Deploying Oracle Database 12c on Red Hat Enterprise Linux 6

Best Practices

Roger Lopez, Principal Software Engineer
RHCE

Version 1.0
February 2014
Comments and Feedback
In the spirit of open source, we invite anyone to provide feedback and comments on any reference architectures. Although we review our papers internally, sometimes issues or typographical errors are encountered. Feedback allows us to not only improve the quality of the papers we produce, but allows the reader to provide their thoughts on potential improvements and topic expansion to the papers.

Feedback on the papers can be provided by emailing refarch-feedback@redhat.com. Please refer to the title within the email.

Staying In Touch
Join us on some of the popular social media sites where we keep our audience informed on new reference architectures as well as offer related information on things we find interesting.

Like us on Facebook:
https://www.facebook.com/rhrefarch

Follow us on Twitter:
https://twitter.com/RedHatRefArch

Plus us on Google+:
https://plus.google.com/u/0/b/114152126783830728030/

Accessing Reference Architectures
There are two ways to access Red Hat reference architectures:

- The Red Hat customer portal at http://access.redhat.com using a customer login
Table of Contents

1 Executive Summary.. 1

2 Reference Architecture Environment.. 2
 2.1 Reference Architecture Overview... 2
 2.2 Network Topology.. 3
 2.3 Hardware Details... 4
 2.4 File System Layout & Disk Space Details... 5
 2.5 Storage Layout... 6
 2.6 Swap Space.. 6
 2.7 Security: Firewall Settings.. 7
 2.8 Security: SELinux... 7

3 Reference Architecture Configuration Details... 8
 3.1 Setting OS Hostname.. 8
 3.2 Network Configuration... 8
 3.2.1 Configuring /etc/resolv.conf file.. 9
 3.2.2 Public Network Configuration... 9
 3.2.3 NTP Configuration... 11
 3.3 OS Configuration... 12
 3.3.1 Using the Red Hat Subscription Manager (Option A).. 12
 3.3.2 Accessing the RHN Repository (Option B).. 13
 3.3.3 Oracle Database 12c Release 1 (12.1) Package Requirements....................................... 14
 3.3.4 Configuring Security-Enhanced Linux (SELinux).. 16
 3.3.5 Configuring Firewall Settings... 16
 3.3.6 Setting Virtual Memory.. 18
 3.3.7 Setting Shared Memory.. 19
 3.3.8 Setting Semaphores.. 21
 3.3.9 Ephemeral Network Ports.. 21
 3.3.10 Optimizing Network Settings... 22
 3.3.11 Increasing synchronous I/O Requests.. 22
 3.3.12 Increasing File Handles.. 23
 3.3.13 User Accounts & Groups.. 24
 3.3.14 Setting Shell Limits for the Grid and Oracle User.. 25
 3.4 Storage Configuration.. 28
 3.4.1 Setting up DM-Multipath.. 28
1 Executive Summary

IT organizations face challenges of optimizing Oracle database environments to keep up with the ever increasing workload demands and evolving security risks. This reference architecture provides a step-by-step deployment procedure with the latest best practices to install and configure an Oracle Database 12c Release 1 (12.1) with Oracle Automatic Storage Management (ASM). It is suited for system, storage, and database administrators deploying Oracle Database 12c Release 1 (12.1) on Red Hat Enterprise Linux 6. It is intended to provide a Red Hat | Oracle reference architecture that focuses on the following tasks:

- Deploying Oracle Grid Infrastructure 12c Release 1 (12.1.0.1.0)
- Deploying Oracle Database Software 12c Release 1 (12.1.0.1.0)
- Deploying an Oracle Database 12c Release 1 (12.1.0.1.1) with shared SAN disks
- Using Oracle ASM disks with `udev` rules
- Using Oracle ASM with Oracle ASMLib (with SELinux enabled, requires SELinux version 3.7.19-231 available by default in RHEL 6.5)
- Securing the Oracle Database 12c environment with SELinux
2 Reference Architecture Environment

This section focuses on the components used during the deployment of Oracle Database 12c with Oracle Automatic Storage Management (ASM) on Red Hat Enterprise Linux 6 x86_64 in this reference architecture.

2.1 Reference Architecture Overview

A pictorial representation of the environment used in this reference environment is shown in Figure 1: Reference Architecture Overview.
2.2 Network Topology

The network topology used in this reference environment consists of two public switches with a link aggregation that connect the two switches together (Public Switch A and Public Switch B), creating a single logical switch. Ethernet device em1 on the server connects to Public Switch A, while Ethernet device em2 on the server connects to Public Switch B. Ethernet devices em1 and em2 are bonded together as a bond device, bond0, providing high availability for the network traffic. Figure 2.2.1: Network Topology shows the pictorial representation of the two public switches connecting to the server, while Figure 2.2.2: Ethernet Bonding shows the bonding of Ethernet device em1 and em2 as part of the bond0 device.
2.3 Hardware Details

The following are the minimum hardware requirements to properly install Oracle Database 12c on a x86_64 system:

- Minimum of 1 GB of RAM for the installation of both Oracle Grid Infrastructure and Oracle Database, however 2 GB of memory or more is recommended
- Minimum of 1 Network Interface Card (NIC), however 2 NICs are recommended for high availability (HA) as used in the reference environment
- Red Hat Enterprise Linux 6.x Server x86_64 with kernel 2.6.32-71 or higher
- Console access that supports 1024 x 768 resolution to ensure correct display of Oracle's Universal Installer (OUI).

Table 2.3.1: Server Details

This hardware meets the minimum requirements for properly installing Oracle Database 12c Release 1 (12.1) on a x86_64 system.

Table 2.3.1: Server Details

<table>
<thead>
<tr>
<th>Server Hardware</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oracle 12c Release 1 Standalone Server (db-oracle-node1) [1 x HP ProLiant DL370 G6 Server]</td>
<td>Red Hat Enterprise Linux 6.5 kernel 2.6.32-431.el6.x86_64</td>
</tr>
<tr>
<td></td>
<td>2 Socket, 8 Core (16 cores) Intel(R) Xeon(R) CPU W5580 @ 3.20 GHz</td>
</tr>
<tr>
<td></td>
<td>48 GB of memory, DDR3 4096 MB @ 1333 MHz DIMMs</td>
</tr>
<tr>
<td></td>
<td>2 x NetXen NX3031 1/10-Gigabit Network Interface Cards (NICs) for public network</td>
</tr>
<tr>
<td></td>
<td>1 x Qlogic ISP2532 8GB Fibre Channel Dual Port HBA</td>
</tr>
</tbody>
</table>

Table 2.3.2: Switch Details

This specifies the Fibre Channel and Ethernet switches used within this reference environment.

Table 2.3.2: Switch Details

<table>
<thead>
<tr>
<th>Switch Hardware</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2 x Brocade Silkworm Fibre Switches</td>
</tr>
<tr>
<td></td>
<td>2 x HP ProCurve Gigabit Switches</td>
</tr>
</tbody>
</table>
Table 2.3.3: Storage Details specifies the storage used for storing Oracle data files within this reference environment.

<table>
<thead>
<tr>
<th>Storage Hardware</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>HP StorageWorks MSA2324fc Dual Controller Array</td>
<td>24 x 146 GB 15K SAS Hard disks</td>
</tr>
</tbody>
</table>

Table 2.3.3: Storage Details

2.4 File System Layout & Disk Space Details

The following are the minimum disk space requirements for properly installing Oracle Database 12c Release 1 (12.1) software for this reference environment.

<table>
<thead>
<tr>
<th>Software</th>
<th>Disk Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oracle Grid Infrastructure Home (includes software files)</td>
<td>9.7 GB</td>
</tr>
<tr>
<td>Oracle Database Home Enterprise Edition (includes software files and data files)</td>
<td>9.8 GB</td>
</tr>
<tr>
<td>/tmp</td>
<td>1 GB</td>
</tr>
</tbody>
</table>

Table 2.4.1: Disk Space Requirements

NOTE: The actual amount of disk space consumed for Oracle Grid Infrastructure Home and Oracle Database Home Enterprise Edition may vary.

Table 2.4.2: File System Layout specifies the file system layout for the server used in this reference environment. The layout ensures the disk space requirements to properly install the Oracle Grid Infrastructure and Oracle Database software for Oracle Database 12c Release 1 (12.1).

<table>
<thead>
<tr>
<th>File System Layout</th>
<th>Disk Space Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>/</td>
<td>15 GB</td>
</tr>
<tr>
<td>/dev/shm</td>
<td>24 GB</td>
</tr>
<tr>
<td>/boot</td>
<td>248 MB</td>
</tr>
<tr>
<td>/home</td>
<td>8 GB</td>
</tr>
<tr>
<td>/tmp</td>
<td>4 GB</td>
</tr>
<tr>
<td>/u01</td>
<td>50 GB</td>
</tr>
<tr>
<td>/usr</td>
<td>5 GB</td>
</tr>
<tr>
<td>/var</td>
<td>8 GB</td>
</tr>
</tbody>
</table>

Table 2.4.2: File System Layout
While the size of the Oracle data files varies for each solution, the following are the Oracle data file sizes used for this reference environment.

<table>
<thead>
<tr>
<th>Volume</th>
<th>Volume Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oracle Database Volume 1 (db1)</td>
<td>100 GB</td>
</tr>
<tr>
<td>Oracle Database Volume 2 (db2)</td>
<td>100 GB</td>
</tr>
<tr>
<td>Fast Recovery Area (fra)</td>
<td>200 GB</td>
</tr>
<tr>
<td>Oracle Redo Log Volume (redo)</td>
<td>10 GB</td>
</tr>
</tbody>
</table>

Table 2.4.3: Oracle Data File Sizes for Reference Architecture

2.5 Storage Layout

Table 2.5.1: Storage Disk Layout for Reference Architecture shows the storage disk layout for each volume.

<table>
<thead>
<tr>
<th>Virtual Diskgroup Name</th>
<th>Volume Name</th>
<th>Volume Size</th>
<th>RAID Group Type</th>
<th>Hard Drive Count</th>
<th>Hot Spares Available</th>
<th>Size of Virtual Disk</th>
</tr>
</thead>
<tbody>
<tr>
<td>vd01</td>
<td>db1</td>
<td>100 GB</td>
<td>Raid 10</td>
<td>8</td>
<td>1</td>
<td>586 GB</td>
</tr>
<tr>
<td>vd02</td>
<td>db2</td>
<td>100 GB</td>
<td>Raid 10</td>
<td>8</td>
<td>1</td>
<td>586 GB</td>
</tr>
<tr>
<td>vd03</td>
<td>fra</td>
<td>200 GB</td>
<td>Raid 5</td>
<td>5</td>
<td>0</td>
<td>586 GB</td>
</tr>
<tr>
<td>vd04</td>
<td>redo</td>
<td>10 GB</td>
<td>Raid 1</td>
<td>2</td>
<td>0</td>
<td>146 GB</td>
</tr>
</tbody>
</table>

Table 2.5.1: Storage Disk Layout for Reference Architecture

2.6 Swap Space

Swap space is determined by the amount of RAM found within the system. The following table displays the swap space recommendation. This reference environment allocates 16 GB of RAM for swap space.

<table>
<thead>
<tr>
<th>RAM</th>
<th>Swap Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 GB up to 16 GB</td>
<td>Equal to the size of RAM</td>
</tr>
<tr>
<td>Greater than 16 GB</td>
<td>16 GB of RAM</td>
</tr>
</tbody>
</table>

Table 2.6.1: Recommended Swap Space

NOTE: When calculating swap space, ensure not to include RAM assigned for hugepages. More information on hugepages can be found in *Section 4.1.5 Enabling HugePages*
2.7 Security: Firewall Settings

This section focuses on providing the details required to run `iptables` successfully for an Oracle Database environment. **Table 2.7.1: Firewall Settings** lists the enabled ports in this reference environment.

<table>
<thead>
<tr>
<th>Port</th>
<th>Protocol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>TCP</td>
<td>Secure Shell (SSH)</td>
</tr>
<tr>
<td>443</td>
<td>TCP</td>
<td>Hypertext Transfer Protocol over SSL/TLS (HTTPS)</td>
</tr>
<tr>
<td>1521</td>
<td>TCP</td>
<td>Oracle Transparent Network Substrate (TNS) Listener default port</td>
</tr>
<tr>
<td>5500</td>
<td>TCP</td>
<td>EM Express 12c default port</td>
</tr>
</tbody>
</table>

Table 2.7.1: Firewall Settings

2.8 Security: SELinux

Starting with Oracle 11g Release 2 version 11.2.0.3, SELinux is supported for Oracle database environments. The system in this reference environment runs with SELinux enabled and set to `ENFORCING` mode. **Table 2.8.1: SELinux Packages** lists the required SELinux packages. In order to take advantage of SELinux enablement with Oracle ASMLib, SELinux version 3.7.19-211 or higher is required. With the release of Red Hat Enterprise Linux 6.5, this requirement is met and no further action is required.

<table>
<thead>
<tr>
<th>Package</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>selinux-policy</td>
<td>3.7.19-231</td>
</tr>
<tr>
<td>selinux-policy-targeted</td>
<td>3.7.19-231</td>
</tr>
</tbody>
</table>

Table 2.8.1: SELinux Packages
3 Reference Architecture Configuration Details

This reference architecture focuses on the deployment of Oracle Database 12c Release 1 (12.1) with Oracle Automatic Storage Management (ASM) on Red Hat Enterprise Linux 6 x86_64. The configuration is intended to provide a comprehensive Red Hat | Oracle solution. The key solution components covered within this reference architecture consists of:

- Red Hat Enterprise Linux 6 Update 5
- Oracle Grid Infrastructure 12c Release 1 (12.1.0.1.0)
- Oracle Database 12c Release 1 Software Installation (12.1.0.1.0)
- Deploying an Oracle Database 12c Release 1 (12.1.0.1.0) with shared SAN disks
- Enabling Security-Enhanced Linux (SELinux)
- Configuring Device Mapper Multipathing
- Using udev Rules
- Using Oracle ASMLib (with SELinux enabled, requires SELinux version 3.7.19-231 available by default within RHEL 6.5)

3.1 Setting OS Hostname

A unique host name is required for the installation of Oracle Database 12c Release 1 (12.1) The host name within this reference environment is: `db-oracle-node1`. To set the host name, please follow the instructions below.

Set the host name via the use of the `hostname` command. An example of setting `db-oracle-node1` host name is shown below.

```
# hostname db-oracle-node1.cloud.lab.eng.bos.redhat.com
```

Edit the `/etc/sysconfig/network` file's host name variable with the host name provided above. An example of the `/etc/sysconfig/network` file on `db-oracle-node1` is shown below.

```
# cat /etc/sysconfig/network
NETWORKING=yes
HOSTNAME=db-oracle-node1.cloud.lab.eng.bos.redhat.com
NOZEROCONF=yes
```

3.2 Network Configuration

The network configuration focuses on the proper creation of a bonded network interface. It ensures the `NetworkManager` is disabled, and configures the `/etc/resolv.conf` file. The bonded network interface provides an Oracle environment with high availability in case of a public network interface failure.
3.2.1 Configuring /etc/resolv.conf file

The resolver is a set of routines in the C library that provides access to the Internet Domain Name System (DNS). The resolver configuration file contains information that is read by the resolver routines the first time they are invoked by a process. The file is designed to be human readable and contains a list of keywords with values that provide various types of resolver information. The /etc/resolv.conf file for this reference environment consists of two configuration options: nameserver and search. The search option is used to search for a host name that is part of a particular domain. The nameserver option is the IP address of the name server the system (db-oracle-node1) must query. If more than one nameserver is listed, the resolver library queries them in order. An example of the /etc/resolv.conf file used on the reference environment is shown below.

```
cat /etc/resolv.conf
search cloud.lab.eng.bos.redhat.com
nameserver 10.16.143.247
nameserver 10.16.143.248
nameserver 10.16.255.2
```

3.2.2 Public Network Configuration

The public network configuration consists of two network interfaces bonded together to provide high availability. The example below shows how to bond physical interfaces em1 and em2 with a bond device labeled bond0. If NetworkManager is installed, ensure it is disabled.

Check the status of NetworkManager:

```
# chkconfig --list | grep NetworkManager
NetworkManager 0:off 1:off 2:off 3:off 4:off 5:off 6:off
```

Disable NetworkManager:

```
# service NetworkManager stop
# chkconfig NetworkManager off
```

As the root user, execute the following command which creates a file named bonding.conf within the /etc/modprobe.d/ directory needed to create a bonded device for multiple network interfaces. The bonding.conf file is also part of Appendix K Configuration Files.

```
# echo "alias bond0 bonding" > /etc/modprobe.d/bonding.conf
```

1 Linux man pages – man resolv.conf
As the root user, create a backup of the `ifcfg-em1` & `ifcfg-em2` files, create the `ifcfg-bond0` file and edit the `ifcfg-em1` & `ifcfg-em2` configuration files found within `/etc/sysconfig/network-scripts`. An example can be seen below.

```bash
# cp /etc/sysconfig/network-scripts/ifcfg-em1 /etc/sysconfig/network-scripts/ifcfg-em1.bkup
# cp /etc/sysconfig/network-scripts/ifcfg-em2 /etc/sysconfig/network-scripts/ifcfg-em2.bkup

# cat /etc/sysconfig/network-scripts/ifcfg-bond0

DEVICE="bond0"
BONDING_OPTS="mode=1 miimon=100 primary=em1"
NM_CONTROLLED="no"
IPADDR="10.16.142.51"
NETMASK="255.255.248.0"
GATEWAY="10.16.143.254"
ONBOOT="yes"

# cat /etc/sysconfig/network-scripts/ifcfg-em1

DEVICE="em1"
BOOTPROTO="none"
HWADDR="00:25:B3:A8:6F:18"
IPV6INIT="no"
NM_CONTROLLED="no"
ONBOOT="yes"
TYPE="Ethernet"
UUID="3db45d28-e63c-401b-906a-ef095de4fc1e"
SLAVE="yes"
MASTER="bond0"

# cat /etc/sysconfig/network-scripts/ifcfg-em2

DEVICE="em2"
BOOTPROTO="none"
HWADDR="00:25:B3:A8:6F:19"
IPV6INIT="no"
NM_CONTROLLED="no"
ONBOOT="yes"
TYPE="Ethernet"
UUID="7d29d87f-52bb-4dc6-88ca-d0857c7d7fd9"
SLAVE="yes"
MASTER="bond0"

After all the network scripts are configured, restart the network service via the command:

```
service network restart
Shutting down interface bond0: [OK]
Shutting down loopback interface: [OK]
Bringing up loopback interface: [OK]
Bringing up interface bond0: [OK]
```
3.2.3 NTP Configuration

The `ntpd` program is an operating system daemon which sets and maintains the system time, synchronizing with Internet standard time servers\(^2\). The `ntpd` program operates by exchanging messages with one or more configured servers at designated poll intervals.

To configure the `ntpd` daemon, follow the instructions below.

1. Edit the `/etc/ntp.conf` file with a text editor such as `vi`.

```bash
vi /etc/ntp.conf
```

2. Locate the following public server pool section, and modify to include the appropriate NTP servers. For the purposes of this reference environment, only one NTP server is used, but three is recommended. The `iburst` option is added to speed up the time in which it takes to properly sync with the NTP servers.

```bash
Use public servers from the pool.ntp.org project.
Please consider joining the pool (http://www.pool.ntp.org/join.html).
server 10.16.255.2 iburst
```

3. Save all the changes within the `/etc/ntp.conf` file

4. Restart the ntpd daemon via the command:

```bash
service ntpd restart
Shutting down ntpd: [FAILED]
Starting ntpd: [OK]
```

**NOTE:** Shutting down `ntpd` daemon provides a status of 'FAILED' if the `ntpd` daemon is currently off.

5. Ensure that the ntpd daemon is started when the system is booted.

```bash
chkconfig ntpd on
```

---

\(^2\) `ntpd` – Network Time Protocol (NTP) daemon man page – `man ntpd (8)`
3.3 OS Configuration

3.3.1 Using the Red Hat Subscription Manager (Option A)

The subscription-manager command is used to register systems to the Red Hat Network (RHN) and to manage the subscription entitlements for the systems. The --help option can be specified on the command line to query the command for the available options. If the --help option is issued along with a command directive, then options available for the specific command directive are listed.

To use Red Hat Subscription Management for providing packages to a system, the system must first register with the service. To register a system, use the subscription-manager command and pass the register command directive. If the --username and --password options are specified, then the command will not prompt for the RHN Network authentication credentials.

An example of registering a system using subscription-manager is shown below.

```
subscription-manager register --username [User] --password '[Password]'
The system has been registered with id: abcd1234-ab12-ab12-ab12-481ba8187f60
```

After a system is registered, it must be attached to an entitlement pool. For the purposes of this reference environment, the Red Hat Enterprise Linux Server is the pool chosen. To identify and subscribe to the Red Hat Enterprise Linux Server entitlement pool, the following command directives are required.

```
subscription-manager list --available | grep -A8 "Red Hat Enterprise Linux Server"
Subscription Name: Red Hat Enterprise Linux Server, Standard (8 sockets) (Unlimited guests)
Provides: Red Hat Beta
Red Hat Enterprise Linux 7 Public Beta
Red Hat Enterprise Linux Server
Red Hat Software Collections Beta (for RHEL Server)
SKU: RH0186633
Pool ID: 8a85f984411b738d01415681d1ec393f
Available: 199
Suggested: 1
Service Level: STANDARD
Service Type: L1-L3
Multi-Entitlement: No
```

```
subscription-manager attach --pool 8a85f984411b738d01415681d1ec393f
Successfully attached a subscription for: Red Hat Enterprise Linux Server, Standard (8 sockets) (Unlimited guests)
```
The Red Hat Enterprise Linux supplementary repository is part of subscribing to the Red Hat Enterprise Linux Server entitlement pool, however, it is disabled by default. To enable the supplementary repository, use the `yum-config-manager` command.

**NOTE:** The following step is optional and only required when implementing the use of Oracle ASMLib as shown in Section 3.4.3.2 Configuring Oracle ASMLib. Implementing Oracle ASMLib is not required in order to use Oracle ASM disks. This reference architecture features two methods of implementation Section 3.4.3.1 Oracle ASMLib Alternative: Configuring udev Rules and Section 3.4.3.2 Configuring Oracle ASMLib

```bash
yum-config-manager --enable rhel-6-server-supplementary-rpms
Loaded plugins: product-id
== repo: rhel-6-server-supplementary-rpms
===
[rhel-6-server-supplementary-rpms]
bandwidth = 0
base_persistdir = /var/lib/yum/repos/x86_64/6Server
baseurl = https://cdn.redhat.com/content/dist/rhel/server/6/6Server/x86_64/supplementary/os
cache = 0
cachedir = /var/cache/yum/x86_64/6Server/rhel-6-server-supplementary-rpms
cost = 1000
enabled = 1

[... Output Abbreviated ...]
```

For more information on the use of Red Hat Subscription Manager, please visit the Red Hat Enterprise Linux 6 documentation

### 3.3.2 Accessing the RHN Repository (Option B)

Instructions on how to register a system and manage subscriptions on Red Hat Enterprise Linux 6 can be found within the Red Hat Linux 6 Deployment Guide documentation.

**NOTE:** If Section 3.3.1 Using the Red Hat Subscription Manager (Option A) is setup, please skip this section.

---


The following table shows the required channels via the Red Hat Network to support the installation of Oracle.

<table>
<thead>
<tr>
<th>Channel</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>rhel-x86_64-server-6</td>
<td>RHN Classic</td>
</tr>
<tr>
<td>rhel-x86_64-server-supplementary-6</td>
<td>RHN Classic</td>
</tr>
<tr>
<td>(optional if not configuring ASMLib)</td>
<td></td>
</tr>
</tbody>
</table>

**Table 3.3.2.1: Required Channels**

**NOTE:** The rhel-x86_64-server-supplementary-6 channel is a requirement for the implementation of Oracle ASMLib found in Section 3.4.3.2 Configuring Oracle ASMLib. However, Oracle ASMLib is not required for the use of Oracle ASM disks. This reference architecture features two methods of implementation Section 3.4.3.1 Oracle ASMLib Alternative: Configuring udev Rules and Section 3.4.3.2 Configuring Oracle ASMLib

### 3.3.3 Oracle Database 12c Release 1 (12.1) Package Requirements

A specific set of packages is required to properly deploy Oracle Database 12c Release 1 (12.1) on Red Hat Enterprise Linux 6 (x86_64). The number of installed packages required varies depending on whether a default or minimal installation of Red Hat Enterprise Linux 6 (x86_64) is performed. For the purposes of this reference environment, a minimal Red Hat Enterprise Linux 6 installation is performed to reduce the number of installed packages. A sample kickstart file as been provided within Appendix K Configuration Files. Red Hat Enterprise Linux 6 installation requires the following group packages:

<table>
<thead>
<tr>
<th>Required Group Packages</th>
</tr>
</thead>
<tbody>
<tr>
<td>@Base</td>
</tr>
<tr>
<td>@Core</td>
</tr>
</tbody>
</table>

**Table 3.3.3.1: Group Packages**
Oracle Grid Infrastructure 12.1 and Oracle Database 12.1 required x86_64 RPM packages:

<table>
<thead>
<tr>
<th>Required Packages</th>
</tr>
</thead>
<tbody>
<tr>
<td>cloog-ppl</td>
</tr>
<tr>
<td>compat-libcap1</td>
</tr>
<tr>
<td>compat-libstdc++-33</td>
</tr>
<tr>
<td>cpp</td>
</tr>
<tr>
<td>gcc</td>
</tr>
<tr>
<td>gcc-c++</td>
</tr>
<tr>
<td>glibc-devel</td>
</tr>
<tr>
<td>glibc-headers</td>
</tr>
<tr>
<td>kernel-headers</td>
</tr>
<tr>
<td>libXmu</td>
</tr>
<tr>
<td>libXt</td>
</tr>
<tr>
<td>ksh</td>
</tr>
<tr>
<td>libXxf86misc</td>
</tr>
<tr>
<td>libXxf86vm</td>
</tr>
<tr>
<td>libaio-devel</td>
</tr>
<tr>
<td>libdmx</td>
</tr>
<tr>
<td>libstdc++-devel</td>
</tr>
<tr>
<td>mpfr</td>
</tr>
<tr>
<td>make</td>
</tr>
<tr>
<td>ppl</td>
</tr>
<tr>
<td>xorg-x11-utils</td>
</tr>
<tr>
<td>xorg-x11-xauth</td>
</tr>
<tr>
<td>libXv</td>
</tr>
<tr>
<td>libXxf86dga</td>
</tr>
</tbody>
</table>

Table 3.3.3.2: Required Packages

After the installation of Red Hat Enterprise Linux 6 is completed, create a file, `req-rpm.txt`, that contains the name of each RPM package listed above on a separate line. For simplicity, this `req-rpm.txt` file is included in Appendix F Oracle Database Package Requirements Text File.

Use the `yum` package manager to install the packages and any of their dependencies with the following command:

```
yum install `awk '{print $1}' ./req-rpm.txt`
```

A minimum installation of Red Hat Enterprise Linux 6 does not install the X Window System server package, but only the required X11 client libraries. In order to run the Oracle Universal Installer (OUI), a system with the X Window System server package installed is required. Using a system with X Window System installed, SSH into the Oracle Database server with the -Y option to ensure trusted X11 forwarding is set. The command is as follows:

```
ssh -Y db-oracle-node1
```

Alternatively, if a system with the X Window System server package is unavailable, install the X Window System server package directly on the Oracle Database Server.

```
yum groupinstall "X Window System"
```

---

5 Linux OS Installation with Reduced Set of Packages for Running Oracle Database Server [ID 728346.1] via [http://support.oracle.com](http://support.oracle.com)
3.3.4 Configuring Security-Enhanced Linux (SELinux)

SELinux is an implementation of a mandatory access control (MAC) mechanism developed by the National Security Agency (NSA). The purpose of SELinux is to apply rules on files and processes based on defined policies. When policies are appropriately defined, a system running SELinux enhances application security by determining if an action from a particular process should be granted thus protecting against vulnerabilities within a system. The implementation of Red Hat Enterprise Linux 6 enables SELinux by default and appropriately sets it to the default setting of `ENFORCING`. It is highly recommended that SELinux be kept in `ENFORCING` mode when running Oracle Database 12c Release 1 (12.1).

Verify that SELinux is running and set to `ENFORCING`:

As the root user,

```
sestatus
SELinux status: enabled
SELinuxfs mount: /selinux
Current mode: enforcing
Mode from config file: enforcing
Policy version: 24
Policy from config file: targeted
```

If the system is running in `PERMISSIVE` or `DISABLED` mode, modify the `/etc/selinux/config` file and set SELinux to enforcing as shown below.

```
SELINUX=enforcing
```

The modification of the `/etc/selinux/config` file takes effect after a reboot. To change the setting of SELinux immediately without a reboot, run the following command:

```
setenforce 1
```

For more information on Security-Enhanced Linux, please visit the [Red Hat Enterprise Linux 6 Security-Enhanced Linux User Guide](https://www.redhat.com/refarch-feedback@redhat.com)

3.3.5 Configuring Firewall Settings

Firewall access and restrictions play a critical role in securing your Oracle Database 12c Release 1 (12.1) environment. It is recommended that the firewall settings be configured to permit access to the Oracle Database network ports only from authorized database or database-management clients. For example, in order to allow access to a specific database client with an IP address of 10.16.142.54 and to make requests to the database server via SQL*Net using Oracle's TNS (Transparent Network Substrate) Listener (default port of 1521), the following firewall rule must be added to the `iptables` configuration file found at `/etc/sysconfig/iptables`.

```
-A INPUT -m state --state NEW -m tcp -p tcp -s 10.16.142.54 --dport 1521 -j ACCEPT
```
Likewise, if a particular database client with an IP address of 10.16.142.54 required access to the web-based EM Express that uses the default port of 5500, the following firewall rule must be added to the `iptables` configuration file found at `/etc/sysconfig/iptables`.

```
-A INPUT -m state --state NEW -m tcp -p tcp -s 10.16.142.54 --dport 5500 -j ACCEPT
```

Once the rules have been modified within the `/etc/sysconfig/iptables`, run the following command to activate:

```
service iptables restart
iptables: Setting chains to policy ACCEPT: nat mangle filter [OK]
iptables: Flushing firewall rules: [OK]
iptables: Unloading modules: [OK]
iptables: Applying firewall rules: [OK]
```

**NOTE:** A full listing of all the firewall settings within the `/etc/sysconfig/iptables` file for this reference architecture can be found at Appendix D Iptables Configuration File.
3.3.6 Setting Virtual Memory

Tuning virtual memory requires the modification of five kernel parameters that affect the rate at which virtual memory is used within Oracle databases. It is important to note the recommended values listed are to be used as a starting point when setting virtual memory.

A brief description and recommended settings for the virtual memory parameters, as well as, the definition of dirty data are described below.

**SWAPPINESS** - A value from 0 to 100 which controls the degree to which the system swaps. A high value prioritizes system performance, aggressively swapping processes out of physical memory when they are not active. A low value prioritizes interactivity and avoids swapping processes out of physical memory for as long as possible, which decreases response latency. The default value is 60. The Oracle recommended value is 0.

**DIRTY DATA** – Dirty data is data that has been modified and held in the page cache for performance benefits. Once the data is flushed to disk, the data is clean.

**DIRTY_RATIO** – Contains, as a percentage of total system memory, the number of pages at which a process which is generating disk writes will itself start writing out dirty data. The default value is 20. The recommended value is 80. The reasoning behind increasing the value from the standard Oracle 15 recommendation to 80 is because dirty ratio defines the maximum percentage of total memory that be can be filled with dirty pages before user processes are forced to write dirty buffers themselves during their time slice instead of being allowed to do more writes. All processes are blocked for writes when this occurs, not just the processes that filled the write buffers. This can cause what is perceived as unfair behavior where a single process can hog all the I/O on a system. As for all parameters in this reference architecture, there is no “one-size fits all” value and the recommendation should be only seen as a starting point.

**DIRTY_BACKGROUND_RATIO** – Contains, as a percentage of total system memory, the number of pages at which the background write back daemon will start writing out dirty data. The Oracle recommended value is 3.

**DIRTY_EXPIRE_CENTISECS** - Defines when dirty in-memory data is old enough to be eligible for writeout. The default value is 3000, expressed in hundredths of a second. The Oracle recommended value is 500.

**DIRTY_WRITEBACK_CENTISECS** - Defines the interval of when writes of dirty in-memory data are written out to disk. The default value is 500, expressed in hundredths of a second. The Oracle recommended value is 100.

Prior to making any changes to the `/etc/sysctl.conf` ensure to create a backup as follows:

```bash
cp /etc/sysctl.conf /etc/sysctl.conf.bkup
```
The following is a snippet from the `/etc/sysctl.conf` file with the five virtual memory parameters set with the recommended settings:

```
vm.swappiness = 0
vm.dirty_background_ratio = 3
vm.dirty_ratio = 80
vm.dirty_expire_centisecs = 500
vm.dirty_writeback_centisecs = 100
```

For the changes to take effect immediately, run the following command:

```
sysctl -p
```

**NOTE:** A full listing of all the kernel parameters modified within the `/etc/sysctl.conf` file can be found at Appendix G Kernel Parameters.

### 3.3.7 Setting Shared Memory (SHMMAX, SHMALL, SHMMNI)

Shared memory allows processes to communicate with each other by placing regions of memory into memory segments. In the case of Oracle, shared memory segments are used by the System Global Area (SGA) to store incoming data and control information. The size of Oracle's SGA impacts the amount of shared memory pages and shared memory segments to be set within a system. By default, Red Hat Enterprise Linux 6 provides a large amount of shared memory pages and segments. However, the appropriate allocation for a system depends on the size of the SGA within an Oracle database instance.

In order to allocate the appropriate amount of shared memory pages and shared memory segments for a system running an Oracle database, the kernel parameters `SHMMAX`, `SHMALL`, and `SHMMNI` must be set.

- **SHMMAX** – is the maximum size in bytes of a single shared memory segment
- **SHMALL** – is the maximum total amount of shared memory pages
- **SHMMNI** – is the maximum total amount of shared memory segments

A default installation of Red Hat Enterprise Linux 6 x86_64 provides a maximum size of a single shared memory segment, `SHMMAX`, to 68719476736 bytes, equivalent to 64 GB. This value is important since it regulates the largest possible size of one single Oracle SGA shared memory segment. If the Oracle SGA is larger than the value specified by `SHMMAX` (default 64 GB), then Oracle will be required to create multiple smaller shared memory segments to completely fit Oracle's SGA. This can cause a significant performance penalty, especially in NUMA environments. In an optimal NUMA configuration, a single shared memory segment for Oracle's SGA is created on each NUMA node. If `SHMMAX` is not properly sized and creates multiple shared memory segments, `SHMMAX` limitations may keep the system from evenly distributing the shared memory segments across each NUMA node. To determine a proper `SHMMAX` value, the Oracle Database parameter `SGA_MAX_SIZE` needs to be analyzed. If intending to set `SGA_MAX_SIZE` to a value larger than 64 GB, set `SHMMAX` to a size in bytes larger than the `SGA_MAX_SIZE`. If in doubt on how to properly set `SHMMAX`, a value of 4398046511104 (4 TB) can be used. This value is purposely set higher than the architectural memory limits to ensure that any Oracle SGA value set within an Oracle database instance...
may fit in one single shared memory segment.

After calculating \texttt{SHMMAX}, the next step is to determine the maximum amount of shared memory pages (\texttt{SHMALL}) in a system by capturing system’s page size in bytes. The following command can be used to obtain the system page size.

\begin{verbatim}
# getconf PAGE_SIZE
4096
\end{verbatim}

A default installation of Red Hat Enterprise Linux 6 x86_64 provides a \texttt{SHMALL} value of $4294967296$, the equivalent of 16 TB in system pages. This is determined by the following:

\begin{equation}
\text{SHMALL IN BYTES} \times \text{PAGE\_SIZE}
\end{equation}

From the example above, $4294967296$ bytes $\times$ $4096$ bytes $= 17592186044416$ bytes $= 16$ TB in system pages

To ensure an adequate amount of memory pages are allocated to a single Oracle SGA, it is recommended that the value of \texttt{SHMALL} be set to the following:

\begin{equation}
\text{SHMMAX IN BYTES} \div \text{PAGE\_SIZE}
\end{equation}

For example, on a system with the \texttt{SHMMAX} set to $4398046511104$, the value of \texttt{SHMALL} is calculated as follows:

\begin{verbatim}
# echo "4398046511104 / 4096" | bc
1073741824
\end{verbatim}

\texttt{SHMMNI} is the maximum total amount of shared memory segments. A default installation of Red Hat Enterprise Linux 6 x86_64 provides a \texttt{SHMMNI} default value of 4096. By optimizing the \texttt{SHMMAX} value with one shared memory segment per Oracle SGA, this parameter reflects the maximum number of Oracle and ASM instances that can be started on a system. Oracle recommends the value of \texttt{SHMMNI} to be left at the default value of 4096.

Snippet of the /etc/sysctl.conf file:

\begin{verbatim}
kernel.shmmax = 4398046511104
kernel.shmall = 1073741824
kernel.shmmni = 4096
\end{verbatim}

In order for the changes take effect immediately, run the following command:

\begin{verbatim}
# sysctl -p
\end{verbatim}

\textbf{NOTE:} A full listing of all the kernel parameters modified within the /etc/sysctl.conf file can be found at \texttt{Appendix G Kernel Parameters}.  

\url{www.redhat.com}
3.3.8 Setting Semaphores (SEMMSL, SEMMNI, SEMMNS)

Red Hat Enterprise Linux 6 provides semaphores for synchronization of information between processes. The kernel parameter `sem` is composed of four parameters:

- **SEMMSL** – is defined as the maximum number of semaphores per semaphore set
- **SEMMNI** – is defined as the maximum number of semaphore sets for the entire system
- **SEMMNS** – is defined as the total number of semaphores for the entire system

**NOTE:** SEMMNS is calculated by SEMMSL * SEMMNI

**SEMOPM** – is defined as the total number of semaphore operations performed per semop system call.

The following line is required within the `/etc/sysctl.conf` file to provide sufficient semaphores for Oracle:

```plaintext
kernel.sem = 250 32000 100 128
```

In order for the changes to take effect immediately, run the following command:

```
sysctl -p
```

**NOTE:** A full listing of all the kernel parameters modified within the `/etc/sysctl.conf` file can be found at Appendix G Kernel Parameters.

3.3.9 Ephemeral Network Ports

Oracle recommends setting the ephemeral default port range be set starting at 9000 to 65500. This ensures that all well known ports used by Oracle and other applications are avoided. To set the ephemeral port range, modify the `/etc/sysctl.conf` file and add the following line:

```plaintext
net.ipv4.ip_local_port_range = 9000 65500
```

In order for the changes to take effect immediately, run the following command:

```
sysctl -p
```

**NOTE:** A full listing of all the kernel parameters modified within the `/etc/sysctl.conf` file can be found at Appendix G Kernel Parameters.
3.3.10 Optimizing Network Settings

Optimizing the network settings for the default and maximum buffers for the application sockets in Oracle is done by setting static sizes to \textit{RMEM} and \textit{WMEM}. The \textit{RMEM} parameter represents the receive buffer size, while the \textit{WMEM} represents the send buffer size. The recommended values by Oracle are configured within the \textit{/etc/sysctl.conf} file.

\begin{verbatim}
net.core.rmem_default = 262144
net.core.rmem_max = 4194304
net.core.wmem_default = 262144
net.core.wmem_max = 1048576
\end{verbatim}

In order to make the changes take effect immediately, run the following command:

\begin{verbatim}
# sysctl -p
\end{verbatim}

\textbf{NOTE:} A full listing of all the kernel parameters modified within the \textit{/etc/sysctl.conf} file can be found at \textbf{Appendix G Kernel Parameters}.

3.3.11 Increasing synchronous I/O Requests

The kernel parameter \texttt{FS.AIO-MAX-NR} sets the maximum number of current asynchronous I/O requests. Oracle recommends setting the value to 1048576. In order to add \texttt{FS.AIO-MAX-NR} to 1048576, modify the \textit{/etc/sysctl.conf} file as follows:

\begin{verbatim}
fs.aio-max-nr = 1048576
\end{verbatim}

In order for the changes take effect immediately, run the following command:

\begin{verbatim}
# sysctl -p
\end{verbatim}

\textbf{NOTE:} A full listing of all the kernel parameters modified within the \textit{/etc/sysctl.conf} file can be found at \textbf{Appendix G Kernel Parameters}.
3.3.12 Increasing File Handles

The kernel parameter `FS.FILE-MAX` sets the maximum number of open file handles assigned to the Red Hat Enterprise Linux 6 operating system. Oracle recommends that for each Oracle database instance found within a system, allocate `512*PROCESSES` in addition to the open file handles already assigned to the Red Hat Enterprise Linux 6 operating system. `PROCESSES` within a database instance refers to the maximum number of processes that can be concurrently connected to the Oracle database by the `oracle` user. The default value for `PROCESSES` is 300 for Oracle Database 12c Release 1 (12.1). To properly calculate the `FS.FILE-MAX` for a system, first identify the current `FS.FILE-MAX` allocated to the system via the following command:

```
cat /proc/sys/fs/file-max
32768
```

Next, add all the `PROCESSES` together from each Oracle database instance found within the system and multiple by 512 as seen in the following command.

```
echo "512 * 300" | bc
153600
```

**NOTE:** To determine the current `PROCESSES` value, log into each Oracle database instance and run the following command below. Since no Oracle database has yet been created within this reference environment, the default value of 300 `PROCESSES` is used.

```
SQL> show parameter processes;
```

<table>
<thead>
<tr>
<th>NAME</th>
<th>TYPE</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>processes</td>
<td>integer</td>
<td>300</td>
</tr>
</tbody>
</table>

Finally, add the current `FS.FILE-MAX` value with the new value found from multiplying `512*PROCESSES` to attain the new `FS.FILE-MAX` value.

```
echo "32768 + 153600" | bc
186368
```

While the value of the `FS.FILE-MAX` parameter varies upon every environment, this reference environment sets the value at 6815744. Oracle recommends a value no smaller than 6815744. Due to the calculation in the above example equating to 186368, the minimum Oracle recommended value is used. In order to add `FS.FILE-MAX` to 6815744, modify the `/etc/sysctl.conf` file as follows:

```
fs.file-max = 6815744
```

In order for the changes take effect immediately, run the following command:

```
sysctl -p
```
NOTE: Oracle ASMLib does not open file descriptors for each device, but instead opens one file descriptor per Oracle process. This reference environment features both methods of implementation, Section 3.4.3.1 Oracle ASMLib Alternative: Configuring udev Rules and Section 3.4.3.2 Configuring Oracle ASMLib. However, during the installation of Oracle Database 12c Release 1 (12.1) the \texttt{FS.FILE-MAX} kernel parameter must be set to at least 6815744.

NOTE: It is recommended to revisit the \texttt{FS.FILE-MAX} value if the \texttt{PROCESSES} value is increased for any Oracle database instances created.

NOTE: A full listing of all the kernel parameters modified within the \texttt{/etc/sysctl.conf} file can be found at Appendix G Kernel Parameters.

### 3.3.13 User Accounts & Groups

Prior to the installation of Oracle Database 12c Release 1 (12.1), Oracle recommends the creation of a grid user for the Oracle Grid Infrastructure and an oracle user for the Oracle Database software installed on the system. For the purposes of this reference environment, the Oracle Grid Infrastructure for a standalone server software owner is the user \texttt{grid} and the Oracle Database software owner is the user \texttt{oracle}. Each user is designated different groups to handle specific roles based on the software installed. However, the creation of separate users requires that both the oracle user and the grid user have a common primary group, the Oracle central inventory group (\texttt{OINSTALL}).

The following are the recommended system groups created for the installation of the Oracle Database and part of the oracle user.

- **OSDBA group (\texttt{dba})** – determines OS user accounts with DBA privileges
- **OSOPER group (\texttt{oper})** – an optional group created to assign limited DBA privileges (\texttt{SYSOPER} privilege) to particular OS user accounts

With the release of Oracle Database 12c (12.1), Oracle introduces three additional database groups that are optional, but recommended. The recommended following groups provide the ability to separate administrative privileges for common database operations and limit privileged access of the OSDBA group (\texttt{dba}).

- **OSBACKUPDBA group (\texttt{backupdba})** – an optional group created to assign limited administrative privileges (\texttt{SYSBACKUP} privilege) to a user for database backup and recovery
- **OSDGDBA group (\texttt{dgdba})** – an optional group created to assign limited administrative privileges (\texttt{SYSDG} privilege) to a user for administering and monitoring Oracle Data Guard
- **OSKMDBA group (\texttt{kdba})** – an optional group created to assign limited administrative privileges (\texttt{SYSKM} privilege) to a user for encryption key management when using Oracle Wallet Manager

The following are the recommended system groups created for the installation of the Oracle Grid Infrastructure and part of the grid user

- **OSDBA group (\texttt{asmdba})** – provides administrative access to Oracle ASM instances
OSASM group (*ASMADMIN*) – provides administrative access for storage files via the *SYSASM* privilege

OSOPER group (*ASMOPER*) – an optional group created to assign limited DBA privileges with regards to ASM to particular OS user accounts

As the root user, create the following user accounts, groups, and group assignments using a consistent UID and GID assignments across your organization:

```bash
groupadd --gid 54321 oinstall
groupadd --gid 54322 dba
groupadd --gid 54323 asmdba
groupadd --gid 54324 asmoper
groupadd --gid 54325 asmadmin
groupadd --gid 54326 oper
groupadd --gid 54327 backupdba
groupadd --gid 54328 dgdba
groupadd --gid 54329 kmdba

useradd --uid 54321 --gid oinstall --groups dba,oper,asmdba,asmoper,\ > backupdba,dgdba,kmdba oracle
passwd oracle

useradd --uid 54322 --gid oinstall --groups dba,asmadmin,asmdba,asmoper grid
passwd grid
```

Verify the oracle and grid user correctly display the appropriate primary and supplementary groups via the commands:

```bash
id oracle
uid=54321(oracle) gid=54321(oinstall)
groups=54321(oinstall),54322(dba),54323(asmdba),54324(asmoper),54326(oper),54327(backupdba),54328(dgdba),54329(kmdba)
id grid
uid=54322(grid) gid=54321(oinstall)
groups=54321(oinstall),54322(dba),54323(asmdba),54324(asmoper),54325(asmadmin)
```

### 3.3.14 Setting Shell Limits for the Grid and Oracle User

Oracle recommends the following settings for the soft and hard limits for the number of open file descriptors (nofile), number of processes (nproc), and size of the stack segment (stack) allowed by each user respectively. The purpose of setting these limits is to prevent a system wide crash that could be caused if an application, such as Oracle, were allowed to exhaust all of the OS resources under an extremely heavy workload.

Create a file labeled *99-grid-oracle-limits.conf* within */etc/security/limits.d/* as follows:

```bash
touch /etc/security/limits.d/99-grid-oracle-limits.conf
```

**NOTE:** The reason that the */etc/security/limits.conf* file is not directly modified is due to the order in which limit files are read in the system. After reading the */etc/security/limits.conf* file, files within the */etc/security/limits.d/* directory are read. If two files contain the same entry, the entry read last takes precedence. For more information visit Red Hat Article: “What order are
the limit files in the limits.d directory read in?7

Within the /etc/security/limits.d/99-grid-oracle-limits.conf file, add the following soft and hard limits for the oracle and grid user:

```
oracle soft nproc 16384
oracle hard nproc 16384
oracle soft nofile 1024
oracle hard nofile 65536
oracle soft stack 10240
oracle hard stack 32768
grid soft nproc 16384
grid hard nproc 16384
grid soft nofile 1024
grid hard nofile 65536
grid soft stack 10240
grid hard stack 32768
```

Due to Bug 159714218, the soft limit of nproc is not adjusted at runtime by the Oracle database. Due to this, if the nproc limit is reached, the Oracle database may become unstable and not be able to fork additional processes. A high enough value for the maximum number of concurrent threads for the given workload must be set, or use the hard limit value of 16384 as done above if in doubt.

**NOTE:** Modifications made to the 99-grid-oracle-limits.conf file take effect immediately. However, please ensure that any previously logged in oracle or grid user sessions (if any) are logged out and logged back in for the changes to take effect.

As the root user, create a shell script labeled oracle-grid.sh within /etc/profile.d/ to create the ulimits for the oracle and grid user. The contents of the oracle-grid.sh script:

```
#Setting the appropriate ulimits for oracle and grid user
if [$USER = "oracle"]; then
 if [$SHELL = "/bin/ksh"]; then
 ulimit -u 16384
 ulimit -n 65536
 else
 ulimit -u 16384 -n 65536
 fi
fi

if [$USER = "grid"]; then
 if [$SHELL = "/bin/ksh"]; then
 ulimit -u 16384
 ulimit -n 65536
 else
 ulimit -u 16384 -n 65536
 fi
fi
```

---

7 What order are the limits files in the limits.d directory read in? - https://access.redhat.com/site/solutions/199993
8 Oracle Documentation 12.1 - http://docs.oracle.com/cd/E16655_01/readmes.121/e17908/toc.htm#BABICCBB
NOTE: While the `ulimit` values can be set directly within the `/etc/profile` file, it is recommended to create a custom shell script within `/etc/profile.d` instead. The `oracle-grid.sh` script can be downloaded from the Appendix K Configuration Files

As oracle and grid user, verify the `ULIMIT` values by running the following command:

```
ulimit -a
```

```
core file size (blocks, -c) 0
data seg size (kbytes, -d) unlimited
scheduling priority (-e) 0
file size (blocks, -f) unlimited
pending signals (-i) 385878
max locked memory (kbytes, -l) 14854144
max memory size (kbytes, -m) unlimited
open files (-n) 65536
pipe size (512 bytes, -p) 8
POSIX message queues (bytes, -q) 819200
real-time priority (-r) 0
stack size (kbytes, -s) 10240
cpu time (seconds, -t) unlimited
max user processes (-u) 16384
virtual memory (kbytes, -v) unlimited
file locks (-x) unlimited
```
3.4 Storage Configuration

The following storage configuration section describes the best practices for setting up device mapper multipath, the use of udev rules or Oracle ASMLib for ASM disk management, and the use of the tuned package for optimal performance.

3.4.1 Setting up DM-Multipath

Device mapper multipath provides the ability to aggregate multiple I/O paths to a newly created device mapper mapping to achieve high availability, I/O load balancing, and persistent naming. The following procedures provide the best practices to installing and configuring device mapper multipath devices.

NOTE: Ensure Oracle database volumes are accessible via the operating system prior to continuing with the section below.

1. As the root user, install the device-mapper-multipath package using the yum package manager.

   ```bash
 # yum install device-mapper-multipath
   ```

2. Copy the multipath.conf file found within /usr/share/doc/device-mapper-multipath-0.4.9/ to /etc/

   ```bash
 # cp /usr/share/doc/device-mapper-multipath-0.4.9/multipath.conf /etc/
   ```

3. Capture the scsi id of the local disk(s) on the system.

   ```bash
 # scsi_id --whitelisted --replace-whitespace --device=/dev/sda
 3600508b10010303534363646301200
   ```

4. Uncomment and modify the blacklist section within the /etc/multipath.conf file to include the scsi id of the local disk on the system. Once complete, save the changes made to the multipath.conf file.

   ```bash
 blacklist {
 wwid 3600508b10010303534363646301200
 devnode "^a(ram|raw|loop|fd|md|dm-|sr|scd|st)[0-9]*"
 devnode "^hd[a-z]"
 }
   ```

5. Start the multipath daemon.

   ```bash
 # service multipathd start
 Starting multipathd daemon: [OK]
   ```

6. Enable the multipath daemon to ensure it is started upon boot time.

   ```bash
 # chkconfig multipathd on
   ```
7. Identify the *dm*- device, *size*, and *WWID* of each *device mapper* volume for Oracle data disks and recovery disks. In this example, volume *mpathb* is identified via the following command:

```
multipath -ll
```

<table>
<thead>
<tr>
<th>multipath alias name</th>
<th>world wide identifier (WWID)</th>
<th>dm- device</th>
</tr>
</thead>
<tbody>
<tr>
<td>mpathb (3600c0ff000d7e7a89e85ac5101000000)</td>
<td>dm-10 HP,MSA2324fc</td>
<td>size=186G features='1 queue_if_no_path' hwhandler='0' wp=rw</td>
</tr>
<tr>
<td>-+ policy='round-robin 0' prio=130 status=active</td>
<td>- 3:0:0:3 sdd 8:48 active ready running</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 3:0:1:3 sdh 8:112 active ready running</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 4:0:0:3 sdt 65:48 active ready running</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 4:0:1:3 sdx 65:112 active ready running</td>
<td></td>
</tr>
<tr>
<td>-+ policy='round-robin 0' prio=10 status=enabled</td>
<td>- 3:0:2:3 sdl 8:176 active ready running</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 3:0:3:3 sdp 8:240 active ready running</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 4:0:2:3 sdab 65:176 active ready running</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 4:0:3:3 sdaf 65:240 active ready running</td>
<td></td>
</tr>
</tbody>
</table>

*Figure 3.4.1.1: Multipath Device (mpathb)*

8. Uncomment the defaults section found within the `/etc/multipath.conf` file.

```bash
defaults {
 udev_dir /dev
 polling_interval 10
 path_selector "round-robin 0"
 path_grouping_policy multibus
 getuid_callout "/lib/udev/scsi_id --whitelisted
 --device=/dev/%n"
 prio alua
 path_checker readsector0
 rr_min_io 100
 max_fds 8192
 rr_weight priorities
 failback immediate
 no_path_retry fail
 user_friendly_names yes
}
```

*NOTE:* The standard options can be customized to better fit your storage array capabilities. Check with your storage vendor for details.
9. Uncomment the multipath section found within the `/etc/multipath.conf` file and create an alias for each *device mapper* volume in order to enable persistent naming of those volumes. Once complete, save the changes made to the *multipath.conf* file. The output should resemble the example below. For reference, refer to the Oracle data volumes created for this reference environment displayed in Table 2.4.3: *Oracle Data File Sizes for Reference Architecture*.

```
multipaths {
multipath {
 wwid 3600c0ff000d7e7a899d8515101000000
 alias db1
}
multipath {
 wwid 3600c0ff000dabfe5a7d8515101000000
 alias db2
}
multipath {
 wwid 3600c0ff000d7e7a8dbd8515101000000
 alias fra
}
multipath {
 wwid 3600c0ff000dabfe5f4d8515101000000
 alias redo
}
}
```

10. Restart the *device mapper multipath* daemon.

```
service multipathd restart
ok
Stopping multipathd daemon: [OK]
Starting multipathd daemon: [OK]
```

11. Verify the *device mapper* paths and aliases are displayed properly. Below is an example of one *device mapper* device labeled *fra*.

```
multipath -ll
fra (3600c0ff000d7e7a89e85ac5101000000) dm-10 HP,MSA2324fc
size=186G features='1 queue_if_no_path' hwhandler='0' wp=rw
 `-+- policy='round-robin 0' prio=130 status=active
 | `- 3:0:0:3 sdd 8:48 active ready running
 | `- 3:0:1:3 sdh 8:112 active ready running
 | `- 4:0:0:3 sdt 65:48 active ready running
 | `- 4:0:1:3 sdx 65:112 active ready running
 `-+- policy='round-robin 0' prio=10 status=enabled
 | `- 3:0:2:3 sdl 8:176 active ready running
 | `- 3:0:3:3 sdp 8:240 active ready running
 | `- 4:0:2:3 sdab 65:176 active ready running
 | `- 4:0:3:3 sdaf 65:240 active ready running
```
3.4.2 Partitioning Device Mapper Shared Disks

Partitioning of the device mapper shared disks is only required when using Oracle ASMLib. This reference environment provides instructions to configure either Oracle ASMLib or udev rules. Partitions for each device mapper volume are created to comply with either option.

Create a partition for each device mapper volume (db1, db2, fra, redo) using parted as displayed below for device db1.

```bash
parted /dev/mapper/db1 mklabel gpt mkpart primary "1 -1"
Information: You may need to update /etc/fstab.
```

Once the partition is created, a newly created device mapper device is created as db1p1.

```bash
ls -l /dev/mapper/db1p1
lrwxrwxrwx. 1 root root 8 Apr 16 15:15 /dev/mapper/db1p1 -> ../dm-11
```

**NOTE:** A newly created partition requires the alias name followed by p1 such as db1p1 seen above. If p1 is missing, please run the following `kpartx` command to add the partition mappings to the device mapper disks.

```bash
kpartx -a /dev/mapper/db1
```

If the following `kpartx` command does not add the p1 suffix to each partition, reboot the system.

3.4.3 Configuring Oracle ASM Disks

The configuration of Oracle ASM requires the use of either udev rules or Oracle's ASMLib. Oracle's ASMLib is an optional utility used to manage and assist users with Oracle ASM devices and is not required for proper operation of Oracle ASM disks. Moreover, Oracle ASMLib does not have any impact on Oracle Database performance and requires a kernel module labeled kmod-oracleasm and proprietary user space utilities to properly function. udev rules represent an alternative to Oracle's ASMLib and does not require additional kernel modules, thus keeping an overall smaller footprint on the Linux system. While this reference architecture documents both methods of implementation, only one method can be applied for a given solution. This section covers best practices of using Red Hat's native udev rules to setup the appropriate permissions for each device mapper disk, as well as, the best practices for Oracle's ASMLib.

3.4.3.1 Oracle ASMLib Alternative: Configuring udev Rules

The configuration of Oracle ASM requires the use of either udev rules or Oracle's ASMLib. This section, focuses on the best practices of using Red Hat's native udev rules to setup the appropriate permissions for each device mapper disk.

**NOTE:** If following the steps in this section, please ignore Section 3.4.3.2 Configuring Oracle ASMLib
1. As the root user, identify the Device Mapper Universally Unique IDentifier (DM_UUID) for each device mapper volume. The example below shows the DM_UUID for the partitions of the volumes labeled db1, db2, fra, and redo.

```bash
for i in db1p1 db2p1 frap1 redop1; do printf "\%s \%s\n" "$i" "$(udevadm info --query=all --name=/dev/mapper/$i | grep -i dm_uuid)"; done
db1p1: E: DM_UUID=part1-mpath-3600c0ff000d7e7a899d8515101000000
db2p1: E: DM_UUID=part1-mpath-3600c0ff000dabfe5a7d8515101000000
frap1: E: DM_UUID=part1-mpath-3600c0ff000d7e7a8dbd8515101000000
redop1: E: DM_UUID=part1-mpath-3600c0ff000dabfe5f4d8515101000000
```

2. Create a file labeled 99-oracle-asmdevices.rules within /etc/udev/rules.d/

3. Within 99-oracle-asmdevices.rules file, create rules for each device similar to the example below:

```bash
KERNEL=="dm-*",ENV{DM_UUID}=="part1-mpath-3600c0ff000dabfe5f4d8515101000000",OWNER="grid",GROUP="asmadmin",MODE="0660"
```

To understand the rule above, it can be read as follows:

If any dm- device (dm-*) matches the DM_UUID of part1-mpath-3600c0ff000dabfe5f4d8515101000000, assign that dm- device to be owned by the grid user and part of the ASMADMIN group with the permission mode set to 0660.

4. Save the file labeled 99-oracle-asmdevices.rules

5. Locate the dm- device for each Oracle related partition. An example of how to find the dm- device for each partition is to run the following command:

```bash
for i in db1p1 db2p1 frap1 redop1; do printf "\%s \%s\n" "$i" "$\(ls -ll /dev/mapper/$i\)"; done
db1p1 lrwxrwxrwx. 1 root root 8 May 20 20:39 /dev/mapper/db1p1 -> ../dm-11
db2p1 lrwxrwxrwx. 1 root root 8 May 20 20:39 /dev/mapper/db1p1 -> ../dm-12
frap1 lrwxrwxrwx. 1 root root 8 May 20 20:39 /dev/mapper/db1p1 -> ../dm-13
redop1 lrwxrwxrwx. 1 root root 8 May 20 20:39 /dev/mapper/db1p1 -> ../dm-14
```

6. Apply and test the rules created within the 99-oracle-asmdevices.rules by running a udevadm test on each device.

```bash
udevadm test /sys/block/dm-11
[... Output Abbreviated ...]
udevadm_test: DM_NAME=db1p1
udevadm_test: DM_UUID=part1-mpath-3600c0ff000d7e7a86485ac5101000000
udevadm_test: DM_SUSPENDED=0
udevadm_test: DEVLINKS=/dev/mapper/db1p1 /dev/disk/by-id/dm-name-db1p1
udevadm_test: ID_FS_TYPE=oracleasm
```

7. Confirm the device has the desired permissions

```bash
ls -lh /dev/dm-11
brw-rw-----. 1 grid asmadmin 253, 11 Jun 6 20:59 /dev/dm-11
```
NOTE: For simplicity, this 99-oracle-asmdevices.rules file is included in Appendix I

3.4.3.2 Configuring Oracle ASMLib

In order to configure Oracle ASMLib the following components are required: kmod-oracleasm, oracleasm-support, and oracleasmlib

NOTE: If Section 3.4.3.1 Oracle ASMLib Alternative: Configuring udev Rules has been configured, ignore this section and continue to Section 3.4.4 Optimizing Database Storage using Automatic System Tuning

The ASMLib kernel module package (kmod-oracleasm) is provided for Red Hat customers via the Supplementary Channel on Red Hat Network (RHN). In order to properly install and configure ASMLib the following procedures must be followed.

As the root user,

1. Enable the Red Hat Enterprise Linux 6 Supplementary repository as shown in Section 3.3.1 Using the Red Hat Subscription Manager (Option A) or via the RHN Classic knowledge base article.

2. Download the ASMLib library package (oracleasmlib)

   # wget http://download.oracle.com/otn_software/asmlib/oracleasmlib-2.0.4-1.el6.x86_64.rpm

3. Download the ASMLib utilities package (oracleasm-support)

   # wget http://public-yum.oracle.com/repo/OracleLinux/OL6/latest/x86_64/getPackage/oracleasm-support-2.1.8-1.el6.x86_64.rpm

4. Install the ASMLib kernel module package (kmod-oracleasm), ASMLib library package (oracleasmlib), ASMLib utilities package (oracleasm-support) using the following command:

   # yum install kmod-oracleasm oracleasmlib-2.0.4-1.el6.x86_64.rpm
   oracleasm-support-2.1.8-1.el6.x86_64.rpm

---

9 Enabling the Supplementary Repository Knowledge Base Article, https://access.redhat.com/knowledge/articles/58637
5. Configure ASMLib using the following command:

```
/usr/sbin/oracleasm configure -i

Configuring the Oracle ASM library driver.
```

This will configure the on-boot properties of the Oracle ASM library driver. The following questions will determine whether the driver is loaded on boot and what permissions it will have. The current values will be shown in brackets ('[]'). Hitting <ENTER> without typing an answer will keep that current value. Ctrl-C will abort.

Default user to own the driver interface []: grid
Default group to own the driver interface []: asmadmin
Start Oracle ASM library driver on boot (y/n) [ n ]: y
Scan for Oracle ASM disks on boot (y/n) [y]: y
Writing Oracle ASM library driver configuration: done

6. Within /etc/sysconfig/oracleasm, set the ORACLEASM_SCANORDER and ORACLEASM_SCANEXCLUDE parameters as follows:

```
ORACLEASM_SCANORDER: Matching patterns to order disk scanning
ORACLEASM_SCANORDER="dm"

ORACLEASM_SCANEXCLUDE: Matching patterns to exclude disks from scan
ORACLEASM_SCANEXCLUDE="sda"
```

**NOTE:** The ORACLEASM_SCANORDER set to `dm` ensures that when oracleasm scans the disks, it is appropriately scanning devices known by the kernel. The ORACLEASM_SCANEXCLUDE is set to `sda` ensuring that local disk `sda` is to be ignored by oracleasm.

7. Run the following oracleasm command to ensure that oracleasm is enabled.

```
/etc/init.d/oracleasm enable

Writing Oracle ASM library driver configuration: done
Initializing the Oracle ASMLib driver: [OK]
Scanning the system for Oracle ASMLib disks: [OK]
```

8. Run the following oracleasm command to create and label all Oracle related volumes as an ASM disk. The example below creates an ASM disk labeled `DATA1` for the following /dev/mapper/db1p1 partition.

```
/usr/sbin/oracleasm createdisk DATA1 /dev/mapper/db1p1

Writing disk header: done
Instantiating disk: done
```

**NOTE:** It is highly recommended to have all Oracle related disks to be included within Oracle ASM.
9. Verify all the Oracle ASM disks created are listed.

```
/usr/sbin/oracleasm listdisks
DATA1
DATA2
FRA1
REDO1
```

10. If no disks are listed or if any disks are missing, run the following command to rescan the ASM disks.

```
/usr/sbin/oracleasm scandisks
Reloading disk partitions: done
Cleaning any stale ASM disks...
Scanning system for ASM disks...
```

**NOTE**: If the issue persists after a rescan of the Oracle ASM disks, a reboot of the system might be required via the `reboot`, `shutdown`, or `init 6` commands:

```
shutdown -r now
```
3.4.4 Optimizing Database Storage using Automatic System Tuning

The `tuned` package in Red Hat Enterprise Linux 6 is recommended for automatically tuning the system for common workloads via the use of profiles. Each profile is tailored for different workload scenarios such as:

- enterprise-storage
- power savings
- high network throughput

It is recommended to create a custom profile (enterprise-storage-no-thp) with the same settings as the enterprise-storage profile but that disables Transparent HugePages (THP) for Oracle databases workload environments. For more information on why THP is disabled, see Section 4.1.5 Enabling HugePages. Table 3.4.4.1: Profile Comparison provides details between the default profile, enterprise-storage profile, and the custom profile enterprise-storage-no-thp.

<table>
<thead>
<tr>
<th>Tuned Parameters</th>
<th>default</th>
<th>enterprise-storage</th>
<th>enterprise-storage-no-thp</th>
</tr>
</thead>
<tbody>
<tr>
<td>I/O Elevator</td>
<td>CFQ</td>
<td>deadline</td>
<td>deadline</td>
</tr>
<tr>
<td>CPU governor</td>
<td>OnDemand</td>
<td>performance</td>
<td>performance</td>
</tr>
<tr>
<td>kernel.sched_min_granularity_ns</td>
<td>4ms</td>
<td>10ms</td>
<td>10ms</td>
</tr>
<tr>
<td>kernel.sched_wake_up_granularity_ns</td>
<td>4ms</td>
<td>15ms</td>
<td>15ms</td>
</tr>
<tr>
<td>Disk read-ahead</td>
<td>1x</td>
<td>4x</td>
<td>4x</td>
</tr>
<tr>
<td>vm.dirty_ratio</td>
<td>20%</td>
<td>40%&lt;sup&gt;10&lt;/sup&gt;</td>
<td>40%&lt;sup&gt;10&lt;/sup&gt;</td>
</tr>
<tr>
<td>File-system barrier</td>
<td>on</td>
<td>off</td>
<td>off</td>
</tr>
<tr>
<td>Transparent HugePages</td>
<td>on</td>
<td>on</td>
<td>off</td>
</tr>
</tbody>
</table>

Table 3.4.4.1: Profile Comparison

The following procedures provide the steps that are required to create, install, enable, and select the `enterprise-storage-no-thp` profile.

1. Install the `tuned` package via the yum package manager.

   ```
 # yum install tuned
   ```

2. Enable `tuned` to ensure it is started upon boot time.

   ```
 # chkconfig tuned on
   ```

<sup>10</sup> The `vm.dirty_ratio` value explicitly set within the `/etc/sysctl.conf` file has precedence over values set by tuned.
3. Start the `tuned` service

```
service tuned start
Starting tuned: [OK]
```

4. Copy the existing enterprise-storage profile into a new directory called enterprise-storage-no-thp via the following commands:

```
cd /etc/tune-profiles/
cp -r enterprise-storage enterprise-storage-no-thp
```

5. Disable Transparent HugePages in the new profile via the following command:

```
sed -ie 's/set_transparent_hugepages always,set_transparent_hugepages never', /etc/tune-profiles/enterprise-storage-no-thp/ktune.sh
```

6. Verify the change was properly set via the following command:

```
grep set_transparent_hugepages /etc/tune-profiles/enterprise-storage-no-thp/ktune.sh
set_transparent_hugepages never
```

7. Activate the newly created enterprise-storage-no-thp profile:

```
tuned-adm profile enterprise-storage-no-thp
Stopping tuned: [OK]
Switching to profile 'enterprise-storage-no-thp'
Applying ktune sysctl settings:
/etc/ktune.d/tunedadm.conf: [OK]
Calling '/etc/ktune.d/tunedadm.sh start': [OK]
Applying sysctl settings from /etc/sysctl.conf
Applying deadline elevator: dm-0 dm-1 dm-10 dm-11 dm-12 dm-13 dm-14 dm-15 dm-16 dm-17 dm-18 dm-19 dm-20 dm-3 dm-4 dm-5 dm-6 dm-7 dm-8 dm-9 sda sdaa sdab sdac sdc sdd sde sdf sdg sdh sdi sdj sdk sdl sdm sdn sdo
```

8. Verify that THP is now disabled via the following command:

```
cat /sys/kernel/mm/redhat_transparent_hugepage/enabled
always madvise [never]
```

9. Ensure to also disable `transparent` huge pages persistently across reboots by adding to the kernel boot command line within the `/etc/grub.conf` the following:

```
title Red Hat Enterprise Linux (2.6.32-431.el6.x86_64)
 root (hd0,0)
 kernel /vmlinuz-2.6.32-431.el6.x86_64 ro root=/dev/mapper/myvg-root
 rd_NO_LUKS_LANG=en_US.UTF-8 rd_NO_MD SYSFONT=latarcyrheb-sun16
 crashkernel=auto rd_NO_DM rd_LVM_LV=myvg/root KEYBOARDTYPE=pc
 KEYTABLE=us rd_LVM_LV=myvg/swap rhgb quiet transparent_hugepage=never
 initrd /initramfs-2.6.32-431.el6.x86_64.img
```
For simplicity, the enterprise-storage-no-thp profile is included in Appendix K Configuration Files.

**NOTE:** If at any point in time a revert to the original settings are required with persistence across reboots, the following commands can be run:

```bash
service tuned stop
chkconfig tuned off
```

**NOTE:** Even if reverting to the original settings, it is recommended to keep transparent huge pages disabled within the `/etc/grub.conf` file.
4 Oracle 12c R1 Configuration

4.1.1 Installing Oracle Grid Infrastructure (Required for ASM)

The installation of the Oracle Grid Infrastructure for Oracle Database 12c Release 1 (12.1) is required for the use of Oracle ASM. Prior to the installation of the Oracle Grid Infrastructure, ensure that the prerequisites from the following sections have been met:

- Section 2 Reference Architecture Environment
- Section 3 Reference Architecture Configuration Details

NOTE: The reference environment uses the /u01/app/grid as the grid base. The owner is set to grid and the group is set to OINSTALL. Run the following commands to create the grid base directory and set the appropriate permissions:

As the root user,

```
mkdir --parents /u01/app/grid
chown --recursive grid.oinstall /u01/
```

1. Download the two Oracle Grid Infrastructure software files from the Oracle Software Delivery Cloud site.

2. As the grid user, create a temporary directory within /u01/app/grid/grid-software to store the Oracle Grid Software zip file, move the Oracle Grid Software zip file to the /u01/app/grid/grid-software location, ensure the Oracle Grid Software zip has the proper permissions and unpack its contents.

   As the grid user,
   
   ```
 # mkdir /u01/app/grid/grid-software
 # mv V38501-01_1of2.zip /u01/app/grid/grid-software
 # mv V38501-01_2of2.zip /u01/app/grid/grid-software
 # cd /u01/app/grid/grid-software
 # unzip V38501-01_1of2.zip
 # unzip V38501-01_2of2.zip
   ```

   As the root user,
   
   ```
 # chown grid.oinstall V38501-01_1of2.zip
 # chown grid.oinstall V38501-01_2of2.zip
   ```

3. As the grid user, start the OUI via the command:

   ```
 # /u01/app/grid/grid-software/grid/runInstaller
   ```

11 Oracle Database 12c Release 1 Grid Infrastructure (12.1.0.1.0) - V38501-01_1of2.zip and V38501-01_2of2.zip from http://edelivery.oracle.com
NOTE: Ensure to SSH with the -Y option as the grid user from the client server. Otherwise, the following error will occur.

```
/u01/app/grid/grid-software/grid/runInstaller
Starting Oracle Universal Installer...

Checking Temp space: must be greater than 120 MB. Actual 3689 MB Passed
Checking swap space: must be greater than 150 MB. Actual 16415 MB Passed
Checking monitor: must be configured to display at least 256 colors

>>> Could not execute auto check for display colors using command /usr/bin/xdpyinfo. Check if the DISPLAY variable is set. Failed <<<

Some requirement checks failed. You must fulfill these requirements before continuing with the installation,

Continue? (y/n) [n] n
```

4. Within the **Download Software Updates** window, select the option to either enter the My Oracle Support credentials to Use My Oracle Support credentials for download or select **Skip software updates**. This reference environment selected Skip software updates and click Next.

5. Within the **Installation Option** window, select Install and Configure Oracle Grid Infrastructure for a Standalone Server and click Next.

6. Within the **Product Languages** window, select the appropriate language, and click Next.

7. Within the **Create ASM Disk Group** window, provide the following:
   - a Disk Group Name, i.e. DATA
   - Redundancy Level
     - **EXTERNAL** – redundancy provided by the storage system RAID, and not by Oracle ASM.
     - **NORMAL** – provides two-way mirroring by Oracle ASM, thus provided two copies of every data extent.
     - **HIGH** – provides three-way mirroring by Oracle ASM thus enduring the loss of two ASM disks within different failure groups.
   - Disks to be assigned to the Disk Group, i.e. `/dev/mapper/db1p1, /dev/mapper/db2p1`

   **NOTE:** This reference environment uses **NORMAL REDUNDANCY**.
• **Allocation Unit (AU) Size set to 4 MB**
  - A 4 MB AU Size is used to decrease the amount of extents Oracle needs to manage. With less extents to manage, CPU utilization and memory consumption is reduced thus improving performance. The AU Size varies depending on the type of Oracle workload, I/O size per transaction, and overall diskgroup size. There is no “best size” for AU size, but a good starting point is a 4 MB. Please ensure to visit Oracle’s documentation for more information.

To display the appropriate candidate disks, click on the Change Discovery Path button and enter as the Disk Discovery Path one of the following as appropriate:

- For Device Mapper devices, type: /dev/mapper/*
- For Oracle ASMLib marked disks, type: /dev/oracleasm/disks/*

---

12 Oracle ASM Extents - [http://docs.oracle.com/cd/E16655_01/server.121/e17612/asmcon.htm#OSTMG94063](http://docs.oracle.com/cd/E16655_01/server.121/e17612/asmcon.htm#OSTMG94063)
8. Click Next once complete within the Create ASM Disk Group window.

9. Within the ASM Password window, specify the password for the SYS and ASMSNMP user accounts.

10. Within the Operating System Groups window, select the appropriate OS groups. The values as created and assigned within this reference environment are as follows:
   - Oracle ASM Administrator Group – ASMADMIN
   - Oracle ASM DBA Group – ASMDBA
   - Oracle ASM Operator Group – ASMOPER

11. Within the Installation Location window, specify the appropriate Oracle base and software locations. The values set by this reference environment are as follows:
   - ORACLE_BASE - /u01/app/grid
   - SOFTWARE LOCATION - /u01/app/grid/product/12.1.0/grid

12. Within the Create Inventory window, specify the inventory directory. The values set by this reference environment are as follows:
   - Inventory Directory - /u01/app/oraInventory

13. Within the Root script execution configuration window, select the check box labeled Automatically run configuration scripts and enter the root user credentials. The step specifying the root user credentials in order to run specific configuration scripts automatically at the end of the installation is optional. For the purposes of this reference environment, the root credentials are given in order to speed up the Oracle Grid Infrastructure installation process.

14. Within the Summary window, review all the information provided, and select Install to start the installation.

15. During the installation process, within the Oracle Grid Infrastructure pop up window, select yes to allow the installer to run as the root user to execute the configuration scripts.

16. Within the Finish window, verify the installation was successful and click Close.
4.1.2 Installing Oracle 12c R1 Database Software

Prior to the installation of the Oracle Database 12c Release 1 (12.1), ensure the following prerequisites from the following sections have been met:

- Section 2 Reference Architecture Environment
- Section 3 Reference Architecture Configuration Details

**NOTE:** The reference environment uses the `/u01/app/oracle` as the Oracle base. The owner is set to `oracle` and the group is set to `oinstall`. Run the following commands to create the `oracle` base directory set the appropriate permissions:

As the root user,

```
mkdir /u01/app/oracle
chown -R oracle.oinstall /u01/app/oracle
```

1. Download the two Oracle Database software files\(^\text{13}\) from the Oracle Software Delivery Cloud site.

2. As the oracle user, create a temporary directory within `/u01/app/oracle/oracle-software` to store the Oracle Database Software zip files, move the Oracle Database software zip files to the `/u01/app/oracle/oracle-software` location, ensure the Oracle Database software zip has the proper permissions and unpack its contents.

As the oracle user,

```
mkdir /u01/app/oracle/oracle-software
mv V38500-01_1of2.zip V38500-01_2of2.zip /u01/app/oracle/oracle-software/
```

As the root user,

```
chown oracle.oinstall /u01/app/oracle/oracle-software/V38500-01_1of2.zip
chown oracle.oinstall /u01/app/oracle/oracle-software/V38500-01_2of2.zip
```

As the oracle user,

```
cd /u01/app/oracle/oracle-software
unzip V38500-01_1of2.zip
unzip V38500-01_2of2.zip
```

3. As the oracle user, start the OUI via the command:

```
/u01/app/oracle/oracle-software/database/runInstaller
```

\(^{13}\) Oracle Database 12c Release 1 (12.1.0.1.0) - V38500-01_1of2.zip and V38500-01_2of2.zip from http://edelivery.oracle.com
NOTE: Ensure to issue SSH with the -Y option as the oracle user from the client server. Otherwise, the following error will occur.

# /u01/app/oracle/oracle-software/database/runInstaller
Starting Oracle Universal Installer...

Checking Temp space: must be greater than 120 MB. Actual 3461 MB
Passed
Checking swap space: must be greater than 150 MB. Actual 20479 MB
Passed
X11 connection rejected because of wrong authentication.
X11 connection rejected because of wrong authentication.
Checking monitor: must be configured to display at least 256 colors
>>> Could not execute auto check for display colors using command /usr/bin/xdpyinfo. Check if the DISPLAY variable is set. Failed <<<

Some requirement checks failed. You must fulfill these requirements before continuing with the installation,

Continue? (y/n) [n] n

4. Within the Configure Security Updates window, provide the My Oracle Support email address for the latest security issues information. Otherwise uncheck the I wish to receive security updates via My Oracle Support and click Next.

5. Within the Download Software Updates window, provide the My Oracle Support credentials to download the latest security updates. Otherwise select the Skip software updates radio button. This reference environment selected Skip software updates. Click Next.
6. Within the **Installation Option** window, select **Install database software only** and click Next.
7. Within the **Grid Installation Options** window, select **Single Instance database installation** as the type of database installation being performed.

8. Within the **Product Languages** window, select the appropriate language for the installation.

9. Within the **Database Edition** window, select the appropriate database edition and click **Next**. For the purposes of this reference environment, **Enterprise Edition** is the edition of choice.

10. Within the **Installation Location** window, select the appropriate Oracle base and software location and click **Next**. For the purposes of this reference environment, the following values are set:
   - **Oracle Base** - `/u01/app/oracle`
   - **Software Location** - `/u01/app/oracle/product/12.1.0/dbhome_1`
11. Within the **Operating System Groups** window, select the appropriate OS groups and click **Next**. For the purposes of this reference environment, the following values are set as:

- Database Administrator Group — *DBA*
- Database Operator Group — *OPER*
- Database Backup and Recovery Group — *BACKUPDBA*
- Data Guard Administrative group — *DGDBA*
- Encryption Key Management Administrative group — *KMDBA*

12. Within the **Summary** window, review all the information provided, and select **Install** to start the installation.

13. Once the installation completes, execute the scripts within the **Execute Configuration scripts** window. As the root user, run the following:

```bash
/u01/app/oracle/product/12.1.0/dbhome_1/root.sh
Performing root user operation for Oracle 12c

The following environment variables are set as:
ORACLE_OWNER= oracle
ORACLE_HOME= /u01/app/oracle/product/12.1.0/dbhome_1

Enter the full pathname of the local bin directory: [/usr/local/bin]:
The contents of "dbhome" have not changed. No need to overwrite.
The contents of "oraenv" have not changed. No need to overwrite.
The contents of "coraenv" have not changed. No need to overwrite.

Entries will be added to the /etc/oratab file as needed by Database Configuration Assistant when a database is created
Finished running generic part of root script.
Now product-specific root actions will be performed.
```

**NOTE:** In the example above, `/u01/app/oracle/product/12.1.0/dbhome_1` is the Oracle home directory.

14. Click **OK** within the **Execute Configuration scripts** window.

15. Within the **Finish** window, verify the installation was successful and click **Close**.
4.1.3 Creating ASM Diskgroups via the ASM Configuration Assistant (ASMCA)

Prior to the creation of an Oracle database, create the Fast Recovery Area (FRA) and Redo Logs Oracle ASM diskgroups via Oracle’s ASM Configuration Assistant (ASMCA).

1. `ssh` with the `-Y` option as the grid user is required prior to running `asmca`.
2. As the grid user, start `asmca` via the following command:

   ```
 # /u01/app/grid/product/12.1.0/grid/bin/asmca
   ```

   **NOTE:** In the example above, `/u01/app/grid/product/12.1.0/grid` is the grid home directory.

3. Via the `asmca` application, select the **Disk Groups** tab and click **Create**.

   ![ASMCA Disk Groups Tab](image)

   **Figure 4.1.3.1: ASMCA Disk Groups Tab**
4. Within the **Create Disk Group** window, provide the following:

- A name for the disk group, i.e. *FRADG*
- Redundancy level for the disk group, i.e. *External Redundancy*
- Selection of the disks to be added to the disk group, i.e. */dev/mapper/frap1*
- Click the **Show Advanced Options** radio button and provide the appropriate AU Size. This reference environment uses an AU Size of 4 MB for disk groups: *DATA, FRADG, and REDODG.*

---

**Create Disk Group**

<table>
<thead>
<tr>
<th>Disk Group Name</th>
<th>FRADG</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Redundancy</strong></td>
<td></td>
</tr>
<tr>
<td>Redundancy is achieved by storing multiple copies of the data on different failure groups. Normal redundancy needs disks from at least two different failure groups, and high redundancy from at least three different failure groups.</td>
<td></td>
</tr>
<tr>
<td><img src="image" alt="Redundancy Options" /></td>
<td></td>
</tr>
<tr>
<td><img src="image" alt="Select Member Disks" /></td>
<td></td>
</tr>
<tr>
<td><img src="image" alt="Disk Path" /></td>
<td></td>
</tr>
</tbody>
</table>

**Disk Group Attributes**

An allocation unit (AU) is the fundamental unit in which contiguous disk space is allocated to ASM files. ASM file extent size is a multiple of AUs. The AU size cannot be modified later.

<table>
<thead>
<tr>
<th>Allocation Unit Size (MB)</th>
<th>1</th>
</tr>
</thead>
</table>

Specify minimum software versions for ASM, Database and ASM volumes that this disk group need to be compatible with.

<table>
<thead>
<tr>
<th>ASM Compatibility</th>
<th>12.1.0.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Database Compatibility</td>
<td></td>
</tr>
<tr>
<td>ADVM Compatibility</td>
<td></td>
</tr>
</tbody>
</table>


---

**Figure 4.1.3.2:**
NOTE: To display the appropriate eligible disks, click on the Change Discovery Path button and enter as the 'Disk Discovery Path' one of the following as appropriate:

- For Device Mapper devices, type: /dev/mapper/*
- For Oracle ASMLib marked disks, type: /dev/oracleasm/disks/*

Click the OK button once the steps above are complete.

5. Repeat steps 2 and 3 to configure a disk group for the redo logs.

NOTE: Separation of redo logs into a separate Oracle ASM disk group is optional, but recommended.

6. Once all disk groups are created, click the Exit button from the main ASM Configuration Assistant window. Click yes, when asked to confirm quitting the application.

4.1.4 Creating Pluggable Databases using Database Configuration Assistant (DBCA)

With the introduction to Oracle Database 12c, Oracle introduced the Multitenant architecture. The Multitenant architecture provides the ability to consolidate multiple databases known as pluggable databases (PDBs) into a single container database (CDB). It provides advantages which include easier management and monitoring of the physical database, fewer patches and upgrades, performance metrics consolidated into one CDB, and sizing one SGA instead of multiple SGAs. While using the Multitenant architecture is optional, this reference architecture focuses on describing the step-by-step procedure of taking advantage of it. When creating an Oracle database, the recommended method is the usage of the dbca utility.

Prior to getting into the details of installing a container database (CDB) and deploying pluggable databases (PDB), an overview of the key concepts of the Multitenant Architecture is provided.

Container – is a collection of schemas, objects, and related structures in a multitenant container database (CDB) that appears logically to an application as a separate database. Within a CDB, each container has a unique ID and name.

A CDB consists of two types of containers: the root container and all the pluggable databases that attach to a CDB.

Root container – also called the root, is a collection of schemas, schema objects, and nonschema objects to which all PDBs belong. Every CDB has one and only one root container, which stores the system metadata required to manage PDBs (no user data is stored in the root container). All PDBs belong to the root. The name of the root container is CDB$ROOT

PDB – is a user-created set of schemas, objects, and related structures that appears

14 Purpose of a Multitenant Environment -
http://docs.oracle.com/cd/E16655_01/server.121/e17636/cdb_intro.htm#ADMIN13509
logically to an application as a separate database. Every PDB is owned by SYS, which is a common user in the CDB, regardless of which user created the CDB.

For more information on Oracle's Multitenant architecture, visit Oracle's documentation\textsuperscript{15}.

The following section describes the step-by-step procedure to create a container database (CDB) that holds two pluggable databases (PDB) thus taking advantage of Oracle’s Multitenant architecture.

1. \texttt{ssh} with the -Y option as the \texttt{oracle} user prior to running \texttt{dbca}.
2. As the \texttt{oracle} user, run the \texttt{dbca} utility via the command:
   
   \begin{verbatim}
   # /u01/app/oracle/product/12.1.0/dbhome_1/bin/dbca
   \end{verbatim}

   **NOTE:** In the example above, /u01/app/oracle/product/12.1.0/dbhome_1 is the Oracle home directory.

3. Within the \textbf{Database Operations} window, select \textbf{Create a Database} radio button and click \textbf{Next}.
4. Within the \textbf{Creation Mode} window, select \textbf{Advanced Mode} radio button and click \textbf{Next}.
5. Within the \textbf{Database Template} window, select \textbf{Custom Database} radio button and click \textbf{Next}.

\textsuperscript{15} Oracle Documentation, Multitenant architecture - http://docs.oracle.com/cd/E16655_01/server.121/e17633/cdbovrvw.htm#CNCPT89234
6. Within the **Database Identification** window, set a global database name and Oracle System Identifier (SID), i.e. cdb. Check the check box that reads *Create as Container Database*. Select the number of PDBs to install and provide a PDB Name Prefix, i.e. *pdb* and click *Next*. This reference environment creates two PDBs.

7. Within the **Management Options** window, ensure the check box *Configure Enterprise Manager (EM) Database Express* is checked (default) and click *Next*.

8. Within the **Database Credentials** window, provide the administrative passwords for *SYS*, *SYSTEM*, and *PDBADMIN*, click *Next*.

9. Within the **Network Configuration** window, ensure the Listener labeled *LISTENER* that resides in the Grid Infrastructure Home showing an *Up* status is checked (default) and click *Next*.
10. Within the **Storage Locations** window, select the appropriate **Storage Type** and storage locations. For the purposes of this reference environment, the following selections were made:

- Database Files Storage Type – Automatic Storage Management (ASM)
  - Use Common Location for All Database Files selected
    - Database File Locations: +DATA
    - Use Oracle-Managed Files (checked)
- Recovery Related Files Storage Type – Automatic Storage Management (ASM)
  - Storage Locations – Specify Fast Recovery Area
    - Fast Recovery Area: +FRADG
    - Fast Recovery Area Size: 142964 Megabytes
  - Enable Archiving (checked)

---

**Figure 4.1.4.2: Storage Locations Window**

16 ID [305648.1] – “What is Flash Recovery Area and how to configure it?” at [http://support.oracle.com](http://support.oracle.com)
11. Within the same **Storage Locations** window, select the **Multiplex Redo Logs and Control Files** button and within the **Multiplex Redo Logs and Control Files** window, add the Redo Logs diskgroup, i.e. `+REDODG` and click **OK**, then click **Next** in the **Storage Locations** window.

![Multiplex Redo Logs and Control Files](image)

**Figure 4.1.4.3: Multiplex Redo Logs and Control Files Window**

12. Within the **Database Options** window, all the components should be greyed out. Click **Next**.
13. Within the **Database Vault & Label Security** window, this reference environment unchecks **Configure Database Vault** and **Configure Label Security**. These products provide a level of security with regards to access control decisions at the object level as done by Oracle Database Vault and access control decisions at the row level as done by Oracle Label Security. For more information on these two products, be sure to visit Oracle's Documentation about Oracle Database Vault\(^{17}\) and Oracle Label Security\(^{18}\).

14. Within the **Initialization Parameters** window under the **Memory** tab, select **Custom Settings** and enter the appropriate values for the SGA and PGA size. It is recommended that the Memory Management be set as **Automatic Shared Memory Management**. The values set for the reference environment with regards to SGA and PGA are the following, however, these values vary for every Oracle database environment.

   - SGA – 14460 Megabytes
   - PGA – 4820 Megabytes

![Figure 4.1.4.4: Initialization Parameters Window, Memory Tab](image-url)
NOTE: It is recommended to modify the values of the SGA and PGA based on the Oracle database workload requirements.

15. Within the **Sizing** tab of the *Initialization Parameters* window, appropriately set the block size and maximum number of user processes that can be simultaneously connected to the database. For the purposes of this reference environment, the defaults are used.

16. Within the **Creation Options** window, ensure the Create Database box is checked and click **Next**.

17. Within the **Summary** window, review the Create Database – Summary, and click **Finish** to start the database creation.
4.1.5 Enabling HugePages

Transparent Huge Pages (THP) are implemented within Red Hat Enterprise Linux 6 to improve memory management by removing many of the difficulties of manually managing huge pages by dynamically allocating huge pages as needed. Red Hat Enterprise Linux 6, by default, uses transparent huge pages also known as anonymous huge pages. Unlike static huge pages, no additional configuration is needed to use them. Huge pages can boost application performance by increasing the chance a program will have quick access to a memory page. Unlike traditional huge pages, transparent huge pages can be swapped out (as smaller 4kB pages) when virtual memory clean up is required.

Unfortunately, Oracle Databases do not take advantage of transparent huge pages for interprocess communication. In fact, My Oracle Support [ID 1557478.1] states to disable THP due to unexpected performance issues or delays when THP is found to be enabled. To reap the benefit of huge pages for an Oracle database, it is required to allocate static huge pages and disable THP. Due to the complexity of properly configuring huge pages, it is recommended to copy the bash shell script found within Appendix E Huge Pages Script and run the script once the database is up and running. The reasoning behind allocating huge pages once the database is up and running is to provide a proper number of pages to handle the running shared memory segments. The steps are as follows:

1. Copy the bash script found within Appendix E Huge Pages Script and save it as huge_pages_settings.sh

2. As the root user, ensure the huge_pages_settings.sh is executable by running the following command:

   ```
 # chmod +x huge_pages_settings.sh
   ```

3. As the root user, execute the huge_pages_settings.sh script as follows:

   ```
 # ./huge_pages_settings.sh
   ```

   Recommended setting within the kernel boot command line: hugepages = <value>
   Recommended setting within /etc/security/limits.d/99-grid-oracle-limits.conf:
   oracle soft memlock <value>
   Recommended setting within /etc/security/limits.d/99-grid-oracle-limits.conf:
   oracle hard memlock <value>

4. Add the number of hugepages provided by the huge_pages_settings.sh script to the kernel boot command line within the /etc/grub.conf and disable transparent huge pages persistently across reboots as follows:

   ```
 title Red Hat Enterprise Linux (2.6.32-431.el6.x86_64)
 root (hd0,0)
 kernel /vmlinuz-2.6.32-431.el6.x86_64 ro root=/dev/mapper/myvg-root
 rd_NO_LUKS_LANG=en_US.UTF-8 rd_NO_MD SYSFONT=latarcyrheb-sun16
 crashkernel=auto rd_NO_DM rd_LVM_LV=myvg/root KEYBOARDTYPE=pc
 KEYTABLE=us rd_LVM_LV=myvg swap rhgb quiet hugepages=<value-provided-by-script> transparent_hugepage=never
 initrd /initramfs-2.6.32-431.el6.x86_64.img
   ```

19 ALERT: Disable Transparent HugePages on SLES11,RHEL6,OEL6 and UEK2 Kernels (DOC ID: 1557478.1)
NOTE: Allocating the number of huge pages within the kernel boot command line is the most reliable method due to memory not yet becoming fragmented.\textsuperscript{20}

5. Oracle requires setting the soft and hard limits to \textit{memlock}. Setting \textit{memlock} allows the oracle user to lock a certain amount of memory from physical RAM that isn't swapped out. The value is expressed in kilobytes and is important from the Oracle perspective because it provides the oracle user permission to use huge pages. This value should be slightly larger than the largest SGA size of any of the Oracle Database instances installed in an Oracle environment. To set \textit{memlock}, add within /etc/security/limits.d/99-grid-oracle-limits.conf the following:

\begin{verbatim}
oracle soft memlock <value-provided-by-script>
oracle hard memlock <value-provided-by-script>
\end{verbatim}

6. Reboot the system to ensure the huge pages setting takes effect properly.

7. Verify the value provided by the \textit{huge_pages_settings.sh} matches the total number of huge pages available on the system with the following command:

\begin{verbatim}
# cat /proc/meminfo | grep -i hugepages_total
HugePages_Total: <value-provided-by-script>
\end{verbatim}

8. Verify the current status of the \textit{transparent} huge pages is set to \textit{NEVER} via the following command:

\begin{verbatim}
# cat /sys/kernel/mm/transparent_hugepage/enabled
always madvise [never]
\end{verbatim}

NOTE: Starting with Oracle Database version 11.2.0.2, the initialization parameter “USE_LARGE_PAGES” was introduced to allocate huge pages on a per database use case. The default value for Oracle Database 12.0.1.0 is set to true. Section 5 Logging into the Oracle Container Database 12c Release 1 (12.1) shows how to set “USE_LARGE_PAGES” to the recommended value of \textit{only} to ensure huge pages are always used upon Oracle database startup. For more information on the parameter and its value refer to My Oracle Support\textsuperscript{21}.

NOTE: Huge pages is not compatible with Automatic Memory Management (AMM).

\textsuperscript{20} \url{https://www.kernel.org/doc/Documentation/vm/hugetlbpage.txt}
\textsuperscript{21} \url{USE_LARGE_PAGES To Enable HugePages [ID 1392497.1]}
5 Logging into the Oracle Container Database 12c Release 1 (12.1)

This section focuses on ensuring once the Oracle Database 12c Release 1 (12.1) deployment is complete, the oracle user can successfully log into the Oracle container database (CDB), and ensure the Oracle database is using the allocated huge pages. The following steps provide the details.

As the oracle user,

1. Set the environment variable for ORACLE_HOME with the location of your Oracle Database 12c Release 1 (12.1) home. This reference environment sets ORACLE_HOME to `/u01/app/oracle/product/12.1.0/dbhome_1`

   ```
 # export ORACLE_HOME=/u01/app/oracle/product/12.1.0/dbhome_1
 # echo $ORACLE_HOME
 /u01/app/oracle/product/12.1.0/dbhome_1
   ```

   **NOTE:** As a precaution, ensure not to include a trailing forward slash (/) when exporting the ORACLE_HOME.

2. Set the Oracle System ID (ORACLE_SID) used to identify the CDB database.

   ```
 # export ORACLE_SID=cdb
 # echo $ORACLE_SID
cdb
   ```

3. Invoke the sqlplus binary to log into the Oracle instance as a sysdba.

   ```
 # $ORACLE_HOME/bin/sqlplus / as sysdba;
   ```

   SQL*Plus: Release 12.1.0.1.0 Production on Thu Jan 16 16:17:08 2014
   Copyright (c) 1982, 2013, Oracle. All rights reserved.

   Connected to:
   Oracle Database 12c Enterprise Edition Release 12.1.0.1.0 - 64bit Production
   With the Partitioning, Automatic Storage Management, OLAP, Advanced Analytics and Real Application Testing options

4. Verify the current value of the Oracle parameter `use_large_pages`.

   ```
 SQL> show parameter use_large_pages;
   ```

<table>
<thead>
<tr>
<th>NAME</th>
<th>TYPE</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>use_large_pages</td>
<td>string</td>
<td>TRUE</td>
</tr>
</tbody>
</table>
**CAUTION:** Ensure there is enough physical RAM on the system to place the entire SGA in large pages, otherwise the Oracle database instance will not start. If there is not enough physical RAM on the system to place the entire SGA into large pages, leave the default setting of true and ignore the remaining steps in this section.

5. Set the value of the Oracle parameter *use_large_pages* to the value of *only*.

   SQL> alter system set use_large_pages=only scope=spfile sid='*';

   System altered.

6. Shutdown the Oracle database instance and restart the Oracle database instance.

   SQL> shutdown immediate;
   Database closed.
   Database dismounted.
   ORACLE instance shut down.

   SQL> startup;
   ORACLE instance started.

   Total System Global Area 2.0176E+10 bytes
   Fixed Size 3478432 bytes
   Variable Size 2952793184 bytes
   Database Buffers 1.7180E+10 bytes
   Redo Buffers 40247296 bytes
   Database mounted.
   Database opened.

7. Verify the current value of the Oracle parameter *use_large_pages* is now set to *only*.

   SQL> show parameter use_large_pages;

<table>
<thead>
<tr>
<th>NAME</th>
<th>TYPE</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>use_large_pages</td>
<td>string</td>
<td>ONLY</td>
</tr>
</tbody>
</table>
8. Open the container database's alert log, named alert_<name-of-cdb>.log, located under the $ORACLE_BASE/diag/rdbms/<name-of-cdb>/trace/ using a text editor, such as vi, and search for the following snippet to ensure that the System Global Area (SGA) is 100% in large pages.

$ORACLE_BASE/diag/rdbms/<name-of-cdb>/<name-of-cdb>/trace/alert_<name-of-cdb>.log

*************** Large Pages Information ***************
Thu Jan 16 16:55:07 2014
Per process system memlock (soft) limit = UNLIMITED
Thu Jan 16 16:55:07 2014

Total System Global Area in large pages = 19 GB (100%)
Thu Jan 16 16:55:07 2014

Large pages used by this instance: 9665 (19 GB)
Thu Jan 16 16:55:07 2014
Large pages unused system wide = 3 (6144 KB)
Thu Jan 16 16:55:07 2014
Large pages configured system wide = 9668 (19 GB)
Thu Jan 16 16:55:07 2014
Large page size = 2048 KB
Thu Jan 16 16:55:07 2014

********************************************************************

NOTE: This reference environment's SGA size is set to 19 GB, however, this value will vary depending on the value provided when creating an Oracle database using dbca.
6 Common Tasks when Managing Container Database (CDB) and Pluggable Databases (PDB)

This section describes tasks that are commonly used when dealing with a CDB and PDBs. The tasks covered within this section are as follows:

- Connect to a CDB
- Connect to a PDB
- Managing a CDB
- Managing a PDB
- Location of Data files in a CDB & PDB

6.1 Connect to a CDB

As the oracle user,

1. Set the environment variable for ORACLE_HOME with the location of your Oracle Database 12c Release 1 (12.1) home. This reference environment sets ORACLE_HOME to /u01/app/oracle/product/12.1.0/dbhome_1

   ```
 # export ORACLE_HOME=/u01/app/oracle/product/12.1.0/dbhome_1
 # echo $ORACLE_HOME
 /u01/app/oracle/product/12.1.0/dbhome_1
   ```

   **NOTE:** As a precaution, ensure not to include a trailing forward slash (/) when exporting the ORACLE_HOME.

2. Set the Oracle System ID (ORACLE_SID) used to identify the CDB database.

   ```
 # export ORACLE_SID=cdb
 # echo $ORACLE_SID
cdb
   ```

3. Invoke the sqlplus binary to log into the Oracle instance as a sysdba.

   ```
 # $ORACLE_HOME/bin/sqlplus / as sysdba;
   ```

   SQL*Plus: Release 12.1.0.1.0 Production on Thu Jan 16 16:17:08 2014

   Copyright (c) 1982, 2013, Oracle. All rights reserved.

   Connected to:
   Oracle Database 12c Enterprise Edition Release 12.1.0.1.0 - 64bit Production
With the Partitioning, Automatic Storage Management, OLAP, Advanced Analytics and Real Application Testing options

4. Once connected, verify that the instance is connected to the root container, \texttt{CDB$ROOT} with a \texttt{CON_ID} is 1.

\begin{verbatim}
SQL> show con_name
CON_NAME
------------------------------
CDB$ROOT

SQL> show con_id
CON_ID
------------------------------
1
\end{verbatim}

\textbf{NOTE:} The \texttt{CDB$ROOT} connection ID is always set to one.

5. To list all the available services and PDBs within the CDB:

\begin{verbatim}
SQL> select name, con_id from v$active_services;
NAME     CON_ID
-------- --------
pdb2      4
pdb1      3
cdbXDB    1
cdb       1
SYS$BACKGROUND  1
SYS$USERS  1
6 rows selected.
\end{verbatim}

\textbf{6.2 Connect to a PDB}

The syntax to connect to a PDB varies depending on whether or not there is an entry within the \texttt{tnsnames.ora} file for the PDB.

Without an entry to the \texttt{tnsnames.ora} file, the syntax to connect to a PDB named \texttt{pdb1} is as follows:

\begin{verbatim}
# $ORACLE_HOME/bin/sqlplus sys/<password>@localhost:1521/pdb1 as sysdba;
\end{verbatim}

\textbf{NOTE:} The value 1521, represents the Oracle Listener port.

With an entry to the \texttt{tnsnames.ora} file, the syntax to connect to a PDB named \texttt{pdb1} is as follows:

\begin{verbatim}
# $ORACLE_HOME/bin/sqlplus sys/<password>@PDB1 as sysdba;
\end{verbatim}
A snippet of the entry found within the *tnsnames.ora* file is displayed below:

```
/u01/app/oracle/product/12.1.0/dbhome_1/network/admin/tnsnames.ora

PDB1 =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = TCP)(HOST = db-oracle-12c.cloud.lab.eng.bos.redhat.com)(PORT = 1521))
 (CONNECT_DATA =
 (SERVER = DEDICATED)
 (SERVICE_NAME = pdb1)
)
)
```

### 6.3 Managing a CDB

The process of starting and shutting down a CDB database is similar to the steps done in previous Oracle database versions for traditional databases. The key difference is to verify that the connection is to the root container prior to shutting down or starting up the Oracle database.

1. Connect to the CDB database as a **SYSDBA** using **sqlplus**. The steps are the same as shown in Section 6.1 Connect to a CDB steps one through three.

2. Once connected, verify the instance is the root container **CDB$ROOT** via the command:

   ```
 SQL> show con_name;
 CON_NAME

 CDB$ROOT
   ```

3. To shutdown the Oracle CDB database use the following command:

   ```
 SQL> shutdown immediate;
   ```

4. To start the Oracle CDB database use the following command:

   ```
 SQL> startup;
   ```

The startup command starts the instance, mounts the control files, and then opens the root container.
6.4 Managing a PDB

This section focuses on verifying the `OPEN_MODE` of a PDB, how to open and close a specific PDB, and how to open and close all PDBs within a CDB.

1. To verify the open_mode status of all the PDBs, while logged in as a `SYSDBA` in the CDB, use the following command:

   ```sql
 SQL> select name, open_mode from v$pdbs;
   ```

<table>
<thead>
<tr>
<th>NAME</th>
<th>OPEN_MODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDB$SEED</td>
<td>READ ONLY</td>
</tr>
<tr>
<td>PDB1</td>
<td>MOUNTED</td>
</tr>
<tr>
<td>PDB2</td>
<td>MOUNTED</td>
</tr>
</tbody>
</table>

2. When a PDB is closed, the `OPEN_MODE` is set to `MOUNTED`. To open a PDB and verify the new `OPEN_MODE` of `READ WRITE`, run the following SQL syntax while logged in as a `SYSDBA` in the CDB:

   ```sql
 SQL> alter pluggable database pdb1 open;
 Pluggable database altered.
 SQL> select name, open_mode from v$pdbs;
   ```

<table>
<thead>
<tr>
<th>NAME</th>
<th>OPEN_MODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDB$SEED</td>
<td>READ ONLY</td>
</tr>
<tr>
<td>PDB1</td>
<td>READ WRITE</td>
</tr>
<tr>
<td>PDB2</td>
<td>MOUNTED</td>
</tr>
</tbody>
</table>

3. To open all the PDBs connected to a CDB and verify the new `OPEN_MODE` of `READ WRITE`, run the following SQL syntax while logged in as a `SYSDBA` in the CDB:

   ```sql
 SQL> alter pluggable database all open;
 Pluggable database altered.
 SQL> select name, open_mode from v$pdbs;
   ```

<table>
<thead>
<tr>
<th>NAME</th>
<th>OPEN_MODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDB$SEED</td>
<td>READ ONLY</td>
</tr>
<tr>
<td>PDB1</td>
<td>READ WRITE</td>
</tr>
<tr>
<td>PDB2</td>
<td>READ WRITE</td>
</tr>
</tbody>
</table>
4. To drop a particular PDB i.e. *pdb2*, and its data files, execute the following SQL syntax while logged in as a **SYSDBA** in the CDB:

```
SQL > alter pluggable database pdb2 close immediate;
Pluggable database altered.

SQL > drop pluggable database pdb2 including datafiles;
Pluggable database dropped.
```

5. To verify if the pluggable database with the name *pdb2* has been dropped:

```
SQL> select name, open_mode from v$pdbs;
NAME OPEN_MODE
---------- ---------
PDB$SEED READ ONLY
PDB1 READ WRITE
```

### 6.5 Location of Data files of PDBs & CDB

The following section shows how to identify tablespace names, data files associated with the CDB and PDBs, including their temporary files.

1. Connect to the CDB database as a **SYSDBA** using **sqlplus**. The steps are the same as shown in **Section 6.1 Connect to a CDB** steps one through three.

2. To identify the tablespaces associated with the CDB or any of the PDBs installed, use the following syntax where the *con_id* varies upon the database chosen. The example below uses the *con_id* of 1 to show the CDB tablespaces.

```
SQL > select tablespace_name, con_id from cdb_tablespaces where con_id = 1;

TABLESPACE_NAME CON_ID
------------------ ----
SYSTEM 1
SYSAUX 1
UNDOTBS1 1
TEMP 1
USERS 1
```

3. To locate the data files from the CDB or PDBs installed, use the following syntax where the *con_id* varies upon the database chosen. The example below uses the *con_id* of 1 to show the CDB data file locations.

```
SQL> select file_name, con_id from cdb_data_files where con_id=1;

FILE_NAME CON_ID
--- ----
+DATA/CDB/DATAFILE/system.270.836232071 1
+DATA/CDB/DATAFILE/sysaux.273.836232077 1
+DATA/CDB/DATAFILE/undotbs1.262.836232081 1
```
4. To locate the temporary files from the CDB or PDBs installed, use the following syntax where the `con_id` varies upon the database chosen. The example below uses the `con_id` of 1 to show the CDB data file locations.

```sql
SQL> select file_name, con_id from cdb_temp_files where con_id =1 ;

<table>
<thead>
<tr>
<th>FILE_NAME</th>
<th>CON_ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>+DATA/CDB/DATAFILE/users.275.836232097</td>
<td>1</td>
</tr>
</tbody>
</table>
```

```sql
SQL> select file_name, con_id from cdb_temp_files where con_id =1 ;

<table>
<thead>
<tr>
<th>FILE_NAME</th>
<th>CON_ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>+DATA/CDB/TEMPFILE/temp.278.836232081</td>
<td>1</td>
</tr>
</tbody>
</table>
```
7 Conclusion

Red Hat Enterprise Linux 6 provides an excellent foundation for database deployments with demonstrated stability, scalability, and performance. With the support for Oracle Database 12c Release 1 (12.1) on Red Hat Enterprise Linux 6, customers can increasingly look to deploy Oracle Databases in advanced configurations.

The steps and procedures described in this reference architecture should provide system, database, and storage administrators the blueprint required to create a robust and performing solution based on Oracle Databases. Administrators can reference this document to simplify and optimize the deployment process and employ the latest best practices for configuring Red Hat technologies while implementing the following tasks:

- Deploying Oracle Grid Infrastructure 12c Release 1 (12.1.0.1.0)
- Deploying Oracle Database Software 12c Release 1 (12.1.0.1.0)
- Deploying an Oracle Database 12c Release 1 (12.1.0.1.1) with shared SAN disks
- Using Oracle ASM disks with udev rules or with Oracle ASMLib
- Securing the Oracle Database 12c environment with SELinux

For any questions or concerns, please email refarch-feedback@redhat.com and ensure to visit the Red Hat Reference Architecture page at http://www.redhat.com/resourcelibrary/reference-architectures/ to find out about all of our Red Hat solution offerings.
Appendix A: Revision History

Revision 1.0
Initial Release

Friday February 28, 2014
Roger Lopez
Appendix B: Contributors

1. John Herr, content (Subscription Manager)
2. Balaji Jayavelu, content reviewer
3. Tom Coughlan, content reviewer
4. John Boero, content reviewer
5. Yan Fisher, content reviewer
Appendix C: DM Multipath Configuration File

# This is a basic configuration file with some examples, for device mapper
# multipath.
# For a complete list of the default configuration values, see
# /usr/share/doc/device-mapper-multipath-0.4.9/multipath.conf.defaults
# For a list of configuration options with descriptions, see
# /usr/share/doc/device-mapper-multipath-0.4.9/multipath.conf.annotated
#
# REMEMBER: After updating multipath.conf, you must run
#
# service multipathd reload
#
# for the changes to take effect in multipathd

## By default, devices with vendor = "IBM" and product = "S/390.*" are
## blacklisted. To enable mulitpathing on these devies, uncomment the
## following lines.
blacklist_exceptions {
    device {
        vendor   "IBM"
        product  "S/390.*"
    }
}

## Use user friendly names, instead of using WWIDs as names.
defaults {
    user_friendly_names yes
}

## Here is an example of how to configure some standard options.
##
defaults {
    udev_dir                /dev
    polling_interval        10
    path_selector           "round-robin 0"
    path_grouping_policy    multibus
    getuid_callout          "/lib/udev/scsi_id --whitelisted
--device=\%/\n"
    prio                   alua
    path_checker           readsector0
    rr_min_io              100
    max_fds                8192
    rr_weight              priorities
    failback               immediate
    no_path_retry          fail
    user_friendly_names    yes
}

##
## The wwid line in the following blacklist section is shown as an example
## of how to blacklist devices by wwid. The 2 devnode lines are the
## compiled in default blacklist. If you want to blacklist entire types
## of devices, such as all scsi devices, you should use a devnode line.
## However, if you want to blacklist specific devices, you should use
## a wwid line. Since there is no guarantee that a specific device will
## not change names on reboot (from /dev/sda to /dev/sdb for example)
## devnode lines are not recommended for blacklisting specific devices.
##
## blacklist {
##     wwid 3600508b1001030353434363646301200
##     devnode "^(ram|raw|loop|fd|md|dm-|sr|scd|st)[0-9]""
##     devnode "^hd[a-z]"
## }
## multipaths {
##     multipath {
##         wwid 3600c0ff000d7e899d8515101000000
##         alias db1
##     }
##     multipath {
##         wwid 3600c0ff000dabfe5a7d8515101000000
##         alias db2
##     }
##     multipath {
##         wwid 3600c0ff000d7e8dbd8515101000000
##         alias fra
##     }
##     multipath {
##         wwid 3600c0ff000dabfe5f4d8515101000000
##         alias redo
##     }
## }
## devices {
#       device {
#               vendor                  "COMPAQ  "
#               product                 "HSV110 (C)COMPAQ"
#               path_grouping_policy    multibus
#               getuid_callout          "/lib/udev/scsi_id --whitelisted
# --device=/dev/%n"
#               path_checker            readsector0
#               path_selector          "round-robin 0"
#               hardware_handler        "0"
#               failback                15
#               rr_weight               priorities
#               no_path_retry           queue
#       }
#       device {
#               vendor                  "COMPAQ  "
#               product                 "MSA1000         
#               path_grouping_policy    multibus
#       }
##}
Appendix D: Iptables Configuration File

# Firewall configuration written by system-config-firewall
# Manual customization of this file is not recommended.
*filter
  :INPUT ACCEPT [0:0]
  :FORWARD ACCEPT [0:0]
  :OUTPUT ACCEPT [0:0]
-A INPUT -m state --state ESTABLISHED,RELATED -j ACCEPT
-A INPUT -p icmp -j ACCEPT
-A INPUT -i lo -j ACCEPT
-A INPUT -m state --state NEW -m tcp -p tcp --dport 22 -j ACCEPT
-A INPUT -m state --state NEW -m tcp -p tcp --dport 443 -j ACCEPT
-A INPUT -m state --state NEW -m tcp -p tcp -s 10.16.142.54 --dport 1521 -j ACCEPT
-A INPUT -m state --state NEW -m tcp -p tcp -s 10.16.142.54 --dport 5500 -j ACCEPT
-A INPUT -j REJECT --reject-with icmp-host-prohibited
-A FORWARD -j REJECT --reject-with icmp-host-prohibited
COMMIT
Appendix E: Huge Pages Script

The following huge pages script is from Tuning Red Hat Enterprise Linux For Oracle & Oracle RAC by Scott Crot, Sr. Consultant, Red Hat and modified to include the values Oracle's soft and hard memlock.

```bash
#!/bin/bash
KERN=`uname -r | awk -F. '{ printf("%d.%d\n",$1,$2); }'`
Find out the HugePage size
HPG_SZ=`grep Hugepagesize /proc/meminfo | awk '{print $2}'`
Start from 1 pages to be on the safe side and guarantee 1 free HugePage
NUM_PG=1
Cumulative number of pages required to handle the running shared memory segments
for SEG_BYTES in `ipcs -m | awk '{print $5}' | grep "^[0-9][0-9]*$"`
do
 MIN_PG=`echo "SEG_BYTES/($HPG_SZ*1024)" | bc -q`
 if [$MIN_PG -gt 0]; then
 NUM_PG=`echo "NUM_PG+MIN_PG+1" | bc -q`
 fi
done
Finish with results
case $KERN in
 '2.4') HUGETLB_POOL=`echo "NUM_PG*HPG_SZ/1024" | bc -q`
 echo "Recommended setting: vm.hugetlb_pool = $HUGETLB_POOL" ;;
 '2.6') MEM_LOCK=`echo "NUM_PG*HPG_SZ" | bc -q`
 echo "Recommended setting within the kernel boot command line: hugepages = $NUM_PG"
 echo "Recommended setting within /etc/security/limits.d/99-grid-oracle-limits.conf: oracle soft memlock $MEM_LOCK"
 echo "Recommended setting within /etc/security/limits.d/99-grid-oracle-limits.conf: oracle hard memlock $MEM_LOCK" ;;
 *) echo "Unrecognized kernel version $KERN. Exiting." ;;
esac
```

## Appendix F: Oracle Database Package Requirements Text File

<table>
<thead>
<tr>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>cloog-ppl</td>
</tr>
<tr>
<td>compat-libcap1</td>
</tr>
<tr>
<td>compat-libstdc++-33</td>
</tr>
<tr>
<td>cpp</td>
</tr>
<tr>
<td>gcc</td>
</tr>
<tr>
<td>gcc-c++</td>
</tr>
<tr>
<td>glibc-devel</td>
</tr>
<tr>
<td>glibc-headers</td>
</tr>
<tr>
<td>kernel-headers</td>
</tr>
<tr>
<td>ksh</td>
</tr>
<tr>
<td>libXmu</td>
</tr>
<tr>
<td>libXt</td>
</tr>
<tr>
<td>libXv</td>
</tr>
<tr>
<td>libXxf86dga</td>
</tr>
<tr>
<td>libXxf86misc</td>
</tr>
<tr>
<td>libXxf86vm</td>
</tr>
<tr>
<td>libaio-devel</td>
</tr>
<tr>
<td>libdmx</td>
</tr>
<tr>
<td>libstdc++-devel</td>
</tr>
<tr>
<td>mpfr</td>
</tr>
<tr>
<td>make</td>
</tr>
<tr>
<td>ppl</td>
</tr>
<tr>
<td>xorg-x11-utils</td>
</tr>
<tr>
<td>xorg-x11-xauth</td>
</tr>
</tbody>
</table>
Appendix G: Kernel Parameters

```plaintext
vm.swappiness = 0
vm.dirty_background_ratio = 3
vm.dirty_ratio = 80
vm.dirty_expire_centisecs = 500
vm.dirty_writeback_centisecs = 100
kernel.shmmax = 4398046511104
kernel.shmall = 1073741824
kernel.shmni = 4096
kernel.sem = 250 32000 100 128
fs.file-max needs to be set to at least 6815744 for Oracle Installation.
fs.file-max = 6815744
fs.aio-max-nr = 1048576
net.ipv4.ip_local_port_range = 9000 65500
net.core.rmem_default = 262144
net.core.rmem_max = 4194304
net.core.wmem_default = 262144
net.core.wmem_max = 1048576
```
Appendix H: Limits Configuration File (99-grid-oracle-limits.conf)

oracle soft nproc 16384 #Oracle Bug 15971421
oracle hard nproc 16384
oracle soft nofile 1024
oracle hard nofile 65536
oracle soft stack 10240
oracle hard stack 32768
oracle soft memlock <value-provided-by-script>
oracle hard memlock <value-provided-by-script>

grid soft nproc 16384 #Oracle Bug 15971421
grid hard nproc 16384
grid soft nofile 1024
grid hard nofile 65536
grid soft stack 10240
grid hard stack 32768
Appendix I: 99-oracle-asmdevices.rules

KERNEL="dm-*",ENV{DM_UUID}="<enter-value-according-to-your-environment>",OWNER="grid",GROUP="asmadmin",MODE="0660"
KERNEL="dm-*",ENV{DM_UUID}="<enter-value-according-to-your-environment>",OWNER="grid",GROUP="asmadmin",MODE="0660"
KERNEL="dm-*",ENV{DM_UUID}="<enter-value-according-to-your-environment>",OWNER="grid",GROUP="asmadmin",MODE="0660"
KERNEL="dm-*",ENV{DM_UUID}="<enter-value-according-to-your-environment>",OWNER="grid",GROUP="asmadmin",MODE="0660"
Appendix J: Sample Kickstart File

# Red Hat | Oracle Solutions Kickstart Script

install
url --url=<place-distro-url-here>
lang en_US.UTF-8
keyboard us
network --onboot yes --device em1 --mtu=1500 --bootproto dhcp
rootpw <password-for-system>
# Reboot after installation
reboot
authconfig --enablemd5 --enableshadow
selinux --enforcing
timezone America/New_York
bootloader --location=mbr --driveorder=sda --append="crashkernel=auto rhgb quiet"
# The following is the partition information you requested
# Note that any partitions you deleted are not expressed
# here so unless you clear all partitions first, this is
# not guaranteed to work
clearpart --all

volgroup myvg --pesize=32768 pv.008002
logvol /home --fstype=ext4 --name=home --vgname=myvg --size=8192
logvol / --fstype=ext4 --name=root --vgname=myvg --size=15360
logvol swap --name=swap --vgname=myvg --size=16400
logvol /tmp --fstype=ext4 --name=tmp --vgname=myvg --size=4096
logvol /u01 --fstype=ext4 --name=u01 --vgname=myvg --size=51200
logvol /usr --fstype=ext4 --name=usr --vgname=myvg --size=5120
logvol /var --fstype=ext4 --name=var --vgname=myvg --size=8192

part /boot --fstype=ext4 --size=256
part pv.008002 --grow -size=1000

%packages
@Base
@Core
Appendix K: Configuration Files

All configuration files can be downloaded from the Red Hat customer portal\(^\text{23}\). A listing of all the files and a brief description can be seen on the Table 7.1: Configuration Files. Some of the configuration files require input with the proper information pertaining to your environment.

<table>
<thead>
<tr>
<th>Files</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>req-rpm.txt</td>
<td>The required RPMs to deploy Oracle.</td>
</tr>
<tr>
<td>huge_page_settings.sh</td>
<td>Script that provides the proper hugepage values to set.</td>
</tr>
<tr>
<td>multipath.conf</td>
<td>Device Mapper Multipath configuration file.</td>
</tr>
<tr>
<td>sysctl.conf</td>
<td>Configuration file for the kernel parameters</td>
</tr>
<tr>
<td>99-grid-oracle-limits.conf</td>
<td>Configuration file to set limits for a user.</td>
</tr>
<tr>
<td>99-oracle-asmdevices.rules</td>
<td>udev configuration file for Oracle ASM disks</td>
</tr>
<tr>
<td>iptables</td>
<td>iptables configuration</td>
</tr>
<tr>
<td>bonding.conf</td>
<td>/etc/modprobe.d/ bonding configuration file</td>
</tr>
<tr>
<td>oracle-grid.sh</td>
<td>Shell script used to set user limits</td>
</tr>
<tr>
<td>sample-ks.cfg</td>
<td>Sample Kickstart File</td>
</tr>
<tr>
<td>enterprise-storage-no-thp</td>
<td>Directory of the custom tuned profile enterprise-storage-no-thp</td>
</tr>
<tr>
<td>CHANGELOG</td>
<td>Listing of the latest changes made to the .tar.gz file</td>
</tr>
</tbody>
</table>

Table 7.1: Configuration Files

\(^{23}\) [https://access.redhat.com/site/node/725843/40/1](https://access.redhat.com/site/node/725843/40/1)
Appendix L: Troubleshooting ORA-* Errors

This section focuses on using the command line tool, Automatic Diagnostic Repository Command Interpreter (ADRCI), to troubleshoot Oracle database related errors. ADRCI was introduced in Oracle Database 11g in order to help users diagnose errors within their Oracle database environments and provide health reports if an issue should arise. The following example shows how one could troubleshoot an Oracle database instance error using the ADRCI tool.

**NOTE:** The following steps are intended to produce an ORA-07445 error that can be troubleshooted using the ADRCI tool. Do not attempt on a Oracle Database Production environment. The following is for demonstration purposes only and intended only to show how to troubleshoot ORA-* related errors using the ADRCI tool.

1. In order to create an ORA-07445 error, an essential Oracle process will be killed via the following commands:

   ```bash
 # ps -A -o format=pid,args | grep ora_dbrm | grep -v grep
 7811 ora_dbrm_cdb
 # kill -SEGV 7811
   ```

2. Export the ORACLE_HOME via the command:

   ```bash
 # export ORACLE_HOME=/u01/app/oracle/product/12.1.0/dbhome_1
   ```

3. Start the ADRCI command tool via the command:

   ```bash
 # $ORACLE_HOME/bin/adrci
   ```

4. At the ADRCI prompt, show Oracle Home’s available via the command:

   ```bash
 adrci> show home
 ADR Homes:
 diag/rdbms/cdb/cdb
   ```

   **NOTE:** If more than one Oracle Home is available, one must specify a particular Oracle Database Home. An example on how to set to a particular Oracle Database Home is as follows:

   ```bash
 adrci> set home diag/rdbms/cdb/cdb
   ```

5. At the ADRCI prompt, run the following command to see the last 50 entries in the alert log:

   ```bash
 adrci> show alert -tail -f
   ```

   ```bash
 [... Output Abbreviated ...]
 Exception [type: SIGSEGV, unknown code] [ADDR:0xD431000076FD]
 [PC:0x3199AEB22A, semtimedop()+10] [exception issued by pid: 30461, uid: 54321] [flags: 0x0, count: 1]
 Errors in file /u01/app/oracle/diag/rdbms/cdb/cdb/trace/cdb_dbrm_7811.trc (incident=9673):
   ```
ORA-07445: exception encountered: core dump [semtimedop()+10] [SIGSEGV] [ADDR:0xD431000076FD] [PC:0x3199AEB22A] [unknown code] []
Incident details in:/u01/app/oracle/diag/rdbms/cdb/cdb/incident/incdir_9673/cdb_dbrm_7811_i9673.trc
Use ADRCI or Support Workbench to package the incident.
See Note 411.1 at My Oracle Support for error and packaging details.

NOTE: In this particular case, we are looking for an ORA-07445 within the alert log as seen above. However, this step is just to confirm what is seen in the future ADRCI steps. To exit the alert log, execute CTRL+C.

6. Within the ADRCI, there are two key terms to be aware of, problem and incident. An incident is a particular time when a problem occurred. For example, it is possible for an Oracle process to crash at different times with the same ORA-07445. The multiple occurrences of the crash are incidents, while the problem is still the ORA-07445 error. In order to view the problem, the following ADRCI command needs to be run.

```
adrci> show problem
ADR Home = /u01/app/oracle/diag/rdbms/cdb/cdb:

PROBLEM_ID PROBLEM_KEY LAST_INCIDENT LASTINC_TIME

1 ORA 7445 [semtimedop] 9673 2014-01-20 15:20:50.273000 -05:00
1 row fetched
```

7. In order to view how many incidents, the following ADRCI command must be run. In this example, I only have one incident in which the ORA-07445 problem occurred.

```
adrci> show incident
ADR Home = /u01/app/oracle/diag/rdbms/cdb/cdb:

INCIDENT_ID PROBLEM_KEY CREATE_TIME

9673 ORA 7445 [semtimedop] 2014-01-20 15:20:50.273000 -05:00
1 rows fetched
```

8. In order to view the incident in more detail, run the following command:

```
adrci> show incident -mode detail -p "incident_id=9673"
ADR Home = /u01/app/oracle/diag/rdbms/cdb/cdb:

INCIDENT INFO RECORD 1

INCIDENT_ID 9673
STATUS ready
CREATE_TIME 2014-01-20 15:20:50.273000 -05:00
PROBLEM_ID 1
CLOSE_TIME <NULL>
FLOOD_CONTROLLED none
NOTE: The two parameters of importance here are the PROBLEM_ID and INCIDENT_FILE.

9. When looking at the incident in further detail, the following incident file can be examined further via the following command:

```
adrci> show trace
/u01/app/oracle/diag/rdbms/cdb/cdb/incident/incdir_9673/cdb_dbrm_7811_i9673.trc
```

Dump file
/u01/app/oracle/diag/rdbms/cdb/cdb/incident/incdir_9673/cdb_dbrm_7811_i9673.trc

Oracle Database 12c Enterprise Edition Release 12.1.0.1.0 - 64bit
Production With the Partitioning, Automatic Storage Management, OLAP, Advanced Analytics and Real Application Testing options

ORACLE_HOME = /u01/app/oracle/product/12.1.0/dbhome_1
System name: Linux
Node name: db-oracle-12c.cloud.lab.eng.bos.redhat.com
Release: 2.6.32-431.el6.x86_64
Version: #1 SMP Sun Nov 10 22:19:54 EST 2013
Machine: x86_64
Instance name: cdb
Redo thread mounted by this instance: 1
Oracle process number: 9
Unix process pid: 7811, image: ?

*** 2014-01-20 15:20:50.293
*** SESSION ID:(271.1) 2014-01-20 15:20:50.293
*** CLIENT ID:() 2014-01-20 15:20:50.293
*** SERVICE NAME:(SYS$BACKGROUND) 2014-01-20 15:20:50.293
*** MODULE NAME:() 2014-01-20 15:20:50.293
*** ACTION NAME:() 2014-01-20 15:20:50.293
*** CONTAINER ID:(1) 2014-01-20 15:20:50.293
Dump continued from file:
/u01/app/oracle/diag/rdbms/cdb/cdb/trace/cdb_dbrm_7811.trc
1> ***** Error Stack *****
ORA-07445: exception encountered: core dump [semtimedop()+10] [SIGSEGV]
[ADDR:0xD431000076FD] [PC:0x3199AEB22A] [unknown code] []
1< ***** Error Stack *****
1> ***** Dump for incident 9673 (ORA 7445 [semtimedop]) *****
2> ***** Beginning of Customized Incident Dump(s) *****
Dumping swap information
Memory (Avail / Total) = 42169.27M / 64420.08M
Swap (Avail / Total) = 16415.99M / 16415.99M
Exception [type: SIGSEGV, unknown code] [ADDR:0xD431000076FD]
[PC:0x3199AEB22A, semtimedop()+10] [exception issued by pid: 30461, uid: 54321]
[flags: 0x0, count: 1]
Registers:
%rax: 0xfffffffffffffffc %rbx: 0x00000000000a000b %rcx:
0xffffffffffffffff
[... Output Abbreviated ...]

10. While this concludes how to examine trace files that pertain to a particular ORA error using ADRCI; if the issue cannot be solved by the end user, the ADRCI provides the Incident Packaging Service (IPS) tool to ZIP the necessary trace files based on the problem. It can then be sent to support for further debugging. To create the appropriate ZIP file, use the following commands:

```
adrci> ips create package problem 1 correlate all
Created package 1 based on problem id 1, correlation level all
```

NOTE: Problem 1 is the Problem_ID found in step 6.

```
adrci> ips generate package 1 in "/home/oracle"
Generated package 1 in file
/home/oracle/ORA7445se_20140120153727_COM_1.zip, mode complete
```

NOTE: Package 1 is the package ID captured from the ips create output command.

For more information about ADRCI, please visit the
http://docs.oracle.com/cd/E16655_01/server.121/e17639/adrci.htm#SUTIL700
Appendix M: References

TECH: Unix Semaphores and Shared Memory Explained [ID 15566.1]
http://docs.oracle.com/cd/E11882_01/install.112/e24321/pre_install.htm

Oracle Grid Infrastructure, Oracle Documentation
http://docs.oracle.com/cd/E16655_01/install.121/e17888/concepts.htm#CWLIN506

Tuning Red Hat Enterprise Linux For Oracle & Oracle RAC by Scott Crot, Sr. Consultant, Red Hat

Linux OS Installation with Reduced Set of Packages for Running Oracle Database Server [ID 728346.1]

USE_LARGE_PAGES To Enable HugePages [ID 1392497.1]
https://support.oracle.com/epmos/faces/Dashboard?_adf.ctrl-state=nvtwimbst_252

Large Pages Information in the Alert Log [ID 1392543.1]
https://support.oracle.com/epmos/faces/ui/km/SearchDocDisplay.jspx?_adf.ctrl-state=nvtwimbst_226

Tuning Virtual Memory

Maximum SHMMAX values for Linux x86 and x86-64 [ID 567506.1]
https://support.oracle.com/epmos/faces/ui/km/SearchDocDisplay.jspx?_adf.ctrl-state=yp0o5bwk6_4

About the Oracle Database Fault Diagnosability Infrastructure
http://docs.oracle.com/cd/E11882_01/server.112/e25494/diag001.htm

Pro Oracle Database 11g RAC on Linux – Installation, Administration, Performance by Steve Shaw and Martin Bach
http://www.amazon.com/Pro-Oracle-Database-11g-Linux-ebook/dp/B004VJ472I/ref=sr_1_1?ie=UTF8&qid=1389977723&sr=8-1&keywords=pro+oracle+11g+rac