JBoss Enterprise Application Platform 5
Administration and Configuration Guide

for JBoss Enterprise Application Platform 5

Edition 5.2.0

		[image:]

	

JBoss Community

Edited by
Eva Kopalova

Edited by
Petr Penicka

Edited by
Russell Dickenson

Edited by
Scott Mumford

Legal Notice

		Copyright © 2012 Red Hat, Inc.
	

		This document is licensed by Red Hat under the Creative Commons Attribution-ShareAlike 3.0 Unported License. If you distribute this document, or a modified version of it, you must provide attribution to Red Hat, Inc. and provide a link to the original. If the document is modified, all Red Hat trademarks must be removed.
	

		Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert, Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.
	

		Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other countries.
	

		Linux® is the registered trademark of Linus Torvalds in the United States and other countries.
	

		Java® is a registered trademark of Oracle and/or its affiliates.
	

		XFS® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States and/or other countries.
	

		MySQL® is a registered trademark of MySQL AB in the United States, the European Union and other countries.
	

		Node.js® is an official trademark of Joyent. Red Hat Software Collections is not formally related to or endorsed by the official Joyent Node.js open source or commercial project.
	

		The OpenStack® Word Mark and OpenStack logo are either registered trademarks/service marks or trademarks/service marks of the OpenStack Foundation, in the United States and other countries and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.
	

		All other trademarks are the property of their respective owners.
	

Abstract

			This book is a guide to the administration and configuration of JBoss Enterprise Application Platform 5 and its patch releases.
		

 ⁠Part I. Overview

 ⁠Chapter 1. Scope of Book

		The Administration and Configuration Guide explains how to administer and configure JBoss Enterprise Application Platform 5 components. It focuses both internal and implementation-specific details of JBoss Enterprise Application Platform.
	

		This book is intended for JBoss administrators and developers, and attempts to provide the understanding needed to build, deploy, and debug JEE applications. It does not serve as an introduction to Java Enterprise Edition (JEE) or to creating JEE applications (refer to JEE specifications).
	

 ⁠Chapter 2. Introduction

		 JBoss Enterprise Application Platform 5 is an open-source JEE-based middleware solution. It is built on top of the consolidated JBoss Application Server 5 called JBoss Enterprise Application Server, which introduces the new JBoss Microcontainer.
	

		The JBoss Microcontainer is a lightweight container that supports direct deployment, configuration, and lifecycle of plain old Java objects (POJOs). It replaces the JBoss JMX Microkernel used in the 4.x JBoss Enterprise Application Platforms.
	

		JBoss Enterprise Application Platform also includes the following supported components:
	
	
				JBoss HTTP Connector for load balancing
			

	
				PicketLink framework for identity management
			

	
				RESTEasy framework for RESTful web services
			

	
				Seam framework for development
			

		The JBoss Microcontainer integrates with the JBoss Aspect Oriented Programming framework (JBoss AOP, refer to Chapter 12, JBoss AOP). Support for JMX in JBoss Enterprise Application Platform 5 remains strong and MBean services written against the old Microkernel are expected to work.
	

 ⁠2.1. Integrated Projects

			JBoss Enterprise Application Platform 5 integrates the following standalone JBoss projects:
		
	JBoss EJB
	
						JBoss EJB3 provides the implementation of the Enterprise Java Beans (EJB) specification. EJB 3.0 is a deep overhaul and simplification of the EJB specification.
					

	JBoss Transactions
	
						JBoss Transactions is the default transaction manager compliant with JTA, JTS and Web Services standards.
					

	JBoss Web
	
						JBoss Web is the Web container component based on Apache Tomcat that includes the Apache Portable Runtime (APR) and Tomcat native technologies.
					

	JBoss Messaging (JMS)
	
						JBoss Messaging is the default messaging provider. It is also the backbone of the JBoss enterprise service bus (ESB) infrastructure. JBoss Messaging substitutes JBossMQ, which is the default JMS provider for JBoss Enterprise Application Platform 4.2.
					

	JBoss Cache
	
						JBoss Cache provides two types of transactional cache: a traditional tree-structured node-based cache; and a PojoCache, an in-memory, transactional, and replicated cache system that allows users to operate on simple POJOs transparently without active user management of either replication or persistency aspects.
					
JBoss Cache is Deprecated

							JBoss Cache is deprecated and substituted by Infinispan in the next major JBoss Enterprise Application Platform release.
						

	JBossWS 3.x
	
						JBossWS 3.x is the web service stack that provides Java EE compatible web services.
					

 ⁠2.2. Architecture

			JBoss Enterprise Application Platform is a JBoss product based on the JBoss Enterprise Application Server with the following additional components:
		
	
					JBoss HTTP Connector for load balancing
				

	
					Picketlink framework for identity management
				

	
					RESTEasy framework for RESTful web services
				

	
					Seam framework for development of web application
				

			The heart of JBoss Enterprise Application Platform is the JBoss Enterprise Application Server, which is a consolidated JBoss Application Server. Figure 2.1, “Components” contains a schema of the JBoss Enterprise Application Server and its components. The entire JBoss Enterprise Application Server rests on a JVM (Java Virtual Machine) to allow the execution of the Java code.
		

 ⁠[image: Components]

Figure 2.1. Components

	JBoss Microcontainer kernel
	
						is the execution core of JBoss Enterprise Application Platform. It loads the bootstrap beans so as to connect to the deployed services. JBoss Microcontainer substitutes JMX (Java Management Extension). However, MCBeans and legacy MBean deployments are still included so as to support legacy services.
					

	Component Deployers
	
						cover the loading of the deployed resources.
					

	Enterprise Services
	
						include all services of the JBoss Enterprise Application Platform.
					

 ⁠2.3. Directory Structure

			The directory structure resembles the architecture of the 4.x series with minor differences. Note that JBoss Enterprise Application Platform now contains the HTTP Connector (in the mod_cluster directory), Picketlink (in the picketlink directory) , and RESTeasy (in the resteasy directory).
		

			The JBoss Enterprise Application Server directory now contains the common directory, which has been added to accommodate the libraries common for all server profiles and prevent the library duplication in the directory structure.
		

			The JBoss Enterprise Application Platform basic directory structure is as follows:
		
	
					jboss-as — JBoss Enterprise Application Server home directory
				
	
							bin — start and shutdown scripts, other useful scripts
						

	
							client — client JAR files
						

	
							common — static JAR files shared by all server profiles
						

							This directory has been added to prevent duplicated copying of common libraries into individual server profile directories.
						

	
							docs — schemas/dtds, examples
						

	
							lib — core bootstrap JAR files
						
	
									endorsed — directory on the server JVM java.endorsed.dirs path
								

	
							server — server profile directories
						

	
					mod_cluster — JBoss HTTP Connector
				

	
					picketlink — the PicketLink project
				

	
					resteasy — RESTEasy implementation (JSR-311, JAX-RS)
				

	
					seam — JBoss Seam application framework home directory
				

					Note that JBoss Enterprise Application Platform 4.3 contained two seam directories: seam1 and seam2. The seam1 directory contained Seam 1.2.1 that was delivered originally with JBoss Enterprise Application Platform 4. It contained the drools, embedded-ejb, and hibernate directories with libraries. Now, these are in the lib directory. Also, the mail resource adapter has been moved for the mail directory to extras and buni-meldware, external mail and groupware server intended for presentation purposes, has been removed.
				

					The seam2 directory contained the 2.0.2FP version of the Seam delivered with JBoss Enterprise Application Platform Feature Pack and the structure has not undergone any significant changes.
				
	
							bootstrap — JBoss Embedded configuration for the Seam integration testsuite (refer to the S
						

	
							lib — library directory
						

	
							seam-gen — command-line utility for generating simple skeletal Seam project to allow a quick project start
						

	
							build — configuration and resources for building
						

	
							examples — examples demonstrating uses of Seam's features
						

	
							extras — mail resource adapter; JsUnit testing
						

	
							ui — sources for the Seam UI module
						

			Refer to Section 7.2, “Standard Server Profiles” for details of the server profiles included in this release. Also refer to Appendix A, Server Directory Structure.
		

 ⁠2.4. JBoss Enterprise Application Platform Use Cases

			JBoss Enterprise Application Platform is typically used for the following web application types and scenarios:
		
	
					Most web applications involving a database
				

	
					Web applications likely to be clustered
				

	
					Simple web applications with JSPs/Servlets upgrades to JBoss Enterprise Application Platform with Tomcat Embedded
				

	
					Intermediate web applications with JSPs/Servlets using a web framework such as Struts, Java Server Faces, Cocoon, Tapestry, Spring, Expresso, Avalon, Turbine
				

	
					Complex web applications with JSPs/Servlets, Seam, Enterprise Java Beans (EJB), Java Messaging (JMS), caching etc.
				

	
					Cross-application middleware (JMS, Corba, JMX, etc.)
				

JEE 5 Sample Application

				This distribution comes with multiple sample applications including the Seam Booking Application located in $EAP_HOME/seam/examples/booking/. The application is a Java EE 5 application that makes use of the following technologies:
			
	
						EJB3
					

	
						Stateful Session Beans
					

	
						Stateless Session Beans
					

	
						JPA (w/ Hibernate validation)
					

	
						JSF
					

	
						Facelets
					

	
						Ajax4JSF
					

	
						Seam
					

 ⁠2.5. Bootstrap

			The JBoss Enterprise Application Platform 5 bootstrap is similar to the bootstrap in JBoss Enterprise Application Platform 4 in that the org.jboss.Main entry point loads an org.jboss.system.server.Server implementation. In JBoss Enterprise Application Platform 4 this was a JMX-based microkernel. In JBoss Enterprise Application Platform 5, this is a JBoss Microcontainer.
		

			The default JBoss Enterprise Application Platform 5 org.jboss.system.server.Server implementation is org.jboss.bootstrap.microcontainer.ServerImpl. This implementation is an extension of the kernel basic bootstrap that boots the MC from the bootstrap beans declared in {jboss.server.config.url}/bootstrap.xml descriptors using a BasicXMLDeployer. In addition, the ServerImpl registers install callbacks for any beans that implement the org.jboss.bootstrap.spi.Bootstrap interface. The bootstrap/profile*.xml configurations include a ProfileServiceBootstrap bean that implements the Bootstrap interface.
		

			The org.jboss.system.server.profileservice.ProfileServiceBootstrap is an implementation of the org.jboss.bootstrap.spi.Bootstrap interface that loads the deployments associated with the current server profile. The <PROFILE> is the name of the server profile being loaded and corresponds to the server -c command line argument. The default <PROFILE> is default.
		

 ⁠2.6. Hot Deployment

			Hot deployment in JBoss Enterprise Application Platform 5 is controlled by the Profile implementations associated with the ProfileService. The HDScanner bean deployed via the deploy/hdscanner-jboss-beans.xml MC deployment, queries the profile service for changes in application directory contents and redeploys updated content, undeploys removed content, and adds new deployment content to the current server profile via the ProfileService.
		

			If you want to disable hot deployment, temporarily or permanently, use either of the following methods. The second method is best used if you are disabling hot deployment only temporarily, since it's the easiest to undo.
		
	
					Remove the hdscanner-jboss-beans.xml file from deployment;
				

	
					Edit the hdscanner-jboss-beans.xml file, add the scanEnabled attribute (if it's not already present)and set its value to false.
				

			Below is an extract of a hdscanner-jboss-beans.xml file in which hot deployment has been disabled.
		
​<?xml version="1.0" encoding="UTF-8"?>
​<!--
​ Hot deployment scanning
​
​ $Id: hdscanner-jboss-beans.xml 98983 2010-01-04 13:35:41Z emuckenhuber $
​-->
​<deployment xmlns="urn:jboss:bean-deployer:2.0">
​
​ <!-- Hotdeployment of applications -->
​ <bean name="HDScanner" class="org.jboss.system.server.profileservice.hotdeploy.HDScanner">
​ <property name="deployer"><inject bean="ProfileServiceDeployer"/></property>
​ <property name="profileService"><inject bean="ProfileService"/></property>
​ <property name="scanPeriod">5000</property>
​ <property name="scanThreadName">HDScanner</property>
​ <property name="scanEnabled">false</property>
​ </bean>
​
​ ...(snip)...
​
​</deployment>

 ⁠2.6.1. Adding a Custom Deploy Folder

				JBoss Enterprise Application Platform, by default, looks for deployments under the <JBOSS_HOME>/jboss-as/server/<PROFILE>/deploy folder. However you can configure the server to even include your custom folder for scanning deployments. This can be done by configuring the BootstrapProfileFactory MC bean in <JBOSS_HOME>/jboss-as/server/<PROFILE>/conf/bootstrap/profile.xml file. The applicationURIs property of the BootstrapProfileFactory accepts a list of URLs which will be scanned for applications. You can add your custom deploy folder to this list. For example, if you want /home/me/myapps to be scanned for deployments, then you can add the following:
			
​
​<bean name="BootstrapProfileFactory" class="org.jboss.system.server.profileservice.repository.
​StaticProfileFactory">
​ ...
​ <property name="applicationURIs">
​ <list elementClass="java.net.URI">
​ <value>${jboss.server.home.url}deploy</value>
​ <value>file:///home/me/myapps</value>
​ </list>
​ ...

Important

					Modifying the <JBOSS_HOME>/jboss-as/server/<PROFILE>/conf/bootstrap/profile.xml requires a server restart, for the changes to take effect.
				

				For performance reasons, adding a new deployment folder to the BootstrapProfileFactory also requires the same URL to be added to the VFSCache MC bean configuration in <JBOSS_HOME>/jboss-as/server/<PROFILE>/conf/bootstrap/vfs.xml. For example:
			
​
​<bean name="VFSCache">
​ ...
​ <property name="permanentRoots">
​ <map keyClass="java.net.URL" valueClass="org.jboss.virtual.spi.ExceptionHandler">
​ ...
​ <entry>
​ <key>file:///home/me/myapps</key>
​ <value><inject bean="VfsNamesExceptionHandler"/></value>
​ </entry>
​ </map>
​ </property>
​ ...

Important

					Not adding the custom deployment folder to VFSCache might result in growing disk space usage by the server, over a period of time.
				

 ⁠Part II. JBoss Enterprise Application Platform Configuration

 ⁠Chapter 3. Network

 ⁠3.1. IPv6 Support

			JBoss Enterprise Application Platform 5 does not include support for IPv6, although this support is planned for the future.
		

 ⁠Chapter 4. JBoss Web

		The most common technologies for creating Java web applications are JSPs and servlets, the standard Java EE web component technologies. To allow deployment of JSPs and servlets, JBoss comes with the JBoss Web container. JBoss Web represents the web tier of JBoss Enterprise Application Platform, and provides the servlet container and HTTP web server based on Apache Tomcat for the deployment of JSPs and servlets.
	

		JBoss Web supports the Apache Portable Runtime (APR) library, which allows use of native connectors such as mod_jk, mod_cluster, and mod_proxy.
	

 ⁠4.1. System Properties

			The following system properties modify the JBoss Web server behavior:
		
General Properties
	catalina.useNaming
	
						override for the useNaming element of the Context element
					

						Set to false to override the useNaming attribute of all Context elements.
					

	catalina.config
	
						URL of the catalina.properties configuration file
					

	jvmRoute
	
						used if an Engine element does not define its jvmRoute attribute
					

	org.apache.catalina.loader.WebappClassLoader.ENABLE_CLEAR_REFERENCES
	
						activation or deactivation of clearing static or final fields from loaded classes (set to true by default)
					

						Set to true to null out static or final fields from the loaded classes when a web application is stopped. This setting provides a workaround for garbage collection bugs and application coding errors.
					

	org.apache.tomcat.util.buf.StringCache.byte.enabled
	
						enabling the String cache for ByteChunk (set to false by default)
					

						Set to true to enable the String cache for ByteChunk.
					

	org.apache.tomcat.util.buf.StringCache.char.enabled
	
						enabling the String cache for CharChunk (set to false by default)
					

						Set to true to enable the String cache for CharChunk.
					

	org.apache.tomcat.util.buf.StringCache.trainThreshold
	
						call limit for the String cache activation (set to 2000 by default)
					

						The limit defines the number of times the toString() method must be called before the String cache is activated.
					

	org.apache.tomcat.util.buf.StringCache.cacheSize
	
						size of the String cache (set to 200 entries by default)
					

	org.apache.tomcat.util.buf.StringCache.maxStringSize
	
						maximum length of a cached String (set to 128 characters by default)
					

	org.apache.tomcat.util.http.FastHttpDateFormat.CACHE_SIZE
	
						size of the cache used for parsing and formatting of date values (2000 entries by default)
					

	org.apache.catalina.core.StandardService.DELAY_CONNECTOR_STARTUP
	
						disabling automatic connector start-up (To prevent the connector from starting up automatically, set to true.)
					

	org.apache.catalina.connector.Request.SESSION_ID_CHECK
	
						enabling session verification (If enabled, that is set to true, the Servlet container verifies if a session with the specified session ID exists in a context before creating a session with that ID.)
					

	org.apache.coyote.USE_CUSTOM_STATUS_MSG_IN_HEADER
	
						enabling custom HTTP status messages in HTTP headers (If enabled, that is set to true, custom HTTP status messages are allowed in HTTP headers.)
					
Important

							Ensure that any such message uses only the ISO-8859-1 characters to prevent a possible XSS vulnerability. The property is set to false by default.
						

	org.apache.tomcat.util.http.ServerCookie.VERSION_SWITCH
	
						activates automatic usage of v1 cookies (set to true by default)
					

						The v1 cookies are used automatically if the servlet container is using v0 cookies and cookie values which have to be quoted to be valid.
					

	org.apache.el.parser.COERCE_TO_ZERO
	
						sets if "" and null numbers become 0
					

						This is the desired behavior defined in the specification and therefore the property is set to true by default.
					

JSP Configuration Properties
	org.apache.jasper.compiler.Generator.VAR_EXPRESSIONFACTORY
	
						the variable used as the expression language expression factory (if unspecified the _el_expressionfactory is used)
					

	org.apache.jasper.compiler.Generator.VAR_INSTANCEMANAGER
	
						The name of the variable to use for the instance manager factory. If not specified, the default value of _jsp_instancemanager will be used.
					

	org.apache.jasper.compiler.Parser.STRICT_QUOTE_ESCAPING
	
						If false the requirements for escaping quotes in JSP attributes will be relaxed so that a missing required quote will not cause an error. If not specified, the specification compliant default of true will be used.
					

	org.apache.jasper.runtime.JspFactoryImpl.USE_POOL
	
						If true, a ThreadLocal PageContext pool will be used. If not specified, the default value of true will be used.
					

	org.apache.jasper.runtime.JspFactoryImpl.POOL_SIZE
	
						The size of the ThreadLocal PageContext. If not specified, the default value of 8 will be used.
					

	org.apache.jasper.Constants.JSP_SERVLET_BASE
	
						The base class of the Servlets generated from the JSPs. If not specified, the default value of org.apache.jasper.runtime.HttpJspBase will be used.
					

	org.apache.jasper.Constants.SERVICE_METHOD_NAME
	
						The name of the service method called by the base class. If not specified, the default value of _jspService will be used.
					

	org.apache.jasper.Constants.SERVLET_CLASSPATH
	
						The name of the ServletContext attribute that provides the classpath for the JSP. If not specified, the default value of org.apache.catalina.jsp_classpath will be used.
					

	org.apache.jasper.Constants.JSP_FILE
	
						The name of the request attribute for <jsp-file> element of a servlet definition. If present on a request, this overrides the value returned by request.getServletPath() to select the JSP page to be executed. If not specified, the default value of org.apache.catalina.jsp_file will be used.
					

	org.apache.jasper.Constants.PRECOMPILE
	
						The name of the query parameter that causes the JSP engine to just pre-generate the servlet but not invoke it. If not specified, the default value of org.apache.catalina.jsp_precompile will be used.
					

	org.apache.jasper.Constants.JSP_PACKAGE_NAME
	
						The default package name for compiled jsp pages. If not specified, the default value of org.apache.jsp will be used.
					

	org.apache.jasper.Constants.TAG_FILE_PACKAGE_NAME
	
						The default package name for tag handlers generated from tag files. If not specified, the default value of org.apache.jsp.tag will be used.
					

	org.apache.jasper.Constants.ALT_DD_ATTR
	
						The servlet context attribute under which the alternate deployment descriptor for this web application is stored. If not specified, the default value of org.apache.catalina.deploy.alt_dd will be used.
					

	org.apache.jasper.Constants.TEMP_VARIABLE_NAME_PREFIX
	
						Prefix to use for generated temporary variable names. If not specified, the default value of _jspx_temp will be used.
					

	org.apache.jasper.Constants.USE_INSTANCE_MANAGER_FOR_TAGS
	
						If true, the instance manager is used to obtain tag handler instances. If not specified, false will be used.
					

	org.apache.jasper.Constants.USE_INSTANCE_MANAGER_FOR_TAGS
	
						If true, annotations specified in tags will be processed and injected. This can have a performance impact when using simple tags, or if tag pooling is disabled. If not specified, true will be used.
					

Security Configuration Properties
	org.apache.catalina.connector.RECYCLE_FACADES
	
						If this is true or if a security manager is in use a new facade object will be created for each request. If not specified, the default value of false will be used.
					

	org.apache.catalina.connector.CoyoteAdapter.ALLOW_BACKSLASH
	
						If this is true the '\' character will be permitted as a path delimiter. If not specified, the default value of false will be used.
					

	org.apache.tomcat.util.buf.UDecoder.ALLOW_ENCODED_SLASH
	
						If this is true '%2F' and '%5C' will be permitted as path delimiters. If not specified, the default value of false will be used.
					

Properties Required by Specification
	org.apache.catalina.STRICT_SERVLET_COMPLIANCE
	
						If set to true, then the following applies:
							
									any wrapped request or response object passed to an application dispatcher is checked to ensure that it has wrapped the original request or response. (SRV.8.2 / SRV.14.2.5.1)
								

	
									a call to Response.getWriter() if no character encoding has been specified will result in subsequent calls to Response.getCharacterEncoding() returning ISO-8859-1 and the Content-Type response header will include a charset=ISO-8859-1 component. (SRV.15.2.22.1)
								

	
									every request that is associated with a session will cause the session's last accessed time to be updated regardless of whether or not the request explicitly accesses the session. (SRV.7.6)
								

					

	org.apache.catalina.core.StandardWrapperValve.SERVLET_STATS
	
						If true or if org.apache.catalina.STRICT_SERVLET_COMPLIANCE is true, the wrapper will collect the JSR-77 statistics for individual servlets. If not specified, the default value of false will be used.
					

	org.apache.catalina.session.StandardSession.ACTIVITY_CHECK
	
						If this is true or if org.apache.catalina.STRICT_SERVLET_COMPLIANCE is true Tomcat will track the number of active requests for each session. When determining if a session is valid, any session with at least one active request will always be considered valid. If not specified, the default value of false will be used.
					

 ⁠4.1.1. Modifying System Properties

				You can modify the system properties either in the JBOSS_HOME/bin/run.conf or in the form of a -D option on server start-up (refer to the Getting Started Guide).
			

 ⁠4.2. Configuring the JBoss Web Container

			The JBoss Web container configuration defines how the container handles the execution and deployment of web application. The configuration is loaded and applied on the server startup: therefore, changes made to the configuration are not applied to the running server.
		

			The JBoss Web behavior can be configured using Tag Library Descriptor (TLD) configuration files:
		
	server.xml
	
						The server.xml is the main JBoss Web server configuration file (for further details refer to Section 4.3, “The Main Config File”)
					

	web.xml
	
						The web.xml file is a deployment descriptor defining URL mappings to servlets (defines how web applications are executed)
					
Global vs Local Config Files

							There are two types of web.xml: the global web.xml valid for the entire server and the local web.xml valid for a web application. The local file overrides the global server.xml file for the given web application.
						

							The global web.xml file is located in $JBOSS_SERVER_HOME/deployers/jbossweb.deployer/ directory, while the web-application specific file is located in the WEB-INF/ directory of the web application.
						

 ⁠4.3. The Main Config File

			The main JBoss Web server configuration file is the TLD server.xml file located in the $JBOSS_SERVER_HOME/PROFILE/deploy/jbossweb.sar/ directory. The file defines the JBoss Web server configuration with a set of XML configuration elements and their attributes.
		

			The elements must follow the nesting depicted in Figure 4.1, “The server.xml file schema”.
		

 ⁠[image: The server.xml file schema]

Figure 4.1. The server.xml file schema

			The elements can be divided in the following categories:
		
	
					top-level elements: contain any other elements (<Server> and <Service>);
				

	
					connectors: represent interface between clients and the service that receives the clients' requests;
				

	
					containers: represent components, which process incoming requests (<Engine>, <Host>, and <Context>);
				

	
					nested components: represent entities that provide further functionalities to their parent elements or intercept the request processing;
				

 ⁠4.4. Top-Level Elements

			The TLD server.xml file contains the <Server> top-element, which contains the <Service> elements. Any other elements are nested in these two elements.
		

 ⁠4.4.1. Server

				The Server is a container element that represents the entire servlet container and is the only parent of any other element, that is, it is the only top-level element.
			

				It can contain multiple Service, GlobalNamingResources and Listener elements.
			
Listener elements

					The Server element in the JBoss Web's server.xml file contains multiple Listener elements. Amongst others, the org.apache.catalina.core.AprLifecycleListener and the org.apache.catalina.core.JasperListener. If the mod_ cluster load balancer is enabled for the profile, also the org.jboss.web.tomcat.service.deployers.MicrocontainerIntegrationLifecycleListener is required.
				

					The AprLifecycleListener and the JasperListener are used to start up and shut down APR and initialize Jasper. Removing the Listener elements is therefore discouraged just as removing the MicrocontainerIntegrationLifecycleListener.
				

 ⁠Table 4.1. Server Element Attributes
	 Attribute 	 Description
	 className 	
								class implementing the Server
							

							
								The defined class must implement the org.apache.catalina.Server interface. If no class is specified, the standard implementation is used, that is, org.apache.catalina.core.StandardServer.
							

							
	 port 	
								TCP/IP port number on which the server expects the shutdown command
							

							
								The connection must be initiated from the server computer that runs the JBoss Web server instance.
							

							
	 shutdown 	
								string that the server must receive on the port specified in the port property to shutdown
							

							

 ⁠4.4.2. Service

				The Service element serves as a container for Connectors that share a single Engine component. There can be multiple Service components in one Server element and the Service component can contain multiple Connector elements followed by exactly one Engine element.
			

 ⁠Table 4.2. Service Element Attributes
	 Attribute 	 Description
	 className 	
								class implementing the Service
							

							
								The class must implement the org.apache.catalina.Service interface. If no className is specified, the standard org.apache.catalina.core.StandardService implementation is used.
							

							
	 name 	 Service name unique within the Server element (the name is used for log purposes)

 ⁠4.5. Connector

			The Connector element represents an interface between clients and the Service; the element defines how client requests are transported.
		

			There are multiple optional connectors available with JBoss Web: JK2 (mod_jk), mod_cluster. By default, the connector for HTTP and for AJP are defined.
		
Note

				Further details about configuration of individual connectors are available in the HTTP Connectors Load Balancing Guide on the Red Hat Documentation website.
			

 ⁠4.5.1. Executor

				The Executor represents a thread pool that can be shared among components (primarily among connectors).
			

				Every Executor must implement the org.apache.catalina.Executor interface.
			

 ⁠Table 4.3. Element Attributes
	 Attribute 	 Description
	 className 	
								class implementing the Executor
							

							
								The class must implement the org.apache.catalina.Executor interface. If no className is specified, the standard org.apache.catalina.core.StandardThreadExecutor implementation is used.
							

							
	 name 	
								Executor name (the name must be unique within the Server element)
							

							

 ⁠Table 4.4. Additional Element Attributes of the Standard Executor Implementation (org.apache.catalina.core.StandardThreadExecutor)
	 Attribute 	 Description
	 threadPriority 	 thread priority for threads in the executor (Thread.NORM_PRIORITY by default)
	 daemon 	 enabling/disabling daemon threads (true by default)
	 namePrefix 	 name prefix for each thread created by the executor (the thread name takes the form namePrefix+threadNumber)
	 maxThreads 	 maximum number of active threads in the thread pool (200 by default)
	 minSpareThreads 	 minimum number of threads kept alive (25 by default)
	 maxIdleTime 	
								number of milliseconds before the idle thread is shut down (applied only if the number of active threads is higher that the minSpareThreads value; 60.000 by default)
							

							

 ⁠Defining Executor for Multiple Components
Executor in server.xml Not Supported

						Previously, it was possible to define the Executor for a single Connector in the server.xml file. Such Executor definitions are now ignored.
					

					To define an Executor, do the following:
				
	
						Open the $JBOSS_SERVER_HOME/PROFILE/deploy/jbossweb.sar/META-INF/jboss-beans.xml file.
					

	
						Add the Executor bean definition to the file (see Example 4.1, “Executor bean definition”).
					

 ⁠Example 4.1. Executor bean definition
​<bean name="Executor"
​class="org.apache.catalina.core.StandardThreadExecutor">
​<property name="maxThreads">300</property>
​<property name="minSpareThreads">25</property>
​</bean>

	
						Set the executor property for the TomcatService bean.
					
​<bean name="WebServer"
​class="org.jboss.web.tomcat.service.deployers.TomcatService">
​
​<annotation>@org.jboss.aop.microcontainer.aspects.jmx.JMX(name="jboss.web:service=WebServer", exposedInterface=org.jboss.web.tomcat.service.deployers.TomcatServiceMBean.class,registerDirectly=true)</annotation>
​⋮
​<!--This is the executor property you need to add.-->
​<property name="executor"><inject bean="Executor"/></property>
​</bean>

 ⁠4.6. Containers

			Containers represent components, which process incoming requests (<Engine>, <Host>, and <Context>).
		

 ⁠4.6.1. Engine

				The Engine represents the entity that processes the requests received by the parent Service; that is, the engine accepts requests from all Connectors defined for the Service, processes them, and returns them to the appropriate Connector.
			

				To define the virtual host of the server that the engine can use, nest multiple Host elements inside the Engine element; each Host element represents one virtual host. You need to define at least one Host element and one of the Hosts must have a name that matches the defaultHost value defined in the parent Engine element.
			

				The Engine element can contain at most one Realm element. The Realm element represents a database of users and their roles: the user information defined in the respective resource is shared across all Hosts and Contexts nested inside the Engine. Realm setting in the Engine element can be overridden by another Realm element defined in a lower-level element; that is, a Host or Context element.
			

 ⁠Table 4.5. Engine Element Attributes
	 Attribute 	 Description
	 backgroundProcessorDelay 	
								delay between the invocation of the backgroundProcess method on the engine and the invocation of the backgroundProcess method on the child containers of the Engine (Engine's Hosts and Contexts; 10 by default, that is 10 seconds)
							

							
								If set to a positive value, the engine produces a thread. The thread waits for the specified amount of time and then invokes the backgroundProcess method on the engine and all its child containers.
							

							
								Host and Context containers can also define the backgroundProcessorDelay attribute. If the delay of a child container is not negative, the child container is using its own processing thread.
							

							
	 className 	
								class implementing the Engine
							

							
								The class must implement the org.apache.catalina.Engine interface. If not specified, the standard value org.apache.catalina.core.StandardEngine is used.
							

							
	 defaultHost 	
								name of the default host name
							

							
								The default Host processes requests directed to host names on the server that are not configured in the server.xml configuration file. The defaultHost must match the name attribute of a Host element nested immediately inside the Engine element.
							

							
	 jvmRoute 	
								identifier used in load balancing scenarios to enable session affinity (so-called "sticky sessions")
							

							
								The identifier must be unique across all JBoss Web servers which participate in the cluster. It is appended to the generated session identifier so that a front-end proxy can always forward a particular session to the same JBoss Web instance.
							

							
	 name 	
								logical name of the Engine used in log and error messages
							

							
								When using multiple Service elements in the same Server, each Engine must be assigned a unique name.
							

							

Define Engine after Connectors

					Make sure the Engine element is located after all its connectors as connectors defined after the Engine element are ignored.
				

 ⁠4.6.2. Host

				The Host element represents a virtual host on the Engine. It allows you to associate a network name with the server, that is, to change the domains or the hostname of the Server.
			
Note

					The network name needs to be registered in the Domain Name Service (DNS) server that manages your Internet domain (contact your Network Administrator for more information).
				

				One Engine can contain multiple virtual hosts, that is the Engine element can have several Host elements nested. The Host element can contain Context elements for individual web applications associated with the virtual host. Exactly one of the Hosts in every Engine must have a name matching the defaultHost attribute of the Engine.
			

				A Host element can contain multiple Alias elements to allow the virtual host to use multiple hostnames (refer to Section 4.6.2.1, “Defining Host Name Aliases”).
			

				The Host element can contain at most one Realm element. A Realm element in a Host represents a database of users and their roles used by the virtual host. If the Realm element is nested in the Host element, the user information is shared across all Contexts nested inside the Host unless overridden by another Realm element defined for a child Context element.
			

 ⁠Table 4.6. Host Element Attributes
	 Attribute 	 Description
	 appBase 	
								Application Base directory for the virtual host
							

							
								The Application Base directory is the pathname of a directory that contains web applications to be deployed on the virtual host. The property value can be defined as an absolute path to the directory or a path relative to the $JBOSS_SERVER_HOME directory.
							

							
	 autoDeploy 	
								automatic deployment of web applications dropped in the Application Base directory while the JBoss Web server is running (true by default)
							

							 Default Deployment Directory

									Note that the default deployment directory is $JBOSS_SERVER_HOME/server/$PROFILE/deploy/ directory.
								

							
	 backgroundProcessorDelay 	
								delay between the invocation of the backgroundProcess method on the host and the invocation of the backgroundProcess method on the child containers of the Host (such as Contexts; set to -1 by default, that is the Host uses the background processing thread of its Engine)
							

							
								If set to a positive value, the Host produces a thread. The thread waits for the specified amount of time and then invokes the backgroundProcess method on the virtual host and all its child containers.
							

							
								Context containers can also define the backgroundProcessorDelay attribute. If the delay of a child Context is not negative, the Context uses its own processing thread.
							

							

							

							
	 className 	
								class implementing the Host
							

							
								The defined class must implement the org.apache.catalina.Host interface. If no class is specified, the standard implementation is used, that is, org.apache.catalina.core.StandardHost.
							

							
	 deployOnStartup 	
								automatic deployment of web applications from the Host (true by default)
							

							
	 name 	
								network name of the virtual host as registered in your Domain Name Service server
							

							
								One of the Hosts nested in the Engine must have a name that matches the defaultHost setting for the parent Engine.
							

							

 ⁠Table 4.7. Additional Element Attributes of the Standard Host Element Implementation (org.apache.catalina.core.StandardHost)
	 Attribute 	 Description
	 deployXML 	
								applying the context.xml file located inside the web application (that is, /META-INF/context.xml; true by default)
							

							
								If set to false to parsing of the context.xml file is disabled. In security conscious environments, set to false to prevent applications from interacting with the container's configuration and provide an external context configuration file to the $JBOSS_SERVER_HOME/conf/enginename/hostname/ directory.
							

							
	 errorReportValveClass 	
								class implementing the error reporting valve used by the Host
							

							
								The defined class must implement the org.apache.catalina.Valve interface. If no class is specified, the org.apache.catalina.valves.ErrorReportValve implementation is used.
							

							
								The valve defines the output error reports. This property allows you to customize the look of the error pages generated by JBoss Web.
							

							
	 unpackWARs 	
								automatic unpacking of deployer WAR files (false by default)
							

							
								If set to true, web applications that are placed in the appBase directory in the form of a web application archive (WAR) file are unpacked into a corresponding disk directory structure. If set to false, such a web application is run from the WAR file.
							

							

							

							
	 workDir 	
								pathname to a scratch directory used by applications on the Host (if not specified, a suitable directory under $JBOSS_SERVER_HOME/work/ is used)
							

							
								Each application has its own sub-directory with temporary read-write use. The directory can be made visible for servlets in the web application using the javax.servlet.context.tempdir servlet context attribute of type java.io.File as described in the Servlet Specification.
							

							
								If a child Context defines the workDir property, the Host's workDir is overridden.
							

							

 ⁠4.6.2.1. Defining Host Name Aliases

					If more than one network name in the Domain Name Service server are resolved to the IP address of the same server, use the Host's Alias element to define such network name resolution.
				
​<Host name="www.company.com" ...>
​ ...
​ <Alias>company.com</Alias>
​ ...
​ </Host>

					Make sure the network names involved are registered in your DNS server and resolve to the same computer with the JBoss Web instance.
				

 ⁠4.6.3. Context

				The Context element represents a web application, which runs within a particular virtual host.
			

				The web application used to process a particular HTTP request is selected based on matching the longest possible prefix of the Request URI against the context path of every Context. Once selected, the Context selects the appropriate servlet to process the incoming request as defined by servlet mappings in the web application deployment descriptor file (/WEB-INF/web.xml in the web application directory hierarchy).
			

				You may define an arbitrary number of Context elements; however, each Context must have a unique context path. In addition, one Context with an empty context path (zero-length string) must be defined. This Context is used as the default web application for the virtual host and processes any requests with an unmatched context path.
			

 ⁠4.6.3.1. Defining Context

					Contexts can be specified with explicitly defined Context elements or they can be created automatically.
				

					To specify the context explicitly, define the Context element in some of the following locations depending on the desired behavior:
				
	
							$JBOSS_SERVER_HOME/conf/context.xml: the Context element is loaded by all web applications on the server.
						

	
							$JBOSS_SERVER_HOME/conf/enginename/hostname/context.xml file: the Context element is loaded by all web applications on the host.
						

	
							$JBOSS_SERVER_HOME/conf/enginename/hostname/ directory as individual files with the xml extension: The name of the xml file is used as the context path. To define a multi-level context path, separate the domains with the hash sign (that is, #); for example, the foo#bar.xml file will be resolved as the context path /foo/bar. Define the default web application file as the ROOT.xml file.
						

	
							/META-INF/context.xml in the web application: this context definition is applied only if there is no context file for the application in the $JBOSS_SERVER_HOME/conf/enginename/hostname/ directory.
						

							If the web application is deployed as a WAR archive, its /META-INF/context.xml file is copied to $JBOSS_SERVER_HOME/conf/enginename/hostname/ directory and renamed to match the application's context path. Mind that the file will not be replaced if a new WAR with a newer /META-INF/context.xml file is placed in the host's appBase.
						

	
							In a Host element in the main server.xml file.
						

Definition of Context Element in server.xml Not Recommended

						It is not recommended to place the <Context> element in the server.xml file. Such context definitions require more invasive approach when modifying the Context configuration since the main $JBOSS_SERVER_HOME/conf/server.xml file cannot be reloaded without restarting the JBoss Web server.
					

 ⁠Table 4.8. Context Element Attributes
	 Attribute 	 Description
	 backgroundProcessorDelay 	
									Delay between the invocation of the backgroundProcess method on the context and the invocation of the backgroundProcess method on the child containers of the context (-1 by default and the context relies therefore on the background processing of its parent host)
								

								
									If set to a positive value, the context produces a thread. The thread waits for the specified amount of time and then invokes the backgroundProcess method on the context and all its child containers.
								

								
									If the delay of a child container is not negative, the child container is using its own processing thread.
								

								
									 A context uses background processing to perform session expiration and class monitoring for reloading.
								

								
	 className 	
									Class implementing the Context
								

								
									This class must implement the org.apache.catalina.Context interface. If not specified, the org.apache.catalina.core.StandardContext standard value is used.
								

								
	 cookies 	
									Use cookies for session identifier communication if supported by the client (true by default)
								

								
									Set to false if you want to disable the feature. The server relies then only on URL rewriting performed by the application.
								

								
	 crossContext 	
									Returning of the context to other web applications (defines the response sent to the ServletContext.getContext() call; set to false by default and the request dispatcher is filled with the NULL value)
								

								
									If set to true, the context returns the request dispatcher with the ServletContext value to the requesting web application. The requesting web application must run on the same virtual host.
								

								

								

								
	 docBase 	
									Document Base, that is the Context Root directory, of the web application or the pathname to the web application archive file
								

								
									You can define the docBase value as an absolute pathname to the directory or WAR file, or as a pathname relative to the appBase directory of the parent Host.
								

								
	 override 	
									Overriding of explicit settings in the Context element by the corresponding settings in the global or host default contexts (set to use the default context setting)
								

								
									Set to true to activate the overriding.
								

								
									If the docBase value is defined as a symbolic link, changes to the symbolic link take effect only after the JBoss Web server is restarted or after the context is undeployed and then re-deployed: context reload is not sufficient.
								

								
	 privileged 	
									Enabling/disabling the context to use container servlets, such as the manager servlet
								

								
									The privileged attribute changes the context's parent class loader to the Server class loader rather than the Shared class loader (the Common class loader is used for the Server and the Shared class loaders by default).
								

								
									Set to true to allow the context to use container servlets.
								

								
	 path 	
									Context path of the web application.
								

								
									The path is matched against the beginning of each request URI to select the appropriate web application for the request processing. Therefore all context paths within a particular host must be unique.
								

								
									To use the context as the default web application for the host, specify the context path as an empty string (""). The default web application processes any requests, which could not be assigned to any other Context.
								

								
									Do not set the value of this field unless you want to define the context statically in server.xml as its value is inferred from the file names used for the xml context file or the docBase property.
								

								
	 reloadable 	
									Enabling/disabling the monitoring of class changes in /WEB-INF/classes/ and /WEB-INF/lib and automatic reloading of the web application if a change is detected (false by default).
								

								
									Note that this feature requires significant runtime overhead and is not recommended for production applications (to reload deployed applications, use the Manager web application).
								

								
	 WrapperClass 	
									Class implementing the org.apache.catalina.Wrapper interface used for servlets in this context
								

								
									If no value is specified, the standard default value is used.
								

								

 ⁠Table 4.9. Additional Element Attributes of the Standard Context Element Implementation (org.apache.catalina.core.StandardContext)
	 Attribute 	 Description
	 allowLinking 	
									Enabling/disabling the usage of symlinks inside the web application if the symlinks point to resources outside of the web application Base directory (set to false by default)
								

								
									Set to true to allow such symlinks in the web application.
								

								
									This property must not be set to true on Windows platforms or any other operating systems with case-insensitive file systems as this can result in various security problem, such as disabling of case sensitivity checks and possible disclosure of JSP source code.
								

								
	 antiJARLocking 	
									Enabling/disabling extra measures for keeping JAR files unlocked even if being accessed through URLs (false by default)
								

								
									Enabling this feature prolongs the start time of applications.
								

								
	 antiResourceLocking 	
									Enabling/disabling file locking by JBoss Web (false by default)
								

								
									Enabling this features allows full hot deploy and undeploy on platforms or configurations where file locking can occur. However, enabling this feature significantly impacts the start time of applications along with other side effects, such as disabling of JSP reloading in a running server and application deletion on JBoss Web shutdown if the application is outside of the appBase for the Host (in the webapps directory by default).
								

								

								

								

								

								
	 cacheMaxSize 	
									Defines the maximum size of the static resource cache in kilobytes (set to 10240, that is 10 megabytes by default)
								

								

								

								

								

								
	 cacheTTL 	
									Defines the amount of time in milliseconds between cache entries revalidation (set to 5000, that is 5 seconds, by default)
								

								
	 cachingAllowed 	
									Enabling the usage of the cache for static resources (set to true by default)
								

								
	 caseSensitive 	
									Enabling case sensitivity checks (set to false by default)
								

								
									Set to false to disable all case sensitivity checks.
								

								
									Do not set the property false on Windows platforms or any operating systems that do not have a case sensitive file system as this might result in various security issues including JSP source code disclosure.
								

								
	 processTlds 	
									Enabling processing of tag library descriptors (TLD) on context start up (set to true by default)
								

								
									Set to false if TLDs are not part of the web application.
								

								
	 swallowOutput 	
									Enabling redirection of System.out and System.err output to the web application logger (false by default)
								

								
									Set to true to redirect the output to the web application logger.
								

								
	 tldNamespaceAware 	
									Enabling the TLD files XML validation to be namespace-aware (false by default)
								

								
									The feature is usually enabled along with tldValidation.
								

								
	 tldValidation 	
									Enabling the TLD files XML validation on context start up (false by default)
								

								
	 unloadDelay 	
									Amount of time (in ms) the container waits for servlets to unload (2000 ms by default)
								

								
	 unpackWAR 	
									Enabling unpacking of compressed web applications before they are run (true by default)
								

								
	 useNaming 	
									Enabling a JNDI InitialContext that is compatible with Java Enterprise Edition (JEE) conventions (true by default)
								

								
	 workDir 	
									Path to a directory provided by this Context for temporary read-write use to the servlets in the associated web application
								

								
									 The directory is visible for servlets in the web application through the javax.servlet.context.tempdir servlet context attribute (of type java.io.File) named as described in the Servlet Specification. If not specified, a suitable directory under $JBOSS_SERVER_HOME/work/ is provided.
								

								

 ⁠Context FAQs

 ⁠Context FAQs

 ⁠Q:

								What is context.xml?
							

A:

								context.xml is a Tomcat configuration file that is used to configure many webapp settings on a per-webapp basis.
							

								Recent versions of JBoss Enterprise Application Platform allow you to place a context.xml file in the WEB-INF directory of your WAR archive.
							

								The JBoss Enterprise Application Platform distribution comes with some in-place context.xml files. They can be found at <JBOSS_HOME>/server/<PROFILE>/deploy/management/console-mgr.sar/web-console.war/WEB-INF/context.xml and <JBOSS_HOME>/server/<PROFILE>/deploy/jbossweb.sar/context.xml.
							

 ⁠Q:

								Why is context.xml placed in WEB-INF in JBoss deployments but META-INF in Tomcat?
							

A:

								The justification for this is that a WAR archive does not require a META-INF directory however a WEB-INF directory is required.
							

 ⁠Q:

								What is the difference between jboss-web.xml and context.xml?
							

A:

								Because there is some overlap between jboss-web.xml and context.xml, there is some confusion over how and when context.xml should be used.
							

								The general rule is that if you can set a parameter in jboss-web.xml then the context.xml equivalent is ignored.
							

 ⁠Q:

								Why is context.xml needed at all?
							

A:

								The reason we need context.xml is that there are some things that are used to configure Tomcat as opposed to the JBoss wrapper around Tomcat. Some examples of ways you would use context.xml are found here:
							
	
										https://community.jboss.org/wiki/ExtendedFormAuthenticator
									

	
										https://community.jboss.org/wiki/DisableSessionPersistence
									

	
										https://community.jboss.org/wiki/LimitAccessToCertainClients
									

 ⁠Q:

								Why is not context.xml usage better documented?
							

A:

								Partially because context.xml has no DTD. There is no exhaustive list of possible elements and overlaps with jboss-web.xml.
							

								The path attribute is the most commonly cited overlap jboss-web.xml. You should set the context-root in jboss-web.xml.
							

 ⁠Q:

								How do I remove the jsessionid from URLs?
							

A:

									To have the jsessionids removed from URLs, do the following:
								
	
										Create the following JsessionIdRemoveFilter.java in your code base:
									
​
​import java.io.IOException;
​
​import javax.servlet.Filter;
​import javax.servlet.FilterChain;
​import javax.servlet.FilterConfig;
​import javax.servlet.ServletException;
​import javax.servlet.ServletRequest;
​import javax.servlet.ServletResponse;
​import javax.servlet.http.HttpServletRequest;
​import javax.servlet.http.HttpServletResponse;
​import javax.servlet.http.HttpServletResponseWrapper;
​
​public class JsessionIdRemoveFilter implements Filter {
​
​ public void doFilter(ServletRequest req, ServletResponse res, FilterChain chain)
​ throws IOException, ServletException {
​
​ if (!(req instanceof HttpServletRequest)) {
​ chain.doFilter(req, res);
​ return;
​ }
​
​ HttpServletRequest request = (HttpServletRequest) req;
​ HttpServletResponse response = (HttpServletResponse) res;
​
​ // Redirect requests with JSESSIONID in URL to clean version (old links bookmarked/stored by bots)
​ // This is ONLY triggered if the request did not also contain a JSESSIONID cookie! Which should be fine for bots...
​ if (request.isRequestedSessionIdFromURL()) {
​ String url = request.getRequestURL()
​ .append(request.getQueryString() != null ? "?"+request.getQueryString() : "")
​ .toString();
​ response.setHeader("Location", url);
​ response.sendError(HttpServletResponse.SC_MOVED_PERMANENTLY);
​ return;
​ }
​
​ // Prevent rendering of JSESSIONID in URLs for all outgoing links
​ HttpServletResponseWrapper wrappedResponse =
​ new HttpServletResponseWrapper(response) {
​ @Override
​ public String encodeRedirectUrl(String url) {
​ return url;
​ }
​
​ @Override
​ public String encodeRedirectURL(String url) {
​ return url;
​ }
​
​ @Override
​ public String encodeUrl(String url) {
​ return url;
​ }
​
​ @Override
​ public String encodeURL(String url) {
​ return url;
​ }
​ };
​ chain.doFilter(req, wrappedResponse);
​
​ }
​
​ public void destroy() {
​ }
​
​ public void init(FilterConfig arg0) throws ServletException {
​ }
​}

	
										Add the following to the web.xml file to have the filter deployed:
									
​<filter>
​ <filter-name>JsessionIdRemoveFilter</filter-name>
​ <filter-class>com.example.JsessionIdRemoveFilter</filter-class>
​</filter>
​<filter-mapping>
​ <filter-name>JsessionIdRemoveFilter</filter-name>
​ <url-pattern>/*</url-pattern>
​</filter-mapping>

								As this disables URL rewriting, the site no longer works without cookies and an additional cookie check might be needed.
							

 ⁠4.7. Nested Components

			Nested components are optional elements nested in other elements while not nesting any elements themselves.
		

			Nested element are Realm, Valve, Resources, Manager, Loader, and GlobalNamingResources.
		

 ⁠4.7.1. Realm

				The Realm element can be defined either in the Engine element or in the Host element. It defines the security applied to the received requests and thus integrates the JBoss Web server into JBoss SX.
			

				The Realm element supports the following attributes: TBD
			

 ⁠4.7.2. Valve

				The Valve element "catches" requests before they are received by the respective container and executes the code defined. The element is nested in the element, which represents the container to catch the requests from; that is Engine, Host, or Context container.
			

				Valves have been provided as an alternative to filters and are the recommended solution.
			

 ⁠4.7.3. GlobalNamingResources

				The GlobalNamingResources element defines the global JNDI resources for the Server.
			

				The global JNDI resources are listed in the server's global JNDI resource context. The resources defined in this element are not visible in the per-web-application contexts unless you explicitly link them with ___ResourceLink___ elements.
			

				You can configure named values that will be visible to all web applications as environment entry resources in the Environment element nested in the GlobalNamingResources element.
			
​<GlobalNamingResources ...>
​...
​<Environment name="maxExemptions" value="10"
​ type="java.lang.Integer" override="false"/>
​...
​</GlobalNamingResources>

				The Environment element supports the following attributes:
			
	
						description: optional human-readable description of the element
					

	
						name: name of the environment entry to be created relative to the java:comp/env context
					

	
						override: Set this to false if you do not want an ___env-entry___ for the same environment entry name, found in the web application deployment descriptor, to override the value specified here. By default, overrides are allowed.
					

	
						type: The fully qualified Java class name expected by the web application for this environment entry. Must be one of the legal values for ___env-entry-type____ in the web application deployment descriptor: java.lang.Boolean, java.lang.Byte, java.lang.Character, java.lang.Double, java.lang.Float, java.lang.Integer, java.lang.Long, java.lang.Short, or java.lang.String.
					

	
						value: The parameter value that will be presented to the application when requested from the JNDI context. This value must be convertible to the Java type defined by the type attribute.
					

 ⁠Chapter 5. Enterprise Applications with EJB3 Services

		 EJB3 (Enterprise Java Bean 3.0) provides the core component model for Java EE 5 applications. An EJB3 bean is a managed component that is automatically wired to take advantage of all services the Java EE 5 server container provides, such as transaction, security, persistence, naming, dependency injection, etc. The managed component allows developers to focus on the business logic, and leave the cross-cutting concerns to the container as configurations. As an application developer, you need not create or destroy the components yourself. You only need to ask for an EJB3 bean from the Java EE container by its name, and then you can call its methods with all configured container services applied. You can get access to an EJB3 bean from either inside or outside of the Java EE container.
	

		JBoss Enterprise Application Platform 5 supports EJB3 out of the box. Note that JBoss Enterprise Application Platform 4.2 is a J2EE server, so it does not support the full EJB3 feature set.
	

		The details of the EJB3 component programming model is beyond the scope of this guide. Most EJB3 interfaces and annotations are part of the Java EE 5 standard and hence they are the same for all Java EE 5 compliant application servers. Interested readers should refer to the EJB3 specification or numerous EJB3 books to learn more about EJB3 programming.
	

		In this chapter, we only cover EJB3 configuration issues that are specific to the JBoss Enterprise Application Platform. For instance, we discuss the JNDI naming conventions for EJB3 components inside the JBoss Enterprise Application Platform, the optional configurations for the Hibernate persistence engine for entity beans, as well as custom options in the JBoss EJB3 deployer.
	

 ⁠5.1. Session Beans

			Session beans are widely used to provide transactional services for local and remote clients. To write a session bean, you need an interface and an implementation class.
		
​
​
​@Local
​public interface MyBeanInt {
​ public String doSomething (String para1, int para2);
​}
​
​@Stateless
​public class MyBean implements MyBeanInt {
​
​ public String doSomething (String para1, int para2) {
​ ... implement the logic ...
​ }
​
​}
​

			When you invoke a session bean method, the method execution is automatically managed by the transaction manager and the security manager in the server. You can specify the transactional or security properties for each method using annotations on the method. A session bean instance can be reused by many clients.
		

			Depending on whether or not the server maintains the bean's internal state between multiple invocations coming from the same client, the session bean can be stateless or stateful. If the bean has a remote business interface clients outside of the current JVM can call the EJB3 bean. All these are configurable via standard annotations on the beans. Note that the transactional or security properties are only active when the bean is called through a business interface.
		

			After you define a session bean, how does the client get a reference to it? As we discussed, the client does not create or destroy EJB3 components, it merely asks the server for a reference of an existing instance managed by the server. That is done via JNDI. In JBoss Enterprise Application Platform, the default local JNDI name for a session bean is dependent on the deployment packaging of the bean class.
		
	
					If the bean is deployed in a standalone JAR file in the <JBOSS_HOME>/default/deploy directory, the bean is accessible via local JNDI name MyBean/local, where MyBean is the implementation class name of the bean as we showed earlier. The "local" JNDI in JBoss Enterprise Application Platform means that the JNDI name is relative to java:comp/env/.
				

	
					If the JAR file containing the bean is packaged in an EAR file, the local JNDI name for the bean is myapp/MyBean/local, where myapp is the root name of the EAR archive file (e.g., myapp.ear, see later for the EAR packaging of EJB3 beans).
				

			Of course, you should change local to remote if the bean interface is annotated with @Remote and the bean is accessed from outside of the server it is deployed on. Below is the code snippet to get a reference of the MyBean bean in a web application (e.g., in a servlet or a JSF backing bean) packaged in myapp.ear, and then invoke a managed method.
		
​
​
​try {
​ InitialContext ctx = new InitialContext();
​ MyBeanInt bean = (MyBeanInt) ctx.lookup("myapp/MyBean/local");
​} catch (Exception e) {
​ e.printStackTrace ();
​}
​
​... ...
​
​String result = bean.doSomething("have fun", 1);
​
​... ...
​

			What the client gets from the JNDI is essentially a "stub" or "proxy" of the bean instance. When the client invokes a method, the proxy figures out how to route the request to the server and marshal together the response.
		

			If you do not like the default JNDI names, you can always specify your own JNDI binding for any bean via the @LocalBinding annotation on the bean implementation class. The JNDI binding is always "local" under the java:comp/env/ space. For instance, the following bean class definition results in the bean instances available under JNDI name java:comp/env/MyService/MyOwnName.
		
​
​
​@Stateless
​@LocalBinding (jndiBinding="MyService/MyOwnName")
​public class MyBean implements MyBeanInt {
​
​ public String doSomething (String para1, int para2) {
​ ... implement the logic ...
​ }
​
​}
​

Injecting EJB3 Beans into the Web Tier

				Java EE 5 allows you to inject EJB3 bean instances directly into the web application via annotations without explicit JNDI lookup. This behavior is not yet supported in JBoss Enterprise Application Platform 5.2. However, the JBoss Enterprise Platform provides an integration framework called JBoss Seam. JBoss Seam brings EJB3 / JSF integration to new heights far beyond what Java EE 5 provides. Please see more details in the JBoss Seam Reference Guide bundled with the platform.
			

 ⁠5.2. Entity Beans (a.k.a. Java Persistence API)

			EJB3 session beans allow you to implement data accessing business logic in transactional methods. To actually access the database, you will need EJB3 entity beans and the entity manager API. They are collectively called the Java Persistence API (JPA).
		

			EJB3 Entity Beans are Plain Old Java Objects (POJOs) that map to relational database tables. For instance, the following entity bean class maps to a relational table named customer. The table has three columns: name, age, and signupdate. Each instance of the bean corresponds to a row of data in the table.
		
​
​
​@Entity
​public class Customer {
​
​ String name;
​
​ public String getName () {
​ return name;
​ }
​
​ public void setName (String name) {
​ this.name = name;
​ }
​
​ int age;
​
​ public int getAge () {
​ return age;
​ }
​
​ public void setAge (int age) {
​ this.age = age;
​ }
​
​ Date signupdate;
​
​ public Date getSignupdate () {
​ return signupdate;
​ }
​
​ public void setSignupdate (Date signupdate) {
​ this.signupdate = signupdate;
​ }
​}
​

			Besides simple data properties, the entity bean can also contain references to other entity beans with relational mapping annotations such as @OneToOne, @OneToMany, @ManyToMany etc. The relationships of those entity objects will be automatically set up in the database as foreign keys. For instance, the following example shows that each record in the Customer table has one corresponding record in the Account table, multiple corresponding records in the Order table, and each record in the Employee table has multiple corresponding records in the Customer table.
		
​
​
​@Entity
​public class Customer {
​
​
​
​ Account account;
​
​ @OneToOne
​ public Account getAccount () {
​ return account;
​ }
​
​ public void setAccount (Accout account) {
​ this.account = account;
​ }
​
​ Employee salesRep;
​
​ @ManyToOne
​ public Employee getSalesRep () {
​ return salesRep;
​ }
​
​ public void setSalesRep (Employee salesRep) {
​ this.salesRep = salesRep;
​ }
​
​ Vector <Order> orders;
​
​ @OneToMany
​ public Vector <Order> getOrders () {
​ return orders;
​ }
​
​ public void setOrders (Vector <Order> orders) {
​ this.orders = orders;
​ }
​
​

			Using the EntityManager API, you can create, update, delete, and query entity objects. The EntityManager transparently updates the underlying database tables in the process. You can obtain an EntityManager object in your EJB3 session bean via the @PersistenceContext annotation.
		
​
​
​@PersistenceContext
​EntityManager em;
​
​Customer customer = new Customer ();
​// populate data in customer
​
​// Save the newly created customer object to DB
​em.persist (customer);
​
​// Increase age by 1 and auto save to database
​customer.setAge (customer.getAge() + 1);
​
​// delete the customer and its related objects from the DB
​em.remove (customer);
​
​// Get all customer records with age > 30 from the DB
​List <Customer> customers = em.query (
​ "select c from Customer as c where c.age > 30");
​

			The detailed use of the EntityManager API is beyond the scope of this book. Interested readers should refer to the JPA documentation or Hibernate EntityManager documentation.
		

 ⁠5.2.1. The persistence.xml file

				The EntityManager API is great, but how does the server know which database it is supposed to save / update / query the entity objects? How do we configure the underlying object-relational-mapping engine and cache for better performance and trouble shooting? The persistence.xml file gives you complete flexibility to configure the EntityManager.
			

				The persistence.xml file is a standard configuration file in JPA. It has to be included in the META-INF directory inside the JAR file that contains the entity beans. The persistence.xml file must define a persistence-unit with a unique name in the current scoped classloader. The provider attribute specifies the underlying implementation of the JPA EntityManager. In JBoss Enterprise Application Platform, the default and only supported / recommended JPA provider is Hibernate. The jta-data-source points to the JNDI name of the database this persistence unit maps to. The java:/DefaultDS here points to the HSQL DB embedded in the JBoss Enterprise Application Platform. Please refer to Chapter 16, Using Production Databases with JBoss Enterprise Application Platform on how to setup alternative databases for JBoss Enterprise Application Platform.
			
​
​
​<persistence>
​ <persistence-unit name="myapp">
​ <provider>org.hibernate.ejb.HibernatePersistence</provider>
​ <jta-data-source>java:/DefaultDS</jta-data-source>
​ <properties>
​
​ </properties>
​ </persistence-unit>
​</persistence>
​

Inject EntityManager by persistence-unit name

					Since you might have multiple instances of persistence-unit defined in the same application, you typically need to explicitly tell the @PersistenceContext annotation which unit you want to inject. For instance, @PersistenceContext(name="myapp") injects the EntityManager from the persistence-unit named "myapp".
				

					However, if you deploy your EAR application in its own scoped classloader and have only one persistence-unit defined in the whole application, you can omit the "name" on @PersistenceContext. See later in this chapter for EAR packaging and deployment.
				

				The properties element in the persistence.xml can contain any configuration properties for the underlying persistence provider. Since JBoss Enterprise Application Platform uses Hibernate as the EJB3 persistence provider, you can pass in any Hibernate options here. Please refer to the Hibernate and Hibernate EntityManager documentation for more details. Here we will just give an example to set the SQL dialect of the persistence engine to HSQL, and to create tables from the entity beans when the application starts and drop those tables when the application stops.
			
​
​
​<persistence>
​ <persistence-unit name="myapp">
​ <provider>org.hibernate.ejb.HibernatePersistence</provider>
​ <jta-data-source>java:/DefaultDS</jta-data-source>
​ <properties>
​ property name="hibernate.dialect"
​ value="org.hibernate.dialect.HSQLDialect"/>
​ <property name="hibernate.hbm2ddl.auto" value="create-drop"/>
​ </properties>
​ </persistence-unit>
​</persistence>
​

 ⁠5.2.2. Use Alternative Databases

				To use an alternative database other than the built-in HSQL DB to back your entity beans, you need to first define the data source for the database and register it in the JNDI. This is done via the *-ds.xml files in the deploy directory. Examples of *-ds.xml files for various databases are available in <JBOSS_HOME>/docs/examples/jca directory in the server.
			

				Then, in the persistence.xml, you need to change the jta-data-source attribute to point to the new data source in JNDI (e.g., java:/MysqlDS if you are using the default mysql-ds.xml to setup a MySQL external database).
			

				In most cases, Hibernate tries to automatically detect the database it connects to and then automatically selects an appropriate SQL dialect for the database. However, we have found that this detection does not always work, especially for less used database servers. We recommend you to set the hibernate.dialect property explicitly in persistence.xml. Here are the Hibernate dialect for database servers officially supported on the JBoss platform.
			
	
						Oracle 9i and 10g: org.hibernate.dialect.Oracle9Dialect
					

	
						Microsoft SQL Server 2005: org.hibernate.dialect.SQLServerDialect
					

	
						PostgresSQL 8.1: org.hibernate.dialect.PostgreSQLDialect
					

	
						MySQL 5.0: org.hibernate.dialect.MySQL5Dialect
					

	
						DB2 8.0: org.hibernate.dialect.DB2Dialect
					

	
						Sybase ASE 12.5: org.hibernate.dialect.SybaseDialect
					

 ⁠5.2.3. Default Hibernate Options

				Hibernate has many configuration properties. JBoss Enterprise Application Platform uses default values for the properties that you do not specify in the persistence.xml file. The default Hibernate property values are specified in the PersistenceUnitDeployer bean definition in the JBOSS_HOME/server/PROFILE/deployers/ejb3.deployer/META-INF/jpa-deployers-jboss-beans.xml file. Below is the code of the bean used in JBoss Enterprise Application Platform 5. Notice the options that are commented out. These are the properties available in the persistence.xml file.
			
​
​
​<bean name="PersistenceUnitDeployer" class="org.jboss.jpa.deployers.PersistenceUnitDeployer">
​ <property name="defaultPersistenceProperties">
​	 <map keyClass="java.lang.String" valueClass="java.lang.String">
​		 <entry>
​			<key>hibernate.transaction.manager_lookup_class</key>
​<value>org.hibernate.transaction.JBossTransactionManagerLookup</value>
​		 </entry>
​		 <!--entry>
​			<key>hibernate.connection.release_mode</key>
​			<value>after_statement</value>
​		 </entry-->
​		 <!--entry>
​			<key>hibernate.transaction.flush_before_completion</key>
​			<value>false</value>
​		 </entry-->
​		 <!--entry>
​			<key>hibernate.transaction.auto_close_session</key>
​			<value>false</value>
​		 </entry-->
​		 <!--entry>
​			<key>hibernate.query.factory_class</key>
​			<value>org.hibernate.hql.ast.ASTQueryTranslatorFactory</value>
​		 </entry-->
​		 <!--entry>
​			<key>hibernate.hbm2ddl.auto</key>
​			<value>create-drop</value>
​		 </entry-->
​		 <entry>
​			<key>hibernate.cache.provider_class</key>
​			<value>org.hibernate.cache.HashtableCacheProvider</value>
​		 </entry>
​		 <!-- Clustered cache with JBoss Cache -->
​		 <!--entry>
​			<key>hibernate.cache.region.factory_class</key>
​<value>org.hibernate.cache.jbc2.JndiMultiplexedJBossCacheRegionFactory</value>
​		 </entry>
​		 <entry>
​			<key>hibernate.cache.region.jbc2.cachefactory</key>
​			<value>java:CacheManager</value>
​		 </entry>
​		 <entry>
​			<key>hibernate.cache.region.jbc2.cfg.entity</key>
​			<value>pessimistic-entity</value>
​		 </entry>
​		 <entry>
​			<key>hibernate.cache.region.jbc2.cfg.query</key>
​			<value>local-query</value>
​		 </entry-->
​		 <!--entry>
​			<key>hibernate.dialect</key>
​			<value>org.hibernate.dialect.HSQLDialect</value>
​		 </entry-->
​		 <entry>
​			<key>hibernate.jndi.java.naming.factory.initial</key>
​			<value>org.jnp.interfaces.NamingContextFactory</value>
​		 </entry>
​		 <entry>
​			<key>hibernate.jndi.java.naming.factory.url.pkgs</key>
​			<value>org.jboss.naming:org.jnp.interfaces</value>
​		 </entry>
​		 <entry>
​			<key>hibernate.bytecode.use_reflection_optimizer</key>
​			<value>false</value>
​		 </entry>
​		 <entry>
​			<key>hibernate.bytecode.provider</key>
​			<value>javassist</value>
​		 </entry>
​	 </map>
​ </property>
​</bean>
​

 ⁠5.3. Message Driven Beans

			Message driven beans are specialized EJB3 beans that receive service requests via JMS messages instead of proxy method calls from the "stub". So, a crucial configuration parameter for the message driven bean is to specify which JMS message queue its listens to. When there is an incoming message in the queue, the server invokes the beans's onMessage() method, and passes in the message itself for processing. The bean class specifies the JMS queue it listens to in the @MessageDriven annotation. The queue is registered under the local JNDI java:comp/env/ name space.
		
​
​
​@MessageDriven(activationConfig =
​{
​ @ActivationConfigProperty(propertyName="destinationType",
​ propertyValue="javax.jms.Queue"),
​ @ActivationConfigProperty(propertyName="destination",
​ propertyValue="queue/MyQueue")
​})
​public class MyJmsBean implements MessageListener {
​
​ public void onMessage (Message msg) {
​ // ... do something with the msg ...
​ }
​
​ //
​}
​

			When a message driven bean is deployed, its incoming message queue is automatically created if it does not exist already. To send a message to the bean, you can use the standard JMS API.
		
​
​
​try {
​ InitialContext ctx = new InitialContext();
​ queue = (Queue) ctx.lookup("queue/MyQueue");
​ QueueConnectionFactory factory =
​ (QueueConnectionFactory) ctx.lookup("ConnectionFactory");
​ cnn = factory.createQueueConnection();
​ sess = cnn.createQueueSession(false,
​ QueueSession.AUTO_ACKNOWLEDGE);
​
​} catch (Exception e) {
​ e.printStackTrace ();
​}
​
​TextMessage msg = sess.createTextMessage(...);
​
​sender = sess.createSender(queue);
​sender.send(msg);
​

			Please refer to the JMS specification or books to learn how to program in the JMS API.
		

 ⁠5.4. Package and Deploy EJB3 Services

			EJB3 bean classes are packaged in regular JAR files. The standard configuration files, such as ejb-jar.xml for session beans, and persistence.xml for entity beans, are in the META-INF directory inside the JAR. You can deploy EJB3 beans as standalone services in JBoss Enterprise Application Platform or as part of an enterprise application (i.e., in an EAR archive). In this section, we discuss those two deployment options.
		

 ⁠5.4.1. Deploy the EJB3 JAR

				When you drop JAR files into the <JBOSS_HOME>/server/<JBOSS_HOME>/deploy/ directory, it will be automatically picked up and processed by the server. All the EJB3 beans defined in the JAR file will then be available to other applications deployed inside or outside of the server via JNDI names like MyBean/local, where MyBean is the implementation class name for the session bean. The deployment is done via the JBoss EJB3 deployer in <JBOSS_HOME>/server/<PROFILE>/ejb3.deployer/. The META-INF/persistence.properties file we discussed earlier to configure the default behavior of EJB3 entity manager is located in the EJB3 deployer.
			

				The EJB3 deployer automatically scans JARs on the classpath to look for EJB3 annotations. When it finds classes with EJB3 annotations, it would deploy them as EJB3 services. However, scanning all JARs on the classpath could be very time-consuming if you have large applications with many JARs deployed. In the <JBOSS_HOME>/server/<JBOSS_HOME>/deployers/ejb3.deployer/META-INF/ejb3-deployers-jboss-beans.xml file, you can tell the EJB3 deployer to ignore JARs you know do not contain EJB3 beans. The non-EJB3 JAR files shipped with the JBoss Enterprise Application Platform are already listed in the jboss.ejb3:service=JarsIgnoredForScanning MBean service:
			
​
​
​
​ <mbean code="org.jboss.ejb3.JarsIgnoredForScanning"
​ name="jboss.ejb3:service=JarsIgnoredForScanning">
​ <attribute name="IgnoredJars">
​ snmp-adaptor.jar,
​ otherimages.jar,
​ applet.jar,
​ jcommon.jar,
​ console-mgr-classes.jar,
​ jfreechart.jar,
​ juddi-service.jar,
​ wsdl4j.jar,
​
​ servlets-webdav.jar
​ </attribute>
​ </mbean>
​
​

				You can add any non-EJB3 JARs from your application to this list so that the server do not have to waste time scanning them. This could significantly improve the application start time in some cases.
			

 ⁠5.4.2. Deploy EAR with EJB3 JAR

				Most Java EE applications are deployed as EAR archives. An EAR archive is a JAR file that typically contains a WAR archive for the web pages, servlets, and other web-related components, one or several EJB3 JARs that provide services (e.g., data access and transaction) to the WAR components, and some other support library JARs required by the application. An EAR file also have deployment descriptors such as application.xml and jboss-app.xml. Below is the basic structure of a typical EAR application.
			
myapp.ear
├── META-INF/
│ ├── application.xml
│ └── jboss-app.xml
├── myapp.war/
│ ├── web pages and JSP /JSF pages
│ └── WEB-INF
│ ├── web.xml
│ ├── jboss-web.xml
│ ├── faces-config.xml
│ ├── ...
│ ├── lib/
│ │ └── tag library JARs
│ └── classes/
│ └── servlets and other classes used by web pages
├── myapp.jar/
│ ├── EJB3 bean classes
│ └── META-INF/
│ ├── ejb-jar.xml
│ └── persistence.xml
└── lib/
 └──Library JARs for the EAR

				Notice that in JBoss Enterprise Application Platform, unlike in many other application servers, you do not need to declare EJB references in the web.xml file in order for the components in the WAR file to access EJB3 services. You can obtain the references directly via JNDI as we discussed earlier in the chapter.
			

				A typical application.xml file is as follows. It declares the WAR and EJB3 JAR archives in the EAR, and defines the web content root for the application. Of course, you can have multiple EJB3 modules in the same EAR application. The application.xml file could also optionally define a shared classpath for JAR files used in this application. The JAR file location defaults to lib in JBoss Enterprise Application Platform -- but it might be different in other application servers.
			
​
​
​<application>
​ <display-name>My Application</display-name>
​
​ <module>
​ <web>
​ <web-uri>myapp.war</web-uri>
​ <context-root>/myapp</context-root>
​ </web>
​ </module>
​
​ <module>
​ <ejb>myapp.jar</ejb>
​ </module>
​
​ <library-directory>lib</library-directory>
​
​</application>
​

				The jboss-app.xml file provides JBoss-specific deployment configuration for the EAR application. For instance, it can specify the deployment order of modules in the EAR, deploy JBoss-specific application modules in the EAR, such as SARs (Service ARchive for MBeans) and HARs (Hibernate ARchive for Hibernate objects), provide security domain and JMX MBeans that can be used with this application, etc. You can learn more about the possible attributes in jboss-app.xml in its DTD: http://www.jboss.org/j2ee/dtd/jboss-app_4_2.dtd.
			

				A common use case for jboss-app.xml is to configure whether this EAR file should be deployed in its own scoped classloader to avoid naming conflicts with other applications. If your EAR application is deployed in its own scoped classloader and it only has one persistence-unit defined in its EJB3 JARs, you will be able to use @PersistenceContext EntityManager to inject EntityManager to session beans without worrying about passing the persistence unit name to the @PersistenceContext annotation. The following jboss-app.xml specifies a scoped classloader myapp:archive=myapp.ear for the EAR application.
			
​
​
​<jboss-app>
​ <loader-repository>
​ myapp:archive=myapp.ear
​ </loader-repository>
​</jboss-app>
​

				The EAR deployment is configured by the <JBOSS_HOME>/server/<PROFILE>/deploy/ear-deploy.xml file. This file contains three attributes as follows.
			
​
​
​<server>
​ <mbean code="org.jboss.deployment.EARDeployer"
​ name="jboss.j2ee:service=EARDeployer">
​ <!--
​ A flag indicating if ear deployments should
​ have their own scoped class loader to isolate
​ their classes from other deployments.
​ -->
​ <attribute name="Isolated">false</attribute>
​
​ <!--
​ A flag indicating if the ear components should
​ have in VM call optimization disabled.
​ -->
​ <attribute name="CallByValue">false</attribute>
​
​ <!--
​ A flag the enables the default behavior of
​ the ee5 library-directory. If true, the lib
​ contents of an ear are assumed to be the default
​ value for library-directory in the absence of
​ an explicit library-directory. If false, there
​ must be an explicit library-directory.
​ -->
​ <attribute name="EnablelibDirectoryByDefault">true</attribute>
​ </mbean>
​</server>
​

				If you set the Isolated parameter to true, all EAR deployment will have scoped classloaders by default. There will be no need to define the classloader in jboss-app.xml. The CallByValue attribute specifies whether we should treat all EJB calls as remote calls. Remote calls have a large additional performance penalty compared with local call-by-reference calls, because objects involved in remote calls have to be serialized and de-serialized. For most of our applications, the WAR and EJB3 JARs are deployed on the same server, hence this value should be default to false and the server uses local call-by-reference calls to invoke EJB methods in the same JVM. The EnablelibDirectoryByDefault attribute specifies whether the lib directory in the EAR archive should be the default location for shared library JARs.
			

 ⁠Chapter 6. Logging

		Logging is the most important tool to troubleshoot errors and monitor the status of the components of the Platform. log4j provides a familiar, flexible framework, familiar to Java developers.
	

		Section 6.1, “Logging Defaults” contains information about customizing the default logging behavior for the Platform. See Section 6.2, “Component-Specific Logging” for additional customization. Appendix C, Logging Information and Recipes provides some logging recipes, which you can customize to your needs.
	

 ⁠6.1. Logging Defaults

			The log4j configuration is loaded from the <JBOSS_HOME>/server/<PROFILE>/conf/jboss-log4j.xml deployment descriptor. log4j uses appenders to control its logging behavior. An appender is a directive for where to log information, and how to do it. The jboss-log4j.xml file contains many sample appenders, including FILE, CONSOLE, and SMTP.
		

 ⁠Table 6.1. Common log4j Configuration Directives
	 Configuration Option 	 Description
	
							appender
						

						 	
							The main appender. Gives the name and the implementing class.
						

						
	
							errorHandler
						

						 	
							Delegates an external class to handle exceptions passed to the logger, especially if the appender cannot write the log for some reason.
						

						
	
							param
						

						 	
							Options specific to the type of appender. In this instance, the <param> is the name of the file that stores the logs for the FILE appender.
						

						
	
							layout
						

						 	
							Controls the logging format. Tweak this to work with your log-parsing software of choice.
						

						

 ⁠Example 6.1. Sample Appender
​<appender name="FILE" class="org.jboss.logging.appender.DailyRollingFileAppender">
​ <errorHandler class="org.jboss.logging.util.OnlyOnceErrorHandler"/>
​ <param name="File" value="${jboss.server.log.dir}/server.log"/>
​ <param name="Append" value="true"/>
​ <!-- In AS 5.0.x the server log threshold was set by a system property.
​		 In 5.1 and later, the system property sets the priority on the root
​		 logger (see <root/> below)
​		 <param name="Threshold" value="${jboss.server.log.threshold}"/> -->
​
​ <!-- Rollover at midnight each day -->
​ <param name="DatePattern" value="'.'yyyy-MM-dd"/>
​ <layout class="org.apache.log4j.PatternLayout">
​	 <!-- The default pattern: Date Priority [Category] (Thread) Message\n -->
​	 <param name="ConversionPattern" value="%d %-5p [%c] (%t) %m%n"/>
​ </layout>
​</appender>

			For more information on configuring log4j, see http://logging.apache.org/log4j/1.2/.
		

 ⁠6.2. Component-Specific Logging

			Some Platform components have extra logging options available, or extra mechanisms for customizing logging.
		

 ⁠6.2.1. SQL Logging with Hibernate

				Hibernate has two ways to enable logging of SQL statements. These statements are most useful during the testing and debugging phases of application development.
			

				The first way is to explicitly enable it in your code.
			
​SessionFactory sf = new Configuration()
​	 .setProperty("hibernate.show_sql", "true")
​	 // ...
​	 .buildSessionFactory();

				Alternately, you can configure Hibernate to send all SQL messages to log4j, using a specific facility:
			

log4j.logger.org.hibernate.SQL=DEBUG, SQL_APPENDER
log4j.additivity.org.hibernate.SQL=false

				The additivity option controls whether these log messages are propagated upward to parent handlers, and is a matter of preference.
			

 ⁠6.2.2. Transaction Service Logging

				The TransactionManagerService included with the Enterprise Platform handles logging differently than the stand-alone Transaction Service. Specifically, it overrides the value of the com.arjuna.common.util.logger property given in the jbossjta-properties.xml file, forcing use of the log4j_releveler logger. All INFO level messages in the transaction code behave as DEBUG messages. Therefore, these messages are only present in log files if the filter level is DEBUG. All other log messages behave as normal.
			

 ⁠Chapter 7. Deployment

		Deploying applications on JBoss Enterprise Application Platform is achieved by copying the application into the <JBOSS_HOME>/server/<PROFILE>/deploy directory. Replace default with different server profiles such as all or minimal (server profiles are covered later in this guide). The JBoss Enterprise Application Platform constantly scans the deploy directory to pick up new applications or any changes to existing applications. This enables hot deployment of applications on the fly, while JBoss Enterprise Application Platform is still running.
	

 ⁠7.1. Deployable Application Types

			With JBoss Enterprise Application Platform 4.x, a deployer existed to handle a specified deployment type and that was the only deployer that processed the deployment. In JBoss Enterprise Application Platform 5, multiple deployers transform the metadata associated with a deployment until it is processed by a deployer that creates a runtime component from the metadata.
		

			Deployment has to contain a descriptor that causes the component metadata to be added to the deployment. The types of deployments for which deployers exists by default in the JBoss Enterprise Application Platform include:
		
	WAR
	
						The WAR application archive (e.g., myapp.war) packages Java EE web applications in a JAR file. It contains servlet classes, view pages, libraries, and deployment descriptors in WEB-INF such as web.xml, faces-config.xml, and jboss-web.xml etc..
					

	EAR
	
						The EAR application archive (e.g., myapp.ear) packages a Java EE enterprise application in a JAR file. It typically contains a WAR file for the web module, JAR files for EJB modules, as well as META-INF deployment descriptors such as application.xml and jboss-app.xml etc.
					
Persistence Units in EAR Deployment

							According to EJB3 specification, deployment of a persistence unit into an EAR should fail when the unit is outside of the EAR file and the bean attempting to inject the persistence unit is within the EAR. To follow the specification, you need to deploy the persistence unit packaged within the EAR file.
						

							However, JBoss Enterprise Application Platform persistence units can exist outside of their EARs. To allow this behavior, modify the bean class of the PersistenceUnitDependencyResolver bean in the file deployers/ejb3.deployer/META-INF/jpa-deployer-jboss-beans.xml under the respective JBoss Enterprise Application Platform server profile:
						
​<!--
​Can be DefaultPersistenceUnitDependencyResolver for spec compliant resolving,
​InterApplicationPersistenceUnitDependencyResolver for resolving beyond EARs,
​or DynamicPersistencePersistenceUnitDependencyResolver which allows configuration via JMX.
​-->
​<bean name="PersistenceUnitDependencyResolver" class="org.jboss.jpa.resolvers.DynamicPersistenceUnitDependencyResolver"/>

							The bean default value is DynamicPersistenceUnitDependencyResolver. This resolver allows you to specify the specification-compliant behavior, which can be additionally monitored through an MBean in the JMX Console. To use the spec-noncompliant JBoss variant, set the bean to InterApplicationPersistenceUnitDependencyResolver.
						

	JBoss Microcontainer
	
						The JBoss Microcontainer (MC) beans archive (typical suffixes include, .beans, .deployer) packages a POJO deployment in a JAR file with a META-INF/jboss-beans.xml descriptor. This format is commonly used by the JBoss Enterprise Application Platform component deployers.
					

						You can deploy *-jboss-beans.xml files with MC beans definitions. If you have the appropriate JAR files available in the deploy or lib directories, the MC beans can be deployed using such a standalone XML file.
					

	SAR
	
						The SAR application archive (e.g., myservice.sar) packages a JBoss service in a JAR file. It is mostly used by JBoss Enterprise Application Platform internal services that have not been updated to support MC beans style deployments.
					

						You can deploy *-service.xml files with MBean service definitions. If you have the appropriate JAR files available in the deploy or lib directories, the MBeans specified in the XML files will be started. This is the way you deploy many JBoss Enterprise Application Platform internal services that have not been updated to support POJO style deployment, such as the JMS queues.
					

	DataSource
	
						The *-ds.xml file defines connections to external databases. The data source can then be reused by all applications and services in JBoss Enterprise Application Platform via the internal JNDI.
					

	HAR
	
						The HAR file defines Hibernate objects for an application. It resembles a SAR file but it contains the Hibernate class and mapping files, and a *-hibernate.xml deployment descriptor in its META-INF directory.
					
*-hibernate.xml

							The *-hibernate.xml takes the same form as jboss-service.xml.
							
 ⁠Example 7.1. A Hibernate deployment descriptor (*-hibernate.xml)
​
​<hibernate-configuration xmlns="urn:jboss:hibernate-deployer:1.0">
​ <session-factory name="java:/hibernate/SessionFactory"
​ bean="jboss.test.har:service=Hibernate,testcase=TimersUnitTestCase">
​ <property name="datasourceName">OracleDS</property>
​ <property name="dialect">org.hibernate.dialect.OracleDialect</property>
​ <depends>jboss:service=Naming</depends>
​ <depends>jboss:service=TransactionManager</depends>
​ </session-factory>
​</hibernate-configuration>

						

	*AR
	
						You can also deploy JAR files containing EJBs or other service objects directly in JBoss Enterprise Application Platform. The list of suffixes that are recognized as JAR files is specified in the conf/bootstrap/deployers.xml JARStructure bean constructor set.
					

 ⁠7.1.1. Exploded Deployment

				The WAR, EAR, MC beans and SAR deployment packages are JAR files with special XML deployment descriptors in directories like META-INF and WEB-INF. JBoss Enterprise Application Platform allows you to deploy the archives also as expanded directories instead of JAR files. This is called exploded deployment and allows you to make application changes on the fly, that is without re-deploying the entire application. If you need to re-deploy an exploded directory without restart the server, just touch the deployment descriptors (that is the WEB-INF/web.xml in a WAR and the META-INF/application.xml in an EAR) to update their timestamps.
			

 ⁠7.2. Standard Server Profiles

			The JBoss Enterprise Application Platform ships with six server profiles. Each server profile is contained in a directory named <JBOSS_HOME>/server/<PROFILE>/. You can look into each server profile's directory to see the services, applications, and libraries included in the server profile.
		
Note

				The exact contents of the <JBOSS_HOME>/server/<PROFILE> directory depends on the server profile service implementation and is subject to change as the management layer and embedded server evolve.
			

	all
	
						The all profile provides clustering support and other enterprise extensions.
					

	production
	
						The production server profile is based on the all server profile and provides configuration optimized for production environments.
					

	minimal
	
						Starts the core server container without any of the enterprise services. Use the minimal server profile as a base to build a customized version of JBoss Enterprise Application Platform that only contains the services you need.
					

	default
	
						The default server profile is mostly used by application developers. It supports the standard Java EE 5.0 programming APIs (e.g., Annotations, JPA, and EJB3).
					
Note

							The default server profile is used if a profile is not specified via the command-line or in a configuration file.
						

	standard
	
						The standard server profile is the server profile that has been tested for Java EE compliance. The major differences with the existing server profiles is that call-by-value and deployment isolation are enabled by default, along with support for rmiiiop and juddi (taken from the all config).
					

	web
	
						The web server profile is an experimental, lightweight configuration created around JBoss Web that will follow the developments of the Java EE 6 web server profile. Except for the servlet/jsp container, it provides support for JTA/JCA and JPA. It also limits itself to allowing access to the server only through the http port. Please note that this server profile is not Java EE certified and will most likely change in the following releases.
					

			The detailed services and APIs supported in each of those server profiles will be discussed throughout.
		

 ⁠7.2.1. Changing Profile

				If you want to change the profile used by the server, the method depends on whether the server was started at the command line or as a service.
			

				If the server is being started at the command line, specify the required profile with the -c parameter: run.sh -c profile. For example, run.sh -c all on Red Hat Enterprise Linux or run.bat -c all command on Microsoft Windows starts the server in the all server profile.
			

				If the server is being started as a service, reconfigure the profile used by the service then stop and restart the service. Refer to the Run the Enterprise Application Platform as a Service section of the Installation Guide for details of where the profile is specified.
			
Important

					There is no Server Started message shown at the console when the server is started using the production profile. This message can be found in the server.log file located in the <JBOSS_HOME>/jboss-as/server/production/logs/log subdirectory.
				

 ⁠7.2.2. Creating Your Own Profile

				When creating your own server profile, copy the profile that is closest to your needs and modify the contents.
			

 ⁠Example 7.2. Example: Create a New Server Profile

					The following procedure is an example of how you might create a new server profile that does not require the messaging service:
				

 ⁠Procedure 7.1.
	
							Copy a suitable profile directory (production, for instance).
						

	
							Rename the copied directory as desired (myconfig, for example).
						

	
							Remove the messaging subdirectory from the deploy folder.
						

	
							Start JBoss with the new profile using the command:
						
run -c myconfig

Note

					The default configuration is the one used if you do not specify another when starting up the server.
				

 ⁠7.3. Context Root

			The context root determines the URL of a deployed application. By default, the context root is identical with the application directory or archive structure; for example, if you deploy an application.war archive, which contains JSP pages in a hello directory, the JSPs in the hello directory will be available under /application/hello/.
		

 ⁠Procedure 7.2. Rewriting the Default Context Root

				You can change the context root if required. To rewrite the context root, you need to define the new context root and allow the server to use the new context.
			
	
					To define a new context root, add the context-root element with the new value to the deployment descriptor of the application:
				

						
							To change the context root of a web application, add the context-root element to the jboss-web.xml file.
						

 ⁠Example 7.3. Example jboss-web.xml with a context root defined
​
​<?xml version="1.0"?>
​<jboss-web>
​ <context-root>/application-root</context-root>
​</jboss-web>

								The URL address for the application on localhost is
http://localhost:8080/application-root

							

					 	
							To change the context root of a servlet, change the url-pattern element in the web.xml file.
						

 ⁠Example 7.4. Example web.xml with a context root defined
​
​<?xml version="1.0"?>
​<servlet-mapping>
​ <servlet-name>MapRenderer</servlet-name>
​ <url-pattern>/servlet-root</url-pattern>
​</servlet-mapping>

								The URL address for the servlet on localhost is
http://localhost:8080/application-root/servlet-root

							

				

	
					To start the server with the REWRITE_CONTEXT_CHECK variable set to false, run the following command: run.sh -Dorg.apache.catalina.connector.Response.REWRITE_CONTEXT_CHECK=false
				

 ⁠Chapter 8. Microcontainer

		JBoss Enterprise Application Platform 5.0 uses the Microcontainer to integrate enterprise services together with a Servlet/JSP container, EJB container, deployers and management utilities in order to provide a standard Java EE environment. If you need additional services, you can deploy these on top of Java EE to provide the functionality you need. Likewise any services that you do not need can be removed by changing the server profile configuration. You can even use the Microcontainer to do this in other environments such as Tomcat and GlassFish by plugging in different classloading models during the service deployment phase.
	

		Since JBoss Microcontainer is very lightweight and deals with POJOs, it can also be used to deploy services into a Java ME runtime environment. This opens up new possibilities for mobile applications that can now take advantage of enterprise services without requiring a full JEE application server. As with other lightweight containers, JBoss Microcontainer uses dependency injection to wire individual POJOs together to create services. Configuration is performed using either annotations or XML depending on where the information is best located. Unit testing is made extremely simple thanks to a helper class that extends JUnit to setup the test environment, allowing you to access POJOs and services from your test methods using just a few lines of code.
	
Note

			For detailed information regarding the Microcontainer architecture, refer to the Microcontainer User Guide hosted on docs.redhat.com.
		

 ⁠Chapter 9. The JNDI Naming Service

		The naming service plays a key role in enterprise Java applications, providing the core infrastructure that is used to locate objects or services in an application server. It is also the mechanism that clients external to the application server use to locate services inside the application server. Application code, whether it is internal or external to the JBoss Enterprise Application Platform instance, needs only know that it needs to talk to the a message queue named queue/IncomingOrders and need not worry about any of the queue's configuration details.
	

		In a clustered environment, naming services are even more valuable. A client of a service must be able to look up a ProductCatalog session bean from the cluster without needing to know which machine it resides on. Whether it is a large clustered service, a local resource or an application component that is needed, the JNDI naming service provides the glue that lets code find the objects in the system by name.
	

 ⁠9.1. An Overview of JNDI

			JNDI is a standard Java API that is bundled with the Java Development Kit. JNDI provides a common interface to a variety of existing naming services: DNS, LDAP, Active Directory, RMI registry, COS registry, NIS, and file systems. The JNDI API is divided logically into a client API that is used to access naming services, and a service provider interface (SPI) that allows the user to create JNDI implementations for naming services.
		

			The SPI layer is an abstraction that naming service providers must implement to enable the core JNDI classes to expose the naming service using the common JNDI client interface. An implementation of JNDI for a naming service is referred to as a JNDI provider. JBoss naming is an example JNDI implementation, based on the SPI classes. Note that the JNDI SPI is not needed by J2EE component developers.
		

			The main JNDI API package is the javax.naming package. It contains five interfaces, 10 classes, and several exceptions. There is one key class, InitialContext, and two key interfaces, Context and Name
		

 ⁠9.1.1. Names

				The notion of a name is of fundamental importance in JNDI. The naming system determines the syntax that the name must follow. The syntax of the naming system allows the user to parse string representations of names into its components. A name is used with a naming system to locate objects. In the simplest sense, a naming system is just a collection of objects with unique names. To locate an object in a naming system you provide a name to the naming system, and the naming system returns the object store under the name.
			

				As an example, consider the Unix file system's naming convention. Each file is named from its path relative to the root of the file system, with each component in the path separated by the forward slash character ("/"). The file's path is ordered from left to right. The pathname /usr/jboss/readme.txt, for example, names a file readme.txt in the directory jboss, under the directory usr, located in the root of the file system. JBoss Enterprise Application Platform naming uses a Unix-style namespace as its naming convention.
			

				The javax.naming.Name interface represents a generic name as an ordered sequence of components. It can be a composite name (one that spans multiple namespaces), or a compound name (one that is used within a single hierarchical naming system). The components of a name are numbered. The indexes of a name with N components range from 0 up to, but not including, N. The most significant component is at index 0. An empty name has no components.
			

				A composite name is a sequence of component names that span multiple namespaces. An example of a composite name would be the hostname and file combination commonly used with Unix commands like scp. For example, the following command copies localfile.txt to the file remotefile.txt in the tmp directory on host ahost.someorg.org:
			
scp localfile.txt ahost.someorg.org:/tmp/remotefile.txt

				A compound name is derived from a hierarchical namespace. Each component in a compound name is an atomic name, meaning a string that cannot be parsed into smaller components. A file pathname in the Unix file system is an example of a compound name. ahost.someorg.org:/tmp/remotefile.txt is a composite name that spans the DNS and Unix file system namespaces. The components of the composite name are ahost.someorg.org and /tmp/remotefile.txt. A component is a string name from the namespace of a naming system. If the component comes from a hierarchical namespace, that component can be further parsed into its atomic parts by using the javax.naming.CompoundName class. The JNDI API provides the javax.naming.CompositeName class as the implementation of the Name interface for composite names.
			

 ⁠9.1.2. Contexts

				The javax.naming.Context interface is the primary interface for interacting with a naming service. The Context interface represents a set of name-to-object bindings. Every context has an associated naming convention that determines how the context parses string names into javax.naming.Name instances. To create a name-to-object binding you invoke the bind method of a Context and specify a name and an object as arguments. The object can later be retrieved using its name using the Context lookup method. A Context will typically provide operations for binding a name to an object, unbinding a name, and obtaining a listing of all name-to-object bindings. The object you bind into a Context can itself be of type Context. The Context object that is bound is referred to as a subcontext of the Context on which the bind method was invoked.
			

				As an example, consider a file directory with a pathname /usr, which is a context in the Unix file system. A file directory named relative to another file directory is a subcontext (commonly referred to as a subdirectory). A file directory with a pathname /usr/jboss names a jboss context that is a subcontext of usr. In another example, a DNS domain, such as org, is a context. A DNS domain named relative to another DNS domain is another example of a subcontext. In the DNS domain jboss.org, the DNS domain jboss is a subcontext of org because DNS names are parsed right to left.
			

 ⁠9.1.2.1. Obtaining a Context using InitialContext

					All naming service operations are performed on some implementation of the Context interface. Therefore, you need a way to obtain a Context for the naming service you are interested in using. The javax.naming.IntialContext class implements the Context interface, and provides the starting point for interacting with a naming service.
				

					When you create an InitialContext, it is initialized with properties from the environment. JNDI determines each property's value by merging the values from the following two sources, in order.
				
	
							The first occurrence of the property from the constructor's environment parameter and (for appropriate properties) the applet parameters and system properties.
						

	
							All jndi.properties resource files found on the classpath.
						

					For each property found in both of these two sources, the property's value is determined as follows. If the property is one of the standard JNDI properties that specify a list of JNDI factories, all of the values are concatenated into a single colon-separated list. For other properties, only the first value found is used. The preferred method of specifying the JNDI environment properties is through a jndi.properties file, which allows your code to externalize the JNDI provider specific information so that changing JNDI providers will not require changes to your code or recompilation.
				

					The Context implementation used internally by the InitialContext class is determined at runtime. The default policy uses the environment property java.naming.factory.initial, which contains the class name of the javax.naming.spi.InitialContextFactory implementation. You obtain the name of the InitialContextFactory class from the naming service provider you are using.
				

					Example 9.1, “A sample jndi.properties file” gives a sample jndi.properties file a client application would use to connect to a JBossNS service running on the local host at port 1099. The client application would need to have the jndi.properties file available on the application classpath. These are the properties that the JBossNS JNDI implementation requires. Other JNDI providers will have different properties and values.
				

 ⁠Example 9.1. A sample jndi.properties file
​### JBossNS properties
​java.naming.factory.initial=org.jnp.interfaces.NamingContextFactory
​java.naming.provider.url=jnp://localhost:1099
​java.naming.factory.url.pkgs=org.jboss.naming:org.jnp.interfaces

 ⁠9.2. The JBoss Naming Service Architecture

			The JBoss Naming Service (JBossNS) architecture is a Java socket/RMI based implementation of the javax.naming.Context interface. It is a client/server implementation that can be accessed remotely. The implementation is optimized so that access from within the same VM in which the JBossNS server is running does not involve sockets. Same VM access occurs through an object reference available as a global singleton. Figure 9.1, “Key components in the JBoss Naming Service architecture.” illustrates some of the key classes in the JBossNS implementation and their relationships.
		

 ⁠[image: Key components in the JBoss Naming Service architecture.]

Figure 9.1. Key components in the JBoss Naming Service architecture.

			We will start with the NamingService MBean. The NamingService MBean provides the JNDI naming service. This is a key service used pervasively by the J2EE technology components. The configurable attributes for the NamingService are as follows.
		
	
					Port: The jnp protocol listening port for the NamingService. If not specified default is 1099, the same as the RMI registry default port.
				

	
					RmiPort: The RMI port on which the RMI Naming implementation will be exported. If not specified the default is 0 which means use any available port.
				

	
					BindAddress: The specific address the NamingService listens on. This can be used on a multi-homed host for a java.net.ServerSocket that will only accept connect requests on one of its addresses.
				

	
					RmiBindAddress: The specific address the RMI server portion of the NamingService listens on. This can be used on a multi-homed host for a java.net.ServerSocket that will only accept connect requests on one of its addresses. If this is not specified and the BindAddress is, the RmiBindAddress defaults to the BindAddress value.
				

	
					Backlog: The maximum queue length for incoming connection indications (a request to connect) is set to the backlog parameter. If a connection indication arrives when the queue is full, the connection is refused.
				

	
					ClientSocketFactory: An optional custom java.rmi.server.RMIClientSocketFactory implementation class name. If not specified the default RMIClientSocketFactory is used.
				

	
					ServerSocketFactory: An optional custom java.rmi.server.RMIServerSocketFactory implementation class name. If not specified the default RMIServerSocketFactory is used.
				

	
					JNPServerSocketFactory: An optional custom javax.net.ServerSocketFactory implementation class name. This is the factory for the ServerSocket used to bootstrap the download of the JBoss Naming Service Naming interface. If not specified the javax.net.ServerSocketFactory.getDefault() method value is used.
				

			The NamingService also creates the java:comp context such that access to this context is isolated based on the context class loader of the thread that accesses the java:comp context. This provides the application component private ENC that is required by the J2EE specs. This segregation is accomplished by binding a javax.naming.Reference to a context that uses the org.jboss.naming.ENCFactory as its javax.naming.ObjectFactory. When a client performs a lookup of java:comp, or any subcontext, the ENCFactory checks the thread context ClassLoader, and performs a lookup into a map using the ClassLoader as the key.
		

			If a context instance does not exist for the class loader instance, one is created and associated with that class loader in the ENCFactory map. Thus, correct isolation of an application component's ENC relies on each component receiving a unique ClassLoader that is associated with the component threads of execution.
		

			The NamingService delegates its functionality to an org.jnp.server.Main MBean. The reason for the duplicate MBeans is because JBoss Naming Service started out as a stand-alone JNDI implementation, and can still be run as such. The NamingService MBean embeds the Main instance into the server so that usage of JNDI with the same VM as the server does not incur any socket overhead. The configurable attributes of the NamingService are really the configurable attributes of the JBoss Naming Service Main MBean. The setting of any attributes on the NamingService MBean simply set the corresponding attributes on the Main MBean the NamingService contains. When the NamingService is started, it starts the contained Main MBean to activate the JNDI naming service.
		

			In addition, the NamingService exposes the Naming interface operations through a JMX detyped invoke operation. This allows the naming service to be accessed via JMX adaptors for arbitrary protocols. We will look at an example of how HTTP can be used to access the naming service using the invoke operation later in this chapter.
		

			When the Main MBean is started, it performs the following tasks:
		
	
					Instantiates an org.jnp.naming.NamingService instance and sets this as the local VM server instance. This is used by any org.jnp.interfaces.NamingContext instances that are created within the server VM to avoid RMI calls over TCP/IP.
				

	
					Exports the NamingServer instance's org.jnp.naming.interfaces.Naming RMI interface using the configured RmiPort, ClientSocketFactory, ServerSocketFactory attributes.
				

	
					Creates a socket that listens on the interface given by the BindAddress and Port attributes.
				

	
					Spawns a thread to accept connections on the socket.
				

 ⁠9.3. The Naming InitialContext Factories

			The JBoss JNDI provider currently supports several different InitialContext factory implementations.
		

 ⁠9.3.1. The standard naming context factory

				The most commonly used factory is the org.jnp.interfaces.NamingContextFactory implementation. Its properties include:
			
	
						java.naming.factory.initial: The name of the environment property for specifying the initial context factory to use. The value of the property should be the fully qualified class name of the factory class that will create an initial context. If it is not specified, a javax.naming.NoInitialContextException will be thrown when an InitialContext object is created.
					

	
						java.naming.provider.url: The name of the environment property for specifying the location of the JBoss JNDI service provider the client will use. The NamingContextFactory class uses this information to know which JBossNS server to connect to. The value of the property should be a URL string. For JBossNS the URL format is jnp://host:port/[jndi_path]. The jnp: portion of the URL is the protocol and refers to the socket/RMI based protocol used by JBoss. The jndi_path portion of the URL is an optional JNDI name relative to the root context, for example, apps or apps/tmp. Everything but the host component is optional. The following examples are equivalent because the default port value is 1099.
					
	
								jnp://www.jboss.org:1099/
							

	
								www.jboss.org:1099
							

	
								www.jboss.org
							

	
						java.naming.factory.url.pkgs: The name of the environment property for specifying the list of package prefixes to use when loading in URL context factories. The value of the property should be a colon-separated list of package prefixes for the class name of the factory class that will create a URL context factory. For the JBoss JNDI provider this must be org.jboss.naming:org.jnp.interfaces. This property is essential for locating the jnp: and java: URL context factories of the JBoss JNDI provider.
					

	
						jnp.socketFactory: The fully qualified class name of the javax.net.SocketFactory implementation to use to create the bootstrap socket. The default value is org.jnp.interfaces.TimedSocketFactory. The TimedSocketFactory is a simple SocketFactory implementation that supports the specification of a connection and read timeout. These two properties are specified by:
					

	
						jnp.timeout: The connection timeout in milliseconds. The default value is 0 which means the connection will block until the VM TCP/IP layer times out.
					

	
						jnp.sotimeout: The connected socket read timeout in milliseconds. The default value is 0 which means reads will block. This is the value passed to the Socket.setSoTimeout on the newly connected socket.
					

				When a client creates an InitialContext with these JBossNS properties available, the org.jnp.interfaces.NamingContextFactory object is used to create the Context instance that will be used in subsequent operations. The NamingContextFactory is the JBossNS implementation of the javax.naming.spi.InitialContextFactory interface. When the NamingContextFactory class is asked to create a Context, it creates an org.jnp.interfaces.NamingContext instance with the InitialContext environment and name of the context in the global JNDI namespace. It is the NamingContext instance that actually performs the task of connecting to the JBossNS server, and implements the Context interface. The Context.PROVIDER_URL information from the environment indicates from which server to obtain a NamingServer RMI reference.
			

				The association of the NamingContext instance to a NamingServer instance is done in a lazy fashion on the first Context operation that is performed. When a Context operation is performed and the NamingContext has no NamingServer associated with it, it looks to see if its environment properties define a Context.PROVIDER_URL. A Context.PROVIDER_URL defines the host and port of the JBossNS server the Context is to use. If there is a provider URL, the NamingContext first checks to see if a Naming instance keyed by the host and port pair has already been created by checking a NamingContext class static map. It simply uses the existing Naming instance if one for the host port pair has already been obtained. If no Naming instance has been created for the given host and port, the NamingContext connects to the host and port using a java.net.Socket, and retrieves a Naming RMI stub from the server by reading a java.rmi.MarshalledObject from the socket and invoking its get method. The newly obtained Naming instance is cached in the NamingContext server map under the host and port pair. If no provider URL was specified in the JNDI environment associated with the context, the NamingContext simply uses the in VM Naming instance set by the Main MBean.
			

				The NamingContext implementation of the Context interface delegates all operations to the Naming instance associated with the NamingContext. The NamingServer class that implements the Naming interface uses a java.util.Hashtable as the Context store. There is one unique NamingServer instance for each distinct JNDI Name for a given JBossNS server. There are zero or more transient NamingContext instances active at any given moment that refers to a NamingServer instance. The purpose of the NamingContext is to act as a Context to the Naming interface adaptor that manages translation of the JNDI names passed to the NamingContext. Because a JNDI name can be relative or a URL, it needs to be converted into an absolute name in the context of the JBossNS server to which it refers. This translation is a key function of the NamingContext.
			

 ⁠9.3.2. The org.jboss.naming.NamingContextFactory

				This version of the InitialContextFactory implementation is a simple extension of the jnp version which differs from the jnp version in that it stores the last configuration passed to its InitialContextFactory.getInitialContext(Hashtable env) method in a public thread local variable. This is used by EJB handles and other JNDI sensitive objects like the UserTransaction factory to keep track of the JNDI context that was in effect when they were created. If you want this environment to be bound to the object even after its serialized across vm boundaries, then you should the org.jboss.naming.NamingContextFactory. If you want the environment that is defined in the current VM jndi.properties or system properties, then you should use the org.jnp.interfaces.NamingContextFactory version.
			

 ⁠9.3.3. Naming Discovery in Clustered Environments

				When running in a clustered JBoss environment, you can choose not to specify a Context.PROVIDER_URL value and let the client query the network for available naming services. This only works with servers running with the all server profile, or an equivalent server profile that has org.jboss.ha.framework.server.ClusterPartition and org.jboss.ha.jndi.HANamingService services deployed. The discovery process consists of sending a multicast request packet to the discovery address/port and waiting for any node to respond. The response is a HA-RMI version of the Naming interface. The following InitialContext properties affect the discovery configuration:
			
	
						jnp.partitionName: The cluster partition name discovery should be restricted to. If you are running in an environment with multiple clusters, you may want to restrict the naming discovery to a particular cluster. There is no default value, meaning that any cluster response will be accepted.
					

	
						jnp.discoveryGroup: The multicast IP/address to which the discovery query is sent. The default is 230.0.0.4.
					

	
						jnp.discoveryPort: The port to which the discovery query is sent. The default is 1102.
					

	
						jnp.discoveryTimeout: The time in milliseconds to wait for a discovery query response. The default value is 5000 (5 seconds).
					

	
						jnp.disableDiscovery: A flag indicating if the discovery process should be avoided. Discovery occurs when either no Context.PROVIDER_URL is specified, or no valid naming service could be located among the URLs specified. If the jnp.disableDiscovery flag is true, then discovery will not be attempted.
					

 ⁠9.3.4. The HTTP InitialContext Factory Implementation

				The JNDI naming service can be accessed over HTTP. From a JNDI client's perspective this is a transparent change as they continue to use the JNDI Context interface. Operations through the Context interface are translated into HTTP posts to a servlet that passes the request to the NamingService using its JMX invoke operation. Advantages of using HTTP as the access protocol include better access through firewalls and proxies setup to allow HTTP, as well as the ability to secure access to the JNDI service using standard servlet role based security.
			

				To access JNDI over HTTP you use the org.jboss.naming.HttpNamingContextFactory as the factory implementation. The complete set of support InitialContext environment properties for this factory are:
			
	
						java.naming.factory.initial: The name of the environment property for specifying the initial context factory, which must be org.jboss.naming.HttpNamingContextFactory.
					

	
						java.naming.provider.url (or Context.PROVIDER_URL): This must be set to the HTTP URL of the JNDI factory. The full HTTP URL would be the public URL of the JBoss servlet container plus /invoker/JNDIFactory. Examples include:
					
	
								http://www.jboss.org:8080/invoker/JNDIFactory
							

	
								http://www.jboss.org/invoker/JNDIFactory
							

	
								https://www.jboss.org/invoker/JNDIFactory
							

						The first example accesses the servlet using the port 8080. The second uses the standard HTTP port 80, and the third uses an SSL encrypted connection to the standard HTTPS port 443.
					

	
						java.naming.factory.url.pkgs: For all JBoss JNDI provider this must be org.jboss.naming:org.jnp.interfaces. This property is essential for locating the jnp: and java: URL context factories of the JBoss JNDI provider.
					

				The JNDI Context implementation returned by the HttpNamingContextFactory is a proxy that delegates invocations made on it to a bridge servlet which forwards the invocation to the NamingService through the JMX bus and marshals the reply back over HTTP. The proxy needs to know what the URL of the bridge servlet is in order to operate. This value may have been bound on the server side if the JBoss web server has a well known public interface. If the JBoss web server is sitting behind one or more firewalls or proxies, the proxy cannot know what URL is required. In this case, the proxy will be associated with a system property value that must be set in the client VM. For more information on the operation of JNDI over HTTP see Section 9.4.1, “Accessing JNDI over HTTP”.
			
Note

					If a cluster partition uses the default partition name, the discovery process ignores other clusters. Therefore, make sure to specify unique partition names: props.put("jnp.partitionName", "ClusterBPartition") when using several clusters.
				

 ⁠9.3.5. The Login InitialContext Factory Implementation

				JAAS is the preferred method for authenticating a remote client to JBoss. However, for simplicity and to ease the migration from other application server environment that do not use JAAS, JBoss allows you the security credentials to be passed through the InitialContext. JAAS is still used under the covers, but there is no manifest use of the JAAS interfaces in the client application.
			

				The factory class that provides this capability is the org.jboss.security.jndi.LoginInitialContextFactory. The complete set of support InitialContext environment properties for this factory are:
			
	
						java.naming.factory.initial: The name of the environment property for specifying the initial context factory, which must be org.jboss.security.jndi.LoginInitialContextFactory.
					

	
						java.naming.provider.url: This must be set to a NamingContextFactory provider URL. The LoginIntialContext is really just a wrapper around the NamingContextFactory that adds a JAAS login to the existing NamingContextFactory behavior.
					

	
						java.naming.factory.url.pkgs: For all JBoss JNDI provider this must be org.jboss.naming:org.jnp.interfaces. This property is essential for locating the jnp: and java: URL context factories of the JBoss JNDI provider.
					

	
						java.naming.security.principal (or Context.SECURITY_PRINCIPAL): The principal to authenticate. This may be either a java.security.Principal implementation or a string representing the name of a principal.
					

	
						java.naming.security.credentials (or Context.SECURITY_CREDENTIALS), The credentials that should be used to authenticate the principal, e.g., password, session key, etc.
					

	
						java.naming.security.protocol: (Context.SECURITY_PROTOCOL) This gives the name of the JAAS login module to use for the authentication of the principal and credentials.
					

 ⁠9.3.6. The ORBInitialContextFactory

				When using Sun's CosNaming it is necessary to use a different naming context factory from the default. CosNaming looks for the ORB in JNDI instead of using the ORB configured in deploy/iiop-service.xml?. It is necessary to set the global context factory to org.jboss.iiop.naming.ORBInitialContextFactory, which sets the ORB to JBoss's ORB. This is done in the conf/jndi.properties file:
			
​
​# DO NOT EDIT THIS FILE UNLESS YOU KNOW WHAT YOU ARE DOING
​#
​java.naming.factory.initial=org.jboss.iiop.naming.ORBInitialContextFactory
​java.naming.factory.url.pkgs=org.jboss.naming:org.jnp.interfaces
​

				It is also necessary to use ORBInitialContextFactory when using CosNaming in an application client.
			

 ⁠9.4. JNDI over HTTP

			In addition to the legacy RMI/JRMP with a socket bootstrap protocol, JBoss provides support for accessing its JNDI naming service over HTTP.
		

 ⁠9.4.1. Accessing JNDI over HTTP

				This capability is provided by http-invoker.sar. The structure of the http-invoker.sar is:
			
http-invoker.sar
├── invoker.war
│ └── WEB-INF
│ ├── classes
│ │ └── org
│ │ └── jboss
│ │ └── invocation
│ │ └── http
│ │ └── servlet
│ │ ├── InvokerServlet.class
│ │ ├── InvokerServlet$GetCredentialAction.class
│ │ ├── InvokerServlet$GetPrincipalAction.class
│ │ ├── NamingFactoryServlet.class
│ │ └── ReadOnlyAccessFilter.class
│ ├── jboss-web.xml
│ └── web.xml
└── META-INF
 └── jboss-service.xml

				The jboss-service.xml descriptor defines the HttpInvoker and HttpInvokerHA MBeans. These services handle the routing of methods invocations that are sent via HTTP to the appropriate target MBean on the JMX bus.
			

				The http-invoker.war web application contains servlets that handle the details of the HTTP transport. The NamingFactoryServlet handles creation requests for the JBoss JNDI naming service javax.naming.Context implementation. The InvokerServlet handles invocations made by RMI/HTTP clients. The ReadOnlyAccessFilter allows one to secure the JNDI naming service while making a single JNDI context available for read-only access by unauthenticated clients.
			

 ⁠[image: The HTTP invoker proxy/server structure for a JNDI Context]

Figure 9.2. The HTTP invoker proxy/server structure for a JNDI Context

				Before looking at the configurations let us look at the operation of the http-invoker services. Figure 9.2, “The HTTP invoker proxy/server structure for a JNDI Context” shows a logical view of the structure of a JBoss JNDI proxy and its relationship to the server side components of the http-invoker. The proxy is obtained from the NamingFactoryServlet using an InitialContext with the Context.INITIAL_CONTEXT_FACTORY property set to org.jboss.naming.HttpNamingContextFactory, and the Context.PROVIDER_URL property set to the HTTP URL of the NamingFactoryServlet. The resulting proxy is embedded in an org.jnp.interfaces.NamingContext instance that provides the Context interface implementation.
			

				The proxy is an instance of org.jboss.invocation.http.interfaces.HttpInvokerProxy, and implements the org.jnp.interfaces.Naming interface. Internally the HttpInvokerProxy contains an invoker that marshals the Naming interface method invocations to the InvokerServlet via HTTP posts. The InvokerServlet translates these posts into JMX invocations to the NamingService, and returns the invocation response back to the proxy in the HTTP post response.
			

				There are several configuration values that need to be set to tie all of these components together and Figure 9.3, “The relationship between configuration files and JNDI/HTTP component” illustrates the relationship between configuration files and the corresponding components.
			

 ⁠[image: The relationship between configuration files and JNDI/HTTP component]

Figure 9.3. The relationship between configuration files and JNDI/HTTP component

				The http-invoker.sar/META-INF/jboss-service.xml descriptor defines the HttpProxyFactory that creates the HttpInvokerProxy for the NamingService. The attributes that need to be configured for the HttpProxyFactory include:
			
	
						InvokerName: The JMX ObjectName of the NamingService defined in the conf/jboss-service.xml descriptor. The standard setting used in the JBoss distributions is jboss:service=Naming.
					

	
						InvokerURL or InvokerURLPrefix + InvokerURLSuffix + UseHostName. You can specify the full HTTP URL to the InvokerServlet using the InvokerURL attribute, or you can specify the hostname independent parts of the URL and have the HttpProxyFactory fill them in. An example InvokerURL value would be http://jbosshost1.dot.com:8080/invoker/JMXInvokerServlet. This can be broken down into:
							
									InvokerURLPrefix: the URL prefix prior to the hostname. Typically this will be http:// or https:// if SSL is to be used.
								

	
									InvokerURLSuffix: the URL suffix after the hostname. This will include the port number of the web server as well as the deployed path to the InvokerServlet. For the example InvokerURL value the InvokerURLSuffix would be :8080/invoker/JMXInvokerServlet without the quotes. The port number is determined by the web container service settings. The path to the InvokerServlet is specified in the http-invoker.sar/invoker.war/WEB-INF/web.xml descriptor.
								

	
									UseHostName: a flag indicating if the hostname should be used in place of the host IP address when building the hostname portion of the full InvokerURL. If true, InetAddress.getLocalHost().getHostName method will be used. Otherwise, the InetAddress.getLocalHost().getHostAddress() method is used.
								

					

	
						ExportedInterface: The org.jnp.interfaces.Naming interface the proxy will expose to clients. The actual client of this proxy is the JBoss JNDI implementation NamingContext class, which JNDI client obtain from InitialContext lookups when using the JBoss JNDI provider.
					

	
						JndiName: The name in JNDI under which the proxy is bound. This needs to be set to a blank/empty string to indicate the interface should not be bound into JNDI. We can not use the JNDI to bootstrap itself. This is the role of the NamingFactoryServlet.
					

				The http-invoker.sar/invoker.war/WEB-INF/web.xml descriptor defines the mappings of the NamingFactoryServlet and InvokerServlet along with their initialization parameters. The configuration of the NamingFactoryServlet relevant to JNDI/HTTP is the JNDIFactory entry which defines:
			
	
						A namingProxyMBean initialization parameter that maps to the HttpProxyFactory MBean name. This is used by the NamingFactoryServlet to obtain the Naming proxy which it will return in response to HTTP posts. For the default http-invoker.sar/META-INF/jboss-service.xml settings the name jboss:service=invoker,type=http,target=Naming.
					

	
						A proxy initialization parameter that defines the name of the namingProxyMBean attribute to query for the Naming proxy value. This defaults to an attribute name of Proxy.
					

	
						The servlet mapping for the JNDIFactory configuration. The default setting for the unsecured mapping is /JNDIFactory/*. This is relative to the context root of the http-invoker.sar/invoker.war, which by default is the WAR name minus the .war suffix.
					

				The configuration of the InvokerServlet relevant to JNDI/HTTP is the JMXInvokerServlet which defines:
			
	
						The servlet mapping of the InvokerServlet. The default setting for the unsecured mapping is /JMXInvokerServlet/*. This is relative to the context root of the http-invoker.sar/invoker.war, which by default is the WAR name minus the .war suffix.
					

 ⁠9.4.2. Accessing JNDI over HTTPS

				To be able to access JNDI over HTTP/SSL you need to enable an SSL connector on the web container. The details of this are covered in the Integrating Servlet Containers for Tomcat. We will demonstrate the use of HTTPS with a simple example client that uses an HTTPS URL as the JNDI provider URL. We will provide an SSL connector configuration for the example, so unless you are interested in the details of the SSL connector setup, the example is self contained.
			

				We also provide a configuration of the HttpProxyFactory setup to use an HTTPS URL. The following example shows the section of the http-invoker.sarjboss-service.xml descriptor that the example installs to provide this configuration. All that has changed relative to the standard HTTP configuration are the InvokerURLPrefix and InvokerURLSuffix attributes, which setup an HTTPS URL using the 8443 port.
			
​<!-- Expose the Naming service interface via HTTPS -->
​<mbean code="org.jboss.invocation.http.server.HttpProxyFactory"
​ name="jboss:service=invoker,type=https,target=Naming">
​ <!-- The Naming service we are proxying -->
​ <attribute name="InvokerName">jboss:service=Naming</attribute>
​ <!-- Compose the invoker URL from the cluster node address -->
​ <attribute name="InvokerURLPrefix">https://</attribute>
​ <attribute name="InvokerURLSuffix">:8443/invoker/JMXInvokerServlet
​</attribute>
​ <attribute name="UseHostName">true</attribute>
​ <attribute name="ExportedInterface">org.jnp.interfaces.Naming
​</attribute>
​ <attribute name="JndiName"/>
​ <attribute name="ClientInterceptors">
​ <interceptors>
​ <interceptor>org.jboss.proxy.ClientMethodInterceptor
​</interceptor>
​ <interceptor>org.jboss.proxy.SecurityInterceptor
​</interceptor>
​ <interceptor>org.jboss.naming.interceptors.ExceptionInterceptor
​</interceptor>
​ <interceptor>org.jboss.invocation.InvokerInterceptor
​</interceptor>
​ </interceptors>
​ </attribute>
​</mbean>

				At a minimum, a JNDI client using HTTPS requires setting up a HTTPS URL protocol handler. We will be using the Java Secure Socket Extension (JSSE) for HTTPS. The JSSE documentation does a good job of describing what is necessary to use HTTPS, and the following steps were needed to configure the example client shown in Example 9.2, “A JNDI client that uses HTTPS as the transport”:
			
	
						A protocol handler for HTTPS URLs must be made available to Java. The JSSE release includes an HTTPS handler in the com.sun.net.ssl.internal.www.protocol package. To enable the use of HTTPS URLs you include this package in the standard URL protocol handler search property, java.protocol.handler.pkgs. We set the java.protocol.handler.pkgs property in the Ant script.
					

	
						The JSSE security provider must be installed in order for SSL to work. This can be done either by installing the JSSE jars as an extension package, or programatically. We use the programmatic approach in the example since this is less intrusive. Line 18 of the ExClient code demonstrates how this is done.
					

	
						The JNDI provider URL must use HTTPS as the protocol. Lines 24-25 of the ExClient code specify an HTTP/SSL connection to the localhost on port 8443. The hostname and port are defined by the web container SSL connector.
					

	
						The validation of the HTTPS URL hostname against the server certificate must be disabled. By default, the JSSE HTTPS protocol handler employs a strict validation of the hostname portion of the HTTPS URL against the common name of the server certificate. This is the same check done by web browsers when you connect to secured web site. We are using a self-signed server certificate that uses a common name of "Chapter 8 SSL Example" rather than a particular hostname, and this is likely to be common in development environments or intranets. The JBoss HttpInvokerProxy will override the default hostname checking if a org.jboss.security.ignoreHttpsHost system property exists and has a value of true. We set the org.jboss.security.ignoreHttpsHost property to true in the Ant script.
					

 ⁠Example 9.2. A JNDI client that uses HTTPS as the transport
​package org.jboss.chap3.ex1;
​
​import java.security.Security;
​import java.util.Properties;
​import javax.naming.Context;
​import javax.naming.InitialContext;
​
​public class ExClient
​{
​ public static void main(String args[]) throws Exception
​ {
​ Properties env = new Properties();
​ env.setProperty(Context.INITIAL_CONTEXT_FACTORY,
​ "org.jboss.naming.HttpNamingContextFactory");
​ env.setProperty(Context.PROVIDER_URL,
​ "https://localhost:8443/invoker/JNDIFactorySSL");
​
​ Context ctx = new InitialContext(env);
​ System.out.println("Created InitialContext, env=" + env);
​
​ Object data = ctx.lookup("jmx/invoker/RMIAdaptor");
​ System.out.println("lookup(jmx/invoker/RMIAdaptor): " + data);
​ }
​}

				To test the client, first build the chapter 3 example to create the chap3 configuration fileset.
			
[examples]$ ant -Dchap=naming config

				Next, start the server using the naming configuration fileset:
			
[bin]$ sh run.sh -c naming

				And finally, run the ExClient using:
			
[examples]$ ant -Dchap=naming -Dex=1 run-example
...
run-example1:

[java] Created InitialContext, env={java.naming. \
provider.url=https://localhost:8443/invoker/JNDIFactorySSL, java.naming. \
factory.initial=org.jboss.naming.HttpNamingContextFactory}
 [java] lookup(jmx/invoker/RMIAdaptor): org.jboss.invocation.jrmp. \
 interfaces.JRMPInvokerP
roxy@cac3fa

 ⁠9.4.3. Securing Access to JNDI over HTTP

				One benefit to accessing JNDI over HTTP is that it is easy to secure access to the JNDI InitialContext factory as well as the naming operations using standard web declarative security. This is possible because the server side handling of the JNDI/HTTP transport is implemented with two servlets. These servlets are included in the http-invoker.sar/invoker.war directory found in the default and all server profile deploy directories as shown previously. To enable secured access to JNDI you need to edit the invoker.war/WEB-INF/web.xml descriptor and remove all unsecured servlet mappings. For example, the web.xml descriptor shown in Example 9.3, “An example web.xml descriptor for secured access to the JNDI servlets” only allows access to the invoker.war servlets if the user has been authenticated and has a role of HttpInvoker.
			

 ⁠Example 9.3. An example web.xml descriptor for secured access to the JNDI servlets
​<?xml version="1.0" encoding="UTF-8"?>
​<!DOCTYPE web-app PUBLIC
​ "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
​ "http://java.sun.com/dtd/web-app_2_3.dtd">
​<web-app>
​ <!-- ### Servlets -->
​ <servlet>
​ <servlet-name>JMXInvokerServlet</servlet-name>
​ <servlet-class>
​ org.jboss.invocation.http.servlet.InvokerServlet
​ </servlet-class>
​ <load-on-startup>1</load-on-startup>
​ </servlet> <servlet>
​ <servlet-name>JNDIFactory</servlet-name>
​ <servlet-class>
​ org.jboss.invocation.http.servlet.NamingFactoryServlet
​ </servlet-class>
​ <init-param>
​ <param-name>namingProxyMBean</param-name>
​ <param-value>jboss:service=invoker,type=http,target=Naming</param-value>
​ </init-param>
​ <init-param>
​ <param-name>proxyAttribute</param-name>
​ <param-value>Proxy</param-value>
​ </init-param>
​ <load-on-startup>2</load-on-startup>
​ </servlet>
​ <!-- ### Servlet Mappings -->
​ <servlet-mapping>
​ <servlet-name>JNDIFactory</servlet-name>
​ <url-pattern>/restricted/JNDIFactory/*</url-pattern>
​ </servlet-mapping>
​ <servlet-mapping>
​ <servlet-name>JMXInvokerServlet</servlet-name>
​ <url-pattern>/restricted/JMXInvokerServlet/*</url-pattern>
​ </servlet-mapping> <security-constraint>
​ <web-resource-collection>
​ <web-resource-name>HttpInvokers</web-resource-name>
​ <description>An example security config that only allows users with
​ the role HttpInvoker to access the HTTP invoker servlets </description>
​ <url-pattern>/restricted/*</url-pattern>
​ <http-method>GET</http-method>
​ <http-method>POST</http-method>
​ </web-resource-collection>
​ <auth-constraint>
​ <role-name>HttpInvoker</role-name>
​ </auth-constraint>
​ </security-constraint>
​ <login-config>
​ <auth-method>BASIC</auth-method>
​ <realm-name>JBoss HTTP Invoker</realm-name>
​ </login-config> <security-role>
​ <role-name>HttpInvoker</role-name>
​ </security-role>
​</web-app>

				The web.xml descriptor only defines which servlets are secured, and which roles are allowed to access the secured servlets. You must additionally define the security domain that will handle the authentication and authorization for the war. This is done through the jboss-web.xml descriptor, and an example that uses the http-invoker security domain is given below.
			
​<jboss-web>
​ <security-domain>java:/jaas/http-invoker</security-domain>
​</jboss-web>

				The security-domain element defines the name of the security domain that will be used for the JAAS login module configuration used for authentication and authorization.
			

 ⁠9.4.4. Securing Access to JNDI with a Read-Only Unsecured Context

				Another feature available for the JNDI/HTTP naming service is the ability to define a context that can be accessed by unauthenticated users in read-only mode. This can be important for services used by the authentication layer. For example, the SRPLoginModule needs to lookup the SRP server interface used to perform authentication. The rest of this section explains how read-only works in JBoss Enterprise Application Platform.
			

				First, the ReadOnlyJNDIFactory is declared in invoker.sar/WEB-INF/web.xml. It will be mapped to /invoker/ReadOnlyJNDIFactory.
			
​<servlet>
​ <servlet-name>ReadOnlyJNDIFactory</servlet-name>
​ <description>A servlet that exposes the JBoss JNDI Naming service stub
​ through http, but only for a single read-only context. The return content
​ is serialized MarshalledValue containing the org.jnp.interfaces.Naming
​ stub.
​ </description>
​ <servlet-class>org.jboss.invocation.http.servlet.NamingFactoryServlet</servlet-class>
​ <init-param>
​ <param-name>namingProxyMBean</param-name>
​ <param-value>jboss:service=invoker,type=http,target=Naming,readonly=true</param-value>
​ </init-param>
​ <init-param>
​ <param-name>proxyAttribute</param-name>
​ <param-value>Proxy</param-value>
​ </init-param>
​ <load-on-startup>2</load-on-startup>
​</servlet>
​
​<!-- ... -->
​
​<servlet-mapping>
​ <servlet-name>ReadOnlyJNDIFactory</servlet-name>
​ <url-pattern>/ReadOnlyJNDIFactory/*</url-pattern>
​</servlet-mapping>

				The factory only provides a JNDI stub which needs to be connected to an invoker. Here the invoker is jboss:service=invoker,type=http,target=Naming,readonly=true. This invoker is declared in the http-invoker.sar/META-INF/jboss-service.xml file.
			
​ <mbean code="org.jboss.invocation.http.server.HttpProxyFactory"
​ name="jboss:service=invoker,type=http,target=Naming,readonly=true">
​ <attribute name="InvokerName">jboss:service=Naming</attribute>
​ <attribute name="InvokerURLPrefix">http://</attribute>
​ <attribute name="InvokerURLSuffix">:8080/invoker/readonly/JMXInvokerServlet</attribute>
​ <attribute name="UseHostName">true</attribute>
​ <attribute name="ExportedInterface">org.jnp.interfaces.Naming</attribute>
​ <attribute name="JndiName"></attribute>
​ <attribute name="ClientInterceptors">
​ <interceptors>
​ <interceptor>org.jboss.proxy.ClientMethodInterceptor</interceptor>
​ <interceptor>org.jboss.proxy.SecurityInterceptor</interceptor>
​ <interceptor>org.jboss.naming.interceptors.ExceptionInterceptor</interceptor>
​ <interceptor>org.jboss.invocation.InvokerInterceptor</interceptor>
​ </interceptors>
​ </attribute>
​ </mbean>

				The proxy on the client side needs to talk back to a specific invoker servlet on the server side. The configuration here has the actual invocations going to /invoker/readonly/JMXInvokerServlet. This is actually the standard JMXInvokerServlet with a read-only filter attached.
			
​ <filter>
​ <filter-name>ReadOnlyAccessFilter</filter-name>
​ <filter-class>org.jboss.invocation.http.servlet.ReadOnlyAccessFilter</filter-class>
​ <init-param>
​ <param-name>readOnlyContext</param-name>
​ <param-value>readonly</param-value>
​ <description>The top level JNDI context the filter will enforce
​ read-only access on. If specified only Context.lookup operations
​ will be allowed on this context. Another other operations or
​ lookups on any other context will fail. Do not associate this
​ filter with the JMXInvokerServlets if you want unrestricted
​ access. </description>
​ </init-param>
​ <init-param>
​ <param-name>invokerName</param-name>
​ <param-value>jboss:service=Naming</param-value>
​ <description>The JMX ObjectName of the naming service mbean </description>
​ </init-param>
​ </filter>
​
​ <filter-mapping>
​ <filter-name>ReadOnlyAccessFilter</filter-name>
​ <url-pattern>/readonly/*</url-pattern>
​ </filter-mapping>
​
​ <!-- ... -->
​ <!-- A mapping for the JMXInvokerServlet that only allows invocations
​ of lookups under a read-only context. This is enforced by the
​ ReadOnlyAccessFilter
​ -->
​ <servlet-mapping>
​ <servlet-name>JMXInvokerServlet</servlet-name>
​ <url-pattern>/readonly/JMXInvokerServlet/*</url-pattern>
​ </servlet-mapping>

				The readOnlyContext parameter is set to readonly which means that when you access JBoss through the ReadOnlyJNDIFactory, you will only be able to access data in the readonly context. Here is a code fragment that illustrates the usage:
			
​Properties env = new Properties();
​env.setProperty(Context.INITIAL_CONTEXT_FACTORY,
​ "org.jboss.naming.HttpNamingContextFactory");
​env.setProperty(Context.PROVIDER_URL,
​ "http://localhost:8080/invoker/ReadOnlyJNDIFactory");
​
​Context ctx2 = new InitialContext(env);
​Object data = ctx2.lookup("readonly/data");

				Attempts to look up any objects outside of the readonly context will fail. Note that JBoss does not ship with any data in the readonly context, so the readonly context will not be bound usable unless you create it.
			

 ⁠9.5. Additional Naming MBeans

			In addition to the NamingService MBean that configures an embedded JBossNS server within JBoss, there are several additional MBean services related to naming that ship with JBoss. They are JndiBindingServiceMgr, NamingAlias, ExternalContext, and JNDIView.
		

 ⁠9.5.1. JNDI Binding Manager

				The JNDI binding manager service allows you to quickly bind objects into JNDI for use by application code. The MBean class for the binding service is org.jboss.naming.JNDIBindingServiceMgr. It has a single attribute, BindingsConfig, which accepts an XML document that conforms to the jndi-binding-service_1_0.xsd schema. The content of the BindingsConfig attribute is unmarshaled using the JBossXB framework. The following is an MBean definition that shows the most basic form usage of the JNDI binding manager service.
			
​<mbean code="org.jboss.naming.JNDIBindingServiceMgr"
​ name="jboss.tests:name=example1">
​ <attribute name="BindingsConfig" serialDataType="jbxb">
​ <jndi:bindings xmlns:xs="http://www.w3.org/2001/XMLSchema-instance"
​ xmlns:jndi="urn:jboss:jndi-binding-service:1.0"
​ xs:schemaLocation="urn:jboss:jndi-binding-service \
​ resource:jndi-binding-service_1_0.xsd">
​ <jndi:binding name="bindexample/message">
​ <jndi:value trim="true">
​ Hello, JNDI!
​ </jndi:value>
​ </jndi:binding>
​ </jndi:bindings>
​ </attribute>
​</mbean>

				This binds the text string "Hello, JNDI!" under the JNDI name bindexample/message. An application would look up the value just as it would for any other JNDI value. The trim attribute specifies that leading and trailing whitespace should be ignored. The use of the attribute here is purely for illustrative purposes as the default value is true.
			
InitialContext ctx = new InitialContext();
String text = (String) ctx.lookup("bindexample/message");

				String values themselves are not that interesting. If a JavaBeans property editor is available, the desired class name can be specified using the type attribute
			
​<jndi:binding name="urls/jboss-home">
​ <jndi:value type="java.net.URL">http://www.jboss.org</jndi:value>
​</jndi:binding>

				The editor attribute can be used to specify a particular property editor to use.
			
​<jndi:binding name="hosts/localhost">
​ <jndi:value editor="org.jboss.util.propertyeditor.InetAddressEditor">
​ 127.0.0.1
​ </jndi:value>
​</jndi:binding>

				For more complicated structures, any JBossXB-ready schema may be used. The following example shows how a java.util.Properties object would be mapped.
			
​<jndi:binding name="maps/testProps">
​ <java:properties xmlns:java="urn:jboss:java-properties"
​ xmlns:xs="http://www.w3.org/2001/XMLSchema-instance"
​ xs:schemaLocation="urn:jboss:java-properties \
​ resource:java-properties_1_0.xsd">
​ <java:property>
​ <java:key>key1</java:key>
​ <java:value>value1</java:value>
​ </java:property>
​ <java:property>
​ <java:key>key2</java:key>
​ <java:value>value2</java:value>
​ </java:property>
​ </java:properties>
​</jndi:binding>

 ⁠9.5.2. The org.jboss.naming.NamingAlias MBean

				The NamingAlias MBean is a simple utility service that allows you to create an alias in the form of a JNDI javax.naming.LinkRef from one JNDI name to another. This is similar to a symbolic link in the Unix file system. To an alias you add a configuration of the NamingAlias MBean to the jboss-service.xml configuration file. The configurable attributes of the NamingAlias service are as follows:
			
	
						FromName: The location where the LinkRef is bound under JNDI.
					

	
						ToName: The to name of the alias. This is the target name to which the LinkRef refers. The name is a URL, or a name to be resolved relative to the InitialContext, or if the first character of the name is a dot (.), the name is relative to the context in which the link is bound.
					

				The following example provides a mapping of the JNDI name QueueConnectionFactory to the name ConnectionFactory.
			
​<mbean code="org.jboss.naming.NamingAlias"
​ name="jboss.mq:service=NamingAlias,fromName=QueueConnectionFactory">
​ <attribute name="ToName">ConnectionFactory</attribute>
​ <attribute name="FromName">QueueConnectionFactory</attribute>
​</mbean>

 ⁠9.5.3. org.jboss.naming.ExternalContext MBean

				The ExternalContext MBean allows you to federate external JNDI contexts into the server JNDI namespace. The term external refers to any naming service external to the JBossNS naming service running inside of the server VM. You can incorporate LDAP servers, file systems, DNS servers, and so on, even if the JNDI provider root context is not serializable. The federation can be made available to remote clients if the naming service supports remote access.
			

				To incorporate an external JNDI naming service, you have to add a configuration of the ExternalContext MBean service to the jboss-service.xml configuration file. The configurable attributes of the ExternalContext service are as follows:
			
	
						JndiName: The JNDI name under which the external context is to be bound.
					

	
						RemoteAccess: A boolean flag indicating if the external InitialContext should be bound using a Serializable form that allows a remote client to create the external InitialContext. When a remote client looks up the external context via the JBoss JNDI InitialContext, they effectively create an instance of the external InitialContext using the same env properties passed to the ExternalContext MBean. This will only work if the client can do a new InitialContext(env) remotely. This requires that the Context.PROVIDER_URL value of env is resolvable in the remote VM that is accessing the context. This should work for the LDAP example. For the file system example this most likely will not work unless the file system path refers to a common network path. If this property is not given it defaults to false.
					

	
						CacheContext: The cacheContext flag. When set to true, the external Context is only created when the MBean is started and then stored as an in memory object until the MBean is stopped. If cacheContext is set to false, the external Context is created on each lookup using the MBean properties and InitialContext class. When the uncached Context is looked up by a client, the client should invoke close() on the Context to prevent resource leaks.
					

	
						InitialContext: The fully qualified class name of the InitialContext implementation to use. Must be one of: javax.naming.InitialContext, javax.naming.directory.InitialDirContext or javax.naming.ldap.InitialLdapContext. In the case of the InitialLdapContext a null Controls array is used. The default is javax.naming.InitialContex.
					

	
						Properties: The Properties attribute contains the JNDI properties for the external InitialContext. The input should be the text equivalent to what would go into a jndi.properties file.
					

	
						PropertiesURL: This set the jndi.properties information for the external InitialContext from an external properties file. This is either a URL, string or a classpath resource name. Examples are as follows:
					
	
								file:///config/myldap.properties
							

	
								http://config.mycompany.com/myldap.properties
							

	
								/conf/myldap.properties
							

	
								myldap.properties
							

				The MBean definition below shows a binding to an external LDAP context into the JBoss JNDI namespace under the name external/ldap/jboss.
			
​<!-- Bind a remote LDAP server -->
​<mbean code="org.jboss.naming.ExternalContext"
​ name="jboss.jndi:service=ExternalContext,jndiName=external/ldap/jboss">
​ <attribute name="JndiName">external/ldap/jboss</attribute>
​ <attribute name="Properties">
​ java.naming.factory.initial=com.sun.jndi.ldap.LdapCtxFactory
​ java.naming.provider.url=ldap://ldaphost.jboss.org:389/o=jboss.org
​ java.naming.security.principal=cn=Directory Manager
​ java.naming.security.authentication=simple
​ java.naming.security.credentials=secret
​ </attribute>
​ <attribute name="InitialContext"> javax.naming.ldap.InitialLdapContext </attribute>
​ <attribute name="RemoteAccess">true</attribute>
​</mbean>

				With this configuration, you can access the external LDAP context located at ldap://ldaphost.jboss.org:389/o=jboss.org from within the JBoss VM using the following code fragment:
			
InitialContext iniCtx = new InitialContext();
LdapContext ldapCtx = iniCtx.lookup("external/ldap/jboss");

				Using the same code fragment outside of the server VM will work in this case because the RemoteAccess property was set to true. If it were set to false, it would not work because the remote client would receive a Reference object with an ObjectFactory that would not be able to recreate the external InitialContext.
			
​<!-- Bind the /usr/local file system directory -->
​<mbean code="org.jboss.naming.ExternalContext"
​ name="jboss.jndi:service=ExternalContext,jndiName=external/fs/usr/local">
​ <attribute name="JndiName">external/fs/usr/local</attribute>
​ <attribute name="Properties">
​ java.naming.factory.initial=com.sun.jndi.fscontext.RefFSContextFactory
​ java.naming.provider.url=file:///usr/local
​ </attribute>
​ <attribute name="InitialContext">javax.naming.IntialContext</attribute>
​</mbean>

				This configuration describes binding a local file system directory /usr/local into the JBoss JNDI namespace under the name external/fs/usr/local.
			

				With this configuration, you can access the external file system context located at file:///usr/local from within the JBoss VM using the following code fragment:
			
​InitialContext iniCtx = new InitialContext();
​ Context ldapCtx = iniCtx.lookup("external/fs/usr/local");

 ⁠9.5.4. The org.jboss.naming.JNDIView MBean

				The JNDIView MBean allows the user to view the JNDI namespace tree as it exists in the server using the JMX agent view interface. To view the JBoss JNDI namespace using the JNDIView MBean, you connect to the JMX Agent View using the http interface. The default settings put this at http://localhost:8080/jmx-console/. On this page you will see a section that lists the registered MBeans sorted by domain. It should look something like that shown in Figure 9.4, “The JMX Console view of the configured JBoss MBeans”.
			

 ⁠[image: The JMX Console view of the configured JBoss MBeans]

Figure 9.4. The JMX Console view of the configured JBoss MBeans

				Selecting the JNDIView link takes you to the JNDIView MBean view, which will have a list of the JNDIView MBean operations. This view should look similar to that shown in Figure 9.5, “The JMX Console view of the JNDIView MBean”.
			

 ⁠[image: The JMX Console view of the JNDIView MBean]

Figure 9.5. The JMX Console view of the JNDIView MBean

				The list operation dumps out the server JNDI namespace as an HTML page using a simple text view. As an example, invoking the list operation produces the view shown in Figure 9.6, “The JMX Console view of the JNDIView list operation output”.
			

 ⁠[image: The JMX Console view of the JNDIView list operation output]

Figure 9.6. The JMX Console view of the JNDIView list operation output

 ⁠9.6. J2EE and JNDI - The Application Component Environment

			JNDI is a fundamental aspect of the J2EE specifications. One key usage is the isolation of J2EE component code from the environment in which the code is deployed. Use of the application component's environment allows the application component to be customized without the need to access or change the application component's source code. The application component environment is referred to as the ENC, the enterprise naming context. It is the responsibility of the application component container to make an ENC available to the container components in the form of JNDI Context. The ENC is utilized by the participants involved in the life cycle of a J2EE component in the following ways.
		
	
					Application component business logic should be coded to access information from its ENC. The component provider uses the standard deployment descriptor for the component to specify the required ENC entries. The entries are declarations of the information and resources the component requires at runtime.
				

	
					The container provides tools that allow a deployer of a component to map the ENC references made by the component developer to the deployment environment entity that satisfies the reference.
				

	
					The component deployer utilizes the container tools to ready a component for final deployment.
				

	
					The component container uses the deployment package information to build the complete component ENC at runtime
				

			The complete specification regarding the use of JNDI in the J2EE platform can be found in section 5 of the J2EE 1.4 specification.
		

			An application component instance locates the ENC using the JNDI API. An application component instance creates a javax.naming.InitialContext object by using the no argument constructor and then looks up the naming environment under the name java:comp/env. The application component's environment entries are stored directly in the ENC, or in its subcontexts. Example 9.4, “ENC access sample code” illustrates the prototypical lines of code a component uses to access its ENC.
		

 ⁠Example 9.4. ENC access sample code
​// Obtain the application component's ENC
​Context iniCtx = new InitialContext();
​Context compEnv = (Context) iniCtx.lookup("java:comp/env");

			An application component environment is a local environment that is accessible only by the component when the application server container thread of control is interacting with the application component. This means that an EJB Bean1 cannot access the ENC elements of EJB Bean2, and vice versa. Similarly, Web application Web1 cannot access the ENC elements of Web application Web2 or Bean1 or Bean2 for that matter. Also, arbitrary client code, whether it is executing inside of the application server VM or externally cannot access a component's java:comp JNDI context. The purpose of the ENC is to provide an isolated, read-only namespace that the application component can rely on regardless of the type of environment in which the component is deployed. The ENC must be isolated from other components because each component defines its own ENC content. Components A and B, for example, may define the same name to refer to different objects. For example, EJB Bean1 may define an environment entry java:comp/env/red to refer to the hexadecimal value for the RGB color for red, while Web application Web1 may bind the same name to the deployment environment language locale representation of red.
		

			There are three commonly used levels of naming scope in JBoss: names under java:comp, names under java:, and any other name. As discussed, the java:comp context and its subcontexts are only available to the application component associated with that particular context. Subcontexts and object bindings directly under java: are only visible within the server virtual machine and not to remote clients. Any other context or object binding is available to remote clients, provided the context or object supports serialization. You'll see how the isolation of these naming scopes is achieved in the Section 9.2, “The JBoss Naming Service Architecture”.
		

			An example of where the restricting a binding to the java: context is useful would be a javax.sql.DataSource connection factory that can only be used inside of the server where the associated database pool resides. On the other hand, an EJB home interface would be bound to a globally visible name that should accessible by remote client.
		

 ⁠9.6.1. ENC Usage Conventions

				JNDI is used as the API for externalizing a great deal of information from an application component. The JNDI name that the application component uses to access the information is declared in the standard ejb-jar.xml deployment descriptor for EJB components, and the standard web.xml deployment descriptor for Web components. Several different types of information may be stored in and retrieved from JNDI including:
			
	
						Environment entries as declared by the env-entry elements
					

	
						EJB references as declared by ejb-ref and ejb-local-ref elements.
					

	
						Resource manager connection factory references as declared by the resource-ref elements
					

	
						Resource environment references as declared by the resource-env-ref elements
					

				Each type of deployment descriptor element has a JNDI usage convention with regard to the name of the JNDI context under which the information is bound. Also, in addition to the standard deploymentdescriptor element, there is a JBoss Enterprise Application Platform specific deployment descriptor element that maps the JNDI name as used by the application component to the deployment environment JNDI name.
			

 ⁠9.6.1.1. Environment Entries

					Environment entries are the simplest form of information stored in a component ENC, and are similar to operating system environment variables like those found on Unix or Windows. Environment entries are a name-to-value binding that allows a component to externalize a value and refer to the value using a name.
				

					An environment entry is declared using an env-entry element in the standard deployment descriptors. The env-entry element contains the following child elements:
				
	
							An optional description element that provides a description of the entry
						

	
							An env-entry-name element giving the name of the entry relative to java:comp/env
						

	
							An env-entry-type element giving the Java type of the entry value that must be one of:
								
										java.lang.Byte
									

	
										java.lang.Boolean
									

	
										java.lang.Character
									

	
										java.lang.Double
									

	
										java.lang.Float
									

	
										java.lang.Integer
									

	
										java.lang.Long
									

	
										java.lang.Short
									

	
										java.lang.String
									

						

	
							An env-entry-value element giving the value of entry as a string
						

					An example of an env-entry fragment from an ejb-jar.xml deployment descriptor is given in Example 9.5, “An example ejb-jar.xml env-entry fragment”. There is no JBoss specific deployment descriptor element because an env-entry is a complete name and value specification. Example 9.6, “ENC env-entry access code fragment” shows a sample code fragment for accessing the maxExemptions and taxRate and env-entry values declared in the deployment descriptor.
				

 ⁠Example 9.5. An example ejb-jar.xml env-entry fragment
​<!-- ... -->
​<session>
​ <ejb-name>ASessionBean</ejb-name>
​ <!-- ... -->
​ <env-entry>
​ <description>The maximum number of tax exemptions allowed </description>
​ <env-entry-name>maxExemptions</env-entry-name>
​ <env-entry-type>java.lang.Integer</env-entry-type>
​ <env-entry-value>15</env-entry-value>
​ </env-entry>
​ <env-entry>
​ <description>The tax rate </description>
​ <env-entry-name>taxRate</env-entry-name>
​ <env-entry-type>java.lang.Float</env-entry-type>
​ <env-entry-value>0.23</env-entry-value>
​ </env-entry>
​</session>
​<!-- ... -->

 ⁠Example 9.6. ENC env-entry access code fragment
​InitialContext iniCtx = new InitialContext();
​Context envCtx = (Context) iniCtx.lookup("java:comp/env");
​Integer maxExemptions = (Integer) envCtx.lookup("maxExemptions");
​Float taxRate = (Float) envCtx.lookup("taxRate");

 ⁠9.6.1.2. EJB References

					It is common for EJBs and Web components to interact with other EJBs. Because the JNDI name under which an EJB home interface is bound is a deployment time decision, there needs to be a way for a component developer to declare a reference to an EJB that will be linked by the deployer. EJB references satisfy this requirement.
				

					An EJB reference is a link in an application component naming environment that points to a deployed EJB home interface. The name used by the application component is a logical link that isolates the component from the actual name of the EJB home in the deployment environment. The J2EE specification recommends that all references to enterprise beans be organized in the java:comp/env/ejb context of the application component's environment.
				

					An EJB reference is declared using an ejb-ref element in the deployment descriptor. Each ejb-ref element describes the interface requirements that the referencing application component has for the referenced enterprise bean. The ejb-ref element contains the following child elements:
				
	
							An optional description element that provides the purpose of the reference.
						

	
							An ejb-ref-name element that specifies the name of the reference relative to the java:comp/env context. To place the reference under the recommended java:comp/env/ejb context, use an ejb/link-name form for the ejb-ref-name value.
						

	
							An ejb-ref-type element that specifies the type of the EJB. This must be either Entity or Session.
						

	
							A home element that gives the fully qualified class name of the EJB home interface.
						

	
							A remote element that gives the fully qualified class name of the EJB remote interface.
						

	
							An optional ejb-link element that links the reference to another enterprise bean in the same EJB JAR or in the same J2EE application unit. The ejb-link value is the ejb-name of the referenced bean. If there are multiple enterprise beans with the same ejb-name, the value uses the path name specifying the location of the ejb-jar file that contains the referenced component. The path name is relative to the referencing ejb-jar file. The Application Assembler appends the ejb-name of the referenced bean to the path name separated by #. This allows multiple beans with the same name to be uniquely identified.
						

					An EJB reference is scoped to the application component whose declaration contains the ejb-ref element. This means that the EJB reference is not accessible from other application components at runtime, and that other application components may define ejb-ref elements with the same ejb-ref-name without causing a name conflict. Example 9.7, “An example ejb-jar.xml ejb-ref descriptor fragment” provides an ejb-jar.xml fragment that illustrates the use of the ejb-ref element. A code sample that illustrates accessing the ShoppingCartHome reference declared in Example 9.7, “An example ejb-jar.xml ejb-ref descriptor fragment” is given in Example 9.8, “ENC ejb-ref access code fragment”.
				

 ⁠Example 9.7. An example ejb-jar.xml ejb-ref descriptor fragment
​<!-- ... -->
​<session>
​ <ejb-name>ShoppingCartBean</ejb-name>
​ <!-- ...-->
​</session>
​
​<session>
​ <ejb-name>ProductBeanUser</ejb-name>
​ <!--...-->
​ <ejb-ref>
​ <description>This is a reference to the store products entity </description>
​ <ejb-ref-name>ejb/ProductHome</ejb-ref-name>
​ <ejb-ref-type>Entity</ejb-ref-type>
​ <home>org.jboss.store.ejb.ProductHome</home>
​ <remote> org.jboss.store.ejb.Product</remote>
​ </ejb-ref>
​
​</session>
​
​<session>
​ <ejb-ref>
​ <ejb-name>ShoppingCartUser</ejb-name>
​ <!--...-->
​ <ejb-ref-name>ejb/ShoppingCartHome</ejb-ref-name>
​ <ejb-ref-type>Session</ejb-ref-type>
​ <home>org.jboss.store.ejb.ShoppingCartHome</home>
​ <remote> org.jboss.store.ejb.ShoppingCart</remote>
​ <ejb-link>ShoppingCartBean</ejb-link>
​ </ejb-ref>
​</session>
​
​<entity>
​ <description>The Product entity bean </description>
​ <ejb-name>ProductBean</ejb-name>
​ <!--...-->
​</entity>
​
​<!--...-->

 ⁠Example 9.8. ENC ejb-ref access code fragment
​InitialContext iniCtx = new InitialContext();
​Context ejbCtx = (Context) iniCtx.lookup("java:comp/env/ejb");
​ShoppingCartHome home = (ShoppingCartHome) ejbCtx.lookup("ShoppingCartHome");

 ⁠9.6.1.3. EJB References with jboss.xml and jboss-web.xml

					The JBoss specific jboss.xml EJB deployment descriptor affects EJB references in two ways. First, the jndi-name child element of the session and entity elements allows the user to specify the deployment JNDI name for the EJB home interface. In the absence of a jboss.xml specification of the jndi-name for an EJB, the home interface is bound under the ejb-jar.xmlejb-name value. For example, the session EJB with the ejb-name of ShoppingCartBean in Example 9.7, “An example ejb-jar.xml ejb-ref descriptor fragment” would have its home interface bound under the JNDI name ShoppingCartBean in the absence of a jboss.xmljndi-name specification.
				

					The second use of the jboss.xml descriptor with respect to ejb-refs is the setting of the destination to which a component's ENC ejb-ref refers. The ejb-link element cannot be used to refer to EJBs in another enterprise application. If your ejb-ref needs to access an external EJB, you can specify the JNDI name of the deployed EJB home using the jboss.xmlejb-ref/jndi-name element.
				

					The jboss-web.xml descriptor is used only to set the destination to which a Web application ENC ejb-ref refers. The content model for the JBoss ejb-ref is as follows:
				
	
							An ejb-ref-name element that corresponds to the ejb-ref-name element in the ejb-jar.xml or web.xml standard descriptor
						

	
							A jndi-name element that specifies the JNDI name of the EJB home interface in the deployment environment
						

					Example 9.9, “An example jboss.xml ejb-ref fragment” provides an example jboss.xml descriptor fragment that illustrates the following usage points:
				
	
							The ProductBeanUserejb-ref link destination is set to the deployment name of jboss/store/ProductHome
						

	
							The deployment JNDI name of the ProductBean is set to jboss/store/ProductHome
						

 ⁠Example 9.9. An example jboss.xml ejb-ref fragment
​<!-- ... -->
​<session>
​ <ejb-name>ProductBeanUser</ejb-name>
​ <ejb-ref>
​ <ejb-ref-name>ejb/ProductHome</ejb-ref-name>
​ <jndi-name>jboss/store/ProductHome</jndi-name>
​ </ejb-ref>
​</session>
​
​<entity>
​ <ejb-name>ProductBean</ejb-name>
​ <jndi-name>jboss/store/ProductHome</jndi-name>
​ <!-- ... -->
​</entity>
​<!-- ... -->

 ⁠9.6.1.4. EJB Local References

					EJB 2.0 added local interfaces that do not use RMI call by value semantics. These interfaces use a call by reference semantic and therefore do not incur any RMI serialization overhead. An EJB local reference is a link in an application component naming environment that points to a deployed EJB local home interface. The name used by the application component is a logical link that isolates the component from the actual name of the EJB local home in the deployment environment. The J2EE specification recommends that all references to enterprise beans be organized in the java:comp/env/ejb context of the application component's environment.
				

					An EJB local reference is declared using an ejb-local-ref element in the deployment descriptor. Each ejb-local-ref element describes the interface requirements that the referencing application component has for the referenced enterprise bean. The ejb-local-ref element contains the following child elements:
				
	
							An optional description element that provides the purpose of the reference.
						

	
							An ejb-ref-name element that specifies the name of the reference relative to the java:comp/env context. To place the reference under the recommended java:comp/env/ejb context, use an ejb/link-name form for the ejb-ref-name value.
						

	
							An ejb-ref-type element that specifies the type of the EJB. This must be either Entity or Session.
						

	
							A local-home element that gives the fully qualified class name of the EJB local home interface.
						

	
							A local element that gives the fully qualified class name of the EJB local interface.
						

	
							An ejb-link element that links the reference to another enterprise bean in the ejb-jar file or in the same J2EE application unit. The ejb-link value is the ejb-name of the referenced bean. If there are multiple enterprise beans with the same ejb-name, the value uses the path name specifying the location of the ejb-jar file that contains the referenced component. The path name is relative to the referencing ejb-jar file. The Application Assembler appends the ejb-name of the referenced bean to the path name separated by #. This allows multiple beans with the same name to be uniquely identified. An ejb-link element must be specified in JBoss to match the local reference to the corresponding EJB.
						

					An EJB local reference is scoped to the application component whose declaration contains the ejb-local-ref element. This means that the EJB local reference is not accessible from other application components at runtime, and that other application components may define ejb-local-ref elements with the same ejb-ref-name without causing a name conflict. Example 9.10, “An example ejb-jar.xml ejb-local-ref descriptor fragment” provides an ejb-jar.xml fragment that illustrates the use of the ejb-local-ref element. A code sample that illustrates accessing the ProbeLocalHome reference declared in Example 9.10, “An example ejb-jar.xml ejb-local-ref descriptor fragment” is given in Example 9.11, “ENC ejb-local-ref access code fragment”.
				

 ⁠Example 9.10. An example ejb-jar.xml ejb-local-ref descriptor fragment
​ <!-- ... -->
​ <session>
​ <ejb-name>Probe</ejb-name>
​ <home>org.jboss.test.perf.interfaces.ProbeHome</home>
​ <remote>org.jboss.test.perf.interfaces.Probe</remote>
​ <local-home>org.jboss.test.perf.interfaces.ProbeLocalHome</local-home>
​ <local>org.jboss.test.perf.interfaces.ProbeLocal</local>
​ <ejb-class>org.jboss.test.perf.ejb.ProbeBean</ejb-class>
​ <session-type>Stateless</session-type>
​ <transaction-type>Bean</transaction-type>
​ </session>
​ <session>
​ <ejb-name>PerfTestSession</ejb-name>
​ <home>org.jboss.test.perf.interfaces.PerfTestSessionHome</home>
​ <remote>org.jboss.test.perf.interfaces.PerfTestSession</remote>
​ <ejb-class>org.jboss.test.perf.ejb.PerfTestSessionBean</ejb-class>
​ <session-type>Stateless</session-type>
​ <transaction-type>Container</transaction-type>
​ <ejb-ref>
​ <ejb-ref-name>ejb/ProbeHome</ejb-ref-name>
​ <ejb-ref-type>Session</ejb-ref-type>
​ <home>org.jboss.test.perf.interfaces.SessionHome</home>
​ <remote>org.jboss.test.perf.interfaces.Session</remote>
​ <ejb-link>Probe</ejb-link>
​ </ejb-ref>
​ <ejb-local-ref>
​ <ejb-ref-name>ejb/ProbeLocalHome</ejb-ref-name>
​ <ejb-ref-type>Session</ejb-ref-type>
​ <local-home>org.jboss.test.perf.interfaces.ProbeLocalHome</local-home>
​ <local>org.jboss.test.perf.interfaces.ProbeLocal</local>
​ <ejb-link>Probe</ejb-link>
​ </ejb-local-ref>
​ </session>
​ <!-- ... -->

 ⁠Example 9.11. ENC ejb-local-ref access code fragment
​InitialContext iniCtx = new InitialContext();
​Context ejbCtx = (Context) iniCtx.lookup("java:comp/env/ejb");
​ProbeLocalHome home = (ProbeLocalHome) ejbCtx.lookup("ProbeLocalHome");

 ⁠9.6.1.5. Resource Manager Connection Factory References

					Resource manager connection factory references allow application component code to refer to resource factories using logical names called resource manager connection factory references. Resource manager connection factory references are defined by the resource-ref elements in the standard deployment descriptors. The Deployer binds the resource manager connection factory references to the actual resource manager connection factories that exist in the target operational environment using the jboss.xml and jboss-web.xml descriptors.
				

					Each resource-ref element describes a single resource manager connection factory reference. The resource-ref element consists of the following child elements:
				
	
							An optional description element that provides the purpose of the reference.
						

	
							A res-ref-name element that specifies the name of the reference relative to the java:comp/env context. The resource type based naming convention for which subcontext to place the res-ref-name into is discussed in the next paragraph.
						

	
							A res-type element that specifies the fully qualified class name of the resource manager connection factory.
						

	
							A res-auth element that indicates whether the application component code performs resource sign on programmatically, or whether the container signs on to the resource based on the principal mapping information supplied by the Deployer. It must be one of Application or Container.
						

	
							An optional res-sharing-scope element. This currently is not supported by JBoss.
						

					The J2EE specification recommends that all resource manager connection factory references be organized in the subcontexts of the application component's environment, using a different subcontext for each resource manager type. The recommended resource manager type to subcontext name is as follows:
				
	
							JDBC DataSource references should be declared in the java:comp/env/jdbc subcontext.
						

	
							JMS connection factories should be declared in the java:comp/env/jms subcontext.
						

	
							JavaMail connection factories should be declared in the java:comp/env/mail subcontext.
						

	
							URL connection factories should be declared in the java:comp/env/url subcontext.
						

					Example 9.12, “A web.xml resource-ref descriptor fragment” shows an example web.xml descriptor fragment that illustrates the resource-ref element usage. Example 9.13, “ENC resource-ref access sample code fragment” provides a code fragment that an application component would use to access the DefaultMail resource declared by the resource-ref.
				

 ⁠Example 9.12. A web.xml resource-ref descriptor fragment
​<web>
​ <!-- ... -->
​ <servlet>
​ <servlet-name>AServlet</servlet-name>
​ <!-- ... -->
​ </servlet>
​ <!-- ... -->
​ <!-- JDBC DataSources (java:comp/env/jdbc) -->
​ <resource-ref>
​ <description>The default DS</description>
​ <res-ref-name>jdbc/DefaultDS</res-ref-name>
​ <res-type>javax.sql.DataSource</res-type>
​ <res-auth>Container</res-auth>
​ </resource-ref>
​ <!-- JavaMail Connection Factories (java:comp/env/mail) -->
​ <resource-ref>
​ <description>Default Mail</description>
​ <res-ref-name>mail/DefaultMail</res-ref-name>
​ <res-type>javax.mail.Session</res-type>
​ <res-auth>Container</res-auth>
​ </resource-ref>
​ <!-- JMS Connection Factories (java:comp/env/jms) -->
​ <resource-ref>
​ <description>Default QueueFactory</description>
​ <res-ref-name>jms/QueueFactory</res-ref-name>
​ <res-type>javax.jms.QueueConnectionFactory</res-type>
​ <res-auth>Container</res-auth>
​ </resource-ref>
​<web>

 ⁠Example 9.13. ENC resource-ref access sample code fragment
​Context initCtx = new InitialContext();
​javax.mail.Session s = (javax.mail.Session)
​initCtx.lookup("java:comp/env/mail/DefaultMail");

 ⁠9.6.1.6. Resource Manager Connection Factory References with jboss.xml and jboss-web.xml

					The purpose of the JBoss jboss.xml EJB deployment descriptor and jboss-web.xml Web application deployment descriptor is to provide the link from the logical name defined by the res-ref-name element to the JNDI name of the resource factory as deployed in JBoss. This is accomplished by providing a resource-ref element in the jboss.xml or jboss-web.xml descriptor. The JBoss resource-ref element consists of the following child elements:
				
	
							A res-ref-name element that must match the res-ref-name of a corresponding resource-ref element from the ejb-jar.xml or web.xml standard descriptors
						

	
							An optional res-type element that specifies the fully qualified class name of the resource manager connection factory
						

	
							A jndi-name element that specifies the JNDI name of the resource factory as deployed in JBoss
						

	
							A res-url element that specifies the URL string in the case of a resource-ref of type java.net.URL
						

					Example 9.14, “A sample jboss-web.xml resource-ref descriptor fragment” provides a sample jboss-web.xml descriptor fragment that shows sample mappings of the resource-ref elements given in Example 9.12, “A web.xml resource-ref descriptor fragment”.
				

 ⁠Example 9.14. A sample jboss-web.xml resource-ref descriptor fragment
​<jboss-web>
​ <!-- ... -->
​ <resource-ref>
​ <res-ref-name>jdbc/DefaultDS</res-ref-name>
​ <res-type>javax.sql.DataSource</res-type>
​ <jndi-name>java:/DefaultDS</jndi-name>
​ </resource-ref>
​ <resource-ref>
​ <res-ref-name>mail/DefaultMail</res-ref-name>
​ <res-type>javax.mail.Session</res-type>
​ <jndi-name>java:/Mail</jndi-name>
​ </resource-ref>
​ <resource-ref>
​ <res-ref-name>jms/QueueFactory</res-ref-name>
​ <res-type>javax.jms.QueueConnectionFactory</res-type>
​ <jndi-name>QueueConnectionFactory</jndi-name>
​ </resource-ref>
​ <!-- ... -->
​</jboss-web>

 ⁠9.6.1.7. Resource Environment References

					Resource environment references are elements that refer to administered objects that are associated with a resource (for example, JMS destinations) using logical names. Resource environment references are defined by the resource-env-ref elements in the standard deployment descriptors. The Deployer binds the resource environment references to the actual administered objects location in the target operational environment using the jboss.xml and jboss-web.xml descriptors.
				

					Each resource-env-ref element describes the requirements that the referencing application component has for the referenced administered object. The resource-env-ref element consists of the following child elements:
				
	
							An optional description element that provides the purpose of the reference.
						

	
							A resource-env-ref-name element that specifies the name of the reference relative to the java:comp/env context. Convention places the name in a subcontext that corresponds to the associated resource factory type. For example, a JMS queue reference named MyQueue should have a resource-env-ref-name of jms/MyQueue.
						

	
							A resource-env-ref-type element that specifies the fully qualified class name of the referenced object. For example, in the case of a JMS queue, the value would be javax.jms.Queue.
						

					Example 9.15, “An example ejb-jar.xml resource-env-ref fragment” provides an example resource-ref-env element declaration by a session bean. Example 9.16, “ENC resource-env-ref access code fragment” gives a code fragment that illustrates how to look up the StockInfo queue declared by the resource-env-ref.
				

 ⁠Example 9.15. An example ejb-jar.xml resource-env-ref fragment
​<session>
​ <ejb-name>MyBean</ejb-name>
​ <!-- ... -->
​ <resource-env-ref>
​ <description>This is a reference to a JMS queue used in the
​ processing of Stock info
​ </description>
​ <resource-env-ref-name>jms/StockInfo</resource-env-ref-name>
​ <resource-env-ref-type>javax.jms.Queue</resource-env-ref-type>
​ </resource-env-ref>
​ <!-- ... -->
​</session>

 ⁠Example 9.16. ENC resource-env-ref access code fragment
​InitialContext iniCtx = new InitialContext();
​javax.jms.Queue q = (javax.jms.Queue)
​envCtx.lookup("java:comp/env/jms/StockInfo");

 ⁠9.6.1.8. Resource Environment References and jboss.xml, jboss-web.xml

					The purpose of the JBoss jboss.xml EJB deployment descriptor and jboss-web.xml Web application deployment descriptor is to provide the link from the logical name defined by the resource-env-ref-name element to the JNDI name of the administered object deployed in JBoss. This is accomplished by providing a resource-env-ref element in the jboss.xml or jboss-web.xml descriptor. The JBoss resource-env-ref element consists of the following child elements:
				
	
							A resource-env-ref-name element that must match the resource-env-ref-name of a corresponding resource-env-ref element from the ejb-jar.xml or web.xml standard descriptors
						

	
							A jndi-name element that specifies the JNDI name of the resource as deployed in JBoss
						

					Example 9.17, “A sample jboss.xml resource-env-ref descriptor fragment” provides a sample jboss.xml descriptor fragment that shows a sample mapping for the StockInforesource-env-ref.
				

 ⁠Example 9.17. A sample jboss.xml resource-env-ref descriptor fragment
​<session>
​ <ejb-name>MyBean</ejb-name>
​ <!-- ... -->
​ <resource-env-ref>
​ <resource-env-ref-name>jms/StockInfo</resource-env-ref-name>
​ <jndi-name>queue/StockInfoQueue</jndi-name>
​ </resource-env-ref>
​ <!-- ... -->
​</session>

 ⁠Chapter 10. Web Services

		 Web services are a key contributing factor in the way Web commerce is conducted today. Web services enable applications to communicate by sending small and large chunks of data to each other.
	

		A web service is essentially a software application that supports interaction of applications over a computer network or the world wide web. Web services usually interact through XML documents that map to an object, computer program, business process or database. To communicate, an application sends a message in XML document format to a web service which sends this message to the respective programs. Responses may be received based on requirements, the web service receives and then sends them in XML document format to the required program or applications. Web services can be used in many ways, examples include supply chain information management and business integration.
	

		JBossWS is a web service framework included as part of the JBoss Enterprise Application Platform. It implements the JAX-WS specification that defines a programming model and run-time architecture for implementing web services in Java, targeted at the Java Platform, Enterprise Edition 5 (Java EE 5). Even though JAX-RPC is still supported (the web service specification for J2EE 1.4), JBossWS does put a clear focus on JAX-WS.
	

		 Warning

				JAX-RPC is not supported for JBoss Web Services CXF Stack.
			

	

 ⁠10.1. The need for web services

			Enterprise systems communication may benefit from a wise adoption of web service technologies. Focusing attention on well designed contracts allows developers to establish an abstract view of their service capabilities. Considering the standardized way contracts are written, this definitely helps communication with third-party systems and eventually supports business-to-business integration; everything is clear and standardized in the contract the provider and consumer agree on. This also reduces the dependencies between implementations allowing other consumers to easily use the provided service without major changes.
		

			Other benefits exist for enterprise systems that incorporate web service technologies for internal heterogenous subsystems communication as web service interoperability boosts service reuse and composition. Web services eliminates the need to rewrite whole functionalities because they were developed by another enterprise department using a different software language.
		

 ⁠10.2. What web services are not

			Web services are not the solution for every software system communication.
		

			Nowadays they are meant to be used for loosely-coupled coarse-grained communication, message (document) exchange. Recent times has seen many specifications (WS-*) discussed and finally approved to establish standardized ws-related advanced aspects, including reliable messaging, message-level security and cross-service transactions. Web service specifications also include the notion of registries to collect service contract references, to easily discover service implementations.
		

			This all means that the web services technology platform suits complex enterprise communication and is not simply the latest way of doing remote procedure calls.
		

 ⁠10.3. Document/Literal

			With document style web services two business partners agree on the exchange of complex business documents that are well defined in XML schema. For example, one party sends a document describing a purchase order, the other responds (immediately or later) with a document that describes the status of the purchase order. The payload of the SOAP message is an XML document that can be validated against XML schema. The document is defined by the style attribute on the SOAP binding.
		
​<binding name='EndpointInterfaceBinding' type='tns:EndpointInterface'>
​ <soap:binding style='document' transport='http://schemas.xmlsoap.org/soap/http'/>
​ <operation name='concat'>
​ <soap:operation soapAction=''/>
​ <input>
​ <soap:body use='literal'/>
​ </input>
​ <output>
​ <soap:body use='literal'/>
​ </output>
​ </operation>
​</binding>

			With document style web services the payload of every message is defined by a complex type in XML schema.
		
​<complexType name='concatType'>
​ <sequence>
​ <element name='String_1' nillable='true' type='string'/>
​ <element name='long_1' type='long'/>
​ </sequence>
​</complexType>
​<element name='concat' type='tns:concatType'/>

			Therefore, message parts must refer to an element from the schema.
		
​<message name='EndpointInterface_concat'>
​ <part name='parameters' element='tns:concat'/>
​</message>

			The following message definition is invalid.
		
​<message name='EndpointInterface_concat'>
​ <part name='parameters' type='tns:concatType'/>
​</message>

 ⁠10.4. Document/Literal (Bare)

			Bare is an implementation detail from the Java domain. Neither in the abstract contract (for instance, wsdl+schema) nor at the SOAP message level is a bare endpoint recognizable. A bare endpoint or client uses a Java bean that represents the entire document payload.
		
​@WebService
​@SOAPBinding(parameterStyle = SOAPBinding.ParameterStyle.BARE)
​public class DocBareServiceImpl
​{
​ @WebMethod
​ public SubmitBareResponse submitPO(SubmitBareRequest poRequest)
​ {
​ ...
​ }
​}

			The trick is that the Java beans representing the payload contain JAXB annotations that define how the payload is represented on the wire.
		
​@XmlAccessorType(XmlAccessType.FIELD)
​@XmlType(name = "SubmitBareRequest", namespace="http://soapbinding.samples.jaxws.ws.test.jboss.org/", propOrder = { "product" })
​@XmlRootElement(namespace="http://soapbinding.samples.jaxws.ws.test.jboss.org/", name = "SubmitPO")
​public class SubmitBareRequest
​{
​ @XmlElement(namespace="http://soapbinding.samples.jaxws.ws.test.jboss.org/", required = true)
​ private String product;
​
​ ...
​}

 ⁠10.5. Document/Literal (Wrapped)

			Wrapped is an implementation detail from the Java domain. Neither in the abstract contract (for instance, wsdl+schema) nor at the SOAP message level is a wrapped endpoint recognizable. A wrapped endpoint or client uses the individual document payload properties. Wrapped is the default and does not have to be declared explicitly.
		
​@WebService
​public class DocWrappedServiceImpl
​{
​ @WebMethod
​ @RequestWrapper (className="org.somepackage.SubmitPO")
​ @ResponseWrapper (className="org.somepackage.SubmitPOResponse")
​ public String submitPO(String product, int quantity)
​ {
​ ...
​ }
​}
Note

				With JBossWS the request and response wrapper annotations are not required, they will be generated on demand using sensible defaults.
			

 ⁠10.6. RPC/Literal

			With RPC there is a wrapper element that names the endpoint operation. Child elements of the RPC parent are the individual parameters. The SOAP body is constructed based on some simple rules:
				
						The port type operation name defines the endpoint method name
					

	
						Message parts are endpoint method parameters
					

			 RPC is defined by the style attribute on the SOAP binding.
		
​
​<binding name='EndpointInterfaceBinding' type='tns:EndpointInterface'>
​ <soap:binding style='rpc' transport='http://schemas.xmlsoap.org/soap/http'/>
​ <operation name='echo'>
​ <soap:operation soapAction=''/>
​ <input>
​ <soap:body namespace='http://org.jboss.ws/samples/jsr181pojo' use='literal'/>
​ </input>
​ <output>
​ <soap:body namespace='http://org.jboss.ws/samples/jsr181pojo' use='literal'/>
​ </output>
​ </operation>
​</binding>

			With RPC style web services the portType names the operation (i.e. the java method on the endpoint)
		
​
​<portType name='EndpointInterface'>
​ <operation name='echo' parameterOrder='String_1'>
​ <input message='tns:EndpointInterface_echo'/>
​ <output message='tns:EndpointInterface_echoResponse'/>
​ </operation>
​</portType>

			Operation parameters are defined by individual message parts.
		
​
​<message name='EndpointInterface_echo'>
​ <part name='String_1' type='xsd:string'/>
​</message>
​<message name='EndpointInterface_echoResponse'>
​ <part name='result' type='xsd:string'/>
​</message>
Note

				There is no complex type in XML schema that could validate the entire SOAP message payload.
			

​
​@WebService
​@SOAPBinding(style = SOAPBinding.Style.RPC)
​public class JSEBean01
​{
​ @WebMethod
​ @WebResult(name="result")
​ public String echo(@WebParam(name="String_1") String input)
​ {
​ ...
​ }
​}

			The element names of RPC parameters/return values may be defined using the JAX-WS Annotations#javax.jws.WebParam and JAX-WS Annotations#javax.jws.WebResult respectively.
		

 ⁠10.7. RPC/Encoded

			SOAP encoding style is defined by chapter 5 of the SOAP-1.1 specification. It has inherent interoperability issues that cannot be fixed. The Basic Profile-1.0 prohibits this encoding style in 4.1.7 SOAP encodingStyle Attribute. JBossWS has basic support for RPC/Encoded that is provided as is for simple interop scenarios with SOAP stacks that do not support literal encoding. Specifically, JBossWS does not support:
				
						element references
					

	
						soap arrays as bean properties
					

		

			 Note

					This section should not be used in conjunction with JBoss Web Services CXF Stack.
				

		

 ⁠10.8. Web Service Endpoints

			JAX-WS simplifies the development model for a web service endpoint a great deal. In short, an endpoint implementation bean is annotated with JAX-WS annotations and deployed to the server. The server automatically generates and publishes the abstract contract (for instance, wsdl+schema) for client consumption. All marshaling/unmarshaling is delegated to JAXB.
		

 ⁠10.9. Plain old Java Object (POJO)

			Let us take a look at simple POJO endpoint implementation. All endpoint associated metadata are provided via JSR-181 annotations
		
​@WebService
​@SOAPBinding(style = SOAPBinding.Style.RPC)
​public class JSEBean01
​{
​ @WebMethod
​ public String echo(String input)
​ {
​ ...
​ }
​}

 ⁠10.10. The endpoint as a web application

			A JAX-WS java service endpoint (JSE) is deployed as a web application.
		
​<web-app ...>
​ <servlet>
​ <servlet-name>TestService</servlet-name>
​ <servlet-class>org.jboss.test.ws.jaxws.samples.jsr181pojo.JSEBean01</servlet-class>
​ </servlet>
​ <servlet-mapping>
​ <servlet-name>TestService</servlet-name>
​ <url-pattern>/*</url-pattern>
​ </servlet-mapping>
​</web-app>

 ⁠10.11. Packaging the endpoint

			A JSR-181 java service endpoint (JSE) is packaged as a web application in a *.war file.
		
​<war warfile="${build.dir}/libs/jbossws-samples-jsr181pojo.war" webxml="${build.resources.dir}/samples/jsr181pojo/WEB-INF/web.xml">
​ <classes dir="${build.dir}/classes">
​ <include name="org/jboss/test/ws/samples/jsr181pojo/JSEBean01.class"/>
​ </classes>
​</war>
Note

				Only the endpoint implementation bean and web.xml file are required.
			

 ⁠10.12. Accessing the generated WSDL

			A successfully deployed service endpoint will show up in the service endpoint manager. This is also where you find the links to the generated WSDL.
		
http://yourhost:8080/jbossws/services

			It is also possible to generate the abstract contract off line using jboss tools. For details of that see Top Down (Using wsconsume)
		

 ⁠10.13. EJB3 Stateless Session Bean (SLSB)

			The JAX-WS programming model support the same set of annotations on EJB3 stateless session beans as on Plain old Java Object (POJO) endpoints. EJB-2.1 endpoints are supported using the JAX-RPC programming model.
		
​
​@Stateless
​@Remote(EJB3RemoteInterface.class)
​@RemoteBinding(jndiBinding = "/ejb3/EJB3EndpointInterface")
​
​@WebService
​@SOAPBinding(style = SOAPBinding.Style.RPC)
​public class EJB3Bean01 implements EJB3RemoteInterface
​{
​ @WebMethod
​ public String echo(String input)
​ {
​ ...
​ }
​}

			Above you see an EJB-3.0 stateless session bean that exposes one method both on the remote interface and as an endpoint operation.
		
Packaging the endpoint

				A JSR-181 EJB service endpoint is packaged as an ordinary ejb deployment.
			
​<jar jarfile="${build.dir}/libs/jbossws-samples-jsr181ejb.jar">
​ <fileset dir="${build.dir}/classes">
​ <include name="org/jboss/test/ws/samples/jsr181ejb/EJB3Bean01.class"/>
​ <include name="org/jboss/test/ws/samples/jsr181ejb/EJB3RemoteInterface.class"/>
​ </fileset>
​</jar>
Accessing the generated WSDL

				A successfully deployed service endpoint will show up in the service endpoint manager. This is also where you will find the links to the generated WSDL.
			

 http://yourhost:8080/jbossws/services

			It is also possible to generate the abstract contract offline using JbossWS tools. For details of that please see Top Down (Using wsconsume)
		

 ⁠10.14. Endpoint Provider

			JAX-WS services typically implement a native Java service endpoint interface (SEI), perhaps mapped from a WSDL port type, either directly or via the use of annotations.
		

			Java SEIs provide a high level Java-centric abstraction that hides the details of converting between Java objects and their XML representations for use in XML-based messages. However, in some cases it is desirable for services to be able to operate at the XML message level. The Provider interface offers an alternative to SEIs and may be implemented by services wishing to work at the XML message level.
		

			A Provider based service instance’s invoke method is called for each message received for the service.
		
​
​@WebServiceProvider
​@ServiceMode(value = Service.Mode.PAYLOAD)
​public class ProviderBeanPayload implements Provider<Source>
​{
​ public Source invoke(Source req)
​ {
​ // Access the entire request PAYLOAD and return the response PAYLOAD
​ }
​}

			Service.Mode.PAYLOAD is the default and does not have to be declared explicitly. You can also use Service.Mode.MESSAGE to access the entire SOAP message (for example, with MESSAGE the Provider can also see SOAP Headers)
		

 ⁠10.15. WebServiceContext

			The WebServiceContext is treated as an injectable resource that can be set at the time an endpoint is initialized. The WebServiceContext object will then use thread-local information to return the correct information regardless of how many threads are concurrently being used to serve requests addressed to the same endpoint object.
		
​
​@WebService
​public class EndpointJSE
​{
​ @Resource
​ WebServiceContext wsCtx;
​
​ @WebMethod
​ public String testGetMessageContext()
​ {
​ SOAPMessageContext jaxwsContext = (SOAPMessageContext)wsCtx.getMessageContext();
​ return jaxwsContext != null ? "pass" : "fail";
​ }
​ ...
​ @WebMethod
​ public String testGetUserPrincipal()
​ {
​ Principal principal = wsCtx.getUserPrincipal();
​ return principal.getName();
​ }
​
​ @WebMethod
​ public boolean testIsUserInRole(String role)
​ {
​ return wsCtx.isUserInRole(role);
​ }
​}

 ⁠10.16. Web Service Clients

 ⁠10.16.1. Service

				Service is an abstraction that represents a WSDL service. A WSDL service is a collection of related ports, each of which consists of a port type bound to a particular protocol and available at a particular endpoint address.
			

				For most clients, you will start with a set of stubs generated from the WSDL. One of these will be the service, and you will create objects of that class in order to work with the service (see "static case" below).
			

 ⁠10.16.1.1. Service Usage

Static case

						Most clients will start with a WSDL file, and generate some stubs using jbossws tools like wsconsume. This usually gives a mass of files, one of which is the top of the tree. This is the service implementation class.
					

					The generated implementation class can be recognized as it will have two public constructors, one with no arguments and one with two arguments, representing the wsdl location (a java.net.URL) and the service name (a javax.xml.namespace.QName) respectively.
				

					Usually you will use the no-argument constructor. In this case the WSDL location and service name are those found in the WSDL. These are set implicitly from the WebServiceClient annotation that decorates the generated class.
				

					The following code snippet shows the generated constructors from the generated class:
				
​
​// Generated Service Class
​
​@WebServiceClient(name="StockQuoteService", targetNamespace="http://example.com/stocks", wsdlLocation="http://example.com/stocks.wsdl")
​public class StockQuoteService extends javax.xml.ws.Service
​{
​
​ public StockQuoteService()
​ {
​ super(new URL("http://example.com/stocks.wsdl"), new QName("http://example.com/stocks", "StockQuoteService"));
​ }
​
​ public StockQuoteService(String wsdlLocation, QName serviceName)
​ {
​ super(wsdlLocation, serviceName);
​ }
​
​ ...
​}

					Section 10.16.2, “Dynamic Proxy” explains how to obtain a port from the service and how to invoke an operation on the port. If you need to work with the XML payload directly or with the XML representation of the entire SOAP message, refer to Section 10.16.4, “Dispatch”.
				
Dynamic case

						In the dynamic case, when nothing is generated, a web service client uses Service.create to create Service instances, the following code illustrates this process.
					
​
​URL wsdlLocation = new URL("http://example.org/my.wsdl");
​QName serviceName = new QName("http://example.org/sample", "MyService");
​Service service = Service.create(wsdlLocation, serviceName);

					This is not the recommended way to use JBossWS.
				

 ⁠10.16.1.2. Handler Resolver

					JAX-WS provides a flexible plug-in framework for message processing modules, known as handlers, that may be used to extend the capabilities of a JAX-WS runtime system. Section 10.17.1, “Handler Framework” describes the handler framework in detail. A Service instance provides access to a HandlerResolver via a pair of getHandlerResolver and setHandlerResolver methods that may be used to configure a set of handlers on a per-service, per-port or per-protocol binding basis.
				

					When a Service instance is used to create a proxy or a Dispatch instance then the handler resolver currently registered with the service is used to create the required handler chain. Subsequent changes to the handler resolver configured for a Service instance do not affect the handlers on previously created proxies, or Dispatch instances.
				

 ⁠10.16.1.3. Executor

					Service instances can be configured with a java.util.concurrent.Executor. The executor will then be used to invoke any asynchronous callbacks requested by the application. The setExecutor and getExecutor methods of Service can be used to modify and retrieve the executor configured for a service.
				

 ⁠10.16.2. Dynamic Proxy

				You can create an instance of a client proxy using one of getPort methods on the Service.
			
​
​/**
​ * The getPort method returns a proxy. A service client
​ * uses this proxy to invoke operations on the target
​ * service endpoint. The <code>serviceEndpointInterface</code>
​ * specifies the service endpoint interface that is supported by
​ * the created dynamic proxy instance.
​ */
​public <T> T getPort(QName portName, Class<T> serviceEndpointInterface)
​{
​...
​}
​
​/**
​ * The getPort method returns a proxy. The parameter
​ * <code>serviceEndpointInterface</code> specifies the service
​ * endpoint interface that is supported by the returned proxy.
​ * In the implementation of this method, the JAX-WS
​ * runtime system takes the responsibility of selecting a protocol
​ * binding (and a port) and configuring the proxy accordingly.
​ * The returned proxy should not be reconfigured by the client.
​ *
​ */
​public <T> T getPort(Class<T> serviceEndpointInterface)
​{
​...
​}

				The Service Endpoint Interface (SEI) is usually generated using tools. For details see Top Down (Using wsconsume).
			

				A generated static Service usually also offers typed methods to get ports. These methods also return dynamic proxies that implement the SEI.
			
​
​@WebServiceClient(name = "TestEndpointService", targetNamespace = "http://org.jboss.ws/wsref",
​ wsdlLocation = "http://localhost.localdomain:8080/jaxws-samples-webserviceref?wsdl")
​public class TestEndpointService extends Service
​{
​ ...
​
​ public TestEndpointService(URL wsdlLocation, QName serviceName) {
​ super(wsdlLocation, serviceName);
​ }
​
​ @WebEndpoint(name = "TestEndpointPort")
​ public TestEndpoint getTestEndpointPort()
​ {
​ return (TestEndpoint)super.getPort(TESTENDPOINTPORT, TestEndpoint.class);
​ }
​}

 ⁠10.16.3. WebServiceRef

				The WebServiceRef annotation is used to declare a reference to a Web service. It follows the resource pattern exemplified by the javax.annotation.Resource annotation in JSR-250
			

				There are two uses to the WebServiceRef annotation:
			
	
						To define a reference whose type is a generated service class. In this case, the type and value element will both refer to the generated service class type. Moreover, if the reference type can be inferred by the field or method declaration then the annotation is applied to the type, and value elements may have the default value (Object.class, that is). If the type cannot be inferred, then at least the type element must be present with a non-default value.
					

	
						To define a reference whose type is a SEI. In this case, the type element may be present with its default value if the type of the reference can be inferred from the annotated field and method declaration, but the value element must always be present and refer to a generated service class type (a subtype of javax.xml.ws.Service). The wsdlLocation element, if present, overrides theWSDL location information specified in the WebService annotation of the referenced generated service class.
					

​
​public class EJB3Client implements EJB3Remote
​{
​ @WebServiceRef
​ public TestEndpointService service4;
​
​ @WebServiceRef
​ public TestEndpoint port3;
​}
WebServiceRef Customization

					In JBoss Enterprise Application Platform 5.0 we offer a number of overrides and extensions to the WebServiceRef annotation. These include:
				
	
						define the port that should be used to resolve a container-managed port
					

	
						define default Stub property settings for Stub objects
					

	
						define the URL of a final WSDL document to be used
					

				Example:
			
​
​<service-ref>
​ <service-ref-name>OrganizationService</service-ref-name>
​ <wsdl-override>file:/wsdlRepository/organization-service.wsdl</wsdl-override>
​</service-ref>
​..
​<service-ref>
​ <service-ref-name>OrganizationService</service-ref-name>
​ <config-name>Secure Client Config</config-name>
​ <config-file>META-INF/jbossws-client-config.xml</config-file>
​ <handler-chain>META-INF/jbossws-client-handlers.xml</handler-chain>
​</service-ref>
​
​<service-ref>
​ <service-ref-name>SecureService</service-ref-name>
​ <service-class-name>org.jboss.tests.ws.jaxws.webserviceref.SecureEndpointService</service-class-name>
​ <service-qname>{http://org.jboss.ws/wsref}SecureEndpointService</service-qname>
​ <port-info>
​ <service-endpoint-interface>org.jboss.tests.ws.jaxws.webserviceref.SecureEndpoint</service-endpoint-interface>
​ <port-qname>{http://org.jboss.ws/wsref}SecureEndpointPort</port-qname>
​ <stub-property>
​ <name>javax.xml.ws.security.auth.username</name>
​ <value>kermit</value>
​ </stub-property>
​ <stub-property>
​ <name>javax.xml.ws.security.auth.password</name>
​ <value>thefrog</value>
​ </stub-property>
​ </port-info>
​</service-ref>

 ⁠10.16.4. Dispatch

				XML Web Services use XML messages for communication between services and service clients. The higher level JAX-WS APIs are designed to hide the details of converting between Java method invocations and the corresponding XML messages, but in some cases operating at the XML message level is desirable. The Dispatch interface provides support for this mode of interaction.
			

				Dispatch supports two usage modes, identified by the constants javax.xml.ws.Service.Mode.MESSAGE and javax.xml.ws.Service.Mode.PAYLOAD respectively:
			
Message

					In this mode, client applications work directly with protocol-specific message structures. For example, when used with a SOAP protocol binding, a client application would work directly with a SOAP message.
				
Message Payload

					In this mode, client applications work with the payload of messages rather than the messages themselves. For example, when used with a SOAP protocol binding, a client application would work with the contents of the SOAP Body rather than the SOAP message as a whole.
				

				Dispatch is a low level API that requires clients to construct messages or message payloads as XML and requires an intimate knowledge of the desired message or payload structure. Dispatch is a generic class that supports input and output of messages or message payloads of any type.
			
​
​Service service = Service.create(wsdlURL, serviceName);
​Dispatch dispatch = service.createDispatch(portName, StreamSource.class, Mode.PAYLOAD);
​
​String payload = "<ns1:ping xmlns:ns1='http://oneway.samples.jaxws.ws.test.jboss.org/'/>";
​dispatch.invokeOneWay(new StreamSource(new StringReader(payload)));
​
​payload = "<ns1:feedback xmlns:ns1='http://oneway.samples.jaxws.ws.test.jboss.org/'/>";
​Source retObj = (Source)dispatch.invoke(new StreamSource(new StringReader(payload)));

 ⁠10.16.5. Asynchronous Invocations

				The BindingProvider interface represents a component that provides a protocol binding for use by clients, it is implemented by proxies and is extended by the Dispatch interface.
			

				BindingProvider instances may provide asynchronous operation capabilities. When used, asynchronous operation invocations are decoupled from the BindingProvider instance at invocation time such that the response context is not updated when the operation completes. Instead a separate response context is made available using the Response interface.
			
​
​public void testInvokeAsync() throws Exception
​{
​ URL wsdlURL = new URL("http://" + getServerHost() + ":8080/jaxws-samples-asynchronous?wsdl");
​ QName serviceName = new QName(targetNS, "TestEndpointService");
​ Service service = Service.create(wsdlURL, serviceName);
​ TestEndpoint port = service.getPort(TestEndpoint.class);
​
​ Response response = port.echoAsync("Async");
​
​ // access future
​ String retStr = (String) response.get();
​ assertEquals("Async", retStr);
​}

 ⁠10.16.6. Oneway Invocations

				@Oneway indicates that the given web method has only an input message and no output. Typically, a one-way method returns the thread of control to the calling application prior to executing the actual business method.
			
​
​@WebService (name="PingEndpoint")
​@SOAPBinding(style = SOAPBinding.Style.RPC)
​public class PingEndpointImpl
​{
​ private static String feedback;
​ ...
​ @WebMethod
​ @Oneway
​ public void ping()
​ {
​ log.info("ping");
​ feedback = "ok";
​ }
​ ...
​ @WebMethod
​ public String feedback()
​ {
​ log.info("feedback");
​ return feedback;
​ }
​}

 ⁠10.17. Common API

			This sections describes concepts that apply equally to Section 10.8, “Web Service Endpoints ” and Section 10.16, “Web Service Clients”.
		

 ⁠10.17.1. Handler Framework

				The handler framework is implemented by a JAX-WS protocol binding in both client and server side runtimes. Proxies, and Dispatch instances, known collectively as binding providers, each use protocol bindings to bind their abstract functionality to specific protocols.
			

				Client and server-side handlers are organized into an ordered list known as a handler chain. The handlers within a handler chain are invoked each time a message is sent or received. Inbound messages are processed by handlers prior to binding provider processing. Outbound messages are processed by handlers after any binding provider processing.
			

				Handlers are invoked with a message context that provides methods to access and modify inbound and outbound messages and to manage a set of properties. Message context properties may be used to facilitate communication between individual handlers and between handlers and client and service implementations. Different types of handlers are invoked with different types of message context.
			

 ⁠10.17.1.1. Logical Handler

					Handlers that only operate on message context properties and message payloads. Logical handlers are protocol agnostic and are unable to affect protocol specific parts of a message. Logical handlers are handlers that implement javax.xml.ws.handler.LogicalHandler.
				

 ⁠10.17.1.2. Protocol Handler

					Handlers that operate on message context properties and protocol specific messages. Protocol handlers are specific to a particular protocol and may access and change protocol specific aspects of a message. Protocol handlers are handlers that implement any interface derived from javax.xml.ws.handler.Handler except javax.xml.ws.handler.LogicalHandler.
				

 ⁠10.17.1.3. Service endpoint handlers

					On the service endpoint, handlers are defined using the @HandlerChain annotation.
				
​
​@WebService
​@HandlerChain(file = "jaxws-server-source-handlers.xml")
​public class SOAPEndpointSourceImpl
​{
​...
​}

					The location of the handler chain file supports 2 formats
				

					1. An absolute java.net.URL in externalForm. (ex: http://myhandlers.foo.com/handlerfile1.xml)
				

					2. A relative path from the source file or class file. (ex: bar/handlerfile1.xml)
				

 ⁠10.17.1.4. Service client handlers

					On the client side, handler can be configured using the @HandlerChain annotation on the SEI or dynamically using the API.
				
​
​Service service = Service.create(wsdlURL, serviceName);
​Endpoint port = (Endpoint)service.getPort(Endpoint.class);
​
​BindingProvider bindingProvider = (BindingProvider)port;
​List<Handler> handlerChain = new ArrayList<Handler>();
​handlerChain.add(new LogHandler());
​handlerChain.add(new AuthorizationHandler());
​handlerChain.add(new RoutingHandler());
​bindingProvider.getBinding().setHandlerChain(handlerChain); // important!

 ⁠10.17.2. Message Context

				MessageContext is the super interface for all JAX-WS message contexts. It extends Map<String,Object> with additional methods and constants to manage a set of properties that enable handlers in a handler chain to share processing related state. For example, a handler may use the put method to insert a property in the message context that one or more other handlers in the handler chain may subsequently obtain via the get method.
			

				Properties are scoped as either APPLICATION or HANDLER. All properties are available to all handlers associated with particular endpoint. E.g., if a logical handler puts a property in the message context, that property will also be available to any protocol handlers in the chain during the execution. APPLICATION scoped properties are also made available to client applications and service endpoint implementations. The default scope for a property is HANDLER.
			

 ⁠10.17.2.1. Accessing the message context

					Users can access the message context in handlers or in endpoints via @WebServiceContext annotation.
				

 ⁠10.17.2.2. Logical Message Context

					LogicalMessageContext is passed to Logical Handlers at invocation time. LogicalMessageContext extends MessageContext with methods to obtain and modify the message payload, it does not provide access to the protocol specific aspects of a message. A protocol binding defines what component of a message are available via a logical message context. The SOAP binding defines that a logical handler deployed in a SOAP binding can access the contents of the SOAP body but not the SOAP headers whereas the XML/HTTP binding defines that a logical handler can access the entire XML payload of a message.
				

 ⁠10.17.2.3. SOAP Message Context

					SOAPMessageContext is passed to SOAP handlers at invocation time. SOAPMessageContext extends MessageContext with methods to obtain and modify the SOAP message payload.
				

 ⁠10.17.3. Fault Handling

				An implementation may throw a SOAPFaultException
			
​
​public void throwSoapFaultException()
​{
​ SOAPFactory factory = SOAPFactory.newInstance();
​ SOAPFault fault = factory.createFault("this is a fault string!", new QName("http://foo", "FooCode"));
​ fault.setFaultActor("mr.actor");
​ fault.addDetail().addChildElement("test");
​ throw new SOAPFaultException(fault);
​}

				or an application specific user exception
			
​
​public void throwApplicationException() throws UserException
​{
​ throw new UserException("validation", 123, "Some validation error");
​}

				Note

						In case of the latter JBossWS generates the required fault wrapper beans at runtime if they are not part of the deployment
					

			

 ⁠10.18. DataBinding

 ⁠10.18.1. Using JAXB with non annotated classes

				JAXB is heavily driven by Java Annotations on the Java Bindings. It currently does not support an external binding configuration.
			

				In order to support this, we built on a JAXB RI feature whereby it allows you to specify a RuntimeInlineAnnotationReader implementation during JAXBContext creation (see JAXBRIContext).
			

				We call this feature "JAXB Annotation Introduction" and we've made it available for general consumption i.e. it can be checked out, built and used from SVN:
			
	
						http://anonsvn.jboss.org/repos/jbossws/projects/jaxbintros/
					

				Complete documentation can be found here:
			
	
						JAXB Introductions
					

 ⁠10.19. Attachments

			JBoss-WS4EE relied on a deprecated attachments technology called SwA (SOAP with Attachments). SwA required soap/encoding which is disallowed by the WS-I Basic Profile. JBossWS provides support for WS-I AP 1.0, and MTOM instead.
		

 ⁠10.19.1. MTOM/XOP

				This section describes Message Transmission Optimization Mechanism (MTOM) and XML-binary Optimized Packaging (XOP), a means of more efficiently serializing XML Infosets that have certain types of content. The related specifications are
			
	
						SOAP Message Transmission Optimization Mechanism (MTOM)
					

	
						XML-binary Optimized Packaging (XOP)
					

 ⁠10.19.1.1. Supported MTOM parameter types

	
									image/jpeg
								

								 	
									java.awt.Image
								

								
	
									text/xml
								

								 	
									javax.xml.transform.Source
								

								
	
									application/xml
								

								 	
									javax.xml.transform.Source
								

								
	
									application/octet-stream
								

								 	
									javax.activation.DataHandler
								

								

					The above table shows a list of supported endpoint parameter types. The recommended approach is to use the javax.activation.DataHandler classes to represent binary data as service endpoint parameters.
				

					Note

							Microsoft endpoints tend to send any data as application/octet-stream. The only Java type that can easily cope with this ambiguity is javax.activation.DataHandler
						

				

 ⁠10.19.1.2. Enabling MTOM per endpoint

					On the server side MTOM processing is enabled through the @BindingType annotation. JBossWS does handle SOAP1.1 and SOAP1.2. Both come with or without MTOM flavors:
				

					MTOM enabled service implementations
				
​
​package org.jboss.test.ws.jaxws.samples.xop.doclit;
​
​import javax.ejb.Remote;
​import javax.jws.WebService;
​import javax.jws.soap.SOAPBinding;
​import javax.xml.ws.BindingType;
​
​@Remote
​@WebService(targetNamespace = "http://org.jboss.ws/xop/doclit")
​@SOAPBinding(style = SOAPBinding.Style.DOCUMENT, parameterStyle = SOAPBinding.ParameterStyle.BARE)
​@BindingType(value="http://schemas.xmlsoap.org/wsdl/soap/http?mtom=true") (1)
​public interface MTOMEndpoint
​{
​...
​}
	
							The MTOM enabled SOAP 1.1 binding ID
						

					MTOM enabled clients
				

					Web service clients can use the same approach described above or rely on the Binding API to enable MTOM (Excerpt taken from the org.jboss.test.ws.jaxws.samples.xop.doclit.XOPTestCase):
				
​
​...
​Service service = Service.create(wsdlURL, serviceName);
​port = service.getPort(MTOMEndpoint.class);
​
​// enable MTOM
​binding = (SOAPBinding)((BindingProvider)port).getBinding();
​binding.setMTOMEnabled(true);

					Note

							Use the JBossWS configuration templates to setup deployment defaults.
						

				

 ⁠10.19.2. SwaRef

				WS-I Attachment Profile 1.0 defines mechanism to reference MIME attachment parts using swaRef. In this mechanism the content of XML element of type wsi:swaRef is sent as MIME attachment and the element inside SOAP Body holds the reference to this attachment in the CID URI scheme as defined by RFC 2111.
			

 ⁠10.19.2.1. Using SwaRef with JAX-WS endpoints

					JAX-WS endpoints delegate all marshaling/unmarshaling to the JAXB API. The most simple way to enable SwaRef encoding for DataHandler types is to annotate a payload bean with the @XmlAttachmentRef annotation as shown below:
				
​
​/**
​ * Payload bean that will use SwaRef encoding
​ */
​@XmlRootElement
​public class DocumentPayload
​{
​ private DataHandler data;
​
​ public DocumentPayload()
​ {
​ }
​
​ public DocumentPayload(DataHandler data)
​ {
​ this.data = data;
​ }
​
​ @XmlElement
​ @XmlAttachmentRef
​ public DataHandler getData()
​ {
​ return data;
​ }
​
​ public void setData(DataHandler data)
​ {
​ this.data = data;
​ }
​}

					With document wrapped endpoints you may even specify the @XmlAttachmentRef annotation on the service endpoint interface:
				
​
​@WebService
​public interface DocWrappedEndpoint
​{
​ @WebMethod
​ DocumentPayload beanAnnotation(DocumentPayload dhw, String test);
​
​ @WebMethod
​ @XmlAttachmentRef
​ DataHandler parameterAnnotation(@XmlAttachmentRef DataHandler data, String test);
​
​}

					The message would then refer to the attachment part by CID:
				
​
​<env:Envelope xmlns:env='http://schemas.xmlsoap.org/soap/envelope/'>
​ <env:Header/>
​ <env:Body>
​ <ns2:parameterAnnotation xmlns:ns2='http://swaref.samples.jaxws.ws.test.jboss.org/'>
​ <arg0>cid:0-1180017772935-32455963@ws.jboss.org</arg0>
​ <arg1>Wrapped test</arg1>
​ </ns2:parameterAnnotation>
​ </env:Body>
​</env:Envelope>

 ⁠10.19.2.2. Starting from WSDL

					If you chose the contract first approach then you need to ensure that any element declaration that should use SwaRef encoding simply refers to wsi:swaRef schema type:
				
​
​<element name="data" type="wsi:swaRef"
​xmlns:wsi="http://ws-i.org/profiles/basic/1.1/xsd"/>

					Any wsi:swaRef schema type would then be mapped to DataHandler.
				

 ⁠10.20. Tools

			The JAX-WS tools provided by JBossWS can be used in a variety of ways. First we will look at server-side development strategies, and then proceed to the client. When developing a Web Service Endpoint (the server-side) you have the option of starting from Java (bottom-up development), or from the abstract contract (WSDL) that defines your service (top-down development). If this is a new service (no existing contract), the bottom-up approach is the fastest route; you only need to add a few annotations to your classes to get a service up and running. However, if you are developing a service with an already defined contract, it is far simpler to use the top-down approach, since the provided tool will generate the annotated code for you.
		

			Bottom-up use cases:
		
	
					Exposing an already existing EJB3 bean as a Web Service
				

	
					Providing a new service, and you want the contract to be generated for you
				

			Top-down use cases:
		
	
					Replacing the implementation of an existing Web Service without breaking compatibility with older clients
				

	
					Exposing a service that conforms to a contract specified by a third party (e.g. a vendor that calls you back using an already defined protocol).
				

	
					Creating a service that adheres to the XML Schema and WSDL you developed by hand up front
				

			The following JAX-WS command line tools are included in JBossWS:
		
	
							Command
						

						 	
							Description
						

						
	
							wsprovide
						

						 	
							Generates JAX-WS portable artifacts, and provides the abstract contract. Used for bottom-up development.
						

						
	
							wsconsume
						

						 	
							Consumes the abstract contract (WSDL and Schema files), and produces artifacts for both a server and client. Used for top-down and client development
						

						
	
							wsrunclient
						

						 	
							Executes a Java client (that has a main method) using the JBossWS classpath.
						

						

 ⁠10.20.1. Bottom-Up (Using wsprovide)

				The bottom-up strategy involves developing the Java code for your service, and then annotating it using JAX-WS annotations. These annotations can be used to customize the contract that is generated for your service. For example, you can change the operation name to map to anything you like. However, all of the annotations have sensible defaults, so only the @WebService annotation is required.
			

				This can be as simple as creating a single class:
			
​
​package echo;
​
​@javax.jws.WebService
​public class Echo
​{
​ public String echo(String input)
​ {
​ return input;
​ }
​}

				A JSE or EJB3 deployment can be built using this class, and it is the only Java code needed to deploy on JBossWS. The WSDL, and all other Java artifacts called "wrapper classes" will be generated for you at deploy time. This actually goes beyond the JAX-WS specification, which requires that wrapper classes be generated using an offline tool. The reason for this requirement is purely a vendor implementation problem, and since we do not believe in burdening a developer with a bunch of additional steps, we generate these as well. However, if you want your deployment to be portable to other application servers, you will need to use a tool and add the generated classes to your deployment.
			

				This is the primary purpose of the wsprovide tool, to generate portable JAX-WS artifacts. Additionally, it can be used to "provide" the abstract contract (WSDL file) for your service. This can be obtained by invoking wsprovide using the "-w" option:
			
​
​$ javac -d . -classpath jboss-jaxws.jar Echo.java
​$ wsprovide -w echo.Echo
​Generating WSDL:
​EchoService.wsdl
​Writing Classes:
​echo/jaxws/Echo.class
​echo/jaxws/EchoResponse.class

				Inspecting the WSDL reveals a service called EchoService:
			
​
​<service name='EchoService'>
​ <port binding='tns:EchoBinding' name='EchoPort'>
​ <soap:address location='REPLACE_WITH_ACTUAL_URL'/>
​ </port>
​</service>

				As expected, this service defines one operation, "echo":
			
​
​<portType name='Echo'>
​ <operation name='echo' parameterOrder='echo'>
​ <input message='tns:Echo_echo'/>
​ <output message='tns:Echo_echoResponse'/>
​ </operation>
​</portType>

				Note

						Remember that when deploying on JBossWS you do not need to run this tool. You only need it for generating portable artifacts and/or the abstract contract for your service.
					

			

				Let us create a POJO endpoint for deployment on JBoss Enterprise Application Platform. A simple web.xml needs to be created:
			
​
​<web-app xmlns="http://java.sun.com/xml/ns/j2ee"
​xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
​xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"
​version="2.4">
​
​ <servlet>
​ <servlet-name>Echo</servlet-name>
​ <servlet-class>echo.Echo</servlet-class>
​ </servlet>
​
​ <servlet-mapping>
​ <servlet-name>Echo</servlet-name>
​ <url-pattern>/Echo</url-pattern>
​ </servlet-mapping>
​</web-app>

				The web.xml and the single class can now be used to create a WAR:
			

$ mkdir -p WEB-INF/classes
$ cp -rp echo WEB-INF/classes/
$ cp web.xml WEB-INF
$ jar cvf echo.war WEB-INF
added manifest
adding: WEB-INF/(in = 0) (out= 0)(stored 0%)
adding: WEB-INF/classes/(in = 0) (out= 0)(stored 0%)
adding: WEB-INF/classes/echo/(in = 0) (out= 0)(stored 0%)
adding: WEB-INF/classes/echo/Echo.class(in = 340) (out= 247)(deflated 27%)
adding: WEB-INF/web.xml(in = 576) (out= 271)(deflated 52%)

				The war can then be deployed:
			

 cp echo.war <JBOSS_HOME>/server/default/deploy

				At deploy time JBossWS will internally invoke wsprovide, which will generate the WSDL. If deployment was successful, and you are using the default settings, it should be available here: http://localhost:8080/echo/Echo?wsdl
			

				For a portable JAX-WS deployment, the wrapper classes generated earlier could be added to the deployment.
			

 ⁠10.20.2. Top-Down (Using wsconsume)

				The top-down development strategy begins with the abstract contract for the service, which includes the WSDL file and zero or more schema files. The wsconsume tool is then used to consume this contract, and produce annotated Java classes (and optionally sources) that define it.
			

				Note

						wsconsume seems to have a problem with symlinks on unix systems
					

			

				Using the WSDL file from the bottom-up example, a new Java implementation that adheres to this service can be generated. The "-k" option is passed to wsconsume to preserve the Java source files that are generated, instead of providing just classes:
			

$ wsconsume -k EchoService.wsdl
echo/Echo.java
echo/EchoResponse.java
echo/EchoService.java
echo/Echo_Type.java
echo/ObjectFactory.java
echo/package-info.java
echo/Echo.java
echo/EchoResponse.java
echo/EchoService.java
echo/Echo_Type.java
echo/ObjectFactory.java
echo/package-info.java

				The following table shows the purpose of each generated file:
			
	
								File
							

							 	
								Purpose
							

							
	
								Echo.java
							

							 	
								Service Endpoint Interface
							

							
	
								Echo_Type.java
							

							 	
								Wrapper bean for request message
							

							
	
								EchoResponse.java
							

							 	
								Wrapper bean for response message
							

							
	
								ObjectFactory.java
							

							 	
								JAXB XML Registry
							

							
	
								package-info.java
							

							 	
								Holder for JAXB package annotations
							

							
	
								EchoService.java
							

							 	
								Used only by JAX-WS clients
							

							

				Examining the Service Endpoint Interface reveals annotations that are more explicit than in the class written by hand in the bottom-up example, however, these evaluate to the same contract:
			
​
​@WebService(name = "Echo", targetNamespace = "http://echo/")
​public interface Echo
​{
​ @WebMethod
​ @WebResult(targetNamespace = "")
​ @RequestWrapper(localName = "echo", targetNamespace = "http://echo/", className = "echo.Echo_Type")
​ @ResponseWrapper(localName = "echoResponse", targetNamespace = "http://echo/", className = "echo.EchoResponse")
​ public String echo(@WebParam(name = "arg0", targetNamespace = "") String arg0);
​}

				The only missing piece (besides the packaging) is the implementation class, which can now be written using the above interface.
			
​
​package echo;
​
​@javax.jws.WebService(endpointInterface="echo.Echo")
​public class EchoImpl implements Echo
​{
​ public String echo(String arg0)
​ {
​ return arg0;
​ }
​}

 ⁠10.20.3. Client Side

				Before going into detail on the client-side it is important to understand the decoupling concept that is central to Web Services. Web Services are not the best fit for internal RPC, even though they can be used in this way; there are much better technologies for achieving this (CORBA, and RMI for example). Web Services were designed specifically for interoperable coarse-grained correspondence. There is no expectation or guarantee that any party participating in a Web Service interaction will be at any particular location, running on any particular operating system, or written in any particular programming language. So because of this, it is important to clearly separate client and server implementations. The only thing they should have in common is the abstract contract definition. If, for whatever reason, your software does not adhere to this principal, then you should not be using Web Services. For the above reasons, the recommended methodology for developing a client is to follow the top-down approach, even if the client is running on the same server.
			

				Let us repeat the process of the top-down section, although using the deployed WSDL, instead of the one generated offline by wsprovide. The reason why we do this is just to get the right value for soap:address. This value must be computed at deploy time, since it is based on container configuration specifics. You could of course edit the WSDL file yourself, although you need to ensure that the path is correct.
			

				Offline version:
			
​
​<service name='EchoService'>
​ <port binding='tns:EchoBinding' name='EchoPort'>
​ <soap:address location='REPLACE_WITH_ACTUAL_URL'/>
​ </port>
​</service>

				Online version:
			
​
​<service name="EchoService">
​ <port binding="tns:EchoBinding" name="EchoPort">
​ <soap:address location="http://localhost.localdomain:8080/echo/Echo"/>
​ </port>
​</service>

				Using the online deployed version with wsconsume:
			

$ wsconsume -k http://localhost:8080/echo/Echo?wsdl
echo/Echo.java
echo/EchoResponse.java
echo/EchoService.java
echo/Echo_Type.java
echo/ObjectFactory.java
echo/package-info.java
echo/Echo.java
echo/EchoResponse.java
echo/EchoService.java
echo/Echo_Type.java
echo/ObjectFactory.java
echo/package-info.java

				The one class that was not examined in the top-down section, was EchoService.java. Notice how it stores the location the WSDL was obtained from.
			
​
​@WebServiceClient(name = "EchoService", targetNamespace = "http://echo/", wsdlLocation = "http://localhost:8080/echo/Echo?wsdl")
​public class EchoService extends Service
​{
​ private final static URL ECHOSERVICE_WSDL_LOCATION;
​
​ static
​ {
​ URL url = null;
​ try
​ {
​ url = new URL("http://localhost:8080/echo/Echo?wsdl");
​ }
​ catch (MalformedURLException e)
​ {
​ e.printStackTrace();
​ }
​ ECHOSERVICE_WSDL_LOCATION = url;
​ }
​
​ public EchoService(URL wsdlLocation, QName serviceName)
​ {
​ super(wsdlLocation, serviceName);
​ }
​
​ public EchoService()
​ {
​ super(ECHOSERVICE_WSDL_LOCATION, new QName("http://echo/", "EchoService"));
​ }
​
​ @WebEndpoint(name = "EchoPort")
​ public Echo getEchoPort()
​ {
​ return (Echo)super.getPort(new QName("http://echo/", "EchoPort"), Echo.class);
​ }
​}

				As you can see, this generated class extends the main client entry point in JAX-WS, javax.xml.ws.Service. While you can use Service directly, this is far simpler since it provides the configuration info for you. The only method we really care about is the getEchoPort() method, which returns an instance of our Service Endpoint Interface. Any Web Services operation can then be called by just invoking a method on the returned interface.
			

				Note

						It is not recommended to refer to a remote WSDL URL in a production application. This causes network I/O every time you instantiate the Service Object. Instead, use the tool on a saved local copy, or use the URL version of the constructor to provide a new WSDL location.
					

				 Note

						The wsdlLocation is used when creating the Service to be used by clients and will be added to the @WebServiceClient annotation, for an endpoint implementation based on the generated service endpoint interface you will need to manually add the wsdlLocation to the @WebService annotation on your web service implementation and not the service endpoint interface.
					

			

				All that is left to do, is write and compile the client:
			
​
​import echo.*;
​..
​public class EchoClient
​{
​ public static void main(String args[])
​ {
​ if (args.length != 1)
​ {
​ System.err.println("usage: EchoClient <message>");
​ System.exit(1);
​ }
​
​ EchoService service = new EchoService();
​ Echo echo = service.getEchoPort();
​ System.out.println("Server said: " + echo.echo(args[0]));
​ }
​}

				It can then be easily executed using the wsrunclient tool. This is just a convenience tool that invokes java with the needed classpath:
			

$ wsrunclient EchoClient 'Hello World!'
Server said: Hello World!

				It is easy to change the endpoint address of your operation at runtime, setting ENDPOINT_ADDRESS_PROPERTY as shown below:
			
​
​...
​EchoService service = new EchoService();
​Echo echo = service.getEchoPort();
​
​/* Set NEW Endpoint Location */
​String endpointURL = "http://NEW_ENDPOINT_URL";
​BindingProvider bp = (BindingProvider)echo;
​bp.getRequestContext().put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY, endpointURL);
​
​System.out.println("Server said: " + echo.echo(args[0]));
​...

 ⁠10.20.4. Command-line & Ant Task Reference

	
						wsconsume reference page
					

	
						wsprovide reference page
					

	
						wsrunclient reference page
					

 ⁠10.20.5. JAX-WS binding customization

				An introduction to binding customizations:
			
	
						http://java.sun.com/webservices/docs/2.0/jaxws/customizations.html
					

 ⁠10.21. Web Service Extensions

 ⁠10.21.1. WS-Addressing

				This section describes how WS-Addressing can be used to provide a stateful service endpoint.
			

 ⁠10.21.1.1. Specifications

					WS-Addressing is defined by a combination of the following specifications from the W3C Recommendation. The WS-Addressing API is standardized by JSR-224 - Java API for XML-Based Web Services (JAX-WS)
				
	
							Web Services Addressing 1.0 - Core
						

	
							Web Services Addressing 1.0 - SOAP Binding
						

 ⁠10.21.1.2. Addressing Endpoint

					 Note

							The following information should not be used in conjunction with JBoss Web Services CXF Stack.
						

				

					The following endpoint implementation has a set of operation for a typical stateful shopping chart application.
				
​
​@WebService(name = "StatefulEndpoint", targetNamespace = "http://org.jboss.ws/samples/wsaddressing", serviceName = "TestService")
​@Addressing(enabled=true, required=true)
​@SOAPBinding(style = SOAPBinding.Style.RPC)
​public class StatefulEndpointImpl implements StatefulEndpoint, ServiceLifecycle
​{
​ @WebMethod
​ public void addItem(String item)
​ { ... }
​
​ @WebMethod
​ public void checkout()
​ { ... }
​
​ @WebMethod
​ public String getItems()
​ { ... }
​}

					It uses the JAX-WS 2.1 defined javax.xml.ws.soap.Addressing annotation to enable the server side addressing handler.
				

 ⁠10.21.1.3. Addressing Client

					The client code uses javax.xml.ws.soap.AddressingFeature feature from JAX-WS 2.1 API to enable the WS-Addressing.
				
​
​Service service = Service.create(wsdlURL, serviceName);
​port1 = (StatefulEndpoint)service.getPort(StatefulEndpoint.class, new AddressingFeature());

					A client connecting to the stateful endpoint
				
​
​public class AddressingStatefulTestCase extends JBossWSTest
​{
​ ...
​ public void testAddItem() throws Exception
​ {
​ port1.addItem("Ice Cream");
​ port1.addItem("Ferrari");
​
​ port2.addItem("Mars Bar");
​ port2.addItem("Porsche");
​ }
​
​ public void testGetItems() throws Exception
​ {
​ String items1 = port1.getItems();
​ assertEquals("[Ice Cream, Ferrari]", items1);
​
​ String items2 = port2.getItems();
​ assertEquals("[Mars Bar, Porsche]", items2);
​ }
​}

					SOAP message exchange
				

					Below you see the SOAP messages that are being exchanged.
				
​
​<env:Envelope xmlns:env='http://schemas.xmlsoap.org/soap/envelope/'>
​<env:Header xmlns:wsa='http://schemas.xmlsoap.org/ws/2004/08/addressing'>
​<wsa:To>uri:jbossws-samples-wsaddr/TestService</wsa:To>
​<wsa:Action>http://org.jboss.ws/addressing/stateful/action</wsa:Action>
​<wsa:ReferenceParameters>
​<ns1:clientid xmlns:ns1='http://somens'>clientid-1</ns1:clientid>
​</wsa:ReferenceParameters>
​</env:Header>
​<env:Body>
​<ns1:addItem xmlns:ns1='http://org.jboss.ws/samples/wsaddr'>
​<String_1>Ice Cream</String_1>
​</ns1:addItem>
​</env:Body>
​</env:Envelope>
​
​<env:Envelope xmlns:env='http://schemas.xmlsoap.org/soap/envelope/'>
​<env:Header xmlns:wsa='http://schemas.xmlsoap.org/ws/2004/08/addressing'>
​<wsa:To>http://www.w3.org/2005/08/addressing/anonymous</wsa:To>
​<wsa:Action>http://org.jboss.ws/addressing/stateful/actionReply</wsa:Action>
​<ns1:clientid xmlns:ns1='http://somens'>clientid-1</ns1:clientid>
​</env:Header>
​<env:Body>
​<ns1:addItemResponse xmlns:ns1='http://org.jboss.ws/samples/wsaddr'/>
​</env:Body>
​</env:Envelope>
​
​...
​
​<env:Envelope xmlns:env='http://schemas.xmlsoap.org/soap/envelope/'>
​<env:Header xmlns:wsa='http://schemas.xmlsoap.org/ws/2004/08/addressing'>
​<wsa:To>uri:jbossws-samples-wsaddr/TestService</wsa:To>
​<wsa:Action>http://org.jboss.ws/addressing/stateful/action</wsa:Action>
​<wsa:ReferenceParameters>
​<ns1:clientid xmlns:ns1='http://somens'>clientid-1</ns1:clientid>
​</wsa:ReferenceParameters>
​</env:Header>
​<env:Body>
​<ns1:getItems xmlns:ns1='http://org.jboss.ws/samples/wsaddr'/>
​</env:Body>
​</env:Envelope>
​
​<env:Envelope xmlns:env='http://schemas.xmlsoap.org/soap/envelope/'>
​<env:Header xmlns:wsa='http://schemas.xmlsoap.org/ws/2004/08/addressing'>
​<wsa:To>http://www.w3.org/2005/08/addressing/anonymous</wsa:To>
​<wsa:Action>http://org.jboss.ws/addressing/stateful/actionReply</wsa:Action>
​<ns1:clientid xmlns:ns1='http://somens'>clientid-1</ns1:clientid>
​</env:Header>
​<env:Body>
​<ns1:getItemsResponse xmlns:ns1='http://org.jboss.ws/samples/wsaddr'>
​<result>[Ice Cream, Ferrari]</result>
​</ns1:getItemsResponse>
​</env:Body>
​</env:Envelope>

 ⁠10.21.2. WS-Security

				WS-Security addresses message level security. It standardizes authorization, encryption, and digital signature processing of web services. Unlike transport security models, such as SSL, WS-Security applies security directly to the elements of the web service message. This increases the flexibility of your web services, by allowing any message model to be used (for example, point to point, or multi-hop relay).
			

				This chapter describes how to use WS-Security to sign and encrypt a simple SOAP message.
			

				Specifications
			

				WS-Security is defined by the combination of the following specifications:
			
	
						SOAP Message Security 1.0
					

	
						Username Token Profile 1.0
					

	
						X.509 Token Profile 1.0
					

	
						W3C XML Encryption
					

	
						W3C XML Signature
					

	
						Basic Security Profile 1.0
					

 ⁠10.21.2.1. Endpoint configuration

					JBossWS uses handlers to identify ws-security encoded requests and invoke the security components to sign and encrypt messages. In order to enable security processing, the client and server side must include a corresponding handler configuration. The preferred way is to reference a predefined JAX-WS Endpoint Configuration or JAX-WS Client Configuration respectively.
				

					Note

							You must setup both the endpoint configuration and the WSSE declarations. These are two separate steps.
						

				

 ⁠10.21.2.2. Server side WSSE declaration (jboss-wsse-server.xml)

					In this example we configure both the client and the server to sign the message body. Both also require this from each other. So, if you remove either the client or the server security deployment descriptor, you will notice that the other party will throw a fault explaining that the message did not conform to the proper security requirements.
				
​
​<jboss-ws-security xmlns="http://www.jboss.com/ws-security/config"
​xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
​xsi:schemaLocation="http://www.jboss.com/ws-security/config
​http://www.jboss.com/ws-security/schema/jboss-ws-security_1_0.xsd">
​ <key-store-file>WEB-INF/wsse.keystore</key-store-file> [image: 1]
​ <key-store-password>jbossws</key-store-password> [image: 2]
​ <trust-store-file>WEB-INF/wsse.truststore</trust-store-file> [image: 3]
​ <trust-store-password>jbossws</trust-store-password> [image: 4]
​ <config> [image: 5]
​ <sign type="x509v3" alias="wsse"/> [image: 6]
​ <requires> [image: 7]
​ <signature/> [image: 8]
​ </requires>
​ </config>
​</jboss-ws-security>

	[image: 1]
	
								This specifies that the key store we wish to use is WEB-INF/wsse.keystore, which is located in our war file.
							

	[image: 2]
	
								This specifies that the store password is "jbossws". Password can be encypted using the {EXT} and {CLASS} commands. Please see samples for their usage.
							

	[image: 3]
	
								This specifies that the trust store we wish to use is WEB-INF/wsse.truststore, which is located in our war file.
							

	[image: 4]
	
								This specifies that the trust store password is also "jbossws". Password can be encrypted using the {EXT} and {CLASS} commands. Please see samples for their usage.
							

	[image: 5]
	
								Here we start our root config block. The root config block is the default configuration for all services in this war file.
							

	[image: 6]
	
								This means that the server must sign the message body of all responses. Type means that we are using X.509v3 certificate (a standard certificate). The alias option says that the certificate and key pair to use for signing is in the key store under the "wsse" alias
							

	[image: 7]
	
								Here we start our optional requires block. This block specifies all security requirements that must be met when the server receives a message.
							

	[image: 8]
	
								This means that all web services in this war file require the message body to be signed.
							

					By default an endpoint does not use the WS-Security configuration. Users can use proprietary @EndpointConfig annotation to set the config name. See JAX-WS_Endpoint_Configuration for the list of available config names.
				
​
​@WebService
​@EndpointConfig(configName = "Standard WSSecurity Endpoint")
​public class HelloJavaBean
​{
​...
​}

 ⁠10.21.2.3. Client side WSSE declaration (jboss-wsse-client.xml)

​
​<jboss-ws-security xmlns="http://www.jboss.com/ws-security/config"
​xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
​xsi:schemaLocation="http://www.jboss.com/ws-security/config
​http://www.jboss.com/ws-security/schema/jboss-ws-security_1_0.xsd">
​ <config> [image: 1]
​ <sign type="x509v3" alias="wsse"/> [image: 2]
​ <requires> [image: 3]
​ <signature/> [image: 4]
​ </requires>
​ </config>
​</jboss-ws-security>

	[image: 1]
	
								Here we start our root config block. The root config block is the default configuration for all web service clients (Call, Proxy objects).
							

	[image: 2]
	
								This means that the client must sign the message body of all requests it sends. Type means that we are to use a X.509v3 certificate (a standard certificate). The alias option says that the certificate/key pair to use for signing is in the key store under the "wsse" alias
							

	[image: 3]
	
								Here we start our optional requires block. This block specifies all security requirements that must be met when the client receives a response.
							

	[image: 4]
	
								This means that all web service clients must receive signed response messages.
							

 ⁠10.21.2.3.1. Client side key store configuration

						We did not specify a key store or trust store, because client apps instead use the wsse System properties instead. If this was a web or ejb client (meaning a web service client in a war or ejb jar file), then we would have specified them in the client descriptor.
					

						Here is an excerpt from the JBossWS samples:
					
​
​<sysproperty key="org.jboss.ws.wsse.keyStore"
​value="${tests.output.dir}/resources/jaxrpc/samples/wssecurity/wsse.keystore"/>
​<sysproperty key="org.jboss.ws.wsse.trustStore"
​value="${tests.output.dir}/resources/jaxrpc/samples/wssecurity/wsse.truststore"/>
​<sysproperty key="org.jboss.ws.wsse.keyStorePassword" value="jbossws"/>
​<sysproperty key="org.jboss.ws.wsse.trustStorePassword" value="jbossws"/>
​<sysproperty key="org.jboss.ws.wsse.keyStoreType" value="jks"/>
​<sysproperty key="org.jboss.ws.wsse.trustStoreType" value="jks"/>

						SOAP message exchange
					

						Below you see the incoming SOAP message with the details of the security headers omitted. The idea is, that the SOAP body is still plain text, but it is signed in the security header and therefore can not be manipulated in transit.
					
​
​<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/">
​<env:Header>
​<wsse:Security env:mustUnderstand="1" ...>
​<wsu:Timestamp wsu:Id="timestamp">...</wsu:Timestamp>
​<wsse:BinarySecurityToken ...>
​...
​</wsse:BinarySecurityToken>
​<ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
​...
​</ds:Signature>
​</wsse:Security>
​</env:Header>
​<env:Body wsu:Id="element-1-1140197309843-12388840" ...>
​<ns1:echoUserType xmlns:ns1="http://org.jboss.ws/samples/wssecurity">
​<UserType_1 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
​<msg>Kermit</msg>
​</UserType_1>
​</ns1:echoUserType>
​</env:Body>
​</env:Envelope>

 ⁠10.21.2.4. Installing the BouncyCastle JCE provider

					The information below has originally been provided by The Legion of the Bouncy Castle.
				

					The provider can be configured as part of your environment via static registration by adding an entry to the java.security properties file (found in $JAVA_HOME/jre/lib/security/java.security, where $JAVA_HOME is the location of your JDK and JRE distribution). You will find detailed instructions in the file but basically it comes down to adding a line:
				
​
​security.provider.<n>=org.bouncycastle.jce.provider.BouncyCastleProvider

					Where <n> is the preference you want the provider at.
				

					Note

							Issues may arise if the Sun provided providers are not first.
						

				

					The location of the provider jar is mostly arbitrary, although some common conventions exist. Under Windows there will normally be a JRE and a JDK install of Java. If you think it's installed it correctly but it still does not work then with high probability the provider installation is not used.
				

 ⁠10.21.2.5. Username Token Authentication

					If you need to authenticate clients through a Username Token, the JAAS integration will verify the received token against the configured JBoss JAAS Security Domain.
				

 ⁠Example 10.1. Basic Username Token Configuration

						To implement this feature, you must append a <jboss-ws-security> element to jboss-wsse-client.xml that contains the following information.
					
​<jboss-ws-security xmlns="http://www.jboss.com/ws-security/config"
​ xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
​ xsi:schemaLocation="http://www.jboss.com/ws-security/config
​ http://www.jboss.com/ws-security/schema/jboss-ws-security_1_0.xsd">
​ <config>
​ <username/>
​ <timestamp ttl="300"/> [image: 1]
​ </config>
​</jboss-ws-security>

	[image: 1]
	
									This line specifies that a <timestamp> element must be present in the message and that the message can not be older than 300 seconds. The seconds limitation is used to prevent replay attacks.
								

						You must then specify the same <timestamp> element and seconds attribute in the jboss-wsse-server.xml file so both headers match. You must also specify the <requires/> element to enforce this condition.
					
​<jboss-ws-security xmlns="http://www.jboss.com/ws-security/config"
​ xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
​ xsi:schemaLocation="http://www.jboss.com/ws-security/config
​ http://www.jboss.com/ws-security/schema/jboss-ws-security_1_0.xsd">
​ <config>
​ <timestamp ttl="300"/>
​ <requires/>
​ </config>
​</jboss-ws-security>

Warning

						This example configuration results in simple text user information being sent in SOAP headers. You should strongly consider implementing JBossWS Secure Transport
					

Password Digest, Nonces, and Timestamp

						Example 10.1, “Basic Username Token Configuration” results in the client password being sent as plain text. You can use a combination of digested passwords, nonces, and timestamps to provide further protection from replay attacks.
					

					To enable password digesting, you must implement the following items as described in Example 10.2, “Enable Password Digesting”:
				

 ⁠Example 10.2. Enable Password Digesting
​<jboss-ws-security xmlns="http://www.jboss.com/ws-security/config"
​ xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
​ xsi:schemaLocation="http://www.jboss.com/ws-security/config
​ http://www.jboss.com/ws-security/schema/jboss-ws-security_1_0.xsd">
​ <config>
​ <username digestPassword="true" useNonce="true" useCreated="true"/> [image: 1]
​ <timestamp ttl="300"/>
​ </config>
​</jboss-ws-security>

	[image: 1]
	
									The <username> element of the jboss-wsse-client.xml file enables the digestPassword, nonces and timestamps attributes.
								

					In the login-config.xml file, you must also implement the UsernameTokenCallback module option.
				

 ⁠Example 10.3. UsernameTokenCallback Module
​<application-policy name="JBossWSDigest">
​ <authentication>
​ <login-module code="org.jboss.security.auth.spi.UsersRolesLoginModule" flag="required">
​ <module-option name="usersProperties">META-INF/jbossws-users.properties</module-option>
​ <module-option name="rolesProperties">META-INF/jbossws-roles.properties</module-option>
​ <module-option name="hashAlgorithm">SHA</module-option>
​ <module-option name="hashEncoding">BASE64</module-option>
​ <module-option name="hashUserPassword">false</module-option>
​ <module-option name="hashStorePassword">true</module-option>
​ <module-option name="storeDigestCallback">org.jboss.ws.extensions.security.auth.callback.UsernameTokenCallback</module-option>
​ <module-option name="unauthenticatedIdentity">anonymous</module-option>
​ </login-module>
​ </authentication>
​</application-policy>

					You may wish to use a more sophisticated custom login module to provide more security against replay attacks. You can use your own custom login module provided you implement the following:
				
	
							plug the UsernameTokenCallback callback into your login module
						

	
							extend the org.jboss.security.auth.spi.UsernamePasswordLoginModule
						

	
							set the hash attributes (hashAlgorithm, hashEncoding, hashUserPassword, hashStorePassword) as shown in Example 10.3, “UsernameTokenCallback Module”.
						

Advanced Tuning - Nonce Factory

						The way nonces are created, and subsequently checked and stored on the server side, influences overall security against replay attacks. Currently JBossWS ships with a basic implementation of a nonce store that does not cache the received tokens on the server side.
					

					More complex implementation can be plugged into your modules by implementing the NonceFactory and NonceStore interfaces. You can find these interfaces in the org.jboss.ws.extensions.security.nonce package.
				

					Once included, you specify your factory class through the <nonce-factory-class> element in the jboss-wsse-server.xml file.
				
Advanced Tuning - Timestamp Verification

						If a Timestamp is present in the wsse:Security header, header verification does not allow for any tolerance whatsoever in the time comparisons. If the message appears to have been created even slightly in the future or if the message has just expired it will be rejected. A new element called <timestamp-verification> is available for the wsse configuration. Example 10.4, “<timestamp-verification> Configuration” describes the required attributes for the <timestamp-verification> element.
					

 ⁠Example 10.4. <timestamp-verification> Configuration

						The <timestamp-verification> element attributes allow you to specify the tolerance in seconds that is used when verifying the 'Created' or 'Expires' element of the 'Timestamp' header.
					
​<jboss-ws-security xmlns='http://www.jboss.com/ws-security/config'
​ xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'
​ xsi:schemaLocation='http://www.jboss.com/ws-security/config
​ http://www.jboss.com/ws-security/schema/jboss-ws-security_1_0.xsd'>
​ <timestamp-verification createdTolerance="5" warnCreated="false" expiresTolerance="10" warnExpires="false" />
​</jboss-ws-security>
	 createdTolerance
	
									Number of seconds in the future a message will be accepted. The default value is 0
								

	 expiresTolerance
	
									Number of seconds a message is rejected after being classed as expired. The default value is 0.
								

	 warnCreated
	
									Specifies whether to log a warning message if a message is accepted with a 'Created' value in the future. The default value is true.
								

	 warnExpires
	
									Specifies whether to log a warning message if a message is accepted with an 'Expired' value in the past. The default value is true.
								

Note

						The warnCreated and warnExpires attributes can be used to identify accepted messages that would normally be rejected. You can use this data to identify clients that are out of sync with the server time, without rejecting the client messages.
					

 ⁠10.21.2.5.1. Secure Transport

					

 ⁠10.21.2.6. X509 Certificate Token

					By using X509v3 certificates, you can both sign and encrypt messages.
				
Encryption

						To configure encryption, you must specify the items in Example 10.5, “X509 Encryption Configuration”. The configuration is the same for clients and servers.
					

 ⁠Example 10.5. X509 Encryption Configuration

						The server configuration includes the following encryption information:
					
​<jboss-ws-security xmlns="http://www.jboss.com/ws-security/config"
​ xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
​ xsi:schemaLocation="http://www.jboss.com/ws-security/config
​ http://www.jboss.com/ws-security/schema/jboss-ws-security_1_0.xsd">
​ <key-store-file>WEB-INF/bob-sign_enc.jks</key-store-file> [image: 1]
​ <key-store-password>password</key-store-password>
​ <key-store-type>jks</key-store-type>
​ <trust-store-file>WEB-INF/wsse10.truststore</trust-store-file>
​ <trust-store-password>password</trust-store-password>
​
​ <config>
​ <timestamp ttl="300"/>
​ <sign type="x509v3" alias="1" includeTimestamp="true"/> [image: 2]
​ <encrypt type="x509v3" [image: 3]
​ alias="alice"
​ algorithm="aes-256"
​ keyWrapAlgorithm="rsa_oaep"
​ tokenReference="keyIdentifier" />
​ <requires> [image: 4]
​ <signature/>
​ <encryption/>
​ </requires>
​ </config>
​</jboss-ws-security>

	[image: 1]
	
									Keystore and Truststore information: location of each store, the password, and type of store.
								

	[image: 2]
	
									Signature configuration: you must provide the certificate and key pair aliases to use. includeTimestamp specifies whether the timestamp is signed to prevent tampering.
								

	[image: 3]
	
									Encryption configuration: you must provide the certificate and key pair aliases to use. Refer to Algorithms for more information.
								

	[image: 4]
	
									Optional security requirements: incoming messages must be both signed, and encrypted.
								

Dynamic Encryption

						When replying to multiple clients, a service provider must encrypt a message according to its destination using the correct public key. The JBossWS native implementation of WS-Security obtains the correct key to use from the signature received (and verified) in the incoming message.
					

 ⁠Example 10.6. Dynamic Encryption Configuration

						To configure dynamic encryption:
					
​<jboss-ws-security xmlns="http://www.jboss.com/ws-security/config"
​ xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
​ xsi:schemaLocation="http://www.jboss.com/ws-security/config
​ http://www.jboss.com/ws-security/schema/jboss-ws-security_1_0.xsd">
​ <key-store-file>WEB-INF/bob-sign_enc.jks</key-store-file>
​ <key-store-password>password</key-store-password>
​ <key-store-type>jks</key-store-type>
​ <trust-store-file>WEB-INF/wsse10.truststore</trust-store-file>
​ <trust-store-password>password</trust-store-password>
​
​ <config>
​ <timestamp ttl="300"/>
​ <sign type="x509v3" alias="1" includeTimestamp="true"/>
​ <encrypt type="x509v3" [image: 1]
​ algorithm="aes-256"
​ keyWrapAlgorithm="rsa_oaep"
​ tokenReference="keyIdentifier" />
​ <requires>
​ <signature/> [image: 2]
​ <encryption/>
​ </requires>
​ </config>
​</jboss-ws-security>

	[image: 1]
	
									Do not specify any encryption alias on the server side.
								

	[image: 2]
	
									Declare that a signature is required.
								

 ⁠Algorithms

						Asymmetric and symmetric encryption is performed whenever the <encrypt> element is declared. Message data are encrypted using a generated symmetric secured key. This key is written in the SOAP header after being encrypted (wrapped) with the receiver public key. You can set both the encryption and key wrap algorithms.
					

					The supported encryption algorithms include:
				
	
							AES 128 (aes-128) (default)
						

	
							AES 192 (aes-192)
						

	
							AES 256 (aes-256)
						

	
							Triple DES (triple-des)
						

					The supported key-wrap algorithms include:
				
	
							RSA v1.5 (rsa_15) (default)
						

	
							RSA OAEP (rsa_oaep)
						

Note

						The Unlimited Strength Java(TM) Cryptography Extension installation might be required to run some strong algorithms (for example, aes-256). Your country may impose limitations on the allowed cryptographic strength in applications. It is your responsibility to select the encryption level suitable for your jurisdiction.
					

Encryption Token Reference

						For interoperability reasons, you may need to configure the type of reference to encryption token to be used. For example, Microsoft Indigo does not support direct reference to local binary security tokens which are the default reference type used by JBossWS.
					

					To configure this reference, you specify the tokenReference attribute in the <encrypt> element. The values for the tokenReference attribute are:
				
	
							directReference (default)
						

	
							keyIdentifier - specifies the token data by means of an X509 SubjectKeyIdentifier reference.
						

	
							x509IssuerSerial - uniquely identifies an end entity certificate by its X509 Issuer and Serial Number
						

Note

						Complete information about X509 Token Profiles are available in the WSS X501 Certificate Token Profile 1.0 document, which can be obtained from the Oasis.org docs portal.
					

Targets Configuration

						JBossWS gives you precise control over elements that must be signed or encrypted. This allows you to encrypt important data only (such as credit card numbers) instead of other, security-trivial, information exchanged by the same service (email addresses, for example). To configure this, you must specify the Qualified Name (qname) of the SOAP elements to encrypt. The default behavior is to encrypt the whole SOAP body.
					
​<encrypt type="x509v3" alias="alice">
​ <targets>
​ <target type="qname">{http://www.my-company.com/cc}CardNumber</target>
​ <target type="qname">{http://www.my-company.com/cc}CardExpiration</target>
​ <target type="qname" contentOnly="true">{http://www.my-company.com/cc}CustomerData</target>
​ </targets>
​</encrypt>
Payload Carriage Returns

						Signature verification errors can occur in signed message payloads that contain carriage returns (\r) due to the way the special character is parsed by XML parsers. To prevent this issue, you can choose to implement custom encoding before sending the payload. Users can either encrypt the message, or force JBossWS to perform canonical normalization of messages.
					

					The org.jboss.ws.DOMContentCanonicalNormalization property can normalize the payload if set to true in the MessageContext. The property must be set just before the invocation on the client side and in the endpoint implementation.
				

 ⁠10.21.2.7. JAAS Integration

					The WS-Security implementation allows users to achieve J2EE declarative security through JAAS integration. The calling user's identity and credentials are derived from the wsse headers of the incoming message, according to the parameters provided in the server wsse configuration file. Authentication and authorization is subsequently achieved delegating to the JAAS login modules configured for the specified security domain.
				
Username Token

						Username Token Profile provides a mean of specifying the caller's username and password. The wsse server configuration file can be used to have those information used when performing authentication and authorization through configured login module.
					
​<jboss-ws-security xmlns="http://www.jboss.com/ws-security/config"
​ xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
​ xsi:schemaLocation="http://www.jboss.com/ws-security/config
​ http://www.jboss.com/ws-security/schema/jboss-ws-security_1_0.xsd">
​ <config>
​ <username/>
​ <authenticate>
​ <usernameAuth/>
​ </authenticate>
​ </config>
​</jboss-ws-security>
X.509 Certificate Token

						In previous versions of JBossWS, the username token was always used to set the principal and credential of the caller whenever specified. This behavior is retained for backward compatibility reasons where no <authenticate> element is specified and the username token is used.
					
​<jboss-ws-security xmlns="http://www.jboss.com/ws-security/config"
​ xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
​ xsi:schemaLocation="http://www.jboss.com/ws-security/config
​ http://www.jboss.com/ws-security/schema/jboss-ws-security_1_0.xsd">
​ <key-store-file>META-INF/bob-sign.jks</key-store-file>
​ <key-store-password>password</key-store-password>
​ <key-store-type>jks</key-store-type>
​ <trust-store-file>META-INF/wsse10.truststore</trust-store-file>
​ <trust-store-password>password</trust-store-password>
​ <config>
​ <sign type="x509v3" alias="1" includeTimestamp="false"/>
​ <requires>
​ <signature/>
​ </requires>
​ <authenticate>
​ <signatureCertAuth certificatePrincipal="org.jboss.security.auth.certs.SubjectCNMapping"/> [image: 1]
​ </authenticate>
​ </config>
​</jboss-ws-security>

	[image: 1]
	
								The optional certificatePrincipal attribute specifies the class used to retrieve the principal from the X.509 certificate's attributes. The selected class must extend CertificatePrincipal. The default class used when no attribute is specified is org.jboss.security.auth.certs.SubjectDNMapping.
							

					The configured security domain must have a correctly configured BaseCertLoginModule, as described in Example 10.7, “BaseCertLoginModule Security Domain”.
				

 ⁠Example 10.7. BaseCertLoginModule Security Domain

						The following code sample shows a security domain with a CertRolesLoginModule that also enables authorization (using the specified jbossws-roles.properties file).
					
​<application-policy name="JBossWSCert">
​ <authentication>
​ <login-module code="org.jboss.security.auth.spi.CertRolesLoginModule" flag="required">
​ <module-option name="rolesProperties">jbossws-roles.properties</module-option>
​ <module-option name="unauthenticatedIdentity">anonymous</module-option>
​ <module-option name="securityDomain">java:/jaas/JBossWSCert</module-option>
​ </login-module>
​ </authentication>
​</application-policy>

					The BaseCertLoginModule uses a central keystore to authenticate users. This store is configured through the org.jboss.security.plugins.JaasSecurityDomain MBean as shown in Example 10.8, “BaseCertLoginModule Keystore”.
				

 ⁠Example 10.8. BaseCertLoginModule Keystore
​<mbean code="org.jboss.security.plugins.JaasSecurityDomain"
​ name="jboss.security:service=SecurityDomain">
​ <constructor>
​ <arg type="java.lang.String" value="JBossWSCert"/>
​ </constructor>
​ <attribute name="KeyStoreURL">resource:META-INF/keystore.jks</attribute>
​ <attribute name="KeyStorePass">password</attribute>
​ <depends>jboss.security:service=JaasSecurityManager</depends>
​</mbean>

					At authentication time, the specified CertificatePrincipal mapping class accesses the keystore using the principal obtained from the associated wsse header. If a certificate is found and is the same as the one specified in the wsse header, the user is successfully authenticated.
				

 ⁠10.21.2.8. POJO Endpoint Authentication and Authorization

					The credentials obtained by WS-Security are generally used for EJB endpoints, or for POJO endpoints when they make a call to another secured resource. It is now possible to enable authentication and authorization checking for POJO endpoints.
				
Important

						Authentication and Authorization should not be enabled for EJB based endpoints because the EJB container handles the security requirements of the deployed bean.
					

 ⁠Procedure 10.1. Enabling POJO Authentication and Authorization

						This procedure describes the additional configuration required to enable authentication and authorization for POJO endpoints.
					
	Define Security Domain in Web Archive

							You must define a security domain in the WAR containing the POJO.
						

							Specify a <security-domain> in the jboss-web deployment descriptor within the /WEB-INF folder.
						
​<jboss-web>
​ <security-domain>java:/jaas/JBossWS</security-domain>
​</jboss-web>

	Configure the jboss-wsse-server.xml <authorize> element

							Specify an <authorize> element within the <config> element.
						

							The <config> element can be defined globally, be port-specific, or operation-specific.
						

							The <authorize> element must contain either the <unchecked/> element or one or more <role> elements. Each <role> element must contain the name of a valid RoleName.
						

							You can choose to implement two types of authentication: unchecked, and role-based authentication.
						
Unchecked Authentication

								The authentication step is performed to validate the user's username and password, but no further role checking takes place. If the user's username and password are invalid, the request is rejected.
							

 ⁠Example 10.9. Unchecked Authentication
​<jboss-ws-security>
​
​ <config>
​ <authorize>
​ <unchecked/>
​ </authorize>
​ </config>
​
​</jboss-ws-security>

Role-based Authentication

								The user is authenticated using their username and password as per Unchecked Authentication. Once the user's username and password is verified, user credentials are checked again to ensure at least of the roles specified in the <role> element is assigned to the user.
							
Note

								Authentication and authorization proceeds even if no username and password, or certificate was provided in the request message. In this scenario, authentication may proceed if the security domain's login module has been configured with an anonymous identity.
							

 ⁠Example 10.10. Role-based Authentication
​<jboss-ws-security>
​
​ <config>
​ <authorize>
​ <role>friend</role>
​ <role>family</role>
​ </authorize>
​ </config>
​
​</jboss-ws-security>

 ⁠10.21.3. XML Registries

				J2EE 5.0 mandates support for Java API for XML Registries (JAXR). Inclusion of a XML Registry with the J2EE 5.0 certified Application Server is optional. JBoss EAP ships a UDDI v2.0 compliant registry, the Apache jUDDI registry. JAXR Capability Level 0 (UDDI Registries) is also supported through Apache Scout integration.
			

				Section 10.21.3, “XML Registries” describes how to configure the jUDDI registry in JBoss and some sample code outlines for using JAXR API to publish and query the jUDDI registry.
			

 ⁠10.21.3.1. Apache jUDDI Configuration

					jUDDI registry configuration happens via a MBean Service that is deployed in the juddi-service.sar archive in the all server profile. The configuration of this service can be done in the jboss-service.xml of the META-INF directory in the juddi-service.sar
				

					Let us look at the individual configuration items that can be changed.
				

					DataSources configuration
				
​
​<!-- Datasource to Database -->
​<attribute name="DataSourceUrl">java:/DefaultDS</attribute>

					Database Tables (Should they be created on start, Should they be dropped on stop, Should they be dropped on start etc)
				
​
​<!-- Should all tables be created on Start-->
​<attribute name="CreateOnStart">false</attribute>
​<!-- Should all tables be dropped on Stop-->
​<attribute name="DropOnStop">true</attribute>
​<!-- Should all tables be dropped on Start-->
​<attribute name="DropOnStart">false</attribute>

					JAXR Connection Factory to be bound in JNDI. (Should it be bound? and under what name?)
				
​<!-- Should I bind a Context to which JaxrConnectionFactory bound-->
​<attribute name="ShouldBindJaxr">true</attribute>
​
​<!-- Context to which JaxrConnectionFactory to bind to. If you have remote clients, please bind it to the global namespace(default behavior).
​To just cater to clients running on the same VM as JBoss, change to java:/JAXR -->
​<attribute name="BindJaxr">JAXR</attribute>

					Other common configuration:
				

					Add authorized users to access the jUDDI registry. (Add a sql insert statement in a single line)
				

Look at the script META-INF/ddl/juddi_data.ddl for more details. Example for a user 'jboss'

INSERT INTO PUBLISHER (PUBLISHER_ID,PUBLISHER_NAME,
EMAIL_ADDRESS,IS_ENABLED,IS_ADMIN)
VALUES ('jboss','JBoss User','jboss@xxx','true','true');

 ⁠10.21.3.2. JBoss JAXR Configuration

					In this section, we will discuss the configuration needed to run the JAXR API. The JAXR configuration relies on System properties passed to the JVM. The System properties that are needed are:
				
​
​javax.xml.registry.ConnectionFactoryClass=org.apache.ws.scout.registry.
​ConnectionFactoryImpl
​jaxr.query.url=http://localhost:8080/juddi/inquiry
​jaxr.publish.url=http://localhost:8080/juddi/publish
​scout.proxy.transportClass=org.jboss.jaxr.scout.transport.SaajTransport

					Please remember to change the hostname from "localhost" to the hostname of the UDDI service/Server.
				

					You can pass the System Properties to the JVM in the following ways:
				
	
							When the client code is running inside JBoss (maybe a servlet or an EJB). Then you will need to pass the System properties in the run.sh or run.bat scripts to the java process via the "-D" option.
						

	
							When the client code is running in an external JVM. Then you can pass the properties either as "-D" options to the java process or explicitly set them in the client code(not recommended).
						

​
​System.setProperty(propertyname, propertyvalue);

 ⁠10.21.3.3. JAXR Sample Code

					There are two categories of API: JAXR Publish API and JAXR Inquiry API. The important JAXR interfaces that any JAXR client code will use are the following.
				
	
							javax.xml.registry.RegistryService From J2EE 5.0 JavaDoc: "This is the principal interface implemented by a JAXR provider. A registry client can get this interface from a Connection to a registry. It provides the methods that are used by the client to discover various capability specific interfaces implemented by the JAXR provider."
						

	
							javax.xml.registry.BusinessLifeCycleManager From J2EE 5.0 JavaDoc: "The BusinessLifeCycleManager interface, which is exposed by the Registry Service, implements the life cycle management functionality of the Registry as part of a business level API. There is no authentication information provided, because the Connection interface keeps that state and context on behalf of the client."
						

	
							javax.xml.registry.BusinessQueryManager From J2EE 5.0 JavaDoc: "The BusinessQueryManager interface, which is exposed by the Registry Service, implements the business style query interface. It is also referred to as the focused query interface."
						

					Let us now look at some of the common programming tasks performed while using the JAXR API:
				

					Getting a JAXR Connection to the registry.
				
​
​String queryurl = System.getProperty("jaxr.query.url", "http://localhost:8080/juddi/inquiry");
​String puburl = System.getProperty("jaxr.publish.url", "http://localhost:8080/juddi/publish");
​..
​Properties props = new Properties();
​props.setProperty("javax.xml.registry.queryManagerURL", queryurl);
​props.setProperty("javax.xml.registry.lifeCycleManagerURL", puburl);
​
​String transportClass = System.getProperty("scout.proxy.transportClass", "org.jboss.jaxr.scout.transport.SaajTransport");
​System.setProperty("scout.proxy.transportClass", transportClass);
​
​// Create the connection, passing it the configuration properties
​factory = ConnectionFactory.newInstance();
​factory.setProperties(props);
​connection = factory.createConnection();

					Authentication with the registry.
				
​
​/**
​ * Does authentication with the uddi registry
​ */
​protected void login() throws JAXRException
​{
​ PasswordAuthentication passwdAuth = new PasswordAuthentication(userid, passwd.toCharArray());
​ Set creds = new HashSet();
​ creds.add(passwdAuth);
​
​ connection.setCredentials(creds);
​}

					Save a Business
				
​
​/**
​ * Creates a Jaxr Organization with 1 or more services
​ */
​protected Organization createOrganization(String orgname) throws JAXRException
​{
​ Organization org = blm.createOrganization(getIString(orgname));
​ org.setDescription(getIString("JBoss Inc"));
​ Service service = blm.createService(getIString("JBOSS JAXR Service"));
​ service.setDescription(getIString("Services of XML Registry"));
​ //Create serviceBinding
​ ServiceBinding serviceBinding = blm.createServiceBinding();
​ serviceBinding.setDescription(blm.createInternationalString("Test Service Binding"));
​
​ //Turn validation of URI off
​ serviceBinding.setValidateURI(false);
​ serviceBinding.setAccessURI("http://testjboss.org");
​ ...
​ // Add the serviceBinding to the service
​ service.addServiceBinding(serviceBinding);
​
​ User user = blm.createUser();
​ org.setPrimaryContact(user);
​ PersonName personName = blm.createPersonName("Anil S");
​ TelephoneNumber telephoneNumber = blm.createTelephoneNumber();
​ telephoneNumber.setNumber("111-111-7777");
​ telephoneNumber.setType(null);
​ PostalAddress address = blm.createPostalAddress("111", "My Drive", "BuckHead", "GA", "USA", "1111-111", "");
​ Collection postalAddresses = new ArrayList();
​ postalAddresses.add(address);
​ Collection emailAddresses = new ArrayList();
​ EmailAddress emailAddress = blm.createEmailAddress("anil@apache.org");
​ emailAddresses.add(emailAddress);
​
​ Collection numbers = new ArrayList();
​ numbers.add(telephoneNumber);
​ user.setPersonName(personName);
​ user.setPostalAddresses(postalAddresses);
​ user.setEmailAddresses(emailAddresses);
​ user.setTelephoneNumbers(numbers);
​
​ ClassificationScheme cScheme = getClassificationScheme("ntis-gov:naics", "");
​ Key cKey = blm.createKey("uuid:C0B9FE13-324F-413D-5A5B-2004DB8E5CC2");
​ cScheme.setKey(cKey);
​ Classification classification = blm.createClassification(cScheme, "Computer Systems Design and Related Services", "5415");
​ org.addClassification(classification);
​ ClassificationScheme cScheme1 = getClassificationScheme("D-U-N-S", "");
​ Key cKey1 = blm.createKey("uuid:3367C81E-FF1F-4D5A-B202-3EB13AD02423");
​ cScheme1.setKey(cKey1);
​ ExternalIdentifier ei = blm.createExternalIdentifier(cScheme1, "D-U-N-S number", "08-146-6849");
​ org.addExternalIdentifier(ei);
​ org.addService(service);
​
​ return org;
​}

					Query a Business
				
​
​/**
​ * Locale aware Search a business in the registry
​ */
​public void searchBusiness(String bizname) throws JAXRException
​{
​ try
​ {
​ // Get registry service and business query manager
​ this.getJAXREssentials();
​
​ // Define find qualifiers and name patterns
​ Collection findQualifiers = new ArrayList();
​ findQualifiers.add(FindQualifier.SORT_BY_NAME_ASC);
​ Collection namePatterns = new ArrayList();
​ String pattern = "%" + bizname + "%";
​ LocalizedString ls = blm.createLocalizedString(Locale.getDefault(), pattern);
​ namePatterns.add(ls);
​
​ // Find based upon qualifier type and values
​ BulkResponse response = bqm.findOrganizations(findQualifiers, namePatterns, null, null, null, null);
​
​ // check how many organization we have matched
​ Collection orgs = response.getCollection();
​ if (orgs == null)
​ {
​ log.debug(" -- Matched 0 orgs");
​ }
​ else
​ {
​ log.debug(" -- Matched " + orgs.size() + " organizations -- ");
​
​ // then step through them
​ for (Iterator orgIter = orgs.iterator(); orgIter.hasNext();)
​ {
​ Organization org = (Organization)orgIter.next();
​ log.debug("Org name: " + getName(org));
​ log.debug("Org description: " + getDescription(org));
​ log.debug("Org key id: " + getKey(org));
​ checkUser(org);
​ checkServices(org);
​ }
​ }
​ }
​ finally
​ {
​ connection.close();
​ }
​}

					For more examples of code using the JAXR API, please refer to the resources in the Resources Section.
				

 ⁠10.21.3.4. Troubleshooting

	
							I cannot connect to the registry from JAXR. Please check the inquiry and publish url passed to the JAXR ConnectionFactory.
						

	
							I cannot connect to the jUDDI registry. Please check the jUDDI configuration and see if there are any errors in the server.log. And also remember that the jUDDI registry is available only in the "all" configuration.
						

	
							I cannot authenticate to the jUDDI registry. Have you added an authorized user to the jUDDI database, as described earlier in the chapter?
						

	
							I would like to view the SOAP messages in transit between the client and the UDDI Registry. Please use the tcpmon tool to view the messages in transit. TCPMon
						

 ⁠10.21.3.5. Resources

	
							JAXR Tutorial and Code Camps
						

	
							J2EE 1.4 Tutorial
						

	
							J2EE Web Services by Richard Monson-Haefel
						

 ⁠10.22. JBossWS Extensions

			This section describes proprietary JBoss extensions to JAX-WS.
		

 ⁠10.22.1. Proprietary Annotations

				For the set of standard annotations, please have a look at JAX-WS Annotations
			

 ⁠10.22.1.1. EndpointConfig

​/**
​ * Defines an endpoint or client configuration.
​ * This annotation is valid on an endpoint implementaion bean or a SEI.
​ */
​@Retention(value = RetentionPolicy.RUNTIME)
​@Target(value = { ElementType.TYPE })
​public @interface EndpointConfig
​{
​ ...
​ /**
​ * The optional config-name element gives the configuration name that must be present in
​ * the configuration given by element config-file.
​ *
​ * Server side default: Standard Endpoint
​ * Client side default: Standard Client
​ */
​ String configName() default "";
​ ...
​ /**
​ * The optional config-file element is a URL or resource name for the configuration.
​ *
​ * Server side default: standard-jaxws-endpoint-config.xml
​ * Client side default: standard-jaxws-client-config.xml
​ */
​ String configFile() default "";
​}

 ⁠10.22.1.2. WebContext

​/**
​ * Provides web context specific meta data to EJB based web service endpoints.
​ *
​ * @author thomas.diesler@jboss.org
​ * @since 26-Apr-2005
​ */
​@Retention(value = RetentionPolicy.RUNTIME)
​@Target(value = { ElementType.TYPE })
​public @interface WebContext
​{
​ ...
​ /**
​ * The contextRoot element specifies the context root that the web service endpoint is deployed to.
​ * If it is not specified it will be derived from the deployment short name.
​ *
​ * Applies to server side port components only.
​ */
​ String contextRoot() default "";
​ ...
​ /**
​ * The virtual hosts that the web service endpoint is deployed to.
​ *
​ * Applies to server side port components only.
​ */
​ String[] virtualHosts() default {};
​
​ /**
​ * Relative path that is appended to the contextRoot to form fully qualified
​ * endpoint address for the web service endpoint.
​ *
​ * Applies to server side port components only.
​ */
​ String urlPattern() default "";
​
​ /**
​ * The authMethod is used to configure the authentication mechanism for the web service.
​ * As a prerequisite to gaining access to any web service which are protected by an authorization
​ * constraint, a user must have authenticated using the configured mechanism.
​ *
​ * Legal values for this element are "BASIC", or "CLIENT-CERT".
​ */
​ String authMethod() default "";
​
​ /**
​ * The transportGuarantee specifies that the communication
​ * between client and server should be NONE, INTEGRAL, or
​ * CONFIDENTIAL. NONE means that the application does not require any
​ * transport guarantees. A value of INTEGRAL means that the application
​ * requires that the data sent between the client and server be sent in
​ * such a way that it can not be changed in transit. CONFIDENTIAL means
​ * that the application requires that the data be transmitted in a
​ * fashion that prevents other entities from observing the contents of
​ * the transmission. In most cases, the presence of the INTEGRAL or
​ * CONFIDENTIAL flag will indicate that the use of SSL is required.
​ */
​ String transportGuarantee() default "";
​
​ /**
​ * A secure endpoint does not by default publish it's wsdl on an unsecure transport.
​ * You can override this behavior by explicitly setting the secureWSDLAccess flag to false.
​ *
​ * Protect access to WSDL. See http://jira.jboss.org/jira/browse/JBWS-723
​ */
​ boolean secureWSDLAccess() default true;
​}

 ⁠10.22.1.3. SecurityDomain

​/**
​ * Annotation for specifying the JBoss security domain for an EJB
​ */
​@Target(ElementType.TYPE) @Retention(RetentionPolicy.RUNTIME)
​public @interface SecurityDomain
​{
​ /**
​ * The required name for the security domain.
​ *
​ * Do not use the JNDI name
​ *
​ * Good: "MyDomain"
​ * Bad: "java:/jaas/MyDomain"
​ */
​ String value();
​
​ /**
​ * The name for the unauthenticated pricipal
​ */
​ String unauthenticatedPrincipal() default "";
​}

 ⁠10.23. Web Services Appendix

			Note

					This information can be used with JBoss Web Services CXF Stack.
				

		

			JAX-WS Endpoint Configuration
		

			JAX-WS Client Configuration
		

			JAX-WS Annotations
		

 ⁠10.24. References

	
					JSR-224 - Java API for XML-Based Web Services (JAX-WS) 2.0
				

	
					JSR 222 - Java Architecture for XML Binding (JAXB) 2.0
				

	
					JSR-250 - Common Annotations for the Java Platform
				

	
					JSR 181 - Web Services Metadata for the Java Platform
				

 ⁠Chapter 11. Additional Services

		This chapter discusses useful MBean services that are not discussed elsewhere either because they are utility services not necessary for running JBoss, or they don't fit into a current section of the book.
	

 ⁠11.1. Exposing MBean Events via SNMP

			JBoss has an SNMP adaptor service that can be used to intercept JMX notifications emitted by MBeans, convert them to traps and send them to SNMP managers. In this respect the snmp-adaptor acts as a SNMP agent. Future versions may offer support for full agent get/set functionality that maps onto MBean attributes or operations.
		

			This service can be used to integrate JBoss with higher order system or network management platforms (HP OpenView, for example), making the MBeans visible to those systems. The MBean developer can instrument the MBeans by producing notifications for any significant event (server coldstart, for example), and the adaptor can then be configured to intercept the notification and map it onto an SNMP traps. The adaptor uses the JoeSNMP package from OpenNMS as the SNMP engine.
		

			The SNMP service is configured in snmp-adaptor.sar. This service is only available in the all configuration, so you will need to copy the .sar file to your configuration if you want to use the service from another profile.
		

			Inside the snmp-adaptor.sar directory, there are two configuration files that control the SNMP service.
		

	managers.xml
	
						This file configures where to send traps. The content model for this file is shown in Figure 11.1, “The schema for the SNMP managers file”.
					

	notifications.xml
	
						This file specifies the exact mapping of each notification type to a corresponding SNMP trap. The content model for this file is shown in Figure 11.2, “The schema for the notification to trap mapping file”.
					

			The SNMPAgentService MBean is configured in snmp-adaptor.sar/META-INF/jboss-service.xml.
		

			The configurable parameters are:
		

 ⁠Table 11.1.
	 Parameter 	 Description
	 HeartBeatPeriod 	 The period in seconds at which heartbeat notifications are generated.
	 ManagersResName 	 Specifies the resource name of the managers.xml file.
	 NotificationMapResName 	 Specifies the resource name of the notifications.xml file.
	 TrapFactoryClassName 	 The org.jboss.jmx.adaptor.snmp.agent.TrapFactory implementation class that takes care of translation of JMX Notifications into SNMP V1 and V2 traps.
	 TimerName 	 Specifies the JMX ObjectName of the JMX timer service to use for heartbeat notifications.
	 SubscriptionList 	 Specifies which MBeans and notifications to listen for.

 ⁠[image: The schema for the SNMP managers file]

Figure 11.1. The schema for the SNMP managers file

 ⁠[image: The schema for the notification to trap mapping file]

Figure 11.2. The schema for the notification to trap mapping file

			TrapdService is a simple MBean that acts as an SNMP Manager. It listens to a configurable port for incoming traps and logs them as DEBUG messages using the system logger. You can modify the log4j configuration to redirect the log output to a file. SnmpAgentService and TrapdService are not dependent on each other.
		

 ⁠Chapter 12. JBoss AOP

		 JBoss AOP is a 100% Pure Java Aspected Oriented Framework usable in any programming environment or tightly integrated with our application server. Aspects allow you to more easily modularize your code base when regular object oriented programming just does not fit the bill. It can provide a cleaner separation from application logic and system code. It provides a great way to expose integration points into your software. Combined with Java Annotations, it also is a great way to expand the Java language in a clean pluggable way rather than using annotations solely for code generation.
	

		JBoss AOP is not only a framework, but also a prepackaged set of aspects that are applied via annotations, pointcut expressions, or dynamically at runtime. Some of these include caching, asynchronous communication, transactions, security, remoting, and many more.
	

		An aspect is a common feature that is typically scattered across methods, classes, object hierarchies, or even entire object models. It is behavior that looks and smells like it should have structure, but you can not find a way to express this structure in code with traditional object-oriented techniques.
	

		For example, metrics is one common aspect. To generate useful logs from your application, you have to (often liberally) sprinkle informative messages throughout your code. However, metrics is something that your class or object model really should not be concerned about. After all, metrics is irrelevant to your actual application: it does not represent a customer or an account, and it does not realize a business rule. It's simply orthogonal.
	

 ⁠12.1. Some key terms

Joinpoint

				A joinpoint is any point in your Java program. The call of a method, the execution of a constructor, the access of a field; all these are joinpoints. You could also think of a joinpoint as a particular Java event, where an event is a method call, constructor call, field access, etc.
			
Invocation

				An invocation is a JBoss AOP class that encapsulates what a joinpoint is at runtime. It could contain information like which method is being called, the arguments of the method, etc.
			
Advice

				An advice is a method that is called when a particular joinpoint is executed, such as the behavior that is triggered when a method is called. It could also be thought of as the code that performs the interception. Another analogy is that an advice is an "event handler".
			
Pointcut

				Pointcuts are AOP's expression language. Just as a regular expression matches strings, a pointcut expression matches a particular joinpoint.
			
Introduction

				An introduction modifies the type and structure of a Java class. It can be used to force an existing class to implement an interface or to add an annotation to anything.
			
Aspect

				An aspect is a plain Java class that encapsulates any number of advices, pointcut definitions, mixins, or any other JBoss AOP construct.
			
Interceptor

				An interceptor is an aspect with only one advice, named invoke. It is a specific interface that you can implement if you want your code to be checked by forcing your class to implement an interface. It also will be portable and can be reused in other JBoss environments like EJBs and JMX MBeans.
			

			In AOP, a feature like metrics is called a crosscutting concern, as it is a behavior that "cuts" across multiple points in your object models, yet is distinctly different. As a development methodology, AOP recommends that you abstract and encapsulate crosscutting concerns.
		

			For example, let us say you wanted to add code to an application to measure the amount of time it would take to invoke a particular method. In plain Java, the code would look something like the following.
		
​public class BankAccountDAO
​{
​ public void withdraw(double amount)
​ {
​ long startTime = System.currentTimeMillis();
​ try
​ {
​ // Actual method body...
​ }
​ finally
​ {
​ long endTime = System.currentTimeMillis() - startTime;
​ System.out.println("withdraw took: " + endTime);
​ }
​ }
​}

			While this code works, there are a few problems with this approach:
				
						It's extremely difficult to turn metrics on and off, as you have to manually add the code in the try/finally blocks to each and every method or constructor you want to benchmark.
					

	
						Profiling code should not be combined with your application code. It makes your code more verbose and difficult to read, since the timings must be enclosed within the try/finally blocks.
					

	
						If you wanted to expand this functionality to include a method or failure count, or even to register these statistics to a more sophisticated reporting mechanism, you'd have to modify a lot of different files (again).
					

		

			This approach to metrics is very difficult to maintain, expand, and extend, because it is dispersed throughout your entire code base. In many cases, OOP may not always be the best way to add metrics to a class.
		

			Aspect-oriented programming gives you a way to encapsulate this type of behavior functionality. It allows you to add behavior such as metrics "around" your code. For example, AOP provides you with programmatic control to specify that you want calls to BankAccountDAO to go through a metrics aspect before executing the actual body of that code.
		

 ⁠12.2. Creating Aspects in JBoss AOP

			 In short, all AOP frameworks define two things: a way to implement crosscutting concerns, and a programmatic construct — a programming language or a set of tags to specify how you want to apply those snippets of code. Let us take a look at how JBoss AOP, its cross-cutting concerns, and how you can implement a metrics aspect in JBoss Enterprise Application Platform.
		

			The first step in creating a metrics aspect in JBoss AOP is to encapsulate the metrics feature in its own Java class. The following code extracts the try/finally block in our first code example's BankAccountDAO.withdraw() method into Metrics, an implementation of a JBoss AOP Interceptor class.
		

			The following example code demonstrates implementing metrics in a JBoss AOP Interceptor
		
​01. public class Metrics implements org.jboss.aop.advice.Interceptor
​02. {
​03. public Object invoke(Invocation invocation) throws Throwable
​04. {
​05. long startTime = System.currentTimeMillis();
​06. try
​07. {
​08. return invocation.invokeNext();
​09. }
​10. finally
​11. {
​12. long endTime = System.currentTimeMillis() - startTime;
​13. java.lang.reflect.Method m = ((MethodInvocation)invocation).method;
​14. System.out.println("method " + m.toString() + " time: " + endTime + "ms");
​15. }
​16. }
​17. }

			Under JBoss AOP, the Metrics class wraps withdraw(): when calling code invokes withdraw(), the AOP framework breaks the method call into its parts and encapsulates those parts into an Invocation object. The framework then calls any aspects that sit between the calling code and the actual method body.
		

			When the AOP framework is done dissecting the method call, it calls Metrics's invoke method at line 3. Line 8 wraps and delegates to the actual method and uses an enclosing try/finally block to perform the timings. Line 13 obtains contextual information about the method call from the Invocation object, while line 14 displays the method name and the calculated metrics.
		

			Having the Metrics code within its own object allows us to easily expand and capture additional measurements later on. Now that metrics are encapsulated into an aspect, let us see how to apply it.
		

 ⁠12.3. Applying Aspects in JBoss AOP

			 To apply an aspect, you define when to execute the aspect code. Those points in execution are called pointcuts. An analogy to a pointcut is a regular expression. Where a regular expression matches strings, a pointcut expression matches events or points within your application. For example, a valid pointcut definition would be, "for all calls to the JDBC method executeQuery(), call the aspect that verifies SQL syntax."
		

			An entry point could be a field access, or a method or constructor call. An event could be an exception being thrown. Some AOP implementations use languages akin to queries to specify pointcuts. Others use tags. JBoss AOP uses both.
		

			The following listing demonstrates defining a pointcut for the Metrics example in JBoss AOP:
		
​<interceptor name="SimpleInterceptor" class="com.mc.Metrics"/> [image: 1]
​<bind pointcut="execution (public void com.mc.BankAccountDAO->withdraw(double amount))" > [image: 2]
​ <interceptor-ref name="SimpleInterceptor" />
​</bind> [image: 2]
​<bind pointcut="execution (* com.mc.billing.->(..))"> [image: 3]
​ <interceptor-ref name="com.mc.Metrics" />
​</bind> [image: 3]

	[image: 1]
	
						Defines the mapping of the interceptor name to the interceptor class.
					

	[image: 2]
	
						Lines 2-4 define a pointcut that applies the metrics aspect to the specific method BankAccountDAO.withdraw().
					

	[image: 3]
	
						Lines 5-7 define a general pointcut that applies the metrics aspect to all methods in all classes in the com.mc.billing package. There is also an optional annotation mapping if you prefer to avoid XML.
					

			For more information, see the JBoss AOP reference documentation.
		

			JBoss AOP has a rich set of pointcut expressions that you can use to define various points or events in your Java application. Once your points are defined, you can apply aspects to them. You can attach your aspects to a specific Java class in your application or you can use more complex compositional pointcuts to specify a wide range of classes within one expression.
		

			With AOP, as this example shows, you can combine all crosscutting behavior into one object and apply it easily and simply, without complicating your code with features unrelated to business logic. Instead, common crosscutting concerns can be maintained and extended in one place.
		

			Note that code within the BankAccountDAO class does not detect that it is being profiled. Profiling is part of what aspect-oriented programmers deem orthogonal concerns. In the object-oriented programming code snippet at the beginning of this chapter, profiling was part of the application code. AOP allows you to remove that code. A modern promise of middleware is transparency, and AOP clearly delivers.
		

			Orthogonal behavior can also be included after development. In object-oriented code, monitoring and profiling must be added at development time. With AOP, a developer or an administrator can easily add monitoring and metrics as needed without touching the code. This is a very subtle but significant part of AOP, as this separation allows aspects to be layered on top of or below the code that they cut across. A layered design allows features to be added or removed at will. For instance, perhaps you snap on metrics only when you are doing some benchmarks, but remove it for production. With AOP, this can be done without editing, recompiling, or repackaging the code.
		

 ⁠12.4. Packaging AOP Applications

			To deploy an AOP application in JBoss Enterprise Application Platform you need to package it. AOP is packaged similarly to SARs (MBeans). You can either deploy an XML file directly in the deploy/ directory with the signature *-aop.xml along with your package (this is how the base-aop.xml, included in the jboss-aop.deployer file works) or you can include it in the JAR file containing your classes. If you include your XML file in your JAR, it must have the file extension .aop and a jboss-aop.xml file must be contained in a META-INF directory, for instance: META-INF/jboss-aop.xml.
		

			In the JBoss Enterprise Application Platform 5, you must specify the schema used, otherwise your information will not be parsed correctly. You do this by adding the xmlns="urn:jboss:aop-beans:1:0 attribute to the root aop element, as shown here:
		
​
​<aop xmlns="urn:jboss:aop-beans:1.0">
​</aop>

			If you want to create anything more than a non-trivial example, using the .aop JAR files, you can make any top-level deployment contain an AOP file containing the XML binding configuration. For instance you can have an AOP file in an EAR file, or an AOP file in a WAR file. The bindings specified in the META-INF/jboss-aop.xml file contained in the AOP file will affect all the classes in the whole WAR file.
		

			To pick up an AOP file in an EAR file, it must be listed in the .ear/META-INF/application.xml as a Java module, as follows:
		
​
​<?xml version='1.0' encoding='UTF-8'?>
​<!DOCTYPE application PUBLIC '-//Sun Microsystems, Inc.//DTD J2EE Application 1.2//EN''http://java.sun.com/j2ee/dtds/application_1_2.dtd'>
​
​<application>
​ <display-name>AOP in JBoss example</display-name>
​ <module>
​ <java>example.aop</java>
​ </module>
​ <module>
​ <ejb>aopexampleejb.jar</ejb>
​ </module>
​ <module>
​ <web>
​ <web-uri>aopexample.war</web-uri>
​ <context-root>/aopexample</context-root>
​ </web>
​ </module>
​</application>

Important

				In the JBoss Enterprise Application Platform 5, the contents of the .ear file are deployed in the order they are listed in the application.xml. When using loadtime weaving the bindings listed in the example.aop file must be deployed before the classes being advised are deployed, so that the bindings exist in the system before (for example) the ejb and servlet classes are loaded. This is achieved by listing the AOP file at the start of the application.xml. Other types of archives are deployed before anything else and so do not require special consideration, such as .sar and .war files.
			

 ⁠12.5. The JBoss AspectManager Service

			The AspectManager Service can be managed at runtime using the JMX console, which is found at http://localhost:8080/jmx-console. It is registered under the ObjectName jboss.aop:service=AspectManager. If you want to configure it on start up you need to edit some configuration files.
		

			In JBoss Enterprise Application Platform 5 the AspectManager Service is configured using a JBoss Microcontainer bean. The configuration file is jboss-as/server/PROFILE/conf/bootstrap/aop.xml. The AspectManager Service is deployed with the following XML:
		
​
​ <bean name="AspectManager" class="org.jboss.aop.deployers.AspectManagerJDK5">
​
​ <property name="jbossIntegration"><inject bean="AOPJBossIntegration"/></property>
​
​ <property name="enableLoadtimeWeaving">false</property>
​ <!-- only relevant when EnableLoadtimeWeaving is true.
​ When transformer is on, every loaded class gets transformed.
​ If AOP can not find the class, then it throws an exception.
​ Sometimes, classes may not have all the classes they reference.
​ So, the Suppressing is needed. (For instance, JBoss cache in the default configuration) -->
​
​ <property name="suppressTransformationErrors">true</property>
​
​ <property name="prune">true</property>
​
​ <property name="include">org.jboss.test., org.jboss.injbossaop.</property>
​
​ <property name="exclude">org.jboss.</property>
​ <!-- This avoids instrumentation of hibernate cglib enhanced proxies
​
​ <property name="ignore">*$$EnhancerByCGLIB$$*</property> -->
​
​ <property name="optimized">true</property>
​
​ <property name="verbose">false</property>
​ <!-- Available choices for this attribute are: org.jboss.aop.instrument.ClassicInstrumentor (default)
​ org.jboss.aop.instrument.GeneratedAdvisorInstrumentor -->
​
​ <!-- <property name="instrumentor">org.jboss.aop.instrument.ClassicInstrumentor</property>-->
​
​ <!-- By default the deployment of the aspects contained in
​ ../deployers/jboss-aop-jboss5.deployer/base-aspects.xml
​ are not deployed. To turn on deployment uncomment this property
​ <property name="useBaseXml">true</property>-->
​</bean>

			Later we will talk about changing the class of the AspectManager Service. To do this, replace the contents of the class attribute of the bean element.
		

 ⁠12.6. Loadtime transformation in the JBoss Enterprise Application Platform Using Sun JDK

			The JBoss Enterprise Application Platform has special integration with JDK to do loadtime transformations. This section explains how to use it.
		

			If you want to do load-time transformations with JBoss Enterprise Application Platform 5 and Sun JDK, these are the steps you must take.
		
	
					Set the enableLoadtimeWeaving attribute/property to true. By default, JBoss Enterprise Application Platform will not do load-time bytecode manipulation of AOP files unless this is set. If suppressTransformationErrors is true, failed bytecode transformation will only give an error warning. This flag is needed because sometimes a JBoss deployment will not include all of the classes referenced.
				

	
					Copy the pluggable-instrumentor.jar from the lib/ directory of your JBoss AOP distribution to the bin/ directory of your JBoss Enterprise Application Platform.
				

	
					Next edit run.sh or run.bat (depending on what OS you are on) and add the following to the JAVA_OPTS environment variable:
				

set JAVA_OPTS=%JAVA_OPTS% -Dprogram.name=%PROGNAME% -javaagent:pluggable-instrumentor.jar

Important

				The class of the AspectManager Service must be org.jboss.aop.deployers.AspectManagerJDK5 or org.jboss.aop.deployment.AspectManagerServiceJDK5 as these are what work with the -javaagent option.
			

 ⁠12.7. JRockit

			JRockit also supports the -javaagent switch mentioned in Section 12.6, “Loadtime transformation in the JBoss Enterprise Application Platform Using Sun JDK”. If you wish to use that, then the steps in Section 12.6, “Loadtime transformation in the JBoss Enterprise Application Platform Using Sun JDK” are sufficient. However, JRockit also comes with its own framework for intercepting when classes are loaded, which might be faster than the -javaagent switch. If you want to do load-time transformations using the special JRockit hooks, these are the steps you must take.
		
	
					Set the enableLoadtimeWeaving attribute/property to true. By default, JBoss Enterprise Application Platform will not do load-time bytecode manipulation of AOP files unless this is set. If suppressTransformationErrors is true, failed bytecode transformation will only give an error warning. This flag is needed because sometimes a JBoss deployment will not include all the classes referenced.
				

	
					Copy the jrockit-pluggable-instrumentor.jar from the lib/ directory of your JBoss AOP distribution to the bin/ directory of your the JBoss Enterprise Application Platform installation.
				

	
					Next edit run.sh or run.bat (depending on what OS you are on) and add the following to the JAVA_OPTS and JBOSS_CLASSPATH environment variables:
				

Setup JBoss specific properties

JAVA_OPTS="$JAVA_OPTS -Dprogram.name=$PROGNAME \

-Xmanagement:class=org.jboss.aop.hook.JRockitPluggableClassPreProcessor"

JBOSS_CLASSPATH="$JBOSS_CLASSPATH:jrockit-pluggable-instrumentor.jar"

	
					Set the class of the AspectManager Service to org.jboss.aop.deployers.AspectManagerJRockit on JBoss Enterprise Application Platform 5, or org.jboss.aop.deployment.AspectManagerService as these are what work with special hooks in JRockit.
				

 ⁠12.8. Improving Loadtime Performance in the JBoss Enterprise Application Platform Environment

			The same rules apply to the JBoss Enterprise Application Platform for tuning loadtime weaving performance as standalone Java. Switches such as pruning, optimized, include and exclude are configured through the jboss-5.x.x.GA/server/xxx/conf/aop.xml file talked about earlier in this chapter.
		

 ⁠12.9. Scoping the AOP to the classloader

			By default all deployments in JBoss are global to the whole application server. That means that any EAR, SAR, or JAR (for example), that is put in the deploy directory can see the classes from any other deployed archive. Similarly, AOP bindings are global to the whole virtual machine. This global visibility can be turned off per top-level deployment.
		

 ⁠12.9.1. Deploying as part of a scoped classloader

				The following process may change in future versions of JBoss AOP. If you deploy an AOP file as part of a scoped archive, the bindings (for instance) applied within the .aop/META-INF/jboss-aop.xml file will only apply to the classes within the scoped archive and not to anything else in the application server. Another alternative is to deploy -aop.xml files as part of a service archive (SAR). Again, if the SAR is scoped, the bindings contained in the -aop.xml files will only apply to the contents of the SAR file. It is not currently possible to deploy a standalone -aop.xml file and have that attach to a scoped deployment. Standalone -aop.xml files will apply to classes in the whole application server.
			

 ⁠12.9.2. Attaching to a scoped deployment

				If you have an application that uses classloader isolation, as long as you have prepared your classes, you can later attach an AOP file to that deployment. If we have an EAR file scoped using a jboss-app.xml file, with the scoped loader repository jboss.test:service=scoped:
			
​
​<jboss-app>
​ <loader-repository>
​ jboss.test:service=scoped
​ </loader-repository>
​</jboss-app>

				We can later deploy an AOP file containing aspects and configuration to attach that deployment to the scoped EAR. This is done using the loader-repository tag in the AOP file's META-INF/jboss-aop.xml file.
			
​
​<?xml version="1.0" encoding="UTF-8"?>
​<aop>
​ <loader-repository>jboss.test:service=scoped</loader-repository>
​
​ <!-- Aspects and bindings -->
​</aop>

				This has the same effect as deploying the AOP file as part of the EAR as we saw previously, but allows you to hot deploy aspects into your scoped application.
			

 ⁠Chapter 13. Transaction Management

		This chapter presents a brief overview of the main configuration options for the JBoss Transaction Service. For more information, please refer to the JBoss Transactions Administration Guide.
	

 ⁠13.1. Overview

			Transaction support in JBoss Enterprise Application Platform is provided by JBoss Transaction Service, a mature, modular,standards based, highly configurable transaction manager. By default, the server runs with the local-only JTA module of JBoss Transaction Service installed. This module provides an implementation of the standard JTA API for use by other internal components, such as the EJB container, as well as direct use by applications. It is suitable for coordinating ACID transactions that involve one or more XA Resource managers, such as relational databases or message queues.
		

			Two additional, optional, JBoss Transaction Service transaction modules are also shipped with JBoss Enterprise Application Platform and may be deployed to provide additional functionality if required.
		
	JBoss Transaction Service JTS
	
						A Transaction Manager capable of distributing transaction context on remote IIOP method calls, creating a single distributed transaction which spans multiple Java Virtual Machines. This is useful for large-scale applications that span multiple servers, or for standards based interoperability with transactional business logic running in CORBA based systems. The functionality of this module can be accessed through the standard JTA API. In this way, it is a drop-in replacement and does not require changes to transactional business logic. To enable it, refer to Section 13.8, “Using the JTS Module” for more information.
					

	JBoss Transaction Service XTS
	
						A Transaction Manager, based on XML, which implements the WS-AtomicTransaction (WS-AT) and WS-BusinessActivity (WS-BA) specifications. This additional module uses core transaction support provided by the JTA or JTS managers, along with web services functionality provided by JBossWS Native. It is deployed into the server as an application. Applications may use WS-AT to provide standards based, distributed ACID transactions in a manner similar to JTS but using a Web Services transport, instead of CORBA. The WS-BA implementation compliments this by providing an alternative, compensation-based transaction model, well suited to coordinating long-running, loosely coupled business processes. XTS also implements a WS-Coordination (WS-C) service which is usually accessed internally by the local WS-AT and WS-BA implementations. However, this WS-C service can also be used to provide remote coordination for WS-AT and WS-BA transactions created in other server instances or non-JBoss containers. Refer to the JBoss Transactions Web Services Programmer's Guide for more details. To enable XTS, refer to Section 13.9, “Using the XTS Module”.
					

 ⁠13.2. Configuration Essentials

			Configuration of the default JBossTS JTA is managed though a combination of the transaction manager's own properties file and the application server's deployment configuration. The configuration file resides at <JBOSS_HOME>/server/<PROFILE>/conf/jbossts-properties.xml. It contains defaults for the most commonly used properties. Many more are detailed in the accompanying JBoss Transaction Service Administration Guide. Each setting has a hard-coded default, but the system may not function properly if a configuration file does not exist. Additional configuration is also possible as part of the Microcontainer beans configuration found in the <JBOSS_HOME>/server/<PROFILE>/deploy/transaction-jboss-beans.xml file. This ties the transaction manager into the overall server profile, overriding the transaction configuration file settings with values specific to the application server where appropriate. In particular, it uses the Service Binding Manager to set port binding information, as well as overriding selected other properties. Configuration properties are read by the Transaction Service at server initialization, and the server must be restarted to incorporate any changes made to the configuration files.
		

 ⁠Table 13.1. Most Critical Properties for JBoss Transaction Service
	
							Property Name
						

						 	
							Default Value
						

						 	
							Description
						

						
	
							transactionTimeout
						

						 	
							300 seconds
						

						 	
							the default time, in seconds, after which a transaction will time out and be rolled back by. Adjust this to suit your environment and workload.
						

						
							It may come as a surprise that transactions are processed asynchronously. This was a design decision, and needs to be accounted for by your code.
						

						
	
							objectStoreDir
						

						 	

						

						 	
							The directory where transaction data is logged. The transaction log is required to complete transactions in the case of system failure, and needs to be on reliable storage. Normally one file is generated per transaction, and each file is a few kilobytes in size. These are distributed over a directory tree for optimal performance. If a RAID controller is used, it should be configured for write through cache, in much the same manner as database storage devices. Writing of the transaction log is automatically skipped in the case of transactions that are rolling back or contain only a single resource.
						

						
	
							max-pool-size
						

						 	

						

						 	
							The Java EE Connector Architecture container keeps a dedicated physical connection open against the EIS where recovery is performed. Therefore, set the max-pool-size to the maximum number of connection possible minus 1.
						

						

 ⁠Table 13.2. Additional Properties for JBoss Transaction Service
	
							Property Name
						

						 	
							Default Value
						

						 	
							Description
						

						
	
							com.arjuna.common.util.logging.DebugLevel
						

						 	
							0x00000000, which equates to no logging
						

						 	
							determines the internal log threshold for the transaction manager codebase. It is independent of the overall server's log4j logging configuration, and acts to suppress extraneous log entries from being printed. When the default value is active, INFO and WARN messages are still printed, and this setting provides optimal performance. 0xffffffff enables full debug logging. This setting results in large log files.
						

						
							Log messages that pass the internal DebugLevel check are passed to the server's logging system for further processing. In theory, full debugging may be left on and log4j can be used to turn logging on or off, but in reality this has a performance impact.
						

						
	
							com.arjuna.ats.arjuna.coordinator.commitOnePhase
						

						 	
							YES
						

						 	
							Determines whether the transaction manager automatically applies the one-phase commit optimization to the transaction completion protocol, when only a single resource is registered with the transaction. Enabled by default to prevent writing transaction logs needlessly.
						

						
	
							com.arjuna.ats.arjuna.objectstore.transactionSync
						

						 	
							ON
						

						 	
							Controls the flushing of transaction logs to disk during transaction termination. The default value results in a FileDescriptor.sync call for each committing transaction. This behavior is required to provide recovery and ACID properties. If these features are unimportant to the application in question, you can achieve better performance by disabling this property. This is discouraged, since it is usually better to write such applications in a way that avoids using transactions at all.
						

						
	
							com.arjuna.ats.arjuna.xa.nodeIdentifier
						

						
							com.arjuna.ats.jta.xaRecoveryNode
						

						 	

						

						 	
							These properties determine the behavior of the transaction recovery system. They must be configured correctly to ensure that transactions are resolved correctly so that recovery can happen if the server crashes. Please refer to the Recovery chapter of the JBoss Transactions Administration Guide for more details.
						

						
	
							com.arjuna.ats.arjuna.coordinator.enableStatistics
						

						 	
							NO
						

						 	
							Enables gathering of transaction statistics. The statistics can be viewed using methods on the TransactionManagerService bean or its corresponding JMX MBean. Disabled by default.
						

						

 ⁠13.3. Transactional Resources

			The Transaction Service coordinates transaction state updates using XAResource implementations, which are provided by the various resource managers. Resource managers may include databases, message queues or third-party JCA resource adapters. The list of databases and JDBC drivers which have been certified on JBoss Enterprise Application Platform is located at http://www.jboss.com/products/platforms/application/supportedconfigurations/. Most standards-compliant JDBC drivers should function correctly, but you should perform extensive testing when using an uncertified configuration, since interpretations of the XA specifications different from one vendor to another.
		

			Database connection pools are configured via the application server's Datasource files, which are files named like -ds.xml. Datasources which use the <xa-datasource> property automatically interact with the transaction manager. Connections obtained by looking up such datasource in JNDI and calling getConnection automatically participate in ongoing transactions. This is the preferred use case when transactional guarantees for data access are required.
		

			If you are using a database which cannot support XA transactions, you can deploy a connection pool using <local-xa-datasource>. This type of datasource participates in the managed transaction using the Section 13.4, “Last Resource Commit Optimization (LRCO)”, providing more limited transactional guarantees. Connections obtained from a <no-tx-datasource> do not interact with the transaction manager, and any work done on such connections must be explicitly committed or rolled back by the application, using the JDBC API.
		

			Many databases require additional configuration before they can function as XA resource managers. Vendor-specific information for configuring databases is presented in Appendix B, Vendor-Specific Datasource Definitions. Refer to your database administrator and the documentation which ships with your database for additional configuration directives. In addition, please consult the JBoss Transactions Administration Guide for information on setting up XA recovery properly.
		

			JBoss Messaging provides an XA-aware driver and can participate in XA transactions. Please consult the JBoss Messaging User Guide for more details.
		

 ⁠13.4. Last Resource Commit Optimization (LRCO)

			Although the XA transaction protocol is designed to provide ACID properties by using a two-phase commit protocol, model may not always be appropriate. Sometimes it is necessary to allow a non-XA-aware resource manager to participate in a transaction. This is often the case with data stores that do not support distributed transactions.
		

			In this situation, you can use a technique known as Last Resource Commit Optimization (LRCO). This is sometimes called the Last Resource Gambit. The one-phase-aware resource is processed last in the prepare phase of the transaction, at which time an attempt is made to commit it. If the attempt is successful, the transaction log is written and the remaining resources go through the phase-two commit. If the last resource fails to commit, the transaction is rolled back. Although this protocol allows most transactions to complete normally, some errors can cause an inconsistent transaction outcome. For this reason, use LRCO as a last resort. When a single <local-tx-datasource> is used in a transaction, the LRCO is automatically applied to it. In other situations, you can designate a last resource by using a special marker interface. Refer to the JBoss Transactions Programmer's Guide for more details.
		

			Using more than a single one-phase resource in the same transaction is not transactionally safe, and is not recommended. JBoss Transaction Service sees an attempt to enlist a second such resource as an error and terminates the transaction. This type of error is most often found when migrating from a legacy version of JBoss Application Server. Whenever possible the <local-tx-datasource> should be converted to an <xa-datasource> to resolve the difficulty.
		

 ⁠13.5. Transaction Timeout Handling

			In order to prevent indefinite locking of resources, the transaction manager aborts in-flight transactions that have not completed after a specified interval, using a set of background processes coordinated by the TransactionReaper. The reaper rolls back transactions without interrupting any threads that may be operating within their scope. This prevents instability that results from interrupting threads executing arbitrary code. Furthermore, it allows for timely abort of transactions where the business logic thread may be executing non-interruptible operations such as network I/O operations. This approach may, cause unexpected behavior in code that is not designed to handle multithreaded transactions. Warning or error messages may be printed from transaction-aware components as a result of the unexpected change in transaction status. The transaction outcome should usually be unaffected. Any problems can be minimized by tuning the transaction timeout values. See Chapter 17, Datasource Configuration for more information.
		

 ⁠13.6. Recovery Configuration

			To ensure that your configuration is robust, it is important to configure JBoss Transaction Service properly for failure and recovery. This is covered in detail in the JBoss Transactions Administration Guide, in the "Resource Recovery in JBoss Transaction Service" chapter.
		

 ⁠13.7. Transaction Service FAQ

			This section presents some of the most common configuration issues with JBoss Transaction Service.
		

 ⁠
 ⁠Q:

						I turned on debug logging, but nothing is logged.
					

A:

						JBossTS sends log statements though two levels of filters.
					
	
								Logs go through JBoss Transaction Service's own logging abstraction layer.
							

	
								Logs go through JBoss Enterprise Application Platform's log4j logging system.
							

						A log statement must pass both filters to be printed. A typical mistake is enabling only one or the other of the logging systems. See Table 13.2, “Additional Properties for JBoss Transaction Service” for more information.
					

 ⁠Q:

						Why do server logs show WARN Adding multiple last resources is disallowed., and why are my transactions are aborted?
					

A:

						You are probably using a <local-xa-datasource> and trying to use more than one one-phase aware participant. This is a configuration to be avoided. See Section 13.4, “Last Resource Commit Optimization (LRCO)” for more information. If you have further concerns, please contact Global Support Services.
					

 ⁠Q:

						My server terminated unexpectedly. It is running again, but my logs are filling with messages like WARN [com.arjuna.ats.jta.logging.loggerI18N] [com.arjuna.ats.internal.jta.resources.arjunacore.norecoveryxa] Could not find new XAResource to use for recovering non-serializable XAResource.
					

A:

						You may not have configured all resource managers for recovery. Refer to the Recovery chapter of the JBoss Transactions Administration Guide for more information on configuring resource managers for recovery.
					

 ⁠Q:

						My transactions take a long time and sometimes strange things happen. The server log contains WARN [arjLoggerI18N] [BasicAction_58] - Abort of action id ... invoked while multiple threads active within it.
					

A:

						Transactions which exceed their timeout may be rolled back. This is done by a background thread, which can confuse some application code that may be expecting an interrupt. Refer to Section 13.5, “Transaction Timeout Handling” for more information.
					

			If you have questions besides the ones addressed above, please consult the other JBoss Transactions guides, or contact Global Support Services.
		

 ⁠13.8. Using the JTS Module

			If you need transaction propagation between business logic in different servers, you can use the JTS API. Although you can use it directly, it is typical to access it via the standard JTA classes. It is a drop-in replacement for the default local-only JTA implementation. The necessary classes are already in place, and you only need to modify the jbossts-properties.xml file to move between the JTA and JTS modules.
		

			A sample jbossts-properties.xml file is located in the <JBOSS_HOME>/docs/examples/transactions/ directory. Consult the README.txt file in the same directory for more information about changes that need to be made to other files, including the transactions-jboss-beans.xml file. An ANT script is provided to perform all of the steps automatically, but it is recommended to consult the README.txt carefully before running the script, as well as backing up your existing configuration.
		

			The JTS requires the server configuration to also contain the CORBA ORB service. The "all" server profile referenced in the examples is a good starting point. The choice of JTS or JTA impacts the entire server, and JTS does require additional resources. Therefore, only use it when it is needed.
		

			At application start-up, a server that is configured to use JTA outputs log files like this one:
		

 INFO [TransactionManagerService] JBossTS Transaction Service (JTA version - ...)

			If JTS is enabled, the message looks like this one:
		

 INFO [TransactionManagerService] JBossTS Transaction Service (JTS version - ...)

 ⁠13.9. Using the XTS Module

			XTS, which is the Web Services component of JBoss Transaction Service, can be installed to provide WS-AT and WS-BA support for web services hosted on the Enterprise Application Platform. The module is packaged as a Service Archive (.sar) located in <JBOSS_HOME>/docs/examples/transactions/.
		

 ⁠Procedure 13.1. Installing the XTS Module
	
					Create a subdirectory in the <JBOSS_HOME>/server/[name]/deploy/ directory, called jbossxts.sar/.
				

	
					Unpack the .sar, which is a ZIP archive, into this new directory.
				

	
					Restart JBoss Enterprise Application Platform for the module to be active.
				

			The server must use either the JTA or JTS module, as well as JBossWS Native.
		
Note

				XTS is not currently expected to work with other JBossWS backends such as CXF. The default XTS configuration is suitable for most deployments. It automatically detects information about the network interfaces and port bindings from the EAP configuration. manual configuration changes are only necessary for deployments whose applications need to use a transaction coordinator on a separate host. Consult the JBoss Web Service Transactions Programmer's Guide for more information.
			

			Developers can link against the jbossxts-api.jar file included in the XTS Service Archive, but should avoid packaging it with their applications, to avoid classloading problems. All other JAR files contain internal implementation classes and should not be used directly.
		

			Consult <JBOSS_HOME>/docs/examples/transactions/README.txt for more configuration information. The JBoss Web Services Transactions User Guide contains information about using XTS in your applications.
		

 ⁠13.10. Transaction Management Console

			The Transaction Management Console is a simple GUI tool that is included in <JBOSS_HOME>/docs/example/transactions/. It is provided as an unsupported, experimental prototype. Consult the README.txt file for its capabilities and information about its use.
		

 ⁠13.11. Experimental Components

			In addition to the supported components of JBoss Transaction Service which are included in JBoss Enterprise Application Platform, there is ongoing feature work that may eventually find its way into future releases of the product. In the meantime, these prototype components are available via from the http://jboss.org Community website.
		
Warning

				There is no guarantee these components will work correctly and they are not covered under the Enterprise Application Platform support agreement. However, some of the advanced functionality available may useful for projects in the early stages of development. Users downloading these prototypes must be aware of the limitations concerning module compatibility, in accordance with the Section 13.12, “Source Code and Upgrading”.
			

	txbridge
	
						Sometimes you may need the ability to invoke traditional transaction components, such as EJBs, within the scope of a Web Services transaction. Conversely, some traditional transactional applications may need to invoke transactional web services. The Transaction Bridge (txbridge) provides mechanisms for linking these two types of transactional services together.
					

	BA Framework
	
						The XTS API operates at a very low level, requiring the developer to undertake much of the transaction infrastructure work involved in WS-BA. The BA Framework provides high-level annotations that enable JBoss Transaction Service to handle this infrastructure. The developer can then focus more on business logic instead.
					

 ⁠13.12. Source Code and Upgrading

			Most problems relating to transactions can be diagnosed by Global Support Services, after you provide debug logging information from the server.
		

			However, you can debug or review the source code yourself, using your own tools. You can download the source code using the Subversion repository at http://anonsvn.jboss.org/repos/labs/labs/jbosstm/. Enterprise Application Platform outputs the version of the Transaction Service at start up, using a string similar to this one:
		

 INFO [TransactionManagerService] JBossTS Transaction Service (JTA version - tag:JBOSSTS_4_6_1_GA_CP02) - JBoss Inc.

			The tag element corresponds to a tree under /tags/ in the Subversion repository. Note that the version refers to the version of the JBoss Transaction Service component used in the Enterprise Application Platform, not the version of EAP itself. If you build Enterprise Application Platform from source, you can also find the version by searching for the string version.jboss.jbossts in the component-matrix/pom.xml file.
		
Warning

				Installing any version of JBossTS other than those provided with the Enterprise Application Platform you are using is not supported. While some JBoss Transaction Service components are packaged separately, it is unsupported to use different versions than the ones supplied with Enterprise Application Platform.
			

 ⁠Chapter 14. Remoting

		 The main objective of JBoss Remoting is to provide a single API for most network based invocations and related services that use pluggable transports and data marshallers. The JBoss Remoting API provides the ability for making synchronous and asynchronous remote calls, push and pull callbacks, and automatic discovery of remoting servers. The intention is to allow for the addition of different transports to fit different needs, yet still maintain the same API for making the remote invocations and only requiring configuration changes, not code changes, to fit these different needs.
	

		Out of the box, Remoting supplies multiple transports (bisocket, http, rmi, socket, servlet, and their ssl enabled counterparts), standard and compressing data marshallers, and a configurable facility for switching between standard jdk serialization and JBoss Serialization. It is also capable of remote classloading, has extensive facilities for connection failure notification, performs call by reference optimization for client/server invocations collocated in a single JVM, and implements multihomed servers.
	

		In the Enterprise Application Platform, Remoting supplies the transport layer for the EJB2, EJB3, and Messaging subsystems. In each case, the configuration of Remoting is largely predetermined and fixed, but there are times when it is useful to know how to alter a Remoting configuration.
	

 ⁠14.1. Background

			A Remoting server consists of a Connector, which wraps and configures a transport specific server invoker. A connector is represented by an InvokerLocator string, such as
		

 socket://bluemonkeydiamond.com:8888/?timeout=10000&serialization=jboss

			which indicates that a server using the socket transport is accessible at port 8888 of host bluemonkeydiamond.com, and that the server is configured to use a socket timeout of 10000 and to use JBoss Serialization. A Remoting client can use an InvokerLocator to connect to a given server.
		

			In the Enterprise Application Platform, Remoting servers and clients are created far below the surface and are accessible only through configuration files. Moreover, when a proxy for a SLSB, for example, is downloaded from the JNDI directory, it comes with a copy of the InvokerLocator, so that it knows how to contact the appropriate Remoting server. The important fact to note is that, since the server and its clients share the InvokerLocator, the parameters in the InvokerLocator serve to configure both clients and servers.
		

 ⁠14.2. JBoss Remoting Configuration

			There are two kinds of XML files that can be used to create and configure a Remoting Connector. A file with a name of the form *-service.xml can be used to define a Connector as an MBean, and a file of the form *-jboss-beans.xml can be used to define a Connector as a POJO.
		

 ⁠14.2.1. MBeans

				In the JBoss Messaging JMS subsystem, a Remoting server is configured in the file remoting-bisocket-service.xml, which, in abbreviated form, looks like
			
​
​ <mbean code="org.jboss.remoting.transport.Connector"
​ name="jboss.messaging:service=Connector,transport=bisocket"
​ display-name="Bisocket Transport Connector">
​ <attribute name="Configuration">
​ <config>
​ <invoker transport="bisocket">
​ <attribute name="marshaller" isParam="true">org.jboss.jms.wireformat.JMSWireFormat</attribute>
​ <attribute name="unmarshaller" isParam="true">org.jboss.jms.wireformat.JMSWireFormat</attribute>
​ <attribute name="serverBindAddress">${jboss.bind.address}</attribute>
​ <attribute name="serverBindPort">4457</attribute>
​ <attribute name="callbackTimeout">10000</attribute>
​ ...
​ </invoker>
​ ...
​ </config>
​ </attribute>
​ </mbean>

				This configuration file tells us several facts, including
			
	
						This server uses the bisocket transport;
					

	
						it runs on port 4457 of host ${jboss.bind.address}; and
					

	
						JBoss Messaging uses its own marshaling algorithm.
					

				The InvokerLocator is derived from this file. The important fact to note is that the attribute "isParam" determines if a parameter is to be included in the InvokerLocator. If "isParam" is omitted or set to false, the parameter will apply only to the server. In this case, the parameter will not be transmitted to the client. The InvokerLocator for a Remoting server with a ${jboss.bind.address} of bluemonkeydiamond.com would be:
			

 bisocket://bluemonkeydiamond.com:4457/?marshaller=
 org.jboss.jms.wireformat.JMSWireFormat&
 unmarshaller=org.jboss.jms.wireformat.JMSWireFormat

				Note that the parameter "callbackTimeout" is not included in the InvokerLocator.
			

 ⁠14.2.2. POJOs

				The same Connector could be configured by way of the org.jboss.remoting.ServerConfiguration POJO:
			
​
​ <bean name="JBMConnector" class="org.jboss.remoting.transport.Connector">
​ <annotation>@org.jboss.aop.microcontainer.aspects.jmx.JMX
​ (name="jboss.messaging:service=Connector,transport=bisocket",
​ exposedInterface=org.jboss.remoting.transport.ConnectorMBean.class,
​ registerDirectly=true)</annotation>
​ <property name="serverConfiguration"><inject bean="JBMConfiguration"/></property>
​ </bean>
​
​ <!-- Remoting server configuration -->
​ <bean name="JBMConfiguration" class="org.jboss.remoting.ServerConfiguration">
​ <constructor>
​ <parameter>bisocket</parameter>
​ </constructor>
​
​ <!-- Parameters visible to both client and server -->
​ <property name="invokerLocatorParameters">
​ <map keyClass="java.lang.String" valueClass="java.lang.String">
​ <entry>
​ <key>serverBindAddress</key>
​ <value>
​ <value-factory bean="ServiceBindingManager" method="getStringBinding">
​ <parameter>JBMConnector</parameter>
​ <parameter>${host}</parameter>
​ </value-factory>
​ </value>
​ </entry>
​ <entry>
​ <key>serverBindPort</key>
​ <value>
​ <value-factory bean="ServiceBindingManager" method="getStringBinding">
​ <parameter>JBMConnector</parameter>
​ <parameter>${port}</parameter>
​ </value-factory>
​ </value>
​ </entry>
​ ...
​ <entry><key>marshaller</key> <value>org.jboss.jms.wireformat.JMSWireFormat</value></entry>
​ <entry><key>unmarshaller</key> <value>org.jboss.jms.wireformat.JMSWireFormat</value></entry>
​ </map
​ </property>
​
​ <!-- Parameters visible only to server -->
​ <property name="serverParameters">
​ <map keyClass="java.lang.String" valueClass="java.lang.String">
​ <entry><key>callbackTimeout</key> <value>10000</value></entry>
​ </map>
​ </property>
​
​ ...
​ </bean>

				In this version, the configuration information is expressed in the JBMConfiguration ServerConfiguration POJO, which is then injected into the JBMConnector org.jboss.remoting.transport.Connector POJO. The syntax is that of the Microcontainer, which is beyond the scope of this chapter. See Chapter 8, Microcontainer for details. One variation from the MBean version is the use of the ServiceBindingManager, which is also beyond the scope of this chapter. Note that the @org.jboss.aop.microcontainer.aspects.jmx.JMX annotation causes the JBMConnector to be visible as an MBean named "jboss.messaging:service=Connector,transport=bisocket".
			

 ⁠14.3. Multihomed servers

			Remoting can create servers bound to multiple interfaces. One application of this facility would be binding a server to one interface that faces the internet and another that faces a LAN. For example, the preceding POJO example can be modified by (1) adding POJOs
		
​
​ <!-- Beans homes1 and homes2 are used to construct a multihome Remoting server. -->
​ <bean name="homes1" class="java.lang.StringBuffer">
​ <constructor>
​ <parameter class="java.lang.String">
​ <value-factory bean="ServiceBindingManager" method="getStringBinding">
​ <parameter>JBMConnector:bindingHome1</parameter>
​ <parameter>${host}:${port}</parameter>
​ </value-factory>
​ </parameter>
​ </constructor>
​ </bean>
​
​ <bean name="homes2" class="java.lang.StringBuffer">
​ <constructor factoryMethod="append">
​ <factory bean="homes1"/>
​ <parameter>
​ <value-factory bean="ServiceBindingManager" method="getStringBinding">
​ <parameter>JBMConnector:bindingHome2</parameter>
​ <parameter>!${host}:${port}</parameter>
​ </value-factory>
​ </parameter>
​ </constructor>
​ </bean>

			which results in a StringBuffer with a value something like (according to the ServiceBindingManager configuration values for JBMConnector:bindingHome1 and JBMConnector:bindingHome2) "external.acme.com:5555!internal.acme.com:4444", and (2) replacing the "serverBindAddress" and "serverBindPort" parameters with
		
​
​ <entry>
​ <key>homes</key>
​ <value><value-factory bean="homes2" method="toString"/></value>
​ </entry>

			which transforms the StringBuffer into the String "external.acme.com:5555!internal.acme.com:4444" and injects it into the JBMConnector. The resulting InvokerLocator will look like
		

 bisocket://multihome/?homes=external.acme.com:5555!internal.acme.com:
 4444&marshaller=org.jboss.jms.wireformat.JMSWireFormat&
 unmarshaller=org.jboss.jms.wireformat.JMSWireFormat

 ⁠14.4. Address translation

			Sometimes a server must be accessed through an address translating firewall, and a Remoting server can be configured with both a binding address/port and an address/port to be used by a client. Two more parameters are used: "clientConnectAddress" and "clientConnectPort". The "serverBindAddress" and "serverBindPort" values are used to create the server, and the values of "clientConnectAddress" and "clientConnectPort" are used in the InvokerLocator, which tells the client where the server is. There is also an analogous "connecthomes" parameter for multihome servers. In this case, "homes" is used to configure the server, and "connecthomes" tells the client where the server is.
		

 ⁠14.5. Where are they now?

			The actual Remoting configuration files for the supported subsystems are as follows:
		

			EJB2: <JBOSS_HOME>/server/<PROFILE>/deploy/remoting-jboss-beans.xml
		

			EJB3: <JBOSS_HOME>/server/<PROFILE>/deploy/ejb3-connectors-jboss-beans.xml
		

			JBM: <JBOSS_HOME>/server/<PROFILE>/deploy/messaging/remoting-bisocket-service.xml
		

 ⁠14.6. Further information.

			Additional details may be found in the Remoting Guide at http://www.jboss.org/jbossremoting/docs/guide/2.5/html/index.html.
		

 ⁠Chapter 15. Messaging

 ⁠15.1. Default JMS messaging providers

			One of the following default JMS messaging providers can be used with JBoss Enterprise Application Platform:
				
						JBoss Messaging - detailed information can be found in JBoss Messaging User Guide.
					

	
						HornetQ - detailed information can be found in HornetQ User Guide.
					

			 Please refer to the dedicated guides mentioned with individual JMS providers for in-depth guidance on their configuration and use.
		

 ⁠15.2. IBM WebSphere MQ Integration

			Apart from the default messaging options listed above, it is also possible to connect JBoss Enterprise Application Platform to a WebSphere MQ messaging system. WebSphere MQ is IBM's Messaging Oriented Middleware (MOM) software that allows applications on distributed systems to communicate with each other. This is accomplished through the use of messages and message queues. WebSphere MQ is responsible for delivering messages to the message queues and for transferring data to other queue managers using message channels. For more information about IBM WebSphere MQ, please refer to its documentation accessible at http://www.ibm.com.
		

			Within the scope of the integration with JBoss Enterprise Application Platform, WebSphere MQ does not act as a default messaging provider equivalent to JBoss Messaging or Hornet Q. Instead, it runs as a standalone messaging system connected to JBoss Enterprise Application Platform through a resource adapter. While connected to WebSphere MQ, the platform still uses either JBoss Messaging or HornetQ as its default JMS messaging provider. This is typically useful when an application based on JBoss Enterprise Application Platform needs to be integrated with an existing infrastructure that uses WebSphere MQ.
		

 ⁠15.2.1. Configuring WebSphere MQ Integration

				This section covers the general steps that need to be performed to deploy and configure the WebSphere MQ Resource Adapter in JBoss Enterprise Application Platform 5.
			
Prerequisites

					The following is required before you get started configuring your instance of JBoss Enterprise Application Platform for integration with WebSphere MQ.
				
	
						A running instance of WebSphere MQ version 7.5.
					

	
						A WebSphere MQ JMS resource adapter. It is supplied with your distribution of WebSphere MQ as a Resource Archive (RAR) file called wmq.jmsra.rar. You can find it in the MQ.HOME/java/lib/jca directory.
					

	
						To configure the connection properly, you also need to know the values listed below. The names shown in capital letters are used in the code samples further in this chapter. When reusing the code, make sure that you replace these names with the actual values relevant for your WebSphere MQ instance.
					

							MQ.HOST.NAME
	
										The host name of the machine where the WebSphere MQ instance is running. It is also possible to specify the machine's IP address instead of the hostname.
									

	MQ.PORT
	
										The port used to connect to the WebSphere MQ queue manager. The default value is 1414.
									

	MQ.CHANNEL.NAME
	
										The server channel used to connect to the WebSphere MQ queue manager. The default value is SYSTEM.DEF.SVRCONN.
									

	MQ.TRANSPORT.TYPE
	
										The transport type used for the connection to WebSphere MQ. The default value is CLIENT.
									

	MQ.HOME
	
										The path to the WebSphere MQ instance's base directory. The default is /opt/mqm/ on Linux or Unix, /usr/mqm/ on AIX and C:\ProgramFiles\IBM\WebSphere MQ on Windows.
									

	MQ.USER
	
										The user name of a user account with permissions to connect to the WebSphere MQ server by the broker.
									

	MQ.PASSWORD
	
										The password of the MQ.USER user account.
									

					

	
						Within the WebSphere MQ instance, you need to have objects like queue managers, queues, topics and channels defined according to the needs of your specific system. The list below contains WebSphere MQ objects that are used to demonstrate the configuration in the code samples further in this chapter. Similarly as above, when reusing the code samples, make sure that you replace the capitalized names with the names of the actual objects defined in your WebSphere MQ instance.
					

							MQ.QUEUE.MANAGER
	
										The name of the WebSphere MQ queue manager with which the connection will be established.
									

	MQ.QUEUE.REQUESTS
	
										The name of the destination message queue in WebSphere MQ to which request messages will be sent.
									

	MQ.QUEUE.RESPONSES
	
										The name of the source message queue in WebSphere MQ from which response messages will be received.
									

	MQ.TOPIC1
	
										The name of a topic defined in WebSphere MQ.
									

	MQ.TOPIC2
	
										The name of another topic defined in WebSphere MQ.
									

					

 ⁠Procedure 15.1. Deploying the WebSphere MQ Resource Adapter
	
						Copy the wmq.jmsra.rar file to the JBOSS_HOME/server/PROFILE/deploy/ directory.
cp MQ.HOME/java/lib/jca/wmq.jmsra.rar JBOSS_HOME/server/PROFILE/deploy/

					

	
						Create a file named jboss_jmsra_ds.xml in the JBOSS_HOME/server/PROFILE/deploy/ directory.
					

						Below, you can find a code sample showing the expected content of the file. The first part of the XML file defines a connection factory used to establish the connection with the WebSphere MQ instance. The second part of the file defines JNDI bindings of objects defined in WebSphere MQ to JMS administered objects.
					

						
​
​<?xml version="1.0" encoding="UTF-8"?>
​<connection-factories>
​ <!-- connection factory definition -->
​ <tx-connection-factory>
​ <jndi-name>jms/CF</jndi-name>
​ <xa-transaction />
​ <rar-name>wmq.jmsra.rar</rar-name>
​ <connection-definition>javax.jms.ConnectionFactory</connection-definition>
​ <config-property name="channel" type="java.lang.String">MQ.CHANNEL.NAME</config-property>
​ <config-property name="hostName" type="java.lang.String">MQ.HOST.NAME</config-property>
​ <config-property name="port" type="java.lang.String">MQ.PORT</config-property>
​ <config-property name="username" type="java.lang.String">MQ.USER</config-property>
​ <config-property name="password" type="java.lang.String">MQ.PASSWORD</config-property>
​ <config-property name="queueManager" type="java.lang.String">MQ.QUEUE.MANAGER</config-property>
​ <config-property name="transportType" type="java.lang.String">MQ.TRANSPORT.TYPE</config-property>
​ <security-domain-and-application>JmsXARealm</security-domain-and-application>
​ </tx-connection-factory>
​
​ <!-- admin object definitions -->
​ <mbean code="org.jboss.resource.deployment.AdminObject" name="jca.wmq:name=queue1">
​ <attribute name="JNDIName">
​ jms/queue/MQ.QUEUE.REQUESTS
​ </attribute>
​ <depends optional-attribute-name="RARName">
​ jboss.jca:service=RARDeployment,name='wmq.jmsra.rar'
​ </depends>
​ <attribute name="Type">javax.jms.Queue</attribute>
​ <attribute name="Properties">
​ baseQueueManagerName=MQ.QUEUE.MANAGER
​ baseQueueName=MQ.QUEUE.REQUESTS
​ </attribute>
​ </mbean>
​
​ <mbean code="org.jboss.resource.deployment.AdminObject" name="jca.wmq:name=topic1">
​ <attribute name="JNDIName">
​ jms/topic/MQ.TOPIC1
​ </attribute>
​ <depends optional-attribute-name="RARName">
​ jboss.jca:service=RARDeployment,name='wmq.jmsra.rar'
​ </depends>
​ <attribute name="Type">javax.jms.Topic</attribute>
​ <attribute name="Properties">
​ brokerPubQueueManager=MQ.QUEUE.MANAGER
​ baseTopicName=MQ.TOPIC1
​ </attribute>
​ </mbean>
​
​ <mbean code="org.jboss.resource.deployment.AdminObject" name="jca.wmq:name=queue2">
​ <attribute name="JNDIName">
​ jms/queue/MQ.QUEUE.RESPONSES
​ </attribute>
​ <depends optional-attribute-name="RARName">
​ jboss.jca:service=RARDeployment,name='wmq.jmsra.rar'
​ </depends>
​ <attribute name="Type">javax.jms.Queue</attribute>
​ <attribute name="Properties">
​ baseQueueManagerName=MQ.QUEUE.MANAGER
​ baseQueueName=MQ.QUEUE.RESPONSES
​ </attribute>
​ </mbean>
​
​ <mbean code="org.jboss.resource.deployment.AdminObject" name="jca.wmq:name=topic2">
​ <attribute name="JNDIName">
​ jms/topic/MQ.TOPIC2
​ </attribute>
​ <depends optional-attribute-name="RARName">
​ jboss.jca:service=RARDeployment,name='wmq.jmsra.rar'
​ </depends>
​ <attribute name="Type">javax.jms.Topic</attribute>
​ <attribute name="Properties">
​ brokerPubQueueManager=MQ.QUEUE.MANAGER
​ baseTopicName=MQ.TOPIC2
​ </attribute>
​ </mbean>
​</connection-factories>
​

					

 ⁠15.2.1.1. Using the WebSphere MQ resource adapter in an MDB

					Once you have performed the configuration described above, you can access a message queue from the code of an MDB by specifying the ActivationConfigProperty and ResourceAdapter annotations as in the following code sample:
​
​@MessageDriven(name="WebSphereMQMDB".
​ activationConfig =
​ {
​ @ActivationConfigProperty(propertyName = "destinationType",propertyValue = "javax.jms.Queue"),
​ @ActivationConfigProperty(propertyName = "useJNDI", propertyValue = "false"),
​ @ActivationConfigProperty(propertyName = "hostName", propertyValue = "MQ.HOST.NAME"),
​ @ActivationConfigProperty(propertyName = "port", propertyValue = "MQ.PORT"),
​ @ActivationConfigProperty(propertyName = "channel", propertyValue = "MQ.CHANNEL.NAME"),
​ @ActivationConfigProperty(propertyName = "queueManager", propertyValue = "MQ.QUEUE.MANAGER"),
​ @ActivationConfigProperty(propertyName = "destination", propertyValue = "MQ.QUEUE.REQUESTS"),
​ @ActivationConfigProperty(propertyName = "transportType", propertyValue = "MQ.TRANSPORT.TYPE"),
​ @ActivationConfigProperty(propertyName = "username", propertyValue = "MQ.USER"),
​ @ActivationConfigProperty(propertyName = "password", propertyValue = "MQ.PASSWORD")
​ })
​@ResourceAdapter(value = "wmq.jmsra.rar")
​public class WebSphereMQMDB implements MessageListener {
​}

				

 ⁠15.2.1.2. Configuration for XA Transaction Recovery

					If unfinished two-phase commit transactions are not recovered after a system crash, they can use storage space in the WebSphere MQ instance and cause performance problems. To prevent this, JBoss Enterprise Application Server's Transaction service can recover such transactions if a recovery module is configured for each resource. This section explains how to configure the XARecovery module for the sample WebSphere MQ instance configured previously in this chapter.
				
Prerequisites

						Before you begin the configuration for XA transaction recovery, you need:
					
	
							JBoss Enterprise Application Platform and WebSphere MQ configured as described previously in this chapter.
						

	
							The mqcontext.jar library. It is available as part of IBM Support Pac: ME01, which can be downloaded from the IBM website. Installation of the pack adds the library to the MQ.HOME/java/lib/ directory.
						

	
							An additional message queue created in WebSphere MQ for transaction recovery purposes. In the following code samples, it is referred to as MQ.RECOVERY.QUEUE.
						

 ⁠Procedure 15.2. Configuring WebSphere MQ Integration for XA Transaction Recovery
	
							In a directory of your choice on the WebSphere MQ server, create a JMSAdmin.config file with the following content:

INITIAL_CONTEXT_FACTORY=com.ibm.mq.jms.context.WMQInitialContextFactory
PROVIDER_URL=MQ.HOST.NAME:MQ.PORT/MQ.CHANNEL.NAME

						

	
							In the same directory, create a file called xaqcf_def.scp. In the file, define an XA queue connection factory as follows:

def xaqcf(WNPMQMXACF) qmgr(MQ.QUEUE.MANAGER) tran(MQ.TRANSPORT.TYPE) chan(MQ.CHANNEL.NAME) host(MQ.HOST.NAME) port(MQ.PORT)

						

	
							Still in the same directory, create a JMSAdmin.sh script as follows:
​
​CLASSPATH=$CLASSPATH:/opt/mqm/java/lib/jms.jar
​CLASSPATH=$CLASSPATH:/opt/mqm/java/lib/com.ibm.mq.jar
​CLASSPATH=$CLASSPATH:/opt/mqm/java/lib/com.ibm.mqjms.jar
​CLASSPATH=$CLASSPATH:/opt/mqm/java/lib/jta.jar
​CLASSPATH=$CLASSPATH:/opt/mqm/java/lib/connector.jar
​CLASSPATH=$CLASSPATH:/opt/mqm/java/lib/jndi.jar
​CLASSPATH=$CLASSPATH:/opt/mqm/java/lib/providerutil.jar
​CLASSPATH=$CLASSPATH:/opt/mqm/java/lib/fscontext.jar
​CLASSPATH=$CLASSPATH:/opt/mqm/java/lib/com.ibm.mqjms.jar
​CLASSPATH=$CLASSPATH:/opt/mqm/java/lib/mqcontext.jar
​export CLASSPATH
​/opt/mqm/java/bin/JMSAdmin -v -cfg $PWD/JMSAdmin.config < xaqcf_def.scp

							 All libraries necessary for JMSAdmin tools are linked from the default WebSphere MQ installation directory, which is /opt/mqm. Please modify the paths in the script accordingly if your WebSphere MQ installation is located elsewhere.
						

	
							Launch the script created in the previous step. The script will append the required paths to the CLASSPATH variable and create the XA queue connection factory.
						

	
							Copy the following libraries from MQ.HOME/java/lib/ to the JBOSS_HOME/server/PROFILE/lib/ directory:
								
										dhbcore.jar
									

	
										mqcontext.jar
									

	
										com.ibm.mq.jar
									

	
										com.ibm.mqjms.jar
									

	
										com.ibm.mq.pcf.jar
									

	
										com.ibm.mq.jmqi.jar
									

	
										com.ibm.mq.headers.jar
									

	
										com.ibm.mq.commonservices.jar
									

						

	
							Create an external JNDI context by adding the following code to the JBOSS_HOME/server/PROFILE/conf/jboss-service.xml file:
						
​
​<mbean code="org.jboss.naming.ExternalContext"
​ name="jboss.jndi:service=ExternalContext,jndiName=IBMMQInitialContext">
​ <attribute name="JndiName">IBMMQInitialContext</attribute>
​ <attribute name="InitialContext">javax.naming.InitialContext</attribute>
​ <attribute name="Properties">
​ java.naming.factory.initial=com.ibm.mq.jms.context.WMQInitialContextFactory
​ java.naming.factory.url.pkgs=com.ibm.mq.jms.naming
​ java.naming.provider.url=MQ.HOST.NAME:MQ.PORT/MQ.CHANNEL.NAME
​ </attribute>
​</mbean>

							Alternatively, it is possible to define the external JNDI context as a remote one by adding the RemoteAccess attribute to the MBean definition. In this case, the IBMMQInitialContext/WNPMQMXACF JNDI name used in the following step points to a remote connection factory in the WebSphere MQ broker.
						
​
​<mbean code="org.jboss.naming.ExternalContext" name="jboss.jndi:service=ExternalContext,jndiName=IBMMQIntialContext">
​ <attribute name="JndiName">IBMMQIntialContext</attribute>
​ <attribute name="InitialContext">javax.naming.InitialContext</attribute>
​ <!-- Indicates that the external context is remote -->
​ <attribute name="RemoteAccess">true</attribute>
​ <attribute name="Properties">
​ java.naming.factory.initial=com.ibm.mq.jms.context.WMQInitialContextFactory
​ java.naming.factory.url.pkgs=com.ibm.mq.jms.naming
​ java.naming.provider.url=MQ.HOST.NAME:MQ.PORT/MQ.CHANNEL.NAME
​ </attribute>
​</mbean>

	
							Create a file called wsmq-jmsprovider-ds.xml in the JBOSS_HOME/server/PROFILE/conf/ directory.
						

							Below, you can find a code sample showing the expected content of the file. The first part of the XML file defines a connection factory that supports XA transactions. The second part of the file defines JNDI bindings of the recovery queue defined in WebSphere MQ and of the XA connection factory. See the comments inside the code sample for more information.
​
​<?xml version="1.0" encoding="UTF-8"?>
​<connection-factories>
​ <!-- connection factory definition -->
​ <tx-connection-factory>
​ <!-- Bind this ConnectionFactory with the JNDI -->
​ <jndi-name>IbmMQJMSXA</jndi-name>
​ <!-- Indicate that the connection factory supports XA transactions -->
​ <xa-transaction/>
​ <!-- rar-name is the actual RAR file name, in this case wmq.jmsra.rar -->
​ <rar-name>wmq.jmsra.rar</rar-name>
​ <!-- Do not prefix the JNDI name of the connection factory with the java: context and thus allow it to be looked up externally -->
​ <use-java-context>true</use-java-context>
​ <!-- connection-definition is the ConnectionFactory interface defined in the jboss_jmsra_ds.xml file -->
​ <connection-definition>
​ javax.jms.ConnectionFactory
​ </connection-definition>
​ <config-property name="hostName" type="java.lang.String">MQ.HOST.NAME:</config-property>
​ <config-property name="username" type="java.lang.String">MQ.USER</config-property>
​ <config-property name="password" type="java.lang.String">MQ.PASSWORD</config-property>
​ <config-property name="port" type="java.lang.String">MQ.PORT</config-property>
​ <config-property name="queueManager" type="java.lang.String">MQ.QUEUE.MANAGER</config-property>
​ <config-property name="channel" type="java.lang.String">MQ.CHANNEL.NAME</config-property>
​ <config-property name="transportType" type="java.lang.String">MQ.TRANSPORT.TYPE</config-property>
​ <!-- define the security domain -->
​ <security-domain-and-application>JmsXARealm</security-domain-and-application>
​ </tx-connection-factory>
​
​ <!-- admin object definitions -->
​
​ <!-- Binding of the crash recovery queue in WebSphere MQ -->
​ <mbean code="org.jboss.resource.deployment.AdminObject" name="jca.wmq:name=crashRecovery">
​ <attribute name="JNDIName">
​ queue/crashRecoveryQueue
​ </attribute>
​ <depends optional-attribute-name="RARName">
​ jboss.jca:service=RARDeployment,name='wmq.jmsra.rar'
​ </depends>
​ <attribute name="Type">javax.jms.Queue</attribute>
​ <attribute name="Properties">
​ baseQueueManagerName=MQ.QUEUE.MANAGER
​ baseQueueName=MQ.RECOVERY.QUEUE
​ </attribute>
​ </mbean>
​
​ <!-- Binding of the XA Connection factory to the JMSProvider that is used by the transaction module -->
​ <!-- The properties must match the Websphere MQ JNDI entry and the FactoryRef must match the xaqcf name -->
​ <mbean code="org.jboss.jms.jndi.JMSProviderLoader"
​ name="jboss.jms:service=JMSProviderLoader,name=WSMQJmsWNPMQMProvider">
​ <!-- this will be bound to java:/... and you will need to use it in conf/jbossts-properties.xml -->
​ <attribute name="ProviderName">WSMQJmsWNPMQMProvider</attribute>
​ <attribute name="ProviderAdapterClass">org.jboss.jms.jndi.JNDIProviderAdapter</attribute>
​ <attribute name="FactoryRef">IBMMQInitialContext/WNPMQMXACF</attribute>
​ <attribute name="QueueFactoryRef">IBMMQInitialContext/WNPMQMXACF</attribute>
​ <attribute name="TopicFactoryRef">IBMMQInitialContext/WNPMQMXACF</attribute>
​ <!-- external context defined in conf/jboss-service.xml -->
​ <depends>jboss.jndi:service=ExternalContext,jndiName=IBMMQInitialContext</depends>
​ </mbean>
​</connection-factories>
​

						

	
							Add the the JMSProviderLoader reference to the <properties depends="arjuna" name="jta"> section of the JBOSS_HOME/server/PROFILE/conf/jbossts-properties.xml file. The WSMQJmsWNPMQMProvider value must match the name in the JMSProviderLoader definition in the wsmq-jmsprovider-ds.xml file.
​
​<!-- the value has to correspond with property com.arjuna.ats.arjuna.xa.nodeIdentifier -->
​<property name="com.arjuna.ats.jta.xaRecoveryNode" value="1" />
​<!-- IBM MQ settings -->
​<!-- the WSMQJmsWNPMQMProvider must match the name in the JMSProviderLoader definition in the *-ds.xml file. -->
​<property name="com.arjuna.ats.jta.recovery.XAResourceRecovery.WSMQWNPMQM" value="org.jboss.jms.server.recovery.MessagingXAResourceRecovery;java:/WSMQJmsWNPMQMProvider"/>
​

						

	
							Restart the JBoss Enterprise Application Server instance. After the restart, the connection will be established. The connection factory will be available under the IbmMQJMSXA JNDI name (bound by JCA). The XA connection factory will be available under the IBMMQInitialContext/WNPMQMXACF JNDI name (bound as external context).
						

							If the connection is not established successfully, the following WARN message will be periodically logged:

2011-06-10 10:44:08,707 WARN [loggerI18N] [com.arjuna.ats.internal.jta.recovery.xarecovery1]
Local XARecoveryModule.xaRecovery got XA exception javax.transaction.xa.XAException:
 Error trying to connect to provider java:/WSMQJmsWNPMQMProvider, XAException.XAER_RMERR

						

 ⁠Chapter 16. Using Production Databases with JBoss Enterprise Application Platform

 ⁠16.1. How to Use Production Databases

			 JBoss utilizes the Hypersonic database as its default database. While this is good for development and prototyping, you or your company will probably require another database to be used for production. This chapter covers configuring JBoss Enterprise Application Platform to use production databases. We cover the procedures for all officially supported databases on the JBoss Enterprise Application Platform. For a complete list of certified databases, refer to http://www.jboss.com/products/platforms/application/supportedconfigurations/.
		

			Please note that in this chapter, we explain how to use production databases to support all services in JBoss Enterprise Application Platform. This includes all the system level services such as EJB and JMS. For individual applications (e.g., WAR or EAR) deployed in JBoss Enterprise Application Platform, you can still use any backend database by setting up the appropriate data source connection.
		

			Installing the external database is out of the scope of this document. Use the tools provided by your database vendor to set up an empty database. You will need the database name, connection URL, username, and password, in order to create the datasource the Platform will use to connect to the database.
		

 ⁠16.2. Installing JDBC Drivers

			To use the selected external database, you must also install the JDBC driver for your database. The JDBC driver is a JAR file, which must be placed into the <JBOSS_HOME>/server/<PROFILE>/lib directory. Replace <PROFILE> with the server profile you are using.
		

			This file is loaded when JBoss Enterprise Application Platform starts up, so if you have the JBoss Enterprise Application Platform running, you will need to shut down and restart. Review the list below for a suitable JDBC driver. For a full list of certified JBoss Enterprise Application Platform database drivers, refer to http://www.jboss.com/products/platforms/application/supportedconfigurations/#JEAP5-0. If the links fail to work, please file a JIRA against this documentation, but be aware that Red Hat does not control these external links. Contact your database vendor for the most current version of the driver for your database.
		
JBDC Driver Download Locations
	MySQL
	
						Download from http://www.mysql.com/products/connector/.
					

	PostgreSQL
	
						Download from http://jdbc.postgresql.org/.
					

	Oracle
	
						Download from http://www.oracle.com/technology/software/tech/java/sqlj_jdbc/index.html.
					

	IBM
	
						Download from http://www-306.ibm.com/software/data/db2/java/.
					

	Sybase
	
						Download from the Sybase jConnect product page http://www.sybase.com/products/allproductsa-z/softwaredeveloperkit/jconnect.
					
Sybase jConnect JDBC Driver 7

							When using Sybase database with this driver, the MaxParams attribute cannot be set higher than 481 due to a limitation in the driver's PreparedStatement class.
						

	Microsoft
	
						Download from the MSDN web site http://msdn.microsoft.com/data/jdbc/.
					

 ⁠16.2.1. Special Notes on Sybase

				Some of the services in JBoss uses null values for the default tables that are created. Sybase Adaptive Server should be configured to allow nulls by default.
			
sp_dboption db_name, "allow nulls by default", true

				Refer to the Sybase manuals for more options.
			

				Additionally, text and image values stored in the database can be very large. When a select list includes both text and image values, the length limit of the data returned is determined by the @@textsize global variable. The default setting for this variable depends on the software used to access Adaptive Server. For the JDBC driver, the default value is 32 kilobytes.
			

 ⁠16.2.1.1. Enable JAVA services

					To use any Java service (for example; JMS, CMP, timers) configured with Sybase, Java must be enabled on Sybase Adaptive Server. To do this use:
				
sp_configure "enable java",1

					Refer to the sybase manuals for more information.
				

					If Java is not enabled for Sybase Adaptive Server, the following error message may be echoed in the console.
				
com.sybase.jdbc2.jdbc.SybSQLException: Cannot run this command because Java services are not
 enabled. A user with System Administrator (SA) role must reconfigure the system to enable Java

 ⁠16.2.1.2. CMP Configuration

					To use Container Managed Persistence for user defined Java objects with Sybase Adaptive Server Enterprise, the Java classes should be installed in the database. The system table sysxtypes contains one row for each extended Java-SQL datatype. This table is only used for Adaptive Servers enabled for Java. Install Java classes using the installjava program.
				
installjava -f <jar-file-name> -S<sybase-server> -U<super-user> -P<super-pass> -D<db-name>

					Refer to the installjava manual in Sybase for more options.
				

 ⁠16.2.1.3. Installing Java Classes

	
							You have to be a super-user with required privileges to install Java classes.
						

	
							The JAR file you are trying to install should be created without compression.
						

	
							Java classes that you install and use in the server must be compiled with JDK 1.2.2. If you compile a class with a later JDK, you will be able to install it in the server using the installjava utility, but you will get a java.lang.ClassFormatError exception when you attempt to use the class. This is because Sybase Adaptive Server uses an older JVM internally, and requires the Java classes to be compiled with the same.
						

 ⁠16.2.1.4. Increase @@textsize Default for Sybase v15.0.3

					A problem with the default maximum text size value returned from the database may cause some tests to fail on JBoss Messaging. To correct the issue, change the default @@textsize value from 32768 (bytes) to 2147483647 (bytes).
				

					Make the change in the sybase-ds.xml file inside a <connection-url> directive. An example sybase-ds.xml file is located in <JBOSS_HOME>/jboss-as/docs/examples/jca/ Important

							Specify the entire URL to the database as the directive value. Replace [domain] with the domain name or IP address hosting the Sybase Database, and [port] with the port configured to accept requests.
						

					
​<connection-url>jdbc:sybase:[domain]:[port]/db_name?SQLINITSTRING=set TextSize 2147483647</connection-url>

				

 ⁠16.2.2. Configuring JDBC DataSources

				Datasources correspond to the simplified JCA Datasource configuration specifications.
			

				Datasources need to reside in the <JBOSS_HOME>/server/<PROFILE>/deploy directory, alongside other deployable applications and resources. The files use a standard naming scheme of DBNAME-ds.xml.
			

				Example datasources for all certified databases are located in the <JBOSS_HOME>/docs/examples/jca directory. Edit the datasource that corresponds to your database, and copy it to the deploy/ directory before restarting the application server.
			

				See Chapter 17, Datasource Configuration for information on configuring datasources. As a minimum, you will need to change the connection-url , user-name , and password to correspond to your database of choice.
			

 ⁠16.3. Switching to a Production Database

			You can use the Database Configuration Tool to switch to a production database. The Database Configuration Tool is an Apache Ant script that sets the database to be used by JBoss Enterprise Application Platform. The script can be found in the JBOSS_HOME/jboss-as/tools/schema/ directory.
		
Prerequisites
	
					Apache Ant must be installed.
				

	
					The database that you wish to use must already exist.
				

	
					A user with permission to make changes to that database must already exist.
				

	
					The JDBC driver JAR file for the database must be in the server configuration's lib/ directory.
				

Warning

				You can only use the Database Configuration Tool to change the database configuration once. Also, it must be run before any other changes are made. If you try to run the script on an installation that has already been configured, it may not work as intended.
			

	Back Up Your Server Profile

					Make a copy of the server profile for which you plan to configure your database as the Database Configuration Tool modifies the configuration settings. cp -R JBOSS_HOME/jboss-as/server/Profile /path/to/backup/folder.
				

	Run the Database Configuration Tool

					Change to the directory containing the Database Configuration Tool script: cd JBOSS_HOME/jboss-as/tools/schema
				

	Run Apache Ant

					Run the ant command to launch the script.
				

	Enter Data

					Following the prompts, enter the following information as it is requested:
				
	
							the type of database being used,
						

	
							the name of the database,
						

	
							the host name or IP Address of the database,
						

	
							the TCP port being used for the database,
						

	
							the user name needed to access the database, and
						

	
							the password for the user account.
						

Note

						You could also add these values directly to the build.properties file (found in the same directory) before running the script. The Database Configuration Tool will not prompt you for these properties if it finds you have already added them to the file.
					

Result

				The Database Configuration Tool updates the relevant configuration files and exits. JBoss Enterprise Application Platform is then reconfigured for use with the production database.
			

 ⁠16.4. Common Database-Related Tasks

 ⁠16.4.1. Security and Pooling

				Unless the ResourceAdapter has <reauthentication-support>, using multiple security identities will create subpools for each identity.
			
Note

					The min and max pool size are per subpool, so be careful with these parameters if you have lots of identities.
				

 ⁠16.4.2. Change Database for the JMS Services

				The JMS service in the JBoss Enterprise Application Platform uses relational databases to persist its messages. For improved performance, we should change the JMS service to take advantage of the external database. To do that, we need to replace the file <JBOSS_HOME>/server/<PROFILE>/deploy/messaging/$DATABASE-persistence-service.xml with the $DATABASE-persistence-service.xml filename depending on your external database.
			
	
						MySQL: mysql-persistence-service.xml
					

	
						PostgreSQL: postgresql-persistence-service.xml
					

	
						Oracle: oracle-persistence-service.xml
					

	
						DB2: db2-persistence-service.xml
					

	
						Sybase: sybase-persistence-service.xml
					

	
						MS SQL Server: mssql-persistence-service.xml
					

 ⁠16.4.3. Support Foreign Keys in CMP Services

				Next, we need to go change the <JBOSS_HOME>/server/<PROFILE>/conf/standardjbosscmp-jdbc.xml file so that the fk-constraint property is true. That is needed for all external databases we support on the JBoss Enterprise Application Platform. This file configures the database connection settings for the EJB2 CMP beans deployed in the JBoss Enterprise Application Platform.
			
​<fk-constraint>true</fk-constraint>

 ⁠16.4.4. Specify Database Dialect for Java Persistence API

				The Java Persistence API (JPA) entity manager can save EJB3 entity beans to any backend database. Hibernate provides the JPA implementation in JBoss Enterprise Application Platform. Hibernate has a dialect auto-detection mechanism that works for most databases including the dialects for databases referenced in this appendix which are listed below. If a specific dialect is needed for production databases, you can configure the database dialect in the <JBOSS_HOME>/server/<PROFILE>/deployers/ejb3.deployer/META-INF/jpa-deployers-jboss-beans.xml file. To configure this file you need to uncomment the set of tags related to the map entry hibernate.dialect and change the values to the following based on the database you setup.
			
	
						Oracle 10g: org.hibernate.dialect.Oracle10gDialect
					

	
						Oracle 11g: org.hibernate.dialect.Oracle10gDialect
					

	
						Microsoft SQL Server 2008: org.hibernate.dialect.SQLServerDialect
					

	
						PostgresSQL 8.2.3: org.hibernate.dialect.PostgreSQLDialect
					

	
						PostgresSQL 8.3.7: org.hibernate.dialect.PostgreSQLDialect
					

	
						MySQL 5.0: org.hibernate.dialect.MySQL5InnoDBDialect
					

	
						MySQL 5.1: org.hibernate.dialect.MySQL5InnoDBDialect
					

	
						DB2 9.1: org.hibernate.dialect.DB2Dialect
					

	
						Sybase ASE 15: org.hibernate.dialect.SybaseASE15Dialect
					

 ⁠16.4.5. Change Other JBoss Enterprise Application Platform Services to use the External Database

				Besides JMS, CMP, and JPA, we still need to hook up the rest of JBoss services with the external database. There are two ways to do it. One is easy but inflexible. The other is flexible but requires more steps. Now, let us discuss those two approaches respectively.
			

 ⁠16.4.5.1. The Easy Way

					The easy way is just to change the JNDI name for the external database to DefaultDS. Most JBoss services are hard-wired to use the DefaultDS by default. So, by changing the DataSource name, we do not need to change the configuration for each service individually.
				

					To change the JNDI name, just open the *-ds.xml file for your external database, and change the value of the jndi-name property to DefaultDS. For instance, in mysql-ds.xml, you would change MySqlDS to DefaultDS and so on. You will need to remove the <JBOSS_HOME>/server/<PROFILE>/deploy/hsqldb-ds.xml file after you are done to avoid duplicated DefaultDS definition.
				

					In the messaging/$DATABASE-persistence-service.xml file, you should also change the datasource name in the depends tag for the PersistenceManagers MBean to DefaultDS. For instance, for mysql-persistence-service.xml file, we change the MySqlDS to DefaultDS.
				
​<mbean
​ code="org.jboss.messaging.core.jmx.JDBCPersistenceManagerService"
​ name="jboss.messaging:service=PersistenceManager"
​ xmbean-dd="xmdesc/JDBCPersistenceManager-xmbean.xml">
​
​ <depends>jboss.jca:service=DataSourceBinding,name=DefaultDS</depends>

 ⁠16.4.5.2. The More Flexible Way

					Changing the external datasource to DefaultDS is convenient. But if you have applications that assume the DefaultDS always points to the factory-default HSQL DB, that approach could break your application. Also, changing DefaultDS destination forces all JBoss services to use the external database. What if you want to use the external database only on some services?
				

					A safer and more flexible way to hook up JBoss Enterprise Application Platform services with the external DataSource is to manually change the DefaultDS in all standard JBoss services to the DataSource JNDI name defined in your *-ds.xml file (for example, the MySqlDS in mysql-ds.xml, etc.). Below is a complete list of files that contain DefaultDS. You can update them all to use the external database on all JBoss services or update some of them to use different combination of DataSources for different services.
				
	
							<JBOSS_HOME>/server/<PROFILE>/conf/login-config.xml: This file is used in Java EE container managed security services.
						

	
							JBOSS_HOME/server/<PROFILE>/conf/standardjbosscmp-jdbc.xml: This file configures the CMP beans in the EJB container.
						

	
							<JBOSS_HOME>/server/<PROFILE>/deploy/ejb2-timer-service.xml: This file configures the EJB timer services.
						

	
							<JBOSS_HOME>/server/<PROFILE>/deploy/juddi-service.sar/META-INF/jboss-service.xml: This file configures the UUDI service.
						

	
							<JBOSS_HOME>/server/<PROFILE>/deploy/juddi-service.sar/juddi.war/WEB-INF/jboss-web.xml: This file configures the UUDI service.
						

	
							<JBOSS_HOME>/server/<PROFILE>/deploy/juddi-service.sar/juddi.war/WEB-INF/juddi.properties: This file configures the UUDI service.
						

	
							<JBOSS_HOME>/server/<PROFILE>/deploy/uuid-key-generator.sar/META-INF/jboss-service.xml: This file configures the UUDI service.
						

	
							<JBOSS_HOME>/server/<PROFILE>/deploy/messaging/messaging-jboss-beans.xml and <JBOSS_HOME>/server/<PROFILE>/deploy/messaging/persistence-service.xml: Those files configure the JMS persistence service as we discussed earlier.
						

 ⁠16.4.6. A Special Note About Oracle Databases

				In our setup discussed in this chapter, we rely on the JBoss Enterprise Application Platform to automatically create needed tables in the external database upon server start up. That works most of the time. But for databases like Oracle, there might be some minor issues if you try to use the same database server to back more than one JBoss Enterprise Application Platform instance.
			

				The Oracle database creates tables of the form schemaname.tablename. The TIMERS and HILOSEQUENCES tables needed by JBoss Enterprise Application Platform would not be created on a schema if the table already existed on a different schema. To work around this issue, you need to edit the <JBOSS_HOME>/server/<PROFILE>/deploy/ejb2-timer-service.xml file to change the table name from TIMERS to something like schemaname2.tablename.
			
​
​ <mbean code="org.jboss.ejb.txtimer.DatabasePersistencePolicy"
​ name="jboss.ejb:service=EJBTimerService,persistencePolicy=database">
​ <!-- DataSourceBinding ObjectName -->
​ <depends optional-attribute-name="DataSource">
​ jboss.jca:service=DataSourceBinding,name=DefaultDS
​ </depends>
​ <!-- The plugin that handles database persistence -->
​ <attribute name="DatabasePersistencePlugin">
​ org.jboss.ejb.txtimer.GeneralPurposeDatabasePersistencePlugin
​ </attribute>
​ <!-- The timers table name -->
​ <attribute name="TimersTable">TIMERS</attribute>
​ </mbean>

				Similarly, you need to change the <JBOSS_HOME>/server/<PROFILE>/deploy/uuid-key-generator.sar/META-INF/jboss-service.xml file to change the table name from HILOSEQUENCES to something like schemaname2.tablename as well.
			
​ <!-- HiLoKeyGeneratorFactory --> <mbean
​ code="org.jboss.ejb.plugins.keygenerator.hilo.HiLoKeyGeneratorFactory"
​ name="jboss:service=KeyGeneratorFactory,type=HiLo">
​
​ <depends>jboss:service=TransactionManager</depends>
​
​ <!-- Attributes common to HiLo factory instances -->
​
​ <!-- DataSource JNDI name -->
​ <depends optional-attribute-name="DataSource">jboss.jca:service=DataSourceBinding,name=DefaultDS</depends>
​
​ <!-- table name -->
​ <attribute name="TableName">HILOSEQUENCES</attribute>

Regression in Oracle JDBC driver 11.1.0.7.0

					Oracle JDBC driver version 11.1.0.7.0 causes the JBoss Messaging Test Suite to fail with a SQLException ("Bigger type length than Maximum") on Oracle 11g R1.
				

					This is caused by a regression in Oracle JDBC driver 11.1.0.7.0.
				

					We recommend Oracle JDBC driver version 11.2.0.1.0 for use with Oracle 11g R1, Oracle 11g R2, Oracle RAC 11g R1 and Oracle RAC 11g R2.
				

 ⁠Chapter 17. Datasource Configuration

You must change your database

			The default persistence configuration works out of the box with Hypersonic (HSQLDB) so that the JBoss Enterprise Platforms are able to run "out of the box". However, Hypersonic is not supported in production and should not be used in a production environment.
		

			Known issues with the Hypersonic Database include:
		
	
					no transaction isolation;
				

	
					thread and socket leaks (connection.close() does not tidy up resources);
				

	
					persistence quality (logs commonly become corrupted after a failure, preventing automatic recovery);
				

	
					database corruption;
				

	
					stability under load (database processes cease when dealing with too much data);
				

	
					and not viable in clustered environments.
				

			Check the "Using Other Databases" chapter of the Getting Started Guide for assistance.
		

		Datasources are defined inside a <datasources> element. The exact element depends on the type of datasource required.
	
Multiple Datasource Files

			Attempting to deploy more than one datasource file in an application's archive file (esb, war, ear), will lead to an exception being thrown.
		

			Deploying multiple datasource files is not supported in EAP5.2.0
		

 ⁠17.1. Types of Datasources

Datasource Definitions
	<no-tx-datasource>
	
						Does not take part in JTA transactions. The java.sql.Driver is used.
					

	<local-tx-datasource>
	
						Does not support two phase commit. The java.sql.Driver is used. Suitable for a single database or a non-XA-aware resource.
					

	<xa-datasource>
	
						Supports two phase commit. The javax.sql.XADataSource driver is used.
					

 ⁠17.2. Datasource Parameters

Common Datasource Parameters
	<mbean>
	
						A standard JBoss MBean deployment.
					

	<depends>
	
						The ObjectName of an MBean service this ConnectionFactory or DataSource deployment depends upon. The connection manager service will not be started until the dependent services have been started.
					

	<jndi-name>
	
						The JNDI name under which the Datasource should be bound.
					

	<use-java-context>
	
						Boolean value indicating whether the jndi-name should be prefixed with java:. This prefix causes the Datasource to only be accessible from within the JBoss Enterprise Application Platform virtual machine. Defaults to TRUE.
					

	<user-name>
	
						The user name used to create the connection to the datasource.
					
Note

							Not used when security is configured.
						

	<password>
	
						The password used to create the connection to the datasource.
					
Note

							Not used when security is configured.
						

	<transaction-isolation>
	
						The default transaction isolation of the connection. If not specified, the database-provided default is used.
					
Possible values for <transaction-isolation>
	
								TRANSACTION_READ_UNCOMMITTED
							

	
								TRANSACTION_READ_COMMITTED
							

	
								TRANSACTION_REPEATABLE_READ
							

	
								TRANSACTION_SERIALIZABLE
							

	
								TRANSACTION_NONE
							

	<new-connection-sql>
	
						An SQL statement that is executed against each new connection. This can be used to set up the connection schema, for instance.
					

	<check-valid-connection-sql>
	
						An SQL statement that is executed before the connection is checked out from the pool to make sure it is still valid. If the SQL statement fails, the connection is closed and a new one is created.
					

	<valid-connection-checker-class-name>
	
						A class that checks whether a connection is valid using a vendor-specific mechanism.
					

	<exception-sorter-class-name>
	
						A class that parses vendor-specific messages to determine whether SQL errors are fatal, and destroys the connection if so. If empty, no errors are treated as fatal.
					

	<track-statements>
	
						Whether to monitor for un-closed Statements and ResultSets and issue warnings when they have not been closed. The default value is NOWARN.
					

	<prepared-statement-cache-size>
	
						The number of prepared statements per connection to be kept open and reused in subsequent requests. They are stored in a Least Recently Used (LRU) cache. The default value is 0, meaning that no cache is kept.
					

	<share-prepared-statements>
	
						When the <prepared-statement-cache-size> is non-zero, determines whether two requests in the same transaction should return the same statement. Defaults to FALSE.
					

 ⁠Example 17.1. Using <share-prepared-statements>

							The goal is to work around questionable driver behavior, where the driver applies auto-commit semantics to local transactions.
						
​
​ Connection c = dataSource.getConnection(); // auto-commit == false
​ PreparedStatement ps1 = c.prepareStatement(...);
​ ResultSet rs1 = ps1.executeQuery();
​ PreparedStatement ps2 = c.prepareStatement(...);
​ ResultSet rs2 = ps2.executeQuery();

							This assumes that the prepared statements are the same. For some drivers, ps2.executeQuery() automatically closes rs1, so you actually need two real prepared statements behind the scenes. This only applies to the auto-commit semantic, where re-running the query starts a new transaction automatically. For drivers that follow the specification, you can set it to TRUE to share the same real prepared statement.
						

	<set-tx-query-timeout>
	
						Whether to enable query timeout based on the length of time remaining until the transaction times out. Defaults to FALSE.
					

	<query-timeout>
	
						The maximum time, in seconds, before a query times out. You can override this value by setting <set-tx-query-timeout> to TRUE.
					

	<type-mapping>
	
						A pointer to the type mapping in conf/standardjbosscmp.xml. This element is a child element of <metadata>. A legacy from JBoss4.
					

	<validate-on-match>
	
						Whether to validate the connection when the JCA layer matches a managed connection, such as when the connection is checked out of the pool. With the addition of <background-validation> this is not required. It is usually not necessary to specify TRUE for <validate-on-match> in conjunction with specifying TRUE for <background-validation>. Defaults to TRUE.
					

	<prefill>
	
						Whether to attempt to prefill the connection pool to the minimum number of connections. Only supporting pools (OnePool) support this feature. A warning is logged if the pool does not support prefilling. Defaults to TRUE.
					

	<background-validation>
	
						Background connection validation reduces the overall load on the RDBMS system when validating a connection. When using this feature, EAP checks whether the current connection in the pool a separate thread (ConnectionValidator). <background-validation-minutes> depends on this value also being set to TRUE. Defaults to FALSE.
					
The <background-validation> Parameter Deprecated

							The <background-validation> parameter has been deprecated and is no longer supported: set the <background-validation-millis> parameter to a value greater than 0 and background validation will be enabled automatically.
						

	<background-validation-millis>
	
						Background connection validation reduces the overall load on the RDBMS system when validating a connection. Setting this parameter means that JBoss will attempt to validate the current connections in the pool as a separate thread (ConnectionValidator). This parameter's value defines the interval for which the ConnectionValidator runs. The value should differ from the <idle-timeout-minutes > value). The default value of the property is 0. If <background-validation-millis> is set to a value greater than 0, the background validation is enabled.
					

						This value should not be the same as your <idle-timeout-minutes> value.
					
Note

							You should set this to a smaller value than <idle-timeout-minutes>, unless you have specified <min-pool-size> a minimum pool size set.
						

	<idle-timeout-minutes>
	
						The maximum time, in minutes, before an idle connection is closed. A value of 0 disables timeout. Defaults to 15 minutes.
					

	<track-connection-by-tx>
	
						Whether the connection should be locked to the transaction, instead of returning it to the pool at the end of the transaction. In previous releases, this was true for local connection factories and false for XA connection factories. The default is now true for both local and XA connection factories, and the element has been deprecated.
					

	<interleaving>
	
						Enables interleaving for XA connection factories.
					

	<background-validation-minutes>
	
						How often, in minutes, the ConnectionValidator runs. Default to 0 mills.
					
The <background-validation-minutes> Parameter Deprecated

							The <background-validation-minutes> parameter has been deprecated and is no longer supported: use the <background-validation-millis> parameter instead.
						

Note

							You should set this to a smaller value than <idle-timeout-minutes>, unless you have specified <min-pool-size> a minimum pool size set.
						

	<url-delimiter>, <url-property>, <url-selector-strategy-class-name>
	
						Parameters dealing with database failover. As of JBoss Enterprise Application Platform 5.1, these are configured as part of the main datasource configuration. In previous versions, <url-delimiter> appeared as <url-delimiter>.
					

	<stale-connection-checker-class-name>
	
						An implementation of org.jboss.resource.adapter.jdbc.StateConnectionChecker that decides whether SQLExceptions that notify of bad connections throw the org.jboss.resource.adapter.jdbc.StateConnectionException exception.
					

	<max-pool-size>
	
						The maximum number of connections allowed in the pool. If undefined, the size defaults to 10. The value in the example datasource definition (<JBOSS_HOME>/server/<PROFILE>/deploy/hsqldb-ds.xml) is set to 20.
					

	<min-pool-size>
	
						The minimum number of connections maintained in the pool. Unless <prefill> is TRUE, the pool remains empty until the first use, at which point the pool is filled to the <min-pool-size>. When the pool size drops below the <min-pool-size> due to idle timeouts, the pool is refilled to the <min-pool-size>. Defaults to 0.
					

	<blocking-timeout-millis>
	
						The length of time, in milliseconds, to wait for a connection to become available when all the connections are checked out. Defaults to 30000, which is 30 seconds.
					

	<use-fast-fail>
	
						Whether to continue trying to acquire a connection from the pool even if the previous attempt has failed, or begin failover. This is to address performance issues where validation SQL takes significant time and resources to execute. Defaults to FALSE.
					

Parameters for javax.sql.XADataSource Usage
	<connection-url>
	
						The JDBC driver connection URL string
					

	<driver-class>
	
						The JDBC driver class implementing the java.sql.Driver
					

	<connection-property>
	
						Used to configure the connections retrieved from the java.sql.Driver.
					

 ⁠Example 17.2. Example <connection-property>
​
​ <connection-property name="char.encoding">UTF-8</connection-property>

Parameters for javax.sql.XADataSource Usage
	<xa-datasource-class>
	
						The class implementing the XADataSource
					

	<xa-datasource-property>
	
						Properties used to configure the XADataSource.
					

 ⁠Example 17.3. Example <xa-datasource-property> Declarations
​<xa-datasource-property name="IfxWAITTIME">10</xa-datasource-property>
​<xa-datasource-property name="IfxIFXHOST">myhost.mydomain.com</xa-datasource-property>
​<xa-datasource-property name="PortNumber">1557</xa-datasource-property>
​<xa-datasource-property name="DatabaseName">mydb</xa-datasource-property>
​<xa-datasource-property name="ServerName">myserver</xa-datasource-property>

	<xa-resource-timeout>
	
						The number of seconds passed to XAResource.setTransactionTimeout() when not zero.
					

	<isSameRM-override-value>
	
						When set to FALSE, fixes some problems with Oracle databases.
					

	<no-tx-separate-pools>
	
						Pool transactional and non-transactional connections separately
					
Warning

							Using this option will cause your total pool size to be twice max-pool-size, because two actual pools will be created.
						

						Used to fix problems with Oracle.
					

Security Parameters
	 <application-managed-security>
	
						Uses the username and password passed on the getConnection or createConnection request by the application.
					

	 <security-domain>
	
						Uses the identified login module configured in conf/login-module.xml.
					

	 <security-domain-and-application>
	
						Uses the identified login module configured in conf/login-module.xml and other connection request information supplied by the application, for example JMS Queues and Topics.
					

 ⁠Parameters for XA Recovery in the JCA Layer
	<recover-user-name>
	
						The user with credentials to perform a recovery operation.
					

	<recover-password>
	
						Password of the user with credentials to perform a recovery operation.
					

	<recover-security-domain>
	
						Security domain for recovery.
					

	<no-recover>
	
						Excludes a datasource from recovery.
					

			The fields in Parameters for XA Recovery in the JCA Layershould have a fall back value of their non-recover counterparts: <user-name>, < password> and <security-domain>.
		

 ⁠17.3. Datasource Examples

			For database-specific examples, see Appendix B, Vendor-Specific Datasource Definitions.
		

 ⁠17.3.1. Generic Datasource Example

 ⁠Example 17.4. Generic Datasource Example
​
​ <datasources>
​ <local-tx-datasource>
​ <jndi-name>GenericDS</jndi-name>
​ <connection-url>[jdbc: url for use with Driver class]</connection-url>
​ <driver-class>[fully qualified class name of java.sql.Driver implementation]</driver-class>
​ <user-name>x</user-name>
​ <password>y</password>
​ <!-- you can include connection properties that will get passed in
​	 the DriverManager.getConnection(props) call-->
​ <!-- look at your Driver docs to see what these might be -->
​ <connection-property name="char.encoding">UTF-8</connection-property>
​ <transaction-isolation>TRANSACTION_SERIALIZABLE</transaction-isolation>
​
​ <!--pooling parameters-->
​ <min-pool-size>5</min-pool-size>
​ <max-pool-size>100</max-pool-size>
​ <blocking-timeout-millis>5000</blocking-timeout-millis>
​ <idle-timeout-minutes>15</idle-timeout-minutes>
​ <!-- sql to call when connection is created
​	 <new-connection-sql>some arbitrary sql</new-connection-sql>
​ -->
​
​ <!-- sql to call on an existing pooled connection when it is obtained from pool
​	 <check-valid-connection-sql>some arbitrary sql</check-valid-connection-sql>
​ -->
​
​ <set-tx-query-timeout></set-tx-query-timeout>
​ <query-timeout>300</query-timeout> <!-- maximum of 5 minutes for queries -->
​
​ <!-- pooling criteria. USE AT MOST ONE-->
​ <!-- If you do not use JAAS login modules or explicit login
​	 getConnection(usr,pw) but rely on user/pw specified above,
​	 do not specify anything here -->
​
​ <!-- If you supply the usr/pw from a JAAS login module -->
​ <security-domain>MyRealm</security-domain>
​
​ <!-- if your app supplies the usr/pw explicitly getConnection(usr, pw) -->
​ <application-managed-security></application-managed-security>
​
​ <!--Anonymous depends elements are copied verbatim into the ConnectionManager mbean config-->
​ <depends>myapp.service:service=DoSomethingService</depends>
​
​ </local-tx-datasource>
​
​ <!-- you can include regular mbean configurations like this one -->
​ <mbean code="org.jboss.tm.XidFactory"
​	 name="jboss:service=XidFactory">
​ <attribute name="Pad">true</attribute>
​ </mbean>
​
​
​ <!-- Here's an xa example -->
​ <xa-datasource>
​ <jndi-name>GenericXADS</jndi-name>
​ <xa-datasource-class>[fully qualified name of class implementing javax.sql.XADataSource goes here]</xa-datasource-class>
​ <xa-datasource-property name="SomeProperty">SomePropertyValue</xa-datasource-property>
​ <xa-datasource-property name="SomeOtherProperty">SomeOtherValue</xa-datasource-property>
​
​ <user-name>x</user-name>
​ <password>y</password>
​ <transaction-isolation>TRANSACTION_SERIALIZABLE</transaction-isolation>
​
​
​
​ <!--pooling parameters-->
​ <min-pool-size>5</min-pool-size>
​ <max-pool-size>100</max-pool-size>
​ <blocking-timeout-millis>5000</blocking-timeout-millis>
​ <idle-timeout-minutes>15</idle-timeout-minutes>
​ <!-- sql to call when connection is created
​	 <new-connection-sql>some arbitrary sql</new-connection-sql>
​ -->
​
​ <!-- sql to call on an existing pooled connection when it is obtained from pool
​	 <check-valid-connection-sql>some arbitrary sql</check-valid-connection-sql>
​ -->
​
​
​ <!-- pooling criteria. USE AT MOST ONE-->
​ <!-- If you do not use JAAS login modules or explicit login
​	 getConnection(usr,pw) but rely on user/pw specified above,
​	 do not specify anything here -->
​
​ <!-- If you supply the usr/pw from a JAAS login module -->
​ <security-domain></security-domain>
​
​ <!-- if your app supplies the usr/pw explicitly getConnection(usr, pw) -->
​ <application-managed-security></application-managed-security>
​
​ </xa-datasource>
​
​</datasources>
​				
​				
​				
​

 ⁠17.3.2. Configuring a DataSource for Remote Usage

				JBoss EAP supports accessing a DataSource from a remote client. See Example 17.5, “Configuring a Datasource for Remote Usage” for the change that gives the client the ability to look up the DataSource from JNDI, which is to specify use-java-context=false.
			

 ⁠Example 17.5. Configuring a Datasource for Remote Usage
​
​ <datasources>
​ <local-tx-datasource>
​ <jndi-name>GenericDS</jndi-name>
​ <use-java-context>false</use-java-context>
​ <connection-url>...</connection-url>
​ ...

				This causes the DataSource to be bound under the JNDI name GenericDS instead of the default of java:/GenericDS, which restricts the lookup to the same Virtual Machine as the EAP server.
			
Note

					Use of the <use-java-context> setting is not recommended in a production environment. It requires accessing a connection pool remotely and this can cause unexpected problems, since connections are not serializable. Also, transaction propagation is not supported, since it can lead to connection leaks if unreliability is present, such as in a system crash or network failure. A remote session bean facade is the preferred way to access a datasource remotely.
				

 ⁠17.3.3. Configuring a Datasource to Use Login Modules

 ⁠Procedure 17.1. Configuring a Datasource to Use Login Modules
	Add the <security-domain-parameter> to the XML file for the datasource.
​
​ <datasources>
​ <local-tx-datasource>
​ ...
​ <security-domain>MyDomain</security-domain>
​ ...
​ </local-tx-datasource>
​ </datasources>

	Add an application policy to the login-config.xml file.

						The authentication section needs to include the configuration for your login-module. For example, to encrypt the database password, use the SecureIdentityLoginModule login module.
					
​
​<application-policy name="MyDomain">
​ <authentication>
​ <login-module code="org.jboss.resource.security.SecureIdentityLoginModule" flag="required">
​ <module-option name="username">scott</module-option>
​ <module-option name="password">-170dd0fbd8c13748</module-option>
​ <module-option name="managedConnectionFactoryName">jboss.jca:service=LocalTxCM,name=OracleDSJAAS</module-option>
​ </login-module>
​ </authentication>
​</application-policy>

	
						If you plan to fetch the data source connection from a web application, authentication must be enabled for the web application, so that the Subject is populated.
					

	
						If users need the ability to connect anonymously, add an additional login module to the application-policy, to populate the security credentials.
					

	
						Add the UsersRolesLoginModule module to the beginning of the chain. The usersProperties and rolesProperties parameters can be directed to dummy files.
					
​
​<login-module code="org.jboss.security.auth.spi.UsersRolesLoginModule" flag="required">
​ <module-option name="unauthenticatedIdentity">nobody</module-option>
​ <module-option name="usersProperties">props/users.properties</module-option>
​ <module-option name="rolesProperties">props/roles.properties</module-option>
​</login-module>

 ⁠Chapter 18. Pooling

 ⁠18.1. Strategy

			 JCA uses a ManagedConnectionPool to perform the pooling. The ManagedConnectionPool is made up of subpools depending upon the strategy chosen and other pooling parameters.
		
	
							XML
						

						 	
							mbean
						

						 	
							Internal Name
						

						 	
							Description
						

						
	
							
						

						 	
							ByNothing
						

						 	
							OnePool
						

						 	
							A single pool of equivalent connections
						

						
	
							<application-managed-security/>
						

						 	
							ByApplication
						

						 	
							PoolByCRI
						

						 	
							Use the connection properties from allocateConnection()
						

						
	
							<security-domain/>
						

						 	
							ByContainer
						

						 	
							PoolBySubject
						

						 	
							A pool per Subject, e.g. preconfigured or EJB/Web log in subjects
						

						
	
							<security-domain-and-application/>
						

						 	
							ByContainerAndApplicaton
						

						 	
							PoolBySubjectAndCri
						

						 	
							A per Subject and connection property combination
						

						

			For <security-domain-and-application/> the Subject always overrides any user/password from createConnection(user, password) in the CRI:
		
(
ConnectionRequestInfo
)

 ⁠18.2. Workaround for Oracle's JDK

			Oracle's JDK does not work well with XA connections when used both inside and outside a JTA transaction. To workaround the problem you can create separate sub-pools for the different contexts using <no-tx-separate-pools/>.
		

 ⁠18.3. Pool Access

			The pool is designed for concurrent usage.
		

			Up to <max-pool-size/> threads can be inside the pool at the same time (or using connections from a pool).
		

			Once this limit is reached, threads wait for the <blocking-timeout-seconds/> to use the pool before throwing a No Managed Connections Available exception. More information about this exception can be found at http://www.jboss.org/community/wiki/WhatDoesTheMessageNoManagedConnectionsAvailableMean.
		

			You may need to use the <allocation-retry/> and <allocation-retry-wait-millis/> elements to have the pool retry to obtain a connection before throwing the exception.
		

 ⁠18.4. Pool Filling

			The number of connections in the pool is controlled by the pool sizes.
		
	
					<min-pool-size/> - When the number of connections falls below this size, new connections are created
				

	
					<max-pool-size/> - No more than this number of connections are created
				

	
					<prefill/> - Feature Request has been implemented for 4.0.5.
				

			The pool filling is done by a separate "Pool Filler" thread rather than blocking application threads.
		
Pool Filling to Minimum Pool Size

				Connection pools are filled to their min-pool-size only on their first usage.
			

 ⁠18.5. Idle Connections

			You can configure connections to be closed when they are idle. For example; if you just had a peak period and now want to reap the unused ones. This is done via the idle-timeout-minutes parameter.
		

			Idle checking is done on a separate Idle Remover thread on an 'least recently used' (LRU) basis.
		

			Idle connections (connections that have been unused for the period defined by idle-timeout-minutes) are purged regularly. The check is performed at an interval that is half of the idle-timeout-minutes value.
		

			The pool itself operates on an 'most recently used' (MRU) basis. This allows the excess connections to be easily identified.
		

			Should closing idle connections cause the pool to fall below the min-pool-size value, new connections are created.
		

				If you have long-running transactions and you use interleaving (i.e. do not track-connection-by-tx) make sure the idle timeout is greater than the transaction timeout. When interleaving the connection is returned to the pool for others to use. If however nobody does use it, it would be a candidate for removal before the transaction is committed.
			

 ⁠18.6. Dead connections

			The JDBC protocol does not provide a natural connectionErrorOccured() event when a connection is broken. To support dead/broken connection checking there are a number of plug-ins.
		

 ⁠18.6.1. Valid connection checking

				Valid connections can be checked with an SQL statement (as shown below) before handing the connection to the application.
			
<check-valid-connection-sql>select 1 from dual</check-valid-connection-sql>

				If this fails, another connection is selected until there are no more connections at which point new connections are constructed.
			

				A potentially more performant check is to use vendor specific features, for example Oracle or MySQL's pingDatabase() tool:
			
<valid-connection-checker-class-name/>

 ⁠18.6.2. Errors during SQL queries

				You can check if a connection broke during a query by the reviewing the error codes or messages of the SQLException for FATAL errors rather than normal SQLExceptions. These codes or messages can be vendor specific, such as:
<exception-sorter-class-name>org.jboss.resource.adapter.jdbc.vendor.OracleExceptionSorter</exception-sorter-class-name>

			

				For FATAL errors, the connection will be closed.
			

 ⁠18.6.3. Changing, Closing or Flushing the pool

				To change, close or flush the pool, do the following:
			

 ⁠Procedure 18.1. Changing or Flushing the pool
	
						Use JMX to change the attributes on the connection pool jboss.jca:service=JBossManagedConnectionPool,name=<jndi-name>.
					

	
						Use JMX to invoke flush() to reset the pools.
					

				Also, closing or undeploying the pool will force a flush first.
			

				When flush() is invoked;
			
	
						All idle connections are immediately closed;
					

	
						Any in use connections are closed when the application finishes with them;
					

	
						New connections are created.
					

 ⁠18.6.4. Using Third Party Pools

				If you want to use an XADataSource, the JBoss JCA can use the standard API.
			

				If it is a non-XADataSource that does internal pooling (such as Oracle's DataSource for use with RAC), then the pool will not understand the transacting or security configurations (nor any other component that expects the connection to be controlled by the JCA).
			

				These DataSources are intended for use outside a J2EE environment.
			

				JBoss uses standard JDBC drivers and adds the behaviour to turn them into DataSources with the full J2EE contract.
			

				Non-XADataSource datasources should only be used by administrators with a thorough understanding of the topic and its inherent problems.
			

 ⁠Part III. Clustering Guide

 ⁠Chapter 19. Introduction and Quick Start

		Clustering allows you to run an application on several parallel servers (a.k.a cluster nodes) while providing a single view to application clients. Load is distributed across different servers, and even if one or more of the servers fails, the application is still accessible via the surviving cluster nodes. Clustering is crucial for scalable enterprise applications, as you can improve performance by adding more nodes to the cluster. Clustering is crucial for highly available enterprise applications, as it is the clustering infrastructure that supports the redundancy needed for high availability.
	

		The JBoss Enterprise Application Platform comes with clustering support out of the box, as part of the production server profile. The production server profile includes support for the following:
			
					A scalable, fault-tolerant JNDI implementation (HA-JNDI).
				

	
					Web tier clustering, including:
				
	
							High availability for web session state via state replication.
						

	
							Ability to integrate with hardware and software load balancers, including special integration with mod_jk and other JK-based software load balancers.
						

	
							Single Sign-on support across a cluster.
						

	
					EJB session bean clustering, for both stateful and stateless beans, and for both EJB3 and EJB2.
				

	
					A distributed cache for JPA/Hibernate entities.
				

	
					A framework for keeping local EJB2 entity caches consistent across a cluster by invalidating cache entries across the cluster when a bean is changed on any node.
				

	
					Distributed JMS queues and topics via JBoss Messaging.
				

	
					Deploying a service or application on multiple nodes in the cluster but having it active on only one (but at least one) node is called a HA Singleton.
				

	
					Keeping deployed content in sync on all nodes in the cluster via the Farm service.
				

	

		In this Clustering Guide we aim to provide you with an in depth understanding of how to use JBoss Enterprise Application Platform's clustering features. In this first part of the guide, the goal is to provide some basic "Quick Start" steps to encourage you to start experimenting with JBoss Enterprise Application Platform Clustering, and then to provide some background information that will allow you to understand how JBoss Enterprise Application Platform Clustering works. The next part of the guide then explains in detail how to use these features to cluster your JEE services. Finally, we provide some more details about advanced configuration of JGroups and JBoss Cache, the core technologies that underlie JBoss Enterprise Application Platform Clustering.
	

 ⁠19.1. Quick Start Guide

			The goal of this section is to give you the minimum information needed to let you get started experimenting with JBoss Enterprise Application Platform Clustering. Most of the areas touched on in this section are covered in much greater detail later in this guide.
		

 ⁠19.1.1. Initial Preparation

				Preparing a set of servers to act as a JBoss Enterprise Application Platform cluster involves a few simple steps:
			
	
						Install JBoss Enterprise Application Platform on all your servers. In its simplest form, this is just a matter of unzipping the JBoss download onto the file system on each server.
					

						If you want to run multiple JBoss Enterprise Application Platform instances on a single server, you can either install the full JBoss distribution onto multiple locations on your file system, or you can simply make copies of the production server profile. For example, assuming the root of the JBoss distribution was unzipped to /var/jboss, you would:
					

$ cd /var/jboss/server
$ cp -r production node1
$ cp -r production node2

	
						For each node, determine the address to bind sockets to. When you start JBoss, whether clustered or not, you need to tell JBoss on what address its sockets should listen for traffic. (The default is localhost which is secure but is not very useful, particularly in a cluster.) So, you need to decide what those addresses will be.
					

	
						Ensure multicast is working. By default JBoss Enterprise Application Platform uses UDP multicast for most intra-cluster communications. Make sure each server's networking configuration supports multicast and that multicast support is enabled for any switches or routers between your servers. If you are planning to run more than one node on a server, make sure the server's routing table includes a multicast route. See the JGroups documentation at http://www.jgroups.org for more on this general area, including information on how to use JGroups' diagnostic tools to confirm that multicast is working.
					
Note

							JBoss Enterprise Application Platform clustering does not require the use of UDP multicast; the Enterprise Application Platform can also be reconfigured to use TCP unicast for intra-cluster communication.
						

	
						Determine a unique integer "ServerPeerID" for each node. This is needed for JBoss Messaging clustering, and can be skipped if you will not be running JBoss Messaging (that is, you will remove JBM from the server profile's deploy directory). JBM requires that each node in a cluster has a unique integer ID, known as a "ServerPeerID", that should remain consistent across server restarts.
					
Important

							A simple 1, 2, 3, ..., x naming scheme is acceptable, however the value must be between the range 0 to 1023. Values outside this range will result in a java.lang.IllegalArgumentException with the ServerPeer start Service.
						

						We will cover how to use the ServerPeerID in Section 19.1.2, “Launching a JBoss Enterprise Application Platform Cluster”.
					

				Beyond the above required steps, the following two optional steps are recommended to help ensure that your cluster is properly isolated from other JBoss Enterprise Application Platform clusters that may be running on your network:
			
	
						Pick a unique name for your cluster. The default name for a JBoss Enterprise Application Platform cluster is "DefaultPartition". Come up with a different name for each cluster in your environment, e.g. "QAPartition" or "BobsDevPartition". The use of "Partition" is not required; it's just a semi-convention. As a small aid to performance try to keep the name short, as it gets included in every message sent around the cluster. We will cover how to use the name you pick in the next section.
					

	
						Pick a unique multicast address for your cluster. By default JBoss Enterprise Application Platform uses UDP multicast for most intra-cluster communication. Pick a different multicast address for each cluster you run. Generally a good multicast address is of the form 239.255.x.y. We will cover how to use the address you pick in the next section.
					

				See Section 28.6.2, “Isolating JGroups Channels” for more on isolating clusters.
			

 ⁠19.1.2. Launching a JBoss Enterprise Application Platform Cluster

				The simplest way to start a server cluster is to start several JBoss instances on the same local network, using the -c production command line option for each instance. Those server instances will detect each other and automatically form a cluster.
			

				Let us look at a few different scenarios for doing this. In each scenario we will be creating a two node cluster, where the ServerPeerID for the first node is 1 and for the second node is 2. We've decided to call our cluster "DocsPartition" and to use 239.255.100.100 as our multicast address. These scenarios are meant to be illustrative; the use of a two node cluster should not be taken to mean that is the best size for a cluster; it's just that's the simplest way to do the examples.
			
	
						Scenario 1: Nodes on Separate Machines
					

						This is the most common production scenario. Assume the machines are named "node1" and "node2", while node1 has an IP address of 192.168.0.101 and node2 has an address of 192.168.0.102. Assume the "ServerPeerID" for node1 is 1 and for node2 it's 2. Assume on each machine JBoss is installed in /var/jboss.
					

						On node1, to launch JBoss:
					

$ cd /var/jboss/bin
$./run.sh -c production -g DocsPartition -u 239.255.100.100 \
 -b 192.168.0.101 -Djboss.messaging.ServerPeerID=1

						On node2, it's the same except for a different -b value and ServerPeerID:
					

$ cd /var/jboss/bin
$./run.sh -c production -g DocsPartition -u 239.255.100.100 \
 -b 192.168.0.102 -Djboss.messaging.ServerPeerID=2

						The -c switch says to use the production config, which includes clustering support. The -g switch sets the cluster name. The -u switch sets the multicast address that will be used for intra-cluster communication. The -b switch sets the address on which sockets will be bound. The -D switch sets system property jboss.messaging.ServerPeerID, from which JBoss Messaging gets its unique id.
					

	
						Scenario 2: Two Nodes on a Single, Multihomed, Server
					

						Running multiple nodes on the same machine is a common scenario in a development environment, and is also used in production in combination with Scenario 1. (Running all the nodes in a production cluster on a single machine is generally not recommended, since the machine itself becomes a single point of failure.) In this version of the scenario, the machine is multihomed, i.e. has more than one IP address. This allows the binding of each JBoss instance to a different address, preventing port conflicts when the nodes open sockets.
					

						Assume the single machine has the 192.168.0.101 and 192.168.0.102 addresses assigned, and that the two JBoss instances use the same addresses and ServerPeerIDs as in Scenario 1. The difference from Scenario 1 is we need to be sure each Enterprise Application Platform instance has its own work area. So, instead of using the production config, we are going to use the node1 and node2 configs we copied from production earlier in the previous section.
					

						To launch the first instance, open a console window and:
					

$ cd /var/jboss/bin
$./run.sh -c node1 -g DocsPartition -u 239.255.100.100 \
 -b 192.168.0.101 -Djboss.messaging.ServerPeerID=1

						For the second instance, it's the same except for different -b and -c values and a different ServerPeerID:
					

$ cd /var/jboss/bin
$./run.sh -c node2 -g DocsPartition -u 239.255.100.100 \
 -b 192.168.0.102 -Djboss.messaging.ServerPeerID=2

	
						Scenario 3: Two Nodes on a Single, Non-Multihomed, Server
					

						This is similar to Scenario 2, but here the machine only has one IP address available. Two processes can not bind sockets to the same address and port, so we will have to tell JBoss to use different ports for the two instances. This can be done by configuring the ServiceBindingManager service by setting the jboss.service.binding.set system property.
					

						To launch the first instance, open a console window and:
					

$ cd /var/jboss/bin
$./run.sh -c node1 -g DocsPartition -u 239.255.100.100 \
 -b 192.168.0.101 -Djboss.messaging.ServerPeerID=1 \
 -Djboss.service.binding.set=ports-default

						For the second instance:
					

$ cd /var/jboss/bin
$./run.sh -c node2 -g DocsPartition -u 239.255.100.100 \
 -b 192.168.0.101 -Djboss.messaging.ServerPeerID=2 \
 -Djboss.service.binding.set=ports-01

						This tells the ServiceBindingManager on the first node to use the standard set of ports (e.g. JNDI on 1099). The second node uses the "ports-01" binding set, which by default for each port has an offset of 100 from the standard port number (e.g. JNDI on 1199). See the conf/bindingservice.beans/META-INF/bindings-jboss-beans.xml file for the full ServiceBindingManager configuration.
					

						Note that this setup is not advised for production use, due to the increased management complexity that comes with using different ports. But it is a fairly common scenario in development environments where developers want to use clustering but cannot multihome their workstations.
					
Note

							Including -Djboss.service.binding.set=ports-default on the command line for node1 is not technically necessary, since ports-default is the default value. But using a consistent set of command line arguments across all servers is helpful to people less familiar with all the details.
						

				That's it; that's all it takes to get a cluster of JBoss Enterprise Application Platform servers up and running.
			

 ⁠19.1.3. Web Application Clustering Quick Start

				JBoss Enterprise Application Platform supports clustered web sessions, where a backup copy of each user's HttpSession state is stored on one or more nodes in the cluster. In case the primary node handling the session fails or is shut down, any other node in the cluster can handle subsequent requests for the session by accessing the backup copy. Web tier clustering is discussed in detail in the HTTP Connectors Load Balancing Guide.
			

				There are two aspects to setting up web tier clustering:
					
							Configuring an External Load Balancer. Web applications require an external load balancer to balance HTTP requests across the cluster of JBoss Enterprise Application Platform instances (see Section 20.2.2, “External Load Balancer Architecture” for more on why that is). JBoss Enterprise Application Platform itself does not act as an HTTP load balancer. So, you will need to set up a hardware or software load balancer. There are many possible load balancer choices, so how to configure one is really beyond the scope of a Quick Start. Refer to the HTTP Connectors Load Balancing Guide for details on how to set up the popular mod_jk software load balancer.
						

	
							Configuring Your Web Application for Clustering. This aspect involves telling JBoss you want clustering behavior for a particular web app, and it could not be simpler. Just add an empty distributable element to your application's web.xml file:
						
​<?xml version="1.0"?>
​<web-app xmlns="http://java.sun.com/xml/ns/javaee"
​ xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
​ xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
​ http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"
​ version="2.5">
​
​ <distributable/>
​
​</web-app>

							Simply doing that is enough to get the default JBoss Enterprise Application Platform web session clustering behavior, which is appropriate for most applications. Refer to the HTTP Connectors Load Balancing Guide for more advanced configuration options.
						

			

 ⁠19.1.4. EJB Session Bean Clustering Quick Start

				JBoss Enterprise Application Platform supports clustered EJB session beans, whereby requests for a bean are balanced across the cluster. For stateful beans a backup copy of bean state is maintained on one or more cluster nodes, providing high availability in case the node handling a particular session fails or is shut down. Clustering of both EJB2 and EJB3 beans is supported.
			

				For EJB3 session beans, simply add the org.jboss.ejb3.annotation.Clustered annotation to the bean class for your stateful or stateless bean:
			
​
​@javax.ejb.Stateless
​@org.jboss.ejb3.annotation.Clustered
​public class MyBean implements MySessionInt {
​
​ public void test() {
​ // Do something cool
​ }
​}

				For EJB2 session beans, or for EJB3 beans where you prefer XML configuration over annotations, simply add a clustered element to the bean's section in the JBoss-specific deployment descriptor, jboss.xml:
			
​
​<jboss>
​ <enterprise-beans>
​ <session>
​ <ejb-name>example.StatelessSession</ejb-name>
​ <jndi-name>example.StatelessSession</jndi-name>
​ <clustered>true</clustered>
​ </session>
​ </enterprise-beans>
​</jboss>

				See Chapter 23, Clustered Session EJBs for more advanced configuration options.
			

 ⁠19.1.5. Entity Clustering Quick Start

				One of the big improvements in the clustering area in JBoss Enterprise Application Platform 5 is the use of the new Hibernate/JBoss Cache integration for second level entity caching that was introduced in Hibernate 3.3. In the JPA/Hibernate context, a second level cache refers to a cache whose contents are retained beyond the scope of a transaction. A second level cache may improve performance by reducing the number of database reads. You should always load test your application with second level caching enabled and disabled to see whether it has a beneficial impact on your particular application.
			

				If you use more than one JBoss Enterprise Application Platform instance to run your JPA/Hibernate application and you use second level caching, you must use a cluster-aware cache. Otherwise a cache on server A will still hold out-of-date data after activity on server B updates some entities.
			

				JBoss Enterprise Application Platform provides a cluster-aware second level cache based on JBoss Cache. To tell JBoss Enterprise Application Platform's standard Hibernate-based JPA provider to enable second level caching with JBoss Cache, configure your persistence.xml as follows:
			
​
​<?xml version="1.0" encoding="UTF-8"?>
​<persistence xmlns="http://java.sun.com/xml/ns/persistence"
​ xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
​ xsi:schemaLocation="http://java.sun.com/xml/ns/persistence
​ http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd"
​ version="1.0">
​ <persistence-unit name="somename" transaction-type="JTA">
​ <jta-data-source>java:/SomeDS</jta-data-source>
​ <properties>
​ <property name="hibernate.cache.use_second_level_cache" value="true"/>
​ <property name="hibernate.cache.region.factory_class"
​ value="org.hibernate.cache.jbc2.JndiMultiplexedJBossCacheRegionFactory"/>
​ <property name="hibernate.cache.region.jbc2.cachefactory" value="java:CacheManager"/>
​ <!-- Other configuration options ... -->
​ </properties>
​ </persistence-unit>
​</persistence>

				That tells Hibernate to use the JBoss Cache-based second level cache, but it does not tell it what entities to cache. That can be done by adding the org.hibernate.annotations.Cache annotation to your entity class:
			
​
​package org.example.entities;
​
​import java.io.Serializable;
​import javax.persistence.Entity;
​import org.hibernate.annotations.Cache;
​import org.hibernate.annotations.CacheConcurrencyStrategy;
​
​@Entity
​@Cache(usage=CacheConcurrencyStrategy.TRANSACTIONAL)
​public class Account implements Serializable {

				See Chapter 24, Clustered Entity EJBs for more advanced configuration options and details on how to configure the same thing for a non-JPA Hibernate application.
			
Note

					Clustering can add significant overhead to a JPA/Hibernate second level cache, so do not assume that just because second level caching adds a benefit to a non-clustered application that it will be beneficial to a clustered application. Even if clustered second level caching is beneficial overall, caching of more frequently modified entity types may be beneficial in a non-clustered scenario but not in a clustered one. Always load test your application.
				

 ⁠Chapter 20. Clustering Concepts

		In the next section, we discuss basic concepts behind JBoss' clustering services. It is helpful that you understand these concepts before reading the rest of the Clustering Guide.
	

 ⁠20.1. Cluster Definition

			A cluster is a set of nodes that communicate with each other and work toward a common goal. In a JBoss Enterprise Application Platform cluster (also known as a “partition”), a node is an JBoss Enterprise Application Platform instance. Communication between the nodes is handled by the JGroups group communication library, with a JGroups Channel providing the core functionality of tracking who is in the cluster and reliably exchanging messages between the cluster members. JGroups channels with the same configuration and name have the ability to dynamically discover each other and form a group. This is why simply executing “run -c production” on two Enterprise Application Platform instances on the same network is enough for them to form a cluster – each Enterprise Application Platform starts a Channel (actually, several) with the same default configuration, so they dynamically discover each other and form a cluster. Nodes can be dynamically added to or removed from clusters at any time, simply by starting or stopping a Channel with a configuration and name that matches the other cluster members.
		

			On the same Enterprise Application Platform instance, different services can create their own Channel. In a standard start of the Enterprise Application Platform 5 production server profile, two different services create a total of four different channels – JBoss Messaging creates two and a core general purpose clustering service known as HAPartition creates two more. If you deploy clustered web applications, clustered EJB3 SFSBs or a clustered JPA/Hibernate entity cache, additional channels will be created. The channels the Enterprise Application Platform connects can be divided into three broad categories: a general purpose channel used by the HAPartition service, channels created by JBoss Cache for special purpose caching and cluster wide state replication, and two channels used by JBoss Messaging.
		

			So, if you go to two Enterprise Application Platform 5.0.x instances and execute run -c production, the channels will discover each other and you'll have a conceptual cluster. It's easy to think of this as a two node cluster, but it's important to understand that you really have multiple channels, and hence multiple two node clusters.
		

			On the same network, you may have different sets of servers whose services wish to cluster. Figure 20.1, “Clusters and server nodes” shows an example network of EAP instances divided into three sets, with the third set only having one node. This sort of topology can be set up simply by configuring the Enterprise Application Platform instances such that within a set of nodes meant to form a cluster the Channel configurations and names match while they differ from any other channel configurations and names match while they differ from any other channels on the same network. The Enterprise Application Platform tries to make this is easy as possible, such that servers that are meant to cluster only need to have the same values passed on the command line to the -g (partition name) and -u (multicast address) start up switches. For each set of servers, different values should be chosen. The sections on “JGroups Configuration” and “Isolating JGroups Channels” cover in detail how to configure the Enterprise Application Platform such that desired peers find each other and unwanted peers do not.
		

 ⁠[image: Clusters and server nodes]

Figure 20.1. Clusters and server nodes

 ⁠20.2. Service Architectures

			The clustering topography defined by the JGroups configuration on each node is of great importance to system administrators. But for most application developers, the greater concern is probably the cluster architecture from a client application's point of view. Two basic clustering architectures are used with JBoss Enterprise Application Platform: client-side interceptors (a.k.a. smart proxies or stubs) and external load balancers. Which architecture your application will use will depend on what type of client you have.
		

 ⁠20.2.1. Client-side interceptor architecture

				Most remote services provided by the JBoss Enterprise Application Platform, including JNDI, EJB, JMS, RMI and JBoss Remoting, require the client to obtain (for example, to look up and download) a remote proxy object. The proxy object is generated by the server and it implements the business interface of the service. The client then makes local method calls against the proxy object. The proxy automatically routes the call across the network where it is invoked against service objects managed in the server. The proxy object figures out how to find the appropriate server node, marshal call parameters, unmarshal call results, and return the result to the caller client. In a clustered environment, the server-generated proxy object includes an interceptor that understands how to route calls to multiple nodes in the cluster.
			

				The proxy's clustering logic maintains up-to-date knowledge about the cluster. For instance, it knows the IP addresses of all available server nodes, the algorithm to distribute load across nodes (see next section), and how to failover the request if the target node not available. As part of handling each service request, if the cluster topology has changed the server node updates the proxy with the latest changes in the cluster. For instance, if a node drops out of the cluster, each proxy is updated with the new topology the next time it connects to any active node in the cluster. All the manipulations done by the proxy's clustering logic are transparent to the client application. The client-side interceptor clustering architecture is illustrated below:
			
[image: Client-side interceptor architecture]	[image: 1]
	
						Client communicates with proxy
					

	[image: 2]
	
						Proxy sends request to Node 1
					

	[image: 3]
	
						Node 1 goes offline
					

	[image: 4]
	
						Proxy switches to Node 2
					

	[image: 5]
	
						Proxy sends request to Node 2
					

	[image: 6]
	
						Proxy downloads class dynamically from Node 2
					

 ⁠20.2.2. External Load Balancer Architecture

				The HTTP-based JBoss services do not require the client to download anything. The client (for example, a web browser) sends in requests and receives responses directly over the wire using the HTTP protocol). In this case, an external load balancer is required to process all requests and dispatch them to server nodes in the cluster. The client only needs to know how to contact the load balancer; it has no knowledge of the JBoss Enterprise Application Platform instances behind the load balancer. The load balancer is logically part of the cluster, but we refer to it as “external” because it is not running in the same process as either the client or any of the JBoss Enterprise Application Platform instances. It can be implemented either in software or hardware. There are many vendors of hardware load balancers; the mod_jk Apache module is an excellent example of a software load balancer. An external load balancer implements its own mechanism for understanding the cluster configuration and provides its own load balancing and failover policies. The external load balancer clustering architecture is illustrated below:
			
[image: External Load Balancer Architecture]	[image: 1]
	
						Browser sends a request.
					

	[image: 2]
	
						Load Balancer forwards request to Node 1.
					

	[image: 3]
	
						Node 1 goes offline.
					

	[image: 4]
	
						Load Balancer switches to using Node 2.
					

	[image: 5]
	
						Load Balancer forwards to Node 2.
					

				A potential problem with an external load balancer architecture is that the load balancer itself may be a single point of failure. It needs to be monitored closely to ensure high availability of the entire cluster's services.
			

 ⁠20.3. Load Balancing Policies

			Both the JBoss client-side interceptor (stub) and load balancer use load balancing policies to determine to which server node a new request should be sent. In this section, let us go over the load balancing policies available in JBoss Enterprise Application Platform.
		

 ⁠20.3.1. Client-side interceptor architecture

				In JBoss Enterprise Application Platform 5, the following load balancing options are available when the client-side interceptor architecture is used. The client-side stub maintains a list of all nodes providing the target service; the job of the load balance policy is to pick a node from this list for each request. Each policy has two implementation classes, one meant for use by legacy services like EJB2 that use the legacy detached invoker architecture, and the other meant for services like EJB3 that use AOP-based invocations.
			
	
						Round-Robin: each call is dispatched to a new node, proceeding sequentially through the list of nodes. The first target node is randomly selected from the list. Implemented by org.jboss.ha.framework.interfaces.RoundRobin (legacy) and org.jboss.ha.client.loadbalance.RoundRobin (EJB3).
					

	
						Random-Robin: for each call the target node is randomly selected from the list. Implemented by org.jboss.ha.framework.interfaces.RandomRobin (legacy) and org.jboss.ha.client.loadbalance.RandomRobin (EJB3).
					

	
						First Available: one of the available target nodes is elected as the main target and is thereafter used for every call; this elected member is randomly chosen from the list of members in the cluster. When the list of target nodes changes (because a node starts or dies), the policy will choose a new target node unless the currently elected node is still available. Each client-side proxy elects its own target node independently of the other proxies, so if a particular client downloads two proxies for the same target service (for example, an EJB), each proxy will independently pick its target. This is an example of a policy that provides “session affinity” or “sticky sessions”, since the target node does not change once established. Implemented by org.jboss.ha.framework.interfaces.FirstAvailable (legacy) and org.jboss.ha.client.loadbalance.aop.FirstAvailable (EJB3).
					

	
						First Available Identical All Proxies: has the same behavior as the "First Available" policy but the elected target node is shared by all proxies in the same client-side VM that are associated with the same target service. So if a particular client downloads two proxies for the same target service (e.g. an EJB), each proxy will use the same target. Implemented by org.jboss.ha.framework.interfaces.FirstAvailableIdenticalAllProxies (legacy) and org.jboss.ha.client.loadbalance.aop.FirstAvailableIdenticalAllProxies (EJB3).
					

				Each of the above is an implementation of the org.jboss.ha.framework.interfaces.LoadBalancePolicy interface; users are free to write their own implementation of this simple interface if they need some special behavior. In later sections we will see how to configure the load balance policies used by different services.
			

 ⁠20.3.2. External load balancer architecture

				New in JBoss Enterprise Application Platform 5 are a set of "TransactionSticky" load balance policies. These extend the standard policies above to add behavior such that all invocations that occur within the scope of a transaction are routed to the same node (if that node still exists). These are based on the legacy detached invoker architecture, so they are not available for AOP-based services like EJB3.
			
	
						Transaction-Sticky Round-Robin: Transaction-sticky variant of Round-Robin. Implemented by org.jboss.ha.framework.interfaces.TransactionStickyRoundRobin.
					

	
						Transaction-Sticky Random-Robin: Transaction-sticky variant of Random-Robin. Implemented by org.jboss.ha.framework.interfaces.TransactionStickyRandomRobin.
					

	
						Transaction-Sticky First Available: Transaction-sticky variant of First Available. Implemented by org.jboss.ha.framework.interfaces.TransactionStickyFirstAvailable.
					

	
						Transaction-Sticky First Available Identical All Proxies: Transaction-sticky variant of First Available Identical All Proxies. Implemented by org.jboss.ha.framework.interfaces.TransactionStickyFirstAvailableIdenticalAllProxies.
					

				Each of the above is an implementation of a simple interface; users are free to write their own implementations if they need some special behavior. In later sections we will see how to configure the load balance policies used by different services.
			

 ⁠Chapter 21. Clustering Building Blocks

		The clustering features in JBoss Enterprise Application Platform are built on top of lower level libraries that provide much of the core functionality. Figure 21.1, “The JBoss Enterprise Application Platform clustering architecture” shows the main pieces:
	

 ⁠[image: The JBoss Enterprise Application Platform clustering architecture]

Figure 21.1. The JBoss Enterprise Application Platform clustering architecture

		JGroups is a toolkit for reliable point-to-point and point-to-multipoint communication. JGroups is used for all clustering-related communications between nodes in a JBoss Enterprise Application Platform cluster.
	

		JBoss Cache is a highly flexible clustered transactional caching library. Many Enterprise Application Platform clustering services need to cache some state in memory while (1) ensuring for high availability purposes that a backup copy of that state is available on another node if it can not otherwise be recreated (e.g. the contents of a web session) and (2) ensuring that the data cached on each node in the cluster is consistent. JBoss Cache handles these concerns for most JBoss Enterprise Application Platform clustered services. JBoss Cache uses JGroups to handle its group communication requirements. POJO Cache is an extension of the core JBoss Cache that JBoss Enterprise Application Platform uses to support fine-grained replication of clustered web session state. See Section 21.2, “Distributed Caching with JBoss Cache” for more on how JBoss Enterprise Application Platform uses JBoss Cache and POJO Cache.
	

		HAPartition is an adapter on top of a JGroups channel that allows multiple services to use the channel. HAPartition also supports a distributed registry of which HAPartition-based services are running on which cluster members. It provides notifications to interested listeners when the cluster membership changes or the clustered service registry changes. See Section 21.3, “The HAPartition Service” for more details on HAPartition.
	

		The other higher level clustering services make use of JBoss Cache or HAPartition, or, in the case of HA-JNDI, both. The exception to this is JBoss Messaging's clustering features, which interact with JGroups directly.
	

 ⁠21.1. Group Communication with JGroups

			JGroups provides the underlying group communication support for JBoss Enterprise Application Platform clusters. Services deployed on JBoss Enterprise Application Platform which need group communication with their peers will obtain a JGroups Channel and use it to communicate. The Channel handles such tasks as managing which nodes are members of the group, detecting node failures, ensuring lossless, first-in-first-out delivery of messages to all group members, and providing flow control to ensure fast message senders cannot overwhelm slow message receivers.
		

			The characteristics of a JGroups Channel are determined by the set of protocols that compose it. Each protocol handles a single aspect of the overall group communication task; for example the UDP protocol handles the details of sending and receiving UDP datagrams. A Channel that uses the UDP protocol is capable of communicating with UDP unicast and multicast; alternatively one that uses the TCP protocol uses TCP unicast for all messages. JGroups supports a wide variety of different protocols (see Section 28.1, “Configuring a JGroups Channel's Protocol Stack” for details), but the Enterprise Application Platform ships with a default set of channel configurations that should meet most needs.
		

			By default, all JGroups channels of the Enterprise Application Platform use the UDP multicast (an exception to this is a JBoss Messaging channel, which is TCP-based). To change the default multicast type for a server, in <JBOSS_HOME>/bin/ create run.conf. Open the file and add the following: JAVA_OPTS="$JAVA_OPTS -Djboss.default.jgroups.stack=<METHOD>".
		

 ⁠21.1.1. The Channel Factory Service

				A significant difference in JBoss Enterprise Application Platform 5 versus previous releases is that JGroups Channels needed by clustering services (for example, a channel used by a distributed HttpSession cache) are no longer configured in detail as part of the consuming service's configuration, and are no longer directly instantiated by the consuming service. Instead, a new ChannelFactory service is used as a registry for named channel configurations and as a factory for Channel instances. A service that needs a channel requests the channel from the ChannelFactory, passing in the name of the desired configuration.
			

				The ChannelFactory service is deployed in the server/production/deploy/cluster/jgroups-channelfactory.sar. On start up the ChannelFactory service parses the server/production/deploy/cluster/jgroups-channelfactory.sar/META-INF/jgroups-channelfactory-stacks.xml file, which includes various standard JGroups configurations identified by name (for example, UDP or TCP). Services needing a channel access the channel factory and ask for a channel with a particular named configuration.
			
Note

					If several services request a channel with the same configuration name from the ChannelFactory, they are not handed a reference to the same underlying Channel. Each receives its own Channel, but the channels will have an identical configuration. A logical question is how those channels avoid forming a group with each other if each, for example, is using the same multicast address and port. The answer is that when a consuming service connects its Channel, it passes a unique-to-that-service cluster_name argument to the Channel.connect(String cluster_name) method. The Channel uses that cluster_name as one of the factors that determine whether a particular message received over the network is intended for it.
				

 ⁠21.1.1.1. Standard Protocol Stack Configurations

					The standard protocol stack configurations that ship with Enterprise Application Platform 5 are described below. Note that not all of these are actually used; many are included as a convenience to users who may wish to alter the default server profile. The configurations actually used in a stock Enterprise Application Platform 5 production server profile are udp, jbm-control and jbm-data, with all clustering services other than JBoss Messaging using udp.
				

					You can add a new stack configuration by adding a new stack element to the server/production/deploy/cluster/jgroups-channelfactory.sar/META-INF/jgroups-channelfactory-stacks.xml file. You can alter the behavior of an existing configuration by editing this file. Before doing this though, have a look at the other standard configurations the Enterprise Application Platform ships; perhaps one of those meets your needs. Also, please note that before editing a configuration you should understand what services are using that configuration; make sure the change you are making is appropriate for all affected services. If the change is not appropriate for a particular service, create a new configuration and change some services to use that new configuration.
				
	
							udp
						

							UDP multicast based stack meant to be shared between different channels. Message bundling is disabled, as it can add latency to synchronous group RPCs. Services that only make asynchronous RPCs (for example, JBoss Cache configured for REPL_ASYNC) and do so in high volume may be able to improve performance by configuring their cache to use the udp-async stack below. Services that only make synchronous RPCs (for example JBoss Cache configured for REPL_SYNC or INVALIDATION_SYNC) may be able to improve performance by using the udp-sync stack below, which does not include flow control.
						

	
							udp-async
						

							Same as the default udp stack above, except message bundling is enabled in the transport protocol (enable_bundling=true). Useful for services that make high-volume asynchronous RPCs (e.g. high volume JBoss Cache instances configured for REPL_ASYNC) where message bundling may improve performance.
						

	
							udp-sync
						

							UDP multicast based stack, without flow control and without message bundling. This can be used instead of udp if (1) synchronous calls are used and (2) the message volume (rate and size) is not that large. Do not use this configuration if you send messages at a high sustained rate, or you might run out of memory.
						

	
							tcp
						

							TCP based stack, with flow control and message bundling. TCP stacks are usually used when IP multicasting cannot be used in a network (e.g. routers discard multicast).
						

	
							tcp-sync
						

							TCP based stack, without flow control and without message bundling. TCP stacks are usually used when IP multicasting cannot be used in a network (e.g.routers discard multicast). This configuration should be used instead of tcp above when (1) synchronous calls are used and (2) the message volume (rate and size) is not that large. Do not use this configuration if you send messages at a high sustained rate, or you might run out of memory.
						

	
							jbm-control
						

							Stack optimized for the JBoss Messaging Control Channel. By default uses the same UDP transport protocol configuration as is used for the default udp stack defined above. This allows the JBoss Messaging Control Channel to use the same sockets, network buffers and thread pools as are used by the other standard JBoss Enterprise Application Platform clustered services (see Section 21.1.2, “The JGroups Shared Transport”)
						

	
							jbm-data
						

							TCP-based stack optimized for the JBoss Messaging Data Channel.
						

 ⁠21.1.1.2. Changing the Protocol Stack Configuration

					By default, all clustering services other than JBoss Messaging use the udp protocol stack configuration. If you want to use a TCP-based configuration, set the system property jboss.default.jgroups.stack to the tcp value (-Djboss.default.jgroups.stack=tcp). This change configures most of the services that use a JGroups channel to use the TCP-based configuration. To make tcp the default protocol stack, add the system property to the JAVA_OPTS environment variable in the <JBOSS_HOME>/bin/run.conf file on Linux platforms or <JBOSS_HOME>/bin/run.conf.bat on Windows platforms.
				

					The tcp stack uses UDP multicast (via the MPING layer) for peer discovery. This allows the stack to avoid environment-specific configuration of hosts and work out of the box. If you cannot use UDP multicast, you need to change to a non-UDP-based peer-discovery layer (the TCPPING layer) and configure the addresses/ports of the possible cluster nodes. You can change the protocol stack configuration in jgroups-channelfactory-stacks.xml. The file contains definitions for both peer-discovery layers: by default, the definition of MPING layer is uncommented and the TCPPING layer is commented. To switch to non-UDP based peer-discovery, comment out the MPING layer, and uncomment and configure the TCPPING layer. For more information on MPING and TCPPING, refer to Section 28.1.3, “Discovery Protocols”.
				

 ⁠21.1.1.3. Changing the Protocol Stack Configuration of JBoss Messaging

					JBoss Messaging uses the jbm-control and jbm-data protocol stack configurations by default. The jbm-control protocol stack is fully UDP-based and jbm-data uses the MPING discovery protocol, which uses UDP multicast. Therefore, if you want JBoss Messaging to use only TCP-based configurations, you need to configure the JBoss Messaging control channel to use the tcp protocol stack instead of the jbm-control stack and modify the jbm-data protocol stack to use TCPPING layer instead of the MPING layer.
				

					To configure the JBoss Messaging control channel to use the tcp protocol stack, open the deploy/messaging/RDMS-persistence-service.xml file (the RDMS value depends on the relational database management system you are using for message persistence) and change the ControlChannelName attribute value of the org.jboss.messaging.core.jmx.MessagingPostOfficeService mbean to tcp:
​
​<!--<attribute name="ControlChannelName">jbm-control</attribute>-->
​<attribute name="ControlChannelName">tcp</attribute>

				

					To modify the jbm-data protocol stack definition so that it uses the TCPPING layer instead of the MPING layer, open /server/PROFILE/deploy/cluster/jgroups-channelfactory.sar/META-INF/jgroups-channelfactory-stacks.xml and replace the MPING layer with an equivalent TCPPING layer as shown in Example 21.1, “Definition of the jbm-data protocol stack with TCPPING definition”.
					
 ⁠Example 21.1. Definition of the jbm-data protocol stack with TCPPING definition
​
​<!--
​<MPING timeout="3000"
​ num_initial_members="3"
​ mcast_addr="${jboss.jgroups.tcp.mping_mcast_addr:230.11.11.11}"
​ mcast_port="${jgroups.tcp.mping_mcast_port:45700}"
​ ip_ttl="${jgroups.udp.ip_ttl:2}"/>
​-->
​<TCPPING timeout="5000"
​ initial_hosts="${jbm.data.tcpping.initial_hosts:localhost[7900],localhost[7901]}"
​ port_range="1"
​ num_initial_members="3"/>

					 Make sure the defined ports do not conflict with ports used by other TCPPING layers. You can also use the system property -Djbm.data.tcpping.initial_hosts to configure the set of initial hosts for this layer from JAVA_OPTS.
				

 ⁠21.1.2. The JGroups Shared Transport

				As the number of JGroups-based clustering services running in the Enterprise Application Platform has risen over the years, the need to share the resources (particularly sockets and threads) used by these channels became a glaring problem. A stock Enterprise Application Platform 5 production configuration will connect 4 JGroups channels during start up, and a total of 7 or 8 will be connected if distributable web apps, clustered EJB3 SFSBs and a clustered JPA/Hibernate second level cache are all used. So many channels can consume a lot of resources, and can be a real configuration nightmare if the network environment requires configuration to ensure cluster isolation.
			

				Beginning with Enterprise Application Platform 5, JGroups supports sharing of transport protocol instances between channels. A JGroups channel is composed of a stack of individual protocols, each of which is responsible for one aspect of the channel's behavior. A transport protocol is a protocol that is responsible for actually sending messages on the network and receiving them from the network. The resources that are most desirable for sharing (sockets and thread pools) are managed by the transport protocol, so sharing a transport protocol between channels efficiently accomplishes JGroups resource sharing.
			

				To configure a transport protocol for sharing, simply add a singleton_name="someName" attribute to the protocol's configuration. All channels whose transport protocol configuration uses the same singleton_name value will share their transport. All other protocols in the stack will not be shared. Figure 21.2, “Services using a Shared Transport” illustrates 4 services running in a VM, each with its own channel. Three of the services are sharing a transport; the fourth is using its own transport.
			

 ⁠[image: Services using a Shared Transport]

Figure 21.2. Services using a Shared Transport

				The protocol stack configurations used by the Enterprise Application Platform 5 ChannelFactory all have a singleton_name configured. In fact, if you add a stack to the ChannelFactory that does not include a singleton_name, before creating any channels for that stack, the ChannelFactory will synthetically create a singleton_name by concatenating the stack name to the string "unnamed_", e.g. unnamed_customStack.
			

 ⁠21.2. Distributed Caching with JBoss Cache

			JBoss Cache is a fully featured distributed cache framework that can be used in any application server environment or standalone.
		
JBoss Cache is deprecated

				JBoss Cache is deprecated and will be removed in the next release. The feature will be substituted by Infinispan.
			

			JBoss Cache provides the underlying distributed caching support used by many of the standard clustered services in a JBoss Enterprise Application Platform cluster, including:
		
	
					replication of clustered webapp sessions
				

	
					replication of clustered EJB3 Stateful Session beans
				

	
					clustered caching of JPA and Hibernate entities
				

	
					clustered Single Sign-On
				

	
					the HA-JNDI replicated tree
				

	
					DistributedStateService
				

			Users can also create their own JBoss Cache and POJO Cache instances for custom use by their applications, see Chapter 29, JBoss Cache Configuration and Deployment for more on this.
		

 ⁠21.2.1. The JBoss Enterprise Application Platform CacheManager Service

				Many of the standard clustered services in JBoss Enterprise Application Platform use JBoss Cache to maintain consistent state across the cluster. Different services (e.g. web session clustering or second level caching of JPA/Hibernate entities) use different JBoss Cache instances, with each cache configured to meet the needs of the service that uses it. In Enterprise Application Platform 4, each of these caches was independently deployed in the deploy/ directory, which had a number of disadvantages:
					
							Caches that end user applications did not need were deployed anyway, with each creating an expensive JGroups channel. For example, even if there were no clustered EJB3 SFSBs, a cache to store them was started.
						

	
							Caches are internal details of the services that use them. They should not be first-class deployments.
						

	
							Services would find their cache via JMX look ups. Using JMX for purposes other than exposing management interfaces is just not the JBoss Enterprise Application Platform 5 way.
						

			

				In JBoss Enterprise Application Platform 5, the scattered cache deployments have been replaced with a new CacheManager service, deployed via the <JBOSS_HOME>/server/<PROFILE>/deploy/cluster/jboss-cache-manager.sar. The CacheManager is a factory and registry for JBoss Cache instances. It is configured with a set of named JBoss Cache configurations. Services that need a cache ask the cache manager for the cache by name; the cache manager creates the cache (if not already created) and returns it. The cache manager keeps a reference to each cache it has created, so all services that request the same cache configuration name will share the same cache. When a service is done with the cache, it releases it to the cache manager. The cache manager keeps track of how many services are using each cache, and will stop and destroy the cache when all services have released it.
			

 ⁠21.2.1.1. Standard Cache Configurations

					The following standard JBoss Cache configurations ship with JBoss Enterprise Application Platform 5. You can add others to suit your needs, or edit these configurations to adjust cache behavior. Additions or changes are done by editing the deploy/cluster/jboss-cache-manager.sar/META-INF/jboss-cache-manager-jboss-beans.xml file (see Section 29.2.1, “Deployment Via the CacheManager Service” for details). Note however that these configurations are specifically optimized for their intended use, and except as specifically noted in the documentation chapters for each service in this guide, it is not advisable to change them.
				
	
							standard-session-cache
						

							Standard cache used for web sessions.
						

	
							field-granularity-session-cache
						

							Standard cache used for FIELD granularity web sessions.
						

	
							sfsb-cache
						

							Standard cache used for EJB3 SFSB caching.
						

	
							ha-partition
						

							Used by web tier Clustered Single Sign-On, HA-JNDI, Distributed State.
						

	
							mvcc-entity
						

							A configuration appropriate for JPA/Hibernate entity/collection caching that uses JBoss Cache's MVCC locking (see notes below).
						

	
							optimistic-entity
						

							A configuration appropriate for JPA/Hibernate entity/collection caching that uses JBoss Cache's optimistic locking (see notes below).
						

	
							pessimistic-entity
						

							A configuration appropriate for JPA/Hibernate entity/collection caching that uses JBoss Cache's pessimistic locking (see notes below).
						

	
							mvcc-entity-repeatable
						

							Same as "mvcc-entity" but uses JBoss Cache's REPEATABLE_READ isolation level instead of READ_COMMITTED (see notes below).
						

	
							pessimistic-entity-repeatable
						

							Same as "pessimistic-entity" but uses JBoss Cache's REPEATABLE_READ isolation level instead of READ_COMMITTED (see notes below).
						

	
							local-query
						

							A configuration appropriate for JPA/Hibernate query result caching. Does not replicate query results. DO NOT store the timestamp data Hibernate uses to verify validity of query results in this cache.
						

	
							replicated-query
						

							A configuration appropriate for JPA/Hibernate query result caching. Replicates query results. DO NOT store the timestamp data Hibernate uses to verify validity of query result in this cache.
						

	
							timestamps-cache
						

							A configuration appropriate for the timestamp data cached as part of JPA/Hibernate query result caching. A replicated timestamp cache is required if query result caching is used, even if the query results themselves use a non-replicating cache like local-query.
						

	
							mvcc-shared
						

							A configuration appropriate for a cache that's shared for JPA/Hibernate entity, collection, query result and timestamp caching. Not an advised configuration, since it requires cache mode REPL_SYNC, which is the least efficient mode. Also requires a full state transfer at start up, which can be expensive. Maintained for backwards compatibility reasons, as a shared cache was the only option in JBoss 4. Uses JBoss Cache's MVCC locking.
						

	
							optimistic-shared
						

							A configuration appropriate for a cache that's shared for JPA/Hibernate entity, collection, query result and timestamp caching. Not an advised configuration, since it requires cache mode REPL_SYNC, which is the least efficient mode. Also requires a full state transfer at start up, which can be expensive. Maintained for backwards compatibility reasons, as a shared cache was the only option in JBoss 4. Uses JBoss Cache's optimistic locking.
						

	
							pessimistic-shared
						

							A configuration appropriate for a cache that's shared for JPA/Hibernate entity, collection, query result and timestamp caching. Not an advised configuration, since it requires cache mode REPL_SYNC, which is the least efficient mode. Also requires a full state transfer at start up, which can be expensive. Maintained for backwards compatibility reasons, as a shared cache was the only option in JBoss 4. Uses JBoss Cache's pessimistic locking.
						

	
							mvcc-shared-repeatable
						

							Same as "mvcc-shared" but uses JBoss Cache's REPEATABLE_READ isolation level instead of READ_COMMITTED (see notes below).
						

	
							pessimistic-shared-repeatable
						

							Same as "pessimistic-shared" but uses JBoss Cache's REPEATABLE_READ isolation level instead of READ_COMMITTED. (see notes below).
						

Note

						For more on JBoss Cache's locking schemes, see Section 29.1.4, “Concurrent Access”)
					

Note

						For JPA/Hibernate second level caching, REPEATABLE_READ is only useful if the application evicts/clears entities from the EntityManager/Hibernate Session and then expects to repeatably re-read them in the same transaction. Otherwise, the Session's internal cache provides a repeatable-read semantic.
					

 ⁠21.2.1.2. Cache Configuration Aliases

					The CacheManager also supports aliasing of caches; i.e. allowing caches registered under one name to be looked up under a different name. Aliasing is useful for sharing caches between services whose configuration may specify different cache configuration names. It's also useful for supporting legacy EJB3 application configurations ported over from Enterprise Application Platform 4.
				

					Aliases can be configured by editing the "CacheManager" bean in the jboss-cache-manager-jboss-beans.xml file. The following redacted configuration shows the standard aliases in Enterprise Application Platform 5:
				
​
​<bean name="CacheManager" class="org.jboss.ha.cachemanager.CacheManager">
​
​ . . .
​
​ <!-- Aliases for cache names. Allows caches to be shared across
​ services that may expect different cache configuration names. -->
​ <property name="configAliases">
​ <map keyClass="java.lang.String" valueClass="java.lang.String">
​ <!-- Use the HAPartition cache for ClusteredSSO caching -->
​ <entry>
​ <key>clustered-sso</key>
​ <value>ha-partition</value>
​ </entry>
​ <!-- Handle the legacy name for the EJB3 SFSB cache -->
​ <entry>
​ <key>jboss.cache:service=EJB3SFSBClusteredCache</key>
​ <value>sfsb-cache</value>
​ </entry>
​ <!-- Handle the legacy name for the EJB3 Entity cache -->
​ <entry>
​ <key>jboss.cache:service=EJB3EntityTreeCache</key>
​ <value>mvcc-shared</value>
​ </entry>
​ </map>
​ </property>
​
​ . . .
​
​</bean>

 ⁠21.3. The HAPartition Service

			HAPartition is a general purpose service used for a variety of tasks in Enterprise Application Platform clustering. At its core, it is an abstraction built on top of a JGroups Channel that provides support for making/receiving RPC invocations on/from one or more cluster members. HAPartition allows services that use it to share a single Channel and multiplex RPC invocations over it, eliminating the configuration complexity and runtime overhead of having each service create its own Channel. HAPartition also supports a distributed registry of which clustering services are running on which cluster members. It provides notifications to interested listeners when the cluster membership changes or the clustered service registry changes. HAPartition forms the core of many of the clustering services we will be discussing in the rest of this guide, including smart client-side clustered proxies, EJB 2 SFSB replication and entity cache management, farming, HA-JNDI and HA singletons. Custom services can also make use of HAPartition.
		

			The following snippet shows the HAPartition service definition packaged with the standard JBoss Enterprise Application Platform distribution. This configuration can be found in the server/production/deploy/cluster/hapartition-jboss-beans.xml file.
		
​
​<bean name="HAPartitionCacheHandler" class="org.jboss.ha.framework.server.HAPartitionCacheHandlerImpl">
​ <property name="cacheManager"><inject bean="CacheManager"/></property>
​ <property name="cacheConfigName">ha-partition</property>
​</bean>
​<bean name="HAPartition" class="org.jboss.ha.framework.server.ClusterPartition">
​ <depends>jboss:service=Naming</depends>
​ <annotation>@org.jboss.aop.microcontainer.aspects.jmx.JMX
​ (name="jboss:service=HAPartition,partition=${jboss.partition.name:DefaultPartition}", exposedInterface=org.jboss.ha.framework.server.ClusterPartitionMBean.class, registerDirectly=true)</annotation>
​
​ <!-- ClusterPartition requires a Cache for state management -->
​
​ <property name="cacheHandler"><inject bean="HAPartitionCacheHandler"/></property>
​
​ <!-- Name of the partition being built -->
​
​ <property name="partitionName">${jboss.partition.name:DefaultPartition}</property>
​
​ <!-- The address used to determine the node name -->
​
​ <property name="nodeAddress">${jboss.bind.address}</property>
​
​ <!-- Max time (in ms) to wait for state transfer to complete. Increase for large states -->
​
​ <property name="stateTransferTimeout">30000</property>
​
​ <!-- Max time (in ms) to wait for RPC calls to complete. -->
​
​ <property name="methodCallTimeout">60000</property>
​
​ <!-- Optionally provide a thread source to allow async connect of our channel -->
​
​ <property name="threadPool"><inject bean="jboss.system:service=ThreadPool"/></property>
​ <property name="distributedStateImpl">
​ <bean name="DistributedState" class="org.jboss.ha.framework.server.DistributedStateImpl">
​
​ <annotation>@org.jboss.aop.microcontainer.aspects.jmx.JMX
​ (name="jboss:service=DistributedState,partitionName=${jboss.partition.name:DefaultPartition}", exposedInterface=org.jboss.ha.framework.server.DistributedStateImplMBean.class, registerDirectly=true)</annotation>
​
​ <property name="cacheHandler"><inject bean="HAPartitionCacheHandler"/></property>
​ </bean>
​ </property>
​</bean>

			Much of the above is generic; below we will touch on the key points relevant to end users. There are two beans defined above, the HAPartitionCacheHandler and the HAPartition itself.
		

			The HAPartition bean itself exposes the following configuration properties:
		
	
					partitionName is an optional attribute to specify the name of the cluster. Its default value is DefaultPartition. Use the -g (a.k.a. --partition) command line switch to set this value at server start up.
				
Note

						If you use the partitionName property on the MCBean:ServerConfig Profile Service component, the system returns a null value for the property. Use the PartionName from the MCBean:HAPartition managed component to obtain the correct value.
					

	
					nodeAddress is unused and can be ignored.
				

	
					stateTransferTimeout specifies the timeout (in milliseconds) for initial application state transfer. State transfer refers to the process of obtaining a serialized copy of initial application state from other already-running cluster members at service start up. Its default value is 30000.
				

	
					methodCallTimeout specifies the timeout (in milliseconds) for obtaining responses to group RPCs from the other cluster members. Its default value is 60000.
				

			The HAPartitionCacheHandler is a small utility service that helps the HAPartition integrate with JBoss Cache (see Section 21.2.1, “The JBoss Enterprise Application Platform CacheManager Service”). HAPartition exposes a child service called DistributedState (see Section 21.3.2, “DistributedState Service”) that uses JBoss Cache; the HAPartitionCacheHandler helps ensure consistent configuration between the JGroups Channel used by Distributed State's cache and the one used directly by HAPartition.
		
	
					cacheConfigName the name of the JBoss Cache configuration to use for the HAPartition-related cache. Indirectly, this also specifies the name of the JGroups protocol stack configuration HAPartition should use. See Section 29.1.5, “JGroups Integration” for more on how the JGroups protocol stack is configured.
				

			In order for nodes to form a cluster, they must have the exact same partitionName and the HAPartitionCacheHandler's cacheConfigName must specify an identical JBoss Cache configuration. Changes in either element on some but not all nodes would prevent proper clustering behavior.
		

			You can view the current cluster information by pointing your browser to the JMX console of any JBoss instance in the cluster (i.e., http://hostname:8080/jmx-console/) and then clicking on the jboss:service=HAPartition,partition=DefaultPartition MBean (change the MBean name to reflect your partitioner name if you use the -g switch). A list of IP addresses for the current cluster members is shown in the CurrentView field.
		
Note

				While it is technically possible to put a server instance into multiple HAPartitions at the same time, this practice is generally not recommended, as it increases management complexity.
			

 ⁠21.3.1. DistributedReplicantManager Service

				The DistributedReplicantManager (DRM) service is a component of the HAPartition service made available to HAPartition users via the HAPartition.getDistributedReplicantManager() method. Generally speaking, JBoss Enterprise Application Platform users will not directly make use of the DRM; we discuss it here as an aid to those who want a deeper understanding of how Enterprise Application Platform clustering internals work.
			

				The DRM is a distributed registry that allows HAPartition users to register objects under a given key, making available to callers the set of objects registered under that key by the various members of t he cluster. The DRM also provides a notification mechanism so interested listeners can be notified when the contents of the registry changes.
			

				There are two main usages for the DRM in JBoss Enterprise Application Platform:
			
	
						Clustered Smart Proxies
					

						Here the keys are the names of the various services that need a clustered smart proxy (see Section 20.2.1, “Client-side interceptor architecture”, e.g. the name of a clustered EJB. The value object each node stores in the DRM is known as a "target". It's something a smart proxy's transport layer can use to contact the node (e.g. an RMI stub, an HTTP URL or a JBoss Remoting InvokerLocator). The factory that builds clustered smart proxies accesses the DRM to get the set of "targets" that should be injected into the proxy to allow it to communicate with all the nodes in a cluster.
					

	
						HASingleton
					

						Here the keys are the names of the various services that need to function as High Availability Singletons (see the HASingleton chapter). The value object each node stores in the DRM is simply a String that acts as a token to indicate that the node has the service deployed, and thus is a candidate to become the "master" node for the HA singleton service.
					

				In both cases, the key under which objects are registered identifies a particular clustered service. It is useful to understand that every node in a cluster does not have to register an object under every key. Only services that are deployed on a particular node will register something under that service's key, and services do not have to be deployed homogeneously across the cluster. The DRM is thus useful as a mechanism for understanding a service's "topology" around the cluster — which nodes have the service deployed.
			

 ⁠21.3.2. DistributedState Service

				The DistributedState service is a legacy component of the HAPartition service made available to HAPartition users via the HAPartition.getDistributedState() method. This service provides coordinated management of arbitrary application state around the cluster. It is supported for backwards compatibility reasons, but new applications should not use it; they should use the much more sophisticated JBoss Cache instead.
			

				In JBoss Enterprise Application Platform 5 the DistributedState service actually delegates to an underlying JBoss Cache instance.
			

 ⁠21.3.3. Custom Use of HAPartition

				Custom services can also use make use of HAPartition to handle interactions with the cluster. Generally the easiest way to do this is to extend the org.jboss.ha.framework.server.HAServiceImpl base class, or the org.jboss.ha.jxm.HAServiceMBeanSupport class if JMX registration and notification support are desired.
			

 ⁠Chapter 22. Clustered JNDI Services

		JNDI is one of the most important services provided by the application server. The JBoss HA-JNDI (High Availability JNDI) service brings the following features to JNDI:
	
	
				Transparent failover of naming operations. If an HA-JNDI naming Context is connected to the HA-JNDI service on a particular JBoss Enterprise Application Platform instance, and that service fails or is shut down, the HA-JNDI client can transparently fail over to another Enterprise Application Platform instance.
			

	
				Load balancing of naming operations. A HA-JNDI naming Context will automatically load balance its requests across all the HA-JNDI servers in the cluster.
			

	
				Automatic client discovery of HA-JNDI servers (using multicast).
			

	
				Unified view of JNDI trees cluster-wide. A client can connect to the HA-JNDI service running on any node in the cluster and find objects bound in JNDI on any other node. This is accomplished via two mechanisms:
					
							Cross-cluster lookups. A client can perform a lookup and the server side HA-JNDI service has the ability to find things bound in regular JNDI on any node in the cluster.
						

	
							A replicated cluster-wide context tree. An object bound into the HA-JNDI service will be replicated around the cluster, and a copy of that object will be available in-VM on each node in the cluster.
						

			

		JNDI is a key component for many other interceptor-based clustering services: those services register themselves with JNDI so the client can look up their proxies and make use of their services. HA-JNDI completes the picture by ensuring that clients have a highly-available means to look up those proxies. However, it is important to understand that using HA-JNDI (or not) has no effect whatsoever on the clustering behavior of the objects that are looked up. To illustrate:
	
	
				If an EJB is not configured as clustered, looking up the EJB via HA-JNDI does not somehow result in the addition of clustering capabilities (load balancing of EJB calls, transparent failover, state replication) to the EJB.
			

	
				If an EJB is configured as clustered, looking up the EJB via regular JNDI instead of HA-JNDI does not somehow result in the removal of the bean proxy's clustering capabilities.
			

 ⁠22.1. How it works

			The JBoss client-side HA-JNDI naming Context is based on the client-side interceptor architecture (see the Introduction and Quick Start chapter). The client obtains an HA-JNDI proxy object (via the InitialContext object) and invokes JNDI lookup services on the remote server through the proxy. The client specifies that it wants an HA-JNDI proxy by configuring the naming properties used by the InitialContext object. This is covered in detail in Section 22.2, “Client configuration”. Other than the need to ensure the appropriate naming properties are provided to the InitialContext, the fact that the naming Context is using HA-JNDI is completely transparent to the client.
		

			On the server side, the HA-JNDI service maintains a cluster-wide context tree. The cluster wide tree is always available as long as there is one node left in the cluster. Each node in the cluster also maintains its own local JNDI context tree. The HA-JNDI service on each node is able to find objects bound into the local JNDI context tree, and is also able to make a cluster-wide RPC to find objects bound in the local tree on any other node. An application can bind its objects to either tree, although in practice most objects are bound into the local JNDI context tree. The design rationale for this architecture is as follows:
		
	
					It avoids migration issues with applications that assume that their JNDI implementation is local. This allows clustering to work out-of-the-box with just a few tweaks of configuration files.
				

	
					In a homogeneous cluster, this configuration actually cuts down on the amount of network traffic. A homogeneous cluster is one where the same types of objects are bound under the same names on each node.
				

	
					Designing it in this way makes the HA-JNDI service an optional service since all underlying cluster code uses a straight new InitialContext to lookup or create bindings.
				

			On the server side, a naming Context obtained via a call to new InitialContext() will be bound to the local-only, non-cluster-wide JNDI Context. So, all EJB homes and such will not be bound to the cluster-wide JNDI Context, but rather, each home will be bound into the local JNDI.
		

			When a remote client does a lookup through HA-JNDI, HA-JNDI will delegate to the local JNDI service when it cannot find the object within the global cluster-wide Context. The detailed lookup rule is as follows.
		
	
					If the binding is available in the cluster-wide JNDI tree, return it.
				

	
					If the binding is not in the cluster-wide tree, delegate the lookup query to the local JNDI service and return the received answer if available.
				

	
					If not available, the HA-JNDI service asks all other nodes in the cluster if their local JNDI service owns such a binding and returns the answer from the set it receives.
				

	
					If no local JNDI service owns such a binding, a NameNotFoundException is finally raised.
				

			In practice, objects are rarely bound in the cluster-wide JNDI tree; rather they are bound in the local JNDI tree. For example, when EJBs are deployed, their proxies are always bound in local JNDI, not HA-JNDI. So, an EJB home lookup done through HA-JNDI will always be delegated to the local JNDI instance.
		
Note

				If different beans (even of the same type, but participating in different clusters) use the same JNDI name, this means that each JNDI server will have a logically different "target" bound under the same name (JNDI on node 1 will have a binding for bean A and JNDI on node 2 will have a binding, under the same name, for bean B). Consequently, if a client performs a HA-JNDI query for this name, the query will be invoked on any JNDI server of the cluster and will return the locally bound stub. Nevertheless, it may not be the correct stub that the client is expecting to receive! So, it is always best practice to ensure that across the cluster different names are used for logically different bindings.
			

Note

				If a binding is only made available on a few nodes in the cluster (for example because a bean is only deployed on a small subset of nodes in the cluster), the probability is higher that a lookup will hit a HA-JNDI server that does not own this binding and thus the lookup will need to be forwarded to all nodes in the cluster. Consequently, the query time will be longer than if the binding would have been available locally. Moral of the story: as much as possible, cache the result of your JNDI queries in your client.
			

Note

				You cannot currently use a non-JNP JNDI implementation (i.e. LDAP) for your local JNDI implementation if you want to use HA-JNDI. However, you can use JNDI federation using the ExternalContext MBean to bind non-JBoss JNDI trees into the JBoss JNDI namespace. Furthermore, nothing prevents you using one centralized JNDI server for your whole cluster and scrapping HA-JNDI and JNP.
			

 ⁠22.2. Client configuration

			Configuring a client to use HA-JNDI is a matter of ensuring the correct set of naming environment properties are available when a new InitialContext is created. How this is done varies depending on whether the client is running inside JBoss Enterprise Application Platform itself or is in another VM.
		

 ⁠22.2.1. For clients running inside the Enterprise Application Platform

				If you want to access HA-JNDI from inside the Enterprise Application Platform, you must explicitly configure your InitialContext by passing in JNDI properties to the constructor. The following code shows how to create a naming Context bound to HA-JNDI:
			
​Properties p = new Properties();
​p.put(Context.INITIAL_CONTEXT_FACTORY, "org.jnp.interfaces.NamingContextFactory");
​p.put(Context.URL_PKG_PREFIXES, "jboss.naming:org.jnp.interfaces");
​// HA-JNDI is listening on the address passed to JBoss via -b
​String bindAddress = System.getProperty("jboss.bind.address", "localhost");
​p.put(Context.PROVIDER_URL, bindAddress + ":1100"); // HA-JNDI address and port.
​return new InitialContext(p);

				The Context.PROVIDER_URL property points to the HA-JNDI service configured in the deploy/cluster/hajndi-jboss-beans.xml file (see Section 22.3, “JBoss configuration”). By default this service listens on the interface named via the jboss.bind.address system property, which itself is set to whatever value you assign to the -b command line option when you start JBoss Enterprise Application Platform (or localhost if not specified). The above code shows an example of accessing this property.
			

				However, this does not work in all cases, especially when running several JBoss Enterprise Application Platform instances on the same machine and bound to the same IP address, but configured to use different ports. A safer method is to not specify the Context.PROVIDER_URL but instead allow the InitialContext to statically find the in-VM HA-JNDI by specifying the jnp.partitionName property:
			
​Properties p = new Properties();
​p.put(Context.INITIAL_CONTEXT_FACTORY, "org.jnp.interfaces.NamingContextFactory");
​p.put(Context.URL_PKG_PREFIXES, "jboss.naming:org.jnp.interfaces");
​// HA-JNDI is registered under the partition name passed to JBoss via -g
​String partitionName = System.getProperty("jboss.partition.name", "DefaultPartition");
​p.put("jnp.partitionName", partitionName);
​return new InitialContext(p);

				This example uses the jboss.partition.name system property to identify the partition with which the HA-JNDI service works. This system property is set to whatever value you assign to the -g command line option when you start JBoss Enterprise Application Platform (or DefaultPartition if not specified).
			

				Do not attempt to simplify things by placing a jndi.properties file in your deployment or by editing the Enterprise Application Platform's conf/jndi.properties file. Doing either will almost certainly break things for your application and quite possibly across the server. If you want to externalize your client configuration, one approach is to deploy a properties file not named jndi.properties, and then programatically create a Properties object that loads that file's contents.
			

 ⁠22.2.1.1. Accessing HA-JNDI Resources from EJBs and WARs -- Environment Naming Context

					If your HA-JNDI client is an EJB or servlet, the least intrusive way to configure the lookup of resources is to bind the resources to the environment naming context of the bean or webapp performing the lookup. The binding can then be configured to use HA-JNDI instead of a local mapping. Following is an example of doing this for a JMS connection factory and queue (the most common use case for this kind of thing).
				

					Within the bean definition in the ejb-jar.xml or in the war's web.xml you will need to define two resource-ref mappings, one for the connection factory and one for the destination.
				
​<resource-ref>
​ <res-ref-name>jms/ConnectionFactory</res-ref-name>
​ <res-type>javax.jms.QueueConnectionFactory</res-type>
​ <res-auth>Container</res-auth>
​</resource-ref>
​
​<resource-ref>
​ <res-ref-name>jms/Queue</res-ref-name>
​ <res-type>javax.jms.Queue</res-type>
​ <res-auth>Container</res-auth>
​</resource-ref>

					Using these examples the bean performing the lookup can obtain the connection factory by looking up 'java:comp/env/jms/ConnectionFactory' and can obtain the queue by looking up 'java:comp/env/jms/Queue'.
				

					Within the JBoss-specific deployment descriptor (jboss.xml for EJBs, jboss-web.xml for a WAR) these references need to be mapped to a URL that makes use of HA-JNDI.
				
​<resource-ref>
​ <res-ref-name>jms/ConnectionFactory</res-ref-name>
​ <jndi-name>jnp://${jboss.bind.address}:1100/ConnectionFactory</jndi-name>
​</resource-ref>
​
​<resource-ref>
​ <res-ref-name>jms/Queue</res-ref-name>
​ <jndi-name>jnp://${jboss.bind.address}:1100/queue/A</jndi-name>
​ </resource-ref>

					The URL should be the URL to the HA-JNDI server running on the same node as the bean; if the bean is available the local HA-JNDI server should also be available. The lookup will then automatically query all of the nodes in the cluster to identify which node has the JMS resources available.
				

					The ${jboss.bind.address} syntax used above tells JBoss to use the value of the jboss.bind.address system property when determining the URL. That system property is itself set to whatever value you assign to the -b command line option when you start JBoss Enterprise Application Platform.
				

 ⁠22.2.1.2. Why do this programmatically and not just put this in a jndi.properties file?

					The JBoss Enterprise Application Platform's internal naming environment is controlled by the conf/jndi.properties file, which should not be edited.
				

					No other jndi.properties file should be deployed inside the Enterprise Application Platform because of the possibility of its being found on the classpath when it should not and thus disrupting the internal operation of the server. For example, if an EJB deployment included a jndi.properties configured for HA-JNDI, when the server binds the EJB proxies into JNDI it will likely bind them into the replicated HA-JNDI tree and not into the local JNDI tree where they belong.
				

 ⁠22.2.1.3. How can I tell if things are being bound into HA-JNDI that should not be?

					Go into the jmx-console and execute the list operation on the jboss:service=JNDIView mbean. Towards the bottom of the results, the contents of the "HA-JNDI Namespace" are listed. Typically this will be empty; if any of your own deployments are shown there and you did not explicitly bind them there, there's probably an improper jndi.properties file on the classpath. Please visit the following link for an example: Problem with removing a Node from Cluster.
				

 ⁠22.2.2. For clients running outside the Enterprise Application Platform

				The JNDI client needs to be aware of the HA-JNDI cluster. You can pass a list of JNDI servers (i.e., the nodes in the HA-JNDI cluster) to the java.naming.provider.url JNDI setting in the jndi.properties file. Each server node is identified by its IP address and the JNDI port number. The server nodes are separated by commas (see Section 22.3, “JBoss configuration” for how to configure the servers and ports).
			
java.naming.provider.url=server1:1100,server2:1100,server3:1100,server4:1100

				When initializing, the JNP client code will try to get in touch with each server node from the list, one after the other, stopping as soon as one server has been reached. It will then download the HA-JNDI stub from this node.
			
Note

					There is no load balancing behavior in the JNP client lookup process itself. It just goes through the provider lists and uses the first available server to obtain the stub. The HA-JNDI provider list only needs to contain a subset of HA-JNDI nodes in the cluster; once the HA-JNDI stub is downloaded, the stub will include information on all the available servers. A good practice is to include a set of servers such that you are certain that at least one of those in the list will be available.
				

				The downloaded smart proxy contains the list of currently running nodes and the logic to load balance naming requests and to fail-over to another node if necessary. Furthermore, each time a JNDI invocation is made to the server, the list of targets in the proxy interceptor is updated (only if the list has changed since the last call).
			

				If the property string java.naming.provider.url is empty or if all servers it mentions are not reachable, the JNP client will try to discover a HA-JNDI server through a multicast call on the network (auto-discovery). See Section 22.3, “JBoss configuration” for how to configure auto-discovery on the JNDI server nodes. Through auto-discovery, the client might be able to get a valid HA-JNDI server node without any configuration. Of course, for auto-discovery to work, the network segment(s) between the client and the server cluster must be configured to propagate such multicast datagrams.
			
Note

					By default the auto-discovery feature uses multicast group address 230.0.0.4 and port 1102.
				

				In addition to the java.naming.provider.url property, you can specify a set of other properties. The following list shows all clustering-related client side properties you can specify when creating a new InitialContext. (All of the standard, non-clustering-related environment properties used with regular JNDI are also available.)
			
	
						java.naming.provider.url: Provides a list of IP addresses and port numbers for HA-JNDI provider nodes in the cluster. The client tries those providers one by one and uses the first one that responds.
					

	
						jnp.disableDiscovery: When set to true, this property disables the automatic discovery feature. Default is false.
					

	
						jnp.partitionName: In an environment where multiple HA-JNDI services bound to distinct clusters (a.k.a. partitions), are running, this property allows you to ensure that your client only accepts automatic-discovery responses from servers in the desired partition. If you do not use the automatic discovery feature (i.e. jnp.disableDiscovery is true), this property is not used. By default, this property is not set and the automatic discovery selects the first HA-JNDI server that responds, regardless of the cluster partition name.
					

	
						jnp.discoveryTimeout: Determines how many milliseconds the context will wait for a response to its automatic discovery packet. Default is 5000 ms.
					

	
						jnp.discoveryGroup: Determines which multicast group address is used for the automatic discovery. Default is 230.0.0.4. Must match the value of the AutoDiscoveryAddress configured on the server side HA-JNDI service. Note that the server side HA-JNDI service by default listens on the address specified via the -u switch, so if -u is used on the server side (as is recommended), jnp.discoveryGroup will need to be configured on the client side.
					

	
						jnp.discoveryPort: Determines which multicast port is used for the automatic discovery. Default is 1102. Must match the value of the AutoDiscoveryPort configured on the server side HA-JNDI service.
					

	
						jnp.discoveryTTL: specifies the TTL (time-to-live) for autodiscovery IP multicast packets. This value represents the number of network hops a multicast packet can be allowed to propagate before networking equipment should drop the packet. Despite its name, it does not represent a unit of time.
					

 ⁠22.3. JBoss configuration

			The hajndi-jboss-beans.xml file in the <JBOSS_HOME>/server/production/deploy/cluster directory includes the following bean to enable HA-JNDI services.
		
​<bean name="HAJNDI" class="org.jboss.ha.jndi.HANamingService">
​
​ <annotation>@org.jboss.aop.microcontainer.aspects.jmx.JMX
​ (name="jboss:service=HAJNDI",
​ exposedInterface=org.jboss.ha.jndi.HANamingServiceMBean.class)</annotation>
​
​ <!-- The partition used for group RPCs to find locally bound objects on other nodes -->
​ <property name="HAPartition"><inject bean="HAPartition"/></property>
​
​ <!-- Handler for the replicated tree -->
​ <property name="distributedTreeManager">
​ <bean class="org.jboss.ha.jndi.impl.jbc.JBossCacheDistributedTreeManager">
​ <property name="cacheHandler"><inject bean="HAPartitionCacheHandler"/></property>
​ </bean>
​ </property>
​
​ <property name="localNamingInstance">
​ <inject bean="jboss:service=NamingBeanImpl" property="namingInstance"/>
​ </property>
​
​ <!-- The thread pool used to control the bootstrap and auto discovery lookups -->
​ <property name="lookupPool"><inject bean="jboss.system:service=ThreadPool"/></property>
​
​ <!-- Bind address of bootstrap endpoint -->
​ <property name="bindAddress">${jboss.bind.address}</property>
​ <!-- Port on which the HA-JNDI stub is made available -->
​ <property name="port">
​ <!-- Get the port from the ServiceBindingManager -->
​ <value-factory bean="ServiceBindingManager" method="getIntBinding">
​ <parameter>jboss:service=HAJNDI</parameter>
​ <parameter>Port</parameter>
​ </value-factory>
​ </property>
​
​ <!-- Bind address of the HA-JNDI RMI endpoint -->
​ <property name="rmiBindAddress">${jboss.bind.address}</property>
​
​ <!-- RmiPort to be used by the HA-JNDI service once bound. 0 = ephemeral. -->
​ <property name="rmiPort">
​ <!-- Get the port from the ServiceBindingManager -->
​ <value-factory bean="ServiceBindingManager" method="getIntBinding">
​ <parameter>jboss:service=HAJNDI</parameter>
​ <parameter>RmiPort</parameter>
​ </value-factory>
​ </property>
​
​ <!-- Accept backlog of the bootstrap socket -->
​ <property name="backlog">50</property>
​
​ <!-- A flag to disable the auto discovery via multicast -->
​ <property name="discoveryDisabled">false</property>
​ <!-- Set the auto-discovery bootstrap multicast bind address. If not
​ specified and a BindAddress is specified, the BindAddress will be used. -->
​ <property name="autoDiscoveryBindAddress">${jboss.bind.address}</property>
​ <!-- Multicast Address and group port used for auto-discovery -->
​ <property name="autoDiscoveryAddress">${jboss.partition.udpGroup:230.0.0.4}</property>
​ <property name="autoDiscoveryGroup">1102</property>
​ <!-- The TTL (time-to-live) for autodiscovery IP multicast packets -->
​ <property name="autoDiscoveryTTL">16</property>
​
​ <!-- The load balancing policy for HA-JNDI -->
​ <property name="loadBalancePolicy">org.jboss.ha.framework.interfaces.RoundRobin</property>
​
​ <!-- Client socket factory to be used for client-server
​ RMI invocations during JNDI queries
​ <property name="clientSocketFactory">custom</property>
​ -->
​ <!-- Server socket factory to be used for client-server
​ RMI invocations during JNDI queries
​ <property name="serverSocketFactory">custom</property>
​ -->
​ </bean>

			You can see that this bean has a number of other services injected into different properties:
				
						HAPartition accepts the core clustering service used manage HA-JNDI's clustered proxies and to make the group RPCs that find locally bound objects on other nodes. See Section 21.3, “The HAPartition Service” for more.
					

	
						distributedTreeManager accepts a handler for the replicated tree. The standard handler uses JBoss Cache to manage the replicated tree. The JBoss Cache instance is retrieved using the injected HAPartitionCacheHandler bean. See Section 21.3, “The HAPartition Service” for more details.
					

	
						localNamingInstance accepts the reference to the local JNDI service.
					

	
						lookupPool accepts the thread pool used to provide threads to handle the bootstrap and auto discovery lookups.
					

		

			Besides the above dependency injected services, the available configuration attributes for the HA-JNDI bean are as follows:
		
	
					bindAddress specifies the address to which the HA-JNDI server will bind to listen for naming proxy download requests from JNP clients. The default value is the value of the jboss.bind.address system property, or localhost if that property is not set. The jboss.bind.address system property is set if the -b command line switch is used when JBoss is started.
				

	
					port specifies the port to which the HA-JNDI server will bind to listen for naming proxy download requests from JNP clients. The value is obtained from the ServiceBindingManager bean configured in conf/bootstrap/bindings.xml. The default value is 1100.
				

	
					backlog specifies the maximum queue length for incoming connection indications for the TCP server socket on which the service listens for naming proxy download requests from JNP clients. The default value is 50.
				

	
					rmiBindAddress specifies the address to which the HA-JNDI server will bind to listen for RMI requests (e.g. for JNDI lookups) from naming proxies. The default value is the value of the jboss.bind.address system property, or localhost if that property is not set. The jboss.bind.address system property is set if the -b command line switch is used when JBoss is started.
				

	
					rmiPort specifies the port to which the server will bind to communicate with the downloaded stub. The value is obtained from the ServiceBindingManager bean configured in conf/bootstrap/bindings.xml. The default value is 1101. If no value is set, the operating system automatically assigns a port.
				

	
					discoveryDisabled is a boolean flag that disables configuration of the auto discovery multicast listener. The default is false.
				

	
					autoDiscoveryAddress specifies the multicast address to listen to for JNDI automatic discovery. The default value is the value of the jboss.partition.udpGroup system property, or 230.0.0.4 if that is not set. The jboss.partition.udpGroup system property is set if the -u command line switch is used when JBoss is started.
				

	
					autoDiscoveryGroup specifies the port to listen on for multicast JNDI automatic discovery packets. The default value is 1102.
				

	
					autoDiscoveryBindAddress sets the interface on which HA-JNDI should listen for auto-discovery request packets. If this attribute is not specified and a bindAddress is specified, the bindAddress will be used.
				

	
					autoDiscoveryTTL specifies the TTL (time-to-live) for autodiscovery IP multicast packets. This value represents the number of network hops a multicast packet can be allowed to propagate before networking equipment should drop the packet. Despite its name, it does not represent a unit of time.
				

	
					loadBalancePolicy specifies the class name of the LoadBalancePolicy implementation that should be included in the client proxy. See Chapter 19, Introduction and Quick Start the Introduction and Quick Start chapter for details.
				

	
					clientSocketFactory is an optional attribute that specifies the fully qualified classname of the java.rmi.server.RMIClientSocketFactory that should be used to create client sockets. The default is null.
				

	
					serverSocketFactory is an optional attribute that specifies the fully qualified classname of the java.rmi.server.RMIServerSocketFactory that should be used to create server sockets. The default is null.
				

 ⁠22.3.1. Adding a Second HA-JNDI Service

				It is possible to start several HA-JNDI services that use different HAPartitions. This can be used, for example, if a node is part of many logical clusters. In this case, make sure that you set a different port or IP address for each service. For instance, if you wanted to hook up HA-JNDI to the example cluster you set up and change the binding port, the bean descriptor would look as follows (properties that do not vary from the standard deployments are omitted):
			
​
​ <-- Cache Handler for secondary HAPartition -->
​ <bean name="SecondaryHAPartitionCacheHandler"
​ class="org.jboss.ha.framework.server.HAPartitionCacheHandlerImpl">
​ <property name="cacheManager"><inject bean="CacheManager"/></property>
​ <property name="cacheConfigName">secondary-ha-partition</property>
​ </bean>
​
​ <-- The secondary HAPartition -->
​ <bean name="SecondaryHAPartition" class="org.jboss.ha.framework.server.ClusterPartition">
​
​ <depends>jboss:service=Naming</depends>
​
​ <annotation>@org.jboss.aop.microcontainer.aspects.jmx.JMX
​ (name="jboss:service=HAPartition,partition=SecondaryPartition",
​ exposedInterface=org.jboss.ha.framework.server.ClusterPartitionMBean.class, registerDirectly=true)</annotation>
​
​ <property name="cacheHandler"><inject bean="SecondaryHAPartitionCacheHandler"/></property>
​
​ <property name="partitionName">SecondaryPartition</property>
​
​
​ </bean>
​
​ <bean name="MySpecialPartitionHAJNDI" class="org.jboss.ha.jndi.HANamingService">
​
​ <annotation>@org.jboss.aop.microcontainer.aspects.jmx.JMX
​ (name="jboss:service=HAJNDI,partitionName=SecondaryPartition",
​ exposedInterface=org.jboss.ha.jndi.HANamingServiceMBean.class)</annotation>
​
​ <property name="HAPartition"><inject bean="SecondaryHAPartition"/></property>
​
​ <property name="distributedTreeManager">
​ <bean class="org.jboss.ha.jndi.impl.jbc.JBossCacheDistributedTreeManager">
​ <property name="cacheHandler"><inject bean="SecondaryHAPartitionPartitionCacheHandler"/></property>
​ </bean>
​ </property>
​
​ <property name="port">56789</property>
​
​ <property name="rmiPort">56790</property>
​
​ <property name="autoDiscoveryGroup">56791</property>
​
​
​ </bean>

 ⁠Chapter 23. Clustered Session EJBs

		Session EJBs provide remote invocation services. They are clustered based on the client-side interceptor architecture. The client application for a clustered session bean is the same as the client for the non-clustered version of the session bean, except for some minor changes. No code change or re-compilation is needed on the client side. Now, let us check out how to configure clustered session beans in EJB 3.0 and EJB 2.x server applications respectively.
	

 ⁠23.1. Stateless Session Bean in EJB 3.0

			Clustering stateless session beans is probably the easiest case since no state is involved. Calls can be load balanced to any participating node (i.e. any node that has this specific bean deployed) of the cluster.
		

			To cluster a stateless session bean in EJB 3.0, simply annotate the bean class with the @Clustered annotation. This annotation contains optional parameters for overriding both the load balance policy and partition to use.
		
​
​public @interface Clustered
​{
​ String partition() default "${jboss.partition.name:DefaultPartition}";
​ String loadBalancePolicy() default "LoadBalancePolicy";
​}

	
					partition specifies the name of the cluster the bean participates in. While the @Clustered annotation lets you override the default partition, DefaultPartition, for an individual bean, you can override this for all beans using the jboss.partition.name system property.
				

	
					loadBalancePolicy defines the name of a class implementing org.jboss.ha.client.loadbalance.LoadBalancePolicy, indicating how the bean stub should balance calls made on the nodes of the cluster. The default value, LoadBalancePolicy is a special token indicating the default policy for the session bean type. For stateless session beans, the default policy is org.jboss.ha.client.loadbalance.RoundRobin. You can override the default value using your own implementation, or choose one from the list of available policies:
				
	 org.jboss.ha.client.loadbalance.RoundRobin
	
								Starting with a random target, always favors the next available target in the list, ensuring maximum load balancing always occurs.
							

	 org.jboss.ha.client.loadbalance.RandomRobin
	
								Randomly selects its target without any consideration to previously selected targets.
							

	 org.jboss.ha.client.loadbalance.aop.FirstAvailable
	
								Once a target is chosen, always favors that same target; i.e. no further load balancing occurs. Useful in cases where "sticky session" behavior is desired, e.g. stateful session beans.
							

	 org.jboss.ha.client.loadbalance.aop.FirstAvailableIdenticalAllProxies
	
								Similar to FirstAvailable, except that the favored target is shared across all proxies.
							

			Here is an example of a clustered EJB 3.0 stateless session bean implementation.
		
​
​@Stateless
​@Clustered
​public class MyBean implements MySessionInt
​{
​ public void test()
​ {
​ // Do something cool
​ }
​}

			Rather than using the @Clustered annotation, you can also enable clustering for a session bean in jboss.xml:
		
​
​<jboss>
​ <enterprise-beans>
​ <session>
​ <ejb-name>NonAnnotationStateful</ejb-name>
​ <clustered>true</clustered>
​ <cluster-config>
​ <partition-name>FooPartition</partition-name>
​ <load-balance-policy>org.jboss.ha.framework.interfaces.RandomRobin</load-balance-policy>
​ </cluster-config>
​ </session>
​ </enterprise-beans>
​</jboss>

Note

				The <clustered>true</clustered> element is really just an alias for the <container-name>Clustered Stateless SessionBean</container-name> element in the conf/standardjboss.xml file.
			

			In the bean configuration, only the <clustered> element is necessary to indicate that the bean needs to support clustering features. The default values for the optional <cluster-config> elements match those of the corresponding properties from the @Clustered annotation.
		

 ⁠23.2. Stateful Session Beans in EJB 3.0

			Clustering stateful session beans is more complex than clustering their stateless counterparts since JBoss needs to manage the state information. The state of all stateful session beans are replicated and synchronized across the cluster each time the state of a bean changes.
		

 ⁠23.2.1. The EJB application configuration

				To cluster stateful session beans in EJB 3.0, you need to tag the bean implementation class with the @Clustered annotation, just as we did with the EJB 3.0 stateless session bean earlier. In contrast to stateless session beans, stateful session bean method invocations are load balanced using org.jboss.ha.client.loadbalance.aop.FirstAvailable policy, by default. Using this policy, methods invocations will stick to a randomly chosen node.
			

				The @org.jboss.ejb3.annotation.CacheConfig annotation can also be applied to the bean to override the default caching behavior. Below is the definition of the @CacheConfig annotation:
			
​
​public @interface CacheConfig
​{
​ String name() default "";
​ int maxSize() default 10000;
​ long idleTimeoutSeconds() default 300;
​ boolean replicationIsPassivation() default true;
​ long removalTimeoutSeconds() default 0;
​}

	
						name specifies the name of a cache configuration registered with the CacheManager service discussed in Section 23.2.3, “CacheManager service configuration”. By default, the sfsb-cache configuration will be used.
					

	
						maxSize specifies the maximum number of beans that can cached before the cache should start passivating beans, using an LRU algorithm.
					

	
						idleTimeoutSeconds specifies the max period of time a bean can go unused before the cache should passivate it (regardless of whether maxSize beans are cached.)
					

	
						removalTimeoutSeconds specifies the max period of time a bean can go unused before the cache should remove it altogether.
					

	
						replicationIsPassivation specifies whether the cache should consider a replication as being equivalent to a passivation, and invoke any @PrePassivate and @PostActivate callbacks on the bean. By default true, since replication involves serializing the bean, and preparing for and recovering from serialization is a common reason for implementing the callback methods.
					

				Here is an example of a clustered EJB 3.0 stateful session bean implementation.
			
​
​@Stateful
​@Clustered
​@CacheConfig(maxSize=5000, removalTimeoutSeconds=18000)
​public class MyBean implements MySessionInt
​{
​ private int state = 0;
​
​ public void increment()
​ {
​ System.out.println("counter: " + (state++));
​ }
​}

				As with stateless beans, the @Clustered annotation can alternatively be omitted and the clustering configuration instead applied to jboss.xml:
			
​
​<jboss>
​ <enterprise-beans>
​ <session>
​ <ejb-name>NonAnnotationStateful</ejb-name>
​ <clustered>true</clustered>
​ <cache-config>
​ <cache-max-size>5000</cache-max-size>
​ <remove-timeout-seconds>18000</remove-timeout-seconds>
​ </cache-config>
​ </session>
​ </enterprise-beans>
​</jboss>

 ⁠23.2.2. Optimize state replication

				As the replication process is a costly operation, you can optimize this behavior by optionally implementing the org.jboss.ejb3.cache.Optimized interface in your bean class:
			
​
​public interface Optimized
​{
​ boolean isModified();
​}

				Before replicating your bean, the container will check if your bean implements the Optimized interface. If this is the case, the container calls the isModified() method and will only replicate the bean when the method returns true. If the bean has not been modified (or not enough to require replication, depending on your own preferences), you can return false and the replication would not occur.
			

 ⁠23.2.3. CacheManager service configuration

				JBoss Cache provides the session state replication service for EJB 3.0 stateful session beans. The CacheManager service, described in Section 21.2.1, “The JBoss Enterprise Application Platform CacheManager Service” is both a factory and registry of JBoss Cache instances. By default, stateful session beans use the sfsb-cache configuration from the CacheManager, defined as follows:
			
​
​<bean name="StandardSFSBCacheConfig" class="org.jboss.cache.config.Configuration">
​
​ <!-- No transaction manager lookup -->
​
​ <!-- Name of cluster. Needs to be the same for all members -->
​ <property name="clusterName">${jboss.partition.name:DefaultPartition}-SFSBCache</property>
​ <!--
​ Use a UDP (multicast) based stack. Need JGroups flow control (FC)
​ because we are using asynchronous replication.
​ -->
​ <property name="multiplexerStack">${jboss.default.jgroups.stack:udp}</property>
​ <property name="fetchInMemoryState">true</property>
​
​ <property name="nodeLockingScheme">PESSIMISTIC</property>
​ <property name="isolationLevel">REPEATABLE_READ</property>
​ <property name="useLockStriping">false</property>
​ <property name="cacheMode">REPL_ASYNC</property>
​
​ <!--
​ Number of milliseconds to wait until all responses for a
​ synchronous call have been received. Make this longer
​ than lockAcquisitionTimeout.
​ -->
​ <property name="syncReplTimeout">17500</property>
​ <!-- Max number of milliseconds to wait for a lock acquisition -->
​ <property name="lockAcquisitionTimeout">15000</property>
​ <!-- The max amount of time (in milliseconds) we wait until the
​ state (ie. the contents of the cache) are retrieved from
​ existing members at startup. -->
​ <property name="stateRetrievalTimeout">60000</property>
​
​ <!--
​ SFSBs use region-based marshalling to provide for partial state
​ transfer during deployment/undeployment.
​ -->
​ <property name="useRegionBasedMarshalling">false</property>
​ <!-- Must match the value of "useRegionBasedMarshalling" -->
​ <property name="inactiveOnStartup">false</property>
​
​ <!-- Disable asynchronous RPC marshalling/sending -->
​ <property name="serializationExecutorPoolSize">0</property>
​ <!-- We have no asynchronous notification listeners -->
​ <property name="listenerAsyncPoolSize">0</property>
​
​ <property name="exposeManagementStatistics">true</property>
​
​ <property name="buddyReplicationConfig">
​ <bean class="org.jboss.cache.config.BuddyReplicationConfig">
​
​ <!-- Just set to true to turn on buddy replication -->
​ <property name="enabled">false</property>
​
​ <!--
​ A way to specify a preferred replication group. We try
​ and pick a buddy who shares the same pool name (falling
​ back to other buddies if not available).
​ -->
​ <property name="buddyPoolName">default</property>
​
​ <property name="buddyCommunicationTimeout">17500</property>
​
​ <!-- Do not change these -->
​ <property name="autoDataGravitation">false</property>
​ <property name="dataGravitationRemoveOnFind">true</property>
​ <property name="dataGravitationSearchBackupTrees">true</property>
​
​ <property name="buddyLocatorConfig">
​ <bean class="org.jboss.cache.buddyreplication.NextMemberBuddyLocatorConfig">
​ <!-- The number of backup nodes we maintain -->
​ <property name="numBuddies">1</property>
​ <!-- Means that each node will *try* to select a buddy on
​ a different physical host. If not able to do so
​ though, it will fall back to colocated nodes. -->
​ <property name="ignoreColocatedBuddies">true</property>
​ </bean>
​ </property>
​ </bean>
​ </property>
​ <property name="cacheLoaderConfig">
​ <bean class="org.jboss.cache.config.CacheLoaderConfig">
​ <!-- Do not change these -->
​ <property name="passivation">true</property>
​ <property name="shared">false</property>
​
​ <property name="individualCacheLoaderConfigs">
​ <list>
​ <bean class="org.jboss.cache.loader.FileCacheLoaderConfig">
​ <!-- Where passivated sessions are stored -->
​ <property name="location">${jboss.server.data.dir}${/}sfsb</property>
​ <!-- Do not change these -->
​ <property name="async">false</property>
​ <property name="fetchPersistentState">true</property>
​ <property name="purgeOnStartup">true</property>
​ <property name="ignoreModifications">false</property>
​ <property name="checkCharacterPortability">false</property>
​ </bean>
​ </list>
​ </property>
​ </bean>
​ </property>
​
​ <!-- EJBs use JBoss Cache eviction -->
​ <property name="evictionConfig">
​ <bean class="org.jboss.cache.config.EvictionConfig">
​ <property name="wakeupInterval">5000</property>
​ <!-- Overall default -->
​ <property name="defaultEvictionRegionConfig">
​ <bean class="org.jboss.cache.config.EvictionRegionConfig">
​ <property name="regionName">/</property>
​ <property name="evictionAlgorithmConfig">
​ <bean class="org.jboss.cache.eviction.NullEvictionAlgorithmConfig"/>
​ </property>
​ </bean>
​ </property>
​ <!-- EJB3 integration code will programatically create other regions as beans are deployed -->
​ </bean>
​ </property>
​</bean>

Eviction

					The default SFSB cache is configured to support eviction. The EJB3 SFSB container uses the JBoss Cache eviction mechanism to manage SFSB passivation. When beans are deployed, the EJB container will programatically add eviction regions to the cache, one region per bean type.
				
CacheLoader

					A JBoss Cache CacheLoader is also configured; again to support SFSB passivation. When beans are evicted from the cache, the cache loader passivates them to a persistent store; in this case to the file system in the <JBOSS_HOME>/server/production/data/sfsb directory. JBoss Cache supports a variety of different CacheLoader implementations that know how to store data to different persistent store types; see the JBoss Cache documentation for details. However, if you change the CacheLoaderConfiguration, be sure that you do not use a shared store, e.g. a single schema in a shared database. Each node in the cluster must have its own persistent store, otherwise as nodes independently passivate and activate clustered beans, they will corrupt each other's data.
				
Buddy Replication

					Using buddy replication, state is replicated to a configurable number of backup servers in the cluster (a.k.a. buddies), rather than to all servers in the cluster. To enable buddy replication, adjust the following properties in the buddyReplicationConfig property bean:
						
								Set enabled to true.
							

	
								Use the buddyPoolName to form logical subgroups of nodes within the cluster. If possible, buddies will be chosen from nodes in the same buddy pool.
							

	
								Adjust the buddyLocatorConfig.numBuddies property to reflect the number of backup nodes to which each node should replicate its state.
							

				

 ⁠23.3. Stateless Session Bean in EJB 2.x

			To make an EJB 2.x bean clustered, you need to modify its jboss.xml descriptor to contain a <clustered> tag.
		
​
​<jboss>
​ <enterprise-beans>
​ <session>
​ <ejb-name>nextgen.StatelessSession</ejb-name>
​ <jndi-name>nextgen.StatelessSession</jndi-name>
​ <clustered>true</clustered>
​ <cluster-config>
​ <partition-name>DefaultPartition</partition-name>
​ <home-load-balance-policy>org.jboss.ha.framework.interfaces.RoundRobin</home-load-balance-policy>
​ <bean-load-balance-policy>org.jboss.ha.framework.interfaces.RoundRobin</bean-load-balance-policy>
​ </cluster-config>
​ </session>
​ </enterprise-beans>
​</jboss>

	
					partition-name specifies the name of the cluster the bean participates in. The default value is DefaultPartition. The default partition name can also be set system-wide using the jboss.partition.name system property.
				

	
					home-load-balance-policy indicates the class to be used by the home stub to balance calls made on the nodes of the cluster. By default, the proxy will load-balance calls in a RoundRobin fashion.
				

	
					bean-load-balance-policy Indicates the class to be used by the bean stub to balance calls made on the nodes of the cluster. By default, the proxy will load-balance calls in a RoundRobin fashion.
				

 ⁠23.4. Stateful Session Bean in EJB 2.x

			Clustering stateful session beans is more complex than clustering their stateless counterparts since JBoss needs to manage the state information. The state of all stateful session beans are replicated and synchronized across the cluster each time the state of a bean changes. The JBoss Enterprise Application Platform uses the HASessionStateService bean to manage distributed session states for clustered EJB 2.x stateful session beans. In this section, we cover both the session bean configuration and the HASessionStateService bean configuration.
		

 ⁠23.4.1. The EJB application configuration

				In the EJB application, you need to modify the jboss.xml descriptor file for each stateful session bean and add the <clustered> tag.
			
​
​<jboss>
​ <enterprise-beans>
​ <session>
​ <ejb-name>nextgen.StatefulSession</ejb-name>
​ <jndi-name>nextgen.StatefulSession</jndi-name>
​ <clustered>True</clustered>
​ <cluster-config>
​ <partition-name>DefaultPartition</partition-name>
​ <home-load-balance-policy>org.jboss.ha.framework.interfaces.RoundRobin</home-load-balance-policy>
​ <bean-load-balance-policy>org.jboss.ha.framework.interfaces.FirstAvailable</bean-load-balance-policy>
​ <session-state-manager-jndi-name>/HASessionState/Default</session-state-manager-jndi-name>
​ </cluster-config>
​ </session>
​ </enterprise-beans>
​</jboss>

				In the bean configuration, only the <clustered> tag is mandatory to indicate that the bean works in a cluster. The <cluster-config> element is optional and its default attribute values are indicated in the sample configuration above.
			

				The <session-state-manager-jndi-name> tag is used to give the JNDI name of the HASessionStateService to be used by this bean.
			

				The description of the remaining tags is identical to the one for stateless session bean. Actions on the clustered stateful session bean's home interface are by default load-balanced, round-robin. Once the bean's remote stub is available to the client, calls will not be load-balanced round-robin any more and will stay "sticky" to the first node in the list.
			

 ⁠23.4.2. Optimize state replication

				As the replication process is a costly operation, you can optimize this behavior by optionally implementing in your bean class a method with the following signature:
			
​
​public boolean isModified();

				Before replicating your bean, the container will detect if your bean implements this method. If your bean does, the container calls the isModified() method and it only replicates the bean when the method returns true. If the bean has not been modified (or not enough to require replication, depending on your own preferences), you can return false and the replication would not occur.
			

 ⁠23.4.3. The HASessionStateService configuration

				The HASessionStateService bean is defined in the <JBOSS_HOME>/server/<PROFILE>/deploy/cluster/ha-legacy-jboss-beans.xml file.
			
​
​<bean name="HASessionStateService"
​ class="org.jboss.ha.hasessionstate.server.HASessionStateService">
​
​ <annotation>@org.jboss.aop.microcontainer.aspects.jmx.JMX
​ (name="jboss:service=HASessionState",
​ exposedInterface=org.jboss.ha.hasessionstate.server.
​ HASessionStateServiceMBean.class,
​ registerDirectly=true)</annotation>
​
​ <!-- Partition used for group RPCs -->
​ <property name="HAPartition"><inject bean="HAPartition"/></property>
​
​ <!-- JNDI name under which the service is bound -->
​ <property name="jndiName">/HASessionState/Default</property>
​ <!-- Max delay before cleaning unreclaimed state.
​ Defaults to 30*60*1000 => 30 minutes -->
​ <property name="beanCleaningDelay">0</property>
​
​</bean>

				The configuration attributes in the HASessionStateService bean are listed below.
			
	
						HAPartition is a required attribute to inject the HAPartition service that HA-JNDI uses for intra-cluster communication.
					

	
						jndiName is an optional attribute to specify the JNDI name under which this HASessionStateService bean is bound. The default value is /HAPartition/Default.
					

	
						beanCleaningDelay is an optional attribute to specify the number of milliseconds after which the HASessionStateService can clean a state that has not been modified. If a node, owning a bean, crashes, its brother node will take ownership of this bean. Nevertheless, the container cache of the brother node will not know about it (because it has never seen it before) and will never delete according to the cleaning settings of the bean. That is why the HASessionStateService needs to do this cleanup sometimes. The default value is 30*60*1000 milliseconds (i.e., 30 minutes).
					

 ⁠23.4.4. Handling Cluster Restart

				We have covered the HA smart client architecture in Section 20.2.1, “Client-side interceptor architecture”. The default HA smart proxy client can only failover as long as one node in the cluster exists. If there is a complete cluster shutdown, the proxy becomes orphaned and loses knowledge of the available nodes in the cluster. There is no way for the proxy to recover from this. The proxy needs to look up a fresh set of targets out of JNDI/HA-JNDI when the nodes are restarted.
			

				RetryInterceptor can be added to the proxy client side interceptor stack to allow for a transparent recovery from such a restart failure. To enable it for an EJB, setup an invoker-proxy-binding that includes the RetryInterceptor. Below is an example jboss.xml configuration.
			
​
​<jboss>
​ <session>
​ <ejb-name>nextgen_RetryInterceptorStatelessSession</ejb-name>
​ <invoker-bindings>
​ <invoker>
​ <invoker-proxy-binding-name>clustered-retry-stateless-rmi-invoker</invoker-proxy-binding-name>
​ <jndi-name>nextgen_RetryInterceptorStatelessSession</jndi-name>
​ </invoker>
​ </invoker-bindings>
​ <clustered>true</clustered>
​ </session>
​ <invoker-proxy-binding>
​ <name>clustered-retry-stateless-rmi-invoker</name>
​ <invoker-mbean>jboss:service=invoker,type=jrmpha</invoker-mbean>
​ <proxy-factory>org.jboss.proxy.ejb.ProxyFactoryHA</proxy-factory>
​ <proxy-factory-config>
​ <client-interceptors>
​ <home>
​ <interceptor>org.jboss.proxy.ejb.HomeInterceptor</interceptor>
​ <interceptor>org.jboss.proxy.SecurityInterceptor</interceptor>
​ <interceptor>org.jboss.proxy.TransactionInterceptor</interceptor>
​ <interceptor>org.jboss.proxy.ejb.RetryInterceptor</interceptor>
​ <interceptor>org.jboss.invocation.InvokerInterceptor</interceptor>
​ </home>
​ <bean>
​ <interceptor>org.jboss.proxy.ejb.StatelessSessionInterceptor</interceptor>
​ <interceptor>org.jboss.proxy.SecurityInterceptor</interceptor>
​ <interceptor>org.jboss.proxy.TransactionInterceptor</interceptor>
​ <interceptor>org.jboss.proxy.ejb.RetryInterceptor</interceptor>
​ <interceptor>org.jboss.invocation.InvokerInterceptor</interceptor>
​ </bean>
​ </client-interceptors>
​ </proxy-factory-config>
​ </invoker-proxy-binding>
​</jboss>

 ⁠23.4.5. JNDI Lookup Process

				In order to recover the HA proxy, the RetryInterceptor does a lookup in JNDI. This means that internally it creates a new InitialContext and does a JNDI lookup. But, for that lookup to succeed, the InitialContext needs to be configured properly to find your naming server. The RetryInterceptor will go through the following steps in attempting to determine the proper naming environment properties:
			
	
						It will check its own static retryEnv field. This field can be set by client code via a call to RetryInterceptor.setRetryEnv(Properties). This approach to configuration has two downsides: first, it reduces portability by introducing JBoss-specific calls to the client code; and second, since a static field is used only a single configuration per VM is possible.
					

	
						If the retryEnv field is null, it will check for any environment properties bound to a ThreadLocal by the org.jboss.naming.NamingContextFactory class. To use this class as your naming context factory, in your jndi.properties set property java.naming.factory.initial=org.jboss.naming.NamingContextFactory. The advantage of this approach is use of org.jboss.naming.NamingContextFactory is simply a configuration option in your jndi.properties file, and thus your java code is unaffected. The downside is the naming properties are stored in a ThreadLocal and thus are only visible to the thread that originally created an InitialContext.
					

	
						If neither of the above approaches yield a set of naming environment properties, a default InitialContext is used. If the attempt to contact a naming server is unsuccessful, by default the InitialContext will attempt to fall back on multicast discovery to find an HA-JNDI naming server. See Chapter 22, Clustered JNDI Services for more on multicast discovery of HA-JNDI.
					

 ⁠23.4.6. SingleRetryInterceptor

				The RetryInterceptor is useful in many use cases, but a disadvantage it has is that it will continue attempting to re-lookup the HA proxy in JNDI until it succeeds. If for some reason it cannot succeed, this process could go on forever, and thus the EJB call that triggered the RetryInterceptor will never return. For many client applications, this possibility is unacceptable. As a result, JBoss does not make the RetryInterceptor part of its default client interceptor stacks for clustered EJBs.
			

				In a previous release, a new flavor of retry interceptor was introduced, the org.jboss.proxy.ejb.SingleRetryInterceptor. This version works like the RetryInterceptor, but only makes a single attempt to re-lookup the HA proxy in JNDI. If this attempt fails, the EJB call will fail just as if no retry interceptor was used. The SingleRetryInterceptor is now part of the default client interceptor stacks for clustered EJBs.
			

				The downside of the SingleRetryInterceptor is that if the retry attempt is made during a portion of a cluster restart where no servers are available, the retry will fail and no further attempts will be made.
			

 ⁠Chapter 24. Clustered Entity EJBs

		In a JBoss Enterprise Application Platform cluster, entity bean instance caches need to be kept in sync across all nodes. If an entity bean provides remote services, the service methods need to be load balanced as well.
	

 ⁠24.1. Entity Bean in EJB 3.0

			In EJB 3.0, entity beans primarily serve as a persistence data model. They do not provide remote services. Hence, the entity bean clustering service in EJB 3.0 primarily deals with distributed caching and replication, instead of load balancing.
		

 ⁠24.1.1. Configure the distributed cache

				To avoid round trips to the database, you can use a cache for your entities. JBoss EJB 3.0 entity beans are implemented by Hibernate, which has support for a second-level cache. The second-level cache provides the following functionalities:
			
	
						If you persist a cache-enabled entity bean instance to the database via the entity manager, the entity will be inserted into the cache.
					

	
						If you update an entity bean instance, and save the changes to the database via the entity manager, the entity will be updated in the cache.
					

	
						If you remove an entity bean instance from the database via the entity manager, the entity will be removed from the cache.
					

	
						If loading a cached entity from the database via the entity manager, and that entity does not exist in the database, it will be inserted into the cache.
					

				As well as a region for caching entities, the second-level cache also contains regions for caching collections, queries, and timestamps. The Hibernate setup used for the JBoss EJB 3.0 implementation uses JBoss Cache as its underlying second-level cache implementation.
			

				Configuration of a the second-level cache is done via your EJB3 deployment's persistence.xml, like so:
			
​
​<?xml version="1.0" encoding="UTF-8"?>
​<persistence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://java.sun.com/xml/ns/persistence"
​ xsi:schemaLocation="http://java.sun.com/xml/ns/persistence http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd">
​ <persistence-unit name="tempdb" transaction-type="JTA">
​ <jta-data-source>java:/DefaultDS</jta-data-source>
​ <properties>
​ <property name="hibernate.cache.use_second_level_cache" value="true"/>
​ <property name="hibernate.cache.use_query_cache" value="true"/>
​ <property name="hibernate.cache.region.factory_class" value="org.hibernate.cache.jbc2.JndiMultiplexedJBossCacheRegionFactory"/>
​ <!-- region factory specific properties -->
​ <property name="hibernate.cache.region.jbc2.cachefactory" value="java:CacheManager"/>
​ <property name="hibernate.cache.region.jbc2.cfg.entity" value="mvcc-entity"/>
​ <property name="hibernate.cache.region.jbc2.cfg.collection" value="mvcc-entity"/>
​ </properties>
​ </persistence-unit>
​</persistence>

	hibernate.cache.use_second_level_cache
	
							Enables second-level caching of entities and collections.
						

	hibernate.cache.use_query_cache
	
							Enables second-level caching of queries.
						

	hibernate.cache.region.factory_class
	
							Defines the RegionFactory implementation that dictates region-specific caching behavior. Hibernate ships with 2 types of JBoss Cache-based second-level caches: shared and multiplexed.
						

							A shared region factory uses the same Cache for all cache regions - much like the legacy CacheProvider implementation in older Hibernate versions.
						

							Hibernate ships with 2 shared region factory implementations:
						
	org.hibernate.cache.jbc2.SharedJBossCacheRegionFactory
	
										Uses a single JBoss Cache configuration, from a newly instantiated CacheManager, for all cache regions.
									

 ⁠Table 24.1. Additional properties for SharedJBossCacheRegionFactory
	 Property 	 Default 	 Description
	 hibernate.cache.region.jbc2.cfg.shared 	 treecache.xml 	 The classpath or file system resource containing the JBoss Cache configuration settings.
	 hibernate.cache.region.jbc2.cfg.jgroups.stacks 	 org/hibernate/cache/jbc2/builder/jgroups-stacks.xml 	 The classpath or file system resource containing the JGroups protocol stack configurations.

	org.hibernate.cache.jbc2.JndiSharedJBossCacheRegionFactory
	
										Uses a single JBoss Cache configuration, from an existing CacheManager bound to JNDI, for all cache regions.
									

 ⁠Table 24.2. Additional properties for JndiSharedJBossCacheRegionFactory
	 Property 	 Default 	 Description
	 hibernate.cache.region.jbc2.cfg.shared 	 Required 	 JNDI name to which the shared Cache instance is bound.

							A multiplexed region factory uses separate Cache instances, using optimized configurations for each cache region.
						

 ⁠Table 24.3. Common properties for multiplexed region factory implementations
	 Property 	 Default 	 Description
	 hibernate.cache.region.jbc2.cfg.entity 	 optimistic-entity 	 The JBoss Cache configuration used for the entity cache region. Alternative configurations: mvcc-entity, pessimistic-entity, mvcc-entity-repeatable, optimistic-entity-repeatable, pessimistic-entity-repeatable
	 hibernate.cache.region.jbc2.cfg.collection 	 optimistic-entity 	 The JBoss Cache configuration used for the collection cache region. The collection cache region typically uses the same configuration as the entity cache region.
	 hibernate.cache.region.jbc2.cfg.query 	 local-query 	 The JBoss Cache configuration used for the query cache region. By default, cached query results are not replicated. Alternative configurations: replicated-query
	 hibernate.cache.region.jbc2.cfg.ts 	 timestamps-cache 	 The JBoss Cache configuration used for the timestamp cache region. If query caching is used, the corresponding timestamp cache must be replicating, even if the query cache is non-replicating. The timestamp cache region must never share the same cache as the query cache.

							Hibernate ships with 2 shared region factory implementations:
						
	org.hibernate.cache.jbc2.MultiplexedJBossCacheRegionFactory
	
										Uses separate JBoss Cache configurations, from a newly instantiated CacheManager, per cache region.
									

 ⁠Table 24.4. Additional properties for MultiplexedJBossCacheRegionFactory
	 Property 	 Default 	 Description
	 hibernate.cache.region.jbc2.configs 	 org/hibernate/cache/jbc2/builder/jbc2-configs.xml 	 The classpath or file system resource containing the JBoss Cache configuration settings.
	 hibernate.cache.region.jbc2.cfg.jgroups.stacks 	 org/hibernate/cache/jbc2/builder/jgroups-stacks.xml 	 The classpath or file system resource containing the JGroups protocol stack configurations.

	org.hibernate.cache.jbc2.JndiMultiplexedJBossCacheRegionFactory
	
										Uses separate JBoss Cache configurations, from a JNDI-bound CacheManager, see Section 21.2.1, “The JBoss Enterprise Application Platform CacheManager Service”, per cache region.
									

 ⁠Table 24.5. Additional properties for JndiMultiplexedJBossCacheRegionFactory
	 Property 	 Default 	 Description
	 hibernate.cache.region.jbc2.cachefactory 	 Required 	 JNDI name to which the CacheManager instance is bound.

				Now, we have JBoss Cache configured to support distributed caching of EJB 3.0 entity beans. We still have to configure individual entity beans to use the cache service.
			

 ⁠24.1.2. Configure the entity beans for cache

				Next we need to configure which entities to cache. The default is to not cache anything, even with the settings shown above. We use the @org.hibernate.annotations.Cache annotation to tag entity beans that needs to be cached.
			
​
​@Entity
​@Cache(usage = CacheConcurrencyStrategy.TRANSACTIONAL)
​public class Account implements Serializable
​{
​ //
​}

				A very simplified rule of thumb is that you will typically want to do caching for objects that rarely change, and which are frequently read. You can fine tune the cache for each entity bean in the appropriate JBoss Cache configuration file, e.g. jboss-cache-manager-jboss-beans.xml. For instance, you can specify the size of the cache. If there are too many objects in the cache, the cache can evict the oldest or least used objects, depending on configuration, to make room for new objects. Assuming the region_prefix specified in persistence.xml was myprefix, the default name of the cache region for the com.mycompany.entities.Account entity bean would be /myprefix/com/mycompany/entities/Account.
			
​
​<bean name="..." class="org.jboss.cache.config.Configuration">
​
​ <property name="evictionConfig">
​ <bean class="org.jboss.cache.config.EvictionConfig">
​ <property name="wakeupInterval">5000</property>
​ <!-- Overall default -->
​ <property name="defaultEvictionRegionConfig">
​ <bean class="org.jboss.cache.config.EvictionRegionConfig">
​ <property name="regionName">/</property>
​ <property name="evictionAlgorithmConfig">
​ <bean class="org.jboss.cache.eviction.LRUAlgorithmConfig">
​ <!-- Evict LRU node once we have more than this number of nodes -->
​ <property name="maxNodes">10000</property>
​ <!-- And, evict any node that has not been accessed in this many seconds -->
​ <property name="timeToLiveSeconds">1000</property>
​ <!-- Do not evict a node that's been accessed within this many seconds.
​ Set this to a value greater than your max expected transaction length. -->
​ <property name="minTimeToLiveSeconds">120</property>
​ </bean>
​ </property>
​ </bean>
​ </property>
​ <property name="evictionRegionConfigs">
​ <list>
​ <bean class="org.jboss.cache.config.EvictionRegionConfig">
​ <property name="regionName">/myprefix/com/mycompany/entities/Account</property>
​ <property name="evictionAlgorithmConfig">
​ <bean class="org.jboss.cache.eviction.LRUAlgorithmConfig">
​ <property name="maxNodes">10000</property>
​ <property name="timeToLiveSeconds">5000</property>
​ <property name="minTimeToLiveSeconds">120</property>
​ </bean>
​ </property>
​ </bean>
​
​ </list>
​ </property>
​ </bean>
​ </property>
​</bean>

				If you do not specify a cache region for an entity bean class, all instances of this class will be cached using the defaultEvictionRegionConfig as defined above. The @Cache annotation exposes an optional attribute "region" that lets you specify the cache region where an entity is to be stored, rather than having it be automatically created from the fully-qualified class name of the entity class.
			
​
​@Entity
​@Cache(usage = CacheConcurrencyStrategy.TRANSACTIONAL, region = "Account")
​public class Account implements Serializable
​{
​ //
​}

				The eviction configuration would then become:
			
​
​<bean name="..." class="org.jboss.cache.config.Configuration">
​
​ <property name="evictionConfig">
​ <bean class="org.jboss.cache.config.EvictionConfig">
​ <property name="wakeupInterval">5000</property>
​ <!-- Overall default -->
​ <property name="defaultEvictionRegionConfig">
​ <bean class="org.jboss.cache.config.EvictionRegionConfig">
​ <property name="regionName">/</property>
​ <property name="evictionAlgorithmConfig">
​ <bean class="org.jboss.cache.eviction.LRUAlgorithmConfig">
​ <property name="maxNodes">5000</property>
​ <property name="timeToLiveSeconds">1000</property>
​ <property name="minTimeToLiveSeconds">120</property>
​ </bean>
​ </property>
​ </bean>
​ </property>
​ <property name="evictionRegionConfigs">
​ <list>
​ <bean class="org.jboss.cache.config.EvictionRegionConfig">
​ <property name="regionName">/myprefix/Account</property>
​ <property name="evictionAlgorithmConfig">
​ <bean class="org.jboss.cache.eviction.LRUAlgorithmConfig">
​ <property name="maxNodes">10000</property>
​ <property name="timeToLiveSeconds">5000</property>
​ <property name="minTimeToLiveSeconds">120</property>
​ </bean>
​ </property>
​ </bean>
​
​ </list>
​ </property>
​ </bean>
​ </property>
​</bean>

 ⁠24.1.3. Query result caching

				The EJB3 Query API also provides means for you to save the results (i.e., collections of primary keys of entity beans, or collections of scalar values) of specified queries in the second-level cache. Here we show a simple example of annotating a bean with a named query, also providing the Hibernate-specific hints that tells Hibernate to cache the query.
			

				First, in persistence.xml you need to tell Hibernate to enable query caching:
			
<property name="hibernate.cache.use_query_cache" value="true"/>

				Next, you create a named query associated with an entity, and tell Hibernate you want to cache the results of that query:
			
​
​@Entity
​@Cache(usage = CacheConcurrencyStrategy.TRANSACTIONAL, region = "Account")
​@NamedQueries(
​{
​ @NamedQuery(
​ name = "account.bybranch",
​ query = "select acct from Account as acct where acct.branch = ?1",
​ hints = { @QueryHint(name = "org.hibernate.cacheable", value = "true") }
​)
​})
​public class Account implements Serializable
​{
​ //
​}

				The @NamedQueries, @NamedQuery and @QueryHint annotations are all in the javax.persistence package. See the Hibernate and EJB3 documentation for more on how to use EJB3 queries and on how to instruct EJB3 to cache queries.
			

				By default, Hibernate stores query results in JBoss Cache in a region named <region_prefix>/org/hibernate/cache/StandardQueryCache. Based on this, you can set up separate eviction handling for your query results. So, if the region prefix were set to myprefix in persistence.xml, you could, for example, create this sort of eviction handling:
			
​
​<bean name="..." class="org.jboss.cache.config.Configuration">
​
​ <property name="evictionConfig">
​ <bean class="org.jboss.cache.config.EvictionConfig">
​ <property name="wakeupInterval">5000</property>
​ <!-- Overall default -->
​ <property name="defaultEvictionRegionConfig">
​ <bean class="org.jboss.cache.config.EvictionRegionConfig">
​ <property name="regionName">/</property>
​ <property name="evictionAlgorithmConfig">
​ <bean class="org.jboss.cache.eviction.LRUAlgorithmConfig">
​ <property name="maxNodes">5000</property>
​ <property name="timeToLiveSeconds">1000</property>
​ <property name="minTimeToLiveSeconds">120</property>
​ </bean>
​ </property>
​ </bean>
​ </property>
​ <property name="evictionRegionConfigs">
​ <list>
​ <bean class="org.jboss.cache.config.EvictionRegionConfig">
​ <property name="regionName">/myprefix/Account</property>
​ <property name="evictionAlgorithmConfig">
​ <bean class="org.jboss.cache.eviction.LRUAlgorithmConfig">
​ <property name="maxNodes">10000</property>
​ <property name="timeToLiveSeconds">5000</property>
​ <property name="minTimeToLiveSeconds">120</property>
​ </bean>
​ </property>
​ </bean>
​ <bean class="org.jboss.cache.config.EvictionRegionConfig">
​ <property name="regionName">/myprefix/org/hibernate/cache/StandardQueryCache</property>
​ <property name="evictionAlgorithmConfig">
​ <bean class="org.jboss.cache.eviction.LRUAlgorithmConfig">
​ <property name="maxNodes">100</property>
​ <property name="timeToLiveSeconds">600</property>
​ <property name="minTimeToLiveSeconds">120</property>
​ </bean>
​ </property>
​ </bean>
​ </list>
​ </property>
​ </bean>
​ </property>
​</bean>

				The @NamedQuery.hints attribute shown above takes an array of vendor-specific @QueryHints as a value. Hibernate accepts the "org.hibernate.cacheRegion" query hint, where the value is the name of a cache region to use instead of the default /org/hibernate/cache/StandardQueryCache. For example:
			
​
​@Entity
​@Cache(usage = CacheConcurrencyStrategy.TRANSACTIONAL, region = "Account")
​@NamedQueries(
​{
​ @NamedQuery(
​ name = "account.bybranch",
​ query = "select acct from Account as acct where acct.branch = ?1",
​ hints =
​ {
​ @QueryHint(name = "org.hibernate.cacheable", value = "true"),
​ @QueryHint(name = "org.hibernate.cacheRegion", value = "Queries")
​ }
​)
​})
​public class Account implements Serializable
​{
​ //
​}

				The related eviction configuration:
			
​
​<bean name="..." class="org.jboss.cache.config.Configuration">
​
​ <property name="evictionConfig">
​ <bean class="org.jboss.cache.config.EvictionConfig">
​ <property name="wakeupInterval">5000</property>
​ <!-- Overall default -->
​ <property name="defaultEvictionRegionConfig">
​ <bean class="org.jboss.cache.config.EvictionRegionConfig">
​ <property name="regionName">/</property>
​ <property name="evictionAlgorithmConfig">
​ <bean class="org.jboss.cache.eviction.LRUAlgorithmConfig">
​ <property name="maxNodes">5000</property>
​ <property name="timeToLiveSeconds">1000</property>
​ <property name="minTimeToLiveSeconds">120</property>
​ </bean>
​ </property>
​ </bean>
​ </property>
​ <property name="evictionRegionConfigs">
​ <list>
​ <bean class="org.jboss.cache.config.EvictionRegionConfig">
​ <property name="regionName">/myprefix/Account</property>
​ <property name="evictionAlgorithmConfig">
​ <bean class="org.jboss.cache.eviction.LRUAlgorithmConfig">
​ <property name="maxNodes">10000</property>
​ <property name="timeToLiveSeconds">5000</property>
​ <property name="minTimeToLiveSeconds">120</property>
​ </bean>
​ </property>
​ </bean>
​ <bean class="org.jboss.cache.config.EvictionRegionConfig">
​ <property name="regionName">/myprefix/Queries</property>
​ <property name="evictionAlgorithmConfig">
​ <bean class="org.jboss.cache.eviction.LRUAlgorithmConfig">
​ <property name="maxNodes">100</property>
​ <property name="timeToLiveSeconds">600</property>
​ <property name="minTimeToLiveSeconds">120</property>
​ </bean>
​ </property>
​ </bean>
​
​ </list>
​ </property>
​ </bean>
​ </property>
​</bean>

 ⁠24.2. Entity Beans in EJB 2.x

				Clustering 2.x entity beans is is not advised.
			

				Doing so exposes elements that generally are too fine grained for use as remote objects to clustered remote objects and introduces data synchronization problems that are non-trivial.
			

				Do not use EJB 2.x entity bean clustering unless you are in the unique situation of using read-only, or one read-write node with read-only nodes synchronized with the cache invalidation services.
			

			To use a clustered entity bean, the application does not need to do anything special, except for looking up EJB 2.x remote bean references from the clustered HA-JNDI.
		

			To cluster EJB 2.x entity beans, you need to add the <clustered> element to the application's jboss.xml descriptor file. Below is a typical jboss.xml file.
		
​
​<jboss>
​ <enterprise-beans>
​ <entity>
​ <ejb-name>nextgen.EnterpriseEntity</ejb-name>
​ <jndi-name>nextgen.EnterpriseEntity</jndi-name>
​ <clustered>True</clustered>
​ <cluster-config>
​ <partition-name>DefaultPartition</partition-name>
​ <home-load-balance-policy>org.jboss.ha.framework.interfaces.RoundRobin</home-load-balance-policy>
​ <bean-load-balance-policy>org.jboss.ha.framework.interfaces.FirstAvailable</bean-load-balance-policy>
​ </cluster-config>
​ </entity>
​ </enterprise-beans>
​</jboss>

			The EJB 2.x entity beans are clustered for load balanced remote invocations. All the bean instances are synchronized to have the same contents on all nodes.
		

			However, clustered EJB 2.x Entity Beans do not have a distributed locking mechanism or a distributed cache. They can only be synchronized by using row-level locking at the database level (see <row-lock> in the CMP specification) or by setting the Transaction Isolation Level of your JDBC driver to be TRANSACTION_SERIALIZABLE. Because there is no supported distributed locking mechanism or distributed cache Entity Beans use Commit Option "B" by default (see standardjboss.xml and the container configurations Clustered CMP 2.x EntityBean, Clustered CMP EntityBean, or Clustered BMP EntityBean). It is not recommended that you use Commit Option "A" unless your Entity Bean is read-only.
		
Note

				If you are using Bean Managed Persistence (BMP), you are going to have to implement synchronization on your own.
			

 ⁠Chapter 25. HTTP Services

				Installing and configuring HTTP Services such as mod_jk and mod_cluster is covered in detail in the HTTP Connectors Load Balancing Guide.
			

 ⁠Chapter 26. JBoss Messaging Clustering Notes

		The most current information about using JBoss Messaging in a clustered environment is always available from the relevant JBoss Messaging User Guide at https://access.redhat.com/knowledge/docs/.
	

 ⁠Chapter 27. Clustered Deployment Options

 ⁠27.1. Clustered Singleton Services

			A clustered singleton service (also known as a HA singleton) is a service that is deployed on multiple nodes in a cluster, but is providing its service on only one of the nodes. The node running the singleton service is typically called the master node.
		

 ⁠[image: Topology before the Master Node fails]

Figure 27.1. Topology before the Master Node fails

			When the master fails or is shut down, another master is selected from the remaining nodes and the service is restarted on the new master. Thus, other than a brief interval when one master has stopped and another has yet to take over, the service is always being provided by one but only one node.
		

 ⁠[image: Topology after the Master Node fails]

Figure 27.2. Topology after the Master Node fails

 ⁠27.1.1. HASingleton Deployment Options

				The JBoss Enterprise Application Platform provides support for a number of strategies for helping you deploy clustered singleton services. In this section we will explore the different strategies. All of the strategies are built on top of the HAPartition service described in the introduction. They rely on the HAPartition to provide notifications when different nodes in the cluster start and stop; based on those notifications each node in the cluster can independently (but consistently) determine if it is now the master node and needs to begin providing a service.
			

 ⁠27.1.1.1. HASingletonDeployer service

					The simplest and most commonly used strategy for deploying an HA singleton is to take an ordinary deployment (war, ear, jar, whatever you would normally put in deploy) and deploy it in the <JBOSS_HOME>/server/<PROFILE>/deploy-hasingleton directory instead of in deploy. The deploy-hasingleton directory does not lie under deploy nor farm directories, so its contents are not automatically deployed when an Enterprise Application Platform instance starts. Instead, deploying the contents of this directory is the responsibility of a special service, the HASingletonDeployer bean (which itself is deployed via the deploy/deploy-hasingleton-jboss-beans.xml file). The HASingletonDeployer service is itself an HA Singleton, one whose provided service, when it becomes master, is to deploy the contents of deploy-hasingleton; and whose service, when it stops being the master (typically at server shutdown), is to undeploy the contents of deploy-hasingleton.
				

					So, by placing your deployments in deploy-hasingleton you know that they will be deployed only on the master node in the cluster. If the master node cleanly shuts down, they will be cleanly undeployed as part of shutdown. If the master node fails or is shut down, they will be deployed on whatever node takes over as master.
				

					Using deploy-hasingleton is very simple, but it does have two drawbacks:
				
	
							There is no hot-deployment feature for services in deploy-hasingleton. Redeploying a service that has been deployed to deploy-hasingleton requires a server restart.
						

	
							If the master node fails and another node takes over as master, your singleton service needs to go through the entire deployment process before it will be providing services. Depending on the complexity of your service's deployment, and the extent of start up activity in which it engages, this could take a while, during which time the service is not being provided.
						

 ⁠27.1.1.2. POJO deployments using HASingletonController

					If your service is a POJO (i.e., not a J2EE deployment like an ear or war or jar), you can deploy it along with a service called an HASingletonController in order to turn it into an HA singleton. It is the job of the HASingletonController to work with the HAPartition service to monitor the cluster and determine if it is now the master node for its service. If it determines it has become the master node, it invokes a method on your service telling it to begin providing service. If it determines it is no longer the master node, it invokes a method on your service telling it to stop providing service. Let us walk through an illustration.
				

					First, we have a POJO that we want to make an HA singleton. The only thing special about it is it needs to expose a public method that can be called when it should begin providing service, and another that can be called when it should stop providing service:
				
​public interface HASingletonExampleMBean
​{
​ boolean isMasterNode();
​}
​public class HASingletonExample implements HASingletonExampleMBean
​{
​ private boolean isMasterNode = false;
​
​ public boolean isMasterNode()
​ {
​ return isMasterNode;
​ }
​
​ public void startSingleton()
​ {
​ isMasterNode = true;
​ }
​
​ public void stopSingleton()
​ {
​ isMasterNode = false;
​ }
​}

					We used startSingleton and stopSingleton in the above example, but you could name the methods anything.
				

					Next, we deploy our service, along with an HASingletonController to control it, most likely packaged in a .sar file, with the following META-INF/jboss-beans.xml:
				
​<deployment xmlns="urn:jboss:bean-deployer:2.0">
​ <!-- This bean is an example of a clustered singleton -->
​ <bean name="HASingletonExample" class="org.jboss.ha.examples.HASingletonExample">
​ <annotation>@org.jboss.aop.microcontainer.aspects.jmx.JMX (name="jboss:service=HASingletonExample", exposedInterface=org.jboss.ha.examples.HASingletonExampleMBean.class)</annotation> [image: 1]
​ </bean>
​
​ <bean name="ExampleHASingletonController" class="org.jboss.ha.singleton.HASingletonController">
​ <annotation>@org.jboss.aop.microcontainer.aspects.jmx.JMX(name="jboss:service=ExampleHASingletonController",
​ exposedInterface=org.jboss.ha.singleton.HASingletonControllerMBean.class, registerDirectly=true)</annotation>
​ <property name="HAPartition"><inject bean="HAPartition"/></property>
​ <property name="target"><inject bean="HASingletonExample"/></property>
​ <property name="targetStartMethod">startSingleton</property>
​ <property name="targetStopMethod">stopSingleton</property>
​ </bean>
​</deployment>

	[image: 1]
	
								While the <annotation> line in the code sample above has been broken across multiple lines for formatting, ensure it is on a single line if you copy it into a configuration file. The configuration will not work if this line is broken.
							

					The primary advantage of this approach over deploy-ha-singleton. is that the above example can be placed in deploy or farm and thus can be hot deployed and farmed deployed. Also, if our example service had complex, time-consuming start up requirements, those could potentially be implemented in create() or start() methods. JBoss will invoke create() and start() as soon as the service is deployed; it does not wait until the node becomes the master node. So, the service could be primed and ready to go, just waiting for the controller to implement startSingleton() at which point it can immediately provide service.
				

					Although not demonstrated in the example above, the HASingletonController can support an optional argument for either or both of the target start and stop methods. These are specified using the targetStartMethodArgument and TargetStopMethodArgument properties, respectively. Currently, only string values are supported.
				

 ⁠27.1.1.3. HASingleton deployments using a Barrier

					Services deployed normally inside deploy or farm that want to be started/stopped whenever the content of deploy-hasingleton gets deployed/undeployed, (i.e., whenever the current node becomes the master), need only specify a dependency on the Barrier service:
				
​<depends>jboss.ha:service=HASingletonDeployer,type=Barrier</depends>

					The way it works is that a BarrierController is deployed along with the HASingletonDeployer and listens for JMX notifications from it. A BarrierController is a relatively simple MBean that can subscribe to receive any JMX notification in the system. It uses the received notifications to control the lifecycle of a dynamically created MBean called the Barrier. The Barrier is instantiated, registered and brought to the CREATE state when the BarrierController is deployed. After that, the BarrierController starts and stops the Barrier when matching JMX notifications are received. Thus, other services need only depend on the Barrier bean using the usual <depends> tag, and they will be started and stopped in tandem with the Barrier. When the BarrierController is undeployed the Barrier is also destroyed.
				

					This provides an alternative to the deploy-hasingleton approach in that we can use farming to distribute the service, while content in deploy-hasingleton must be copied manually on all nodes.
				

					On the other hand, the barrier-dependent service will be instantiated/created (i.e., any create() method invoked) on all nodes, but only started on the master node. This is different with the deploy-hasingleton approach that will only deploy (instantiate/create/start) the contents of the deploy-hasingleton directory on one of the nodes.
				

					So services depending on the barrier will need to make sure they do minimal or no work inside their create() step, rather they should use start() to do the work.
				
Note

						The Barrier controls the start/stop of dependent services, but not their destruction, which happens only when the BarrierController is itself destroyed/undeployed. Thus using the Barrier to control services that need to be "destroyed" as part of their normal “undeploy” operation (like, for example, an EJBContainer) will not have the desired effect.
					

 ⁠27.1.2. Determining the master node

				The various clustered singleton management strategies all depend on the fact that each node in the cluster can independently react to changes in cluster membership and correctly decide whether it is now the “master node”. How is this done?
			

				For each member of the cluster, the HAPartition service maintains an attribute called the CurrentView, which is basically an ordered list of the current members of the cluster. As nodes join and leave the cluster, JGroups ensures that each surviving member of the cluster gets an updated view. You can see the current view by going into the JMX console, and looking at the CurrentView attribute in the jboss:service=DefaultPartition mbean. Every member of the cluster will have the same view, with the members in the same order.
			

				Let us say, for example, that we have a 4 node cluster, nodes A through D, and the current view can be expressed as {A, B, C, D}. Generally speaking, the order of nodes in the view will reflect the order in which they joined the cluster (although this is not always the case, and should not be assumed to be the case).
			

				To further our example, let us say there is a singleton service (i.e. an HASingletonController) named Foo that's deployed around the cluster, except, for whatever reason, on B. The HAPartition service maintains across the cluster a registry of what services are deployed where, in view order. So, on every node in the cluster, the HAPartition service knows that the view with respect to the Foo service is {A, C, D} (no B).
			

				Whenever there is a change in the cluster topology of the Foo service, the HAPartition service invokes a callback on Foo notifying it of the new topology. So, for example, when Foo started on D, the Foo service running on A, C and D all got callbacks telling them the new view for Foo was {A, C, D}. That callback gives each node enough information to independently decide if it is now the master. The Foo service on each node uses the HAPartition's HASingletonElectionPolicy to determine if they are the master, as explained in the Section 27.1.2.1, “HA singleton election policy”.
			

				If A were to fail or shutdown, Foo on C and D would get a callback with a new view for Foo of {C, D}. C would then become the master. If A restarted, A, C and D would get a callback with a new view for Foo of {C, D, A}. C would remain the master – there's nothing magic about A that would cause it to become the master again just because it was before.
			

 ⁠27.1.2.1. HA singleton election policy

					The HASingletonElectionPolicy object is responsible for electing a master node from a list of available nodes, on behalf of an HA singleton, following a change in cluster topology.
				
​
​public interface HASingletonElectionPolicy
​{
​ ClusterNode elect(List<ClusterNode> nodes);
​}

					JBoss Enterprise Application Platform ships with two election policies:
				
	 HASingletonElectionPolicySimple
	
								This policy selects a master node based relative age. The desired age is configured via the position property, which corresponds to the index in the list of available nodes. position = 0, the default, refers to the oldest node; position = 1, refers to the 2nd oldest; etc. position can also be negative to indicate youngness; imagine the list of available nodes as a circular linked list. position = -1, refers to the youngest node; position = -2, refers to the 2nd youngest node; etc.
							
​
​<bean class="org.jboss.ha.singleton.HASingletonElectionPolicySimple">
​ <property name="position">-1</property>
​</bean>

	 PreferredMasterElectionPolicy
	
								This policy extends HASingletonElectionPolicySimple, allowing the configuration of a preferred node. The preferredMaster property, specified as host:port or address:port, identifies a specific node that should become master, if available. If the preferred node is not available, the election policy will behave as described above.
							
​
​<bean class="org.jboss.ha.singleton.PreferredMasterElectionPolicy">
​ <property name="preferredMaster">server1:12345</property>
​</bean>

 ⁠27.2. Farming Deployment

			The easiest way to deploy an application into the cluster is to use the farming service. Using the farming service, you can deploy an application (e.g. EAR, WAR, or SAR; either an archive file or in exploded form) to the all/farm/ directory of any cluster member and the application will be automatically duplicate across all nodes in the same cluster. If a node joins the cluster later, it will pull in all farm deployed applications in the cluster and deploy them locally at start-up time. If you delete the application from a running clustered server node's farm/ directory, the application will be undeployed locally and then removed from all other clustered server nodes' farm/ directories (triggering undeployment).
		

			Farming is enabled by default in the all configuration in JBoss Enterprise Application Platform and thus requires no manual setup. The required farm-deployment-jboss-beans.xml and timestamps-jboss-beans.xml configuration files are located in the deploy/cluster directory. If you want to enable farming in a custom configuration, simply copy these files to the corresponding JBoss deploy directory <JBOSS_HOME>/server/<PROFILE>/deploy/cluster. Make sure that your custom configuration has clustering enabled.
		

			While there is little need to customize the farming service, it can be customized via the FarmProfileRepositoryClusteringHandler bean, whose properties and default values are listed below:
		
​
​<bean name="FarmProfileRepositoryClusteringHandler"
​ class="org.jboss.profileservice.cluster.repository.
​ DefaultRepositoryClusteringHandler">
​
​ <property name="partition"><inject bean="HAPartition"/></property>
​ <property name="profileDomain">default</property>
​ <property name="profileServer">default</property>
​ <property name="profileName">farm</property>
​ <property name="immutable">false</property>
​ <property name="lockTimeout">60000</property><!-- 1 minute -->
​ <property name="methodCallTimeout">60000</property><!-- 1 minute -->
​ <property name="synchronizationPolicy"><inject bean="FarmProfileSynchronizationPolicy"/></property>
​</bean>

	
					partition is a required attribute to inject the HAPartition service that the farm service uses for intra-cluster communication.
				

	
					profile[Domain|Server|Name] are all used to identify the server profile for which this handler is intended.
				

	
					immutable indicates whether or not this handler allows a node to push content changes to the cluster. A value of true is equivalent to setting synchronizationPolicy to org.jboss.system.server.profileservice.repository.clustered.sync. ImmutableSynchronizationPolicy.
				

	
					lockTimeout defines the number of milliseconds to wait for cluster-wide lock acquisition.
				

	
					methodCallTimeout defines the number of milliseconds to wait for invocations on remote cluster nodes.
				

	
					synchronizationPolicy decides how to handle content additions, reincarnations, updates, or removals from nodes attempting to join the cluster or from cluster merges. The policy is consulted on the "authoritative" node, i.e. the master node for the service on the cluster. Reincarnation refers to the phenomenon where a newly started node may contain an application in its farm/ directory that was previously removed by the farming service but might still exist on the starting node if it was not running when the removal took place. The default synchronization policy is defined as follows:
				
​
​<bean name="FarmProfileSynchronizationPolicy"
​ class="org.jboss.profileservice.cluster.repository.
​ DefaultSynchronizationPolicy">
​ <property name="allowJoinAdditions"><null/></property>
​ <property name="allowJoinReincarnations"><null/></property>
​ <property name="allowJoinUpdates"><null/></property>
​ <property name="allowJoinRemovals"><null/></property>
​ <property name="allowMergeAdditions"><null/></property>
​ <property name="allowMergeReincarnations"><null/></property>
​ <property name="allowMergeUpdates"><null/></property>
​ <property name="allowMergeRemovals"><null/></property>
​ <property name="developerMode">false</property>
​ <property name="removalTrackingTime">2592000000</property><!-- 30 days -->
​ <property name="timestampService"><inject bean="TimestampDiscrepancyService"/></property>
​</bean>

	
							allow[Join|Merge][Additions|Reincarnations|Updates|Removals] define fixed responses to requests to allow additions, reincarnations, updates, or removals from joined or merged nodes.
						

	
							developerMode enables a lenient synchronization policy that allows all changes. Enabling developer mode is equivalent to setting each of the above properties to true and is intended for development environments.
						

	
							removalTrackingTime defines the number of milliseconds for which this policy should remembered removed items, for use in detecting reincarnations.
						

	
							timestampService estimates and tracks discrepancies in system clocks for current and past members of the cluster. Default implementation is defined in timestamps-jboss-beans.xml.
						

 ⁠Chapter 28. JGroups Services

		JGroups provides the underlying group communication support for JBoss Enterprise Application Platform clusters. The interaction of clustered services with JGroups was covered in Section 21.1, “Group Communication with JGroups”. This chapter focuses on the details of this interaction, with particular attention to configuration details and troubleshooting tips.
	

		This chapter is not intended as complete JGroups documentation. If you want to know more about JGroups, you can consult:
	
	
				The JGroups project documentation at http://jgroups.org/ug.html
			

	
				The JGroups wiki pages at jboss.org, rooted at https://www.jboss.org/community/wiki/JGroups
			

		The first section of this chapter covers the many JGroups configuration options in detail. JBoss Enterprise Application Platform ships with a set of default JGroups configurations. Most applications will work with the default configurations out of the box. You will only need to edit these configurations when you deploy an application with special network or performance requirements.
	

 ⁠28.1. Configuring a JGroups Channel's Protocol Stack

			The JGroups framework provides services to enable peer-to-peer communications between nodes in a cluster. Communication occurs over a communication channel. The channel built up from a stack of network communication protocols, each of which is responsible for adding a particular capability to the overall behavior of the channel. Key capabilities provided by various protocols include transport, cluster discovery, message ordering, lossless message delivery, detection of failed peers, and cluster membership management services.
		

			Figure 28.1, “Protocol stack in JGroups” shows a conceptual cluster with each member's channel composed of a stack of JGroups protocols.
		

 ⁠[image: Protocol stack in JGroups]

Figure 28.1. Protocol stack in JGroups

			This section of the chapter covers some of the most commonly used protocols, according to the type of behavior they add to the channel. We discuss a few key configuration attributes exposed by each protocol, but since these attributes should be altered only by experts, this chapter focuses on familiarizing users with the purpose of various protocols.
		

			The JGroups configurations used in JBoss Enterprise Application Platform appear as nested elements in the <JBOSS_HOME>/server/<PROFILE>/deploy/cluster/jgroups-channelfactory.sar/META-INF/jgroups-channelfactory-stacks.xml file. This file is parsed by the ChannelFactory service, which uses the contents to provide correctly configured channels to the clustered services that require them. See Section 21.1.1, “The Channel Factory Service” for more on the ChannelFactory service.
		

			The following is an example protocol stack configuration from jgroups-channelfactory-stacks.xml:
		
​<stack name="udp-async"
​ description="Same as the default 'udp' stack above, except message bundling
​ is enabled in the transport protocol (enable_bundling=true).
​ Useful for services that make high-volume asynchronous
​ RPCs (e.g. high volume JBoss Cache instances configured
​ for REPL_ASYNC) where message bundling may improve performance.">
​ <config>
​ <UDP
​ singleton_name="udp-async"
​ mcast_port="${jboss.jgroups.udp_async.mcast_port:45689}"
​ mcast_addr="${jboss.partition.udpGroup:228.11.11.11}"
​ tos="8"
​ ucast_recv_buf_size="20000000"
​ ucast_send_buf_size="640000"
​ mcast_recv_buf_size="25000000"
​ mcast_send_buf_size="640000"
​ loopback="true"
​ discard_incompatible_packets="true"
​ enable_bundling="true"
​ max_bundle_size="64000"
​ max_bundle_timeout="30"
​ ip_ttl="${jgroups.udp.ip_ttl:2}"
​ thread_naming_pattern="cl"
​ timer.num_threads="12"
​ enable_diagnostics="${jboss.jgroups.enable_diagnostics:true}"
​ diagnostics_addr="${jboss.jgroups.diagnostics_addr:224.0.0.75}"
​ diagnostics_port="${jboss.jgroups.diagnostics_port:7500}"
​
​ thread_pool.enabled="true"
​ thread_pool.min_threads="8"
​ thread_pool.max_threads="200"
​ thread_pool.keep_alive_time="5000"
​ thread_pool.queue_enabled="true"
​ thread_pool.queue_max_size="1000"
​ thread_pool.rejection_policy="discard"
​
​ oob_thread_pool.enabled="true"
​ oob_thread_pool.min_threads="8"
​ oob_thread_pool.max_threads="200"
​ oob_thread_pool.keep_alive_time="1000"
​ oob_thread_pool.queue_enabled="false"
​ oob_thread_pool.rejection_policy="discard"/>
​ <PING timeout="2000" num_initial_members="3"/>
​ <MERGE2 max_interval="100000" min_interval="20000"/>
​ <FD_SOCK/>
​ <FD timeout="6000" max_tries="5" shun="true"/>
​ <VERIFY_SUSPECT timeout="1500"/>
​ <BARRIER/>
​ <pbcast.NAKACK use_mcast_xmit="true" gc_lag="0"
​ retransmit_timeout="300,600,1200,2400,4800"
​ discard_delivered_msgs="true"/>
​ <UNICAST timeout="300,600,1200,2400,3600"/>
​ <pbcast.STABLE stability_delay="1000" desired_avg_gossip="50000"
​ max_bytes="400000"/>
​ <VIEW_SYNC avg_send_interval="10000"/>
​ <pbcast.GMS print_local_addr="true" join_timeout="3000"
​ shun="true"
​ view_bundling="true"
​ view_ack_collection_timeout="5000"
​ resume_task_timeout="7500"/>
​ <FC max_credits="2000000" min_threshold="0.10"
​ ignore_synchronous_response="true"/>
​ <FRAG2 frag_size="60000"/>
​ <!-- pbcast.STREAMING_STATE_TRANSFER/ -->
​ <pbcast.STATE_TRANSFER/>
​ <pbcast.FLUSH timeout="0" start_flush_timeout="10000"/>
​ </config>
​ </stack>

			The <config> element contains all the configuration data for JGroups. This information is used to configure a JGroups channel, which is conceptually similar to a socket, and manages communication between peers in a cluster. Each element within the <config> element defines a particular JGroups protocol. Each protocol performs one function. The combination of these functions defines the characteristics of the channel as a whole. The next few sections describe common protocols and explain the options available to each.
		

 ⁠28.1.1. Common Configuration Properties

				The following property is exposed by all of the JGroups protocols discussed below:
			
	
						stats - indicates whether the protocol should gather runtime statistics on its operations. These statistics can be exposed via tools like the JMX Console or the JGroups Probe utility. What, if any, statistics are gathered depends on the protocol. Default is true.
					

Note

					All protocols in the versions of JGroups used in JBoss Enterprise Application Platform 4 and earlier exposed the down_thread and up_thread attributes. The JGroups version included in JBoss Enterprise Application Platform 5 and later no longer uses those attributes, and a WARN message will be written to the server log if they are configured for any protocol.
				

 ⁠28.1.2. Transport Protocols

				The transport protocols send and receive messages to and from the network. They also manage the thread pools used to deliver incoming messages to addresses higher in the protocol stack. JGroups supports UDP, TCP and TUNNEL as transport protocols.
			
Note

					The UDP, TCP, and TUNNEL protocols are mutually exclusive. You can only have one transport protocol in each JGroups Config element
				

 ⁠28.1.2.1. UDP configuration

					UDP is the preferred transport protocol for JGroups. UDP uses multicast (or, in an unusual configuration, multiple unicasts) to send and receive messages. If you choose UDP as the transport protocol for your cluster service, you need to configure it in the UDP sub-element in the JGroups config element. Here is an example.
				
​ <UDP
​ singleton_name="udp-async"
​ mcast_port="${jboss.jgroups.udp_async.mcast_port:45689}"
​ mcast_addr="${jboss.partition.udpGroup:228.11.11.11}"
​ tos="8"
​ ucast_recv_buf_size="20000000"
​ ucast_send_buf_size="640000"
​ mcast_recv_buf_size="25000000"
​ mcast_send_buf_size="640000"
​ loopback="true"
​ discard_incompatible_packets="true"
​ enable_bundling="true"
​ max_bundle_size="64000"
​ max_bundle_timeout="30"
​ ip_ttl="${jgroups.udp.ip_ttl:2}"
​ thread_naming_pattern="cl"
​ timer.num_threads="12"
​ enable_diagnostics="${jboss.jgroups.enable_diagnostics:true}"
​ diagnostics_addr="${jboss.jgroups.diagnostics_addr:224.0.0.75}"
​ diagnostics_port="${jboss.jgroups.diagnostics_port:7500}"
​
​ thread_pool.enabled="true"
​ thread_pool.min_threads="8"
​ thread_pool.max_threads="200"
​ thread_pool.keep_alive_time="5000"
​ thread_pool.queue_enabled="true"
​ thread_pool.queue_max_size="1000"
​ thread_pool.rejection_policy="discard"
​
​ oob_thread_pool.enabled="true"
​ oob_thread_pool.min_threads="8"
​ oob_thread_pool.max_threads="200"
​ oob_thread_pool.keep_alive_time="1000"
​ oob_thread_pool.queue_enabled="false"
​ oob_thread_pool.rejection_policy="discard"/>

					JGroups transport configurations have a number of attributes available. First we look at the attributes available to the UDP protocol, followed by the attributes that are also used by the TCP and TUNNEL transport protocols.
				

					The attributes particular to the UDP protocol are:
				
	
							ip_mcast specifies whether or not to use IP multicasting. The default is true. If set to false, multiple unicast packets will be sent instead of one multicast packet. Any packet sent via UDP protocol are UDP datagrams.
						

	
							mcast_addr specifies the multicast address (class D) for communicating with the group (i.e., the cluster). The standard protocol stack configurations in JBoss Enterprise Application Platform use the value of system property jboss.partition.udpGroup, if set, as the value for this attribute. Using the -u command line switch when starting JBoss Enterprise Application Platform sets that value. See Section 28.6.2, “Isolating JGroups Channels” for information about using this configuration attribute to ensure that JGroups channels are properly isolated from one another. If this attribute is omitted, the default value is 228.11.11.11.
						

	
							mcast_port specifies the port to use for multicast communication with the group. See Section 28.6.2, “Isolating JGroups Channels” for how to use this configuration attribute to ensure JGroups channels are properly isolated from one another. If this attribute is omitted, the default is 45688.
						

	
							mcast_send_buf_size, mcast_recv_buf_size, ucast_send_buf_size and ucast_recv_buf_size define the socket send and receive buffer sizes that JGroups will request from the operating system. A large buffer size helps to ensure that packets are not dropped due to buffer overflow. However, socket buffer sizes are limited at the operating system level, so obtaining the desired buffer may require configuration at the operating system level. See Section 28.6.2.3, “Improving UDP Performance by Configuring OS UDP Buffer Limits” for further details.
						

	
							bind_port specifies the port to which the unicast receive socket should be bound. The default is 0; i.e. use an ephemeral port.
						

	
							port_range specifies the number of ports to try if the port identified by bind_port is not available. The default is 1, which specifies that only bind_port will be tried.
						

	
							ip_ttl specifies time-to-live (TTL) for IP Multicast packets. TTL is the commonly used term in multicast networking, but is actually something of a misnomer, since the value here refers to how many network hops a packet will be allowed to travel before networking equipment will drop it.
						

	
							tos specifies the traffic class for sending unicast and multicast datagrams.
						

					The attributes that are common to all transport protocols, and thus have the same meanings when used with TCP or TUNNEL, are:
				
	
							singleton_name provides a unique name for this transport protocol configuration. Used by the application server's ChannelFactory to support sharing of a transport protocol instance by different channels that use the same transport protocol configuration. See Section 21.1.2, “The JGroups Shared Transport”.
						

	
							bind_addr specifies the interface on which to receive and send messages. By default, JGroups uses the value of system property jgroups.bind_addr. This can also be set with the -b command line switch. See Section 28.6, “Other Configuration Issues” for more on binding JGroups sockets.
						

	
							receive_on_all_interfaces specifies whether this node should listen on all interfaces for multicasts. The default is false. It overrides the bind_addr property for receiving multicasts. However, bind_addr (if set) is still used to send multicasts.
						

	
							send_on_all_interfaces specifies whether this node sends UDP packets via all available network interface controllers, if your machine has multiple network interface controllers available. This means that the same multicast message is sent N times, so use with care.
						

	
							receive_interfaces specifies a list of interfaces on which to receive multicasts. The multicast receive socket will listen on all of these interfaces. This is a comma-separated list of IP addresses or interface names, for example, 192.168.5.1,eth1,127.0.0.1.
						

	
							send_interfaces specifies a list of interfaces via which to send multicasts. The multicast sender socket will send on all of these interfaces. This is a comma-separated list of IP addresses or interface names, for example, 192.168.5.1,eth1,127.0.0.1.This means that the same multicast message is sent N times, so use with care.
						

	
							enable_bundling specifies whether to enable message bundling. If true, the transport protocol queues outgoing messages until max_bundle_size bytes have accumulated, or max_bundle_time milliseconds have elapsed, whichever occurs first. Then the transport protocol bundles queued messages into one large message and sends it. The messages are un-bundled at the receiver. The default is false.
						

							Message bundling can have significant performance benefits for channels that are used for high volume sending of messages where the sender does not block waiting for a response from recipients (for example, a JBoss Cache instance configured for REPL_ASYNC.) It can add considerable latency to applications where senders need to block waiting for responses, so it is not recommended for certain situations, such as where a JBoss Cache instance is configured for REPL_SYNC.
						

	
							loopback specifies whether the thread sending a message to the group should itself carry the message back up the stack for delivery. (Messages sent to the group are always delivered to the sending node as well.) If false, the sending thread does not carry the message; the transport protocol waits to read the message off the network and uses one of the message delivery pool threads for delivery. The default is false, but true is recommended to ensure that the channel receives its own messages, in case the network interface goes down.
						

	
							discard_incompatible_packets specifies whether to discard packets sent by peers that use a different version of JGroups. Each message in the cluster is tagged with a JGroups version. If discard_incompatible_packets is set to true, messages received from different versions of JGroups will be silently discarded. Otherwise, a warning will be logged. In no case will the message be delivered. The default value is false.
						

	
							enable_diagnostics specifies that the transport should open a multicast socket on address diagnostics_addr and port diagnostics_port to listen for diagnostic requests sent by the JGroups Probe utility.
						

	
							The various thread_pool attributes configure the behavior of the pool of threads JGroups uses to carry ordinary incoming messages up the stack. The various attributes provide the constructor arguments for an instance of java.util.concurrent.ThreadPoolExecutorService. In the example above, the pool will have a minimum or core size of 8 threads, and a maximum size of 200. If more than 8 pool threads have been created, a thread returning from carrying a message will wait for up to 5000 milliseconds to be assigned a new message to carry, after which it will terminate. If no threads are available to carry a message, the (separate) thread reading messages off the socket will place messages in a queue; the queue will hold up to 1000 messages. If the queue is full, the thread reading messages off the socket will discard the message.
						

	
							The various oob_thread_pool attributes are similar to the thread_pool attributes in that they configure a java.util.concurrent.ThreadPoolExecutorService used to carry incoming messages up the protocol stack. In this case, the pool is used to carry a special type of message known as an Out-Of-Band (OOB) message. OOB messages are exempt from the ordered-delivery requirements of protocols like NAKACK and UNICAST and thus can be delivered up the stack even if NAKACK or UNICAST are queuing up messages from a particular sender. OOB messages are often used internally by JGroups protocols and can be used by applications as well. For example, when JBoss Cache is in REPL_SYNC mode, it uses OOB messages for the second phase of its two-phase-commit protocol.
						

 ⁠28.1.2.2. TCP configuration

					Alternatively, a JGroups-based cluster can also work over TCP connections. Compared with UDP, TCP generates more network traffic when the cluster size increases. TCP is fundamentally a unicast protocol. To send multicast messages, JGroups uses multiple TCP unicasts. To use TCP as a transport protocol, you should define a TCP element in the JGroups config element. Here is an example of the TCP element.
				
​
​<TCP singleton_name="tcp"
​ start_port="7800" end_port="7800"/>

					The following attributes are specific to the TCP element:
				
	
							start_port and end_port define the range of TCP ports to which the server should bind. The server socket is bound to the first available port beginning with start_port. If no available port is found (for example, because the ports are in use by other sockets) before the end_port, the server throws an exception. If no end_port is provided, or end_port is lower than start_port, no upper limit is applied to the port range. If start_port is equal to end_port, JGroups is forced to use the specified port, since start_port fails if the specified port in not available. The default value is 7800. If set to 0, the operating system will select a port. (This will only work for MPING or TCPGOSSIP discovery protocols. TCCPING requires that nodes and their required ports are listed.)
						

	
							bind_port in TCP acts as an alias for start_port. If configured internally, it sets start_port.
						

	
							recv_buf_size, send_buf_size define receive and send buffer sizes. It is good to have a large receiver buffer size, so packets are less likely to get dropped due to buffer overflow.
						

	
							conn_expire_time specifies the time (in milliseconds) after which a connection can be closed by the reaper if no traffic has been received.
						

	
							reaper_interval specifies interval (in milliseconds) to run the reaper. If both values are 0, no reaping will be done. If either value is > 0, reaping will be enabled. By default, reaper_interval is 0, which means no reaper.
						

	
							sock_conn_timeout specifies max time in milliseconds for a socket creation. When doing the initial discovery, and a peer hangs, do not wait forever but go on after the timeout to ping other members. Reduces chances of *not* finding any members at all. The default is 2000.
						

	
							use_send_queues specifies whether to use separate send queues for each connection. This prevents blocking on write if the peer hangs. The default is true.
						

	
							external_addr specifies external IP address to broadcast to other group members (if different to local address). This is useful when you have use (Network Address Translation) NAT, e.g. a node on a private network, behind a firewall, but you can only route to it via an externally visible address, which is different from the local address it is bound to. Therefore, the node can be configured to broadcast its external address, while still able to bind to the local one. This avoids having to use the TUNNEL protocol, (and hence a requirement for a central gossip router) because nodes outside the firewall can still route to the node inside the firewall, but only on its external address. Without setting the external_addr, the node behind the firewall will broadcast its private address to the other nodes which will not be able to route to it.
						

	
							skip_suspected_members specifies whether unicast messages should not be sent to suspected members. The default is true.
						

	
							tcp_nodelay specifies TCP_NODELAY. TCP by default nagles messages, that is, conceptually, smaller messages are bundled into larger ones. If we want to invoke synchronous cluster method calls, then we need to disable nagling in addition to disabling message bundling (by setting enable_bundling to false). Nagling is disabled by setting tcp_nodelay to true. The default is false.
						

Note

						All of the attributes common to all protocols discussed in the UDP protocol section also apply to TCP.
					

 ⁠28.1.2.3. TUNNEL configuration

					The TUNNEL protocol uses an external router process to send messages. The external router is a Java process that runs the org.jgroups.stack.GossipRouter main class. Each node has to register with the router. All messages are sent to the router and forwarded on to their destinations. The TUNNEL approach can be used to set up communication with nodes behind firewalls. A node can establish a TCP connection to the GossipRouter through the firewall (you can use port 80). This connection is also used by the router to send messages to nodes behind the firewall, as most firewalls do not permit outside hosts to initiate a TCP connection to a host inside the firewall. The TUNNEL configuration is defined in the TUNNEL element within the JGroups <config> element, like so:
				
​
​<TUNNEL singleton_name="tunnel"
​ router_port="12001"
​ router_host="192.168.5.1"/>

					The available attributes in the TUNNEL element are listed below.
				
	
							router_host specifies the host on which the GossipRouter is running.
						

	
							router_port specifies the port on which the GossipRouter is listening.
						

	
							reconnect_interval specifies the interval of time (in milliseconds) for which TUNNEL will attempt to connect to the GossipRouter if the connection is not established. The default value is 5000.
						

Note

						All of the attributes common to all protocols discussed in the UDP protocol section also apply to TUNNEL.
					

 ⁠28.1.3. Discovery Protocols

				When a channel on a node first connects, it must determine which other nodes are running compatible channels, and which of these nodes is currently acting as the coordinator (the node responsible for letting new nodes join the group). Discovery protocols are used to find active nodes in the cluster and to determine which is the coordinator. This information is then provided to the group membership protocol (GMS), which communicates with the coordinator's GMS to add the newly-connecting node to the group. (For more information about group membership protocols, see Section 28.1.6, “Group Membership (GMS)”.)
			

				Discovery protocols also assist merge protocols (see Section 28.5, “Merging (MERGE2)”) to detect cluster-split situations.
			

				The discovery protocols sit on top of the transport protocol, so you can choose to use different discovery protocols depending on your transport protocol. These are also configured as sub-elements in the JGroups <config> element.
			

 ⁠28.1.3.1. PING

					PING is a discovery protocol that works by either multicasting PING requests to an IP multicast address or connecting to a gossip router. As such, PING normally sits on top of the UDP or TUNNEL transport protocols. Each node responds with a packet {C, A}, where C=coordinator's address and A=own address. After timeout milliseconds or num_initial_members replies, the joiner determines the coordinator from the responses, and sends a JOIN request to it (handled by). If nobody responds, we assume we are the first member of a group.
				

					Here is an example PING configuration for IP multicast.
				
​<PING timeout="2000"
​ num_initial_members="3"/>

					Here is another example PING configuration for contacting a Gossip Router.
				
​<PING gossip_host="localhost"
​ gossip_port="1234"
​ timeout="2000"
​ num_initial_members="3"/>

					The available attributes in the PING element are listed below.
				
	
							timeout specifies the maximum number of milliseconds to wait for num_initial_members responses. The default is 3000.
						

	
							num_initial_members specifies the minimum number of responses to wait for unless timeout has expired. The default is 2.
						

	
							gossip_host specifies the host on which the GossipRouter is running.
						

	
							gossip_port specifies the port on which the GossipRouter is listening on.
						

	
							gossip_refresh specifies the interval (in milliseconds) for the lease from the GossipRouter. The default is 20000.
						

	
							initial_hosts is a comma-separated list of addresses or ports (for example, host1[12345],host2[23456]) which are pinged for discovery. Default is null, meaning multicast discovery should be used. If initial_hosts is specified, you must list all possible cluster members, not just a few well-known hosts, or MERGE2 cluster split discovery will not work reliably.
						

					If both gossip_host and gossip_port are defined, the cluster uses the GossipRouter for the initial discovery. If the initial_hosts is specified, the cluster pings that static list of addresses for discovery. Otherwise, the cluster uses IP multicasting for discovery.
				
Note

						The discovery phase returns when the timeout ms have elapsed or the num_initial_members responses have been received.
					

 ⁠28.1.3.2. TCPGOSSIP

					The TCPGOSSIP protocol only works with a GossipRouter. It works essentially the same way as the PING protocol configuration with valid gossip_host and gossip_port attributes. It works on top of both UDP and TCP transport protocols. Here is an example.
				
​<TCPGOSSIP timeout="2000"
​ num_initial_members="3"
​ initial_hosts="192.168.5.1[12000],192.168.0.2[12000]"/>

					The available attributes in the TCPGOSSIP element are listed below.
				
	
							timeout specifies the maximum number of milliseconds to wait for num_initial_members responses. The default is 3000.
						

	
							num_initial_members specifies the minimum number of responses to wait for unless timeout has expired. The default is 2.
						

	
							initial_hosts is a comma-separated list of addresses/ports (for example, host1[12345],host2[23456]) of GossipRouters to register
						

 ⁠28.1.3.3. TCPPING

					The TCPPING protocol takes a set of known members and pings them for discovery. The mechanism works on top of TCP.
				

					Here is an example of the TCPPING configuration element in the JGroups config element.
				
​<TCPPING timeout="2000"
​ num_initial_members="3"/
​ initial_hosts="hosta[2300],hostb[3400],hostc[4500]"
​ max_dynamic_hosts="3"
​ port_range="3">

					The available attributes in the TCPPING element are listed below.
				
	
							timeout specifies the maximum number of milliseconds to wait for num_initial_members responses. The default is 3000.
						

	
							num_initial_members specifies the minimum number of responses to wait for unless timeout has expired. The default is 2.
						

	
							initial_hosts is a comma-separated list of addresses (for example, host1[12345],host2[23456]) for pinging.
						

	
							max_dynamic_hosts specifies the maximum number of hosts that can be dynamically added to the cluster (defaults to 0).
						

							If dynamic adding of hosts is not allowed, make sure you list all cluster members in the <initial_hosts> attribute on all cluster members before adding the new node to the cluster, so that the nodes can be added on server start.
						

	
							port_range specifies the number of consecutive ports to be probed when getting the initial membership, starting with the port specified in the initial_hosts parameter. Given the current values of port_range and initial_hosts above, the TCPPING layer will try to connect to hosta[2300], hosta[2301], hosta[2302], hostb[3400], hostb[3401], hostb[3402], hostc[4500], hostc[4501], and hostc[4502]. This configuration option allows for multiple possible ports on the same host to be pinged without having to spell out all possible combinations. If in your TCP protocol configuration your end_port is greater than your start_port, we recommend using a TCPPING port_range equal to the difference, to ensure a node is pinged no matter which port it is bound to within the allowed range.
						

 ⁠28.1.3.4. MPING

					MPING uses IP multicast to discover the initial membership. Unlike the other discovery protocols, which delegate the sending and receiving of discovery messages on the network to the transport protocol, MPING opens its own sockets to send and receive multicast discovery messages. As a result it can be used with all transports, but it is most often used with TCP. TCP usually requires TCPPING, which must explicitly list all possible group members. MPING does not have this requirement, and is typically used where TCP is required for regular message transport, and UDP multicasting is allowed for discovery.
				
​
​<MPING timeout="2000"
​ num_initial_members="3"
​ bind_to_all_interfaces="true"
​ mcast_addr="228.8.8.8"
​ mcast_port="7500"
​ ip_ttl="8"/>

					The available attributes in the MPING element are listed below.
				
	
							timeout specifies the maximum number of milliseconds to wait for any responses. The default is 3000.
						

	
							num_initial_members specifies the maximum number of responses to wait for unless timeout has expired. The default is 2..
						

	
							bind_addr specifies the interface on which to send and receive multicast packets. By default JGroups uses the value of the system property jgroups.bind_addr, which can be set with the -b command line switch. See Section 28.6, “Other Configuration Issues” for more on binding JGroups sockets.
						

	
							bind_to_all_interfaces overrides the bind_addr and uses all interfaces in multihome nodes.
						

	
							mcast_addr, mcast_port, ip_ttl attributes are the same as related attributes in the UDP protocol configuration.
						

 ⁠28.1.4. Failure Detection Protocols

				The failure detection protocols are used to detect failed nodes. Once a failed node is detected, a suspect verification phase can occur. If the node is still considered dead after this phase is complete, the cluster updates its membership view so that further messages are not sent to the failed node. The service using JGroups is informed that the node is no longer part of the cluster. Failure detection protocols are configured as sub-elements in the JGroups <config> element.
			

 ⁠28.1.4.1. FD

					FD is a failure detection protocol based on 'heartbeat' messages. This protocol requires that each node periodically ping its neighbor. If the neighbor fails to respond, the calling node sends a SUSPECT message to the cluster. The current group coordinator can optionally verify that the suspected node is dead (VERIFY_SUSPECT). If the node is still considered dead after this verification step, the coordinator updates the cluster's membership view. The following is an example of FD configuration:
				
​
​<FD timeout="6000"
​ max_tries="5"
​ shun="true"/>

					The available attributes in the FD element are listed below.
				
	
							timeout specifies the maximum number of milliseconds to wait for the responses to the are-you-alive messages. The default is 3000.
						

	
							max_tries specifies the number of missed are-you-alive messages from a node before the node is suspected. The default is 2.
						

	
							shun specifies whether a failed node will be forbidden from sending messages to the group without formally rejoining. A shunned node would need to rejoin the cluster via the discovery process. JGroups allows applications to configure a channel such that, when a channel is shunned, the process of rejoining the cluster and transferring state takes place automatically. This is the default behavior of JBoss Enterprise Application Platform.
						

Note

						Regular traffic from a node is proof of life, so heartbeat messages are only sent when no regular traffic is detected on the node for a long period of time.
					

 ⁠28.1.4.2. FD_SOCK

					FD_SOCK is a failure detection protocol based on a ring of TCP sockets created between group members. Each member in a group connects to its neighbor, with the final member connecting to the first, forming a ring. Node B becomes suspected when its neighbor, Node A, detects an abnormally closed TCP socket, presumably due to a crash in Node B. (When nodes intend to leave the group, they inform their neighbors so that they do not become suspected.)
				

					The simplest FD_SOCK configuration does not take any attribute. You can declare an empty FD_SOCK element in the JGroups <config> element.
				
​
​<FD_SOCK/>

					The attributes available to the FD_SOCK element are listed below.
				
	
							bind_addr specifies the interface to which the server socket should be bound. By default, JGroups uses the value of the system property jgroups.bind_addr. This system property can be set with the -b command line switch. For more information about binding JGroups sockets, see Section 28.6, “Other Configuration Issues”.
						

 ⁠28.1.4.3. VERIFY_SUSPECT

					This protocol verifies whether a suspected member is really dead by pinging that member once again. This verification is performed by the coordinator of the cluster. The suspected member is dropped from the cluster group if confirmed to be dead. The aim of this protocol is to minimize false suspicions. Here's an example.
				
​
​<VERIFY_SUSPECT timeout="1500"/>

					The available attributes in the VERIFY_SUSPECT element are listed below.
				
	
							timeout specifies how long to wait for a response from the suspected member before considering it dead.
						

 ⁠28.1.4.4. FD versus FD_SOCK

					FD and FD_SOCK, each taken individually, do not provide a solid failure detection layer. Let us look at the differences between these failure detection protocols to understand how they complement each other:
				
	
							FD
						
	
									An overloaded machine might be slow in sending are-you-alive responses.
								

	
									A member will be suspected when suspended in a debugger/profiler.
								

	
									Low timeouts lead to higher probability of false suspicions and higher network traffic.
								

	
									High timeouts will not detect and remove crashed members for some time.
								

	
							FD_SOCK:
						
	
									Suspended in a debugger is no problem because the TCP connection is still open.
								

	
									High load no problem either for the same reason.
								

	
									Members will only be suspected when TCP connection breaks, so hung members will not be detected.
								

	
									Also, a crashed switch will not be detected until the connection runs into the TCP timeout (between 2-20 minutes, depending on TCP/IP stack implementation).
								

					A failure detection layer is intended to report real failures promptly, while avoiding false suspicions. There are two solutions:
				
	
							By default, JGroups configures the FD_SOCK socket with KEEP_ALIVE, which means that TCP sends a heartbeat on socket on which no traffic has been received in 2 hours. If a host crashed (or an intermediate switch or router crashed) without closing the TCP connection properly, we would detect this after 2 hours (plus a few minutes). This is of course better than never closing the connection (if KEEP_ALIVE is off), but may not be of much help. So, the first solution would be to lower the timeout value for KEEP_ALIVE. This can only be done for the entire kernel in most operating systems, so if this is lowered to 15 minutes, this will affect all TCP sockets.
						

	
							The second solution is to combine FD_SOCK and FD; the timeout in FD can be set such that it is much lower than the TCP timeout, and this can be configured individually per process. FD_SOCK will already generate a suspect message if the socket was closed abnormally. However, in the case of a crashed switch or host, FD will make sure the socket is eventually closed and the suspect message generated. Example:
						

​<FD_SOCK/>
​<FD timeout="6000" max_tries="5" shun="true"/>
​<VERIFY_SUSPECT timeout="1500"/>

					In this example, a member becomes suspected when the neighboring socket has been closed abnormally, in a process crash, for instance, since the operating system closes all sockets. However, if a host or switch crashes, the sockets will not be closed. FD will suspect the neighbor after sixty seconds (6000 milliseconds). Note that if this example system were stopped in a breakpoint in the debugger, the node being debugged will be suspected once the timeout has elapsed.
				

					A combination of FD and FD_SOCK provides a solid failure detection layer, which is why this technique is used across the JGroups configurations included with JBoss Enterprise Application Platform.
				

 ⁠28.1.5. Reliable Delivery Protocols

				Reliable delivery protocols within the JGroups stack ensure that messages are actually delivered, and delivered in the correct order (First In, First Out, or FIFO) to the destination node. The basis for reliable message delivery is positive and negative delivery acknowledgments (ACK and NAK). In ACK mode, the sender resends the message until acknowledgment is received from the receiver. In NAK mode, the receiver requests re-transmission when it discovers a gap.
			

 ⁠28.1.5.1. UNICAST

					The UNICAST protocol is used for unicast messages. It uses positive acknowledgements (ACK). It is configured as a sub-element under the JGroups config element. If the JGroups stack is configured with the TCP transport protocol, UNICAST is not necessary because TCP itself guarantees FIFO delivery of unicast messages. Here is an example configuration for the UNICAST protocol:
				
​
​<UNICAST timeout="300,600,1200,2400,3600"/>

					There is only one configurable attribute in the UNICAST element.
				
	
							timeout specifies the re-transmission timeout (in milliseconds). For instance, if the timeout is 100,200,400,800, the sender resends the message if it has not received an ACK after 100 milliseconds the first time, and the second time it waits for 200 milliseconds before re-sending, and so on. A low value for the first timeout allows for prompt re-transmission of dropped messages, but means that messages may be transmitted more than once if they have not actually been lost (that is, the message has been sent, but the ACK has not been received before the timeout). High values (1000,2000,3000) can improve performance if the network is tuned such that UDP datagram loss is infrequent. High values on networks with frequent losses will be harmful to performance, since later messages will not be delivered until lost messages have been re-transmitted.
						

 ⁠28.1.5.2. NAKACK

					The NAKACK protocol is used for multicast messages. It uses negative acknowledgements (NAK). Under this protocol, each message is tagged with a sequence number. The receiver keeps track of the received sequence numbers and delivers the messages in order. When a gap in the series of received sequence numbers is detected, the receiver schedules a task to periodically ask the sender to re-transmit the missing message. The task is canceled if the missing message is received. NAKACK protocol is configured as the pbcast.NAKACK sub-element under the JGroups <config> element. Here is an example configuration:
				
​
​<pbcast.NAKACK max_xmit_size="60000" use_mcast_xmit="false"
​ retransmit_timeout="300,600,1200,2400,4800" gc_lag="0"
​ discard_delivered_msgs="true"/>

					The configurable attributes in the pbcast.NAKACK element are as follows.
				
	
							re-transmit_timeout specifies the series of timeouts (in milliseconds) after which re-transmission is requested if a missing message has not yet been received.
						

	
							use_mcast_xmit determines whether the sender should send the re-transmission to the entire cluster rather than just to the node requesting it. This is useful when the sender's network layer tends to drop packets, avoiding the need to individually re-transmit to each node.
						

	
							max_xmit_size specifies the maximum size (in bytes) for a bundled re-transmission, if multiple messages are reported missing.
						

	
							discard_delivered_msgs specifies whether to discard delivered messages on the receiver nodes. By default, nodes save delivered messages so any node can re-transmit a lost message in case the original sender has crashed or left the group. However, if we only ask the sender to resend its messages, we can enable this option and discard delivered messages.
						

	
							gc_lag specifies the number of messages to keep in memory for re-transmission, even after the periodic cleanup protocol (see Section 28.4, “Distributed Garbage Collection (STABLE)”) indicates all peers have received the message. The default value is 20.
						

 ⁠28.1.6. Group Membership (GMS)

				The group membership service (GMS) protocol in the JGroups stack maintains a list of active nodes. It handles the requests to join and leave the cluster. It also handles the SUSPECT messages sent by failure detection protocols. All nodes in the cluster, as well as any interested services like JBoss Cache or HAPartition, are notified if the group membership changes. The group membership service is configured in the pbcast.GMS sub-element under the JGroups config element. Here is an example configuration.
			
​
​<pbcast.GMS print_local_addr="true"
​ join_timeout="3000"
​ join_retry_timeout="2000"
​ shun="true"
​ view_bundling="true"/>

				The configurable attributes in the pbcast.GMS element are as follows.
			
	
						join_timeout specifies the maximum number of milliseconds to wait for a new node JOIN request to succeed. Retry afterwards.
					

	
						join_retry_timeout specifies the number of milliseconds to wait after a failed JOIN before trying again.
					

	
						print_local_addr specifies whether to dump the node's own address to the standard output when started.
					

	
						shun specifies whether a node should shun (that is, disconnect) itself if it receives a cluster view in which it is not a member node.
					

	
						disable_initial_coord specifies whether to prevent this node from becoming the cluster coordinator during the initial connection of the channel. This flag does not prevent a node becoming the coordinator after the initial channel connection, if the current coordinator leaves the group.
					

	
						view_bundling specifies whether multiple JOIN or LEAVE requests arriving at the same time are bundled and handled together at the same time, resulting in only one new view that incorporates all changes. This is more efficient than handling each request separately.
					

 ⁠28.1.7. Flow Control (FC)

				The flow control (FC) protocol tries to adapt the data sending rate to the data receipt rate among nodes. If a sender node is too fast, it might overwhelm the receiver node and result in out-of-memory conditions or dropped packets that have to be re-transmitted. In JGroups, flow control is implemented via a credit-based system. The sender and receiver nodes have the same number of credits (bytes) to start with. The sender subtracts credits by the number of bytes in messages it sends. The receiver accumulates credits for the bytes in the messages it receives. When the sender's credit drops to a threshold, the receivers send some credit to the sender. If the sender's credit is used up, the sender blocks until it receives credits from the receiver. The flow control protocol is configured in the FC sub-element under the JGroups config element. Here is an example configuration.
			
​
​<FC max_credits="2000000"
​ min_threshold="0.10"
​ ignore_synchronous_response="true"/>

				The configurable attributes in the FC element are as follows.
			
	
						max_credits specifies the maximum number of credits (in bytes). This value should be smaller than the JVM heap size.
					

	
						min_credits specifies the minimum number of bytes that must be received before the receiver will send more credits to the sender.
					

	
						min_threshold specifies the percentage of the max_credits that should be used to calculate min_credits. Setting this overrides the min_credits attribute.
					

	
						ignore_synchronous_response specifies whether threads that have carried messages up to the application should be allowed to carry outgoing messages back down through FC without blocking for credits. Synchronous response refers to the fact that these messages are generally responses to incoming RPC-type messages. Forbidding JGroups threads to carry messages up to block in FC can help prevent certain deadlock scenarios, so we recommend setting this to true.
					

Why is FC needed on top of TCP ? TCP has its own flow control!

					FC is required for group communication where group messages must be sent at the highest speed that the slowest receiver can handle. For example, say we have a cluster comprised of nodes A, B, C and D. D is slow (perhaps overloaded), while the rest are fast. When A sends a group message, it does so via TCP connections: A-A (theoretically), A-B, A-C and A-D.
				

					Say A sends 100 million messages to the cluster. TCP's flow control applies to A-B, A-C and A-D individually, but not to A-BCD as a group. Therefore, A, B and C will receive the 100 million messages, but D will receive only 1 million. (This is also why NAKACK is required, even though TCP handles its own re-transmission.)
				

					JGroups must buffer all messages in memory in case an original sender S dies and a node requests re-transmission of a message sent by S. Since all members buffer all messages that they receive, stable messages (messages seen by every node) must sometimes be purged. (The purging process is managed by the STABLE protocol. For more information, see Section 28.4, “Distributed Garbage Collection (STABLE)”.)
				

					In the above case, the slow node D will prevent the group from purging messages above 1M, so every member will buffer 99M messages ! This in most cases leads to OOM exceptions. Note that - although the sliding window protocol in TCP will cause writes to block if the window is full - we assume in the above case that this is still much faster for A-B and A-C than for A-D.
				

					So, in summary, even with TCP we need to FC to ensure we send messages at a rate the slowest receiver (D) can handle.
				

So do I always need FC?

					This depends on how the application uses the JGroups channel. Referring to the example above, if there was something about the application that would naturally cause A to slow down its rate of sending because D was not keeping up, then FC would not be needed.
				

					A good example of such an application is one that uses JGroups to make synchronous group RPC calls. By synchronous, we mean the thread that makes the call blocks waiting for responses from all the members of the group. In that kind of application, the threads on A that are making calls would block waiting for responses from D, thus naturally slowing the overall rate of calls.
				

					A JBoss Cache cluster configured for REPL_SYNC is a good example of an application that makes synchronous group RPC calls. If a channel is only used for a cache configured for REPL_SYNC, we recommend you remove FC from its protocol stack.
				

					And, of course, if your cluster only consists of two nodes, including FC in a TCP-based protocol stack is unnecessary. There is no group beyond the single peer-to-peer relationship, and TCP's internal flow control will handle that just fine.
				

					Another case where FC may not be needed is for a channel used by a JBoss Cache configured for buddy replication and a single buddy. Such a channel will in many respects act like a two node cluster, where messages are only exchanged with one other node, the buddy. (There may be other messages related to data gravitation that go to all members, but in a properly engineered buddy replication use case these should be infrequent. But if you remove FC be sure to load test your application.)
				

 ⁠28.2. Fragmentation (FRAG2)

			This protocol fragments messages that are larger than a certain size, and reassembles them at the receiver's side. It works for both unicast and multicast messages. It is configured with the FRAG2 sub-element in the JGroups config element. Here is an example configuration:
		
​
​ <FRAG2 frag_size="60000"/>

			The configurable attributes in the FRAG2 element are as follows.
		
	
					frag_size specifies the maximum message size (in bytes) before fragmentation occurs. Messages larger than this size are fragmented. For stacks that use the UDP transport, this value must be lower than 64 kilobytes (the maximum UDP datagram size). For TCP-based stacks, it must be lower than the value of max_credits in the FC protocol.
				

Note

				TCP protocol already provides fragmentation, but a JGroups fragmentation protocol is still required if FC is used. The reason for this is that if you send a message larger than FC.max_credits, the FC protocol will block forever. So, frag_size within FRAG2 must always be set to a value lower than that of FC.max_credits.
			

 ⁠28.3. State Transfer

			The state transfer service transfers the state from an existing node (i.e., the cluster coordinator) to a newly joining node. It is configured in the pbcast.STATE_TRANSFER sub-element under the JGroups Config element. It does not have any configurable attribute. Here is an example configuration.
		
​
​<pbcast.STATE_TRANSFER/>

 ⁠28.4. Distributed Garbage Collection (STABLE)

			In a JGroups cluster, all nodes must store all messages received for potential re-transmission in case of a failure. However, if we store all messages forever, we will run out of memory. The distributed garbage collection service periodically purges messages that have been seen by all nodes, removing them from the memory in each node. The distributed garbage collection service is configured in the pbcast.STABLE sub-element under the JGroups config element. Here is an example configuration.
		
​
​<pbcast.STABLE stability_delay="1000"
​ desired_avg_gossip="5000"
​ max_bytes="400000"/>

			The configurable attributes in the pbcast.STABLE element are as follows.
		
	
					desired_avg_gossip specifies intervals (in milliseconds) of garbage collection runs. Set this to 0 to disable interval-based garbage collection.
				

	
					max_bytes specifies the maximum number of bytes received before the cluster triggers a garbage collection run. Set to 0 to disable garbage collection based on the bytes received.
				

	
					stability_delay specifies the maximum time period (in milliseconds) of a random delay introduced before a node sends its STABILITY message at the end of a garbage collection run. The delay gives other nodes concurrently running a STABLE task a chance to send first. If used together with max_bytes, this attribute should be set to a small number.
				

Note

				Set the max_bytes attribute when you have a high traffic cluster.
			

 ⁠28.5. Merging (MERGE2)

			When a network error occurs, the cluster might be partitioned into several different partitions. JGroups has a MERGE service that allows the coordinators in partitions to communicate with each other and form a single cluster back again. The merging service is configured in the MERGE2 sub-element under the JGroups Config element. Here is an example configuration.
		
​
​<MERGE2 max_interval="10000"
​ min_interval="2000"/>

			The configurable attributes in the MERGE2 element are as follows.
		
	
					max_interval specifies the maximum number of milliseconds to wait before sending a MERGE message.
				

	
					min_interval specifies the minimum number of milliseconds to wait before sending a MERGE message.
				

			JGroups chooses a random value between min_interval and max_interval to periodically send the MERGE message.
		
Note

				The application state maintained by the application using a channel is not merged by JGroups during a merge. This must be done by the application.
			

Note

				If MERGE2 is used in conjunction with TCPPING, the initial_hosts attribute must contain all the nodes that could potentially be merged back, in order for the merge process to work properly. Otherwise, the merge process may not detect all sub-groups, and may miss those comprised solely of unlisted members.
			

 ⁠28.6. Other Configuration Issues

 ⁠28.6.1. Binding JGroups Channels to a Particular Interface

				In the Transport Protocols section above, we briefly touched on how the interface to which JGroups will bind sockets is configured. Let us get into this topic in more depth:
			

				First, it is important to understand that the value set in any bind_addr element in an XML configuration file will be ignored by JGroups if it finds that the system property jgroups.bind_addr (or a deprecated earlier name for the same thing, bind.address) has been set. The system property has a higher priority level than the XML property. If JBoss Enterprise Application Platform is started with the -b (or --host) switch, the application server will set jgroups.bind_addr to the specified value. If -b is not set, the application server will bind most services to localhost by default.
			

				So, what are best practices for managing how JGroups binds to interfaces?
			
	
						Binding JGroups to the same interface as other services. Simple, just use -b:
					
./run.sh -b 192.168.1.100 -c production

	
						Binding services (e.g., JBoss Web) to one interface, but use a different one for JGroups:
					
./run.sh -b 10.0.0.100 -Djgroups.bind_addr=192.168.1.100 -c production

						Specifically setting the system property overrides the -b value. This is a common usage pattern; put client traffic on one network, with intra-cluster traffic on another.
					

	
						Binding services (e.g., JBoss Web) to all interfaces. This can be done like this:
./run.sh -b 0.0.0.0 -c production

						 However, doing this will not cause JGroups to bind to all interfaces! Instead, JGroups will bind to the machine's default interface. See the Transport Protocols section for how to tell JGroups to receive or send on all interfaces, if that is what you really want.
					

	
						Binding services (e.g., JBoss Web) to all interfaces, but specify the JGroups interface:
					
./run.sh -b 0.0.0.0 -Djgroups.bind_addr=192.168.1.100 -c production

						Again, specifically setting the system property overrides the -b value.
					

	
						Using different interfaces for different channels:
					
./run.sh -b 10.0.0.100 -Djgroups.ignore.bind_addr=true -c production

				This setting tells JGroups to ignore the jgroups.bind_addr system property, and instead use whatever is specified in XML. You would need to edit the various XML configuration files to set the various bind_addr attributes to the desired interfaces.
			

 ⁠28.6.2. Isolating JGroups Channels

				Within JBoss Enterprise Application Platform, there are a number of services that independently create JGroups channels — possibly multiple different JBoss Cache services (used for HttpSession replication, EJB3 stateful session bean replication and EJB3 entity replication), two JBoss Messaging channels, and HAPartition, the general purpose clustering service that underlies most other JBossHA services.
			

				It is critical that these channels only communicate with their intended peers; not with the channels used by other services and not with channels for the same service opened on machines not meant to be part of the group. Nodes improperly communicating with each other is one of the most common issues users have with JBoss Enterprise Application Platform clustering.
			

				Whom a JGroups channel will communicate with is defined by its group name and, for UDP-based channels, its multicast address and port. Isolating a JGroups channel means ensuring that different channels use different values for the group name, the multicast address and, in some cases, the multicast port.
			

 ⁠28.6.2.1. Isolating Sets of JBoss Enterprise Application Platform Instances from Each Other

					This section addresses the issue of having multiple independent clusters running within the same environment. For example, you might have a production cluster, a staging cluster, and a QA cluster, or multiple clusters in a QA test lab or development team environment.
				

					To isolate JGroups clusters from other clusters on the network, you must:
				
	
							Make sure the channels in the various clusters use different group names. This can be controlled with the command line arguments used to start JBoss Enterprise Application Platform; see Section 28.6.2.2.1, “Changing the Group Name” for more information.
						

	
							Make sure the channels in the various clusters use different multicast addresses. This is also easy to control with the command line arguments used to start JBoss.
						

	
							If you are not running on Linux, Windows, Solaris or HP-UX, you may also need to ensure that the channels in each cluster use different multicast ports. This is more difficult than using different group names, although it can still be controlled from the command line. See Section 28.6.2.2.3, “Changing the Multicast Port”. Note that using different ports should not be necessary if your servers are running on Linux, Windows, Solaris or HP-UX.
						

 ⁠28.6.2.2. Isolating Channels for Different Services on the Same Set of JBoss Enterprise Application Platform Instances

					This section addresses the usual case: a cluster of three machines, each of which has, for example, an HAPartition deployed alongside JBoss Cache for web session clustering. The HAPartition channels should not communicate with the JBoss Cache channels. Ensuring proper isolation of these channels is straightforward, and is usually handled by the application server without any alterations on the part of the user.
				

					To isolate channels for different services from each other on the same set of application server instances, each channel must have its own group name. The configurations that ship with JBoss Enterprise Application Platform ensure that this is the case. However, if you create a custom service that uses JGroups directly, you must use a unique group name. If you create a custom JBoss Cache configuration, ensure that you provide a unique value in the clusterName configuration property.
				

					In releases prior to JBoss Enterprise Application Platform 5, different channels running in the same application server also had to use unique multicast ports. With the JGroups shared transport introduced in JBoss Enterprise Application Platform 5 (see Section 21.1.2, “The JGroups Shared Transport”), it is now common for multiple channels to use the same transport protocol and its sockets. This makes configuration easier, which is one of the main benefits of the shared transport. However, if you decide to create your own custom JGroups protocol stack configuration, be sure to configure its transport protocols with a multicast port that is different from the ports used in other protocol stacks.
				

 ⁠28.6.2.2.1. Changing the Group Name

						The group name for a JGroups channel is configured via the service that starts the channel. For all the standard clustered services, we make it easy for you to create unique groups names by simply using the -g (or --partition) switch when starting JBoss:
					
./run.sh -g QAPartition -b 192.168.1.100 -c production

						This switch sets the jboss.partition.name system property, which is used as a component in the configuration of the group name in all the standard clustering configuration files. For example,
​<property name="clusterName">${jboss.partition.name:DefaultPartition}-SFSBCache</property>

					

 ⁠28.6.2.2.2. Changing the multicast address and port

						The -u (or --udp) command line switch may be used to control the multicast address used by the JGroups channels opened by all standard JBoss Enterprise Application Platform services.
/run.sh -u 230.1.2.3 -g QAPartition -b 192.168.1.100 -c production

						 This switch sets the jboss.partition.udpGroup system property, which is referenced in all of the standard protocol stack configurations in JBoss Enterprise Application Platform:
					
​<UDP mcast_addr="${jboss.partition.udpGroup:228.1.2.3}"
Why is changing the group name insufficient?

							If channels with different group names share the same multicast address and port, the lower level JGroups protocols in each channel will see, process and eventually discard messages intended for the other group. This will at a minimum hurt performance and can lead to anomalous behavior.
						

 ⁠28.6.2.2.3. Changing the Multicast Port

						On some operating systems (Mac OS X for example), using different -g and -u values is not sufficient to isolate clusters; the channels running in the different clusters must also use different multicast ports. Unfortunately, setting the multicast ports is not as simple as -g and -u. By default, a JBoss Enterprise Application Platform instance running the production configuration will use up to two different instances of the JGroups UDP transport protocol, and will therefore open two multicast sockets. You can control the ports those sockets use by using system properties on the command line. For example,
					

/run.sh -u 230.1.2.3 -g QAPartition -b 192.168.1.100 -c production \\
 -Djboss.jgroups.udp.mcast_port=12345 -Djboss.messaging.datachanneludpport=23456

						The jboss.messaging.datachanneludpport property controls the multicast port used by the MPING protocol in JBoss Messaging's DATA channel. The jboss.jgroups.udp.mcast_port property controls the multicast port used by the UDP transport protocol shared by all other clustered services.
					

						The set of JGroups protocol stack configurations included in the <JBOSS_HOME>/server/production/deploy/cluster/jgroups-channelfactory.sar/META-INF/jgroups-channelfactory-stacks.xml file includes a number of other example protocol stack configurations that the standard JBoss Enterprise Application Platform distribution does not actually use. Those configurations also use system properties to set any multicast ports. So, if you reconfigure a JBoss Enterprise Application Platform service to use one of those protocol stack configurations, use the appropriate system property to control the port from the command line.
					
Why do I need to change the multicast port if I change the address?

							It should be sufficient to just change the address, but unfortunately the handling of multicast sockets is one area where the JVM fails to hide operating system behavior differences from the application. The java.net.MulticastSocket class provides different overloaded constructors. On some operating systems, if you use one constructor variant, packets addressed to a particular multicast port are delivered to all listeners on that port, regardless of the multicast address on which they are listening. We refer to this as the promiscuous traffic problem. On most operating systems that exhibit the promiscuous traffic problem (Linux, Solaris and HP-UX) JGroups can use a different constructor variant that avoids the problem. However, on some operating systems with the promiscuous traffic problem (Mac OS X), multicast does not work properly if the other constructor variant is used. So, on these operating systems the recommendation is to configure different multicast ports for different clusters.
						

 ⁠28.6.2.3. Improving UDP Performance by Configuring OS UDP Buffer Limits

					By default, the JGroups channels in JBoss Enterprise Application Platform use the UDP transport protocol to take advantage of IP multicast. However, one disadvantage of UDP is it does not come with the reliable delivery guarantees provided by TCP. The protocols discussed in Section 28.1.5, “Reliable Delivery Protocols” allow JGroups to guarantee delivery of UDP messages, but those protocols are implemented in Java, not at the operating system network layer. For peak performance from a UDP-based JGroups channel it is important to limit the need for JGroups to re-transmit messages by limiting UDP datagram loss.
				

					One of the most common causes of lost UDP datagrams is an undersized receive buffer on the socket. The UDP protocol's mcast_recv_buf_size and ucast_recv_buf_size configuration attributes are used to specify the amount of receive buffer JGroups requests from the operating system, but the actual size of the buffer the operating system provides is limited by operating system-level maximums. These maximums are often very low:
				

 ⁠Table 28.1. Default Max UDP Buffer Sizes
	 Operating System 	 Default Max UDP Buffer (in bytes)
	 Linux 	 131071
	 Windows 	 No known limit
	 Solaris 	 262144
	 FreeBSD, Darwin 	 262144
	 AIX 	 1048576

					The command used to increase the above limits is operating system-specific. The table below shows the command required to increase the maximum buffer to 25 megabytes. In all cases, root privileges are required:
				

 ⁠Table 28.2. Commands to Change Max UDP Buffer Sizes
	 Operating System 	 Command
	 Linux 	 sysctl -w net.core.rmem_max=26214400
	 Solaris 	 ndd -set /dev/udp udp_max_buf 26214400
	 FreeBSD, Darwin 	 sysctl -w kern.ipc.maxsockbuf=26214400
	 AIX 	 no -o sb_max=8388608 (AIX will only allow 1 megabyte, 4 megabytes or 8 megabytes).

 ⁠28.6.3. JGroups Troubleshooting

 ⁠28.6.3.1. Nodes do not form a cluster

					Make sure your machine is set up correctly for IP multicast. There are 2 test programs that can be used to detect this: McastReceiverTest and McastSenderTest. Go to the <JBOSS_HOME>/server/production/lib directory and start McastReceiverTest, for example:
[lib]$ java -cp jgroups.jar org.jgroups.tests.McastReceiverTest -mcast_addr 224.10.10.10 -port 5555

				

					Then in another window start McastSenderTest:
[lib]$ java -cp jgroups.jar org.jgroups.tests.McastSenderTest -mcast_addr 224.10.10.10 -port 5555

				

					If you want to bind to a specific network interface card (NIC), use -bind_addr 192.168.0.2, where 192.168.0.2 is the IP address of the NIC to which you want to bind. Use this parameter in both the sender and the receiver.
				

					You should be able to type in the McastSenderTest window and see the output in the McastReceiverTest window. If not, try to use -ttl 32 in the sender. If this still fails, consult a system administrator to help you setup IP multicast correctly, and ask the admin to make sure that multicast will work on the interface you have chosen or, if the machines have multiple interfaces, ask to be told the correct interface. Once you know multicast is working properly on each machine in your cluster, you can repeat the above test to test the network, putting the sender on one machine and the receiver on another.
				

 ⁠28.6.3.2. Causes of missing heartbeats in FD

					Sometimes a member is suspected by FD because a heartbeat ack has not been received for some time T (defined by timeout and max_tries). This can have multiple reasons, e.g. in a cluster of A,B,C,D; C can be suspected if (note that A pings B, B pings C, C pings D and D pings A):
				
	
							B or C are running at 100% CPU for more than T seconds. So even if C sends a heartbeat ack to B, B may not be able to process it because it is at 100%
						

	
							B or C are garbage collecting, same as above.
						

	
							A combination of the 2 cases above
						

	
							The network loses packets. This usually happens when there is a lot of traffic on the network, and the switch starts dropping packets (usually broadcasts first, then IP multicasts, TCP packets last).
						

	
							B or C are processing a callback. Let us say C received a remote method call over its channel and takes T+1 seconds to process it. During this time, C will not process any other messages, including heartbeats, and therefore B will not receive the heartbeat ack and will suspect C.
						

 ⁠Chapter 29. JBoss Cache Configuration and Deployment

		JBoss Cache provides the underlying distributed caching support used by many of the standard clustered services in a JBoss Enterprise Application Platform cluster. You can also deploy JBoss Cache in your own application to handle custom caching requirements. In this chapter we provide some background on the main configuration options available with JBoss Cache, with an emphasis on how those options relate to the JBoss Cache usage by the standard clustered services the Enterprise Application Platform provides. We then discuss the different options available for deploying a custom cache in the Enterprise Application Platform.
	

		Users considering deploying JBoss Cache for direct use by their own application are strongly encouraged to read the JBoss Cache documentation available at the https://access.redhat.com/knowledge/docs/.
	

		See also Section 21.2, “Distributed Caching with JBoss Cache” for information on how the standard JBoss Enterprise Application Platform clustered services use JBoss Cache.
	

 ⁠29.1. Key JBoss Cache Configuration Options

			JBoss Enterprise Application Platform ships with a reasonable set of default JBoss Cache configurations that are suitable for the standard clustered service use cases (e.g. web session replication or JPA/Hibernate caching). Most applications that involve the standard clustered services just work out of the box with the default configurations. You only need to tweak them when you are deploying an application that has special network or performance requirements. In this section we provide a brief overview of some of the key configuration choices. This is by no means a complete discussion; for full details users interested in moving beyond the default configurations are encouraged to read the JBoss Cache documentation available at https://access.redhat.com/knowledge/docs/.
		

			Most JBoss Cache configuration examples in this section use the JBoss Microcontainer schema for building up an org.jboss.cache.config.Configuration object graph from XML. JBoss Cache has its own custom XML schema, but the standard JBoss Enterprise Application Platform CacheManager service uses the JBoss Microcontainer schema to be consistent with most other internal Enterprise Application Platform services.
		

			Before getting into the key configuration options, let us have a look at the most likely place that a user would encounter them.
		

 ⁠29.1.1. Editing the CacheManager Configuration

				As discussed in Section 21.2.1, “The JBoss Enterprise Application Platform CacheManager Service”, the standard JBoss Enterprise Application Platform clustered services use the CacheManager service as a factory for JBoss Cache instances. So, cache configuration changes are likely to involve edits to the CacheManager service.
			
Note

					Users can also use the CacheManager as a factory for custom caches used by directly by their own applications; see Section 29.2.1, “Deployment Via the CacheManager Service”.
				

				The CacheManager is configured via the <JBOSS_HOME>/server/<PROFILE>/deploy/cluster/jboss-cache-manager.sar/META-INF/jboss-cache-manager-jboss-beans.xml file. The element most likely to be edited is the "CacheConfigurationRegistry" bean, which maintains a registry of all the named JBC configurations the CacheManager knows about. Most edits to this file would involve adding a new JBoss Cache configuration or changing a property of an existing one.
			

				The following is a redacted version of the "CacheConfigurationRegistry" bean configuration:
			
​
​<bean name="CacheConfigurationRegistry"
​ class="org.jboss.ha.cachemanager.DependencyInjectedConfigurationRegistry">
​
​ <!-- If users wish to add configs using a more familiar JBC config format
​ they can add them to a cache-configs.xml file specified by this property.
​ However, use of the microcontainer format used below is recommended.
​ <property name="configResource">META-INF/jboss-cache-configs.xml</property>
​ -->
​
​ <!-- The configurations. A Map<String name, Configuration config> -->
​ <property name="newConfigurations">
​ <map keyClass="java.lang.String" valueClass="org.jboss.cache.config.Configuration">
​
​ <!-- The standard configurations follow. You can add your own and/or edit these. -->
​
​ <!-- Standard cache used for web sessions -->
​ <entry><key>standard-session-cache</key>
​ <value>
​ <bean name="StandardSessionCacheConfig" class="org.jboss.cache.config.Configuration">
​
​ <!-- Provides batching functionality for caches that do not want to
​ interact with regular JTA Transactions -->
​ <property name="transactionManagerLookupClass">
​ org.jboss.cache.transaction.BatchModeTransactionManagerLookup
​ </property>
​
​ <!-- Name of cluster. Needs to be the same for all members -->
​ <property name="clusterName">${jboss.partition.name:DefaultPartition}-SessionCache</property>
​ <!-- Use a UDP (multicast) based stack. Need JGroups flow control (FC)
​ because we are using asynchronous replication. -->
​ <property name="multiplexerStack">${jboss.default.jgroups.stack:udp}</property>
​ <property name="fetchInMemoryState">true</property>
​
​ <property name="nodeLockingScheme">PESSIMISTIC</property>
​ <property name="isolationLevel">REPEATABLE_READ</property>
​ <property name="cacheMode">REPL_ASYNC</property>
​
​ more details of the standard-session-cache configuration
​ </bean>
​ </value>
​ </entry>
​
​ <!-- Appropriate for web sessions with FIELD granularity -->
​ <entry><key>field-granularity-session-cache</key>
​ <value>
​
​ <bean name="FieldSessionCacheConfig" class="org.jboss.cache.config.Configuration">
​ details of the field-granularity-standard-session-cache configuration
​ </bean>
​
​ </value>
​
​ </entry>
​
​ ... entry elements for the other configurations
​
​ </map>
​ </property>
​</bean>

				The actual JBoss Cache configurations are specified using the JBoss Microcontainer's schema rather than one of the standard JBoss Cache configuration formats. When JBoss Cache parses one of its standard configuration formats, it creates a Java Bean of type org.jboss.cache.config.Configuration with a tree of child Java Beans for some of the more complex sub-configurations (i.e. cache loading, eviction, buddy replication). Rather than delegating this task of XML parsing/Java Bean creation to JBC, we let the Enterprise Application Platform's microcontainer do it directly. This has the advantage of making the microcontainer aware of the configuration beans, which in later Enterprise Application Platform 5.x releases will be helpful in allowing external management tools to manage the JBC configurations.
			

				The configuration format should be fairly self-explanatory if you look at the standard configurations the Enterprise Application Platform ships; they include all the major elements. The types and properties of the various java beans that make up a JBoss Cache configuration can be seen in the JBoss Cache Javadocs. Here is a fairly complete example:
			
​
​<bean name="StandardSFSBCacheConfig" class="org.jboss.cache.config.Configuration">
​
​ <!-- No transaction manager lookup -->
​
​ <!-- Name of cluster. Needs to be the same for all members -->
​ <property name="clusterName">${jboss.partition.name:DefaultPartition}-SFSBCache</property>
​ <!-- Use a UDP (multicast) based stack. Need JGroups flow control (FC)
​ because we are using asynchronous replication. -->
​ <property name="multiplexerStack">${jboss.default.jgroups.stack:udp}</property>
​ <property name="fetchInMemoryState">true</property>
​
​ <property name="nodeLockingScheme">PESSIMISTIC</property>
​ <property name="isolationLevel">REPEATABLE_READ</property>
​ <property name="cacheMode">REPL_ASYNC</property>
​
​ <property name="useLockStriping">false</property>
​
​ <!-- Number of milliseconds to wait until all responses for a
​ synchronous call have been received. Make this longer
​ than lockAcquisitionTimeout.-->
​ <property name="syncReplTimeout">17500</property>
​ <!-- Max number of milliseconds to wait for a lock acquisition -->
​ <property name="lockAcquisitionTimeout">15000</property>
​ <!-- The max amount of time (in milliseconds) we wait until the
​ state (ie. the contents of the cache) are retrieved from
​ existing members at startup. -->
​ <property name="stateRetrievalTimeout">60000</property>
​
​ <!--
​ SFSBs use region-based marshalling to provide for partial state
​ transfer during deployment/undeployment.
​ -->
​ <property name="useRegionBasedMarshalling">false</property>
​ <!-- Must match the value of "useRegionBasedMarshalling" -->
​ <property name="inactiveOnStartup">false</property>
​
​ <!-- Disable asynchronous RPC marshalling/sending -->
​ <property name="serializationExecutorPoolSize">0</property>
​ <!-- We have no asynchronous notification listeners -->
​ <property name="listenerAsyncPoolSize">0</property>
​
​ <property name="exposeManagementStatistics">true</property>
​
​ <property name="buddyReplicationConfig">
​ <bean class="org.jboss.cache.config.BuddyReplicationConfig">
​
​ <!-- Just set to true to turn on buddy replication -->
​ <property name="enabled">false</property>
​
​ <!-- A way to specify a preferred replication group. We try
​ and pick a buddy who shares the same pool name (falling
​ back to other buddies if not available). -->
​ <property name="buddyPoolName">default</property>
​
​ <property name="buddyCommunicationTimeout">17500</property>
​
​ <!-- Do not change these -->
​ <property name="autoDataGravitation">false</property>
​ <property name="dataGravitationRemoveOnFind">true</property>
​ <property name="dataGravitationSearchBackupTrees">true</property>
​
​ <property name="buddyLocatorConfig">
​ <bean class="org.jboss.cache.buddyreplication.NextMemberBuddyLocatorConfig">
​ <!-- The number of backup nodes we maintain -->
​ <property name="numBuddies">1</property>
​ <!-- Means that each node will *try* to select a buddy on
​ a different physical host. If not able to do so
​ though, it will fall back to colocated nodes. -->
​ <property name="ignoreColocatedBuddies">true</property>
​ </bean>
​ </property>
​ </bean>
​ </property>
​ <property name="cacheLoaderConfig">
​ <bean class="org.jboss.cache.config.CacheLoaderConfig">
​ <!-- Do not change these -->
​ <property name="passivation">true</property>
​ <property name="shared">false</property>
​
​ <property name="individualCacheLoaderConfigs">
​ <list>
​ <bean class="org.jboss.cache.loader.FileCacheLoaderConfig">
​ <!-- Where passivated sessions are stored -->
​ <property name="location">${jboss.server.data.dir}${/}sfsb</property>
​ <!-- Do not change these -->
​ <property name="async">false</property>
​ <property name="fetchPersistentState">true</property>
​ <property name="purgeOnStartup">true</property>
​ <property name="ignoreModifications">false</property>
​ <property name="checkCharacterPortability">false</property>
​ </bean>
​ </list>
​ </property>
​ </bean>
​ </property>
​
​ <!-- EJBs use JBoss Cache eviction -->
​ <property name="evictionConfig">
​ <bean class="org.jboss.cache.config.EvictionConfig">
​ <property name="wakeupInterval">5000</property>
​ <!-- Overall default -->
​ <property name="defaultEvictionRegionConfig">
​ <bean class="org.jboss.cache.config.EvictionRegionConfig">
​ <property name="regionName">/</property>
​ <property name="evictionAlgorithmConfig">
​ <bean class="org.jboss.cache.eviction.NullEvictionAlgorithmConfig"/>
​ </property>
​ </bean>
​ </property>
​ <!-- EJB3 integration code will programatically create
​ other regions as beans are deployed -->
​ </bean>
​ </property>
​</bean>

				Basically, the XML specifies the creation of an org.jboss.cache.config.Configuration java bean and the setting of a number of properties on that bean. Most of the properties are of simple types, but some, such as buddyReplicationConfig and cacheLoaderConfig take various types java beans as their values.
			

				Next we will look at some of the key configuration options.
			

 ⁠29.1.2. Cache Mode

				JBoss Cache's cacheMode configuration attribute combines into a single property two related aspects:
			

				Handling of Cluster Updates
			

				This controls how a cache instance on one node should notify the rest of the cluster when it makes changes in its local state. There are three options:
					
							Synchronous means the cache instance sends a message to its peers notifying them of the change(s) and before returning waits for them to acknowledge that they have applied the same changes. If the changes are made as part of a JTA transaction, this is done as part of a two-phase commit process during transaction commit. Any locks are held until this acknowledgment is received. Waiting for acknowledgement from all nodes adds delays, but it ensures consistency around the cluster. Synchronous mode is needed when all the nodes in the cluster may access the cached data resulting in a high need for consistency.
						

	
							Asynchronous means the cache instance sends a message to its peers notifying them of the change(s) and then immediately returns, without any acknowledgement that they have applied the same changes. It does not mean sending the message is handled by some other thread besides the one that changed the cache content; the thread that makes the change still spends some time dealing with sending messages to the cluster, just not as much as with synchronous communication. Asynchronous mode is most useful for cases like session replication, where the cache doing the sending expects to be the only one that accesses the data and the cluster messages are used to provide backup copies in case of failure of the sending node. Asynchronous messaging adds a small risk that a later user request that fails over to another node may see out-of-date state, but for many session-type applications this risk is acceptable given the major performance benefits asynchronous mode has over synchronous mode.
						

	
							Local means the cache instance does not send a message at all. A JGroups channel is not even used by the cache. JBoss Cache has many useful features besides its clustering capabilities and is a very useful caching library even when not used in a cluster. Also, even in a cluster, some cached data does not need to be kept consistent around the cluster, in which case Local mode will improve performance. Caching of JPA/Hibernate query result sets is an example of this; Hibernate's second level caching logic uses a separate mechanism to invalidate stale query result sets from the second level cache, so JBoss Cache does not need to send messages around the cluster for a query result set cache.
						

			

				Replication vs. Invalidation
			

				This aspect deals with the content of messages sent around the cluster when a cache changes its local state, i.e. what should the other caches in the cluster do to reflect the change:
					
							Replication means the other nodes should update their state to reflect the new state on the sending node. This means the sending node needs to include the changed state, increasing the cost of the message. Replication is necessary if the other nodes have no other way to obtain the state.
						

	
							Invalidation means the other nodes should remove the changed state from their local state. Invalidation reduces the cost of the cluster update messages, since only the cache key of the changed state needs to be transmitted, not the state itself. However, it is only an option if the removed state can be retrieved from another source. It is an excellent option for a clustered JPA/Hibernate entity cache, since the cached state can be re-read from the database.
						

			

				These two aspects combine to form 5 valid values for the cacheMode configuration attribute:
					
							LOCAL means no cluster messages are needed.
						

	
							REPL_SYNC means synchronous replication messages are sent.
						

	
							REPL_ASYNC means asynchronous replication messages are sent.
						

	
							INVALIDATION_SYNC means synchronous invalidation messages are sent.
						

	
							INVALIDATION_ASYNC means asynchronous invalidation messages are sent.
						

			

 ⁠29.1.3. Transaction Handling

				JBoss Cache integrates with JTA transaction managers to allow transactional access to the cache. When JBoss Cache detects the presence of a transaction, any locks are held for the life of the transaction, changes made to the cache will be reverted if the transaction rolls back, and any cluster-wide messages sent to inform other nodes of changes are deferred and sent in a batch as part of transaction commit (reducing chattiness).
			

				Integration with a transaction manager is accomplished by setting the transactionManagerLookupClass configuration attribute; this specifies the fully qualified class name of a class JBoss Cache can use to find the local transaction manager. Inside JBoss Enterprise Application Platform, this attribute would have one of two values:
			
	
						org.jboss.cache.transaction.JBossTransactionManagerLookup
					

						This finds the standard transaction manager running in the application server. Use this for any custom caches you deploy where you want caching to participate in any JTA transactions.
					

	
						org.jboss.cache.transaction.BatchModeTransactionManagerLookup
					

						This is used in the cache configurations used for web session and EJB SFSB caching. It specifies a simple mock TransactionManager that ships with JBoss Cache called the BatchModeTransactionManager. This transaction manager is not a true JTA transaction manager and should not be used for anything other than JBoss Cache. Its usage in JBoss Enterprise Application Platform is to get most of the benefits of JBoss Cache's transactional behavior for the session replication use cases, but without getting tangled up with end user transactions that may run during a request.
					

 ⁠29.1.4. Concurrent Access

				JBoss Cache is a thread safe caching API, and uses its own efficient mechanisms of controlling concurrent access. Concurrency is configured via the nodeLockingScheme and isolationLevel configuration attributes.
			

				There are three choices for nodeLockingScheme:
					
							MVCC or multi-version concurrency control, is a locking scheme commonly used by modern database implementations to control fast, safe concurrent access to shared data. JBoss Cache 3.x uses an innovative implementation of MVCC as the default locking scheme. MVCC is designed to provide the following features for concurrent access:
								
										Readers that do not block writers
									

	
										Writers that fail fast
									

							 It achieves this by using data versioning and copying for concurrent writers. The theory is that readers continue reading shared state, while writers copy the shared state, increment a version id, and write that shared state back after verifying that the version is still valid (i.e., another concurrent writer has not changed this state first).
						

							MVCC is the recommended choice for JPA/Hibernate entity caching.
						

	
							PESSIMISTIC locking involves threads/transactions acquiring either exclusive or non-exclusive locks on nodes before reading or writing. Which is acquired depends on the isolationLevel (see below) but in most cases a non-exclusive lock is acquired for a read and an exclusive lock is acquired for a write. Pessimistic locking requires considerably more overhead than MVCC and allows lesser concurrency, since reader threads must block until a write has completed and released its exclusive lock (potentially a long time if the write is part of a transaction). A write will also be delayed due to ongoing reads.
						

							Generally MVCC is a better choice than PESSIMISTIC, which is deprecated as of JBoss Cache 3.0. But, for the session caching usage in JBoss Enterprise Application Platform 5.0.0, PESSIMISTIC is still the default. This is largely because for the session use case there are generally not concurrent threads accessing the same cache location, so the benefits of MVCC are not as great.
						

	
							OPTIMISTIC locking seeks to improve upon the concurrency available with PESSIMISTIC by creating a "workspace" for each request/transaction that accesses the cache. Data accessed by the request/transaction (even reads) is copied into the workspace, which is adds overhead. All data is versioned; on completion of non-transactional requests or commits of transactions the version of data in the workspace is compared to the main cache, and an exception is raised if there are inconsistencies. Otherwise changes to the workspace are applied to the main cache.
						

							OPTIMISTIC locking is deprecated but is still provided to support backward compatibility. Users are encouraged to use MVCC instead, which provides the same benefits at lower cost.
						

			

				The isolationLevel attribute has two possible values READ_COMMITTED and REPEATABLE_READ which correspond in semantic to database-style isolation levels. Previous versions of JBoss Cache supported all 5 database isolation levels, and if an unsupported isolation level is configured, it is either upgraded or downgraded to the closest supported level.
			

				REPEATABLE_READ is the default isolation level, to maintain compatibility with previous versions of JBoss Cache. READ_COMMITTED, while providing a slightly weaker isolation, has a significant performance benefit over REPEATABLE_READ.
			

 ⁠29.1.5. JGroups Integration

				Each JBoss Cache instance internally uses a JGroups Channel to handle group communications. Inside JBoss Enterprise Application Platform, we strongly recommend that you use the Enterprise Application Platform's JGroups Channel Factory service as the source for your cache's Channel. In this section we discuss how to configure your cache to get it's channel from the Channel Factory; if you wish to configure the channel in some other way see the JBoss Cache documentation.
			

				Caches obtained from the CacheManager Service
			

				This is the simplest approach. The CacheManager service already has a reference to the Channel Factory service, so the only configuration task is to configure the name of the JGroups protocol stack configuration to use.
			

				If you are configuring your cache via the CacheManager service's jboss-cache-manager-jboss-beans.xml file (see Section 29.2.1, “Deployment Via the CacheManager Service”), add the following to your cache configuration, where the value is the name of the protocol stack configuration.:
			
​<property name="multiplexerStack">udp</property>

				Caches Deployed via a -jboss-beans.xml File
			

				If you are deploying a cache via a JBoss Microcontainer -jboss-beans.xml file (see Section 29.2.3, “Deployment Via a -jboss-beans.xml File”), you need inject a reference to the Channel Factory service as well as specifying the protocol stack configuration:
			
​
​<property name="runtimeConfig">
​ <bean class="org.jboss.cache.config.RuntimeConfig">
​ <property name="muxChannelFactory"><inject bean="JChannelFactory"/></property>
​ </bean>
​</property>
​<property name="multiplexerStack">udp</property>

				Caches Deployed via a -service.xml File
			

				If you are deploying a cache MBean via -service.xml file (see Section 29.2.2, “Deployment Via a -service.xml File”), CacheJmxWrapper is the class of your MBean; that class exposes a MuxChannelFactory MBean attribute. You dependency inject the Channel Factory service into this attribute, and set the protocol stack name via the MultiplexerStack attribute:
			
​
​<attribute name="MuxChannelFactory"><inject bean="JChannelFactory"/></attribute>
​<attribute name="MultiplexerStack">udp</attribute>

 ⁠29.1.6. Eviction

				Eviction allows the cache to control memory by removing data (typically the least frequently used data). If you wish to configure eviction for a custom cache, refer to the JBoss Cache User Guide available in the JBoss Enterprise Application Platform 5 documentation suite at https://access.redhat.com/knowledge/docs/.
			

				For web session caches, eviction should not be configured; the distributable session manager handles eviction itself. For EJB 3 SFSB caches, stick with the eviction configuration in the Enterprise Application Platform's standard sfsb-cache configuration (see Section 21.2.1, “The JBoss Enterprise Application Platform CacheManager Service”). The EJB container will configure eviction itself using the values included in each bean's configuration.
			

 ⁠29.1.7. Cache Loaders

				Cache loading allows JBoss Cache to store data in a persistent store in addition to what it keeps in memory. This data can either be an overflow, where the data in the persistent store is not reflected in memory. Or it can be a superset of what is in memory, where everything in memory is also reflected in the persistent store, along with items that have been evicted from memory. Which of these two modes is used depends on the setting of the passivation flag in the JBoss Cache cache loader configuration section. A true value means the persistent store acts as an overflow area written to when data is evicted from the in-memory cache.
			

				If you wish to configure cache loading for a custom cache, see the JBoss Cache documentation for all of the available options. Do not configure cache loading for a JPA/Hibernate cache, as the database itself serves as a persistent store; adding a cache loader is just redundant.
			

				The caches used for web session and EJB3 SFSB caching use passivation. Next we will discuss the cache loader configuration for those caches in some detail.
			

 ⁠29.1.7.1. CacheLoader Configuration for Web Session and SFSB Caches

					HttpSession and SFSB passivation rely on JBoss Cache's Cache Loader passivation for storing and retrieving the passivated sessions. Therefore the cache instance used by your webapp's clustered session manager or your bean's EJB container must be configured to enable Cache Loader passivaton.
				

					In most cases you do not need to do anything to alter the cache loader configurations for the standard web session and SFSB caches; the standard JBoss Enterprise Application Platform configurations should suit your needs. The following is a bit more detail in case you are interested or want to change from the defaults.
				

					The Cache Loader configuration for the standard-session-cache config serves as a good example:
				
​
​<property name="cacheLoaderConfig">
​ <bean class="org.jboss.cache.config.CacheLoaderConfig">
​ <!-- Do not change these -->
​ <property name="passivation">true</property>
​ <property name="shared">false</property>
​
​ <property name="individualCacheLoaderConfigs">
​ <list>
​ <bean class="org.jboss.cache.loader.FileCacheLoaderConfig">
​ <!-- Where passivated sessions are stored -->
​ <property name="location">${jboss.server.data.dir}${/}session</property>
​ <!-- Do not change these -->
​ <property name="async">false</property>
​ <property name="fetchPersistentState">true</property>
​ <property name="purgeOnStartup">true</property>
​ <property name="ignoreModifications">false</property>
​ <property name="checkCharacterPortability">false</property>
​ </bean>
​ </list>
​ </property>
​ </bean>
​</property>

					Some explanation:
				
	
							passivation property MUST be true
						

	
							shared property MUST be false. Do not passivate sessions to a shared persistent store, otherwise if another node activates the session, it will be gone from the persistent store and also gone from memory on other nodes that have passivated it. Backup copies will be lost.
						

	
							individualCacheLoaderConfigs property accepts a list of Cache Loader configurations. JBC allows you to chain cache loaders; see the JBoss Cache docs. For the session passivation use case a single cache loader is sufficient.
						

	
							class attribute on a cache loader config bean must refer to the configuration class for a cache loader implementation (e.g. org.jboss.cache.loader.FileCacheLoaderConfig or org.jboss.cache.loader.JDBCCacheLoaderConfig). See the JBoss Cache documentation for more on the available CacheLoader implementations. If you wish to use JDBCCacheLoader (to persist to a database rather than the file system used by FileCacheLoader) note the comment above about the shared property. Do not use a shared database, or at least not a shared table in the database. Each node in the cluster must have its own storage location.
						

	
							location property for FileCacheLoaderConfig defines the root node of the file system tree where passivated sessions should be stored. The default is to store them in your JBoss Enterprise Application Platform configuration's data directory.
						

	
							async MUST be false to ensure passivated sessions are promptly written to the persistent store.
						

	
							fetchPersistentState property MUST be true to ensure passivated sessions are included in the set of session backup copies transferred over from other nodes when the cache starts.
						

	
							purgeOnStartup should be true to ensure out-of-date session data left over from a previous shutdown of a server does not pollute the current data set.
						

	
							ignoreModifications should be false
						

	
							checkCharacterPortability should be false as a minor performance optimization.
						

 ⁠29.1.8. Buddy Replication

				Buddy Replication is a JBoss Cache feature that allows you to suppress replicating your data to all instances in a cluster. Instead, each instance picks one or more 'buddies' in the cluster, and only replicates to those specific buddies. This greatly helps scalability as there is no longer a memory and network traffic impact every time another instance is added to a cluster.
			

				If the cache on another node needs data that it does not have locally, it can ask the other nodes in the cluster to provide it; nodes that have a copy will provide it as part of a process called "data gravitation". The new node will become the owner of the data, placing a backup copy of the data on its buddies. The ability to gravitate data means there is no need for all requests for data to occur on a node that has a copy of it; any node can handle a request for any data. However, data gravitation is expensive and should not be a frequent occurrence; ideally it should only occur if the node that is using some data fails or is shut down, forcing interested clients to fail over to a different node. This makes buddy replication primarily useful for session-type applications with session affinity (a.k.a. "sticky sessions") where all requests for a particular session are normally handled by a single server.
			

				Buddy replication can be enabled for the web session and EJB3 SFSB caches. Do not add buddy replication to the cache configurations used for other standard clustering services (e.g. JPA/Hibernate caching). Services not specifically engineered for buddy replication are highly unlikely to work correctly if it is introduced.
			

				Configuring buddy replication is fairly straightforward. As an example we will look at the buddy replication configuration section from the CacheManager service's standard-session-cache config:
			
​
​<property name="buddyReplicationConfig">
​ <bean class="org.jboss.cache.config.BuddyReplicationConfig">
​
​ <!-- Just set to true to turn on buddy replication -->
​ <property name="enabled">true</property>
​
​ <!-- A way to specify a preferred replication group. We try
​ and pick a buddy who shares the same pool name (falling
​ back to other buddies if not available). -->
​ <property name="buddyPoolName">default</property>
​
​ <property name="buddyCommunicationTimeout">17500</property>
​
​ <!-- Do not change these -->
​ <property name="autoDataGravitation">false</property>
​ <property name="dataGravitationRemoveOnFind">true</property>
​ <property name="dataGravitationSearchBackupTrees">true</property>
​
​ <property name="buddyLocatorConfig">
​ <bean class="org.jboss.cache.buddyreplication.NextMemberBuddyLocatorConfig">
​ <!-- The number of backup copies we maintain -->
​ <property name="numBuddies">1</property>
​ <!-- Means that each node will *try* to select a buddy on
​ a different physical host. If not able to do so
​ though, it will fall back to colocated nodes. -->
​ <property name="ignoreColocatedBuddies">true</property>
​ </bean>
​ </property>
​ </bean>
​</property>

				The main things you would be likely to configure are:
			
	
						buddyReplicationEnabled — true if you want buddy replication; false if data should be replicated to all nodes in the cluster, in which case none of the other buddy replication configurations matter.
					

	
						numBuddies — to how many backup nodes should each node replicate its state.
					

	
						buddyPoolName — allows logical subgrouping of nodes within the cluster; if possible, buddies will be chosen from nodes in the same buddy pool.
					

				The ignoreColocatedBuddies switch means that when the cache is trying to find a buddy, it will if possible not choose a buddy on the same physical host as itself. If the only server it can find is running on its own machine, it will use that server as a buddy.
			

				Do not change the settings for autoDataGravitation, dataGravitationRemoveOnFind and dataGravitationSearchBackupTrees. Session replication will not work properly if these are changed.
			

 ⁠29.2. Deploying Your Own JBoss Cache Instance

			It's quite common for users to deploy their own instances of JBoss Cache inside JBoss Enterprise Application Platform for custom use by their applications. In this section we describe the various ways caches can be deployed.
		

 ⁠29.2.1. Deployment Via the CacheManager Service

				The standard JBoss clustered services that use JBoss Cache obtain a reference to their cache from the Enterprise Application Platform's CacheManager service (see Section 21.2.1, “The JBoss Enterprise Application Platform CacheManager Service”). End user applications can do the same thing; here's how.
			

				Section 29.1.1, “Editing the CacheManager Configuration” shows the configuration of the CacheManager's "CacheConfigurationRegistry" bean. To add a new configuration, you would add an additional element inside that bean's newConfigurations <map>:
			
​
​<bean name="CacheConfigurationRegistry"
​ class="org.jboss.ha.cachemanager.DependencyInjectedConfigurationRegistry">
​
​ <property name="newConfigurations">
​ <map keyClass="java.lang.String" valueClass="org.jboss.cache.config.Configuration">
​
​ <entry><key>my-custom-cache</key>
​ <value>
​ <bean name="MyCustomCacheConfig" class="org.jboss.cache.config.Configuration">
​ details of the my-custom-cache configuration
​ </bean>
​ </value>
​ </entry>
​

				See Section 29.1.1, “Editing the CacheManager Configuration” for an example configuration.
			

 ⁠29.2.1.1. Accessing the CacheManager

					Once you've added your cache configuration to the CacheManager, the next step is to provide a reference to the CacheManager to your application. There are three ways to do this:
				
	
							Dependency Injection
						

							If your application uses the JBoss Microcontainer for configuration, the simplest mechanism is to have it inject the CacheManager into your service.
						
​
​<bean name="MyService" class="com.example.MyService">
​ <property name="cacheManager"><inject bean="CacheManager"/></property>
​</bean>

	
							JNDI Lookup
						

							Alternatively, you can find look up the CacheManger is JNDI. It is bound under java:CacheManager.
						
​
​import org.jboss.ha.cachemanager.CacheManager;
​
​public class MyService {
​ private CacheManager cacheManager;
​
​ public void start() throws Exception {
​ Context ctx = new InitialContext();
​ cacheManager = (CacheManager) ctx.lookup("java:CacheManager");
​ }
​}

	
							CacheManagerLocator
						

							JBoss Enterprise Application Platform also provides a service locator object that can be used to access the CacheManager.
						
​
​import org.jboss.ha.cachemanager.CacheManager;
​import org.jboss.ha.framework.server.CacheManagerLocator;
​
​public class MyService {
​ private CacheManager cacheManager;
​
​ public void start() throws Exception {
​ CacheManagerLocator locator = CacheManagerLocator.getCacheManagerLocator();
​ // Locator accepts as param a set of JNDI properties to help in lookup;
​ // this is not necessary inside the Enterprise Application Platform
​ cacheManager = locator.getCacheManager(null);
​ }
​}

					Once a reference to the CacheManager is obtained; usage is simple. Access a cache by passing in the name of the desired configuration. The CacheManager will not start the cache; this is the responsibility of the application. The cache may, however, have been started by another application running in the cache server; the cache may be shared. When the application is done using the cache, it should not stop. Just inform the CacheManager that the cache is no longer being used; the manager will stop the cache when all callers that have asked for the cache have released it.
				
​
​import org.jboss.cache.Cache;
​import org.jboss.ha.cachemanager.CacheManager;
​import org.jboss.ha.framework.server.CacheManagerLocator;
​
​public class MyService {
​ private CacheManager cacheManager;
​ private Cache cache;
​
​ public void start() throws Exception {
​ Context ctx = new InitialContext();
​ cacheManager = (CacheManager) ctx.lookup("java:CacheManager");
​
​ // "true" param tells the manager to instantiate the cache if
​ // it does not exist yet
​ cache = cacheManager.getCache("my-cache-config", true);
​
​ cache.start();
​ }
​
​ public void stop() throws Exception {
​ cacheManager.releaseCache("my-cache-config");
​ }
​}

					The CacheManager can also be used to access instances of POJO Cache.
				
​
​import org.jboss.cache.pojo.PojoCache;
​import org.jboss.ha.cachemanager.CacheManager;
​import org.jboss.ha.framework.server.CacheManagerLocator;
​
​public class MyService {
​ private CacheManager cacheManager;
​ private PojoCache pojoCache;
​
​ public void start() throws Exception {
​ Context ctx = new InitialContext();
​ cacheManager = (CacheManager) ctx.lookup("java:CacheManager");
​
​ // "true" param tells the manager to instantiate the cache if
​ // it does not exist yet
​ pojoCache = cacheManager.getPojoCache("my-cache-config", true);
​
​ pojoCache.start();
​ }
​
​ public void stop() throws Exception {
​ cacheManager.releaseCache("my-cache-config");
​ }
​}

 ⁠29.2.2. Deployment Via a -service.xml File

				As in JBoss Enterprise Application Platform 4.x, you can also deploy a JBoss Cache instance as an MBean service via a -service.xml file. The primary difference from JBoss Enterprise Application Platform 4.x is the value of the code attribute in the mbean element. In JBoss Enterprise Application Platform 4.x, this was org.jboss.cache.TreeCache; in JBoss Enterprise Application Platform 5.x it is org.jboss.cache.jmx.CacheJmxWrapper. Here's an example:
			
​
​<?xml version="1.0" encoding="UTF-8"?>
​
​<server>
​ <mbean code="org.jboss.cache.jmx.CacheJmxWrapper"
​ name="foo:service=ExampleCacheJmxWrapper">
​
​ <attribute name="TransactionManagerLookupClass">
​ org.jboss.cache.transaction.JBossTransactionManagerLookup
​ </attribute>
​
​ <attribute name="MuxChannelFactory"><inject bean="JChannelFactory"/></attribute>
​
​ <attribute name="MultiplexerStack">udp</attribute>
​ <attribute name="ClusterName">Example-EntityCache</attribute>
​ <attribute name="IsolationLevel">REPEATABLE_READ</attribute>
​ <attribute name="CacheMode">REPL_SYNC</attribute>
​ <attribute name="InitialStateRetrievalTimeout">15000</attribute>
​ <attribute name="SyncReplTimeout">20000</attribute>
​ <attribute name="LockAcquisitionTimeout">15000</attribute>
​ <attribute name="ExposeManagementStatistics">true</attribute>
​
​ </mbean>
​</server>

				The CacheJmxWrapper is not the cache itself (i.e. you can not store stuff in it). Rather, as it's name implies, it's a wrapper around an org.jboss.cache.Cache that handles integration with JMX. CacheJmxWrapper exposes the org.jboss.cache.Cache via its CacheJmxWrapperMBean MBean interfaces Cache attribute; services that need the cache can obtain a reference to it via that attribute.
			

 ⁠29.2.3. Deployment Via a -jboss-beans.xml File

				Much like it can deploy MBean services described with a -service.xml, JBoss Enterprise Application Platform 5 can also deploy services that consist of Plain Old Java Objects (POJOs) if the POJOs are described using the JBoss Microcontainer schema in a -jboss-beans.xml file. You create such a file and deploy it, either directly in the deploy dir, or packaged in an ear or sar. Following is an example:
			
​
​<?xml version="1.0" encoding="UTF-8"?>
​
​<deployment xmlns="urn:jboss:bean-deployer:2.0">
​
​ <!-- First we create a Configuration object for the cache -->
​ <bean name="ExampleCacheConfig"
​ class="org.jboss.cache.config.Configuration">
​
​ <!-- Externally injected services -->
​ <property name="runtimeConfig">
​ <bean name="ExampleCacheRuntimeConfig" class="org.jboss.cache.config.RuntimeConfig">
​ <property name="transactionManager">
​ <inject bean="jboss:service=TransactionManager"
​ property="TransactionManager"/>
​ </property>
​ <property name="muxChannelFactory"><inject bean="JChannelFactory"/></property>
​ </bean>
​ </property>
​
​ <property name="multiplexerStack">udp</property>
​ <property name="clusterName">Example-EntityCache</property>
​ <property name="isolationLevel">REPEATABLE_READ</property>
​ <property name="cacheMode">REPL_SYNC</property>
​ <property name="initialStateRetrievalTimeout">15000</property>
​ <property name="syncReplTimeout">20000</property>
​ <property name="lockAcquisitionTimeout">15000</property>
​ <property name="exposeManagementStatistics">true</property>
​
​ </bean>
​
​ <!-- Factory to build the Cache. -->
​ <bean name="DefaultCacheFactory" class="org.jboss.cache.DefaultCacheFactory">
​ <constructor factoryClass="org.jboss.cache.DefaultCacheFactory" />
​ </bean>
​
​ <!-- The cache itself -->
​ <bean name="ExampleCache" class="org.jboss.cache.Cache">
​ <constructor factoryMethod="createCache">
​ <factory bean="DefaultCacheFactory"/>
​ <parameter class="org.jboss.cache.config.Configuration"><inject bean="ExampleCacheConfig"/></parameter>
​ <parameter class="boolean">false</false>
​ </constructor>
​ </bean>
​
​ <bean name="ExampleService" class="org.foo.ExampleService">
​ <property name="cache"><inject bean="ExampleCache"/></property>
​ </bean>
​
​</deployment>

				The bulk of the above is the creation of a JBoss Cache Configuration object; this is the same as what we saw in the configuration of the CacheManager service (see Section 29.1.1, “Editing the CacheManager Configuration”). In this case we are not using the CacheManager service as a cache factory, so instead we create our own factory bean and then use it to create the cache (the "ExampleCache" bean). The "ExampleCache" is then injected into a (fictitious) service that needs it.
			

				An interesting thing to note in the above example is the use of the RuntimeConfig object. External resources like a TransactionManager and a JGroups ChannelFactory that are visible to the microcontainer are dependency injected into the RuntimeConfig. The assumption here is that in some other deployment descriptor in the Enterprise Application Platform, the referenced beans have already been described.
			

				Using the configuration above, the "ExampleCache" cache will not be visible in JMX. Here's an alternate approach that results in the cache being bound into JMX:
			
​
​<?xml version="1.0" encoding="UTF-8"?>
​
​<deployment xmlns="urn:jboss:bean-deployer:2.0">
​
​ <!-- First we create a Configuration object for the cache -->
​ <bean name="ExampleCacheConfig"
​ class="org.jboss.cache.config.Configuration">
​
​ same as above
​
​ </bean>
​
​ <bean name="ExampleCacheJmxWrapper" class="org.jboss.cache.jmx.CacheJmxWrapper">
​
​ <annotation>@org.jboss.aop.microcontainer.aspects.jmx.JMX
​ (name="foo:service=ExampleCacheJmxWrapper",
​ exposedInterface=org.jboss.cache.jmx.CacheJmxWrapperMBean.class,
​ registerDirectly=true)
​ </annotation>
​
​ <property name="configuration"><inject bean="ExampleCacheConfig"/></property>
​
​ </bean>
​
​ <bean name="ExampleService" class="org.foo.ExampleService">
​ <property name="cache"><inject bean="ExampleCacheJmxWrapper" property="cache"/></property>
​ </bean>
​
​</deployment>

				Here the "ExampleCacheJmxWrapper" bean handles the task of creating the cache from the configuration. CacheJmxWrapper is a JBoss Cache class that provides an MBean interface for a cache. Adding an <annotation> element binds the JBoss Microcontainer @JMX annotation to the bean; that in turn results in JBoss Enterprise Application Platform registering the bean in JXM as part of the deployment process.
			

				The actual underlying org.jboss.cache.Cache instance is available from the CacheJmxWrapper via its cache property; the example shows how this can be used to inject the cache into the "ExampleService".
			

 ⁠Part IV. Legacy EJB Support

 ⁠Chapter 30. EJBs on JBoss

The EJB Container Configuration and Architecture

		The JBoss EJB container architecture employs a modular plug-in approach. All key aspects of the EJB container may be replaced by custom versions of a plug-in and/or an interceptor by a developer. This approach allows for fine tuned customization of the EJB container behavior to optimally suite your needs. Most of the EJB container behavior is configurable through the EJB JAR META-INF/jboss.xml descriptor and the default server-wide equivalent standardjboss.xml descriptor. We will look at various configuration capabilities throughout this chapter as we explore the container architecture.
	

 ⁠30.1. The EJB Client Side View

			We will begin our tour of the EJB container by looking at the client view of an EJB through the home and remote proxies. It is the responsibility of the container provider to generate the javax.ejb.EJBHome and javax.ejb.EJBObject for an EJB implementation. A client never references an EJB bean instance directly, but rather references the EJBHome which implements the bean home interface, and the EJBObject which implements the bean remote interface. Figure 30.1, “The composition of an EJBHome proxy in JBoss.” shows the composition of an EJB home proxy and its relation to the EJB deployment.
		

 ⁠[image: The composition of an EJBHome proxy in JBoss.]

Figure 30.1. The composition of an EJBHome proxy in JBoss.

			The numbered items in the figure are:
		
	
					The EJBDeployer (org.jboss.ejb.EJBDeployer) is invoked to deploy an EJB JAR. An EJBModule (org.jboss.ejb.EJBModule) is created to encapsulate the deployment metadata.
				

	
					The create phase of the EJBModule life cycle creates an EJBProxyFactory (org.jboss.ejb.EJBProxyFactory) that manages the creation of EJB home and remote interface proxies based on the EJBModuleinvoker-proxy-bindings metadata. There can be multiple proxy factories associated with an EJB and we will look at how this is defined shortly.
				

	
					The ProxyFactory constructs the logical proxies and binds the homes into JNDI. A logical proxy is composed of a dynamic Proxy (java.lang.reflect.Proxy), the home interfaces of the EJB that the proxy exposes, the ProxyHandler (java.lang.reflect.InvocationHandler) implementation in the form of the ClientContainer (org.jboss.proxy.ClientContainer), and the client side interceptors.
				

	
					The proxy created by the EJBProxyFactory is a standard dynamic proxy. It is a serializable object that proxies the EJB home and remote interfaces as defined in the EJBModule metadata. The proxy translates requests made through the strongly typed EJB interfaces into a detyped invocation using the ClientContainer handler associated with the proxy. It is the dynamic proxy instance that is bound into JNDI as the EJB home interface that clients lookup. When a client does a lookup of an EJB home, the home proxy is transported into the client VM along with the ClientContainer and its interceptors. The use of dynamic proxies avoids the EJB specific compilation step required by many other EJB containers.
				

	
					The EJB home interface is declared in the ejb-jar.xml descriptor and available from the EJBModule metadata. A key property of dynamic proxies is that they are seen to implement the interfaces they expose. This is true in the sense of Java's strong type system. A proxy can be cast to any of the home interfaces and reflection on the proxy provides the full details of the interfaces it proxies.
				

	
					The proxy delegates calls made through any of its interfaces to the ClientContainer handler. The single method required of the handler is: public Object invoke(Object proxy, Method m, Object[] args) throws Throwable. The EJBProxyFactory creates a ClientContainer and assigns this as the ProxyHandler. The ClientContainer's state consists of an InvocationContext (org.jboss.invocation.InvocationContext) and a chain of interceptors (org.jboss.proxy.Interceptor). The InvocationContext contains:
				
	
							the JMX ObjectName of the EJB container MBean the Proxy is associated with
						

	
							the javax.ejb.EJBMetaData for the EJB
						

	
							the JNDI name of the EJB home interface
						

	
							the transport specific invoker (org.jboss.invocation.Invoker)
						

					The interceptor chain consists of the functional units that make up the EJB home or remote interface behavior. This is a configurable aspect of an EJB as we will see when we discuss the jboss.xml descriptor, and the interceptor makeup is contained in the EJBModule metadata. Interceptors (org.jboss.proxy.Interceptor) handle the different EJB types, security, transactions and transport. You can add your own interceptors as well.
				

	
					The transport specific invoker associated with the proxy has an association to the server side detached invoker that handles the transport details of the EJB method invocation. The detached invoker is a server side component.
				

			The configuration of the client side interceptors is done using the jboss.xmlclient-interceptors element. When the ClientContainer invoke method is called it creates an un-typed Invocation (org.jboss.invocation.Invocation) to encapsulate request. This is then passed through the interceptor chain. The last interceptor in the chain will be the transport handler that knows how to send the request to the server and obtain the reply, taking care of the transport specific details.
		

			As an example of the client interceptor configuration usage, consider the default stateless session bean configuration found in the server/production/standardjboss.xml descriptor. Example 30.1, “The client-interceptors from the Standard Stateless SessionBean configuration.” shows the stateless-rmi-invoker client interceptors configuration referenced by the Standard Stateless SessionBean.
		

 ⁠Example 30.1. The client-interceptors from the Standard Stateless SessionBean configuration.
​<invoker-proxy-binding>
​ <name>stateless-rmi-invoker</name>
​ <invoker-mbean>jboss:service=invoker,type=jrmp</invoker-mbean>
​ <proxy-factory>org.jboss.proxy.ejb.ProxyFactory</proxy-factory>
​ <proxy-factory-config>
​ <client-interceptors>
​ <home>
​ <interceptor>org.jboss.proxy.ejb.HomeInterceptor</interceptor>
​ <interceptor>org.jboss.proxy.SecurityInterceptor</interceptor>
​ <interceptor>org.jboss.proxy.TransactionInterceptor</interceptor>
​ <interceptor call-by-value="false">
​ org.jboss.invocation.InvokerInterceptor
​ </interceptor>
​ <interceptor call-by-value="true">
​ org.jboss.invocation.MarshallingInvokerInterceptor
​ </interceptor>
​ </home>
​ <bean>
​ <interceptor>org.jboss.proxy.ejb.StatelessSessionInterceptor</interceptor>
​ <interceptor>org.jboss.proxy.SecurityInterceptor</interceptor>
​ <interceptor>org.jboss.proxy.TransactionInterceptor</interceptor>
​ <interceptor call-by-value="false">
​ org.jboss.invocation.InvokerInterceptor
​ </interceptor>
​ <interceptor call-by-value="true">
​ org.jboss.invocation.MarshallingInvokerInterceptor
​ </interceptor>
​ </bean>
​ </client-interceptors>
​ </proxy-factory-config>
​</invoker-proxy-binding>

​<container-configuration>
​ <container-name>Standard Stateless SessionBean</container-name>
​ <call-logging>false</call-logging>
​ <invoker-proxy-binding-name>stateless-rmi-invoker</invoker-proxy-binding-name>
​ <!-- ... -->
​</container-configuration>

			This is the client interceptor configuration for stateless session beans that is used in the absence of an EJB JAR META-INF/jboss.xml configuration that overrides these settings. The functionality provided by each client interceptor is:
		
	
					org.jboss.proxy.ejb.HomeInterceptor: handles the getHomeHandle, getEJBMetaData, and remove methods of the EJBHome interface locally in the client VM. Any other methods are propagated to the next interceptor.
				

	
					org.jboss.proxy.ejb.StatelessSessionInterceptor: handles the toString, equals, hashCode, getHandle, getEJBHome and isIdentical methods of the EJBObject interface locally in the client VM. Any other methods are propagated to the next interceptor.
				

	
					org.jboss.proxy.SecurityInterceptor: associates the current security context with the method invocation for use by other interceptors or the server.
				

	
					org.jboss.proxy.TransactionInterceptor: associates any active transaction with the invocation method invocation for use by other interceptors.
				

	
					org.jboss.invocation.InvokerInterceptor: encapsulates the dispatch of the method invocation to the transport specific invoker. It knows if the client is executing in the same VM as the server and will optimally route the invocation to a by reference invoker in this situation. When the client is external to the server VM, this interceptor delegates the invocation to the transport invoker associated with the invocation context. In the case of the Example 30.1, “The client-interceptors from the Standard Stateless SessionBean configuration.” configuration, this would be the invoker stub associated with the jboss:service=invoker,type=jrmp, the JRMPInvoker service.
				

					org.jboss.invocation.MarshallingInvokerInterceptor: extends the InvokerInterceptor to not optimize in-VM invocations. This is used to force call-by-value semantics for method calls.
				

 ⁠30.1.1. Specifying the EJB Proxy Configuration

				To specify the EJB invocation transport and the client proxy interceptor stack, you need to define an invoker-proxy-binding in either the EJB JAR META-INF/jboss.xml descriptor, or the server standardjboss.xml descriptor. There are several default invoker-proxy-bindings defined in the standardjboss.xml descriptor for the various default EJB container configurations and the standard RMI/JRMP and RMI/IIOP transport protocols. The current default proxy configurations are:
			
	
						entity-rmi-invoker: a RMI/JRMP configuration for entity beans
					

	
						clustered-entity-rmi-invoker: a RMI/JRMP configuration for clustered entity beans
					

	
						stateless-rmi-invoker: a RMI/JRMP configuration for stateless session beans
					

	
						clustered-stateless-rmi-invoker: a RMI/JRMP configuration for clustered stateless session beans
					

	
						stateful-rmi-invoker: a RMI/JRMP configuration for clustered stateful session beans
					

	
						clustered-stateful-rmi-invoker: a RMI/JRMP configuration for clustered stateful session beans
					

	
						message-driven-bean: a JMS invoker for message driven beans
					

	
						singleton-message-driven-bean: a JMS invoker for singleton message driven beans
					

	
						message-inflow-driven-bean: a JMS invoker for message inflow driven beans
					

	
						jms-message-inflow-driven-bean: a JMS inflow invoker for standard message driven beans
					

	
						iiop: a RMI/IIOP for use with session and entity beans.
					

				To introduce a new protocol binding, or customize the proxy factory, or the client side interceptor stack, requires defining a new invoker-proxy-binding. The full invoker-proxy-binding DTD fragment for the specification of the proxy configuration is given in Figure 30.2, “The invoker-proxy-binding schema”.
			

 ⁠[image: The invoker-proxy-binding schema]

Figure 30.2. The invoker-proxy-binding schema

				The invoker-proxy-binding child elements are:
			
	
						name: The name element gives a unique name for the invoker-proxy-binding. The name is used to reference the binding from the EJB container configuration when setting the default proxy binding as well as the EJB deployment level to specify addition proxy bindings. You will see how this is done when we look at the jboss.xml elements that control the server side EJB container configuration.
					

	
						invoker-mbean: The invoker-mbean element gives the JMX ObjectName string of the detached invoker MBean service the proxy invoker will be associated with.
					

	
						proxy-factory: The proxy-factory element specifies the fully qualified class name of the proxy factory, which must implement the org.jboss.ejb.EJBProxyFactory interface. The EJBProxyFactory handles the configuration of the proxy and the association of the protocol specific invoker and context. The current JBoss implementations of the EJBProxyFactory interface include:
					
	
								org.jboss.proxy.ejb.ProxyFactory: The RMI/JRMP specific factory.
							

	
								org.jboss.proxy.ejb.ProxyFactoryHA: The cluster RMI/JRMP specific factory.
							

	
								org.jboss.ejb.plugins.jms.JMSContainerInvoker: The JMS specific factory.
							

	
								org.jboss.proxy.ejb.IORFactory: The RMI/IIOP specific factory.
							

	
						proxy-factory-config: The proxy-factory-config element specifies additional information for the proxy-factory implementation. Unfortunately, its currently an unstructured collection of elements. Only a few of the elements apply to each type of proxy factory. The child elements break down into the three invocation protocols: RMI/RJMP, RMI/IIOP and JMS.
					

				For the RMI/JRMP specific proxy factories, org.jboss.proxy.ejb.ProxyFactory and org.jboss.proxy.ejb.ProxyFactoryHA the following elements apply:
			
	
						client-interceptors: The client-interceptors define the home, remote and optionally the multi-valued proxy interceptor stacks.
					

	
						web-class-loader: The web class loader defines the instance of the org.jboss.web.WebClassLoader that should be associated with the proxy for dynamic class loading.
					

				The following proxy-factory-config is for an entity bean accessed over RMI.
			
​<proxy-factory-config>
​ <client-interceptors>
​ <home>
​ <interceptor>org.jboss.proxy.ejb.HomeInterceptor</interceptor>
​ <interceptor>org.jboss.proxy.SecurityInterceptor</interceptor>
​ <interceptor>org.jboss.proxy.TransactionInterceptor</interceptor>
​ <interceptor call-by-value="false">
​ org.jboss.invocation.InvokerInterceptor
​ </interceptor>
​ <interceptor call-by-value="true">
​ org.jboss.invocation.MarshallingInvokerInterceptor
​ </interceptor>
​ </home>
​ <bean>
​ <interceptor>org.jboss.proxy.ejb.EntityInterceptor</interceptor>
​ <interceptor>org.jboss.proxy.SecurityInterceptor</interceptor>
​ <interceptor>org.jboss.proxy.TransactionInterceptor</interceptor>
​ <interceptor call-by-value="false">
​ org.jboss.invocation.InvokerInterceptor
​ </interceptor>
​ <interceptor call-by-value="true">
​ org.jboss.invocation.MarshallingInvokerInterceptor
​ </interceptor>
​ </bean>
​ <list-entity>
​ <interceptor>org.jboss.proxy.ejb.ListEntityInterceptor</interceptor>
​ <interceptor>org.jboss.proxy.SecurityInterceptor</interceptor>
​ <interceptor>org.jboss.proxy.TransactionInterceptor</interceptor>
​ <interceptor call-by-value="false">
​ org.jboss.invocation.InvokerInterceptor
​ </interceptor>
​ <interceptor call-by-value="true">
​ org.jboss.invocation.MarshallingInvokerInterceptor
​ </interceptor>
​ </list-entity>
​ </client-interceptors>
​</proxy-factory-config>

				For the RMI/IIOP specific proxy factory, org.jboss.proxy.ejb.IORFactory, the following elements apply:
			
	
						web-class-loader: The web class loader defines the instance of the org.jboss.web.WebClassLoader that should be associated with the proxy for dynamic class loading.
					

	
						poa: The portable object adapter usage. Valid values are per-servant and shared.
					

	
						register-ejbs-in-jnp-context: A flag indicating if the EJBs should be register in JNDI.
					

	
						jnp-context: The JNDI context in which to register EJBs.
					

	
						interface-repository-supported: This indicates whether or not a deployed EJB has its own CORBA interface repository.
					

				The following shows a proxy-factory-config for EJBs accessed over IIOP.
			
​<proxy-factory-config>
​ <web-class-loader>org.jboss.iiop.WebCL</web-class-loader>
​ <poa>per-servant</poa>
​ <register-ejbs-in-jnp-context>true</register-ejbs-in-jnp-context>
​ <jnp-context>iiop</jnp-context>
​</proxy-factory-config>

				For the JMS specific proxy factory, org.jboss.ejb.plugins.jms.JMSContainerInvoker, the following elements apply:
			
	
						MinimumSize: This specifies the minimum pool size for MDBs processing. This defaults to 1.
					

	
						MaximumSize: This specifies the upper limit to the number of concurrent MDBs that will be allowed for the JMS destination. This defaults to 15.
					

	
						MaxMessages: This specifies the maxMessages parameter value for the createConnectionConsumer method of javax.jms.QueueConnection and javax.jms.TopicConnection interfaces, as well as the maxMessages parameter value for the createDurableConnectionConsumer method of javax.jms.TopicConnection. It is the maximum number of messages that can be assigned to a server session at one time. This defaults to 1. This value should not be modified from the default unless your JMS provider indicates this is supported.
					

	
						KeepAliveMillis: This specifies the keep alive time interval in milliseconds for sessions in the session pool. The default is 30000 (30 seconds).
					

	
						MDBConfig: Configuration for the MDB JMS connection behavior. Among the elements supported are:
					
	
								ReconnectIntervalSec: The time to wait (in seconds) before trying to recover the connection to the JMS server.
							

	
								DeliveryActive: Whether or not the MDB is active at start up. The default is true.
							

	
								DLQConfig: Configuration for an MDB's dead letter queue, used when messages are redelivered too many times.
							

	
								JMSProviderAdapterJNDI: The JNDI name of the JMS provider adapter in the java:/ namespace. This is mandatory for an MDB and must implement org.jboss.jms.jndi.JMSProviderAdapter.
							

	
								ServerSessionPoolFactoryJNDI: The JNDI name of the session pool in the java:/ namespace of the JMS provider's session pool factory. This is mandatory for an MDB and must implement org.jboss.jms.asf.ServerSessionPoolFactory.
							

				Example 30.2, “A sample JMSContainerInvoker proxy-factory-config” gives a sample proxy-factory-config fragment taken from the standardjboss.xml descriptor.
			

 ⁠Example 30.2. A sample JMSContainerInvoker proxy-factory-config
​<proxy-factory-config>
​ <JMSProviderAdapterJNDI>DefaultJMSProvider</JMSProviderAdapterJNDI>
​ <ServerSessionPoolFactoryJNDI>StdJMSPool</ServerSessionPoolFactoryJNDI>
​ <MinimumSize>1</MinimumSize>
​ <MaximumSize>15</MaximumSize>
​ <KeepAliveMillis>30000</KeepAliveMillis>
​ <MaxMessages>1</MaxMessages>
​ <MDBConfig>
​ <ReconnectIntervalSec>10</ReconnectIntervalSec>
​ <DLQConfig>
​ <DestinationQueue>queue/DLQ</DestinationQueue>
​ <MaxTimesRedelivered>10</MaxTimesRedelivered>
​ <TimeToLive>0</TimeToLive>
​ </DLQConfig>
​ </MDBConfig>
​</proxy-factory-config>

 ⁠30.2. The EJB Server Side View

			Every EJB invocation must end up at a server hosted EJB container. In this section we will look at how invocations are transported to the server VM and find their way to the EJB container via the JMX bus.
		

 ⁠30.2.1. Detached Invokers - The Transport Middlemen

				We looked at the detached invoker architecture in the context of exposing RMI compatible interfaces of MBean services earlier. Here we will look at how detached invokers are used to expose the EJB container home and bean interfaces to clients. The generic view of the invoker architecture is presented in Figure 30.3, “The transport invoker server side architecture”.
			

 ⁠[image: The transport invoker server side architecture]

Figure 30.3. The transport invoker server side architecture

				For each type of home proxy there is a binding to an invoker and its associated transport protocol. A container may have multiple invocation protocols active simultaneously. In the jboss.xml file, an invoker-proxy-binding-name maps to an invoker-proxy-binding/name element. At the container-configuration level this specifies the default invoker that will be used for EJBs deployed to the container. At the bean level, the invoker-bindings specify one or more invokers to use with the EJB container MBean.
			

				When one specifies multiple invokers for a given EJB deployment, the home proxy must be given a unique JNDI binding location. This is specified by the invoker/jndi-name element value. Another issue when multiple invokers exist for an EJB is how to handle remote homes or interfaces obtained when the EJB calls other beans. Any such interfaces need to use the same invoker used to call the outer EJB in order for the resulting remote homes and interfaces to be compatible with the proxy the client has initiated the call through. The invoker/ejb-ref elements allow one to map from a protocol independent ENC ejb-ref to the home proxy binding for ejb-ref target EJB home that matches the referencing invoker type.
			

				An example of using a custom JRMPInvoker MBean that enables compressed sockets for session beans can be found in the org.jboss.test.jrmp package of the testsuite. The following example illustrates the custom JRMPInvoker configuration and its mapping to a stateless session bean.
			
​<server>
​ <mbean code="org.jboss.invocation.jrmp.server.JRMPInvoker"
​ name="jboss:service=invoker,type=jrmp,socketType=CompressionSocketFactory">
​ <attribute name="RMIObjectPort">4445</attribute>
​ <attribute name="RMIClientSocketFactory">
​ org.jboss.test.jrmp.ejb.CompressionClientSocketFactory
​ </attribute>
​ <attribute name="RMIServerSocketFactory">
​ org.jboss.test.jrmp.ejb.CompressionServerSocketFactory
​ </attribute>
​</mbean>
​ </server>

				Here the default JRMPInvoker has been customized to bind to port 4445 and to use custom socket factories that enable compression at the transport level.
			
​<?xml version="1.0"?>
​<!DOCTYPE jboss PUBLIC
​ "-//JBoss//DTD JBOSS 3.2//EN"
​ "http://www.jboss.org/j2ee/dtd/jboss_3_2.dtd">
​<!-- The jboss.xml descriptor for the jrmp-comp.jar ejb unit -->
​<jboss>
​ <enterprise-beans>
​ <session>
​ <ejb-name>StatelessSession</ejb-name>
​ <configuration-name>Standard Stateless SessionBean</configuration-name>
​ <invoker-bindings>
​ <invoker>
​ <invoker-proxy-binding-name>
​ stateless-compression-invoker
​ </invoker-proxy-binding-name>
​ <jndi-name>jrmp-compressed/StatelessSession</jndi-name>
​ </invoker>
​ </invoker-bindings>
​ </session>
​ </enterprise-beans>
​
​ <invoker-proxy-bindings>
​ <invoker-proxy-binding>
​ <name>stateless-compression-invoker</name>
​ <invoker-mbean>
​ jboss:service=invoker,type=jrmp,socketType=CompressionSocketFactory
​ </invoker-mbean>
​ <proxy-factory>org.jboss.proxy.ejb.ProxyFactory</proxy-factory>
​ <proxy-factory-config>
​ <client-interceptors>
​ <home>
​ <interceptor>org.jboss.proxy.ejb.HomeInterceptor</interceptor>
​ <interceptor>org.jboss.proxy.SecurityInterceptor</interceptor>
​ <interceptor>org.jboss.proxy.TransactionInterceptor</interceptor>
​ <interceptor>org.jboss.invocation.InvokerInterceptor</interceptor>
​ </home>
​ <bean>
​ <interceptor>
​ org.jboss.proxy.ejb.StatelessSessionInterceptor
​ </interceptor>
​ <interceptor>org.jboss.proxy.SecurityInterceptor</interceptor>
​ <interceptor>org.jboss.proxy.TransactionInterceptor</interceptor>
​ <interceptor>org.jboss.invocation.InvokerInterceptor</interceptor>
​ </bean>
​ </client-interceptors>
​ </proxy-factory-config>
​ </invoker-proxy-binding>
​ </invoker-proxy-bindings>
​</jboss>

				The StatelessSession EJB invoker-bindings settings specify that the stateless-compression-invoker will be used with the home interface bound under the JNDI name jrmp-compressed/StatelessSession. The stateless-compression-invoker is linked to the custom JRMP invoker we just declared.
			

				The following example, org.jboss.test.hello testsuite package, is an example of using the HttpInvoker to configure a stateless session bean to use the RMI/HTTP protocol.
			
​<?xml version="1.0" encoding="UTF-8"?>
​<!DOCTYPE jboss PUBLIC
​ "-//JBoss//DTD JBOSS 3.2//EN"
​ "http://www.jboss.org/j2ee/dtd/jboss_3_2.dtd">
​<jboss>
​ <enterprise-beans>
​ <session>
​ <ejb-name>HelloWorldViaHTTP</ejb-name>
​ <jndi-name>helloworld/HelloHTTP</jndi-name>
​ <invoker-bindings>
​ <invoker>
​ <invoker-proxy-binding-name>
​ stateless-http-invoker
​ </invoker-proxy-binding-name>
​ </invoker>
​ </invoker-bindings>
​ </session>
​ </enterprise-beans>
​ <invoker-proxy-bindings>
​ <!-- A custom invoker for RMI/HTTP -->
​ <invoker-proxy-binding>
​ <name>stateless-http-invoker</name>
​ <invoker-mbean>jboss:service=invoker,type=http</invoker-mbean>
​ <proxy-factory>org.jboss.proxy.ejb.ProxyFactory</proxy-factory>
​ <proxy-factory-config>
​ <client-interceptors>
​ <home>
​ <interceptor>org.jboss.proxy.ejb.HomeInterceptor</interceptor>
​ <interceptor>org.jboss.proxy.SecurityInterceptor</interceptor>
​ <interceptor>org.jboss.proxy.TransactionInterceptor</interceptor>
​ <interceptor>org.jboss.invocation.InvokerInterceptor</interceptor>
​ </home>
​ <bean>
​ <interceptor>
​ org.jboss.proxy.ejb.StatelessSessionInterceptor
​ </interceptor>
​ <interceptor>org.jboss.proxy.SecurityInterceptor</interceptor>
​ <interceptor>org.jboss.proxy.TransactionInterceptor</interceptor>
​ <interceptor>org.jboss.invocation.InvokerInterceptor</interceptor>
​ </bean>
​ </client-interceptors>
​ </proxy-factory-config>
​ </invoker-proxy-binding>
​ </invoker-proxy-bindings>
​</jboss>

				Here a custom invoker-proxy-binding named stateless-http-invoker is defined. It uses the HttpInvoker MBean as the detached invoker. The jboss:service=invoker,type=http name is the default name of the HttpInvoker MBean as found in the http-invoker.sar/META-INF/jboss-service.xml descriptor, and its service descriptor fragment is show here:
			
​<!-- The HTTP invoker service configuration -->
​<mbean code="org.jboss.invocation.http.server.HttpInvoker"
​ name="jboss:service=invoker,type=http">
​ <!-- Use a URL of the form http://<hostname>:8080/invoker/EJBInvokerServlet
​ where <hostname> is InetAddress.getHostname value on which the server
​ is running. -->
​ <attribute name="InvokerURLPrefix">http://</attribute>
​ <attribute name="InvokerURLSuffix">:8080/invoker/EJBInvokerServlet</attribute>
​ <attribute name="UseHostName">true</attribute>
​</mbean>

				The client proxy posts the EJB invocation content to the EJBInvokerServlet URL specified in the HttpInvoker service configuration.
			

 ⁠30.2.2. The HA JRMPInvoker - Clustered RMI/JRMP Transport

				The org.jboss.invocation.jrmp.server.JRMPInvokerHA service is an extension of the JRMPInvoker that is a cluster aware invoker. The JRMPInvokerHA fully supports all of the attributes of the JRMPInvoker. This means that customized bindings of the port, interface and socket transport are available to clustered RMI/JRMP as well. For additional information on the clustering architecture and the implementation of the HA RMI proxies see the JBoss Clustering docs.
			

 ⁠30.2.3. The HA HttpInvoker - Clustered RMI/HTTP Transport

				The RMI/HTTP layer allows for software load balancing of the invocations in a clustered environment. An HA capable extension of the HTTP invoker has been added that borrows much of its functionality from the HA-RMI/JRMP clustering.
			

				To enable HA-RMI/HTTP you need to configure the invokers for the EJB container. This is done through either a jboss.xml descriptor, or the standardjboss.xml descriptor. Example 30.3, “A jboss.xml stateless session configuration for HA-RMI/HTTP” shows is an example of a stateless session configuration taken from the org.jboss.test.hello testsuite package.
			

 ⁠Example 30.3. A jboss.xml stateless session configuration for HA-RMI/HTTP
​<jboss>
​ <enterprise-beans>
​ <session>
​ <ejb-name>HelloWorldViaClusteredHTTP</ejb-name>
​ <jndi-name>helloworld/HelloHA-HTTP</jndi-name>
​ <invoker-bindings>
​ <invoker>
​ <invoker-proxy-binding-name>
​ stateless-httpHA-invoker
​ </invoker-proxy-binding-name>
​ </invoker>
​ </invoker-bindings>
​ <clustered>true</clustered>
​ </session>
​ </enterprise-beans>
​ <invoker-proxy-bindings>
​ <invoker-proxy-binding>
​ <name>stateless-httpHA-invoker</name>
​ <invoker-mbean>jboss:service=invoker,type=httpHA</invoker-mbean>
​ <proxy-factory>org.jboss.proxy.ejb.ProxyFactoryHA</proxy-factory>
​ <proxy-factory-config>
​ <client-interceptors>
​ <home>
​ <interceptor>org.jboss.proxy.ejb.HomeInterceptor</interceptor>
​ <interceptor>org.jboss.proxy.SecurityInterceptor</interceptor>
​ <interceptor>org.jboss.proxy.TransactionInterceptor</interceptor>
​ <interceptor>org.jboss.invocation.InvokerInterceptor</interceptor>
​ </home>
​ <bean>
​ <interceptor>
​ org.jboss.proxy.ejb.StatelessSessionInterceptor
​ </interceptor>
​ <interceptor>org.jboss.proxy.SecurityInterceptor</interceptor>
​ <interceptor>org.jboss.proxy.TransactionInterceptor</interceptor>
​ <interceptor>org.jboss.invocation.InvokerInterceptor</interceptor>
​ </bean>
​ </client-interceptors>
​ </proxy-factory-config>
​ </invoker-proxy-binding>
​ </invoker-proxy-bindings>
​</jboss>

				The stateless-httpHA-invoker invoker-proxy-binding references the jboss:service=invoker,type=httpHA invoker service. This service would be configured as shown below.
			
​<mbean code="org.jboss.invocation.http.server.HttpInvokerHA"
​ name="jboss:service=invoker,type=httpHA">
​ <!-- Use a URL of the form
​ http://<hostname>:8080/invoker/EJBInvokerHAServlet
​ where <hostname> is InetAddress.getHostname value on which the server
​ is running.
​ -->
​ <attribute name="InvokerURLPrefix">http://</attribute>
​ <attribute name="InvokerURLSuffix">:8080/invoker/EJBInvokerHAServlet</attribute>
​ <attribute name="UseHostName">true</attribute>
​</mbean>

				The URL used by the invoker proxy is the EJBInvokerHAServlet mapping as deployed on the cluster node. The HttpInvokerHA instances across the cluster form a collection of candidate http URLs that are made available to the client side proxy for failover and/or load balancing.
			

 ⁠30.3. The EJB Container

			An EJB container is the component that manages a particular class of EJB. In JBoss there is one instance of the org.jboss.ejb.Container created for each unique configuration of an EJB that is deployed. The actual object that is instantiated is a subclass of Container and the creation of the container instance is managed by the EJBDeployer MBean.
		

 ⁠30.3.1. EJBDeployer MBean

				The org.jboss.ejb.EJBDeployer MBean is responsible for the creation of EJB containers. Given an EJB JAR that is ready for deployment, the EJBDeployer will create and initialize the necessary EJB containers, one for each type of EJB. The configurable attributes of the EJBDeployer are:
			
	
						VerifyDeployments: a boolean flag indicating if the EJB verifier should be run. This validates that the EJBs in a deployment unit conform to the EJB 2.1 specification. Setting this to true is useful for ensuring your deployments are valid.
					

	
						VerifierVerbose: A boolean that controls the verbosity of any verification failures/warnings that result from the verification process.
					

	
						StrictVerifier: A boolean that enables/disables strict verification. When strict verification is enable an EJB will deploy only if verifier reports no errors.
					

	
						CallByValue: a boolean flag that indicates call by value semantics should be used by default.
					

	
						ValidateDTDs: a boolean flag that indicates if the ejb-jar.xml and jboss.xml descriptors should be validated against their declared DTDs. Setting this to true is useful for ensuring your deployment descriptors are valid.
					

	
						MetricsEnabled: a boolean flag that controls whether container interceptors marked with an metricsEnabled=true attribute should be included in the configuration. This allows one to define a container interceptor configuration that includes metrics type interceptors that can be toggled on and off.
					

	
						WebServiceName: The JMX ObjectName string of the web service MBean that provides support for the dynamic class loading of EJB classes.
					

	
						TransactionManagerServiceName: The JMX ObjectName string of the JTA transaction manager service. This must have an attribute named TransactionManager that returns that javax.transaction.TransactionManager instance.
					

				The deployer contains two central methods: deploy and undeploy. The deploy method takes a URL, which either points to an EJB JAR, or to a directory whose structure is the same as a valid EJB JAR (which is convenient for development purposes). Once a deployment has been made, it can be undeployed by calling undeploy on the same URL. A call to deploy with an already deployed URL will cause an undeploy, followed by deployment of the URL. JBoss has support for full re-deployment of both implementation and interface classes, and will reload any changed classes. This will allow you to develop and update EJBs without ever stopping a running server.
			

				During the deployment of the EJB JAR the EJBDeployer and its associated classes perform three main functions, verify the EJBs, create a container for each unique EJB, initialize the container with the deployment configuration information. We will talk about each function in the following sections.
			

 ⁠30.3.1.1. Verifying EJB deployments

					When the VerifyDeployments attribute of the EJBDeployer is true, the deployer performs a verification of EJBs in the deployment. The verification checks that an EJB meets EJB specification compliance. This entails validating that the EJB deployment unit contains the required home and remote, local home and local interfaces. It will also check that the objects appearing in these interfaces are of the proper types and that the required methods are present in the implementation class. This is a useful behavior that is enabled by default since there are a number of steps that an EJB developer and deployer must perform correctly to construct a proper EJB JAR, and it is easy to make a mistake. The verification stage attempts to catch any errors and fail the deployment with an error that indicates what needs to be corrected.
				

					Probably the most problematic aspect of writing EJBs is the fact that there is a disconnection between the bean implementation and its remote and home interfaces, as well as its deployment descriptor configuration. It is easy to have these separate elements get out of sync. One tool that helps eliminate this problem is XDoclet. It allows you to use custom JavaDoc-like tags in the EJB bean implementation class to generate the related bean interfaces, deployment descriptors and related objects. See the XDoclet home page, http://sourceforge.net/projects/xdoclet for additional details.
				

 ⁠30.3.1.2. Deploying EJBs Into Containers

					The most important role performed by the EJBDeployer is the creation of an EJB container and the deployment of the EJB into the container. The deployment phase consists of iterating over EJBs in an EJB JAR, and extracting the bean classes and their metadata as described by the ejb-jar.xml and jboss.xml deployment descriptors. For each EJB in the EJB JAR, the following steps are performed:
				
	
							Create subclass of org.jboss.ejb.Container depending on the type of the EJB: stateless, stateful, BMP entity, CMP entity, or message driven. The container is assigned a unique ClassLoader from which it can load local resources. The uniqueness of the ClassLoader is also used to isolate the standard java:comp JNDI namespace from other J2EE components.
						

	
							Set all container configurable attributes from a merge of the jboss.xml and standardjboss.xml descriptors.
						

	
							Create and add the container interceptors as configured for the container.
						

	
							Associate the container with an application object. This application object represents a J2EE enterprise application and may contain multiple EJBs and web contexts.
						

					If all EJBs are successfully deployed, the application is started which in turn starts all containers and makes the EJBs available to clients. If any EJB fails to deploy, a deployment exception is thrown and the deployment module is failed.
				

 ⁠30.3.1.3. Container configuration information

					JBoss externalizes most if not all of the setup of the EJB containers using an XML file that conforms to the jboss_4_0.dtd. The section DTD that relates to container configuration information is shown in Figure 30.4, “The jboss_4_0 DTD elements related to container configuration.”.
				

 ⁠[image: The jboss_4_0 DTD elements related to container configuration.]

Figure 30.4. The jboss_4_0 DTD elements related to container configuration.

					The container-configuration element and its subelements specify container configuration settings for a type of container as given by the container-name element. Each configuration specifies information such as the default invoker type, the container interceptor makeup, instance caches/pools and their sizes, persistence manager, security, and so on. Because this is a large amount of information that requires a detailed understanding of the JBoss container architecture, JBoss ships with a standard configuration for the four types of EJBs. This configuration file is called standardjboss.xml and it is located in the conf directory of any configuration file set that uses EJBs. The following is a sample of container-configuration from standardjboss.xml.
				
​<container-configuration>
​ <container-name>Standard CMP 2.x EntityBean</container-name>
​ <call-logging>false</call-logging>
​ <invoker-proxy-binding-name>entity-rmi-invoker</invoker-proxy-binding-name>
​ <sync-on-commit-only>false</sync-on-commit-only>
​ <insert-after-ejb-post-create>false</insert-after-ejb-post-create>
​ <call-ejb-store-on-clean>true</call-ejb-store-on-clean>
​ <container-interceptors>
​ <interceptor>org.jboss.ejb.plugins.ProxyFactoryFinderInterceptor</interceptor>
​ <interceptor>org.jboss.ejb.plugins.LogInterceptor</interceptor>
​ <interceptor>org.jboss.ejb.plugins.SecurityInterceptor</interceptor>
​ <interceptor>org.jboss.ejb.plugins.TxInterceptorCMT</interceptor>
​ <interceptor>org.jboss.ejb.plugins.CallValidationInterceptor</interceptor>
​ <interceptor metricsEnabled="true">
​ org.jboss.ejb.plugins.MetricsInterceptor
​ </interceptor>
​ <interceptor>org.jboss.ejb.plugins.EntityCreationInterceptor</interceptor>
​ <interceptor>org.jboss.ejb.plugins.EntityLockInterceptor</interceptor>
​ <interceptor>org.jboss.ejb.plugins.EntityInstanceInterceptor</interceptor>
​ <interceptor>org.jboss.ejb.plugins.EntityReentranceInterceptor</interceptor>
​ <interceptor>
​ org.jboss.resource.connectionmanager.CachedConnectionInterceptor
​ </interceptor>
​ <interceptor>org.jboss.ejb.plugins.EntitySynchronizationInterceptor</interceptor>
​ <interceptor>org.jboss.ejb.plugins.cmp.jdbc.JDBCRelationInterceptor</interceptor>
​ </container-interceptors>
​ <instance-pool>org.jboss.ejb.plugins.EntityInstancePool</instance-pool>
​ <instance-cache>org.jboss.ejb.plugins.InvalidableEntityInstanceCache</instance-cache>
​ <persistence-manager>org.jboss.ejb.plugins.cmp.jdbc.JDBCStoreManager</persistence-manager>
​ <locking-policy>org.jboss.ejb.plugins.lock.QueuedPessimisticEJBLock</locking-policy>
​ <container-cache-conf>
​ <cache-policy>org.jboss.ejb.plugins.LRUEnterpriseContextCachePolicy</cache-policy>
​ <cache-policy-conf>
​ <min-capacity>50</min-capacity>
​ <max-capacity>1000000</max-capacity>
​ <overager-period>300</overager-period>
​ <max-bean-age>600</max-bean-age>
​ <resizer-period>400</resizer-period>
​ <max-cache-miss-period>60</max-cache-miss-period>
​ <min-cache-miss-period>1</min-cache-miss-period>
​ <cache-load-factor>0.75</cache-load-factor>
​ </cache-policy-conf>
​ </container-cache-conf>
​ <container-pool-conf>
​ <MaximumSize>100</MaximumSize>
​ </container-pool-conf>
​ <commit-option>B</commit-option>
​</container-configuration>

					These two examples demonstrate how extensive the container configuration options are. The container configuration information can be specified at two levels. The first is in the standardjboss.xml file contained in the configuration file set directory. The second is at the EJB JAR level. By placing a jboss.xml file in the EJB JAR META-INF directory, you can specify either overrides for container configurations in the standardjboss.xml file, or entirely new named container configurations. This provides great flexibility in the configuration of containers. As you have seen, all container configuration attributes have been externalized and as such are easily modifiable. Knowledgeable developers can even implement specialized container components, such as instance pools or caches, and easily integrate them with the standard container configurations to optimize behavior for a particular application or environment.
				

					How an EJB deployment chooses its container configuration is based on the explicit or implicit jboss/enterprise-beans/<type>/configuration-name element. The configuration-name element is a link to a container-configurations/container-configuration element. It specifies which container configuration to use for the referring EJB. The link is from a configuration-name element to a container-name element.
				

					You are able to specify container configurations per class of EJB by including a container-configuration element in the EJB definition. Typically one does not define completely new container configurations, although this is supported. The typical usage of a jboss.xml level container-configuration is to override one or more aspects of a container-configuration coming from the standardjboss.xml descriptor. This is done by specifying container-configuration that references the name of an existing standardjboss.xmlcontainer-configuration/container-name as the value for the container-configuration/extends attribute. The following example shows an example of defining a new Secured Stateless SessionBean configuration that is an extension of the Standard Stateless SessionBean configuration.
				
​<?xml version="1.0"?>
​<jboss>
​ <enterprise-beans>
​ <session>
​ <ejb-name>EchoBean</ejb-name>
​ <configuration-name>Secured Stateless SessionBean</configuration-name>
​ <!-- ... -->
​ </session>
​ </enterprise-beans>
​ <container-configurations>
​ <container-configuration extends="Standard Stateless SessionBean">
​ <container-name>Secured Stateless SessionBean</container-name>
​ <!-- Override the container security domain -->
​ <security-domain>java:/jaas/my-security-domain</security-domain>
​ </container-configuration>
​ </container-configurations>
​</jboss>

					If an EJB does not provide a container configuration specification in the deployment unit EJB JAR, the container factory chooses a container configuration from the standardjboss.xml descriptor based on the type of the EJB. So, in reality there is an implicit configuration-name element for every type of EJB, and the mappings from the EJB type to default container configuration name are as follows:
				
	
							container-managed persistence entity version 2.0 = Standard CMP 2.x EntityBean
						

	
							container-managed persistence entity version 1.1 = Standard CMP EntityBean
						

	
							bean-managed persistence entity = Standard BMP EntityBean
						

	
							stateless session = Standard Stateless SessionBean
						

	
							stateful session = Standard Stateful SessionBean
						

	
							message driven = Standard Message Driven Bean
						

					It is not necessary to indicate which container configuration an EJB is using if you want to use the default based on the bean type. It probably provides for a more self-contained descriptor to include the configuration-name element, but this is purely a matter of style.
				

					Now that you know how to specify which container configuration an EJB is using and can define a deployment unit level override, we now will look at the container-configuration child elements in the following sections. A number of the elements specify interface class implementations whose configuration is affected by other elements, so before starting in on the configuration elements you need to understand the org.jboss.metadata.XmlLoadable interface.
				

					The XmlLoadable interface is a simple interface that consists of a single method. The interface definition is:
				
​import org.w3c.dom.Element;
​public interface XmlLoadable
​{
​ public void importXml(Element element) throws Exception;
​}

					Classes implement this interface to allow their configuration to be specified via an XML document fragment. The root element of the document fragment is what would be passed to the importXml method. You will see a few examples of this as the container configuration elements are described in the following sections.
				

 ⁠30.3.1.3.1. The container-name element

						The container-name element specifies a unique name for a given configuration. EJBs link to a particular container configuration by setting their configuration-name element to the value of the container-name for the container configuration.
					

 ⁠30.3.1.3.2. The call-logging element

						The call-logging element expects a boolean (true or false) as its value to indicate whether or not the LogInterceptor should log method calls to a container. This is somewhat obsolete with the change to log4j, which provides a fine-grained logging API.
					

 ⁠30.3.1.3.3. The invoker-proxy-binding-name element

						The invoker-proxy-binding-name element specifies the name of the default invoker to use. In the absence of a bean level invoker-bindings specification, the invoker-proxy-binding whose name matches the invoker-proxy-binding-name element value will be used to create home and remote proxies.
					

 ⁠30.3.1.3.4. The sync-on-commit-only element

						This configures a performance optimization that will cause entity bean state to be synchronized with the database only at commit time. Normally the state of all the beans in a transaction would need to be synchronized when an finder method is called or when an remove method is called, for example.
					

 ⁠30.3.1.3.5. insert-after-ejb-post-create

						This is another entity bean optimization which cause the database insert command for a new entity bean to be delayed until the ejbPostCreate method is called. This allows normal CMP fields as well as CMR fields to be set in a single insert, instead of the default insert followed by an update, which allows removes the requirement for relation ship fields to allow null values.
					

 ⁠30.3.1.3.6. call-ejb-store-on-clean

						By the specification the container is required to call ejbStore method on an entity bean instance when transaction commits even if the instance was not modified in the transaction. Setting this to false will cause JBoss to only call ejbStore for dirty objects.
					

 ⁠30.3.1.3.7. The container-interceptors Element

						The container-interceptors element specifies one or more interceptor elements that are to be configured as the method interceptor chain for the container. The value of the interceptor element is a fully qualified class name of an org.jboss.ejb.Interceptor interface implementation. The container interceptors form a linked-list structure through which EJB method invocations pass. The first interceptor in the chain is invoked when the MBeanServer passes a method invocation to the container. The last interceptor invokes the business method on the bean. We will discuss the Interceptor interface latter in this chapter when we talk about the container plug-in framework. Generally, care must be taken when changing an existing standard EJB interceptor configuration as the EJB contract regarding security, transactions, persistence, and thread safety derive from the interceptors.
					

 ⁠30.3.1.3.8. The instance-pool element

						The instance-pool element specifies the fully qualified class name of an org.jboss.ejb.InstancePool interface implementation to use as the container InstancePool. We will discuss the InstancePool interface in detail latter in this chapter when we talk about the container plug-in framework.
					

 ⁠30.3.1.3.9. The container-pool-conf element

						The container-pool-conf is passed to the InstancePool implementation class given by the instance-pool element if it implements the XmlLoadable interface. All current JBoss InstancePool implementations derive from the org.jboss.ejb.plugins.AbstractInstancePool class which provides support for elements shown in Figure 30.5, “The container-pool-conf element DTD”.
					

 ⁠[image: The container-pool-conf element DTD]

Figure 30.5. The container-pool-conf element DTD

	
								MinimumSize: The MinimumSize element gives the minimum number of instances to keep in the pool, although JBoss does not currently seed an InstancePool to the MinimumSize value.
							

	
								MaximumSize: The MaximumSize specifies the maximum number of pool instances that are allowed. The default use of MaximumSize may not be what you expect. The pool MaximumSize is the maximum number of EJB instances that are kept available, but additional instances can be created if the number of concurrent requests exceeds the MaximumSize value.
							

	
								strictMaximumSize: If you want to limit the maximum concurrency of an EJB to the pool MaximumSize, you need to set the strictMaximumSize element to true. When strictMaximumSize is true, only MaximumSize EJB instances may be active. When there are MaximumSize active instances, any subsequent requests will be blocked until an instance is freed back to the pool. The default value for strictMaximumSize is false.
							

	
								strictTimeout: How long a request blocks waiting for an instance pool object is controlled by the strictTimeout element. The strictTimeout defines the time in milliseconds to wait for an instance to be returned to the pool when there are MaximumSize active instances. A value less than or equal to 0 will mean not to wait at all. When a request times out waiting for an instance a java.rmi.ServerException is generated and the call aborted. This is parsed as a Long so the maximum possible wait time is 9,223,372,036,854,775,807 or about 292,471,208 years, and this is the default value.
							

 ⁠30.3.1.3.10. The instance-cache element

						The instance-cache element specifies the fully qualified class name of the org.jboss.ejb.InstanceCache interface implementation. This element is only meaningful for entity and stateful session beans as these are the only EJB types that have an associated identity. We will discuss the InstanceCache interface in detail latter in this chapter when we talk about the container plug-in framework.
					

 ⁠30.3.1.3.11. The container-cache-conf element

						The container-cache-conf element is passed to the InstanceCache implementation if it supports the XmlLoadable interface. All current JBoss InstanceCache implementations derive from the org.jboss.ejb.plugins.AbstractInstanceCache class which provides support for the XmlLoadable interface and uses the cache-policy child element as the fully qualified class name of an org.jboss.util.CachePolicy implementation that is used as the instance cache store. The cache-policy-conf child element is passed to the CachePolicy implementation if it supports the XmlLoadable interface. If it does not, the cache-policy-conf will silently be ignored.
					

						There are two JBoss implementations of CachePolicy used by the standardjboss.xml configuration that support the current array of cache-policy-conf child elements. The classes are org.jboss.ejb.plugins.LRUEnterpriseContextCachePolicy and org.jboss.ejb.plugins.LRUStatefulContextCachePolicy. The LRUEnterpriseContextCachePolicy is used by entity bean containers while the LRUStatefulContextCachePolicy is used by stateful session bean containers. Both cache policies support the following cache-policy-conf child elements, shown in Figure 30.6, “The container-cache-conf element DTD”.
					

 ⁠[image: The container-cache-conf element DTD]

Figure 30.6. The container-cache-conf element DTD

	
								min-capacity: specifies the minimum capacity of this cache
							

	
								max-capacity: specifies the maximum capacity of the cache, which cannot be less than min-capacity.
							

	
								overager-period: specifies the period in seconds between runs of the overager task. The purpose of the overager task is to see if the cache contains beans with an age greater than the max-bean-age element value. Any beans meeting this criterion will be passivated.
							

	
								max-bean-age: specifies the maximum period of inactivity in seconds a bean can have before it will be passivated by the overager process.
							

	
								resizer-period: specifies the period in seconds between runs of the resizer task. The purpose of the resizer task is to contract or expand the cache capacity based on the remaining three element values in the following way. When the resizer task executes it checks the current period between cache misses, and if the period is less than the min-cache-miss-period value the cache is expanded up to the max-capacity value using the cache-load-factor. If instead the period between cache misses is greater than the max-cache-miss-period value the cache is contracted using the cache-load-factor.
							

	
								max-cache-miss-period: specifies the time period in seconds in which a cache miss should signal that the cache capacity be contracted. It is equivalent to the minimum miss rate that will be tolerated before the cache is contracted.
							

	
								min-cache-miss-period: specifies the time period in seconds in which a cache miss should signal that the cache capacity be expanded. It is equivalent to the maximum miss rate that will be tolerated before the cache is expanded.
							

	
								cache-load-factor: specifies the factor by which the cache capacity is contracted and expanded. The factor should be less than 1. When the cache is contracted the capacity is reduced so that the current ratio of beans to cache capacity is equal to the cache-load-factor value. When the cache is expanded the new capacity is determined as current-capacity * 1/cache-load-factor. The actual expansion factor may be as high as 2 based on an internal algorithm based on the number of cache misses. The higher the cache miss rate the closer the true expansion factor will be to 2.
							

						The LRUStatefulContextCachePolicy also supports the remaining child elements:
					
	
								remover-period: specifies the period in seconds between runs of the remover task. The remover task removes passivated beans that have not been accessed in more than max-bean-life seconds. This task prevents stateful session beans that were not removed by users from filling up the passivation store.
							

	
								max-bean-life: specifies the maximum period in seconds that a bean can exist inactive. After this period, as a result, the bean will be removed from the passivation store.
							

						An alternative cache policy implementation is the org.jboss.ejb.plugins.NoPassivationCachePolicy class, which simply never passivates instances. It uses an in-memory HashMap implementation that never discards instances unless they are explicitly removed. This class does not support any of the cache-policy-conf configuration elements.
					

 ⁠30.3.1.3.12. The persistence-manager element

						The persistence-manager element value specifies the fully qualified class name of the persistence manager implementation. The type of the implementation depends on the type of EJB. For stateful session beans it must be an implementation of the org.jboss.ejb.StatefulSessionPersistenceManager interface. For BMP entity beans it must be an implementation of the org.jboss.ejb.EntityPersistenceManager interface, while for CMP entity beans it must be an implementation of the org.jboss.ejb.EntityPersistenceStore interface.
					

 ⁠30.3.1.3.13. The web-class-loader Element

						The web-class-loader element specifies a subclass of org.jboss.web.WebClassLoader that is used in conjunction with the WebService MBean to allow dynamic loading of resources and classes from deployed ears, EJB JARs and WARs. A WebClassLoader is associated with a Container and must have an org.jboss.mx.loading.UnifiedClassLoader as its parent. It overrides the getURLs() method to return a different set of URLs for remote loading than what is used for local loading.
					

						WebClassLoader has two methods meant to be overridden by subclasses: getKey() and getBytes(). The latter is a no-op in this implementation and should be overridden by subclasses with bytecode generation ability, such as the classloader used by the iiop module.
					

						WebClassLoader subclasses must have a constructor with the same signature as the WebClassLoader(ObjectName containerName, UnifiedClassLoader parent) constructor.
					

 ⁠30.3.1.3.14. The locking-policy element

						The locking-policy element gives the fully qualified class name of the EJB lock implementation to use. This class must implement the org.jboss.ejb.BeanLock interface. The current JBoss versions include:
					
	
								org.jboss.ejb.plugins.lock.QueuedPessimisticEJBLock: an implementation that holds threads awaiting the transactional lock to be freed in a fair FIFO queue. Non-transactional threads are also put into this wait queue as well. This class pops the next waiting transaction from the queue and notifies only those threads waiting associated with that transaction. The QueuedPessimisticEJBLock is the current default used by the standard configurations.
							

	
								org.jboss.ejb.plugins.lock.QueuedPessimisticEJBLockNoADE: This behaves the same as the QueuedPessimisticEJBLock except that deadlock detection is disabled.
							

	
								org.jboss.ejb.plugins.lock.SimpleReadWriteEJBLock: This lock allows multiple read locks concurrently. Once a writer has requested the lock, future read-lock requests whose transactions do not already have the read lock will block until all writers are done; then all the waiting readers will concurrently go (depending on the reentrant setting / methodLock). A reader who promotes gets first crack at the write lock, ahead of other waiting writers. If there is already a reader that is promoting, we throw an inconsistent read exception. Of course, writers have to wait for all read-locks to release before taking the write lock.
							

	
								org.jboss.ejb.plugins.lock.NoLock: an anti-locking policy used with the instance per transaction container configurations.
							

						Locking and deadlock detection will be discussed in more detail in Section 30.4, “Entity Bean Locking and Deadlock Detection”.
					

 ⁠30.3.1.3.15. The commit-option and optiond-refresh-rate elements

						The commit-option value specifies the EJB entity bean persistent storage commit option. It must be one of A, B, C or D.
					
	
								A: the container caches the beans state between transactions. This option assumes that the container is the only user accessing the persistent store. This assumption allows the container to synchronize the in-memory state from the persistent storage only when absolutely necessary. This occurs before the first business method executes on a found bean or after the bean is passivated and reactivated to serve another business method. This behavior is independent of whether the business method executes inside a transaction context.
							

	
								B: the container caches the bean state between transactions. However, unlike option A the container does not assume exclusive access to the persistent store. Therefore, the container will synchronize the in-memory state at the beginning of each transaction. Thus, business methods executing in a transaction context do not see much benefit from the container caching the bean, whereas business methods executing outside a transaction context (transaction attributes Never, NotSupported or Supports) access the cached (and potentially invalid) state of the bean.
							

	
								C: the container does not cache bean instances. The in-memory state must be synchronized on every transaction start. For business methods executing outside a transaction the synchronization is still performed, but the ejbLoad executes in the same transaction context as that of the caller.
							

	
								D: is a JBoss-specific commit option which is not described in the EJB specification. It is a lazy read scheme where bean state is cached between transactions as with option A, but the state is periodically re-synchronized with that of the persistent store. The default time between reloads is 30 seconds, but may configured using the optiond-refresh-rate element.
							

 ⁠30.3.1.3.16. The security-domain element

						The security-domain element specifies the JNDI name of the object that implements the org.jboss.security.AuthenticationManager and org.jboss.security.RealmMapping interfaces. It is more typical to specify the security-domain under the jboss root element so that all EJBs in a given deployment are secured in the same manner. However, it is possible to configure the security domain for each bean configuration.
					

 ⁠30.3.1.3.17. cluster-config

						The cluster-config element allows to specify cluster specific settings for all EJBs that use the container configuration. Specification of the cluster configuration may be done at the container configuration level or at the individual EJB deployment level.
					

 ⁠[image: The cluster-config and related elements]

Figure 30.7. The cluster-config and related elements

	
								partition-name: The partition-name element indicates where to find the org.jboss.ha.framework.interfaces.HAPartition interface to be used by the container to exchange clustering information. This is not the full JNDI name under which HAPartition is bound. Rather, it should correspond to the PartitionName attribute of the ClusterPartitionMBean service that is managing the desired cluster. The actual JNDI name of the HAPartition binding will be formed by appending /HASessionState/ to the partition-name value. The default value is DefaultPartition.
							

	
								home-load-balance-policy: The home-load-balance-policy element indicates the Java class name to be used to load balance calls made on the home proxy. The class must implement the org.jboss.ha.framework.interface.LoadBalancePolicy interface. The default policy is org.jboss.ha.framework.interfaces.RoundRobin.
							

	
								bean-load-balance-policy: The bean-load-balance-policy element indicates the java class name to be used to load balance calls in the bean proxy. The class must implement the org.jboss.ha.framework.interface.LoadBalancePolicy interface. For entity beans and stateful session beans, the default is org.jboss.ha.framework.interfaces.FirstAvailavble. For stateless session beans, org.jboss.ha.framework.interfaces.RoundRobin.
							

	
								session-state-manager-jndi-name: The session-state-manager-jndi-name element indicates the name of the org.jboss.ha.framework.interfaces.HASessionState to be used by the container as a backend for state session management in the cluster. Unlike the partition-name element, this is a JNDI name under which the HASessionState implementation is bound. The default location used is /HASessionState/Default.
							

 ⁠30.3.1.3.18. The depends element

						The depends element gives a JMX ObjectName of a service on which the container or EJB depends. Specification of explicit dependencies on other services avoids having to rely on the deployment order being after the required services are started.
					

 ⁠30.3.2. Container Plug-in Framework

				The JBoss EJB container uses a framework pattern that allows one to change implementations of various aspects of the container behavior. The container itself does not perform any significant work other than connecting the various behavioral components together. Implementations of the behavioral components are referred to as plug-ins, because you can plug in a new implementation by changing a container configuration. Examples of plug-in behavior you may want to change include persistence management, object pooling, object caching, container invokers and interceptors. There are four subclasses of the org.jboss.ejb.Container class, each one implementing a particular bean type:
			
	
						org.jboss.ejb.EntityContainer: handles javax.ejb.EntityBean types
					

	
						org.jboss.ejb.StatelessSessionContainer: handles Stateless javax.ejb.SessionBean types
					

	
						org.jboss.ejb.StatefulSessionContainer: handles Stateful javax.ejb.SessionBean types
					

	
						org.jboss.ejb.MessageDrivenContainer handles javax.ejb.MessageDrivenBean types
					

				The EJB containers delegate much of their behavior to components known as container plug-ins. The interfaces that make up the container plug-in points include the following:
			
	
						org.jboss.ejb.ContainerPlugin
					

	
						org.jboss.ejb.ContainerInvoker
					

	
						org.jboss.ejb.Interceptor
					

	
						org.jboss.ejb.InstancePool
					

	
						org.jboss.ejb.InstanceCache
					

	
						org.jboss.ejb.EntityPersistanceManager
					

	
						org.jboss.ejb.EntityPersistanceStore
					

	
						org.jboss.ejb.StatefulSessionPersistenceManager
					

				The container's main responsibility is to manage its plug-ins. This means ensuring that the plug-ins have all the information they need to implement their functionality.
			

 ⁠30.3.2.1. org.jboss.ejb.ContainerPlugin

					The ContainerPlugin interface is the parent interface of all container plug-in interfaces. It provides a callback that allows a container to provide each of its plug-ins a pointer to the container the plug-in is working on behalf of. The ContainerPlugin interface is given below.
				

 ⁠Example 30.4. The org.jboss.ejb.ContainerPlugin interface
​public interface ContainerPlugin
​ extends Service, AllowedOperationsFlags
​{
​ /** co
​ * This callback is set by the container so that the plugin
​ * may access its container
​ *
​ * @param con the container which owns the plugin
​ */
​ public void setContainer(Container con);
​}

 ⁠30.3.2.2. org.jboss.ejb.Interceptor

					The Interceptor interface enables one to build a chain of method interceptors through which each EJB method invocation must pass. The Interceptor interface is given below.
				

 ⁠Example 30.5. The org.jboss.ejb.Interceptor interface
​import org.jboss.invocation.Invocation;
​
​public interface Interceptor
​ extends ContainerPlugin
​{
​ public void setNext(Interceptor interceptor);
​ public Interceptor getNext();
​ public Object invokeHome(Invocation mi) throws Exception;
​ public Object invoke(Invocation mi) throws Exception;
​}

					All interceptors defined in the container configuration are created and added to the container interceptor chain by the EJBDeployer. The last interceptor is not added by the deployer but rather by the container itself because this is the interceptor that interacts with the EJB bean implementation.
				

					The order of the interceptor in the chain is important. The idea behind ordering is that interceptors that are not tied to a particular EnterpriseContext instance are positioned before interceptors that interact with caches and pools.
				

					Implementers of the Interceptor interface form a linked-list like structure through which the Invocation object is passed. The first interceptor in the chain is invoked when an invoker passes a Invocation to the container via the JMX bus. The last interceptor invokes the business method on the bean. There are usually on the order of five interceptors in a chain depending on the bean type and container configuration. Interceptor semantic complexity ranges from simple to complex. An example of a simple interceptor would be LoggingInterceptor, while a complex example is EntitySynchronizationInterceptor.
				

					One of the main advantages of an interceptor pattern is flexibility in the arrangement of interceptors. Another advantage is the clear functional distinction between different interceptors. For example, logic for transaction and security is cleanly separated between the TXInterceptor and SecurityInterceptor respectively.
				

					If any of the interceptors fail, the call is terminated at that point. This is a fail-quickly type of semantic. For example, if a secured EJB is accessed without proper permissions, the call will fail as the SecurityInterceptor before any transactions are started or instances caches are updated.
				

 ⁠30.3.2.3. org.jboss.ejb.InstancePool

					An InstancePool is used to manage the EJB instances that are not associated with any identity. The pools actually manage subclasses of the org.jboss.ejb.EnterpriseContext objects that aggregate un-associated bean instances and related data.
				

 ⁠Example 30.6. The org.jboss.ejb.InstancePool interface
​public interface InstancePool
​ extends ContainerPlugin
​{
​ /**
​ * Get an instance without identity. Can be used
​ * by finders and create-methods, or stateless beans
​ *
​ * @return Context /w instance
​ * @exception RemoteException
​ */
​ public EnterpriseContext get() throws Exception;
​
​ /** Return an anonymous instance after invocation.
​ *
​ * @param ctx
​ */
​ public void free(EnterpriseContext ctx);
​
​ /**
​ * Discard an anonymous instance after invocation.
​ * This is called if the instance should not be reused,
​ * perhaps due to some exception being thrown from it.
​ *
​ * @param ctx
​ */
​ public void discard(EnterpriseContext ctx);
​
​ /**
​ * Return the size of the pool.
​ *
​ * @return the size of the pool.
​ */
​ public int getCurrentSize();
​
​ /**
​ * Get the maximum size of the pool.
​ *
​ * @return the size of the pool.
​ */
​ public int getMaxSize();
​}

					Depending on the configuration, a container may choose to have a certain size of the pool contain recycled instances, or it may choose to instantiate and initialize an instance on demand.
				

					The pool is used by the InstanceCache implementation to acquire free instances for activation, and it is used by interceptors to acquire instances to be used for Home interface methods (create and finder calls).
				

 ⁠30.3.2.4. org.jboss.ebj.InstanceCache

					The container InstanceCache implementation handles all EJB-instances that are in an active state, meaning bean instances that have an identity attached to them. Only entity and stateful session beans are cached, as these are the only bean types that have state between method invocations. The cache key of an entity bean is the bean primary key. The cache key for a stateful session bean is the session id.
				

 ⁠Example 30.7. The org.jboss.ejb.InstanceCache interface
​public interface InstanceCache
​ extends ContainerPlugin
​{
​ /**
​ * Gets a bean instance from this cache given the identity.
​ * This method may involve activation if the instance is not
​ * in the cache.
​ * Implementation should have O(1) complexity.
​ * This method is never called for stateless session beans.
​ *
​ * @param id the primary key of the bean
​ * @return the EnterpriseContext related to the given id
​ * @exception RemoteException in case of illegal calls
​ * (concurrent / reentrant), NoSuchObjectException if
​ * the bean cannot be found.
​ * @see #release
​ */
​ public EnterpriseContext get(Object id)
​	throws RemoteException, NoSuchObjectException;
​
​ /**
​ * Inserts an active bean instance after creation or activation.
​ * Implementation should guarantee proper locking and O(1) complexity.
​ *
​ * @param ctx the EnterpriseContext to insert in the cache
​ * @see #remove
​ */
​ public void insert(EnterpriseContext ctx);
​
​ /**
​ * Releases the given bean instance from this cache.
​ * This method may passivate the bean to get it out of the cache.
​ * Implementation should return almost immediately leaving the
​ * passivation to be executed by another thread.
​ *
​ * @param ctx the EnterpriseContext to release
​ * @see #get
​ */
​ public void release(EnterpriseContext ctx);
​
​ /**
​ * Removes a bean instance from this cache given the identity.
​ * Implementation should have O(1) complexity and guarantee
​ * proper locking.
​ *
​ * @param id the primary key of the bean
​ * @see #insert
​ */
​ public void remove(Object id);
​
​ /**
​ * Checks whether an instance corresponding to a particular
​ * id is active
​ *
​ * @param id the primary key of the bean
​ * @see #insert
​ */
​ public boolean isActive(Object id);
​}

					In addition to managing the list of active instances, the InstanceCache is also responsible for activating and passivating instances. If an instance with a given identity is requested, and it is not currently active, the InstanceCache must use the InstancePool to acquire a free instance, followed by the persistence manager to activate the instance. Similarly, if the InstanceCache decides to passivate an active instance, it must call the persistence manager to passivate it and release the instance to the InstancePool.
				

 ⁠30.3.2.5. org.jboss.ejb.EntityPersistenceManager

					The EntityPersistenceManager is responsible for the persistence of EntityBeans. This includes the following:
				
	
							Creating an EJB instance in a storage
						

	
							Loading the state of a given primary key into an EJB instance
						

	
							Storing the state of a given EJB instance
						

	
							Removing an EJB instance from storage
						

	
							Activating the state of an EJB instance
						

	
							Passivating the state of an EJB instance
						

 ⁠Example 30.8. The org.jboss.ejb.EntityPersistenceManager interface
​public interface EntityPersistenceManager
​ extends ContainerPlugin
​{
​ /**
​ * Returns a new instance of the bean class or a subclass of the
​ * bean class.
​ *
​ * @return the new instance
​ */
​ Object createBeanClassInstance() throws Exception;
​
​ /**
​ * This method is called whenever an entity is to be created. The
​ * persistence manager is responsible for calling the ejbCreate method
​ * on the instance and to handle the results properly wrt the persistent
​ * store.
​ *
​ * @param m the create method in the home interface that was
​ * called
​ * @param args any create parameters
​ * @param instance the instance being used for this create call
​ */
​ void createEntity(Method m,
​		 Object[] args,
​		 EntityEnterpriseContext instance)
​	throws Exception;
​
​ /**
​ * This method is called whenever an entity is to be created. The
​ * persistence manager is responsible for calling the ejbPostCreate method
​ * on the instance and to handle the results properly wrt the persistent
​ * store.
​ *
​ * @param m the create method in the home interface that was
​ * called
​ * @param args any create parameters
​ * @param instance the instance being used for this create call
​ */
​ void postCreateEntity(Method m,
​			 Object[] args,
​			 EntityEnterpriseContext instance)
​	throws Exception;
​
​ /**
​ * This method is called when single entities are to be found. The
​ * persistence manager must find out whether the wanted instance is
​ * available in the persistence store, and if so it shall use the
​ * ContainerInvoker plugin to create an EJBObject to the instance, which
​ * is to be returned as result.
​ *
​ * @param finderMethod the find method in the home interface that was
​ * called
​ * @param args any finder parameters
​ * @param instance the instance to use for the finder call
​ * @return an EJBObject representing the found entity
​ */
​ Object findEntity(Method finderMethod,
​		 Object[] args,
​		 EntityEnterpriseContext instance)
​	throws Exception;
​
​ /**
​ * This method is called when collections of entities are to be
​ * found. The persistence manager must find out whether the wanted
​ * instances are available in the persistence store, and if so it
​ * shall use the ContainerInvoker plugin to create EJBObjects to
​ * the instances, which are to be returned as result.
​ *
​ * @param finderMethod the find method in the home interface that was
​ * called
​ * @param args any finder parameters
​ * @param instance the instance to use for the finder call
​ * @return an EJBObject collection representing the found
​ * entities
​ */
​ Collection findEntities(Method finderMethod,
​			 Object[] args,
​			 EntityEnterpriseContext instance)
​ throws Exception;
​
​ /**
​ * This method is called when an entity shall be activated. The
​ * persistence manager must call the ejbActivate method on the
​ * instance.
​ *
​ * @param instance the instance to use for the activation
​ *
​ * @throws RemoteException thrown if some system exception occurs
​ */
​ void activateEntity(EntityEnterpriseContext instance)
​	throws RemoteException;
​
​ /**
​ * This method is called whenever an entity shall be load from the
​ * underlying storage. The persistence manager must load the state
​ * from the underlying storage and then call ejbLoad on the
​ * supplied instance.
​ *
​ * @param instance the instance to synchronize
​ *
​ * @throws RemoteException thrown if some system exception occurs
​ */
​ void loadEntity(EntityEnterpriseContext instance)
​	throws RemoteException;
​
​ /**
​ * This method is used to determine if an entity should be stored.
​ *
​ * @param instance the instance to check
​ * @return true, if the entity has been modified
​ * @throws Exception thrown if some system exception occurs
​ */
​ boolean isModified(EntityEnterpriseContext instance) throws Exception;
​
​ /**
​ * This method is called whenever an entity shall be stored to the
​ * underlying storage. The persistence manager must call ejbStore
​ * on the supplied instance and then store the state to the
​ * underlying storage.
​ *
​ * @param instance the instance to synchronize
​ *
​ * @throws RemoteException thrown if some system exception occurs
​ */
​ void storeEntity(EntityEnterpriseContext instance)
​	throws RemoteException;
​
​ /**
​ * This method is called when an entity shall be passivate. The
​ * persistence manager must call the ejbPassivate method on the
​ * instance.
​ *
​ * @param instance the instance to passivate
​ *
​ * @throws RemoteException thrown if some system exception occurs
​ */
​ void passivateEntity(EntityEnterpriseContext instance)
​	throws RemoteException;
​
​ /**
​ * This method is called when an entity shall be removed from the
​ * underlying storage. The persistence manager must call ejbRemove
​ * on the instance and then remove its state from the underlying
​ * storage.
​ *
​ * @param instance the instance to remove
​ *
​ * @throws RemoteException thrown if some system exception occurs
​ * @throws RemoveException thrown if the instance could not be removed
​ */
​ void removeEntity(EntityEnterpriseContext instance)
​	throws RemoteException, RemoveException;
​}

 ⁠30.3.2.6. The org.jboss.ejb.EntityPersistenceStore interface

					As per the EJB 2.1 specification, JBoss supports two entity bean persistence semantics: container managed persistence (CMP) and bean managed persistence (BMP). The CMP implementation uses an implementation of the org.jboss.ejb.EntityPersistanceStore interface. By default this is the org.jboss.ejb.plugins.cmp.jdbc.JDBCStoreManager which is the entry point for the CMP2 persistence engine. The EntityPersistanceStore interface is shown below.
				

 ⁠Example 30.9. The org.jboss.ejb.EntityPersistanceStore interface
​public interface EntityPersistenceStore
​ extends ContainerPlugin
​{
​ /**
​ * Returns a new instance of the bean class or a subclass of the
​ * bean class.
​ *
​ * @return the new instance
​ *
​ * @throws Exception
​ */
​ Object createBeanClassInstance()
​ throws Exception;
​
​ /**
​ * Initializes the instance context.
​ *
​ * <p>This method is called before createEntity, and should
​ * reset the value of all cmpFields to 0 or null.
​ *
​ * @param ctx
​ *
​ * @throws RemoteException
​ */
​ void initEntity(EntityEnterpriseContext ctx);
​
​ /**
​ * This method is called whenever an entity is to be created. The
​ * persistence manager is responsible for handling the results
​ * properly wrt the persistent store.
​ *
​ * @param m the create method in the home interface that was
​ * called
​ * @param args any create parameters
​ * @param instance the instance being used for this create call
​ * @return The primary key computed by CMP PM or null for BMP
​ *
​ * @throws Exception
​ */
​ Object createEntity(Method m,
​			Object[] args,
​			EntityEnterpriseContext instance)
​ throws Exception;
​
​ /**
​ * This method is called when single entities are to be found. The
​ * persistence manager must find out whether the wanted instance
​ * is available in the persistence store, if so it returns the
​ * primary key of the object.
​ *
​ * @param finderMethod the find method in the home interface that was
​ * called
​ * @param args any finder parameters
​ * @param instance the instance to use for the finder call
​ * @return a primary key representing the found entity
​ *
​ * @throws RemoteException thrown if some system exception occurs
​ * @throws FinderException thrown if some heuristic problem occurs
​ */
​ Object findEntity(Method finderMethod,
​		 Object[] args,
​		 EntityEnterpriseContext instance)
​ throws Exception;
​
​ /**
​ * This method is called when collections of entities are to be
​ * found. The persistence manager must find out whether the wanted
​ * instances are available in the persistence store, and if so it
​ * must return a collection of primaryKeys.
​ *
​ * @param finderMethod the find method in the home interface that was
​ * called
​ * @param args any finder parameters
​ * @param instance the instance to use for the finder call
​ * @return an primary key collection representing the found
​ * entities
​ *
​ * @throws RemoteException thrown if some system exception occurs
​ * @throws FinderException thrown if some heuristic problem occurs
​ */
​ Collection findEntities(Method finderMethod,
​			 Object[] args,
​			 EntityEnterpriseContext instance)
​ throws Exception;
​
​ /**
​ * This method is called when an entity shall be activated.
​ *
​ * <p>With the PersistenceManager factorization most EJB
​ * calls should not exists However this calls permits us to
​ * introduce optimizations in the persistence store. Particularly
​ * the context has a "PersistenceContext" that a PersistenceStore
​ * can use (JAWS does for smart updates) and this is as good a
​ * callback as any other to set it up.
​ * @param instance the instance to use for the activation
​ *
​ * @throws RemoteException thrown if some system exception occurs
​ */
​ void activateEntity(EntityEnterpriseContext instance)
​ throws RemoteException;
​
​ /**
​ * This method is called whenever an entity shall be load from the
​ * underlying storage. The persistence manager must load the state
​ * from the underlying storage and then call ejbLoad on the
​ * supplied instance.
​ *
​ * @param instance the instance to synchronize
​ *
​ * @throws RemoteException thrown if some system exception occurs
​ */
​ void loadEntity(EntityEnterpriseContext instance)
​ throws RemoteException;
​
​ /**
​ * This method is used to determine if an entity should be stored.
​ *
​ * @param instance the instance to check
​ * @return true, if the entity has been modified
​ * @throws Exception thrown if some system exception occurs
​ */
​ boolean isModified(EntityEnterpriseContext instance)
​ throws Exception;
​
​ /**
​ * This method is called whenever an entity shall be stored to the
​ * underlying storage. The persistence manager must call ejbStore
​ * on the supplied instance and then store the state to the
​ * underlying storage.
​ *
​ * @param instance the instance to synchronize
​ *
​ * @throws RemoteException thrown if some system exception occurs
​ */
​ void storeEntity(EntityEnterpriseContext instance)
​ throws RemoteException;
​
​ /**
​ * This method is called when an entity shall be passivate. The
​ * persistence manager must call the ejbPassivate method on the
​ * instance.
​ *
​ * <p>See the activate discussion for the reason for
​ * exposing EJB callback * calls to the store.
​ *
​ * @param instance the instance to passivate
​ *
​ * @throws RemoteException thrown if some system exception occurs
​ */
​ void passivateEntity(EntityEnterpriseContext instance)
​ throws RemoteException;
​
​ /**
​ * This method is called when an entity shall be removed from the
​ * underlying storage. The persistence manager must call ejbRemove
​ * on the instance and then remove its state from the underlying
​ * storage.
​ *
​ * @param instance the instance to remove
​ *
​ * @throws RemoteException thrown if some system exception occurs
​ * @throws RemoveException thrown if the instance could not be removed
​ */
​ void removeEntity(EntityEnterpriseContext instance)
​ throws RemoteException, RemoveException;
​}

					The default BMP implementation of the EntityPersistenceManager interface is org.jboss.ejb.plugins.BMPPersistenceManager. The BMP persistence manager is fairly simple since all persistence logic is in the entity bean itself. The only duty of the persistence manager is to perform container callbacks.
				

 ⁠30.3.2.7. org.jboss.ejb.StatefulSessionPersistenceManager

					The StatefulSessionPersistenceManager is responsible for the persistence of stateful SessionBeans. This includes the following:
				
	
							Creating stateful sessions in a storage
						

	
							Activating stateful sessions from a storage
						

	
							Passivating stateful sessions to a storage
						

	
							Removing stateful sessions from a storage
						

					The StatefulSessionPersistenceManager interface is shown below.
				

 ⁠Example 30.10. The org.jboss.ejb.StatefulSessionPersistenceManager interface
​public interface StatefulSessionPersistenceManager
​ extends ContainerPlugin
​{
​ public void createSession(Method m, Object[] args,
​			 StatefulSessionEnterpriseContext ctx)
​	throws Exception;
​
​ public void activateSession(StatefulSessionEnterpriseContext ctx)
​	throws RemoteException;
​
​ public void passivateSession(StatefulSessionEnterpriseContext ctx)
​	throws RemoteException;
​
​ public void removeSession(StatefulSessionEnterpriseContext ctx)
​	throws RemoteException, RemoveException;
​
​ public void removePassivated(Object key);
​}

					The default implementation of the StatefulSessionPersistenceManager interface is org.jboss.ejb.plugins.StatefulSessionFilePersistenceManager. As its name implies, StatefulSessionFilePersistenceManager utilizes the file system to persist stateful session beans. More specifically, the persistence manager serializes beans in a flat file whose name is composed of the bean name and session id with a .ser extension. The persistence manager restores a bean's state during activation and respectively stores its state during passivation from the bean's .ser file.
				

 ⁠30.4. Entity Bean Locking and Deadlock Detection

			This section provides information on what entity bean locking is and how entity beans are accessed and locked within JBoss. It also describes the problems you may encounter as you use entity beans within your system and how to combat these issues. Deadlocking is formally defined and examined. And, finally, we walk you through how to fine tune your system in terms of entity bean locking.
		

 ⁠30.4.1. Why JBoss Needs Locking

				Locking is about protecting the integrity of your data. Sometimes you need to be sure that only one user can update critical data at one time. Sometimes, access to sensitive objects in your system need to be serialized so that data is not corrupted by concurrent reads and writes. Databases traditionally provide this sort of functionality with transactional scopes and table and row locking facilities.
			

				Entity beans are a great way to provide an object-oriented interface to relational data. Beyond that, they can improve performance by taking the load off of the database through caching and delaying updates until absolutely needed so that the database efficiency can be maximized. But, with caching, data integrity is a problem, so some form of application server level locking is needed for entity beans to provide the transaction isolation properties that you are used to with traditional databases.
			

 ⁠30.4.2. Entity Bean Lifecycle

				With the default configuration of JBoss there is only one active instance of a given entity bean in memory at one time. This applies for every cache configuration and every type of commit-option. The lifecycle for this instance is different for every commit-option though.
			
	
						For commit option A, this instance is cached and used between transactions.
					

	
						For commit option B, this instance is cached and used between transactions, but is marked as dirty at the end of a transaction. This means that at the start of a new transaction ejbLoad must be called.
					

	
						For commit option C, this instance is marked as dirty, released from the cache, and marked for passivation at the end of a transaction.
					

	
						For commit option D, a background refresh thread periodically calls ejbLoad on stale beans within the cache. Otherwise, this option works in the same way as A.
					

				When a bean is marked for passivation, the bean is placed in a passivation queue. Each entity bean container has a passivation thread that periodically passivates beans that have been placed in the passivation queue. A bean is pulled out of the passivation queue and reused if the application requests access to a bean of the same primary key.
			

				On an exception or transaction rollback, the entity bean instance is thrown out of cache entirely. It is not put into the passivation queue and is not reused by an instance pool. Except for the passivation queue, there is no entity bean instance pooling.
			

 ⁠30.4.3. Default Locking Behavior

				Entity bean locking is totally decoupled from the entity bean instance. The logic for locking is totally isolated and managed in a separate lock object. Because there is only one allowed instance of a given entity bean active at one time, JBoss employs two types of locks to ensure data integrity and to conform to the EJB spec.
			
	
						Method Lock: The method lock ensures that only one thread of execution at a time can invoke on a given Entity Bean. This is required by the EJB spec.
					

	
						Transaction Lock: A transaction lock ensures that only one transaction at a time has access to a give Entity Bean. This ensures the ACID properties of transactions at the application server level. Since, by default, there is only one active instance of any given Entity Bean at one time, JBoss must protect this instance from dirty reads and dirty writes. So, the default entity bean locking behavior will lock an entity bean within a transaction until it completes. This means that if any method at all is invoked on an entity bean within a transaction, no other transaction can have access to this bean until the holding transaction commits or is rolled back.
					

 ⁠30.4.4. Pluggable Interceptors and Locking Policy

				We saw that the basic entity bean lifecycle and behavior is defined by the container configuration defined in standardjboss.xml descriptor. Let us look at the container-interceptors definition for the Standard CMP 2.x EntityBean configuration.
			
​<container-interceptors>
​ <interceptor>org.jboss.ejb.plugins.ProxyFactoryFinderInterceptor</interceptor>
​ <interceptor>org.jboss.ejb.plugins.LogInterceptor</interceptor>
​ <interceptor>org.jboss.ejb.plugins.SecurityInterceptor</interceptor>
​ <interceptor>org.jboss.ejb.plugins.TxInterceptorCMT</interceptor>
​ <interceptor>org.jboss.ejb.plugins.CallValidationInterceptor</interceptor>
​ <interceptor metricsEnabled="true">org.jboss.ejb.plugins.MetricsInterceptor</interceptor>
​ <interceptor>org.jboss.ejb.plugins.EntityCreationInterceptor</interceptor>
​ <interceptor>org.jboss.ejb.plugins.EntityLockInterceptor</interceptor>
​ <interceptor>org.jboss.ejb.plugins.EntityInstanceInterceptor</interceptor>
​ <interceptor>org.jboss.ejb.plugins.EntityReentranceInterceptor</interceptor>
​ <interceptor>org.jboss.resource.connectionmanager.CachedConnectionInterceptor</interceptor>
​ <interceptor>org.jboss.ejb.plugins.EntitySynchronizationInterceptor</interceptor>
​ <interceptor>org.jboss.ejb.plugins.cmp.jdbc.JDBCRelationInterceptor</interceptor>
​</container-interceptors>

				The interceptors shown above define most of the behavior of the entity bean. Below is an explanation of the interceptors that are relevant to this section.
			
	
						EntityLockInterceptor: This interceptor's role is to schedule any locks that must be acquired before the invocation is allowed to proceed. This interceptor is very lightweight and delegates all locking behavior to a pluggable locking policy.
					

	
						EntityInstanceInterceptor: The job of this interceptor is to find the entity bean within the cache or create a new one. This interceptor also ensures that there is only one active instance of a bean in memory at one time.
					

	
						EntitySynchronizationInterceptor: The role of this interceptor is to synchronize the state of the cache with the underlying storage. It does this with the ejbLoad and ejbStore semantics of the EJB specification. In the presence of a transaction this is triggered by transaction demarcation. It registers a callback with the underlying transaction monitor through the JTA interfaces. If there is no transaction the policy is to store state upon returning from invocation. The synchronization polices A, B and C of the specification are taken care of here as well as the JBoss specific commit-option D.
					

 ⁠30.4.5. Deadlock

				Finding deadlock problems and resolving them is the topic of this section. We will describe what deadlocking MBeans, how you can detect it within your application, and how you can resolve deadlocks. Deadlock can occur when two or more threads have locks on shared resources. Figure 30.8, “Deadlock definition example” illustrates a simple deadlock scenario. Here, Thread 1 has the lock for Bean A, and Thread 2 has the lock for Bean B. At a later time, Thread 1 tries to lock Bean B and blocks because Thread 2 has it. Likewise, as Thread 2 tries to lock A it also blocks because Thread 1 has the lock. At this point both threads are deadlocked waiting for access to the resource already locked by the other thread.
			

 ⁠[image: Deadlock definition example]

Figure 30.8. Deadlock definition example

				The default locking policy of JBoss is to lock an Entity bean when an invocation occurs in the context of a transaction until the transaction completes. Because of this, it is very easy to encounter deadlock if you have long running transactions that access many entity beans, or if you are not careful about ordering the access to them. Various techniques and advanced configurations can be used to avoid deadlocking problems. They are discussed later in this section.
			

 ⁠30.4.5.1. Deadlock Detection

					Fortunately, JBoss is able to perform deadlock detection. JBoss holds a global internal graph of waiting transactions and what transactions they are blocking on. Whenever a thread determines that it cannot acquire an entity bean lock, it figures out what transaction currently holds the lock on the bean and add itself to the blocked transaction graph. An example of what the graph may look like is given in Table 30.1, “An example blocked transaction table”.
				

 ⁠Table 30.1. An example blocked transaction table
	 Blocking TX 	 Tx that holds needed lock
	 Tx1 	 Tx2
	 Tx3 	 Tx4
	 Tx4 	 Tx1

					Before the thread actually blocks it tries to detect whether there is deadlock problem. It does this by traversing the block transaction graph. As it traverses the graph, it keeps track of what transactions are blocked. If it sees a blocked node more than once in the graph, then it knows there is deadlock and will throw an ApplicationDeadlockException. This exception will cause a transaction rollback which will cause all locks that transaction holds to be released.
				

 ⁠30.4.5.2. Catching ApplicationDeadlockException

					Since JBoss can detect application deadlock, you should write your application so that it can retry a transaction if the invocation fails because of the ApplicationDeadlockException. Unfortunately, this exception can be deeply embedded within a RemoteException, so you have to search for it in your catch block. For example:
				
​try {
​ // ...
​} catch (RemoteException ex) {
​ Throwable cause = null;
​ RemoteException rex = ex;
​ while (rex.detail != null) {
​ cause = rex.detail;
​ if (cause instanceof ApplicationDeadlockException) {
​	 // ... We have deadlock, force a retry of the transaction.
​ break;
​ }
​ if (cause instanceof RemoteException) {
​ rex = (RemoteException)cause;
​ }
​ }
​}

 ⁠30.4.5.3. Viewing Lock Information

					The EntityLockMonitor MBean service allows one to view basic locking statistics as well as printing out the state of the transaction locking table. To enable this monitor uncomment its configuration in the conf/jboss-service.xml:
				
​<mbean code="org.jboss.monitor.EntityLockMonitor"
​ name="jboss.monitor:name=EntityLockMonitor"/>

					The EntityLockMonitor has no configurable attributes. It does have the following read-only attributes:
				
	
							MedianWaitTime: The median value of all times threads had to wait to acquire a lock.
						

	
							AverageContenders: The ratio of the total number of contentions to the sum of all threads that had to wait for a lock.
						

	
							TotalContentions: The total number of threads that had to wait to acquire the transaction lock. This happens when a thread attempts to acquire a lock that is associated with another transaction
						

	
							MaxContenders: The maximum number of threads that were waiting to acquire the transaction lock.
						

					It also has the following operations:
				
	
							clearMonitor: This operation resets the lock monitor state by zeroing all counters.
						

	
							printLockMonitor: This operation prints out a table of all EJB locks that lists the ejbName of the bean, the total time spent waiting for the lock, the count of times the lock was waited on and the number of transactions that timed out waiting for the lock.
						

 ⁠30.4.6. Advanced Configurations and Optimizations

				The default locking behavior of entity beans can cause deadlock. Since access to an entity bean locks the bean into the transaction, this also can present a huge performance/throughput problem for your application. This section walks through various techniques and configurations that you can use to optimize performance and reduce the possibility of deadlock.
			

 ⁠30.4.6.1. Short-lived Transactions

					Make your transactions as short-lived and fine-grained as possible. The shorter the transaction you have, the less likelihood you will have concurrent access collisions and your application throughput will go up.
				

 ⁠30.4.6.2. Ordered Access

					Ordering the access to your entity beans can help lessen the likelihood of deadlock. This means making sure that the entity beans in your system are always accessed in the same exact order. In most cases, user applications are just too complicated to use this approach and more advanced configurations are needed.
				

 ⁠30.4.6.3. Read-Only Beans

					Entity beans can be marked as read-only. When a bean is marked as read-only, it never takes part in a transaction. This means that it is never transactionally locked. Using commit-option D with this option is sometimes very useful when your read-only bean's data is sometimes updated by an external source.
				

					To mark a bean as read-only, use the read-only flag in the jboss.xml deployment descriptor.
				

 ⁠Example 30.11. Marking an entity bean read-only using jboss.xml
​<jboss>
​ <enterprise-beans>
​ <entity>
​ <ejb-name>MyEntityBean</ejb-name>
​ <jndi-name>MyEntityHomeRemote</jndi-name>
​ <read-only>True</read-only>
​ </entity>
​ </enterprise-beans>
​</jboss>

 ⁠30.4.6.4. Explicitly Defining Read-Only Methods

					After reading and understanding the default locking behavior of entity beans, you are probably wondering, "Why lock the bean if its not modifying the data?" JBoss allows you to define what methods on your entity bean are read only so that it will not lock the bean within the transaction if only these types of methods are called. You can define these read only methods within a jboss.xml deployment descriptor. Wildcards are allowed for method names. The following is an example of declaring all getter methods and the anotherReadOnlyMethod as read-only.
				

 ⁠Example 30.12. Defining entity bean methods as read only
​<jboss>
​ <enterprise-beans>
​ <entity>
​ <ejb-name>nextgen.EnterpriseEntity</ejb-name>
​ <jndi-name>nextgen.EnterpriseEntity</jndi-name>
​ <method-attributes>
​ <method>
​ <method-name>get*</method-name>
​ <read-only>true</read-only>
​ </method>
​ <method>
​ <method-name>anotherReadOnlyMethod</method-name>
​ <read-only>true</read-only>
​ </method>
​ </method-attributes>
​ </entity>
​ </enterprise-beans>
​</jboss>

 ⁠30.4.6.5. Instance Per Transaction Policy

					The Instance Per Transaction policy is an advanced configuration that can totally wipe away deadlock and throughput problems caused by JBoss's default locking policy. The default Entity Bean locking policy is to only allow one active instance of a bean. The Instance Per Transaction policy breaks this requirement by allocating a new instance of a bean per transaction and dropping this instance at the end of the transaction. Because each transaction has its own copy of the bean, there is no need for transaction based locking.
				

					This option does sound great but does have some drawbacks right now. First, the transactional isolation behavior of this option is equivalent to READ_COMMITTED. This can create repeatable reads when they are not desired. In other words, a transaction could have a copy of a stale bean. Second, this configuration option currently requires commit-option B or C which can be a performance drain since an ejbLoad must happen at the beginning of the transaction. But, if your application currently requires commit-option B or C anyways, then this is the way to go. The JBoss developers are currently exploring ways to allow commit-option A as well (which would allow the use of caching for this option).
				

					JBoss has container configurations named Instance Per Transaction CMP 2.x EntityBean and Instance Per Transaction BMP EntityBean defined in the standardjboss.xml that implement this locking policy. To use this configuration, you just have to reference the name of the container configuration to use with your bean in the jboss.xml deployment descriptor as show below.
				

 ⁠Example 30.13. An example of using the Instance Per Transaction policy.
​<jboss>
​ <enterprise-beans>
​ <entity>
​ <ejb-name>MyCMP2Bean</ejb-name>
​ <jndi-name>MyCMP2</jndi-name>
​ <configuration-name>
​ Instance Per Transaction CMP 2.x EntityBean
​ </configuration-name>
​ </entity>
​ <entity>
​ <ejb-name>MyBMPBean</ejb-name>
​ <jndi-name>MyBMP</jndi-name>
​ <configuration-name>
​ Instance Per Transaction BMP EntityBean
​ </configuration-name>
​ </entity>
​ </enterprise-beans>
​</jboss>

 ⁠30.4.7. Running Within a Cluster

				Currently there is no distributed locking capability for entity beans within the cluster. This functionality has been delegated to the database and must be supported by the application developer. For clustered entity beans, it is suggested to use commit-option B or C in combination with a row locking mechanism. For CMP, there is a row-locking configuration option. This option will use a SQL select for update when the bean is loaded from the database. With commit-option B or C, this implements a transactional lock that can be used across the cluster. For BMP, you must explicitly implement the select for update invocation within the BMP's ejbLoad method.
			

 ⁠30.4.8. Troubleshooting

				This section will describe some common locking problems and their solution.
			

 ⁠30.4.8.1. Locking Behavior Not Working

					Many JBoss users observe that locking does not seem to be working and see concurrent access to their beans, and thus dirty reads. Here are some common reasons for this:
				
	
							If you have custom container-configurations, make sure you have updated these configurations.
						

	
							Make absolutely sure that you have implemented equals and hashCode correctly from custom/complex primary key classes.
						

	
							Make absolutely sure that your custom/complex primary key classes serialize correctly. One common mistake is assuming that member variable initializations will be executed when a primary key is unmarshaled.
						

 ⁠30.4.8.2. IllegalStateException

					An IllegalStateException with the message "removing bean lock and it has tx set!" usually means that you have not implemented equals and/or hashCode correctly for your custom/complex primary key class, or that your primary key class is not implemented correctly for serialization.
				

 ⁠30.4.8.3. Hangs and Transaction Timeouts

					One long outstanding bug of JBoss is that on a transaction timeout, that transaction is only marked for a rollback and not actually rolled back. This responsibility is delegated to the invocation thread. This can cause major problems if the invocation thread hangs indefinitely since things like entity bean locks will never be released. The solution to this problem is not a good one. You really just need to avoid doing stuff within a transaction that could hang indefinitely. One common mistake is making connections across the internet or running a web-crawler within a transaction.
				

 ⁠30.5. EJB Timer Configuration

			The J2EE timer service allows for any EJB object to register for a timer callback either at a designated time in the future. Timer events can be used for auditing, reporting or other cleanup tasks that need to need to happen at some given time in the future. Timer events are intended to be persistent and should be executed even in the event of a server failure. Coding to EJB timers is a standard part of the J2EE specification, so we will not explore the programming model. We will, instead, look at the configuration of the timer service in JBoss so that you can understand how to make timers work best in your environment
		

			The EJB timer service is configure by several related MBeans in the ejb-deployer.xml file. The primary MBean is the EJBTimerService MBean.
		
​<mbean code="org.jboss.ejb.txtimer.EJBTimerServiceImpl" name="jboss.ejb:service=EJBTimerService">
​ <attribute name="RetryPolicy">jboss.ejb:service=EJBTimerService,retryPolicy=fixedDelay</attribute>
​ <attribute name="PersistencePolicy">jboss.ejb:service=EJBTimerService,persistencePolicy=database</attribute>
​ <attribute name="TimerIdGeneratorClassName">org.jboss.ejb.txtimer.BigIntegerTimerIdGenerator</attribute>
​ <attribute name="TimedObjectInvokerClassName">org.jboss.ejb.txtimer.TimedObjectInvokerImpl</attribute>
​</mbean>

			The EJBTimerService has the following configurable attributes:
		
	
					RetryPolicy: This is name of the MBean that implements the retry policy. The MBean must support the org.jboss.ejb.txtimer.RetryPolicy interface. JBoss provides one implementation, FixedDelayRetryPolicy, which will be described later.
				

	
					PersistencePolicy: This is the name of the MBean that implements the persistence strategy for saving timer events. The MBean must support the org.jboss.ejb.txtimer.PersistencePolicy interface. JBoss provides two implementations, NoopPersistencePolicy and DatabasePersistencePolicy, which will be described later.
				

	
					TimerIdGeneratorClassName: This is the name of a class that provides the timer ID generator strategy. This class must implement the org.jboss.ejb.txtimer.TimerIdGenerator interface. JBoss provides the org.jboss.ejb.txtimer.BigIntegerTimerIdGenerator implementation.
				

	
					TimedObjectInvokerClassname: This is the name of a class that provides the timer method invocation strategy. This class must implement the org.jboss.ejb.txtimer.TimedObjectInvoker interface. JBoss provides the org.jboss.ejb.txtimer.TimedObjectInvokerImpl implementation.
				

			The retry policy MBean definition used is shown here:
		
​<mbean code="org.jboss.ejb.txtimer.FixedDelayRetryPolicy"
​ name="jboss.ejb:service=EJBTimerService,retryPolicy=fixedDelay">
​ <attribute name="Delay">100</attribute>
​</mbean>

			The retry policy takes one configuration value:
		
	
					Delay: This is the delay (ms) before retrying a failed timer execution. The default delay is 100ms.
				

			If EJB timers do not need to be persisted, the NoopPersistence policy can be used. This MBean is commented out by default, but when enabled will look like this:
		
​<mbean code="org.jboss.ejb.txtimer.NoopPersistencePolicy"
​ name="jboss.ejb:service=EJBTimerService,persistencePolicy=noop"/>

			Most applications that use timers will want timers to be persisted. For that the DatabasePersitencePolicy MBean should be used.
		
​<mbean code="org.jboss.ejb.txtimer.DatabasePersistencePolicy"
​ name="jboss.ejb:service=EJBTimerService,persistencePolicy=database">
​ <!-- DataSource JNDI name -->
​ <depends optional-attribute-name="DataSource">jboss.jca:service=DataSourceBinding,name=DefaultDS</depends>
​ <!-- The plugin that handles database persistence -->
​ <attribute name="DatabasePersistencePlugin">org.jboss.ejb.txtimer.GeneralPurposeDatabasePersistencePlugin</attribute>
​</mbean>

	
					DataSource: This is the MBean for the DataSource that timer data will be written to.
				

	
					DatabasePersistencePlugin: This is the name of the class the implements the persistence strategy. This should be org.jboss.ejb.txtimer.GeneralPurposeDatabasePersistencePlugin.
				

 ⁠Chapter 31. The CMP Engine

		This chapter will explore the use of container managed persistence (CMP) in JBoss. We will assume a basic familiarity the EJB CMP model and focus on the operation of the JBoss CMP engine. Specifically, we will look at how to configure and optimize CMP applications on JBoss. For more introductory coverage of basic CMP concepts, we recommend Enterprise Java Beans, Fourth Edition (O'Reilly 2004).
	

 ⁠31.1. Example Code

			This chapter is example-driven. We will work with the crime portal application which stores information about imaginary criminal organizations. The data model we will be working with is shown in Figure 31.1, “The crime portal example classes”.
		

 ⁠[image: The crime portal example classes]

Figure 31.1. The crime portal example classes

			The source code for the crime portal is available in the src/main/org/jboss/cmp2 directory of the example code. To build the example code, run Ant as shown below
		
[examples]$ ant -Dchap=cmp2 config

			This command builds and deploys the application to the server. When you start your server, or if it is already running, you should see the following deployment messages:
		
15:46:36,704 INFO [OrganizationBean$Proxy] Creating organization Yakuza, Japanese Gangsters
15:46:36,790 INFO [OrganizationBean$Proxy] Creating organization Mafia, Italian Bad Guys
15:46:36,797 INFO [OrganizationBean$Proxy] Creating organization Triads, Kung Fu Movie Extras
15:46:36,877 INFO [GangsterBean$Proxy] Creating Gangster 0 'Bodyguard' Yojimbo
15:46:37,003 INFO [GangsterBean$Proxy] Creating Gangster 1 'Master' Takeshi
15:46:37,021 INFO [GangsterBean$Proxy] Creating Gangster 2 'Four finger' Yuriko
15:46:37,040 INFO [GangsterBean$Proxy] Creating Gangster 3 'Killer' Chow
15:46:37,106 INFO [GangsterBean$Proxy] Creating Gangster 4 'Lightning' Shogi
15:46:37,118 INFO [GangsterBean$Proxy] Creating Gangster 5 'Pizza-Face' Valentino
15:46:37,133 INFO [GangsterBean$Proxy] Creating Gangster 6 'Toohless' Toni
15:46:37,208 INFO [GangsterBean$Proxy] Creating Gangster 7 'Godfather' Corleone
15:46:37,238 INFO [JobBean$Proxy] Creating Job 10th Street Jeweler Heist
15:46:37,247 INFO [JobBean$Proxy] Creating Job The Greate Train Robbery
15:46:37,257 INFO [JobBean$Proxy] Creating Job Cheap Liquor Snatch and Grab

			Since the beans in the examples are configured to have their tables removed on undeployment, anytime you restart the server you need to rerun the config target to reload the example data and re-deploy the application.
		

 ⁠31.1.1. Enabling CMP Debug Logging

				In order to get meaningful feedback from the chapter tests, increase the log level of the CMP subsystem before running the test. To enable debug logging add the following category to your log4j.xml file:
			
​<category name="org.jboss.ejb.plugins.cmp">
​ <priority value="DEBUG"/>
​</category>

				In addition to this, it is necessary to decrease the threshold on the CONSOLE appender to allow debug level messages to be logged to the console. The following changes also need to be applied to the log4j.xml file.
			
​<appender name="CONSOLE" class="org.apache.log4j.ConsoleAppender">
​ <errorHandler class="org.jboss.logging.util.OnlyOnceErrorHandler"/>
​ <param name="Target" value="System.out"/>
​ <param name="Threshold" value="DEBUG" />
​
​ <layout class="org.apache.log4j.PatternLayout">
​ <!-- The default pattern: Date Priority [Category] Message\n -->
​ <param name="ConversionPattern" value="%d{ABSOLUTE} %-5p [%c{1}] %m%n"/>
​ </layout>
​</appender>

				To see the full workings of the CMP engine you would need to enable the custom TRACE level priority on the org.jboss.ejb.plugins.cmp category as shown here:
			
​<category name="org.jboss.ejb.plugins.cmp">
​ <priority value="TRACE" class="org.jboss.logging.XLevel"/>
​</category>

 ⁠31.1.2. Running the examples

				The first test target illustrates a number of the customization features that will be discussed throughout this chapter. To run these tests execute the following ant target:
			
[examples]$ ant -Dchap=cmp2 -Dex=test run-example
22:30:09,862 DEBUG [OrganizationEJB#findByPrimaryKey] Executing SQL: SELECT t0_OrganizationEJ
B.name FROM ORGANIZATION t0_OrganizationEJB WHERE t0_OrganizationEJB.name=?
22:30:09,927 DEBUG [OrganizationEJB] Executing SQL: SELECT desc, the_boss FROM ORGANIZATION W
HERE (name=?)
22:30:09,931 DEBUG [OrganizationEJB] load relation SQL: SELECT id FROM GANGSTER WHERE (organi
zation=?)
22:30:09,947 DEBUG [StatelessSessionContainer] Useless invocation of remove() for stateless s
ession bean
22:30:10,086 DEBUG [GangsterEJB#findBadDudes_ejbql] Executing SQL: SELECT t0_g.id FROM GANGST
ER t0_g WHERE (t0_g.badness > ?)
22:30:10,097 DEBUG [GangsterEJB#findByPrimaryKey] Executing SQL: SELECT t0_GangsterEJB.id FRO
M GANGSTER t0_GangsterEJB WHERE t0_GangsterEJB.id=?
22:30:10,102 DEBUG [GangsterEJB#findByPrimaryKey] Executing SQL: SELECT t0_GangsterEJB.id FRO
M GANGSTER t0_GangsterEJB WHERE t0_GangsterEJB.id=?

				These tests exercise various finders, selectors and object to table mapping issues. We will refer to the tests throughout the chapter.
			

				The other main target runs a set of tests to demonstrate the optimized loading configurations presented in Section 31.7, “Optimized Loading”. Now that the logging is setup correctly, the read-ahead tests will display useful information about the queries performed. Note that you do not have to restart the server for it to recognize the changes to the log4j.xml file, but it may take a minute or so. The following shows the actual execution of the readahead client:
			
[examples]$ ant -Dchap=cmp2 -Dex=readahead run-example

				When the readahead client is executed, all of the SQL queries executed during the test are displayed in the server console. The important items of note when analyzing the output are the number of queries executed, the columns selected, and the number of rows loaded. The following shows the read-ahead none portion of the server console output from readahead:
			
22:44:31,570 INFO [ReadAheadTest]
##
read-ahead none
###
22:44:31,582 DEBUG [GangsterEJB#findAll_none] Executing SQL: SELECT t0_g.id FROM GANGSTER t0_
g ORDER BY t0_g.id ASC
22:44:31,604 DEBUG [GangsterEJB] Executing SQL: SELECT name, nick_name, badness, organization
, hangout FROM GANGSTER WHERE (id=?)
22:44:31,615 DEBUG [GangsterEJB] Executing SQL: SELECT name, nick_name, badness, organization
, hangout FROM GANGSTER WHERE (id=?)
22:44:31,622 DEBUG [GangsterEJB] Executing SQL: SELECT name, nick_name, badness, organization
, hangout FROM GANGSTER WHERE (id=?)
22:44:31,628 DEBUG [GangsterEJB] Executing SQL: SELECT name, nick_name, badness, organization
, hangout FROM GANGSTER WHERE (id=?)
22:44:31,635 DEBUG [GangsterEJB] Executing SQL: SELECT name, nick_name, badness, organization
, hangout FROM GANGSTER WHERE (id=?)
22:44:31,644 DEBUG [GangsterEJB] Executing SQL: SELECT name, nick_name, badness, organization
, hangout FROM GANGSTER WHERE (id=?)
22:44:31,649 DEBUG [GangsterEJB] Executing SQL: SELECT name, nick_name, badness, organization
, hangout FROM GANGSTER WHERE (id=?)
22:44:31,658 DEBUG [GangsterEJB] Executing SQL: SELECT name, nick_name, badness, organization
, hangout FROM GANGSTER WHERE (id=?)
22:44:31,670 INFO [ReadAheadTest]
###
##
...

				We will revisit this example and explore the output when we discuss the settings for optimized loading.
			

 ⁠31.2. The jbosscmp-jdbc Structure

			The jbosscmp-jdbc.xml descriptor is used to control the behavior of the JBoss engine. This can be done globally through the conf/standardjbosscmp-jdbc.xml descriptor found in the server configuration file set, or per EJB JAR deployment via a META-INF/jbosscmp-jdbc.xml descriptor.
		

			The DTD for the jbosscmp-jdbc.xml descriptor can be found in <JBOSS_HOME>/docs/dtd/jbosscmp-jdbc_4_0.dtd. The public doctype for this DTD is:
		
​ <!DOCTYPE jbosscmp-jdbc PUBLIC
​ "-//JBoss//DTD JBOSSCMP-JDBC 4.0//EN"
​ "http://www.jboss.org/j2ee/dtd/jbosscmp-jdbc_4_0.dtd">

			The top level elements are shown in Figure 31.2, “The jbosscmp-jdbc content model.”.
		

 ⁠[image: The jbosscmp-jdbc content model.]

Figure 31.2. The jbosscmp-jdbc content model.

	
					defaults: The defaults section allows for the specification of default behavior/settings for behavior that controls entity beans. Use of this section simplifies the amount of information needed for the common behaviors found in the entity beans section. See Section 31.12, “Defaults” for the details of the defaults content.
				

	
					enterprise-beans: The enterprise-beans element allows for customization of entity beans defined in the ejb-jar.xmlenterprise-beans descriptor. This is described in detail in Section 31.3, “Entity Beans”.
				

	
					relationships: The relationships element allows for the customization of tables and the loading behavior of entity relationships. This is described in detail in Section 31.5, “Container Managed Relationships”.
				

	
					dependent-value-classes: The dependent-value-classes element allows for the customization of the mapping of dependent value classes to tables. Dependent value classes are described in detail in Section 31.4.5, “Dependent Value Classes (DVCs)” (DVCs).
				

	
					type-mappings: The type-mappings element defines the Java to SQL type mappings for a database, along with SQL templates, and function mappings. This is described in detail in Section 31.13, “Datasource Customization”.
				

	
					entity-commands: The entity-commands element allows for the definition of the entity creation command instances that know how to create an entity instance in a persistent store. This is described in detail in Section 31.11, “Entity Commands and Primary Key Generation”.
				

	
					user-type-mappings: The user-type-mappings elements defines a mapping of a user types to a column using a mapper class. A mapper is like a mediator. When storing, it takes an instance of the user type and translates it to a column value. When loading, it takes a column value and translates it to an instance of the user type. Details of the user type mappings are described in Section 31.13.4, “User Type Mappings”.
				

	
					reserved-words: The reserved-words element defines one or more reserved words that should be escaped when generating tables. Each reserved word is specified as the content of a word element.
				

 ⁠31.3. Entity Beans

			We will start our look at entity beans in JBoss by examining one of the CMP entity beans in the crime portal. We will look at the gangster bean, which is implemented as local CMP entity bean. Although JBoss can provide remote entity beans with pass-by-reference semantics for calls in the same VM to get the performance benefit as from local entity beans, the use of local entity beans is strongly encouraged.
		

			We will start with the required home interface. Since we are only concerned with the CMP fields at this point, we will show only the methods dealing with the CMP fields.
		
​// Gangster Local Home Interface
​public interface GangsterHome
​ extends EJBLocalHome
​{
​ Gangster create(Integer id, String name, String nickName)
​ throws CreateException;
​ Gangster findByPrimaryKey(Integer id)
​ throws FinderException;
​}

			The local interface is what clients will use to talk. Again, it contains only the CMP field accessors.
		
​// Gangster Local Interface
​public interface Gangster
​ extends EJBLocalObject
​{
​ Integer getGangsterId();
​
​ String getName();
​
​ String getNickName();
​ void setNickName(String nickName);
​
​ int getBadness();
​ void setBadness(int badness);
​}

			Finally, we have the actual gangster bean. Despite it's size, very little code is actually required. The bulk of the class is the create method.
		
​// Gangster Implementation Class
​public abstract class GangsterBean
​ implements EntityBean
​{
​ private EntityContext ctx;
​ private Category log = Category.getInstance(getClass());
​ public Integer ejbCreate(Integer id, String name, String nickName)
​ throws CreateException
​ {
​ log.info("Creating Gangster " + id + " '" + nickName + "' "+ name);
​ setGangsterId(id);
​ setName(name);
​ setNickName(nickName);
​ return null;
​ }
​
​ public void ejbPostCreate(Integer id, String name, String nickName) {
​ }
​
​ // CMP field accessors ---
​ public abstract Integer getGangsterId();
​ public abstract void setGangsterId(Integer gangsterId);
​ public abstract String getName();
​ public abstract void setName(String name);
​ public abstract String getNickName();
​ public abstract void setNickName(String nickName);
​ public abstract int getBadness();
​ public abstract void setBadness(int badness);
​ public abstract ContactInfo getContactInfo();
​ public abstract void setContactInfo(ContactInfo contactInfo);
​ //...
​
​ // EJB callbacks ---
​ public void setEntityContext(EntityContext context) { ctx = context; }
​ public void unsetEntityContext() { ctx = null; }
​ public void ejbActivate() { }
​ public void ejbPassivate() { }
​ public void ejbRemove() { log.info("Removing " + getName()); }
​ public void ejbStore() { }
​ public void ejbLoad() { }
​}

			The only thing missing now is the ejb-jar.xml deployment descriptor. Although the actual bean class is named GangsterBean, we've called the entity GangsterEJB.
		
​<?xml version="1.0" encoding="UTF-8"?>
​<ejb-jar xmlns="http://java.sun.com/xml/ns/"Whats_new_in_JBoss_4-J2EE_Certification_and_Standards_Compliance" version="2.1"
​ xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
​ xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
​ http://java.sun.com/xml/ns/j2ee/ejb-jar_\2_1.xsd">
​ <display-name>Crime Portal</display-name>
​
​ <enterprise-beans>
​ <entity>
​ <display-name>Gangster Entity Bean</display-name>
​ <ejb-name>GangsterEJB</ejb-name>
​ <local-home>org.jboss.cmp2.crimeportal.GangsterHome</local-home>
​ <local>org.jboss.cmp2.crimeportal.Gangster</local>
​
​ <ejb-class>org.jboss.cmp2.crimeportal.GangsterBean</ejb-class>
​ <persistence-type>Container</persistence-type>
​ <prim-key-class>java.lang.Integer</prim-key-class>
​ <reentrant>False</reentrant>
​ <cmp-version>2.x</cmp-version>
​ <abstract-schema-name>gangster</abstract-schema-name>
​
​ <cmp-field>
​ <field-name>gangsterId</field-name>
​ </cmp-field>
​ <cmp-field>
​ <field-name>name</field-name>
​ </cmp-field>
​ <cmp-field>
​ <field-name>nickName</field-name>
​ </cmp-field>
​ <cmp-field>
​ <field-name>badness</field-name>
​ </cmp-field>
​ <cmp-field>
​ <field-name>contactInfo</field-name>
​ </cmp-field>
​ <primkey-field>gangsterId</primkey-field>
​
​ <!-- ... -->
​ </entity>
​ </enterprise-beans>
​</ejb-jar>

			Note that we've specified a CMP version of 2.x to indicate that this is EJB 2.x CMP entity bean. The abstract schema name was set to gangster. That will be important when we look at EJB-QL queries in Section 31.6, “Queries”.
		

 ⁠31.3.1. Entity Mapping

				The JBoss configuration for the entity is declared with an entity element in the jbosscmp-jdbc.xml file. This file is located in the META-INF directory of the EJB JAR and contains all of the optional configuration information for configuring the CMP mapping. The entity elements for each entity bean are grouped together in the enterprise-beans element under the top level jbosscmp-jdbc element. A stubbed out entity configuration is shown below.
			
​<?xml version="1.0" encoding="UTF-8"?>
​<!DOCTYPE jbosscmp-jdbc PUBLIC
​ "-//JBoss//DTD JBOSSCMP-JDBC 3.2//EN"
​ "http://www.jboss.org/j2ee/dtd/jbosscmp-jdbc_3_2.dtd">
​<jbosscmp-jdbc>
​ <defaults>
​ <!-- application-wide CMP defaults -->
​ </defaults>
​ <enterprise-beans>
​ <entity>
​ <ejb-name>GangsterEJB</ejb-name>
​ <!-- overrides to defaults section -->
​ <table-name>gangster</table-name>
​ <!-- CMP Fields (see CMP-Fields) -->
​ <!-- Load Groups (see Load Groups)-->
​ <!-- Queries (see Queries) -->
​ </entity>
​ </enterprise-beans>
​</jbosscmp-jdbc>

				The ejb-name element is required to match the entity specification here with the one in the ejb-jar.xml file. The remainder of the elements specify either overrides the global or application-wide CMP defaults and CMP mapping details specific to the bean. The application defaults come from the defaults section of the jbosscmp-jdbc.xml file and the global defaults come from the defaults section of the standardjbosscmp-jdbc.xml file in the conf directory for the current server configuration file set. The defaults section is discussed in Section 31.12, “Defaults”. Figure 31.3, “The entity element content model” shows the full entity content model.
			

 ⁠[image: The entity element content model]

Figure 31.3. The entity element content model

				A detailed description of each entity element follows:
			
	
						ejb-name: This required element is the name of the EJB to which this configuration applies. This element must match an ejb-name of an entity in the ejb-jar.xml file.
					

	
						datasource: This optional element is the jndi-name used to look up the datasource. All database connections used by an entity or relation-table are obtained from the datasource. Having different datasources for entities is not recommended, as it vastly constrains the domain over which finders and ejbSelects can query. The default is java:/DefaultDS unless overridden in the defaults section.
					

	
						datasource-mapping: This optional element specifies the name of the type-mapping, which determines how Java types are mapped to SQL types, and how EJB-QL functions are mapped to database specific functions. Type mappings are discussed in Section 31.13.3, “Mapping”. The default is Hypersonic SQL unless overridden in the defaults section.
					

	
						create-table: This optional element when true, specifies that JBoss should attempt to create a table for the entity. When the application is deployed, JBoss checks if a table already exists before creating the table. If a table is found, it is logged, and the table is not created. This option is very useful during the early stages of development when the table structure changes often. The default is false unless overridden in the defaults section.
					

	
						alter-table: If create-table is used to automatically create the schema, alter-table can be used to keep the schema current with changes to the entity bean. Alter table will perform the following specific tasks:
					
	
								new fields will be created
							

	
								fields which are no longer used will be removed
							

	
								string fields which are shorter than the declared length will have their length increased to the declared length. (not supported by all databases)
							

	
						remove-table: This optional element when true, JBoss will attempt to drop the table for each entity and each relation table mapped relationship. When the application is undeployed, JBoss will attempt to drop the table. This option is very useful during the early stages of development when the table structure changes often. The default is false unless overridden in the defaults section.
					

	
						post-table-create: This optional element specifies an arbitrary SQL statement that should be executed immediately after the database table is created. This command is only executed if create-table is true and the table did not previously exist.
					

	
						read-only: This optional element when true specifies that the bean provider will not be allowed to change the value of any fields. A field that is read-only will not be stored in, or inserted into, the database. If a primary key field is read-only, the create method will throw a CreateException. If a set accessor is called on a read-only field, it throws an EJBException. Read-only fields are useful for fields that are filled in by database triggers, such as last update. The read-only option can be overridden on a per cmp-field basis, and is discussed in Section 31.4.3, “Read-only Fields”. The default is false unless overridden in the defaults section.
					

	
						read-time-out: This optional element is the amount of time in milliseconds that a read on a read-only field is valid. A value of 0 means that the value is always reloaded at the start of a transaction, and a value of -1 means that the value never times out. This option can also be overridden on a per cmp-field basis. If read-only is false, this value is ignored. The default is -1 unless overridden in the defaults section.
					

	
						row-locking: This optional element if true specifies that JBoss will lock all rows loaded in a transaction. Most databases implement this by using the SELECT FOR UPDATE syntax when loading the entity, but the actual syntax is determined by the row-locking-template in the datasource-mapping used by this entity. The default is false unless overridden in the defaults section.
					

	
						pk-constraint: This optional element if true specifies that JBoss will add a primary key constraint when creating tables. The default is true unless overridden in the defaults section.
					

	
						read-ahead: This optional element controls caching of query results and cmr-fields for the entity. This option is discussed in Section 31.7.3, “Read-ahead”.
					

	
						fetch-size: This optional element specifies the number of entities to read in one round-trip to the underlying datastore. The default is 0 unless overridden in the defaults section.
					

	
						list-cache-max: This optional element specifies the number of read-lists that can be tracked by this entity. This option is discussed in on-load. The default is 1000 unless overridden in the defaults section.
					

	
						clean-read-ahead-on-load: When an entity is loaded from the read ahead cache, JBoss can remove the data used from the read ahead cache. The default is false.
					

	
						table-name: This optional element is the name of the table that will hold data for this entity. Each entity instance will be stored in one row of this table. The default is the ejb-name.
					

	
						cmp-field: The optional element allows one to define how the ejb-jar.xmlcmp-field is mapped onto the persistence store. This is discussed in Section 31.4, “CMP Fields”.
					

	
						load-groups: This optional element specifies one or more groupings of CMP fields to declare load groupings of fields. This is discussed in Section 31.7.2, “Load Groups”.
					

	
						eager-load-groups: This optional element defines one or more load grouping as eager load groups. This is discussed in Section 31.8.2, “Eager-loading Process”.
					

	
						lazy-load-groups: This optional element defines one or more load grouping as lazy load groups. This is discussed in Section 31.8.3, “Lazy loading Process”.
					

	
						query: This optional element specifies the definition of finders and selectors. This is discussed in Section 31.6, “Queries”.
					

	
						unknown-pk: This optional element allows one to define how an unknown primary key type of java.lang.Object maps to the persistent store.
					

	
						entity-command: This optional element allows one to define the entity creation command instance. Typically this is used to define a custom command instance to allow for primary key generation. This is described in detail in Section 31.11, “Entity Commands and Primary Key Generation”.
					

	
						optimistic-locking: This optional element defines the strategy to use for optimistic locking. This is described in detail in Section 31.10, “Optimistic Locking”.
					

	
						audit: This optional element defines the CMP fields that will be audited. This is described in detail in Section 31.4.4, “Auditing Entity Access”.
					

 ⁠31.4. CMP Fields

			CMP fields are declared on the bean class as abstract getter and setter methods that follow the JavaBean property accessor conventions. Our gangster bean, for example, has a getName() and a setName() method for accessing the name CMP field. In this section we will look at how the configure these declared CMP fields and control the persistence and behavior.
		

 ⁠31.4.1. CMP Field Declaration

				The declaration of a CMP field starts in the ejb-jar.xml file. On the gangster bean, for example, the gangsterId, name, nickName and badness would be declared in the ejb-jar.xml file as follows:
			
​<ejb-jar>
​ <enterprise-beans>
​ <entity>
​ <ejb-name>GangsterEJB</ejb-name>
​ <cmp-field><field-name>gangsterId</field-name></cmp-field>
​ <cmp-field><field-name>name</field-name></cmp-field>
​ <cmp-field><field-name>nickName</field-name></cmp-field>
​ <cmp-field><field-name>badness</field-name></cmp-field>
​ </entity>
​ </enterprise-beans>
​ </ejb-jar>

				Note that the J2EE deployment descriptor does not declare any object-relational mapping details or other configuration. It is nothing more than a simple declaration of the CMP fields.
			

 ⁠31.4.2. CMP Field Column Mapping

				The relational mapping configuration of a CMP field is done in the jbosscmp-jdbc.xml file. The structure is similar to the ejb-jar.xml with an entity element that has cmp-field elements under it with the additional configuration details.
			

				The following is shows the basic column name and data type mappings for the gangster bean.
			
​<jbosscmp-jdbc>
​ <enterprise-beans>
​ <entity>
​ <ejb-name>GangsterEJB</ejb-name>
​ <table-name>gangster</table-name>
​
​ <cmp-field>
​ <field-name>gangsterId</field-name>
​ <column-name>id</column-name>
​ </cmp-field>
​ <cmp-field>
​ <field-name>name</field-name>
​ <column-name>name</column-name>
​ <not-null/>
​ </cmp-field>
​ <cmp-field>
​ <field-name>nickName</field-name>
​ <column-name>nick_name</column-name>
​ <jdbc-type>VARCHAR</jdbc-type>
​ <sql-type>VARCHAR(64)</sql-type>
​ </cmp-field>
​ <cmp-field>
​ <field-name>badness</field-name>
​ <column-name>badness</column-name>
​ </cmp-field>
​ </entity>
​ </enterprise-beans>
​ </jbosscmp-jdbc>

				The full content model of the cmp-field element of the jbosscmp-jdbc.xml is shown below.
			

				
 ⁠[image: The JBoss entity element content model]

Figure 31.4. The JBoss entity element content model

			

				A detailed description of each element follows:
			
	
						field-name: This required element is the name of the cmp-field that is being configured. It must match the field-name element of a cmp-field declared for this entity in the ejb-jar.xml file.
					

	
						read-only: This declares that field in question is read-only. This field will not be written to the database by JBoss. Read-only fields are discussed in Section 31.4.3, “Read-only Fields”.
					

	
						read-only-timeout: This is the time in milliseconds that a read-only field value will be considered valid.
					

	
						column-name: This optional element is the name of the column to which the cmp-field is mapped. The default is to use the field-name value.
					

	
						not-null: This optional element indicates that JBoss should add a NOT NULL to the end of the column declaration when automatically creating the table for this entity. The default for primary key fields and primitives is not null.
					

	
						jdbc-type: This is the JDBC type that is used when setting parameters in a JDBC prepared statement or loading data from a JDBC result set. The valid types are defined in java.sql.Types. This is only required if sql-type is specified. The default JDBC type will be based on the database type in the datasourcemapping.
					

	
						sql-type: This is the SQL type that is used in create table statements for this field. Valid SQL types are only limited by your database vendor. This is only required if jdbc-type is specified. The default SQL type will be base on the database type in the datasourcemapping
					

	
						property: This optional element allows one to define how the properties of a dependent value class CMP field should be mapped to the persistent store. This is discussed further in Section 31.4.5, “Dependent Value Classes (DVCs)”.
					

	
						auto-increment: The presence of this optional field indicates that it is automatically incremented by the database layer. This is used to map a field to a generated column as well as to an externally manipulated column.
					

	
						dbindex: The presence of this optional field indicates that the server should create an index on the corresponding column in the database. The index name will be fieldname_index.
					

	
						check-dirty-after-get: This value defaults to false for primitive types and the basic java.lang immutable wrappers (Integer, String, etc...). For potentially mutable objects, JBoss will mark they field as potentially dirty after a get operation. If the dirty check on an object is too expensive, you can optimize it away by setting check-dirty-after-get to false.
					

	
						state-factory: This specifies class name of a state factory object which can perform dirty checking for this field. State factory classes must implement the CMPFieldStateFactory interface.
					

 ⁠31.4.3. Read-only Fields

				JBoss allows for read-only CMP fields by setting the read-only and read-time-out elements in the cmp-field declaration. These elements work the same way as they do at the entity level. If a field is read-only, it will never be used in an INSERT or UPDATE statement. If a primary key field is read-only, the create method will throw a CreateException. If a set accessor is called for a read-only field, it throws an EJBException. Read-only fields are useful for fields that are filled in by database triggers, such as last update. A read-only CMP field declaration example follows:
			
​<jbosscmp-jdbc>
​ <enterprise-beans>
​ <entity>
​ <ejb-name>GangsterEJB</ejb-name>
​ <cmp-field>
​ <field-name>lastUpdated</field-name>
​ <read-only>true</read-only>
​ <read-time-out>1000</read-time-out>
​ </cmp-field>
​ </entity>
​ </enterprise-beans>
​</jbosscmp-jdbc>

 ⁠31.4.4. Auditing Entity Access

				The audit element of the entity section allows one to specify how access to and entity bean is audited. This is only allowed when an entity bean is accessed under a security domain so that this is a caller identity established. The content model of the audit element is given Figure 31.5, “The jbosscmp-jdbc.xml audit element content model”.
			

 ⁠[image: The jbosscmp-jdbc.xml audit element content model]

Figure 31.5. The jbosscmp-jdbc.xml audit element content model

	
						created-by: This optional element indicates that the caller who created the entity should be saved to either the indicated column-name or cmp field-name.
					

	
						created-time: This optional element indicates that the time of entity creation should be saved to either the indicated column-name or cmp field-name.
					

	
						updated-by: This optional element indicates that the caller who last modified the entity should be saved to either the indicated column-name or CMP field-name.
					

	
						updated-time: This optional element indicates that the last time of entity modification should be saved to either the indicated column-name or CMP field-name.
					

				For each element, if a field-name is given, the corresponding audit information should be stored in the specified CMP field of the entity bean being accessed. Note that there does not have to be an corresponding CMP field declared on the entity. In case there are matching field names, you will be able to access audit fields in the application using the corresponding CMP field abstract getters and setters. Otherwise, the audit fields will be created and added to the entity internally. You will be able to access audit information in EJB-QL queries using the audit field names, but not directly through the entity accessors.
			

				If, on the other hand, a column-name is specified, the corresponding audit information should be stored in the indicated column of the entity table. If JBoss is creating the table the jdbc-type and sql-type element can then be used to define the storage type.
			

				The declaration of audit information with given column names is shown below.
			
​<jbosscmp-jdbc>
​ <enterprise-beans>
​ <entity>
​ <ejb-name>AuditChangedNamesEJB</ejb-name>
​ <table-name>cmp2_audit_changednames</table-name>
​ <audit>
​ <created-by>
​ <column-name>createdby</column-name>
​ </created-by>
​ <created-time>
​ <column-name>createdtime</column-name>
​ </created-time>
​ <updated-by>
​ <column-name>updatedby</column-name></updated-by>
​ <updated-time>
​ <column-name>updatedtime</column-name>
​ </updated-time>
​ </audit>
​ </entity>
​ </enterprise-beans>
​</jbosscmp-jdbc>

 ⁠31.4.5. Dependent Value Classes (DVCs)

				A dependent value class (DVC) is a fancy term used to identity any Java class that is the type of a cmp-field other than the automatically recognized types core types such as strings and number values. By default, a DVC is serialized, and the serialized form is stored in a single database column. Although not discussed here, there are several known issues with the long-term storage of classes in serialized form.
			

				JBoss also supports the storage of the internal data of a DVC into one or more columns. This is useful for supporting legacy JavaBeans and database structures. It is not uncommon to find a database with a highly flattened structure (e.g., a PURCHASE_ORDER table with the fields SHIP_LINE1, SHIP_LINE2, SHIP_CITY, etc. and an additional set of fields for the billing address). Other common database structures include telephone numbers with separate fields for area code, exchange, and extension, or a person's name spread across several fields. With a DVC, multiple columns can be mapped to one logical field.
			

				JBoss requires that a DVC to be mapped must follow the JavaBeans naming specification for simple properties, and that each property to be stored in the database must have both a getter and a setter method. Furthermore, the bean must be serializable and must have a no argument constructor. A property can be any simple type, an un-mapped DVC or a mapped DVC, but cannot be an EJB. A DVC mapping is specified in a dependent-value-class element within the dependent-value-classes element.
			

 ⁠[image: The jbosscmp-jdbc dependent-value-class element model.]

Figure 31.6. The jbosscmp-jdbc dependent-value-class element model.

				Here is an example of a simple ContactInfo DVC class.
			
​public class ContactInfo
​ implements Serializable
​{
​ /** The cell phone number. */
​ private PhoneNumber cell;
​
​ /** The pager number. */
​ private PhoneNumber pager;
​
​ /** The email address */
​ private String email;
​
​
​ /**
​ * Creates empty contact info.
​ */
​ public ContactInfo() {
​ }
​
​ public PhoneNumber getCell() {
​ return cell;
​ }
​
​ public void setCell(PhoneNumber cell) {
​ this.cell = cell;
​ }
​
​ public PhoneNumber getPager() {
​ return pager;
​ }
​
​ public void setPager(PhoneNumber pager) {
​ this.pager = pager;
​ }
​
​ public String getEmail() {
​ return email;
​ }
​
​ public void setEmail(String email) {
​ this.email = email.toLowerCase();
​ }
​
​ // ... equals, hashCode, toString
​}

				The contact info includes a phone number, which is represented by another DVC class.
			
​public class PhoneNumber
​ implements Serializable
​{
​ /** The first three digits of the phone number. */
​ private short areaCode;
​
​ /** The middle three digits of the phone number. */
​	private short exchange;
​
​ /** The last four digits of the phone number. */
​	private short extension;
​
​ // ... getters and setters
​
​ // ... equals, hashCode, toString
​}

				The DVC mappings for these two classes are relatively straight forward.
			
​<dependent-value-classes>
​ <dependent-value-class>
​ <description>A phone number</description>
​ <class>org.jboss.cmp2.crimeportal.PhoneNumber</class>
​ <property>
​ <property-name>areaCode</property-name>
​ <column-name>area_code</column-name>
​ </property>
​ <property>
​ <property-name>exchange</property-name>
​ <column-name>exchange</column-name>
​ </property>
​ <property>
​ <property-name>extension</property-name>
​ <column-name>extension</column-name>
​ </property>
​ </dependent-value-class>
​
​ <dependent-value-class>
​ <description>General contact info</description>
​ <class>org.jboss.cmp2.crimeportal.ContactInfo</class>
​ <property>
​ <property-name>cell</property-name>
​ <column-name>cell</column-name>
​ </property>
​ <property>
​ <property-name>pager</property-name>
​ <column-name>pager</column-name>
​ </property>
​ <property>
​ <property-name>email</property-name>
​ <column-name>email</column-name>
​ <jdbc-type>VARCHAR</jdbc-type>
​ <sql-type>VARCHAR(128)</sql-type>
​ </property>
​ </dependent-value-class>
​</dependent-value-classes>

				Each DVC is declared with a dependent-value-class element. A DVC is identified by the Java class type declared in the class element. Each property to be persisted is declared with a property element. This specification is based on the cmp-field element, so it should be self-explanatory. This restriction will also be removed in a future release. The current proposal involves storing the primary key fields in the case of a local entity and the entity handle in the case of a remote entity.
			

				The dependent-value-classes section defines the internal structure and default mapping of the classes. When JBoss encounters a field that has an unknown type, it searches the list of registered DVCs, and if a DVC is found, it persists this field into a set of columns, otherwise the field is stored in serialized form in a single column. JBoss does not support inheritance of DVCs; therefore, this search is only based on the declared type of the field. A DVC can be constructed from other DVCs, so when JBoss runs into a DVC, it flattens the DVC tree structure into a set of columns. If JBoss finds a DVC circuit during start up, it will throw an EJBException. The default column name of a property is the column name of the base cmp-field followed by an underscore and then the column name of the property. If the property is a DVC, the process is repeated. For example, a cmp-field named info that uses the ContactInfo DVC would have the following columns:
			
info_cell_area_code
info_cell_exchange
info_cell_extension
info_pager_area_code
info_pager_exchange
info_pager_extension
info_email

				The automatically generated column names can quickly become excessively long and awkward. The default mappings of columns can be overridden in the entity element as follows:
			
​<jbosscmp-jdbc>
​ <enterprise-beans>
​ <entity>
​ <ejb-name>GangsterEJB</ejb-name>
​ <cmp-field>
​ <field-name>contactInfo</field-name>
​ <property>
​ <property-name>cell.areaCode</property-name>
​ <column-name>cell_area</column-name>
​ </property>
​ <property>
​ <property-name>cell.exchange</property-name>
​ <column-name>cell_exch</column-name>
​ </property>
​ <property>
​ <property-name>cell.extension</property-name>
​ <column-name>cell_ext</column-name>
​ </property>
​
​ <property>
​ <property-name>pager.areaCode</property-name>
​ <column-name>page_area</column-name>
​ </property>
​ <property>
​ <property-name>pager.exchange</property-name>
​ <column-name>page_exch</column-name>
​ </property>
​ <property>
​ <property-name>pager.extension</property-name>
​ <column-name>page_ext</column-name>
​ </property>
​
​ <property>
​ <property-name>email</property-name>
​ <column-name>email</column-name>
​ <jdbc-type>VARCHAR</jdbc-type>
​ <sql-type>VARCHAR(128)</sql-type>
​ </property>
​ </cmp-field>
​ </entity>
​ </enterprise-beans>
​</jbosscmp-jdbc>

				When overriding property info for the entity, you need to refer to the property from a flat perspective as in cell.areaCode.
			

 ⁠31.5. Container Managed Relationships

			Container Managed Relationships (CMRs) are a powerful new feature of CMP 2.0. Programmers have been creating relationships between entity objects since EJB 1.0 was introduced (not to mention since the introduction of databases), but before CMP 2.0 the programmer had to write a lot of code for each relationship in order to extract the primary key of the related entity and store it in a pseudo foreign key field. The simplest relationships were tedious to code, and complex relationships with referential integrity required many hours to code. With CMP 2.0 there is no need to code relationships by hand. The container can manage one-to-one, one-to-many and many-to-many relationships, with referential integrity. One restriction with CMRs is that they are only defined between local interfaces. This means that a relationship cannot be created between two entities in separate applications, even in the same application server.
		

			There are two basic steps to create a container managed relationship: create the cmr-field abstract accessors and declare the relationship in the ejb-jar.xml file. The following two sections describe these steps.
		

 ⁠31.5.1. CMR-Field Abstract Accessors

				CMR-Field abstract accessors have the same signatures as cmp-fields, except that single-valued relationships must return the local interface of the related entity, and multi-valued relationships can only return a java.util.Collection (or java.util.Set) object. For example, to declare a one-to-many relationship between organization and gangster, we declare the relationship from organization to gangster in the OrganizationBean class:
			
​public abstract class OrganizationBean
​ implements EntityBean
​{
​ public abstract Set getMemberGangsters();
​ public abstract void setMemberGangsters(Set gangsters);
​}

				We also can declare the relationship from gangster to organization in the GangsterBean class:
			
​public abstract class GangsterBean
​ implements EntityBean
​{
​ public abstract Organization getOrganization();
​ public abstract void setOrganization(Organization org);
​}

				Although each bean declared a CMR field, only one of the two beans in a relationship must have a set of accessors. As with CMP fields, a CMR field is required to have both a getter and a setter method.
			

 ⁠31.5.2. Relationship Declaration

				The declaration of relationships in the ejb-jar.xml file is complicated and error prone. Although we recommend using a tool like XDoclet to manage the deployment descriptors for CMR fields, it's still important to understand how the descriptor works. The following illustrates the declaration of the organization/gangster relationship:
			
​<ejb-jar>
​ <relationships>
​ <ejb-relation>
​ <ejb-relation-name>Organization-Gangster</ejb-relation-name>
​ <ejb-relationship-role>
​ <ejb-relationship-role-name>org-has-gangsters </ejb-relationship-role-name>
​ <multiplicity>One</multiplicity>
​ <relationship-role-source>
​ <ejb-name>OrganizationEJB</ejb-name>
​ </relationship-role-source>
​ <cmr-field>
​ <cmr-field-name>memberGangsters</cmr-field-name>
​ <cmr-field-type>java.util.Set</cmr-field-type>
​ </cmr-field>
​ </ejb-relationship-role>
​ <ejb-relationship-role>
​ <ejb-relationship-role-name>
​ gangster-belongs-to-org
​ </ejb-relationship-role-name>
​ <multiplicity>Many</multiplicity>
​ <cascade-delete/>
​ <relationship-role-source>
​ <ejb-name>GangsterEJB</ejb-name>
​ </relationship-role-source>
​ <cmr-field>
​ <cmr-field-name>organization</cmr-field-name>
​ </cmr-field>
​ </ejb-relationship-role>
​ </ejb-relation>
​ </relationships>
​</ejb-jar>

				As you can see, each relationship is declared with an ejb-relation element within the top level relationships element. The relation is given a name in the ejb-relation-name element. This is important because we will need to refer to the role by name in the jbosscmp-jdbc.xml file. Each ejb-relation contains two ejb-relationship-role elements (one for each side of the relationship). The ejb-relationship-role tags are as follows:
			
	
						ejb-relationshiprole-name: This optional element is used to identify the role and match the database mapping the jbosscmp-jdbc.xml file. The relationship role names for each side of a relationship must be different.
					

	
						multiplicity: This indicates the multiplicity of this side of the relationship. The valid values are One or Many. In this example, the multiplicity of the organization is One and the multiplicity of the gangster is Many because the relationship is from one organization to many gangsters. Note, as with all XML elements, this element is case sensitive.
					

	
						cascade-delete: When this optional element is present, JBoss will delete the child entity when the parent entity is deleted. Cascade deletion is only allowed for a role where the other side of the relationship has a multiplicity of one. The default is to not cascade delete.
					

	
						relationship-role-source
					
	
								ejb-name: This required element gives the name of the entity that has the role.
							

	
						cmr-field
					
	
								cmr-field-name: This is the name of the CMR field of the entity has one, if it has one.
							

	
								cmr-field-type: This is the type of the CMR field, if the field is a collection type. It must be java.util.Collection or java.util.Set.
							

				After adding the CMR field abstract accessors and declaring the relationship, the relationship should be functional. The next section discusses the database mapping of the relationship.
			

 ⁠31.5.3. Relationship Mapping

				Relationships can be mapped using either a foreign key or a separate relation table. One-to-one and one-to-many relationships use the foreign key mapping style by default, and many-to-many relationships use only the relation table mapping style. The mapping of a relationship is declared in the relationships section of the jbosscmp-jdbc.xml descriptor via ejb-relation elements. Relationships are identified by the ejb-relation-name from the ejb-jar.xml file. The jbosscmp-jdbc.xmlejb-relation element content model is shown in Figure 31.7, “The jbosscmp-jdbc.xml ejb-relation element content model”.
			

 ⁠[image: The jbosscmp-jdbc.xml ejb-relation element content model]

Figure 31.7. The jbosscmp-jdbc.xml ejb-relation element content model

				The basic template of the relationship mapping declaration for Organization-Gangster relationship follows:
			
​<jbosscmp-jdbc>
​ <relationships>
​ <ejb-relation>
​ <ejb-relation-name>Organization-Gangster</ejb-relation-name>
​ <foreign-key-mapping/>
​ <ejb-relationship-role>
​ <ejb-relationship-role-name>org-has-gangsters</ejb-relationship-role-name>
​ <key-fields>
​ <key-field>
​ <field-name>name</field-name>
​ <column-name>organization</column-name>
​ </key-field>
​ </key-fields>
​ </ejb-relationship-role>
​ <ejb-relationship-role>
​ <ejb-relationship-role-name>gangster-belongs-to-org</ejb-relationship-role-name>
​ <key-fields/>
​ </ejb-relationship-role>
​ </ejb-relation>
​ </relationships>
​</jbosscmp-jdbc>

				After the ejb-relation-name of the relationship being mapped is declared, the relationship can be declared as read only using the read-only and read-time-out elements. They have the same semantics as their counterparts in the entity element.
			

				The ejb-relation element must contain either a foreign-key-mapping element or a relation-table-mapping element, which are described in Section 31.5.3.2, “Foreign Key Mapping” and Section 31.5.3.3, “Relation table Mapping”. This element may also contain a pair of ejb-relationship-role elements as described in the following section.
			

 ⁠31.5.3.1. Relationship Role Mapping

					Each of the two ejb-relationship-role elements contains mapping information specific to an entity in the relationship. The content model of the ejb-relationship-role element is shown in Figure 31.8, “The jbosscmp-jdbc ejb-relationship-role element content model”.
				

 ⁠[image: The jbosscmp-jdbc ejb-relationship-role element content model]

Figure 31.8. The jbosscmp-jdbc ejb-relationship-role element content model

					A detailed description of the main elements follows:
				
	
							ejb-relationship-role-name: This required element gives the name of the role to which this configuration applies. It must match the name of one of the roles declared for this relationship in the ejb-jar.xml file.
						

	
							fk-constraint: This optional element is a true/false value that indicates whether JBoss should add a foreign key constraint to the tables for this side of the relationship. JBoss will only add generate the constraint if both the primary table and the related table were created by JBoss during deployment.
						

	
							key-fields: This optional element specifies the mapping of the primary key fields of the current entity, whether it is mapped in the relation table or in the related object. The key-fields element must contain a key-field element for each primary key field of the current entity. The key-fields element can be empty if no foreign key mapping is needed for this side of the relation. An example of this would be the many side of a one-to-many relationship. The details of this element are described below.
						

	
							read-ahead: This optional element controls the caching of this relationship. This option is discussed in Section 31.8.3.1, “Relationships”.
						

	
							batch-cascade-delete: This indicates that a cascade delete on this relationship should be performed with a single SQL statement. This requires that the relationship be marked as batch-delete in the ejb-jar.xml.
						

					As noted above, the key-fields element contains a key-field for each primary key field of the current entity. The key-field element uses the same syntax as the cmp-field element of the entity, except that key-field does not support the not-null option. Key fields of a relation-table are automatically not null, because they are the primary key of the table. On the other hand, foreign key fields must be nullable by default. This is because the CMP specification requires an insert into the database after the ejbCreate method and an update to it after to pick up CMR changes made in ejbPostCreate. Since the EJB specification does not allow a relationship to be modified until ejbPostCreate, a foreign key will be initially set to null. There is a similar problem with removal. You can change this insert behavior using the jboss.xmlinsert-after-ejb-post-create container configuration flag. The following example illustrates the creation of a new bean configuration that uses insert-after-ejb-post-create by default.
				
​<jboss>
​ <!-- ... -->
​ <container-configurations>
​ <container-configuration extends="Standard CMP 2.x EntityBean">
​ <container-name>INSERT after ejbPostCreate Container</container-name>
​ <insert-after-ejb-post-create>true</insert-after-ejb-post-create>
​ </container-configuration>
​ </container-configurations>
​</jboss>

					An alternate means of working around the non-null foreign key issue is to map the foreign key elements onto non-null CMP fields. In this case you simply populate the foreign key fields in ejbCreate using the associated CMP field setters.
				

					The content model of the key-fields element is Figure 31.9, “The jbosscmp-jdbc key-fields element content model”.
				

 ⁠[image: The jbosscmp-jdbc key-fields element content model]

Figure 31.9. The jbosscmp-jdbc key-fields element content model

					A detailed description of the elements contained in the key-field element follows:
				
	
							field-name: This required element identifies the field to which this mapping applies. This name must match a primary key field of the current entity.
						

	
							column-name: Use this element to specify the column name in which this primary key field will be stored. If this is relationship uses foreign-key-mapping, this column will be added to the table for the related entity. If this relationship uses relation-table-mapping, this column is added to the relation-table. This element is not allowed for mapped dependent value class; instead use the property element.
						

	
							jdbc-type: This is the JDBC type that is used when setting parameters in a JDBC PreparedStatement or loading data from a JDBC ResultSet. The valid types are defined in java.sql.Types.
						

	
							sql-type: This is the SQL type that is used in create table statements for this field. Valid types are only limited by your database vendor.
						

	
							property: Use this element for to specify the mapping of a primary key field which is a dependent value class.
						

	
							dbindex: The presence of this optional field indicates that the server should create an index on the corresponding column in the database, and the index name will be fieldname_index.
						

 ⁠31.5.3.2. Foreign Key Mapping

					Foreign key mapping is the most common mapping style for one-to-one and one-to-many relationships, but is not allowed for many-to many relationships. The foreign key mapping element is simply declared by adding an empty foreign key-mapping element to the ejb-relation element.
				

					As noted in the previous section, with a foreign key mapping the key-fields declared in the ejb-relationship-role are added to the table of the related entity. If the key-fields element is empty, a foreign key will not be created for the entity. In a one-to-many relationship, the many side (Gangster in the example) must have an empty key-fields element, and the one side (Organization in the example) must have a key-fields mapping. In one-to-one relationships, one or both roles can have foreign keys.
				

					The foreign key mapping is not dependent on the direction of the relationship. This means that in a one-to-one unidirectional relationship (only one side has an accessor) one or both roles can still have foreign keys. The complete foreign key mapping for the Organization-Gangster relationship is shown below with the foreign key elements:
				
​<jbosscmp-jdbc>
​ <relationships>
​ <ejb-relation>
​ <ejb-relation-name>Organization-Gangster</ejb-relation-name>
​ <foreign-key-mapping/>
​ <ejb-relationship-role>
​ <ejb-relationship-role-name>org-has-gangsters</ejb-relationship-role-name>
​ <key-fields> <key-field> <field-name>name</field-name> <column-name>organization</column-name> </key-field> </key-fields>
​ </ejb-relationship-role>
​ <ejb-relationship-role>
​ <ejb-relationship-role-name>gangster-belongs-to-org</ejb-relationship-role-name>
​ <key-fields/>
​ </ejb-relationship-role>
​ </ejb-relation>
​ </relationships>
​</jbosscmp-jdbc>

 ⁠31.5.3.3. Relation table Mapping

					Relation table mapping is less common for one-to-one and one-to-many relationships, but is the only mapping style allowed for many-to-many relationships. Relation table mapping is defined using the relation-table-mapping element, the content model of which is shown below.
				

 ⁠[image: The jbosscmp-jdbc relation-table-mapping element content model]

Figure 31.10. The jbosscmp-jdbc relation-table-mapping element content model

					The relation-table-mapping for the Gangster-Job relationship is shown in with table mapping elements:
				

 ⁠Example 31.1. The jbosscmp-jdbc.xml Relation-table Mapping
​<jbosscmp-jdbc>
​ <relationships>
​ <ejb-relation>
​ <ejb-relation-name>Gangster-Jobs</ejb-relation-name>
​ <relation-table-mapping>
​ <table-name>gangster_job</table-name>
​ </relation-table-mapping>
​ <ejb-relationship-role>
​ <ejb-relationship-role-name>gangster-has-jobs</ejb-relationship-role-name>
​ <key-fields>
​ <key-field>
​ <field-name>gangsterId</field-name>
​ <column-name>gangster</column-name>
​ </key-field>
​ </key-fields>
​ </ejb-relationship-role>
​ <ejb-relationship-role>
​ <ejb-relationship-role-name>job-has-gangsters</ejb-relationship-role-name>
​ <key-fields>
​ <key-field>
​ <field-name>name</field-name>
​ <column-name>job</column-name>
​ </key-field>
​ </key-fields>
​ </ejb-relationship-role>
​ </ejb-relation>
​ </relationships>
​</jbosscmp-jdbc>

					The relation-table-mapping element contains a subset of the options available in the entity element. A detailed description of these elements is reproduced here for convenience:
				
	
							table-name: This optional element gives the name of the table that will hold data for this relationship. The default table name is based on the entity and cmr-field names.
						

	
							datasource: This optional element gives the jndi-name used to look up the datasource. All database connections are obtained from the datasource. Having different datasources for entities is not recommended, as it vastly constrains the domain over which finders and ejbSelects can query.
						

	
							datasourcemapping: This optional element allows one to specify the name of the type-mapping to use.
						

	
							create-table: This optional element if true indicates JBoss should attempt to create a table for the relationship. When the application is deployed, JBoss checks if a table already exists before creating the table. If a table is found, it is logged, and the table is not created. This option is very useful during the early stages of development when the table structure changes often.
						

	
							post-table-create: This optional element specifies an arbitrary SQL statement that should be executed immediately after the database table is created. This command is only executed if create-table is true and the table did not previously exist.
						

	
							remove-table: This optional element if true indicates JBoss should attempt to drop the relation-table when the application is undeployed. This option is very useful during the early stages of development when the table structure changes often.
						

	
							row-locking: This optional element if true indicates JBoss should lock all rows loaded in a transaction. Most databases implement this by using the SELECT FOR UPDATE syntax when loading the entity, but the actual syntax is determined by the row-locking-template in the datasource-mapping used by this entity.
						

	
							pk-constraint: This optional element if true indicates JBoss should add a primary key constraint when creating tables.
						

 ⁠31.6. Queries

			Entity beans allow for two types of queries: finders and selects. A finder provides queries on an entity bean to clients of the bean. The select method is designed to provide private query statements to an entity implementation. Unlike finders, which are restricted to only return entities of the same type as the home interface on which they are defined, select methods can return any entity type or just one field of the entity. EJB-QL is the query language used to specify finders and select methods in a platform independent way.
		

 ⁠31.6.1. Finder and select Declaration

				The declaration of finders has not changed in CMP 2.0. Finders are still declared in the home interface (local or remote) of the entity. Finders defined on the local home interface do not throw a RemoteException. The following code declares the findBadDudes_ejbql finder on the GangsterHome interface. The ejbql suffix here is not required. It is simply a naming convention used here to differentiate the different types of query specifications we will be looking at.
			
​public interface GangsterHome
​ extends EJBLocalHome
​{
​ Collection findBadDudes_ejbql(int badness) throws FinderException;
​}

				Select methods are declared in the entity implementation class, and must be public and abstract just like CMP and CMR field abstract accessors and must throw a FinderException. The following code declares an select method:
			
​public abstract class GangsterBean
​ implements EntityBean
​{
​ public abstract Set ejbSelectBoss_ejbql(String name)
​ throws FinderException;
​}

 ⁠31.6.2. EJB-QL Declaration

				Every select or finder method (except findByPrimaryKey) must have an EJB-QL query defined in the ejb-jar.xml file. The EJB-QL query is declared in a query element, which is contained in the entity element. The following are the declarations for findBadDudes_ejbql and ejbSelectBoss_ejbql queries:
			
​<ejb-jar>
​ <enterprise-beans>
​ <entity>
​ <ejb-name>GangsterEJB</ejb-name>
​ <!-- ... -->
​ <query>
​ <query-method>
​ <method-name>findBadDudes_ejbql</method-name>
​ <method-params>
​ <method-param>int</method-param>
​ </method-params>
​ </query-method>
​ <ejb-ql>
​ SELECT OBJECT(g) FROM gangster g WHERE g.badness > ?1
​ </ejb-ql>
​ </query>
​ <query>
​ <query-method>
​ <method-name>ejbSelectBoss_ejbql</method-name>
​ <method-params>
​ <method-param>java.lang.String</method-param>
​ </method-params>
​ </query-method>
​ <ejb-ql>
​ SELECT DISTINCT underling.organization.theBoss FROM gangster underling WHERE underling.name = ?1 OR underling.nickName = ?1
​ </ejb-ql>
​ </query>
​ </entity>
​ </enterprise-beans>
​</ejb-jar>

				EJB-QL is similar to SQL but has some surprising differences. The following are some important things to note about EJB-QL:
			
	
						EJB-QL is a typed language, meaning that it only allows comparison of like types (i.e., strings can only be compared with strings).
					

	
						In an equals comparison a variable (single valued path) must be on the left hand side. Some examples follow:
					

​g.hangout.state = 'CA' Legal
​'CA' = g.shippingAddress.state NOT Legal
​'CA' = 'CA' NOT Legal
​(r.amountPaid * .01) > 300 NOT Legal
​r.amountPaid > (300 / .01) Legal
	
						Parameters use a base 1 index like java.sql.PreparedStatement.
					

	
						Parameters are only allowed on the right hand side of a comparison. For example:
					

​gangster.hangout.state = ?1 Legal
​?1 = gangster.hangout.state NOT Legal

 ⁠31.6.3. Overriding the EJB-QL to SQL Mapping

				The EJB-QL query can be overridden in the jbosscmp-jdbc.xml file. The finder or select is still required to have an EJB-QL declaration, but the ejb-ql element can be left empty. Currently the SQL can be overridden with JBossQL, DynamicQL, DeclaredSQL or a BMP style custom ejbFind method. All EJB-QL overrides are non-standard extensions to the EJB specification, so use of these extensions will limit portability of your application. All of the EJB-QL overrides, except for BMP custom finders, are declared using a query element in the jbosscmp-jdbc.xml file. The content model is shown in Figure 31.11, “The jbosscmp-jdbc query element content model”.
			

 ⁠[image: The jbosscmp-jdbc query element content model]

Figure 31.11. The jbosscmp-jdbc query element content model

	
						description: An optional description for the query.
					

	
						query-method: This required element specifies the query method that being configured. This must match a query-method declared for this entity in the ejb-jar.xml file.
					

	
						jboss-ql: This is a JBossQL query to use in place of the EJB-QL query. JBossQL is discussed in Section 31.6.4, “JBossQL”.
					

	
						dynamic-ql: This indicated that the method is a dynamic query method and not an EJB-QL query. Dynamic queries are discussed in Section 31.6.5, “DynamicQL”.
					

	
						declared-sql: This query uses declared SQL in place of the EJB-QL query. Declared SQL is discussed in Section 31.6.6, “DeclaredSQL”.
					

	
						read-ahead: This optional element allows one to optimize the loading of additional fields for use with the entities referenced by the query. This is discussed in detail in Section 31.7, “Optimized Loading”.
					

 ⁠31.6.4. JBossQL

				JBossQL is a superset of EJB-QL that is designed to address some of the inadequacies of EJB-QL. In addition to a more flexible syntax, new functions, key words, and clauses have been added to JBossQL. At the time of this writing, JBossQL includes support for an ORDER BY, OFFSET and LIMIT clauses, parameters in the IN and LIKE operators, the COUNT, MAX, MIN, AVG, SUM, UCASE and LCASE functions. Queries can also include functions in the SELECT clause for select methods.
			

				JBossQL is declared in the jbosscmp-jdbc.xml file with a jboss-ql element containing the JBossQL query. The following example provides an example JBossQL declaration.
			
​<jbosscmp-jdbc>
​ <enterprise-beans>
​ <entity>
​ <ejb-name>GangsterEJB</ejb-name>
​ <query>
​ <query-method>
​ <method-name>findBadDudes_jbossql</method-name>
​ <method-params>
​ <method-param>int</method-param>
​ </method-params>
​ </query-method>
​ <jboss-ql>SELECT OBJECT(g) FROM gangster g WHERE g.badness > ?1 ORDER BY g.badness DESC</jboss-ql>
​ </query>
​ </entity>
​ </enterprise-beans>
​</jbosscmp-jdbc>

				The corresponding generated SQL is straightforward.
			
​SELECT t0_g.id
​ FROM gangster t0_g
​ WHERE t0_g.badness > ?
​ ORDER BY t0_g.badness DESC

				Another capability of JBossQL is the ability to retrieve finder results in blocks using the LIMIT and OFFSET functions. For example, to iterate through the large number of jobs performed, the following findManyJobs_jbossql finder may be defined.
			
​<jbosscmp-jdbc>
​ <enterprise-beans>
​ <entity>
​ <ejb-name>GangsterEJB</ejb-name>
​ <query>
​ <query-method>
​ <method-name>findManyJobs_jbossql</method-name>
​ <method-params>
​ <method-param>int</method-param>
​ </method-params>
​ <method-params>
​ <method-param>int</method-param>
​ </method-params>
​ </query-method>
​ <jboss-ql>SELECT OBJECT(j) FROM jobs j OFFSET ?1 LIMIT ?2</jboss-ql>
​ </query>
​ </entity>
​ </enterprise-beans>
​</jbosscmp-jdbc>

 ⁠31.6.5. DynamicQL

				DynamicQL allows the runtime generation and execution of JBossQL queries. A DynamicQL query method is an abstract method that takes a JBossQL query and the query arguments as parameters. JBoss compiles the JBossQL and executes the generated SQL. The following generates a JBossQL query that selects all the gangsters that have a hangout in any state in the states set:
			
​public abstract class GangsterBean
​ implements EntityBean
​{
​ public Set ejbHomeSelectInStates(Set states)
​ throws FinderException
​ {
​ // generate JBossQL query
​ StringBuffer jbossQl = new StringBuffer();
​ jbossQl.append("SELECT OBJECT(g) ");
​ jbossQl.append("FROM gangster g ");
​ jbossQl.append("WHERE g.hangout.state IN (");
​
​ for (int i = 0; i < states.size(); i++) {
​ if (i > 0) {
​ jbossQl.append(", ");
​ }
​
​ jbossQl.append("?").append(i+1);
​ }
​
​	 jbossQl.append(") ORDER BY g.name");
​
​ // pack arguments into an Object[]
​ Object[] args = states.toArray(new Object[states.size()]);
​
​ // call dynamic-ql query
​ return ejbSelectGeneric(jbossQl.toString(), args);
​ }
​}

				The DynamicQL select method may have any valid select method name, but the method must always take a string and an object array as parameters. DynamicQL is declared in the jbosscmp-jdbc.xml file with an empty dynamic-ql element. The following is the declaration for ejbSelectGeneric.
			
​<jbosscmp-jdbc>
​ <enterprise-beans>
​ <entity>
​ <ejb-name>GangsterEJB</ejb-name>
​ <query>
​ <query-method>
​ <method-name>ejbSelectGeneric</method-name>
​ <method-params>
​ <method-param>java.lang.String</method-param>
​ <method-param>java.lang.Object[]</method-param>
​ </method-params>
​ </query-method>
​ <dynamic-ql/>
​ </query>
​ </entity>
​ </enterprise-beans>
​</jbosscmp-jdbc>

 ⁠31.6.6. DeclaredSQL

				DeclaredSQL is based on the legacy JAWS CMP 1.1 engine finder declaration, but has been updated for CMP 2.0. Commonly this declaration is used to limit a query with a WHERE clause that cannot be represented in q EJB-QL or JBossQL. The content model for the declared-sql element is given in Figure 31.12, “The jbosscmp-jdbc declared-sql element content model.>”.
			

 ⁠[image: The jbosscmp-jdbc declared-sql element content model.>]

Figure 31.12. The jbosscmp-jdbc declared-sql element content model.>

	
						select: The select element specifies what is to be selected and consists of the following elements:
					
	
								distinct: If this empty element is present, JBoss will add the DISTINCT keyword to the generated SELECT clause. The default is to use DISTINCT if method returns a java.util.Set
							

	
								ejb-name: This is the ejb-name of the entity that will be selected. This is only required if the query is for a select method.
							

	
								field-name: This is the name of the CMP field that will be selected from the specified entity. The default is to select entire entity.
							

	
								alias: This specifies the alias that will be used for the main select table. The default is to use the ejb-name.
							

	
								additional-columns: Declares other columns to be selected to satisfy ordering by arbitrary columns with finders or to facilitate aggregate functions in selects.
							

	
						from: The from element declares additional SQL to append to the generated FROM clause.
					

	
						where: The where element declares the WHERE clause for the query.
					

	
						order: The order element declares the ORDER clause for the query.
					

	
						other: The other element declares additional SQL that is appended to the end of the query.
					

				The following is an example DeclaredSQL declaration.
			
​<jbosscmp-jdbc>
​ <enterprise-beans>
​ <entity>
​ <ejb-name>GangsterEJB</ejb-name>
​ <query>
​ <query-method>
​ <method-name>findBadDudes_declaredsql</method-name>
​ <method-params>
​ <method-param>int</method-param>
​ </method-params>
​ </query-method>
​ <declared-sql>
​ <where><![CDATA[badness > {0}]]></where>
​ <order><![CDATA[badness DESC]]></order>
​ </declared-sql>
​ </query>
​ </entity>
​ </enterprise-beans>
​</jbosscmp-jdbc>

				The generated SQL would be:
			
​SELECT id
​FROM gangster
​WHERE badness > ?
​ORDER BY badness DESC

				As you can see, JBoss generates the SELECT and FROM clauses necessary to select the primary key for this entity. If desired an additional FROM clause can be specified that is appended to the end of the automatically generated FROM clause. The following is example DeclaredSQL declaration with an additional FROM clause.
			
​<jbosscmp-jdbc>
​ <enterprise-beans>
​ <entity>
​ <ejb-name>GangsterEJB</ejb-name>
​ <query>
​ <query-method>
​ <method-name>ejbSelectBoss_declaredsql</method-name>
​ <method-params>
​ <method-param>java.lang.String</method-param>
​ </method-params>
​ </query-method>
​ <declared-sql>
​ <select>
​ <distinct/>
​ <ejb-name>GangsterEJB</ejb-name>
​ <alias>boss</alias>
​ </select>
​ <from><![CDATA[, gangster g, organization o]]></from>
​ <where><![CDATA[
​ (LCASE(g.name) = {0} OR LCASE(g.nick_name) = {0}) AND
​ g.organization = o.name AND o.the_boss = boss.id
​]]></where>
​ </declared-sql>
​ </query>
​ </entity>
​ </enterprise-beans>
​</jbosscmp-jdbc>

				The generated SQL would be:
			
​SELECT DISTINCT boss.id
​ FROM gangster boss, gangster g, organization o
​ WHERE (LCASE(g.name) = ? OR LCASE(g.nick_name) = ?) AND
​ g.organization = o.name AND o.the_boss = boss.id

				Notice that the FROM clause starts with a comma. This is because the container appends the declared FROM clause to the end of the generated FROM clause. It is also possible for the FROM clause to start with a SQL JOIN statement. Since this is a select method, it must have a select element to declare the entity that will be selected. Note that an alias is also declared for the query. If an alias is not declared, the table-name is used as the alias, resulting in a SELECT clause with the table_name.field_name style column declarations. Not all database vendors support the that syntax, so the declaration of an alias is preferred. The optional empty distinct element causes the SELECT clause to use the SELECT DISTINCT declaration. The DeclaredSQL declaration can also be used in select methods to select a CMP field.
			

				Now we well see an example which overrides a select to return all of the zip codes an Organization operates in.
			
​<jbosscmp-jdbc>
​ <enterprise-beans>
​ <entity>
​ <ejb-name>OrganizationEJB</ejb-name>
​ <query>
​ <query-method>
​ <method-name>ejbSelectOperatingZipCodes_declaredsql</method-name>
​ <method-params>
​ <method-param>java.lang.String</method-param>
​ </method-params>
​ </query-method>
​ <declared-sql> <select> <distinct/> <ejb-name>LocationEJB</ejb-name> <field-name>zipCode</field-name> <alias>hangout</alias> </select> <from><![CDATA[, organization o, gangster g]]></from> <where><![CDATA[LCASE(o.name) = {0} AND o.name = g.organization AND g.hangout = hangout.id]]></where> <order><![CDATA[hangout.zip]]></order> </declared-sql>
​ </query>
​ </entity>
​ </enterprise-beans>
​</jbosscmp-jdbc>

				The corresponding SQL would be:
			
​SELECT DISTINCT hangout.zip
​ FROM location hangout, organization o, gangster g
​ WHERE LCASE(o.name) = ? AND o.name = g.organization AND g.hangout = hangout.id
​ ORDER BY hangout.zip

 ⁠31.6.6.1. Parameters

					DeclaredSQL uses a completely new parameter handling system, which supports entity and DVC parameters. Parameters are enclosed in curly brackets and use a zero-based index, which is different from the one-based EJB-QL parameters. There are three categories of parameters: simple, DVC, and entity.
				
	
							simple: A simple parameter can be of any type except for a known (mapped) DVC or an entity. A simple parameter only contains the argument number, such as {0}. When a simple parameter is set, the JDBC type used to set the parameter is determined by the datasourcemapping for the entity. An unknown DVC is serialized and then set as a parameter. Note that most databases do not support the use of a BLOB value in a WHERE clause.
						

	
							DVC: A DVC parameter can be any known (mapped) DVC. A DVC parameter must be dereferenced down to a simple property (one that is not another DVC). For example, if we had a CVS property of type ContactInfo, valid parameter declarations would be {0.email} and {0.cell.areaCode} but not {0.cell}. The JDBC type used to set a parameter is based on the class type of the property and the datasourcemapping of the entity. The JDBC type used to set the parameter is the JDBC type that is declared for that property in the dependent-value-class element.
						

	
							entity: An entity parameter can be any entity in the application. An entity parameter must be dereferenced down to a simple primary key field or simple property of a DVC primary key field. For example, if we had a parameter of type Gangster, a valid parameter declaration would be {0.gangsterId}. If we had some entity with a primary key field named info of type ContactInfo, a valid parameter declaration would be {0.info.cell.areaCode}. Only fields that are members of the primary key of the entity can be dereferenced (this restriction may be removed in later versions). The JDBC type used to set the parameter is the JDBC type that is declared for that field in the entity declaration.
						

 ⁠31.6.7. EJBQL 2.1 and SQL92 queries

				The default query compiler does not fully support EJB-QL 2.1 or the SQL92 standard. If you need either of these functions, you can replace the query compiler. The default compiler is specified in standardjbosscmp-jdbc.xml.
			
​<defaults>
​ ...
​ <ql-compiler>org.jboss.ejb.plugins.cmp.jdbc.JDBCEJBQLCompiler</ql-compiler>
​ ...
​</defaults>

				To use the SQL92 compiler, simply specify the SQL92 compiler in ql-compiler element.
			
​<defaults>
​ ...
​ <ql-compiler>org.jboss.ejb.plugins.cmp.jdbc.EJBQLToSQL92Compiler</ql-compiler>
​ ...
​</defaults>

				This changes the query compiler for all beans in the entire system. You can also specify the ql-compiler for each element in jbosscmp-jdbc.xml. Here is an example using one of our earlier queries.
			
​<query>
​ <query-method>
​ <method-name>findBadDudes_ejbql</method-name>
​ <method-params>
​ lt;method-param>int</method-param>
​ </method-params>
​ </query-method>
​ <ejb-ql><![CDATA[
​ SELECT OBJECT(g)
​ FROM gangster g
​ WHERE g.badness > ?1]]>
​ </ejb-ql>
​ <ql-compiler>org.jboss.ejb.plugins.cmp.jdbc.EJBQLToSQL92Compiler</ql-compiler>
​</query>

				One important limitation of SQL92 query compiler is that it always selects all the fields of an entity regardless the read-ahead strategy in use. For example, if a query is configured with the on-loadread-ahead strategy, the first query will include all the fields, not just primary key fields but only the primary key fields will be read from the ResultSet. Then, on load, other fields will be actually loaded into the read-ahead cache. The on-findread-ahead with the default load group * works as expected.
			

 ⁠31.6.8. BMP Custom Finders

				JBoss also supports bean managed persistence custom finders. If a custom finder method matches a finder declared in the home or local home interface, JBoss will always call the custom finder over any other implementation declared in the ejb-jar.xml or jbosscmp-jdbc.xml files. The following simple example finds the entities by a collection of primary keys:
			
​public abstract class GangsterBean
​ implements EntityBean
​{
​ public Collection ejbFindByPrimaryKeys(Collection keys)
​ {
​ return keys;
​ }
​}

				This is a very useful finder because it quickly coverts primary keys into real Entity objects without contacting the database. One drawback is that it can create an Entity object with a primary key that does not exist in the database. If any method is invoked on the bad Entity, a NoSuchEntityException will be thrown. Another drawback is that the resulting entity bean violates the EJB specification in that it implements a finder, and the JBoss EJB verifier will fail the deployment of such an entity unless the StrictVerifier attribute is set to false.
			

 ⁠31.7. Optimized Loading

			The goal of optimized loading is to load the smallest amount of data required to complete a transaction in the fewest number of queries. The tuning of JBoss depends on a detailed knowledge of the loading process. This section describes the internals of the JBoss loading process and its configuration. Tuning of the loading process really requires a holistic understanding of the loading system, so this chapter may have to be read more than once.
		

 ⁠31.7.1. Loading Scenario

				The easiest way to investigate the loading process is to look at a usage scenario. The most common scenario is to locate a collection of entities and iterate over the results performing some operation. The following example generates an html table containing all of the gangsters:
			
​public String createGangsterHtmlTable_none()
​ throws FinderException
​{
​ StringBuffer table = new StringBuffer();
​ table.append("<table>");
​
​ Collection gangsters = gangsterHome.findAll_none();
​ for (Iterator iter = gangsters.iterator(); iter.hasNext();) {
​ Gangster gangster = (Gangster) iter.next();
​ table.append("<tr>");
​ table.append("<td>").append(gangster.getName());
​ table.append("</td>");
​ table.append("<td>").append(gangster.getNickName());
​ table.append("</td>");
​ table.append("<td>").append(gangster.getBadness());
​ table.append("</td>");
​ table.append("</tr>");
​ }
​
​ return table.toString();
​}

				Assume this code is called within a single transaction and all optimized loading has been disabled. At the findAll_none call, JBoss will execute the following query:
			
​SELECT t0_g.id
​ FROM gangster t0_g
​ ORDER BY t0_g.id ASC

				Then as each of the eight gangster in the sample database is accessed, JBoss will execute the following eight queries:
			
​SELECT name, nick_name, badness, hangout, organization
​ FROM gangster WHERE (id=0)
​SELECT name, nick_name, badness, hangout, organization
​ FROM gangster WHERE (id=1)
​SELECT name, nick_name, badness, hangout, organization
​ FROM gangster WHERE (id=2)
​SELECT name, nick_name, badness, hangout, organization
​ FROM gangster WHERE (id=3)
​SELECT name, nick_name, badness, hangout, organization
​ FROM gangster WHERE (id=4)
​SELECT name, nick_name, badness, hangout, organization
​ FROM gangster WHERE (id=5)
​SELECT name, nick_name, badness, hangout, organization
​ FROM gangster WHERE (id=6)
​SELECT name, nick_name, badness, hangout, organization
​ FROM gangster WHERE (id=7)

				There are two problems with this scenario. First, an excessive number of queries are executed because JBoss executes one query for the findAll and one query to access each element found. The reason for this behavior has to do with the handling of query results inside the JBoss container. Although it appears that the actual entity beans selected are returned when a query is executed, JBoss really only returns the primary keys of the matching entities, and does not load the entity until a method is invoked on it. This is known as the n+1 problem and is addressed with the read-ahead strategies described in the following sections.
			

				Second, the values of unused fields are loaded needlessly. JBoss loads the hangout and organization fields, which are never accessed. (we have disabled the complex contactInfo field for the sake of clarity)
			

				The following table shows the execution of the queries:
			

 ⁠Table 31.1. Un-optimized Query Execution
	 id 	 name 	 nick_name 	 badness 	 hangout 	 organization
	 0 	 Yojimbo 	 Bodyguard 	 7 	 0 	 Yakuza
	 1 	 Takeshi 	 Master 	 10 	 1 	 Yakuza
	 2 	 Yuriko 	 Four finger 	 4 	 2 	 Yakuza
	 3 	 Chow 	 Killer 	 9 	 3 	 Triads
	 4 	 Shogi 	 Lightning 	 8 	 4 	 Triads
	 5 	 Valentino 	 Pizza-Face 	 4 	 5 	 Mafia
	 6 	 Toni 	 Toothless 	 2 	 6 	 Mafia
	 7 	 Corleone 	 Godfather 	 6 	 7 	 Mafia

 ⁠31.7.2. Load Groups

				The configuration and optimization of the loading system begins with the declaration of named load groups in the entity. A load group contains the names of CMP fields and CMR Fields that have a foreign key (e.g., Gangster in the Organization-Gangster example) that will be loaded in a single operation. An example configuration is shown below:
			
​<jbosscmp-jdbc>
​ <enterprise-beans>
​ <entity>
​ <ejb-name>GangsterEJB</ejb-name>
​ <!-- ... -->
​ <load-groups>
​ <load-group>
​ <load-group-name>basic</load-group-name>
​ <field-name>name</field-name>
​ <field-name>nickName</field-name>
​ <field-name>badness</field-name>
​ </load-group>
​ <load-group>
​ <load-group-name>contact info</load-group-name>
​ <field-name>nickName</field-name>
​ <field-name>contactInfo</field-name>
​ <field-name>hangout</field-name>
​ </load-group>
​ </load-groups>
​ </entity>
​ </enterprise-beans>
​</jbosscmp-jdbc>

				In this example, two load groups are declared: basic and contact info. Note that the load groups do not need to be mutually exclusive. For example, both of the load groups contain the nickName field. In addition to the declared load groups, JBoss automatically adds a group named * (the star group) that contains every CMP field and CMR field with a foreign key in the entity.
			

 ⁠31.7.3. Read-ahead

				Optimized loading in JBoss is called read-ahead. This refers to the technique of reading the row for an entity being loaded, as well as the next several rows; hence the term read-ahead. JBoss implements two main strategies (on-find and on-load) to optimize the loading problem identified in the previous section. The extra data loaded during read-ahead is not immediately associated with an entity object in memory, as entities are not materialized in JBoss until actually accessed. Instead, it is stored in the preload cache where it remains until it is loaded into an entity or the end of the transaction occurs. The following sections describe the read-ahead strategies.
			

 ⁠31.7.3.1. on-find

					The on-find strategy reads additional columns when the query is invoked. If the query is on-find optimized, JBoss will execute the following query when the query is executed.
				
​SELECT t0_g.id, t0_g.name, t0_g.nick_name, t0_g.badness
​ FROM gangster t0_g
​ ORDER BY t0_g.id ASC

					All of the required data would be in the preload cache, so no additional queries would need to be executed while iterating through the query results. This strategy is effective for queries that return a small amount of data, but it becomes very inefficient when trying to load a large result set into memory. The following table shows the execution of this query:
				

 ⁠Table 31.2. on-find Optimized Query Execution
	 id 	 name 	 nick_name 	 badness 	 hangout 	 organization
	 0 	 Yojimbo 	 Bodyguard 	 7 	 0 	 Yakuza
	 1 	 Takeshi 	 Master 	 10 	 1 	 Yakuza
	 2 	 Yuriko 	 Four finger 	 4 	 2 	 Yakuza
	 3 	 Chow 	 Killer 	 9 	 3 	 Triads
	 4 	 Shogi 	 Lightning 	 8 	 4 	 Triads
	 5 	 Valentino 	 Pizza-Face 	 4 	 5 	 Mafia
	 6 	 Toni 	 Toothless 	 2 	 6 	 Mafia
	 7 	 Corleone 	 Godfather 	 6 	 7 	 Mafia

					The read-ahead strategy and load-group for a query is defined in the query element. If a read-ahead strategy is not declared in the query element, the strategy declared in the entity element or defaults element is used. The on-find configuration follows:
				
​<jbosscmp-jdbc>
​ <enterprise-beans>
​ <entity>
​ <ejb-name>GangsterEJB</ejb-name>
​ <!--...-->
​ <query>
​ <query-method>
​ <method-name>findAll_onfind</method-name>
​ <method-params/>
​ </query-method>
​ <jboss-ql><![CDATA[
​ SELECT OBJECT(g)
​ FROM gangster g
​ ORDER BY g.gangsterId
​]]></jboss-ql>
​ <read-ahead>
​ <strategy>on-find</strategy>
​ <page-size>4</page-size>
​ <eager-load-group>basic</eager-load-group>
​ </read-ahead>
​ </query>
​ </entity>
​ </enterprise-beans>
​</jbosscmp-jdbc>

					One problem with the on-find strategy is that it must load additional data for every entity selected. Commonly in web applications only a fixed number of results are rendered on a page. Since the preloaded data is only valid for the length of the transaction, and a transaction is limited to a single web HTTP hit, most of the preloaded data is not used. The on-load strategy discussed in the next section does not suffer from this problem.
				

 ⁠31.7.3.1.1. Left join read ahead

						Left join read ahead is an enhanced on-findread-ahead strategy. It allows you to preload in one SQL query not only fields from the base instance but also related instances which can be reached from the base instance by CMR navigation. There are no limitation for the depth of CMR navigations. There are also no limitations for cardinality of CMR fields used in navigation and relationship type mapping, i.e. both foreign key and relation-table mapping styles are supported. Let us look at some examples. Entity and relationship declarations can be found below.
					

 ⁠31.7.3.1.2. D#findByPrimaryKey

						Suppose we have an entity D. A typical SQL query generated for the findByPrimaryKey would look like this:
					
​SELECT t0_D.id, t0_D.name FROM D t0_D WHERE t0_D.id=?

						Suppose that while executing findByPrimaryKey we also want to preload two collection-valued CMR fields bs and cs.
					
​<query>
​ <query-method>
​ <method-name>findByPrimaryKey</method-name>
​ <method-params>
​ <method-param>java.lang.Long</method-param>
​ </method-params>
​ </query-method>
​ <jboss-ql><![CDATA[SELECT OBJECT(o) FROM D AS o WHERE o.id = ?1]]></jboss-ql>
​ <read-ahead>
​ <strategy>on-find</strategy>
​ <page-size>4</page-size>
​ <eager-load-group>basic</eager-load-group>
​ <left-join cmr-field="bs" eager-load-group="basic"/>
​ <left-join cmr-field="cs" eager-load-group="basic"/>
​ </read-ahead>
​</query>

						The left-join declares the relations to be eager loaded. The generated SQL would look like this:
					
​SELECT t0_D.id, t0_D.name,
​ t1_D_bs.id, t1_D_bs.name,
​ t2_D_cs.id, t2_D_cs.name
​ FROM D t0_D
​ LEFT OUTER JOIN B t1_D_bs ON t0_D.id=t1_D_bs.D_FK
​ LEFT OUTER JOIN C t2_D_cs ON t0_D.id=t2_D_cs.D_FK
​ WHERE t0_D.id=?

						For the D with the specific id we preload all its related B's and C's and can access those instance loading them from the read ahead cache, not from the database.
					

 ⁠31.7.3.1.3. D#findAll

						In the same way, we could optimize the findAll method on D selects all the D's. A normal findAll query would look like this:
					
​SELECT DISTINCT t0_o.id, t0_o.name FROM D t0_o ORDER BY t0_o.id DESC

						To preload the relations, we simply need to add the left-join elements to the query.
					
​<query>
​ <query-method>
​ <method-name>findAll</method-name>
​ </query-method>
​ <jboss-ql><![CDATA[SELECT DISTINCT OBJECT(o) FROM D AS o ORDER BY o.id DESC]]></jboss-ql>
​ <read-ahead>
​ <strategy>on-find</strategy>
​ <page-size>4</page-size>
​ <eager-load-group>basic</eager-load-group>
​ <left-join cmr-field="bs" eager-load-group="basic"/>
​ <left-join cmr-field="cs" eager-load-group="basic"/>
​ </read-ahead>
​</query>

						And here is the generated SQL:
					
​SELECT DISTINCT t0_o.id, t0_o.name,
​ t1_o_bs.id, t1_o_bs.name,
​ t2_o_cs.id, t2_o_cs.name
​ FROM D t0_o
​ LEFT OUTER JOIN B t1_o_bs ON t0_o.id=t1_o_bs.D_FK
​ LEFT OUTER JOIN C t2_o_cs ON t0_o.id=t2_o_cs.D_FK
​ ORDER BY t0_o.id DESC

						Now the simple findAll query now preloads the related B and C objects for each D object.
					

 ⁠31.7.3.1.4. A#findAll

						Now let us look at a more complex configuration. Here we want to preload instance A along with several relations.
					
	
								its parent (self-relation) reached from A with CMR field parent
							

	
								the B reached from A with CMR field b, and the related C reached from B with CMR field c
							

	
								B reached from A but this time with CMR field b2 and related to it C reached from B with CMR field c.
							

						For reference, the standard query would be:
					
​SELECT t0_o.id, t0_o.name FROM A t0_o ORDER BY t0_o.id DESC FOR UPDATE

						The following metadata describes our preloading plan.
					
​<query>
​ <query-method>
​ <method-name>findAll</method-name>
​ </query-method>
​ <jboss-ql><![CDATA[SELECT OBJECT(o) FROM A AS o ORDER BY o.id DESC]]></jboss-ql>
​ <read-ahead>
​ <strategy>on-find</strategy>
​ <page-size>4</page-size>
​ <eager-load-group>basic</eager-load-group>
​ <left-join cmr-field="parent" eager-load-group="basic"/>
​ <left-join cmr-field="b" eager-load-group="basic">
​ <left-join cmr-field="c" eager-load-group="basic"/>
​ </left-join>
​ <left-join cmr-field="b2" eager-load-group="basic">
​ <left-join cmr-field="c" eager-load-group="basic"/>
​ </left-join>
​ </read-ahead>
​</query>

						The SQL query generated would be:
					
​SELECT t0_o.id, t0_o.name,
​ t1_o_parent.id, t1_o_parent.name,
​ t2_o_b.id, t2_o_b.name,
​ t3_o_b_c.id, t3_o_b_c.name,
​ t4_o_b2.id, t4_o_b2.name,
​ t5_o_b2_c.id, t5_o_b2_c.name
​ FROM A t0_o
​ LEFT OUTER JOIN A t1_o_parent ON t0_o.PARENT=t1_o_parent.id
​ LEFT OUTER JOIN B t2_o_b ON t0_o.B_FK=t2_o_b.id
​ LEFT OUTER JOIN C t3_o_b_c ON t2_o_b.C_FK=t3_o_b_c.id
​ LEFT OUTER JOIN B t4_o_b2 ON t0_o.B2_FK=t4_o_b2.id
​ LEFT OUTER JOIN C t5_o_b2_c ON t4_o_b2.C_FK=t5_o_b2_c.id
​ ORDER BY t0_o.id DESC FOR UPDATE

						With this configuration, you can navigate CMRs from any found instance of A without an additional database load.
					

 ⁠31.7.3.1.5. A#findMeParentGrandParent

						Here is another example of self-relation. Suppose, we want to write a method that would preload an instance, its parent, grand-parent and its grand-grand-parent in one query. To do this, we would used nested left-join declaration.
					
​<query>
​ <query-method>
​ <method-name>findMeParentGrandParent</method-name>
​ <method-params>
​ <method-param>java.lang.Long</method-param>
​ </method-params>
​ </query-method>
​ <jboss-ql><![CDATA[SELECT OBJECT(o) FROM A AS o WHERE o.id = ?1]]></jboss-ql>
​ <read-ahead>
​ <strategy>on-find</strategy>
​ <page-size>4</page-size>
​ <eager-load-group>*</eager-load-group>
​ <left-join cmr-field="parent" eager-load-group="basic">
​ <left-join cmr-field="parent" eager-load-group="basic">
​ <left-join cmr-field="parent" eager-load-group="basic"/>
​ </left-join>
​ </left-join>
​ </read-ahead>
​</query>

						The generated SQL would be:
					
​SELECT t0_o.id, t0_o.name, t0_o.secondName, t0_o.B_FK, t0_o.B2_FK, t0_o.PARENT,
​ t1_o_parent.id, t1_o_parent.name,
​ t2_o_parent_parent.id, t2_o_parent_parent.name,
​ t3_o_parent_parent_parent.id, t3_o_parent_parent_parent.name
​ FROM A t0_o
​ LEFT OUTER JOIN A t1_o_parent ON t0_o.PARENT=t1_o_parent.id
​ LEFT OUTER JOIN A t2_o_parent_parent ON t1_o_parent.PARENT=t2_o_parent_parent.id
​ LEFT OUTER JOIN A t3_o_parent_parent_parent
​ ON t2_o_parent_parent.PARENT=t3_o_parent_parent_parent.id
​ WHERE (t0_o.id = ?) FOR UPDATE

						Note, if we remove left-join metadata we will have only
					
​SELECT t0_o.id, t0_o.name, t0_o.secondName, t0_o.B2_FK, t0_o.PARENT FOR UPDATE

 ⁠31.7.3.2. on-load

					The on-load strategy block-loads additional data for several entities when an entity is loaded, starting with the requested entity and the next several entities in the order they were selected. This strategy is based on theory that the results of a find or select will be accessed in forward order. When a query is executed, JBoss stores the order of the entities found in the list cache. Later, when one of the entities is loaded, JBoss uses this list to determine the block of entities to load. The number of lists stored in the cache is specified with the list-cachemax element of the entity. This strategy is also used when faulting in data not loaded in the on-find strategy.
				

					As with the on-find strategy, on-load is declared in the read-ahead element. The on-load configuration for this example is shown below.
				
​<jbosscmp-jdbc>
​ <enterprise-beans>
​ <entity>
​ <ejb-name>GangsterEJB</ejb-name>
​ <!-- ... -->
​ <query>
​ <query-method>
​ <method-name>findAll_onload</method-name>
​ <method-params/>
​ </query-method>
​ <jboss-ql><![CDATA[
​ SELECT OBJECT(g)
​ FROM gangster g
​ ORDER BY g.gangsterId
​]]></jboss-ql>
​ <read-ahead>
​ <strategy>on-load</strategy>
​ <page-size>4</page-size>
​ <eager-load-group>basic</eager-load-group>
​ </read-ahead>
​ </query>
​ </entity>
​ </enterprise-beans>
​</jbosscmp-jdbc>

					With this strategy, the query for the finder method in remains unchanged.
				
​SELECT t0_g.id
​ FROM gangster t0_g
​ ORDER BY t0_g.id ASC

					However, the data will be loaded differently as we iterate through the result set. For a page size of four, JBoss will only need to execute the following two queries to load the name, nickName and badness fields for the entities:
				
​SELECT id, name, nick_name, badness
​ FROM gangster
​ WHERE (id=0) OR (id=1) OR (id=2) OR (id=3)
​SELECT id, name, nick_name, badness
​ FROM gangster
​ WHERE (id=4) OR (id=5) OR (id=6) OR (id=7)

					The following table shows the execution of these queries:
				

 ⁠Table 31.3. on-load Optimized Query Execution
	 id 	 name 	 nick_name 	 badness 	 hangout 	 organization
	 0 	 Yojimbo 	 Bodyguard 	 7 	 0 	 Yakuza
	 1 	 Takeshi 	 Master 	 10 	 1 	 Yakuza
	 2 	 Yuriko 	 Four finger 	 4 	 2 	 Yakuza
	 3 	 Chow 	 Killer 	 9 	 3 	 Triads
	 4 	 Shogi 	 Lightning 	 8 	 4 	 Triads
	 5 	 Valentino 	 Pizza-Face 	 4 	 5 	 Mafia
	 6 	 Toni 	 Toothless 	 2 	 6 	 Mafia
	 7 	 Corleone 	 Godfather 	 6 	 7 	 Mafia

 ⁠31.7.3.3. none

					The none strategy is really an anti-strategy. This strategy causes the system to fall back to the default lazy-load code, and specifically does not read-ahead any data or remember the order of the found entities. This results in the queries and performance shown at the beginning of this chapter. The none strategy is declared with a read-ahead element. If the read-ahead element contains a page-size element or eager-load-group, it is ignored. The none strategy is declared the following example.
				
​<jbosscmp-jdbc>
​ <enterprise-beans>
​ <entity>
​ <ejb-name>GangsterEJB</ejb-name>
​ <!-- ... -->
​ <query>
​ <query-method>
​ <method-name>findAll_none</method-name>
​ <method-params/>
​ </query-method>
​ <jboss-ql><![CDATA[
​ SELECT OBJECT(g)
​ FROM gangster g
​ ORDER BY g.gangsterId
​]]></jboss-ql>
​ <read-ahead>
​ <strategy>none</strategy>
​ </read-ahead>
​ </query>
​ </entity>
​ </enterprise-beans>
​</jbosscmp-jdbc>

 ⁠31.8. Loading Process

			In the previous section several steps use the phrase "when the entity is loaded." This was intentionally left vague because the commit option specified for the entity and the current state of the transaction determine when an entity is loaded. The following section describes the commit options and the loading processes.
		

 ⁠31.8.1. Commit Options

				Central to the loading process are the commit options, which control when the data for an entity expires. JBoss supports four commit options A, B, C and D. The first three are described in the Enterprise JavaBeans Specification, but the last one is specific to JBoss. A detailed description of each commit option follows:
			
	
						A: JBoss assumes it is the sole user of the database; therefore, JBoss can cache the current value of an entity between transactions, which can result is substantial performance gains. As a result of this assumption, no data managed by JBoss can be changed outside of JBoss. For example, changing data in another program or with the use of direct JDBC (even within JBoss) will result in an inconsistent database state.
					

	
						B: JBoss assumes that there is more than one user of the database but keeps the context information about entities between transactions. This context information is used for optimizing loading of the entity. This is the default commit option.
					

	
						C: JBoss discards all entity context information at the end of the transaction.
					

	
						D: This is a JBoss specific commit option. This option is similar to commit option A, except that the data only remains valid for a specified amount of time.
					

				The commit option is declared in the jboss.xml file. For a detailed description of this file see Chapter 30, EJBs on JBoss. The following example changes the commit option to A for all entity beans in the application:
			

 ⁠Example 31.2. The jboss.xml Commit Option Declaration
​<jboss>
​ <container-configurations>
​ <container-configuration>
​ <container-name>Standard CMP 2.x EntityBean</container-name>
​ <commit-option>A</commit-option>
​ </container-configuration>
​ </container-configurations>
​</jboss>

 ⁠31.8.2. Eager-loading Process

				When an entity is loaded, JBoss must determine the fields that need to be loaded. By default, JBoss will use the eager-load-group of the last query that selected this entity. If the entity has not been selected in a query, or the last query used the none read-ahead strategy, JBoss will use the default eager-load-group declared for the entity. In the following example configuration, the basic load group is set as the default eager-load-group for the gangster entity bean:
			
​<jbosscmp-jdbc>
​ <enterprise-beans>
​ <entity>
​ <ejb-name>GangsterEJB</ejb-name>
​ <!-- ... -->
​ <load-groups>
​ <load-group>
​ <load-group-name>most</load-group-name>
​ <field-name>name</field-name>
​ <field-name>nickName</field-name>
​ <field-name>badness</field-name>
​ <field-name>hangout</field-name>
​ <field-name>organization</field-name>
​ </load-group>
​ </load-groups>
​ <eager-load-group>most</eager-load-group>
​ </entity>
​ </enterprise-beans>
​</jbosscmp-jdbc>

				The eager loading process is initiated the first time a method is called on an entity in a transaction. A detailed description of the load process follows:
			
	
						If the entity context is still valid, no loading is necessary, and therefore the loading process is done. The entity context will be valid when using commit option A, or when using commit option D, and the data has not timed out.
					

	
						Any residual data in the entity context is flushed. This assures that old data does not bleed into the new load.
					

	
						The primary key value is injected back into the primary key fields. The primary key object is actually independent of the fields and needs to be reloaded after the flush in step 2.
					

	
						All data in the preload cache for this entity is loaded into the fields.
					

	
						JBoss determines the additional fields that still need to be loaded. Normally the fields to load are determined by the eager-load group of the entity, but can be overridden if the entity was located using a query or CMR field with an on-find or on-load read ahead strategy. If all of the fields have already been loaded, the load process skips to step 7.
					

	
						A query is executed to select the necessary column. If this entity is using the on-load strategy, a page of data is loaded as described in Section 31.7.3.2, “on-load”. The data for the current entity is stored in the context and the data for the other entities is stored in the preload cache.
					

	
						The ejbLoad method of the entity is called.
					

 ⁠31.8.3. Lazy loading Process

				Lazy loading is the other half of eager loading. If a field is not eager loaded, it must be lazy loaded. When an access to an unloaded field of a bean is made, JBoss loads the field and all the fields of any lazy-load-group the field belong to. JBoss performs a set join and then removes any field that is already loaded. An example configuration is shown below.
			
​<jbosscmp-jdbc>
​ <enterprise-beans>
​ <entity>
​ <ejb-name>GangsterEJB</ejb-name>
​ <!-- ... -->
​ <load-groups>
​ <load-group>
​ <load-group-name>basic</load-group-name>
​ <field-name>name</field-name>
​ <field-name>nickName</field-name>
​ <field-name>badness</field-name>
​ </load-group>
​ <load-group>
​ <load-group-name>contact info</load-group-name>
​ <field-name>nickName</field-name>
​ <field-name>contactInfo</field-name>
​ <field-name>hangout</field-name>
​ </load-group>
​ </load-groups>
​ <!-- ... -->
​ <lazy-load-groups>
​ <load-group-name>basic</load-group-name>
​ <load-group-name>contact info</load-group-name>
​ </lazy-load-groups>
​ </entity>
​ </enterprise-beans>
​</jbosscmp-jdbc>

				When the bean provider calls getName() with this configuration, JBoss loads name, nickName and badness, assuming they are not already loaded. When the bean provider calls getNickName(), the name, nickName, badness, contactInfo, and hangout are loaded. A detailed description of the lazy loading process follows:
			
	
						All data in the preload cache for this entity is loaded into the fields.
					

	
						If the field value was loaded by the preload cache the lazy load process is finished.
					

	
						JBoss finds all of the lazy load groups that contain this field, performs a set join on the groups, and removes any field that has already been loaded.
					

	
						A query is executed to select the necessary columns. As in the basic load process, JBoss may load a block of entities. The data for the current entity is stored in the context and the data for the other entities is stored in the preload cache.
					

 ⁠31.8.3.1. Relationships

					Relationships are a special case in lazy loading because a CMR field is both a field and query. As a field it can be on-load block loaded, meaning the value of the currently sought entity and the values of the CMR field for the next several entities are loaded. As a query, the field values of the related entity can be preloaded using on-find.
				

					Again, the easiest way to investigate the loading is to look at a usage scenario. In this example, an HTML table is generated containing each gangster and their hangout. The example code follows:
				

 ⁠Example 31.3. Relationship Lazy Loading Example Code
​public String createGangsterHangoutHtmlTable()
​ throws FinderException
​{
​ StringBuffer table = new StringBuffer();
​ table.append("<table>");
​ Collection gangsters = gangsterHome.findAll_onfind();
​ for (Iterator iter = gangsters.iterator(); iter.hasNext();) {
​ Gangster gangster = (Gangster)iter.next();
​
​ Location hangout = gangster.getHangout();
​ table.append("<tr>");
​ table.append("<td>").append(gangster.getName());
​ table.append("</td>");
​ table.append("<td>").append(gangster.getNickName());
​ table.append("</td>");
​ table.append("<td>").append(gangster.getBadness());
​ table.append("</td>");
​ table.append("<td>").append(hangout.getCity());
​ table.append("</td>");
​ table.append("<td>").append(hangout.getState());
​ table.append("</td>");
​ table.append("<td>").append(hangout.getZipCode());
​ table.append("</td>");
​ table.append("</tr>");
​ }
​
​ table.append("</table>");return table.toString();
​}

					For this example, the configuration of the gangster's findAll_onfind query is unchanged from the on-find section. The configuration of the Location entity and Gangster-Hangout relationship follows:
				

 ⁠Example 31.4. The jbosscmp-jdbc.xml Relationship Lazy Loading Configuration
​<jbosscmp-jdbc>
​ <enterprise-beans>
​ <entity>
​ <ejb-name>LocationEJB</ejb-name>
​ <load-groups>
​ <load-group>
​ <load-group-name>quick info</load-group-name>
​ <field-name>city</field-name>
​ <field-name>state</field-name>
​ <field-name>zipCode</field-name>
​ </load-group>
​ </load-groups>
​ <eager-load-group/>
​ </entity>
​ </enterprise-beans>
​ <relationships>
​ <ejb-relation>
​ <ejb-relation-name>Gangster-Hangout</ejb-relation-name>
​ <foreign-key-mapping/>
​ <ejb-relationship-role>
​ <ejb-relationship-role-name>
​ gangster-has-a-hangout
​ </ejb-relationship-role-name>
​ <key-fields/>
​ <read-ahead>
​ <strategy>on-find</strategy>
​ <page-size>4</page-size>
​ <eager-load-group>quick info</eager-load-group>
​ </read-ahead>
​ </ejb-relationship-role>
​ <ejb-relationship-role>
​ <ejb-relationship-role-name>
​ hangout-for-a-gangster
​ </ejb-relationship-role-name>
​ <key-fields>
​ <key-field>
​ <field-name>locationID</field-name>
​ <column-name>hangout</column-name>
​ </key-field>
​ </key-fields>
​ </ejb-relationship-role>
​ </ejb-relation>
​ </relationships>
​</jbosscmp-jdbc>

					JBoss will execute the following query for the finder:
				
​SELECT t0_g.id, t0_g.name, t0_g.nick_name, t0_g.badness
​ FROM gangster t0_g
​ ORDER BY t0_g.id ASC

					Then when the hangout is accessed, JBoss executes the following two queries to load the city, state, and zip fields of the hangout:
				
​SELECT gangster.id, gangster.hangout,
​ location.city, location.st, location.zip
​ FROM gangster, location
​ WHERE (gangster.hangout=location.id) AND
​ ((gangster.id=0) OR (gangster.id=1) OR
​ (gangster.id=2) OR (gangster.id=3))
​SELECT gangster.id, gangster.hangout,
​ location.city, location.st, location.zip
​ FROM gangster, location
​ WHERE (gangster.hangout=location.id) AND
​ ((gangster.id=4) OR (gangster.id=5) OR
​ (gangster.id=6) OR (gangster.id=7))

					The following table shows the execution of the queries:
				

 ⁠Table 31.4. on-find Optimized Relationship Query Execution
	 id 	 name 	 nick_name 	 badness 	 hangout 	 id 	 city 	 st 	 zip
	 0 	 Yojimbo 	 Bodyguard 	 7 	 0 	 0 	 San Fran 	 CA 	 94108
	 1 	 Takeshi 	 Master 	 10 	 1 	 1 	 San Fran 	 CA 	 94133
	 2 	 Yuriko 	 Four finger 	 4 	 2 	 2 	 San Fran 	 CA 	 94133
	 3 	 Chow 	 Killer 	 9 	 3 	 3 	 San Fran 	 CA 	 94133
	 4 	 Shogi 	 Lightning 	 8 	 4 	 4 	 San Fran 	 CA 	 94133
	 5 	 Valentino 	 Pizza-Face 	 4 	 5 	 5 	 New York 	 NY 	 10017
	 6 	 Toni 	 Toothless 	 2 	 6 	 6 	 Chicago 	 IL 	 60661
	 7 	 Corleone 	 Godfather 	 6 	 7 	 7 	 Las Vegas 	 NV 	 89109

 ⁠31.8.4. Lazy loading result sets

				By default, when a multi-object finder or select method is executed the JDBC result set is read to the end immediately. The client receives a collection of EJBLocalObject or CMP field values which it can then iterate through. For big result sets this approach is not efficient. In some cases it is better to delay reading the next row in the result set until the client tries to read the corresponding value from the collection. You can get this behavior for a query using the lazy-resultset-loading element.
			
​<query>
​ <query-method>
​ <method-name>findAll</method-name>
​ </query-method>
​ <jboss-ql><![CDATA[select object(o) from A o]]></jboss-ql>
​ <lazy-resultset-loading>true</lazy-resultset-loading>
​</query>

				The are some issues you should be aware of when using lazy result set loading. Special care should be taken when working with a Collection associated with a lazily loaded result set. The first call to iterator() returns a special Iterator that reads from the ResultSet. Until this Iterator has been exhausted, subsequent calls to iterator() or calls to the add() method will result in an exception. The remove() and size() methods work as would be expected.
			

 ⁠31.9. Transactions

			All of the examples presented in this chapter have been defined to run in a transaction. Transaction granularity is a dominating factor in optimized loading because transactions define the lifetime of preloaded data. If the transaction completes, commits, or rolls back, the data in the preload cache is lost. This can result in a severe negative performance impact.
		

			The performance impact of running without a transaction will be demonstrated with an example that uses an on-find optimized query that selects the first four gangsters (to keep the result set small), and it is executed without a wrapper transaction. The example code follows:
		
​public String createGangsterHtmlTable_no_tx() throws FinderException
​{
​ StringBuffer table = new StringBuffer();
​ table.append("<table>");
​
​ Collection gangsters = gangsterHome.findFour();
​ for(Iterator iter = gangsters.iterator(); iter.hasNext();) {
​ Gangster gangster = (Gangster)iter.next();
​ table.append("<tr>");
​ table.append("<td>").append(gangster.getName());
​ table.append("</td>");
​ table.append("<td>").append(gangster.getNickName());
​ table.append("</td>");
​ table.append("<td>").append(gangster.getBadness());
​ table.append("</td>");
​ table.append("</tr>");
​ }
​
​ table.append("</table>");
​ return table.toString();
​}

			The finder results in the following query being executed:
		
​SELECT t0_g.id, t0_g.name, t0_g.nick_name, t0_g.badness
​ FROM gangster t0_g
​ WHERE t0_g.id < 4
​ ORDER BY t0_g.id ASC

			Normally this would be the only query executed, but since this code is not running in a transaction, all of the preloaded data is thrown away as soon as finder returns. Then when the CMP field is accessed JBoss executes the following four queries (one for each loop):
		
​SELECT id, name, nick_name, badness
​ FROM gangster
​ WHERE (id=0) OR (id=1) OR (id=2) OR (id=3)
​SELECT id, name, nick_name, badness
​ FROM gangster
​ WHERE (id=1) OR (id=2) OR (id=3)
​SELECT id, name, nick_name, badness
​ FROM gangster
​ WHERE (id=2) OR (id=3)
​SELECT name, nick_name, badness
​ FROM gangster
​ WHERE (id=3)

			It is actually worse than this. JBoss executes each of these queries three times; once for each CMP field that is accessed. This is because the preloaded values are discarded between the CMP field accessor calls.
		

			The following figure shows the execution of the queries:
		

 ⁠[image: No Transaction on-find optimized query execution]

Figure 31.13. No Transaction on-find optimized query execution

			This performance is much worse than read ahead none because of the amount of data loaded from the database. The number of rows loaded is determined by the following equation:
		

 ⁠Example 31.5.
n + n - 1 + n - 2 + ... + 1 + = ((n · (n+1)) / 2) = O(n2)

			This all happens because the transaction in the example is bounded by a single call on the entity. This brings up the important question "How do I run my code in a transaction?" The answer depends on where the code runs. If it runs in an EJB (session, entity, or message driven), the method must be marked with the Required or RequiresNewtrans-attribute in the assembly-descriptor. If the code is not running in an EJB, a user transaction is necessary. The following code wraps a call to the declared method with a user transaction:
		
​public String createGangsterHtmlTable_with_tx()
​ throws FinderException
​{
​ UserTransaction tx = null;
​ try {
​ InitialContext ctx = new InitialContext();
​ tx = (UserTransaction) ctx.lookup("UserTransaction");
​ tx.begin();
​
​ String table = createGangsterHtmlTable_no_tx();
​	
​ if (tx.getStatus() == Status.STATUS_ACTIVE) {
​	 tx.commit();
​ }
​	 return table;
​ } catch (Exception e) {
​ try {
​ if (tx != null) tx.rollback();
​ } catch (SystemException unused) {
​ // eat the exception we are exceptioning out anyway
​ }
​ if (e instanceof FinderException) {
​	 throw (FinderException) e;
​ }
​ if (e instanceof RuntimeException) {
​	 throw (RuntimeException) e;
​ }
​
​ throw new EJBException(e);
​ }
​}

 ⁠31.10. Optimistic Locking

			JBoss has supports for optimistic locking of entity beans. Optimistic locking allows multiple instances of the same entity bean to be active simultaneously. Consistency is enforced based on the optimistic locking policy choice. The optimistic locking policy choice defines the set of fields that are used in the commit time write of modified data to the database. The optimistic consistency check asserts that the values of the chosen set of fields has the same values in the database as existed when the current transaction was started. This is done using a select for UPDATE WHERE ... statement that contains the value assertions.
		

			You specify the optimistic locking policy choice using an optimistic-locking element in the jbosscmp-jdbc.xml descriptor. The content model of the optimistic-locking element is shown below and the description of the elements follows.
		

 ⁠[image: The jbosscmp-jdbc optimistic-locking element content model]

Figure 31.14. The jbosscmp-jdbc optimistic-locking element content model

	
					group-name: This element specifies that optimistic locking is based on the fields of a load-group. This value of this element must match one of the entity's load-group-name. The fields in this group will be used for optimistic locking.
				

	
					modified-strategy: This element specifies that optimistic locking is based on the modified fields. This strategy implies that the fields that were modified during transaction will be used for optimistic locking.
				

	
					read-strategy: This element specifies that optimistic locking is based on the fields read. This strategy implies that the fields that were read/changed in the transaction will be used for optimistic locking.
				

	
					version-column: This element specifies that optimistic locking is based on a version column strategy. Specifying this element will add an additional version field of type java.lang.Long to the entity bean for optimistic locking. Each update of the entity will increase the value of this field. The field-name element allows for the specification of the name of the CMP field while the column-name element allows for the specification of the corresponding table column.
				

	
					timestamp-column: This element specifies that optimistic locking is based on a timestamp column strategy. Specifying this element will add an additional version field of type java.util.Date to the entity bean for optimistic locking. Each update of the entity will set the value of this field to the current time. The field-name element allows for the specification of the name of the CMP field while the column-name element allows for the specification of the corresponding table column.
				

	
					key-generator-factory: This element specifies that optimistic locking is based on key generation. The value of the element is the JNDI name of a org.jboss.ejb.plugins.keygenerator.KeyGeneratorFactory implementation. Specifying this element will add an additional version field to the entity bean for optimistic locking. The type of the field must be specified via the field-type element. Each update of the entity will update the key field by obtaining a new value from the key generator. The field-name element allows for the specification of the name of the CMP field while the column-name element allows for the specification of the corresponding table column.
				

			A sample jbosscmp-jdbc.xml descriptor illustrating all of the optimistic locking strategies is given below.
		
​<!DOCTYPE jbosscmp-jdbc PUBLIC
​ "-//JBoss//DTD JBOSSCMP-JDBC 3.2//EN"
​ "http://www.jboss.org/j2ee/dtd/jbosscmp-jdbc_3_2.dtd">
​<jbosscmp-jdbc>
​ <defaults>
​ <datasource>java:/DefaultDS</datasource>
​ <datasource-mapping>Hypersonic SQL</datasource-mapping>
​ </defaults>
​ <enterprise-beans>
​ <entity>
​ <ejb-name>EntityGroupLocking</ejb-name>
​ <create-table>true</create-table>
​ <remove-table>true</remove-table>
​ <table-name>entitygrouplocking</table-name>
​ <cmp-field>
​ <field-name>dateField</field-name>
​ </cmp-field>
​ <cmp-field>
​ <field-name>integerField</field-name>
​ </cmp-field>
​ <cmp-field>
​ <field-name>stringField</field-name>
​ </cmp-field>
​ <load-groups>
​ <load-group>
​ <load-group-name>string</load-group-name>
​ <field-name>stringField</field-name>
​ </load-group>
​ <load-group>
​ <load-group-name>all</load-group-name>
​ <field-name>stringField</field-name>
​ <field-name>dateField</field-name>
​ </load-group>
​ </load-groups>
​ <optimistic-locking>
​ <group-name>string</group-name>
​ </optimistic-locking>
​ </entity>
​ <entity>
​ <ejb-name>EntityModifiedLocking</ejb-name>
​ <create-table>true</create-table>
​ <remove-table>true</remove-table>
​ <table-name>entitymodifiedlocking</table-name>
​ <cmp-field>
​ <field-name>dateField</field-name>
​ </cmp-field>
​ <cmp-field>
​ <field-name>integerField</field-name>
​ </cmp-field>
​ <cmp-field>
​ <field-name>stringField</field-name>
​ </cmp-field>
​ <optimistic-locking>
​ <modified-strategy/>
​ </optimistic-locking>
​ </entity>
​ <entity>
​ <ejb-name>EntityReadLocking</ejb-name>
​ <create-table>true</create-table>
​ <remove-table>true</remove-table>
​ <table-name>entityreadlocking</table-name>
​ <cmp-field>
​ <field-name>dateField</field-name>
​ </cmp-field>
​ <cmp-field>
​ <field-name>integerField</field-name>
​ </cmp-field>
​ <cmp-field>
​ <field-name>stringField</field-name>
​ </cmp-field>
​ <optimistic-locking>
​ <read-strategy/>
​ </optimistic-locking>
​ </entity>
​ <entity>
​ <ejb-name>EntityVersionLocking</ejb-name>
​ <create-table>true</create-table>
​ <remove-table>true</remove-table>
​ <table-name>entityversionlocking</table-name>
​ <cmp-field>
​ <field-name>dateField</field-name>
​ </cmp-field>
​ <cmp-field>
​ <field-name>integerField</field-name>
​ </cmp-field>
​ <cmp-field>
​ <field-name>stringField</field-name>
​ </cmp-field>
​ <optimistic-locking>
​ <version-column/>
​ <field-name>versionField</field-name>
​ <column-name>ol_version</column-name>
​ <jdbc-type>INTEGER</jdbc-type>
​ <sql-type>INTEGER(5)</sql-type>
​ </optimistic-locking>
​ </entity>
​ <entity>
​ <ejb-name>EntityTimestampLocking</ejb-name>
​ <create-table>true</create-table>
​ <remove-table>true</remove-table>
​ <table-name>entitytimestamplocking</table-name>
​ <cmp-field>
​ <field-name>dateField</field-name>
​ </cmp-field>
​ <cmp-field>
​ <field-name>integerField</field-name>
​ </cmp-field>
​ <cmp-field>
​ <field-name>stringField</field-name>
​ </cmp-field>
​ <optimistic-locking>
​ <timestamp-column/>
​ <field-name>versionField</field-name>
​ <column-name>ol_timestamp</column-name>
​ <jdbc-type>TIMESTAMP</jdbc-type>
​ <sql-type>DATETIME</sql-type>
​ </optimistic-locking>
​ </entity>
​ <entity>
​ <ejb-name>EntityKeyGeneratorLocking</ejb-name>
​ <create-table>true</create-table>
​ <remove-table>true</remove-table>
​ <table-name>entitykeygenlocking</table-name>
​ <cmp-field>
​ <field-name>dateField</field-name>
​ </cmp-field>
​ <cmp-field>
​ <field-name>integerField</field-name>
​ </cmp-field>
​ <cmp-field>
​ <field-name>stringField</field-name>
​ </cmp-field>
​ <optimistic-locking>
​ <key-generator-factory>UUIDKeyGeneratorFactory</key-generator-factory>
​ <field-type>java.lang.String</field-type>
​ <field-name>uuidField</field-name>
​ <column-name>ol_uuid</column-name>
​ <jdbc-type>VARCHAR</jdbc-type>
​ <sql-type>VARCHAR(32)</sql-type>
​ </optimistic-locking>
​ </entity>
​ </enterprise-beans>
​</jbosscmp-jdbc>

 ⁠31.11. Entity Commands and Primary Key Generation

			Support for primary key generation outside of the entity bean is available through custom implementations of the entity creation command objects used to insert entities into a persistent store. The list of available commands is specified in entity-commands element of the jbosscmp-jdbc.xml descriptor. The default entity-command may be specified in the jbosscmp-jdbc.xml in defaults element. Each entity element can override the entity-command in defaults by specifying its own entity-command. The content model of the entity-commands and child elements is given below.
		

 ⁠[image: The jbosscmp-jdbc.xml entity-commands element model]

Figure 31.15. The jbosscmp-jdbc.xml entity-commands element model

			Each entity-command element specifies an entity generation implementation. The name attribute specifies a name that allows the command defined in an entity-commands section to be referenced in the defaults and entity elements. The class attribute specifies the implementation of the org.jboss.ejb.plugins.cmp.jdbc. JDBCCreateEntityCommand that supports the key generation. Database vendor specific commands typically subclass the org.jboss.ejb.plugins.cmp.jdbc. JDBCIdentityColumnCreateCommand if the database generates the primary key as a side effect of doing an insert, or the org.jboss.ejb.plugins.cmp.jdbc.JDBCInsertPKCreateCommand if the command must insert the generated key.
		

			The optional attribute element(s) allows for the specification of arbitrary name/value property pairs that will be available to the entity command implementation class. The attribute element has a required name attribute that specifies the name property, and the attribute element content is the value of the property. The attribute values are accessible through the org.jboss.ejb.plugins.cmp.jdbc.metadata.JDBCEntityCommandMetaData.getAttribute(String) method.
		

 ⁠31.11.1. Existing Entity Commands

				The following are the current entity-command definitions found in the standardjbosscmp-jdbc.xml descriptor:
			
	
						default: (org.jboss.ejb.plugins.cmp.jdbc.JDBCCreateEntityCommand) The JDBCCreateEntityCommand is the default entity creation as it is the entity-command referenced in the standardjbosscmp-jdbc.xml defaults element. This entity-command executes an INSERT INTO query using the assigned primary key value.
					

	
						no-select-before-insert: (org.jboss.ejb.plugins.cmp.jdbc.JDBCCreateEntityCommand) This is a variation on default that skips select before insert by specifying an attribute name="SQLExceptionProcessor" that points to the jboss.jdbc:service=SQLExceptionProcessor service. The SQLExceptionProcessor service provides a boolean isDuplicateKey(SQLException e) operation that allows a for determination of any unique constraint violation.
					

	
						pk-sql (org.jboss.ejb.plugins.cmp.jdbc.keygen.JDBCPkSqlCreateCommand) The JDBCPkSqlCreateCommand executes an INSERT INTO query statement provided by the pk-sql attribute to obtain the next primary key value. Its primary target usage are databases with sequence support.
					

	
						mysql-get-generated-keys: (org.jboss.ejb.plugins.cmp.jdbc.keygen.JDBCMySQLCreateCommand) The JDBCMySQLCreateCommand executes an INSERT INTO query using the getGeneratedKeys method from MySQL native java.sql.Statement interface implementation to fetch the generated key.
					

	
						oracle-sequence: (org.jboss.ejb.plugins.cmp.jdbc.keygen.JDBCOracleCreateCommand) The JDBCOracleCreateCommand is a create command for use with Oracle that uses a sequence in conjunction with a RETURNING clause to generate keys in a single statement. It has a required sequence element that specifies the name of the sequence column.
					

	
						hsqldb-fetch-key: (org.jboss.ejb.plugins.cmp.jdbc.keygen.JDBCHsqldbCreateCommand) The JDBCHsqldbCreateCommand executes an INSERT INTO query after executing a CALL IDENTITY() statement to fetch the generated key.
					

	
						sybase-fetch-key: (org.jboss.ejb.plugins.cmp.jdbc.keygen.JDBCSybaseCreateCommand) The JDBCSybaseCreateCommand executes an INSERT INTO query after executing a SELECT @@IDENTITY statement to fetch the generated key.
					

	
						mssql-fetch-key: (org.jboss.ejb.plugins.cmp.jdbc.keygen.JDBCSQLServerCreateCommand) The JDBCSQLServerCreateCommand for Microsoft SQL Server that uses the value from an IDENTITY columns. By default uses SELECT SCOPE_IDENTITY() to reduce the impact of triggers; can be overridden with pk-sql attribute e.g. for V7.
					

	
						informix-serial: (org.jboss.ejb.plugins.cmp.jdbc.keygen.JDBCInformixCreateCommand) The JDBCInformixCreateCommand executes an INSERT INTO query after using the getSerial method from Informix native java.sql.Statement interface implementation to fetch the generated key.
					

	
						postgresql-fetch-seq: (org.jboss.ejb.plugins.cmp.jdbc.keygen.JDBCPostgreSQLCreateCommand) The JDBCPostgreSQLCreateCommand for PostgreSQL that fetches the current value of the sequence. The optional sequence attribute can be used to change the name of the sequence, with the default being table_pkColumn_seq.
					

	
						key-generator: (org.jboss.ejb.plugins.cmp.jdbc.keygen.JDBCKeyGeneratorCreateCommand) The JDBCKeyGeneratorCreateCommand executes an INSERT INTO query after obtaining a value for the primary key from the key generator referenced by the key-generator-factory. The key-generator-factory attribute must provide the name of a JNDI binding of the org.jboss.ejb.plugins.keygenerator.KeyGeneratorFactory implementation.
					

	
						get-generated-keys: (org.jboss.ejb.plugins.cmp.jdbc.jdbc3.JDBCGetGeneratedKeysCreateCommand) The JDBCGetGeneratedKeysCreateCommand executes an INSERT INTO query using a statement built using the JDBC3 prepareStatement(String, Statement.RETURN_GENERATED_KEYS) that has the capability to retrieve the auto-generated key. The generated key is obtained by calling the PreparedStatement.getGeneratedKeys method. Since this requires JDBC3 support it is only available in JDK1.4.1+ with a supporting JDBC driver.
					

				An example configuration using the hsqldb-fetch-keyentity-command with the generated key mapped to a known primary key cmp-field is shown below.
			
​<jbosscmp-jdbc>
​ <enterprise-beans>
​ <entity>
​ <ejb-name>LocationEJB</ejb-name>
​ <pk-constraint>false</pk-constraint>
​ <table-name>location</table-name>
​
​ <cmp-field>
​ <field-name>locationID</field-name>
​ <column-name>id</column-name>
​ <auto-increment/>
​ </cmp-field>
​ <!-- ... -->
​ <entity-command name="hsqldb-fetch-key"/>
​
​ </entity>
​ </enterprise-beans>
​</jbosscmp-jdbc>

				An alternate example using an unknown primary key without an explicit cmp-field is shown below.
			
​<jbosscmp-jdbc>
​ <enterprise-beans>
​ <entity>
​ <ejb-name>LocationEJB</ejb-name>
​ <pk-constraint>false</pk-constraint>
​ <table-name>location</table-name>
​ <unknown-pk>
​ <unknown-pk-class>java.lang.Integer</unknown-pk-class>
​ <field-name>locationID</field-name>
​ <column-name>id</column-name>
​ <jdbc-type>INTEGER</jdbc-type>
​ <sql-type>INTEGER</sql-type>
​ <auto-increment/>
​ </unknown-pk>
​ <!--...-->
​ <entity-command name="hsqldb-fetch-key"/>
​ </entity>
​ </enterprise-beans>
​</jbosscmp-jdbc>

 ⁠31.12. Defaults

			JBoss global defaults are defined in the standardjbosscmp-jdbc.xml file of the server/<server-name>/conf/ directory. Each application can override the global defaults in the jbosscmp-jdbc.xml file. The default options are contained in a defaults element of the configuration file, and the content model is shown below.
		

 ⁠[image: The jbosscmp-jdbc.xml defaults content model]

Figure 31.16. The jbosscmp-jdbc.xml defaults content model

			An example of the defaults section follows:
		
​<jbosscmp-jdbc>
​ <defaults>
​ <datasource>java:/DefaultDS</datasource>
​ <datasource-mapping>Hypersonic SQL</datasource-mapping>
​ <create-table>true</create-table>
​ <remove-table>false</remove-table>
​ <read-only>false</read-only>
​ <read-time-out>300000</read-time-out>
​ <pk-constraint>true</pk-constraint>
​ <fk-constraint>false</fk-constraint>
​ <row-locking>false</row-locking>
​ <preferred-relation-mapping>foreign-key</preferred-relation-mapping>
​ <read-ahead>
​ <strategy>on-load</strategy>
​ <page-size>1000</page-size>
​ <eager-load-group>*</eager-load-group>
​ </read-ahead>
​ <list-cache-max>1000</list-cache-max>
​ </defaults>
​</jbosscmp-jdbc>

 ⁠31.12.1. A sample jbosscmp-jdbc.xml defaults declaration

				Each option can apply to entities, relationships, or both, and can be overridden in the specific entity or relationship. A detailed description of each option follows:
			
	
						datasource: This optional element is the jndi-name used to look up the datasource. All database connections used by an entity or relation-table are obtained from the datasource. Having different datasources for entities is not recommended, as it vastly constrains the domain over which finders and ejbSelects can query.
					

	
						datasource-mapping: This optional element specifies the name of the type-mapping, which determines how Java types are mapped to SQL types, and how EJB-QL functions are mapped to database specific functions. Type mappings are discussed in Section 31.13.3, “Mapping”.
					

	
						create-table: This optional element when true, specifies that JBoss should attempt to create a table for the entity. When the application is deployed, JBoss checks if a table already exists before creating the table. If a table is found, it is logged, and the table is not created. This option is very useful during the early stages of development when the table structure changes often. The default is false.
					

	
						alter-table: If create-table is used to automatically create the schema, alter-table can be used to keep the schema current with changes to the entity bean. Alter table will perform the following specific tasks:
					
	
								new fields will be created
							

	
								fields which are no longer used will be removed
							

	
								string fields which are shorter than the declared length will have their length increased to the declared length. (not supported by all databases)
							

	
						remove-table: This optional element when true, JBoss will attempt to drop the table for each entity and each relation table mapped relationship. When the application is undeployed, JBoss will attempt to drop the table. This option is very useful during the early stages of development when the table structure changes often. The default is false.
					

	
						read-only: This optional element when true specifies that the bean provider will not be allowed to change the value of any fields. A field that is read-only will not be stored in, or inserted into, the database. If a primary key field is read-only, the create method will throw a CreateException. If a set accessor is called on a read-only field, it throws an EJBException. Read only fields are useful for fields that are filled in by database triggers, such as last update. The read-only option can be overridden on a per field basis. The default is false.
					

	
						read-time-out: This optional element is the amount of time in milliseconds that a read on a read only field is valid. A value of 0 means that the value is always reloaded at the start of a transaction, and a value of -1 means that the value never times out. This option can also be overridden on a per CMP field basis. If read-only is false, this value is ignored. The default is -1.
					

	
						row-locking: This optional element if true specifies that JBoss will lock all rows loaded in a transaction. Most databases implement this by using the SELECT FOR UPDATE syntax when loading the entity, but the actual syntax is determined by the row-locking-template in the datasource-mapping used by this entity. The default is false.
					

	
						pk-constraint: This optional element if true specifies that JBoss will add a primary key constraint when creating tables. The default is true.
					

	
						preferred-relation-mapping: This optional element specifies the preferred mapping style for relationships. The preferred-relation-mapping element must be either foreign-key or relation-table.
					

	
						read-ahead: This optional element controls caching of query results and CMR fields for the entity. This option is discussed in Section 31.7.3, “Read-ahead”.
					

	
						list-cache-max: This optional element specifies the number of read-lists that can be tracked by this entity. This option is discussed in Section 31.7.3.2, “on-load”. The default is 1000.
					

	
						clean-read-ahead-on-load: When an entity is loaded from the read ahead cache, JBoss can remove the data used from the read ahead cache. The default is false.
					

	
						fetch-size: This optional element specifies the number of entities to read in one round-trip to the underlying datastore. The default is 0.
					

	
						unknown-pk: This optional element allows one to define the default mapping of an unknown primary key type of java.lang.Object maps to the persistent store.
					

	
						entity-command: This optional element allows one to define the default command for entity creation. This is described in detail in Section 31.11, “Entity Commands and Primary Key Generation”.
					

	
						ql-compiler: This optional elements allows a replacement query compiler to be specified. Alternate query compilers were discussed in Section 31.6.7, “EJBQL 2.1 and SQL92 queries”.
					

	
						throw-runtime-exceptions: This attribute, if set to true, indicates that an error in connecting to the database should be seen in the application as runtime EJBException rather than as a checked exception.
					

 ⁠31.13. Datasource Customization

			JBoss includes predefined type-mappings for many databases including: Cloudscape, DB2, DB2/400, Hypersonic SQL, InformixDB, InterBase, MS SQLSERVER, MS SQLSERVER2000, mySQL, Oracle7, Oracle8, Oracle9i, PointBase, PostgreSQL, PostgreSQL 7.2, SapDB, SOLID, and Sybase. If you do not like the supplied mapping, or a mapping is not supplied for your database, you will have to define a new mapping. If you find an error in one of the supplied mappings, or if you create a new mapping for a new database, please consider posting a patch at the JBoss project page on SourceForge.
		

 ⁠31.13.1. Type Mapping

				Customization of a database is done through the type-mapping section of the jbosscmp-jdbc.xml descriptor. The content model for the type-mapping element is given in Figure 31.17, “The jbosscmp-jdbc type-mapping element content model.”.
			

				
 ⁠[image: The jbosscmp-jdbc type-mapping element content model.]

Figure 31.17. The jbosscmp-jdbc type-mapping element content model.

			

				The elements are:
			
	
						name: This required element provides the name identifying the database customization. It is used to refer to the mapping by the datasource-mapping elements found in defaults and entity.
					

	
						row-locking-template: This required element gives the PreparedStatement template used to create a row lock on the selected rows. The template must support three arguments:
					
	
								the select clause
							

	
								the from clause. The order of the tables is currently not guaranteed
							

	
								the where clause
							

						If row locking is not supported in select statement this element should be empty. The most common form of row locking is select for update as in: SELECT ?1 FROM ?2 WHERE ?3 FOR UPDATE.
					

	
						pk-constraint-template: This required element gives the PreparedStatement template used to create a primary key constraint in the create table statement. The template must support two arguments
					
	
								Primary key constraint name; which is always pk_{table-name}
							

	
								Comma separated list of primary key column names
							

						If a primary key constraint clause is not supported in a create table statement this element should be empty. The most common form of a primary key constraint is: CONSTRAINT ?1 PRIMARY KEY (?2)
					

	
						fk-constraint-template: This is the template used to create a foreign key constraint in separate statement. The template must support five arguments:
					
	
								Table name
							

	
								Foreign key constraint name; which is always fk_{table-name}_{cmr-field-name}
							

	
								Comma separated list of foreign key column names
							

	
								References table name
							

	
								Comma separated list of the referenced primary key column names
							

						If the datasource does not support foreign key constraints this element should be empty. The most common form of a foreign key constraint is: ALTER TABLE ?1 ADD CONSTRAINT ?2 FOREIGN KEY (?3) REFERENCES ?4 (?5).
					

	
						auto-increment-template: This declares the SQL template for specifying auto increment columns.
					

	
						add-column-template: When alter-table is true, this SQL template specifies the syntax for adding a column to an existing table. The default value is ALTER TABLE ?1 ADD ?2 ?3. The parameters are:
					
	
								the table name
							

	
								the column name
							

	
								the column type
							

	
						alter-column-template: When alter-table is true, this SQL template specifies the syntax for dropping a column to from an existing table. The default value is ALTER TABLE ?1 ALTER ?2 TYPE ?3. The parameters are:
					
	
								the table name
							

	
								the column name
							

	
								the column type
							

	
						drop-column-template: When alter-table is true, this SQL template specifies the syntax for dropping a column to from an existing table. The default value is ALTER TABLE ?1 DROP ?2. The parameters are:
					
	
								the table name
							

	
								the column name
							

	
						alias-header-prefix: This required element gives the prefix used in creating the alias header. An alias header is prepended to a generated table alias by the EJB-QL compiler to prevent name collisions. The alias header is constructed as follows: alias-header-prefix + int_counter + alias-header-suffix. An example alias header would be t0_ for an alias-header-prefix of "t" and an alias-header-suffix of "_".
					

	
						alias-header-suffix: This required element gives the suffix portion of the generated alias header.
					

	
						alias-max-length: This required element gives the maximum allowed length for the generated alias header.
					

	
						subquery-supported: This required element specifies if this type-mapping subqueries as either true or false. Some EJB-QL operators are mapped to exists subqueries. If subquery-supported is false, the EJB-QL compiler will use a left join and is null.
					

	
						true-mapping: This required element defines true identity in EJB-QL queries. Examples include TRUE, 1, and (1=1).
					

	
						false-mapping: This required element defines false identity in EJB-QL queries. Examples include FALSE, 0, and (1=0).
					

	
						function-mapping: This optional element specifies one or more the mappings from an EJB-QL function to an SQL implementation. See Section 31.13.2, “Function Mapping” for the details.
					

	
						mapping: This required element specifies the mappings from a Java type to the corresponding JDBC and SQL type. See Section 31.13.3, “Mapping” for the details.
					

 ⁠31.13.2. Function Mapping

				The function-mapping element model is show below.
			

 ⁠[image: The jbosscmp-jdbc function-mapping element content model]

Figure 31.18. The jbosscmp-jdbc function-mapping element content model

				The allowed child elements are:
			
	
						function-name: This required element gives the EJB-QL function name, e.g., concat, substring.
					

	
						function-sql: This required element gives the SQL for the function as appropriate for the underlying database. Examples for a concat function include: (?1 || ?2), concat(?1, ?2), (?1 + ?2).
					

 ⁠31.13.3. Mapping

				A type-mapping is simply a set of mappings between Java class types and database types. A set of type mappings is defined by a set of mapping elements, the content model for which is shown in Figure 31.19, “The jbosscmp-jdbc mapping element content model.”.
			

 ⁠[image: The jbosscmp-jdbc mapping element content model.]

Figure 31.19. The jbosscmp-jdbc mapping element content model.

				If JBoss cannot find a mapping for a type, it will serialize the object and use the java.lang.Object mapping. The following describes the three child elements of the mapping element:
			
	
						java-type: This required element gives the fully qualified name of the Java class to be mapped. If the class is a primitive wrapper class such as java.lang.Short, the mapping also applies to the primitive type.
					

	
						jdbc-type: This required element gives the JDBC type that is used when setting parameters in a JDBC PreparedStatement or loading data from a JDBC ResultSet. The valid types are defined in java.sql.Types.
					

	
						sql-type: This required element gives the SQL type that is used in create table statements. Valid types are only limited by your database vendor.
					

	
						param-setter: This optional element specifies the fully qualified name of the JDBCParameterSetter implementation for this mapping.
					

	
						result-reader: This option element specifies the fully qualified name of the JDBCResultSetReader implementation for this mapping.
					

				An example mapping element for a short in Oracle9i is shown below.
			
​<jbosscmp-jdbc>
​ <type-mappings>
​ <type-mapping>
​ <name>Oracle9i</name>
​ <!--...-->
​ <mapping>
​ <java-type>java.lang.Short</java-type>
​ <jdbc-type>NUMERIC</jdbc-type>
​ <sql-type>NUMBER(5)</sql-type>
​ </mapping>
​ </type-mapping>
​ </type-mappings>
​</jbosscmp-jdbc>

 ⁠31.13.4. User Type Mappings

				User type mappings allow one to map from JDBC column types to custom CMP fields types by specifying an instance of org.jboss.ejb.plugins.cmp.jdbc.Mapper interface, the definition of which is shown below.
			
​public interface Mapper
​{
​ /**
​ * This method is called when CMP field is stored.
​ * @param fieldValue - CMP field value
​ * @return column value.
​ */
​ Object toColumnValue(Object fieldValue);
​
​ /**
​ * This method is called when CMP field is loaded.
​ * @param columnValue - loaded column value.
​ * @return CMP field value.
​ */
​ Object toFieldValue(Object columnValue);
​}

				A prototypical use case is the mapping of an integer type to its type-safe Java enumeration instance. The content model of the user-type-mappings element consists of one or more user-type-mapping elements, the content model of which is shown in Figure 31.20, “The user-type-mapping content model >”.
			

				
 ⁠[image: The user-type-mapping content model >]

Figure 31.20. The user-type-mapping content model >

			
	
						java-type: the fully qualified name of the CMP field type in the mapping.
					

	
						mapped-type: the fully qualified name of the database type in the mapping.
					

	
						mapper: the fully qualified name of the Mapper interface implementation that handles the conversion between the java-type and mapped-type.
					

 ⁠Part V. Appendices

 ⁠Appendix A. Server Directory Structure

		If you used the zip installation method, installing JBoss Enterprise Application Platform creates a top level directory named jboss-eap-<version>.
	

		If you used the GUI installer, you have defined a custom directory named during installation. In this guide we refer to this top-level directory as the <$JBOSS_HOME> directory.
	

 ⁠Table A.1. <JBOSS_HOME>/jboss-as directory structure
	 Directory 	 Description 	 Important Notes
	 bin 	 Contains start up, shut down and other system-specific scripts. Basically all the entry point JARs and start scripts included with the JBoss distribution are located in the bin directory. It also contains the configuration scripts which can be used to configure the JVM parameters. 	
	 client 	 Stores configuration files and JAR files that may be used by a Java client application (running outside JBoss) or an external web container. You can select archives as required or use jbossall-client.jar. 	
						Unlike early versions of the JBoss Enterprise Application Platform, the jbossall-client.jar is now a MANIFEST only JAR file.
					

					
						So if the client application copies over the jbossall-client.jar to its classpath, then it also has to copy over all the other jar files listed in the META-INF/MANIFEST.MF file of jbossall-client.jar.
					

					
						Furthermore, all these JARs, including the jbossall-client.jar, must be placed in the same folder in the client classpath.
					

					
	 common 	
						The lib sub-directory within this common directory, contains all the JAR files which are common to the server configuration sets.
					

					
						Keeping all common JAR files in one place (rather than in the lib folder of each of the server configuration) reduces the size of the server. It also helps with maintenance as there are fewer files to maintain.
					

					 	 Like some of the other configuration paths, the common and the common/lib directories are available as the system properties jboss.common.base.url (This holds the URL to <JBOSS_HOME>/jboss-as/common directory) and jboss.common.lib.url (This holds the URL to <JBOSS_HOME>/jboss-as/common/lib directory).
	 docs 	
						Contains the XML DTDs, schemas used in JBoss for reference (these are also a useful source of documentation on JBoss configuration specifics).
					

					
						This directory also contains example JCA (Java Connector Architecture) configuration files for setting up datasources for different databases (such as MySQL, Oracle, Postgres).
					

					 	
	 lib 	 Contains start up JARs used by JBoss. This directory contains an endorsed sub-directory which is used as one of the Java Endorsed directories. Refer to the Java Endorsed Standards for more details. Do not place your own JAR files in these directories. 	
						

					

					
						

					

					
						

					

					
	 server 	 Contains the server profile sets discussed above. Each of the subdirectories is a different server profile. JBoss ships with minimal, default, production, standard, web and all profile sets. The subdirectories and key configuration files contained in the default profile set are discussed in more detail in subsequent sections. 	

Important

			Do not remove any configuration or JRA files from the common directory location. You may add your own JAR files in the common/lib directory if those JAR files are meant to be used by all the server profile sets.
		

			If you want the JAR files to be available for all the applications deployed in a single server profile (for example, the production profile), then the best location to place these JARs is the <JBOSS_HOME>/server/<PROFILE>/lib directory.
		

 ⁠A.1. Server Profile Directory Structure

			The directory server profile you are using is effectively the server root while JBoss is running. It contains all the code and configuration information for the services provided by the particular server profile.
		

			It is also where the log output goes and where you deploy applications. The table below shows the directories inside the server profile directory (<JBOSS_HOME>/server/<PROFILE>) and their functions.
		

			
 ⁠Table A.2. Server Profile Directory Structure
	 Directory 	 Description
	 conf 	
								The conf directory contains the jboss-service.xml, bootstrap.xml bootstrap descriptor file for a given server profile.
							

							
								The bootstrap.xml in turn points to various other configuration files which comprise the server bootstrap. This defines the core microcontainer beans that are fixed for the lifetime of the server.
							

							
	 deploy 	
								The deploy directory contains the hot-deployable services (those which can be added to or removed from the running server). It also contains applications for the current server profile.
							

							
								You deploy your application code by placing application packages (JAR, WAR and EAR files) in the deploy directory.
							

							
								The directory is constantly scanned for updates, and any modified components will be re-deployed automatically.
							

							
								The directory monitored may be configured with the applicationURIs property of the BootstrapProfileFactory bean configuration in the <JBOSS_HOME>/jboss-as/server/<PROFILE>/conf/bootstrap/profile.xml file.
							

							
	 deployers 	 In Enterprise Application Platform 5, unlike earlier versions, the deployers (which are responsible for parsing and deploying applications) are located separately in the <JBOSS_HOME>/jboss-as/server/<PROFILE>/deployers folder. This folder contains various deployer JAR files and their configurations in *-jboss-beans.xml files.
	 lib 	
								This directory contains JAR files (Java libraries that should not be hot deployed) needed by this server profile. You can add required library files for JDBC drivers and other requirements to this directory.
							

							
								All JARs in this directory are loaded into the shared classpath at start up. Note that this directory only contains those jars unique to the server profile. Jars common across the server profiles are now located in <JBOSS_HOME>/common/lib.
							

							

		
Important

				The file used for configuring the default set of ports for the server is available in the <PROFILE>/conf/bindingservice.beans/META-INF folder. The name of the file is bindings-jboss-beans.xml. See the port configuration section for more details on how to use this file.
			

 ⁠A.1.1. The default Server Profile File Set

				The default server profile file set is located in the <JBOSS_HOME>/server/default directory.
			

				Many of the items in the default profile are found in other pre-configured profile. The sections below will discuss some of these files, their location and their use.
			

 ⁠A.1.1.1. Contents of conf directory

					The files in the conf directory are explained in the following table.
				

 ⁠Table A.3. Contents of conf directory
	 File 	 Description
	 bindingservice.beans/* 	 This directory contains the configurations for various ports used by the server.
	 bootstrap.xml 	 This is the bootstrap.xml file that defines which additional microcontainer deployments will be loaded as part of the bootstrap phase.
	 bootstrap/* 	 This directory contains the microcontainer bootstrap descriptors that are referenced from the bootstrap.xml file.
	 jboss-service.xml 	 jboss-service.xml legacy core mbeans that have yet to be ported to either bootstrap deployments, or deploy services. This file will likely be deprecated in the near future.
	 jboss-log4j.xml 	 This file configures the Apache log4j framework category priorities and appenders used by the server code.
	 jbossts-properties.xml 	 This file provides the default configuration for the transaction manager.
	 login-config.xml 	 This file contains sample server side authentication configurations that are applicable when using JAAS based security.
	 props/* 	 The props directory contains the users and roles property files for the jmx-console.
	 standardjboss.xml 	 This file provides the default container configurations.
	 standardjbosscmp-jdbc.xml 	 This file provides a default configuration file for the JBoss CMP engine.
	 xmdesc/*-mbean.xml 	 The xmdesc directory contains XMBean descriptors for several services configured in the jboss-service.xml file.
	 java.policy 	
								
	 jax-ws-catalog.xml 	
								
	 jndi.properties 	
								
	 standardjbosscmp-jdbc.xml 	
								

 ⁠A.1.1.2. Contents of deployers directory

					The files in the deployers directory are explained in the following table.
				

 ⁠Table A.4. Contents of deployers directory
	 File 	 Description
	 alias-deployers-jboss-beans.xml 	 This file contains deployers that treat aliases in deployment as true controller context. Which means they will only get active/installed when their original is installed.
	 bsh.deployer 	 This file configures the bean shell deployer, which deploys bean shell scripts as JBoss mbean services.
	 clustering-deployer-jboss-beans.xml 	 Clustering-related deployers which add dependencies on needed clustering services to clustered EJB3, EJB2 beans and to distributable web applications.
	 dependency-deployers-jboss-beans.xml 	 Deployers for aliases.txt and jboss-dependency.xml. jboss-depedency.xml adds generic dependency and aliases.txt adds human-readable names for deployments. For instance, vfszip://home/something/.../jboss-5.0.0.GA/server/default/deploy/some-long-name.ear aliased to ales-app.ear.
	 directory-deployer-jboss-beans.xml 	 Adds legacy behavior for directories, handling its children as possible deployments. For example, .sar's lib directory to treat the .jar files as deployments.
	 ear-deployer-jboss-beans.xml 	 JavaEE 5 enterprise application related deployers.
	 ejb-deployer-jboss-beans.xml 	 Legacy JavaEE 1.4 ejb jar related deployers.
	 ejb3.deployer 	 This is a deployer that supports JavaEE 5 ejb3, JPA, and application client deployments.
	 hibernate-deployer-jboss-beans.xml 	 Deployers for Hibernate -hibernate.xml descriptors, which are similar to Hibernate's .cfg.xml files.
	 jboss-aop-jboss5.deployer 	 JBossAspectLibrary and base aspects.
	 jboss-ejb3-endpoint-deployer.jar 	
								
	 jboss-ejb3-metrics-deployer.jar 	
								
	 jboss-jca.deployer 	 jboss-jca.deployer description
	 jboss-threads.deployer 	
								
	 jbossweb.deployer 	 The JavaEE 5 servlet, JSF, JSP deployers.
	 jbossws.deployer 	 The JavaEE 5 web services endpoint deployers.
	 jsr77-deployers-jboss-beans.xml 	 Deployers for creating the JSR77 MBeans from the JavaEE components.
	 logbridge-jboss-beans.xml 	
								
	 messaging-definitions-jboss-beans.xml 	
								
	 metadata-deployer-jboss-beans.xml 	 Deployers for processing the JavaEE metadata from xml, annotations.
	 seam.deployer 	 Deployer providing integration support for JBoss Seam applications.
	 security-deployer-jboss-beans.xml 	 Deployers for configuration the security layers of the JavaEE components.
	 xnio.deployer 	
								

 ⁠A.1.1.3. Contents of deploy directory

					The files in the deploy directory are explained in the following table.
				

 ⁠Table A.5. Contents of "deploy" directory
	 File 	 Description
	 ROOT.war 	 ROOT.war establishes the '/' root web application.
	 admin-console.war 	 This is the admin-console application which provides a web interface for JBoss Enterprise Application Platform administrators. By default the admin-console is available at http://localhost:8080/admin-console.
	 cache-invalidation-service.xml 	 This is a service that allows for custom invalidation of the EJB caches via JMS notifications. It is disabled by default.
	 ejb2-container-jboss-beans.xml 	 ejb2-container-jboss-beans.xml UserTransaction integration bean for the EJB2 containers.
	 ejb2-timer-service.xml 	 ejb2-timer-service.xml contains the ejb timer service beans.
	 ejb3-connectors-jboss-beans.xml 	 ejb3-connectors-jboss-beans.xml EJB3 remoting transport beans.
	 ejb3-container-jboss-beans.xml 	 ejb3-container-jboss-beans.xml UserTransaction integration bean for the EJB3 containers.
	 ejb3-interceptors-aop.xml 	 ejb3-interceptors-aop.xml defines the EJB3 container aspects.
	 ejb3-timerservice-jboss-beans.xml 	 ejb3-timerservice-jboss-beans.xml configures the EJB3 TimerService
	 hdscanner-jboss-beans.xml 	 hdscanner-jboss-beans.xml the deploy directory hot deployment scanning bean
	 hsqldb-ds.xml 	 Configures the Hypersonic embedded database service configuration file. It sets up the embedded database and related connection factories.
	 http-invoker.sar 	 Contains the detached invoker that supports RMI over HTTP. It also contains the proxy bindings for accessing JNDI over HTTP.
	 jboss-local-jdbc.rar 	 Is a JCA resource adaptor that implements the JCA ManagedConnectionFactory interface for JDBC drivers that support the DataSource interface but not JCA.
	 jboss-xa-jdbc.rar 	 JCA resource adaptors for XA DataSources.
	 jbossweb.sar 	 An mbean service supporting TomcatDeployer with web application deployment service management.
	 jbossws.sar 	 Provides JEE web services support.
	 jca-jboss-beans.xml 	 The jca-jboss-beans.xml file is the application server implementation of the JCA specification. It provides the connection management facilities for integrating resource adaptors into the server.
	 jms-ra.rar 	 jms-ra.rar JBoss JMS Resource Adapter.
	 jmx-console.war 	 This is the jmx-console application which provides a simple web interface for managing the MBean server. By default, the jmx-console is available at http://localhost:8080/jmx-console
	 jmx-invoker-service.xml 	 jmx-invoker-service.xml is an MBean service archive that exposes a subset of the JMX MBeanServer interface methods as an RMI interface to enable remote access to the JMX core functionality.
	 jsr-88-service.xml 	 jsr-88-service.xml provides the JSR 88 remote deployment service.
	 legacy-invokers-service.xml 	 legacy-invokers-service.xml the legacy detached jmx invoker remoting services.
	 management/console-mgr.sar 	 Provides the Web Console. It is a web application/applet that provides a richer view of the JMX server management data than the JMX console. You may view the console using the URL http://localhost:8080/web-console/.
	 messaging/destinations-service.xml 	 Configures the default Dead Letter queue and the Expiry queue.
	 messaging/hsqldb-persistence-service.xml 	 Provides JMS state management using Hypersonic.
	 messaging/messaging-service.xml 	 The messaging-service.xml file configures the core JBoss Messaging service.
	 mail-ra.rar 	 mail-ra.rar is a resource adaptor that provides a JavaMail connector.
	 mail-service.xml 	 The mail-service.xml file is an MBean service descriptor that provides JavaMail sessions for use inside the server.
	 profileservice-jboss-beans.xml 	 profileservice-jboss-beans.xml configures the ProfileService, which is a generalization of the server configuration.
	 properties-service.xml 	 The properties-service.xml file is an MBean service descriptor that allows for customization of the JavaBeans PropertyEditors as well as the definition of system properties.
	 quartz-ra.rar 	 quartz-ra.rar is a resource adaptor for inflow of Quartz events
	 remoting-jboss-beans.xml 	 remoting-jboss-beans.xml contains the unified invokers based on JBoss Remoting.
	 scheduler-service.xml 	 The scheduler-service.xml and schedule-manager-service.xml files are MBean service descriptors that provide a scheduling type of service.
	 security/security-jboss-beans.xml 	 security-jboss-beans.xml security domain related beans.
	 security/security-policies-jboss-beans.xml 	 security-policies-jboss-beans.xml security authorization related beans for ejb and web authorization.
	 schedule-manager-service.xml 	 The schedule-manager-service.xml contains sample scheduler configurations. It is disabled by default.
	 sqlexception-service.xml 	 The sqlexception-service.xml file is an MBean service descriptor for the handling of vendor specific SQLExceptions.
	 transaction-jboss-beans.xml 	 transaction-jboss-beans.xml JTA transaction manager related beans.
	 transaction-service.xml 	 transaction-service.xml contains ClientUserTransaction proxy service configuration.
	 uuid-key-generator.sar 	 The uuid-key-generator.sar service provides a UUID-based key generation facility.
	 vfs-jboss-beans.xml 	 The vfs-jboss-beans.xml configures the Microcontainer bean exposing the JBoss VFS cache statistics.
	 xnio-provider.jar 	 XNIO is a centralized management point for network services.

 ⁠A.1.2. The all Server Profile File Set

				The all server profile is located in the <JBOSS_HOME>/server/all directory. In addition to the services in the "default" profile, the all configuration contains several other services in the deploy/ directory as shown below.
			

 ⁠Table A.6. Additional Services in deploy directory for all profile
	 File 	 Description
	 cluster/deploy-hasingleton-service.xml 	 This provides the HA singleton service, allowing JBoss to manage services that must be active on only one node of a cluster.
	 cluster/farm-deployment-jboss-beans.xml 	 This provides the farm service, which allows for cluster-wide deployment and undeployment of services.
	 httpha-invoker.sar 	 This service provides HTTP tunneling support for clustered environments.
	 http-invoker.sar 	
							
	 iiop-service.xml 	 This provides IIOP invocation support.
	 juddi-service.sar 	 This service provides UDDI lookup services.
	 snmp-adaptor.sar 	 This is a JMX to SNMP adaptor. It allows for the mapping of JMX notifications onto SNMP traps.

 ⁠A.1.3. EJB3 Services

				The following table explains the files providing ejb3 services.
			

 ⁠Table A.7. EJB3 Services
	 File 	 Description
	 ejb3-interceptors-aop.xml 	 This service provides the AOP interceptor stack configurations for EJB3 bean types.
	 ejb3.deployer 	 This service deploys EJB3 applications into JBoss.
	 jbossws.sar 	 This provides Java EE 5 web services support.

 ⁠Appendix B. Vendor-Specific Datasource Definitions

		This appendix includes datasource definitions for databases supported by JBoss Enterprise Application Platform.
	

 ⁠B.1. Deployer Location and Naming

			All database deployers should be saved to the <JBOSS_HOME>/server/<PROFILE>/deploy/ directory on the server. Each deployer file needs to end with the suffix -ds.xml. For instance, an Oracle datasource deployer might be named oracle-ds.xml. If files are not named properly, the are not found by the server.
		

 ⁠B.2. DB2

 ⁠Example B.1. DB2 Local-XA

				Copy the $db2_install_dir/java/db2jcc.jar and $db2_install_dir/java/db2jcc_license_cu.jar files into the $jboss_install_dir/server/default/lib directory. The db2java.zip file, which is part of the legacy CLI driver, is normally not required when using the DB2 Universal JDBC driver included in DB2 v8.1 and later.
			
​<datasources>
​
​ <local-tx-datasource>
​ <jndi-name>DB2DS</jndi-name>
​ <!-- Use the syntax 'jdbc:db2:yourdatabase' for jdbc type 2 connection -->
​ <!-- Use the syntax 'jdbc:db2://serveraddress:port/yourdatabase' for jdbc type 4 connection -->
​ <connection-url>jdbc:db2://serveraddress:port/yourdatabase</connection-url>
​ <driver-class>com.ibm.db2.jcc.DB2Driver</driver-class>
​ <user-name>x</user-name>
​ <password>y</password>
​ <min-pool-size>0</min-pool-size>
​ <!-- sql to call when connection is created
​	 <new-connection-sql>some arbitrary sql</new-connection-sql>
​ -->
​
​ <!-- sql to call on an existing pooled connection when it is obtained from pool
​	 <check-valid-connection-sql>some arbitrary sql</check-valid-connection-sql>
​ -->
​
​ <!-- corresponding type-mapping in the standardjbosscmp-jdbc.xml (optional) -->
​ <metadata>
​ <type-mapping>DB2</type-mapping>
​ </metadata>
​ </local-tx-datasource>
​
​</datasources>

 ⁠Example B.2. DB2 XA

				Copy the $db2_install_dir/java/db2jcc.jar and $db2_install_dir/java/db2jcc_license_cu.jar files into the $jboss_install_dir/server/default/lib directory.
			

				The db2java.zip file is required when using the DB2 Universal JDBC driver (type 4) for XA on DB2 v8.1 fixpak 14 (and the corresponding DB2 v8.2 fixpak 7).
			
​<datasources>
​ <!--
​ XADatasource for DB2 v8.x (app driver)
​ -->
​
​ <xa-datasource>
​ <jndi-name>DB2XADS</jndi-name>
​
​ <xa-datasource-class>com.ibm.db2.jcc.DB2XADataSource</xa-datasource-class>
​ <xa-datasource-property name="ServerName">your_server_address</xa-datasource-property>
​ <xa-datasource-property name="PortNumber">your_server_port</xa-datasource-property>
​ <xa-datasource-property name="DatabaseName">your_database_name</xa-datasource-property>
​ <!-- DriverType can be either 2 or 4, but you most likely want to use the JDBC type 4 as it does not require a DB" client -->
​ <xa-datasource-property name="DriverType">4</xa-datasource-property>
​ <!-- If driverType 4 is used, the following two tags are needed -->
​ <track-connection-by-tx></track-connection-by-tx>
​ <isSameRM-override-value>false</isSameRM-override-value>
​
​ <xa-datasource-property name="User">your_user</xa-datasource-property>
​ <xa-datasource-property name="Password">your_password</xa-datasource-property>
​
​ <!-- corresponding type-mapping in the standardjbosscmp-jdbc.xml (optional) -->
​ <metadata>
​ <type-mapping>DB2</type-mapping>
​ </metadata>
​ </xa-datasource>
​
​</datasources>

 ⁠Example B.3. DB2 on AS/400
​<?xml version="1.0" encoding="UTF-8"?>
​
​<!-- === -->
​<!-- -->
​<!-- JBoss Server Configuration -->
​<!-- -->
​<!-- === -->
​
​<!-- $Id: db2-400-ds.xml,v 1.1.4.2 2004/10/27 18:44:10 pilhuhn Exp $ -->
​
​<!-- You need the jt400.jar that is delivered with IBM iSeries Access or the
​OpenSource Project jtopen.
​
​[systemname] Hostame of the iSeries
​[schema] Default schema is needed so jboss could use metadat to test if the tables exists
​-->
​
​<datasources>
​ <local-tx-datasource>
​ <jndi-name>DB2-400</jndi-name>
​ <connection-url>jdbc:as400://[systemname]/[schema];extended dynamic=true;package=jbpkg;package cache=true;package library=jboss;errors=full</connection-url>
​ <driver-class>com.ibm.as400.access.AS400JDBCDriver</driver-class>
​ <user-name>[username]</user-name>
​ <password>[password]</password>
​ <min-pool-size>0</min-pool-size>
​ <!-- sql to call when connection is created
​	 <new-connection-sql>some arbitrary sql</new-connection-sql>
​ -->
​
​ <!-- sql to call on an existing pooled connection when it is obtained from pool
​	 <check-valid-connection-sql>some arbitrary sql</check-valid-connection-sql>
​ -->
​ <!-- corresponding type-mapping in the standardjbosscmp-jdbc.xml (optional) -->
​ <metadata>
​ <type-mapping>DB2/400</type-mapping>
​ </metadata>
​
​ </local-tx-datasource>
​
​</datasources>

 ⁠Example B.4. DB2 on AS/400 "native"

				The Native JDBC driver is shipped as part of the IBM Developer Kit for Java (57xxJV1). It is implemented by making native method calls to the SQL CLI (Call Level Interface), and it only runs on the i5/OS JVM. The class name to register is com.ibm.db2.jdbc.app.DB2Driver. The URL subprotocol is db2. Refer to the JDBC FAQs at http://www-03.ibm.com/systems/i/software/toolbox/faqjdbc.html#faqA1 for more information.
			
​<?xml version="1.0" encoding="UTF-8"?>
​<!-- === -->
​<!-- -->
​<!-- JBoss Server Configuration -->
​<!-- -->
​<!-- === -->
​<!-- $Id: db2-400-ds.xml,v 1.1.4.2 2004/10/27 18:44:10 pilhuhn Exp $ -->
​<!-- You need the jt400.jar that is delivered with IBM iSeries Access or the
​OpenSource Project jtopen.
​[systemname] Hostame of the iSeries
​[schema] Default schema is needed so jboss could use metadat to test if the tables exists -->
​<datasources>
​ <local-tx-datasource>
​ <jndi-name>DB2-400</jndi-name>
​ <connection-url>jdbc:db2://[systemname]/[schema];extended dynamic=true;package=jbpkg;package cache=true;package library=jboss;errors=full</connection-url>
​ <driver-class>com.ibm.db2.jdbc.app.DB2Driver</driver-class>
​ <user-name>[username]</user-name>
​ <password>[password]</password>
​ <min-pool-size>0</min-pool-size>
​ <!-- sql to call when connection is created
​	 <new-connection-sql>some arbitrary sql</new-connection-sql> -->
​
​ <!-- sql to call on an existing pooled connection when it is obtained from pool
​	 <check-valid-connection-sql>some arbitrary sql</check-valid-connection-sql> -->
​ <!-- corresponding type-mapping in the standardjbosscmp-jdbc.xml (optional) -->
​ <metadata>
​ <type-mapping>DB2/400</type-mapping>
​ </metadata>
​ </local-tx-datasource>
​</datasources>
Tips
	
						This driver is sensitive to the job’s CCSID, but works fine with CCSID=37.
					

	
						[systemname] must be defined as entry WRKRDBDIRE like *local.
					

 ⁠B.3. Oracle

 ⁠Example B.5. Oracle Local-TX Datasource
​<?xml version="1.0" encoding="UTF-8"?>
​
​<!-- === -->
​<!-- -->
​<!-- JBoss Server Configuration -->
​<!-- -->
​<!-- === -->
​
​<!-- $Id: oracle-ds.xml,v 1.6 2004/09/15 14:37:40 loubyansky Exp $ -->
​<!-- == -->
​<!-- Datasource config for Oracle originally from Steven Coy -->
​<!-- == -->
​
​
​<datasources>
​ <local-tx-datasource>
​ <jndi-name>OracleDS</jndi-name>
​ <connection-url>jdbc:oracle:thin:@youroraclehost:1521:yoursid</connection-url>
​ <!--
​	See on WIKI page below how to use Oracle's thin JDBC driver to connect with enterprise RAC.
​ -->
​ <!--
​	Here are a couple of the possible OCI configurations.
​	For more information, see http://otn.oracle.com/docs/products/oracle9i/doc_library/release2/java.920/a96654/toc.htm
​
​<connection-url>jdbc:oracle:oci:@youroracle-tns-name</connection-url>
​or
​<connection-url>jdbc:oracle:oci:@(description=(address=(host=youroraclehost)(protocol=tcp)(port=1521))(connect_data=(SERVICE_NAME=yourservicename)))</connection-url>
​
​Clearly, its better to have TNS set up properly.
​ -->
​ <driver-class>oracle.jdbc.driver.OracleDriver</driver-class>
​ <user-name>x</user-name>
​ <password>y</password>
​
​ <min-pool-size>5</min-pool-size>
​ <max-pool-size>100</max-pool-size>
​
​ <!-- Uses the pingDatabase method to check a connection is still valid before handing it out from the pool -->
​ <!--valid-connection-checker-class-name>org.jboss.resource.adapter.jdbc.vendor.OracleValidConnectionChecker</valid-connection-checker-class-name-->
​ <!-- Checks the Oracle error codes and messages for fatal errors -->
​ <exception-sorter-class-name>org.jboss.resource.adapter.jdbc.vendor.OracleExceptionSorter</exception-sorter-class-name>
​ <!-- sql to call when connection is created
​	 <new-connection-sql>some arbitrary sql</new-connection-sql>
​ -->
​
​ <!-- sql to call on an existing pooled connection when it is obtained from pool - the OracleValidConnectionChecker is prefered
​	 <check-valid-connection-sql>some arbitrary sql</check-valid-connection-sql>
​ -->
​
​ <!-- corresponding type-mapping in the standardjbosscmp-jdbc.xml (optional) -->
​ <metadata>
​ <type-mapping>Oracle9i</type-mapping>
​ </metadata>
​ </local-tx-datasource>
​
​</datasources>

 ⁠Example B.6. Oracle XA Datasource
​<?xml version="1.0" encoding="UTF-8"?>
​
​<!-- === -->
​<!-- -->
​<!-- JBoss Server Configuration -->
​<!-- -->
​<!-- === -->
​
​<!-- $Id: oracle-xa-ds.xml,v 1.13 2004/09/15 14:37:40 loubyansky Exp $ -->
​
​<!-- === -->
​<!-- ATTENTION: DO NOT FORGET TO SET Pad=true IN transaction-service.xml -->
​<!-- === -->
​
​<datasources>
​ <xa-datasource>
​ <jndi-name>XAOracleDS</jndi-name>
​ <track-connection-by-tx></track-connection-by-tx>
​ <isSameRM-override-value>false</isSameRM-override-value>
​ <xa-datasource-class>oracle.jdbc.xa.client.OracleXADataSource</xa-datasource-class>
​ <xa-datasource-property name="URL">jdbc:oracle:oci8:@tc</xa-datasource-property>
​ <xa-datasource-property name="User">scott</xa-datasource-property>
​ <xa-datasource-property name="Password">tiger</xa-datasource-property>
​ <!-- Uses the pingDatabase method to check a connection is still valid before handing it out from the pool -->
​ <!--valid-connection-checker-class-name>org.jboss.resource.adapter.jdbc.vendor.OracleValidConnectionChecker</valid-connection-checker-class-name-->
​ <!-- Checks the Oracle error codes and messages for fatal errors -->
​ <exception-sorter-class-name>org.jboss.resource.adapter.jdbc.vendor.OracleExceptionSorter</exception-sorter-class-name>
​ <!-- Oracles XA datasource cannot reuse a connection outside a transaction once enlisted in a global transaction and vice-versa -->
​ <no-tx-separate-pools></no-tx-separate-pools>
​
​ <!-- corresponding type-mapping in the standardjbosscmp-jdbc.xml (optional) -->
​ <metadata>
​ <type-mapping>Oracle9i</type-mapping>
​ </metadata>
​ </xa-datasource>
​
​ <mbean code="org.jboss.resource.adapter.jdbc.vendor.OracleXAExceptionFormatter"
​ name="jboss.jca:service=OracleXAExceptionFormatter">
​ <depends optional-attribute-name="TransactionManagerService">jboss:service=TransactionManager</depends>
​ </mbean>
​
​</datasources>

 ⁠Example B.7. Oracle's Thin JDBC Driver with Enterprise RAC

				The extra configuration to use Oracle's Thin JDBC driver to connect with Enterprise RAC involves the <connection-url>. The two hostnames provide load balancing and failover to the underlying physical database.
			
​...
​<connection-url>jdbc:oracle:thin:@(description=(address_list=(load_balance=on)(failover=on)(address=(protocol=tcp)(host=xxxxhost1)(port=1521))(address=(protocol=tcp)(host=xxxxhost2)(port=1521)))(connect_data=(service_name=xxxxsid)(failover_mode=(type=select)(method=basic))))</connection-url>
​...

				Note

						This example has only been tested against Oracle 10g.
					

			

 ⁠B.3.1. Changes in Oracle 10g JDBC Driver

				It is no longer necessary to enable the Pad option in your jboss-service.xml file. Further, you no longer need the <no-tx-separate-pool/>.
			

 ⁠B.3.2. Type Mapping for Oracle 10g

				You need to specify Oracle9i type mapping for Oracle 10g datasource configurations.
			

 ⁠Example B.8. Oracle9i Type Mapping
​....
​<metadata>
​ <type-mapping>Oracle9i</type-mapping>
​</metadata>
​....

 ⁠B.3.3. Retrieving the Underlying Oracle Connection Object

 ⁠Example B.9. Oracle Connection Object
​Connection conn = myJBossDatasource.getConnection();
​WrappedConnection wrappedConn = (WrappedConnection)conn;
​Connection underlyingConn = wrappedConn.getUnderlyingConnection();
​OracleConnection oracleConn = (OracleConnection)underlyingConn;

 ⁠B.3.4. Limitations of Oracle 11g

				In Oracle 11g R2 (both RAC and standalone), a complex query with LockMode.UPGRADE (ie: "for update") may cause a "No more data to read from socket" error. The workaround is to not use LockMode.UPGRADE on such queries. See Oracle bug number 9219636 for more details.
			

 ⁠B.4. Sybase

 ⁠Example B.10. Sybase Datasource
​<?xml version="1.0" encoding="UTF-8"?>
​
​<datasources>
​ <local-tx-datasource>
​ <jndi-name>jdbc/SybaseDB</jndi-name>
​ <!-- Sybase jConnect URL for the database.
​	 NOTE: The hostname and port are made up values. The optional
​	 database name is provided, as well as some additinal Driver
​	 parameters.
​ -->
​ <connection-url>jdbc:sybase:Tds:host.at.some.domain:5000/db_name?JCONNECT_VERSION=6</connection-url>
​ <driver-class>com.sybase.jdbc2.jdbc.SybDataSource</driver-class>
​ <user-name>x</user-name>
​ <password>y</password>
​ <exception-sorter-class-name>org.jboss.resource.adapter.jdbc.vendor.SybaseExceptionSorter</exception-sorter-class-name>
​ <!-- sql to call when connection is created
​	 <new-connection-sql>some arbitrary sql</new-connection-sql>
​ -->
​
​ <!-- sql to call on an existing pooled connection when it is obtained from pool
​	 <check-valid-connection-sql>some arbitrary sql</check-valid-connection-sql>
​ -->
​
​ <!-- corresponding type-mapping in the standardjbosscmp-jdbc.xml (optional) -->
​ <metadata>
​ <type-mapping>Sybase</type-mapping>
​ </metadata>
​ </local-tx-datasource>
​
​</datasources>

				
 ⁠[1]
			

 ⁠B.4.1. Sybase Limitations

				Sybase has some configuration anomalies, which you should be aware of.
			
	DDL statements in transactions
	
							Hibernate, which is an integral part of the Enterprise Platform, allows the SQL Dialect to decide whether or not the database supports DDL statements within a transaction. Sybase does not override this. the default is to query the JDBC metadata to see whether DDL is allowed within transactions. However, Sybase does not correct report whether it is set up to use this option.
						

							Sybase recommends against using DDL statements in transactions, because of locking issues. Review the Sybase documentation for how to enable or disable the ddl in tran option.
						

	Sybase does not throw an exception if a value overflows the constraints of the underlying column.
	
							Sybase ASE does not throw an exception when Parameterized Sql is in use. jconn3.jar uses Parameterized Sql for insertion by default, so no exception is thrown if a value overflows the constraints of the underlying column. Since no exception is thrown, Hibernate cannot tell that the insert failed. By using Dynamic Prepare instead of Parameterized SQL, ASE throws an exception. Hibernate can catch this exception and act accordingly.
						

							For that reason, set the Dynamic prepare parameter to true in Hibernate's configuration file.
						
<property name="connection.url">jdbc:sybase:Tds:aurum:1503/masterDb?DYNAMIC_PREPARE=true</property>

							jconn4.jar uses Dynamic Prepare by default.
						

	SchemaExport cannot create stored procedures in chained transaction mode
	
							On Sybase, SchemaExport cannot be used to create stored procedures while in while in chained transaction mode. The workaround for this case is to add the following code immediately after the definition of the new stored procedure:
						
​<database-object>
​ <create>
​ sp_procxmode paramHandling, 'chained'
​ </create>
​ <drop/>
​</database-object>

 ⁠B.5. Microsoft SQL Server

			To evaluate those drivers, you can use a simple JSP page to query the pubs database shipped with Microsoft SQL Server.
		

			Move the WAR archive located in files/mssql-test.zip to the /deploy, start the server, and navigate your web browser to http://localhost:8080/test/test.jsp.
		

 ⁠Example B.11. Local-TX Datasource Using DataDirect Driver

				This example uses the DataDirect Connect for JDBC drivers from http://www.datadirect.com.
			
​<datasources>
​ <local-tx-datasource>
​ <jndi-name>MerliaDS</jndi-name>
​ <connection-url>jdbc:datadirect:sqlserver://localhost:1433;DatabaseName=jboss</connection-url>
​ <driver-class>com.ddtek.jdbc.sqlserver.SQLServerDriver</driver-class>
​ <user-name>sa</user-name>
​ <password>sa</password>
​
​ <!-- corresponding type-mapping in the standardjbosscmp-jdbc.xml (optional) -->
​ <metadata>
​ <type-mapping>MS SQLSERVER2000</type-mapping>
​ </metadata>
​ </local-tx-datasource>
​
​</datasources>

 ⁠Example B.12. Local-TX Datasource Using Merlia Driver

				This example uses the Merlia JDBC Driver drivers from http://www.inetsoftware.de.
			
​<datasources>
​ <local-tx-datasource>
​ <jndi-name>MerliaDS</jndi-name>
​ <connection-url>jdbc:inetdae7:localhost:1433?database=pubs</connection-url>
​ <driver-class>com.inet.tds.TdsDataSource</driver-class>
​ <user-name>sa</user-name>
​ <password>sa</password>
​
​ <!-- corresponding type-mapping in the standardjbosscmp-jdbc.xml (optional) -->
​ <metadata>
​ <type-mapping>MS SQLSERVER2000</type-mapping>
​ </metadata>
​ </local-tx-datasource>
​
​</datasources>

 ⁠Example B.13. XA Datasource Using Merlia Driver

				This example uses the Merlia JDBC Driver drivers from http://www.inetsoftware.de.
			
​<datasources>
​ <xa-datasource>
​ <jndi-name>MerliaXADS</jndi-name>
​ <track-connection-by-tx></track-connection-by-tx>
​ <isSameRM-override-value>false</isSameRM-override-value>
​ <xa-datasource-class>com.inet.tds.DTCDataSource</xa-datasource-class>
​ <xa-datasource-property name="ServerName">localhost</xa-datasource-property>
​ <xa-datasource-property name="DatabaseName">pubs</xa-datasource-property>
​ <user-name>sa</user-name>
​ <password>sa</password>
​
​ <!-- corresponding type-mapping in the standardjbosscmp-jdbc.xml (optional) -->
​ <metadata>
​ <type-mapping>MS SQLSERVER2000</type-mapping>
​ </metadata>
​ </xa-datasource>
​
​</datasources>

 ⁠B.5.1. Microsoft JDBC Drivers

				Microsoft SQL Server 2008 JDBC Driver can be used with SQL Server 2008 or 2008 R2 and is certified for JBoss Hibernate.
			

				Read the release.txt file included in the driver distribution for more information.
			

 ⁠Example B.14. Microsoft SQL Server 2008 Local-TX Datasource
​<?xml version="1.0" encoding="UTF-8"?>
​
​
​<datasources>
​ <local-tx-datasource>
​ <jndi-name>MSSQL2008DS</jndi-name>
​ <connection-url>jdbc:sqlserver://localhost:1433;DatabaseName=pubs</connection-url>
​ <driver-class>com.microsoft.sqlserver.jdbc.SQLServerDriver</driver-class>
​ <user-name>sa</user-name>
​ <password>jboss</password>
​
​ <!-- corresponding type-mapping in the standardjbosscmp-jdbc.xml (optional) -->
​ <metadata>
​ <type-mapping>MS SQLSERVER2000</type-mapping>
​ </metadata>
​ </local-tx-datasource>
​
​</datasources>

 ⁠Example B.15. Microsoft SQL Server 2008 XA Datasource
​<?xml version="1.0" encoding="UTF-8"?>
​
​<datasources>
​ <xa-datasource>
​ <jndi-name>MSSQL2008XADS</jndi-name>
​ <track-connection-by-tx></track-connection-by-tx>
​ <isSameRM-override-value>false</isSameRM-override-value>
​ <xa-datasource-class>com.microsoft.sqlserver.jdbc.SQLServerXADataSource</xa-datasource-class>
​ <xa-datasource-property name="ServerName">localhost</xa-datasource-property>
​ <xa-datasource-property name="DatabaseName">pubs</xa-datasource-property>
​ <xa-datasource-property name="SelectMethod">cursor</xa-datasource-property>
​ <xa-datasource-property name="User">sa</xa-datasource-property>
​ <xa-datasource-property name="Password">jboss</xa-datasource-property>
​
​ <!-- corresponding type-mapping in the standardjbosscmp-jdbc.xml (optional) -->
​ <metadata>
​ <type-mapping>MS SQLSERVER2000</type-mapping>
​ </metadata>
​ </xa-datasource>
​
​</datasources>
​

 ⁠B.5.2. JSQL Drivers

 ⁠Example B.16. JSQL Driver
​<?xml version="1.0" encoding="UTF-8"?>
​
​<datasources>
​ <local-tx-datasource>
​ <jndi-name>JSQLDS</jndi-name>
​ <connection-url>jdbc:JSQLConnect://localhost:1433/databaseName=testdb</connection-url>
​ <driver-class>com.jnetdirect.jsql.JSQLDriver</driver-class>
​ <user-name>x</user-name>
​ <password>y</password>
​ <!-- sql to call when connection is created
​	 <new-connection-sql>some arbitrary sql</new-connection-sql>
​ -->
​
​ <!-- sql to call on an existing pooled connection when it is obtained from pool
​	 <check-valid-connection-sql>some arbitrary sql</check-valid-connection-sql>
​ -->
​
​ </local-tx-datasource>
​
​</datasources>

 ⁠B.5.3. jTDS JDBC Driver

				jTDS is an open source 100% pure Java (type 4) JDBC 3.0 driver for Microsoft SQL Server (6.5, 7, 2000 and 2005) and Sybase (10, 11, 12, 15). jTDS is based on FreeTDS and is currently the fastest production-ready JDBC driver for microsoft SQL Server and Sybase. jTDS is 100% JDBC 3.0 compatible, supporting forward-only and scrollable/updatable ResultSets, concurrent (completely independent) Statements and implementing all the DatabaseMetaData and ResultSetMetaData methods.
			

				Download jTDS from http://jtds.sourceforge.net/.
			

 ⁠Example B.17. jTDS Local-TX Datasource
​<?xml version="1.0" encoding="UTF-8"?>
​
​
​<datasources>
​ <local-tx-datasource>
​ <jndi-name>jtdsDS</jndi-name>
​ <connection-url>jdbc:jtds:sqlserver://localhost:1433;databaseName=pubs</connection-url>
​ <driver-class>net.sourceforge.jtds.jdbc.Driver</driver-class>
​ <user-name>sa</user-name>
​ <password>jboss</password>
​
​ <!-- optional parameters -->
​ <transaction-isolation>TRANSACTION_READ_COMMITTED</transaction-isolation>
​ <min-pool-size>10</min-pool-size>
​ <max-pool-size>30</max-pool-size>
​ <idle-timeout-minutes>15</idle-timeout-minutes>
​ <blocking-timeout-millis>5000</blocking-timeout-millis>
​ <new-connection-sql>select 1</new-connection-sql>
​ <check-valid-connection-sql>select 1</check-valid-connection-sql>
​ <set-tx-query-timeout></set-tx-query-timeout>
​ <metadata>
​ <type-mapping>MS SQLSERVER2000</type-mapping>
​ </metadata>
​ </local-tx-datasource>
​</datasources>

 ⁠Example B.18. jTDS XA Datasource
​<?xml version="1.0" encoding="UTF-8"?>
​
​<datasources>
​ <xa-datasource>
​ <jndi-name>jtdsXADS</jndi-name>
​ <xa-datasource-class>net.sourceforge.jtds.jdbcx.JtdsDataSource</xa-datasource-class>
​ <xa-datasource-property name="ServerName">localhost</xa-datasource-property>
​ <xa-datasource-property name="DatabaseName">pubs</xa-datasource-property>
​ <xa-datasource-property name="User">sa</xa-datasource-property>
​ <xa-datasource-property name="Password">jboss</xa-datasource-property>
​
​ <!--
​	 When set to true, emulate XA distributed transaction support. Set to false to use experimental
​	 true distributed transaction support. True distributed transaction support is only available for
​	 SQL Server 2000 and requires the installation of an external stored procedure in the target server
​	 (see the README.XA file in the distribution for details).
​ -->
​ <xa-datasource-property name="XaEmulation">true</xa-datasource-property>
​
​ <track-connection-by-tx></track-connection-by-tx>
​
​ <!-- optional parameters -->
​ <transaction-isolation>TRANSACTION_READ_COMMITTED</transaction-isolation>
​ <min-pool-size>10</min-pool-size>
​ <max-pool-size>30</max-pool-size>
​ <idle-timeout-minutes>15</idle-timeout-minutes>
​ <blocking-timeout-millis>5000</blocking-timeout-millis>
​ <new-connection-sql>select 1</new-connection-sql>
​ <check-valid-connection-sql>select 1</check-valid-connection-sql>
​ <set-tx-query-timeout></set-tx-query-timeout>
​ <metadata>
​ <type-mapping>MS SQLSERVER2000</type-mapping>
​ </metadata>
​ </xa-datasource>
​
​</datasources>

 ⁠B.5.4. "Invalid object name 'JMS_SUBSCRIPTIONS' Exception

				If you receive an exception like the one in Example B.19, “JMS_SUBSCRIPTIONS Exception” during start up, specify a SelectMethod in the connection URL, as shown in Example B.20, “Specifying a SelectMethod”.
			

 ⁠Example B.19. JMS_SUBSCRIPTIONS Exception

 17:17:57,167 WARN [ServiceController] Problem starting service jboss.mq.destination:name=testTopic,service=Topic
 org.jboss.mq.SpyJMSException: Error getting durable subscriptions for topic TOPIC.testTopic; - nested throwable: (java.sql.SQLException: [Microsoft][SQLServer 2000 Driver for JDBC][SQLServer]Invalid object name 'JMS_SUBSCRIPTIONS'.)
 at org.jboss.mq.sm.jdbc.JDBCStateManager.getDurableSubscriptionIdsForTopic(JDBCStateManager.java:290)
 at org.jboss.mq.server.JMSDestinationManager.addDestination(JMSDestinationManager.java:656)

 ⁠Example B.20. Specifying a SelectMethod
​<connection-url>jdbc:microsoft:sqlserver://localhost:1433;SelectMethod=cursor;DatabaseName=jboss</connection-url>

 ⁠B.6. MySQL Datasource

 ⁠B.6.1. Installing the Driver

 ⁠Procedure B.1. Installing the Driver
	
						Download the driver from http://www.mysql.com/products/connector/j/. Make sure to choose the driver based on your version of MySQL.
					

	
						Expand the driver ZIP or TAR file, and locate the .jar file.
					

	
						Move the .jar file into <JBOSS_HOME>/server/<PROFILE>/lib.
					

	
						Copy the <JBOSS_HOME>docs/examples/jca/mysql-ds.xml example datasource deployer file to <JBOSS_HOME>/server/<PROFILE>/deploy/, for use as a template.
					

MySQL limitations
	Millisecond and microsecond measurements
	
							MySQL does not currently support millisecond and microsecond measurements when returning database values such as TIME and TIMESTAMP. Tests which rely on these measurements will fail.
						

 ⁠B.6.2. MySQL Local-TX Datasource

 ⁠Example B.21. MySQL Local-TX Datasource

					This example uses a database hosted on localhost, on port 3306, with autoReconnect enabled. This is not a recommended configuration, unless you do not need any Transactions support.
				
​<datasources>
​ <local-tx-datasource>
​
​ <jndi-name>MySqlDS</jndi-name>
​
​ <connection-url>jdbc:mysql://localhost:3306/database</connection-url>
​ <driver-class>com.mysql.jdbc.Driver</driver-class>
​
​ <user-name>username</user-name>
​ <password>secret</password>
​
​ <connection-property name="autoReconnect">true</connection-property>
​
​ <!-- Typemapping for JBoss 4.0 -->
​ <metadata>
​ <type-mapping>mySQL</type-mapping>
​ </metadata>
​
​ </local-tx-datasource>
​</datasources>

 ⁠B.6.3. MySQL Using a Named Pipe

 ⁠Example B.22. MySQL Using a Named Pipe

					This example uses a database hosted locally, but uses a named pipe instead of TCP/IP.
				
​<datasources>
​ <local-tx-datasource>
​
​ <jndi-name>MySQLDS</jndi-name>
​ <connection-url>jdbc:mysql://./database</connection-url>
​ <driver-class>com.mysql.jdbc.Driver</driver-class>
​
​ <user-name>username</user-name>
​ <password>secret</password>
​
​ <connection-property name="socketFactory">com.mysql.jdbc.NamedPipeSocketFactory</connection-property>
​
​ <metadata>
​ <type-mapping>mySQL</type-mapping>
​ </metadata>
​
​ </local-tx-datasource>
​</datasources>

 ⁠B.7. PostgreSQL

 ⁠Example B.23. PostgreSQL Local-TX Datasource
​<?xml version="1.0" encoding="UTF-8"?>
​
​<datasources>
​ <local-tx-datasource>
​ <jndi-name>PostgresDS</jndi-name>
​ <connection-url>jdbc:postgresql://[servername]:[port]/[database name]</connection-url>
​ <driver-class>org.postgresql.Driver</driver-class>
​ <user-name>x</user-name>
​ <password>y</password>
​ <!-- sql to call when connection is created
​	 <new-connection-sql>some arbitrary sql</new-connection-sql>
​ -->
​
​ <!-- sql to call on an existing pooled connection when it is obtained from pool
​	 <check-valid-connection-sql>some arbitrary sql</check-valid-connection-sql>
​ -->
​
​ <!-- corresponding type-mapping in the standardjbosscmp-jdbc.xml (optional) -->
​ <metadata>
​ <type-mapping>PostgreSQL 8.0</type-mapping>
​ </metadata>
​ </local-tx-datasource>
​
​</datasources>

Important

				XA Transactions are denied if max_prepared_transactions uses the default value (0) in PostgreSQL v8.4 and v8.2.
			

				PostgreSQL user documentation recommends you set the max_prepared_transactions value to meet or exceed the value of max_connections so every session can have a prepared transaction pending.
			

				For more information, refer to the PostgreSQL v8.4 User Documentation, located at http://www.postgresql.org/docs/8.4/interactive/runtime-config-resource.html#GUC-MAX-PREPARED-TRANSACTIONS
			

 ⁠Example B.24. PostgreSQL XA Datasource

				This configuration works for PostgreSQL 8.x and later.
			
​<?xml version="1.0" encoding="UTF-8"?>
​
​<datasources>
​ <xa-datasource>
​ <jndi-name>PostgresDS</jndi-name>
​
​ <xa-datasource-class>org.postgresql.xa.PGXADataSource</xa-datasource-class>
​ <xa-datasource-property name="ServerName">[servername]</xa-datasource-property>
​ <xa-datasource-property name="PortNumber">5432</xa-datasource-property>
​
​ <xa-datasource-property name="DatabaseName">[database name]</xa-datasource-property>
​ <xa-datasource-property name="User">[username]</xa-datasource-property>
​ <xa-datasource-property name="Password">[password]</xa-datasource-property>
​
​ <track-connection-by-tx></track-connection-by-tx>
​ </xa-datasource>
​</datasources>

 ⁠B.8. Ingres

 ⁠Example B.25. Ingres Datasource
​<?xml version="1.0" encoding="UTF-8"?>
​
​<datasources>
​ <local-tx-datasource>
​ <jndi-name>IngresDS</jndi-name>
​ <use-java-context>false</use-java-context>
​ <driver-class>com.ingres.jdbc.IngresDriver</driver-class>
​ <connection-url>jdbc:ingres://localhost:II7/testdb</connection-url>
​ <datasource-class>com.ingres.jdbc.IngresDataSource</datasource-class>
​ <datasource-property name="ServerName">localhost</datasource-property>
​ <datasource-property name="PortName">II7</datasource-property>
​ <datasource-property name="DatabaseName">testdb</datasource-property>
​ <datasource-property name="User">testuser</datasource-property>
​ <datasource-property name="Password">testpassword</datasource-property>
​ <new-connection-sql>select count(*) from iitables</new-connection-sql>
​
​ <check-valid-connection-sql>select count(*) from iitables</check-valid-connection-sql>
​ <metadata>
​ <type-mapping>Ingres</type-mapping>
​ </metadata>
​ </local-tx-datasource>
​</datasources>

				
 ⁠[2]
			

[1]
					Source: http://community.jboss.org/wiki/SetUpASybaseDatasource
				

[2]
					Source: http://community.ingres.com
				

 ⁠Appendix C. Logging Information and Recipes

 ⁠C.1. Log Level Descriptions

			Table C.1, “log4j Log Level Definitions” lists the typical meanings for different log levels in log4j. Your application may interpret these levels differently, depending on your choices.
		

 ⁠Table C.1. log4j Log Level Definitions
	 log4j Level 	 JDK Level 	 Description
	 FATAL 	 	
							The Application Service is likely to crash.
						

						
	 ERROR 	 SEVERE 	
							A definite problem exists.
						

						
	 WARN 	 WARNING 	
							Likely to be a problem, but may be recoverable.
						

						
	 INFO 	 INFO 	
							Low-volume detailed logging. Something of interest, but not a problem.
						

						
	 DEBUG 	 FINE 	
							Low-volume detailed logging. Information that is probably not of interest.
						

						
	 	 FINER 	
							Medium-volume detailed logging.
						

						
	 TRACE 	 FINEST 	
							High-volume detailed logging.
						

						

Note

				The more verbose logging levels are not appropriate for production systems, because of the high level of output they generate.
			

 ⁠Example C.1. Restricting Logged Information to a Specific Log Level
​
​ <!-- Show the evolution of the DataSource pool in the logs [inUse/Available/Max]-->
​<category name="org.jboss.resource.connectionmanager.JBossManagedConnectionPool">
​ <priority value="TRACE" class="org.jboss.logging.XLevel"></priority>
​</category>
​			
​			
​			
​

 ⁠C.2. Separate Log Files Per Application

			To segregate logging output per application, assign log4j categories to specific appenders. This is typically done in the conf/log4j.xml deployment descriptor.
		

 ⁠Example C.2. Filtering App1 Log Output to a Separate File
​
​ <appender name="App1Log" class="org.apache.log4j.FileAppender">
​ <errorHandler class="org.jboss.logging.util.OnlyOnceErrorHandler"></errorHandler>
​ <param name="Append" value="false"/>
​ <param name="File" value="${jboss.server.home.dir}/log/app1.log"/>
​ <layout class="org.apache.log4j.PatternLayout">
​ <param name="ConversionPattern" value="%d{ABSOLUTE} %-5p [%c{1}] %m%n"/>
​ </layout>
​</appender>
​
​...
​
​<category name="com.app1">
​ <appender-ref ref="App1Log"></appender-ref>
​</category>
​<category name="com.util">
​ <appender-ref ref="App1Log"></appender-ref>
​</category>
​
​
​			
​			
​			
​

 ⁠Example C.3. Using TCLMCFilter

				Enterprise Platform 5.1 includes the new class jboss.logging.filter.TCLMCFilter, which allows you to filter based on the deployment URL.
			
​
​ <appender name="App1Log" class="org.apache.log4j.FileAppender">
​ <errorHandler class="org.jboss.logging.util.OnlyOnceErrorHandler"></errorHandler>
​ <param name="Append" value="false"/>
​ <param name="File" value="${jboss.server.home.dir}/log/app1.log"/>
​ <layout class="org.apache.log4j.PatternLayout">
​	 <param name="ConversionPattern" value="%d{ABSOLUTE} %-5p [%c{1}] %m%n"/>
​ </layout>
​ <filter class="org.jboss.logging.filter.TCLMCFilter">
​	 <param name="AcceptOnMatch" value="true"/>
​	 <param name="DeployURL" value="app1.ear"/>
​ </filter>
​
​ <!-- end the filter chain here -->
​ <filter class="org.apache.log4j.varia.DenyAllFilter"></filter>
​
​</appender>
​			
​			
​			
​

 ⁠C.3. Redirecting Category Output

			When you increase the level of logging for one or more categories, it is often useful to redirect the output to a separate file for easier investigation. To do this you add an appender-ref to the category.
		

 ⁠Example C.4. Adding an appender-ref
​
​ <appender name="JSR77" class="org.apache.log4j.FileAppender">
​ <param name="File" value="${jboss.server.home.dir}/log/jsr77.log"/>
​ ...
​</appender>
​
​<!-- Limit the JSR77 categories -->
​<category name="org.jboss.management" additivity="false">
​ <priority value="DEBUG"></priority>
​ <appender-ref ref="JSR77"></appender-ref>
​</category>
​			
​			
​			
​

			All org.jboss.management output goes to the jsr77.log file. The additivity attribute controls whether output continues to go to the root category appender. If false, output only goes to the appenders referred to by the category.
		

 ⁠Appendix D. Revision History

			Revision History
	Revision 5.2.0-100.400	2013-10-30	Rüdiger Landmann
	
						Rebuild with publican 4.0.0

				
	Revision 5.2.0-100	Wed 23 Jan 2013	Russell Dickenson
	
						Incorporated changes for JBoss Enterprise Application Platform 5.2.0 GA. For information about documentation changes to this guide, refer to Release Notes 5.2.0.

				
	Revision 5.1.2-103	Wed May 9 2012	Russell Dickenson
	
						Removed and commented unwanted in-line comments.

				
	Revision 5.1.2-102	Wed May 9 2012	Russell Dickenson
	
						Replaced instances of 'JBoss AS' with 'JBoss Enterprise Application Server'

				
	Revision 5.1.2-101	Wed May 9 2012	Russell Dickenson
	
						Bugfix for Bugzilla: https://bugzilla.redhat.com/show_bug.cgi?id=790543

				
	Revision 5.1.2-100	Thu Dec 8 2011	Jared Morgan
	
						Incorporated changes for JBoss Enterprise Application Platform 5.1.2 GA. For information about documentation changes to this guide, refer to Release Notes 5.1.2.

				
	Revision 5.1.1-100	Mon Jul 18 2011	Jared Morgan
	
						Incorporated changes for JBoss Enterprise Application Platform 5.1.1 GA. For information about documentation changes to this guide, refer to Release Notes 5.1.1.

				
	Revision 5.1.0-100	Thu Sep 23 2010	Rebecca Newton
	
						Changed version number in line with new versioning requirements.
	Revised for JBoss Enterprise Application Platform 5.1.0.GA, including:
	JBPAPP-4586
	JBPAPP-4155
	JBPAPP-4957 - Added NSAPI on Solaris section to HTTP Services chapter.

				

	

OEBPS/Common_Content/images/18.png

OEBPS/Common_Content/images/dot2.png

OEBPS/Common_Content/images/documentation.png

OEBPS/Common_Content/images/26.png

OEBPS/Common_Content/fonts/overpass_light-web.woff

OEBPS/Common_Content/images/15.png

OEBPS/Common_Content/images/14.png

OEBPS/Common_Content/images/13.png

OEBPS/Common_Content/images/12.png

OEBPS/Common_Content/images/11.png

OEBPS/images/Chap3-9.png
HetpProxyFactory

Lookup via HITP.

NamingFactoryserviet

HttplnvokerProxy

ProxyHandler ClientContainer

[r——

InvokerServiet

javax.naming.Context

orgjnp.interfaces.NamingContext

orgjnp.interfaces.Naming

OEBPS/Common_Content/images/10.png

OEBPS/Common_Content/fonts/overpass_regular-web.eot

OEBPS/Common_Content/images/rhlogo.png
E) redhat.

OEBPS/images/jndiview-1.png
SIS =| IMX Agent View toki.local

ObjectName Filter (e.g. "jboss

"+:service=invoker,
(Appiyriter)

Catalina
o typesServer
JMImplementation

© name=Default.service=LoaderRepository
© type=MBeanRegistry
© type=MBeanServerDelegate

 database=localDB.service=Hypersonic

* name=PropertyEditorManager.type=Service

* name=SystemProperties.type=Service
 readonly=true.service=invoker.target=Naming.type=http
 service=AttributePersistenceService
 service=ClientUserTransaction
.
.
.
.
.

service=JNDIView
service=KeyGeneratorFactory.type=HiLo

OEBPS/Common_Content/scripts/css_conflicts.js
function fixCSSConflicts() {}

OEBPS/Common_Content/images/34.png

OEBPS/images/jbosscmp-jdbc_type-mapping.png
type-mapping

row-locking-template

pk-constraint-template

i

auto-increment-template
add-column-template

alter-column-template

drop-column-template

alias-header-prefix

subquery-supported
true-mapping

false-mapping

function-mapping

|

OEBPS/images/jboss_ds_ha_xa.jpg
rr——
ol ———
P
Prrer——

o 0 o 1)

OEBPS/Common_Content/images/dot.png

OEBPS/Common_Content/images/30.png

OEBPS/Common_Content/images/22.png

OEBPS/images/clustering-SharedTransport.png
singleton_name="tp_one

OEBPS/images/Chap11-16.png
[

Four Finger

Killer

OEBPS/images/clustering-as-arch.png
Awmu3z gara

2
4
3
]
2

asds gara

uoIss3s d1IH

JBossCache/PojoCache

OEBPS/Common_Content/images/note.png

OEBPS/images/jboss_4_0_cluster_config.png
partition-name

(@) home-load-balance-policy
(@) bean-load-balance-policy

session-state-manager-jndi-name

cluster-config

#146198

OEBPS/images/jbosscmp-jdbc_key-field.png
field-name column-name
jdbe-type
key-field

sql-type

property

OEBPS/images/jbosscmp-jdbc_ejb-relation.png
ejb-relation-name
QX readonty _J
(O _read-time-ou

foreign-key-mapping

ejb-relation

foreign-table-mapping

ejb-relationship-role

ejb-relationship-role
#146190

OEBPS/images/jboss_4_0_container_pool_conf.png
Minimumsize

strictTimeout

container-pool-conf

#146200

OEBPS/Common_Content/images/37.png

OEBPS/images/jbosscmp-jdbc_relation-table-mapping.png
table-name

datasource

datasource-mapping

relation-table-mapping

(@) row-locking

pk-constraint

#146187

OEBPS/images/jboss_ds_xa.jpg
[o

[+ faazoures sty

]

o passworty

e

T

oty

a
3
o[hecaa-commecion-iats
9]

off e e

| depeng

OEBPS/images/invoker-architecture.png
transport=abe

transport=xyz

service=Invoker,
type=abc

MBean
Server

service=Invoker,
typesxyz

Jux

EJBContainer

OEBPS/Common_Content/scripts/menu.js
/* global window document labels lang_menu_2_div hljs */
var docs = (function(docs){
 /*
 * NOTE: The docs module will not work properly unless the init function is called, as the jQuery object is dynamically
 * loaded using requirejs.
 */
 var jQuery = window.jQuery;
 var listeners = [];
 var ready = false;

 // BEGIN UTIL FUNCTIONS
 docs.utils = (function() {
 var exports = {};

 exports.setCookie = function(name, value, expires, path, domain, secure) {
 document.cookie = name + "=" + value +
 ((expires) ? ";expires=" + expires.toGMTString() : "") +
 ((path) ? ";path=" + path : "");
 // +
 //		((domain) ? ";domain=" + domain : "") +
 //		((secure) ? ";secure" : "");
 };

 exports.isSafari = function() {
 return navigator.userAgent.indexOf("Safari") != -1 && navigator.userAgent.indexOf("Chrome") == -1;
 };

 exports.scrollToTarget = function() {
 if (jQuery(window.location.hash).length > 0) {
 jQuery('html, body').animate({ scrollTop: jQuery(window.location.hash).offset().top}, 1000);
 }
 };

 exports.getCurrentPageName = function() {
 return window.location.href.substr(window.location.href.lastIndexOf("/") + 1);
 };

 exports.escapeElementId = function(elem) {
 return elem.replace('&', '\\&');
 };

 return exports;
 }());
 // END UTIL FUNCTIONS

 // BEGIN TOC FUNCTIONS
 docs.toc = (function(utils) {
 var num_days = 7;
 var name_menu = window.location.hostname + '-publican-menu';

 function init() {
 // New toc
 var navigation = jQuery('#navigation');
 if (navigation.is(":visible")) {
 initNewToc(navigation);
 }

 // Old selectbox toc
 var docToc = jQuery(".doctoc");
 if (docToc.is(":visible")) {
 initOldToc(docToc);
 }
 }

 function initOldToc(docToc) {
 checkToc();
 docToc.load('index.html .toc:eq(0)', function () {
 loadDocNav();
 });
 utils.scrollToTarget();
 }

 function initNewToc(navigation) {
 navigation.load('index.html div > div.toc:eq(0), section > div.toc:eq(0)', function () {
 // Add the close button and bind the click event
 var tocButton = jQuery('<button class="menu-toggle"></button>');
 navigation.append(tocButton);
 tocButton.click(function (e) {
 toggleToc();
 });

 // Check the saved state and apply the toc styling
 styleToc();
 checkToc();

 // Safari has a bug in getBoundingClientRect that needs the page to be loaded to return valid info.
 if (utils.isSafari()) {
 jQuery(window).load(function () {
 styleToc();
 });
 }
 });

 jQuery(window).scroll(function (e) {
 styleToc();
 }).resize(function (e) {
 styleToc();
 });

 // Add a mechanism to handle the the main menu dropdowns.
 // TODO: This is hacky and a better way should be found to handle this.
 jQuery('.primary-nav a').on('click', function () {
 setTimeout(function () {
 styleToc();
 }, 600);
 });
 }

 function loadDocNav() {
 var topDocNav = getTopDocNav();
 var bottomDocNav = getBottomDocNav();

 updateDocNavItems(utils.getCurrentPageName(), topDocNav, bottomDocNav);

 var onChange = function () {
 var currentPage = utils.getCurrentPageName();
 var newSelection = jQuery(this).val();
 window.location = newSelection;
 if (newSelection.indexOf(currentPage) === 0) {
 updateDocNavItems(newSelection, getTopDocNav(), getBottomDocNav());
 }
 };
 topDocNav.change(onChange);
 bottomDocNav.change(onChange);
 }

 function updateDocNavItems(filename, topDocNav, bottomDocNav) {
 topDocNav.val(filename);
 bottomDocNav.val(filename);
 }

 function getTopDocNav() {
 return jQuery(".docnav.top").find(".pageSelect");
 }

 function getBottomDocNav() {
 return jQuery(".docnav.bottom").find("select");
 }

 function styleToc() {
 /* NOTE: We need to use an absolute position due to the portal adding content (ie outage messages), which then makes the toc overlap
 * that. There is a minor effect of some flickering, but it's minimal and currently the best situation since no events are fired by the
 * portal to say it's finished.
 */
 var nav = jQuery('#navigation');
 var navToc = nav.find('.toc');

 var main = jQuery('#legacy-portal');
 var main_rect = main[0].getBoundingClientRect();
 var main_height = main.height();
 var main_bottom = main_rect.bottom;
 var main_top = main_rect.top;

 var my_top = main.offset().top - jQuery('#main').offset().top + 5;
 var height = main_height - 5;
 var pos = "absolute";
 if (main_top <= 0) {
 my_top = 0;
 pos = "fixed";
 }

 if (navToc.is(':visible')) {
 if (pos === "fixed") {
 if (height > ((window.innerHeight || document.documentElement.clientHeight) - my_top)) {
 height = (window.innerHeight || document.documentElement.clientHeight) - my_top;
 }

 if (my_top + height > main_bottom) {
 height = main_bottom - my_top;
 }
 } else {
 if (height > ((window.innerHeight || document.documentElement.clientHeight) - main_top)) {
 height = (window.innerHeight || document.documentElement.clientHeight) - main_top - 5;
 }

 if (height > main_bottom) {
 height = main_bottom;
 }
 }

 nav.attr('style', 'top: ' + my_top + 'px !important; height: ' + height + 'px; position: ' + pos);
 navToc.attr('style', 'top: 0px !important; height: ' + height + 'px;');
 } else {
 nav.attr('style', 'top: ' + my_top + 'px !important; height: 0px; position: ' + pos);
 }
 }

 function checkToc() {
 if (document.cookie) {
 var cookies = document.cookie.split(/ *; */);
 for (var i = 0; i < cookies.length; i++) {
 var current_c = cookies[i].split("=");
 if (current_c[0] == name_menu) {
 var menu_status = current_c[1];
 if (menu_status == "closed") {
 hideToc();
 }
 break;
 }
 }
 }
 }

 function toggleToc() {
 if (jQuery("#navigation .toc").is(':visible')) {
 hideToc();
 } else {
 showToc();
 }
 }

 function hideToc() {
 var nav = jQuery("#navigation");
 nav.find("button").addClass("tocClosed");
 nav.find(".toc").hide();
 jQuery("#main").addClass('noLtoc');
 styleToc();

 var expDate = new Date();
 expDate.setDate(expDate.getDate() + num_days);
 utils.setCookie(name_menu, 'closed', expDate, '/', false, false);
 }

 function showToc() {
 var nav = jQuery("#navigation");
 nav.find("button").removeClass("tocClosed");
 nav.find(".toc").show();
 jQuery("#main").removeClass('noLtoc');
 styleToc();

 var expDate = new Date();
 expDate.setDate(expDate.getDate() + num_days);
 utils.setCookie(name_menu, 'open', expDate, '/', false, false);
 }

 return {
 init: init,
 toggleToc: toggleToc,
 getTopDocNav: getTopDocNav,
 getBottomDocNav: getBottomDocNav
 };
 }(docs.utils));
 // END TOC FUNCTIONS

 // BEGIN BREADCRUMB FUNCTIONS
 docs.breadcrumbs = (function(labels, utils) {
 var work = 1;

 function init(current_product, current_version, current_book) {
 var support_label = labels["trans_strings"]["Support"];
 var doc_label = labels["trans_strings"]["Product_Documentation"];

 // Create the very basic breadcrumb array
 var doc_array = [doc_label];
 var breadcrumbs = [
 [support_label, "/support/"],
 doc_array
];

 // Create the base breadcrumb, which will later be replaced with the extended version
 if (typeof current_product != "undefined" && current_product != '') {
 var prod_label = getProductLabel(current_product);
 var prod_array = [prod_label];
 breadcrumbs.push(prod_array);

 doc_array[1] = "../";

 if (typeof current_version != "undefined" && current_version != '') {
 var version_label = getVersionLabel(current_product, current_version);
 var version_array = [version_label];
 breadcrumbs.push(version_array);

 doc_array[1] = "../../";
 prod_array[1] = "../";

 if (typeof current_book != "undefined" && current_book != '') {
 doc_array[1] = "../../../../";
 prod_array[1] = "../../../";
 version_array[1] = "../../";

 var book_label = getBookLabel(current_product, current_version, current_book);
 breadcrumbs.push([book_label]);
 }
 }
 }

 window.breadcrumbs = breadcrumbs;
 }

 function getProductLabel(current_product) {
 if (current_product !== 'Products') {
 return labels[current_product]["label"];
 } else {
 return labels["trans_strings"]["Products"];
 }
 }

 function getVersionLabel(current_product, current_version) {
 if (current_version !== 'Versions') {
 return labels[current_product][current_version]["label"];
 } else {
 return labels["trans_strings"]["Versions"];
 }
 }

 function getBookLabel(current_product, current_version, current_book) {
 if (current_book !== 'Books') {
 return labels[current_product][current_version][current_book]["label"];
 } else {
 return labels["trans_strings"]["Books"];
 }
 }

 function loadMenus(toc_path, current_product, current_version, current_book) {
 var breadcrumbs = jQuery("#breadcrumbs");

 // Add a small timeout, to try to fix the items not loading
 setTimeout(function () {
 // We only care about fixing up the default breadcrumbs if we have a current product
 if (typeof current_product !== "undefined" && current_product != '') {
 // Build the new breadcrumbs html
 var html = jQuery(buildHTML(toc_path, current_product, current_version, current_book));

 // Remove the dummy Product Documentation text node
 var breadcrumbsDiv = breadcrumbs.get(0);
 while (breadcrumbsDiv.childNodes.length > 1) {
 breadcrumbsDiv.removeChild(breadcrumbsDiv.lastChild);
 }

 // Add the new breadcrumbs
 breadcrumbs.append(html);

 // Add a small timeout, to try to fix the items not loading
 // Load and add the hover menus
 loadMenu("product_menu", toc_path + "/products_menu.html");
 loadMenu("version_menu", toc_path + '/' + current_product + "/versions_menu.html");
 if (typeof current_version !== "undefined" && current_version != '') {
 loadMenu("book_menu", toc_path + '/' + current_product + '/' + current_version + '/' + "/books_menu.html");
 if (typeof current_book != "undefined" && current_book != '') {
 loadMenu("book_lang_menu", toc_path + '/' + current_product + '/' + current_version + '/' + current_book + "/lang_menu.html");
 loadMenu("book_format_menu", toc_path + '/' + current_product + '/' + current_version + '/' + current_book + "/format_menu.html", true);
 }
 }
 }

 // For splash pages the language menu is loaded in a global javascript variable
 if (typeof lang_menu_2_div != "undefined" && lang_menu_2_div != '') {
 breadcrumbs.append(lang_menu_2_div);
 bindMouseEvents(breadcrumbs, 'lang_menu_2', 'lang_menu_list');
 }

 bindMenuEvents(breadcrumbs, current_version, current_book);
 }, 500);
 }

 function buildHTML(toc_path, current_product, current_version, current_book) {
 // Get the labels
 var prod_label = getProductLabel(current_product);

 // Convert the default menu into something we can use
 var html = '' + labels["trans_strings"]["Product_Documentation"] + '';
 html += '<div id="product_menu"><div>' + prod_label + '</div></div>';
 if (typeof current_version !== "undefined" && current_version !== '') {
 var version_label = getVersionLabel(current_product, current_version);
 html += '<div id="version_menu"><div>' + version_label + '</div></div>';
 if (typeof current_book !== "undefined" && current_book !== '') {
 var book_label = getBookLabel(current_product, current_version, current_book);
 html += '<div id="book_menu"><div>' + book_label + '</div></div>';

 if (current_book !== 'Books') {
 html += '<div id="left-menu"><div id="book_format_menu"><div>' + labels["trans_strings"]["Formats"] + '</div></div>';
 html += '<div id="book_lang_menu"></div></div>';
 }
 }
 }
 return html;
 }

 // Setup the menu expand/retract listeners
 function bindMenuEvents(breadcrumbs, current_version, current_book) {
 bindMouseEvents(breadcrumbs, 'product_menu', 'product_menu_list');

 if (typeof current_version !== "undefined" && current_version !== '') {
 bindMouseEvents(breadcrumbs, 'version_menu', 'version_menu_list');

 if (typeof current_book !== "undefined" && current_book !== '') {
 bindMouseEvents(breadcrumbs, 'book_menu', 'book_menu_list');

 if (current_book !== 'Books') {
 bindMouseEvents(breadcrumbs, 'book_format_menu', 'book_format_menu_list');
 bindMouseEvents(breadcrumbs, 'book_lang_menu', 'book_lang_menu_list');
 }
 }
 }
 }

 function bindMouseEvents(parent_ele, id, menu_id) {
 var menu_ele = jQuery('#' + id, parent_ele);
 menu_ele.on('mouseout', function () {
 work = 1;
 retractMenu(menu_id);
 });
 menu_ele.on('mouseover', function () {
 work = 1;
 expandMenu(menu_id);
 });
 }

 function loadMenu(id, url, replace) {
 jQuery.get(url, function(data) {
 if (replace) {
 jQuery('#' + id).html(data);
 } else {
 jQuery('#' + id).append(data);
 }
 });
 }

 function expandMenu(id) {
 if (work) {
 work = 0;
 var entity = document.getElementById(id);
 if (entity) {
 var my_class = entity.className;
 var my_parent = entity.parentNode;
 if (my_class.indexOf("hidden") != -1) {
 entity.className = my_class.replace(/hidden/, "visible");
 my_parent.className = my_parent.className.replace(/collapsed/, "expanded");
 }
 }
 }
 }

 function retractMenu(id) {
 if (work) {
 work = 0;
 var entity = document.getElementById(id);
 if (entity) {
 var my_class = entity.className;
 var my_parent = entity.parentNode;
 if (my_class.indexOf("visible") != -1) {
 entity.className = my_class.replace(/visible/, "hidden");
 my_parent.className = my_parent.className.replace(/expanded/, "collapsed");
 }
 }
 }
 }

 return {
 init: init,
 loadMenus: loadMenus,
 expandMenu: expandMenu,
 retractMenu: retractMenu
 };
 }(window.labels, docs.utils));
 // END BREADCRUMBS FUNCTIONS

 // START ANALYTICS FUNCTIONS
 docs.analytics = (function() {
 function runAnalytics(ajq) {
 /*
 var pkBaseUrl = (('https:' == document.location.protocol) ? 'https://engstats.redhat.com/piwik/' : 'http://engstats.redhat.com/piwik/');
 var pkUrl = pkBaseUrl + 'piwik.js';
 ajq('body').append('<noscript><p></p></noscript>');
 require([pkUrl], function() {
 try {
 var piwikTracker = Piwik.getTracker(pkBaseUrl + 'piwik.php', 3);
 if (document.location.hostname == 'access.redhat.com') {
 piwikTracker.trackPageView();
 piwikTracker.enableLinkTracking();
 }
 } catch(err) {}
 });
 */
 }

 return {
 runAnalytics: runAnalytics
 };
 }());
 // END ANALYTICS FUNCTIONS

 // START SPLASH PAGE FUNCTIONS
 docs.splash_page = (function(utils) {
 function init() {
 jQuery(window).bind('hashchange', function () {
 if (window.location.hash === "") {
 // activate the default section
 } else {
 //Grab what is after the # from the url bar and remove the #
 var anchorid = window.location.hash.replace("#", "");
 var id = anchorid;
 if (anchorid.match("_")) {
 id = id.replace(/_.*/g, '');
 }
 activateElement2(id + '-selector');
 activateElement(id + '-categories');
 activateElement(id);
 if (anchorid.match("_")) {
 activateElement2(anchorid, 1);
 }
 }
 });
 jQuery(window).trigger('hashchange');
 }

 function _activateElement(ele) {
 ele.addClass('active');
 ele.removeClass('hidden');
 ele.siblings().addClass('hidden');
 ele.siblings().removeClass('active');
 }

 function activateElement(elem) {
 _activateElement(jQuery('#' + utils.escapeElementId(elem)));
 }

 function activateElement2(elem, focus) {
 var ele = jQuery('#' + utils.escapeElementId(elem));
 ele.addClass('active');
 ele.siblings().removeClass('active');
 if (focus) {
 jQuery('html,body').animate({scrollTop: ele.offset().top},'slow');
 }
 }

 function activateParentElement(elem) {
 _activateElement(jQuery('#' + utils.escapeElementId(elem)).parent());
 }

 function resetCategories(categ, vers, me) {
 categ = utils.escapeElementId(categ);
 vers = utils.escapeElementId(vers);
 jQuery('#' + categ).children().removeClass('active');
 jQuery(me).addClass('active');
 jQuery('#' +vers).children().removeClass('active');
 jQuery('#' +vers).children().removeClass('hidden');
 }

 return {
 init: init,
 activateElement: activateElement,
 activateElement2: activateElement2,
 activateParentElement: activateParentElement,
 resetCategories: resetCategories
 }
 }(docs.utils));
 // END SPLASH PAGE FUNCTIONS

 function _init(ajq) {
 // Update the JQuery reference, as jquery may only have been loaded during this call
 jQuery = ajq;

 // The docs module is now ready so fire an event
 fireReady();
 }

 function fireReady() {
 if (!ready) {
 ready = true;

 // Fire the ready event to any listeners
 for (var i = 0; i < listeners.length; i++) {
 listeners[i]();
 }
 }
 }

 docs.whenReady = function(callback) {
 if (ready) {
 callback();
 } else {
 listeners.push(callback);
 }
 };

 docs.isReady = function() {
 return ready;
 };

 docs.init = function(toc_path, current_product, current_version, current_book) {
 // Set the siteMapState variable so that the main tab is highlighted
 window.siteMapState = "products & services";

 // Build the core breadcrumbs window object
 docs.breadcrumbs.init(current_product, current_version, current_book);

 // Load the rest of the content when the chroming is ready
 chrometwo_require(['jquery', 'chrome_lib'], function (ajq, lib) {
 // Init the internals
 _init(ajq);

 // Initialise the table of contents
 docs.toc.init();

 // Enable highlighting
 if (typeof hljs !== "undefined") {
 ajq('pre[class*="language-"]').each(function (i, block) {
 hljs.highlightBlock(block);
 });
 }

 // Load the breadcrumbs menu items
 lib.whenBreadcrumbsReady(function() {
 docs.breadcrumbs.loadMenus(toc_path, current_product, current_version, current_book);
 });
 });
 };

 docs.init_splash_page = function() {
 chrometwo_require(['jquery'], function (ajq) {
 // Init the internals
 _init(ajq);

 // Export some functions to the window, since the templates use window based functions
 window.activateElement = docs.splash_page.activateElement;
 window.activateElement2 = docs.splash_page.activateElement2;
 window.activateParentElement = docs.splash_page.activateParentElement;
 window.resetCategories = docs.splash_page.resetCategories;

 // Initialise the splash page functionality
 docs.splash_page.init();
 });
 };

 // Export some functions to the window for legacy purposes
 window.initializeBreadcrumbs = docs.init;
 window.runAnalytics = docs.analytics.runAnalytics;

 // jQuery may already be available, if that's the case then fire the ready event
 if (typeof jQuery !== 'undefined') {
 fireReady();
 }

 return docs;
}({}));

OEBPS/Common_Content/fonts/overpass_regular-web.woff

OEBPS/images/vdf.png
DeploymentUnit
(From deployer}

‘Atiributes,

DeploymentContext
{From structure }

‘Atiibutes,

perations
public String getName()

public String getSimpleNarme()
public String getRelativePath()

public StructureDetermined getStructureDetermined()

public void setStructureDetermined StructureDetermined determined)
public boolean isCandidate()

public DeploymentState getState()

public void setState(DeploymentState state)

public DeploymentUnit getDeploymentUni()

public void setDeploymentUni(DeploymentUnt unit)

public VitualFile getRoot()

public void setMetaDataPath(String path)

public VitualFile gethietaDataLocation()

DeploymentContextVisitor
{From structure }

public void setMetaDatal ocation(VirtualFile location)
public VitualFile gethietaDataFile(String name)

public List<VitualFile> getMetaDataFiles(String name, String suffix)
public ClassLoader getGlassLoader()

perations,

public String getName()
public String getSimpleNarme()
public String getRelativePath()

OrderedDeployer
{From spi}

MainDeployer
{ From deployment }
rwioites
Gperatons
public DeploymentContext getDeploymentContext(String name)
FDE":"))’:’ ______________ deplovers _ o ______ A 2
{ From deployer} c<usages>

Atiributes,
‘public int PARSER_DEPLOYER = 2000
‘public int CLASSLOADER_DEPLOYER = 4000

public int POSTPROCESS_CLASSLOADING_ DEPLOYER = 5000 Sciieephyey -
public int COMPONENT_DEPLOYER = 7000 ALY structure deplofers
~ “<Tsage>>
StructureMetaData
(Fromvis}
St
(Contextinfo ClassPathinfo
{From vfs } {From vfs }
St T
Operations o
public Contextinfo getPareri()

OEBPS/Common_Content/images/green.png

OEBPS/Common_Content/fonts/overpass_light-web.ttf

OEBPS/Common_Content/images/17.png

OEBPS/Common_Content/images/yellow.png

OEBPS/Common_Content/images/27.png

OEBPS/images/jboss_4_0_invoker_proxy_binding.png
endpoint-interceptors

invoker-proxy-binding

proxy-factory-config. MDBConfig

register-ejbs-in-jnp-context

interface-repository-supported

#146203

OEBPS/Common_Content/images/stock-go-back.png

OEBPS/images/projects_communitygraph.png
Dev Tools Portal Integration Telecom

JBoss Portal JBoss ESB

Mobicents

RichFaces/Ajaxdjsf Web Interface

JBoss AS

. W T
I
JBoss IMX Jhcss et
(oo) s
= =
[’
e

Leins J Lsetizion)

JSFUnit JBoss AOP. Javassist

Application Server

MetaMatrix (coming soon)

OEBPS/Common_Content/scripts/jquery-1.7.1.min.js
/*! jQuery v1.7.1 jquery.com | jquery.org/license */
(function(a,b){function cy(a){return f.isWindow(a)?a:a.nodeType===9?a.defaultView||a.parentWindow:!1}function cv(a){if(!ck[a]){var b=c.body,d=f("<"+a+">").appendTo(b),e=d.css("display");d.remove();if(e==="none"||e===""){cl||(cl=c.createElement("iframe"),cl.frameBorder=cl.width=cl.height=0),b.appendChild(cl);if(!cm||!cl.createElement)cm=(cl.contentWindow||cl.contentDocument).document,cm.write((c.compatMode==="CSS1Compat"?"<!doctype html>":"")+"<html><body>"),cm.close();d=cm.createElement(a),cm.body.appendChild(d),e=f.css(d,"display"),b.removeChild(cl)}ck[a]=e}return ck[a]}function cu(a,b){var c={};f.each(cq.concat.apply([],cq.slice(0,b)),function(){c[this]=a});return c}function ct(){cr=b}function cs(){setTimeout(ct,0);return cr=f.now()}function cj(){try{return new a.ActiveXObject("Microsoft.XMLHTTP")}catch(b){}}function ci(){try{return new a.XMLHttpRequest}catch(b){}}function cc(a,c){a.dataFilter&&(c=a.dataFilter(c,a.dataType));var d=a.dataTypes,e={},g,h,i=d.length,j,k=d[0],l,m,n,o,p;for(g=1;g<i;g++){if(g===1)for(h in a.converters)typeof h=="string"&&(e[h.toLowerCase()]=a.converters[h]);l=k,k=d[g];if(k==="*")k=l;else if(l!=="*"&&l!==k){m=l+" "+k,n=e[m]||e["* "+k];if(!n){p=b;for(o in e){j=o.split(" ");if(j[0]===l||j[0]==="*"){p=e[j[1]+" "+k];if(p){o=e[o],o===!0?n=p:p===!0&&(n=o);break}}}}!n&&!p&&f.error("No conversion from "+m.replace(" "," to ")),n!==!0&&(c=n?n(c):p(o(c)))}}return c}function cb(a,c,d){var e=a.contents,f=a.dataTypes,g=a.responseFields,h,i,j,k;for(i in g)i in d&&(c[g[i]]=d[i]);while(f[0]==="*")f.shift(),h===b&&(h=a.mimeType||c.getResponseHeader("content-type"));if(h)for(i in e)if(e[i]&&e[i].test(h)){f.unshift(i);break}if(f[0]in d)j=f[0];else{for(i in d){if(!f[0]||a.converters[i+" "+f[0]]){j=i;break}k||(k=i)}j=j||k}if(j){j!==f[0]&&f.unshift(j);return d[j]}}function ca(a,b,c,d){if(f.isArray(b))f.each(b,function(b,e){c||bE.test(a)?d(a,e):ca(a+"["+(typeof e=="object"||f.isArray(e)?b:"")+"]",e,c,d)});else if(!c&&b!=null&&typeof b=="object")for(var e in b)ca(a+"["+e+"]",b[e],c,d);else d(a,b)}function b_(a,c){var d,e,g=f.ajaxSettings.flatOptions||{};for(d in c)c[d]!==b&&((g[d]?a:e||(e={}))[d]=c[d]);e&&f.extend(!0,a,e)}function b$(a,c,d,e,f,g){f=f||c.dataTypes[0],g=g||{},g[f]=!0;var h=a[f],i=0,j=h?h.length:0,k=a===bT,l;for(;i<j&&(k||!l);i++)l=h[i](c,d,e),typeof l=="string"&&(!k||g[l]?l=b:(c.dataTypes.unshift(l),l=b$(a,c,d,e,l,g)));(k||!l)&&!g["*"]&&(l=b$(a,c,d,e,"*",g));return l}function bZ(a){return function(b,c){typeof b!="string"&&(c=b,b="*");if(f.isFunction(c)){var d=b.toLowerCase().split(bP),e=0,g=d.length,h,i,j;for(;e<g;e++)h=d[e],j=/^\+/.test(h),j&&(h=h.substr(1)||"*"),i=a[h]=a[h]||[],i[j?"unshift":"push"](c)}}}function bC(a,b,c){var d=b==="width"?a.offsetWidth:a.offsetHeight,e=b==="width"?bx:by,g=0,h=e.length;if(d>0){if(c!=="border")for(;g<h;g++)c||(d-=parseFloat(f.css(a,"padding"+e[g]))||0),c==="margin"?d+=parseFloat(f.css(a,c+e[g]))||0:d-=parseFloat(f.css(a,"border"+e[g]+"Width"))||0;return d+"px"}d=bz(a,b,b);if(d<0||d==null)d=a.style[b]||0;d=parseFloat(d)||0;if(c)for(;g<h;g++)d+=parseFloat(f.css(a,"padding"+e[g]))||0,c!=="padding"&&(d+=parseFloat(f.css(a,"border"+e[g]+"Width"))||0),c==="margin"&&(d+=parseFloat(f.css(a,c+e[g]))||0);return d+"px"}function bp(a,b){b.src?f.ajax({url:b.src,async:!1,dataType:"script"}):f.globalEval((b.text||b.textContent||b.innerHTML||"").replace(bf,"/*$0*/")),b.parentNode&&b.parentNode.removeChild(b)}function bo(a){var b=c.createElement("div");bh.appendChild(b),b.innerHTML=a.outerHTML;return b.firstChild}function bn(a){var b=(a.nodeName||"").toLowerCase();b==="input"?bm(a):b!=="script"&&typeof a.getElementsByTagName!="undefined"&&f.grep(a.getElementsByTagName("input"),bm)}function bm(a){if(a.type==="checkbox"||a.type==="radio")a.defaultChecked=a.checked}function bl(a){return typeof a.getElementsByTagName!="undefined"?a.getElementsByTagName("*"):typeof a.querySelectorAll!="undefined"?a.querySelectorAll("*"):[]}function bk(a,b){var c;if(b.nodeType===1){b.clearAttributes&&b.clearAttributes(),b.mergeAttributes&&b.mergeAttributes(a),c=b.nodeName.toLowerCase();if(c==="object")b.outerHTML=a.outerHTML;else if(c!=="input"||a.type!=="checkbox"&&a.type!=="radio"){if(c==="option")b.selected=a.defaultSelected;else if(c==="input"||c==="textarea")b.defaultValue=a.defaultValue}else a.checked&&(b.defaultChecked=b.checked=a.checked),b.value!==a.value&&(b.value=a.value);b.removeAttribute(f.expando)}}function bj(a,b){if(b.nodeType===1&&!!f.hasData(a)){var c,d,e,g=f._data(a),h=f._data(b,g),i=g.events;if(i){delete h.handle,h.events={};for(c in i)for(d=0,e=i[c].length;d<e;d++)f.event.add(b,c+(i[c][d].namespace?".":"")+i[c][d].namespace,i[c][d],i[c][d].data)}h.data&&(h.data=f.extend({},h.data))}}function bi(a,b){return f.nodeName(a,"table")?a.getElementsByTagName("tbody")[0]||a.appendChild(a.ownerDocument.createElement("tbody")):a}function U(a){var b=V.split("|"),c=a.createDocumentFragment();if(c.createElement)while(b.length)c.createElement(b.pop());return c}function T(a,b,c){b=b||0;if(f.isFunction(b))return f.grep(a,function(a,d){var e=!!b.call(a,d,a);return e===c});if(b.nodeType)return f.grep(a,function(a,d){return a===b===c});if(typeof b=="string"){var d=f.grep(a,function(a){return a.nodeType===1});if(O.test(b))return f.filter(b,d,!c);b=f.filter(b,d)}return f.grep(a,function(a,d){return f.inArray(a,b)>=0===c})}function S(a){return!a||!a.parentNode||a.parentNode.nodeType===11}function K(){return!0}function J(){return!1}function n(a,b,c){var d=b+"defer",e=b+"queue",g=b+"mark",h=f._data(a,d);h&&(c==="queue"||!f._data(a,e))&&(c==="mark"||!f._data(a,g))&&setTimeout(function(){!f._data(a,e)&&!f._data(a,g)&&(f.removeData(a,d,!0),h.fire())},0)}function m(a){for(var b in a){if(b==="data"&&f.isEmptyObject(a[b]))continue;if(b!=="toJSON")return!1}return!0}function l(a,c,d){if(d===b&&a.nodeType===1){var e="data-"+c.replace(k,"-$1").toLowerCase();d=a.getAttribute(e);if(typeof d=="string"){try{d=d==="true"?!0:d==="false"?!1:d==="null"?null:f.isNumeric(d)?parseFloat(d):j.test(d)?f.parseJSON(d):d}catch(g){}f.data(a,c,d)}else d=b}return d}function h(a){var b=g[a]={},c,d;a=a.split(/\s+/);for(c=0,d=a.length;c<d;c++)b[a[c]]=!0;return b}var c=a.document,d=a.navigator,e=a.location,f=function(){function J(){if(!e.isReady){try{c.documentElement.doScroll("left")}catch(a){setTimeout(J,1);return}e.ready()}}var e=function(a,b){return new e.fn.init(a,b,h)},f=a.jQuery,g=a.$,h,i=/^(?:[^#<]*(<[\w\W]+>)[^>]*$|#([\w\-]*)$)/,j=/\S/,k=/^\s+/,l=/\s+$/,m=/^<(\w+)\s*\/?>(?:<\/\1>)?$/,n=/^[\],:{}\s]*$/,o=/\\(?:["\\\/bfnrt]|u[0-9a-fA-F]{4})/g,p=/"[^"\\\n\r]*"|true|false|null|-?\d+(?:\.\d*)?(?:[eE][+\-]?\d+)?/g,q=/(?:^|:|,)(?:\s*\[)+/g,r=/(webkit)[\/]([\w.]+)/,s=/(opera)(?:.*version)?[\/]([\w.]+)/,t=/(msie) ([\w.]+)/,u=/(mozilla)(?:.*? rv:([\w.]+))?/,v=/-([a-z]|[0-9])/ig,w=/^-ms-/,x=function(a,b){return(b+"").toUpperCase()},y=d.userAgent,z,A,B,C=Object.prototype.toString,D=Object.prototype.hasOwnProperty,E=Array.prototype.push,F=Array.prototype.slice,G=String.prototype.trim,H=Array.prototype.indexOf,I={};e.fn=e.prototype={constructor:e,init:function(a,d,f){var g,h,j,k;if(!a)return this;if(a.nodeType){this.context=this[0]=a,this.length=1;return this}if(a==="body"&&!d&&c.body){this.context=c,this[0]=c.body,this.selector=a,this.length=1;return this}if(typeof a=="string"){a.charAt(0)!=="<"||a.charAt(a.length-1)!==">"||a.length<3?g=i.exec(a):g=[null,a,null];if(g&&(g[1]||!d)){if(g[1]){d=d instanceof e?d[0]:d,k=d?d.ownerDocument||d:c,j=m.exec(a),j?e.isPlainObject(d)?(a=[c.createElement(j[1])],e.fn.attr.call(a,d,!0)):a=[k.createElement(j[1])]:(j=e.buildFragment([g[1]],[k]),a=(j.cacheable?e.clone(j.fragment):j.fragment).childNodes);return e.merge(this,a)}h=c.getElementById(g[2]);if(h&&h.parentNode){if(h.id!==g[2])return f.find(a);this.length=1,this[0]=h}this.context=c,this.selector=a;return this}return!d||d.jquery?(d||f).find(a):this.constructor(d).find(a)}if(e.isFunction(a))return f.ready(a);a.selector!==b&&(this.selector=a.selector,this.context=a.context);return e.makeArray(a,this)},selector:"",jquery:"1.7.1",length:0,size:function(){return this.length},toArray:function(){return F.call(this,0)},get:function(a){return a==null?this.toArray():a<0?this[this.length+a]:this[a]},pushStack:function(a,b,c){var d=this.constructor();e.isArray(a)?E.apply(d,a):e.merge(d,a),d.prevObject=this,d.context=this.context,b==="find"?d.selector=this.selector+(this.selector?" ":"")+c:b&&(d.selector=this.selector+"."+b+"("+c+")");return d},each:function(a,b){return e.each(this,a,b)},ready:function(a){e.bindReady(),A.add(a);return this},eq:function(a){a=+a;return a===-1?this.slice(a):this.slice(a,a+1)},first:function(){return this.eq(0)},last:function(){return this.eq(-1)},slice:function(){return this.pushStack(F.apply(this,arguments),"slice",F.call(arguments).join(","))},map:function(a){return this.pushStack(e.map(this,function(b,c){return a.call(b,c,b)}))},end:function(){return this.prevObject||this.constructor(null)},push:E,sort:[].sort,splice:[].splice},e.fn.init.prototype=e.fn,e.extend=e.fn.extend=function(){var a,c,d,f,g,h,i=arguments[0]||{},j=1,k=arguments.length,l=!1;typeof i=="boolean"&&(l=i,i=arguments[1]||{},j=2),typeof i!="object"&&!e.isFunction(i)&&(i={}),k===j&&(i=this,--j);for(;j<k;j++)if((a=arguments[j])!=null)for(c in a){d=i[c],f=a[c];if(i===f)continue;l&&f&&(e.isPlainObject(f)||(g=e.isArray(f)))?(g?(g=!1,h=d&&e.isArray(d)?d:[]):h=d&&e.isPlainObject(d)?d:{},i[c]=e.extend(l,h,f)):f!==b&&(i[c]=f)}return i},e.extend({noConflict:function(b){a.$===e&&(a.$=g),b&&a.jQuery===e&&(a.jQuery=f);return e},isReady:!1,readyWait:1,holdReady:function(a){a?e.readyWait++:e.ready(!0)},ready:function(a){if(a===!0&&!--e.readyWait||a!==!0&&!e.isReady){if(!c.body)return setTimeout(e.ready,1);e.isReady=!0;if(a!==!0&&--e.readyWait>0)return;A.fireWith(c,[e]),e.fn.trigger&&e(c).trigger("ready").off("ready")}},bindReady:function(){if(!A){A=e.Callbacks("once memory");if(c.readyState==="complete")return setTimeout(e.ready,1);if(c.addEventListener)c.addEventListener("DOMContentLoaded",B,!1),a.addEventListener("load",e.ready,!1);else if(c.attachEvent){c.attachEvent("onreadystatechange",B),a.attachEvent("onload",e.ready);var b=!1;try{b=a.frameElement==null}catch(d){}c.documentElement.doScroll&&b&&J()}}},isFunction:function(a){return e.type(a)==="function"},isArray:Array.isArray||function(a){return e.type(a)==="array"},isWindow:function(a){return a&&typeof a=="object"&&"setInterval"in a},isNumeric:function(a){return!isNaN(parseFloat(a))&&isFinite(a)},type:function(a){return a==null?String(a):I[C.call(a)]||"object"},isPlainObject:function(a){if(!a||e.type(a)!=="object"||a.nodeType||e.isWindow(a))return!1;try{if(a.constructor&&!D.call(a,"constructor")&&!D.call(a.constructor.prototype,"isPrototypeOf"))return!1}catch(c){return!1}var d;for(d in a);return d===b||D.call(a,d)},isEmptyObject:function(a){for(var b in a)return!1;return!0},error:function(a){throw new Error(a)},parseJSON:function(b){if(typeof b!="string"||!b)return null;b=e.trim(b);if(a.JSON&&a.JSON.parse)return a.JSON.parse(b);if(n.test(b.replace(o,"@").replace(p,"]").replace(q,"")))return(new Function("return "+b))();e.error("Invalid JSON: "+b)},parseXML:function(c){var d,f;try{a.DOMParser?(f=new DOMParser,d=f.parseFromString(c,"text/xml")):(d=new ActiveXObject("Microsoft.XMLDOM"),d.async="false",d.loadXML(c))}catch(g){d=b}(!d||!d.documentElement||d.getElementsByTagName("parsererror").length)&&e.error("Invalid XML: "+c);return d},noop:function(){},globalEval:function(b){b&&j.test(b)&&(a.execScript||function(b){a.eval.call(a,b)})(b)},camelCase:function(a){return a.replace(w,"ms-").replace(v,x)},nodeName:function(a,b){return a.nodeName&&a.nodeName.toUpperCase()===b.toUpperCase()},each:function(a,c,d){var f,g=0,h=a.length,i=h===b||e.isFunction(a);if(d){if(i){for(f in a)if(c.apply(a[f],d)===!1)break}else for(;g<h;)if(c.apply(a[g++],d)===!1)break}else if(i){for(f in a)if(c.call(a[f],f,a[f])===!1)break}else for(;g<h;)if(c.call(a[g],g,a[g++])===!1)break;return a},trim:G?function(a){return a==null?"":G.call(a)}:function(a){return a==null?"":(a+"").replace(k,"").replace(l,"")},makeArray:function(a,b){var c=b||[];if(a!=null){var d=e.type(a);a.length==null||d==="string"||d==="function"||d==="regexp"||e.isWindow(a)?E.call(c,a):e.merge(c,a)}return c},inArray:function(a,b,c){var d;if(b){if(H)return H.call(b,a,c);d=b.length,c=c?c<0?Math.max(0,d+c):c:0;for(;c<d;c++)if(c in b&&b[c]===a)return c}return-1},merge:function(a,c){var d=a.length,e=0;if(typeof c.length=="number")for(var f=c.length;e<f;e++)a[d++]=c[e];else while(c[e]!==b)a[d++]=c[e++];a.length=d;return a},grep:function(a,b,c){var d=[],e;c=!!c;for(var f=0,g=a.length;f<g;f++)e=!!b(a[f],f),c!==e&&d.push(a[f]);return d},map:function(a,c,d){var f,g,h=[],i=0,j=a.length,k=a instanceof e||j!==b&&typeof j=="number"&&(j>0&&a[0]&&a[j-1]||j===0||e.isArray(a));if(k)for(;i<j;i++)f=c(a[i],i,d),f!=null&&(h[h.length]=f);else for(g in a)f=c(a[g],g,d),f!=null&&(h[h.length]=f);return h.concat.apply([],h)},guid:1,proxy:function(a,c){if(typeof c=="string"){var d=a[c];c=a,a=d}if(!e.isFunction(a))return b;var f=F.call(arguments,2),g=function(){return a.apply(c,f.concat(F.call(arguments)))};g.guid=a.guid=a.guid||g.guid||e.guid++;return g},access:function(a,c,d,f,g,h){var i=a.length;if(typeof c=="object"){for(var j in c)e.access(a,j,c[j],f,g,d);return a}if(d!==b){f=!h&&f&&e.isFunction(d);for(var k=0;k<i;k++)g(a[k],c,f?d.call(a[k],k,g(a[k],c)):d,h);return a}return i?g(a[0],c):b},now:function(){return(new Date).getTime()},uaMatch:function(a){a=a.toLowerCase();var b=r.exec(a)||s.exec(a)||t.exec(a)||a.indexOf("compatible")<0&&u.exec(a)||[];return{browser:b[1]||"",version:b[2]||"0"}},sub:function(){function a(b,c){return new a.fn.init(b,c)}e.extend(!0,a,this),a.superclass=this,a.fn=a.prototype=this(),a.fn.constructor=a,a.sub=this.sub,a.fn.init=function(d,f){f&&f instanceof e&&!(f instanceof a)&&(f=a(f));return e.fn.init.call(this,d,f,b)},a.fn.init.prototype=a.fn;var b=a(c);return a},browser:{}}),e.each("Boolean Number String Function Array Date RegExp Object".split(" "),function(a,b){I["[object "+b+"]"]=b.toLowerCase()}),z=e.uaMatch(y),z.browser&&(e.browser[z.browser]=!0,e.browser.version=z.version),e.browser.webkit&&(e.browser.safari=!0),j.test(" ")&&(k=/^[\s\xA0]+/,l=/[\s\xA0]+$/),h=e(c),c.addEventListener?B=function(){c.removeEventListener("DOMContentLoaded",B,!1),e.ready()}:c.attachEvent&&(B=function(){c.readyState==="complete"&&(c.detachEvent("onreadystatechange",B),e.ready())});return e}(),g={};f.Callbacks=function(a){a=a?g[a]||h(a):{};var c=[],d=[],e,i,j,k,l,m=function(b){var d,e,g,h,i;for(d=0,e=b.length;d<e;d++)g=b[d],h=f.type(g),h==="array"?m(g):h==="function"&&(!a.unique||!o.has(g))&&c.push(g)},n=function(b,f){f=f||[],e=!a.memory||[b,f],i=!0,l=j||0,j=0,k=c.length;for(;c&&l<k;l++)if(c[l].apply(b,f)===!1&&a.stopOnFalse){e=!0;break}i=!1,c&&(a.once?e===!0?o.disable():c=[]:d&&d.length&&(e=d.shift(),o.fireWith(e[0],e[1])))},o={add:function(){if(c){var a=c.length;m(arguments),i?k=c.length:e&&e!==!0&&(j=a,n(e[0],e[1]))}return this},remove:function(){if(c){var b=arguments,d=0,e=b.length;for(;d<e;d++)for(var f=0;f<c.length;f++)if(b[d]===c[f]){i&&f<=k&&(k--,f<=l&&l--),c.splice(f--,1);if(a.unique)break}}return this},has:function(a){if(c){var b=0,d=c.length;for(;b<d;b++)if(a===c[b])return!0}return!1},empty:function(){c=[];return this},disable:function(){c=d=e=b;return this},disabled:function(){return!c},lock:function(){d=b,(!e||e===!0)&&o.disable();return this},locked:function(){return!d},fireWith:function(b,c){d&&(i?a.once||d.push([b,c]):(!a.once||!e)&&n(b,c));return this},fire:function(){o.fireWith(this,arguments);return this},fired:function(){return!!e}};return o};var i=[].slice;f.extend({Deferred:function(a){var b=f.Callbacks("once memory"),c=f.Callbacks("once memory"),d=f.Callbacks("memory"),e="pending",g={resolve:b,reject:c,notify:d},h={done:b.add,fail:c.add,progress:d.add,state:function(){return e},isResolved:b.fired,isRejected:c.fired,then:function(a,b,c){i.done(a).fail(b).progress(c);return this},always:function(){i.done.apply(i,arguments).fail.apply(i,arguments);return this},pipe:function(a,b,c){return f.Deferred(function(d){f.each({done:[a,"resolve"],fail:[b,"reject"],progress:[c,"notify"]},function(a,b){var c=b[0],e=b[1],g;f.isFunction(c)?i[a](function(){g=c.apply(this,arguments),g&&f.isFunction(g.promise)?g.promise().then(d.resolve,d.reject,d.notify):d[e+"With"](this===i?d:this,[g])}):i[a](d[e])})}).promise()},promise:function(a){if(a==null)a=h;else for(var b in h)a[b]=h[b];return a}},i=h.promise({}),j;for(j in g)i[j]=g[j].fire,i[j+"With"]=g[j].fireWith;i.done(function(){e="resolved"},c.disable,d.lock).fail(function(){e="rejected"},b.disable,d.lock),a&&a.call(i,i);return i},when:function(a){function m(a){return function(b){e[a]=arguments.length>1?i.call(arguments,0):b,j.notifyWith(k,e)}}function l(a){return function(c){b[a]=arguments.length>1?i.call(arguments,0):c,--g||j.resolveWith(j,b)}}var b=i.call(arguments,0),c=0,d=b.length,e=Array(d),g=d,h=d,j=d<=1&&a&&f.isFunction(a.promise)?a:f.Deferred(),k=j.promise();if(d>1){for(;c<d;c++)b[c]&&b[c].promise&&f.isFunction(b[c].promise)?b[c].promise().then(l(c),j.reject,m(c)):--g;g||j.resolveWith(j,b)}else j!==a&&j.resolveWith(j,d?[a]:[]);return k}}),f.support=function(){var b,d,e,g,h,i,j,k,l,m,n,o,p,q=c.createElement("div"),r=c.documentElement;q.setAttribute("className","t"),q.innerHTML=" <link/><table></table>a<input type='checkbox'/>",d=q.getElementsByTagName("*"),e=q.getElementsByTagName("a")[0];if(!d||!d.length||!e)return{};g=c.createElement("select"),h=g.appendChild(c.createElement("option")),i=q.getElementsByTagName("input")[0],b={leadingWhitespace:q.firstChild.nodeType===3,tbody:!q.getElementsByTagName("tbody").length,htmlSerialize:!!q.getElementsByTagName("link").length,style:/top/.test(e.getAttribute("style")),hrefNormalized:e.getAttribute("href")==="/a",opacity:/^0.55/.test(e.style.opacity),cssFloat:!!e.style.cssFloat,checkOn:i.value==="on",optSelected:h.selected,getSetAttribute:q.className!=="t",enctype:!!c.createElement("form").enctype,html5Clone:c.createElement("nav").cloneNode(!0).outerHTML!=="<:nav></:nav>",submitBubbles:!0,changeBubbles:!0,focusinBubbles:!1,deleteExpando:!0,noCloneEvent:!0,inlineBlockNeedsLayout:!1,shrinkWrapBlocks:!1,reliableMarginRight:!0},i.checked=!0,b.noCloneChecked=i.cloneNode(!0).checked,g.disabled=!0,b.optDisabled=!h.disabled;try{delete q.test}catch(s){b.deleteExpando=!1}!q.addEventListener&&q.attachEvent&&q.fireEvent&&(q.attachEvent("onclick",function(){b.noCloneEvent=!1}),q.cloneNode(!0).fireEvent("onclick")),i=c.createElement("input"),i.value="t",i.setAttribute("type","radio"),b.radioValue=i.value==="t",i.setAttribute("checked","checked"),q.appendChild(i),k=c.createDocumentFragment(),k.appendChild(q.lastChild),b.checkClone=k.cloneNode(!0).cloneNode(!0).lastChild.checked,b.appendChecked=i.checked,k.removeChild(i),k.appendChild(q),q.innerHTML="",a.getComputedStyle&&(j=c.createElement("div"),j.style.width="0",j.style.marginRight="0",q.style.width="2px",q.appendChild(j),b.reliableMarginRight=(parseInt((a.getComputedStyle(j,null)||{marginRight:0}).marginRight,10)||0)===0);if(q.attachEvent)for(o in{submit:1,change:1,focusin:1})n="on"+o,p=n in q,p||(q.setAttribute(n,"return;"),p=typeof q[n]=="function"),b[o+"Bubbles"]=p;k.removeChild(q),k=g=h=j=q=i=null,f(function(){var a,d,e,g,h,i,j,k,m,n,o,r=c.getElementsByTagName("body")[0];!r||(j=1,k="position:absolute;top:0;left:0;width:1px;height:1px;margin:0;",m="visibility:hidden;border:0;",n="style='"+k+"border:5px solid #000;padding:0;'",o="<div "+n+"><div></div></div>"+"<table "+n+" cellpadding='0' cellspacing='0'>"+"<tr><td></td></tr></table>",a=c.createElement("div"),a.style.cssText=m+"width:0;height:0;position:static;top:0;margin-top:"+j+"px",r.insertBefore(a,r.firstChild),q=c.createElement("div"),a.appendChild(q),q.innerHTML="<table><tr><td style='padding:0;border:0;display:none'></td><td>t</td></tr></table>",l=q.getElementsByTagName("td"),p=l[0].offsetHeight===0,l[0].style.display="",l[1].style.display="none",b.reliableHiddenOffsets=p&&l[0].offsetHeight===0,q.innerHTML="",q.style.width=q.style.paddingLeft="1px",f.boxModel=b.boxModel=q.offsetWidth===2,typeof q.style.zoom!="undefined"&&(q.style.display="inline",q.style.zoom=1,b.inlineBlockNeedsLayout=q.offsetWidth===2,q.style.display="",q.innerHTML="<div style='width:4px;'></div>",b.shrinkWrapBlocks=q.offsetWidth!==2),q.style.cssText=k+m,q.innerHTML=o,d=q.firstChild,e=d.firstChild,h=d.nextSibling.firstChild.firstChild,i={doesNotAddBorder:e.offsetTop!==5,doesAddBorderForTableAndCells:h.offsetTop===5},e.style.position="fixed",e.style.top="20px",i.fixedPosition=e.offsetTop===20||e.offsetTop===15,e.style.position=e.style.top="",d.style.overflow="hidden",d.style.position="relative",i.subtractsBorderForOverflowNotVisible=e.offsetTop===-5,i.doesNotIncludeMarginInBodyOffset=r.offsetTop!==j,r.removeChild(a),q=a=null,f.extend(b,i))});return b}();var j=/^(?:\{.*\}|\[.*\])$/,k=/([A-Z])/g;f.extend({cache:{},uuid:0,expando:"jQuery"+(f.fn.jquery+Math.random()).replace(/\D/g,""),noData:{embed:!0,object:"clsid:D27CDB6E-AE6D-11cf-96B8-444553540000",applet:!0},hasData:function(a){a=a.nodeType?f.cache[a[f.expando]]:a[f.expando];return!!a&&!m(a)},data:function(a,c,d,e){if(!!f.acceptData(a)){var g,h,i,j=f.expando,k=typeof c=="string",l=a.nodeType,m=l?f.cache:a,n=l?a[j]:a[j]&&j,o=c==="events";if((!n||!m[n]||!o&&!e&&!m[n].data)&&k&&d===b)return;n||(l?a[j]=n=++f.uuid:n=j),m[n]||(m[n]={},l||(m[n].toJSON=f.noop));if(typeof c=="object"||typeof c=="function")e?m[n]=f.extend(m[n],c):m[n].data=f.extend(m[n].data,c);g=h=m[n],e||(h.data||(h.data={}),h=h.data),d!==b&&(h[f.camelCase(c)]=d);if(o&&!h[c])return g.events;k?(i=h[c],i==null&&(i=h[f.camelCase(c)])):i=h;return i}},removeData:function(a,b,c){if(!!f.acceptData(a)){var d,e,g,h=f.expando,i=a.nodeType,j=i?f.cache:a,k=i?a[h]:h;if(!j[k])return;if(b){d=c?j[k]:j[k].data;if(d){f.isArray(b)||(b in d?b=[b]:(b=f.camelCase(b),b in d?b=[b]:b=b.split(" ")));for(e=0,g=b.length;e<g;e++)delete d[b[e]];if(!(c?m:f.isEmptyObject)(d))return}}if(!c){delete j[k].data;if(!m(j[k]))return}f.support.deleteExpando||!j.setInterval?delete j[k]:j[k]=null,i&&(f.support.deleteExpando?delete a[h]:a.removeAttribute?a.removeAttribute(h):a[h]=null)}},_data:function(a,b,c){return f.data(a,b,c,!0)},acceptData:function(a){if(a.nodeName){var b=f.noData[a.nodeName.toLowerCase()];if(b)return b!==!0&&a.getAttribute("classid")===b}return!0}}),f.fn.extend({data:function(a,c){var d,e,g,h=null;if(typeof a=="undefined"){if(this.length){h=f.data(this[0]);if(this[0].nodeType===1&&!f._data(this[0],"parsedAttrs")){e=this[0].attributes;for(var i=0,j=e.length;i<j;i++)g=e[i].name,g.indexOf("data-")===0&&(g=f.camelCase(g.substring(5)),l(this[0],g,h[g]));f._data(this[0],"parsedAttrs",!0)}}return h}if(typeof a=="object")return this.each(function(){f.data(this,a)});d=a.split("."),d[1]=d[1]?"."+d[1]:"";if(c===b){h=this.triggerHandler("getData"+d[1]+"!",[d[0]]),h===b&&this.length&&(h=f.data(this[0],a),h=l(this[0],a,h));return h===b&&d[1]?this.data(d[0]):h}return this.each(function(){var b=f(this),e=[d[0],c];b.triggerHandler("setData"+d[1]+"!",e),f.data(this,a,c),b.triggerHandler("changeData"+d[1]+"!",e)})},removeData:function(a){return this.each(function(){f.removeData(this,a)})}}),f.extend({_mark:function(a,b){a&&(b=(b||"fx")+"mark",f._data(a,b,(f._data(a,b)||0)+1))},_unmark:function(a,b,c){a!==!0&&(c=b,b=a,a=!1);if(b){c=c||"fx";var d=c+"mark",e=a?0:(f._data(b,d)||1)-1;e?f._data(b,d,e):(f.removeData(b,d,!0),n(b,c,"mark"))}},queue:function(a,b,c){var d;if(a){b=(b||"fx")+"queue",d=f._data(a,b),c&&(!d||f.isArray(c)?d=f._data(a,b,f.makeArray(c)):d.push(c));return d||[]}},dequeue:function(a,b){b=b||"fx";var c=f.queue(a,b),d=c.shift(),e={};d==="inprogress"&&(d=c.shift()),d&&(b==="fx"&&c.unshift("inprogress"),f._data(a,b+".run",e),d.call(a,function(){f.dequeue(a,b)},e)),c.length||(f.removeData(a,b+"queue "+b+".run",!0),n(a,b,"queue"))}}),f.fn.extend({queue:function(a,c){typeof a!="string"&&(c=a,a="fx");if(c===b)return f.queue(this[0],a);return this.each(function(){var b=f.queue(this,a,c);a==="fx"&&b[0]!=="inprogress"&&f.dequeue(this,a)})},dequeue:function(a){return this.each(function(){f.dequeue(this,a)})},delay:function(a,b){a=f.fx?f.fx.speeds[a]||a:a,b=b||"fx";return this.queue(b,function(b,c){var d=setTimeout(b,a);c.stop=function(){clearTimeout(d)}})},clearQueue:function(a){return this.queue(a||"fx",[])},promise:function(a,c){function m(){--h||d.resolveWith(e,[e])}typeof a!="string"&&(c=a,a=b),a=a||"fx";var d=f.Deferred(),e=this,g=e.length,h=1,i=a+"defer",j=a+"queue",k=a+"mark",l;while(g--)if(l=f.data(e[g],i,b,!0)||(f.data(e[g],j,b,!0)||f.data(e[g],k,b,!0))&&f.data(e[g],i,f.Callbacks("once memory"),!0))h++,l.add(m);m();return d.promise()}});var o=/[\n\t\r]/g,p=/\s+/,q=/\r/g,r=/^(?:button|input)$/i,s=/^(?:button|input|object|select|textarea)$/i,t=/^a(?:rea)?$/i,u=/^(?:autofocus|autoplay|async|checked|controls|defer|disabled|hidden|loop|multiple|open|readonly|required|scoped|selected)$/i,v=f.support.getSetAttribute,w,x,y;f.fn.extend({attr:function(a,b){return f.access(this,a,b,!0,f.attr)},removeAttr:function(a){return this.each(function(){f.removeAttr(this,a)})},prop:function(a,b){return f.access(this,a,b,!0,f.prop)},removeProp:function(a){a=f.propFix[a]||a;return this.each(function(){try{this[a]=b,delete this[a]}catch(c){}})},addClass:function(a){var b,c,d,e,g,h,i;if(f.isFunction(a))return this.each(function(b){f(this).addClass(a.call(this,b,this.className))});if(a&&typeof a=="string"){b=a.split(p);for(c=0,d=this.length;c<d;c++){e=this[c];if(e.nodeType===1)if(!e.className&&b.length===1)e.className=a;else{g=" "+e.className+" ";for(h=0,i=b.length;h<i;h++)~g.indexOf(" "+b[h]+" ")||(g+=b[h]+" ");e.className=f.trim(g)}}}return this},removeClass:function(a){var c,d,e,g,h,i,j;if(f.isFunction(a))return this.each(function(b){f(this).removeClass(a.call(this,b,this.className))});if(a&&typeof a=="string"||a===b){c=(a||"").split(p);for(d=0,e=this.length;d<e;d++){g=this[d];if(g.nodeType===1&&g.className)if(a){h=(" "+g.className+" ").replace(o," ");for(i=0,j=c.length;i<j;i++)h=h.replace(" "+c[i]+" "," ");g.className=f.trim(h)}else g.className=""}}return this},toggleClass:function(a,b){var c=typeof a,d=typeof b=="boolean";if(f.isFunction(a))return this.each(function(c){f(this).toggleClass(a.call(this,c,this.className,b),b)});return this.each(function(){if(c==="string"){var e,g=0,h=f(this),i=b,j=a.split(p);while(e=j[g++])i=d?i:!h.hasClass(e),h[i?"addClass":"removeClass"](e)}else if(c==="undefined"||c==="boolean")this.className&&f._data(this,"__className__",this.className),this.className=this.className||a===!1?"":f._data(this,"__className__")||""})},hasClass:function(a){var b=" "+a+" ",c=0,d=this.length;for(;c<d;c++)if(this[c].nodeType===1&&(" "+this[c].className+" ").replace(o," ").indexOf(b)>-1)return!0;return!1},val:function(a){var c,d,e,g=this[0];{if(!!arguments.length){e=f.isFunction(a);return this.each(function(d){var g=f(this),h;if(this.nodeType===1){e?h=a.call(this,d,g.val()):h=a,h==null?h="":typeof h=="number"?h+="":f.isArray(h)&&(h=f.map(h,function(a){return a==null?"":a+""})),c=f.valHooks[this.nodeName.toLowerCase()]||f.valHooks[this.type];if(!c||!("set"in c)||c.set(this,h,"value")===b)this.value=h}})}if(g){c=f.valHooks[g.nodeName.toLowerCase()]||f.valHooks[g.type];if(c&&"get"in c&&(d=c.get(g,"value"))!==b)return d;d=g.value;return typeof d=="string"?d.replace(q,""):d==null?"":d}}}}),f.extend({valHooks:{option:{get:function(a){var b=a.attributes.value;return!b||b.specified?a.value:a.text}},select:{get:function(a){var b,c,d,e,g=a.selectedIndex,h=[],i=a.options,j=a.type==="select-one";if(g<0)return null;c=j?g:0,d=j?g+1:i.length;for(;c<d;c++){e=i[c];if(e.selected&&(f.support.optDisabled?!e.disabled:e.getAttribute("disabled")===null)&&(!e.parentNode.disabled||!f.nodeName(e.parentNode,"optgroup"))){b=f(e).val();if(j)return b;h.push(b)}}if(j&&!h.length&&i.length)return f(i[g]).val();return h},set:function(a,b){var c=f.makeArray(b);f(a).find("option").each(function(){this.selected=f.inArray(f(this).val(),c)>=0}),c.length||(a.selectedIndex=-1);return c}}},attrFn:{val:!0,css:!0,html:!0,text:!0,data:!0,width:!0,height:!0,offset:!0},attr:function(a,c,d,e){var g,h,i,j=a.nodeType;if(!!a&&j!==3&&j!==8&&j!==2){if(e&&c in f.attrFn)return f(a)[c](d);if(typeof a.getAttribute=="undefined")return f.prop(a,c,d);i=j!==1||!f.isXMLDoc(a),i&&(c=c.toLowerCase(),h=f.attrHooks[c]||(u.test(c)?x:w));if(d!==b){if(d===null){f.removeAttr(a,c);return}if(h&&"set"in h&&i&&(g=h.set(a,d,c))!==b)return g;a.setAttribute(c,""+d);return d}if(h&&"get"in h&&i&&(g=h.get(a,c))!==null)return g;g=a.getAttribute(c);return g===null?b:g}},removeAttr:function(a,b){var c,d,e,g,h=0;if(b&&a.nodeType===1){d=b.toLowerCase().split(p),g=d.length;for(;h<g;h++)e=d[h],e&&(c=f.propFix[e]||e,f.attr(a,e,""),a.removeAttribute(v?e:c),u.test(e)&&c in a&&(a[c]=!1))}},attrHooks:{type:{set:function(a,b){if(r.test(a.nodeName)&&a.parentNode)f.error("type property can't be changed");else if(!f.support.radioValue&&b==="radio"&&f.nodeName(a,"input")){var c=a.value;a.setAttribute("type",b),c&&(a.value=c);return b}}},value:{get:function(a,b){if(w&&f.nodeName(a,"button"))return w.get(a,b);return b in a?a.value:null},set:function(a,b,c){if(w&&f.nodeName(a,"button"))return w.set(a,b,c);a.value=b}}},propFix:{tabindex:"tabIndex",readonly:"readOnly","for":"htmlFor","class":"className",maxlength:"maxLength",cellspacing:"cellSpacing",cellpadding:"cellPadding",rowspan:"rowSpan",colspan:"colSpan",usemap:"useMap",frameborder:"frameBorder",contenteditable:"contentEditable"},prop:function(a,c,d){var e,g,h,i=a.nodeType;if(!!a&&i!==3&&i!==8&&i!==2){h=i!==1||!f.isXMLDoc(a),h&&(c=f.propFix[c]||c,g=f.propHooks[c]);return d!==b?g&&"set"in g&&(e=g.set(a,d,c))!==b?e:a[c]=d:g&&"get"in g&&(e=g.get(a,c))!==null?e:a[c]}},propHooks:{tabIndex:{get:function(a){var c=a.getAttributeNode("tabindex");return c&&c.specified?parseInt(c.value,10):s.test(a.nodeName)||t.test(a.nodeName)&&a.href?0:b}}}}),f.attrHooks.tabindex=f.propHooks.tabIndex,x={get:function(a,c){var d,e=f.prop(a,c);return e===!0||typeof e!="boolean"&&(d=a.getAttributeNode(c))&&d.nodeValue!==!1?c.toLowerCase():b},set:function(a,b,c){var d;b===!1?f.removeAttr(a,c):(d=f.propFix[c]||c,d in a&&(a[d]=!0),a.setAttribute(c,c.toLowerCase()));return c}},v||(y={name:!0,id:!0},w=f.valHooks.button={get:function(a,c){var d;d=a.getAttributeNode(c);return d&&(y[c]?d.nodeValue!=="":d.specified)?d.nodeValue:b},set:function(a,b,d){var e=a.getAttributeNode(d);e||(e=c.createAttribute(d),a.setAttributeNode(e));return e.nodeValue=b+""}},f.attrHooks.tabindex.set=w.set,f.each(["width","height"],function(a,b){f.attrHooks[b]=f.extend(f.attrHooks[b],{set:function(a,c){if(c===""){a.setAttribute(b,"auto");return c}}})}),f.attrHooks.contenteditable={get:w.get,set:function(a,b,c){b===""&&(b="false"),w.set(a,b,c)}}),f.support.hrefNormalized||f.each(["href","src","width","height"],function(a,c){f.attrHooks[c]=f.extend(f.attrHooks[c],{get:function(a){var d=a.getAttribute(c,2);return d===null?b:d}})}),f.support.style||(f.attrHooks.style={get:function(a){return a.style.cssText.toLowerCase()||b},set:function(a,b){return a.style.cssText=""+b}}),f.support.optSelected||(f.propHooks.selected=f.extend(f.propHooks.selected,{get:function(a){var b=a.parentNode;b&&(b.selectedIndex,b.parentNode&&b.parentNode.selectedIndex);return null}})),f.support.enctype||(f.propFix.enctype="encoding"),f.support.checkOn||f.each(["radio","checkbox"],function(){f.valHooks[this]={get:function(a){return a.getAttribute("value")===null?"on":a.value}}}),f.each(["radio","checkbox"],function(){f.valHooks[this]=f.extend(f.valHooks[this],{set:function(a,b){if(f.isArray(b))return a.checked=f.inArray(f(a).val(),b)>=0}})});var z=/^(?:textarea|input|select)$/i,A=/^([^\.]*)?(?:\.(.+))?$/,B=/\bhover(\.\S+)?\b/,C=/^key/,D=/^(?:mouse|contextmenu)|click/,E=/^(?:focusinfocus|focusoutblur)$/,F=/^(\w*)(?:#([\w\-]+))?(?:\.([\w\-]+))?$/,G=function(a){var b=F.exec(a);b&&(b[1]=(b[1]||"").toLowerCase(),b[3]=b[3]&&new RegExp("(?:^|\\s)"+b[3]+"(?:\\s|$)"));return b},H=function(a,b){var c=a.attributes||{};return(!b[1]||a.nodeName.toLowerCase()===b[1])&&(!b[2]||(c.id||{}).value===b[2])&&(!b[3]||b[3].test((c["class"]||{}).value))},I=function(a){return f.event.special.hover?a:a.replace(B,"mouseenter$1 mouseleave$1")};
 f.event={add:function(a,c,d,e,g){var h,i,j,k,l,m,n,o,p,q,r,s;if(!(a.nodeType===3||a.nodeType===8||!c||!d||!(h=f._data(a)))){d.handler&&(p=d,d=p.handler),d.guid||(d.guid=f.guid++),j=h.events,j||(h.events=j={}),i=h.handle,i||(h.handle=i=function(a){return typeof f!="undefined"&&(!a||f.event.triggered!==a.type)?f.event.dispatch.apply(i.elem,arguments):b},i.elem=a),c=f.trim(I(c)).split(" ");for(k=0;k<c.length;k++){l=A.exec(c[k])||[],m=l[1],n=(l[2]||"").split(".").sort(),s=f.event.special[m]||{},m=(g?s.delegateType:s.bindType)||m,s=f.event.special[m]||{},o=f.extend({type:m,origType:l[1],data:e,handler:d,guid:d.guid,selector:g,quick:G(g),namespace:n.join(".")},p),r=j[m];if(!r){r=j[m]=[],r.delegateCount=0;if(!s.setup||s.setup.call(a,e,n,i)===!1)a.addEventListener?a.addEventListener(m,i,!1):a.attachEvent&&a.attachEvent("on"+m,i)}s.add&&(s.add.call(a,o),o.handler.guid||(o.handler.guid=d.guid)),g?r.splice(r.delegateCount++,0,o):r.push(o),f.event.global[m]=!0}a=null}},global:{},remove:function(a,b,c,d,e){var g=f.hasData(a)&&f._data(a),h,i,j,k,l,m,n,o,p,q,r,s;if(!!g&&!!(o=g.events)){b=f.trim(I(b||"")).split(" ");for(h=0;h<b.length;h++){i=A.exec(b[h])||[],j=k=i[1],l=i[2];if(!j){for(j in o)f.event.remove(a,j+b[h],c,d,!0);continue}p=f.event.special[j]||{},j=(d?p.delegateType:p.bindType)||j,r=o[j]||[],m=r.length,l=l?new RegExp("(^|\\.)"+l.split(".").sort().join("\\.(?:.*\\.)?")+"(\\.|$)"):null;for(n=0;n<r.length;n++)s=r[n],(e||k===s.origType)&&(!c||c.guid===s.guid)&&(!l||l.test(s.namespace))&&(!d||d===s.selector||d==="**"&&s.selector)&&(r.splice(n--,1),s.selector&&r.delegateCount--,p.remove&&p.remove.call(a,s));r.length===0&&m!==r.length&&((!p.teardown||p.teardown.call(a,l)===!1)&&f.removeEvent(a,j,g.handle),delete o[j])}f.isEmptyObject(o)&&(q=g.handle,q&&(q.elem=null),f.removeData(a,["events","handle"],!0))}},customEvent:{getData:!0,setData:!0,changeData:!0},trigger:function(c,d,e,g){if(!e||e.nodeType!==3&&e.nodeType!==8){var h=c.type||c,i=[],j,k,l,m,n,o,p,q,r,s;if(E.test(h+f.event.triggered))return;h.indexOf("!")>=0&&(h=h.slice(0,-1),k=!0),h.indexOf(".")>=0&&(i=h.split("."),h=i.shift(),i.sort());if((!e||f.event.customEvent[h])&&!f.event.global[h])return;c=typeof c=="object"?c[f.expando]?c:new f.Event(h,c):new f.Event(h),c.type=h,c.isTrigger=!0,c.exclusive=k,c.namespace=i.join("."),c.namespace_re=c.namespace?new RegExp("(^|\\.)"+i.join("\\.(?:.*\\.)?")+"(\\.|$)"):null,o=h.indexOf(":")<0?"on"+h:"";if(!e){j=f.cache;for(l in j)j[l].events&&j[l].events[h]&&f.event.trigger(c,d,j[l].handle.elem,!0);return}c.result=b,c.target||(c.target=e),d=d!=null?f.makeArray(d):[],d.unshift(c),p=f.event.special[h]||{};if(p.trigger&&p.trigger.apply(e,d)===!1)return;r=[[e,p.bindType||h]];if(!g&&!p.noBubble&&!f.isWindow(e)){s=p.delegateType||h,m=E.test(s+h)?e:e.parentNode,n=null;for(;m;m=m.parentNode)r.push([m,s]),n=m;n&&n===e.ownerDocument&&r.push([n.defaultView||n.parentWindow||a,s])}for(l=0;l<r.length&&!c.isPropagationStopped();l++)m=r[l][0],c.type=r[l][1],q=(f._data(m,"events")||{})[c.type]&&f._data(m,"handle"),q&&q.apply(m,d),q=o&&m[o],q&&f.acceptData(m)&&q.apply(m,d)===!1&&c.preventDefault();c.type=h,!g&&!c.isDefaultPrevented()&&(!p._default||p._default.apply(e.ownerDocument,d)===!1)&&(h!=="click"||!f.nodeName(e,"a"))&&f.acceptData(e)&&o&&e[h]&&(h!=="focus"&&h!=="blur"||c.target.offsetWidth!==0)&&!f.isWindow(e)&&(n=e[o],n&&(e[o]=null),f.event.triggered=h,e[h](),f.event.triggered=b,n&&(e[o]=n));return c.result}},dispatch:function(c){c=f.event.fix(c||a.event);var d=(f._data(this,"events")||{})[c.type]||[],e=d.delegateCount,g=[].slice.call(arguments,0),h=!c.exclusive&&!c.namespace,i=[],j,k,l,m,n,o,p,q,r,s,t;g[0]=c,c.delegateTarget=this;if(e&&!c.target.disabled&&(!c.button||c.type!=="click")){m=f(this),m.context=this.ownerDocument||this;for(l=c.target;l!=this;l=l.parentNode||this){o={},q=[],m[0]=l;for(j=0;j<e;j++)r=d[j],s=r.selector,o[s]===b&&(o[s]=r.quick?H(l,r.quick):m.is(s)),o[s]&&q.push(r);q.length&&i.push({elem:l,matches:q})}}d.length>e&&i.push({elem:this,matches:d.slice(e)});for(j=0;j<i.length&&!c.isPropagationStopped();j++){p=i[j],c.currentTarget=p.elem;for(k=0;k<p.matches.length&&!c.isImmediatePropagationStopped();k++){r=p.matches[k];if(h||!c.namespace&&!r.namespace||c.namespace_re&&c.namespace_re.test(r.namespace))c.data=r.data,c.handleObj=r,n=((f.event.special[r.origType]||{}).handle||r.handler).apply(p.elem,g),n!==b&&(c.result=n,n===!1&&(c.preventDefault(),c.stopPropagation()))}}return c.result},props:"attrChange attrName relatedNode srcElement altKey bubbles cancelable ctrlKey currentTarget eventPhase metaKey relatedTarget shiftKey target timeStamp view which".split(" "),fixHooks:{},keyHooks:{props:"char charCode key keyCode".split(" "),filter:function(a,b){a.which==null&&(a.which=b.charCode!=null?b.charCode:b.keyCode);return a}},mouseHooks:{props:"button buttons clientX clientY fromElement offsetX offsetY pageX pageY screenX screenY toElement".split(" "),filter:function(a,d){var e,f,g,h=d.button,i=d.fromElement;a.pageX==null&&d.clientX!=null&&(e=a.target.ownerDocument||c,f=e.documentElement,g=e.body,a.pageX=d.clientX+(f&&f.scrollLeft||g&&g.scrollLeft||0)-(f&&f.clientLeft||g&&g.clientLeft||0),a.pageY=d.clientY+(f&&f.scrollTop||g&&g.scrollTop||0)-(f&&f.clientTop||g&&g.clientTop||0)),!a.relatedTarget&&i&&(a.relatedTarget=i===a.target?d.toElement:i),!a.which&&h!==b&&(a.which=h&1?1:h&2?3:h&4?2:0);return a}},fix:function(a){if(a[f.expando])return a;var d,e,g=a,h=f.event.fixHooks[a.type]||{},i=h.props?this.props.concat(h.props):this.props;a=f.Event(g);for(d=i.length;d;)e=i[--d],a[e]=g[e];a.target||(a.target=g.srcElement||c),a.target.nodeType===3&&(a.target=a.target.parentNode),a.metaKey===b&&(a.metaKey=a.ctrlKey);return h.filter?h.filter(a,g):a},special:{ready:{setup:f.bindReady},load:{noBubble:!0},focus:{delegateType:"focusin"},blur:{delegateType:"focusout"},beforeunload:{setup:function(a,b,c){f.isWindow(this)&&(this.onbeforeunload=c)},teardown:function(a,b){this.onbeforeunload===b&&(this.onbeforeunload=null)}}},simulate:function(a,b,c,d){var e=f.extend(new f.Event,c,{type:a,isSimulated:!0,originalEvent:{}});d?f.event.trigger(e,null,b):f.event.dispatch.call(b,e),e.isDefaultPrevented()&&c.preventDefault()}},f.event.handle=f.event.dispatch,f.removeEvent=c.removeEventListener?function(a,b,c){a.removeEventListener&&a.removeEventListener(b,c,!1)}:function(a,b,c){a.detachEvent&&a.detachEvent("on"+b,c)},f.Event=function(a,b){if(!(this instanceof f.Event))return new f.Event(a,b);a&&a.type?(this.originalEvent=a,this.type=a.type,this.isDefaultPrevented=a.defaultPrevented||a.returnValue===!1||a.getPreventDefault&&a.getPreventDefault()?K:J):this.type=a,b&&f.extend(this,b),this.timeStamp=a&&a.timeStamp||f.now(),this[f.expando]=!0},f.Event.prototype={preventDefault:function(){this.isDefaultPrevented=K;var a=this.originalEvent;!a||(a.preventDefault?a.preventDefault():a.returnValue=!1)},stopPropagation:function(){this.isPropagationStopped=K;var a=this.originalEvent;!a||(a.stopPropagation&&a.stopPropagation(),a.cancelBubble=!0)},stopImmediatePropagation:function(){this.isImmediatePropagationStopped=K,this.stopPropagation()},isDefaultPrevented:J,isPropagationStopped:J,isImmediatePropagationStopped:J},f.each({mouseenter:"mouseover",mouseleave:"mouseout"},function(a,b){f.event.special[a]={delegateType:b,bindType:b,handle:function(a){var c=this,d=a.relatedTarget,e=a.handleObj,g=e.selector,h;if(!d||d!==c&&!f.contains(c,d))a.type=e.origType,h=e.handler.apply(this,arguments),a.type=b;return h}}}),f.support.submitBubbles||(f.event.special.submit={setup:function(){if(f.nodeName(this,"form"))return!1;f.event.add(this,"click._submit keypress._submit",function(a){var c=a.target,d=f.nodeName(c,"input")||f.nodeName(c,"button")?c.form:b;d&&!d._submit_attached&&(f.event.add(d,"submit._submit",function(a){this.parentNode&&!a.isTrigger&&f.event.simulate("submit",this.parentNode,a,!0)}),d._submit_attached=!0)})},teardown:function(){if(f.nodeName(this,"form"))return!1;f.event.remove(this,"._submit")}}),f.support.changeBubbles||(f.event.special.change={setup:function(){if(z.test(this.nodeName)){if(this.type==="checkbox"||this.type==="radio")f.event.add(this,"propertychange._change",function(a){a.originalEvent.propertyName==="checked"&&(this._just_changed=!0)}),f.event.add(this,"click._change",function(a){this._just_changed&&!a.isTrigger&&(this._just_changed=!1,f.event.simulate("change",this,a,!0))});return!1}f.event.add(this,"beforeactivate._change",function(a){var b=a.target;z.test(b.nodeName)&&!b._change_attached&&(f.event.add(b,"change._change",function(a){this.parentNode&&!a.isSimulated&&!a.isTrigger&&f.event.simulate("change",this.parentNode,a,!0)}),b._change_attached=!0)})},handle:function(a){var b=a.target;if(this!==b||a.isSimulated||a.isTrigger||b.type!=="radio"&&b.type!=="checkbox")return a.handleObj.handler.apply(this,arguments)},teardown:function(){f.event.remove(this,"._change");return z.test(this.nodeName)}}),f.support.focusinBubbles||f.each({focus:"focusin",blur:"focusout"},function(a,b){var d=0,e=function(a){f.event.simulate(b,a.target,f.event.fix(a),!0)};f.event.special[b]={setup:function(){d++===0&&c.addEventListener(a,e,!0)},teardown:function(){--d===0&&c.removeEventListener(a,e,!0)}}}),f.fn.extend({on:function(a,c,d,e,g){var h,i;if(typeof a=="object"){typeof c!="string"&&(d=c,c=b);for(i in a)this.on(i,c,d,a[i],g);return this}d==null&&e==null?(e=c,d=c=b):e==null&&(typeof c=="string"?(e=d,d=b):(e=d,d=c,c=b));if(e===!1)e=J;else if(!e)return this;g===1&&(h=e,e=function(a){f().off(a);return h.apply(this,arguments)},e.guid=h.guid||(h.guid=f.guid++));return this.each(function(){f.event.add(this,a,e,d,c)})},one:function(a,b,c,d){return this.on.call(this,a,b,c,d,1)},off:function(a,c,d){if(a&&a.preventDefault&&a.handleObj){var e=a.handleObj;f(a.delegateTarget).off(e.namespace?e.type+"."+e.namespace:e.type,e.selector,e.handler);return this}if(typeof a=="object"){for(var g in a)this.off(g,c,a[g]);return this}if(c===!1||typeof c=="function")d=c,c=b;d===!1&&(d=J);return this.each(function(){f.event.remove(this,a,d,c)})},bind:function(a,b,c){return this.on(a,null,b,c)},unbind:function(a,b){return this.off(a,null,b)},live:function(a,b,c){f(this.context).on(a,this.selector,b,c);return this},die:function(a,b){f(this.context).off(a,this.selector||"**",b);return this},delegate:function(a,b,c,d){return this.on(b,a,c,d)},undelegate:function(a,b,c){return arguments.length==1?this.off(a,"**"):this.off(b,a,c)},trigger:function(a,b){return this.each(function(){f.event.trigger(a,b,this)})},triggerHandler:function(a,b){if(this[0])return f.event.trigger(a,b,this[0],!0)},toggle:function(a){var b=arguments,c=a.guid||f.guid++,d=0,e=function(c){var e=(f._data(this,"lastToggle"+a.guid)||0)%d;f._data(this,"lastToggle"+a.guid,e+1),c.preventDefault();return b[e].apply(this,arguments)||!1};e.guid=c;while(d<b.length)b[d++].guid=c;return this.click(e)},hover:function(a,b){return this.mouseenter(a).mouseleave(b||a)}}),f.each("blur focus focusin focusout load resize scroll unload click dblclick mousedown mouseup mousemove mouseover mouseout mouseenter mouseleave change select submit keydown keypress keyup error contextmenu".split(" "),function(a,b){f.fn[b]=function(a,c){c==null&&(c=a,a=null);return arguments.length>0?this.on(b,null,a,c):this.trigger(b)},f.attrFn&&(f.attrFn[b]=!0),C.test(b)&&(f.event.fixHooks[b]=f.event.keyHooks),D.test(b)&&(f.event.fixHooks[b]=f.event.mouseHooks)}),function(){function x(a,b,c,e,f,g){for(var h=0,i=e.length;h<i;h++){var j=e[h];if(j){var k=!1;j=j[a];while(j){if(j[d]===c){k=e[j.sizset];break}if(j.nodeType===1){g||(j[d]=c,j.sizset=h);if(typeof b!="string"){if(j===b){k=!0;break}}else if(m.filter(b,[j]).length>0){k=j;break}}j=j[a]}e[h]=k}}}function w(a,b,c,e,f,g){for(var h=0,i=e.length;h<i;h++){var j=e[h];if(j){var k=!1;j=j[a];while(j){if(j[d]===c){k=e[j.sizset];break}j.nodeType===1&&!g&&(j[d]=c,j.sizset=h);if(j.nodeName.toLowerCase()===b){k=j;break}j=j[a]}e[h]=k}}}var a=/((?:\((?:\([^()]+\)|[^()]+)+\)|\[(?:\[[^\[\]]*\]|['"][^'"]*['"]|[^\[\]'"]+)+\]|\\.|[^ >+~,(\[\\]+)+|[>+~])(\s*,\s*)?((?:.|\r|\n)*)/g,d="sizcache"+(Math.random()+"").replace(".",""),e=0,g=Object.prototype.toString,h=!1,i=!0,j=/\\/g,k=/\r\n/g,l=/\W/;[0,0].sort(function(){i=!1;return 0});var m=function(b,d,e,f){e=e||[],d=d||c;var h=d;if(d.nodeType!==1&&d.nodeType!==9)return[];if(!b||typeof b!="string")return e;var i,j,k,l,n,q,r,t,u=!0,v=m.isXML(d),w=[],x=b;do{a.exec(""),i=a.exec(x);if(i){x=i[3],w.push(i[1]);if(i[2]){l=i[3];break}}}while(i);if(w.length>1&&p.exec(b))if(w.length===2&&o.relative[w[0]])j=y(w[0]+w[1],d,f);else{j=o.relative[w[0]]?[d]:m(w.shift(),d);while(w.length)b=w.shift(),o.relative[b]&&(b+=w.shift()),j=y(b,j,f)}else{!f&&w.length>1&&d.nodeType===9&&!v&&o.match.ID.test(w[0])&&!o.match.ID.test(w[w.length-1])&&(n=m.find(w.shift(),d,v),d=n.expr?m.filter(n.expr,n.set)[0]:n.set[0]);if(d){n=f?{expr:w.pop(),set:s(f)}:m.find(w.pop(),w.length===1&&(w[0]==="~"||w[0]==="+")&&d.parentNode?d.parentNode:d,v),j=n.expr?m.filter(n.expr,n.set):n.set,w.length>0?k=s(j):u=!1;while(w.length)q=w.pop(),r=q,o.relative[q]?r=w.pop():q="",r==null&&(r=d),o.relative[q](k,r,v)}else k=w=[]}k||(k=j),k||m.error(q||b);if(g.call(k)==="[object Array]")if(!u)e.push.apply(e,k);else if(d&&d.nodeType===1)for(t=0;k[t]!=null;t++)k[t]&&(k[t]===!0||k[t].nodeType===1&&m.contains(d,k[t]))&&e.push(j[t]);else for(t=0;k[t]!=null;t++)k[t]&&k[t].nodeType===1&&e.push(j[t]);else s(k,e);l&&(m(l,h,e,f),m.uniqueSort(e));return e};m.uniqueSort=function(a){if(u){h=i,a.sort(u);if(h)for(var b=1;b<a.length;b++)a[b]===a[b-1]&&a.splice(b--,1)}return a},m.matches=function(a,b){return m(a,null,null,b)},m.matchesSelector=function(a,b){return m(b,null,null,[a]).length>0},m.find=function(a,b,c){var d,e,f,g,h,i;if(!a)return[];for(e=0,f=o.order.length;e<f;e++){h=o.order[e];if(g=o.leftMatch[h].exec(a)){i=g[1],g.splice(1,1);if(i.substr(i.length-1)!=="\\"){g[1]=(g[1]||"").replace(j,""),d=o.find[h](g,b,c);if(d!=null){a=a.replace(o.match[h],"");break}}}}d||(d=typeof b.getElementsByTagName!="undefined"?b.getElementsByTagName("*"):[]);return{set:d,expr:a}},m.filter=function(a,c,d,e){var f,g,h,i,j,k,l,n,p,q=a,r=[],s=c,t=c&&c[0]&&m.isXML(c[0]);while(a&&c.length){for(h in o.filter)if((f=o.leftMatch[h].exec(a))!=null&&f[2]){k=o.filter[h],l=f[1],g=!1,f.splice(1,1);if(l.substr(l.length-1)==="\\")continue;s===r&&(r=[]);if(o.preFilter[h]){f=o.preFilter[h](f,s,d,r,e,t);if(!f)g=i=!0;else if(f===!0)continue}if(f)for(n=0;(j=s[n])!=null;n++)j&&(i=k(j,f,n,s),p=e^i,d&&i!=null?p?g=!0:s[n]=!1:p&&(r.push(j),g=!0));if(i!==b){d||(s=r),a=a.replace(o.match[h],"");if(!g)return[];break}}if(a===q)if(g==null)m.error(a);else break;q=a}return s},m.error=function(a){throw new Error("Syntax error, unrecognized expression: "+a)};var n=m.getText=function(a){var b,c,d=a.nodeType,e="";if(d){if(d===1||d===9){if(typeof a.textContent=="string")return a.textContent;if(typeof a.innerText=="string")return a.innerText.replace(k,"");for(a=a.firstChild;a;a=a.nextSibling)e+=n(a)}else if(d===3||d===4)return a.nodeValue}else for(b=0;c=a[b];b++)c.nodeType!==8&&(e+=n(c));return e},o=m.selectors={order:["ID","NAME","TAG"],match:{ID:/#((?:[\w\u00c0-\uFFFF\-]|\\.)+)/,CLASS:/\.((?:[\w\u00c0-\uFFFF\-]|\\.)+)/,NAME:/\[name=['"]*((?:[\w\u00c0-\uFFFF\-]|\\.)+)['"]*\]/,ATTR:/\[\s*((?:[\w\u00c0-\uFFFF\-]|\\.)+)\s*(?:(\S?=)\s*(?:(['"])(.*?)\3|(#?(?:[\w\u00c0-\uFFFF\-]|\\.)*)|)|)\s*\]/,TAG:/^((?:[\w\u00c0-\uFFFF*\-]|\\.)+)/,CHILD:/:(only|nth|last|first)-child(?:\(\s*(even|odd|(?:[+\-]?\d+|(?:[+\-]?\d*)?n\s*(?:[+\-]\s*\d+)?))\s*\))?/,POS:/:(nth|eq|gt|lt|first|last|even|odd)(?:\((\d*)\))?(?=[^\-]|$)/,PSEUDO:/:((?:[\w\u00c0-\uFFFF\-]|\\.)+)(?:\((['"]?)((?:\([^\)]+\)|[^\(\)]*)+)\2\))?/},leftMatch:{},attrMap:{"class":"className","for":"htmlFor"},attrHandle:{href:function(a){return a.getAttribute("href")},type:function(a){return a.getAttribute("type")}},relative:{"+":function(a,b){var c=typeof b=="string",d=c&&!l.test(b),e=c&&!d;d&&(b=b.toLowerCase());for(var f=0,g=a.length,h;f<g;f++)if(h=a[f]){while((h=h.previousSibling)&&h.nodeType!==1);a[f]=e||h&&h.nodeName.toLowerCase()===b?h||!1:h===b}e&&m.filter(b,a,!0)},">":function(a,b){var c,d=typeof b=="string",e=0,f=a.length;if(d&&!l.test(b)){b=b.toLowerCase();for(;e<f;e++){c=a[e];if(c){var g=c.parentNode;a[e]=g.nodeName.toLowerCase()===b?g:!1}}}else{for(;e<f;e++)c=a[e],c&&(a[e]=d?c.parentNode:c.parentNode===b);d&&m.filter(b,a,!0)}},"":function(a,b,c){var d,f=e++,g=x;typeof b=="string"&&!l.test(b)&&(b=b.toLowerCase(),d=b,g=w),g("parentNode",b,f,a,d,c)},"~":function(a,b,c){var d,f=e++,g=x;typeof b=="string"&&!l.test(b)&&(b=b.toLowerCase(),d=b,g=w),g("previousSibling",b,f,a,d,c)}},find:{ID:function(a,b,c){if(typeof b.getElementById!="undefined"&&!c){var d=b.getElementById(a[1]);return d&&d.parentNode?[d]:[]}},NAME:function(a,b){if(typeof b.getElementsByName!="undefined"){var c=[],d=b.getElementsByName(a[1]);for(var e=0,f=d.length;e<f;e++)d[e].getAttribute("name")===a[1]&&c.push(d[e]);return c.length===0?null:c}},TAG:function(a,b){if(typeof b.getElementsByTagName!="undefined")return b.getElementsByTagName(a[1])}},preFilter:{CLASS:function(a,b,c,d,e,f){a=" "+a[1].replace(j,"")+" ";if(f)return a;for(var g=0,h;(h=b[g])!=null;g++)h&&(e^(h.className&&(" "+h.className+" ").replace(/[\t\n\r]/g," ").indexOf(a)>=0)?c||d.push(h):c&&(b[g]=!1));return!1},ID:function(a){return a[1].replace(j,"")},TAG:function(a,b){return a[1].replace(j,"").toLowerCase()},CHILD:function(a){if(a[1]==="nth"){a[2]||m.error(a[0]),a[2]=a[2].replace(/^\+|\s*/g,"");var b=/(-?)(\d*)(?:n([+\-]?\d*))?/.exec(a[2]==="even"&&"2n"||a[2]==="odd"&&"2n+1"||!/\D/.test(a[2])&&"0n+"+a[2]||a[2]);a[2]=b[1]+(b[2]||1)-0,a[3]=b[3]-0}else a[2]&&m.error(a[0]);a[0]=e++;return a},ATTR:function(a,b,c,d,e,f){var g=a[1]=a[1].replace(j,"");!f&&o.attrMap[g]&&(a[1]=o.attrMap[g]),a[4]=(a[4]||a[5]||"").replace(j,""),a[2]==="~="&&(a[4]=" "+a[4]+" ");return a},PSEUDO:function(b,c,d,e,f){if(b[1]==="not")if((a.exec(b[3])||"").length>1||/^\w/.test(b[3]))b[3]=m(b[3],null,null,c);else{var g=m.filter(b[3],c,d,!0^f);d||e.push.apply(e,g);return!1}else if(o.match.POS.test(b[0])||o.match.CHILD.test(b[0]))return!0;return b},POS:function(a){a.unshift(!0);return a}},filters:{enabled:function(a){return a.disabled===!1&&a.type!=="hidden"},disabled:function(a){return a.disabled===!0},checked:function(a){return a.checked===!0},selected:function(a){a.parentNode&&a.parentNode.selectedIndex;return a.selected===!0},parent:function(a){return!!a.firstChild},empty:function(a){return!a.firstChild},has:function(a,b,c){return!!m(c[3],a).length},header:function(a){return/h\d/i.test(a.nodeName)},text:function(a){var b=a.getAttribute("type"),c=a.type;return a.nodeName.toLowerCase()==="input"&&"text"===c&&(b===c||b===null)},radio:function(a){return a.nodeName.toLowerCase()==="input"&&"radio"===a.type},checkbox:function(a){return a.nodeName.toLowerCase()==="input"&&"checkbox"===a.type},file:function(a){return a.nodeName.toLowerCase()==="input"&&"file"===a.type},password:function(a){return a.nodeName.toLowerCase()==="input"&&"password"===a.type},submit:function(a){var b=a.nodeName.toLowerCase();return(b==="input"||b==="button")&&"submit"===a.type},image:function(a){return a.nodeName.toLowerCase()==="input"&&"image"===a.type},reset:function(a){var b=a.nodeName.toLowerCase();return(b==="input"||b==="button")&&"reset"===a.type},button:function(a){var b=a.nodeName.toLowerCase();return b==="input"&&"button"===a.type||b==="button"},input:function(a){return/input|select|textarea|button/i.test(a.nodeName)},focus:function(a){return a===a.ownerDocument.activeElement}},setFilters:{first:function(a,b){return b===0},last:function(a,b,c,d){return b===d.length-1},even:function(a,b){return b%2===0},odd:function(a,b){return b%2===1},lt:function(a,b,c){return b<c[3]-0},gt:function(a,b,c){return b>c[3]-0},nth:function(a,b,c){return c[3]-0===b},eq:function(a,b,c){return c[3]-0===b}},filter:{PSEUDO:function(a,b,c,d){var e=b[1],f=o.filters[e];if(f)return f(a,c,b,d);if(e==="contains")return(a.textContent||a.innerText||n([a])||"").indexOf(b[3])>=0;if(e==="not"){var g=b[3];for(var h=0,i=g.length;h<i;h++)if(g[h]===a)return!1;return!0}m.error(e)},CHILD:function(a,b){var c,e,f,g,h,i,j,k=b[1],l=a;switch(k){case"only":case"first":while(l=l.previousSibling)if(l.nodeType===1)return!1;if(k==="first")return!0;l=a;case"last":while(l=l.nextSibling)if(l.nodeType===1)return!1;return!0;case"nth":c=b[2],e=b[3];if(c===1&&e===0)return!0;f=b[0],g=a.parentNode;if(g&&(g[d]!==f||!a.nodeIndex)){i=0;for(l=g.firstChild;l;l=l.nextSibling)l.nodeType===1&&(l.nodeIndex=++i);g[d]=f}j=a.nodeIndex-e;return c===0?j===0:j%c===0&&j/c>=0}},ID:function(a,b){return a.nodeType===1&&a.getAttribute("id")===b},TAG:function(a,b){return b==="*"&&a.nodeType===1||!!a.nodeName&&a.nodeName.toLowerCase()===b},CLASS:function(a,b){return(" "+(a.className||a.getAttribute("class"))+" ").indexOf(b)>-1},ATTR:function(a,b){var c=b[1],d=m.attr?m.attr(a,c):o.attrHandle[c]?o.attrHandle[c](a):a[c]!=null?a[c]:a.getAttribute(c),e=d+"",f=b[2],g=b[4];return d==null?f==="!=":!f&&m.attr?d!=null:f==="="?e===g:f==="*="?e.indexOf(g)>=0:f==="~="?(" "+e+" ").indexOf(g)>=0:g?f==="!="?e!==g:f==="^="?e.indexOf(g)===0:f==="$="?e.substr(e.length-g.length)===g:f==="|="?e===g||e.substr(0,g.length+1)===g+"-":!1:e&&d!==!1},POS:function(a,b,c,d){var e=b[2],f=o.setFilters[e];if(f)return f(a,c,b,d)}}},p=o.match.POS,q=function(a,b){return"\\"+(b-0+1)};for(var r in o.match)o.match[r]=new RegExp(o.match[r].source+/(?![^\[]*\])(?![^\(]*\))/.source),o.leftMatch[r]=new RegExp(/(^(?:.|\r|\n)*?)/.source+o.match[r].source.replace(/\\(\d+)/g,q));var s=function(a,b){a=Array.prototype.slice.call(a,0);if(b){b.push.apply(b,a);return b}return a};try{Array.prototype.slice.call(c.documentElement.childNodes,0)[0].nodeType}catch(t){s=function(a,b){var c=0,d=b||[];if(g.call(a)==="[object Array]")Array.prototype.push.apply(d,a);else if(typeof a.length=="number")for(var e=a.length;c<e;c++)d.push(a[c]);else for(;a[c];c++)d.push(a[c]);return d}}var u,v;c.documentElement.compareDocumentPosition?u=function(a,b){if(a===b){h=!0;return 0}if(!a.compareDocumentPosition||!b.compareDocumentPosition)return a.compareDocumentPosition?-1:1;return a.compareDocumentPosition(b)&4?-1:1}:(u=function(a,b){if(a===b){h=!0;return 0}if(a.sourceIndex&&b.sourceIndex)return a.sourceIndex-b.sourceIndex;var c,d,e=[],f=[],g=a.parentNode,i=b.parentNode,j=g;if(g===i)return v(a,b);if(!g)return-1;if(!i)return 1;while(j)e.unshift(j),j=j.parentNode;j=i;while(j)f.unshift(j),j=j.parentNode;c=e.length,d=f.length;for(var k=0;k<c&&k<d;k++)if(e[k]!==f[k])return v(e[k],f[k]);return k===c?v(a,f[k],-1):v(e[k],b,1)},v=function(a,b,c){if(a===b)return c;var d=a.nextSibling;while(d){if(d===b)return-1;d=d.nextSibling}return 1}),function(){var a=c.createElement("div"),d="script"+(new Date).getTime(),e=c.documentElement;a.innerHTML="",e.insertBefore(a,e.firstChild),c.getElementById(d)&&(o.find.ID=function(a,c,d){if(typeof c.getElementById!="undefined"&&!d){var e=c.getElementById(a[1]);return e?e.id===a[1]||typeof e.getAttributeNode!="undefined"&&e.getAttributeNode("id").nodeValue===a[1]?[e]:b:[]}},o.filter.ID=function(a,b){var c=typeof a.getAttributeNode!="undefined"&&a.getAttributeNode("id");return a.nodeType===1&&c&&c.nodeValue===b}),e.removeChild(a),e=a=null}(),function(){var a=c.createElement("div");a.appendChild(c.createComment("")),a.getElementsByTagName("*").length>0&&(o.find.TAG=function(a,b){var c=b.getElementsByTagName(a[1]);if(a[1]==="*"){var d=[];for(var e=0;c[e];e++)c[e].nodeType===1&&d.push(c[e]);c=d}return c}),a.innerHTML="",a.firstChild&&typeof a.firstChild.getAttribute!="undefined"&&a.firstChild.getAttribute("href")!=="#"&&(o.attrHandle.href=function(a){return a.getAttribute("href",2)}),a=null}(),c.querySelectorAll&&function(){var a=m,b=c.createElement("div"),d="__sizzle__";b.innerHTML="<p class='TEST'></p>";if(!b.querySelectorAll||b.querySelectorAll(".TEST").length!==0){m=function(b,e,f,g){e=e||c;if(!g&&!m.isXML(e)){var h=/^(\w+$)|^\.([\w\-]+$)|^#([\w\-]+$)/.exec(b);if(h&&(e.nodeType===1||e.nodeType===9)){if(h[1])return s(e.getElementsByTagName(b),f);if(h[2]&&o.find.CLASS&&e.getElementsByClassName)return s(e.getElementsByClassName(h[2]),f)}if(e.nodeType===9){if(b==="body"&&e.body)return s([e.body],f);if(h&&h[3]){var i=e.getElementById(h[3]);if(!i||!i.parentNode)return s([],f);if(i.id===h[3])return s([i],f)}try{return s(e.querySelectorAll(b),f)}catch(j){}}else if(e.nodeType===1&&e.nodeName.toLowerCase()!=="object"){var k=e,l=e.getAttribute("id"),n=l||d,p=e.parentNode,q=/^\s*[+~]/.test(b);l?n=n.replace(/'/g,"\\$&"):e.setAttribute("id",n),q&&p&&(e=e.parentNode);try{if(!q||p)return s(e.querySelectorAll("[id='"+n+"'] "+b),f)}catch(r){}finally{l||k.removeAttribute("id")}}}return a(b,e,f,g)};for(var e in a)m[e]=a[e];b=null}}(),function(){var a=c.documentElement,b=a.matchesSelector||a.mozMatchesSelector||a.webkitMatchesSelector||a.msMatchesSelector;if(b){var d=!b.call(c.createElement("div"),"div"),e=!1;try{b.call(c.documentElement,"[test!='']:sizzle")}catch(f){e=!0}m.matchesSelector=function(a,c){c=c.replace(/\=\s*([^'"\]]*)\s*\]/g,"='$1']");if(!m.isXML(a))try{if(e||!o.match.PSEUDO.test(c)&&!/!=/.test(c)){var f=b.call(a,c);if(f||!d||a.document&&a.document.nodeType!==11)return f}}catch(g){}return m(c,null,null,[a]).length>0}}}(),function(){var a=c.createElement("div");a.innerHTML="<div class='test e'></div><div class='test'></div>";if(!!a.getElementsByClassName&&a.getElementsByClassName("e").length!==0){a.lastChild.className="e";if(a.getElementsByClassName("e").length===1)return;o.order.splice(1,0,"CLASS"),o.find.CLASS=function(a,b,c){if(typeof b.getElementsByClassName!="undefined"&&!c)return b.getElementsByClassName(a[1])},a=null}}(),c.documentElement.contains?m.contains=function(a,b){return a!==b&&(a.contains?a.contains(b):!0)}:c.documentElement.compareDocumentPosition?m.contains=function(a,b){return!!(a.compareDocumentPosition(b)&16)}:m.contains=function(){return!1},m.isXML=function(a){var b=(a?a.ownerDocument||a:0).documentElement;return b?b.nodeName!=="HTML":!1};var y=function(a,b,c){var d,e=[],f="",g=b.nodeType?[b]:b;while(d=o.match.PSEUDO.exec(a))f+=d[0],a=a.replace(o.match.PSEUDO,"");a=o.relative[a]?a+"*":a;for(var h=0,i=g.length;h<i;h++)m(a,g[h],e,c);return m.filter(f,e)};m.attr=f.attr,m.selectors.attrMap={},f.find=m,f.expr=m.selectors,f.expr[":"]=f.expr.filters,f.unique=m.uniqueSort,f.text=m.getText,f.isXMLDoc=m.isXML,f.contains=m.contains}();var L=/Until$/,M=/^(?:parents|prevUntil|prevAll)/,N=/,/,O=/^.[^:#\[\.,]*$/,P=Array.prototype.slice,Q=f.expr.match.POS,R={children:!0,contents:!0,next:!0,prev:!0};f.fn.extend({find:function(a){var b=this,c,d;if(typeof a!="string")return f(a).filter(function(){for(c=0,d=b.length;c<d;c++)if(f.contains(b[c],this))return!0});var e=this.pushStack("","find",a),g,h,i;for(c=0,d=this.length;c<d;c++){g=e.length,f.find(a,this[c],e);if(c>0)for(h=g;h<e.length;h++)for(i=0;i<g;i++)if(e[i]===e[h]){e.splice(h--,1);break}}return e},has:function(a){var b=f(a);return this.filter(function(){for(var a=0,c=b.length;a<c;a++)if(f.contains(this,b[a]))return!0})},not:function(a){return this.pushStack(T(this,a,!1),"not",a)},filter:function(a){return this.pushStack(T(this,a,!0),"filter",a)},is:function(a){return!!a&&(typeof a=="string"?Q.test(a)?f(a,this.context).index(this[0])>=0:f.filter(a,this).length>0:this.filter(a).length>0)},closest:function(a,b){var c=[],d,e,g=this[0];if(f.isArray(a)){var h=1;while(g&&g.ownerDocument&&g!==b){for(d=0;d<a.length;d++)f(g).is(a[d])&&c.push({selector:a[d],elem:g,level:h});g=g.parentNode,h++}return c}var i=Q.test(a)||typeof a!="string"?f(a,b||this.context):0;for(d=0,e=this.length;d<e;d++){g=this[d];while(g){if(i?i.index(g)>-1:f.find.matchesSelector(g,a)){c.push(g);break}g=g.parentNode;if(!g||!g.ownerDocument||g===b||g.nodeType===11)break}}c=c.length>1?f.unique(c):c;return this.pushStack(c,"closest",a)},index:function(a){if(!a)return this[0]&&this[0].parentNode?this.prevAll().length:-1;if(typeof a=="string")return f.inArray(this[0],f(a));return f.inArray(a.jquery?a[0]:a,this)},add:function(a,b){var c=typeof a=="string"?f(a,b):f.makeArray(a&&a.nodeType?[a]:a),d=f.merge(this.get(),c);return this.pushStack(S(c[0])||S(d[0])?d:f.unique(d))},andSelf:function(){return this.add(this.prevObject)}}),f.each({parent:function(a){var b=a.parentNode;return b&&b.nodeType!==11?b:null},parents:function(a){return f.dir(a,"parentNode")},parentsUntil:function(a,b,c){return f.dir(a,"parentNode",c)},next:function(a){return f.nth(a,2,"nextSibling")},prev:function(a){return f.nth(a,2,"previousSibling")},nextAll:function(a){return f.dir(a,"nextSibling")},prevAll:function(a){return f.dir(a,"previousSibling")},nextUntil:function(a,b,c){return f.dir(a,"nextSibling",c)},prevUntil:function(a,b,c){return f.dir(a,"previousSibling",c)},siblings:function(a){return f.sibling(a.parentNode.firstChild,a)},children:function(a){return f.sibling(a.firstChild)},contents:function(a){return f.nodeName(a,"iframe")?a.contentDocument||a.contentWindow.document:f.makeArray(a.childNodes)}},function(a,b){f.fn[a]=function(c,d){var e=f.map(this,b,c);L.test(a)||(d=c),d&&typeof d=="string"&&(e=f.filter(d,e)),e=this.length>1&&!R[a]?f.unique(e):e,(this.length>1||N.test(d))&&M.test(a)&&(e=e.reverse());return this.pushStack(e,a,P.call(arguments).join(","))}}),f.extend({filter:function(a,b,c){c&&(a=":not("+a+")");return b.length===1?f.find.matchesSelector(b[0],a)?[b[0]]:[]:f.find.matches(a,b)},dir:function(a,c,d){var e=[],g=a[c];while(g&&g.nodeType!==9&&(d===b||g.nodeType!==1||!f(g).is(d)))g.nodeType===1&&e.push(g),g=g[c];return e},nth:function(a,b,c,d){b=b||1;var e=0;for(;a;a=a[c])if(a.nodeType===1&&++e===b)break;return a},sibling:function(a,b){var c=[];for(;a;a=a.nextSibling)a.nodeType===1&&a!==b&&c.push(a);return c}});var V="abbr|article|aside|audio|canvas|datalist|details|figcaption|figure|footer|header|hgroup|mark|meter|nav|output|progress|section|summary|time|video",W=/ jQuery\d+="(?:\d+|null)"/g,X=/^\s+/,Y=/<(?!area|br|col|embed|hr|img|input|link|meta|param)(([\w:]+)[^>]*)\/>/ig,Z=/<([\w:]+)/,$=/<tbody/i,_=/<|&#?\w+;/,ba=/<(?:script|style)/i,bb=/<(?:script|object|embed|option|style)/i,bc=new RegExp("<(?:"+V+")","i"),bd=/checked\s*(?:[^=]|=\s*.checked.)/i,be=/\/(java|ecma)script/i,bf=/^\s*<!(?:\[CDATA\[|\-\-)/,bg={option:[1,"<select multiple='multiple'>","</select>"],legend:[1,"<fieldset>","</fieldset>"],thead:[1,"<table>","</table>"],tr:[2,"<table><tbody>","</tbody></table>"],td:[3,"<table><tbody><tr>","</tr></tbody></table>"],col:[2,"<table><tbody></tbody><colgroup>","</colgroup></table>"],area:[1,"<map>","</map>"],_default:[0,"",""]},bh=U(c);bg.optgroup=bg.option,bg.tbody=bg.tfoot=bg.colgroup=bg.caption=bg.thead,bg.th=bg.td,f.support.htmlSerialize||(bg._default=[1,"div<div>","</div>"]),f.fn.extend({text:function(a){if(f.isFunction(a))return this.each(function(b){var c=f(this);c.text(a.call(this,b,c.text()))});if(typeof a!="object"&&a!==b)return this.empty().append((this[0]&&this[0].ownerDocument||c).createTextNode(a));return f.text(this)},wrapAll:function(a){if(f.isFunction(a))return this.each(function(b){f(this).wrapAll(a.call(this,b))});if(this[0]){var b=f(a,this[0].ownerDocument).eq(0).clone(!0);this[0].parentNode&&b.insertBefore(this[0]),b.map(function(){var a=this;while(a.firstChild&&a.firstChild.nodeType===1)a=a.firstChild;return a}).append(this)}return this},wrapInner:function(a){if(f.isFunction(a))return this.each(function(b){f(this).wrapInner(a.call(this,b))});return this.each(function(){var b=f(this),c=b.contents();c.length?c.wrapAll(a):b.append(a)})},wrap:function(a){var b=f.isFunction(a);return this.each(function(c){f(this).wrapAll(b?a.call(this,c):a)})},unwrap:function(){return this.parent().each(function(){f.nodeName(this,"body")||f(this).replaceWith(this.childNodes)}).end()},append:function(){return this.domManip(arguments,!0,function(a){this.nodeType===1&&this.appendChild(a)})},prepend:function(){return this.domManip(arguments,!0,function(a){this.nodeType===1&&this.insertBefore(a,this.firstChild)})},before:function(){if(this[0]&&this[0].parentNode)return this.domManip(arguments,!1,function(a){this.parentNode.insertBefore(a,this)});if(arguments.length){var a=f.clean(arguments);a.push.apply(a,this.toArray());return this.pushStack(a,"before",arguments)}},after:function(){if(this[0]&&this[0].parentNode)return this.domManip(arguments,!1,function(a){this.parentNode.insertBefore(a,this.nextSibling)});if(arguments.length){var a=this.pushStack(this,"after",arguments);a.push.apply(a,f.clean(arguments));return a}},remove:function(a,b){for(var c=0,d;(d=this[c])!=null;c++)if(!a||f.filter(a,[d]).length)!b&&d.nodeType===1&&(f.cleanData(d.getElementsByTagName("*")),f.cleanData([d])),d.parentNode&&d.parentNode.removeChild(d);return this},empty:function()
 {for(var a=0,b;(b=this[a])!=null;a++){b.nodeType===1&&f.cleanData(b.getElementsByTagName("*"));while(b.firstChild)b.removeChild(b.firstChild)}return this},clone:function(a,b){a=a==null?!1:a,b=b==null?a:b;return this.map(function(){return f.clone(this,a,b)})},html:function(a){if(a===b)return this[0]&&this[0].nodeType===1?this[0].innerHTML.replace(W,""):null;if(typeof a=="string"&&!ba.test(a)&&(f.support.leadingWhitespace||!X.test(a))&&!bg[(Z.exec(a)||["",""])[1].toLowerCase()]){a=a.replace(Y,"<$1></$2>");try{for(var c=0,d=this.length;c<d;c++)this[c].nodeType===1&&(f.cleanData(this[c].getElementsByTagName("*")),this[c].innerHTML=a)}catch(e){this.empty().append(a)}}else f.isFunction(a)?this.each(function(b){var c=f(this);c.html(a.call(this,b,c.html()))}):this.empty().append(a);return this},replaceWith:function(a){if(this[0]&&this[0].parentNode){if(f.isFunction(a))return this.each(function(b){var c=f(this),d=c.html();c.replaceWith(a.call(this,b,d))});typeof a!="string"&&(a=f(a).detach());return this.each(function(){var b=this.nextSibling,c=this.parentNode;f(this).remove(),b?f(b).before(a):f(c).append(a)})}return this.length?this.pushStack(f(f.isFunction(a)?a():a),"replaceWith",a):this},detach:function(a){return this.remove(a,!0)},domManip:function(a,c,d){var e,g,h,i,j=a[0],k=[];if(!f.support.checkClone&&arguments.length===3&&typeof j=="string"&&bd.test(j))return this.each(function(){f(this).domManip(a,c,d,!0)});if(f.isFunction(j))return this.each(function(e){var g=f(this);a[0]=j.call(this,e,c?g.html():b),g.domManip(a,c,d)});if(this[0]){i=j&&j.parentNode,f.support.parentNode&&i&&i.nodeType===11&&i.childNodes.length===this.length?e={fragment:i}:e=f.buildFragment(a,this,k),h=e.fragment,h.childNodes.length===1?g=h=h.firstChild:g=h.firstChild;if(g){c=c&&f.nodeName(g,"tr");for(var l=0,m=this.length,n=m-1;l<m;l++)d.call(c?bi(this[l],g):this[l],e.cacheable||m>1&&l<n?f.clone(h,!0,!0):h)}k.length&&f.each(k,bp)}return this}}),f.buildFragment=function(a,b,d){var e,g,h,i,j=a[0];b&&b[0]&&(i=b[0].ownerDocument||b[0]),i.createDocumentFragment||(i=c),a.length===1&&typeof j=="string"&&j.length<512&&i===c&&j.charAt(0)==="<"&&!bb.test(j)&&(f.support.checkClone||!bd.test(j))&&(f.support.html5Clone||!bc.test(j))&&(g=!0,h=f.fragments[j],h&&h!==1&&(e=h)),e||(e=i.createDocumentFragment(),f.clean(a,i,e,d)),g&&(f.fragments[j]=h?e:1);return{fragment:e,cacheable:g}},f.fragments={},f.each({appendTo:"append",prependTo:"prepend",insertBefore:"before",insertAfter:"after",replaceAll:"replaceWith"},function(a,b){f.fn[a]=function(c){var d=[],e=f(c),g=this.length===1&&this[0].parentNode;if(g&&g.nodeType===11&&g.childNodes.length===1&&e.length===1){e[b](this[0]);return this}for(var h=0,i=e.length;h<i;h++){var j=(h>0?this.clone(!0):this).get();f(e[h])[b](j),d=d.concat(j)}return this.pushStack(d,a,e.selector)}}),f.extend({clone:function(a,b,c){var d,e,g,h=f.support.html5Clone||!bc.test("<"+a.nodeName)?a.cloneNode(!0):bo(a);if((!f.support.noCloneEvent||!f.support.noCloneChecked)&&(a.nodeType===1||a.nodeType===11)&&!f.isXMLDoc(a)){bk(a,h),d=bl(a),e=bl(h);for(g=0;d[g];++g)e[g]&&bk(d[g],e[g])}if(b){bj(a,h);if(c){d=bl(a),e=bl(h);for(g=0;d[g];++g)bj(d[g],e[g])}}d=e=null;return h},clean:function(a,b,d,e){var g;b=b||c,typeof b.createElement=="undefined"&&(b=b.ownerDocument||b[0]&&b[0].ownerDocument||c);var h=[],i;for(var j=0,k;(k=a[j])!=null;j++){typeof k=="number"&&(k+="");if(!k)continue;if(typeof k=="string")if(!_.test(k))k=b.createTextNode(k);else{k=k.replace(Y,"<$1></$2>");var l=(Z.exec(k)||["",""])[1].toLowerCase(),m=bg[l]||bg._default,n=m[0],o=b.createElement("div");b===c?bh.appendChild(o):U(b).appendChild(o),o.innerHTML=m[1]+k+m[2];while(n--)o=o.lastChild;if(!f.support.tbody){var p=$.test(k),q=l==="table"&&!p?o.firstChild&&o.firstChild.childNodes:m[1]==="<table>"&&!p?o.childNodes:[];for(i=q.length-1;i>=0;--i)f.nodeName(q[i],"tbody")&&!q[i].childNodes.length&&q[i].parentNode.removeChild(q[i])}!f.support.leadingWhitespace&&X.test(k)&&o.insertBefore(b.createTextNode(X.exec(k)[0]),o.firstChild),k=o.childNodes}var r;if(!f.support.appendChecked)if(k[0]&&typeof (r=k.length)=="number")for(i=0;i<r;i++)bn(k[i]);else bn(k);k.nodeType?h.push(k):h=f.merge(h,k)}if(d){g=function(a){return!a.type||be.test(a.type)};for(j=0;h[j];j++)if(e&&f.nodeName(h[j],"script")&&(!h[j].type||h[j].type.toLowerCase()==="text/javascript"))e.push(h[j].parentNode?h[j].parentNode.removeChild(h[j]):h[j]);else{if(h[j].nodeType===1){var s=f.grep(h[j].getElementsByTagName("script"),g);h.splice.apply(h,[j+1,0].concat(s))}d.appendChild(h[j])}}return h},cleanData:function(a){var b,c,d=f.cache,e=f.event.special,g=f.support.deleteExpando;for(var h=0,i;(i=a[h])!=null;h++){if(i.nodeName&&f.noData[i.nodeName.toLowerCase()])continue;c=i[f.expando];if(c){b=d[c];if(b&&b.events){for(var j in b.events)e[j]?f.event.remove(i,j):f.removeEvent(i,j,b.handle);b.handle&&(b.handle.elem=null)}g?delete i[f.expando]:i.removeAttribute&&i.removeAttribute(f.expando),delete d[c]}}}});var bq=/alpha\([^)]*\)/i,br=/opacity=([^)]*)/,bs=/([A-Z]|^ms)/g,bt=/^-?\d+(?:px)?$/i,bu=/^-?\d/,bv=/^([\-+])=([\-+.\de]+)/,bw={position:"absolute",visibility:"hidden",display:"block"},bx=["Left","Right"],by=["Top","Bottom"],bz,bA,bB;f.fn.css=function(a,c){if(arguments.length===2&&c===b)return this;return f.access(this,a,c,!0,function(a,c,d){return d!==b?f.style(a,c,d):f.css(a,c)})},f.extend({cssHooks:{opacity:{get:function(a,b){if(b){var c=bz(a,"opacity","opacity");return c===""?"1":c}return a.style.opacity}}},cssNumber:{fillOpacity:!0,fontWeight:!0,lineHeight:!0,opacity:!0,orphans:!0,widows:!0,zIndex:!0,zoom:!0},cssProps:{"float":f.support.cssFloat?"cssFloat":"styleFloat"},style:function(a,c,d,e){if(!!a&&a.nodeType!==3&&a.nodeType!==8&&!!a.style){var g,h,i=f.camelCase(c),j=a.style,k=f.cssHooks[i];c=f.cssProps[i]||i;if(d===b){if(k&&"get"in k&&(g=k.get(a,!1,e))!==b)return g;return j[c]}h=typeof d,h==="string"&&(g=bv.exec(d))&&(d=+(g[1]+1)*+g[2]+parseFloat(f.css(a,c)),h="number");if(d==null||h==="number"&&isNaN(d))return;h==="number"&&!f.cssNumber[i]&&(d+="px");if(!k||!("set"in k)||(d=k.set(a,d))!==b)try{j[c]=d}catch(l){}}},css:function(a,c,d){var e,g;c=f.camelCase(c),g=f.cssHooks[c],c=f.cssProps[c]||c,c==="cssFloat"&&(c="float");if(g&&"get"in g&&(e=g.get(a,!0,d))!==b)return e;if(bz)return bz(a,c)},swap:function(a,b,c){var d={};for(var e in b)d[e]=a.style[e],a.style[e]=b[e];c.call(a);for(e in b)a.style[e]=d[e]}}),f.curCSS=f.css,f.each(["height","width"],function(a,b){f.cssHooks[b]={get:function(a,c,d){var e;if(c){if(a.offsetWidth!==0)return bC(a,b,d);f.swap(a,bw,function(){e=bC(a,b,d)});return e}},set:function(a,b){if(!bt.test(b))return b;b=parseFloat(b);if(b>=0)return b+"px"}}}),f.support.opacity||(f.cssHooks.opacity={get:function(a,b){return br.test((b&&a.currentStyle?a.currentStyle.filter:a.style.filter)||"")?parseFloat(RegExp.$1)/100+"":b?"1":""},set:function(a,b){var c=a.style,d=a.currentStyle,e=f.isNumeric(b)?"alpha(opacity="+b*100+")":"",g=d&&d.filter||c.filter||"";c.zoom=1;if(b>=1&&f.trim(g.replace(bq,""))===""){c.removeAttribute("filter");if(d&&!d.filter)return}c.filter=bq.test(g)?g.replace(bq,e):g+" "+e}}),f(function(){f.support.reliableMarginRight||(f.cssHooks.marginRight={get:function(a,b){var c;f.swap(a,{display:"inline-block"},function(){b?c=bz(a,"margin-right","marginRight"):c=a.style.marginRight});return c}})}),c.defaultView&&c.defaultView.getComputedStyle&&(bA=function(a,b){var c,d,e;b=b.replace(bs,"-$1").toLowerCase(),(d=a.ownerDocument.defaultView)&&(e=d.getComputedStyle(a,null))&&(c=e.getPropertyValue(b),c===""&&!f.contains(a.ownerDocument.documentElement,a)&&(c=f.style(a,b)));return c}),c.documentElement.currentStyle&&(bB=function(a,b){var c,d,e,f=a.currentStyle&&a.currentStyle[b],g=a.style;f===null&&g&&(e=g[b])&&(f=e),!bt.test(f)&&bu.test(f)&&(c=g.left,d=a.runtimeStyle&&a.runtimeStyle.left,d&&(a.runtimeStyle.left=a.currentStyle.left),g.left=b==="fontSize"?"1em":f||0,f=g.pixelLeft+"px",g.left=c,d&&(a.runtimeStyle.left=d));return f===""?"auto":f}),bz=bA||bB,f.expr&&f.expr.filters&&(f.expr.filters.hidden=function(a){var b=a.offsetWidth,c=a.offsetHeight;return b===0&&c===0||!f.support.reliableHiddenOffsets&&(a.style&&a.style.display||f.css(a,"display"))==="none"},f.expr.filters.visible=function(a){return!f.expr.filters.hidden(a)});var bD=/%20/g,bE=/\[\]$/,bF=/\r?\n/g,bG=/#.*$/,bH=/^(.*?):[\t]*([^\r\n]*)\r?$/mg,bI=/^(?:color|date|datetime|datetime-local|email|hidden|month|number|password|range|search|tel|text|time|url|week)$/i,bJ=/^(?:about|app|app\-storage|.+\-extension|file|res|widget):$/,bK=/^(?:GET|HEAD)$/,bL=/^\/\//,bM=/\?/,bN=/<script\b[^<]*(?:(?!<\/script>)<[^<]*)*<\/script>/gi,bO=/^(?:select|textarea)/i,bP=/\s+/,bQ=/([?&])_=[^&]*/,bR=/^([\w\+\.\-]+:)(?:\/\/([^\/?#:]*)(?::(\d+))?)?/,bS=f.fn.load,bT={},bU={},bV,bW,bX=["*/"]+["*"];try{bV=e.href}catch(bY){bV=c.createElement("a"),bV.href="",bV=bV.href}bW=bR.exec(bV.toLowerCase())||[],f.fn.extend({load:function(a,c,d){if(typeof a!="string"&&bS)return bS.apply(this,arguments);if(!this.length)return this;var e=a.indexOf(" ");if(e>=0){var g=a.slice(e,a.length);a=a.slice(0,e)}var h="GET";c&&(f.isFunction(c)?(d=c,c=b):typeof c=="object"&&(c=f.param(c,f.ajaxSettings.traditional),h="POST"));var i=this;f.ajax({url:a,type:h,dataType:"html",data:c,complete:function(a,b,c){c=a.responseText,a.isResolved()&&(a.done(function(a){c=a}),i.html(g?f("<div>").append(c.replace(bN,"")).find(g):c)),d&&i.each(d,[c,b,a])}});return this},serialize:function(){return f.param(this.serializeArray())},serializeArray:function(){return this.map(function(){return this.elements?f.makeArray(this.elements):this}).filter(function(){return this.name&&!this.disabled&&(this.checked||bO.test(this.nodeName)||bI.test(this.type))}).map(function(a,b){var c=f(this).val();return c==null?null:f.isArray(c)?f.map(c,function(a,c){return{name:b.name,value:a.replace(bF,"\r\n")}}):{name:b.name,value:c.replace(bF,"\r\n")}}).get()}}),f.each("ajaxStart ajaxStop ajaxComplete ajaxError ajaxSuccess ajaxSend".split(" "),function(a,b){f.fn[b]=function(a){return this.on(b,a)}}),f.each(["get","post"],function(a,c){f[c]=function(a,d,e,g){f.isFunction(d)&&(g=g||e,e=d,d=b);return f.ajax({type:c,url:a,data:d,success:e,dataType:g})}}),f.extend({getScript:function(a,c){return f.get(a,b,c,"script")},getJSON:function(a,b,c){return f.get(a,b,c,"json")},ajaxSetup:function(a,b){b?b_(a,f.ajaxSettings):(b=a,a=f.ajaxSettings),b_(a,b);return a},ajaxSettings:{url:bV,isLocal:bJ.test(bW[1]),global:!0,type:"GET",contentType:"application/x-www-form-urlencoded",processData:!0,async:!0,accepts:{xml:"application/xml, text/xml",html:"text/html",text:"text/plain",json:"application/json, text/javascript","*":bX},contents:{xml:/xml/,html:/html/,json:/json/},responseFields:{xml:"responseXML",text:"responseText"},converters:{"* text":a.String,"text html":!0,"text json":f.parseJSON,"text xml":f.parseXML},flatOptions:{context:!0,url:!0}},ajaxPrefilter:bZ(bT),ajaxTransport:bZ(bU),ajax:function(a,c){function w(a,c,l,m){if(s!==2){s=2,q&&clearTimeout(q),p=b,n=m||"",v.readyState=a>0?4:0;var o,r,u,w=c,x=l?cb(d,v,l):b,y,z;if(a>=200&&a<300||a===304){if(d.ifModified){if(y=v.getResponseHeader("Last-Modified"))f.lastModified[k]=y;if(z=v.getResponseHeader("Etag"))f.etag[k]=z}if(a===304)w="notmodified",o=!0;else try{r=cc(d,x),w="success",o=!0}catch(A){w="parsererror",u=A}}else{u=w;if(!w||a)w="error",a<0&&(a=0)}v.status=a,v.statusText=""+(c||w),o?h.resolveWith(e,[r,w,v]):h.rejectWith(e,[v,w,u]),v.statusCode(j),j=b,t&&g.trigger("ajax"+(o?"Success":"Error"),[v,d,o?r:u]),i.fireWith(e,[v,w]),t&&(g.trigger("ajaxComplete",[v,d]),--f.active||f.event.trigger("ajaxStop"))}}typeof a=="object"&&(c=a,a=b),c=c||{};var d=f.ajaxSetup({},c),e=d.context||d,g=e!==d&&(e.nodeType||e instanceof f)?f(e):f.event,h=f.Deferred(),i=f.Callbacks("once memory"),j=d.statusCode||{},k,l={},m={},n,o,p,q,r,s=0,t,u,v={readyState:0,setRequestHeader:function(a,b){if(!s){var c=a.toLowerCase();a=m[c]=m[c]||a,l[a]=b}return this},getAllResponseHeaders:function(){return s===2?n:null},getResponseHeader:function(a){var c;if(s===2){if(!o){o={};while(c=bH.exec(n))o[c[1].toLowerCase()]=c[2]}c=o[a.toLowerCase()]}return c===b?null:c},overrideMimeType:function(a){s||(d.mimeType=a);return this},abort:function(a){a=a||"abort",p&&p.abort(a),w(0,a);return this}};h.promise(v),v.success=v.done,v.error=v.fail,v.complete=i.add,v.statusCode=function(a){if(a){var b;if(s<2)for(b in a)j[b]=[j[b],a[b]];else b=a[v.status],v.then(b,b)}return this},d.url=((a||d.url)+"").replace(bG,"").replace(bL,bW[1]+"//"),d.dataTypes=f.trim(d.dataType||"*").toLowerCase().split(bP),d.crossDomain==null&&(r=bR.exec(d.url.toLowerCase()),d.crossDomain=!(!r||r[1]==bW[1]&&r[2]==bW[2]&&(r[3]||(r[1]==="http:"?80:443))==(bW[3]||(bW[1]==="http:"?80:443)))),d.data&&d.processData&&typeof d.data!="string"&&(d.data=f.param(d.data,d.traditional)),b$(bT,d,c,v);if(s===2)return!1;t=d.global,d.type=d.type.toUpperCase(),d.hasContent=!bK.test(d.type),t&&f.active++===0&&f.event.trigger("ajaxStart");if(!d.hasContent){d.data&&(d.url+=(bM.test(d.url)?"&":"?")+d.data,delete d.data),k=d.url;if(d.cache===!1){var x=f.now(),y=d.url.replace(bQ,"$1_="+x);d.url=y+(y===d.url?(bM.test(d.url)?"&":"?")+"_="+x:"")}}(d.data&&d.hasContent&&d.contentType!==!1||c.contentType)&&v.setRequestHeader("Content-Type",d.contentType),d.ifModified&&(k=k||d.url,f.lastModified[k]&&v.setRequestHeader("If-Modified-Since",f.lastModified[k]),f.etag[k]&&v.setRequestHeader("If-None-Match",f.etag[k])),v.setRequestHeader("Accept",d.dataTypes[0]&&d.accepts[d.dataTypes[0]]?d.accepts[d.dataTypes[0]]+(d.dataTypes[0]!=="*"?", "+bX+"; q=0.01":""):d.accepts["*"]);for(u in d.headers)v.setRequestHeader(u,d.headers[u]);if(d.beforeSend&&(d.beforeSend.call(e,v,d)===!1||s===2)){v.abort();return!1}for(u in{success:1,error:1,complete:1})v[u](d[u]);p=b$(bU,d,c,v);if(!p)w(-1,"No Transport");else{v.readyState=1,t&&g.trigger("ajaxSend",[v,d]),d.async&&d.timeout>0&&(q=setTimeout(function(){v.abort("timeout")},d.timeout));try{s=1,p.send(l,w)}catch(z){if(s<2)w(-1,z);else throw z}}return v},param:function(a,c){var d=[],e=function(a,b){b=f.isFunction(b)?b():b,d[d.length]=encodeURIComponent(a)+"="+encodeURIComponent(b)};c===b&&(c=f.ajaxSettings.traditional);if(f.isArray(a)||a.jquery&&!f.isPlainObject(a))f.each(a,function(){e(this.name,this.value)});else for(var g in a)ca(g,a[g],c,e);return d.join("&").replace(bD,"+")}}),f.extend({active:0,lastModified:{},etag:{}});var cd=f.now(),ce=/(\=)\?(&|$)|\?\?/i;f.ajaxSetup({jsonp:"callback",jsonpCallback:function(){return f.expando+"_"+cd++}}),f.ajaxPrefilter("json jsonp",function(b,c,d){var e=b.contentType==="application/x-www-form-urlencoded"&&typeof b.data=="string";if(b.dataTypes[0]==="jsonp"||b.jsonp!==!1&&(ce.test(b.url)||e&&ce.test(b.data))){var g,h=b.jsonpCallback=f.isFunction(b.jsonpCallback)?b.jsonpCallback():b.jsonpCallback,i=a[h],j=b.url,k=b.data,l="$1"+h+"$2";b.jsonp!==!1&&(j=j.replace(ce,l),b.url===j&&(e&&(k=k.replace(ce,l)),b.data===k&&(j+=(/\?/.test(j)?"&":"?")+b.jsonp+"="+h))),b.url=j,b.data=k,a[h]=function(a){g=[a]},d.always(function(){a[h]=i,g&&f.isFunction(i)&&a[h](g[0])}),b.converters["script json"]=function(){g||f.error(h+" was not called");return g[0]},b.dataTypes[0]="json";return"script"}}),f.ajaxSetup({accepts:{script:"text/javascript, application/javascript, application/ecmascript, application/x-ecmascript"},contents:{script:/javascript|ecmascript/},converters:{"text script":function(a){f.globalEval(a);return a}}}),f.ajaxPrefilter("script",function(a){a.cache===b&&(a.cache=!1),a.crossDomain&&(a.type="GET",a.global=!1)}),f.ajaxTransport("script",function(a){if(a.crossDomain){var d,e=c.head||c.getElementsByTagName("head")[0]||c.documentElement;return{send:function(f,g){d=c.createElement("script"),d.async="async",a.scriptCharset&&(d.charset=a.scriptCharset),d.src=a.url,d.onload=d.onreadystatechange=function(a,c){if(c||!d.readyState||/loaded|complete/.test(d.readyState))d.onload=d.onreadystatechange=null,e&&d.parentNode&&e.removeChild(d),d=b,c||g(200,"success")},e.insertBefore(d,e.firstChild)},abort:function(){d&&d.onload(0,1)}}}});var cf=a.ActiveXObject?function(){for(var a in ch)ch[a](0,1)}:!1,cg=0,ch;f.ajaxSettings.xhr=a.ActiveXObject?function(){return!this.isLocal&&ci()||cj()}:ci,function(a){f.extend(f.support,{ajax:!!a,cors:!!a&&"withCredentials"in a})}(f.ajaxSettings.xhr()),f.support.ajax&&f.ajaxTransport(function(c){if(!c.crossDomain||f.support.cors){var d;return{send:function(e,g){var h=c.xhr(),i,j;c.username?h.open(c.type,c.url,c.async,c.username,c.password):h.open(c.type,c.url,c.async);if(c.xhrFields)for(j in c.xhrFields)h[j]=c.xhrFields[j];c.mimeType&&h.overrideMimeType&&h.overrideMimeType(c.mimeType),!c.crossDomain&&!e["X-Requested-With"]&&(e["X-Requested-With"]="XMLHttpRequest");try{for(j in e)h.setRequestHeader(j,e[j])}catch(k){}h.send(c.hasContent&&c.data||null),d=function(a,e){var j,k,l,m,n;try{if(d&&(e||h.readyState===4)){d=b,i&&(h.onreadystatechange=f.noop,cf&&delete ch[i]);if(e)h.readyState!==4&&h.abort();else{j=h.status,l=h.getAllResponseHeaders(),m={},n=h.responseXML,n&&n.documentElement&&(m.xml=n),m.text=h.responseText;try{k=h.statusText}catch(o){k=""}!j&&c.isLocal&&!c.crossDomain?j=m.text?200:404:j===1223&&(j=204)}}}catch(p){e||g(-1,p)}m&&g(j,k,m,l)},!c.async||h.readyState===4?d():(i=++cg,cf&&(ch||(ch={},f(a).unload(cf)),ch[i]=d),h.onreadystatechange=d)},abort:function(){d&&d(0,1)}}}});var ck={},cl,cm,cn=/^(?:toggle|show|hide)$/,co=/^([+\-]=)?([\d+.\-]+)([a-z%]*)$/i,cp,cq=[["height","marginTop","marginBottom","paddingTop","paddingBottom"],["width","marginLeft","marginRight","paddingLeft","paddingRight"],["opacity"]],cr;f.fn.extend({show:function(a,b,c){var d,e;if(a||a===0)return this.animate(cu("show",3),a,b,c);for(var g=0,h=this.length;g<h;g++)d=this[g],d.style&&(e=d.style.display,!f._data(d,"olddisplay")&&e==="none"&&(e=d.style.display=""),e===""&&f.css(d,"display")==="none"&&f._data(d,"olddisplay",cv(d.nodeName)));for(g=0;g<h;g++){d=this[g];if(d.style){e=d.style.display;if(e===""||e==="none")d.style.display=f._data(d,"olddisplay")||""}}return this},hide:function(a,b,c){if(a||a===0)return this.animate(cu("hide",3),a,b,c);var d,e,g=0,h=this.length;for(;g<h;g++)d=this[g],d.style&&(e=f.css(d,"display"),e!=="none"&&!f._data(d,"olddisplay")&&f._data(d,"olddisplay",e));for(g=0;g<h;g++)this[g].style&&(this[g].style.display="none");return this},_toggle:f.fn.toggle,toggle:function(a,b,c){var d=typeof a=="boolean";f.isFunction(a)&&f.isFunction(b)?this._toggle.apply(this,arguments):a==null||d?this.each(function(){var b=d?a:f(this).is(":hidden");f(this)[b?"show":"hide"]()}):this.animate(cu("toggle",3),a,b,c);return this},fadeTo:function(a,b,c,d){return this.filter(":hidden").css("opacity",0).show().end().animate({opacity:b},a,c,d)},animate:function(a,b,c,d){function g(){e.queue===!1&&f._mark(this);var b=f.extend({},e),c=this.nodeType===1,d=c&&f(this).is(":hidden"),g,h,i,j,k,l,m,n,o;b.animatedProperties={};for(i in a){g=f.camelCase(i),i!==g&&(a[g]=a[i],delete a[i]),h=a[g],f.isArray(h)?(b.animatedProperties[g]=h[1],h=a[g]=h[0]):b.animatedProperties[g]=b.specialEasing&&b.specialEasing[g]||b.easing||"swing";if(h==="hide"&&d||h==="show"&&!d)return b.complete.call(this);c&&(g==="height"||g==="width")&&(b.overflow=[this.style.overflow,this.style.overflowX,this.style.overflowY],f.css(this,"display")==="inline"&&f.css(this,"float")==="none"&&(!f.support.inlineBlockNeedsLayout||cv(this.nodeName)==="inline"?this.style.display="inline-block":this.style.zoom=1))}b.overflow!=null&&(this.style.overflow="hidden");for(i in a)j=new f.fx(this,b,i),h=a[i],cn.test(h)?(o=f._data(this,"toggle"+i)||(h==="toggle"?d?"show":"hide":0),o?(f._data(this,"toggle"+i,o==="show"?"hide":"show"),j[o]()):j[h]()):(k=co.exec(h),l=j.cur(),k?(m=parseFloat(k[2]),n=k[3]||(f.cssNumber[i]?"":"px"),n!=="px"&&(f.style(this,i,(m||1)+n),l=(m||1)/j.cur()*l,f.style(this,i,l+n)),k[1]&&(m=(k[1]==="-="?-1:1)*m+l),j.custom(l,m,n)):j.custom(l,h,""));return!0}var e=f.speed(b,c,d);if(f.isEmptyObject(a))return this.each(e.complete,[!1]);a=f.extend({},a);return e.queue===!1?this.each(g):this.queue(e.queue,g)},stop:function(a,c,d){typeof a!="string"&&(d=c,c=a,a=b),c&&a!==!1&&this.queue(a||"fx",[]);return this.each(function(){function h(a,b,c){var e=b[c];f.removeData(a,c,!0),e.stop(d)}var b,c=!1,e=f.timers,g=f._data(this);d||f._unmark(!0,this);if(a==null)for(b in g)g[b]&&g[b].stop&&b.indexOf(".run")===b.length-4&&h(this,g,b);else g[b=a+".run"]&&g[b].stop&&h(this,g,b);for(b=e.length;b--;)e[b].elem===this&&(a==null||e[b].queue===a)&&(d?e[b](!0):e[b].saveState(),c=!0,e.splice(b,1));(!d||!c)&&f.dequeue(this,a)})}}),f.each({slideDown:cu("show",1),slideUp:cu("hide",1),slideToggle:cu("toggle",1),fadeIn:{opacity:"show"},fadeOut:{opacity:"hide"},fadeToggle:{opacity:"toggle"}},function(a,b){f.fn[a]=function(a,c,d){return this.animate(b,a,c,d)}}),f.extend({speed:function(a,b,c){var d=a&&typeof a=="object"?f.extend({},a):{complete:c||!c&&b||f.isFunction(a)&&a,duration:a,easing:c&&b||b&&!f.isFunction(b)&&b};d.duration=f.fx.off?0:typeof d.duration=="number"?d.duration:d.duration in f.fx.speeds?f.fx.speeds[d.duration]:f.fx.speeds._default;if(d.queue==null||d.queue===!0)d.queue="fx";d.old=d.complete,d.complete=function(a){f.isFunction(d.old)&&d.old.call(this),d.queue?f.dequeue(this,d.queue):a!==!1&&f._unmark(this)};return d},easing:{linear:function(a,b,c,d){return c+d*a},swing:function(a,b,c,d){return(-Math.cos(a*Math.PI)/2+.5)*d+c}},timers:[],fx:function(a,b,c){this.options=b,this.elem=a,this.prop=c,b.orig=b.orig||{}}}),f.fx.prototype={update:function(){this.options.step&&this.options.step.call(this.elem,this.now,this),(f.fx.step[this.prop]||f.fx.step._default)(this)},cur:function(){if(this.elem[this.prop]!=null&&(!this.elem.style||this.elem.style[this.prop]==null))return this.elem[this.prop];var a,b=f.css(this.elem,this.prop);return isNaN(a=parseFloat(b))?!b||b==="auto"?0:b:a},custom:function(a,c,d){function h(a){return e.step(a)}var e=this,g=f.fx;this.startTime=cr||cs(),this.end=c,this.now=this.start=a,this.pos=this.state=0,this.unit=d||this.unit||(f.cssNumber[this.prop]?"":"px"),h.queue=this.options.queue,h.elem=this.elem,h.saveState=function(){e.options.hide&&f._data(e.elem,"fxshow"+e.prop)===b&&f._data(e.elem,"fxshow"+e.prop,e.start)},h()&&f.timers.push(h)&&!cp&&(cp=setInterval(g.tick,g.interval))},show:function(){var a=f._data(this.elem,"fxshow"+this.prop);this.options.orig[this.prop]=a||f.style(this.elem,this.prop),this.options.show=!0,a!==b?this.custom(this.cur(),a):this.custom(this.prop==="width"||this.prop==="height"?1:0,this.cur()),f(this.elem).show()},hide:function(){this.options.orig[this.prop]=f._data(this.elem,"fxshow"+this.prop)||f.style(this.elem,this.prop),this.options.hide=!0,this.custom(this.cur(),0)},step:function(a){var b,c,d,e=cr||cs(),g=!0,h=this.elem,i=this.options;if(a||e>=i.duration+this.startTime){this.now=this.end,this.pos=this.state=1,this.update(),i.animatedProperties[this.prop]=!0;for(b in i.animatedProperties)i.animatedProperties[b]!==!0&&(g=!1);if(g){i.overflow!=null&&!f.support.shrinkWrapBlocks&&f.each(["","X","Y"],function(a,b){h.style["overflow"+b]=i.overflow[a]}),i.hide&&f(h).hide();if(i.hide||i.show)for(b in i.animatedProperties)f.style(h,b,i.orig[b]),f.removeData(h,"fxshow"+b,!0),f.removeData(h,"toggle"+b,!0);d=i.complete,d&&(i.complete=!1,d.call(h))}return!1}i.duration==Infinity?this.now=e:(c=e-this.startTime,this.state=c/i.duration,this.pos=f.easing[i.animatedProperties[this.prop]](this.state,c,0,1,i.duration),this.now=this.start+(this.end-this.start)*this.pos),this.update();return!0}},f.extend(f.fx,{tick:function(){var a,b=f.timers,c=0;for(;c<b.length;c++)a=b[c],!a()&&b[c]===a&&b.splice(c--,1);b.length||f.fx.stop()},interval:13,stop:function(){clearInterval(cp),cp=null},speeds:{slow:600,fast:200,_default:400},step:{opacity:function(a){f.style(a.elem,"opacity",a.now)},_default:function(a){a.elem.style&&a.elem.style[a.prop]!=null?a.elem.style[a.prop]=a.now+a.unit:a.elem[a.prop]=a.now}}}),f.each(["width","height"],function(a,b){f.fx.step[b]=function(a){f.style(a.elem,b,Math.max(0,a.now)+a.unit)}}),f.expr&&f.expr.filters&&(f.expr.filters.animated=function(a){return f.grep(f.timers,function(b){return a===b.elem}).length});var cw=/^t(?:able|d|h)$/i,cx=/^(?:body|html)$/i;"getBoundingClientRect"in c.documentElement?f.fn.offset=function(a){var b=this[0],c;if(a)return this.each(function(b){f.offset.setOffset(this,a,b)});if(!b||!b.ownerDocument)return null;if(b===b.ownerDocument.body)return f.offset.bodyOffset(b);try{c=b.getBoundingClientRect()}catch(d){}var e=b.ownerDocument,g=e.documentElement;if(!c||!f.contains(g,b))return c?{top:c.top,left:c.left}:{top:0,left:0};var h=e.body,i=cy(e),j=g.clientTop||h.clientTop||0,k=g.clientLeft||h.clientLeft||0,l=i.pageYOffset||f.support.boxModel&&g.scrollTop||h.scrollTop,m=i.pageXOffset||f.support.boxModel&&g.scrollLeft||h.scrollLeft,n=c.top+l-j,o=c.left+m-k;return{top:n,left:o}}:f.fn.offset=function(a){var b=this[0];if(a)return this.each(function(b){f.offset.setOffset(this,a,b)});if(!b||!b.ownerDocument)return null;if(b===b.ownerDocument.body)return f.offset.bodyOffset(b);var c,d=b.offsetParent,e=b,g=b.ownerDocument,h=g.documentElement,i=g.body,j=g.defaultView,k=j?j.getComputedStyle(b,null):b.currentStyle,l=b.offsetTop,m=b.offsetLeft;while((b=b.parentNode)&&b!==i&&b!==h){if(f.support.fixedPosition&&k.position==="fixed")break;c=j?j.getComputedStyle(b,null):b.currentStyle,l-=b.scrollTop,m-=b.scrollLeft,b===d&&(l+=b.offsetTop,m+=b.offsetLeft,f.support.doesNotAddBorder&&(!f.support.doesAddBorderForTableAndCells||!cw.test(b.nodeName))&&(l+=parseFloat(c.borderTopWidth)||0,m+=parseFloat(c.borderLeftWidth)||0),e=d,d=b.offsetParent),f.support.subtractsBorderForOverflowNotVisible&&c.overflow!=="visible"&&(l+=parseFloat(c.borderTopWidth)||0,m+=parseFloat(c.borderLeftWidth)||0),k=c}if(k.position==="relative"||k.position==="static")l+=i.offsetTop,m+=i.offsetLeft;f.support.fixedPosition&&k.position==="fixed"&&(l+=Math.max(h.scrollTop,i.scrollTop),m+=Math.max(h.scrollLeft,i.scrollLeft));return{top:l,left:m}},f.offset={bodyOffset:function(a){var b=a.offsetTop,c=a.offsetLeft;f.support.doesNotIncludeMarginInBodyOffset&&(b+=parseFloat(f.css(a,"marginTop"))||0,c+=parseFloat(f.css(a,"marginLeft"))||0);return{top:b,left:c}},setOffset:function(a,b,c){var d=f.css(a,"position");d==="static"&&(a.style.position="relative");var e=f(a),g=e.offset(),h=f.css(a,"top"),i=f.css(a,"left"),j=(d==="absolute"||d==="fixed")&&f.inArray("auto",[h,i])>-1,k={},l={},m,n;j?(l=e.position(),m=l.top,n=l.left):(m=parseFloat(h)||0,n=parseFloat(i)||0),f.isFunction(b)&&(b=b.call(a,c,g)),b.top!=null&&(k.top=b.top-g.top+m),b.left!=null&&(k.left=b.left-g.left+n),"using"in b?b.using.call(a,k):e.css(k)}},f.fn.extend({position:function(){if(!this[0])return null;var a=this[0],b=this.offsetParent(),c=this.offset(),d=cx.test(b[0].nodeName)?{top:0,left:0}:b.offset();c.top-=parseFloat(f.css(a,"marginTop"))||0,c.left-=parseFloat(f.css(a,"marginLeft"))||0,d.top+=parseFloat(f.css(b[0],"borderTopWidth"))||0,d.left+=parseFloat(f.css(b[0],"borderLeftWidth"))||0;return{top:c.top-d.top,left:c.left-d.left}},offsetParent:function(){return this.map(function(){var a=this.offsetParent||c.body;while(a&&!cx.test(a.nodeName)&&f.css(a,"position")==="static")a=a.offsetParent;return a})}}),f.each(["Left","Top"],function(a,c){var d="scroll"+c;f.fn[d]=function(c){var e,g;if(c===b){e=this[0];if(!e)return null;g=cy(e);return g?"pageXOffset"in g?g[a?"pageYOffset":"pageXOffset"]:f.support.boxModel&&g.document.documentElement[d]||g.document.body[d]:e[d]}return this.each(function(){g=cy(this),g?g.scrollTo(a?f(g).scrollLeft():c,a?c:f(g).scrollTop()):this[d]=c})}}),f.each(["Height","Width"],function(a,c){var d=c.toLowerCase();f.fn["inner"+c]=function(){var a=this[0];return a?a.style?parseFloat(f.css(a,d,"padding")):this[d]():null},f.fn["outer"+c]=function(a){var b=this[0];return b?b.style?parseFloat(f.css(b,d,a?"margin":"border")):this[d]():null},f.fn[d]=function(a){var e=this[0];if(!e)return a==null?null:this;if(f.isFunction(a))return this.each(function(b){var c=f(this);c[d](a.call(this,b,c[d]()))});if(f.isWindow(e)){var g=e.document.documentElement["client"+c],h=e.document.body;return e.document.compatMode==="CSS1Compat"&&g||h&&h["client"+c]||g}if(e.nodeType===9)return Math.max(e.documentElement["client"+c],e.body["scroll"+c],e.documentElement["scroll"+c],e.body["offset"+c],e.documentElement["offset"+c]);if(a===b){var i=f.css(e,d),j=parseFloat(i);return f.isNumeric(j)?j:i}return this.css(d,typeof a=="string"?a:a+"px")}}),a.jQuery=a.$=f,typeof define=="function"&&define.amd&&define.amd.jQuery&&define("jquery",[],function(){return f})})(window);

OEBPS/Common_Content/fonts/overpass_bold-web.eot

OEBPS/Common_Content/fonts/portal/nimbus/iconfont.eot

OEBPS/Common_Content/images/33.png

OEBPS/images/clustering-BalancerArch.png
€

Session Replications

Web Browser Load Balancer

OEBPS/images/jbosscmp-jdbc_dependent-value-class.png
description

property-name
(G _column-name _J
@ =D

jdbe-type

dependent-value-class

property

sql-type
#146191

OEBPS/Common_Content/fonts/overpass_bold-web.woff

OEBPS/Common_Content/images/23.png

OEBPS/Common_Content/images/40.png

OEBPS/images/jboss_4_0_container_configuration.png
R
i

5
=R

invoker-proxy-binding-name

sync-on-commit-only
insert-after-ejb-post-create
call-ejb-store-on-clean
container-

H
8
E
H

instance-pool

‘web-class-loader
locking-policy

container-pool-conf
commit-option
optiond-refresh-rate

security-domain

OEBPS/images/ejbhomeproxy.png
] 2] o
B — W —

i m

proxyFactory EpBodule EjBeployer

ClientContainer JBoss server

Logical EJB Proxy

OEBPS/Common_Content/images/38.png

OEBPS/Common_Content/images/bkgrnd_greydots.png

OEBPS/images/jboss_ds.jpg
+ mbean

+ local-tx-datasource

+ xa-datasource

+ datasourcesg| (3

+ no-tx-datasource

+ ha-local-tx-datasource,

+ ha-xa-datasource,

OEBPS/Common_Content/images/h1-bg.png

OEBPS/content.opf
 5_idm139776680181824 Administration and Configuration Guide This book is a guide to the administration and configuration of JBoss Enterprise Application Platform 5 and its patch releases. JBoss Community en

OEBPS/Common_Content/images/shine.png

OEBPS/images/jbosscmp-jdbc_ejb-relationship-role.png
ejb-relationship-role-name

O constran:
© IS —C-GETIITID

strategy

° =T
OX coserionisrou 3

left-join

ejb-relationship-role

read-ahead

batch-cascade-delete
#146189

OEBPS/Common_Content/images/shade.png

OEBPS/images/deadlock-definition.png
Thread 1 Thread 2

= = = = = locks acquired

attempt to acquire locks
results in deadlock

OEBPS/images/jbosscmp-jdbc_user-type-mapping.png
user-type-mapping

OEBPS/Common_Content/images/36.png

OEBPS/Common_Content/images/stock-home.png

OEBPS/images/jbosscmp-jdbc_defaults.png
post-table-create

fh-constraint
pping

clean-read-ahead-on-load

3

s g

i

2 3
H

=

g :

: £

g 3
H

:

s
Fi
£l
5
H
H
H
8
S

(SISO OICISIOISIOICIOIOLS)

OEBPS/images/microcontainer.png
Reliance

Deployers

Managed

Reflect

OEBPS/Common_Content/images/image_right.png

OEBPS/Common_Content/images/red.png

OEBPS/Common_Content/images/stock-go-up.png

OEBPS/Common_Content/images/32.png

OEBPS/Common_Content/images/28.png

OEBPS/Common_Content/images/image_left.png
E) redhat.

OEBPS/Common_Content/fonts/overpass_regular-web.ttf

OEBPS/Common_Content/images/16.png

OEBPS/images/master_node_before.png
[T

Cluster
u Partition

Stand by Node.

w
Stand by Node

u
Stand by Node

OEBPS/images/jbosscmp_jdbc_mapping.png
mapping

@O

OEBPS/Common_Content/images/39.png

OEBPS/images/jbosscache-JGroupsStack.png
Application Application Application
Building Blocks Building Blocks Building Blocks

OEBPS/Common_Content/fonts/overpass_bold-web.ttf

OEBPS/Common_Content/images/Enterprise_title_logo.png
E) redhat.

OEBPS/Common_Content/images/bullet_arrowblue.png

OEBPS/Common_Content/fonts/portal/nimbus/iconfont.woff

OEBPS/images/jndiview-3.png
java: Namespace

+- XAConnectionFactory (class: org.jboss.mq.SpyXAConnectionFactory)
+- Defaultds (class: javax.sql.Datasource)
+- SecurityProxyFactory (class: org.jboss.security.SubjectSecurityProxyFactory)
+- DefaultJsprovider (class: org.jboss.jms.jndi.JNDIProviderAdapter)
+- comp (class: javax.naming.Context)
+- Jmsa (class: org.jboss.resource.adapter. jms.JmsConnectionFactoryImpl)
+- ConnectionFactory (class: org.jboss.mq.SpyConnectionFactory)
+- jaas (class: javax.naming.Context)
| “+- JmsxaRealm (class: org.jboss.security.plugins.SecurityDomainContext)
| +- jbossmq (class: org.jboss.security.plugins.SecurityDomaincontext)
| +- AsqlbbRealm (class: org.jboss.security.plugins.SecuritybomainContext)
+- timedCacheFactory (class: javax.naming.Context)
Failed to lookup: timedCacheFactory, errmsg=null
+- TransactionPropagationContextExporter (class: org.jboss.tm.TransactionPropagationcontext
+- StdJMsPool (class: org.jboss.jms.ast.StdServersessionPoolFactory)
+- Mail (class: javax.mail.Session)
+- TransactionPropagationContextImporter (class: org.jboss.tm.TransactionPropagationcontext
+- TransactionManager (class: org.jboss.tm.TxManager)

Global JNDI Namespace

+- XaConnectionFactory (class: org.Jboss.mq.SpyXAConnectionFactory)
+- UIL2ConnectionFactory[link > Connectionfactory) (class: javax.naming.LinkRef)

+- UserTransactionSessionFactory (proxy: SProxyll implements interface org.jboss.tm.usert.
+- HTTPConnectionFactory (class: org.jboss.mq.SpyConnectionFactory)

+- console (class: org.Jnp.interfaces.NamingContext)

| +- Plugintanager (proxy: SProxy36 implements interface org.jboss.console.manager.Plugin
+- UILZXACoMnectionFactory[Link > XAConnectionFactory] (class: javax.naming.LinkRef)

g s e e Creemmaiien g ST g it El LA et R i SR R S T

OEBPS/images/jbosscmp-jdbc.png
defaults

OXerccronice beans 3
© e
OX cpencentvalue-casses 3
° @IS
X < command: 3
OX serypemapoine: 3

reserved-words

jbosscmp-jdbe

#146195

OEBPS/Common_Content/images/24.png

OEBPS/Common_Content/images/title_logo.png
E) redhat.

OEBPS/Common_Content/images/8.png

OEBPS/Common_Content/images/9.png

OEBPS/Common_Content/images/Online_title_logo.png
E) redhat.

OEBPS/Common_Content/images/warning.png

OEBPS/images/jboss-as-components.png
JBoss Enterprise Application Server 5 Runtime

User Applications

0SGi Bundle Spring Beans.

Component Deployers Enterprise Services

@ o
< [3| £ [_Clustering
s o1&

e T

M

OEBPS/images/jboss_ds_local_tx.jpg
i

e

py——

1 comnecon:ropery

E P
S .

ot o | o[+ mox oot e

¥ Poeking ey

e

1 excepuon:sortercass-nameyy

[preparea-satement-cache-sie

OEBPS/Common_Content/images/6.png

OEBPS/Common_Content/images/7.png

OEBPS/Common_Content/images/4.png

OEBPS/Common_Content/images/5.png

OEBPS/Common_Content/images/2.png

OEBPS/Common_Content/images/3.png

OEBPS/Common_Content/images/important.png

OEBPS/Common_Content/images/1.png

OEBPS/images/jboss_ds_ha_local.jpg
SR
e
—

ek

conmection-properyg

o mon s

[t e |

of prepued-sement-cate-sze g

e

OEBPS/images/jboss_4_0_container_cache_conf.png
cache-policy-conf

min-capacity
max capacity

remover-period

overager-period

resizer-period

max-cache-miss-period

min-cache-miss-period

cache-load-factor

#146199

OEBPS/Common_Content/images/35.png

OEBPS/images/Chap11-4.png
etters>+getDescription() : String
Setters> +gethemberGangster() :Set
Setters>+getName(: String.

Setters>+getTheBoss() : Gangster
Setter>>+setDescription| description : tring) :void
stters>+setTheBoss(theBoss : Gangster) void

<cgetters>+getcity(:string
<cgetter>>+getDescription) : Sring.
<cgetters>+getLocationID(: tring
<cgetters>+getstate(: String.
<cgetters>+getstreet) : tring.
<cgetters>+getzipCode)int

1 | organization <csetter>>+setity(city : tring) :void
1.+ | Membercangsters

<csetters>ssetstate(state :
<csetters>+setstreet(street :String) : void

etters>+getBadness): int
g L 3 <csetters>+setZipCode(ipCode: int):void

Setters>+getContactinfo(): Contactinfo
Setters>+getEnemies0) : Set
Setters>+getGangsterld) : Integer

<cgetters>+gethangout() : Location 0.1 | Hangout

<cgetters>+getjobs) - Set

<cgetters>+getName(: String

<cgetter>>+getNickName): String

<<getters>+getOrganization() : Organization
<csetter>>+setBadness(badness - nt) : vold
<csetter>>+setContactinfo(contactinfo : Contactinfo) :
<csetter>>+setHangout(hangout:Locatlon) :void
<csetter>>+setNickName(nickName : String) : void

Enemies
Job Gangsters
Jobs

<cgetters>+getGangsters) : set
<cgetters>+getName(: String
<cgetters>+getscore(): double
<cgetter>>+getsetupCost(): double
<csetters>+setscorel score : double) :void
<csetter>>+setSetupCost(setupCost: double) : void

OEBPS/images/jbosscmp-jdbc_function-mapping.png
function-name

function-mapping

function-sql

OEBPS/Common_Content/images/19.png

OEBPS/images/Chap3-10.png
deploy/http-invoker.sar

META-INF/jboss-service.xml

OEBPS/images/jbosscmp-jdbc_entity-commands.png
name
string

class
Siring

entity-commands e entity-command ’ attribute

OEBPS/images/server-file-schema.png
Service

Connector

Executor

Engine

Valve
Realm

Host

Valve
Realm
Context

OEBPS/images/clustering-InterceptorArch.png

OEBPS/images/jndiview-2.png
MBean description:

INDIView Service. List deployed application java:comp namespaces, the java: namespace as well as the
global InitialContext INDI namespace.

List of MBean attributes:

IName java.lang.String|R INDIView|The class name of the MBean
State lint R 3 [The status of the MBean
StateString|java.lang.String|R Started |The status of the MBean in text form

List of MBean operations:

java.lang.String list()

Output INDI info as text

®True O If true, list the class of each object in addition to its
False name

verbose||boolean

(invoke)

java.lang.String listXML()

Output INDI info in XML format

OEBPS/images/transactions-architecture.png
©Other Java Applications Sample Demos

1 ¥

+ »
JTA &)| JoBC ‘_&Afmsanﬁmalobjects“) ws-T

v

53
Object Transaction Service (OTS) IT * Arjuna Core Portability

ORB Portability Layer

Object Request Broker (ORB)

A-TS Package <+—>Interact with each other

OEBPS/images/Chap3-8.png
javax.naming.Context

orgjnp.server.Main

2 factory

orgjnp.interfaces.NamingContextFactory orgjboss.naming.NamingService

javax.naming.spi.InitialContextFactory orgjboss.naming.NamingServiceMBean

OEBPS/Common_Content/images/watermark-draft.png

OEBPS/Common_Content/images/20.png

OEBPS/images/jbosscmp-jdbc_cmp-field.png
field-name

jdbe-type

sql-type

OX o increment
© EETTED
X checiarcariersct 3

state-factory

cmp-field property

OEBPS/Common_Content/fonts/overpass_light-web.eot

OEBPS/images/snmp-notification-map-list.png
ik nnliﬁtalinn-lypz%
strin

+ gznzri(ﬂ

inteder

+ spmﬁ(a

inteaer

i (3| * mappingg | 3 zntzrprisz%

string

+ notification-map-

f=T
+ var-bindg] strin

¥ var-bind-listg|

©

OEBPS/Common_Content/scripts/highlight.pack.js
/*! highlight.js v9.2.0 | BSD3 License | git.io/hljslicense */
!function(e){var n="object"==typeof window&&window||"object"==typeof self&&self;"undefined"!=typeof exports?e(exports):n&&(n.hljs=e({}),"function"==typeof define&&define.amd&&define([],function(){return n.hljs}))}(function(e){function n(e){return e.replace(/&/gm,"&").replace(/</gm,"<").replace(/>/gm,">")}function t(e){return e.nodeName.toLowerCase()}function r(e,n){var t=e&&e.exec(n);return t&&0==t.index}function a(e){return/^(no-?highlight|plain|text)$/i.test(e)}function i(e){var n,t,r,i=e.className+" ";if(i+=e.parentNode?e.parentNode.className:"",t=/\blang(?:uage)?-([\w-]+)\b/i.exec(i))return w(t[1])?t[1]:"no-highlight";for(i=i.split(/\s+/),n=0,r=i.length;r>n;n++)if(w(i[n])||a(i[n]))return i[n]}function o(e,n){var t,r={};for(t in e)r[t]=e[t];if(n)for(t in n)r[t]=n[t];return r}function u(e){var n=[];return function r(e,a){for(var i=e.firstChild;i;i=i.nextSibling)3==i.nodeType?a+=i.nodeValue.length:1==i.nodeType&&(n.push({event:"start",offset:a,node:i}),a=r(i,a),t(i).match(/br|hr|img|input/)||n.push({event:"stop",offset:a,node:i}));return a}(e,0),n}function c(e,r,a){function i(){return e.length&&r.length?e[0].offset!=r[0].offset?e[0].offset<r[0].offset?e:r:"start"==r[0].event?e:r:e.length?e:r}function o(e){function r(e){return" "+e.nodeName+'="'+n(e.value)+'"'}f+="<"+t(e)+Array.prototype.map.call(e.attributes,r).join("")+">"}function u(e){f+="</"+t(e)+">"}function c(e){("start"==e.event?o:u)(e.node)}for(var s=0,f="",l=[];e.length||r.length;){var g=i();if(f+=n(a.substr(s,g[0].offset-s)),s=g[0].offset,g==e){l.reverse().forEach(u);do c(g.splice(0,1)[0]),g=i();while(g==e&&g.length&&g[0].offset==s);l.reverse().forEach(o)}else"start"==g[0].event?l.push(g[0].node):l.pop(),c(g.splice(0,1)[0])}return f+n(a.substr(s))}function s(e){function n(e){return e&&e.source||e}function t(t,r){return new RegExp(n(t),"m"+(e.cI?"i":"")+(r?"g":""))}function r(a,i){if(!a.compiled){if(a.compiled=!0,a.k=a.k||a.bK,a.k){var u={},c=function(n,t){e.cI&&(t=t.toLowerCase()),t.split(" ").forEach(function(e){var t=e.split("|");u[t[0]]=[n,t[1]?Number(t[1]):1]})};"string"==typeof a.k?c("keyword",a.k):Object.keys(a.k).forEach(function(e){c(e,a.k[e])}),a.k=u}a.lR=t(a.l||/\b\w+\b/,!0),i&&(a.bK&&(a.b="\\b("+a.bK.split(" ").join("|")+")\\b"),a.b||(a.b=/\B|\b/),a.bR=t(a.b),a.e||a.eW||(a.e=/\B|\b/),a.e&&(a.eR=t(a.e)),a.tE=n(a.e)||"",a.eW&&i.tE&&(a.tE+=(a.e?"|":"")+i.tE)),a.i&&(a.iR=t(a.i)),void 0===a.r&&(a.r=1),a.c||(a.c=[]);var s=[];a.c.forEach(function(e){e.v?e.v.forEach(function(n){s.push(o(e,n))}):s.push("self"==e?a:e)}),a.c=s,a.c.forEach(function(e){r(e,a)}),a.starts&&r(a.starts,i);var f=a.c.map(function(e){return e.bK?"\\.?("+e.b+")\\.?":e.b}).concat([a.tE,a.i]).map(n).filter(Boolean);a.t=f.length?t(f.join("|"),!0):{exec:function(){return null}}}}r(e)}function f(e,t,a,i){function o(e,n){for(var t=0;t<n.c.length;t++)if(r(n.c[t].bR,e))return n.c[t]}function u(e,n){if(r(e.eR,n)){for(;e.endsParent&&e.parent;)e=e.parent;return e}return e.eW?u(e.parent,n):void 0}function c(e,n){return!a&&r(n.iR,e)}function g(e,n){var t=N.cI?n[0].toLowerCase():n[0];return e.k.hasOwnProperty(t)&&e.k[t]}function p(e,n,t,r){var a=r?"":E.classPrefix,i='<span class="'+a,o=t?"":"";return i+=e+'">',i+n+o}function h(){if(!k.k)return n(M);var e="",t=0;k.lR.lastIndex=0;for(var r=k.lR.exec(M);r;){e+=n(M.substr(t,r.index-t));var a=g(k,r);a?(B+=a[1],e+=p(a[0],n(r[0]))):e+=n(r[0]),t=k.lR.lastIndex,r=k.lR.exec(M)}return e+n(M.substr(t))}function d(){var e="string"==typeof k.sL;if(e&&!R[k.sL])return n(M);var t=e?f(k.sL,M,!0,y[k.sL]):l(M,k.sL.length?k.sL:void 0);return k.r>0&&(B+=t.r),e&&(y[k.sL]=t.top),p(t.language,t.value,!1,!0)}function b(){L+=void 0!==k.sL?d():h(),M=""}function v(e,n){L+=e.cN?p(e.cN,"",!0):"",k=Object.create(e,{parent:{value:k}})}function m(e,n){if(M+=e,void 0===n)return b(),0;var t=o(n,k);if(t)return t.skip?M+=n:(t.eB&&(M+=n),b(),t.rB||t.eB||(M=n)),v(t,n),t.rB?0:n.length;var r=u(k,n);if(r){var a=k;a.skip?M+=n:(a.rE||a.eE||(M+=n),b(),a.eE&&(M=n));do k.cN&&(L+=""),k.skip||(B+=k.r),k=k.parent;while(k!=r.parent);return r.starts&&v(r.starts,""),a.rE?0:n.length}if(c(n,k))throw new Error('Illegal lexeme "'+n+'" for mode "'+(k.cN||"<unnamed>")+'"');return M+=n,n.length||1}var N=w(e);if(!N)throw new Error('Unknown language: "'+e+'"');s(N);var x,k=i||N,y={},L="";for(x=k;x!=N;x=x.parent)x.cN&&(L=p(x.cN,"",!0)+L);var M="",B=0;try{for(var C,j,I=0;;){if(k.t.lastIndex=I,C=k.t.exec(t),!C)break;j=m(t.substr(I,C.index-I),C[0]),I=C.index+j}for(m(t.substr(I)),x=k;x.parent;x=x.parent)x.cN&&(L+="");return{r:B,value:L,language:e,top:k}}catch(O){if(-1!=O.message.indexOf("Illegal"))return{r:0,value:n(t)};throw O}}function l(e,t){t=t||E.languages||Object.keys(R);var r={r:0,value:n(e)},a=r;return t.forEach(function(n){if(w(n)){var t=f(n,e,!1);t.language=n,t.r>a.r&&(a=t),t.r>r.r&&(a=r,r=t)}}),a.language&&(r.second_best=a),r}function g(e){return E.tabReplace&&(e=e.replace(/^((<[^>]+>|\t)+)/gm,function(e,n){return n.replace(/\t/g,E.tabReplace)})),E.useBR&&(e=e.replace(/\n/g,"
")),e}function p(e,n,t){var r=n?x[n]:t,a=[e.trim()];return e.match(/\bhljs\b/)||a.push("hljs"),-1===e.indexOf(r)&&a.push(r),a.join(" ").trim()}function h(e){var n=i(e);if(!a(n)){var t;E.useBR?(t=document.createElementNS("http://www.w3.org/1999/xhtml","div"),t.innerHTML=e.innerHTML.replace(/\n/g,"").replace(/<br[\/]*>/g,"\n")):t=e;var r=t.textContent,o=n?f(n,r,!0):l(r),s=u(t);if(s.length){var h=document.createElementNS("http://www.w3.org/1999/xhtml","div");h.innerHTML=o.value,o.value=c(s,u(h),r)}o.value=g(o.value),e.innerHTML=o.value,e.className=p(e.className,n,o.language),e.result={language:o.language,re:o.r},o.second_best&&(e.second_best={language:o.second_best.language,re:o.second_best.r})}}function d(e){E=o(E,e)}function b(){if(!b.called){b.called=!0;var e=document.querySelectorAll("pre code");Array.prototype.forEach.call(e,h)}}function v(){addEventListener("DOMContentLoaded",b,!1),addEventListener("load",b,!1)}function m(n,t){var r=R[n]=t(e);r.aliases&&r.aliases.forEach(function(e){x[e]=n})}function N(){return Object.keys(R)}function w(e){return e=(e||"").toLowerCase(),R[e]||R[x[e]]}var E={classPrefix:"hljs-",tabReplace:null,useBR:!1,languages:void 0},R={},x={};return e.highlight=f,e.highlightAuto=l,e.fixMarkup=g,e.highlightBlock=h,e.configure=d,e.initHighlighting=b,e.initHighlightingOnLoad=v,e.registerLanguage=m,e.listLanguages=N,e.getLanguage=w,e.inherit=o,e.IR="[a-zA-Z]\\w*",e.UIR="[a-zA-Z_]\\w*",e.NR="\\b\\d+(\\.\\d+)?",e.CNR="(-?)(\\b0[xX][a-fA-F0-9]+|(\\b\\d+(\\.\\d*)?|\\.\\d+)([eE][-+]?\\d+)?)",e.BNR="\\b(0b[01]+)",e.RSR="!|!=|!==|%|%=|&|&&|&=|*|*=|\\+|\\+=|,|-|-=|/=|/|:|;|<<|<<=|<=|<|===|==|=|>>>=|>>=|>=|>>>|>>|>|\\?|\\[|\\{|\\(|\\^|\\^=|\\||\\|=|\\|\\||~",e.BE={b:"\\\\[\\s\\S]",r:0},e.ASM={cN:"string",b:"'",e:"'",i:"\\n",c:[e.BE]},e.QSM={cN:"string",b:'"',e:'"',i:"\\n",c:[e.BE]},e.PWM={b:/\b(a|an|the|are|I|I'm|isn't|don't|doesn't|won't|but|just|should|pretty|simply|enough|gonna|going|wtf|so|such|will|you|your|like)\b/},e.C=function(n,t,r){var a=e.inherit({cN:"comment",b:n,e:t,c:[]},r||{});return a.c.push(e.PWM),a.c.push({cN:"doctag",b:"(?:TODO|FIXME|NOTE|BUG|XXX):",r:0}),a},e.CLCM=e.C("//","$"),e.CBCM=e.C("/*","*/"),e.HCM=e.C("#","$"),e.NM={cN:"number",b:e.NR,r:0},e.CNM={cN:"number",b:e.CNR,r:0},e.BNM={cN:"number",b:e.BNR,r:0},e.CSSNM={cN:"number",b:e.NR+"(%|em|ex|ch|rem|vw|vh|vmin|vmax|cm|mm|in|pt|pc|px|deg|grad|rad|turn|s|ms|Hz|kHz|dpi|dpcm|dppx)?",r:0},e.RM={cN:"regexp",b:/\//,e:/\/[gimuy]*/,i:/\n/,c:[e.BE,{b:/\[/,e:/\]/,r:0,c:[e.BE]}]},e.TM={cN:"title",b:e.IR,r:0},e.UTM={cN:"title",b:e.UIR,r:0},e.METHOD_GUARD={b:"\\.\\s*"+e.UIR,r:0},e});hljs.registerLanguage("basic",function(E){return{cI:!0,i:"^.",l:"[a-zA-Z][a-zA-Z0-9_$%!#]*",k:{keyword:"ABS ASC AND ATN AUTO|0 BEEP BLOAD|10 BSAVE|10 CALL CALLS CDBL CHAIN CHDIR CHR$|10 CINT CIRCLE CLEAR CLOSE CLS COLOR COM COMMON CONT COS CSNG CSRLIN CVD CVI CVS DATA DATE$ DEFDBL DEFINT DEFSNG DEFSTR DEF|0 SEG USR DELETE DIM DRAW EDIT END ENVIRON ENVIRON$ EOF EQV ERASE ERDEV ERDEV$ ERL ERR ERROR EXP FIELD FILES FIX FOR|0 FRE GET GOSUB|10 GOTO HEX$ IF|0 THEN ELSE|0 INKEY$ INP INPUT INPUT# INPUT$ INSTR IMP INT IOCTL IOCTL$ KEY ON OFF LIST KILL LEFT$ LEN LET LINE LLIST LOAD LOC LOCATE LOF LOG LPRINT USING LSET MERGE MID$ MKDIR MKD$ MKI$ MKS$ MOD NAME NEW NEXT NOISE NOT OCT$ ON OR PEN PLAY STRIG OPEN OPTION BASE OUT PAINT PALETTE PCOPY PEEK PMAP POINT POKE POS PRINT PRINT] PSET PRESET PUT RANDOMIZE READ REM RENUM RESET|0 RESTORE RESUME RETURN|0 RIGHT$ RMDIR RND RSET RUN SAVE SCREEN SGN SHELL SIN SOUND SPACE$ SPC SQR STEP STICK STOP STR$ STRING$ SWAP SYSTEM TAB TAN TIME$ TIMER TROFF TRON TO USR VAL VARPTR VARPTR$ VIEW WAIT WHILE WEND WIDTH WINDOW WRITE XOR"},c:[E.QSM,E.C("REM","$",{r:10}),E.C("'","$",{r:0}),{cN:"symbol",b:"^[0-9]+ ",r:10},{cN:"number",b:"\\b([0-9]+[0-9edED.]*[#!]?)",r:0},{cN:"number",b:"(&[hH][0-9a-fA-F]{1,4})"},{cN:"number",b:"(&[oO][0-7]{1,6})"}]}});hljs.registerLanguage("vbnet",function(e){return{aliases:["vb"],cI:!0,k:{keyword:"addhandler addressof alias and andalso aggregate ansi as assembly auto binary by byref byval call case catch class compare const continue custom declare default delegate dim distinct do each equals else elseif end enum erase error event exit explicit finally for friend from function get global goto group handles if implements imports in inherits interface into is isfalse isnot istrue join key let lib like loop me mid mod module mustinherit mustoverride mybase myclass namespace narrowing new next not notinheritable notoverridable of off on operator option optional or order orelse overloads overridable overrides paramarray partial preserve private property protected public raiseevent readonly redim rem removehandler resume return select set shadows shared skip static step stop structure strict sub synclock take text then throw to try unicode until using when where while widening with withevents writeonly xor",built_in:"boolean byte cbool cbyte cchar cdate cdec cdbl char cint clng cobj csbyte cshort
csng cstr ctype date decimal directcast double gettype getxmlnamespace iif integer long object sbyte short single string trycast typeof uinteger ulong ushort",literal:"true false nothing"},i:"//|{|}|endif|gosub|variant|wend",c:[e.inherit(e.QSM,{c:[{b:'""'}]}),e.C("'","$",{rB:!0,c:[{cN:"doctag",b:"'''|<!--|-->",c:[e.PWM]},{cN:"doctag",b:"</?",e:">",c:[e.PWM]}]}),e.CNM,{cN:"meta",b:"#",e:"$",k:{"meta-keyword":"if else elseif end region externalsource"}}]}});hljs.registerLanguage("dockerfile",function(e){return{aliases:["docker"],cI:!0,k:"from maintainer cmd expose add copy entrypoint volume user workdir onbuild run env label",c:[e.HCM,{k:"run cmd entrypoint volume add copy workdir onbuild label",b:/^ *(onbuild +)?(run|cmd|entrypoint|volume|add|copy|workdir|label) +/,starts:{e:/[^\\]\n/,sL:"bash"}},{k:"from maintainer expose env user onbuild",b:/^ *(onbuild +)?(from|maintainer|expose|env|user|onbuild) +/,e:/[^\\]\n/,c:[e.ASM,e.QSM,e.NM,e.HCM]}]}});hljs.registerLanguage("php",function(e){var c={b:"\\$+[a-zA-Z_�-ÿ][a-zA-Z0-9_�-ÿ]*"},a={cN:"meta",b:/<\?(php)?|\?>/},i={cN:"string",c:[e.BE,a],v:[{b:'b"',e:'"'},{b:"b'",e:"'"},e.inherit(e.ASM,{i:null}),e.inherit(e.QSM,{i:null})]},t={v:[e.BNM,e.CNM]};return{aliases:["php3","php4","php5","php6"],cI:!0,k:"and include_once list abstract global private echo interface as static endswitch array null if endwhile or const for endforeach self var while isset public protected exit foreach throw elseif include __FILE__ empty require_once do xor return parent clone use __CLASS__ __LINE__ else break print eval new catch __METHOD__ case exception default die require __FUNCTION__ enddeclare final try switch continue endfor endif declare unset true false trait goto instanceof insteadof __DIR__ __NAMESPACE__ yield finally",c:[e.HCM,e.C("//","$",{c:[a]}),e.C("/*","*/",{c:[{cN:"doctag",b:"@[A-Za-z]+"}]}),e.C("__halt_compiler.+?;",!1,{eW:!0,k:"__halt_compiler",l:e.UIR}),{cN:"string",b:/<<<['"]?\w+['"]?$/,e:/^\w+;?$/,c:[e.BE,{cN:"subst",v:[{b:/\$\w+/},{b:/\{\$/,e:/\}/}]}]},a,c,{b:/(::|->)+[a-zA-Z_\x7f-\xff][a-zA-Z0-9_\x7f-\xff]*/},{cN:"function",bK:"function",e:/[;{]/,eE:!0,i:"\\$|\\[|%",c:[e.UTM,{cN:"params",b:"\\(",e:"\\)",c:["self",c,e.CBCM,i,t]}]},{cN:"class",bK:"class interface",e:"{",eE:!0,i:/[:\(\$"]/,c:[{bK:"extends implements"},e.UTM]},{bK:"namespace",e:";",i:/[\.']/,c:[e.UTM]},{bK:"use",e:";",c:[e.UTM]},{b:"=>"},i,t]}});hljs.registerLanguage("haml",function(s){return{cI:!0,c:[{cN:"meta",b:"^!!!((5|1\\.1|Strict|Frameset|Basic|Mobile|RDFa|XML\\b.*))?$",r:10},s.C("^\\s*(!=#|=#|-#|/).*$",!1,{r:0}),{b:"^\\s*(-|=|!=)(?!#)",starts:{e:"\\n",sL:"ruby"}},{cN:"tag",b:"^\\s*%",c:[{cN:"selector-tag",b:"\\w+"},{cN:"selector-id",b:"#[\\w-]+"},{cN:"selector-class",b:"\\.[\\w-]+"},{b:"{\\s*",e:"\\s*}",c:[{b:":\\w+\\s*=>",e:",\\s+",rB:!0,eW:!0,c:[{cN:"attr",b:":\\w+"},s.ASM,s.QSM,{b:"\\w+",r:0}]}]},{b:"\\(\\s*",e:"\\s*\\)",eE:!0,c:[{b:"\\w+\\s*=",e:"\\s+",rB:!0,eW:!0,c:[{cN:"attr",b:"\\w+",r:0},s.ASM,s.QSM,{b:"\\w+",r:0}]}]}]},{b:"^\\s*[=~]\\s*"},{b:"#{",starts:{e:"}",sL:"ruby"}}]}});hljs.registerLanguage("perl",function(e){var t="getpwent getservent quotemeta msgrcv scalar kill dbmclose undef lc ma syswrite tr send umask sysopen shmwrite vec qx utime local oct semctl localtime readpipe do return format read sprintf dbmopen pop getpgrp not getpwnam rewinddir qqfileno qw endprotoent wait sethostent bless s|0 opendir continue each sleep endgrent shutdown dump chomp connect getsockname die socketpair close flock exists index shmgetsub for endpwent redo lstat msgctl setpgrp abs exit select print ref gethostbyaddr unshift fcntl syscall goto getnetbyaddr join gmtime symlink semget splice x|0 getpeername recv log setsockopt cos last reverse gethostbyname getgrnam study formline endhostent times chop length gethostent getnetent pack getprotoent getservbyname rand mkdir pos chmod y|0 substr endnetent printf next open msgsnd readdir use unlink getsockopt getpriority rindex wantarray hex system getservbyport endservent int chr untie rmdir prototype tell listen fork shmread ucfirst setprotoent else sysseek link getgrgid shmctl waitpid unpack getnetbyname reset chdir grep split require caller lcfirst until warn while values shift telldir getpwuid my getprotobynumber delete and sort uc defined srand accept package seekdir getprotobyname semop our rename seek if q|0 chroot sysread setpwent no crypt getc chown sqrt write setnetent setpriority foreach tie sin msgget map stat getlogin unless elsif truncate exec keys glob tied closedirioctl socket readlink eval xor readline binmode setservent eof ord bind alarm pipe atan2 getgrent exp time push setgrent gt lt or ne m|0 break given say state when",r={cN:"subst",b:"[$@]\\{",e:"\\}",k:t},s={b:"->{",e:"}"},n={v:[{b:/\$\d/},{b:/[\$%@](\^\w\b|#\w+(::\w+)*|{\w+}|\w+(::\w*)*)/},{b:/[\$%@][^\s\w{]/,r:0}]},i=[e.BE,r,n],o=[n,e.HCM,e.C("^\\=\\w","\\=cut",{eW:!0}),s,{cN:"string",c:i,v:[{b:"q[qwxr]?\\s*\\(",e:"\\)",r:5},{b:"q[qwxr]?\\s*\\[",e:"\\]",r:5},{b:"q[qwxr]?\\s*\\{",e:"\\}",r:5},{b:"q[qwxr]?\\s*\\|",e:"\\|",r:5},{b:"q[qwxr]?\\s*\\<",e:"\\>",r:5},{b:"qw\\s+q",e:"q",r:5},{b:"'",e:"'",c:[e.BE]},{b:'"',e:'"'},{b:"`",e:"`",c:[e.BE]},{b:"{\\w+}",c:[],r:0},{b:"-?\\w+\\s*\\=\\>",c:[],r:0}]},{cN:"number",b:"(\\b0[0-7_]+)|(\\b0x[0-9a-fA-F_]+)|(\\b[1-9][0-9_]*(\\.[0-9_]+)?)|[0_]\\b",r:0},{b:"(\\/\\/|"+e.RSR+"|\\b(split|return|print|reverse|grep)\\b)\\s*",k:"split return print reverse grep",r:0,c:[e.HCM,{cN:"regexp",b:"(s|tr|y)/(\\\\.|[^/])*/(\\\\.|[^/])*/[a-z]*",r:10},{cN:"regexp",b:"(m|qr)?/",e:"/[a-z]*",c:[e.BE],r:0}]},{cN:"function",bK:"sub",e:"(\\s*\\(.*?\\))?[;{]",eE:!0,r:5,c:[e.TM]},{b:"-\\w\\b",r:0},{b:"^__DATA__$",e:"^__END__$",sL:"mojolicious",c:[{b:"^@@.*",e:"$",cN:"comment"}]}];return r.c=o,s.c=o,{aliases:["pl"],k:t,c:o}});hljs.registerLanguage("accesslog",function(T){return{c:[{cN:"number",b:"\\b\\d{1,3}\\.\\d{1,3}\\.\\d{1,3}\\.\\d{1,3}(:\\d{1,5})?\\b"},{cN:"number",b:"\\b\\d+\\b",r:0},{cN:"string",b:'"(GET|POST|HEAD|PUT|DELETE|CONNECT|OPTIONS|PATCH|TRACE)',e:'"',k:"GET POST HEAD PUT DELETE CONNECT OPTIONS PATCH TRACE",i:"\\n",r:10},{cN:"string",b:/\[/,e:/\]/,i:"\\n"},{cN:"string",b:'"',e:'"',i:"\\n"}]}});hljs.registerLanguage("d",function(e){var t={keyword:"abstract alias align asm assert auto body break byte case cast catch class const continue debug default delete deprecated do else enum export extern final finally for foreach foreach_reverse|10 goto if immutable import in inout int interface invariant is lazy macro mixin module new nothrow out override package pragma private protected public pure ref return scope shared static struct super switch synchronized template this throw try typedef typeid typeof union unittest version void volatile while with __FILE__ __LINE__ __gshared|10 __thread __traits __DATE__ __EOF__ __TIME__ __TIMESTAMP__ __VENDOR__ __VERSION__",built_in:"bool cdouble cent cfloat char creal dchar delegate double dstring float function idouble ifloat ireal long real short string ubyte ucent uint ulong ushort wchar wstring",literal:"false null true"},r="(0|[1-9][\\d_]*)",a="(0|[1-9][\\d_]*|\\d[\\d_]*|[\\d_]+?\\d)",i="0[bB][01_]+",n="([\\da-fA-F][\\da-fA-F_]*|_[\\da-fA-F][\\da-fA-F_]*)",_="0[xX]"+n,c="([eE][+-]?"+a+")",d="("+a+"(\\.\\d*|"+c+")|\\d+\\."+a+a+"|\\."+r+c+"?)",o="(0[xX]("+n+"\\."+n+"|\\.?"+n+")[pP][+-]?"+a+")",s="("+r+"|"+i+"|"+_+")",l="("+o+"|"+d+")",u="\\\\(['\"\\?\\\\abfnrtv]|u[\\dA-Fa-f]{4}|[0-7]{1,3}|x[\\dA-Fa-f]{2}|U[\\dA-Fa-f]{8})|&[a-zA-Z\\d]{2,};",b={cN:"number",b:"\\b"+s+"(L|u|U|Lu|LU|uL|UL)?",r:0},f={cN:"number",b:"\\b("+l+"([fF]|L|i|[fF]i|Li)?|"+s+"(i|[fF]i|Li))",r:0},g={cN:"string",b:"'("+u+"|.)",e:"'",i:"."},h={b:u,r:0},p={cN:"string",b:'"',c:[h],e:'"[cwd]?'},m={cN:"string",b:'[rq]"',e:'"[cwd]?',r:5},w={cN:"string",b:"`",e:"`[cwd]?"},N={cN:"string",b:'x"[\\da-fA-F\\s\\n\\r]*"[cwd]?',r:10},A={cN:"string",b:'q"\\{',e:'\\}"'},F={cN:"meta",b:"^#!",e:"$",r:5},y={cN:"meta",b:"#(line)",e:"$",r:5},L={cN:"keyword",b:"@[a-zA-Z_][a-zA-Z_\\d]*"},v=e.C("\\/\\+","\\+\\/",{c:["self"],r:10});return{l:e.UIR,k:t,c:[e.CLCM,e.CBCM,v,N,p,m,w,A,f,b,g,F,y,L]}});hljs.registerLanguage("csp",function(r){return{cI:!1,l:"[a-zA-Z][a-zA-Z0-9_-]*",k:{keyword:"base-uri child-src connect-src default-src font-src form-action frame-ancestors frame-src img-src media-src object-src plugin-types report-uri sandbox script-src style-src"},c:[{cN:"string",b:"'",e:"'"},{cN:"attribute",b:"^Content",e:":",eE:!0}]}});hljs.registerLanguage("apache",function(e){var r={cN:"number",b:"[\\$%]\\d+"};return{aliases:["apacheconf"],cI:!0,c:[e.HCM,{cN:"section",b:"</?",e:">"},{cN:"attribute",b:/\w+/,r:0,k:{nomarkup:"order deny allow setenv rewriterule rewriteengine rewritecond documentroot sethandler errordocument loadmodule options header listen serverroot servername"},starts:{e:/$/,r:0,k:{literal:"on off all"},c:[{cN:"meta",b:"\\s\\[",e:"\\]$"},{cN:"variable",b:"[\\$%]\\{",e:"\\}",c:["self",r]},r,e.QSM]}}],i:/\S/}});hljs.registerLanguage("prolog",function(c){var b={b:/[a-z][A-Za-z0-9_]*/,r:0},r={cN:"symbol",v:[{b:/[A-Z][a-zA-Z0-9_]*/},{b:/_[A-Za-z0-9_]*/}],r:0},e={b:/\(/,e:/\)/,r:0},n={b:/\[/,e:/\]/},a={cN:"comment",b:/%/,e:/$/,c:[c.PWM]},t={cN:"string",b:/`/,e:/`/,c:[c.BE]},g={cN:"string",b:/0\'(\\\'|.)/},s={cN:"string",b:/0\'\\s/},o={b:/:-/},N=[b,r,e,o,n,a,c.CBCM,c.QSM,c.ASM,t,g,s,c.CNM];return e.c=N,n.c=N,{c:N.concat([{b:/\.$/}])}});hljs.registerLanguage("lisp",function(b){var e="[a-zA-Z_\\-\\+*\\/\\<\\=\\>\\&\\#][a-zA-Z0-9_\\-\\+*\\/\\<\\=\\>\\&\\#!]*",c="\\|[^]*?\\|",r="(\\-|\\+)?\\d+(\\.\\d+|\\/\\d+)?((d|e|f|l|s|D|E|F|L|S)(\\+|\\-)?\\d+)?",a={cN:"meta",b:"^#!",e:"$"},l={cN:"literal",b:"\\b(t{1}|nil)\\b"},n={cN:"number",v:[{b:r,r:0},{b:"#(b|B)[0-1]+(/[0-1]+)?"},{b:"#(o|O)[0-7]+(/[0-7]+)?"},{b:"#(x|X)[0-9a-fA-F]+(/[0-9a-fA-F]+)?"},{b:"#(c|C)\\("+r+" +"+r,e:"\\)"}]},i=b.inherit(b.QSM,{i:null}),t=b.C(";","$",{r:0}),s={b:"*",e:"*"},u={cN:"symbol",b:"[:&]"+e},d={b:e,r:0},f={b:c},m={b:"\\(",e:"\\)",c:["self",l,i,n,d]},o={c:[n,i,s,u,m,d],v:[{b:"['`]\\(",e:"\\)"},{b:"\\(quote
",e:"\\)",k:{name:"quote"}},{b:"'"+c}]},v={v:[{b:"'"+e},{b:"#'"+e+"(::"+e+")*"}]},N={b:"\\(\\s*",e:"\\)"},A={eW:!0,r:0};return N.c=[{cN:"name",v:[{b:e},{b:c}]},A],A.c=[o,v,N,l,n,i,t,s,u,f,d],{i:/\S/,c:[n,a,l,i,t,o,v,N,d]}});hljs.registerLanguage("swift",function(e){var i={keyword:"__COLUMN__ __FILE__ __FUNCTION__ __LINE__ as as! as? associativity break case catch class continue convenience default defer deinit didSet do dynamic dynamicType else enum extension fallthrough false final for func get guard if import in indirect infix init inout internal is lazy left let mutating nil none nonmutating operator optional override postfix precedence prefix private protocol Protocol public repeat required rethrows return right self Self set static struct subscript super switch throw throws true try try! try? Type typealias unowned var weak where while willSet",literal:"true false nil",built_in:"abs advance alignof alignofValue anyGenerator assert assertionFailure bridgeFromObjectiveC bridgeFromObjectiveCUnconditional bridgeToObjectiveC bridgeToObjectiveCUnconditional c contains count countElements countLeadingZeros debugPrint debugPrintln distance dropFirst dropLast dump encodeBitsAsWords enumerate equal fatalError filter find getBridgedObjectiveCType getVaList indices insertionSort isBridgedToObjectiveC isBridgedVerbatimToObjectiveC isUniquelyReferenced isUniquelyReferencedNonObjC join lazy lexicographicalCompare map max maxElement min minElement numericCast overlaps partition posix precondition preconditionFailure print println quickSort readLine reduce reflect reinterpretCast reverse roundUpToAlignment sizeof sizeofValue sort split startsWith stride strideof strideofValue swap toString transcode underestimateCount unsafeAddressOf unsafeBitCast unsafeDowncast unsafeUnwrap unsafeReflect withExtendedLifetime withObjectAtPlusZero withUnsafePointer withUnsafePointerToObject withUnsafeMutablePointer withUnsafeMutablePointers withUnsafePointer withUnsafePointers withVaList zip"},t={cN:"type",b:"\\b[A-Z][\\w']*",r:0},n=e.C("/*","*/",{c:["self"]}),r={cN:"subst",b:/\\\(/,e:"\\)",k:i,c:[]},a={cN:"number",b:"\\b([\\d_]+(\\.[\\deE_]+)?|0x[a-fA-F0-9_]+(\\.[a-fA-F0-9p_]+)?|0b[01_]+|0o[0-7_]+)\\b",r:0},o=e.inherit(e.QSM,{c:[r,e.BE]});return r.c=[a],{k:i,c:[o,e.CLCM,n,t,a,{cN:"function",bK:"func",e:"{",eE:!0,c:[e.inherit(e.TM,{b:/[A-Za-z$_][0-9A-Za-z$_]*/,i:/\(/}),{b:/</,e:/>/,i:/>/},{cN:"params",b:/\(/,e:/\)/,endsParent:!0,k:i,c:["self",a,o,e.CBCM,{b:":"}],i:/["']/}],i:/\[|%/},{cN:"class",bK:"struct protocol class extension enum",k:i,e:"\\{",eE:!0,c:[e.inherit(e.TM,{b:/[A-Za-z$_][0-9A-Za-z$_]*/})]},{cN:"meta",b:"(@warn_unused_result|@exported|@lazy|@noescape|@NSCopying|@NSManaged|@objc|@convention|@required|@noreturn|@IBAction|@IBDesignable|@IBInspectable|@IBOutlet|@infix|@prefix|@postfix|@autoclosure|@testable|@available|@nonobjc|@NSApplicationMain|@UIApplicationMain)"},{bK:"import",e:/$/,c:[e.CLCM,n]}]}});hljs.registerLanguage("java",function(e){var a=e.UIR+"(<"+e.UIR+"(\\s*,\\s*"+e.UIR+")*>)?",t="false synchronized int abstract float private char boolean static null if const for true while long strictfp finally protected import native final void enum else break transient catch instanceof byte super volatile case assert short package default double public try this switch continue throws protected public private",r="\\b(0[bB]([01]+[01_]+[01]+|[01]+)|0[xX]([a-fA-F0-9]+[a-fA-F0-9_]+[a-fA-F0-9]+|[a-fA-F0-9]+)|(([\\d]+[\\d_]+[\\d]+|[\\d]+)(\\.([\\d]+[\\d_]+[\\d]+|[\\d]+))?|\\.([\\d]+[\\d_]+[\\d]+|[\\d]+))([eE][-+]?\\d+)?)[lLfF]?",c={cN:"number",b:r,r:0};return{aliases:["jsp"],k:t,i:/<\/|#/,c:[e.C("/**","*/",{r:0,c:[{b:/\w+@/,r:0},{cN:"doctag",b:"@[A-Za-z]+"}]}),e.CLCM,e.CBCM,e.ASM,e.QSM,{cN:"class",bK:"class interface",e:/[{;=]/,eE:!0,k:"class interface",i:/[:"\[\]]/,c:[{bK:"extends implements"},e.UTM]},{bK:"new throw return else",r:0},{cN:"function",b:"("+a+"\\s+)+"+e.UIR+"\\s*\\(",rB:!0,e:/[{;=]/,eE:!0,k:t,c:[{b:e.UIR+"\\s*\\(",rB:!0,r:0,c:[e.UTM]},{cN:"params",b:/\(/,e:/\)/,k:t,r:0,c:[e.ASM,e.QSM,e.CNM,e.CBCM]},e.CLCM,e.CBCM]},c,{cN:"meta",b:"@[A-Za-z]+"}]}});hljs.registerLanguage("objectivec",function(e){var t={cN:"built_in",b:"(AV|CA|CF|CG|CI|MK|MP|NS|UI|XC)\\w+"},i={keyword:"int float while char export sizeof typedef const struct for union unsigned long volatile static bool mutable if do return goto void enum else break extern asm case short default double register explicit signed typename this switch continue wchar_t inline readonly assign readwrite self @synchronized id typeof nonatomic super unichar IBOutlet IBAction strong weak copy in out inout bycopy byref oneway __strong __weak __block __autoreleasing @private @protected @public @try @property @end @throw @catch @finally @autoreleasepool @synthesize @dynamic @selector @optional @required",literal:"false true FALSE TRUE nil YES NO NULL",built_in:"BOOL dispatch_once_t dispatch_queue_t dispatch_sync dispatch_async dispatch_once"},n=/[a-zA-Z@][a-zA-Z0-9_]*/,o="@interface @class @protocol @implementation";return{aliases:["mm","objc","obj-c"],k:i,l:n,i:"</",c:[t,e.CLCM,e.CBCM,e.CNM,e.QSM,{cN:"string",v:[{b:'@"',e:'"',i:"\\n",c:[e.BE]},{b:"'",e:"[^\\\\]'",i:"[^\\\\][^']"}]},{cN:"meta",b:"#",e:"$",c:[{cN:"meta-string",v:[{b:'"',e:'"'},{b:"<",e:">"}]}]},{cN:"class",b:"("+o.split(" ").join("|")+")\\b",e:"({|$)",eE:!0,k:o,l:n,c:[e.UTM]},{b:"\\."+e.UIR,r:0}]}});hljs.registerLanguage("json",function(e){var i={literal:"true false null"},n=[e.QSM,e.CNM],r={e:",",eW:!0,eE:!0,c:n,k:i},t={b:"{",e:"}",c:[{cN:"attr",b:/"/,e:/"/,c:[e.BE],i:"\\n"},e.inherit(r,{b:/:/})],i:"\\S"},c={b:"\\[",e:"\\]",c:[e.inherit(r)],i:"\\S"};return n.splice(n.length,0,t,c),{c:n,k:i,i:"\\S"}});hljs.registerLanguage("cmake",function(e){return{aliases:["cmake.in"],cI:!0,k:{keyword:"add_custom_command add_custom_target add_definitions add_dependencies add_executable add_library add_subdirectory add_test aux_source_directory break build_command cmake_minimum_required cmake_policy configure_file create_test_sourcelist define_property else elseif enable_language enable_testing endforeach endfunction endif endmacro endwhile execute_process export find_file find_library find_package find_path find_program fltk_wrap_ui foreach function get_cmake_property get_directory_property get_filename_component get_property get_source_file_property get_target_property get_test_property if include include_directories include_external_msproject include_regular_expression install link_directories load_cache load_command macro mark_as_advanced message option output_required_files project qt_wrap_cpp qt_wrap_ui remove_definitions return separate_arguments set set_directory_properties set_property set_source_files_properties set_target_properties set_tests_properties site_name source_group string target_link_libraries try_compile try_run unset variable_watch while build_name exec_program export_library_dependencies install_files install_programs install_targets link_libraries make_directory remove subdir_depends subdirs use_mangled_mesa utility_source variable_requires write_file qt5_use_modules qt5_use_package qt5_wrap_cpp on off true false and or equal less greater strless strgreater strequal matches"},c:[{cN:"variable",b:"\\${",e:"}"},e.HCM,e.QSM,e.NM]}});hljs.registerLanguage("bash",function(e){var t={cN:"variable",v:[{b:/\$[\w\d#@][\w\d_]*/},{b:/\$\{(.*?)}/}]},s={cN:"string",b:/"/,e:/"/,c:[e.BE,t,{cN:"variable",b:/\$\(/,e:/\)/,c:[e.BE]}]},a={cN:"string",b:/'/,e:/'/};return{aliases:["sh","zsh"],l:/-?[a-z\.]+/,k:{keyword:"if then else elif fi for while in do done case esac function",literal:"true false",built_in:"break cd continue eval exec exit export getopts hash pwd readonly return shift test times trap umask unset alias bind builtin caller command declare echo enable help let local logout mapfile printf read readarray source type typeset ulimit unalias set shopt autoload bg bindkey bye cap chdir clone comparguments compcall compctl compdescribe compfiles compgroups compquote comptags comptry compvalues dirs disable disown echotc echoti emulate fc fg float functions getcap getln history integer jobs kill limit log noglob popd print pushd pushln rehash sched setcap setopt stat suspend ttyctl unfunction unhash unlimit unsetopt vared wait whence where which zcompile zformat zftp zle zmodload zparseopts zprof zpty zregexparse zsocket zstyle ztcp",_:"-ne -eq -lt -gt -f -d -e -s -l -a"},c:[{cN:"meta",b:/^#![^\n]+sh\s*$/,r:10},{cN:"function",b:/\w[\w\d_]*\s*\(\s*\)\s*\{/,rB:!0,c:[e.inherit(e.TM,{b:/\w[\w\d_]*/})],r:0},e.HCM,s,a,t]}});hljs.registerLanguage("cs",function(e){var t="abstract as base bool break byte case catch char checked const continue decimal dynamic default delegate do double else enum event explicit extern false finally fixed float for foreach goto if implicit in int interface internal is lock long null when object operator out override params private protected public readonly ref sbyte sealed short sizeof stackalloc static string struct switch this true try typeof uint ulong unchecked unsafe ushort using virtual volatile void while async protected public private internal ascending descending from get group into join let orderby partial select set value var where yield",r=e.IR+"(<"+e.IR+">)?";return{aliases:["csharp"],k:t,i:/::/,c:[e.C("///","$",{rB:!0,c:[{cN:"doctag",v:[{b:"///",r:0},{b:"<!--|-->"},{b:"</?",e:">"}]}]}),e.CLCM,e.CBCM,{cN:"meta",b:"#",e:"$",k:{"meta-keyword":"if else elif endif define undef warning error line region endregion pragma checksum"}},{cN:"string",b:'@"',e:'"',c:[{b:'""'}]},e.ASM,e.QSM,e.CNM,{bK:"class interface",e:/[{;=]/,i:/[^\s:]/,c:[e.TM,e.CLCM,e.CBCM]},{bK:"namespace",e:/[{;=]/,i:/[^\s:]/,c:[e.inherit(e.TM,{b:"[a-zA-Z](\\.?\\w)*"}),e.CLCM,e.CBCM]},{bK:"new return throw
await",r:0},{cN:"function",b:"("+r+"\\s+)+"+e.IR+"\\s*\\(",rB:!0,e:/[{;=]/,eE:!0,k:t,c:[{b:e.IR+"\\s*\\(",rB:!0,c:[e.TM],r:0},{cN:"params",b:/\(/,e:/\)/,eB:!0,eE:!0,k:t,r:0,c:[e.ASM,e.QSM,e.CNM,e.CBCM]},e.CLCM,e.CBCM]}]}});hljs.registerLanguage("livescript",function(e){var t={keyword:"in if for while finally new do return else break catch instanceof throw try this switch continue typeof delete debugger case default function var with then unless until loop of by when and or is isnt not it that otherwise from to til fallthrough super case default function var void const let enum export import native __hasProp __extends __slice __bind __indexOf",literal:"true false null undefined yes no on off it that void",built_in:"npm require console print module global window document"},s="[A-Za-z$_](?:-[0-9A-Za-z$_]|[0-9A-Za-z$_])*",n=e.inherit(e.TM,{b:s}),i={cN:"subst",b:/#\{/,e:/}/,k:t},r={cN:"subst",b:/#[A-Za-z$_]/,e:/(?:\-[0-9A-Za-z$_]|[0-9A-Za-z$_])*/,k:t},c=[e.BNM,{cN:"number",b:"(\\b0[xX][a-fA-F0-9_]+)|(\\b\\d(\\d|_\\d)*(\\.(\\d(\\d|_\\d)*)?)?(_*[eE]([-+]\\d(_\\d|\\d)*)?)?[_a-z]*)",r:0,starts:{e:"(\\s*/)?",r:0}},{cN:"string",v:[{b:/'''/,e:/'''/,c:[e.BE]},{b:/'/,e:/'/,c:[e.BE]},{b:/"""/,e:/"""/,c:[e.BE,i,r]},{b:/"/,e:/"/,c:[e.BE,i,r]},{b:/\\/,e:/(\s|$)/,eE:!0}]},{cN:"regexp",v:[{b:"//",e:"//[gim]*",c:[i,e.HCM]},{b:/\/(?![*])(\\\/|.)*?\/[gim]*(?=\W|$)/}]},{b:"@"+s},{b:"``",e:"``",eB:!0,eE:!0,sL:"javascript"}];i.c=c;var a={cN:"params",b:"\\(",rB:!0,c:[{b:/\(/,e:/\)/,k:t,c:["self"].concat(c)}]};return{aliases:["ls"],k:t,i:/\/*/,c:c.concat([e.C("\\/*","*\\/"),e.HCM,{cN:"function",c:[n,a],rB:!0,v:[{b:"("+s+"\\s*(?:=|:=)\\s*)?(\\(.*\\))?\\s*\\B\\->*?",e:"\\->*?"},{b:"("+s+"\\s*(?:=|:=)\\s*)?!?(\\(.*\\))?\\s*\\B[-~]{1,2}>*?",e:"[-~]{1,2}>*?"},{b:"("+s+"\\s*(?:=|:=)\\s*)?(\\(.*\\))?\\s*\\B!?[-~]{1,2}>*?",e:"!?[-~]{1,2}>*?"}]},{cN:"class",bK:"class",e:"$",i:/[:="\[\]]/,c:[{bK:"extends",eW:!0,i:/[:="\[\]]/,c:[n]},n]},{b:s+":",e:":",rB:!0,rE:!0,r:0}])}});hljs.registerLanguage("makefile",function(e){var a={cN:"variable",b:/\$\(/,e:/\)/,c:[e.BE]};return{aliases:["mk","mak"],c:[e.HCM,{b:/^\w+\s*\W*=/,rB:!0,r:0,starts:{e:/\s*\W*=/,eE:!0,starts:{e:/$/,r:0,c:[a]}}},{cN:"section",b:/^[\w]+:\s*$/},{cN:"meta",b:/^\.PHONY:/,e:/$/,k:{"meta-keyword":".PHONY"},l:/[\.\w]+/},{b:/^\t+/,e:/$/,r:0,c:[e.QSM,a]}]}});hljs.registerLanguage("yaml",function(e){var a={literal:"{ } true false yes no Yes No True False null"},b="^[\\-]*",r="[a-zA-Z_][\\w\\-]*",t={cN:"attr",v:[{b:b+r+":"},{b:b+'"'+r+'":'},{b:b+"'"+r+"':"}]},c={cN:"template-variable",v:[{b:"{{",e:"}}"},{b:"%{",e:"}"}]},l={cN:"string",r:0,v:[{b:/'/,e:/'/},{b:/"/,e:/"/}],c:[e.BE,c]};return{cI:!0,aliases:["yml","YAML","yaml"],c:[t,{cN:"meta",b:"^---s*$",r:10},{cN:"string",b:"[\\|>] *$",rE:!0,c:l.c,e:t.v[0].b},{b:"<%[%=-]?",e:"[%-]?%>",sL:"ruby",eB:!0,eE:!0,r:0},{cN:"type",b:"!!"+e.UIR},{cN:"meta",b:"&"+e.UIR+"$"},{cN:"meta",b:"*"+e.UIR+"$"},{cN:"bullet",b:"^ *-",r:0},l,e.HCM,e.CNM],k:a}});hljs.registerLanguage("dns",function(d){return{aliases:["bind","zone"],k:{keyword:"IN A AAAA AFSDB APL CAA CDNSKEY CDS CERT CNAME DHCID DLV DNAME DNSKEY DS HIP IPSECKEY KEY KX LOC MX NAPTR NS NSEC NSEC3 NSEC3PARAM PTR RRSIG RP SIG SOA SRV SSHFP TA TKEY TLSA TSIG TXT"},c:[d.C(";","$"),{cN:"meta",b:/^\$(TTL|GENERATE|INCLUDE|ORIGIN)\b/},{cN:"number",b:"((([0-9A-Fa-f]{1,4}:){7}([0-9A-Fa-f]{1,4}|:))|(([0-9A-Fa-f]{1,4}:){6}(:[0-9A-Fa-f]{1,4}|((25[0-5]|2[0-4]\\d|1\\d\\d|[1-9]?\\d)(\\.(25[0-5]|2[0-4]\\d|1\\d\\d|[1-9]?\\d)){3})|:))|(([0-9A-Fa-f]{1,4}:){5}(((:[0-9A-Fa-f]{1,4}){1,2})|:((25[0-5]|2[0-4]\\d|1\\d\\d|[1-9]?\\d)(\\.(25[0-5]|2[0-4]\\d|1\\d\\d|[1-9]?\\d)){3})|:))|(([0-9A-Fa-f]{1,4}:){4}(((:[0-9A-Fa-f]{1,4}){1,3})|((:[0-9A-Fa-f]{1,4})?:((25[0-5]|2[0-4]\\d|1\\d\\d|[1-9]?\\d)(\\.(25[0-5]|2[0-4]\\d|1\\d\\d|[1-9]?\\d)){3}))|:))|(([0-9A-Fa-f]{1,4}:){3}(((:[0-9A-Fa-f]{1,4}){1,4})|((:[0-9A-Fa-f]{1,4}){0,2}:((25[0-5]|2[0-4]\\d|1\\d\\d|[1-9]?\\d)(\\.(25[0-5]|2[0-4]\\d|1\\d\\d|[1-9]?\\d)){3}))|:))|(([0-9A-Fa-f]{1,4}:){2}(((:[0-9A-Fa-f]{1,4}){1,5})|((:[0-9A-Fa-f]{1,4}){0,3}:((25[0-5]|2[0-4]\\d|1\\d\\d|[1-9]?\\d)(\\.(25[0-5]|2[0-4]\\d|1\\d\\d|[1-9]?\\d)){3}))|:))|(([0-9A-Fa-f]{1,4}:){1}(((:[0-9A-Fa-f]{1,4}){1,6})|((:[0-9A-Fa-f]{1,4}){0,4}:((25[0-5]|2[0-4]\\d|1\\d\\d|[1-9]?\\d)(\\.(25[0-5]|2[0-4]\\d|1\\d\\d|[1-9]?\\d)){3}))|:))|(:(((:[0-9A-Fa-f]{1,4}){1,7})|((:[0-9A-Fa-f]{1,4}){0,5}:((25[0-5]|2[0-4]\\d|1\\d\\d|[1-9]?\\d)(\\.(25[0-5]|2[0-4]\\d|1\\d\\d|[1-9]?\\d)){3}))|:)))\\b"},{cN:"number",b:"((25[0-5]|(2[0-4]|1{0,1}[0-9]){0,1}[0-9]).){3,3}(25[0-5]|(2[0-4]|1{0,1}[0-9]){0,1}[0-9])\\b"},d.inherit(d.NM,{b:/\b\d+[dhwm]?/})]}});hljs.registerLanguage("sql",function(e){var t=e.C("--","$");return{cI:!0,i:/[<>{}*]/,c:[{bK:"begin end start commit rollback savepoint lock alter create drop rename call delete do handler insert load replace select truncate update set show pragma grant merge describe use explain help declare prepare execute deallocate release unlock purge reset change stop analyze cache flush optimize repair kill install uninstall checksum restore check backup revoke",e:/;/,eW:!0,k:{keyword:"abort abs absolute acc acce accep accept access accessed accessible account acos action activate add addtime admin administer advanced advise aes_decrypt aes_encrypt after agent aggregate ali alia alias allocate allow alter always analyze ancillary and any anydata anydataset anyschema anytype apply archive archived archivelog are as asc ascii asin assembly assertion associate asynchronous at atan atn2 attr attri attrib attribu attribut attribute attributes audit authenticated authentication authid authors auto autoallocate autodblink autoextend automatic availability avg backup badfile basicfile before begin beginning benchmark between bfile bfile_base big bigfile bin binary_double binary_float binlog bit_and bit_count bit_length bit_or bit_xor bitmap blob_base block blocksize body both bound buffer_cache buffer_pool build bulk by byte byteordermark bytes cache caching call calling cancel capacity cascade cascaded case cast catalog category ceil ceiling chain change changed char_base char_length character_length characters characterset charindex charset charsetform charsetid check checksum checksum_agg child choose chr chunk class cleanup clear client clob clob_base clone close cluster_id cluster_probability cluster_set clustering coalesce coercibility col collate collation collect colu colum column column_value columns columns_updated comment commit compact compatibility compiled complete composite_limit compound compress compute concat concat_ws concurrent confirm conn connec connect connect_by_iscycle connect_by_isleaf connect_by_root connect_time connection consider consistent constant constraint constraints constructor container content contents context contributors controlfile conv convert convert_tz corr corr_k corr_s corresponding corruption cos cost count count_big counted covar_pop covar_samp cpu_per_call cpu_per_session crc32 create creation critical cross cube cume_dist curdate current current_date current_time current_timestamp current_user cursor curtime customdatum cycle data database databases datafile datafiles datalength date_add date_cache date_format date_sub dateadd datediff datefromparts datename datepart datetime2fromparts day day_to_second dayname dayofmonth dayofweek dayofyear days db_role_change dbtimezone ddl deallocate declare decode decompose decrement decrypt deduplicate def defa defau defaul default defaults deferred defi defin define degrees delayed delegate delete delete_all delimited demand dense_rank depth dequeue des_decrypt des_encrypt des_key_file desc descr descri describ describe descriptor deterministic diagnostics difference dimension direct_load directory disable disable_all disallow disassociate discardfile disconnect diskgroup distinct distinctrow distribute distributed div do document domain dotnet double downgrade drop dumpfile duplicate duration each edition editionable editions element ellipsis else elsif elt empty enable enable_all enclosed encode encoding encrypt end end-exec endian enforced engine engines enqueue enterprise entityescaping eomonth error errors escaped evalname evaluate event eventdata events except exception exceptions exchange exclude excluding execu execut execute exempt exists exit exp expire explain export export_set extended extent external external_1 external_2 externally extract failed failed_login_attempts failover failure far fast feature_set feature_value fetch field fields file file_name_convert filesystem_like_logging final finish first first_value fixed flash_cache flashback floor flush following follows for forall force form forma format found found_rows freelist freelists freepools fresh from from_base64 from_days ftp full function general generated get get_format get_lock getdate getutcdate global global_name globally go goto grant grants greatest group group_concat group_id grouping grouping_id groups gtid_subtract guarantee guard handler hash hashkeys having hea head headi headin heading heap help hex hierarchy high high_priority hosts hour http id ident_current ident_incr ident_seed identified identity idle_time if ifnull ignore iif ilike ilm immediate import in include including increment index indexes indexing indextype indicator indices inet6_aton inet6_ntoa inet_aton inet_ntoa infile initial initialized initially initrans inmemory inner innodb input insert install instance instantiable instr interface interleaved intersect into invalidate invisible is is_free_lock is_ipv4 is_ipv4_compat is_not is_not_null is_used_lock isdate isnull isolation iterate java join json json_exists keep keep_duplicates key keys kill language large last last_day last_insert_id last_value lax lcase lead leading least leaves left len lenght length less level levels library like like2 like4 likec limit lines link list listagg little ln load load_file lob lobs local localtime localtimestamp locate locator lock locked log log10 log2 logfile logfiles logging logical
logical_reads_per_call logoff logon logs long loop low low_priority lower lpad lrtrim ltrim main make_set makedate maketime managed management manual map mapping mask master master_pos_wait match matched materialized max maxextents maximize maxinstances maxlen maxlogfiles maxloghistory maxlogmembers maxsize maxtrans md5 measures median medium member memcompress memory merge microsecond mid migration min minextents minimum mining minus minute minvalue missing mod mode model modification modify module monitoring month months mount move movement multiset mutex name name_const names nan national native natural nav nchar nclob nested never new newline next nextval no no_write_to_binlog noarchivelog noaudit nobadfile nocheck nocompress nocopy nocycle nodelay nodiscardfile noentityescaping noguarantee nokeep nologfile nomapping nomaxvalue nominimize nominvalue nomonitoring none noneditionable nonschema noorder nopr nopro noprom nopromp noprompt norely noresetlogs noreverse normal norowdependencies noschemacheck noswitch not nothing notice notrim novalidate now nowait nth_value nullif nulls num numb numbe nvarchar nvarchar2 object ocicoll ocidate ocidatetime ociduration ociinterval ociloblocator ocinumber ociref ocirefcursor ocirowid ocistring ocitype oct octet_length of off offline offset oid oidindex old on online only opaque open operations operator optimal optimize option optionally or oracle oracle_date oradata ord ordaudio orddicom orddoc order ordimage ordinality ordvideo organization orlany orlvary out outer outfile outline output over overflow overriding package pad parallel parallel_enable parameters parent parse partial partition partitions pascal passing password password_grace_time password_lock_time password_reuse_max password_reuse_time password_verify_function patch path patindex pctincrease pctthreshold pctused pctversion percent percent_rank percentile_cont percentile_disc performance period period_add period_diff permanent physical pi pipe pipelined pivot pluggable plugin policy position post_transaction pow power pragma prebuilt precedes preceding precision prediction prediction_cost prediction_details prediction_probability prediction_set prepare present preserve prior priority private private_sga privileges procedural procedure procedure_analyze processlist profiles project prompt protection public publishingservername purge quarter query quick quiesce quota quotename radians raise rand range rank raw read reads readsize rebuild record records recover recovery recursive recycle redo reduced ref reference referenced references referencing refresh regexp_like register regr_avgx regr_avgy regr_count regr_intercept regr_r2 regr_slope regr_sxx regr_sxy reject rekey relational relative relaylog release release_lock relies_on relocate rely rem remainder rename repair repeat replace replicate replication required reset resetlogs resize resource respect restore restricted result result_cache resumable resume retention return returning returns reuse reverse revoke right rlike role roles rollback rolling rollup round row row_count rowdependencies rowid rownum rows rtrim rules safe salt sample save savepoint sb1 sb2 sb4 scan schema schemacheck scn scope scroll sdo_georaster sdo_topo_geometry search sec_to_time second section securefile security seed segment select self sequence sequential serializable server servererror session session_user sessions_per_user set sets settings sha sha1 sha2 share shared shared_pool short show shrink shutdown si_averagecolor si_colorhistogram si_featurelist si_positionalcolor si_stillimage si_texture siblings sid sign sin size size_t sizes skip slave sleep smalldatetimefromparts smallfile snapshot some soname sort soundex source space sparse spfile split sql sql_big_result sql_buffer_result sql_cache sql_calc_found_rows sql_small_result sql_variant_property sqlcode sqldata sqlerror sqlname sqlstate sqrt square standalone standby start starting startup statement static statistics stats_binomial_test stats_crosstab stats_ks_test stats_mode stats_mw_test stats_one_way_anova stats_t_test_ stats_t_test_indep stats_t_test_one stats_t_test_paired stats_wsr_test status std stddev stddev_pop stddev_samp stdev stop storage store stored str str_to_date straight_join strcmp strict string struct stuff style subdate subpartition subpartitions substitutable substr substring subtime subtring_index subtype success sum suspend switch switchoffset switchover sync synchronous synonym sys sys_xmlagg sysasm sysaux sysdate sysdatetimeoffset sysdba sysoper system system_user sysutcdatetime table tables tablespace tan tdo template temporary terminated tertiary_weights test than then thread through tier ties time time_format time_zone timediff timefromparts timeout timestamp timestampadd timestampdiff timezone_abbr timezone_minute timezone_region to to_base64 to_date to_days to_seconds todatetimeoffset trace tracking transaction transactional translate translation treat trigger trigger_nestlevel triggers trim truncate try_cast try_convert try_parse type ub1 ub2 ub4 ucase unarchived unbounded uncompress under undo unhex unicode uniform uninstall union unique unix_timestamp unknown unlimited unlock unpivot unrecoverable unsafe unsigned until untrusted unusable unused update updated upgrade upped upper upsert url urowid usable usage use use_stored_outlines user user_data user_resources users using utc_date utc_timestamp uuid uuid_short validate validate_password_strength validation valist value values var var_samp varcharc vari varia variab variabl variable variables variance varp varraw varrawc varray verify version versions view virtual visible void wait wallet warning warnings week weekday weekofyear wellformed when whene whenev wheneve whenever where while whitespace with within without work wrapped xdb xml xmlagg xmlattributes xmlcast xmlcolattval xmlelement xmlexists xmlforest xmlindex xmlnamespaces xmlpi xmlquery xmlroot xmlschema xmlserialize xmltable xmltype xor year year_to_month years yearweek",literal:"true false null",built_in:"array bigint binary bit blob boolean char character date dec decimal float int int8 integer interval number numeric real record serial serial8 smallint text varchar varying void"},c:[{cN:"string",b:"'",e:"'",c:[e.BE,{b:"''"}]},{cN:"string",b:'"',e:'"',c:[e.BE,{b:'""'}]},{cN:"string",b:"`",e:"`",c:[e.BE]},e.CNM,e.CBCM,t]},e.CBCM,t]}});hljs.registerLanguage("python",function(e){var r={cN:"meta",b:/^(>>>|\.\.\.) /},b={cN:"string",c:[e.BE],v:[{b:/(u|b)?r?'''/,e:/'''/,c:[r],r:10},{b:/(u|b)?r?"""/,e:/"""/,c:[r],r:10},{b:/(u|r|ur)'/,e:/'/,r:10},{b:/(u|r|ur)"/,e:/"/,r:10},{b:/(b|br)'/,e:/'/},{b:/(b|br)"/,e:/"/},e.ASM,e.QSM]},a={cN:"number",r:0,v:[{b:e.BNR+"[lLjJ]?"},{b:"\\b(0o[0-7]+)[lLjJ]?"},{b:e.CNR+"[lLjJ]?"}]},l={cN:"params",b:/\(/,e:/\)/,c:["self",r,a,b]};return{aliases:["py","gyp"],k:{keyword:"and elif is global as in if from raise for except finally print import pass return exec else break not with class assert yield try while continue del or def lambda async await nonlocal|10 None True False",built_in:"Ellipsis NotImplemented"},i:/(<\/|->|\?)/,c:[r,a,b,e.HCM,{v:[{cN:"function",bK:"def",r:10},{cN:"class",bK:"class"}],e:/:/,i:/[${=;\n,]/,c:[e.UTM,l,{b:/->/,eW:!0,k:"None"}]},{cN:"meta",b:/^[\t]*@/,e:/$/},{b:/\b(print|exec)\(/}]}});hljs.registerLanguage("mercury",function(e){var i={keyword:"module use_module import_module include_module end_module initialise mutable initialize finalize finalise interface implementation pred mode func type inst solver any_pred any_func is semidet det nondet multi erroneous failure cc_nondet cc_multi typeclass instance where pragma promise external trace atomic or_else require_complete_switch require_det require_semidet require_multi require_nondet require_cc_multi require_cc_nondet require_erroneous require_failure",meta:"inline no_inline type_spec source_file fact_table obsolete memo loop_check minimal_model terminates does_not_terminate check_termination promise_equivalent_clauses foreign_proc foreign_decl foreign_code foreign_type foreign_import_module foreign_export_enum foreign_export foreign_enum may_call_mercury will_not_call_mercury thread_safe not_thread_safe maybe_thread_safe promise_pure promise_semipure tabled_for_io local untrailed trailed attach_to_io_state can_pass_as_mercury_type stable will_not_throw_exception may_modify_trail will_not_modify_trail may_duplicate may_not_duplicate affects_liveness does_not_affect_liveness doesnt_affect_liveness no_sharing unknown_sharing sharing",built_in:"some all not if then else true fail false try catch catch_any semidet_true semidet_false semidet_fail impure_true impure semipure"},r=e.C("%","$"),t={cN:"number",b:"0'.\\|0[box][0-9a-fA-F]*"},_=e.inherit(e.ASM,{r:0}),n=e.inherit(e.QSM,{r:0}),a={cN:"subst",b:"\\\\[abfnrtv]\\|\\\\x[0-9a-fA-F]*\\\\\\|%[-+# *.0-9]*[dioxXucsfeEgGp]",r:0};n.c.push(a);var o={cN:"built_in",v:[{b:"<=>"},{b:"<=",r:0},{b:"=>",r:0},{b:"/\\\\"},{b:"\\\\/"}]},l={cN:"built_in",v:[{b:":-\\|-->"},{b:"=",r:0}]};return{aliases:["m","moo"],k:i,c:[o,l,r,e.CBCM,t,e.NM,_,n,{b:/:-/}]}});hljs.registerLanguage("haskell",function(e){var i={v:[e.C("--","$"),e.C("{-","-}",{c:["self"]})]},a={cN:"meta",b:"{-#",e:"#-}"},l={cN:"meta",b:"^#",e:"$"},c={cN:"type",b:"\\b[A-Z][\\w']*",r:0},n={b:"\\(",e:"\\)",i:'"',c:[a,l,{cN:"type",b:"\\b[A-Z][\\w]*(\\((\\.\\.|,|\\w+)\\))?"},e.inherit(e.TM,{b:"[_a-z][\\w']*"}),i]},s={b:"{",e:"}",c:n.c};return{aliases:["hs"],k:"let in if then else case of where do module import hiding qualified type data newtype deriving class instance as default infix infixl infixr foreign export ccall stdcall cplusplus jvm dotnet safe unsafe family forall mdo proc rec",c:[{bK:"module",e:"where",k:"module where",c:[n,i],i:"\\W\\.|;"},{b:"\\bimport\\b",e:"$",k:"import qualified as hiding",c:[n,i],i:"\\W\\.|;"},{cN:"class",b:"^(\\s*)?(class|instance)\\b",e:"where",k:"class family instance where",c:[c,n,i]},{cN:"class",b:"\\b(data|(new)?type)\\b",e:"$",k:"data family type
newtype deriving",c:[a,c,n,s,i]},{bK:"default",e:"$",c:[c,n,i]},{bK:"infix infixl infixr",e:"$",c:[e.CNM,i]},{b:"\\bforeign\\b",e:"$",k:"foreign import export ccall stdcall cplusplus jvm dotnet safe unsafe",c:[c,e.QSM,i]},{cN:"meta",b:"#!\\/usr\\/bin\\/env runhaskell",e:"$"},a,l,e.QSM,e.CNM,c,e.inherit(e.TM,{b:"^[_a-z][\\w']*"}),i,{b:"->|<-"}]}});hljs.registerLanguage("applescript",function(e){var t=e.inherit(e.QSM,{i:""}),r={cN:"params",b:"\\(",e:"\\)",c:["self",e.CNM,t]},i=e.C("--","$"),o=e.C("\\(*","*\\)",{c:["self",i]}),n=[i,o,e.HCM];return{aliases:["osascript"],k:{keyword:"about above after against and around as at back before beginning behind below beneath beside between but by considering contain contains continue copy div does eighth else end equal equals error every exit fifth first for fourth from front get given global if ignoring in into is it its last local me middle mod my ninth not of on onto or over prop property put ref reference repeat returning script second set seventh since sixth some tell tenth that the|0 then third through thru timeout times to transaction try until where while whose with without",literal:"AppleScript false linefeed return pi quote result space tab true",built_in:"alias application boolean class constant date file integer list number real record string text activate beep count delay launch log offset read round run say summarize write character characters contents day frontmost id item length month name paragraph paragraphs rest reverse running time version weekday word words year"},c:[t,e.CNM,{cN:"built_in",b:"\\b(clipboard info|the clipboard|info for|list (disks|folder)|mount volume|path to|(close|open for) access|(get|set) eof|current date|do shell script|get volume settings|random number|set volume|system attribute|system info|time to GMT|(load|run|store) script|scripting components|ASCII (character|number)|localized string|choose (application|color|file|file name|folder|from list|remote application|URL)|display (alert|dialog))\\b|^\\s*return\\b"},{cN:"literal",b:"\\b(text item delimiters|current application|missing value)\\b"},{cN:"keyword",b:"\\b(apart from|aside from|instead of|out of|greater than|isn't|(doesn't|does not) (equal|come before|come after|contain)|(greater|less) than(or equal)?|(starts?|ends|begins?) with|contained by|comes (before|after)|a (ref|reference)|POSIX file|POSIX path|(date|time) string|quoted form)\\b"},{bK:"on",i:"[${=;\\n]",c:[e.UTM,r]}].concat(n),i:"//|->|=>|\\[\\["}});hljs.registerLanguage("scala",function(e){var t={cN:"meta",b:"@[A-Za-z]+"},a={cN:"subst",v:[{b:"\\$[A-Za-z0-9_]+"},{b:"\\${",e:"}"}]},r={cN:"string",v:[{b:'"',e:'"',i:"\\n",c:[e.BE]},{b:'"""',e:'"""',r:10},{b:'[a-z]+"',e:'"',i:"\\n",c:[e.BE,a]},{cN:"string",b:'[a-z]+"""',e:'"""',c:[a],r:10}]},c={cN:"symbol",b:"'\\w[\\w\\d_]*(?!')"},i={cN:"type",b:"\\b[A-Z][A-Za-z0-9_]*",r:0},s={cN:"title",b:/[^0-9\n\t "'(),.`{}\[\]:;][^\n\t "'(),.`{}\[\]:;]+|[^0-9\n\t "'(),.`{}\[\]:;=]/,r:0},n={cN:"class",bK:"class object trait type",e:/[:={\[\n;]/,eE:!0,c:[{bK:"extends with",r:10},{b:/\[/,e:/\]/,eB:!0,eE:!0,r:0,c:[i]},{cN:"params",b:/\(/,e:/\)/,eB:!0,eE:!0,r:0,c:[i]},s]},l={cN:"function",bK:"def",e:/[:={\[(\n;]/,eE:!0,c:[s]};return{k:{literal:"true false null",keyword:"type yield lazy override def with val var sealed abstract private trait object if forSome for while throw finally protected extends import final return else break new catch super class case package default try this match continue throws implicit"},c:[e.CLCM,e.CBCM,r,c,i,l,n,e.CNM,t]}});hljs.registerLanguage("erlang",function(e){var r="[a-z'][a-zA-Z0-9_']*",c="("+r+":"+r+"|"+r+")",b={keyword:"after and andalso|10 band begin bnot bor bsl bzr bxor case catch cond div end fun if let not of orelse|10 query receive rem try when xor",literal:"false true"},i=e.C("%","$"),n={cN:"number",b:"\\b(\\d+#[a-fA-F0-9]+|\\d+(\\.\\d+)?([eE][-+]?\\d+)?)",r:0},a={b:"fun\\s+"+r+"/\\d+"},d={b:c+"\\(",e:"\\)",rB:!0,r:0,c:[{b:c,r:0},{b:"\\(",e:"\\)",eW:!0,rE:!0,r:0}]},o={b:"{",e:"}",r:0},t={b:"\\b_([A-Z][A-Za-z0-9_]*)?",r:0},f={b:"[A-Z][a-zA-Z0-9_]*",r:0},l={b:"#"+e.UIR,r:0,rB:!0,c:[{b:"#"+e.UIR,r:0},{b:"{",e:"}",r:0}]},s={bK:"fun receive if try case",e:"end",k:b};s.c=[i,a,e.inherit(e.ASM,{cN:""}),s,d,e.QSM,n,o,t,f,l];var u=[i,a,s,d,e.QSM,n,o,t,f,l];d.c[1].c=u,o.c=u,l.c[1].c=u;var h={cN:"params",b:"\\(",e:"\\)",c:u};return{aliases:["erl"],k:b,i:"(</|*=|\\+=|-=|/*|*/|\\(*|*\\))",c:[{cN:"function",b:"^"+r+"\\s*\\(",e:"->",rB:!0,i:"\\(|#|//|/*|\\\\|:|;",c:[h,e.inherit(e.TM,{b:r})],starts:{e:";|\\.",k:b,c:u}},i,{b:"^-",e:"\\.",r:0,eE:!0,rB:!0,l:"-"+e.IR,k:"-module -record -undef -export -ifdef -ifndef -author -copyright -doc -vsn -import -include -include_lib -compile -define -else -endif -file -behaviour -behavior -spec",c:[h]},n,e.QSM,l,t,f,o,{b:/\.$/}]}});hljs.registerLanguage("powershell",function(e){var t={b:"`[\\s\\S]",r:0},r={cN:"variable",v:[{b:/\$[\w\d][\w\d_:]*/}]},o={cN:"literal",b:/\$(null|true|false)\b/},a={cN:"string",b:/"/,e:/"/,c:[t,r,{cN:"variable",b:/\$[A-z]/,e:/[^A-z]/}]},i={cN:"string",b:/'/,e:/'/};return{aliases:["ps"],l:/-?[A-z\.\-]+/,cI:!0,k:{keyword:"if else foreach return function do while until elseif begin for trap data dynamicparam end break throw param continue finally in switch exit filter try process catch",built_in:"Add-Content Add-History Add-Member Add-PSSnapin Clear-Content Clear-Item Clear-Item Property Clear-Variable Compare-Object ConvertFrom-SecureString Convert-Path ConvertTo-Html ConvertTo-SecureString Copy-Item Copy-ItemProperty Export-Alias Export-Clixml Export-Console Export-Csv ForEach-Object Format-Custom Format-List Format-Table Format-Wide Get-Acl Get-Alias Get-AuthenticodeSignature Get-ChildItem Get-Command Get-Content Get-Credential Get-Culture Get-Date Get-EventLog Get-ExecutionPolicy Get-Help Get-History Get-Host Get-Item Get-ItemProperty Get-Location Get-Member Get-PfxCertificate Get-Process Get-PSDrive Get-PSProvider Get-PSSnapin Get-Service Get-TraceSource Get-UICulture Get-Unique Get-Variable Get-WmiObject Group-Object Import-Alias Import-Clixml Import-Csv Invoke-Expression Invoke-History Invoke-Item Join-Path Measure-Command Measure-Object Move-Item Move-ItemProperty New-Alias New-Item New-ItemProperty New-Object New-PSDrive New-Service New-TimeSpan New-Variable Out-Default Out-File Out-Host Out-Null Out-Printer Out-String Pop-Location Push-Location Read-Host Remove-Item Remove-ItemProperty Remove-PSDrive Remove-PSSnapin Remove-Variable Rename-Item Rename-ItemProperty Resolve-Path Restart-Service Resume-Service Select-Object Select-String Set-Acl Set-Alias Set-AuthenticodeSignature Set-Content Set-Date Set-ExecutionPolicy Set-Item Set-ItemProperty Set-Location Set-PSDebug Set-Service Set-TraceSource Set-Variable Sort-Object Split-Path Start-Service Start-Sleep Start-Transcript Stop-Process Stop-Service Stop-Transcript Suspend-Service Tee-Object Test-Path Trace-Command Update-FormatData Update-TypeData Where-Object Write-Debug Write-Error Write-Host Write-Output Write-Progress Write-Verbose Write-Warning",nomarkup:"-ne -eq -lt -gt -ge -le -not -like -notlike -match -notmatch -contains -notcontains -in -notin -replace"},c:[e.HCM,e.NM,a,i,o,r]}});hljs.registerLanguage("dust",function(e){var t="if eq ne lt lte gt gte select default math sep";return{aliases:["dst"],cI:!0,sL:"xml",c:[{cN:"template-tag",b:/\{[#\/]/,e:/\}/,i:/;/,c:[{cN:"name",b:/[a-zA-Z\.-]+/,starts:{eW:!0,r:0,c:[e.QSM]}}]},{cN:"template-variable",b:/\{/,e:/\}/,i:/;/,k:t}]}});hljs.registerLanguage("clojure",function(e){var t={"builtin-name":"def defonce cond apply if-not if-let if not not= = < > <= >= == + / * - rem quot neg? pos? delay? symbol? keyword? true? false? integer? empty? coll? list? set? ifn? fn? associative? sequential? sorted? counted? reversible? number? decimal? class? distinct? isa? float? rational? reduced? ratio? odd? even? char? seq? vector? string? map? nil? contains? zero? instance? not-every? not-any? libspec? -> ->> .. . inc compare do dotimes mapcat take remove take-while drop letfn drop-last take-last drop-while while intern condp case reduced cycle split-at split-with repeat replicate iterate range merge zipmap declare line-seq sort comparator sort-by dorun doall nthnext nthrest partition eval doseq await await-for let agent atom send send-off release-pending-sends add-watch mapv filterv remove-watch agent-error restart-agent set-error-handler error-handler set-error-mode! error-mode shutdown-agents quote var fn loop recur throw try monitor-enter monitor-exit defmacro defn defn- macroexpand macroexpand-1 for dosync and or when when-not when-let comp juxt partial sequence memoize constantly complement identity assert peek pop doto proxy defstruct first rest cons defprotocol cast coll deftype defrecord last butlast sigs reify second ffirst fnext nfirst nnext defmulti defmethod meta with-meta ns in-ns create-ns import refer keys select-keys vals key val rseq name namespace promise into transient persistent! conj! assoc! dissoc! pop! disj! use class type num float double short byte boolean bigint biginteger bigdec print-method print-dup throw-if printf format load compile get-in update-in pr pr-on newline flush read slurp read-line subvec with-open memfn time re-find re-groups rand-int rand mod locking assert-valid-fdecl alias resolve ref deref refset swap! reset! set-validator! compare-and-set! alter-meta! reset-meta! commute get-validator alter ref-set ref-history-count ref-min-history ref-max-history ensure sync io! new next conj set! to-array future future-call into-array aset gen-class reduce map filter find empty hash-map hash-set sorted-map sorted-map-by sorted-set sorted-set-by vec vector seq flatten reverse assoc dissoc list disj get union difference intersection extend extend-type extend-protocol int nth delay count concat chunk chunk-buffer chunk-append chunk-first chunk-rest max min dec unchecked-inc-int unchecked-inc unchecked-dec-inc unchecked-dec unchecked-negate unchecked-add-int unchecked-add
unchecked-subtract-int unchecked-subtract chunk-next chunk-cons chunked-seq? prn vary-meta lazy-seq spread list* str find-keyword keyword symbol gensym force rationalize"},r="a-zA-Z_\\-!.?+*=<>&#'",n="["+r+"]["+r+"0-9/;:]*",a="[-+]?\\d+(\\.\\d+)?",o={b:n,r:0},s={cN:"number",b:a,r:0},i=e.inherit(e.QSM,{i:null}),c=e.C(";","$",{r:0}),d={cN:"literal",b:/\b(true|false|nil)\b/},l={b:"[\\[\\{]",e:"[\\]\\}]"},m={cN:"comment",b:"\\^"+n},p=e.C("\\^\\{","\\}"),u={cN:"symbol",b:"[:]"+n},f={b:"\\(",e:"\\)"},h={eW:!0,r:0},y={k:t,l:n,cN:"name",b:n,starts:h},b=[f,i,m,p,c,u,l,s,d,o];return f.c=[e.C("comment",""),y,h],h.c=b,l.c=b,{aliases:["clj"],i:/\S/,c:[f,i,m,p,c,u,l,s,d]}});hljs.registerLanguage("go",function(e){var t={keyword:"break default func interface select case map struct chan else goto package switch const fallthrough if range type continue for import return var go defer bool byte complex64 complex128 float32 float64 int8 int16 int32 int64 string uint8 uint16 uint32 uint64 int uint uintptr rune",literal:"true false iota nil",built_in:"append cap close complex copy imag len make new panic print println real recover delete"};return{aliases:["golang"],k:t,i:"</",c:[e.CLCM,e.CBCM,e.QSM,{cN:"string",b:"'",e:"[^\\\\]'"},{cN:"string",b:"`",e:"`"},{cN:"number",b:e.CNR+"[dflsi]?",r:0},e.CNM]}});hljs.registerLanguage("tcl",function(e){return{aliases:["tk"],k:"after append apply array auto_execok auto_import auto_load auto_mkindex auto_mkindex_old auto_qualify auto_reset bgerror binary break catch cd chan clock close concat continue dde dict encoding eof error eval exec exit expr fblocked fconfigure fcopy file fileevent filename flush for foreach format gets glob global history http if incr info interp join lappend|10 lassign|10 lindex|10 linsert|10 list llength|10 load lrange|10 lrepeat|10 lreplace|10 lreverse|10 lsearch|10 lset|10 lsort|10 mathfunc mathop memory msgcat namespace open package parray pid pkg::create pkg_mkIndex platform platform::shell proc puts pwd read refchan regexp registry regsub|10 rename return safe scan seek set socket source split string subst switch tcl_endOfWord tcl_findLibrary tcl_startOfNextWord tcl_startOfPreviousWord tcl_wordBreakAfter tcl_wordBreakBefore tcltest tclvars tell time tm trace unknown unload unset update uplevel upvar variable vwait while",c:[e.C(";[\\t]*#","$"),e.C("^[\\t]*#","$"),{bK:"proc",e:"[\\{]",eE:!0,c:[{cN:"title",b:"[\\t\\n\\r]+(::)?[a-zA-Z_]((::)?[a-zA-Z0-9_])*",e:"[\\t\\n\\r]",eW:!0,eE:!0}]},{eE:!0,v:[{b:"\\$(\\{)?(::)?[a-zA-Z_]((::)?[a-zA-Z0-9_])*\\(([a-zA-Z0-9_])*\\)",e:"[^a-zA-Z0-9_\\}\\$]"},{b:"\\$(\\{)?(::)?[a-zA-Z_]((::)?[a-zA-Z0-9_])*",e:"(\\))?[^a-zA-Z0-9_\\}\\$]"}]},{cN:"string",c:[e.BE],v:[e.inherit(e.ASM,{i:null}),e.inherit(e.QSM,{i:null})]},{cN:"number",v:[e.BNM,e.CNM]}]}});hljs.registerLanguage("twig",function(e){var t={cN:"params",b:"\\(",e:"\\)"},a="attribute block constant cycle date dump include max min parent random range source template_from_string",r={bK:a,k:{name:a},r:0,c:[t]},c={b:/\|[A-Za-z_]+:?/,k:"abs batch capitalize convert_encoding date date_modify default escape first format join json_encode keys last length lower merge nl2br number_format raw replace reverse round slice sort split striptags title trim upper url_encode",c:[r]},s="autoescape block do embed extends filter flush for if import include macro sandbox set spaceless use verbatim";return s=s+" "+s.split(" ").map(function(e){return"end"+e}).join(" "),{aliases:["craftcms"],cI:!0,sL:"xml",c:[e.C(/\{#/,/#}/),{cN:"template-tag",b:/\{%/,e:/%}/,c:[{cN:"name",b:/\w+/,k:s,starts:{eW:!0,c:[c,r],r:0}}]},{cN:"template-variable",b:/\{\{/,e:/}}/,c:["self",c,r]}]}});hljs.registerLanguage("vhdl",function(e){var r="\\d(_|\\d)*",t="[eE][-+]?"+r,o=r+"(\\."+r+")?("+t+")?",n="\\w+",i=r+"#"+n+"(\\."+n+")?#("+t+")?",a="\\b("+i+"|"+o+")";return{cI:!0,k:{keyword:"abs access after alias all and architecture array assert attribute begin block body buffer bus case component configuration constant context cover disconnect downto default else elsif end entity exit fairness file for force function generate generic group guarded if impure in inertial inout is label library linkage literal loop map mod nand new next nor not null of on open or others out package port postponed procedure process property protected pure range record register reject release rem report restrict restrict_guarantee return rol ror select sequence severity shared signal sla sll sra srl strong subtype then to transport type unaffected units until use variable vmode vprop vunit wait when while with xnor xor",built_in:"boolean bit character severity_level integer time delay_length natural positive string bit_vector file_open_kind file_open_status std_ulogic std_ulogic_vector std_logic std_logic_vector unsigned signed boolean_vector integer_vector real_vector time_vector"},i:"{",c:[e.CBCM,e.C("--","$"),e.QSM,{cN:"number",b:a,r:0},{cN:"literal",b:"'(U|X|0|1|Z|W|L|H|-)'",c:[e.BE]},{cN:"symbol",b:"'[A-Za-z](_?[A-Za-z0-9])*",c:[e.BE]}]}});hljs.registerLanguage("javascript",function(e){return{aliases:["js","jsx"],k:{keyword:"in of if for while finally var new function do return void else break catch instanceof with throw case default try this switch continue typeof delete let yield const export super debugger as async await static import from as",literal:"true false null undefined NaN Infinity",built_in:"eval isFinite isNaN parseFloat parseInt decodeURI decodeURIComponent encodeURI encodeURIComponent escape unescape Object Function Boolean Error EvalError InternalError RangeError ReferenceError StopIteration SyntaxError TypeError URIError Number Math Date String RegExp Array Float32Array Float64Array Int16Array Int32Array Int8Array Uint16Array Uint32Array Uint8Array Uint8ClampedArray ArrayBuffer DataView JSON Intl arguments require module console window document Symbol Set Map WeakSet WeakMap Proxy Reflect Promise"},c:[{cN:"meta",r:10,b:/^\s*['"]use (strict|asm)['"]/},{cN:"meta",b:/^#!/,e:/$/},e.ASM,e.QSM,{cN:"string",b:"`",e:"`",c:[e.BE,{cN:"subst",b:"\\$\\{",e:"\\}"}]},e.CLCM,e.CBCM,{cN:"number",v:[{b:"\\b(0[bB][01]+)"},{b:"\\b(0[oO][0-7]+)"},{b:e.CNR}],r:0},{b:"("+e.RSR+"|\\b(case|return|throw)\\b)\\s*",k:"return throw case",c:[e.CLCM,e.CBCM,e.RM,{b:/</,e:/(\/\w+|\w+\/)>/,sL:"xml",c:[{b:/<\w+\/>/,skip:!0},{b:/<\w+/,e:/(\/\w+|\w+\/)>/,skip:!0,c:["self"]}]}],r:0},{cN:"function",bK:"function",e:/\{/,eE:!0,c:[e.inherit(e.TM,{b:/[A-Za-z$_][0-9A-Za-z$_]*/}),{cN:"params",b:/\(/,e:/\)/,eB:!0,eE:!0,c:[e.CLCM,e.CBCM]}],i:/\[|%/},{b:/\$[(.]/},e.METHOD_GUARD,{cN:"class",bK:"class",e:/[{;=]/,eE:!0,i:/[:"\[\]]/,c:[{bK:"extends"},e.UTM]},{bK:"constructor",e:/\{/,eE:!0}],i:/#(?!!)/}});hljs.registerLanguage("less",function(e){var r="[\\w-]+",t="("+r+"|@{"+r+"})",a=[],c=[],s=function(e){return{cN:"string",b:"~?"+e+".*?"+e}},b=function(e,r,t){return{cN:e,b:r,r:t}},i={b:"\\(",e:"\\)",c:c,r:0};c.push(e.CLCM,e.CBCM,s("'"),s('"'),e.CSSNM,{b:"(url|data-uri)\\(",starts:{cN:"string",e:"[\\)\\n]",eE:!0}},b("number","#[0-9A-Fa-f]+\\b"),i,b("variable","@@?"+r,10),b("variable","@{"+r+"}"),b("built_in","~?`[^`]*?`"),{cN:"attribute",b:r+"\\s*:",e:":",rB:!0,eE:!0},{cN:"meta",b:"!important"});var n=c.concat({b:"{",e:"}",c:a}),o={bK:"when",eW:!0,c:[{bK:"and not"}].concat(c)},u={cN:"attribute",b:t,e:":",eE:!0,c:[e.CLCM,e.CBCM],i:/\S/,starts:{e:"[;}]",rE:!0,c:c,i:"[<=$]"}},C={cN:"keyword",b:"@(import|media|charset|font-face|(-[a-z]+-)?keyframes|supports|document|namespace|page|viewport|host)\\b",starts:{e:"[;{}]",rE:!0,c:c,r:0}},l={cN:"variable",v:[{b:"@"+r+"\\s*:",r:15},{b:"@"+r}],starts:{e:"[;}]",rE:!0,c:n}},p={v:[{b:"[\\.#:&\\[]",e:"[;{}]"},{b:t+"[^;]*{",e:"{"}],rB:!0,rE:!0,i:"[<='$\"]",c:[e.CLCM,e.CBCM,o,b("keyword","all\\b"),b("variable","@{"+r+"}"),b("selector-tag",t+"%?",0),b("selector-id","#"+t),b("selector-class","\\."+t,0),b("selector-tag","&",0),{cN:"selector-attr",b:"\\[",e:"\\]"},{b:"\\(",e:"\\)",c:n},{b:"!important"}]};return a.push(e.CLCM,e.CBCM,C,l,p,u),{cI:!0,i:"[=>'/<($\"]",c:a}});hljs.registerLanguage("q",function(e){var s={keyword:"do while select delete by update from",literal:"0b 1b",built_in:"neg not null string reciprocal floor ceiling signum mod xbar xlog and or each scan over prior mmu lsq inv md5 ltime gtime count first var dev med cov cor all any rand sums prds mins maxs fills deltas ratios avgs differ prev next rank reverse iasc idesc asc desc msum mcount mavg mdev xrank mmin mmax xprev rotate distinct group where flip type key til get value attr cut set upsert raze union inter except cross sv vs sublist enlist read0 read1 hopen hclose hdel hsym hcount peach system ltrim rtrim trim lower upper ssr view tables views cols xcols keys xkey xcol xasc xdesc fkeys meta lj aj aj0 ij pj asof uj ww wj wj1 fby xgroup ungroup ej save load rsave rload show csv parse eval min max avg wavg wsum sin cos tan sum",type:"`float `double int `timestamp `timespan `datetime `time `boolean `symbol `char `byte `short `long `real `month `date `minute `second `guid"};return{aliases:["k","kdb"],k:s,l:/(`?)[A-Za-z0-9_]+\b/,c:[e.CLCM,e.QSM,e.CNM]}});hljs.registerLanguage("gherkin",function(e){return{aliases:["feature"],k:"Feature Background Ability Business Need Scenario Scenarios Scenario Outline Scenario Template Examples Given And Then But When",c:[{cN:"keyword",b:"*"},{cN:"meta",b:"@[^@\\s]+"},{b:"\\|",e:"\\|\\w*$",c:[{cN:"string",b:"[^|]+"}]},{cN:"variable",b:"<",e:">"},e.HCM,{cN:"string",b:'"""',e:'"""'},e.QSM]}});hljs.registerLanguage("nginx",function(e){var r={cN:"variable",v:[{b:/\$\d+/},{b:/\$\{/,e:/}/},{b:"[\\$\\@]"+e.UIR}]},b={eW:!0,l:"[a-z/_]+",k:{literal:"on off yes no true false none blocked debug info notice warn error crit select break last permanent redirect kqueue rtsig epoll poll /dev/poll"},r:0,i:"=>",c:[e.HCM,{cN:"string",c:[e.BE,r],v:[{b:/"/,e:/"/},{b:/'/,e:/'/}]},{b:"([a-z]+):/",e:"\\s",eW:!0,eE:!0,c:[r]},{cN:"regexp",c:[e.BE,r],v:[{b:"\\s\\^",e:"\\s|{|;",rE:!0},{b:"~*?\\s+",e:"\\s|{
;",rE:!0},{b:"*(\\.[a-z\\-]+)+"},{b:"([a-z\\-]+\\.)+*"}]},{cN:"number",b:"\\b\\d{1,3}\\.\\d{1,3}\\.\\d{1,3}\\.\\d{1,3}(:\\d{1,5})?\\b"},{cN:"number",b:"\\b\\d+[kKmMgGdshdwy]*\\b",r:0},r]};return{aliases:["nginxconf"],c:[e.HCM,{b:e.UIR+"\\s+{",rB:!0,e:"{",c:[{cN:"section",b:e.UIR}],r:0},{b:e.UIR+"\\s",e:";|{",rB:!0,c:[{cN:"attribute",b:e.UIR,starts:b}],r:0}],i:"[^\\s\\}]"}});hljs.registerLanguage("rust",function(e){var t="([uif](8|16|32|64|size))?",r=e.inherit(e.CBCM);r.c.push("self");var n="Copy Send Sized Sync Drop Fn FnMut FnOnce drop Box ToOwned Clone PartialEq PartialOrd Eq Ord AsRef AsMut Into From Default Iterator Extend IntoIterator DoubleEndedIterator ExactSizeIterator Option Result SliceConcatExt String ToString Vec assert! assert_eq! bitflags! bytes! cfg! col! concat! concat_idents! debug_assert! debug_assert_eq! env! panic! file! format! format_args! include_bin! include_str! line! local_data_key! module_path! option_env! print! println! select! stringify! try! unimplemented! unreachable! vec! write! writeln! macro_rules!";return{aliases:["rs"],k:{keyword:"alignof as be box break const continue crate do else enum extern false fn for if impl in let loop match mod mut offsetof once priv proc pub pure ref return self Self sizeof static struct super trait true type typeof unsafe unsized use virtual while where yield int i8 i16 i32 i64 uint u8 u32 u64 float f32 f64 str char bool",literal:"true false Some None Ok Err",built_in:n},l:e.IR+"!?",i:"</",c:[e.CLCM,r,e.inherit(e.QSM,{b:/b?"/,i:null}),{cN:"string",v:[{b:/r(#*)".*?"\1(?!#)/},{b:/b?'\\?(x\w{2}|u\w{4}|U\w{8}|.)'/}]},{cN:"symbol",b:/'[a-zA-Z_][a-zA-Z0-9_]*/},{cN:"number",v:[{b:"\\b0b([01_]+)"+t},{b:"\\b0o([0-7_]+)"+t},{b:"\\b0x([A-Fa-f0-9_]+)"+t},{b:"\\b(\\d[\\d_]*(\\.[0-9_]+)?([eE][+-]?[0-9_]+)?)"+t}],r:0},{cN:"function",bK:"fn",e:"(\\(|<)",eE:!0,c:[e.UTM]},{cN:"meta",b:"#\\!?\\[",e:"\\]",c:[{cN:"meta-string",b:/"/,e:/"/}]},{cN:"class",bK:"type",e:";",c:[e.inherit(e.UTM,{endsParent:!0})],i:"\\S"},{cN:"class",bK:"trait enum struct",e:"{",c:[e.inherit(e.UTM,{endsParent:!0})],i:"[\\w\\d]"},{b:e.IR+"::",k:{built_in:n}},{b:"->"}]}});hljs.registerLanguage("groovy",function(e){return{k:{literal:"true false null",keyword:"byte short char int long boolean float double void def as in assert trait super this abstract static volatile transient public private protected synchronized final class interface enum if else for while switch case break default continue throw throws try catch finally implements extends new import package return instanceof"},c:[e.C("/**","*/",{r:0,c:[{b:/\w+@/,r:0},{cN:"doctag",b:"@[A-Za-z]+"}]}),e.CLCM,e.CBCM,{cN:"string",b:'"""',e:'"""'},{cN:"string",b:"'''",e:"'''"},{cN:"string",b:"\\$/",e:"/\\$",r:10},e.ASM,{cN:"regexp",b:/~?\/[^\/\n]+\//,c:[e.BE]},e.QSM,{cN:"meta",b:"^#!/usr/bin/env",e:"$",i:"\n"},e.BNM,{cN:"class",bK:"class interface trait enum",e:"{",i:":",c:[{bK:"extends implements"},e.UTM]},e.CNM,{cN:"meta",b:"@[A-Za-z]+"},{cN:"string",b:/[^\?]{0}[A-Za-z0-9_$]+ *:/},{b:/\?/,e:/\:/},{cN:"symbol",b:"^\\s*[A-Za-z0-9_$]+:",r:0}],i:/#|<\//}});hljs.registerLanguage("aspectj",function(e){var t="false synchronized int abstract float private char boolean static null if const for true while long throw strictfp finally protected import native final return void enum else extends implements break transient new catch instanceof byte super volatile case assert short package default double public try this switch continue throws privileged aspectOf adviceexecution proceed cflowbelow cflow initialization preinitialization staticinitialization withincode target within execution getWithinTypeName handler thisJoinPoint thisJoinPointStaticPart thisEnclosingJoinPointStaticPart declare parents warning error soft precedence thisAspectInstance",i="get set args call";return{k:t,i:/<\/|#/,c:[e.C("/**","*/",{r:0,c:[{b:/\w+@/,r:0},{cN:"doctag",b:"@[A-Za-z]+"}]}),e.CLCM,e.CBCM,e.ASM,e.QSM,{cN:"class",bK:"aspect",e:/[{;=]/,eE:!0,i:/[:;"\[\]]/,c:[{bK:"extends implements pertypewithin perthis pertarget percflowbelow percflow issingleton"},e.UTM,{b:/\([^\)]*/,e:/[)]+/,k:t+" "+i,eE:!1}]},{cN:"class",bK:"class interface",e:/[{;=]/,eE:!0,r:0,k:"class interface",i:/[:"\[\]]/,c:[{bK:"extends implements"},e.UTM]},{bK:"pointcut after before around throwing returning",e:/[)]/,eE:!1,i:/["\[\]]/,c:[{b:e.UIR+"\\s*\\(",rB:!0,c:[e.UTM]}]},{b:/[:]/,rB:!0,e:/[{;]/,r:0,eE:!1,k:t,i:/["\[\]]/,c:[{b:e.UIR+"\\s*\\(",k:t+" "+i},e.QSM]},{bK:"new throw",r:0},{cN:"function",b:/\w+ +\w+(\.)?\w+\s*\([^\)]*\)\s*((throws)[\w\s,]+)?[\{;]/,rB:!0,e:/[{;=]/,k:t,eE:!0,c:[{b:e.UIR+"\\s*\\(",rB:!0,r:0,c:[e.UTM]},{cN:"params",b:/\(/,e:/\)/,r:0,k:t,c:[e.ASM,e.QSM,e.CNM,e.CBCM]},e.CLCM,e.CBCM]},e.CNM,{cN:"meta",b:"@[A-Za-z]+"}]}});hljs.registerLanguage("actionscript",function(e){var a="[a-zA-Z_$][a-zA-Z0-9_$]*",t="([*]|[a-zA-Z_$][a-zA-Z0-9_$]*)",c={cN:"rest_arg",b:"[.]{3}",e:a,r:10};return{aliases:["as"],k:{keyword:"as break case catch class const continue default delete do dynamic each else extends final finally for function get if implements import in include instanceof interface internal is namespace native new override package private protected public return set static super switch this throw try typeof use var void while with",literal:"true false null undefined"},c:[e.ASM,e.QSM,e.CLCM,e.CBCM,e.CNM,{cN:"class",bK:"package",e:"{",c:[e.TM]},{cN:"class",bK:"class interface",e:"{",eE:!0,c:[{bK:"extends implements"},e.TM]},{cN:"meta",bK:"import include",e:";",k:{"meta-keyword":"import include"}},{cN:"function",bK:"function",e:"[{;]",eE:!0,i:"\\S",c:[e.TM,{cN:"params",b:"\\(",e:"\\)",c:[e.ASM,e.QSM,e.CLCM,e.CBCM,c]},{b:":\\s*"+t}]},e.METHOD_GUARD],i:/#/}});hljs.registerLanguage("diff",function(e){return{aliases:["patch"],c:[{cN:"meta",r:10,v:[{b:/^@@ +\-\d+,\d+ +\+\d+,\d+ +@@$/},{b:/^*** +\d+,\d+ +****$/},{b:/^\-\-\- +\d+,\d+ +\-\-\-\-$/}]},{cN:"comment",v:[{b:/Index: /,e:/$/},{b:/=====/,e:/=====$/},{b:/^\-\-\-/,e:/$/},{b:/^*{3} /,e:/$/},{b:/^\+\+\+/,e:/$/},{b:/*{5}/,e:/*{5}$/}]},{cN:"addition",b:"^\\+",e:"$"},{cN:"deletion",b:"^\\-",e:"$"},{cN:"addition",b:"^\\!",e:"$"}]}});hljs.registerLanguage("ini",function(e){var b={cN:"string",c:[e.BE],v:[{b:"'''",e:"'''",r:10},{b:'"""',e:'"""',r:10},{b:'"',e:'"'},{b:"'",e:"'"}]};return{aliases:["toml"],cI:!0,i:/\S/,c:[e.C(";","$"),e.HCM,{cN:"section",b:/^\s*\[+/,e:/\]+/},{b:/^[a-z0-9\[\]_-]+\s*=\s*/,e:"$",rB:!0,c:[{cN:"attr",b:/[a-z0-9\[\]_-]+/},{b:/=/,eW:!0,r:0,c:[{cN:"literal",b:/\bon|off|true|false|yes|no\b/},{cN:"variable",v:[{b:/\$[\w\d"][\w\d_]*/},{b:/\$\{(.*?)}/}]},b,{cN:"number",b:/([\+\-]+)?[\d]+_[\d_]+/},e.NM]}]}]}});hljs.registerLanguage("fortran",function(e){var t={cN:"params",b:"\\(",e:"\\)"},n={literal:".False. .True.",keyword:"kind do while private call intrinsic where elsewhere type endtype endmodule endselect endinterface end enddo endif if forall endforall only contains default return stop then public subroutine|10 function program .and. .or. .not. .le. .eq. .ge. .gt. .lt. goto save else use module select case access blank direct exist file fmt form formatted iostat name named nextrec number opened rec recl sequential status unformatted unit continue format pause cycle exit c_null_char c_alert c_backspace c_form_feed flush wait decimal round iomsg synchronous nopass non_overridable pass protected volatile abstract extends import non_intrinsic value deferred generic final enumerator class associate bind enum c_int c_short c_long c_long_long c_signed_char c_size_t c_int8_t c_int16_t c_int32_t c_int64_t c_int_least8_t c_int_least16_t c_int_least32_t c_int_least64_t c_int_fast8_t c_int_fast16_t c_int_fast32_t c_int_fast64_t c_intmax_t C_intptr_t c_float c_double c_long_double c_float_complex c_double_complex c_long_double_complex c_bool c_char c_null_ptr c_null_funptr c_new_line c_carriage_return c_horizontal_tab c_vertical_tab iso_c_binding c_loc c_funloc c_associated c_f_pointer c_ptr c_funptr iso_fortran_env character_storage_size error_unit file_storage_size input_unit iostat_end iostat_eor numeric_storage_size output_unit c_f_procpointer ieee_arithmetic ieee_support_underflow_control ieee_get_underflow_mode ieee_set_underflow_mode newunit contiguous recursive pad position action delim readwrite eor advance nml interface procedure namelist include sequence elemental pure integer real character complex logical dimension allocatable|10 parameter external implicit|10 none double precision assign intent optional pointer target in out common equivalence data",built_in:"alog alog10 amax0 amax1 amin0 amin1 amod cabs ccos cexp clog csin csqrt dabs dacos dasin datan datan2 dcos dcosh ddim dexp dint dlog dlog10 dmax1 dmin1 dmod dnint dsign dsin dsinh dsqrt dtan dtanh float iabs idim idint idnint ifix isign max0 max1 min0 min1 sngl algama cdabs cdcos cdexp cdlog cdsin cdsqrt cqabs cqcos cqexp cqlog cqsin cqsqrt dcmplx dconjg derf derfc dfloat dgamma dimag dlgama iqint qabs qacos qasin qatan qatan2 qcmplx qconjg qcos qcosh qdim qerf qerfc qexp qgamma qimag qlgama qlog qlog10 qmax1 qmin1 qmod qnint qsign qsin qsinh qsqrt qtan qtanh abs acos aimag aint anint asin atan atan2 char cmplx conjg cos cosh exp ichar index int log log10 max min nint sign sin sinh sqrt tan tanh print write dim lge lgt lle llt mod nullify allocate deallocate adjustl adjustr all allocated any associated bit_size btest ceiling count cshift date_and_time digits dot_product eoshift epsilon exponent floor fraction huge iand ibclr ibits ibset ieor ior ishft ishftc lbound len_trim matmul maxexponent maxloc maxval merge minexponent minloc minval modulo mvbits nearest pack present product radix random_number random_seed range repeat reshape rrspacing scale scan selected_int_kind selected_real_kind set_exponent shape size spacing spread sum system_clock tiny transpose trim ubound unpack verify achar iachar transfer dble entry dprod cpu_time command_argument_count get_command get_command_argument get_environment_variable is_iostat_end ieee_arithmetic ieee_support_underflow_control
ieee_get_underflow_mode ieee_set_underflow_mode is_iostat_eor move_alloc new_line selected_char_kind same_type_as extends_type_ofacosh asinh atanh bessel_j0 bessel_j1 bessel_jn bessel_y0 bessel_y1 bessel_yn erf erfc erfc_scaled gamma log_gamma hypot norm2 atomic_define atomic_ref execute_command_line leadz trailz storage_size merge_bits bge bgt ble blt dshiftl dshiftr findloc iall iany iparity image_index lcobound ucobound maskl maskr num_images parity popcnt poppar shifta shiftl shiftr this_image"};return{cI:!0,aliases:["f90","f95"],k:n,i:/\/*/,c:[e.inherit(e.ASM,{cN:"string",r:0}),e.inherit(e.QSM,{cN:"string",r:0}),{cN:"function",bK:"subroutine function program",i:"[${=\\n]",c:[e.UTM,t]},e.C("!","$",{r:0}),{cN:"number",b:"(?=\\b|\\+|\\-|\\.)(?=\\.\\d|\\d)(?:\\d+)?(?:\\.?\\d*)(?:[de][+-]?\\d+)?\\b\\.?",r:0}]}});hljs.registerLanguage("tex",function(c){var e={cN:"tag",b:/\\/,r:0,c:[{cN:"name",v:[{b:/[a-zA-Zа-яА-я]+[*]?/},{b:/[^a-zA-Zа-яА-я0-9]/}],starts:{eW:!0,r:0,c:[{cN:"string",v:[{b:/\[/,e:/\]/},{b:/\{/,e:/\}/}]},{b:/\s*=\s*/,eW:!0,r:0,c:[{cN:"number",b:/-?\d*\.?\d+(pt|pc|mm|cm|in|dd|cc|ex|em)?/}]}]}}]};return{c:[e,{cN:"formula",c:[e],r:0,v:[{b:/\$\$/,e:/\$\$/},{b:/\$/,e:/\$/}]},c.C("%","$",{r:0})]}});hljs.registerLanguage("typescript",function(e){var r={keyword:"in if for while finally var new function do return void else break catch instanceof with throw case default try this switch continue typeof delete let yield const class public private protected get set super static implements enum export import declare type namespace abstract",literal:"true false null undefined NaN Infinity",built_in:"eval isFinite isNaN parseFloat parseInt decodeURI decodeURIComponent encodeURI encodeURIComponent escape unescape Object Function Boolean Error EvalError InternalError RangeError ReferenceError StopIteration SyntaxError TypeError URIError Number Math Date String RegExp Array Float32Array Float64Array Int16Array Int32Array Int8Array Uint16Array Uint32Array Uint8Array Uint8ClampedArray ArrayBuffer DataView JSON Intl arguments require module console window document any number boolean string void"};return{aliases:["ts"],k:r,c:[{cN:"meta",b:/^\s*['"]use strict['"]/},e.ASM,e.QSM,{cN:"string",b:"`",e:"`",c:[e.BE,{cN:"subst",b:"\\$\\{",e:"\\}"}]},e.CLCM,e.CBCM,{cN:"number",v:[{b:"\\b(0[bB][01]+)"},{b:"\\b(0[oO][0-7]+)"},{b:e.CNR}],r:0},{b:"("+e.RSR+"|\\b(case|return|throw)\\b)\\s*",k:"return throw case",c:[e.CLCM,e.CBCM,e.RM],r:0},{cN:"function",b:"function",e:/[\{;]/,eE:!0,k:r,c:["self",e.inherit(e.TM,{b:/[A-Za-z$_][0-9A-Za-z$_]*/}),{cN:"params",b:/\(/,e:/\)/,eB:!0,eE:!0,k:r,c:[e.CLCM,e.CBCM],i:/["'\(]/}],i:/\[|%/,r:0},{bK:"constructor",e:/\{/,eE:!0},{bK:"module",e:/\{/,eE:!0},{bK:"interface",e:/\{/,eE:!0,k:"interface extends"},{b:/\$[(.]/},{b:"\\."+e.IR,r:0}]}});hljs.registerLanguage("scss",function(e){var t="[a-zA-Z-][a-zA-Z0-9_-]*",i={cN:"variable",b:"(\\$"+t+")\\b"},r={cN:"number",b:"#[0-9A-Fa-f]+"};({cN:"attribute",b:"[A-Z_\\.\\-]+",e:":",eE:!0,i:"[^\\s]",starts:{eW:!0,eE:!0,c:[r,e.CSSNM,e.QSM,e.ASM,e.CBCM,{cN:"meta",b:"!important"}]}});return{cI:!0,i:"[=/|']",c:[e.CLCM,e.CBCM,{cN:"selector-id",b:"\\#[A-Za-z0-9_-]+",r:0},{cN:"selector-class",b:"\\.[A-Za-z0-9_-]+",r:0},{cN:"selector-attr",b:"\\[",e:"\\]",i:"$"},{cN:"selector-tag",b:"\\b(a|abbr|acronym|address|area|article|aside|audio|b|base|big|blockquote|body|br|button|canvas|caption|cite|code|col|colgroup|command|datalist|dd|del|details|dfn|div|dl|dt|em|embed|fieldset|figcaption|figure|footer|form|frame|frameset|(h[1-6])|head|header|hgroup|hr|html|i|iframe|img|input|ins|kbd|keygen|label|legend|li|link|map|mark|meta|meter|nav|noframes|noscript|object|ol|optgroup|option|output|p|param|pre|progress|q|rp|rt|ruby|samp|script|section|select|small|span|strike|strong|style|sub|sup|table|tbody|td|textarea|tfoot|th|thead|time|title|tr|tt|ul|var|video)\\b",r:0},{b:":(visited|valid|root|right|required|read-write|read-only|out-range|optional|only-of-type|only-child|nth-of-type|nth-last-of-type|nth-last-child|nth-child|not|link|left|last-of-type|last-child|lang|invalid|indeterminate|in-range|hover|focus|first-of-type|first-line|first-letter|first-child|first|enabled|empty|disabled|default|checked|before|after|active)"},{b:"::(after|before|choices|first-letter|first-line|repeat-index|repeat-item|selection|value)"},i,{cN:"attribute",b:"\\b(z-index|word-wrap|word-spacing|word-break|width|widows|white-space|visibility|vertical-align|unicode-bidi|transition-timing-function|transition-property|transition-duration|transition-delay|transition|transform-style|transform-origin|transform|top|text-underline-position|text-transform|text-shadow|text-rendering|text-overflow|text-indent|text-decoration-style|text-decoration-line|text-decoration-color|text-decoration|text-align-last|text-align|tab-size|table-layout|right|resize|quotes|position|pointer-events|perspective-origin|perspective|page-break-inside|page-break-before|page-break-after|padding-top|padding-right|padding-left|padding-bottom|padding|overflow-y|overflow-x|overflow-wrap|overflow|outline-width|outline-style|outline-offset|outline-color|outline|orphans|order|opacity|object-position|object-fit|normal|none|nav-up|nav-right|nav-left|nav-index|nav-down|min-width|min-height|max-width|max-height|mask|marks|margin-top|margin-right|margin-left|margin-bottom|margin|list-style-type|list-style-position|list-style-image|list-style|line-height|letter-spacing|left|justify-content|initial|inherit|ime-mode|image-orientation|image-resolution|image-rendering|icon|hyphens|height|font-weight|font-variant-ligatures|font-variant|font-style|font-stretch|font-size-adjust|font-size|font-language-override|font-kerning|font-feature-settings|font-family|font|float|flex-wrap|flex-shrink|flex-grow|flex-flow|flex-direction|flex-basis|flex|filter|empty-cells|display|direction|cursor|counter-reset|counter-increment|content|column-width|column-span|column-rule-width|column-rule-style|column-rule-color|column-rule|column-gap|column-fill|column-count|columns|color|clip-path|clip|clear|caption-side|break-inside|break-before|break-after|box-sizing|box-shadow|box-decoration-break|bottom|border-width|border-top-width|border-top-style|border-top-right-radius|border-top-left-radius|border-top-color|border-top|border-style|border-spacing|border-right-width|border-right-style|border-right-color|border-right|border-radius|border-left-width|border-left-style|border-left-color|border-left|border-image-width|border-image-source|border-image-slice|border-image-repeat|border-image-outset|border-image|border-color|border-collapse|border-bottom-width|border-bottom-style|border-bottom-right-radius|border-bottom-left-radius|border-bottom-color|border-bottom|border|background-size|background-repeat|background-position|background-origin|background-image|background-color|background-clip|background-attachment|background-blend-mode|background|backface-visibility|auto|animation-timing-function|animation-play-state|animation-name|animation-iteration-count|animation-fill-mode|animation-duration|animation-direction|animation-delay|animation|align-self|align-items|align-content)\\b",i:"[^\\s]"},{b:"\\b(whitespace|wait|w-resize|visible|vertical-text|vertical-ideographic|uppercase|upper-roman|upper-alpha|underline|transparent|top|thin|thick|text|text-top|text-bottom|tb-rl|table-header-group|table-footer-group|sw-resize|super|strict|static|square|solid|small-caps|separate|se-resize|scroll|s-resize|rtl|row-resize|ridge|right|repeat|repeat-y|repeat-x|relative|progress|pointer|overline|outside|outset|oblique|nowrap|not-allowed|normal|none|nw-resize|no-repeat|no-drop|newspaper|ne-resize|n-resize|move|middle|medium|ltr|lr-tb|lowercase|lower-roman|lower-alpha|loose|list-item|line|line-through|line-edge|lighter|left|keep-all|justify|italic|inter-word|inter-ideograph|inside|inset|inline|inline-block|inherit|inactive|ideograph-space|ideograph-parenthesis|ideograph-numeric|ideograph-alpha|horizontal|hidden|help|hand|groove|fixed|ellipsis|e-resize|double|dotted|distribute|distribute-space|distribute-letter|distribute-all-lines|disc|disabled|default|decimal|dashed|crosshair|collapse|col-resize|circle|char|center|capitalize|break-word|break-all|bottom|both|bolder|bold|block|bidi-override|below|baseline|auto|always|all-scroll|absolute|table|table-cell)\\b"},{b:":",e:";",c:[i,r,e.CSSNM,e.QSM,e.ASM,{cN:"meta",b:"!important"}]},{b:"@",e:"[{;]",k:"mixin include extend for if else each while charset import debug media page content font-face namespace warn",c:[i,e.QSM,e.ASM,r,e.CSSNM,{b:"\\s[A-Za-z0-9_.-]+",r:0}]}]}});hljs.registerLanguage("puppet",function(e){var s={keyword:"and case default else elsif false if in import enherits node or true undef unless main settings $string ",literal:"alias audit before loglevel noop require subscribe tag owner ensure group mode name|0 changes context force incl lens load_path onlyif provider returns root show_diff type_check en_address ip_address realname command environment hour monute month monthday special target weekday creates cwd ogoutput refresh refreshonly tries try_sleep umask backup checksum content ctime force ignore links mtime purge recurse recurselimit replace selinux_ignore_defaults selrange selrole seltype seluser source souirce_permissions sourceselect validate_cmd validate_replacement allowdupe attribute_membership auth_membership forcelocal gid ia_load_module members system host_aliases ip allowed_trunk_vlans description device_url duplex encapsulation etherchannel native_vlan speed principals allow_root auth_class auth_type authenticate_user k_of_n mechanisms rule session_owner shared options device fstype enable hasrestart directory present absent link atboot blockdevice device dump pass remounts poller_tag use message withpath adminfile allow_virtual allowcdrom category configfiles flavor install_options instance package_settings platform responsefile status uninstall_options vendor unless_system_user unless_uid binary control flags hasstatus manifest pattern
restart running start stop allowdupe auths expiry gid groups home iterations key_membership keys managehome membership password password_max_age password_min_age profile_membership profiles project purge_ssh_keys role_membership roles salt shell uid baseurl cost descr enabled enablegroups exclude failovermethod gpgcheck gpgkey http_caching include includepkgs keepalive metadata_expire metalink mirrorlist priority protect proxy proxy_password proxy_username repo_gpgcheck s3_enabled skip_if_unavailable sslcacert sslclientcert sslclientkey sslverify mounted",built_in:"architecture augeasversion blockdevices boardmanufacturer boardproductname boardserialnumber cfkey dhcp_servers domain ec2_ ec2_userdata facterversion filesystems ldom fqdn gid hardwareisa hardwaremodel hostname id|0 interfaces ipaddress ipaddress_ ipaddress6 ipaddress6_ iphostnumber is_virtual kernel kernelmajversion kernelrelease kernelversion kernelrelease kernelversion lsbdistcodename lsbdistdescription lsbdistid lsbdistrelease lsbmajdistrelease lsbminordistrelease lsbrelease macaddress macaddress_ macosx_buildversion macosx_productname macosx_productversion macosx_productverson_major macosx_productversion_minor manufacturer memoryfree memorysize netmask metmask_ network_ operatingsystem operatingsystemmajrelease operatingsystemrelease osfamily partitions path physicalprocessorcount processor processorcount productname ps puppetversion rubysitedir rubyversion selinux selinux_config_mode selinux_config_policy selinux_current_mode selinux_current_mode selinux_enforced selinux_policyversion serialnumber sp_ sshdsakey sshecdsakey sshrsakey swapencrypted swapfree swapsize timezone type uniqueid uptime uptime_days uptime_hours uptime_seconds uuid virtual vlans xendomains zfs_version zonenae zones zpool_version"},r=e.C("#","$"),a="([A-Za-z_]|::)(\\w|::)*",i=e.inherit(e.TM,{b:a}),o={cN:"variable",b:"\\$"+a},t={cN:"string",c:[e.BE,o],v:[{b:/'/,e:/'/},{b:/"/,e:/"/}]};return{aliases:["pp"],c:[r,o,t,{bK:"class",e:"\\{|;",i:/=/,c:[i,r]},{bK:"define",e:/\{/,c:[{cN:"section",b:e.IR,endsParent:!0}]},{b:e.IR+"\\s+\\{",rB:!0,e:/\S/,c:[{cN:"keyword",b:e.IR},{b:/\{/,e:/\}/,k:s,r:0,c:[t,r,{b:"[a-zA-Z_]+\\s*=>",rB:!0,e:"=>",c:[{cN:"attr",b:e.IR}]},{cN:"number",b:"(\\b0[0-7_]+)|(\\b0x[0-9a-fA-F_]+)|(\\b[1-9][0-9_]*(\\.[0-9_]+)?)|[0_]\\b",r:0},o]}],r:0}]}});hljs.registerLanguage("cpp",function(t){var e={cN:"keyword",b:"\\b[a-z\\d_]*_t\\b"},r={cN:"string",v:[t.inherit(t.QSM,{b:'((u8?|U)|L)?"'}),{b:'(u8?|U)?R"',e:'"',c:[t.BE]},{b:"'\\\\?.",e:"'",i:"."}]},i={cN:"number",v:[{b:"\\b(\\d+(\\.\\d*)?|\\.\\d+)(u|U|l|L|ul|UL|f|F)"},{b:t.CNR}],r:0},s={cN:"meta",b:"#",e:"$",k:{"meta-keyword":"if else elif endif define undef warning error line pragma ifdef ifndef"},c:[{b:/\\\n/,r:0},{bK:"include",e:"$",k:{"meta-keyword":"include"},c:[t.inherit(r,{cN:"meta-string"}),{cN:"meta-string",b:"<",e:">",i:"\\n"}]},r,t.CLCM,t.CBCM]},a=t.IR+"\\s*\\(",c={keyword:"int float while private char catch export virtual operator sizeof dynamic_cast|10 typedef const_cast|10 const struct for static_cast|10 union namespace unsigned long volatile static protected bool template mutable if public friend do goto auto void enum else break extern using class asm case typeid short reinterpret_cast|10 default double register explicit signed typename try this switch continue inline delete alignof constexpr decltype noexcept static_assert thread_local restrict _Bool complex _Complex _Imaginary atomic_bool atomic_char atomic_schar atomic_uchar atomic_short atomic_ushort atomic_int atomic_uint atomic_long atomic_ulong atomic_llong atomic_ullong",built_in:"std string cin cout cerr clog stdin stdout stderr stringstream istringstream ostringstream auto_ptr deque list queue stack vector map set bitset multiset multimap unordered_set unordered_map unordered_multiset unordered_multimap array shared_ptr abort abs acos asin atan2 atan calloc ceil cosh cos exit exp fabs floor fmod fprintf fputs free frexp fscanf isalnum isalpha iscntrl isdigit isgraph islower isprint ispunct isspace isupper isxdigit tolower toupper labs ldexp log10 log malloc realloc memchr memcmp memcpy memset modf pow printf putchar puts scanf sinh sin snprintf sprintf sqrt sscanf strcat strchr strcmp strcpy strcspn strlen strncat strncmp strncpy strpbrk strrchr strspn strstr tanh tan vfprintf vprintf vsprintf endl initializer_list unique_ptr",literal:"true false nullptr NULL"};return{aliases:["c","cc","h","c++","h++","hpp"],k:c,i:"</",c:[e,t.CLCM,t.CBCM,i,r,s,{b:"\\b(deque|list|queue|stack|vector|map|set|bitset|multiset|multimap|unordered_map|unordered_set|unordered_multiset|unordered_multimap|array)\\s*<",e:">",k:c,c:["self",e]},{b:t.IR+"::",k:c},{bK:"new throw return else",r:0},{cN:"function",b:"("+t.IR+"[*&\\s]+)+"+a,rB:!0,e:/[{;=]/,eE:!0,k:c,i:/[^\w\s*&]/,c:[{b:a,rB:!0,c:[t.TM],r:0},{cN:"params",b:/\(/,e:/\)/,k:c,r:0,c:[t.CLCM,t.CBCM,r,i]},t.CLCM,t.CBCM,s]}]}});hljs.registerLanguage("gradle",function(e){return{cI:!0,k:{keyword:"task project allprojects subprojects artifacts buildscript configurations dependencies repositories sourceSets description delete from into include exclude source classpath destinationDir includes options sourceCompatibility targetCompatibility group flatDir doLast doFirst flatten todir fromdir ant def abstract break case catch continue default do else extends final finally for if implements instanceof native new private protected public return static switch synchronized throw throws transient try volatile while strictfp package import false null super this true antlrtask checkstyle codenarc copy boolean byte char class double float int interface long short void compile runTime file fileTree abs any append asList asWritable call collect compareTo count div dump each eachByte eachFile eachLine every find findAll flatten getAt getErr getIn getOut getText grep immutable inject inspect intersect invokeMethods isCase join leftShift minus multiply newInputStream newOutputStream newPrintWriter newReader newWriter next plus pop power previous print println push putAt read readBytes readLines reverse reverseEach round size sort splitEachLine step subMap times toInteger toList tokenize upto waitForOrKill withPrintWriter withReader withStream withWriter withWriterAppend write writeLine"},c:[e.CLCM,e.CBCM,e.ASM,e.QSM,e.NM,e.RM]}});hljs.registerLanguage("elixir",function(e){var r="[a-zA-Z_][a-zA-Z0-9_]*(\\!|\\?)?",n="[a-zA-Z_]\\w*[!?=]?|[-+~]\\@|<<|>>|=~|===?|<=>|[<>]=?|**|[-/+%^&*~`|]|\\[\\]=?",b="and false then defined module in return redo retry end for true self when next until do begin unless nil break not case cond alias while ensure or include use alias fn quote",c={cN:"subst",b:"#\\{",e:"}",l:r,k:b},a={cN:"string",c:[e.BE,c],v:[{b:/'/,e:/'/},{b:/"/,e:/"/}]},i={cN:"function",bK:"def defp defmacro",e:/\B\b/,c:[e.inherit(e.TM,{b:r,endsParent:!0})]},s=e.inherit(i,{cN:"class",bK:"defmodule defrecord",e:/\bdo\b|$|;/}),l=[a,e.HCM,s,i,{cN:"symbol",b:":",c:[a,{b:n}],r:0},{cN:"symbol",b:r+":",r:0},{cN:"number",b:"(\\b0[0-7_]+)|(\\b0x[0-9a-fA-F_]+)|(\\b[1-9][0-9_]*(\\.[0-9_]+)?)|[0_]\\b",r:0},{cN:"variable",b:"(\\$\\W)|((\\$|\\@\\@?)(\\w+))"},{b:"->"},{b:"("+e.RSR+")\\s*",c:[e.HCM,{cN:"regexp",i:"\\n",c:[e.BE,c],v:[{b:"/",e:"/[a-z]*"},{b:"%r\\[",e:"\\][a-z]*"}]}],r:0}];return c.c=l,{l:r,k:b,c:l}});hljs.registerLanguage("http",function(e){var t="HTTP/[0-9\\.]+";return{aliases:["https"],i:"\\S",c:[{b:"^"+t,e:"$",c:[{cN:"number",b:"\\b\\d{3}\\b"}]},{b:"^[A-Z]+ (.*?) "+t+"$",rB:!0,e:"$",c:[{cN:"string",b:" ",e:" ",eB:!0,eE:!0},{b:t},{cN:"keyword",b:"[A-Z]+"}]},{cN:"attribute",b:"^\\w",e:": ",eE:!0,i:"\\n|\\s|=",starts:{e:"$",r:0}},{b:"\\n\\n",starts:{sL:[],eW:!0}}]}});hljs.registerLanguage("delphi",function(e){var r="exports register file shl array record property for mod while set ally label uses raise not stored class safecall var interface or private static exit index inherited to else stdcall override shr asm far resourcestring finalization packed virtual out and protected library do xorwrite goto near function end div overload object unit begin string on inline repeat until destructor write message program with read initialization except default nil if case cdecl in downto threadvar of try pascal const external constructor type public then implementation finally published procedure",t=[e.CLCM,e.C(/\{/,/\}/,{r:0}),e.C(/\(*/,/*\)/,{r:10})],a={cN:"string",b:/'/,e:/'/,c:[{b:/''/}]},i={cN:"string",b:/(#\d+)+/},c={b:e.IR+"\\s*=\\s*class\\s*\\(",rB:!0,c:[e.TM]},o={cN:"function",bK:"function constructor destructor procedure",e:/[:;]/,k:"function constructor|10 destructor|10 procedure|10",c:[e.TM,{cN:"params",b:/\(/,e:/\)/,k:r,c:[a,i]}].concat(t)};return{aliases:["dpr","dfm","pas","pascal","freepascal","lazarus","lpr","lfm"],cI:!0,k:r,i:/"|\$[G-Zg-z]|\/*|<\/|\|/,c:[a,i,e.NM,c,o].concat(t)}});hljs.registerLanguage("ruby",function(e){var b="[a-zA-Z_]\\w*[!?=]?|[-+~]\\@|<<|>>|=~|===?|<=>|[<>]=?|**|[-/+%^&*~`|]|\\[\\]=?",c="and false then defined module in return redo if BEGIN retry end for true self when next until do begin unless END rescue nil else break undef not super class case require yield alias while ensure elsif or include attr_reader attr_writer attr_accessor",r={cN:"doctag",b:"@[A-Za-z]+"},a={b:"#<",e:">"},s=[e.C("#","$",{c:[r]}),e.C("^\\=begin","^\\=end",{c:[r],r:10}),e.C("^__END__","\\n$")],n={cN:"subst",b:"#\\{",e:"}",k:c},t={cN:"string",c:[e.BE,n],v:[{b:/'/,e:/'/},{b:/"/,e:/"/},{b:/`/,e:/`/},{b:"%[qQwWx]?\\(",e:"\\)"},{b:"%[qQwWx]?\\[",e:"\\]"},{b:"%[qQwWx]?{",e:"}"},{b:"%[qQwWx]?<",e:">"},{b:"%[qQwWx]?/",e:"/"},{b:"%[qQwWx]?%",e:"%"},{b:"%[qQwWx]?-",e:"-"},{b:"%[qQwWx]?\\|",e:"\\|"},{b:/\B\?(\\\d{1,3}|\\x[A-Fa-f0-9]{1,2}|\\u[A-Fa-f0-9]{4}|\\?\S)\b/}]},i={cN:"params",b:"\\(",e:"\\)",endsParent:!0,k:c},d=[t,a,{cN:"class",bK:"class module",e:"$|;",i:/=/,c:[e.inherit(e.TM,{b:"[A-Za-z_]\\w*(::\\w+)*(\\?|\\!)?"}),{b:"<\\s*",c:[{b:"("+e.IR+"::)?"+e.IR}]}].concat(s)},{cN:"function",bK:"def",e:"$
;",c:[e.inherit(e.TM,{b:b}),i].concat(s)},{cN:"symbol",b:e.UIR+"(\\!|\\?)?:",r:0},{cN:"symbol",b:":",c:[t,{b:b}],r:0},{cN:"number",b:"(\\b0[0-7_]+)|(\\b0x[0-9a-fA-F_]+)|(\\b[1-9][0-9_]*(\\.[0-9_]+)?)|[0_]\\b",r:0},{b:"(\\$\\W)|((\\$|\\@\\@?)(\\w+))"},{b:"("+e.RSR+")\\s*",c:[a,{cN:"regexp",c:[e.BE,n],i:/\n/,v:[{b:"/",e:"/[a-z]*"},{b:"%r{",e:"}[a-z]*"},{b:"%r\\(",e:"\\)[a-z]*"},{b:"%r!",e:"![a-z]*"},{b:"%r\\[",e:"\\][a-z]*"}]}].concat(s),r:0}].concat(s);n.c=d,i.c=d;var o="[>?]>",l="[\\w#]+\\(\\w+\\):\\d+:\\d+>",u="(\\w+-)?\\d+\\.\\d+\\.\\d(p\\d+)?[^>]+>",w=[{b:/^\s*=>/,starts:{e:"$",c:d}},{cN:"meta",b:"^("+o+"|"+l+"|"+u+")",starts:{e:"$",c:d}}];return{aliases:["rb","gemspec","podspec","thor","irb"],k:c,i:/\/*/,c:s.concat(w).concat(d)}});hljs.registerLanguage("ceylon",function(e){var a="assembly module package import alias class interface object given value assign void function new of extends satisfies abstracts in out return break continue throw assert dynamic if else switch case for while try catch finally then let this outer super is exists nonempty",t="shared abstract formal default actual variable late native deprecatedfinal sealed annotation suppressWarnings small",s="doc by license see throws tagged",n={cN:"subst",eB:!0,eE:!0,b:/``/,e:/``/,k:a,r:10},r=[{cN:"string",b:'"""',e:'"""',r:10},{cN:"string",b:'"',e:'"',c:[n]},{cN:"string",b:"'",e:"'"},{cN:"number",b:"#[0-9a-fA-F_]+|\\$[01_]+|[0-9_]+(?:\\.[0-9_](?:[eE][+-]?\\d+)?)?[kMGTPmunpf]?",r:0}];return n.c=r,{k:{keyword:a+" "+t,meta:s},i:"\\$[^01]|#[^0-9a-fA-F]",c:[e.CLCM,e.C("/*","*/",{c:["self"]}),{cN:"meta",b:'@[a-z]\\w*(?:\\:"[^"]*")?'}].concat(r)}});hljs.registerLanguage("dts",function(e){var a={cN:"string",v:[e.inherit(e.QSM,{b:'((u8?|U)|L)?"'}),{b:'(u8?|U)?R"',e:'"',c:[e.BE]},{b:"'\\\\?.",e:"'",i:"."}]},c={cN:"number",v:[{b:"\\b(\\d+(\\.\\d*)?|\\.\\d+)(u|U|l|L|ul|UL|f|F)"},{b:e.CNR}],r:0},b={cN:"meta",b:"#",e:"$",k:{"meta-keyword":"if else elif endif define undef ifdef ifndef"},c:[{b:/\\\n/,r:0},{bK:"include",e:"$",k:{"meta-keyword":"include"},c:[e.inherit(a,{cN:"meta-string"}),{cN:"meta-string",b:"<",e:">",i:"\\n"}]},a,e.CLCM,e.CBCM]},i={cN:"variable",b:"\\&[a-z\\d_]*\\b"},r={cN:"meta-keyword",b:"/[a-z][a-z\\d-]*/"},d={cN:"symbol",b:"^\\s*[a-zA-Z_][a-zA-Z\\d_]*:"},n={cN:"params",b:"<",e:">",c:[c,i]},s={cN:"class",b:/[a-zA-Z_][a-zA-Z\d_@]*\s{/,e:/[{;=]/,rB:!0,eE:!0},t={cN:"class",b:"/\\s*{",e:"};",r:10,c:[i,r,d,s,n,e.CLCM,e.CBCM,c,a]};return{k:"",c:[t,i,r,d,s,n,e.CLCM,e.CBCM,c,a,b,{b:e.IR+"::",k:""}]}});hljs.registerLanguage("django",function(e){var t={b:/\|[A-Za-z]+:?/,k:{name:"truncatewords removetags linebreaksbr yesno get_digit timesince random striptags filesizeformat escape linebreaks length_is ljust rjust cut urlize fix_ampersands title floatformat capfirst pprint divisibleby add make_list unordered_list urlencode timeuntil urlizetrunc wordcount stringformat linenumbers slice date dictsort dictsortreversed default_if_none pluralize lower join center default truncatewords_html upper length phone2numeric wordwrap time addslashes slugify first escapejs force_escape iriencode last safe safeseq truncatechars localize unlocalize localtime utc timezone"},c:[e.QSM,e.ASM]};return{aliases:["jinja"],cI:!0,sL:"xml",c:[e.C(/\{%\s*comment\s*%}/,/\{%\s*endcomment\s*%}/),e.C(/\{#/,/#}/),{cN:"template-tag",b:/\{%/,e:/%}/,c:[{cN:"name",b:/\w+/,k:{name:"comment endcomment load templatetag ifchanged endifchanged if endif firstof for endfor ifnotequal endifnotequal widthratio extends include spaceless endspaceless regroup ifequal endifequal ssi now with cycle url filter endfilter debug block endblock else autoescape endautoescape csrf_token empty elif endwith static trans blocktrans endblocktrans get_static_prefix get_media_prefix plural get_current_language language get_available_languages get_current_language_bidi get_language_info get_language_info_list localize endlocalize localtime endlocaltime timezone endtimezone get_current_timezone verbatim"},starts:{eW:!0,k:"in by as",c:[t],r:0}}]},{cN:"template-variable",b:/\{\{/,e:/}}/,c:[t]}]}});hljs.registerLanguage("css",function(e){var c="[a-zA-Z-][a-zA-Z0-9_-]*",t={b:/[A-Z_\.\-]+\s*:/,rB:!0,e:";",eW:!0,c:[{cN:"attribute",b:/\S/,e:":",eE:!0,starts:{eW:!0,eE:!0,c:[{b:/[\w-]+\(/,rB:!0,c:[{cN:"built_in",b:/[\w-]+/},{b:/\(/,e:/\)/,c:[e.ASM,e.QSM]}]},e.CSSNM,e.QSM,e.ASM,e.CBCM,{cN:"number",b:"#[0-9A-Fa-f]+"},{cN:"meta",b:"!important"}]}}]};return{cI:!0,i:/[=\/|'\$]/,c:[e.CBCM,{cN:"selector-id",b:/#[A-Za-z0-9_-]+/},{cN:"selector-class",b:/\.[A-Za-z0-9_-]+/},{cN:"selector-attr",b:/\[/,e:/\]/,i:"$"},{cN:"selector-pseudo",b:/:(:)?[a-zA-Z0-9_\-\+\(\)"'.]+/},{b:"@(font-face|page)",l:"[a-z-]+",k:"font-face page"},{b:"@",e:"[{;]",c:[{cN:"keyword",b:/\S+/},{b:/\s/,eW:!0,eE:!0,r:0,c:[e.ASM,e.QSM,e.CSSNM]}]},{cN:"selector-tag",b:c,r:0},{b:"{",e:"}",i:/\S/,c:[e.CBCM,t]}]}});hljs.registerLanguage("qml",function(r){var e={keyword:"in of on if for while finally var new function do return void else break catch instanceof with throw case default try this switch continue typeof delete let yield const export super debugger as async await",literal:"true false null undefined NaN Infinity",built_in:"eval isFinite isNaN parseFloat parseInt decodeURI decodeURIComponent encodeURI encodeURIComponent escape unescape Object Function Boolean Error EvalError InternalError RangeError ReferenceError StopIteration SyntaxError TypeError URIError Number Math Date String RegExp Array Float32Array Float64Array Int16Array Int32Array Int8Array Uint16Array Uint32Array Uint8Array Uint8ClampedArray ArrayBuffer DataView JSON Intl arguments require module console window document Symbol Set Map WeakSet WeakMap Proxy Reflect Behavior bool color coordinate date double enumeration font geocircle georectangle geoshape int list matrix4x4 parent point quaternion real rect size string url var variant vector2d vector3d vector4dPromise"},t="[a-zA-Z_][a-zA-Z0-9\\._]*",a={cN:"string",b:"(\\b|\"|')",e:"(//|/*|$)",i:"\\n",c:[r.BE]},n={bK:"import",e:"$",starts:{cN:"string",e:"(//|/*|$)",rE:!0},c:[a]},o={cN:"keyword",b:"\\bproperty\\b",starts:{cN:"string",e:"(:|=|;|,|//|/*|$)",rE:!0},r:0},i={cN:"keyword",b:"\\bsignal\\b",starts:{cN:"string",e:"(\\(|:|=|;|,|//|/*|$)",rE:!0},r:10},c={cN:"attribute",b:"\\bid\\s*:",starts:{cN:"emphasis",e:t,rE:!1},r:10},s={b:t+"\\s*:",rB:!0,c:[{cN:"attribute",b:t,includeBegin:!0,e:"\\s*:",eE:!0}],r:0},b={b:t+"\\s*{",rB:!0,c:[{cN:"decorator",k:e,b:t,includeBegin:!0,e:"\\s*{",eE:!0}],r:0};return{aliases:["qt"],cI:!1,k:e,c:[{cN:"pi",b:/^\s*['"]use (strict|asm)['"]/},r.ASM,r.QSM,{cN:"string",b:"`",e:"`",c:[r.BE,{cN:"subst",b:"\\$\\{",e:"\\}"}]},r.CLCM,r.CBCM,{cN:"number",v:[{b:"\\b(0[bB][01]+)"},{b:"\\b(0[oO][0-7]+)"},{b:r.CNR}],r:0},{b:"("+r.RSR+"|\\b(case|return|throw)\\b)\\s*",k:"return throw case",c:[r.CLCM,r.CBCM,r.RM,{b:/</,e:/>\s*[);\]]/,r:0,sL:"xml"}],r:0},n,i,o,{cN:"function",bK:"function",e:/\{/,eE:!0,c:[r.inherit(r.TM,{b:/[A-Za-z$_][0-9A-Za-z$_]*/}),{cN:"params",b:/\(/,e:/\)/,eB:!0,eE:!0,c:[r.CLCM,r.CBCM]}],i:/\[|%/},{b:"\\."+r.IR,r:0},c,s,b],i:/#/}});hljs.registerLanguage("coffeescript",function(e){var c={keyword:"in if for while finally new do return else break catch instanceof throw try this switch continue typeof delete debugger super then unless until loop of by when and or is isnt not",literal:"true false null undefined yes no on off",built_in:"npm require console print module global window document"},n="[A-Za-z$_][0-9A-Za-z$_]*",r={cN:"subst",b:/#\{/,e:/}/,k:c},s=[e.BNM,e.inherit(e.CNM,{starts:{e:"(\\s*/)?",r:0}}),{cN:"string",v:[{b:/'''/,e:/'''/,c:[e.BE]},{b:/'/,e:/'/,c:[e.BE]},{b:/"""/,e:/"""/,c:[e.BE,r]},{b:/"/,e:/"/,c:[e.BE,r]}]},{cN:"regexp",v:[{b:"///",e:"///",c:[r,e.HCM]},{b:"//[gim]*",r:0},{b:/\/(?![*])(\\\/|.)*?\/[gim]*(?=\W|$)/}]},{b:"@"+n},{b:"`",e:"`",eB:!0,eE:!0,sL:"javascript"}];r.c=s;var i=e.inherit(e.TM,{b:n}),t="(\\(.*\\))?\\s*\\B[-=]>",o={cN:"params",b:"\\([^\\(]",rB:!0,c:[{b:/\(/,e:/\)/,k:c,c:["self"].concat(s)}]};return{aliases:["coffee","cson","iced"],k:c,i:/\/*/,c:s.concat([e.C("###","###"),e.HCM,{cN:"function",b:"^\\s*"+n+"\\s*=\\s*"+t,e:"[-=]>",rB:!0,c:[i,o]},{b:/[:\(,=]\s*/,r:0,c:[{cN:"function",b:t,e:"[-=]>",rB:!0,c:[o]}]},{cN:"class",bK:"class",e:"$",i:/[:="\[\]]/,c:[{bK:"extends",eW:!0,i:/[:="\[\]]/,c:[i]},i]},{b:n+":",e:":",rB:!0,rE:!0,r:0}])}});hljs.registerLanguage("vbscript",function(e){return{aliases:["vbs"],cI:!0,k:{keyword:"call class const dim do loop erase execute executeglobal exit for each next function if then else on error option explicit new private property let get public randomize redim rem select case set stop sub while wend with end to elseif is or xor and not class_initialize class_terminate default preserve in me byval byref step resume goto",built_in:"lcase month vartype instrrev ubound setlocale getobject rgb getref string weekdayname rnd dateadd monthname now day minute isarray cbool round formatcurrency conversions csng timevalue second year space abs clng timeserial fixs len asc isempty maths dateserial atn timer isobject filter weekday datevalue ccur isdate instr datediff formatdatetime replace isnull right sgn array snumeric log cdbl hex chr lbound msgbox ucase getlocale cos cdate cbyte rtrim join hour oct typename trim strcomp int createobject loadpicture tan formatnumber mid scriptenginebuildversion scriptengine split scriptengineminorversion cint sin datepart ltrim sqr scriptenginemajorversion time derived eval date formatpercent exp inputbox left ascw chrw regexp server response request cstr err",literal:"true false null nothing empty"},i:"//",c:[e.inherit(e.QSM,{c:[{b:'""'}]}),e.C(/'/,/$/,{r:0}),e.CNM]}});hljs.registerLanguage("fsharp",function(e){var t={b:"<",e:">",c:[e.inherit(e.TM,{b:/'[a-zA-Z0-9_]+/})]};return{aliases:["fs"],k:"abstract and as assert base begin class default delegate do done downcast downto elif else end exception extern false finally for fun function global if in inherit inline interface internal lazy let match member module mutable namespace new null of
open or override private public rec return sig static struct then to true try type upcast use val void when while with yield",i:/\/*/,c:[{cN:"keyword",b:/\b(yield|return|let|do)!/},{cN:"string",b:'@"',e:'"',c:[{b:'""'}]},{cN:"string",b:'"""',e:'"""'},e.C("\\(*","*\\)"),{cN:"class",bK:"type",e:"\\(|=|$",eE:!0,c:[e.UTM,t]},{cN:"meta",b:"\\[<",e:">\\]",r:10},{cN:"symbol",b:"\\B('[A-Za-z])\\b",c:[e.BE]},e.CLCM,e.inherit(e.QSM,{i:null}),e.CNM]}});hljs.registerLanguage("dart",function(e){var t={cN:"subst",b:"\\$\\{",e:"}",k:"true false null this is new super"},r={cN:"string",v:[{b:"r'''",e:"'''"},{b:'r"""',e:'"""'},{b:"r'",e:"'",i:"\\n"},{b:'r"',e:'"',i:"\\n"},{b:"'''",e:"'''",c:[e.BE,t]},{b:'"""',e:'"""',c:[e.BE,t]},{b:"'",e:"'",i:"\\n",c:[e.BE,t]},{b:'"',e:'"',i:"\\n",c:[e.BE,t]}]};t.c=[e.CNM,r];var n={keyword:"assert async await break case catch class const continue default do else enum extends false final finally for if in is new null rethrow return super switch sync this throw true try var void while with yield abstract as dynamic export external factory get implements import library operator part set static typedef",built_in:"print Comparable DateTime Duration Function Iterable Iterator List Map Match Null Object Pattern RegExp Set Stopwatch String StringBuffer StringSink Symbol Type Uri bool double int num document window querySelector querySelectorAll Element ElementList"};return{k:n,c:[r,e.C("/**","*/",{sL:"markdown"}),e.C("///","$",{sL:"markdown"}),e.CLCM,e.CBCM,{cN:"class",bK:"class interface",e:"{",eE:!0,c:[{bK:"extends implements"},e.UTM]},e.CNM,{cN:"meta",b:"@[A-Za-z]+"},{b:"=>"}]}});hljs.registerLanguage("asciidoc",function(e){return{aliases:["adoc"],c:[e.C("^/{4,}\\n","\\n/{4,}$",{r:10}),e.C("^//","$",{r:0}),{cN:"title",b:"^\\.\\w.*$"},{b:"^[=*]{4,}\\n",e:"\\n^[=*]{4,}$",r:10},{cN:"section",r:10,v:[{b:"^(={1,5}) .+?(\\1)?$"},{b:"^[^\\[\\]\\n]+?\\n[=\\-~\\^\\+]{2,}$"}]},{cN:"meta",b:"^:.+?:",e:"\\s",eE:!0,r:10},{cN:"meta",b:"^\\[.+?\\]$",r:0},{cN:"quote",b:"^_{4,}\\n",e:"\\n_{4,}$",r:10},{cN:"code",b:"^[\\-\\.]{4,}\\n",e:"\\n[\\-\\.]{4,}$",r:10},{b:"^\\+{4,}\\n",e:"\\n\\+{4,}$",c:[{b:"<",e:">",sL:"xml",r:0}],r:10},{cN:"bullet",b:"^(*+|\\-+|\\.+|[^\\n]+?::)\\s+"},{cN:"symbol",b:"^(NOTE|TIP|IMPORTANT|WARNING|CAUTION):\\s+",r:10},{cN:"strong",b:"\\B*(?![*\\s])",e:"(\\n{2}|*)",c:[{b:"*\\w",r:0}]},{cN:"emphasis",b:"\\B'(?!['\\s])",e:"(\\n{2}|')",c:[{b:"\\\\'\\w",r:0}],r:0},{cN:"emphasis",b:"_(?![_\\s])",e:"(\\n{2}|_)",r:0},{cN:"string",v:[{b:"``.+?''"},{b:"`.+?'"}]},{cN:"code",b:"(`.+?`|\\+.+?\\+)",r:0},{cN:"code",b:"^[\\t]",e:"$",r:0},{b:"^'{3,}[\\t]*$",r:10},{b:"(link:)?(http|https|ftp|file|irc|image:?):\\S+\\[.*?\\]",rB:!0,c:[{b:"(link|image:?):",r:0},{cN:"link",b:"\\w",e:"[^\\[]+",r:0},{cN:"string",b:"\\[",e:"\\]",eB:!0,eE:!0,r:0}],r:10}]}});hljs.registerLanguage("dos",function(e){var r=e.C(/@?rem\b/,/$/,{r:10}),t={cN:"symbol",b:"^\\s*[A-Za-z._?][A-Za-z0-9_$#@~.?]*(:|\\s+label)",r:0};return{aliases:["bat","cmd"],cI:!0,i:/\/*/,k:{keyword:"if else goto for in do call exit not exist errorlevel defined equ neq lss leq gtr geq",built_in:"prn nul lpt3 lpt2 lpt1 con com4 com3 com2 com1 aux shift cd dir echo setlocal endlocal set pause copy append assoc at attrib break cacls cd chcp chdir chkdsk chkntfs cls cmd color comp compact convert date dir diskcomp diskcopy doskey erase fs find findstr format ftype graftabl help keyb label md mkdir mode more move path pause print popd pushd promt rd recover rem rename replace restore rmdir shiftsort start subst time title tree type ver verify vol ping net ipconfig taskkill xcopy ren del"},c:[{cN:"variable",b:/%%[^]|%[^]+?%|![^]+?!/},{cN:"function",b:t.b,e:"goto:eof",c:[e.inherit(e.TM,{b:"([_a-zA-Z]\\w*\\.)*([_a-zA-Z]\\w*:)?[_a-zA-Z]\\w*"}),r]},{cN:"number",b:"\\b\\d+",r:0},r]}});hljs.registerLanguage("lua",function(e){var t="\\[=*\\[",a="\\]=*\\]",r={b:t,e:a,c:["self"]},n=[e.C("--(?!"+t+")","$"),e.C("--"+t,a,{c:[r],r:10})];return{l:e.UIR,k:{keyword:"and break do else elseif end false for if in local nil not or repeat return then true until while",built_in:"_G _VERSION assert collectgarbage dofile error getfenv getmetatable ipairs load loadfile loadstring module next pairs pcall print rawequal rawget rawset require select setfenv setmetatable tonumber tostring type unpack xpcall coroutine debug io math os package string table"},c:n.concat([{cN:"function",bK:"function",e:"\\)",c:[e.inherit(e.TM,{b:"([_a-zA-Z]\\w*\\.)*([_a-zA-Z]\\w*:)?[_a-zA-Z]\\w*"}),{cN:"params",b:"\\(",eW:!0,c:n}].concat(n)},e.CNM,e.ASM,e.QSM,{cN:"string",b:t,e:a,c:[r],r:5}])}});hljs.registerLanguage("julia",function(e){var r={keyword:"in abstract baremodule begin bitstype break catch ccall const continue do else elseif end export finally for function global if immutable import importall let local macro module quote return try type typealias using while",literal:"true false ARGS CPU_CORES C_NULL DL_LOAD_PATH DevNull ENDIAN_BOM ENV I|0 Inf Inf16 Inf32 InsertionSort JULIA_HOME LOAD_PATH MS_ASYNC MS_INVALIDATE MS_SYNC MergeSort NaN NaN16 NaN32 OS_NAME QuickSort RTLD_DEEPBIND RTLD_FIRST RTLD_GLOBAL RTLD_LAZY RTLD_LOCAL RTLD_NODELETE RTLD_NOLOAD RTLD_NOW RoundDown RoundFromZero RoundNearest RoundToZero RoundUp STDERR STDIN STDOUT VERSION WORD_SIZE catalan cglobal e|0 eu|0 eulergamma golden im nothing pi γ π φ Inf64 NaN64 RoundNearestTiesAway RoundNearestTiesUp ",built_in:"ANY ASCIIString AbstractArray AbstractRNG AbstractSparseArray Any ArgumentError Array Associative Base64Pipe Bidiagonal BigFloat BigInt BitArray BitMatrix BitVector Bool BoundsError Box CFILE Cchar Cdouble Cfloat Char CharString Cint Clong Clonglong ClusterManager Cmd Coff_t Colon Complex Complex128 Complex32 Complex64 Condition Cptrdiff_t Cshort Csize_t Cssize_t Cuchar Cuint Culong Culonglong Cushort Cwchar_t DArray DataType DenseArray Diagonal Dict DimensionMismatch DirectIndexString Display DivideError DomainError EOFError EachLine Enumerate ErrorException Exception Expr Factorization FileMonitor FileOffset Filter Float16 Float32 Float64 FloatRange FloatingPoint Function GetfieldNode GotoNode Hermitian IO IOBuffer IOStream IPv4 IPv6 InexactError Int Int128 Int16 Int32 Int64 Int8 IntSet Integer InterruptException IntrinsicFunction KeyError LabelNode LambdaStaticData LineNumberNode LoadError LocalProcess MIME MathConst MemoryError MersenneTwister Method MethodError MethodTable Module NTuple NewvarNode Nothing Number ObjectIdDict OrdinalRange OverflowError ParseError PollingFileWatcher ProcessExitedException ProcessGroup Ptr QuoteNode Range Range1 Ranges Rational RawFD Real Regex RegexMatch RemoteRef RepString RevString RopeString RoundingMode Set SharedArray Signed SparseMatrixCSC StackOverflowError Stat StatStruct StepRange String SubArray SubString SymTridiagonal Symbol SymbolNode Symmetric SystemError Task TextDisplay Timer TmStruct TopNode Triangular Tridiagonal Type TypeConstructor TypeError TypeName TypeVar UTF16String UTF32String UTF8String UdpSocket Uint Uint128 Uint16 Uint32 Uint64 Uint8 UndefRefError UndefVarError UniformScaling UnionType UnitRange Unsigned Vararg VersionNumber WString WeakKeyDict WeakRef Woodbury Zip AbstractChannel AbstractFloat AbstractString AssertionError Base64DecodePipe Base64EncodePipe BufferStream CapturedException CartesianIndex CartesianRange Channel Cintmax_t CompositeException Cstring Cuintmax_t Cwstring Date DateTime Dims Enum GenSym GlobalRef HTML InitError InvalidStateException Irrational LinSpace LowerTriangular NullException Nullable OutOfMemoryError Pair PartialQuickSort Pipe RandomDevice ReadOnlyMemoryError ReentrantLock Ref RemoteException SegmentationFault SerializationState SimpleVector TCPSocket Text Tuple UDPSocket UInt UInt128 UInt16 UInt32 UInt64 UInt8 UnicodeError Union UpperTriangular Val Void WorkerConfig AbstractMatrix AbstractSparseMatrix AbstractSparseVector AbstractVecOrMat AbstractVector DenseMatrix DenseVecOrMat DenseVector Matrix SharedMatrix SharedVector StridedArray StridedMatrix StridedVecOrMat StridedVector VecOrMat Vector "},t="[A-Za-z_\\u00A1-\\uFFFF][A-Za-z_0-9\\u00A1-\\uFFFF]*",a={l:t,k:r,i:/<\//},n={cN:"type",b:/::/},o={cN:"type",b:/<:/},i={cN:"number",b:/(\b0x[\d_]*(\.[\d_]*)?|0x\.\d[\d_]*)p[-+]?\d+|\b0[box][a-fA-F0-9][a-fA-F0-9_]*|(\b\d[\d_]*(\.[\d_]*)?|\.\d[\d_]*)([eEfF][-+]?\d+)?/,r:0},l={cN:"string",b:/'(.|\\[xXuU][a-zA-Z0-9]+)'/},c={cN:"subst",b:/\$\(/,e:/\)/,k:r},s={cN:"variable",b:"\\$"+t},d={cN:"string",c:[e.BE,c,s],v:[{b:/\w*"""/,e:/"""\w*/,r:10},{b:/\w*"/,e:/"\w*/}]},S={cN:"string",c:[e.BE,c,s],b:"`",e:"`"},u={cN:"meta",b:"@"+t},g={cN:"comment",v:[{b:"#=",e:"=#",r:10},{b:"#",e:"$"}]};return a.c=[i,l,n,o,d,S,u,g,e.HCM],c.c=a.c,a});hljs.registerLanguage("matlab",function(e){var a=[e.CNM,{cN:"string",b:"'",e:"'",c:[e.BE,{b:"''"}]}],s={r:0,c:[{b:/'['\.]*/}]};return{k:{keyword:"break case catch classdef continue else elseif end enumerated events for function global if methods otherwise parfor persistent properties return spmd switch try while",built_in:"sin sind sinh asin asind asinh cos cosd cosh acos acosd acosh tan tand tanh atan atand atan2 atanh sec secd sech asec asecd asech csc cscd csch acsc acscd acsch cot cotd coth acot acotd acoth hypot exp expm1 log log1p log10 log2 pow2 realpow reallog realsqrt sqrt nthroot nextpow2 abs angle complex conj imag real unwrap isreal cplxpair fix floor ceil round mod rem sign airy besselj bessely besselh besseli besselk beta betainc betaln ellipj ellipke erf erfc erfcx erfinv expint gamma gammainc gammaln psi legendre cross dot factor isprime primes gcd lcm rat rats perms nchoosek factorial cart2sph cart2pol pol2cart sph2cart hsv2rgb rgb2hsv zeros ones eye repmat rand randn linspace logspace freqspace meshgrid accumarray size length ndims numel disp isempty isequal isequalwithequalnans cat reshape diag blkdiag tril triu fliplr flipud flipdim rot90 find sub2ind ind2sub bsxfun ndgrid permute ipermute shiftdim circshift squeeze isscalar isvector ans eps realmax realmin pi i inf nan isnan isinf isfinite j why compan
gallery hadamard hankel hilb invhilb magic pascal rosser toeplitz vander wilkinson"},i:'(//|"|#|/*|\\s+/\\w+)',c:[{cN:"function",bK:"function",e:"$",c:[e.UTM,{cN:"params",v:[{b:"\\(",e:"\\)"},{b:"\\[",e:"\\]"}]}]},{b:/[a-zA-Z_][a-zA-Z_0-9]*'['\.]*/,rB:!0,r:0,c:[{b:/[a-zA-Z_][a-zA-Z_0-9]*/,r:0},s.c[0]]},{b:"\\[",e:"\\]",c:a,r:0,starts:s},{b:"\\{",e:/}/,c:a,r:0,starts:s},{b:/\)/,r:0,starts:s},e.C("^\\s*\\%\\{\\s*$","^\\s*\\%\\}\\s*$"),e.C("\\%","$")].concat(a)}});hljs.registerLanguage("markdown",function(e){return{aliases:["md","mkdown","mkd"],c:[{cN:"section",v:[{b:"^#{1,6}",e:"$"},{b:"^.+?\\n[=-]{2,}$"}]},{b:"<",e:">",sL:"xml",r:0},{cN:"bullet",b:"^([*+-]|(\\d+\\.))\\s+"},{cN:"strong",b:"[*_]{2}.+?[*_]{2}"},{cN:"emphasis",v:[{b:"*.+?*"},{b:"_.+?_",r:0}]},{cN:"quote",b:"^>\\s+",e:"$"},{cN:"code",v:[{b:"`.+?`"},{b:"^({4}|)",e:"$",r:0}]},{b:"^[-*]{3,}",e:"$"},{b:"\\[.+?\\][\\(\\[].*?[\\)\\]]",rB:!0,c:[{cN:"string",b:"\\[",e:"\\]",eB:!0,rE:!0,r:0},{cN:"link",b:"\\]\\(",e:"\\)",eB:!0,eE:!0},{cN:"symbol",b:"\\]\\[",e:"\\]",eB:!0,eE:!0}],r:10},{b:"^\\[.+\\]:",rB:!0,c:[{cN:"symbol",b:"\\[",e:"\\]:",eB:!0,eE:!0,starts:{cN:"link",e:"$"}}]}]}});hljs.registerLanguage("vim",function(e){return{l:/[!#@\w]+/,k:{keyword:"N|0 P|0 X|0 a|0 ab abc abo al am an|0 ar arga argd arge argdo argg argl argu as au aug aun b|0 bN ba bad bd be bel bf bl bm bn bo bp br brea breaka breakd breakl bro bufdo buffers bun bw c|0 cN cNf ca cabc caddb cad caddf cal cat cb cc ccl cd ce cex cf cfir cgetb cgete cg changes chd che checkt cl cla clo cm cmapc cme cn cnew cnf cno cnorea cnoreme co col colo com comc comp con conf cope cp cpf cq cr cs cst cu cuna cunme cw delm deb debugg delc delf dif diffg diffo diffp diffpu diffs diffthis dig di dl dell dj dli do doautoa dp dr ds dsp e|0 ea ec echoe echoh echom echon el elsei em en endfo endf endt endw ene ex exe exi exu f|0 files filet fin fina fini fir fix fo foldc foldd folddoc foldo for fu go gr grepa gu gv ha helpf helpg helpt hi hid his ia iabc if ij il im imapc ime ino inorea inoreme int is isp iu iuna iunme j|0 ju k|0 keepa kee keepj lN lNf l|0 lad laddb laddf la lan lat lb lc lch lcl lcs le lefta let lex lf lfir lgetb lgete lg lgr lgrepa lh ll lla lli lmak lm lmapc lne lnew lnf ln loadk lo loc lockv lol lope lp lpf lr ls lt lu lua luad luaf lv lvimgrepa lw m|0 ma mak map mapc marks mat me menut mes mk mks mksp mkv mkvie mod mz mzf nbc nb nbs new nm nmapc nme nn nnoreme noa no noh norea noreme norm nu nun nunme ol o|0 om omapc ome on ono onoreme opt ou ounme ow p|0 profd prof pro promptr pc ped pe perld po popu pp pre prev ps pt ptN ptf ptj ptl ptn ptp ptr pts pu pw py3 python3 py3d py3f py pyd pyf quita qa rec red redi redr redraws reg res ret retu rew ri rightb rub rubyd rubyf rund ru rv sN san sa sal sav sb sbN sba sbf sbl sbm sbn sbp sbr scrip scripte scs se setf setg setl sf sfir sh sim sig sil sl sla sm smap smapc sme sn sni sno snor snoreme sor so spelld spe spelli spellr spellu spellw sp spr sre st sta startg startr star stopi stj sts sun sunm sunme sus sv sw sy synti sync tN tabN tabc tabdo tabe tabf tabfir tabl tabm tabnew tabn tabo tabp tabr tabs tab ta tags tc tcld tclf te tf th tj tl tm tn to tp tr try ts tu u|0 undoj undol una unh unl unlo unm unme uns up ve verb vert vim vimgrepa vi viu vie vm vmapc vme vne vn vnoreme vs vu vunme windo w|0 wN wa wh wi winc winp wn wp wq wqa ws wu wv x|0 xa xmapc xm xme xn xnoreme xu xunme y|0 z|0 ~ Next Print append abbreviate abclear aboveleft all amenu anoremenu args argadd argdelete argedit argglobal arglocal argument ascii autocmd augroup aunmenu buffer bNext ball badd bdelete behave belowright bfirst blast bmodified bnext botright bprevious brewind break breakadd breakdel breaklist browse bunload bwipeout change cNext cNfile cabbrev cabclear caddbuffer caddexpr caddfile call catch cbuffer cclose center cexpr cfile cfirst cgetbuffer cgetexpr cgetfile chdir checkpath checktime clist clast close cmap cmapclear cmenu cnext cnewer cnfile cnoremap cnoreabbrev cnoremenu copy colder colorscheme command comclear compiler continue confirm copen cprevious cpfile cquit crewind cscope cstag cunmap cunabbrev cunmenu cwindow delete delmarks debug debuggreedy delcommand delfunction diffupdate diffget diffoff diffpatch diffput diffsplit digraphs display deletel djump dlist doautocmd doautoall deletep drop dsearch dsplit edit earlier echo echoerr echohl echomsg else elseif emenu endif endfor endfunction endtry endwhile enew execute exit exusage file filetype find finally finish first fixdel fold foldclose folddoopen folddoclosed foldopen function global goto grep grepadd gui gvim hardcopy help helpfind helpgrep helptags highlight hide history insert iabbrev iabclear ijump ilist imap imapclear imenu inoremap inoreabbrev inoremenu intro isearch isplit iunmap iunabbrev iunmenu join jumps keepalt keepmarks keepjumps lNext lNfile list laddexpr laddbuffer laddfile last language later lbuffer lcd lchdir lclose lcscope left leftabove lexpr lfile lfirst lgetbuffer lgetexpr lgetfile lgrep lgrepadd lhelpgrep llast llist lmake lmap lmapclear lnext lnewer lnfile lnoremap loadkeymap loadview lockmarks lockvar lolder lopen lprevious lpfile lrewind ltag lunmap luado luafile lvimgrep lvimgrepadd lwindow move mark make mapclear match menu menutranslate messages mkexrc mksession mkspell mkvimrc mkview mode mzscheme mzfile nbclose nbkey nbsart next nmap nmapclear nmenu nnoremap nnoremenu noautocmd noremap nohlsearch noreabbrev noremenu normal number nunmap nunmenu oldfiles open omap omapclear omenu only onoremap onoremenu options ounmap ounmenu ownsyntax print profdel profile promptfind promptrepl pclose pedit perl perldo pop popup ppop preserve previous psearch ptag ptNext ptfirst ptjump ptlast ptnext ptprevious ptrewind ptselect put pwd py3do py3file python pydo pyfile quit quitall qall read recover redo redir redraw redrawstatus registers resize retab return rewind right rightbelow ruby rubydo rubyfile rundo runtime rviminfo substitute sNext sandbox sargument sall saveas sbuffer sbNext sball sbfirst sblast sbmodified sbnext sbprevious sbrewind scriptnames scriptencoding scscope set setfiletype setglobal setlocal sfind sfirst shell simalt sign silent sleep slast smagic smapclear smenu snext sniff snomagic snoremap snoremenu sort source spelldump spellgood spellinfo spellrepall spellundo spellwrong split sprevious srewind stop stag startgreplace startreplace startinsert stopinsert stjump stselect sunhide sunmap sunmenu suspend sview swapname syntax syntime syncbind tNext tabNext tabclose tabedit tabfind tabfirst tablast tabmove tabnext tabonly tabprevious tabrewind tag tcl tcldo tclfile tearoff tfirst throw tjump tlast tmenu tnext topleft tprevious trewind tselect tunmenu undo undojoin undolist unabbreviate unhide unlet unlockvar unmap unmenu unsilent update vglobal version verbose vertical vimgrep vimgrepadd visual viusage view vmap vmapclear vmenu vnew vnoremap vnoremenu vsplit vunmap vunmenu write wNext wall while winsize wincmd winpos wnext wprevious wqall wsverb wundo wviminfo xit xall xmapclear xmap xmenu xnoremap xnoremenu xunmap xunmenu yank",built_in:"synIDtrans atan2 range matcharg did_filetype asin feedkeys xor argv complete_check add getwinposx getqflist getwinposy screencol clearmatches empty extend getcmdpos mzeval garbagecollect setreg ceil sqrt diff_hlID inputsecret get getfperm getpid filewritable shiftwidth max sinh isdirectory synID system inputrestore winline atan visualmode inputlist tabpagewinnr round getregtype mapcheck hasmapto histdel argidx findfile sha256 exists toupper getcmdline taglist string getmatches bufnr strftime winwidth bufexists strtrans tabpagebuflist setcmdpos remote_read printf setloclist getpos getline bufwinnr float2nr len getcmdtype diff_filler luaeval resolve libcallnr foldclosedend reverse filter has_key bufname str2float strlen setline getcharmod setbufvar index searchpos shellescape undofile foldclosed setqflist buflisted strchars str2nr virtcol floor remove undotree remote_expr winheight gettabwinvar reltime cursor tabpagenr finddir localtime acos getloclist search tanh matchend rename gettabvar strdisplaywidth type abs py3eval setwinvar tolower wildmenumode log10 spellsuggest bufloaded synconcealed nextnonblank server2client complete settabwinvar executable input wincol setmatches getftype hlID inputsave searchpair or screenrow line settabvar histadd deepcopy strpart remote_peek and eval getftime submatch screenchar winsaveview matchadd mkdir screenattr getfontname libcall reltimestr getfsize winnr invert pow getbufline byte2line soundfold repeat fnameescape tagfiles sin strwidth spellbadword trunc maparg log lispindent hostname setpos globpath remote_foreground getchar synIDattr fnamemodify cscope_connection stridx winbufnr indent min complete_add nr2char searchpairpos inputdialog values matchlist items hlexists strridx browsedir expand fmod pathshorten line2byte argc count getwinvar glob foldtextresult getreg foreground cosh matchdelete has char2nr simplify histget searchdecl iconv winrestcmd pumvisible writefile foldlevel haslocaldir keys cos matchstr foldtext histnr tan tempname getcwd byteidx getbufvar islocked escape eventhandler remote_send serverlist winrestview synstack pyeval prevnonblank readfile cindent filereadable changenr exp"},i:/[{:]/,c:[e.NM,e.ASM,{cN:"string",b:/"(\\"|\n\\|[^"\n])*"/},e.C('"',"$"),{cN:"variable",b:/[bwtglsav]:[\w\d_]*/},{cN:"function",bK:"function function!",e:"$",r:0,c:[e.TM,{cN:"params",b:"\\(",e:"\\)"}]},{cN:"symbol",b:/<[\w-]+>/}]}});hljs.registerLanguage("ruleslanguage",function(T){return{k:{keyword:"BILL_PERIOD BILL_START BILL_STOP RS_EFFECTIVE_START RS_EFFECTIVE_STOP RS_JURIS_CODE RS_OPCO_CODE INTDADDATTRIBUTE|5 INTDADDVMSG|5 INTDBLOCKOP|5 INTDBLOCKOPNA|5 INTDCLOSE|5 INTDCOUNT|5 INTDCOUNTSTATUSCODE|5 INTDCREATEMASK|5 INTDCREATEDAYMASK|5 INTDCREATEFACTORMASK|5 INTDCREATEHANDLE|5 INTDCREATEOVERRIDEDAYMASK|5 INTDCREATEOVERRIDEMASK|5 INTDCREATESTATUSCODEMASK|5 INTDCREATETOUPERIOD|5
INTDDELETE|5 INTDDIPTEST|5 INTDEXPORT|5 INTDGETERRORCODE|5 INTDGETERRORMESSAGE|5 INTDISEQUAL|5 INTDJOIN|5 INTDLOAD|5 INTDLOADACTUALCUT|5 INTDLOADDATES|5 INTDLOADHIST|5 INTDLOADLIST|5 INTDLOADLISTDATES|5 INTDLOADLISTENERGY|5 INTDLOADLISTHIST|5 INTDLOADRELATEDCHANNEL|5 INTDLOADSP|5 INTDLOADSTAGING|5 INTDLOADUOM|5 INTDLOADUOMDATES|5 INTDLOADUOMHIST|5 INTDLOADVERSION|5 INTDOPEN|5 INTDREADFIRST|5 INTDREADNEXT|5 INTDRECCOUNT|5 INTDRELEASE|5 INTDREPLACE|5 INTDROLLAVG|5 INTDROLLPEAK|5 INTDSCALAROP|5 INTDSCALE|5 INTDSETATTRIBUTE|5 INTDSETDSTPARTICIPANT|5 INTDSETSTRING|5 INTDSETVALUE|5 INTDSETVALUESTATUS|5 INTDSHIFTSTARTTIME|5 INTDSMOOTH|5 INTDSORT|5 INTDSPIKETEST|5 INTDSUBSET|5 INTDTOU|5 INTDTOURELEASE|5 INTDTOUVALUE|5 INTDUPDATESTATS|5 INTDVALUE|5 STDEV INTDDELETEEX|5 INTDLOADEXACTUAL|5 INTDLOADEXCUT|5 INTDLOADEXDATES|5 INTDLOADEX|5 INTDLOADEXRELATEDCHANNEL|5 INTDSAVEEX|5 MVLOAD|5 MVLOADACCT|5 MVLOADACCTDATES|5 MVLOADACCTHIST|5 MVLOADDATES|5 MVLOADHIST|5 MVLOADLIST|5 MVLOADLISTDATES|5 MVLOADLISTHIST|5 IF FOR NEXT DONE SELECT END CALL ABORT CLEAR CHANNEL FACTOR LIST NUMBER OVERRIDE SET WEEK DISTRIBUTIONNODE ELSE WHEN THEN OTHERWISE IENUM CSV INCLUDE LEAVE RIDER SAVE DELETE NOVALUE SECTION WARN SAVE_UPDATE DETERMINANT LABEL REPORT REVENUE EACH IN FROM TOTAL CHARGE BLOCK AND OR CSV_FILE RATE_CODE AUXILIARY_DEMAND UIDACCOUNT RS BILL_PERIOD_SELECT HOURS_PER_MONTH INTD_ERROR_STOP SEASON_SCHEDULE_NAME ACCOUNTFACTOR ARRAYUPPERBOUND CALLSTOREDPROC GETADOCONNECTION GETCONNECT GETDATASOURCE GETQUALIFIER GETUSERID HASVALUE LISTCOUNT LISTOP LISTUPDATE LISTVALUE PRORATEFACTOR RSPRORATE SETBINPATH SETDBMONITOR WQ_OPEN BILLINGHOURS DATE DATEFROMFLOAT DATETIMEFROMSTRING DATETIMETOSTRING DATETOFLOAT DAY DAYDIFF DAYNAME DBDATETIME HOUR MINUTE MONTH MONTHDIFF MONTHHOURS MONTHNAME ROUNDDATE SAMEWEEKDAYLASTYEAR SECOND WEEKDAY WEEKDIFF YEAR YEARDAY YEARSTR COMPSUM HISTCOUNT HISTMAX HISTMIN HISTMINNZ HISTVALUE MAXNRANGE MAXRANGE MINRANGE COMPIKVA COMPKVA COMPKVARFROMKQKW COMPLF IDATTR FLAG LF2KW LF2KWH MAXKW POWERFACTOR READING2USAGE AVGSEASON MAXSEASON MONTHLYMERGE SEASONVALUE SUMSEASON ACCTREADDATES ACCTTABLELOAD CONFIGADD CONFIGGET CREATEOBJECT CREATEREPORT EMAILCLIENT EXPBLKMDMUSAGE EXPMDMUSAGE EXPORT_USAGE FACTORINEFFECT GETUSERSPECIFIEDSTOP INEFFECT ISHOLIDAY RUNRATE SAVE_PROFILE SETREPORTTITLE USEREXIT WATFORRUNRATE TO TABLE ACOS ASIN ATAN ATAN2 BITAND CEIL COS COSECANT COSH COTANGENT DIVQUOT DIVREM EXP FABS FLOOR FMOD FREPM FREXPN LOG LOG10 MAX MAXN MIN MINNZ MODF POW ROUND ROUND2VALUE ROUNDINT SECANT SIN SINH SQROOT TAN TANH FLOAT2STRING FLOAT2STRINGNC INSTR LEFT LEN LTRIM MID RIGHT RTRIM STRING STRINGNC TOLOWER TOUPPER TRIM NUMDAYS READ_DATE STAGING",built_in:"IDENTIFIER OPTIONS XML_ELEMENT XML_OP XML_ELEMENT_OF DOMDOCCREATE DOMDOCLOADFILE DOMDOCLOADXML DOMDOCSAVEFILE DOMDOCGETROOT DOMDOCADDPI DOMNODEGETNAME DOMNODEGETTYPE DOMNODEGETVALUE DOMNODEGETCHILDCT DOMNODEGETFIRSTCHILD DOMNODEGETSIBLING DOMNODECREATECHILDELEMENT DOMNODESETATTRIBUTE DOMNODEGETCHILDELEMENTCT DOMNODEGETFIRSTCHILDELEMENT DOMNODEGETSIBLINGELEMENT DOMNODEGETATTRIBUTECT DOMNODEGETATTRIBUTEI DOMNODEGETATTRIBUTEBYNAME DOMNODEGETBYNAME"},c:[T.CLCM,T.CBCM,T.ASM,T.QSM,T.CNM,{cN:"literal",v:[{b:"#\\s+[a-zA-Z\\ \\.]*",r:0},{b:"#[a-zA-Z\\ \\.]+"}]}]}});hljs.registerLanguage("xml",function(s){var e="[A-Za-z0-9\\._:-]+",t={eW:!0,i:/</,r:0,c:[{cN:"attr",b:e,r:0},{b:"=",r:0,c:[{cN:"string",v:[{b:/"/,e:/"/},{b:/'/,e:/'/},{b:/[^\s\/>]+/}]}]}]};return{aliases:["html","xhtml","rss","atom","xsl","plist"],cI:!0,c:[{cN:"meta",b:"<!DOCTYPE",e:">",r:10,c:[{b:"\\[",e:"\\]"}]},s.C("<!--","-->",{r:10}),{b:"<\\!\\[CDATA\\[",e:"\\]\\]>",r:10},{b:/<\?(php)?/,e:/\?>/,sL:"php",c:[{b:"/*",e:"*/",skip:!0}]},{cN:"tag",b:"<style(?=\\s|>|$)",e:">",k:{name:"style"},c:[t],starts:{e:"</style>",rE:!0,sL:["css","xml"]}},{cN:"tag",b:"<script(?=\\s|>|$)",e:">",k:{name:"script"},c:[t],starts:{e:"</script>",rE:!0,sL:["actionscript","javascript","handlebars","xml"]}},{cN:"meta",v:[{b:/<\?xml/,e:/\?>/,r:10},{b:/<\?\w+/,e:/\?>/}]},{cN:"tag",b:"</?",e:"/?>",c:[{cN:"name",b:/[^\/><\s]+/,r:0},t]}]}});hljs.registerLanguage("autoit",function(e){var t="ByRef Case Const ContinueCase ContinueLoop Default Dim Do Else ElseIf EndFunc EndIf EndSelect EndSwitch EndWith Enum Exit ExitLoop For Func Global If In Local Next ReDim Return Select Static Step Switch Then To Until Volatile WEnd While With",r="True False And Null Not Or",i="Abs ACos AdlibRegister AdlibUnRegister Asc AscW ASin Assign ATan AutoItSetOption AutoItWinGetTitle AutoItWinSetTitle Beep Binary BinaryLen BinaryMid BinaryToString BitAND BitNOT BitOR BitRotate BitShift BitXOR BlockInput Break Call CDTray Ceiling Chr ChrW ClipGet ClipPut ConsoleRead ConsoleWrite ConsoleWriteError ControlClick ControlCommand ControlDisable ControlEnable ControlFocus ControlGetFocus ControlGetHandle ControlGetPos ControlGetText ControlHide ControlListView ControlMove ControlSend ControlSetText ControlShow ControlTreeView Cos Dec DirCopy DirCreate DirGetSize DirMove DirRemove DllCall DllCallAddress DllCallbackFree DllCallbackGetPtr DllCallbackRegister DllClose DllOpen DllStructCreate DllStructGetData DllStructGetPtr DllStructGetSize DllStructSetData DriveGetDrive DriveGetFileSystem DriveGetLabel DriveGetSerial DriveGetType DriveMapAdd DriveMapDel DriveMapGet DriveSetLabel DriveSpaceFree DriveSpaceTotal DriveStatus EnvGet EnvSet EnvUpdate Eval Execute Exp FileChangeDir FileClose FileCopy FileCreateNTFSLink FileCreateShortcut FileDelete FileExists FileFindFirstFile FileFindNextFile FileFlush FileGetAttrib FileGetEncoding FileGetLongName FileGetPos FileGetShortcut FileGetShortName FileGetSize FileGetTime FileGetVersion FileInstall FileMove FileOpen FileOpenDialog FileRead FileReadLine FileReadToArray FileRecycle FileRecycleEmpty FileSaveDialog FileSelectFolder FileSetAttrib FileSetEnd FileSetPos FileSetTime FileWrite FileWriteLine Floor FtpSetProxy FuncName GUICreate GUICtrlCreateAvi GUICtrlCreateButton GUICtrlCreateCheckbox GUICtrlCreateCombo GUICtrlCreateContextMenu GUICtrlCreateDate GUICtrlCreateDummy GUICtrlCreateEdit GUICtrlCreateGraphic GUICtrlCreateGroup GUICtrlCreateIcon GUICtrlCreateInput GUICtrlCreateLabel GUICtrlCreateList GUICtrlCreateListView GUICtrlCreateListViewItem GUICtrlCreateMenu GUICtrlCreateMenuItem GUICtrlCreateMonthCal GUICtrlCreateObj GUICtrlCreatePic GUICtrlCreateProgress GUICtrlCreateRadio GUICtrlCreateSlider GUICtrlCreateTab GUICtrlCreateTabItem GUICtrlCreateTreeView GUICtrlCreateTreeViewItem GUICtrlCreateUpdown GUICtrlDelete GUICtrlGetHandle GUICtrlGetState GUICtrlRead GUICtrlRecvMsg GUICtrlRegisterListViewSort GUICtrlSendMsg GUICtrlSendToDummy GUICtrlSetBkColor GUICtrlSetColor GUICtrlSetCursor GUICtrlSetData GUICtrlSetDefBkColor GUICtrlSetDefColor GUICtrlSetFont GUICtrlSetGraphic GUICtrlSetImage GUICtrlSetLimit GUICtrlSetOnEvent GUICtrlSetPos GUICtrlSetResizing GUICtrlSetState GUICtrlSetStyle GUICtrlSetTip GUIDelete GUIGetCursorInfo GUIGetMsg GUIGetStyle GUIRegisterMsg GUISetAccelerators GUISetBkColor GUISetCoord GUISetCursor GUISetFont GUISetHelp GUISetIcon GUISetOnEvent GUISetState GUISetStyle GUIStartGroup GUISwitch Hex HotKeySet HttpSetProxy HttpSetUserAgent HWnd InetClose InetGet InetGetInfo InetGetSize InetRead IniDelete IniRead IniReadSection IniReadSectionNames IniRenameSection IniWrite IniWriteSection InputBox Int IsAdmin IsArray IsBinary IsBool IsDeclared IsDllStruct IsFloat IsFunc IsHWnd IsInt IsKeyword IsNumber IsObj IsPtr IsString Log MemGetStats Mod MouseClick MouseClickDrag MouseDown MouseGetCursor MouseGetPos MouseMove MouseUp MouseWheel MsgBox Number ObjCreate ObjCreateInterface ObjEvent ObjGet ObjName OnAutoItExitRegister OnAutoItExitUnRegister Opt Ping PixelChecksum PixelGetColor PixelSearch ProcessClose ProcessExists ProcessGetStats ProcessList ProcessSetPriority ProcessWait ProcessWaitClose ProgressOff ProgressOn ProgressSet Ptr Random RegDelete RegEnumKey RegEnumVal RegRead RegWrite Round Run RunAs RunAsWait RunWait Send SendKeepActive SetError SetExtended ShellExecute ShellExecuteWait Shutdown Sin Sleep SoundPlay SoundSetWaveVolume SplashImageOn SplashOff SplashTextOn Sqrt SRandom StatusbarGetText StderrRead StdinWrite StdioClose StdoutRead String StringAddCR StringCompare StringFormat StringFromASCIIArray StringInStr StringIsAlNum StringIsAlpha StringIsASCII StringIsDigit StringIsFloat StringIsInt StringIsLower StringIsSpace StringIsUpper StringIsXDigit StringLeft StringLen StringLower StringMid StringRegExp StringRegExpReplace StringReplace StringReverse StringRight StringSplit StringStripCR StringStripWS StringToASCIIArray StringToBinary StringTrimLeft StringTrimRight StringUpper Tan TCPAccept TCPCloseSocket TCPConnect TCPListen TCPNameToIP TCPRecv TCPSend TCPShutdown TCPStartup TimerDiff TimerInit ToolTip TrayCreateItem TrayCreateMenu TrayGetMsg TrayItemDelete TrayItemGetHandle TrayItemGetState TrayItemGetText TrayItemSetOnEvent TrayItemSetState TrayItemSetText TraySetClick TraySetIcon TraySetOnEvent TraySetPauseIcon TraySetState TraySetToolTip TrayTip UBound UDPBind UDPCloseSocket UDPOpen UDPRecv UDPSend UDPShutdown UDPStartup VarGetType WinActivate WinActive WinClose WinExists WinFlash WinGetCaretPos WinGetClassList WinGetClientSize WinGetHandle WinGetPos WinGetProcess WinGetState WinGetText WinGetTitle WinKill WinList WinMenuSelectItem WinMinimizeAll WinMinimizeAllUndo WinMove WinSetOnTop WinSetState WinSetTitle WinSetTrans WinWait WinWaitActive WinWaitClose WinWaitNotActive Array1DToHistogram ArrayAdd ArrayBinarySearch ArrayColDelete ArrayColInsert ArrayCombinations ArrayConcatenate ArrayDelete ArrayDisplay ArrayExtract ArrayFindAll ArrayInsert ArrayMax ArrayMaxIndex ArrayMin ArrayMinIndex ArrayPermute ArrayPop ArrayPush ArrayReverse ArraySearch ArrayShuffle ArraySort ArraySwap ArrayToClip ArrayToString ArrayTranspose ArrayTrim ArrayUnique Assert ChooseColor ChooseFont ClipBoard_ChangeChain ClipBoard_Close ClipBoard_CountFormats ClipBoard_Empty ClipBoard_EnumFormats ClipBoard_FormatStr ClipBoard_GetData ClipBoard_GetDataEx
ClipBoard_GetFormatName ClipBoard_GetOpenWindow ClipBoard_GetOwner ClipBoard_GetPriorityFormat ClipBoard_GetSequenceNumber ClipBoard_GetViewer ClipBoard_IsFormatAvailable ClipBoard_Open ClipBoard_RegisterFormat ClipBoard_SetData ClipBoard_SetDataEx ClipBoard_SetViewer ClipPutFile ColorConvertHSLtoRGB ColorConvertRGBtoHSL ColorGetBlue ColorGetCOLORREF ColorGetGreen ColorGetRed ColorGetRGB ColorSetCOLORREF ColorSetRGB Crypt_DecryptData Crypt_DecryptFile Crypt_DeriveKey Crypt_DestroyKey Crypt_EncryptData Crypt_EncryptFile Crypt_GenRandom Crypt_HashData Crypt_HashFile Crypt_Shutdown Crypt_Startup DateAdd DateDayOfWeek DateDaysInMonth DateDiff DateIsLeapYear DateIsValid DateTimeFormat DateTimeSplit DateToDayOfWeek DateToDayOfWeekISO DateToDayValue DateToMonth Date_Time_CompareFileTime Date_Time_DOSDateTimeToArray Date_Time_DOSDateTimeToFileTime Date_Time_DOSDateTimeToStr Date_Time_DOSDateToArray Date_Time_DOSDateToStr Date_Time_DOSTimeToArray Date_Time_DOSTimeToStr Date_Time_EncodeFileTime Date_Time_EncodeSystemTime Date_Time_FileTimeToArray Date_Time_FileTimeToDOSDateTime Date_Time_FileTimeToLocalFileTime Date_Time_FileTimeToStr Date_Time_FileTimeToSystemTime Date_Time_GetFileTime Date_Time_GetLocalTime Date_Time_GetSystemTime Date_Time_GetSystemTimeAdjustment Date_Time_GetSystemTimeAsFileTime Date_Time_GetSystemTimes Date_Time_GetTickCount Date_Time_GetTimeZoneInformation Date_Time_LocalFileTimeToFileTime Date_Time_SetFileTime Date_Time_SetLocalTime Date_Time_SetSystemTime Date_Time_SetSystemTimeAdjustment Date_Time_SetTimeZoneInformation Date_Time_SystemTimeToArray Date_Time_SystemTimeToDateStr Date_Time_SystemTimeToDateTimeStr Date_Time_SystemTimeToFileTime Date_Time_SystemTimeToTimeStr Date_Time_SystemTimeToTzSpecificLocalTime Date_Time_TzSpecificLocalTimeToSystemTime DayValueToDate DebugBugReportEnv DebugCOMError DebugOut DebugReport DebugReportEx DebugReportVar DebugSetup Degree EventLog__Backup EventLog__Clear EventLog__Close EventLog__Count EventLog__DeregisterSource EventLog__Full EventLog__Notify EventLog__Oldest EventLog__Open EventLog__OpenBackup EventLog__Read EventLog__RegisterSource EventLog__Report Excel_BookAttach Excel_BookClose Excel_BookList Excel_BookNew Excel_BookOpen Excel_BookOpenText Excel_BookSave Excel_BookSaveAs Excel_Close Excel_ColumnToLetter Excel_ColumnToNumber Excel_ConvertFormula Excel_Export Excel_FilterGet Excel_FilterSet Excel_Open Excel_PictureAdd Excel_Print Excel_RangeCopyPaste Excel_RangeDelete Excel_RangeFind Excel_RangeInsert Excel_RangeLinkAddRemove Excel_RangeRead Excel_RangeReplace Excel_RangeSort Excel_RangeValidate Excel_RangeWrite Excel_SheetAdd Excel_SheetCopyMove Excel_SheetDelete Excel_SheetList FileCountLines FileCreate FileListToArray FileListToArrayRec FilePrint FileReadToArray FileWriteFromArray FileWriteLog FileWriteToLine FTP_Close FTP_Command FTP_Connect FTP_DecodeInternetStatus FTP_DirCreate FTP_DirDelete FTP_DirGetCurrent FTP_DirPutContents FTP_DirSetCurrent FTP_FileClose FTP_FileDelete FTP_FileGet FTP_FileGetSize FTP_FileOpen FTP_FilePut FTP_FileRead FTP_FileRename FTP_FileTimeLoHiToStr FTP_FindFileClose FTP_FindFileFirst FTP_FindFileNext FTP_GetLastResponseInfo FTP_ListToArray FTP_ListToArray2D FTP_ListToArrayEx FTP_Open FTP_ProgressDownload FTP_ProgressUpload FTP_SetStatusCallback GDIPlus_ArrowCapCreate GDIPlus_ArrowCapDispose GDIPlus_ArrowCapGetFillState GDIPlus_ArrowCapGetHeight GDIPlus_ArrowCapGetMiddleInset GDIPlus_ArrowCapGetWidth GDIPlus_ArrowCapSetFillState GDIPlus_ArrowCapSetHeight GDIPlus_ArrowCapSetMiddleInset GDIPlus_ArrowCapSetWidth GDIPlus_BitmapApplyEffect GDIPlus_BitmapApplyEffectEx GDIPlus_BitmapCloneArea GDIPlus_BitmapConvertFormat GDIPlus_BitmapCreateApplyEffect GDIPlus_BitmapCreateApplyEffectEx GDIPlus_BitmapCreateDIBFromBitmap GDIPlus_BitmapCreateFromFile GDIPlus_BitmapCreateFromGraphics GDIPlus_BitmapCreateFromHBITMAP GDIPlus_BitmapCreateFromHICON GDIPlus_BitmapCreateFromHICON32 GDIPlus_BitmapCreateFromMemory GDIPlus_BitmapCreateFromResource GDIPlus_BitmapCreateFromScan0 GDIPlus_BitmapCreateFromStream GDIPlus_BitmapCreateHBITMAPFromBitmap GDIPlus_BitmapDispose GDIPlus_BitmapGetHistogram GDIPlus_BitmapGetHistogramEx GDIPlus_BitmapGetHistogramSize GDIPlus_BitmapGetPixel GDIPlus_BitmapLockBits GDIPlus_BitmapSetPixel GDIPlus_BitmapUnlockBits GDIPlus_BrushClone GDIPlus_BrushCreateSolid GDIPlus_BrushDispose GDIPlus_BrushGetSolidColor GDIPlus_BrushGetType GDIPlus_BrushSetSolidColor GDIPlus_ColorMatrixCreate GDIPlus_ColorMatrixCreateGrayScale GDIPlus_ColorMatrixCreateNegative GDIPlus_ColorMatrixCreateSaturation GDIPlus_ColorMatrixCreateScale GDIPlus_ColorMatrixCreateTranslate GDIPlus_CustomLineCapClone GDIPlus_CustomLineCapCreate GDIPlus_CustomLineCapDispose GDIPlus_CustomLineCapGetStrokeCaps GDIPlus_CustomLineCapSetStrokeCaps GDIPlus_Decoders GDIPlus_DecodersGetCount GDIPlus_DecodersGetSize GDIPlus_DrawImageFX GDIPlus_DrawImageFXEx GDIPlus_DrawImagePoints GDIPlus_EffectCreate GDIPlus_EffectCreateBlur GDIPlus_EffectCreateBrightnessContrast GDIPlus_EffectCreateColorBalance GDIPlus_EffectCreateColorCurve GDIPlus_EffectCreateColorLUT GDIPlus_EffectCreateColorMatrix GDIPlus_EffectCreateHueSaturationLightness GDIPlus_EffectCreateLevels GDIPlus_EffectCreateRedEyeCorrection GDIPlus_EffectCreateSharpen GDIPlus_EffectCreateTint GDIPlus_EffectDispose GDIPlus_EffectGetParameters GDIPlus_EffectSetParameters GDIPlus_Encoders GDIPlus_EncodersGetCLSID GDIPlus_EncodersGetCount GDIPlus_EncodersGetParamList GDIPlus_EncodersGetParamListSize GDIPlus_EncodersGetSize GDIPlus_FontCreate GDIPlus_FontDispose GDIPlus_FontFamilyCreate GDIPlus_FontFamilyCreateFromCollection GDIPlus_FontFamilyDispose GDIPlus_FontFamilyGetCellAscent GDIPlus_FontFamilyGetCellDescent GDIPlus_FontFamilyGetEmHeight GDIPlus_FontFamilyGetLineSpacing GDIPlus_FontGetHeight GDIPlus_FontPrivateAddFont GDIPlus_FontPrivateAddMemoryFont GDIPlus_FontPrivateCollectionDispose GDIPlus_FontPrivateCreateCollection GDIPlus_GraphicsClear GDIPlus_GraphicsCreateFromHDC GDIPlus_GraphicsCreateFromHWND GDIPlus_GraphicsDispose GDIPlus_GraphicsDrawArc GDIPlus_GraphicsDrawBezier GDIPlus_GraphicsDrawClosedCurve GDIPlus_GraphicsDrawClosedCurve2 GDIPlus_GraphicsDrawCurve GDIPlus_GraphicsDrawCurve2 GDIPlus_GraphicsDrawEllipse GDIPlus_GraphicsDrawImage GDIPlus_GraphicsDrawImagePointsRect GDIPlus_GraphicsDrawImageRect GDIPlus_GraphicsDrawImageRectRect GDIPlus_GraphicsDrawLine GDIPlus_GraphicsDrawPath GDIPlus_GraphicsDrawPie GDIPlus_GraphicsDrawPolygon GDIPlus_GraphicsDrawRect GDIPlus_GraphicsDrawString GDIPlus_GraphicsDrawStringEx GDIPlus_GraphicsFillClosedCurve GDIPlus_GraphicsFillClosedCurve2 GDIPlus_GraphicsFillEllipse GDIPlus_GraphicsFillPath GDIPlus_GraphicsFillPie GDIPlus_GraphicsFillPolygon GDIPlus_GraphicsFillRect GDIPlus_GraphicsFillRegion GDIPlus_GraphicsGetCompositingMode GDIPlus_GraphicsGetCompositingQuality GDIPlus_GraphicsGetDC GDIPlus_GraphicsGetInterpolationMode GDIPlus_GraphicsGetSmoothingMode GDIPlus_GraphicsGetTransform GDIPlus_GraphicsMeasureCharacterRanges GDIPlus_GraphicsMeasureString GDIPlus_GraphicsReleaseDC GDIPlus_GraphicsResetClip GDIPlus_GraphicsResetTransform GDIPlus_GraphicsRestore GDIPlus_GraphicsRotateTransform GDIPlus_GraphicsSave GDIPlus_GraphicsScaleTransform GDIPlus_GraphicsSetClipPath GDIPlus_GraphicsSetClipRect GDIPlus_GraphicsSetClipRegion GDIPlus_GraphicsSetCompositingMode GDIPlus_GraphicsSetCompositingQuality GDIPlus_GraphicsSetInterpolationMode GDIPlus_GraphicsSetPixelOffsetMode GDIPlus_GraphicsSetSmoothingMode GDIPlus_GraphicsSetTextRenderingHint GDIPlus_GraphicsSetTransform GDIPlus_GraphicsTransformPoints GDIPlus_GraphicsTranslateTransform GDIPlus_HatchBrushCreate GDIPlus_HICONCreateFromBitmap GDIPlus_ImageAttributesCreate GDIPlus_ImageAttributesDispose GDIPlus_ImageAttributesSetColorKeys GDIPlus_ImageAttributesSetColorMatrix GDIPlus_ImageDispose GDIPlus_ImageGetDimension GDIPlus_ImageGetFlags GDIPlus_ImageGetGraphicsContext GDIPlus_ImageGetHeight GDIPlus_ImageGetHorizontalResolution GDIPlus_ImageGetPixelFormat GDIPlus_ImageGetRawFormat GDIPlus_ImageGetThumbnail GDIPlus_ImageGetType GDIPlus_ImageGetVerticalResolution GDIPlus_ImageGetWidth GDIPlus_ImageLoadFromFile GDIPlus_ImageLoadFromStream GDIPlus_ImageResize GDIPlus_ImageRotateFlip GDIPlus_ImageSaveToFile GDIPlus_ImageSaveToFileEx GDIPlus_ImageSaveToStream GDIPlus_ImageScale GDIPlus_LineBrushCreate GDIPlus_LineBrushCreateFromRect GDIPlus_LineBrushCreateFromRectWithAngle GDIPlus_LineBrushGetColors GDIPlus_LineBrushGetRect GDIPlus_LineBrushMultiplyTransform GDIPlus_LineBrushResetTransform GDIPlus_LineBrushSetBlend GDIPlus_LineBrushSetColors GDIPlus_LineBrushSetGammaCorrection GDIPlus_LineBrushSetLinearBlend GDIPlus_LineBrushSetPresetBlend GDIPlus_LineBrushSetSigmaBlend GDIPlus_LineBrushSetTransform GDIPlus_MatrixClone GDIPlus_MatrixCreate GDIPlus_MatrixDispose GDIPlus_MatrixGetElements GDIPlus_MatrixInvert GDIPlus_MatrixMultiply GDIPlus_MatrixRotate GDIPlus_MatrixScale GDIPlus_MatrixSetElements GDIPlus_MatrixShear GDIPlus_MatrixTransformPoints GDIPlus_MatrixTranslate GDIPlus_PaletteInitialize GDIPlus_ParamAdd GDIPlus_ParamInit GDIPlus_ParamSize GDIPlus_PathAddArc GDIPlus_PathAddBezier GDIPlus_PathAddClosedCurve GDIPlus_PathAddClosedCurve2 GDIPlus_PathAddCurve GDIPlus_PathAddCurve2 GDIPlus_PathAddCurve3 GDIPlus_PathAddEllipse GDIPlus_PathAddLine GDIPlus_PathAddLine2 GDIPlus_PathAddPath GDIPlus_PathAddPie GDIPlus_PathAddPolygon GDIPlus_PathAddRectangle GDIPlus_PathAddString GDIPlus_PathBrushCreate GDIPlus_PathBrushCreateFromPath GDIPlus_PathBrushGetCenterPoint GDIPlus_PathBrushGetFocusScales GDIPlus_PathBrushGetPointCount GDIPlus_PathBrushGetRect GDIPlus_PathBrushGetWrapMode GDIPlus_PathBrushMultiplyTransform GDIPlus_PathBrushResetTransform GDIPlus_PathBrushSetBlend GDIPlus_PathBrushSetCenterColor GDIPlus_PathBrushSetCenterPoint GDIPlus_PathBrushSetFocusScales GDIPlus_PathBrushSetGammaCorrection GDIPlus_PathBrushSetLinearBlend GDIPlus_PathBrushSetPresetBlend GDIPlus_PathBrushSetSigmaBlend GDIPlus_PathBrushSetSurroundColor
GDIPlus_PathBrushSetSurroundColorsWithCount GDIPlus_PathBrushSetTransform GDIPlus_PathBrushSetWrapMode GDIPlus_PathClone GDIPlus_PathCloseFigure GDIPlus_PathCreate GDIPlus_PathCreate2 GDIPlus_PathDispose GDIPlus_PathFlatten GDIPlus_PathGetData GDIPlus_PathGetFillMode GDIPlus_PathGetLastPoint GDIPlus_PathGetPointCount GDIPlus_PathGetPoints GDIPlus_PathGetWorldBounds GDIPlus_PathIsOutlineVisiblePoint GDIPlus_PathIsVisiblePoint GDIPlus_PathIterCreate GDIPlus_PathIterDispose GDIPlus_PathIterGetSubpathCount GDIPlus_PathIterNextMarkerPath GDIPlus_PathIterNextSubpathPath GDIPlus_PathIterRewind GDIPlus_PathReset GDIPlus_PathReverse GDIPlus_PathSetFillMode GDIPlus_PathSetMarker GDIPlus_PathStartFigure GDIPlus_PathTransform GDIPlus_PathWarp GDIPlus_PathWiden GDIPlus_PathWindingModeOutline GDIPlus_PenCreate GDIPlus_PenCreate2 GDIPlus_PenDispose GDIPlus_PenGetAlignment GDIPlus_PenGetColor GDIPlus_PenGetCustomEndCap GDIPlus_PenGetDashCap GDIPlus_PenGetDashStyle GDIPlus_PenGetEndCap GDIPlus_PenGetMiterLimit GDIPlus_PenGetWidth GDIPlus_PenSetAlignment GDIPlus_PenSetColor GDIPlus_PenSetCustomEndCap GDIPlus_PenSetDashCap GDIPlus_PenSetDashStyle GDIPlus_PenSetEndCap GDIPlus_PenSetLineCap GDIPlus_PenSetLineJoin GDIPlus_PenSetMiterLimit GDIPlus_PenSetStartCap GDIPlus_PenSetWidth GDIPlus_RectFCreate GDIPlus_RegionClone GDIPlus_RegionCombinePath GDIPlus_RegionCombineRect GDIPlus_RegionCombineRegion GDIPlus_RegionCreate GDIPlus_RegionCreateFromPath GDIPlus_RegionCreateFromRect GDIPlus_RegionDispose GDIPlus_RegionGetBounds GDIPlus_RegionGetHRgn GDIPlus_RegionTransform GDIPlus_RegionTranslate GDIPlus_Shutdown GDIPlus_Startup GDIPlus_StringFormatCreate GDIPlus_StringFormatDispose GDIPlus_StringFormatGetMeasurableCharacterRangeCount GDIPlus_StringFormatSetAlign GDIPlus_StringFormatSetLineAlign GDIPlus_StringFormatSetMeasurableCharacterRanges GDIPlus_TextureCreate GDIPlus_TextureCreate2 GDIPlus_TextureCreateIA GetIP GUICtrlAVI_Close GUICtrlAVI_Create GUICtrlAVI_Destroy GUICtrlAVI_IsPlaying GUICtrlAVI_Open GUICtrlAVI_OpenEx GUICtrlAVI_Play GUICtrlAVI_Seek GUICtrlAVI_Show GUICtrlAVI_Stop GUICtrlButton_Click GUICtrlButton_Create GUICtrlButton_Destroy GUICtrlButton_Enable GUICtrlButton_GetCheck GUICtrlButton_GetFocus GUICtrlButton_GetIdealSize GUICtrlButton_GetImage GUICtrlButton_GetImageList GUICtrlButton_GetNote GUICtrlButton_GetNoteLength GUICtrlButton_GetSplitInfo GUICtrlButton_GetState GUICtrlButton_GetText GUICtrlButton_GetTextMargin GUICtrlButton_SetCheck GUICtrlButton_SetDontClick GUICtrlButton_SetFocus GUICtrlButton_SetImage GUICtrlButton_SetImageList GUICtrlButton_SetNote GUICtrlButton_SetShield GUICtrlButton_SetSize GUICtrlButton_SetSplitInfo GUICtrlButton_SetState GUICtrlButton_SetStyle GUICtrlButton_SetText GUICtrlButton_SetTextMargin GUICtrlButton_Show GUICtrlComboBoxEx_AddDir GUICtrlComboBoxEx_AddString GUICtrlComboBoxEx_BeginUpdate GUICtrlComboBoxEx_Create GUICtrlComboBoxEx_CreateSolidBitMap GUICtrlComboBoxEx_DeleteString GUICtrlComboBoxEx_Destroy GUICtrlComboBoxEx_EndUpdate GUICtrlComboBoxEx_FindStringExact GUICtrlComboBoxEx_GetComboBoxInfo GUICtrlComboBoxEx_GetComboControl GUICtrlComboBoxEx_GetCount GUICtrlComboBoxEx_GetCurSel GUICtrlComboBoxEx_GetDroppedControlRect GUICtrlComboBoxEx_GetDroppedControlRectEx GUICtrlComboBoxEx_GetDroppedState GUICtrlComboBoxEx_GetDroppedWidth GUICtrlComboBoxEx_GetEditControl GUICtrlComboBoxEx_GetEditSel GUICtrlComboBoxEx_GetEditText GUICtrlComboBoxEx_GetExtendedStyle GUICtrlComboBoxEx_GetExtendedUI GUICtrlComboBoxEx_GetImageList GUICtrlComboBoxEx_GetItem GUICtrlComboBoxEx_GetItemEx GUICtrlComboBoxEx_GetItemHeight GUICtrlComboBoxEx_GetItemImage GUICtrlComboBoxEx_GetItemIndent GUICtrlComboBoxEx_GetItemOverlayImage GUICtrlComboBoxEx_GetItemParam GUICtrlComboBoxEx_GetItemSelectedImage GUICtrlComboBoxEx_GetItemText GUICtrlComboBoxEx_GetItemTextLen GUICtrlComboBoxEx_GetList GUICtrlComboBoxEx_GetListArray GUICtrlComboBoxEx_GetLocale GUICtrlComboBoxEx_GetLocaleCountry GUICtrlComboBoxEx_GetLocaleLang GUICtrlComboBoxEx_GetLocalePrimLang GUICtrlComboBoxEx_GetLocaleSubLang GUICtrlComboBoxEx_GetMinVisible GUICtrlComboBoxEx_GetTopIndex GUICtrlComboBoxEx_GetUnicode GUICtrlComboBoxEx_InitStorage GUICtrlComboBoxEx_InsertString GUICtrlComboBoxEx_LimitText GUICtrlComboBoxEx_ReplaceEditSel GUICtrlComboBoxEx_ResetContent GUICtrlComboBoxEx_SetCurSel GUICtrlComboBoxEx_SetDroppedWidth GUICtrlComboBoxEx_SetEditSel GUICtrlComboBoxEx_SetEditText GUICtrlComboBoxEx_SetExtendedStyle GUICtrlComboBoxEx_SetExtendedUI GUICtrlComboBoxEx_SetImageList GUICtrlComboBoxEx_SetItem GUICtrlComboBoxEx_SetItemEx GUICtrlComboBoxEx_SetItemHeight GUICtrlComboBoxEx_SetItemImage GUICtrlComboBoxEx_SetItemIndent GUICtrlComboBoxEx_SetItemOverlayImage GUICtrlComboBoxEx_SetItemParam GUICtrlComboBoxEx_SetItemSelectedImage GUICtrlComboBoxEx_SetMinVisible GUICtrlComboBoxEx_SetTopIndex GUICtrlComboBoxEx_SetUnicode GUICtrlComboBoxEx_ShowDropDown GUICtrlComboBox_AddDir GUICtrlComboBox_AddString GUICtrlComboBox_AutoComplete GUICtrlComboBox_BeginUpdate GUICtrlComboBox_Create GUICtrlComboBox_DeleteString GUICtrlComboBox_Destroy GUICtrlComboBox_EndUpdate GUICtrlComboBox_FindString GUICtrlComboBox_FindStringExact GUICtrlComboBox_GetComboBoxInfo GUICtrlComboBox_GetCount GUICtrlComboBox_GetCueBanner GUICtrlComboBox_GetCurSel GUICtrlComboBox_GetDroppedControlRect GUICtrlComboBox_GetDroppedControlRectEx GUICtrlComboBox_GetDroppedState GUICtrlComboBox_GetDroppedWidth GUICtrlComboBox_GetEditSel GUICtrlComboBox_GetEditText GUICtrlComboBox_GetExtendedUI GUICtrlComboBox_GetHorizontalExtent GUICtrlComboBox_GetItemHeight GUICtrlComboBox_GetLBText GUICtrlComboBox_GetLBTextLen GUICtrlComboBox_GetList GUICtrlComboBox_GetListArray GUICtrlComboBox_GetLocale GUICtrlComboBox_GetLocaleCountry GUICtrlComboBox_GetLocaleLang GUICtrlComboBox_GetLocalePrimLang GUICtrlComboBox_GetLocaleSubLang GUICtrlComboBox_GetMinVisible GUICtrlComboBox_GetTopIndex GUICtrlComboBox_InitStorage GUICtrlComboBox_InsertString GUICtrlComboBox_LimitText GUICtrlComboBox_ReplaceEditSel GUICtrlComboBox_ResetContent GUICtrlComboBox_SelectString GUICtrlComboBox_SetCueBanner GUICtrlComboBox_SetCurSel GUICtrlComboBox_SetDroppedWidth GUICtrlComboBox_SetEditSel GUICtrlComboBox_SetEditText GUICtrlComboBox_SetExtendedUI GUICtrlComboBox_SetHorizontalExtent GUICtrlComboBox_SetItemHeight GUICtrlComboBox_SetMinVisible GUICtrlComboBox_SetTopIndex GUICtrlComboBox_ShowDropDown GUICtrlDTP_Create GUICtrlDTP_Destroy GUICtrlDTP_GetMCColor GUICtrlDTP_GetMCFont GUICtrlDTP_GetMonthCal GUICtrlDTP_GetRange GUICtrlDTP_GetRangeEx GUICtrlDTP_GetSystemTime GUICtrlDTP_GetSystemTimeEx GUICtrlDTP_SetFormat GUICtrlDTP_SetMCColor GUICtrlDTP_SetMCFont GUICtrlDTP_SetRange GUICtrlDTP_SetRangeEx GUICtrlDTP_SetSystemTime GUICtrlDTP_SetSystemTimeEx GUICtrlEdit_AppendText GUICtrlEdit_BeginUpdate GUICtrlEdit_CanUndo GUICtrlEdit_CharFromPos GUICtrlEdit_Create GUICtrlEdit_Destroy GUICtrlEdit_EmptyUndoBuffer GUICtrlEdit_EndUpdate GUICtrlEdit_Find GUICtrlEdit_FmtLines GUICtrlEdit_GetCueBanner GUICtrlEdit_GetFirstVisibleLine GUICtrlEdit_GetLimitText GUICtrlEdit_GetLine GUICtrlEdit_GetLineCount GUICtrlEdit_GetMargins GUICtrlEdit_GetModify GUICtrlEdit_GetPasswordChar GUICtrlEdit_GetRECT GUICtrlEdit_GetRECTEx GUICtrlEdit_GetSel GUICtrlEdit_GetText GUICtrlEdit_GetTextLen GUICtrlEdit_HideBalloonTip GUICtrlEdit_InsertText GUICtrlEdit_LineFromChar GUICtrlEdit_LineIndex GUICtrlEdit_LineLength GUICtrlEdit_LineScroll GUICtrlEdit_PosFromChar GUICtrlEdit_ReplaceSel GUICtrlEdit_Scroll GUICtrlEdit_SetCueBanner GUICtrlEdit_SetLimitText GUICtrlEdit_SetMargins GUICtrlEdit_SetModify GUICtrlEdit_SetPasswordChar GUICtrlEdit_SetReadOnly GUICtrlEdit_SetRECT GUICtrlEdit_SetRECTEx GUICtrlEdit_SetRECTNP GUICtrlEdit_SetRectNPEx GUICtrlEdit_SetSel GUICtrlEdit_SetTabStops GUICtrlEdit_SetText GUICtrlEdit_ShowBalloonTip GUICtrlEdit_Undo GUICtrlHeader_AddItem GUICtrlHeader_ClearFilter GUICtrlHeader_ClearFilterAll GUICtrlHeader_Create GUICtrlHeader_CreateDragImage GUICtrlHeader_DeleteItem GUICtrlHeader_Destroy GUICtrlHeader_EditFilter GUICtrlHeader_GetBitmapMargin GUICtrlHeader_GetImageList GUICtrlHeader_GetItem GUICtrlHeader_GetItemAlign GUICtrlHeader_GetItemBitmap GUICtrlHeader_GetItemCount GUICtrlHeader_GetItemDisplay GUICtrlHeader_GetItemFlags GUICtrlHeader_GetItemFormat GUICtrlHeader_GetItemImage GUICtrlHeader_GetItemOrder GUICtrlHeader_GetItemParam GUICtrlHeader_GetItemRect GUICtrlHeader_GetItemRectEx GUICtrlHeader_GetItemText GUICtrlHeader_GetItemWidth GUICtrlHeader_GetOrderArray GUICtrlHeader_GetUnicodeFormat GUICtrlHeader_HitTest GUICtrlHeader_InsertItem GUICtrlHeader_Layout GUICtrlHeader_OrderToIndex GUICtrlHeader_SetBitmapMargin GUICtrlHeader_SetFilterChangeTimeout GUICtrlHeader_SetHotDivider GUICtrlHeader_SetImageList GUICtrlHeader_SetItem GUICtrlHeader_SetItemAlign GUICtrlHeader_SetItemBitmap GUICtrlHeader_SetItemDisplay GUICtrlHeader_SetItemFlags GUICtrlHeader_SetItemFormat GUICtrlHeader_SetItemImage GUICtrlHeader_SetItemOrder GUICtrlHeader_SetItemParam GUICtrlHeader_SetItemText GUICtrlHeader_SetItemWidth GUICtrlHeader_SetOrderArray GUICtrlHeader_SetUnicodeFormat GUICtrlIpAddress_ClearAddress GUICtrlIpAddress_Create GUICtrlIpAddress_Destroy GUICtrlIpAddress_Get GUICtrlIpAddress_GetArray GUICtrlIpAddress_GetEx GUICtrlIpAddress_IsBlank GUICtrlIpAddress_Set GUICtrlIpAddress_SetArray GUICtrlIpAddress_SetEx GUICtrlIpAddress_SetFocus GUICtrlIpAddress_SetFont GUICtrlIpAddress_SetRange GUICtrlIpAddress_ShowHide GUICtrlListBox_AddFile GUICtrlListBox_AddString GUICtrlListBox_BeginUpdate GUICtrlListBox_ClickItem GUICtrlListBox_Create GUICtrlListBox_DeleteString GUICtrlListBox_Destroy GUICtrlListBox_Dir GUICtrlListBox_EndUpdate GUICtrlListBox_FindInText GUICtrlListBox_FindString GUICtrlListBox_GetAnchorIndex GUICtrlListBox_GetCaretIndex GUICtrlListBox_GetCount GUICtrlListBox_GetCurSel GUICtrlListBox_GetHorizontalExtent GUICtrlListBox_GetItemData GUICtrlListBox_GetItemHeight GUICtrlListBox_GetItemRect GUICtrlListBox_GetItemRectEx GUICtrlListBox_GetListBoxInfo
GUICtrlListBox_GetLocale GUICtrlListBox_GetLocaleCountry GUICtrlListBox_GetLocaleLang GUICtrlListBox_GetLocalePrimLang GUICtrlListBox_GetLocaleSubLang GUICtrlListBox_GetSel GUICtrlListBox_GetSelCount GUICtrlListBox_GetSelItems GUICtrlListBox_GetSelItemsText GUICtrlListBox_GetText GUICtrlListBox_GetTextLen GUICtrlListBox_GetTopIndex GUICtrlListBox_InitStorage GUICtrlListBox_InsertString GUICtrlListBox_ItemFromPoint GUICtrlListBox_ReplaceString GUICtrlListBox_ResetContent GUICtrlListBox_SelectString GUICtrlListBox_SelItemRange GUICtrlListBox_SelItemRangeEx GUICtrlListBox_SetAnchorIndex GUICtrlListBox_SetCaretIndex GUICtrlListBox_SetColumnWidth GUICtrlListBox_SetCurSel GUICtrlListBox_SetHorizontalExtent GUICtrlListBox_SetItemData GUICtrlListBox_SetItemHeight GUICtrlListBox_SetLocale GUICtrlListBox_SetSel GUICtrlListBox_SetTabStops GUICtrlListBox_SetTopIndex GUICtrlListBox_Sort GUICtrlListBox_SwapString GUICtrlListBox_UpdateHScroll GUICtrlListView_AddArray GUICtrlListView_AddColumn GUICtrlListView_AddItem GUICtrlListView_AddSubItem GUICtrlListView_ApproximateViewHeight GUICtrlListView_ApproximateViewRect GUICtrlListView_ApproximateViewWidth GUICtrlListView_Arrange GUICtrlListView_BeginUpdate GUICtrlListView_CancelEditLabel GUICtrlListView_ClickItem GUICtrlListView_CopyItems GUICtrlListView_Create GUICtrlListView_CreateDragImage GUICtrlListView_CreateSolidBitMap GUICtrlListView_DeleteAllItems GUICtrlListView_DeleteColumn GUICtrlListView_DeleteItem GUICtrlListView_DeleteItemsSelected GUICtrlListView_Destroy GUICtrlListView_DrawDragImage GUICtrlListView_EditLabel GUICtrlListView_EnableGroupView GUICtrlListView_EndUpdate GUICtrlListView_EnsureVisible GUICtrlListView_FindInText GUICtrlListView_FindItem GUICtrlListView_FindNearest GUICtrlListView_FindParam GUICtrlListView_FindText GUICtrlListView_GetBkColor GUICtrlListView_GetBkImage GUICtrlListView_GetCallbackMask GUICtrlListView_GetColumn GUICtrlListView_GetColumnCount GUICtrlListView_GetColumnOrder GUICtrlListView_GetColumnOrderArray GUICtrlListView_GetColumnWidth GUICtrlListView_GetCounterPage GUICtrlListView_GetEditControl GUICtrlListView_GetExtendedListViewStyle GUICtrlListView_GetFocusedGroup GUICtrlListView_GetGroupCount GUICtrlListView_GetGroupInfo GUICtrlListView_GetGroupInfoByIndex GUICtrlListView_GetGroupRect GUICtrlListView_GetGroupViewEnabled GUICtrlListView_GetHeader GUICtrlListView_GetHotCursor GUICtrlListView_GetHotItem GUICtrlListView_GetHoverTime GUICtrlListView_GetImageList GUICtrlListView_GetISearchString GUICtrlListView_GetItem GUICtrlListView_GetItemChecked GUICtrlListView_GetItemCount GUICtrlListView_GetItemCut GUICtrlListView_GetItemDropHilited GUICtrlListView_GetItemEx GUICtrlListView_GetItemFocused GUICtrlListView_GetItemGroupID GUICtrlListView_GetItemImage GUICtrlListView_GetItemIndent GUICtrlListView_GetItemParam GUICtrlListView_GetItemPosition GUICtrlListView_GetItemPositionX GUICtrlListView_GetItemPositionY GUICtrlListView_GetItemRect GUICtrlListView_GetItemRectEx GUICtrlListView_GetItemSelected GUICtrlListView_GetItemSpacing GUICtrlListView_GetItemSpacingX GUICtrlListView_GetItemSpacingY GUICtrlListView_GetItemState GUICtrlListView_GetItemStateImage GUICtrlListView_GetItemText GUICtrlListView_GetItemTextArray GUICtrlListView_GetItemTextString GUICtrlListView_GetNextItem GUICtrlListView_GetNumberOfWorkAreas GUICtrlListView_GetOrigin GUICtrlListView_GetOriginX GUICtrlListView_GetOriginY GUICtrlListView_GetOutlineColor GUICtrlListView_GetSelectedColumn GUICtrlListView_GetSelectedCount GUICtrlListView_GetSelectedIndices GUICtrlListView_GetSelectionMark GUICtrlListView_GetStringWidth GUICtrlListView_GetSubItemRect GUICtrlListView_GetTextBkColor GUICtrlListView_GetTextColor GUICtrlListView_GetToolTips GUICtrlListView_GetTopIndex GUICtrlListView_GetUnicodeFormat GUICtrlListView_GetView GUICtrlListView_GetViewDetails GUICtrlListView_GetViewLarge GUICtrlListView_GetViewList GUICtrlListView_GetViewRect GUICtrlListView_GetViewSmall GUICtrlListView_GetViewTile GUICtrlListView_HideColumn GUICtrlListView_HitTest GUICtrlListView_InsertColumn GUICtrlListView_InsertGroup GUICtrlListView_InsertItem GUICtrlListView_JustifyColumn GUICtrlListView_MapIDToIndex GUICtrlListView_MapIndexToID GUICtrlListView_RedrawItems GUICtrlListView_RegisterSortCallBack GUICtrlListView_RemoveAllGroups GUICtrlListView_RemoveGroup GUICtrlListView_Scroll GUICtrlListView_SetBkColor GUICtrlListView_SetBkImage GUICtrlListView_SetCallBackMask GUICtrlListView_SetColumn GUICtrlListView_SetColumnOrder GUICtrlListView_SetColumnOrderArray GUICtrlListView_SetColumnWidth GUICtrlListView_SetExtendedListViewStyle GUICtrlListView_SetGroupInfo GUICtrlListView_SetHotItem GUICtrlListView_SetHoverTime GUICtrlListView_SetIconSpacing GUICtrlListView_SetImageList GUICtrlListView_SetItem GUICtrlListView_SetItemChecked GUICtrlListView_SetItemCount GUICtrlListView_SetItemCut GUICtrlListView_SetItemDropHilited GUICtrlListView_SetItemEx GUICtrlListView_SetItemFocused GUICtrlListView_SetItemGroupID GUICtrlListView_SetItemImage GUICtrlListView_SetItemIndent GUICtrlListView_SetItemParam GUICtrlListView_SetItemPosition GUICtrlListView_SetItemPosition32 GUICtrlListView_SetItemSelected GUICtrlListView_SetItemState GUICtrlListView_SetItemStateImage GUICtrlListView_SetItemText GUICtrlListView_SetOutlineColor GUICtrlListView_SetSelectedColumn GUICtrlListView_SetSelectionMark GUICtrlListView_SetTextBkColor GUICtrlListView_SetTextColor GUICtrlListView_SetToolTips GUICtrlListView_SetUnicodeFormat GUICtrlListView_SetView GUICtrlListView_SetWorkAreas GUICtrlListView_SimpleSort GUICtrlListView_SortItems GUICtrlListView_SubItemHitTest GUICtrlListView_UnRegisterSortCallBack GUICtrlMenu_AddMenuItem GUICtrlMenu_AppendMenu GUICtrlMenu_CalculatePopupWindowPosition GUICtrlMenu_CheckMenuItem GUICtrlMenu_CheckRadioItem GUICtrlMenu_CreateMenu GUICtrlMenu_CreatePopup GUICtrlMenu_DeleteMenu GUICtrlMenu_DestroyMenu GUICtrlMenu_DrawMenuBar GUICtrlMenu_EnableMenuItem GUICtrlMenu_FindItem GUICtrlMenu_FindParent GUICtrlMenu_GetItemBmp GUICtrlMenu_GetItemBmpChecked GUICtrlMenu_GetItemBmpUnchecked GUICtrlMenu_GetItemChecked GUICtrlMenu_GetItemCount GUICtrlMenu_GetItemData GUICtrlMenu_GetItemDefault GUICtrlMenu_GetItemDisabled GUICtrlMenu_GetItemEnabled GUICtrlMenu_GetItemGrayed GUICtrlMenu_GetItemHighlighted GUICtrlMenu_GetItemID GUICtrlMenu_GetItemInfo GUICtrlMenu_GetItemRect GUICtrlMenu_GetItemRectEx GUICtrlMenu_GetItemState GUICtrlMenu_GetItemStateEx GUICtrlMenu_GetItemSubMenu GUICtrlMenu_GetItemText GUICtrlMenu_GetItemType GUICtrlMenu_GetMenu GUICtrlMenu_GetMenuBackground GUICtrlMenu_GetMenuBarInfo GUICtrlMenu_GetMenuContextHelpID GUICtrlMenu_GetMenuData GUICtrlMenu_GetMenuDefaultItem GUICtrlMenu_GetMenuHeight GUICtrlMenu_GetMenuInfo GUICtrlMenu_GetMenuStyle GUICtrlMenu_GetSystemMenu GUICtrlMenu_InsertMenuItem GUICtrlMenu_InsertMenuItemEx GUICtrlMenu_IsMenu GUICtrlMenu_LoadMenu GUICtrlMenu_MapAccelerator GUICtrlMenu_MenuItemFromPoint GUICtrlMenu_RemoveMenu GUICtrlMenu_SetItemBitmaps GUICtrlMenu_SetItemBmp GUICtrlMenu_SetItemBmpChecked GUICtrlMenu_SetItemBmpUnchecked GUICtrlMenu_SetItemChecked GUICtrlMenu_SetItemData GUICtrlMenu_SetItemDefault GUICtrlMenu_SetItemDisabled GUICtrlMenu_SetItemEnabled GUICtrlMenu_SetItemGrayed GUICtrlMenu_SetItemHighlighted GUICtrlMenu_SetItemID GUICtrlMenu_SetItemInfo GUICtrlMenu_SetItemState GUICtrlMenu_SetItemSubMenu GUICtrlMenu_SetItemText GUICtrlMenu_SetItemType GUICtrlMenu_SetMenu GUICtrlMenu_SetMenuBackground GUICtrlMenu_SetMenuContextHelpID GUICtrlMenu_SetMenuData GUICtrlMenu_SetMenuDefaultItem GUICtrlMenu_SetMenuHeight GUICtrlMenu_SetMenuInfo GUICtrlMenu_SetMenuStyle GUICtrlMenu_TrackPopupMenu GUICtrlMonthCal_Create GUICtrlMonthCal_Destroy GUICtrlMonthCal_GetCalendarBorder GUICtrlMonthCal_GetCalendarCount GUICtrlMonthCal_GetColor GUICtrlMonthCal_GetColorArray GUICtrlMonthCal_GetCurSel GUICtrlMonthCal_GetCurSelStr GUICtrlMonthCal_GetFirstDOW GUICtrlMonthCal_GetFirstDOWStr GUICtrlMonthCal_GetMaxSelCount GUICtrlMonthCal_GetMaxTodayWidth GUICtrlMonthCal_GetMinReqHeight GUICtrlMonthCal_GetMinReqRect GUICtrlMonthCal_GetMinReqRectArray GUICtrlMonthCal_GetMinReqWidth GUICtrlMonthCal_GetMonthDelta GUICtrlMonthCal_GetMonthRange GUICtrlMonthCal_GetMonthRangeMax GUICtrlMonthCal_GetMonthRangeMaxStr GUICtrlMonthCal_GetMonthRangeMin GUICtrlMonthCal_GetMonthRangeMinStr GUICtrlMonthCal_GetMonthRangeSpan GUICtrlMonthCal_GetRange GUICtrlMonthCal_GetRangeMax GUICtrlMonthCal_GetRangeMaxStr GUICtrlMonthCal_GetRangeMin GUICtrlMonthCal_GetRangeMinStr GUICtrlMonthCal_GetSelRange GUICtrlMonthCal_GetSelRangeMax GUICtrlMonthCal_GetSelRangeMaxStr GUICtrlMonthCal_GetSelRangeMin GUICtrlMonthCal_GetSelRangeMinStr GUICtrlMonthCal_GetToday GUICtrlMonthCal_GetTodayStr GUICtrlMonthCal_GetUnicodeFormat GUICtrlMonthCal_HitTest GUICtrlMonthCal_SetCalendarBorder GUICtrlMonthCal_SetColor GUICtrlMonthCal_SetCurSel GUICtrlMonthCal_SetDayState GUICtrlMonthCal_SetFirstDOW GUICtrlMonthCal_SetMaxSelCount GUICtrlMonthCal_SetMonthDelta GUICtrlMonthCal_SetRange GUICtrlMonthCal_SetSelRange GUICtrlMonthCal_SetToday GUICtrlMonthCal_SetUnicodeFormat GUICtrlRebar_AddBand GUICtrlRebar_AddToolBarBand GUICtrlRebar_BeginDrag GUICtrlRebar_Create GUICtrlRebar_DeleteBand GUICtrlRebar_Destroy GUICtrlRebar_DragMove GUICtrlRebar_EndDrag GUICtrlRebar_GetBandBackColor GUICtrlRebar_GetBandBorders GUICtrlRebar_GetBandBordersEx GUICtrlRebar_GetBandChildHandle GUICtrlRebar_GetBandChildSize GUICtrlRebar_GetBandCount GUICtrlRebar_GetBandForeColor GUICtrlRebar_GetBandHeaderSize GUICtrlRebar_GetBandID GUICtrlRebar_GetBandIdealSize GUICtrlRebar_GetBandLength GUICtrlRebar_GetBandLParam GUICtrlRebar_GetBandMargins GUICtrlRebar_GetBandMarginsEx GUICtrlRebar_GetBandRect GUICtrlRebar_GetBandRectEx GUICtrlRebar_GetBandStyle GUICtrlRebar_GetBandStyleBreak GUICtrlRebar_GetBandStyleChildEdge GUICtrlRebar_GetBandStyleFixedBMP GUICtrlRebar_GetBandStyleFixedSize GUICtrlRebar_GetBandStyleGripperAlways GUICtrlRebar_GetBandStyleHidden GUICtrlRebar_GetBandStyleHideTitle
GUICtrlRebar_GetBandStyleNoGripper GUICtrlRebar_GetBandStyleTopAlign GUICtrlRebar_GetBandStyleUseChevron GUICtrlRebar_GetBandStyleVariableHeight GUICtrlRebar_GetBandText GUICtrlRebar_GetBarHeight GUICtrlRebar_GetBarInfo GUICtrlRebar_GetBKColor GUICtrlRebar_GetColorScheme GUICtrlRebar_GetRowCount GUICtrlRebar_GetRowHeight GUICtrlRebar_GetTextColor GUICtrlRebar_GetToolTips GUICtrlRebar_GetUnicodeFormat GUICtrlRebar_HitTest GUICtrlRebar_IDToIndex GUICtrlRebar_MaximizeBand GUICtrlRebar_MinimizeBand GUICtrlRebar_MoveBand GUICtrlRebar_SetBandBackColor GUICtrlRebar_SetBandForeColor GUICtrlRebar_SetBandHeaderSize GUICtrlRebar_SetBandID GUICtrlRebar_SetBandIdealSize GUICtrlRebar_SetBandLength GUICtrlRebar_SetBandLParam GUICtrlRebar_SetBandStyle GUICtrlRebar_SetBandStyleBreak GUICtrlRebar_SetBandStyleChildEdge GUICtrlRebar_SetBandStyleFixedBMP GUICtrlRebar_SetBandStyleFixedSize GUICtrlRebar_SetBandStyleGripperAlways GUICtrlRebar_SetBandStyleHidden GUICtrlRebar_SetBandStyleHideTitle GUICtrlRebar_SetBandStyleNoGripper GUICtrlRebar_SetBandStyleTopAlign GUICtrlRebar_SetBandStyleUseChevron GUICtrlRebar_SetBandStyleVariableHeight GUICtrlRebar_SetBandText GUICtrlRebar_SetBarInfo GUICtrlRebar_SetBKColor GUICtrlRebar_SetColorScheme GUICtrlRebar_SetTextColor GUICtrlRebar_SetToolTips GUICtrlRebar_SetUnicodeFormat GUICtrlRebar_ShowBand GUICtrlRichEdit_AppendText GUICtrlRichEdit_AutoDetectURL GUICtrlRichEdit_CanPaste GUICtrlRichEdit_CanPasteSpecial GUICtrlRichEdit_CanRedo GUICtrlRichEdit_CanUndo GUICtrlRichEdit_ChangeFontSize GUICtrlRichEdit_Copy GUICtrlRichEdit_Create GUICtrlRichEdit_Cut GUICtrlRichEdit_Deselect GUICtrlRichEdit_Destroy GUICtrlRichEdit_EmptyUndoBuffer GUICtrlRichEdit_FindText GUICtrlRichEdit_FindTextInRange GUICtrlRichEdit_GetBkColor GUICtrlRichEdit_GetCharAttributes GUICtrlRichEdit_GetCharBkColor GUICtrlRichEdit_GetCharColor GUICtrlRichEdit_GetCharPosFromXY GUICtrlRichEdit_GetCharPosOfNextWord GUICtrlRichEdit_GetCharPosOfPreviousWord GUICtrlRichEdit_GetCharWordBreakInfo GUICtrlRichEdit_GetFirstCharPosOnLine GUICtrlRichEdit_GetFont GUICtrlRichEdit_GetLineCount GUICtrlRichEdit_GetLineLength GUICtrlRichEdit_GetLineNumberFromCharPos GUICtrlRichEdit_GetNextRedo GUICtrlRichEdit_GetNextUndo GUICtrlRichEdit_GetNumberOfFirstVisibleLine GUICtrlRichEdit_GetParaAlignment GUICtrlRichEdit_GetParaAttributes GUICtrlRichEdit_GetParaBorder GUICtrlRichEdit_GetParaIndents GUICtrlRichEdit_GetParaNumbering GUICtrlRichEdit_GetParaShading GUICtrlRichEdit_GetParaSpacing GUICtrlRichEdit_GetParaTabStops GUICtrlRichEdit_GetPasswordChar GUICtrlRichEdit_GetRECT GUICtrlRichEdit_GetScrollPos GUICtrlRichEdit_GetSel GUICtrlRichEdit_GetSelAA GUICtrlRichEdit_GetSelText GUICtrlRichEdit_GetSpaceUnit GUICtrlRichEdit_GetText GUICtrlRichEdit_GetTextInLine GUICtrlRichEdit_GetTextInRange GUICtrlRichEdit_GetTextLength GUICtrlRichEdit_GetVersion GUICtrlRichEdit_GetXYFromCharPos GUICtrlRichEdit_GetZoom GUICtrlRichEdit_GotoCharPos GUICtrlRichEdit_HideSelection GUICtrlRichEdit_InsertText GUICtrlRichEdit_IsModified GUICtrlRichEdit_IsTextSelected GUICtrlRichEdit_Paste GUICtrlRichEdit_PasteSpecial GUICtrlRichEdit_PauseRedraw GUICtrlRichEdit_Redo GUICtrlRichEdit_ReplaceText GUICtrlRichEdit_ResumeRedraw GUICtrlRichEdit_ScrollLineOrPage GUICtrlRichEdit_ScrollLines GUICtrlRichEdit_ScrollToCaret GUICtrlRichEdit_SetBkColor GUICtrlRichEdit_SetCharAttributes GUICtrlRichEdit_SetCharBkColor GUICtrlRichEdit_SetCharColor GUICtrlRichEdit_SetEventMask GUICtrlRichEdit_SetFont GUICtrlRichEdit_SetLimitOnText GUICtrlRichEdit_SetModified GUICtrlRichEdit_SetParaAlignment GUICtrlRichEdit_SetParaAttributes GUICtrlRichEdit_SetParaBorder GUICtrlRichEdit_SetParaIndents GUICtrlRichEdit_SetParaNumbering GUICtrlRichEdit_SetParaShading GUICtrlRichEdit_SetParaSpacing GUICtrlRichEdit_SetParaTabStops GUICtrlRichEdit_SetPasswordChar GUICtrlRichEdit_SetReadOnly GUICtrlRichEdit_SetRECT GUICtrlRichEdit_SetScrollPos GUICtrlRichEdit_SetSel GUICtrlRichEdit_SetSpaceUnit GUICtrlRichEdit_SetTabStops GUICtrlRichEdit_SetText GUICtrlRichEdit_SetUndoLimit GUICtrlRichEdit_SetZoom GUICtrlRichEdit_StreamFromFile GUICtrlRichEdit_StreamFromVar GUICtrlRichEdit_StreamToFile GUICtrlRichEdit_StreamToVar GUICtrlRichEdit_Undo GUICtrlSlider_ClearSel GUICtrlSlider_ClearTics GUICtrlSlider_Create GUICtrlSlider_Destroy GUICtrlSlider_GetBuddy GUICtrlSlider_GetChannelRect GUICtrlSlider_GetChannelRectEx GUICtrlSlider_GetLineSize GUICtrlSlider_GetLogicalTics GUICtrlSlider_GetNumTics GUICtrlSlider_GetPageSize GUICtrlSlider_GetPos GUICtrlSlider_GetRange GUICtrlSlider_GetRangeMax GUICtrlSlider_GetRangeMin GUICtrlSlider_GetSel GUICtrlSlider_GetSelEnd GUICtrlSlider_GetSelStart GUICtrlSlider_GetThumbLength GUICtrlSlider_GetThumbRect GUICtrlSlider_GetThumbRectEx GUICtrlSlider_GetTic GUICtrlSlider_GetTicPos GUICtrlSlider_GetToolTips GUICtrlSlider_GetUnicodeFormat GUICtrlSlider_SetBuddy GUICtrlSlider_SetLineSize GUICtrlSlider_SetPageSize GUICtrlSlider_SetPos GUICtrlSlider_SetRange GUICtrlSlider_SetRangeMax GUICtrlSlider_SetRangeMin GUICtrlSlider_SetSel GUICtrlSlider_SetSelEnd GUICtrlSlider_SetSelStart GUICtrlSlider_SetThumbLength GUICtrlSlider_SetTic GUICtrlSlider_SetTicFreq GUICtrlSlider_SetTipSide GUICtrlSlider_SetToolTips GUICtrlSlider_SetUnicodeFormat GUICtrlStatusBar_Create GUICtrlStatusBar_Destroy GUICtrlStatusBar_EmbedControl GUICtrlStatusBar_GetBorders GUICtrlStatusBar_GetBordersHorz GUICtrlStatusBar_GetBordersRect GUICtrlStatusBar_GetBordersVert GUICtrlStatusBar_GetCount GUICtrlStatusBar_GetHeight GUICtrlStatusBar_GetIcon GUICtrlStatusBar_GetParts GUICtrlStatusBar_GetRect GUICtrlStatusBar_GetRectEx GUICtrlStatusBar_GetText GUICtrlStatusBar_GetTextFlags GUICtrlStatusBar_GetTextLength GUICtrlStatusBar_GetTextLengthEx GUICtrlStatusBar_GetTipText GUICtrlStatusBar_GetUnicodeFormat GUICtrlStatusBar_GetWidth GUICtrlStatusBar_IsSimple GUICtrlStatusBar_Resize GUICtrlStatusBar_SetBkColor GUICtrlStatusBar_SetIcon GUICtrlStatusBar_SetMinHeight GUICtrlStatusBar_SetParts GUICtrlStatusBar_SetSimple GUICtrlStatusBar_SetText GUICtrlStatusBar_SetTipText GUICtrlStatusBar_SetUnicodeFormat GUICtrlStatusBar_ShowHide GUICtrlTab_ActivateTab GUICtrlTab_ClickTab GUICtrlTab_Create GUICtrlTab_DeleteAllItems GUICtrlTab_DeleteItem GUICtrlTab_DeselectAll GUICtrlTab_Destroy GUICtrlTab_FindTab GUICtrlTab_GetCurFocus GUICtrlTab_GetCurSel GUICtrlTab_GetDisplayRect GUICtrlTab_GetDisplayRectEx GUICtrlTab_GetExtendedStyle GUICtrlTab_GetImageList GUICtrlTab_GetItem GUICtrlTab_GetItemCount GUICtrlTab_GetItemImage GUICtrlTab_GetItemParam GUICtrlTab_GetItemRect GUICtrlTab_GetItemRectEx GUICtrlTab_GetItemState GUICtrlTab_GetItemText GUICtrlTab_GetRowCount GUICtrlTab_GetToolTips GUICtrlTab_GetUnicodeFormat GUICtrlTab_HighlightItem GUICtrlTab_HitTest GUICtrlTab_InsertItem GUICtrlTab_RemoveImage GUICtrlTab_SetCurFocus GUICtrlTab_SetCurSel GUICtrlTab_SetExtendedStyle GUICtrlTab_SetImageList GUICtrlTab_SetItem GUICtrlTab_SetItemImage GUICtrlTab_SetItemParam GUICtrlTab_SetItemSize GUICtrlTab_SetItemState GUICtrlTab_SetItemText GUICtrlTab_SetMinTabWidth GUICtrlTab_SetPadding GUICtrlTab_SetToolTips GUICtrlTab_SetUnicodeFormat GUICtrlToolbar_AddBitmap GUICtrlToolbar_AddButton GUICtrlToolbar_AddButtonSep GUICtrlToolbar_AddString GUICtrlToolbar_ButtonCount GUICtrlToolbar_CheckButton GUICtrlToolbar_ClickAccel GUICtrlToolbar_ClickButton GUICtrlToolbar_ClickIndex GUICtrlToolbar_CommandToIndex GUICtrlToolbar_Create GUICtrlToolbar_Customize GUICtrlToolbar_DeleteButton GUICtrlToolbar_Destroy GUICtrlToolbar_EnableButton GUICtrlToolbar_FindToolbar GUICtrlToolbar_GetAnchorHighlight GUICtrlToolbar_GetBitmapFlags GUICtrlToolbar_GetButtonBitmap GUICtrlToolbar_GetButtonInfo GUICtrlToolbar_GetButtonInfoEx GUICtrlToolbar_GetButtonParam GUICtrlToolbar_GetButtonRect GUICtrlToolbar_GetButtonRectEx GUICtrlToolbar_GetButtonSize GUICtrlToolbar_GetButtonState GUICtrlToolbar_GetButtonStyle GUICtrlToolbar_GetButtonText GUICtrlToolbar_GetColorScheme GUICtrlToolbar_GetDisabledImageList GUICtrlToolbar_GetExtendedStyle GUICtrlToolbar_GetHotImageList GUICtrlToolbar_GetHotItem GUICtrlToolbar_GetImageList GUICtrlToolbar_GetInsertMark GUICtrlToolbar_GetInsertMarkColor GUICtrlToolbar_GetMaxSize GUICtrlToolbar_GetMetrics GUICtrlToolbar_GetPadding GUICtrlToolbar_GetRows GUICtrlToolbar_GetString GUICtrlToolbar_GetStyle GUICtrlToolbar_GetStyleAltDrag GUICtrlToolbar_GetStyleCustomErase GUICtrlToolbar_GetStyleFlat GUICtrlToolbar_GetStyleList GUICtrlToolbar_GetStyleRegisterDrop GUICtrlToolbar_GetStyleToolTips GUICtrlToolbar_GetStyleTransparent GUICtrlToolbar_GetStyleWrapable GUICtrlToolbar_GetTextRows GUICtrlToolbar_GetToolTips GUICtrlToolbar_GetUnicodeFormat GUICtrlToolbar_HideButton GUICtrlToolbar_HighlightButton GUICtrlToolbar_HitTest GUICtrlToolbar_IndexToCommand GUICtrlToolbar_InsertButton GUICtrlToolbar_InsertMarkHitTest GUICtrlToolbar_IsButtonChecked GUICtrlToolbar_IsButtonEnabled GUICtrlToolbar_IsButtonHidden GUICtrlToolbar_IsButtonHighlighted GUICtrlToolbar_IsButtonIndeterminate GUICtrlToolbar_IsButtonPressed GUICtrlToolbar_LoadBitmap GUICtrlToolbar_LoadImages GUICtrlToolbar_MapAccelerator GUICtrlToolbar_MoveButton GUICtrlToolbar_PressButton GUICtrlToolbar_SetAnchorHighlight GUICtrlToolbar_SetBitmapSize GUICtrlToolbar_SetButtonBitMap GUICtrlToolbar_SetButtonInfo GUICtrlToolbar_SetButtonInfoEx GUICtrlToolbar_SetButtonParam GUICtrlToolbar_SetButtonSize GUICtrlToolbar_SetButtonState GUICtrlToolbar_SetButtonStyle GUICtrlToolbar_SetButtonText GUICtrlToolbar_SetButtonWidth GUICtrlToolbar_SetCmdID GUICtrlToolbar_SetColorScheme GUICtrlToolbar_SetDisabledImageList GUICtrlToolbar_SetDrawTextFlags GUICtrlToolbar_SetExtendedStyle GUICtrlToolbar_SetHotImageList GUICtrlToolbar_SetHotItem GUICtrlToolbar_SetImageList GUICtrlToolbar_SetIndent GUICtrlToolbar_SetIndeterminate GUICtrlToolbar_SetInsertMark GUICtrlToolbar_SetInsertMarkColor GUICtrlToolbar_SetMaxTextRows GUICtrlToolbar_SetMetrics GUICtrlToolbar_SetPadding GUICtrlToolbar_SetParent GUICtrlToolbar_SetRows GUICtrlToolbar_SetStyle GUICtrlToolbar_SetStyleAltDrag
GUICtrlToolbar_SetStyleCustomErase GUICtrlToolbar_SetStyleFlat GUICtrlToolbar_SetStyleList GUICtrlToolbar_SetStyleRegisterDrop GUICtrlToolbar_SetStyleToolTips GUICtrlToolbar_SetStyleTransparent GUICtrlToolbar_SetStyleWrapable GUICtrlToolbar_SetToolTips GUICtrlToolbar_SetUnicodeFormat GUICtrlToolbar_SetWindowTheme GUICtrlTreeView_Add GUICtrlTreeView_AddChild GUICtrlTreeView_AddChildFirst GUICtrlTreeView_AddFirst GUICtrlTreeView_BeginUpdate GUICtrlTreeView_ClickItem GUICtrlTreeView_Create GUICtrlTreeView_CreateDragImage GUICtrlTreeView_CreateSolidBitMap GUICtrlTreeView_Delete GUICtrlTreeView_DeleteAll GUICtrlTreeView_DeleteChildren GUICtrlTreeView_Destroy GUICtrlTreeView_DisplayRect GUICtrlTreeView_DisplayRectEx GUICtrlTreeView_EditText GUICtrlTreeView_EndEdit GUICtrlTreeView_EndUpdate GUICtrlTreeView_EnsureVisible GUICtrlTreeView_Expand GUICtrlTreeView_ExpandedOnce GUICtrlTreeView_FindItem GUICtrlTreeView_FindItemEx GUICtrlTreeView_GetBkColor GUICtrlTreeView_GetBold GUICtrlTreeView_GetChecked GUICtrlTreeView_GetChildCount GUICtrlTreeView_GetChildren GUICtrlTreeView_GetCount GUICtrlTreeView_GetCut GUICtrlTreeView_GetDropTarget GUICtrlTreeView_GetEditControl GUICtrlTreeView_GetExpanded GUICtrlTreeView_GetFirstChild GUICtrlTreeView_GetFirstItem GUICtrlTreeView_GetFirstVisible GUICtrlTreeView_GetFocused GUICtrlTreeView_GetHeight GUICtrlTreeView_GetImageIndex GUICtrlTreeView_GetImageListIconHandle GUICtrlTreeView_GetIndent GUICtrlTreeView_GetInsertMarkColor GUICtrlTreeView_GetISearchString GUICtrlTreeView_GetItemByIndex GUICtrlTreeView_GetItemHandle GUICtrlTreeView_GetItemParam GUICtrlTreeView_GetLastChild GUICtrlTreeView_GetLineColor GUICtrlTreeView_GetNext GUICtrlTreeView_GetNextChild GUICtrlTreeView_GetNextSibling GUICtrlTreeView_GetNextVisible GUICtrlTreeView_GetNormalImageList GUICtrlTreeView_GetParentHandle GUICtrlTreeView_GetParentParam GUICtrlTreeView_GetPrev GUICtrlTreeView_GetPrevChild GUICtrlTreeView_GetPrevSibling GUICtrlTreeView_GetPrevVisible GUICtrlTreeView_GetScrollTime GUICtrlTreeView_GetSelected GUICtrlTreeView_GetSelectedImageIndex GUICtrlTreeView_GetSelection GUICtrlTreeView_GetSiblingCount GUICtrlTreeView_GetState GUICtrlTreeView_GetStateImageIndex GUICtrlTreeView_GetStateImageList GUICtrlTreeView_GetText GUICtrlTreeView_GetTextColor GUICtrlTreeView_GetToolTips GUICtrlTreeView_GetTree GUICtrlTreeView_GetUnicodeFormat GUICtrlTreeView_GetVisible GUICtrlTreeView_GetVisibleCount GUICtrlTreeView_HitTest GUICtrlTreeView_HitTestEx GUICtrlTreeView_HitTestItem GUICtrlTreeView_Index GUICtrlTreeView_InsertItem GUICtrlTreeView_IsFirstItem GUICtrlTreeView_IsParent GUICtrlTreeView_Level GUICtrlTreeView_SelectItem GUICtrlTreeView_SelectItemByIndex GUICtrlTreeView_SetBkColor GUICtrlTreeView_SetBold GUICtrlTreeView_SetChecked GUICtrlTreeView_SetCheckedByIndex GUICtrlTreeView_SetChildren GUICtrlTreeView_SetCut GUICtrlTreeView_SetDropTarget GUICtrlTreeView_SetFocused GUICtrlTreeView_SetHeight GUICtrlTreeView_SetIcon GUICtrlTreeView_SetImageIndex GUICtrlTreeView_SetIndent GUICtrlTreeView_SetInsertMark GUICtrlTreeView_SetInsertMarkColor GUICtrlTreeView_SetItemHeight GUICtrlTreeView_SetItemParam GUICtrlTreeView_SetLineColor GUICtrlTreeView_SetNormalImageList GUICtrlTreeView_SetScrollTime GUICtrlTreeView_SetSelected GUICtrlTreeView_SetSelectedImageIndex GUICtrlTreeView_SetState GUICtrlTreeView_SetStateImageIndex GUICtrlTreeView_SetStateImageList GUICtrlTreeView_SetText GUICtrlTreeView_SetTextColor GUICtrlTreeView_SetToolTips GUICtrlTreeView_SetUnicodeFormat GUICtrlTreeView_Sort GUIImageList_Add GUIImageList_AddBitmap GUIImageList_AddIcon GUIImageList_AddMasked GUIImageList_BeginDrag GUIImageList_Copy GUIImageList_Create GUIImageList_Destroy GUIImageList_DestroyIcon GUIImageList_DragEnter GUIImageList_DragLeave GUIImageList_DragMove GUIImageList_Draw GUIImageList_DrawEx GUIImageList_Duplicate GUIImageList_EndDrag GUIImageList_GetBkColor GUIImageList_GetIcon GUIImageList_GetIconHeight GUIImageList_GetIconSize GUIImageList_GetIconSizeEx GUIImageList_GetIconWidth GUIImageList_GetImageCount GUIImageList_GetImageInfoEx GUIImageList_Remove GUIImageList_ReplaceIcon GUIImageList_SetBkColor GUIImageList_SetIconSize GUIImageList_SetImageCount GUIImageList_Swap GUIScrollBars_EnableScrollBar GUIScrollBars_GetScrollBarInfoEx GUIScrollBars_GetScrollBarRect GUIScrollBars_GetScrollBarRGState GUIScrollBars_GetScrollBarXYLineButton GUIScrollBars_GetScrollBarXYThumbBottom GUIScrollBars_GetScrollBarXYThumbTop GUIScrollBars_GetScrollInfo GUIScrollBars_GetScrollInfoEx GUIScrollBars_GetScrollInfoMax GUIScrollBars_GetScrollInfoMin GUIScrollBars_GetScrollInfoPage GUIScrollBars_GetScrollInfoPos GUIScrollBars_GetScrollInfoTrackPos GUIScrollBars_GetScrollPos GUIScrollBars_GetScrollRange GUIScrollBars_Init GUIScrollBars_ScrollWindow GUIScrollBars_SetScrollInfo GUIScrollBars_SetScrollInfoMax GUIScrollBars_SetScrollInfoMin GUIScrollBars_SetScrollInfoPage GUIScrollBars_SetScrollInfoPos GUIScrollBars_SetScrollRange GUIScrollBars_ShowScrollBar GUIToolTip_Activate GUIToolTip_AddTool GUIToolTip_AdjustRect GUIToolTip_BitsToTTF GUIToolTip_Create GUIToolTip_Deactivate GUIToolTip_DelTool GUIToolTip_Destroy GUIToolTip_EnumTools GUIToolTip_GetBubbleHeight GUIToolTip_GetBubbleSize GUIToolTip_GetBubbleWidth GUIToolTip_GetCurrentTool GUIToolTip_GetDelayTime GUIToolTip_GetMargin GUIToolTip_GetMarginEx GUIToolTip_GetMaxTipWidth GUIToolTip_GetText GUIToolTip_GetTipBkColor GUIToolTip_GetTipTextColor GUIToolTip_GetTitleBitMap GUIToolTip_GetTitleText GUIToolTip_GetToolCount GUIToolTip_GetToolInfo GUIToolTip_HitTest GUIToolTip_NewToolRect GUIToolTip_Pop GUIToolTip_PopUp GUIToolTip_SetDelayTime GUIToolTip_SetMargin GUIToolTip_SetMaxTipWidth GUIToolTip_SetTipBkColor GUIToolTip_SetTipTextColor GUIToolTip_SetTitle GUIToolTip_SetToolInfo GUIToolTip_SetWindowTheme GUIToolTip_ToolExists GUIToolTip_ToolToArray GUIToolTip_TrackActivate GUIToolTip_TrackPosition GUIToolTip_Update GUIToolTip_UpdateTipText HexToString IEAction IEAttach IEBodyReadHTML IEBodyReadText IEBodyWriteHTML IECreate IECreateEmbedded IEDocGetObj IEDocInsertHTML IEDocInsertText IEDocReadHTML IEDocWriteHTML IEErrorNotify IEFormElementCheckBoxSelect IEFormElementGetCollection IEFormElementGetObjByName IEFormElementGetValue IEFormElementOptionSelect IEFormElementRadioSelect IEFormElementSetValue IEFormGetCollection IEFormGetObjByName IEFormImageClick IEFormReset IEFormSubmit IEFrameGetCollection IEFrameGetObjByName IEGetObjById IEGetObjByName IEHeadInsertEventScript IEImgClick IEImgGetCollection IEIsFrameSet IELinkClickByIndex IELinkClickByText IELinkGetCollection IELoadWait IELoadWaitTimeout IENavigate IEPropertyGet IEPropertySet IEQuit IETableGetCollection IETableWriteToArray IETagNameAllGetCollection IETagNameGetCollection IE_Example IE_Introduction IE_VersionInfo INetExplorerCapable INetGetSource INetMail INetSmtpMail IsPressed MathCheckDiv Max MemGlobalAlloc MemGlobalFree MemGlobalLock MemGlobalSize MemGlobalUnlock MemMoveMemory MemVirtualAlloc MemVirtualAllocEx MemVirtualFree MemVirtualFreeEx Min MouseTrap NamedPipes_CallNamedPipe NamedPipes_ConnectNamedPipe NamedPipes_CreateNamedPipe NamedPipes_CreatePipe NamedPipes_DisconnectNamedPipe NamedPipes_GetNamedPipeHandleState NamedPipes_GetNamedPipeInfo NamedPipes_PeekNamedPipe NamedPipes_SetNamedPipeHandleState NamedPipes_TransactNamedPipe NamedPipes_WaitNamedPipe Net_Share_ConnectionEnum Net_Share_FileClose Net_Share_FileEnum Net_Share_FileGetInfo Net_Share_PermStr Net_Share_ResourceStr Net_Share_SessionDel Net_Share_SessionEnum Net_Share_SessionGetInfo Net_Share_ShareAdd Net_Share_ShareCheck Net_Share_ShareDel Net_Share_ShareEnum Net_Share_ShareGetInfo Net_Share_ShareSetInfo Net_Share_StatisticsGetSvr Net_Share_StatisticsGetWrk Now NowCalc NowCalcDate NowDate NowTime PathFull PathGetRelative PathMake PathSplit ProcessGetName ProcessGetPriority Radian ReplaceStringInFile RunDos ScreenCapture_Capture ScreenCapture_CaptureWnd ScreenCapture_SaveImage ScreenCapture_SetBMPFormat ScreenCapture_SetJPGQuality ScreenCapture_SetTIFColorDepth ScreenCapture_SetTIFCompression Security__AdjustTokenPrivileges Security__CreateProcessWithToken Security__DuplicateTokenEx Security__GetAccountSid Security__GetLengthSid Security__GetTokenInformation Security__ImpersonateSelf Security__IsValidSid Security__LookupAccountName Security__LookupAccountSid Security__LookupPrivilegeValue Security__OpenProcessToken Security__OpenThreadToken Security__OpenThreadTokenEx Security__SetPrivilege Security__SetTokenInformation Security__SidToStringSid Security__SidTypeStr Security__StringSidToSid SendMessage SendMessageA SetDate SetTime Singleton SoundClose SoundLength SoundOpen SoundPause SoundPlay SoundPos SoundResume SoundSeek SoundStatus SoundStop SQLite_Changes SQLite_Close SQLite_Display2DResult SQLite_Encode SQLite_ErrCode SQLite_ErrMsg SQLite_Escape SQLite_Exec SQLite_FastEncode SQLite_FastEscape SQLite_FetchData SQLite_FetchNames SQLite_GetTable SQLite_GetTable2d SQLite_LastInsertRowID SQLite_LibVersion SQLite_Open SQLite_Query SQLite_QueryFinalize SQLite_QueryReset SQLite_QuerySingleRow SQLite_SafeMode SQLite_SetTimeout SQLite_Shutdown SQLite_SQLiteExe SQLite_Startup SQLite_TotalChanges StringBetween StringExplode StringInsert StringProper StringRepeat StringTitleCase StringToHex TCPIpToName TempFile TicksToTime Timer_Diff Timer_GetIdleTime Timer_GetTimerID Timer_Init Timer_KillAllTimers Timer_KillTimer Timer_SetTimer TimeToTicks VersionCompare viClose viExecCommand viFindGpib viGpibBusReset viGTL viInteractiveControl viOpen viSetAttribute viSetTimeout WeekNumberISO WinAPI_AbortPath WinAPI_ActivateKeyboardLayout WinAPI_AddClipboardFormatListener WinAPI_AddFontMemResourceEx WinAPI_AddFontResourceEx WinAPI_AddIconOverlay WinAPI_AddIconTransparency WinAPI_AddMRUString WinAPI_AdjustBitmap WinAPI_AdjustTokenPrivileges WinAPI_AdjustWindowRectEx WinAPI_AlphaBlend WinAPI_AngleArc WinAPI_AnimateWindow WinAPI_Arc WinAPI_ArcTo WinAPI_ArrayToStruct WinAPI_AssignProcessToJobObject
WinAPI_AssocGetPerceivedType WinAPI_AssocQueryString WinAPI_AttachConsole WinAPI_AttachThreadInput WinAPI_BackupRead WinAPI_BackupReadAbort WinAPI_BackupSeek WinAPI_BackupWrite WinAPI_BackupWriteAbort WinAPI_Beep WinAPI_BeginBufferedPaint WinAPI_BeginDeferWindowPos WinAPI_BeginPaint WinAPI_BeginPath WinAPI_BeginUpdateResource WinAPI_BitBlt WinAPI_BringWindowToTop WinAPI_BroadcastSystemMessage WinAPI_BrowseForFolderDlg WinAPI_BufferedPaintClear WinAPI_BufferedPaintInit WinAPI_BufferedPaintSetAlpha WinAPI_BufferedPaintUnInit WinAPI_CallNextHookEx WinAPI_CallWindowProc WinAPI_CallWindowProcW WinAPI_CascadeWindows WinAPI_ChangeWindowMessageFilterEx WinAPI_CharToOem WinAPI_ChildWindowFromPointEx WinAPI_ClientToScreen WinAPI_ClipCursor WinAPI_CloseDesktop WinAPI_CloseEnhMetaFile WinAPI_CloseFigure WinAPI_CloseHandle WinAPI_CloseThemeData WinAPI_CloseWindow WinAPI_CloseWindowStation WinAPI_CLSIDFromProgID WinAPI_CoInitialize WinAPI_ColorAdjustLuma WinAPI_ColorHLSToRGB WinAPI_ColorRGBToHLS WinAPI_CombineRgn WinAPI_CombineTransform WinAPI_CommandLineToArgv WinAPI_CommDlgExtendedError WinAPI_CommDlgExtendedErrorEx WinAPI_CompareString WinAPI_CompressBitmapBits WinAPI_CompressBuffer WinAPI_ComputeCrc32 WinAPI_ConfirmCredentials WinAPI_CopyBitmap WinAPI_CopyCursor WinAPI_CopyEnhMetaFile WinAPI_CopyFileEx WinAPI_CopyIcon WinAPI_CopyImage WinAPI_CopyRect WinAPI_CopyStruct WinAPI_CoTaskMemAlloc WinAPI_CoTaskMemFree WinAPI_CoTaskMemRealloc WinAPI_CoUninitialize WinAPI_Create32BitHBITMAP WinAPI_Create32BitHICON WinAPI_CreateANDBitmap WinAPI_CreateBitmap WinAPI_CreateBitmapIndirect WinAPI_CreateBrushIndirect WinAPI_CreateBuffer WinAPI_CreateBufferFromStruct WinAPI_CreateCaret WinAPI_CreateColorAdjustment WinAPI_CreateCompatibleBitmap WinAPI_CreateCompatibleBitmapEx WinAPI_CreateCompatibleDC WinAPI_CreateDesktop WinAPI_CreateDIB WinAPI_CreateDIBColorTable WinAPI_CreateDIBitmap WinAPI_CreateDIBSection WinAPI_CreateDirectory WinAPI_CreateDirectoryEx WinAPI_CreateEllipticRgn WinAPI_CreateEmptyIcon WinAPI_CreateEnhMetaFile WinAPI_CreateEvent WinAPI_CreateFile WinAPI_CreateFileEx WinAPI_CreateFileMapping WinAPI_CreateFont WinAPI_CreateFontEx WinAPI_CreateFontIndirect WinAPI_CreateGUID WinAPI_CreateHardLink WinAPI_CreateIcon WinAPI_CreateIconFromResourceEx WinAPI_CreateIconIndirect WinAPI_CreateJobObject WinAPI_CreateMargins WinAPI_CreateMRUList WinAPI_CreateMutex WinAPI_CreateNullRgn WinAPI_CreateNumberFormatInfo WinAPI_CreateObjectID WinAPI_CreatePen WinAPI_CreatePoint WinAPI_CreatePolygonRgn WinAPI_CreateProcess WinAPI_CreateProcessWithToken WinAPI_CreateRect WinAPI_CreateRectEx WinAPI_CreateRectRgn WinAPI_CreateRectRgnIndirect WinAPI_CreateRoundRectRgn WinAPI_CreateSemaphore WinAPI_CreateSize WinAPI_CreateSolidBitmap WinAPI_CreateSolidBrush WinAPI_CreateStreamOnHGlobal WinAPI_CreateString WinAPI_CreateSymbolicLink WinAPI_CreateTransform WinAPI_CreateWindowEx WinAPI_CreateWindowStation WinAPI_DecompressBuffer WinAPI_DecryptFile WinAPI_DeferWindowPos WinAPI_DefineDosDevice WinAPI_DefRawInputProc WinAPI_DefSubclassProc WinAPI_DefWindowProc WinAPI_DefWindowProcW WinAPI_DeleteDC WinAPI_DeleteEnhMetaFile WinAPI_DeleteFile WinAPI_DeleteObject WinAPI_DeleteObjectID WinAPI_DeleteVolumeMountPoint WinAPI_DeregisterShellHookWindow WinAPI_DestroyCaret WinAPI_DestroyCursor WinAPI_DestroyIcon WinAPI_DestroyWindow WinAPI_DeviceIoControl WinAPI_DisplayStruct WinAPI_DllGetVersion WinAPI_DllInstall WinAPI_DllUninstall WinAPI_DPtoLP WinAPI_DragAcceptFiles WinAPI_DragFinish WinAPI_DragQueryFileEx WinAPI_DragQueryPoint WinAPI_DrawAnimatedRects WinAPI_DrawBitmap WinAPI_DrawEdge WinAPI_DrawFocusRect WinAPI_DrawFrameControl WinAPI_DrawIcon WinAPI_DrawIconEx WinAPI_DrawLine WinAPI_DrawShadowText WinAPI_DrawText WinAPI_DrawThemeBackground WinAPI_DrawThemeEdge WinAPI_DrawThemeIcon WinAPI_DrawThemeParentBackground WinAPI_DrawThemeText WinAPI_DrawThemeTextEx WinAPI_DuplicateEncryptionInfoFile WinAPI_DuplicateHandle WinAPI_DuplicateTokenEx WinAPI_DwmDefWindowProc WinAPI_DwmEnableBlurBehindWindow WinAPI_DwmEnableComposition WinAPI_DwmExtendFrameIntoClientArea WinAPI_DwmGetColorizationColor WinAPI_DwmGetColorizationParameters WinAPI_DwmGetWindowAttribute WinAPI_DwmInvalidateIconicBitmaps WinAPI_DwmIsCompositionEnabled WinAPI_DwmQueryThumbnailSourceSize WinAPI_DwmRegisterThumbnail WinAPI_DwmSetColorizationParameters WinAPI_DwmSetIconicLivePreviewBitmap WinAPI_DwmSetIconicThumbnail WinAPI_DwmSetWindowAttribute WinAPI_DwmUnregisterThumbnail WinAPI_DwmUpdateThumbnailProperties WinAPI_DWordToFloat WinAPI_DWordToInt WinAPI_EjectMedia WinAPI_Ellipse WinAPI_EmptyWorkingSet WinAPI_EnableWindow WinAPI_EncryptFile WinAPI_EncryptionDisable WinAPI_EndBufferedPaint WinAPI_EndDeferWindowPos WinAPI_EndPaint WinAPI_EndPath WinAPI_EndUpdateResource WinAPI_EnumChildProcess WinAPI_EnumChildWindows WinAPI_EnumDesktops WinAPI_EnumDesktopWindows WinAPI_EnumDeviceDrivers WinAPI_EnumDisplayDevices WinAPI_EnumDisplayMonitors WinAPI_EnumDisplaySettings WinAPI_EnumDllProc WinAPI_EnumFiles WinAPI_EnumFileStreams WinAPI_EnumFontFamilies WinAPI_EnumHardLinks WinAPI_EnumMRUList WinAPI_EnumPageFiles WinAPI_EnumProcessHandles WinAPI_EnumProcessModules WinAPI_EnumProcessThreads WinAPI_EnumProcessWindows WinAPI_EnumRawInputDevices WinAPI_EnumResourceLanguages WinAPI_EnumResourceNames WinAPI_EnumResourceTypes WinAPI_EnumSystemGeoID WinAPI_EnumSystemLocales WinAPI_EnumUILanguages WinAPI_EnumWindows WinAPI_EnumWindowsPopup WinAPI_EnumWindowStations WinAPI_EnumWindowsTop WinAPI_EqualMemory WinAPI_EqualRect WinAPI_EqualRgn WinAPI_ExcludeClipRect WinAPI_ExpandEnvironmentStrings WinAPI_ExtCreatePen WinAPI_ExtCreateRegion WinAPI_ExtFloodFill WinAPI_ExtractIcon WinAPI_ExtractIconEx WinAPI_ExtSelectClipRgn WinAPI_FatalAppExit WinAPI_FatalExit WinAPI_FileEncryptionStatus WinAPI_FileExists WinAPI_FileIconInit WinAPI_FileInUse WinAPI_FillMemory WinAPI_FillPath WinAPI_FillRect WinAPI_FillRgn WinAPI_FindClose WinAPI_FindCloseChangeNotification WinAPI_FindExecutable WinAPI_FindFirstChangeNotification WinAPI_FindFirstFile WinAPI_FindFirstFileName WinAPI_FindFirstStream WinAPI_FindNextChangeNotification WinAPI_FindNextFile WinAPI_FindNextFileName WinAPI_FindNextStream WinAPI_FindResource WinAPI_FindResourceEx WinAPI_FindTextDlg WinAPI_FindWindow WinAPI_FlashWindow WinAPI_FlashWindowEx WinAPI_FlattenPath WinAPI_FloatToDWord WinAPI_FloatToInt WinAPI_FlushFileBuffers WinAPI_FlushFRBuffer WinAPI_FlushViewOfFile WinAPI_FormatDriveDlg WinAPI_FormatMessage WinAPI_FrameRect WinAPI_FrameRgn WinAPI_FreeLibrary WinAPI_FreeMemory WinAPI_FreeMRUList WinAPI_FreeResource WinAPI_GdiComment WinAPI_GetActiveWindow WinAPI_GetAllUsersProfileDirectory WinAPI_GetAncestor WinAPI_GetApplicationRestartSettings WinAPI_GetArcDirection WinAPI_GetAsyncKeyState WinAPI_GetBinaryType WinAPI_GetBitmapBits WinAPI_GetBitmapDimension WinAPI_GetBitmapDimensionEx WinAPI_GetBkColor WinAPI_GetBkMode WinAPI_GetBoundsRect WinAPI_GetBrushOrg WinAPI_GetBufferedPaintBits WinAPI_GetBufferedPaintDC WinAPI_GetBufferedPaintTargetDC WinAPI_GetBufferedPaintTargetRect WinAPI_GetBValue WinAPI_GetCaretBlinkTime WinAPI_GetCaretPos WinAPI_GetCDType WinAPI_GetClassInfoEx WinAPI_GetClassLongEx WinAPI_GetClassName WinAPI_GetClientHeight WinAPI_GetClientRect WinAPI_GetClientWidth WinAPI_GetClipboardSequenceNumber WinAPI_GetClipBox WinAPI_GetClipCursor WinAPI_GetClipRgn WinAPI_GetColorAdjustment WinAPI_GetCompressedFileSize WinAPI_GetCompression WinAPI_GetConnectedDlg WinAPI_GetCurrentDirectory WinAPI_GetCurrentHwProfile WinAPI_GetCurrentObject WinAPI_GetCurrentPosition WinAPI_GetCurrentProcess WinAPI_GetCurrentProcessExplicitAppUserModelID WinAPI_GetCurrentProcessID WinAPI_GetCurrentThemeName WinAPI_GetCurrentThread WinAPI_GetCurrentThreadId WinAPI_GetCursor WinAPI_GetCursorInfo WinAPI_GetDateFormat WinAPI_GetDC WinAPI_GetDCEx WinAPI_GetDefaultPrinter WinAPI_GetDefaultUserProfileDirectory WinAPI_GetDesktopWindow WinAPI_GetDeviceCaps WinAPI_GetDeviceDriverBaseName WinAPI_GetDeviceDriverFileName WinAPI_GetDeviceGammaRamp WinAPI_GetDIBColorTable WinAPI_GetDIBits WinAPI_GetDiskFreeSpaceEx WinAPI_GetDlgCtrlID WinAPI_GetDlgItem WinAPI_GetDllDirectory WinAPI_GetDriveBusType WinAPI_GetDriveGeometryEx WinAPI_GetDriveNumber WinAPI_GetDriveType WinAPI_GetDurationFormat WinAPI_GetEffectiveClientRect WinAPI_GetEnhMetaFile WinAPI_GetEnhMetaFileBits WinAPI_GetEnhMetaFileDescription WinAPI_GetEnhMetaFileDimension WinAPI_GetEnhMetaFileHeader WinAPI_GetErrorMessage WinAPI_GetErrorMode WinAPI_GetExitCodeProcess WinAPI_GetExtended WinAPI_GetFileAttributes WinAPI_GetFileID WinAPI_GetFileInformationByHandle WinAPI_GetFileInformationByHandleEx WinAPI_GetFilePointerEx WinAPI_GetFileSizeEx WinAPI_GetFileSizeOnDisk WinAPI_GetFileTitle WinAPI_GetFileType WinAPI_GetFileVersionInfo WinAPI_GetFinalPathNameByHandle WinAPI_GetFinalPathNameByHandleEx WinAPI_GetFocus WinAPI_GetFontMemoryResourceInfo WinAPI_GetFontName WinAPI_GetFontResourceInfo WinAPI_GetForegroundWindow WinAPI_GetFRBuffer WinAPI_GetFullPathName WinAPI_GetGeoInfo WinAPI_GetGlyphOutline WinAPI_GetGraphicsMode WinAPI_GetGuiResources WinAPI_GetGUIThreadInfo WinAPI_GetGValue WinAPI_GetHandleInformation WinAPI_GetHGlobalFromStream WinAPI_GetIconDimension WinAPI_GetIconInfo WinAPI_GetIconInfoEx WinAPI_GetIdleTime WinAPI_GetKeyboardLayout WinAPI_GetKeyboardLayoutList WinAPI_GetKeyboardState WinAPI_GetKeyboardType WinAPI_GetKeyNameText WinAPI_GetKeyState WinAPI_GetLastActivePopup WinAPI_GetLastError WinAPI_GetLastErrorMessage WinAPI_GetLayeredWindowAttributes WinAPI_GetLocaleInfo WinAPI_GetLogicalDrives WinAPI_GetMapMode WinAPI_GetMemorySize WinAPI_GetMessageExtraInfo WinAPI_GetModuleFileNameEx WinAPI_GetModuleHandle WinAPI_GetModuleHandleEx WinAPI_GetModuleInformation WinAPI_GetMonitorInfo WinAPI_GetMousePos WinAPI_GetMousePosX WinAPI_GetMousePosY WinAPI_GetMUILanguage WinAPI_GetNumberFormat WinAPI_GetObject WinAPI_GetObjectID WinAPI_GetObjectInfoByHandle WinAPI_GetObjectNameByHandle WinAPI_GetObjectType WinAPI_GetOpenFileName
WinAPI_GetOutlineTextMetrics WinAPI_GetOverlappedResult WinAPI_GetParent WinAPI_GetParentProcess WinAPI_GetPerformanceInfo WinAPI_GetPEType WinAPI_GetPhysicallyInstalledSystemMemory WinAPI_GetPixel WinAPI_GetPolyFillMode WinAPI_GetPosFromRect WinAPI_GetPriorityClass WinAPI_GetProcAddress WinAPI_GetProcessAffinityMask WinAPI_GetProcessCommandLine WinAPI_GetProcessFileName WinAPI_GetProcessHandleCount WinAPI_GetProcessID WinAPI_GetProcessIoCounters WinAPI_GetProcessMemoryInfo WinAPI_GetProcessName WinAPI_GetProcessShutdownParameters WinAPI_GetProcessTimes WinAPI_GetProcessUser WinAPI_GetProcessWindowStation WinAPI_GetProcessWorkingDirectory WinAPI_GetProfilesDirectory WinAPI_GetPwrCapabilities WinAPI_GetRawInputBuffer WinAPI_GetRawInputBufferLength WinAPI_GetRawInputData WinAPI_GetRawInputDeviceInfo WinAPI_GetRegionData WinAPI_GetRegisteredRawInputDevices WinAPI_GetRegKeyNameByHandle WinAPI_GetRgnBox WinAPI_GetROP2 WinAPI_GetRValue WinAPI_GetSaveFileName WinAPI_GetShellWindow WinAPI_GetStartupInfo WinAPI_GetStdHandle WinAPI_GetStockObject WinAPI_GetStretchBltMode WinAPI_GetString WinAPI_GetSysColor WinAPI_GetSysColorBrush WinAPI_GetSystemDefaultLangID WinAPI_GetSystemDefaultLCID WinAPI_GetSystemDefaultUILanguage WinAPI_GetSystemDEPPolicy WinAPI_GetSystemInfo WinAPI_GetSystemMetrics WinAPI_GetSystemPowerStatus WinAPI_GetSystemTimes WinAPI_GetSystemWow64Directory WinAPI_GetTabbedTextExtent WinAPI_GetTempFileName WinAPI_GetTextAlign WinAPI_GetTextCharacterExtra WinAPI_GetTextColor WinAPI_GetTextExtentPoint32 WinAPI_GetTextFace WinAPI_GetTextMetrics WinAPI_GetThemeAppProperties WinAPI_GetThemeBackgroundContentRect WinAPI_GetThemeBackgroundExtent WinAPI_GetThemeBackgroundRegion WinAPI_GetThemeBitmap WinAPI_GetThemeBool WinAPI_GetThemeColor WinAPI_GetThemeDocumentationProperty WinAPI_GetThemeEnumValue WinAPI_GetThemeFilename WinAPI_GetThemeFont WinAPI_GetThemeInt WinAPI_GetThemeMargins WinAPI_GetThemeMetric WinAPI_GetThemePartSize WinAPI_GetThemePosition WinAPI_GetThemePropertyOrigin WinAPI_GetThemeRect WinAPI_GetThemeString WinAPI_GetThemeSysBool WinAPI_GetThemeSysColor WinAPI_GetThemeSysColorBrush WinAPI_GetThemeSysFont WinAPI_GetThemeSysInt WinAPI_GetThemeSysSize WinAPI_GetThemeSysString WinAPI_GetThemeTextExtent WinAPI_GetThemeTextMetrics WinAPI_GetThemeTransitionDuration WinAPI_GetThreadDesktop WinAPI_GetThreadErrorMode WinAPI_GetThreadLocale WinAPI_GetThreadUILanguage WinAPI_GetTickCount WinAPI_GetTickCount64 WinAPI_GetTimeFormat WinAPI_GetTopWindow WinAPI_GetUDFColorMode WinAPI_GetUpdateRect WinAPI_GetUpdateRgn WinAPI_GetUserDefaultLangID WinAPI_GetUserDefaultLCID WinAPI_GetUserDefaultUILanguage WinAPI_GetUserGeoID WinAPI_GetUserObjectInformation WinAPI_GetVersion WinAPI_GetVersionEx WinAPI_GetVolumeInformation WinAPI_GetVolumeInformationByHandle WinAPI_GetVolumeNameForVolumeMountPoint WinAPI_GetWindow WinAPI_GetWindowDC WinAPI_GetWindowDisplayAffinity WinAPI_GetWindowExt WinAPI_GetWindowFileName WinAPI_GetWindowHeight WinAPI_GetWindowInfo WinAPI_GetWindowLong WinAPI_GetWindowOrg WinAPI_GetWindowPlacement WinAPI_GetWindowRect WinAPI_GetWindowRgn WinAPI_GetWindowRgnBox WinAPI_GetWindowSubclass WinAPI_GetWindowText WinAPI_GetWindowTheme WinAPI_GetWindowThreadProcessId WinAPI_GetWindowWidth WinAPI_GetWorkArea WinAPI_GetWorldTransform WinAPI_GetXYFromPoint WinAPI_GlobalMemoryStatus WinAPI_GradientFill WinAPI_GUIDFromString WinAPI_GUIDFromStringEx WinAPI_HashData WinAPI_HashString WinAPI_HiByte WinAPI_HideCaret WinAPI_HiDWord WinAPI_HiWord WinAPI_InflateRect WinAPI_InitMUILanguage WinAPI_InProcess WinAPI_IntersectClipRect WinAPI_IntersectRect WinAPI_IntToDWord WinAPI_IntToFloat WinAPI_InvalidateRect WinAPI_InvalidateRgn WinAPI_InvertANDBitmap WinAPI_InvertColor WinAPI_InvertRect WinAPI_InvertRgn WinAPI_IOCTL WinAPI_IsAlphaBitmap WinAPI_IsBadCodePtr WinAPI_IsBadReadPtr WinAPI_IsBadStringPtr WinAPI_IsBadWritePtr WinAPI_IsChild WinAPI_IsClassName WinAPI_IsDoorOpen WinAPI_IsElevated WinAPI_IsHungAppWindow WinAPI_IsIconic WinAPI_IsInternetConnected WinAPI_IsLoadKBLayout WinAPI_IsMemory WinAPI_IsNameInExpression WinAPI_IsNetworkAlive WinAPI_IsPathShared WinAPI_IsProcessInJob WinAPI_IsProcessorFeaturePresent WinAPI_IsRectEmpty WinAPI_IsThemeActive WinAPI_IsThemeBackgroundPartiallyTransparent WinAPI_IsThemePartDefined WinAPI_IsValidLocale WinAPI_IsWindow WinAPI_IsWindowEnabled WinAPI_IsWindowUnicode WinAPI_IsWindowVisible WinAPI_IsWow64Process WinAPI_IsWritable WinAPI_IsZoomed WinAPI_Keybd_Event WinAPI_KillTimer WinAPI_LineDDA WinAPI_LineTo WinAPI_LoadBitmap WinAPI_LoadCursor WinAPI_LoadCursorFromFile WinAPI_LoadIcon WinAPI_LoadIconMetric WinAPI_LoadIconWithScaleDown WinAPI_LoadImage WinAPI_LoadIndirectString WinAPI_LoadKeyboardLayout WinAPI_LoadLibrary WinAPI_LoadLibraryEx WinAPI_LoadMedia WinAPI_LoadResource WinAPI_LoadShell32Icon WinAPI_LoadString WinAPI_LoadStringEx WinAPI_LoByte WinAPI_LocalFree WinAPI_LockDevice WinAPI_LockFile WinAPI_LockResource WinAPI_LockWindowUpdate WinAPI_LockWorkStation WinAPI_LoDWord WinAPI_LongMid WinAPI_LookupIconIdFromDirectoryEx WinAPI_LoWord WinAPI_LPtoDP WinAPI_MAKELANGID WinAPI_MAKELCID WinAPI_MakeLong WinAPI_MakeQWord WinAPI_MakeWord WinAPI_MapViewOfFile WinAPI_MapVirtualKey WinAPI_MaskBlt WinAPI_MessageBeep WinAPI_MessageBoxCheck WinAPI_MessageBoxIndirect WinAPI_MirrorIcon WinAPI_ModifyWorldTransform WinAPI_MonitorFromPoint WinAPI_MonitorFromRect WinAPI_MonitorFromWindow WinAPI_Mouse_Event WinAPI_MoveFileEx WinAPI_MoveMemory WinAPI_MoveTo WinAPI_MoveToEx WinAPI_MoveWindow WinAPI_MsgBox WinAPI_MulDiv WinAPI_MultiByteToWideChar WinAPI_MultiByteToWideCharEx WinAPI_NtStatusToDosError WinAPI_OemToChar WinAPI_OffsetClipRgn WinAPI_OffsetPoints WinAPI_OffsetRect WinAPI_OffsetRgn WinAPI_OffsetWindowOrg WinAPI_OpenDesktop WinAPI_OpenFileById WinAPI_OpenFileDlg WinAPI_OpenFileMapping WinAPI_OpenIcon WinAPI_OpenInputDesktop WinAPI_OpenJobObject WinAPI_OpenMutex WinAPI_OpenProcess WinAPI_OpenProcessToken WinAPI_OpenSemaphore WinAPI_OpenThemeData WinAPI_OpenWindowStation WinAPI_PageSetupDlg WinAPI_PaintDesktop WinAPI_PaintRgn WinAPI_ParseURL WinAPI_ParseUserName WinAPI_PatBlt WinAPI_PathAddBackslash WinAPI_PathAddExtension WinAPI_PathAppend WinAPI_PathBuildRoot WinAPI_PathCanonicalize WinAPI_PathCommonPrefix WinAPI_PathCompactPath WinAPI_PathCompactPathEx WinAPI_PathCreateFromUrl WinAPI_PathFindExtension WinAPI_PathFindFileName WinAPI_PathFindNextComponent WinAPI_PathFindOnPath WinAPI_PathGetArgs WinAPI_PathGetCharType WinAPI_PathGetDriveNumber WinAPI_PathIsContentType WinAPI_PathIsDirectory WinAPI_PathIsDirectoryEmpty WinAPI_PathIsExe WinAPI_PathIsFileSpec WinAPI_PathIsLFNFileSpec WinAPI_PathIsRelative WinAPI_PathIsRoot WinAPI_PathIsSameRoot WinAPI_PathIsSystemFolder WinAPI_PathIsUNC WinAPI_PathIsUNCServer WinAPI_PathIsUNCServerShare WinAPI_PathMakeSystemFolder WinAPI_PathMatchSpec WinAPI_PathParseIconLocation WinAPI_PathRelativePathTo WinAPI_PathRemoveArgs WinAPI_PathRemoveBackslash WinAPI_PathRemoveExtension WinAPI_PathRemoveFileSpec WinAPI_PathRenameExtension WinAPI_PathSearchAndQualify WinAPI_PathSkipRoot WinAPI_PathStripPath WinAPI_PathStripToRoot WinAPI_PathToRegion WinAPI_PathUndecorate WinAPI_PathUnExpandEnvStrings WinAPI_PathUnmakeSystemFolder WinAPI_PathUnquoteSpaces WinAPI_PathYetAnotherMakeUniqueName WinAPI_PickIconDlg WinAPI_PlayEnhMetaFile WinAPI_PlaySound WinAPI_PlgBlt WinAPI_PointFromRect WinAPI_PolyBezier WinAPI_PolyBezierTo WinAPI_PolyDraw WinAPI_Polygon WinAPI_PostMessage WinAPI_PrimaryLangId WinAPI_PrintDlg WinAPI_PrintDlgEx WinAPI_PrintWindow WinAPI_ProgIDFromCLSID WinAPI_PtInRect WinAPI_PtInRectEx WinAPI_PtInRegion WinAPI_PtVisible WinAPI_QueryDosDevice WinAPI_QueryInformationJobObject WinAPI_QueryPerformanceCounter WinAPI_QueryPerformanceFrequency WinAPI_RadialGradientFill WinAPI_ReadDirectoryChanges WinAPI_ReadFile WinAPI_ReadProcessMemory WinAPI_Rectangle WinAPI_RectInRegion WinAPI_RectIsEmpty WinAPI_RectVisible WinAPI_RedrawWindow WinAPI_RegCloseKey WinAPI_RegConnectRegistry WinAPI_RegCopyTree WinAPI_RegCopyTreeEx WinAPI_RegCreateKey WinAPI_RegDeleteEmptyKey WinAPI_RegDeleteKey WinAPI_RegDeleteKeyValue WinAPI_RegDeleteTree WinAPI_RegDeleteTreeEx WinAPI_RegDeleteValue WinAPI_RegDisableReflectionKey WinAPI_RegDuplicateHKey WinAPI_RegEnableReflectionKey WinAPI_RegEnumKey WinAPI_RegEnumValue WinAPI_RegFlushKey WinAPI_RegisterApplicationRestart WinAPI_RegisterClass WinAPI_RegisterClassEx WinAPI_RegisterHotKey WinAPI_RegisterPowerSettingNotification WinAPI_RegisterRawInputDevices WinAPI_RegisterShellHookWindow WinAPI_RegisterWindowMessage WinAPI_RegLoadMUIString WinAPI_RegNotifyChangeKeyValue WinAPI_RegOpenKey WinAPI_RegQueryInfoKey WinAPI_RegQueryLastWriteTime WinAPI_RegQueryMultipleValues WinAPI_RegQueryReflectionKey WinAPI_RegQueryValue WinAPI_RegRestoreKey WinAPI_RegSaveKey WinAPI_RegSetValue WinAPI_ReleaseCapture WinAPI_ReleaseDC WinAPI_ReleaseMutex WinAPI_ReleaseSemaphore WinAPI_ReleaseStream WinAPI_RemoveClipboardFormatListener WinAPI_RemoveDirectory WinAPI_RemoveFontMemResourceEx WinAPI_RemoveFontResourceEx WinAPI_RemoveWindowSubclass WinAPI_ReOpenFile WinAPI_ReplaceFile WinAPI_ReplaceTextDlg WinAPI_ResetEvent WinAPI_RestartDlg WinAPI_RestoreDC WinAPI_RGB WinAPI_RotatePoints WinAPI_RoundRect WinAPI_SaveDC WinAPI_SaveFileDlg WinAPI_SaveHBITMAPToFile WinAPI_SaveHICONToFile WinAPI_ScaleWindowExt WinAPI_ScreenToClient WinAPI_SearchPath WinAPI_SelectClipPath WinAPI_SelectClipRgn WinAPI_SelectObject WinAPI_SendMessageTimeout WinAPI_SetActiveWindow WinAPI_SetArcDirection WinAPI_SetBitmapBits WinAPI_SetBitmapDimensionEx WinAPI_SetBkColor WinAPI_SetBkMode WinAPI_SetBoundsRect WinAPI_SetBrushOrg WinAPI_SetCapture WinAPI_SetCaretBlinkTime WinAPI_SetCaretPos WinAPI_SetClassLongEx WinAPI_SetColorAdjustment WinAPI_SetCompression WinAPI_SetCurrentDirectory WinAPI_SetCurrentProcessExplicitAppUserModelID WinAPI_SetCursor WinAPI_SetDCBrushColor WinAPI_SetDCPenColor WinAPI_SetDefaultPrinter WinAPI_SetDeviceGammaRamp WinAPI_SetDIBColorTable WinAPI_SetDIBits WinAPI_SetDIBitsToDevice
WinAPI_SetDllDirectory WinAPI_SetEndOfFile WinAPI_SetEnhMetaFileBits WinAPI_SetErrorMode WinAPI_SetEvent WinAPI_SetFileAttributes WinAPI_SetFileInformationByHandleEx WinAPI_SetFilePointer WinAPI_SetFilePointerEx WinAPI_SetFileShortName WinAPI_SetFileValidData WinAPI_SetFocus WinAPI_SetFont WinAPI_SetForegroundWindow WinAPI_SetFRBuffer WinAPI_SetGraphicsMode WinAPI_SetHandleInformation WinAPI_SetInformationJobObject WinAPI_SetKeyboardLayout WinAPI_SetKeyboardState WinAPI_SetLastError WinAPI_SetLayeredWindowAttributes WinAPI_SetLocaleInfo WinAPI_SetMapMode WinAPI_SetMessageExtraInfo WinAPI_SetParent WinAPI_SetPixel WinAPI_SetPolyFillMode WinAPI_SetPriorityClass WinAPI_SetProcessAffinityMask WinAPI_SetProcessShutdownParameters WinAPI_SetProcessWindowStation WinAPI_SetRectRgn WinAPI_SetROP2 WinAPI_SetSearchPathMode WinAPI_SetStretchBltMode WinAPI_SetSysColors WinAPI_SetSystemCursor WinAPI_SetTextAlign WinAPI_SetTextCharacterExtra WinAPI_SetTextColor WinAPI_SetTextJustification WinAPI_SetThemeAppProperties WinAPI_SetThreadDesktop WinAPI_SetThreadErrorMode WinAPI_SetThreadExecutionState WinAPI_SetThreadLocale WinAPI_SetThreadUILanguage WinAPI_SetTimer WinAPI_SetUDFColorMode WinAPI_SetUserGeoID WinAPI_SetUserObjectInformation WinAPI_SetVolumeMountPoint WinAPI_SetWindowDisplayAffinity WinAPI_SetWindowExt WinAPI_SetWindowLong WinAPI_SetWindowOrg WinAPI_SetWindowPlacement WinAPI_SetWindowPos WinAPI_SetWindowRgn WinAPI_SetWindowsHookEx WinAPI_SetWindowSubclass WinAPI_SetWindowText WinAPI_SetWindowTheme WinAPI_SetWinEventHook WinAPI_SetWorldTransform WinAPI_SfcIsFileProtected WinAPI_SfcIsKeyProtected WinAPI_ShellAboutDlg WinAPI_ShellAddToRecentDocs WinAPI_ShellChangeNotify WinAPI_ShellChangeNotifyDeregister WinAPI_ShellChangeNotifyRegister WinAPI_ShellCreateDirectory WinAPI_ShellEmptyRecycleBin WinAPI_ShellExecute WinAPI_ShellExecuteEx WinAPI_ShellExtractAssociatedIcon WinAPI_ShellExtractIcon WinAPI_ShellFileOperation WinAPI_ShellFlushSFCache WinAPI_ShellGetFileInfo WinAPI_ShellGetIconOverlayIndex WinAPI_ShellGetImageList WinAPI_ShellGetKnownFolderIDList WinAPI_ShellGetKnownFolderPath WinAPI_ShellGetLocalizedName WinAPI_ShellGetPathFromIDList WinAPI_ShellGetSetFolderCustomSettings WinAPI_ShellGetSettings WinAPI_ShellGetSpecialFolderLocation WinAPI_ShellGetSpecialFolderPath WinAPI_ShellGetStockIconInfo WinAPI_ShellILCreateFromPath WinAPI_ShellNotifyIcon WinAPI_ShellNotifyIconGetRect WinAPI_ShellObjectProperties WinAPI_ShellOpenFolderAndSelectItems WinAPI_ShellOpenWithDlg WinAPI_ShellQueryRecycleBin WinAPI_ShellQueryUserNotificationState WinAPI_ShellRemoveLocalizedName WinAPI_ShellRestricted WinAPI_ShellSetKnownFolderPath WinAPI_ShellSetLocalizedName WinAPI_ShellSetSettings WinAPI_ShellStartNetConnectionDlg WinAPI_ShellUpdateImage WinAPI_ShellUserAuthenticationDlg WinAPI_ShellUserAuthenticationDlgEx WinAPI_ShortToWord WinAPI_ShowCaret WinAPI_ShowCursor WinAPI_ShowError WinAPI_ShowLastError WinAPI_ShowMsg WinAPI_ShowOwnedPopups WinAPI_ShowWindow WinAPI_ShutdownBlockReasonCreate WinAPI_ShutdownBlockReasonDestroy WinAPI_ShutdownBlockReasonQuery WinAPI_SizeOfResource WinAPI_StretchBlt WinAPI_StretchDIBits WinAPI_StrFormatByteSize WinAPI_StrFormatByteSizeEx WinAPI_StrFormatKBSize WinAPI_StrFromTimeInterval WinAPI_StringFromGUID WinAPI_StringLenA WinAPI_StringLenW WinAPI_StrLen WinAPI_StrokeAndFillPath WinAPI_StrokePath WinAPI_StructToArray WinAPI_SubLangId WinAPI_SubtractRect WinAPI_SwapDWord WinAPI_SwapQWord WinAPI_SwapWord WinAPI_SwitchColor WinAPI_SwitchDesktop WinAPI_SwitchToThisWindow WinAPI_SystemParametersInfo WinAPI_TabbedTextOut WinAPI_TerminateJobObject WinAPI_TerminateProcess WinAPI_TextOut WinAPI_TileWindows WinAPI_TrackMouseEvent WinAPI_TransparentBlt WinAPI_TwipsPerPixelX WinAPI_TwipsPerPixelY WinAPI_UnhookWindowsHookEx WinAPI_UnhookWinEvent WinAPI_UnionRect WinAPI_UnionStruct WinAPI_UniqueHardwareID WinAPI_UnloadKeyboardLayout WinAPI_UnlockFile WinAPI_UnmapViewOfFile WinAPI_UnregisterApplicationRestart WinAPI_UnregisterClass WinAPI_UnregisterHotKey WinAPI_UnregisterPowerSettingNotification WinAPI_UpdateLayeredWindow WinAPI_UpdateLayeredWindowEx WinAPI_UpdateLayeredWindowIndirect WinAPI_UpdateResource WinAPI_UpdateWindow WinAPI_UrlApplyScheme WinAPI_UrlCanonicalize WinAPI_UrlCombine WinAPI_UrlCompare WinAPI_UrlCreateFromPath WinAPI_UrlFixup WinAPI_UrlGetPart WinAPI_UrlHash WinAPI_UrlIs WinAPI_UserHandleGrantAccess WinAPI_ValidateRect WinAPI_ValidateRgn WinAPI_VerQueryRoot WinAPI_VerQueryValue WinAPI_VerQueryValueEx WinAPI_WaitForInputIdle WinAPI_WaitForMultipleObjects WinAPI_WaitForSingleObject WinAPI_WideCharToMultiByte WinAPI_WidenPath WinAPI_WindowFromDC WinAPI_WindowFromPoint WinAPI_WordToShort WinAPI_Wow64EnableWow64FsRedirection WinAPI_WriteConsole WinAPI_WriteFile WinAPI_WriteProcessMemory WinAPI_ZeroMemory WinNet_AddConnection WinNet_AddConnection2 WinNet_AddConnection3 WinNet_CancelConnection WinNet_CancelConnection2 WinNet_CloseEnum WinNet_ConnectionDialog WinNet_ConnectionDialog1 WinNet_DisconnectDialog WinNet_DisconnectDialog1 WinNet_EnumResource WinNet_GetConnection WinNet_GetConnectionPerformance WinNet_GetLastError WinNet_GetNetworkInformation WinNet_GetProviderName WinNet_GetResourceInformation WinNet_GetResourceParent WinNet_GetUniversalName WinNet_GetUser WinNet_OpenEnum WinNet_RestoreConnection WinNet_UseConnection Word_Create Word_DocAdd Word_DocAttach Word_DocClose Word_DocExport Word_DocFind Word_DocFindReplace Word_DocGet Word_DocLinkAdd Word_DocLinkGet Word_DocOpen Word_DocPictureAdd Word_DocPrint Word_DocRangeSet Word_DocSave Word_DocSaveAs Word_DocTableRead Word_DocTableWrite Word_Quit",I={
v:[e.C(";","$",{r:0}),e.C("#cs","#ce"),e.C("#comments-start","#comments-end")]},n={b:"\\$[A-z0-9_]+"},l={cN:"string",v:[{b:/"/,e:/"/,c:[{b:/""/,r:0}]},{b:/'/,e:/'/,c:[{b:/''/,r:0}]}]},o={v:[e.BNM,e.CNM]},a={cN:"meta",b:"#",e:"$",k:{"meta-keyword":"include include-once NoTrayIcon OnAutoItStartRegister RequireAdmin pragma Au3Stripper_Ignore_Funcs Au3Stripper_Ignore_Variables Au3Stripper_Off Au3Stripper_On Au3Stripper_Parameters AutoIt3Wrapper_Add_Constants AutoIt3Wrapper_Au3Check_Parameters AutoIt3Wrapper_Au3Check_Stop_OnWarning AutoIt3Wrapper_Aut2Exe AutoIt3Wrapper_AutoIt3 AutoIt3Wrapper_AutoIt3Dir AutoIt3Wrapper_Change2CUI AutoIt3Wrapper_Compile_Both AutoIt3Wrapper_Compression AutoIt3Wrapper_EndIf AutoIt3Wrapper_Icon AutoIt3Wrapper_If_Compile AutoIt3Wrapper_If_Run AutoIt3Wrapper_Jump_To_First_Error AutoIt3Wrapper_OutFile AutoIt3Wrapper_OutFile_Type AutoIt3Wrapper_OutFile_X64 AutoIt3Wrapper_PlugIn_Funcs AutoIt3Wrapper_Res_Comment Autoit3Wrapper_Res_Compatibility AutoIt3Wrapper_Res_Description AutoIt3Wrapper_Res_Field AutoIt3Wrapper_Res_File_Add AutoIt3Wrapper_Res_FileVersion AutoIt3Wrapper_Res_FileVersion_AutoIncrement AutoIt3Wrapper_Res_Icon_Add AutoIt3Wrapper_Res_Language AutoIt3Wrapper_Res_LegalCopyright AutoIt3Wrapper_Res_ProductVersion AutoIt3Wrapper_Res_requestedExecutionLevel AutoIt3Wrapper_Res_SaveSource AutoIt3Wrapper_Run_After AutoIt3Wrapper_Run_Au3Check AutoIt3Wrapper_Run_Au3Stripper AutoIt3Wrapper_Run_Before AutoIt3Wrapper_Run_Debug_Mode AutoIt3Wrapper_Run_SciTE_Minimized AutoIt3Wrapper_Run_SciTE_OutputPane_Minimized AutoIt3Wrapper_Run_Tidy AutoIt3Wrapper_ShowProgress AutoIt3Wrapper_Testing AutoIt3Wrapper_Tidy_Stop_OnError AutoIt3Wrapper_UPX_Parameters AutoIt3Wrapper_UseUPX AutoIt3Wrapper_UseX64 AutoIt3Wrapper_Version AutoIt3Wrapper_Versioning AutoIt3Wrapper_Versioning_Parameters Tidy_Off Tidy_On Tidy_Parameters EndRegion Region"},c:[{b:/\\\n/,r:0},{bK:"include",k:{"meta-keyword":"include"},e:"$",c:[l,{cN:"meta-string",v:[{b:"<",e:">"},{b:/"/,e:/"/,c:[{b:/""/,r:0}]},{b:/'/,e:/'/,c:[{b:/''/,r:0}]}]}]},l,I]},_={cN:"symbol",b:"@[A-z0-9_]+"},G={cN:"function",bK:"Func",e:"$",i:"\\$|\\[|%",c:[e.UTM,{cN:"params",b:"\\(",e:"\\)",c:[n,l,o]}]};return{cI:!0,i:/\/*/,k:{keyword:t,built_in:i,literal:r},c:[I,n,l,o,a,_,G]}});hljs.registerLanguage("r",function(e){var r="([a-zA-Z]|\\.[a-zA-Z.])[a-zA-Z0-9._]*";return{c:[e.HCM,{b:r,l:r,k:{keyword:"function if in break next repeat else for return switch while try tryCatch stop warning require library attach detach source setMethod setGeneric setGroupGeneric setClass ...",literal:"NULL NA TRUE FALSE T F Inf NaN NA_integer_|10 NA_real_|10 NA_character_|10 NA_complex_|10"},r:0},{cN:"number",b:"0[xX][0-9a-fA-F]+[Li]?\\b",r:0},{cN:"number",b:"\\d+(?:[eE][+\\-]?\\d*)?L\\b",r:0},{cN:"number",b:"\\d+\\.(?!\\d)(?:i\\b)?",r:0},{cN:"number",b:"\\d+(?:\\.\\d*)?(?:[eE][+\\-]?\\d*)?i?\\b",r:0},{cN:"number",b:"\\.\\d+(?:[eE][+\\-]?\\d*)?i?\\b",r:0},{b:"`",e:"`",r:0},{cN:"string",c:[e.BE],v:[{b:'"',e:'"'},{b:"'",e:"'"}]}]}});

OEBPS/images/jbosscmp-jdbc_audit.png
created-by

OF cresec.ume 3
© GRS

updated-time

#146192

OEBPS/Common_Content/images/29.png

OEBPS/images/Chap11-16-alt.png
[

Four Finger

Killer

OEBPS/images/jbosscmp-jdbc_entity.png
i

post-table-create

row-locking

clean-read-ahead-on-load

load-groups
eager-load-group
lazy-load-group

0P00000000000000000

g

8

4

2

3

2 :
i3

=

#146194

OEBPS/Common_Content/images/21.png

OEBPS/images/master_node_fail.png
Failed Node

Cluster

m Partition i

Stand by Node.

u
Stand by Node

OEBPS/images/snmp-manager-list.png
- addmss%
srin

03 pnl’la
intedger

+ manager-listg]

—@

+ managerg]|

+ local-address
string

z

+ local-pory
inteaer

+ version,

R

OEBPS/images/jbosscmp-jdbc_query.png
description

query-method

jboss-gl

declared-ql
Srategy
)

@

left-join

read-ahead

lazy-resultset-loading
#146136

OEBPS/images/jbosscmp-jdbc_optimistic-locking.png
group-name

modified-strategy

version-column

key-generator-factory

optimistic-locking

field-type
QL __fieldname ___J
QL column-name __J

jdbe-type

sql-type
#146183

OEBPS/Common_Content/fonts/portal/nimbus/iconfont.ttf

OEBPS/Common_Content/images/31.png

OEBPS/Common_Content/images/stock-go-forward.png

OEBPS/images/jbosscmp-jdbc_declared-sql.png
additional-columns

declared-sql

#146185

OEBPS/images/clustering-Partition.png
Partition A

JBoss JBoss JBoss
Node1 Node2 Node3

Partition B Partition C

JBoss JBoss JBoss
[NodeS Node6

OEBPS/Common_Content/images/25.png

OEBPS/images/jboss_ds_no_tx.jpg
e

* connecton-arly

[+ connecton-properyg
[e
P

st manapd-secu |

(o[chockaht-cnnecion-sa
o[e comectoncheckerciss-ame

(o[Tk

(2[F prepared-savemen-caehe-see

+ share-prepared satements

1 seenin]

[+ woe-manpinag

