
Red Hat CloudForms:

Implementing a Highly Available Virtual
Management Database

Version 1.1

September 2015

100 East Davie Street
Raleigh NC 27601 USA
Phone: +1 919 754 3700
Phone: 888 733 4281
Fax: +1 919 754 3701
PO Box 13588
Research Triangle Park NC 27709 USA

Linux is a registered trademark of Linus Torvalds. Red Hat, Red Hat Enterprise Linux and the Red Hat
"Shadowman" logo are registered trademarks of Red Hat, Inc. in the United States and other
countries.

UNIX is a registered trademark of The Open Group.

Intel, the Intel logo and Xeon are registered trademarks of Intel Corporation or its subsidiaries in the
United States and other countries.

All other trademarks referenced herein are the property of their respective owners.

The OpenStack® Word Mark and OpenStack Logo are either registered trademarks / service marks or
trademarks / service marks of the OpenStack Foundation, in the United States and other countries
and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or
sponsored by the OpenStack Foundation or the OpenStack community.

VMware, VMware Tools, vSphere, vCetner, and ESXi are registered trademarks of VMware, Inc.

NetApp and SnapMirror are registered trademarks of NetApp, Inc.

F5 Networks, Global Traffic Manager, and Local Traffic Manager are registered trademarks of F5
Networks, Inc.

© 2015 by Red Hat, Inc. This material may be distributed only subject to the terms and conditions set
forth in the Open Publication License, V1.0 or later (the latest version is presently available at
http://www.opencontent.org/openpub/).

The information contained herein is subject to change without notice. Red Hat, Inc. shall not be liable
for technical or editorial errors or omissions contained herein.

Distribution of modified versions of this document is prohibited without the explicit permission of Red
Hat Inc.

Distribution of this work or derivative of this work in any standard (paper) book form for commercial
purposes is prohibited unless prior permission is obtained from Red Hat Inc.

The GPG fingerprint of the security@redhat.com key is:
CA 20 86 86 2B D6 9D FC 65 F6 EC C4 21 91 80 CD DB 42 A6 0E

www.redhat.com ii refarch-feedback@redhat.com

http://www.opencontent.org/openpub/
mailto:security@redhat.com

Comments and Feedback
In the spirit of open source, we invite anyone to provide feedback and comments on any reference
architectures. Although we review our papers internally, sometimes issues or typographical errors are
encountered. Feedback allows us to not only improve the quality of the papers we produce, but allows
the reader to provide their thoughts on potential improvements and topic expansion to the papers.

Feedback on the papers can be provided by emailing refarch-feedback@redhat.com. Please refer to
the title within the email.

Staying In Touch
Join us on some of the popular social media sites where we keep our audience informed on new
reference architectures as well as offer related information on things we find interesting.

Like us on Facebook:

https://www.facebook.com/rhrefarch

Follow us on Twitter:

https://twitter.com/RedHatRefArch

Plus us on Google+:

https://plus.google.com/u/0/b/114152126783830728030/

refarch-feedback@redhat.com III www.redhat.com

https://plus.google.com/u/0/b/114152126783830728030/
https://twitter.com/RedHatRefArch
https://www.facebook.com/rhrefarch
mailto:refarch-feedback@redhat.com?subject=Red%20Hat%20CloudForms:%20Creating%20a%20Highly%20Available%20VMDB%20Database

Table of Contents
1 Executive Summary... 1

2 Environment... 2

2.1 Regional Database Cluster... 2

2.2 Global Database Cluster... 3

2.3 Production Network Information.. 4

2.3.1 Database Systems... 4
2.3.2 CloudForms User Interface Appliances... 5

3 PostgreSQL Configuration.. 6

3.1 Database Server Setup... 6

3.1.1 Write Ahead Logs Archive.. 8
3.1.1.1 Common Setup.. 8
3.1.1.2 DC1 and DC2 Regions... 8
3.1.1.3 Global Region... 9

3.2 Database Replication Setup.. 10

3.2.1 Creating a New Database.. 10
3.2.2 Copying an Existing CloudForms Database.. 11
3.2.3 Common Database Configuration... 11

4 Regional Database Cluster.. 13

4.1 Setup... 13

4.1.1 Operations... 16

5 Global Database Configuration and Failover.. 18

5.1.1 Design Considerations... 18
5.1.2 Setup.. 19
5.1.3 Operations... 20

5.1.3.1 Status Check.. 20
5.1.3.2 Automatic Start at Boot on Node 1... 20
5.1.3.3 Automatic Start at Boot on Node 2... 21
5.1.3.4 Automatic Failover.. 21
5.1.3.5 Failback from Node 2 to Node 1.. 21
5.1.3.6 Initializing the Standby Database... 22
5.1.3.7 Log Rotation... 22

5.2 UI Failover Setup... 22

www.redhat.com iv refarch-feedback@redhat.com

5.3 Replication from DC1/DC2 to the Global Region.. 23

6 Conclusion.. 25

Appendix A: Revision History.. 26

Appendix B: Contributors.. 26

Appendix C: Troubleshooting.. 26

C.1 PostgreSQL Replication.. 26

C.2 Cluster Configuration.. 27

C.3 Replication in a Cluster Environment... 28

C.4 Restoring the Standby Database from a Backup... 29

C.5 Simulating a Node Failure.. 29

C.6 CloudForms UI Failover.. 29

Appendix D: Maintenance... 30

refarch-feedback@redhat.com v www.redhat.com

1 Executive Summary
Application high availability is a top subject for most enterprise IT environments. Downtime
incurs unplanned expenses and creates frustration for both consumers and providers.

This reference architecture focuses on implementing a highly available configuration for Red
Hat CloudForms1 by configuring the CloudForms database for a replicated setup with one
master and one hot standby server.

A hot standby configuration provides the following:

• Software components are installed and available on both primary and secondary
nodes. The software components on the secondary system are up but will not process
data or requests

• Data is mirrored in near real time and both systems will have identical data. Data
replication is typically done through the software’s capabilities and generally provides a
recovery time of a few seconds

For the reference environment the following technologies are used:

• NFS storage is provided by NetApp filers using SnapMirror technologies

• Virtual IP(VIP) along with DNS round-robin and load balancing provided by F5
Networks

• Clustering technologies provided by Red Hat

The targeted use cases include:

• Configuring a highly available CloudForms implementation across two data centers
with a regional database for each data center, using Red Hat cluster services to
provide a highly available database for each region

• Configuring a highly available CloudForms implementation across two data centers
with a single global database mirroring data between the database servers

Disclaimer: Third party products are not supported by Red Hat and are supported by the respective vendors. Custom scripts and other
information shared are for informational/educational purposes. Refer to the Red Hat Production Support Scope of Coverage2 for
additional information.

1 http://www.redhat.com/en/technologies/cloud-computing/cloudforms
2 https://access.redhat.com/support/offerings/production/soc

refarch-feedback@redhat.com 1 www.redhat.com

https://access.redhat.com/support/offerings/production/soc
http://www.redhat.com/en/technologies/cloud-computing/cloudforms

2 Environment
For the reference environment, the following diagrams illustrate the high availability
configurations deployed.

2.1 Regional Database Cluster

www.redhat.com 2 refarch-feedback@redhat.com

Figure 2.1.1: Regional Database Cluster

2.2 Global Database Cluster

refarch-feedback@redhat.com 3 www.redhat.com

Figure 2.2.1: Global Database Cluster

2.3 Production Network Information
Network details for both the database and user interface systems are listed below.

2.3.1 Database Systems
The following lists network details for the database systems used in the regional and global
configurations.

Function Hostname/IP Storage Network

Global DB 01
cf-global-db1.example.com
10.19.10.102

cf-global-nfs1.example.com
10.18.10.106

Global DB 02
cf-global-db2.example.com
10.16.10.102

cf-global-nfs2.example.com
10.17.10.106

DC1 DB 01
cf-dc1-db1.example.com
10.19.11.13

cf-dc1-nfs1.example.com
10.18.11.20

DC1 DB 02
cf-dc1-db2.example.com
10.16.11.12

cf-dc1-nfs2.example.com
10.17.11.19

DC2 DB 01
cf-dc2-db1.example.com
10.19.12.12

cf-dc2-nfs1.example.com
10.18.12.19

DC2 DB 02
cf-dc2-db2.example.com
10.16.12.13

cf-dc2-nfs2.example.com
10.17.12.20

Table 2.3.1-1: Host Database Systems

Function Hostname/IP Comment

Global DB
cf-global-db.example.com
10.19.10.51 or 10.16.10.51

DNS-based, IP address changes during
failover

DC1 Region DB
cf-dc1-db.example.com
10.19.11.14

managed by OS cluster

DC2 Region DB
cf-dc2-db.example.com
10.16.12.14

managed by OS cluster

Table 2.3.1-2: Database Virtual IP’s

www.redhat.com 4 refarch-feedback@redhat.com

2.3.2 CloudForms User Interface Appliances
The following lists network details for the CloudForms appliance systems used in the regional
and global configurations.

Function Hostname IP

Global UI 01 cf-global-ui1.example.com 10.19.10.101

Global UI 02 cf-global-ui2.example.com 10.16.10.101

DC1 UI 01 cf-dc1-ui1.example.com 10.19.11.10

DC1 UI 02 cf-dc1-ui2.example.com 10.19.11.11

DC2 UI 01 cf-dc2-ui1.example.com 10.16.12.10

DC2 UI 02 cf-dc2-ui2.example.com 10.16.12.11

Table 2.3.2-1: User Interface CloudForms Appliances

Function Hostname Comment

Global UI
cf-global-ui.example.com
10.19.10.50 or 10.16.10.50

DNS-based, IP address changes during
failover

DC1 UI
cf-dc1-ui.example.com
10.19.11.52

managed by Local Traffic Manager3

DC2 UI
cf-dc2-ui.example.com
10.16.12.52

managed by Local Traffic Manager

Table 2.3.2-2: User Interface Virtual IP’s

3 https://f5.com/products/modules/local-traffic-manager

refarch-feedback@redhat.com 5 www.redhat.com

https://f5.com/products/modules/local-traffic-manager

3 PostgreSQL Configuration
The following section lists details for the postgres and cluster configuration.

3.1 Database Server Setup
For the reference environment, PostgreSQL 9.2 is used for the shared external database for
the CloudForms appliances, running Red Hat Enterprise Linux 6.5, with two database servers
per region.

Create two virtual machines, each with eight virtual CPUs, eight GBs of RAM and two disks.

The first disk is assigned for the operating system and is 30 GB in size.

The second disk holds the database files, is backed by NFS, and has the following size,
depending on the region:

Region Database Disk Size

Production, Global 825 GB

Production, DC1 700 GB

Production, DC2 400 GB
Table 3.1-1: CloudForms Regional Database Configuration

Note: The database size relates to the number of managed VMs and hosts4.

Below are the steps to set up the two database servers in an primary/standby configuration.
These steps are performed on both systems.

• Check that the system clock is set correctly by running date, and configure NTP if
necessary.

• Edit /etc/rhsm/rhsm.conf and set the proxy_hostname and proxy_port parameters if the
system needs to use a proxy to access the Internet.

Register the system with Red Hat, using the following commands:
#subscription-manager register
#subscription-manager list --available
#subscription-manager attach --pool=<POOL_ID with base RHEL, software
collections, and HA>
#subscription-manager repos --disable='*'
#subscription-manager repos --enable=rhel-6-server-rpms
#subscription-manager repos --enable=rhel-server-rhscl-6-rpms
#subscription-manager repos --enable=rhel-ha-for-rhel-6-server-rpms

Note: Entitlements for "Red Hat Software Collections" and the "High Availability Add
On" are required.

4 https://access.redhat.com/documentation/en-US/Red_Hat_CloudForms/3.2/html/Deployment_Planning_Guid
e/sect-Planning.html#Database_Sizing_Assistant

www.redhat.com 6 refarch-feedback@redhat.com

https://access.redhat.com/documentation/en-US/Red_Hat_CloudForms/3.2/html/Deployment_Planning_Guide/sect-Planning.html#Database_Sizing_Assistant
https://access.redhat.com/documentation/en-US/Red_Hat_CloudForms/3.2/html/Deployment_Planning_Guide/sect-Planning.html#Database_Sizing_Assistant

Update the system, install PostgreSQL 9.2, and the cluster packages:
#yum update -y

#yum install -y postgresql92-postgresql-server /
postgresql92-postgresql-contrib pacemaker pcs cman

Configure the second disk to hold the database files:
#parted -s /dev/sdb mklabel msdos
#parted -s -a optimal /dev/sdb mkpart primary 0% 100%
#parted -s /dev/sdb set 1 lvm on

#pvcreate /dev/sdb1
#vgcreate vg_data /dev/sdb1
#lvcreate -n lv_pgsql_data -l 100%FREE vg_data
#mkfs.ext4 /dev/vg_data/lv_pgsql_data

Add the following line in /etc/fstab:
/dev/vg_data/lv_pgsql_data /opt/rh/postgresql92/root/var/lib/pgsql/data /
ext4 defaults 1 2

Run the following commands to initialize the database directory:
#mount -a
#chown postgres:postgres /opt/rh/postgresql92/root/var/lib/pgsql/data
#chmod 700 /opt/rh/postgresql92/root/var/lib/pgsql/data

For the cluster and the database to work, the following lines need to be added in
/etc/sysconfig/iptables before the "-A INPUT -j REJECT" line:
-A INPUT -p udp -m state --state NEW -m udp --dport 5404 -j ACCEPT
-A INPUT -p udp -m state --state NEW -m udp --dport 5405 -j ACCEPT
-A INPUT -p tcp -m state --state NEW -m tcp --dport 16851 -j ACCEPT
-A INPUT -p tcp -m state --state NEW -m tcp --dport 21064 -j ACCEPT
-A INPUT -p tcp -m state --state NEW -m tcp --dport 5432 -j ACCEPT
-A INPUT -p igmp -j ACCEPT

Note: The rules can be made more restrictive by specifying source and destination
addresses. For more information, see the Red Hat Enterprise Linux 6: Cluster
Administration5 guide.

Activate the changes:
#service iptables restart

5 https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Cluster_Administration/s2
-iptables_firewall-CA.html

refarch-feedback@redhat.com 7 www.redhat.com

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Cluster_Administration/s2-iptables_firewall-CA.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Cluster_Administration/s2-iptables_firewall-CA.html

3.1.1 Write Ahead Logs Archive
To allow the stand-by database to replay transactions that the primary has no longer available
in its pg_xlog directory, the database is configured to archive the Write Ahead Logs.

The required sizes for the NFS volumes used for this depend on the desired retention time for
Write Ahead Logs and the data change rate for each database. For the reference
environment the following sizes are used:

Region WAL Archive Size

Production, Global 25 GB

Production, DC1 and DC2 50 GB
Table 3.1.1-1: WAL Storage Configuration

3.1.1.1 Common Setup
The NFS filers must be accessed through the storage network. To achieve this, a static route
needs to be added.

Assuming that eth1 is on the storage network, create
/etc/sysconfig/network-scripts/route-eth1 with the following line:
<FILER_IP/FILER_CIDR_PREFIX> via <STORAGE_NETWORK_GATEWAY> dev eth1

Example:
10.19.11.0/21 via 10.18.11.1 dev eth1

Add the new route without rebooting by running:
ip route add 10.19.11.0/21 via 10.18.11.1 dev eth1

3.1.1.2 DC1 and DC2 Regions
For the DC1 and DC2 regional databases, a NFS volume that is writable by both database
systems is used. The top-level directory needs to be owned by the postgres user and group,
UID 26 and GID 26, and the permissions should be set so that only the owner has any
access.

Create a directory in the NFS volume that is owned by the postgres user:
#mount <FILER_HOSTNAME:FILER_PATH>/mnt
#mkdir /mnt/wal-archive
#chown postgres:postgres /mnt/wal-archive
#umount /mnt

On the DC1 and DC2 database systems, add the following line in /etc/fstab:
<FILER_HOSTNAME:FILER_PATH>/wal-archive /
/opt/rh/postgresql92/root/var/lib/pgsql/wal-archive nfs defaults 0 0

On the DC1 and DC2 database systems, run the following commands to mount the NFS
volumes:
#mkdir /opt/rh/postgresql92/root/var/lib/pgsql/wal-archive

www.redhat.com 8 refarch-feedback@redhat.com

#mount -a
#chkconfig netfs on

Note: SELinux is disabled. Additional steps are necessary to make the data and
wal-archive directories writable by the PostgreSQL database process if enabled.

3.1.1.3 Global Region
In the global region, the first database system has a writable NFS volume, and the second
system has a read-only NFS volume that is a snap mirror of the other side's writable NFS
volume.

On the first global database system, add the following line in /etc/fstab:
<WRITABLE_FILER:WRITABLE_PATH>/wal-archive /
/opt/rh/postgresql92/root/var/lib/pgsql/wal-archive-write nfs defaults 0 0

Run the following commands to mount the NFS volume on the first system:
#mkdir /opt/rh/postgresql92/root/var/lib/pgsql/wal-archive-write
#mount -a
#chkconfig netfs on

On the second system, add the following line in /etc/fstab.
<READONLY_FILER:READONLY_PATH>/wal-archive /
/opt/rh/postgresql92/root/var/lib/pgsql/wal-archive-read nfs defaults 0 0

Run the following commands to mount the NFS volume on the second system:
#mkdir /opt/rh/postgresql92/root/var/lib/pgsql/wal-archive-read
#mount -a
#chkconfig netfs on

Note: Depending on how the SnapMirror6 is configured, it might take some time for the
wal-archive directory to become available on the read-only side. Without this directory,
the mount command will fail.

On the second system, run the following commands to enable archiving of WAL files when
this system runs as primary. The files are not read by the other system, so they can be placed
in a local directory.
#cd /opt/rh/postgresql92/root/var/lib/pgsql
#mkdir data/wal-archive-write
#chown postgres:postgres data/wal-archive-write
#ln -s data/wal-archive-write .

6 https://library.netapp.com/ecmdocs/ECMP1368826/html/GUID-97AFCAB0-CEEC-4816-9273-6D7948E6690C
.html

refarch-feedback@redhat.com 9 www.redhat.com

https://library.netapp.com/ecmdocs/ECMP1368826/html/GUID-97AFCAB0-CEEC-4816-9273-6D7948E6690C.html
https://library.netapp.com/ecmdocs/ECMP1368826/html/GUID-97AFCAB0-CEEC-4816-9273-6D7948E6690C.html

3.2 Database Replication Setup
Once this basic setup is done, apply the following configuration steps only on the first
database system.

3.2.1 Creating a New Database
For a new region, create an empty database with the following steps. Otherwise, go to the
next section.
#rmdir /opt/rh/postgresql92/root/var/lib/pgsql/data/lost+found
#service postgresql92-postgresql initdb

Note: PostgreSQL's initdb command fails if the data directory is not empty

Copy
/var/www/miq/system/COPY/opt/rh/postgresql92/root/var/lib/pgsql/data/EVM_V5_Dedicated_
Appliance_postgresql.conf

...from one of the CloudForms appliances to:
/opt/rh/postgresql92/root/var/lib/pgsql/data/postgresql.conf

...on the database system.

Make the following changes to configure logging and to facilitate the distribution of logs to a
central logging server:

• logging_collector = on

• log_filename = 'postgresql.log'

• Ensure the following directives are commented out or deleted:

• #log_truncate_on_rotation = on

• #log_rotation_age = 1d

Setup logrotate to rotate and compress logs. Create /etc/logrotate.d/postgres with:

/etc/logrotate.d/postgres
/opt/rh/postgresql92/root/var/lib/pgsql/data/pg_log/postgresql.log {
 daily
 rotate 10
 copytruncate
 delaycompress
 compress
 notifempty
 missingok
 create 640 postgres postgres
}

www.redhat.com 10 refarch-feedback@redhat.com

3.2.2 Copying an Existing CloudForms Database
If CloudForms has been set up with the embedded database, the steps below can be used to
move the data to an external database.

Run the following commands on the CloudForms database appliance:
#service evmserverd stop
#service postgresql92-postgresql stop
#chkconfig postgresql92-postgresql off
#cd /opt/rh/postgresql92/root/var/lib/pgsql
#tar cfz /tmp/pgbackup.tar.gz data
#scp /tmp/pgbackup.tar.gz ea@NODE1:/tmp

On the first cluster database system, run these commands:
#cd /opt/rh/postgresql92/root/var/lib/pgsql
#rmdir data/lost+found
#tar xf /tmp/pgbackup.tar.gz

Edit /opt/rh/postgresql92/root/var/lib/pgsql/data/postgresql.conf and change the following
parameters:

• shared_buffers = 1GB

• log_filename = 'postgresql-%a.log'

• log_truncate_on_rotation = on

• log_rotation_age = 1d

The username used to access the vmdb_production database is root, with the same
password as the default password of the admin user in the Web UI.

3.2.3 Common Database Configuration
Add the following lines to /opt/rh/postgresql92/root/var/lib/pgsql/data/pg_hba.conf to allow the
CloudForms appliances to connect to the external database, to enable the pg_basebackup
command locally, and to allow replication connections from the other cluster node.

Change the IP address range for the cloudforms line to only include the CloudForms
appliances from the region (UI and workers).

Change the IP address range for the replicator line to only include the two database cluster
nodes.

Instead of specifying a range, add multiple lines and put IP_ADDRESS/MASK in the
second-to-last column.
local replication postgres peer
host replication replicator 10.19.11.0/21 md5
host vmdb_production cloudforms 10.19.11.0/21 md5

Edit postgresql.conf and make the following changes that are required for replication:

refarch-feedback@redhat.com 11 www.redhat.com

• wal_level = hot_standby

• hot_standby = on

• archive_mode = on

• archive_command = 'cp %p /opt/rh/postgresql92/root/var/lib/pgsql/wal-archive/%f'

• max_wal_senders = 2

On the global database system, use the directory name wal-archive-write instead of
wal-archive in the archive_command parameter.

Start PostgreSQL:
#service postgresql92-postgresql start

If creating a new database, run the following commands to create the user and database that
CloudForms will use. Write down the password given to the createuser command. This is
required when setting up the CloudForms appliances. Skip this step if the database is copied
from a CloudForms database appliance.
#su - postgres
#scl enable postgresql92 bash
#createuser -Pd cloudforms
#createdb -E UTF8 -l en_US.UTF-8 -T template0 -O cloudforms vmdb_production

Create the replication user, take a database backup, and copy it to the second database
system. Again, write down the password given to createuser. This is needed to configure
the cluster database resource.
#su - postgres
#scl enable postgresql92 bash
#mkdir /tmp/pgbackup
#createuser -P --replication replicator
#pg_basebackup -D /tmp/pgbackup -x
#cd /tmp/pgbackup
#tar cfz /tmp/pgbackup.tar.gz .
#scp /tmp/pgbackup.tar.gz ea@NODE2:/tmp

On the second database system, restore the database from the backup:
#rm -rf /opt/rh/postgresql92/root/var/lib/pgsql/data/*
#cd /opt/rh/postgresql92/root/var/lib/pgsql/data
#tar xf /tmp/pgbackup.tar.gz

www.redhat.com 12 refarch-feedback@redhat.com

4 Regional Database Cluster
Cluster services are used to automatically manage the primary and standby databases for the
DC1 and DC2 regions. For the reference environment. the Red Hat High Availability add-on
for Red hat Enterprise Linux is used. Refer to Red Hat Enterprise Linux 6 Configuring the
Red Hat High Availability Add-On with Pacemaker7 for additional information.

Skip to the next section for the global region.

4.1 Setup
Before setting up the cluster, stop the database on node 1:
#service postgresql92-postgresql stop

Note: Verify postgresql92-postgresql is not running on node 2.

Run the following commands on each database system. Pick a cluster name that is unique.
#NODE1=NODE1_HOSTNAME
#NODE2=NODE2_HOSTNAME
#CLUSTER_NAME=CLUSTER_NAME

On NODE1:

#pcs cluster setup --local --name $CLUSTER_NAME $NODE1 $NODE2

On NODE2:

#pcs cluster setup --local --name $CLUSTER_NAME $NODE1 $NODE2

Start the cluster services on both nodes:
#service cman start

Note: The command should show OK for all service components. If it fails at the
Waiting for quorum step, check that the clusternode name attributes in
/etc/cluster/cluster.conf are correct, that the names either resolve via DNS or are
defined in /etc/hosts, and that the firewall allows cluster traffic to pass.

Start the pacemaker service and configure cman and pacemaker to start at boot time:
#service pacemaker start
#chkconfig cman on
#chkconfig pacemaker on

Verify the cluster configuration with the following commands:
#cman_tool nodes -a
#pcs status

7 https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html-single/Configuring_the_R
ed_Hat_High_Availability_Add-On_with_Pacemaker/index.html#s2-configurestartnodes-HAAR

refarch-feedback@redhat.com 13 www.redhat.com

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html-single/Configuring_the_Red_Hat_High_Availability_Add-On_with_Pacemaker/index.html#s2-configurestartnodes-HAAR
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html-single/Configuring_the_Red_Hat_High_Availability_Add-On_with_Pacemaker/index.html#s2-configurestartnodes-HAAR

Note: Regarding two node clusters and quorum policy in Red Hat Enterprise Linux,
refer to the following Red Hat Knowledge Base article:
https://access.redhat.com/solutions/645843

Next, configure fencing to allow a surviving cluster node to forcibly remove a non-responsive
node from the cluster.

Note: For the reference environment VMware components are used as the
virtualization provider. If using Red Hat technologies, the following specific VMware
configuration is not used. Refer to Red Hat Enterprise Linux 6: Configuring the Red
Hat High Availability Add-On with Pacemaker8 for additional information on fencing
configuration and setup.

Check that both database systems can access the SOAP API of the vCenter they are running
on. The vCenter user needs to be able to power virtual machines on and off.
#fence_vmware_soap -o list -a VCENTER_HOSTNAME -l VCENTER_USERNAME \
-p VCENTER_PASSWORD -z

Add vCenter as a fence device to the cluster. This only needs to be run on the first database
system:
#pcs stonith create VCENTER_NAME_stonith fence_vmware_soap action="reboot" \
ipaddr="VCENTER_HOSTNAME" ssl="1" login='VCENTER_USERNAME' \
passwd='VCENTER_PASSWORD' pcmk_host_list="$NODE1,$NODE2" \
pcmk_host_check="static-list"

On both database systems, verify that fencing works. The following command reboots
NODE2 when run on NODE1.
#pcs stonith fence $NODE2

When it has finished rebooting, fence NODE1 from NODE2:
#pcs stonith fence $NODE1

After each of the systems comes back, verify that the following command shows both cluster
nodes as online, and the fence_vmware_soap agent as started:
#pcs status

Note: The fencing agent may show a status of "stopped" after the cluster has been
running for a while. This is due to timeouts in the fencing status check and can be
ignored.

Add the virtual IP address that the CloudForms appliances will use to connect to the primary
database.
#pcs resource create pgvip ocf:heartbeat:IPaddr2 ip=VIP \
cidr_netmask=NETWORK_PREFIX iflabel=pgvip meta target-role=Started

Next, create the resource for the cluster to run the PostgreSQL database. Due to using a
newer PostgreSQL version from the Red Hat Software Collections channel, create two

8 https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Configuring_the_Red_Ha
t_High_Availability_Add-On_with_Pacemaker/ch-fencing-HAAR.html

www.redhat.com 14 refarch-feedback@redhat.com

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Configuring_the_Red_Hat_High_Availability_Add-On_with_Pacemaker/ch-fencing-HAAR.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Configuring_the_Red_Hat_High_Availability_Add-On_with_Pacemaker/ch-fencing-HAAR.html
https://access.redhat.com/solutions/645843

custom scripts on both database systems:
/usr/local/bin/pg_ctl:

#cat >/usr/local/bin/pg_ctl <<'EOF'
#!/bin/bash

scl enable postgresql92 -- pg_ctl "$@"
EOF

/usr/local/bin/psql:

#cat >/usr/local/bin/psql <<'EOF'
#!/bin/bash

scl enable postgresql92 -- psql "$@"
EOF

#chmod 755 /usr/local/bin/{pg_ctl,psql}

On the first system, create the resource for the cluster to manage the PostgreSQL service.
Replace REPLICATOR_PASSWORD and REPLICATION_VIP with the actual values.
#pcs resource create postgresql pgsql pgctl=/usr/local/bin/pg_ctl \
pgdata=/opt/rh/postgresql92/root/var/lib/pgsql/data \
psql=/usr/local/bin/psql \
config=/opt/rh/postgresql92/root/var/lib/pgsql/data/postgresql.conf \
rep_mode=async repuser=replicator \
primary_conninfo_opt="password=REPLICATOR_PASSWORD" node_list="$NODE1 \
$NODE2" restore_command='cp \
/opt/rh/postgresql92/root/var/lib/pgsql/wal-archive/%f "%p"' \
master_ip=REPLICATION_VIP \
tmpdir=/opt/rh/postgresql92/root/var/lib/pgsql/tmp \
check_wal_receiver=false restart_on_promote=true \
op start timeout="60s" interval="0s" on-fail="restart" \
op monitor timeout="60s" interval="4s" on-fail="restart" \
op monitor timeout="60s" interval="3s" on-fail="restart" role="Master" \
op promote timeout="60s" interval="0s" on-fail="restart" \
op demote timeout="60s" interval="0s" on-fail="stop" \
op stop timeout="60s" interval="0s" \
op notify timeout="60s" interval="0s"

#pcs resource master postgresql-ms postgresql \
master-max=1 master-node-max=1 clone-max=2 clone-node-max=1 notify=true

Set low timeout values for the monitor operations to speed up the master/slave negotiation
when the resource is started.

Configure the cluster to keep the replication and service IP address on the same cluster node
as the primary database.
#pcs constraint colocation add pgvip with Master postgresql-ms INFINITY
#pcs constraint order \
promote postgresql-ms then start pgvip symmetrical=false score=INFINITY
#pcs constraint order \
demote postgresql-ms then stop pgvip symmetrical=false score=0

refarch-feedback@redhat.com 15 www.redhat.com

Verify PostgreSQL is started:
#pcs status

This should show that the database is running as master on one node, and as slave on the
other node. If it shows that the database is stopped on both nodes and provides "failed
actions" details, run the following to help diagnose the issue:
#pcs resource debug-start postgresql

One more thing to do is to ensure that old WAL files are deleted. This can be done with the
archive_cleanup_command option of the pgsql cluster resource script, however there is
desire to keep WAL files longer than they are needed for replication and to be able to
reconstruct the database from an older backup.

To do this, create a script in /etc/cron.daily on both nodes. The find command at the end of
the script is run as the postgres user as in production, the wal-archive directory is an NFS
mount and not readable by the root user.
/etc/cron.daily/pgsql-replication:

#!/bin/bash

Delete archived WAL files after N days. This assumes that
we take a full backup more often than that.

set -eu

Exit if we are on the standby node. We only need to run the
delete command once, and the primary node is the one who writes
the files.
if [-e /opt/rh/postgresql92/root/var/lib/pgsql/data/recovery.conf]; then
exit 0
fi

The number of days after which archived WAL files will be deleted.
MAX_AGE=3

su -c "find /opt/rh/postgresql92/root/var/lib/pgsql/wal-archive -maxdepth 1
-mtime +$MAX_AGE -type f -delete" postgres
EOF

chmod +x /etc/cron.daily/pgsql-replication

4.1.1 Operations
To stop all cluster resources on one node:
#pcs cluster standby $HOSTNAME

If that node is the primary database, the remaining node should automatically switch from
standby to primary.

To re-enable the node to host cluster resources:
#pcs cluster unstandby $HOSTNAME

www.redhat.com 16 refarch-feedback@redhat.com

The pgsql cluster resource agent uses a lock file to track clean shutdowns of the
primary/standby combo and will refuse to make a node the primary if the lock file is there.
This lock file is only deleted when the standby is stopped first, and then the primary is
stopped. If the primary is stopped first, or is fenced, and the standby takes over, the lock file is
not deleted.

In reference environment, this precaution is not necessary because the Write Ahead Logs are
archived. If PostgreSQL remains in a “Stopped” state on a node and the "Failed actions" list
shows "unknown error", execute to help diagnose the issue:
#pcs resource debug-start postgresql

If the node displays:
ERROR: My data may be inconsistent. You have to remove
/opt/rh/postgresql92/root/var/lib/pgsql/tmp/PGSQL.lock file to force start.

...delete /opt/rh/postgresql92/root/var/lib/pgsql/tmp/PGSQL.lock and run:
#pcs resource cleanup postgresql

refarch-feedback@redhat.com 17 www.redhat.com

5 Global Database Configuration and
Failover
The following section describes the setup and configuration for a shared global database and
may contain steps that require customization for each environment. As a result, some items
may be discussed in design only.

5.1.1 Design Considerations
Because the database systems for the global CloudForms region are in two different data
centers, setting up a cluster would meet the criteria for stretch clusters as defined in Support
for Red Hat Enterprise Linux Cluster and High Availability Stretch Architectures9.

This is decided against for the following reasons:

Stretch clusters have two important limitations:
• No automatic failover occurs in case of a data center failure, or a network failure

between the two data centers
• All cluster nodes must be on the same logical network, and routing between the two

data centers may not be supported

Instead of a cluster, a Global Traffic Manager10 (GTM) is used along with custom scripts.

There are some properties of the global databases that simplify the failover setup:
• The GTM sends all new database connections to the first system as long as the GTM

can connect to port 5432 on that system
• All CloudForms appliances automatically re-open database connections in case of

connection failures, and retry indefinitely
• When a data center goes down completely, there will be no write access to the global

database from that data center
• When a data center loses its outside network connectivity completely, no new

provisioning requests can be scheduled in that data center; consequently, a limited
amount of provisioning data would be lost if appliances continue to write to the now
isolated global database instance

• Database replication does not rely on shared storage that both database systems
would write to simultaneously; because of this, a split brain situation does not
completely destroy the database

There also are some items that increase complexity:
• If the first database system is down and comes back, new database connections are

sent to the first system immediately
• While CloudForms gracefully handles database connection failures, it does not retry

9 https://access.redhat.com/articles/27136
10 https://f5.com/products/modules/global-traffic-manager

www.redhat.com 18 refarch-feedback@redhat.com

https://f5.com/products/modules/global-traffic-manager
https://access.redhat.com/articles/27136

SQL queries when it encounters SQL errors; connections must therefore not be sent to
the standby database

• The GTM only checks if something is listening on TCP port 5432, it does not check if
the database actually works

• When a data center loses its outside network connectivity completely, database
changes can still be triggered by provisioning requests that were queued just before
the network outage, and by scheduled actions

Given these parameters, two PostgreSQL instances are setup. One in Data Center 1 that will
be the primary in normal operations and one in Data Center 2 that will be the standby in
normal operations along with writing custom scripts for automatic failover and scripts with
documentation for manual failover where necessary.

Note: Custom scripts are not supported by Red Hat Global Support Services. The
commands called by these scripts are if they are part of a package shipped by Red
Hat.

5.1.2 Setup
To start setting up the two global database systems, follow the same steps as for the regional
databases, up to but not including the cluster setup. Do not install the pacemaker, cman, or
pcs packages on these nodes.

Below, the global database system in Data Center 1 is referred to as node 1, the global
database system in Data Center 2 is referred to as node 2.

Perform the following steps on both nodes.

Create /var/lib/pgsql/.pgpass with the following content. If the database is copied from a
CloudForms appliance, the CLOUDFORMS_SQL_USER is root and the password the default
password. If the database was created from scratch, the username is cloudforms and the
password is the same as set with the createuser command.
::*:CLOUDFORMS_SQL_USER:SECRET
::*:replicator:SECRET

Change the access permissions, otherwise the file will be ignored:
#chown postgres:postgres /var/lib/pgsql/.pgpass
#chmod 600 /var/lib/pgsql/.pgpass

Edit /etc/sysconfig/pgsql-replication and set the following parameters:
PRIMARY_HOST: FQDN of node 1
STANDBY_HOST: FQDN of node 2
PGSQL_SQL_USER: same as CLOUDFORMS_USER above
PGSQL_SSH_USER: <a user that can be used to copy files from node 2 to node 1
via SSH; only needs write access to /tmp>

On node 2, edit /etc/sysconfig/iptables and remove the line for port 5432. Access to this port
is controlled by a custom script.

refarch-feedback@redhat.com 19 www.redhat.com

On node 2 only, run the following command. This will take a backup of the primary database,
copy it to the standby, and start the standby.
#pgsql-standby-initialize

It also configures node 2 to automatically start the database during the next reboot.

5.1.3 Operations
The following section places focus on the status, failover, and log collections for the nodes.

5.1.3.1 Status Check
To verify that streaming replication works, run this command on both nodes:
#ps -ef | grep "postgres: wal"

Output on the current primary:
#postgres: wal sender process replicator 10.6.1.252(44267) streaming
2/1DD61450

Output on the current standby:
#postgres: wal receiver process streaming 2/1DD614

The hexadecimal numbers at the end indicate which database change was transmitted last
and should be roughly the same when the command is run at the same time on both systems.

If the processes do not exist, check the PostgreSQL log in:
/opt/rh/postgresql92/root/var/lib/pgsql/data/pg_log.

...messages related in the log:
LOG: connection received: host=10.159.0.6 port=49128
LOG: incomplete startup packet

...and are from the Global Traffic Manager verifying it can connect to port 5432.

5.1.3.2 Automatic Start at Boot on Node 1
On node 1, the postgresql92-postgresql system service is not configured to start at
boot. If node 2 is running as primary, node 1 should not be listening on port 5432 and make
the GTM send traffic to it. However, the desire is to start the database automatically if node 1
is rebooted or comes back after a power outage, and node 2 is only standby. To achieve this,
a custom package adds a line to call /usr/sbin/pgsql-primary-check-start in /etc/rc.local.

The pgsql-primary-check-start script checks if it is on node 1 and stops if it isn't. Otherwise, it
tries to connect to the database on node 2, doing a simple query in the vmdb_production
database. If this succeeds, the script knows that node 2 is running as primary, because only
then is port 5432 open, and stops. Otherwise, it starts the database on node 1.
/etc/sysconfig/iptables is configured to always allow incoming connections to port 5432.

www.redhat.com 20 refarch-feedback@redhat.com

5.1.3.3 Automatic Start at Boot on Node 2
On node 2, the postgresql92-postgresql system service is configured to start at boot,
but port 5432 is blocked by the host-based firewall (not listed in /etc/sysconfig/iptables). A
custom package adds a line to call /usr/sbin/pgsql-standby-check-access in /etc/rc.local.

The pgsql-standby-check-access script checks if it is on node 2 and stops if it isn't.
Otherwise, it checks if the local database is running as primary and adds an iptables rule to
open port 5432 if it is.

5.1.3.4 Automatic Failover
/etc/cron.d/pgsql-replication calls the script /usr/sbin/pgsql-standby-check-promote every
minute. This script does nothing when run on node 1. On node 2, it first checks if the local
database is running in standby mode. If not, it stops. Otherwise, it tries to connect to the
database on node 1, doing a simple query in the vmdb_production database. If that fails, a
counter is incremented. If the counter has not yet reached the MAX_PRIMARY_FAILCOUNT
value defined in /etc/sysconfig/pgsql-replication, the script stops. Otherwise, node 2 promotes
itself to primary and opens the host-based firewall to allow incoming connections on port
5432.

If the GTM is unable to connect to port 5432 on node 1, it directs traffic to node 2.

The pgsql-standby-check-promote script logs its output to
/var/log/pgsql-standby-check-promote.log.

To test failover, run this command on node 1:
#service postgresql92-postgresql stop

After a short time, /var/log/pgsql-standby-check-promote.log on node 2 should contain

messages like this:
psql: could not connect to server: Connection refused
 Is the server running on host "<FQDN of host>" (10.x.x.x) and accepting
 TCP/IP connections on port 5432?
Jul 24 11:11:01 INFO: <FQDN of host> is down
Jul 24 11:11:01 INFO: 2 failures reached, promoting myself to primary
server promoting

5.1.3.5 Failback from Node 2 to Node 1
After the problem on node 1 has been fixed, the database needs to be copied from node 2 to
make node 1 the primary again.

This is a two-step process. First, run the following command on node 2:
#pgsql-standby-release

This aborts all currently running database transactions, blocks port 5432, backs up the
database, stops the database, and copies the backup to node 1, using the
PGSQL_SSH_USER defined in /etc/sysconfig/pgsql-replication.

refarch-feedback@redhat.com 21 www.redhat.com

Next, run the following command on node 1:
#pgsql-primary-initialize

The script first tries to connect to the database on node 2. If it detects that the database is
running on node 2, the script exits. Otherwise, it overwrites the local database with the
backup from node 2 and starts the database.

5.1.3.6 Initializing the Standby Database
The script /usr/sbin/pgsql-standby-initialize can be run manually on node 2 to overwrite the
local database with a backup from node 1, and start node 2 in standby mode. It also enables
the postgresql92-postgresql system service to be started automatically at boot, and
blocks access to port 5432.

Before running the script, check that node 1 is the primary and node 2 is not (look for the
wal processes as described above).
Stop the database on node 2:
#service postgresql92-postgresql stop

...and then run:
#pgsql-standby-initialize

5.1.3.7 Log Rotation
/etc/logrotate.d/pgsql-replication configures weekly log rotation for the files created by the
custom scripts. Old log files are deleted after four weeks.

/etc/cron.daily/pgsql-replication deletes files from the WAL archive that are older than seven
days. If the available space on /opt/rh/postgresql92/root/var/lib/pgsql/wal-archive-write
becomes too low, the MAX_AGE variable in this script has to be set to a lower value.

5.2 UI Failover Setup
For each of the global, DC1, and DC2 regions, there are two database servers and two
CloudForms appliances.

Almost all data shared between the UI instances (CloudForms appliances) are kept in the
database. Outside access to the UIs is done through local and global traffic managers.

The most important information that is not stored in the database, by default, are current user
session data. With the default configuration, a user would have to login again each time the
load balancer sends them to a different UI.

To change this, access each UI appliance through its real hostname (not through the load
balancer).
Go to Configure > Configuration and click on Advanced on the right side. In the text box in the
Server section, look for session_store: cache and change this to session_store:
sql. Click the Save button and restart the appliance via the appliance console.
All UI appliances need the Database Operations role to perform backups of the (external)

www.redhat.com 22 refarch-feedback@redhat.com

database.

The UI appliances in DC1 and DC2 require the Database Synchronization role, and require
custom configuration to exclude some tables from the replication into the global database.

Go to Configure > Configuration > Advanced on DC1 and DC2 UI appliances.

Note: The Advanced tab is only available when you connect directly to an appliance,
not through the load balancer.

Under replication_worker > replication > exclude_tables, add the following lines:
- dialog_fields
- dialog_groups
- dialog_tabs
- dialogs

- miq_shortcuts

- services
- service_resources
- service_templates
- service_template_catalogs

5.3 Replication from DC1/DC2 to the Global Region
Some of the data from the DC1 and DC2 regions is copied to the database of the global
region to allow users to see VMs from both DC1 and DC2 in one place. This requires merging
of the two regional databases and to omit tables with large amounts of data that are not
needed in the global region.

This replication is done on the application level. CloudForms uses rubyrep11 to do the actual
replication.

Replication is asynchronous. Whenever a database table changes in DC1 or DC2, an entry is
added to the rubyrep table. These entries are periodically processed by the rubyrep worker.
The number of items in this table are the "backlog" and should stay close to 0.

To check the current backlog for a region, log in to the regional UI appliance and navigate to
Configure > Configuration > Diagnostics > Region > Replication. This will indicate if
replication is active and how large the backlog is.

11 http://www.rubyrep.org/

refarch-feedback@redhat.com 23 www.redhat.com

http://www.rubyrep.org/

In evm.log, replication can be monitored by looking for entries like:
MIQ(ReplicationWorker) Replication Status: Current Backlog=[0], Added=[6],
Deleted=[7]

Because of the high-latency connection between DC2 and DC1, customizing the rubyrep
configuration to exclude additional tables from the replication is necessary. This has to be
done separately for each UI appliance in the DC1 and DC2 regions. It is not possible to do
this through the load balancer as the Web UI has to be accessed directly.

The tables are configured via Configure > Configuration > Settings > Server Name >
Advanced. The Advanced tab is only shown for the current server.

In the edit field, under exclude_tables, the following tables are added:
• advanced_settings
• dialog_fields
• dialog_groups
• dialog_tabs
• dialogs
• services
• service_resources
• service_templates
• service_template_catalogs

Dialogs and services don't need to be replicated because they are not modified in the DC1
and DC2 regions. The advanced_settings table has the vCenter advanced settings for ESX
hosts and virtual machines. Its content is not required in the global region and would take a
long time to replicate from the DC2 UI appliances to the global appliances located in DC1.

www.redhat.com 24 refarch-feedback@redhat.com

6 Conclusion
Whether building fault tolerant hardware environments, utilizing software failover capabilities,
or realizing the benefits of virtualized environments, high availability implementations allow IT
organizations to avoid unnecessary downtime and expense for critical applications.

This reference architecture focused on implementing a highly available configuration for Red
Hat CloudForms by configuring the CloudForms database for a replicated setup with one
master and one hot standby server.

The following use cases were successfully demonstrated:

• Configuring a highly available CloudForms implementation across two data centers
with a regional database for each data center, using Red Hat cluster services to
provide a highly available database for each region

• Configuring a highly available CloudForms implementation across two data centers
with a single global database mirroring data between the database servers

By following the steps documented in this reference architecture, IT professionals can
implement a highly available, Red Hat CloudForms cloud management platform.

refarch-feedback@redhat.com 25 www.redhat.com

Appendix A: Revision History
Revision 1.0 Monday, 10 August, 2015 Brett Thurber

Initial Release

Revision 1.1 Friday, 11 September, 2015 Brett Thurber

Updates to section 4

Appendix B: Contributors
Contributor Title Contribution

Carsten Clasohm Principal Consultant Content, Review

Brett Thurber Principal Software Engineer Content, Review

Brian Hamrick Principal Product Manager Content, Review

Jerome Marc Solution Architect Review

John Ruemker Principal Software Maintenance Engineer Content, Review

Andrew Beekhof Principal Software Engineer Review

Nenad Peric Software Engineer Review

Appendix C: Troubleshooting
The following section covers database and cluster troubleshooting steps.

C.1 PostgreSQL Replication
The PostgreSQL log files can be found in /opt/rh/postgresql92/root/var/lib/pgsql/data/pg_log.
After starting the standby database, log entries present indicate status:
redo starts at 1/79022228
consistent recovery state reached at 1/79039E68
database system is ready to accept read only connections

Check the process list:
#ps -ef | grep "postgres: wal"

...the primary node displays:
#postgres: wal sender process replicator 10.6.1.252(44039) streaming
1/DE0EE408

...the standby node displays::

#postgres: wal receiver process streaming 1/DE0F8728

Errors like the one below mean that the WAL archive is not set up correctly. The primary
already has moved WAL segment 76 from its pg_xlog directory to the archive, but the standby

www.redhat.com 26 refarch-feedback@redhat.com

is not able to read it for some reason. Check the restore_command in data/recovery.conf,
and check the content of the directory used by it on both the primary and standby.
#FATAL: requested WAL segment 000000010000000100000076 has already been
removed

To verify replication, connect to the local database on each of the two nodes:
#scl enable postgresql92 bash
#psql -h $HOSTNAME -U root vmdb_production

On the primary, create a table for testing with
create table t (ts timestamp);

On both systems, try to insert a row into the table:
insert into t values (current_timestamp);

This should succeed on the primary, and fail on the standby with:
#ERROR: cannot execute INSERT in a read-only transaction

Do a select on both systems. With streaming replication, the results should be the same on
both systems:
select * from t;

When testing is complete, drop the table:
drop table t;

C.2 Cluster Configuration
To check the attributes of a cluster resource, execute:
#pcs resource show RESOURCE

Attribute values can be changed using:
#pcs resource update RESOURCE_NAME ATTR_NAME=ATTR_VALUE

If a resource fails to start and pcs status shows an error for the resource, run the following
command to start it on the local node and get more details about the error:
#pcs resource debug-start RESOURCE

To stop and start a cluster resource, execute:
#pcs resource disable RESOURCE
#pcs resource enable RESOURCE

While working on the configuration, the resource may fail to start so often that the cluster
disables it permanently. This can be checked with:
#pcs resource failcount show postgresql

If the failcounts are shown as INFINITY, you can reset them with:
#pcs resource cleanup postgresql

refarch-feedback@redhat.com 27 www.redhat.com

C.3 Replication in a Cluster Environment
The cluster resource agent script automatically determines which of the two nodes should be
the primary and which should be the standby node. The current status can be viewed with:
#crm_mon -Afr -1

If the primary and standby are both active, the output should appear as:
Node Attributes:
* Node cf-dc1-db1.example.com:
 + master-postgresql : 1000
 + postgresql-data-status : LATEST
 + postgresql-master-baseline : 0000000010000080
 + postgresql-status : PRI
 + postgresql-xlog-loc : 0000000010000080
* Node cf-dc1-db2.example.com:
 + master-postgresql : 100
 + postgresql-data-status : STREAMING|ASYNC
 + postgresql-status : HS:async

In this case, cf-dc1-db1 is the primary, and cf-dc1-db2 is the standby server, with streaming
asynchronous replication.

If the standby lost the connection to the primary for too long and requires its database to be
restored from a backup done on the primary, the output will appear as:
Node Attributes:
* Node cf-dc2-db1.example.com:
 + master-postgresql : -INFINITY
 + postgresql-data-status : DISCONNECT
 + postgresql-status : HS:alone
* Node cf-dc2-db2.example.com:
 + master-postgresql : 1000
 + postgresql-data-status : LATEST
 + postgresql-master-baseline : 0000000011000080
 + postgresql-status : PRI
 + postgresql-xlog-loc : 0000000011000080

Here, cf-dc2-db2 is the primary, and cf-dc2-db1 is unable to start because its database is
out-of-date.

This can be caused by connection problems. Check the firewalls for both database systems,
and check that pg_hba.conf has the same content on both systems.

If a problem is found and fixed, disable and enable the postgresql resource, run tail -f
/var/log/messages and some time after enabling the resource, one database system becomes
the primary and the other one the standby.

www.redhat.com 28 refarch-feedback@redhat.com

C.4 Restoring the Standby Database from a Backup
If the standby is still unable to start after checking the firewall, PostgreSQL access
permissions and the NFS mount for archived Write Ahead Logs, take a backup of the primary
and restore it on the standby database.

To do this, run the following commands on the standby cluster node:
#pcs cluster standby $HOSTNAME

#su - postgres
#rm -rf /tmp/pgbackup
#mkdir /tmp/pgbackup
#scl enable postgresql92 -- pg_basebackup -h REPLICATION_VIP -U replicator \
-D /tmp/pgbackup -x
#rm -rf /opt/rh/postgresql92/root/var/lib/pgsql/data/*
#mv /tmp/pgbackup/* /opt/rh/postgresql92/root/var/lib/pgsql/data
#chown -R postgres:postgres /opt/rh/postgresql92/root/var/lib/pgsql/data

#pcs cluster unstandby $HOSTNAME

C.5 Simulating a Node Failure
To test fencing and automating failover, trigger a kernel panic by running the command below.
Before doing this, ensure access to the system console and power control.
#echo c >/proc/sysrq-trigger

Watching /var/log/messages on the surviving node, the crashed node is fenced, and the
surviving node becomes the primary database (if it was not already).

The crashed node should boot after the power off / power on cycle, automatically join the
cluster and start the database as standby. If it was the primary before, PGSQL.lock needs to
be removed as described above.

C.6 CloudForms UI Failover
To simulate a UI failure by stopping the Web server on one of the UI appliances, run the
following command:
#service httpd stop

When done testing, start the Web server again with:
#service httpd start

To verify which CFME appliance serves requests, check

/var/www/miq/vmdb/log/apache/ssl_access.log.

refarch-feedback@redhat.com 29 www.redhat.com

Appendix D: Maintenance
While PostgreSQL and CloudForms do most database maintenance tasks automatically,
there are some additional cleanup operations that Red Hat recommends to run periodically for
large databases.

Custom scripts can be created to re-index12 tables that frequently change and clean up tables
from which CloudForms frequently deletes rows.

12 http://www.postgresql.org/docs/9.4/static/sql-reindex.html

www.redhat.com 30 refarch-feedback@redhat.com

http://www.postgresql.org/docs/9.4/static/sql-reindex.html

	1 Executive Summary
	2 Environment
	2.1 Regional Database Cluster
	2.2 Global Database Cluster
	2.3 Production Network Information
	2.3.1 Database Systems
	2.3.2 CloudForms User Interface Appliances

	3 PostgreSQL Configuration
	3.1 Database Server Setup
	3.1.1 Write Ahead Logs Archive
	3.1.1.1 Common Setup
	3.1.1.2 DC1 and DC2 Regions
	3.1.1.3 Global Region

	3.2 Database Replication Setup
	3.2.1 Creating a New Database
	3.2.2 Copying an Existing CloudForms Database
	3.2.3 Common Database Configuration

	4 Regional Database Cluster
	4.1 Setup
	4.1.1 Operations

	5 Global Database Configuration and Failover
	5.1.1 Design Considerations
	5.1.2 Setup
	5.1.3 Operations
	5.1.3.1 Status Check
	5.1.3.2 Automatic Start at Boot on Node 1
	5.1.3.3 Automatic Start at Boot on Node 2
	5.1.3.4 Automatic Failover
	5.1.3.5 Failback from Node 2 to Node 1
	5.1.3.6 Initializing the Standby Database
	5.1.3.7 Log Rotation

	5.2 UI Failover Setup
	5.3 Replication from DC1/DC2 to the Global Region

	6 Conclusion
	Appendix A: Revision History
	Appendix B: Contributors
	Appendix C: Troubleshooting
	C.1 PostgreSQL Replication
	C.2 Cluster Configuration
	C.3 Replication in a Cluster Environment
	C.4 Restoring the Standby Database from a Backup
	C.5 Simulating a Node Failure
	C.6 CloudForms UI Failover

	Appendix D: Maintenance

