22: Checking cache folder, verifying that cache is populated

User apache

Group apache

We can verify that the apache user is who the process is running under by looking at the httpd process (ps

-ef | grep http)

Other items to do

1) Hide all sensitive information (version, build, etc). To do this, we use the ServerSignature and

ServerTokens directives

Turn off the signature of the server, as seen on default 404 pages

ServerSignature Off

Limit information in the HTTP response header

ServerTokens Prod

Before these values are set:

After the values are set:

Apache HTTPD – virtual hosts, Caching, securing, connecting to EAP | Joel Tosi17

Illustration 23: Observing the thread that HTTPD runs in for user and group ownership

Illustration 24: Exposing Server information

NOTE – we could also do this test using curl or verify through various plugins in Firefox

2) To block traversal of files that were not meant to be accessible via the web, we need to have access to all

files and directories removed by default. We then add back in only those as needed. We do this with the

Order and Allow directives, applying them both at the default directory level and then in our VirtualHosts:

<Directory>

Default deny all access

 Order Deny, Allow

 Deny from all

 Options None

 AllowOverride None

</Directory>

...

<Directory /website>

Allow access only to ‘website’ directory and below

 Order Allow, Deny

 Allow from all

</Directory>

3) To avoid users of your website / application from being able to retrieve a listing of files in a directory, turn

off the Indexes flag using the Option directive as follows:

Option -Indexes

Before the setting:

Apache HTTPD – virtual hosts, Caching, securing, connecting to EAP | Joel Tosi18

Illustration 25: Error page once server information is removed

Apache HTTPD – virtual hosts, Caching, securing, connecting to EAP | Joel Tosi19

After applying the setting:

4) Remove all unused modules. By default, JBoss EWS ships with quite a bit of modules enabled.

Go through these modules and the ones that you aren’t using, remove its ‘LoadModule’ directive.

This will not only limit your exposure to potential security holes / flaws in modules, but also increase

your performance by minimizing the footprint of Apache HTTPD.

5) DoS (Denial of Service) attacks are still prevalent in the web. To reduce the impact any potential

DoS / DSoS attack may have on your site, lower the timeout value. This will free up threads quicker

and thereby reduce the impact of ‘long pull’ attacks like DoS / DdoS. NOTE – this does not remove

your risk. You will still want monitoring around your services / requests, solid firewall rules, and

possibly consider looking at mod_security – a module for apache that can dynamically apply rules

and drop requests that have attack based signatures.

Apache HTTPD – virtual hosts, Caching, securing, connecting to EAP | Joel Tosi20

Illustration 26: With index listings enabled

Illustration 27: After index listings are removed

##Lower timeout value from default of 5 minutes to 30 seconds

Timeout 30

6) If your website / web application allows uploads, be sure to limit the size of these uploads. From

a security perspective, the last thing you want is to provide the ability for someone to easily

consume a thread / threads as well as bandwidth. Because of these reasons, we need to limit the

size of large requests to our site. If you allow file uploads, set this value to the maximum

reasonable value for your uploads – for example a maximum size for a resume might be 200Kb. If

your site does not allow uploads set this as low as you feel comfortable with.

##Limit Request Body to ~1Mb

LimitRequestBody 1000000

7) Finally, as with all software, be sure to stay up to date with any security patches.

4.6 Logging and Debugging

There are three main log files you will interact with when debugging any issues that arise. These files are as

follow:

1. Apache Access Log – this log shows all requests coming in to the web server. This is naturally

the first log to look at. Here you will verify that the request is actually coming into the web server.

This file is typically located at /logs/access.log but each Virtual Host can create its own access log.

Because of that, it is best to get the location from the configuration of the domain you are

debugging.

Apache HTTPD – virtual hosts, Caching, securing, connecting to EAP | Joel Tosi21

2. Apache Error Log – this log shows all errors that the web server is encountering. Errors typically

are for artifacts (images, stylesheets, html pages) that could not be found. You will see other errors

in here though if the web server is running low on resources which could be a sign of long-running

threads or requests. Finally, you will also see more verbose debugging information here; for

example information around ajp connections. This file is typically located at /logs/error.log but each

Virtual Host can create its own access log. Because of that, it is best to get the location from the

configuration of the domain you are debugging.

Apache HTTPD – virtual hosts, Caching, securing, connecting to EAP | Joel Tosi22

Illustration 28: Sample Apache access log

3. Mod_jk / mod_cluster / mod_proxy.log – This log file will show all of the requests and responses

over the connectors to JBoss including keepalive information or cluster information in the case of

mod_cluster. Look in this log to verify that requests are being sent to JBoss appropriately as well

as to troubleshoot the expected translation and response from JBoss. This file is typically located

at /logs/mod_connector.log but each Virtual Host can create its own access log. Because of that, it

is best to get the location from the configuration of the domain you are debugging.

Inside the httpd.config file, you can set the logging level of Apache using the LogLevel directive. The

examples above are with LogLevel set to Debug to show more verbose samples.

The format of your log files is configurable. For the sake of this whitepaper, we will stick with the default

logging configuration, but more information can be found here -

http://httpd.apache.org/docs/current/logs.html

Apache HTTPD – virtual hosts, Caching, securing, connecting to EAP | Joel Tosi23

Illustration 29: Sample Apache error log file

Illustration 30: LogLevel definition inside httpd.conf

http://httpd.apache.org/docs/current/logs.html

Finally, be sure to rotate your log files. As log file growth is directly dependent upon LogLevel as well as site

requests, be sure to tune your scenario accordingly. In general, you always want to avoid log files getting to

large. Most organizations are fine with a nightly log rotation and that is what the below example will cover

(just note that your needs may vary).

The easiest way to set up nightly log rotation is to use the rotatelogs script that comes with Apache (located

at EWS_HOME/sbin/rotatelogs. To rotate our access log after 24 hours, we would add the following line:

CustomLog "|sbin/rotatelogs /var/local/httpd/logs/access.log 86400" common

There are a few items above that are of interest. Lets look at them individually

CustomLog - We are using the CustomLog directive to set up a custom logging structure. At the end of

this line, we can see the ‘common’ parameter. This is telling CustomLog to use the common logging format

and apply that to our CustomLog.

|(Pipe Character) - We start off the CustomLog by entering the pipe character. This tells apache to

use piped logging. This way Apache does not keep a filehandle lock on the log file. If we didn’t use piped

logging, we could still rotate the files, but we would need to stop apache to release the lock before we could

rotate.

sbin/rotatelogs - This is the relative path to the rotatelogs executable

/var/local/httpd/logs/access.log - This is the path to the log file we want to rotate. Note that

for each log you want to rotate, you will want to add a CustomLog.

86400- This is the number of seconds, offset from webserver start, when the log should be rotated. This

could also be defined in filesize, i.e. 5M to rotate after 5Mb of logging.

common - Finally, we define that this log should use the common definition for log message formats.

Again, the above information shows the best approach for setting up log rotation. In the example above, we

are rotating the access log file every 24 hours.

4.7 Connecting to JBoss

There are three main ways to connecting Apache HTTPD to JBoss EAP.

1) Using mod_proxy – mod_proxy acts like just that – a proxy to your application server. With mod_proxy,

you simply tell apache that for certain request patterns, the request will be responded to by the application

server. mod_proxy can act as a regular forward proxy or as a reverse proxy. Mod_proxy is simple to

configure, supports SSL, but lacks a considerable amount of control that you will get with mod_jk and

mod_cluster around how you will forward requests as well as information around application server

availability.

Apache HTTPD – virtual hosts, Caching, securing, connecting to EAP | Joel Tosi24

2) Using mod_jk – mod_jk is the jakarta connector from Apache. Development on it has slowed down

recently. Mod_jk is nicer than mod_proxy as it allows a tighter integration with the application server as well

as a small communication channel (leveraging AJP) and more fine-grained control of how requests are

forwarded (i.e. mod_proxy forwards based on URLs, so typically a whole directory would be proxied. With

mod_jk, you could say for a given directory with a given extension type, forward those requests. This works

well with virtual includes). However, mod_jk does require a slightly more involved configuration and does not

support an encrypted communication channel between web server and application server.

3) Using mod_cluster – mod_cluster is the next generation connector from JBoss. Like the others, it serves

to be the bridge between web server and application server. Like mod_proxy, it can work with an encrypted

channel and has a simple configuration. Like mod_jk, mod_cluster also allows fine-grained control of

requests and configuration parameters. Unlike mod_jk and mod_proxy, mod_cluster allows an

application server to grow / shrink dynamically without needs for reconfiguration. Additionally,

mod_cluster leverages a second communication channel which allows it to have more robust load balancing

options as well as being more than just application server aware – it is also application aware meaning that it

can detect scenarios where an application server is up but an application is not available and thereby not

route traffic to it.

Now that we have provided a background on the 3 ways to connect Apache HTTPD to JBoss EAP, we will

go through an exercise configuring these connectors.

In each example, we will do the following:

1) Send requests to websiteDomain/theboss to the admin-console of a cluster of JBoss EAP instances

2) We will configure these to communicate using AJP – a performant, binary format used for communication

between a web server and an application server

3) We will configure it such that the second instance will get 3 times the traffic as the first

4) Finally, we will configure our connector to use sticky session. This way once a user has established

session on one application server instance, they will continue to go to that one as opposed to being load

balanced between the two. This is ideal for a situation such as this where we are logging into an

administration console.

Setting up mod_proxy

All of the changes in this example will be made to the httpd.conf file located at EWS_HOME/conf.

mod_proxy is dependent upon the following modules, so be sure to have them loaded:

mod_proxy

mod_proxy_balancer

mod_proxy_ajp / http / ftp (depending on your connecting protocol)

Apache HTTPD – virtual hosts, Caching, securing, connecting to EAP | Joel Tosi25

Because we only want this forwarding applied to one domain, we will put these directives inside the

VirtualHost definition. If we wanted the proxy applied globally, these directives can stand alone in the

configuration file.

<VirtualHost>

...

##Identify the proxy

<Proxy balancer://jbossCluster>

##Setup the members for this proxy. 2 members, using ajp protocol (could also

##use http. ‘loadfactor’ tells the balancer that the second instance should get

##3 times the load of the first.

##Use ProxySet to establish sticky session

##ProxyPass defines the URL pattern to match to the balancer

BalancerMember ajp://127.0.0.1:8009 loadfactor=1

BalancerMember ajp://127.0.0.1:8109 loadfactor=3

ProxySet stickysession=JSESSIONID

</Proxy>

ProxyPass / balancer://jbossCluster

ProxyPassReverse / balancer://jbossCluster

...

</VirtualHost>

Here is what we see in a browser (note running over port 80)

Apache HTTPD – virtual hosts, Caching, securing, connecting to EAP | Joel Tosi26

Apache HTTPD – virtual hosts, Caching, securing, connecting to EAP | Joel Tosi27

We could continue using the application as normal, all over port 80.

If you want to see the AJP communication, set your LogLevel to Debug and view the error log file:

Apache HTTPD – virtual hosts, Caching, securing, connecting to EAP | Joel Tosi28

Illustration 31: Accessing JBoss through HTTPD front-end proxy, note the browser is accessing site over port 80

Setting up mod_jk

We will be doing the same example as we did with mod_proxy, except this time using mod_jk. mod_jk is

only dependent on the mod_jk module to be loaded. However, the configuration requires more directives

and files. The section below covers the changes needed to send requests to a clustered JBoss EAP

instance with a weighted load balancer, leveraging sticky sessions (same as with mod_proxy exercise).

Modifications to httpd.conf

EWS ships with the mod_jk module but not explicitly included in the httpd.conf file. The first thing we will

need to do is add the mod_jk module to be loaded. We do this by adding the following line at the end of the

LoadModule block:

LoadModule jk_module /var/local/httpd/modules/mod_jk.so

Apache HTTPD – virtual hosts, Caching, securing, connecting to EAP | Joel Tosi29

Illustration 32: Log files for information showing AJP connectivity

Next, we need to define the location where our workers (application server instances that will respond to

requests) are defined at. The common practice for this is to define this information in a file called

workers.properties. We add this directive with the following:

JkWorkersFile /var/local/httpd/conf/workers.properties

Next we define the location of a shared memory file. This is used by the load balancer internal to mod_jk for

knowing where requests are at and where to direct traffic.

JkShmFile /var/local/httpd/mod_jk.shm

Now we define where our logs for mod_jk should go be written at, what logging level we want (error, debug,

info), and the format of the logs.

JkLogFile /var/local/httpd/logs/mod_jk.log

JkLogLevel info

JkLogStampFormat "[%a %b %d %H:%M:%S %Y] "

Finally, similar to what we did with mod_proxy, we need to define which URLs are mapped over. We do this

by defining the location for a URI mapping file (we look at the values of this file next). Since we only want

this to affect one domain, we apply the following change inside our VirtualHost.

JkMountFile /var/local/httpd/conf/uriworkermap.properties

If we were to restart apache now, it would fail as the workers.properties file has not been created yet. Try it

out, you should see something similar in the httpd log

Before we fix this error, lets address our uriworkermap.properties file and then we will create our

workers.properties file.

The uriworkermap.properties file does not exist and you will need to create this file at the location you

identified in the last step above. This file is very straightforward. We simply mount the servlet context that

we want to be added as defined by a group (which we identify in workers.properties). Note that the servlet

context will match the URL Apache HTTPD forwards over to JBoss. Here is the content of our

uriworkermap.properties file:

Mount the Servlet context to the ajp13 worker

Apache HTTPD – virtual hosts, Caching, securing, connecting to EAP | Joel Tosi30

/admin-console=examplebalancer

/admin-console/*=examplebalancer

Finally, we identify our application servers in our workers.properties file.

Just like our uriworkermap.properties file, the workers.properties file does not exist and will need to be

created at the location you defined in httpd.conf. The following exercise walks through creating a load

balanced connection to 2 JBoss servers.

The first item to create in our workers.properties file is the listing of workers that will be available. We do this

by using the workers.list directive like the following (notice how it matches our uriworkermap.properties

definition):

worker.list=examplebalancer

With our worker list defined, we now go about identifying the servers that will make up our load balanced

group. For the rest of the configuration, you will notice that the pattern is ‘worker.’ + workerName + property

where workerName is how we are identifying the worker. There are quite a few configurable values here.

This example will walk through the most critical values to set. These include the hostname where the JBoss

instance resides, the type of worker this is, what the communication port should be, the load balancer

weight, and finally how mod_jk should check to ensure that the identified application server is up and

responding (CPing). Lets look at the configuration:

Define Node1

modify the host as your host IP or DNS name.

worker.node1.port=8009

worker.node1.host=localhost

worker.node1.type=ajp13

worker.node1.ping_mode=A

worker.node1.lbfactor=1

In the example above, we are connecting to a JBoss instance on our local machine. We will be

communicating using the ajp1.3 protocol, and JBoss is handling AJP on port 8009. We set a load balance

factor of 1 (which makes more sense once we add our second node). Final, we set our ping_mode to A.

This means that we want mod_jk to check all routes to verify that JBoss is up. This includes:

Check once after the initial connection to JBoss

Before each request is sent to JBoss

Apache HTTPD – virtual hosts, Caching, securing, connecting to EAP | Joel Tosi31

At a regular interval (heartbeat)

We set our second node (using the same parameters but updated for our second instance):

Define Node2

modify the host as your host IP or DNS name.

worker.node2.port=8109

worker.node2.host=localhost

worker.node2.type=ajp13

worker.node2.ping_mode=A

worker.node2.lbfactor=3

With our JBoss servers identified and configured, we wrap up the configuration by defining the loadbalancer

aspects for the group and bind it to ‘examplebalancer’ which is what is defined in our

uriworkermap.properties.

In the following example, we define the type of this worker as a loadbalancer(remember, named example

balancer), what workers make up this load balancer, and we enable sticky sessions.

Load-balancing behaviour

worker.examplebalancer.type=lb

worker.examplebalancer.balance_workers=node1,node2

worker.examplebalancer.sticky_session=1

Now that we have our uriworkermap.properties and worker.properties files defined, we restart Apache

HTTPD and test it out. First thing we check after the restart is our mod_jk.log. The following shows us that

the mappings have all lined up and the backend servers are found and available:

Any errors in here would tell us that a backend server isn’t available or that we possibly have a type in our

configurations.

And finally we verify that we can connect to our JBoss application server through Apache by testing through

a browser over port 80:

Apache HTTPD – virtual hosts, Caching, securing, connecting to EAP | Joel Tosi32

Illustration 33: Verifying mod_jk is installed and configured through the mod_jk.log

Setting up mod_cluster

Mod_cluster requires modules to be added to Apache HTTPD as well as deploying a new application to your

JBoss application instance. The following steps walk through getting these additional components,

installing, and configuring them.

Similar to how you downloaded EWS, download the mod_cluster modules from access.redhat.com

(mod_cluster-native)

Apache HTTPD – virtual hosts, Caching, securing, connecting to EAP | Joel Tosi33

Illustration 34: Accessing JBoss through Apache HTTPD using mod_jk

Illustration 35: Downloading mod_cluster from rhn

Depending on your installation route for Apache HTTPD (rpm or from EWS zip) – downloading this rpm may

update your httpd modules instance for you. What you need to make sure you have is the following

modules inside your httpd modules directory:

mod_proxy.so

mod_proxy_ajp.so

mod_slotmem.so

mod_manager.so

mod_proxy_cluster.so

mod_advertise.so

Once these module are in the modules directory, we need to add the modules to our httpd.conf so that they

are loaded when Apache starts up.

LoadModule proxy_module /var/local/httpd/modules/mod_proxy.so

LoadModule proxy_ajp_module /var/local/httpd/modules/mod_proxy_ajp.so

LoadModule slotmem_module /var/local/httpd/modules/mod_slotmem.so

LoadModule manager_module /var/local/httpd/modules/mod_manager.so

LoadModule proxy_cluster_module /var/local/httpd/modules/mod_proxy_cluster.so

LoadModule advertise_module /var/local/httpd/modules/mod_advertise.so

With the modules added, we now show the minimal configuration needed to get mod_cluster running. Notice

how different this is as compared to mod_proxy and mod_jk – we are not defining any workers or contexts.

In the following example, we are setting up a new VirtualHost. The key here is to create a new socket for

communication with the backend servers. We restrict access to a certain IP range (in this case, just local).

Finally, we name our ManagerBalancer and tell it to advertise out, looking for backend connections.

Listen 127.0.0.1:6666

<VirtualHost 127.0.0.1:6666>

<Location />

 Order deny,allow

 Deny from all

 Allow from 127.0.0.

 </Location>

Apache HTTPD – virtual hosts, Caching, securing, connecting to EAP | Joel Tosi34

 KeepAliveTimeout 60

 MaxKeepAliveRequests 0

 ManagerBalancerName mycluster

 ServerAdvertise On

</VirtualHost>

We do one more step – that is setup the mod_cluster manager so that we can verify mod_cluster is

functioning properly. We do this by adding the following to our httpd.conf:

<Location /mod_cluster-manager>

SetHandler mod_cluster-manager

Order deny,allow

Deny from all

Allow from 127.0.0.1

</Location>

The above section simply restricts access to the mod_cluster-manager URI to only come from localhost. It

defers handling of the requests to the mod_cluster_manager module.

No other httpd configuration is necessary. Remember – mod_cluster dynamically (via the advertise

channel) finds JBoss application servers as well as their context.

Next, we need to make some changes to our JBoss application server instances. These changes are

necessary to that the instances know to broadcast to mod_cluster. The changes are relatively simple and

are easily repeatable. A best practice for dynamically adding instances to a cluster and having it picked up

by mod_cluster would be to simply have these changes as part of your core JBoss instance that you create

(copy) others from.

Setting up JBoss for mod_cluster

In the following steps, we will be making the necessary changes to a JBoss instance to make mod_cluster

aware of it and vice versa. Only one server is shown, for subsequent instances, the changes are the same.

First copy the mod_cluster.sar file from the earlier download to the ‘deploy’ directory of your JBoss instance.

In the example below, an instance named ‘node1’ was created so we are copying mod_cluster.sar to

Jboss_HOME/jboss_as/server/node1/deploy. This application is what will do the communication with

Apache HTTPD.

Apache HTTPD – virtual hosts, Caching, securing, connecting to EAP | Joel Tosi35

Apache HTTPD – virtual hosts, Caching, securing, connecting to EAP | Joel Tosi36

Apache HTTPD – virtual hosts, Caching, securing, connecting to EAP | Joel Tosi37

Apache HTTPD – virtual hosts, Caching, securing, connecting to EAP | Joel Tosi38

Apache HTTPD – virtual hosts, Caching, securing, connecting to EAP | Joel Tosi39

Now that we have the application installed, we need to do some configuration. The first configuration we will

do is located at mod_cluster.sar/META-INF/mod_cluster-jboss-beans.xml. In this file we will be completing

the information for the location to where mod_cluster is running (the VirtualHost we set up in httpd.conf a

few steps back). We will also add some domain information.

Edit this file, and add the following to achieve this (changes highlighted):

Save your changes and close this file.

Apache HTTPD – virtual hosts, Caching, securing, connecting to EAP | Joel Tosi40

Illustration 36: Installing mod_cluster application into JBoss EAP

Illustration 37: Changes to mod_cluster-jboss-beans.xml located at mod_cluster.sar/META-INF

The next file we need to modify is located at node1/deploy/jbossweb.sar/server.xml

In this file, we need to make 2 changes. The first change is to add another listener to our web instance. This

will make our mod_cluster service initialized when JBoss starts up. Your change will look like the

highlighted area below:

And the second change we need to add is a jvmRoute. This is needed for identifying the server to apache

and mod_cluster for load balancing as well as for sticky sessions.

Note that we are defining the jvmRoute as jboss.jvmRoute. This flags it as a dynamic property and we will

be passing in during server startup. Save and close this file.

Apache HTTPD – virtual hosts, Caching, securing, connecting to EAP | Joel Tosi41

Illustration 38: Modifications to <config>/deploy/jbossweb.sar/server.xml

Illustration 39: Adding jvmRoute to same server.xml file as in Illustration 38

The final file we need to modify is located at node1/deploy/jbossweb.sar/META-INF/jboss-beans.xml. In this

file, we need to let jbossweb know that our webserver is dependent upon the HAModClusterService bean

that is defined in our mod_cluster.sar (defined for us). Your changes to this file will look like the following:

Save this file and close it.

With that all of our changes are complete. To reiterate – while there were 3 files we needed to modify and

the changes seemed maybe not the most intuitive, the best practice is to make these changes once and

then just copy the JBoss instance around as a foundation for other instances. With that approach, the only

time you would need to modify any fields is if the HTTPD server configuration needed to change because

the JBoss instance would have a new / different HTTPD front-ending it.

To add a second instance to the JBoss cluster, just copy the ‘node1’ directory recursively to a new directory,

say name 2. Add more instances in the same manner.

With all of our changes complete, we start up our JBoss instance:

Please refer to the JBoss Clustering Considerations whitepaper in the Red Hat Customer portal. The

only items we interacted with in this example are the last 2 parameters – the domain and the jvmRoute.

For sake of seeing a cluster in action, here is the same command, just starting a second JBoss instance (will

come in handy when we look at mod_cluster-manager). DO NOT START UP YOUR SECOND INSTANCE

JUST YET!:

Apache HTTPD – virtual hosts, Caching, securing, connecting to EAP | Joel Tosi42

Illustration 40: Modifying <config>/deploy/jbossweb.sar/META-INF/jboss-beans.xml.

Illustration 41: Starting up our JBoss EAP instance

If Apache HTTPD is not up and running, be sure to start it up now.

To verify that mod_cluster in Apache has discovered your JBoss instance (node1), point your browser to

domain/mod_cluster-manager. You should see the following:

Now start up your second instance of JBoss. Once it is up, you will see in mod_cluster-manager that

mod_cluster has discovered your new instance:

Apache HTTPD – virtual hosts, Caching, securing, connecting to EAP | Joel Tosi43

Illustration 42: Starting up our second JBoss EAP instance

Illustration 43: Verifying mod_cluster using mod_cluster-manager – http://127.0.0.1/mod_cluster-manager. Note only one
server is visible as we haven’t started our second instance yet.

http://127.0.0.1/mod_cluster-manager

At this point, we have verified that mod_cluster knows about our JBoss instances. What about the

applications? We never defined them in httpd.conf...but we can see them in the mod_cluster-manager

console.

In your browser, now simply point to that context in your domain – in our example we are using localhost:

Apache HTTPD – virtual hosts, Caching, securing, connecting to EAP | Joel Tosi44

Illustration 44: Mod_cluster-manager after our second JBoss EAP instance was started. Note that no change to apache
was needed

Illustration 45: Accessing an application through Apache HTTPD setup with mod_cluster. Note that applications were
never identified explicitly to Apache HTTPD like we have to do with mod_jk

From this you can see that our apache web server is now sending these requests down to our application

servers. As we add new applications or even new application servers to our environment, we don’t need to

make any changes to our webserver – mod_cluster discovers all of this.

To wrap up this section, we went through the 3 main ways of connecting Apache HTTPD to our JBoss

instances – using mod_proxy, mod_jk, and mod_cluster. The recommended approach is using mod_cluster

as it is the most robust solution, providing better user experiences and ease of environment management.

4.8 Putting it all Together

The exercises covered in this whitepaper are now complete. Below is a complete reference of the

httpd.conf, workers.properties, and uriworkermap.properties files used in this whitepaper. Note that some

areas are commented out (depending on connection strategy) and general comments are removed for

brevity.

Httpd.conf:

Section 1: Global Environment

ServerTokens Prod

ServerRoot "/var/local/httpd/"

PidFile run/httpd.pid

Timeout 120

 KeepAlive On

MaxKeepAliveRequests 0

KeepAliveTimeout 60

<IfModule prefork.c>

StartServers 8

MinSpareServers 5

MaxSpareServers 20

ServerLimit 256

MaxClients 256

MaxRequestsPerChild 4000

Apache HTTPD – virtual hosts, Caching, securing, connecting to EAP | Joel Tosi45

</IfModule>

<IfModule worker.c>

StartServers 2

MaxClients 150

MinSpareThreads 25

MaxSpareThreads 75

ThreadsPerChild 25

MaxRequestsPerChild 0

</IfModule>

Listen 80

LoadModule auth_basic_module /var/local/httpd/modules/mod_auth_basic.so

LoadModule auth_digest_module /var/local/httpd/modules/mod_auth_digest.so

LoadModule authn_file_module /var/local/httpd/modules/mod_authn_file.so

LoadModule authn_alias_module /var/local/httpd/modules/mod_authn_alias.so

LoadModule authn_anon_module /var/local/httpd/modules/mod_authn_anon.so

LoadModule authn_dbm_module /var/local/httpd/modules/mod_authn_dbm.so

LoadModule authn_default_module /var/local/httpd/modules/mod_authn_default.so

LoadModule authz_host_module /var/local/httpd/modules/mod_authz_host.so

LoadModule authz_user_module /var/local/httpd/modules/mod_authz_user.so

LoadModule authz_owner_module /var/local/httpd/modules/mod_authz_owner.so

LoadModule authz_groupfile_module

/var/local/httpd/modules/mod_authz_groupfile.so

LoadModule authz_dbm_module /var/local/httpd/modules/mod_authz_dbm.so

LoadModule authz_default_module /var/local/httpd/modules/mod_authz_default.so

LoadModule ldap_module /var/local/httpd/modules/mod_ldap.so

LoadModule authnz_ldap_module /var/local/httpd/modules/mod_authnz_ldap.so

Apache HTTPD – virtual hosts, Caching, securing, connecting to EAP | Joel Tosi46

LoadModule include_module /var/local/httpd/modules/mod_include.so

LoadModule log_config_module /var/local/httpd/modules/mod_log_config.so

LoadModule logio_module /var/local/httpd/modules/mod_logio.so

LoadModule env_module /var/local/httpd/modules/mod_env.so

LoadModule ext_filter_module /var/local/httpd/modules/mod_ext_filter.so

LoadModule mime_magic_module /var/local/httpd/modules/mod_mime_magic.so

LoadModule expires_module /var/local/httpd/modules/mod_expires.so

LoadModule deflate_module /var/local/httpd/modules/mod_deflate.so

LoadModule headers_module /var/local/httpd/modules/mod_headers.so

LoadModule usertrack_module /var/local/httpd/modules/mod_usertrack.so

LoadModule setenvif_module /var/local/httpd/modules/mod_setenvif.so

LoadModule mime_module /var/local/httpd/modules/mod_mime.so

LoadModule dav_module /var/local/httpd/modules/mod_dav.so

LoadModule status_module /var/local/httpd/modules/mod_status.so

LoadModule autoindex_module /var/local/httpd/modules/mod_autoindex.so

LoadModule info_module /var/local/httpd/modules/mod_info.so

LoadModule dav_fs_module /var/local/httpd/modules/mod_dav_fs.so

LoadModule vhost_alias_module /var/local/httpd/modules/mod_vhost_alias.so

LoadModule negotiation_module /var/local/httpd/modules/mod_negotiation.so

LoadModule dir_module /var/local/httpd/modules/mod_dir.so

LoadModule actions_module /var/local/httpd/modules/mod_actions.so

LoadModule speling_module /var/local/httpd/modules/mod_speling.so

LoadModule userdir_module /var/local/httpd/modules/mod_userdir.so

LoadModule alias_module /var/local/httpd/modules/mod_alias.so

LoadModule rewrite_module /var/local/httpd/modules/mod_rewrite.so

#LoadModule proxy_module /var/local/httpd/modules/mod_proxy.so

#LoadModule proxy_balancer_module

/var/local/httpd/modules/mod_proxy_balancer.so

#LoadModule proxy_ftp_module /var/local/httpd/modules/mod_proxy_ftp.so

Apache HTTPD – virtual hosts, Caching, securing, connecting to EAP | Joel Tosi47

#LoadModule proxy_http_module /var/local/httpd/modules/mod_proxy_http.so

#LoadModule proxy_connect_module /var/local/httpd/modules/mod_proxy_connect.so

#LoadModule proxy_ajp_module /var/local/httpd/modules/mod_proxy_ajp.so

LoadModule cache_module /var/local/httpd/modules/mod_cache.so

LoadModule suexec_module /var/local/httpd/modules/mod_suexec.so

LoadModule disk_cache_module /var/local/httpd/modules/mod_disk_cache.so

LoadModule file_cache_module /var/local/httpd/modules/mod_file_cache.so

LoadModule mem_cache_module /var/local/httpd/modules/mod_mem_cache.so

LoadModule cgi_module /var/local/httpd/modules/mod_cgi.so

#LoadModule jk_module /var/local/httpd/modules/mod_jk.so

LoadModule proxy_module /var/local/httpd/modules/mod_proxy.so

LoadModule proxy_ajp_module /var/local/httpd/modules/mod_proxy_ajp.so

LoadModule slotmem_module /var/local/httpd/modules/mod_slotmem.so

LoadModule manager_module /var/local/httpd/modules/mod_manager.so

LoadModule proxy_cluster_module /var/local/httpd/modules/mod_proxy_cluster.so

LoadModule advertise_module /var/local/httpd/modules/mod_advertise.so

User apache

Group apache

Section 2: 'Main' server configuration

ServerAdmin root@localhost

UseCanonicalName Off

DocumentRoot "/var/local/httpd/www/html"

<Directory />

Apache HTTPD – virtual hosts, Caching, securing, connecting to EAP | Joel Tosi48

 Options FollowSymLinks

 AllowOverride None

</Directory>

<Directory "/var/local/httpd/www/html">

 Options Indexes FollowSymLinks

 AllowOverride None

 Order allow,deny

 Allow from all

</Directory>

<IfModule mod_userdir.c>

 UserDir disable

</IfModule>

DirectoryIndex index.html index.html.var

AccessFileName .htaccess

<Files ~ "^\.ht">

 Order allow,deny

 Deny from all

</Files>

TypesConfig /etc/mime.types

DefaultType text/plain

<IfModule mod_mime_magic.c>

 MIMEMagicFile conf/magic

</IfModule>

Apache HTTPD – virtual hosts, Caching, securing, connecting to EAP | Joel Tosi49

HostnameLookups Off

ErrorLog logs/error_log

LogLevel debug

LogFormat "%h %l %u %t \"%r\" %>s %b \"%{Referer}i\" \"%{User-Agent}i\""

combined

LogFormat "%h %l %u %t \"%r\" %>s %b" common

LogFormat "%{Referer}i -> %U" referer

LogFormat "%{User-agent}i" agent

CustomLog logs/access_log combined

ServerSignature Off

Alias /icons/ "/var/local/httpd/www/icons/"

<Directory "/var/local/httpd/www/icons">

 Options Indexes MultiViews

 AllowOverride None

 Order allow,deny

 Allow from all

</Directory>

<IfModule mod_dav_fs.c>

 DAVLockDB /var/lib/dav/lockdb

</IfModule>

ScriptAlias /cgi-bin/ "/var/local/httpd/www/cgi-bin/"

Apache HTTPD – virtual hosts, Caching, securing, connecting to EAP | Joel Tosi50

<Directory "/var/local/httpd/www/cgi-bin">

 AllowOverride None

 Options None

 Order allow,deny

 Allow from all

</Directory>

IndexOptions FancyIndexing VersionSort NameWidth=* HTMLTable

AddIconByEncoding (CMP,/icons/compressed.gif) x-compress x-gzip

AddIconByType (TXT,/icons/text.gif) text/*

AddIconByType (IMG,/icons/image2.gif) image/*

AddIconByType (SND,/icons/sound2.gif) audio/*

AddIconByType (VID,/icons/movie.gif) video/*

AddIcon /icons/binary.gif .bin .exe

AddIcon /icons/binhex.gif .hqx

AddIcon /icons/tar.gif .tar

AddIcon /icons/world2.gif .wrl .wrl.gz .vrml .vrm .iv

AddIcon /icons/compressed.gif .Z .z .tgz .gz .zip

AddIcon /icons/a.gif .ps .ai .eps

AddIcon /icons/layout.gif .html .shtml .htm .pdf

AddIcon /icons/text.gif .txt

AddIcon /icons/c.gif .c

AddIcon /icons/p.gif .pl .py

AddIcon /icons/f.gif .for

AddIcon /icons/dvi.gif .dvi

Apache HTTPD – virtual hosts, Caching, securing, connecting to EAP | Joel Tosi51

AddIcon /icons/uuencoded.gif .uu

AddIcon /icons/script.gif .conf .sh .shar .csh .ksh .tcl

AddIcon /icons/tex.gif .tex

AddIcon /icons/bomb.gif core

AddIcon /icons/back.gif ..

AddIcon /icons/hand.right.gif README

AddIcon /icons/folder.gif ^^DIRECTORY^^

AddIcon /icons/blank.gif ^^BLANKICON^^

DefaultIcon /icons/unknown.gif

ReadmeName README.html

HeaderName HEADER.html

IndexIgnore .??* *~ *# HEADER* README* RCS CVS *,v *,t

AddLanguage ca .ca

AddLanguage cs .cz .cs

AddLanguage da .dk

AddLanguage de .de

AddLanguage el .el

AddLanguage en .en

AddLanguage eo .eo

AddLanguage es .es

AddLanguage et .et

AddLanguage fr .fr

AddLanguage he .he

Apache HTTPD – virtual hosts, Caching, securing, connecting to EAP | Joel Tosi52

AddLanguage hr .hr

AddLanguage it .it

AddLanguage ja .ja

AddLanguage ko .ko

AddLanguage ltz .ltz

AddLanguage nl .nl

AddLanguage nn .nn

AddLanguage no .no

AddLanguage pl .po

AddLanguage pt .pt

AddLanguage pt-BR .pt-br

AddLanguage ru .ru

AddLanguage sv .sv

AddLanguage zh-CN .zh-cn

AddLanguage zh-TW .zh-tw

LanguagePriority en ca cs da de el eo es et fr he hr it ja ko ltz nl nn no pl

pt pt-BR ru sv zh-CN zh-TW

ForceLanguagePriority Prefer Fallback

AddDefaultCharset UTF-8

AddType application/x-compress .Z

AddType application/x-gzip .gz .tgz

AddHandler type-map var

AddType text/html .shtml

Apache HTTPD – virtual hosts, Caching, securing, connecting to EAP | Joel Tosi53

AddOutputFilter INCLUDES .shtml

Alias /error/ "/var/local/httpd/www/error/"

<IfModule mod_negotiation.c>

<IfModule mod_include.c>

 <Directory "/var/local/httpd/www/error">

 AllowOverride None

 Options IncludesNoExec

 AddOutputFilter Includes html

 AddHandler type-map var

 Order allow,deny

 Allow from all

 LanguagePriority en es de fr

 ForceLanguagePriority Prefer Fallback

 </Directory>

</IfModule>

</IfModule>

BrowserMatch "Mozilla/2" nokeepalive

BrowserMatch "MSIE 4\.0b2;" nokeepalive downgrade-1.0 force-response-1.0

BrowserMatch "RealPlayer 4\.0" force-response-1.0

BrowserMatch "Java/1\.0" force-response-1.0

BrowserMatch "JDK/1\.0" force-response-1.0

BrowserMatch "Microsoft Data Access Internet Publishing Provider" redirect-

carefully

BrowserMatch "MS FrontPage" redirect-carefully

Apache HTTPD – virtual hosts, Caching, securing, connecting to EAP | Joel Tosi54

BrowserMatch "^WebDrive" redirect-carefully

BrowserMatch "^WebDAVFS/1.[0123]" redirect-carefully

BrowserMatch "^gnome-vfs/1.0" redirect-carefully

BrowserMatch "^XML Spy" redirect-carefully

BrowserMatch "^Dreamweaver-WebDAV-SCM1" redirect-carefully

##MOD_CLUSTER ADDITIONS

<Location /mod_cluster-manager>

SetHandler mod_cluster-manager

Order deny,allow

Deny from all

Allow from 127.0.0.1

</Location>

##MOD_JK ADDITIONS

#JkWorkersFile /var/local/httpd/conf/workers.properties

#JkShmFile /var/local/httpd/mod_jk.shm

#JkLogFile /var/local/httpd/logs/mod_jk.log

#JkLogLevel info

#JkLogStampFormat "[%a %b %d %H:%M:%S %Y] "

Section 3: Virtual Hosts

<VirtualHost 127.0.0.1>

 DocumentRoot /home/jtosi/website1

 ServerName www.site1.com

 ErrorLog logs/site1-error.log

 CustomLog logs/site1-access.log common

 CustomLog "|/var/local/httpd/sbin/rotatelogs /var/local/httpd/logs/site1-

access.log 86400" common

Apache HTTPD – virtual hosts, Caching, securing, connecting to EAP | Joel Tosi55

<IfModule mod_cache_disk>

 CacheRoot /home/jtosi/apache/site1cacheroot

 CacheEnable disk /

 CacheDirLevels 5

 CacheDirLength 3

CacheSize 2000000

CacheMinFileSize 4

CacheMaxFileSize 256000

CacheDefaultExpire 86400

CustomLog logs/cached-reqeusts.log common env=cache-hit

CustomLog logs/uncached-requests.log common env=cache-miss

CustomLog logs/revalidated-requests.log common env=cache-revalidate

</IfModule>

We don’t want to cache highly volatile content

#CacheDisable http://www.somedomain.com/real-time-stock-market-quotes/

 <Directory "/home/jtosi/website1">

 Order allow,deny

Apache HTTPD – virtual hosts, Caching, securing, connecting to EAP | Joel Tosi56

 Allow from all

 </Directory>

#JkMountFile /var/local/httpd/conf/uriworkermap.properties

#<Proxy balancer://jbossCluster>

#BalancerMember ajp://127.0.0.1:8009 loadfactor=1

#BalancerMember ajp://127.0.0.1:8109 loadfactor=3

#ProxySet stickysession=JSESSIONID

#</Proxy>

#ProxyPass / balancer://jbossCluster/

#ProxyPassReverse / balancer://jbossCluster/

</VirtualHost>

Listen 127.0.0.1:6666

<VirtualHost 127.0.0.1:6666>

<Location />

 Order deny,allow

 Deny from all

 Allow from 127.0.0.

 </Location>

 KeepAliveTimeout 60

 MaxKeepAliveRequests 0

 ManagerBalancerName mycluster

 ServerAdvertise On

</VirtualHost>

Apache HTTPD – virtual hosts, Caching, securing, connecting to EAP | Joel Tosi57

<VirtualHost 192.168.1.102>

 DocumentRoot /home/jtosi/website2

 ServerName www.site2.come

 ErrorLog logs/site2-error.log

 CustomLog logs/site2-access.log common

 CacheRoot /home/jtosi/apache/site2cacheroot

 CacheEnable disk /

 CacheDirLevels 5

 CacheDirLength 3

 <Directory "/home/jtosi/website2">

 Order allow,deny

 Allow from all

 </Directory>

</VirtualHost>

uriworkermap.properties

Mount the Servlet context to the ajp13 worker

/jmx-console=examplebalancer

/jmx-console/*=examplebalancer

/web-console=examplebalancer

/web-console/*=examplebalancer

/admin-console=examplebalancer

/admin-console/*=examplebalancer

Apache HTTPD – virtual hosts, Caching, securing, connecting to EAP | Joel Tosi58

workers.properties

Define list of workers that will be used

for mapping requests

worker.list=examplebalancer,status

Define Node1

modify the host as your host IP or DNS name.

worker.node1.port=8009

worker.node1.host=localhost

worker.node1.type=ajp13

worker.node1.ping_mode=A

worker.node1.lbfactor=1

Define Node2

modify the host as your host IP or DNS name.

worker.node2.port=8109

worker.node2.host=localhost

worker.node2.type=ajp13

worker.node2.ping_mode=A

worker.node2.lbfactor=3

Load-balancing behaviour

worker.examplebalancer.type=lb

worker.examplebalancer.balance_workers=node1,node2

worker.examplebalancer.sticky_session=1

#worker.list=loadbalancer

Status worker for managing load balancer

Apache HTTPD – virtual hosts, Caching, securing, connecting to EAP | Joel Tosi59

worker.status.type=status

RESOURCES

Apache Directives Reference

A complete explanation as well as a complete listing on the Apache directives can be found on the apache

website at http://httpd.apache.org/

Mod_jk Reference

More information on mod_jk can be found at the mod_jk website at http://tomcat.apache.org/connectors-

doc/index.html Also, please refer to the Mod_jk with multicast whitepaper available on the Red Hat

Customer portal.

Mod_cluster Reference

More information on mod_cluster can be found at http://www.jboss.org/mod_cluster. Also, please refer to

the Mod_cluster with multicast whitepaper available on the Red Hat Customer portal.

Questions/Comments/Issues

If you have questions or comments about this whitepaper, please enter them in the Red Hat customer portal

for this specific whitepaper: https://access.redhat.com/knowledge/techbriefs . If you have a technical issue

following this whitepaper please open a support case: https://access.redhat.com/support/cases/new

Apache HTTPD – virtual hosts, Caching, securing, connecting to EAP | Joel Tosi60

https://access.redhat.com/support/cases/new
https://access.redhat.com/knowledge/techbriefs
http://www.jboss.org/mod_cluster
http://tomcat.apache.org/connectors-doc/index.html
http://tomcat.apache.org/connectors-doc/index.html
http://httpd.apache.org/

