
Using Solarflare OpenOnload to

Achieve Extreme Low Latency on

Red Hat Enterprise Linux 6

Jeremy Eder, Senior Software Engineer

Version 1.0

June 2012

1801 Varsity Drive™
Raleigh NC 27606-2072 USA
Phone: +1 919 754 3700
Phone: 888 733 4281
Fax: +1 919 754 3701
PO Box 13588
Research Triangle Park NC 27709 USA

Linux is a registered trademark of Linus Torvalds. Red Hat, Red Hat Enterprise Linux and the Red Hat
"Shadowman" logo are registered trademarks of Red Hat, Inc. in the United States and other
countries.

Solarflare and OpenOnload are U.S. registered trademarks of Solarflare Communications, Inc.

UNIX is a registered trademark of The Open Group.

Intel, the Intel logo and Xeon are registered trademarks of Intel Corporation or its subsidiaries in the
United States and other countries.

All other trademarks referenced herein are the property of their respective owners.

© 2012 by Red Hat, Inc. This material may be distributed only subject to the terms and conditions set
forth in the Open Publication License, V1.0 or later (the latest version is presently available at
http://www.opencontent.org/openpub/).

The information contained herein is subject to change without notice. Red Hat, Inc. shall not be liable
for technical or editorial errors or omissions contained herein.

Distribution of modified versions of this document is prohibited without the explicit permission of Red
Hat Inc.

Distribution of this work or derivative of this work in any standard (paper) book form for commercial
purposes is prohibited unless prior permission is obtained from Red Hat Inc.

The GPG fingerprint of the security@redhat.com key is:
CA 20 86 86 2B D6 9D FC 65 F6 EC C4 21 91 80 CD DB 42 A6 0E

Send feedback to refarch-feedback@redhat.com

www.redhat.com 2 refarch-feedback@redhat.com

http://www.opencontent.org/openpub/
mailto:refarch-feedback@redhat.com?subject=Feedback%20on
mailto:security@redhat.com

Table of Contents
1 Executive Summary... 1

2 Test Configuration.. 2

3 Testing - Phase 1 (Baseline).. 3

3.1 Baseline Setup.. 3

3.2 Baseline Results.. 4

3.3 What does it all mean?.. 5

4 Testing – Phase 2 (Tuned + OpenOnload).. 5

4.1 OpenOnload Setup.. 5

4.2 OpenOnload Results... 5

4.3 What does it all mean?.. 6

5 Throughput Sanity Check - Phase 3.. 7

Appendix A: Revision History... 8

refarch-feedback@redhat.com 3 www.redhat.com

1 Executive Summary
This paper examines the performance characteristics of the Solarflare OpenOnload
technology on Red Hat Enterprise Linux (RHEL) 6. OpenOnload® is a high performance
network stack from Solarflare that dramatically reduces latency and CPU utilization, and
increases message rate and bandwidth. OpenOnload runs on Linux and supports
TCP/UDP/IP network protocols with the standard BSD sockets API, and requires no
modifications to applications to use. It achieves performance improvements in part by
performing network processing at user-level, bypassing the OS kernel entirely on the data
path. Networking performance is improved without sacrificing the security and multiplexing
functions that the OS kernel normally provides.

Red Hat partnered with Solarflare Communications for this effort. Solarflare provided the
hardware required for the testing as well as published Low Latency Quickstart Guide.

Baselines were established on RHEL6.2, and results compared to those gathered using
OpenOnload libraries.

While Red Hat ships a number of kernel-bypass technologies that are similar to OpenOnload
such as RoCE and Infiniband/RDMA, Solarflare uses a combination of kernel-bypass,
specially designed hardware and optimized drivers to achieve extreme low-latency while
maintaining application compatibility and support for TCP/IP protocol.

Solarflare is a member of the Red Hat Partner Program, and has listed the OpenOnload
technology in Red Hat's Product Catalog:
http://redhat.force.com/catalog/PCProductDetail?id=a1k60000000Gzo0AAC

refarch-feedback@redhat.com 1 www.redhat.com

http://redhat.force.com/catalog/PCProductDetail?id=a1k60000000Gzo0AAC

2 Test Configuration
Commercially available, industry-standard hardware and software was used for the Systems
Under Test (SUT).

Hardware Details

Server Dell R510
2 Socket – 12 Cores (Hyperthreads Disabled)
Intel Xeon X5650 @ 2.67 GHz
48 GB RAM (8GBx3 @ 1333MHz per NUMA
node)

Network 2 – Solarflare SFN5122F-R6 Dual-Port SFP+
10G Ethernet Enterprise Server Adapter
Firmware: 3.2.0

Table 1: Hardware Configuration

Software Details

Operating System Red Hat Enterprise Linux 6.2 (kernel-2.6.32-
220.el6.x86_64)

Solarflare Driver 3.2.0.6044

Solarflare OpenOnload 201109-u2

Table 2: Software Configuration

www.redhat.com 2 refarch-feedback@redhat.com

3 Testing Phase 1 (Baseline)
The goal of Phase 1 was to establish baseline performance results using Red Hat Enterprise
Linux 6.2 and the in-kernel networking stack, on which to make further comparisons. The test
used qpid-latency-test from Red Hat's MRG Messaging product. It is provided by the
qpid-cpp-client-devel package, version 0.12-6.

qpid-latency-test is a benchmark utility that sends messages of a specified size at a specified
rate, and outputs min/max/avg round-trip-time (RTT) latencies for each message. It is also a
multi-threaded benchmark. This test was conducted with # of threads equal to the number of
cores in the NUMA node (--worker-threads=6).

3.1 Baseline Setup
The following tuning settings were applied prior to Phase 1 testing:

• Power Management and Systems Management Interrupts (SMIs) were disabled in the
server BIOS.

• NIC firmware and drivers were updated to the versions in Table 2.

• Servers were connected through a Cisco 5596 10G switch via fiber.

• The tuned latency-performance profile was applied. For more information on the
tuned package and available profiles, see the Power Management Guide on
http://docs.redhat.com.

• Tuning suggestions made in the Solarflare Low Latency Quickstart Guide (not specific
to OpenOnload) were applied to the operating system. This document is available at
https://support.solarflare.com.

◦ Lowering coalesce values to 0

◦ Disabling interrupt modulation

◦ Locking the operating system into cstate 1

◦ Binding benchmark applications to a NUMA node dedicated to the benchmark
(numactl -N1 -m1). Scheduler is allowed to migrate the benchmark, but only
within the NUMA node.

◦ Setting qpidd process to FIFO scheduler: chrt -f 1

◦ Jumbo frames (9000 byte MTU). Note that OpenOnload limits MSS to 2048 bytes.
See OpenOnload User Guide, page 35 at https://support.solarflare.com for more
information.

◦ Pin NIC IRQs to NUMA node hosting the benchmark applications. See the
following Tech Brief for more information:
https://access.redhat.com/knowledge/techbriefs/optimizing-red-hat-enterprise-linux-
performance-tuning-irq-affinity

◦ Disable all unnecessary services and cronjobs

refarch-feedback@redhat.com 3 www.redhat.com

https://access.redhat.com/knowledge/techbriefs/optimizing-red-hat-enterprise-linux-performance-tuning-irq-affinity
https://access.redhat.com/knowledge/techbriefs/optimizing-red-hat-enterprise-linux-performance-tuning-irq-affinity
https://support.solarflare.com/
https://support.solarflare.com/
http://docs.redhat.com/

◦ No changes to operating system sysctl values were necessary.

• For more information on performance tuning in RHEL, see the Performance Tuning
Guide on http://docs.redhat.com.

3.2 Baseline Results
Table 3 lists the average round-trip-time (RTT) latency of a message of varying size in
milliseconds. The duration of the individual tests was 2 minutes, and the TCP_NODELAY
socket option was used in all cases.

Message Rate 8 Bytes 256 Bytes 1024 Bytes

10K 0.1440 0.1466 0.1491

20K 0.1261 0.1307 0.1329

30K 0.1333 0.1350 0.1431

40K 0.1361 0.1428 0.1495

50K 0.1490 0.1633 0.1707

60K 0.1752 0.1901 0.2065

70K 0.2085 0.2274 0.2790

80K 0.2565 0.2727 0.3953

90K 0.3173 0.3616 0.5242

100K 0.4006 0.4648 0.8448

Table 3: Avg RTT Latency - Baseline Results

Latency is low and stable for rates up to at least 90K messages/sec. Larger messages (1024
bytes or higher) do have an impact on latency as more data must be copied to/from memory
and ultimately transferred over the wire. For example, at the same 100K/s rate, latency of
1024 byte messages is 1.8x greater than 256 byte messages.

www.redhat.com 4 refarch-feedback@redhat.com

http://docs.redhat.com/

3.3 What does it all mean?
Red Hat Enterprise Linux and Solarflare NICs provide exceptional low latency performance
with no exotic tuning efforts. This provides a sound foundation for very low latency network
throughput at common message sizes and rates. More CPU time is also required for these
heavier workloads.

4 Testing – Phase 2 (Tuned + OpenOnload)
The goal of Phase 2 was to establish performance results when using the same benchmark
config/tuning and adding OpenOnload. This isolates OpenOnload libraries as the only
environmental variable modified between test runs.

4.1 OpenOnload Setup
During Phase 2 testing, all existing hardware/software tuning was preserved. Other than
using the OpenOnload libraries (onload --profile=latency), no additional tuning
settings were applied prior to Phase 2 testing.

4.2 OpenOnload Results
Identical test procedures and timeframes were used to generate OpenOnload latency data.
However, OpenOnload automatically reduces the MSS to < 2048 bytes. See the Solarflare
Onload User Guide Version 201109 u2, Section 6.11.

Message Rate 8 Bytes 256 Bytes 1024 Bytes

10K 0.0867 0.0825 0.0839

20K 0.0776 0.0752 0.0778

30K 0.0797 0.0825 0.0844

40K 0.0887 0.0909 0.0951

50K 0.0996 0.1003 0.1089

60K 0.1178 0.1227 0.1332

70K 0.1356 0.1410 0.1542

80K 0.1531 0.1603 0.1754

90K 0.1719 0.1811 0.1966

100K 0.1912 0.2041 0.2191

Table 4: Avg RTT Latency - OpenOnload Results

refarch-feedback@redhat.com 5 www.redhat.com

4.3 What does it all mean?
Using the OpenOnload libraries reduces latency in some cases by a factor of 2-4x requiring
no code changes traditionally associated with kernel-bypass technologies (such as RDMA).
CPU usage was also reduced, allowing the OpenOnload stack to achieve higher message
throughput as well (not presented here).

In this graph, the X-axis represents message rate per second. The Y-axis represents
average round-trip-time (RTT). As previously detailed, qpid-latency-test reports
min/max/avg RTT latency. That is, the time it takes for a message to be sent and reflected
back to the sender. Results always use average latency reported by qpid-latency-test.

www.redhat.com 6 refarch-feedback@redhat.com

Illustration 1: Average TCP Latency

10K 20K 30K 40K 50K 60K 70K 80K 90K 100K
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Average TCP Latency, MRG-M qpid-latency-test

Red Hat Enterprise Linux 6.2 and Solarflare OpenOnload 201109-u2

8 Bytes Baseline 256 Bytes Baseline 1024 Bytes Baseline

8 Bytes OpenOnload 256 Bytes OpenOnload 1024 Bytes OpenOnload

Message Rate (K/s)

A
vg

 R
T

T
 L

a
te

n
c

y
(m

s)

5 Throughput Sanity Check Phase 3
Typically, low latency comes at the cost of reduced throughput. This is a trade-off system
architects must quantify in their environment. The Linux kernel uses queues, buffers and
timers in an attempt to improve efficiency. For example, Nagle's algorithm tends to hurt
latency, as it implies waiting for a full packet's worth of data be “ready to send”, before the
packet is dispatched. For the kernel network stack, the below netperf data illustrates that
cost, at higher packet rates for messages under 2K in size.

Kernel-bypass techniques such as OpenOnload reduce the CPU cost associated with latency
tuning and recapture much of the observed degradation. CPU sys time was saved due to
reduced context switching. These cycles were reallocated to the benchmark itself, thus
improving throughput.

The Solarflare OpenOnload kernel-bypass technology affords measurable performance gains
for latency-sensitive customers. By removing the traditional context-switching associated with
the standard Linux network stack, OpenOnload allows more CPU time available to the user
application.

refarch-feedback@redhat.com 7 www.redhat.com

Illustration 2: Average Throughput

1K 2K 4K 8K 16K 32K 64K
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Average Throughput, netperf

Red Hat Enterprise Lunux 6.2 and Solarflare OpenOnload 201109-u2

TCP Baseline UDP Baseline TCP OpenOnload UDP OpenOnload

Message Size (bytes)

A
vg

 T
h

ro
u

g
h

p
u

t
(M

b
p

s)

http://en.wikipedia.org/wiki/Nagle's_algorithm

Appendix A: Revision History

Revision 1.0 Tuesday June 12, 2012 Jeremy Eder

Initial Release

www.redhat.com 8 refarch-feedback@redhat.com

	1 Executive Summary
	2 Test Configuration
	3 Testing - Phase 1 (Baseline)
	3.1 Baseline Setup
	3.2 Baseline Results
	3.3 What does it all mean?

	4 Testing – Phase 2 (Tuned + OpenOnload)
	4.1 OpenOnload Setup
	4.2 OpenOnload Results
	4.3 What does it all mean?

	5 Throughput Sanity Check - Phase 3
	Appendix A: Revision History

