
JBoss BPM Suite 6

Business Process Management
with Red Hat JBoss BPM Suite 6

Babak Mozaffari

Member of Technical Staff

Systems Engineering

Version 1.0

March 2014

100 East Davie Street
Raleigh, NC 27601 USA
Phone: +1 919 754 3700
Phone: 888 733 4281
Fax: +1 919 754 3701
PO Box 13588
Research Triangle Park NC 27709 USA

JBoss is a registered trademarks of Red Hat, Inc. in the United States and other countries.

Linux is a registered trademark of Linus Torvalds. JBoss, Red Hat, Red Hat Enterprise Linux and the
Red Hat "Shadowman" logo are registered trademarks of Red Hat, Inc. in the United States and other
countries.

Java® is a registered trademark of Oracle and/or its affiliates.

All other trademarks referenced herein are the property of their respective owners.

© 2014 by Red Hat, Inc. This material may be distributed only subject to the terms and conditions set
forth in the Open Publication License, V1.0 or later (the latest version is presently available at
http://www.opencontent.org/openpub/).

The information contained herein is subject to change without notice. Red Hat, Inc. shall not be liable
for technical or editorial errors or omissions contained herein.

Distribution of modified versions of this document is prohibited without the explicit permission of Red
Hat Inc.

Distribution of this work or derivative of this work in any standard (paper) book form for commercial
purposes is prohibited unless prior permission is obtained from Red Hat Inc.

The GPG fingerprint of the security@redhat.com key is:
CA 20 86 86 2B D6 9D FC 65 F6 EC C4 21 91 80 CD DB 42 A6 0E

www.redhat.com ii refarch-feedback@redhat.com

http://www.opencontent.org/openpub/
mailto:security@redhat.com

Comments and Feedback
In the spirit of open source, we invite anyone to provide feedback and comments on any reference
architectures. Although we review our papers internally, sometimes issues or typographical errors are
encountered. Feedback allows us to not only improve the quality of the papers we produce, but allows
the reader to provide their thoughts on potential improvements and topic expansion to the papers.

Feedback on the papers can be provided by emailing refarch-feedback@redhat.com. Please refer to
the title within the email.

Staying In Touch
Join us on some of the popular social media sites where we keep our audience informed on new
reference architectures as well as offer related information on things we find interesting.

Like us on Facebook:

https://www.facebook.com/rhrefarch

Follow us on Twitter:

https://twitter.com/RedHatRefArch

Plus us on Google+:

https://plus.google.com/114152126783830728030/

refarch-feedback@redhat.com III www.redhat.com

https://plus.google.com/u/0/b/114152126783830728030/
https://twitter.com/RedHatRefArch
https://www.facebook.com/rhrefarch
mailto:refarch-feedback@redhat.com?subject=EAP%206%20Clustering%20Reference%20Architecture

Table of Contents
1 Executive Summary... 1

2 Red Hat JBoss BPM Suite 6.. 2

2.1 Overview.. 2

2.2 Installation Options.. 3

2.3 Administration and Configuration.. 5

2.4 Design and Development.. 7

2.5 Process Simulation.. 8

2.6 Business Activity Monitoring.. 9

2.7 REST API... 10

3 Reference Architecture Environment.. 11

3.1 Overview.. 11

3.2 BPMS 6.0.1.. 11

3.3 JBoss EAP 6 Cluster... 12

3.4 ZooKeeper Cluster.. 13

3.5 PostgreSQL database... 13

3.6 BPM Example Application... 13

3.7 Runtime Cluster... 14

4 Creating the Environment... 15

4.1 Prerequisites.. 15

4.2 Downloads... 15

4.3 Installation... 16

4.4 Configuration... 17

4.5 Review... 20

5 Design and Development... 31

5.1 BPM Suite Example Application.. 31

5.2 Project Setup... 32

5.3 Data Model.. 39

5.4 Business Process.. 45

5.5 Forms... 75

5.6 Business Rules.. 86

5.7 Credit Report Web Service.. 106

www.redhat.com iv refarch-feedback@redhat.com

6 Life Cycle.. 107

6.1 Asset Repository Interaction.. 107

6.2 JBoss Developer Studio.. 107

6.3 Process Simulation.. 109

6.4 Business Activity Monitoring.. 111

6.5 Governance... 112

6.6 Process Execution... 112

6.7 Maven Integration.. 117

6.8 Session Strategy.. 118

6.9 Timer Implementation.. 118

6.10 REST Deployment... 120

6.11 Continuous Integration.. 120

7 Conclusion.. 121

refarch-feedback@redhat.com v www.redhat.com

1 Executive Summary
With the increased prevalence of automation, service integration and electronic data
collection, it is prudent for any business to take a step back and review the design and
efficiency of its business processes.

A business process is a defined set of business activities that represents the steps required to
achieve a business objective. It includes the flow and use of information and resources.
BUSINESS PROCESS MANAGEMENT (BPM) is a systematic approach to defining, executing, managing
and refining business processes. Processes typically involve both machine and human
interactions, integrate with various internal and external systems, and include both static and
dynamic flows that are subject to both business rules and technical constraints.

This reference architecture reviews Red Hat JBoss BPM Suite (BPMS) 6 and walks
through the design, implementation and deployment of a sample BPM application. Various
features are showcased and a thorough description is provided at each step, while citing the
rationale and explaining the alternatives at each decision juncture, when applicable. Within
time and scope constraints, potential challenges are discussed, along with common solutions
to each problem. A BPMS repository is provided that can be cloned directly to reproduce the
application assets. Other artifacts, including supporting code, are also included in the
attachment.

refarch-feedback@redhat.com 1 www.redhat.com

2 Red Hat JBoss BPM Suite 6

2.1 Overview
Red Hat JBoss BPM Suite (BPMS) 6 is an open source BPM suite that combines
business process management and business rules management, enabling business and IT
users to create, manage, validate, and deploy business processes and rules. BPMS 6
provides advanced business process management capabilities compliant with the widely
adopted BPMN 2.0 standard. The primary goal of BPMN is to provide a notation that is
readily understandable by all business users, from the business analysts that create the initial
drafts of the processes, to the technical developers responsible for implementing the
technology that will perform those processes, and finally, to the business people who will
manage and monitor those processes. Thus, BPMN creates a standardized bridge for the gap
between the business process design and process implementation.1

BPMS 6 comes with a choice of modeling tools; it includes a business-user-friendly, web-
based authoring environment as well as an Eclipse plugin for developers, to enable all
project stakeholders to collaborate effectively and build sophisticated process and decision-
automation solutions. The inclusion of Red Hat JBoss Business Rules Management
System (BRMS) adds seamless integration with business rules and complex event
processing functions to ease the development and facilitate the maintenance of processes in
the face of rapidly changing requirements. BUSINESS ACTIVITY MONITORING (BAM) and process
DASHBOARDS provide invaluable information to help manage processes while PROCESS SIMULATION
helps refine business processes by enabling their analysis and assessment of the dynamic
behavior of processes over time.

With its 6.0 release, Red Hat JBoss BPM Suite also includes Business Resource
Planner as tech preview. Business Resource Planner is a lightweight, embeddable
planning engine that optimizes planning problems.

Red Hat JBoss BRMS and JBoss BPM Suite use a centralized repository where all
resources are stored. This ensures consistency, transparency, and the ability to audit across
the business. Business users can modify business logic and business processes without
requiring assistance from IT personnel.2

1 http://www.omg.org/spec/BPMN/2.0/PDF
2 https://access.redhat.com/site/documentation/en-

US/Red_Hat_JBoss_BPM_Suite/6.0/html/User_Guide/chap-Introduction.html

www.redhat.com 2 refarch-feedback@redhat.com

https://access.redhat.com/site/documentation/en-US/Red_Hat_JBoss_BPM_Suite/6.0/html/User_Guide/chap-Introduction.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_JBoss_BPM_Suite/6.0/html/User_Guide/chap-Introduction.html
http://www.omg.org/spec/BPMN/2.0/PDF

2.2 Installation Options

2.2.1 Server Platform
Red Hat JBoss BPM Suite comes in two versions3:

• jboss-bpms-6.MINOR_VERSION-redhat-x-deployable-eap6.x.zip: version adapted for
deployment on Red Hat JBoss Enterprise Application Platform (EAP
6).

• jboss-bpms-6.MINOR_VERSION-redhat-x-deployable-generic.zip: the deployable
version with additional libraries adapted for deployment on Red Hat JBoss
Enterprise Web Server (EWS) and other supported containers.

The minimum supported configuration of Red Hat JBoss EAP for Red Hat JBoss BPM
Suite installation is EAP 6.1.1.

BPMS 6.0.1 is provided as a module layer installed on top of EAP 6.1.1 with two web
applications that can be deployed on the server instances. Other required configuration,
however minimal, is best performed by substituting the EAP server configuration file
(domain.xml or standalone.xml) and other files and scripts (under bin/) with the provided files
in the BPM Suite download. A layers configuration file is also provided to apply the new
layer.

A separate download is provided for other supported containers. Third-party application
servers do not make use of JBoss Modules and as such, the deployment model for these
containers bundles all required libraries within the two web applications. Security policy files
are also provided and need to be incorporated based on the container instructions.

For installation and configuration of JBoss EAP 6, refer to the previously published JBoss
EAP 6 Clustering Reference Architecture.

2.2.2 Clustering
For Red Hat JBoss BPM Suite, clustering may refer to various components and aspects
of the environment. The following may be clustered:

• Artifact repository: virtual-file-system (VFS) repository that holds the business assets
so that all cluster nodes use the same repository

• Execution server and web applications: the runtime server that resides in the container
(in this case, Red Hat JBoss EAP) along with BRMS and BPM Suite web
applications so that nodes share the same runtime data. For instructions on clustering
the application, refer to the previously mentioned JBoss EAP 6 Clustering Reference
Architecture.

• Back-end database: database with the state data, such as process instances, KIE
sessions, history log, etc., for fail-over purposes

3 https://access.redhat.com/site/documentation/en-US/Red_Hat_JBoss_BPM_Suite/6.0/html-
single/Installation_Guide/index.html#chap-Installation_options

refarch-feedback@redhat.com 3 www.redhat.com

https://access.redhat.com/site/documentation/en-US/Red_Hat_JBoss_BPM_Suite/6.0/html-single/Installation_Guide/index.html#chap-Installation_options
https://access.redhat.com/site/documentation/en-US/Red_Hat_JBoss_BPM_Suite/6.0/html-single/Installation_Guide/index.html#chap-Installation_options

For further instructions on clustering the BPMS environment, refer to the official Red Hat
documentation.4

2.2.3 Red Hat JBoss Developer Studio
Red Hat JBoss Developer Studio (JBDS) is the JBoss integrated development
environment (IDE) based on Eclipse and available from the Red Hat customer support
portal.5 Red Hat JBoss Developer Studio provides plugins with tools and interfaces for
Red Hat JBoss BRMS and Red Hat JBoss BPM Suite. These plugins are based on the
community version of these products, so the BRMS plugin is called the Drools plugin and the
BPM Suite plugin is called the jBPM plugin.

Refer to the Red Hat JBoss Developer Studio documentation for installation and setup
instructions.6 For instructions on installing the plugins, setting the runtime library, configuring
the BPMS Server and importing projects from a Git repository, refer to the official
documentation.7

4 https://access.redhat.com/site/documentation/en-
US/Red_Hat_JBoss_BPM_Suite/6.0/html/Installation_Guide/chap-Clustering.html

5 https://access.redhat.com
6 https://access.redhat.com/site/documentation/en-US/Red_Hat_JBoss_Developer_Studio/
7 https://access.redhat.com/site/documentation/en-

US/Red_Hat_JBoss_BPM_Suite/6.0/html/Installation_Guide/chap-Red_Hat_JBoss_Developer_Studio.html

www.redhat.com 4 refarch-feedback@redhat.com

https://access.redhat.com/site/documentation/en-US/Red_Hat_JBoss_BPM_Suite/6.0/html/Installation_Guide/chap-Red_Hat_JBoss_Developer_Studio.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_JBoss_BPM_Suite/6.0/html/Installation_Guide/chap-Red_Hat_JBoss_Developer_Studio.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_JBoss_Developer_Studio/
https://access.redhat.com/
https://access.redhat.com/site/documentation/en-US/Red_Hat_JBoss_BPM_Suite/6.0/html/Installation_Guide/chap-Clustering.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_JBoss_BPM_Suite/6.0/html/Installation_Guide/chap-Clustering.html

2.3 Administration and Configuration

2.3.1 Business Central
Business Central is a web-based application for asset creation, management, and
monitoring of business assets, providing an integrated environment with the respective tools,
such as rule and process authoring tools, business asset management tools for work with
artifact repository, runtime data management tools, resource editors, BAM (business activity
monitoring) tools, task management tools, and BRMS tools. It is the main user interface for
interacting with Red Hat JBoss BPM Suite.

Like most other web applications, Business Central configures standard declarative
security in business-central.war/WEB-INF/web.xml. A number of security roles are defined to
grant various levels of access to users:

• admin: administrates BPMS system and has full access rights to make any changes
necessary including the ability to add and remove users from the system.

• developer: implements code required for processes to work and has access to
everything except administration tasks.

• analyst: creates and designs processes and forms and instantiates the processes. This
role is the similar to a developer, without access to asset repository and deployments.

• user: claims, performs, and invokes other actions (such as, escalation, rejection, etc.)
on assigned tasks, but has no access to authoring functions.

• manager: monitors the system and its statistics; only has access to the dashboard.

Use the standard EAP add-user.sh script to create application users in the ApplicationRealm
and give them one or more of the above security roles. For further details, refer to the official
Red Hat documentation.8

2.3.2 Asset Repository
Business rules, process definition files and other assets and resources created in Business
Central are stored in the asset repository called the Knowledge Store. The Knowledge
Store is a centralized repository for business knowledge and uses a Git repository to store
its data. Business Central provides a web front-end that allows users to view and update
the stored content.

To create a new repository or clone an existing one in Business Central, visit the
administration section under the authoring menu and select an option from the Repositories
menu. Refer to the official Red Hat documentation for further details.9

8 https://access.redhat.com/site/documentation/en-
US/Red_Hat_JBoss_BPM_Suite/6.0/html/Administration_And_Configuration_Guide/chap-
Business_Central_configuration.html

9 https://access.redhat.com/site/documentation/en-
US/Red_Hat_JBoss_BPM_Suite/6.0/html/Administration_And_Configuration_Guide/chap-
Asset_repository.html

refarch-feedback@redhat.com 5 www.redhat.com

https://access.redhat.com/site/documentation/en-US/Red_Hat_JBoss_BPM_Suite/6.0/html/Administration_And_Configuration_Guide/chap-Asset_repository.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_JBoss_BPM_Suite/6.0/html/Administration_And_Configuration_Guide/chap-Asset_repository.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_JBoss_BPM_Suite/6.0/html/Administration_And_Configuration_Guide/chap-Asset_repository.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_JBoss_BPM_Suite/6.0/html/Administration_And_Configuration_Guide/chap-Business_Central_configuration.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_JBoss_BPM_Suite/6.0/html/Administration_And_Configuration_Guide/chap-Business_Central_configuration.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_JBoss_BPM_Suite/6.0/html/Administration_And_Configuration_Guide/chap-Business_Central_configuration.html

2.3.3 Data Persistence
The BPMS platform stores the runtime data of the processes in data stores. This includes
various items:

• Session state: session ID, date of last modification, the session data that business
rules would need for evaluation, state of timer jobs.

• Process instance state: process instance ID, process ID, date of last modification, date
of last read access, process instance start date, runtime data (execution status: the
node being executed, variable values), event types.

• Work item runtime state: work item ID, creation date, name, process instance ID, state

Based on the persisted data, it is possible to restore the state of execution of all running
process instances in case of failure, or to temporarily remove running instances from memory
and restore them later.

With BPM Suite deployed on EAP, persistence is through Java Persistence API
(JPA). To set the data source, database type and other properties, configure the standard
JPA persistence file at business-central.war/WEB-INF/classes/META-INF/persistence.xml.
Refer to the official Red Hat documentation for further details.10

2.3.4 Audit Logging
The audit logging mechanism allows the system to store information about the execution of a
process instance. A special event listener listens on the process engine, capture any relevant
events, and logs them to the designated destination. Depending on the execution model used
in a project, the log can potentially be stored separately from the runtime data and in a
separately configured data source. This configuration is outside the scope of this reference
architecture and is not discussed in any detail. For further information about the audit logger,
refer to the official Red Hat documentation.11

2.3.5 Task Execution Configuration
The execution environment may be configured to run a number of business rules when a new
task is created or an existing task is completed. To take advantage of this behavior, place two
files called default-add-task.drl and default-complete-task.drl in the root classpath of the
server environment. Any business rules within these two files will be evaluated and potentially
executed when a task is respectively created and completed.

The task execution engine accesses a mail session as required for escalation, notification or
other similar functions. To enable the email functionality, configured a mail session with its
“jndi-name” set to "java:/mail/bpmsMailSession". Configure a corresponding socket binding
for the outgoing port.

Refer to the official Red Hat documentation for further details.12

10 https://access.redhat.com/site/documentation/en-US/Red_Hat_JBoss_BPM_Suite/6.0/html-
single/Administration_And_Configuration_Guide/index.html#chap-Persistence

11 https://access.redhat.com/site/documentation/en-
US/Red_Hat_JBoss_BPM_Suite/6.0/html/Administration_And_Configuration_Guide/chap-Logging.html

12 https://access.redhat.com/site/documentation/en-
US/Red_Hat_JBoss_BPM_Suite/6.0/html/Administration_And_Configuration_Guide/chap-

www.redhat.com 6 refarch-feedback@redhat.com

https://access.redhat.com/site/documentation/en-US/Red_Hat_JBoss_BPM_Suite/6.0/html/Administration_And_Configuration_Guide/chap-Execution_server.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_JBoss_BPM_Suite/6.0/html/Administration_And_Configuration_Guide/chap-Execution_server.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_JBoss_BPM_Suite/6.0/html/Administration_And_Configuration_Guide/chap-Execution_server.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_JBoss_BPM_Suite/6.0/html/Administration_And_Configuration_Guide/chap-Logging.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_JBoss_BPM_Suite/6.0/html/Administration_And_Configuration_Guide/chap-Logging.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_JBoss_BPM_Suite/6.0/html-single/Administration_And_Configuration_Guide/index.html#chap-Persistence
https://access.redhat.com/site/documentation/en-US/Red_Hat_JBoss_BPM_Suite/6.0/html-single/Administration_And_Configuration_Guide/index.html#chap-Persistence

2.4 Design and Development

2.4.1 Data Model
Both rules and business processes require a data model to represent the data. Plain Old Java
Objects (POJO) are used in BPMS to represent custom data types.13

Business Central provides the Data modeler, a custom graphical editor, for defining data
objects. The created data types are JavaBeans with annotations added to adapt to the
graphical editor.

2.4.2 Process Designer
The Process Designer is the BPMS process modeler. The output of the modeler is a BPMN
2.0 process definition file, which is normally saved in the Knowledge Repository under a
package of a project. The definition then serves as input for JBoss BPM Suite Process
Engine, which creates a process instance based on the definition.

The editor is delivered in two variants:

• JDBS Process Designer: Thick-client version of the Process Designer integrated in
the Red Hat JBDS plugin

• Web Process Designer: Thin-client version of the Process Designer integrated in
BPM Central

The Process Designer implementation is different for the JDBS Process Designer and the
Web Process Designer, but both adhere to the notation specified in BPMN 2.0 and generate
similar compliant process files. For further details, consult the official Red Hat
documentation.14

2.4.3 Forms
A form is a layout definition for a page (defined as HTML) that is displayed as a dialog window
to the user, either on process instantiation or task completion; the form is then respectively
referred to, as a process form or a task form. It serves for acquiring data for a process or a
task, from a human user: a process can accept its process variables as input and a task takes
DataInputSet variables with assignment defined and returns DataOutputSet variables that are
typically mapped back to process variables.15

JBoss BPM Suite provides a web-based custom editor for defining forms.

Execution_server.html
13 https://access.redhat.com/site/documentation/en-US/Red_Hat_JBoss_BPM_Suite/6.0/html/User_Guide/sect-

Data_models.html
14 https://access.redhat.com/site/documentation/en-

US/Red_Hat_JBoss_BPM_Suite/6.0/html/User_Guide/chap-Process_Designer.html
15 https://access.redhat.com/site/documentation/en-US/Red_Hat_JBoss_BPM_Suite/6.0/html/User_Guide/sect-

Forms.html

refarch-feedback@redhat.com 7 www.redhat.com

https://access.redhat.com/site/documentation/en-US/Red_Hat_JBoss_BPM_Suite/6.0/html/User_Guide/sect-Forms.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_JBoss_BPM_Suite/6.0/html/User_Guide/sect-Forms.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_JBoss_BPM_Suite/6.0/html/User_Guide/chap-Process_Designer.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_JBoss_BPM_Suite/6.0/html/User_Guide/chap-Process_Designer.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_JBoss_BPM_Suite/6.0/html/User_Guide/sect-Data_models.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_JBoss_BPM_Suite/6.0/html/User_Guide/sect-Data_models.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_JBoss_BPM_Suite/6.0/html/Administration_And_Configuration_Guide/chap-Execution_server.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_JBoss_BPM_Suite/6.0/html/Administration_And_Configuration_Guide/chap-Execution_server.html

2.5 Process Simulation
Process simulation allows users to simulate a business process based on the simulation
parameters and get a statistical analysis of the process models over time, in form of graphs.
This helps to optimize pre and post execution of a process, minimizing the risk of change in
business processes, performance forecast, and promote improvements in performance,
quality and resource utilization of a process.

The simulation process runs in the simulation engine extension, which relies on the possible
execution paths rather than process data. On simulation, the engine generates events for
every simulated activity, which are stored in the simulation repository.

The Path Finder helps identify the various possible paths that a process execution can
take. In the web process designer, this tool is available from the toolbar.

Running a simulation requires that simulation properties be correctly set up for each individual
element in the process model. This includes setting a probability for each sequence flow
leaving a diverging gateway. For an XOR gateway, the sum of all the probability values should
be 100%.

Run validation on the process and correct any issues before attempting process simulation.
Viewing all issues in the web process designer helps find various simulation-related issues as
well.

To run process simulation, specify the number of process instances that are to be started. The
interval between process instances can be specified in units as small as millisecond and as
large as days. This, coupled with realistic properties set up on each process element, such as
the availability of user task actors and minimum and maximum processing time for various
automatic and manual tasks can help provide a useful analysis of future process
performance.

Once process simulation successfully executes, the results are presented in various charts
and tables. Use the legend provided in the graphs to filter out items such as minimum or
maximum values.

 For further details, refer to the official Red Hat documentation.16

16 https://access.redhat.com/site/documentation/en-
US/Red_Hat_JBoss_BPM_Suite/6.0/html/User_Guide/chap-Process_simulation.html

www.redhat.com 8 refarch-feedback@redhat.com

https://access.redhat.com/site/documentation/en-US/Red_Hat_JBoss_BPM_Suite/6.0/html/User_Guide/chap-Process_simulation.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_JBoss_BPM_Suite/6.0/html/User_Guide/chap-Process_simulation.html

2.6 Business Activity Monitoring
Red Hat JBoss Dashboard Builder is a web-based dashboard application that
provides Business Activity Monitoring (BAM) support in the form of visualization tools for
monitored metrics (Key Performance Indicators or KPIs) in real time. It comes integrated in
the Business Central environment under the Dashboards menu.

The included dashboard requests information from the BPMS execution engine and provides
real-time information on its runtime data; however, custom dashboards may also be built over
other data resources.

The Dashboard Builder is accessed directly from the Dashboards menu of the Business
Central application:

• Process & Task Dashboards: displays a pre-defined dashboard based on runtime data
from the execution server. An entity may be selected in the menu on the left and the
widgets on the right will display the data for that entity.

• Business Dashboards: display the environment where custom dashboards are created.

The Dashboard Builder can establish connections to external data sources including
databases. These connections are then used for creating data providers that obtain data from
the data sources. The Dashboard Builder is connected to the local BPMS engine by default
and queries it for the required data for its jBPM Dashboard indicators (widgets with
visualizations of the data available on the pages of the jBPM Dashboard workspace).

If operating over a database, the data provider uses a SQL query to obtain the data and if
operating over a CVS file, the data provider automatically obtains all the data from the file. So
it is the data providers that keep the data you work with.17

17 https://access.redhat.com/site/documentation/en-US/Red_Hat_JBoss_BPM_Suite/6.0/html/User_Guide/part-
BAM.html

refarch-feedback@redhat.com 9 www.redhat.com

https://access.redhat.com/site/documentation/en-US/Red_Hat_JBoss_BPM_Suite/6.0/html/User_Guide/part-BAM.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_JBoss_BPM_Suite/6.0/html/User_Guide/part-BAM.html

2.7 REST API
Representational State Transfer (REST) is a style of software architecture of distributed
systems (applications). It allows for a highly abstract client-server communication; clients
initiate requests to servers to a particular URL with potentially required parameters and
servers process the requests and return appropriate responses based on the requested URL.
The requests and responses are built around the transfer of representations of resources. A
resource can be any coherent and meaningful concept that may be addressed (such as a
repository, a process, a rule, etc.).

Refer to the official Red Hat documentation for further details on the REST API and its
usage.18

2.7.1 Knowledge Store REST API
REST API calls to the Knowledge Store enable management of the content and manipulation
of the static data in the repositories.

The calls are asynchronous and continue their execution after a response is returned to the
caller. A job ID is returned by every call to allow the subsequent of request the job status and
verify whether the job completed successfully.

These calls provide required parameters as JSON entities.

2.7.2 Deployment REST API
JBoss BPM Suite modules can be deployed or undeployed using either the UI or REST
API calls. Similar to calls to the Knowledge Store, deployment calls are also asynchronous
and quickly return with a job ID that can later be used to query the status of the job.

2.7.3 Runtime REST API
Runtime REST API are calls to the execution servers for process execution, task execution
and business rule engine. These calls are synchronous and return the requested data as
Java Architecture for XML Binding (JAXB) objects.

18 https://access.redhat.com/site/documentation/en-
US/Red_Hat_JBoss_BPM_Suite/6.0/html/Development_Guide/chap-REST_API.html

www.redhat.com 10 refarch-feedback@redhat.com

https://access.redhat.com/site/documentation/en-US/Red_Hat_JBoss_BPM_Suite/6.0/html/Development_Guide/chap-REST_API.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_JBoss_BPM_Suite/6.0/html/Development_Guide/chap-REST_API.html

3 Reference Architecture Environment

3.1 Overview
This reference architecture builds upon the JBoss EAP 6 Clustering Reference Architecture to
create a cluster of BPMS 6.0.1 servers. This environment is a full cluster of all BPMS
capabilities, including both design-time and runtime artifacts. An alternative setup is described
in the last section under the title of Runtime Cluster where a lighter-weight and more efficient
cluster setup is designed for production use; this setup trades off design-time replication for
higher efficiency.

The JBoss EAP 6 Clustering Reference Architecture sets up an active/passive pair of clusters
with two separate Apache web servers front-ending them. While the same setup can be
followed for the purpose of this reference architecture, the focus will remain on the active
cluster. The steps would be identical for the passive cluster.

The BPMS binaries are installed on top of each EAP installation before running the
configuration scripts that create the EAP cluster domain. BPMS is configured to use Apache
ZooKeeper and Apache Helix to cluster its artifact repository and manage the cluster. The
uberfire framework provides the backbone of the web applications, while also providing the
Virtual File System (VFS) implementation of the application environment.

The HTTP Server always redirects to a logical EAP 6 Application Server for all functionality,
which in turn uses the PostgreSQL database instance for its persistence.

3.2 BPMS 6.0.1
BPMS 6 includes the Business Central and Dashbuilder web applications, which are
hosted on the EAP 6 servers. Supporting libraries are added to the EAP 6 servers as a
module layer. Security policy files and a few configurations are also applied to the EAP
domains.

BPMS uses Git repositories for both its asset repositories and workbench configurations. In
this reference environment, Apache ZooKeeper is leveraged as a clustered and replicated
VFS for the Git repositories.

Application artifacts are stored as Maven projects. Each repository may contain one or more
projects, each of which is described by a project object model (.pom) file and may contain
various asset types.

BPMS 6 uses the central PostgreSQL database instance to store runtime process
information, Quartz timer data and audit log information that is used for business activity
monitoring. For clients with a large number of process executions, it may be advisable to use
a separate database for the BAM data. Persistence for Business Central is configured in the
persistence.xml file but the changes required to separate the datasources is outside the
scope of this guide and depends on the execution model.

refarch-feedback@redhat.com 11 www.redhat.com

3.3 JBoss EAP 6 Cluster
BPMS 6 includes a number of modules and web applications that are configured and
deployed on top of JBoss EAP 6. Accordingly, the foundation of the BPMS environment is the
setup of an EAP 6 cluster.

3.3.1 JBoss EAP 6 Clustering Reference Architecture
The previously published JBoss EAP 6 Clustering reference architecture thoroughly describes
the installation and configuration of EAP 6, while providing scripts and assets to facilitate the
automation of such a setup. The clustering of a number of components is described and
implemented. While certain configurations and components may not be directly used by
BPMS or this reference environment, they can still be used to host other applications that do
or do not interact with BPMS.

Clients with access to the Red Hat Customer Portal may download the reference architecture
and attachments from https://access.redhat.com/site/articles/524633

A public version of this document, without the file attachment, is available from
http://www.redhat.com/resourcelibrary/reference-architectures/jboss-eap-6-clustering

The EAP 6 Clustering guide provides a great foundation for this reference architecture
environment. Two clusters are set up as part of this guide to provide an active/passive
configuration and eliminate any downtime due to maintenance and upgrades. The focus of
additional setup and configuration will be the active cluster, but the same instructions may be
followed for the passive cluster.

The active EAP 6 cluster includes three instances of JBoss EAP 6.1.1 servers installed on
separate virtual (or physical) machines.

3.3.2 JBoss EAP Apache HTTP Server
As part of the EAP 6 Cluster, two instances of JBoss EAP 6 Apache HTTP Server
(based on Apache's httpd) are installed on a separate machine to front-end the active and
passive EAP clusters, providing sticky-session load balancing and failover. The HTTP servers
use mod_cluster and the AJP protocol, to forward HTTP requests to an appropriate EAP
node.

 In this setup, the front-ending Apache web server is used to access these two applications
and reroutes the requests to an EAP node as appropriate. This may include both browser
requests that require sticky-session load balancing as well as REST calls that are stateless
and may be routed to any cluster member.

www.redhat.com 12 refarch-feedback@redhat.com

http://www.redhat.com/resourcelibrary/reference-architectures/jboss-eap-6-clustering
https://access.redhat.com/site/articles/524633

3.4 ZooKeeper Cluster
In this reference architecture, ZooKeeper is clustered alongside EAP, so that three nodes of
ZooKeeper and Helix run alongside the three EAP 6.1.1 nodes of each cluster.

An Apache ZooKeeper cluster is known as an ensemble and requires a majority of the
servers to be functional for the service to be available. Choosing an odd number for the
cluster size is always preferable. Both a three-member and a four-member cluster can only
withstand the loss of a single member without losing a functioning majority, so as shown by
this example, groups with an odd number of members provide higher efficiency.

ZooKeeper allows BPMS to replicate its Git repositories. BPMS also uses ZooKeeper to
replicate other locally maintained data, including deployments. Only a single instance of
ZooKeeper is required to allow BPMS to replicate its data; the ZooKeeper ensemble serves to
provide redundancy and protect against the failure of ZooKeeper itself.

Helix works in conjunction with ZooKeeper as the cluster management component that
registers all the cluster details (the cluster itself, nodes, resources).

3.5 PostgreSQL database
The JBoss EAP 6 Clustering Reference Architecture installs and configured a single
PostgreSQL database instance for both the active and passive clusters. In this reference
architecture, BPMS uses the same database to persist its data. This includes active business
process data, audit log and Quartz timer data.

The one instance of PostgreSQL Database can be considered a single point of failure. The
Database itself can also be clustered, but the focus of this effort is BPMS 6 and clustering of
the Database is beyond the scope of this reference architecture.

3.6 BPM Example Application
This reference architecture provides a step-by-step guide to the design and development of
an example application. The completed application is provided in the attachments and is also
directly available for download from the Red Hat customer support portal. Refer to the section
on BPM Suite Example Application for further details.

refarch-feedback@redhat.com 13 www.redhat.com

3.7 Runtime Cluster
This reference environment provides protection against failover as well as opportunity for load
balancing at various levels for multiple tiers and components. This includes:

• Artifact Repository: The use of ZooKeeper and Helix effectively allows for the
replication of the virtual file system used by BPMS. Most notably, this includes the Git
repositories that hold the workbench data and the application projects. However the
content of these repositories only change during design and development. Another
type of artifact that is replicated through this mechanism is deployments. Without
ZooKeeper, any new deployment would need to be pushed to every single server in
the cluster.

• Execution Server and Web Applications: JBoss EAP Clustering provides failover and
load balancing for HTTP sessions, Enterprise Java Beans (EJB) and Java Message
Service (JMS). While BPMS applications may be designed to interface with any of
these components, neither the provided framework nor the example application in this
reference architecture includes any of these items. Business Central and Dashbuilder
are not configured to be distributable and even if they are modified to use session
replication, neither holds any significant state that can benefit from this feature.

• Back-end Database: This reference environment includes an instance of PostgreSQL
database that is external to the EAP servers. As previously noted, the database itself is
best clustered to protect against a single point of failure. However regardless of the
redundancy strategy employed for the database, it provides failover capability and load
balancing opportunity for the EAP nodes. Data stored in the database from one node is
available to another on a subsequent request and the external storage of data protects
against the failure of an EAP Server.

BPMS 6 provides the Business Central application as a design and development environment
as well as an analysis and testing tool and a production runtime platform. Developers and
analyst may use the web process designer to create or update business processes and the
various rule editors to implement business rules. In later stages, test scenarios can help verify
expected functionality and the QA facilities are useful for reviews. Finally, in production,
Business Central may be used either directly through its forms to start processes and work on
forms, or through its REST interface to delegate the same functions from a custom
application. The latter set of activities can broadly be categorized as runtime and
distinguished from the type of design-time work that was described earlier.

There are numerous benefits to separating design-time and runtime BPMS instances. For a
production instance where design-time activity is not supported, clustering the asset
repository and the execution server is often unnecessary. This cost can be avoided by simply
making sure deployments are made available on every server. Failover and load balancing is
still achieved through the use of a central external database and a web service front-end to
route browser and REST requests. Instead of an EAP cluster, the domain can simply include
a number of nodes that exclude HA capability. There is no valuable in-memory state and the
persisted local state only includes design-time artifacts that can be ignored and deployments
that need to be externally managed and replicated.

www.redhat.com 14 refarch-feedback@redhat.com

4 Creating the Environment

4.1 Prerequisites
This reference architecture uses the JBoss EAP 6 Clustering Reference Architecture as its
foundation and shares the same prerequisites. This includes a supported Operating System
and JDK. Refer to Red Hat documentation for supported environments.19

With minor changes, almost any RDBMS may be used in lieu of PostgreSQL Database for
both this reference environment and the EAP 6 cluster, but if PostgreSQL is used, the details
of the download and installation are also considered a prerequisite for this reference
architecture. On a RHEL system, installing PostgreSQL can be as simple as running:

yum install postgresql-server.i686.

4.2 Downloads
The JBoss EAP 6 Clustering Reference Architecture requires a number of installation files as
well as its own attachment to be downloaded. Refer to the downloads section of the
document for details.

Also download the attachments to this document. These scripts and files will be used in
configuring the reference architecture environment:

https://access.redhat.com/site/node/785313/40/1

If you do not have access to the Red Hat customer portal, See the Comments and Feedback
section to contact us for alternative methods of access to these files.

Download JBoss BPM Suite 6.0.1 and its supplementary tools from Red Hat's Customer
Support Portal20:

• Red Hat JBoss BPM Suite 6.0.1 Deployable for EAP 6.1.1

• Red Hat JBoss BPM Suite 6.0.1 Supplementary Tools

19 https://access.redhat.com/site/articles/704703
20 https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?

downloadType=distributions&product=bpm.suite&version=6.0.1

refarch-feedback@redhat.com 15 www.redhat.com

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?downloadType=distributions&product=bpm.suite&version=6.0.1
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?downloadType=distributions&product=bpm.suite&version=6.0.1
https://access.redhat.com/site/node/785313/40/1
https://access.redhat.com/site/articles/704703

4.3 Installation

4.3.1 JBoss EAP Apache HTTP Server
Follow the installation section of the JBoss EAP 6 Clustering Reference Architecture
document to set up JBoss EAP Apache HTTP Server.

4.3.2 JBoss Enterprise Application Platform
Follow the installation section of the JBoss EAP 6 Clustering Reference Architecture
document to set up JBoss EAP 6.1.1.

4.3.3 ZooKeeper
ZooKeeper and Helix are distributed as part of the supplementary tools provided with BPM
Suite. Simply unzip the archive on all nodes:

unzip jboss-bpms-brms-6.0.1.GA-redhat-2-supplementary-tools.zip

For convenience, create symbolic links to ZooKeeper and Helix directories on each node:

ln -s /root/jboss-bpms-brms-6.0.1.GA-redhat-2-supplementary-
tools/zookeeper-3.3.4 /zookeeper
ln -s /root/jboss-bpms-brms-6.0.1.GA-redhat-2-supplementary-tools/helix-
core-0.6.2-incubating /helix

4.3.4 JBoss BPM Suite
JBoss BPM Suite is installed as a module layer on top of JBoss EAP 6.1.1, with two web
applications that are later deployed on the server instances. There are a few other
configuration items that are applied by copying over the provided files in the BPM Suite
download, including the EAP server configuration file (domain.xml or standalone.xml) and
other files and scripts (under bin/). A layers configuration file is also provided to apply the new
layer. On each node where EAP 6.1.1 is installed, follow these steps:

unzip jboss-bpms-6.0.1.GA-redhat-1-deployable-eap6.x.zip -d ~
mv -f ~/jboss-eap-6.1/domain/configuration/domain.xml

/opt/jboss-eap-6.1_active/domain/configuration/
mv -f ~/jboss-eap-6.1/bin/* /opt/jboss-eap-6.1_active/bin/
mv -f ~/jboss-eap-6.1/modules/layers.conf

/opt/jboss-eap-6.1_active/modules/
mv ~/jboss-eap-6.1/modules/system/layers/bpms

/opt/jboss-eap-6.1_active/modules/system/layers/

A web application has to be in archive form to deploy to EAP 6 in domain mode. The Business
Central and Dashbuilder web applications in the BPM Suite download are in exploded form
and need to be archived. This can be accomplished with a simple jar command, for example:

cd ~/jboss-eap-6.1/standalone/deployments/business-central.war/
jar cvf ~/business-central.war **

www.redhat.com 16 refarch-feedback@redhat.com

4.4 Configuration
Follow the general configuration section of the JBoss EAP 6 Clustering Reference
Architecture to open the required firewall ports, set up SELinux and otherwise configure the
operating system as appropriate.

In this reference environment, ZooKeeper is set up to use port 2181 for client communication.
The ZooKeeper ensemble uses port 2188 for followers to connect to the leader as well as port
3188 for leader election. To open these three ports within the set of IP addresses used in this
reference environment in a Linux environment, use the following IPTables instructions:

iptables -I INPUT 24 -p tcp -s 10.16.139.0/24
--dport 2181 -m tcp -j ACCEPT

iptables -I INPUT 24 -p tcp -s 10.16.139.0/24
--dport 2888 -m tcp -j ACCEPT

iptables -I INPUT 24 -p tcp -s 10.16.139.0/24
--dport 3888 -m tcp -j ACCEPT

The firewall rules may then be persisted to survive reboots:

/sbin/service iptables save

To transfer assets between JBoss Developer Studio and Business Central through Git, also
open the Git SSH port for the server. This reference environment uses port 8003 for Git over
SSH.

4.4.1 JBoss EAP Apache HTTP Server
Configure the web server as detailed in the JBoss EAP 6 Clustering Reference Architecture.

4.4.2 PostgreSQL Database
Configure the PostgreSQL Database as detailed in the JBoss EAP 6 Clustering Reference
Architecture and create the eap6 database for the jboss user as described.

Additionally, create a new database called bpms with the same jboss user as the owner:

CREATE DATABASE bpms WITH OWNER jboss;

Making the jboss user the owner of the bpms database ensures that the necessary privileges
to create tables and modify data are assigned.

4.4.3 JBoss Enterprise Application Server
Configure the EAP instances as detailed in the JBoss EAP 6 Clustering Reference
Architecture.

refarch-feedback@redhat.com 17 www.redhat.com

4.4.4 ZooKeeper
Create a data directory for ZooKeeper on each node:

mkdir /zookeeper/data

To create a ZooKeeper cluster, assign a node ID to each member that runs ZooKeeper. For
this reference environment, use “1”, “2” and “3” respectively for node 1, node 2 and node 3.
The node ID is specified in a file called myid under the data directory of ZooKeeper on each
node. For example, on node 1:

echo "1" > /zookeeper/data/myid

Place the ZooKeeper configuration file in the conf directory:

cp zoo.cfg /zookeeper/conf/

Start ZooKeeper on each node by running the start script:

/zookeeper/bin/zkServer.sh start

View the zookeeper.out log and ensure that the ensemble is formed successfully. One of the
nodes should be elected as leader with the other two nodes following it.

Once the ZooKeeper ensemble is started, the next step is to configure and start Helix. Helix
only needs to be configured once and from a single node. The configuration is then stored by
the ZooKeeper ensemble and shared as appropriate.

Remember that the client port for ZooKeeper in the reference environment has been set to
2181. The ZooKeeper connection string is a comma delimited list of host and port values, so
using the IP addresses of the three nodes, the connection string is:

10.16.139.101:2181,10.16.139.102:2181,10.16.139.103:2181

Use the helix admin script to define a cluster with an arbitrary name:

/helix/bin/helix-admin.sh
–zkSvr 10.16.139.101:2181,10.16.139.102:2181,10.16.139.103:2181
--addCluster repoCluster

Identify each ZooKeeper node with a host:port combination. The values of host and port for
the purpose of this identifier are arbitrary and are not used to access the servers. It is only
important to use the same consistent values for each node's host and port in the following
commands as the system properties used to configure the BPMS instances.

www.redhat.com 18 refarch-feedback@redhat.com

This reference environment uses the name of each node as its host and its standard HTTP
port. Based on this convention, use the helix admin script to add the three nodes to the
cluster:

/helix/bin/helix-admin.sh
--zkSvr 10.16.139.101:2181,10.16.139.102:2181,10.16.139.103:2181
--addNode repoCluster node1:8080

/helix/bin/helix-admin.sh
--zkSvr 10.16.139.101:2181,10.16.139.102:2181,10.16.139.103:2181
--addNode repoCluster node2:8080

/helix/bin/helix-admin.sh
--zkSvr 10.16.139.101:2181,10.16.139.102:2181,10.16.139.103:2181
--addNode repoCluster node3:8080

Finally, add the virtual file system and rebalance the cluster as follows:

/helix/bin/helix-admin.sh
--zkSvr 10.16.139.101:2181,10.16.139.102:2181,10.16.139.103:2181
--addResource repoCluster vfs-repo 1 LeaderStandby AUTO_REBALANCE

/helix/bin/helix-admin.sh
--zkSvr 10.16.139.101:2181,10.16.139.102:2181,10.16.139.103:2181
--rebalance repoCluster vfs-repo 2

Once the Helix configuration is completed, run the helix controller on each node of the
ZooKeeper ensemble:

/helix/bin/run-helix-controller.sh
--zkSvr 10.16.139.101:2181,10.16.139.102:2181,10.16.139.103:2181
--cluster repoCluster

4.4.5 JBoss BPM Suite
At this point, the configuration script has executed and set up the EAP 6 domain for the
cluster. Configuring BPM Suite is very similar and uses a CLI script that is based on the same
framework. To use this script, replace the EAP 6 configuration properties with the
configuration.properties file provided with this guide. Place bpms-config.jar in the same
directory and run the BPMS configuration:

java -cp bpms-config.jar:configuration.jar:
/opt/jboss-eap-6.1/bin/client/jboss-cli-client.jar
org.jboss.refarch.bpms6.BPMS

The BPMS configuration script takes a few minutes to execute, restarts the servers and
concludes by deploying Business Central and Dashbuilder.

To verify successful setup, shut down all three servers and start them again deliberately, one
after the other, ensuring that the domain controller has started before starting up the two other
nodes.

refarch-feedback@redhat.com 19 www.redhat.com

4.5 Review

4.5.1 JBoss EAP Apache HTTP Server
The configuration of the web server is reviewed in detail in the JBoss EAP 6 Clustering
Reference Architecture.

4.5.2 PostgreSQL Database
Follow the steps described in the review section of the database detailed in the JBoss EAP 6
Clustering Reference Architecture. The database configuration is largely the same, with the
addition of a new database for BPMS.

4.5.3 JBoss Enterprise Application Server
The configuration of EAP 6.1.1 is reviewed in the JBoss EAP 6 Clustering Reference
Architecture and remains identical in this reference architecture.

www.redhat.com 20 refarch-feedback@redhat.com

4.5.4 ZooKeeper
ZooKeeper is configured through the /zookeeper/conf/zoo.cfg configuration file. This
reference architecture uses default values for the first few parameters:

The number of milliseconds of each tick
tickTime=2000
The number of ticks that the initial
synchronization phase can take
initLimit=10
The number of ticks that can pass between
sending a request and getting an acknowledgement
syncLimit=5

The data directory for ZooKeeper on each node is created in the previous section and
configured in this file:

the directory where the snapshot is stored.
dataDir=/zookeeper/data

The client port is also left at it default value of 2181. This is the port used by BPMS instances
to talk to ZooKeeper.

the port at which the clients will connect
clientPort=2181

The ZooKeeper ensemble is also defined in this configuration file. Each member of the
ensemble is described on a separate line with its node ID identifying it. The host address,
leader port and leader election port of the node are provided as the values for each node, with
a colon used as the delimiter.

server.1=10.16.139.101:2888:3888
server.2=10.16.139.102:2888:3888
server.3=10.16.139.103:2888:3888

For a node identified by server.1, the file myid in the data directory of that node's ZooKeeper
is expected to contain the value of “1”.

refarch-feedback@redhat.com 21 www.redhat.com

4.5.5 JBoss BPM Suite
The BPM Suite servers are configured by running a Java class that executes a series of CLI
instructions. This class is built on the same foundation as the CLI class created for the JBoss
EAP 6 Clustering Reference Architecture and reads an expanded version of the same
configuration property file:

public class BPMS
{

private Client client;
private String postgresDriverName;
private String postgresUsername;
private String postgresPassword;
private String bpmsConnectionUrl;
private String bpmsDS;
private String bpmsNonJTA_DS;
private String gitDir;
private String indexDir;
private String quartzProperties;
private String helixClusterId;
private String zookeeper;
private String businessCentral;
private String dashbuilder;

public static void main(String[] args) throws CommandLineException,
IOException

{
String propertyFile = "./configuration.properties";
if(args.length == 1)
{

propertyFile = args[0];
}
Properties props = new Properties();
props.load(new FileReader(propertyFile));
System.out.println("properties loaded as: " + props);
BPMS configuration = new BPMS(props);
configuration.configure();
System.out.println("Done!");

}

The additional properties are added to configuration.properties:

bpmsConnectionUrl=jdbc:postgresql://10.16.139.100:5432/bpms
bpmsDS=bpmsDS
bpmsNonJTA_DS=bpmsNonJTA_DS
gitDir=/opt/bpms/repo
indexDir=/opt/bpms/index
quartzProperties=/root/quartz-definition.properties
helixClusterId=repoCluster
zookeeper=10.16.139.101:2181,10.16.139.102:2181,10.16.139.103:2181
dashbuilder=/root/files/dashbuilder.war
businessCentral=/root/files/business-central.war

www.redhat.com 22 refarch-feedback@redhat.com

Once instantiated, the BPMS class reads the required properties and saves them as fields:

public BPMS(Properties properties) throws CommandLineException
{

String username = properties.getProperty("username");
String password = properties.getProperty("password");
String domainController = properties.getProperty("domainController");
client = new Client(username, password.toCharArray(), domainController,

9999);
postgresDriverName = properties.getProperty("postgresDriverName");
postgresUsername = properties.getProperty("postgresUsername");
postgresPassword = properties.getProperty("postgresPassword");

bpmsConnectionUrl = properties.getProperty("bpmsConnectionUrl");
bpmsDS = properties.getProperty("bpmsDS");
bpmsNonJTA_DS = properties.getProperty("bpmsNonJTA_DS");
gitDir = properties.getProperty("gitDir");
indexDir = properties.getProperty("indexDir");
quartzProperties = properties.getProperty("quartzProperties");
helixClusterId = properties.getProperty("helixClusterId");
zookeeper = properties.getProperty("zookeeper");
businessCentral = properties.getProperty("businessCentral");
dashbuilder = properties.getProperty("dashbuilder");

}

The configuration tasks begin with the configure method and the first step is to discover all the
registered hosts:

private void configure() throws CommandLineException, IOException
{

List<Resource> hosts = client.getResourcesByType(null, "host");

This Java code uses the existing framework to find all the hosts and map them to Resource
objects. To list hosts in straight CLI, use the following instruction:

:read-children-names(child-type=host)

The code then continues to set the required system properties:

private void setSystemProperties(List<Resource> hosts) throws IOException
{

String[][] newProperties = new String[2][];
newProperties[0] = new String[] {"org.uberfire.nio.git.dir",

"org.uberfire.metadata.index.dir", "org.quartz.properties",
"jboss.node.name", "org.uberfire.cluster.id", "org.uberfire.cluster.zk",
"org.uberfire.cluster.local.id", "org.uberfire.cluster.vfs.lock",
"org.uberfire.nio.git.deamon.port", "org.uberfire.cluster.autostart",
"org.uberfire.nio.git.ssh.port"};

newProperties[1] = new String[] {gitDir, indexDir, quartzProperties,
null, helixClusterId, zookeeper, null, "vfs-repo", "9418", "false", "8003"};

Eleven properties are defined in a two dimensional array where the first dimension holds the
property name and the second contains the new values.

refarch-feedback@redhat.com 23 www.redhat.com

As shown in the code, four of these eleven properties are set to constant values, while five
values are retrieved from the properties.

The fourth property is the node name and its value is queried from domain.

for(Resource host : hosts)
{

newProperties[1][3] = host.getName();

In other words, in each iteration, the value of the property is the corresponding value retrieved
as part of the previous CLI query.

The script then proceeds to discover the bind address for each host.

String bindAddress;
Resource server = client.getResourcesByType(host, "server").get(0);
Resource platformMBean = new Resource("core-service", "platform-mbean");
platformMBean.setParent(server);
Resource runtime = new Resource("type", "runtime");
runtime.setParent(platformMBean);
client.load(runtime);
ModelNode bindAddressNode = runtime.getAttribute("system-properties")

.getValue().get("jboss.bind.address");
if(bindAddressNode.isDefined())
{

bindAddress = bindAddressNode.asString();
}
else
{

bindAddress = null;
}

To query the bind address in straight CLI, retrieve a set of properties by issuing the following
command and look for the value of jboss.bind.address in the result.

/host=node1/core-service=platform-mbean/type=runtime
:read-attribute(name=system-properties)

While the reference environment only configures a single server group for each host of a
domain, the script remains generic and avoids making any such assumptions.

List<Resource> serverConfigs = client.getResourcesByType
(host, "server-config");

for(Resource serverConfig : serverConfigs)
{

www.redhat.com 24 refarch-feedback@redhat.com

For each server, the script queries the binding port offset and uses it to calculate the HTTP
port off the base of 8080. The previously retrieved host name is combined with the listen port
to derive the ZooKeeper cluster member identifier:

Attribute portOffsetAttr = client.readAttribute(serverConfig,
"socket-binding-port-offset");

int port = 8080 + portOffsetAttr.getValue().asInt();
newProperties[1][6] = newProperties[1][3] + "_" + port;

The port offset may also be queried in straight CLI:

/host=node1/server-config=node1-active-server:read-attribute
 (name=socket-binding-port-offset)

To set the eleven properties on each server, the script creates a template Resource object
that can be set up with the common characteristics and subsequently modified for each
property.

Resource systemProperty = new Resource("system-property", null);
systemProperty.setParent(serverConfig);
systemProperty.addAttribute(new Attribute("boot-time", false));

The template is then used to create the eleven properties in a loop:

for(int index = 0; index < newProperties[0].length; index++)
{

systemProperty.setName(newProperties[0][index]);
systemProperty.setAttribute("value", newProperties[1][index]);
client.create(systemProperty);

}

The system properties can easily be created in straight CLI as well, for example:

/host=node1/server-config=node1-active-server/
system-property=org.uberfire.nio.git.ssh.port:
add(boot-time=false,value=8003)

Two further properties are set up next, based on the bind address.

if(bindAddress != null)
{

Resource bindAddressProperty = new Resource("system-property",
"org.uberfire.nio.git.daemon.host");

bindAddressProperty.setParent(serverConfig);
bindAddressProperty.setAttribute("value", bindAddress);
client.create(bindAddressProperty);
bindAddressProperty.setName("org.uberfire.nio.git.ssh.host");
client.create(bindAddressProperty);

}

refarch-feedback@redhat.com 25 www.redhat.com

The final result of the setSystemProperties method is to set thirteen system properties on
each server of each host. This can be viewed in the host XML files:

<servers>
 <server name="node1-active-server" group="cluster-server-group-1" auto-
start="true">
 <system-properties>
 <property name="org.uberfire.nio.git.dir"

value="/opt/bpms/repo" boot-time="false"/>
 <property name="org.uberfire.metadata.index.dir"

value="/opt/bpms/index" boot-time="false"/>
 <property name="org.quartz.properties"

value="/root/quartz-definition.properties"
boot-time="false"/>

 <property name="jboss.node.name"
value="node1" boot-time="false"/>

 <property name="org.uberfire.cluster.id"
value="repoCluster" boot-time="false"/>

 <property name="org.uberfire.cluster.zk"
value="10.16.139.101:2181" boot-time="false"/>

 <property name="org.uberfire.cluster.local.id"
value="node1_8080" boot-time="false"/>

 <property name="org.uberfire.cluster.vfs.lock"
value="vfs-repo" boot-time="false"/>

 <property name="org.uberfire.nio.git.deamon.port"
value="9418" boot-time="false"/>

 <property name="org.uberfire.cluster.autostart"
value="false" boot-time="false"/>

 <property name="org.uberfire.nio.git.ssh.port"
value="8003" boot-time="false"/>

 <property name="org.uberfire.nio.git.daemon.host"
value="10.16.139.101" />

 <property name="org.uberfire.nio.git.ssh.host"
value="10.16.139.101" />

 </system-properties>

The next method call of the CLI script sets up the JVM for each host. The maximum memory
allowed for the permanent generation of the Java virtual machine is increased to 512
megabytes to better accommodate the BPM Suite:

for(Resource host : hosts)
{

List<Resource> serverConfigs = client.getResourcesByType(host, "server-
config");

for(Resource serverConfig : serverConfigs)
{

Resource jvm = new Resource("jvm", "serverJVM");
jvm.setParent(serverConfig);
jvm.setAttribute("max-permgen-size", "512m");
client.create(jvm);

}
}

www.redhat.com 26 refarch-feedback@redhat.com

To set up the JVM for a known host through straight CLI, simply add a jvm to the server
configuration:

/host=node1/server-config=node1-active-server/jvm=serverJVM
:add(max-permgen-size=512m)

The result is a jvm XML element in the server configuration in the host XML:

 <jvm name="serverJVM">
 <permgen max-size="512m"/>
 </jvm>
 </server>

The next set of changes apply to the profiles. The first step is to query all the configured
profiles:

List<Resource> profiles = client.getResourcesByType(null, "profile");

To list profiles in straight CLI, use the following instruction:

:read-children-names(child-type=host)

The next step is to set up clustered single sign-on (SSO) for each profile. That's achieved by
removing the existing SSO entry and recreating one with the desired settings.

for(Resource profile : profiles)
{

Resource web = new Resource("subsystem", "web");
web.setParent(profile);
List<Resource> virtualServers =

client.getResourcesByType(web, "virtual-server");
for(Resource virtualServer : virtualServers)
{

List<Resource> ssoConfigs =
client.getResourcesByType(virtualServer, "sso");

for(Resource sso : ssoConfigs)
{

client.remove(sso);
}
Resource sso = new Resource("sso", "configuration");
sso.setParent(virtualServer);
sso.setAttribute("cache-container", "web");
sso.setAttribute("cache-name", "sso");
sso.setAttribute("domain-name", "bpms");
sso.setAttribute("reauthenticate", false);
client.create(sso);

}
}

refarch-feedback@redhat.com 27 www.redhat.com

To remove the existing SSO setup and configure clustered SSO with a direct CLI command,
issue the following for each profile:

/profile=full-ha-1/subsystem=web/virtual-server=default-host
/sso=configuration:remove()

/profile=full-ha-1/subsystem=web/virtual-server=default-host
/sso=configuration:add(cache-container=web,

cache-name=sso,domain=bpms,reauthenticate=false)

The SSO is set up as a configuration in the virtual server definition within the web subsystem
of each profile:

<virtual-server name="default-host" enable-welcome-root="true">
 <alias name="localhost"/>
 <alias name="example.com"/>
 <sso cache-container="web" cache-name="sso" domain="bpms"

reauthenticate="false"/>
</virtual-server>

After setting up single sign-on, the script creates one transactional and one non-transactional
datasource for each profile.

setupDataSources(profiles);

The transactional datasource is configured as follows:

private void setupDataSources(List<Resource> profiles) throws IOException
{

Resource dataSources = new Resource("subsystem", "datasources");

Resource bpmsJTA = new Resource("data-source", bpmsDS);
bpmsJTA.setParent(dataSources);
bpmsJTA.setAttribute("enabled", true);
bpmsJTA.setAttribute("jta", true);
bpmsJTA.setAttribute("jndi-name", "java:jboss/datasources/" + bpmsDS);
bpmsJTA.setAttribute("connection-url", bpmsConnectionUrl);
bpmsJTA.setAttribute("driver-class", "org.postgresql.xa.PGXADataSource"

);
bpmsJTA.setAttribute("driver-name", postgresDriverName);
bpmsJTA.setAttribute("user-name", postgresUsername);
bpmsJTA.setAttribute("password", postgresPassword);
bpmsJTA.setAttribute("use-java-context", true);
bpmsJTA.setAttribute("use-ccm", true);

www.redhat.com 28 refarch-feedback@redhat.com

The non-transactional datasource is similar:

Resource bpmsNonJTA = new Resource("data-source", bpmsNonJTA_DS);
bpmsNonJTA.setParent(dataSources);
bpmsNonJTA.setAttribute("enabled", true);
bpmsNonJTA.setAttribute("jta", false);
bpmsNonJTA.setAttribute("jndi-name", "java:jboss/datasources/" +

bpmsNonJTA_DS);
bpmsNonJTA.setAttribute("connection-url", bpmsConnectionUrl);
bpmsNonJTA.setAttribute("driver-class", "org.postgresql.Driver");
bpmsNonJTA.setAttribute("driver-name", postgresDriverName);
bpmsNonJTA.setAttribute("user-name", postgresUsername);
bpmsNonJTA.setAttribute("password", postgresPassword);
bpmsNonJTA.setAttribute("use-java-context", true);
bpmsNonJTA.setAttribute("use-ccm", true);

Once both Resource objects have been set up, they can be created under the existing
datasources configuration for each profile:

for(Resource profile : profiles)
{

dataSources.setParent(profile);
client.create(bpmsJTA);
client.create(bpmsNonJTA);

}

The syntax for a direct CLI command to create a datasource looks as follows:

/profile=full-ha-1/subsystem=datasources/data-source=bpmsDS
:add(enabled=true,jta=true,jndi-name="java:jboss/datasources/bpmsDS",

connection-url="jdbc:postgresql://10.16.139.100:5432/bpms",
driver-class="org.postgresql.xa.PGXADataSource",
driver-name="postgresql-9.2-1003.jdbc4.jar",
user-name=jboss,password=password,use-java-context=true,
use-ccm=true)

The created datasources can be viewed in the domain.xml file under each profile. The
transactional datasource is created to be used by Business Central.

<datasource jta="true" jndi-name="java:jboss/datasources/bpmsDS" pool-
name="bpmsDS" enabled="true" use-java-context="true" use-ccm="true">
 <connection-url>jdbc:postgresql://10.16.139.100:5432/bpms</connection-
url>
 <driver-class>org.postgresql.xa.PGXADataSource</driver-class>
 <driver>postgresql-9.2-1003.jdbc4.jar</driver>
 <security>
 <user-name>jboss</user-name>
 <password>password</password>
 </security>
</datasource>

refarch-feedback@redhat.com 29 www.redhat.com

The non-transactional datasource is configured similarly. It is required by Quartz.

<datasource jta="false" jndi-name="java:jboss/datasources/bpmsNonJTA_DS"
pool-name="bpmsNonJTA_DS" enabled="true" use-java-context="true"

use-ccm="true">
 <connection-url>jdbc:postgresql://10.16.139.100:5432/bpms</connection-url>
 <driver-class>org.postgresql.Driver</driver-class>
 <driver>postgresql-9.2-1003.jdbc4.jar</driver>
 <security>
 <user-name>jboss</user-name>
 <password>password</password>
 </security>
</datasource>

Once datasources have been configured, the script restarts all the servers in the domain.

stopAllServers();
for(Resource host : hosts)
{

waitForServerShutdown(host);
}
startAllServers();

At this point, the BPM Suite has been fully configured to function in a cluster. The last step is
to deploy the BPMS web applications.

client.deploy(businessCentral);
client.deploy(dashbuilder);

The CLI script simply disconnects and exits after the web applications have been deployed.

client.disconnect();
System.out.println("Disconnected");

www.redhat.com 30 refarch-feedback@redhat.com

5 Design and Development

5.1 BPM Suite Example Application
This reference architecture includes an example application that is designed, developed,
deployed, tested and described in this document. The application consists of a business
process that manages the various automatic and manual steps involved in processing a
mortgage application, up until the approval or denial of the mortgage.

This application is alternatively referred to as “BPM Suite Example Application”, “jboss-bpm-
example” and “mortgage demo” in various contexts and is available for download both as an
attachment to this reference architecture and as a download from the Red Hat Customer
Portal, alongside the BPMS product itself. Due to divergent update schedules and restricted
release cycles, the copy used in this reference architecture may at different times be either
older or newer than the product download.

While a complete copy of the example application is provided with this reference architecture,
this section walks the reader through every step of design and development. By following the
steps outlined in this section, the reader is able to replicate the original effort and recreate
every component of the application. This document explains the design decisions at each
step and outlines some best practices.

refarch-feedback@redhat.com 31 www.redhat.com

5.2 Project Setup

5.2.1 Business Central
This reference architecture assumes that the previous installation and configuration steps
have been followed and the environment set up. The document further assumes that a user
has been set up with the security role of ADMIN. Creating the project and developing the
application as outlined in this section is mutually exclusive with cloning the provided
repository and importing the artifacts. If the attached repository has been cloned into the
Business Central environment, remove this repository before following these steps.

To use Business Central once BPMS has started, point your browser to
http://localhost:8080/business-central and log in as a user with ADMIN privileges:

www.redhat.com 32 refarch-feedback@redhat.com

Figure 5.2.1-1:

http://localhost:8080/business-central

Informational dialogs are provided on various screens of Business Central:

Click the Don't show again checkbox before pressing close, to prevent a dialog from being
displayed in the future.

refarch-feedback@redhat.com 33 www.redhat.com

Figure 5.2.1-2:

The welcome page of Business Central provides a high level overview of its various
capabilities in several tabs. The top-level menu provides persistent navigation across various
pages and sections.

www.redhat.com 34 refarch-feedback@redhat.com

Figure 5.2.1-3:

5.2.2 Repositories
Business Central stores all business rules, process definition files and other assets and
resources in an asset repository (knowledge store), which is backed by a Git repository. This
makes it possible to import an entire knowledge store by cloning a Git repository or interact
with the knowledge store through its Git URL.

To set up a new repository, navigate to Administration from the Authoring menu:

From the Administration screen, select New repository from the Repositories menu.

refarch-feedback@redhat.com 35 www.redhat.com

Figure 5.2.2-1:

Figure 5.2.2-2:

Name the new repository “Mortgage” and assign it to the “example” organizational unit.

After creating the Mortgage repository, the Administration view will display both repositories
and the URL to access each of them through Git.

www.redhat.com 36 refarch-feedback@redhat.com

Figure 5.2.2-3:

Figure 5.2.2-4:

5.2.3 Projects
Once a repository is created, the next step is to create a project inside that repository.

Select Project Authoring from the Authoring menu and switch the current repository to
Mortgage:

Open the New Item menu. In the absence of a project, the only active option is to create a
new project:

refarch-feedback@redhat.com 37 www.redhat.com

Figure 5.2.3-1:

Figure 5.2.3-2:

Create a project called MortgageApplication:

Enter a brief description of the project and fill out the maven artifact information. The example
application uses a group ID of com.redhat.bpms.examples, artifact ID of mortgage and
version ID of 1.0.

www.redhat.com 38 refarch-feedback@redhat.com

Figure 5.2.3-3:

Figure 5.2.3-4:

5.3 Data Model
A BPMS project typically contains many different types of assets. While the dependencies of
these assets can often be complicated, the data model is almost always the most basic
building block.

The BPMS web designer includes a web-based custom graphical data modeler that is
accessed from the Tools menu:

refarch-feedback@redhat.com 39 www.redhat.com

Figure 5.3-1:

Use the data modeler to create the required POJO definitions. For example, this project
requires a class called Applicant to represent the mortgage applicant information. The
identifier is the Java class name while the label is a more user-friendly name for the type.
Create the required data model under the existing com.redhat.bpms.examples.mortgage
package:

www.redhat.com 40 refarch-feedback@redhat.com

Figure 5.3-2:

Once a type has been created, proceed to define its fields. Similar to the type itself, each
fields also has an identifier and a user-friendly label. The type of each field can either be a
primitive or basic data type, or a custom type that has been previously creating using the data
modeler or imported into the project. For example, an applicant would have a name which is
in basic string format:

refarch-feedback@redhat.com 41 www.redhat.com

Figure 5.3-3:

Similarly, proceed to create the entire data model using the graphical tool. The following
custom data types are required for the mortgage example:

Id Label Type

name Applicant Name String

ssn Social Security Number Integer

income Annual Income Integer

creditScore Credit Score Integer

Table 5.3-1: Applicant

Id Label Type

address Property Address String

price Sale Price Integer

Table 5.3-2: Property

Id Label Type

cause Cause of Error String

Table 5.3-3: ValidationError

Id Label Type

property Appraised Property Property

date Appraisal Date Date

value Appraised Value Integer

Table 5.3-4: Appraisal

www.redhat.com 42 refarch-feedback@redhat.com

As described in the Table 5.3-4: Appraisal, the property field of this data type is a type
previously defined in the same data model, in Table 5.3-2: Property. As new data types are
defined, they are added to the custom graphical editor for use in defining fields:

The high level Application POJO holds and uses all of the above-defined types:

Id Label Type

applicant Applicant Applicant

property Property Property

appraisal Appraisal Appraisal

downPayment Down Payment Integer

amortization Mortgage Amortization Integer

mortgageAmount Mortgage Amount Integer

apr Mortgage Interest APR Double

validationErrors Validation Errors List<ValidationError>

Table 5.3-5: Application

refarch-feedback@redhat.com 43 www.redhat.com

Figure 5.3-4:

Over all, the data model consists of five custom data types, each with a number of basic fields
and two using custom fields of types previously defined in this same data model:

www.redhat.com 44 refarch-feedback@redhat.com

Figure 5.3-5:

5.4 Business Process

5.4.1 Create New Process
Navigate to the com.redhat.bpms.examples.mortgage package, where the data model was
created. From the New Item menu, select Business Process:

Creating the process automatically opens the web process designer and provides a blank
canvas to start the process design:

refarch-feedback@redhat.com 45 www.redhat.com

Figure 5.4.1-1:

Figure 5.4.1-2:

Designing a business process is an iterative approach. The starting point is often an existing
manual process that is documented and refined in multiple stages. For the purpose of this
reference architecture, it is safe to assume that a detailed conceptual design is available.
Even when the design is known with a great level of depth in advance, proceeding to model it
in one or two quick steps is rarely a good idea.

Start by creating a very simple process that is structurally complete and can be executed and
tested. For this example, place a script node after the start node and complete the process by
connecting this script node to an end node.

Create a process variable representing a mortgage application. The Application class, created
in the com.redhat.bpms.examples.mortgage package in the data modeler serves this
purpose. Call this process variable, application.

www.redhat.com 46 refarch-feedback@redhat.com

Figure 5.4.1-3:

Before the process can be saved, make sure to review the process properties. Assign the
same com.redhat.bpms.examples.mortgage package to the process itself; ideally also as add
the full package name as a prefix to the process ID:

Save the process and provide a meaningful explanation of the changes thus far:

refarch-feedback@redhat.com 47 www.redhat.com

Figure 5.4.1-4:

Figure 5.4.1-5:

5.4.2 Start Process Form
Now that the process skeleton has been created and saved, a process form is required to
provide values for the mortgage application and test the process. Refer to the steps in the
section on Process Form to create the process form.

Use a print statement in the script node to print out the application object.

Save the process, go to Tools, Project Editor, and build & deploy the project. Once built
successfully, go to Process Management, Process Definitions and find the process listed
there. Click the play button to start an instance of this process:

www.redhat.com 48 refarch-feedback@redhat.com

Figure 5.4.2-1:

Figure 5.4.2-2:

If a process form is created, it will be opened by Business Central and allow the user to
provide values for the mortgage application:

A play button at the bottom of this form submits the provided data and creates a new process
instance. An instance of the Application Java class is automatically created and provided to
the process. The script node of the process prints out the application object so in the server
log (or standard output of the server process), a line similar to the following gets printed:

21:49:24,976 INFO [stdout] (http-localhost/127.0.0.1:8080-14) Application:
com.redhat.bpms.examples.mortgage.Application@6b08f5bc

To see the values stored in the application object, we could edit the Application class (which is
merely an annotated JavaBeans class) and add a toString() method to it. It should be noted
however that a subsequent edit by the data modeler would remove any such enhancements.
The easier and more permanent alternative is to use the get methods to print the contents of
application.

refarch-feedback@redhat.com 49 www.redhat.com

Figure 5.4.2-3:

5.4.3 Validation
It is best practice to validate any input data. In a business process, the importance of this step
is increased by the ability to correct data through human interaction.

Rule engines are often a good fit for data validation, as they allow validation rules to be stated
individually and be enforced in concert, while making it easy to update each rule. BPMS
includes a world-class rule engine, which makes the use of a rules for validation an obvious
choice.

It is also best practice to maintain the process in a valid state as often as possible through the
development. New features can be added step by step, then saved, built and tested before
considering the next item on the agenda.

Move the script node and the end node to the far right of the canvas, break the flow from the
start node and an XOR gateway instead.

Follow that up with a task node, that you then configure into a Business Rule task:

www.redhat.com 50 refarch-feedback@redhat.com

Figure 5.4.3-1:

Figure 5.4.3-2:

Place another XOR gateway after the business rule task. This new gateway will be used to
direct the process flow into two separate directions:

• The process will continue executing and moves forward if the data is valid.

• The process will go through correction if data is invalid; process flow will loop back into
the first gateway, where it will undergo validation again.

For the valid case, use a sequence flow to connect the gateway all the way to the script task
that was previously created to print the application data.

The first gateway, which is the second node of our process, is a converging gateway. It
expects two or more incoming sequence flows but regardless of how the process ends up at
this step, provides a single outgoing flow to the next node. The second gateway (fourth node)
in this diagram is a diverging XOR gateway, which accepts a single incoming sequence flow
but has two or more outgoing flows. Java conditions or business rules determine which
sequence flow is taken but in an XOR gateway, one and only one outgoing flow will always be
chosen.

To place the data correction flow above the main flow, select all the existing nodes by drawing
a large rectangle around them in the canvas. Once all the nodes are selected, drag one of the
nodes and move it down, leaving sufficient room for at least two other rows above the main
sequence where the nodes are currently located. When several nodes are selected, moving
one of them moves all the selected nodes at the same time.

From the diverging XOR gateway, create a second outgoing sequence flow that connects it to
a new task node. The easiest way to do this is to click on the gateway and wait for the web
designer shortcuts to appear and then choose the rectangular node from the shortcut pallet.
Then move this new task node directly above the diverging XOR gateway. Use the tools icon
to turn it into another business rule task.

From this new business rule task, create another task node and place it to its left, directly
above the converging (first) gateway. Change the type of this new node to a User Task. Use
the sequence flow from this new user task to connect it back to the converging node directly
underneath it.

refarch-feedback@redhat.com 51 www.redhat.com

Figure 5.4.3-3:

At this point, the process is almost complete but a few refinements are required before the
project can be built. Additionally, for the purpose of modeling and readability, it is important to
name some of these elements.

To name an element or sequence flow in the web designer, simply double-click on the item in
question and type the name. At minimum, label the first business rule task as Validation, the
second business rule task as Reset Validation and the user task as Data Correction. It is also
helpful to label the two outgoing sequence flows from the diverging XOR gateway as Valid
and Invalid.

The validation node links to business rules provided in the same package. Rules are
designated as part of a rule flow group to be associated with a business rule task. Click on the
validation node and edit its properties. Set the Ruleflow Group property to validation:

www.redhat.com 52 refarch-feedback@redhat.com

Figure 5.4.3-4:

Figure 5.4.3-5:

Similarly, set the rule flow group for the second business rule task to resetValidation.

A business rule task can be thought of as an external service with a loose contract. The skill
set of the process modeler may in fact be considered distinct from the skill set of a rule
analyst. For validation, the data model serves as the common ground to define the interface.
Rules require a number of facts to have been inserted into the rule engine's working memory.
In this instance, instances of the following custom types must be inserted:

• Application

• Applicant

• Property

Validation rules apply constraints to these objects and their fields. The assumed contract is
that in the instance that a validation rule is found to be violated, a ValidationError object would
be generated and inserted into the working memory.

Refer to the Business Rules section to explore the rules used for Validation and Reset
Validation.

Based on this validation contract, click on the Invalid sequence flow and set its conditions.
Change the condition expression language to drools and the expression itself to
ValidationError() so that this sequence flow is taken when the rules have instantiated an
instance of ValidationError.

Conversely, set the expression for the Valid sequence flow to not ValidationError() while also
choosing drools as the language.

refarch-feedback@redhat.com 53 www.redhat.com

Figure 5.4.3-6:

Select the Validation task node and open the dialog for On Entry Actions. These actions are
lines of Java code that execute before the node itself. Insert Application, Applicant and
Property into the rule engine working memory:

Notice that the application also contains a field to represent the mortgage amount. This is a
derived value, based on the property sale price and the down payment. Setting this value on
entry of the validation task is not ideal but there are a number of constraints and each other
option has its own disadvantages:

1. getMortgageAmount() can be written as a utility method that does the subtraction upon
request. The big disadvantage of this approach is that it is not compatible with the data
modeler and even if the class is manually modified to add such a method, a future
update to the data type through the data modeler may overwrite it.

2. A rule can be written to calculate the mortgage amount and update the application
object with it. Such a simple rule does not merit its own business rule task in the
process and including it in validation rules is a poor choice. That implies that this value
is only needed for validation, which is not the case.

3. Creating a separate script task (or for that matter, an earlier business rule task) to
calculate the mortgage amount exposes this step as part of the model. The business
process model should remain high level and exclude trivial and technical steps.

4. Data correction may indirectly result in a change to the mortgage amount so the
subtraction must occur within the validation loop and the amount cannot be calculated
earlier, at the time of initial data collection or its processing.

www.redhat.com 54 refarch-feedback@redhat.com

Figure 5.4.3-7:

5.4.4 Data Correction
Data correction in the process is performed by a mortgage broker through the human
interaction features of BPMS. For this purpose, a user task is created and assigned to the
broker group. By assigning a task to a group, as opposed to a user, a certain degree of loose
coupling between the work and the worker is achieved. Any broker who is available can claim
or be assigned the created task and through the use of swimlanes, it can be mandated that
the same specific user work on future tasks for this process instance, so that a desired
degree of continuity is provided to the customer.

Edit the properties of the Data Correction task node. Set the Task Name to DataCorrection.
This attribute is the technical name of the task, as opposed to its display name, which has
already been entered into the model.

Set the Groups attribute to broker so that the task may be assigned to any broker.

Open the DataInputSet and add an input variable for the task. This data item will be provided
to the human actor reviewing and completing the human task. Provide the entire mortgage
application data to the broker by declaring an input variable with a distinct name of
taskInputApplication and type of com.redhat.bpms.examples.mortgage.Application.

refarch-feedback@redhat.com 55 www.redhat.com

Figure 5.4.4-1:

The broker will review the data provided as part of the mortgage application and make any
necessary corrections so that it would pass validation next time. To correct the data, the
broker may need to contact the applicant or other intermediaries. Human tasks allow
automated processes incorporate such manual steps.

Similar to the input variable, create an output variable for the data correction task to receive
the corrected mortgage application. Declare the output variable with a distinct name of
taskOutputApplication and type of com.redhat.bpms.examples.mortgage.Application.

Finally, open the assignments property of the task and map the process variable to the task
variables:

1. Map the application variable of the process to taskInputApplication so that the broker
can view the data and proceed to correct it.

2. Map taskOutputApplication back to the application variable of the process so that any
corrections by the broker are applied to the process.

Make sure to save the process and then navigate to Tools / Project Editor and make sure that
Build & Deploy is successful.

www.redhat.com 56 refarch-feedback@redhat.com

Figure 5.4.4-2:

When Business Central is used to work on human tasks, a task form is typically required for
every user task node created in a process. Click on a task node to create or edit a
corresponding task form:

Refer to the section on the Data Correction task form for details on the design and
implementation of the form itself.

refarch-feedback@redhat.com 57 www.redhat.com

Figure 5.4.4-3:

5.4.5 Web Service Task
The next step in processing the mortgage application is to determine the applicant's credit
score. This application assumes an external Web Service that takes the applicant's social
security number and returns their credit score. The simple Credit Report Web Service has
been created for this purpose.

From the left side of the palette, open Service Tasks and drag the WS service task on the
canvas:

Rename the ws node to Credit Report and place it after the diverging XOR gateway so that
the applicant's credit score is requested after the mortgage application data is validated. Drag
the end point of the existing valid sequence flow to this new node and draw a new sequence
flow from this service task node to the script task.

www.redhat.com 58 refarch-feedback@redhat.com

Figure 5.4.5-1:

So far, the only required process variable has been the application variable, which holds all
the required data within it. At this point, proceed to create process variables representing the
input and output of the Web Service. As a reminder, process variables are declared in the
web process designer by clicking on the canvas background to get access to the process
properties.

Next, click on the Credit Report task node and add the follow lines of code as actions to be
executed before and after the node.

On entry:

kcontext.setVariable("ssn", application.getApplicant().getSsn());

On exit:

application.getApplicant().setCreditScore(creditScore);

As the code clearly states, the ssn process variable is set up from the application object for
the purpose of the web service call and once the credit score is retrieved, the application
object is updated with its value.

refarch-feedback@redhat.com 59 www.redhat.com

Figure 5.4.5-2:

Edit the data output set of the web service task. The result is configured as a generic object
by default; modify its standard type to Integer and remove the custom type, to better
represent the returned credit score value. Also edit the data input set of the web service and
configure the web service parameter as a standard Integer, which is the correct type for ssn.

Use the variable assignments of the task to configure the URL, namespace, service name,
service mode and operation name. Also map from the process variables to designate the
applicant's ssn as the service parameter and the returned value as the credit score:

Save the process and provide a meaningful description for its repository revision. At this point,
the project editor can be used to build and deploy the project and starting a process instance
should result in a credit score being (mock) calculated by the web service, assuming this
service is created and deployed as described in the section Credit Report Web Service.

www.redhat.com 60 refarch-feedback@redhat.com

Figure 5.4.5-3:

5.4.6 Error Handling
So far, conceivable error conditions could have arisen from invalid input data and the
validation rules resulting a human data correction have been an adequate response to such
errors. Calling a web service introduces new risks. The external service may be down and
nonfunctional for unexpected reasons. Various communication, network and server errors
may result in an invalid response.

To catch potential errors from the Credit Report service task, open the Catching Intermediate
Events set of tools from the web designer palette and drag the Error event onto the canvas.
Drop this node on the lower boundary of the service task; the boundary of the service task
turns green to indicate that the event node is being dropped on the correct spot:

The error event node catches any errors resulting from the execution of the service task. In a
way, this node serves a purpose similar to the validation rules, in that once the error has been
detected, the process provides a chance to inspect the error, remedy the situation and try
again.

Add a data output variable to this boundary event node called nodeError. System errors
results in a WorkItemHandlerRuntimeException, which will now be assigned to this new
variable. Create a process variable called wsError and assign it the custom type of
org.jbpm.bpmn2.handler.WorkItemHandlerRuntimeException. Open DataOutputAssociation
on the error boundary event node and map from nodeError to wsError. This way, the thrown
exception is made available to the process in the form of a process variable called wsError.

refarch-feedback@redhat.com 61 www.redhat.com

Figure 5.4.6-1:

Create a new user task called Troubleshoot and assign it to the admin group. Draw a
sequence flow from the error catching event to this user task.

Also place a new XOR gateway node before the Credit Report task and modify the existing
Valid flow to connect to it. This new node then connects to the service task.

Now, connect the Troubleshoot user task to the new converging gateway. Similar to the data
correction loop, this creates a troubleshooting loop where any errors from the Web Service
call can be examined and corrected before looping and trying the call again. This is
predicated on the Credit Report service being idempotent21, as is the case here.

Create a process variable of the standard type of String and call it wsErrorStack. The entire
exception stack from the original exception will be converted to String form and stored in this
variable. Do this by creating an On Entry Action for the Troubleshoot task and entering the
following Java code as one action:

java.io.StringWriter errorStackWriter = new java.io.StringWriter();
wsError.getCause().printStackTrace(

new java.io.PrintWriter(errorStackWriter));
kcontext.setVariable("wsErrorStack", errorStackWriter.toString());

The cause of the system error is the actual exception that occurred during the web service
invocation and in this case, its stack trace is retrieved and stored as a variable.

21 http://en.wikipedia.org/wiki/Idempotence#Computer_science_meaning

www.redhat.com 62 refarch-feedback@redhat.com

Figure 5.4.6-2:

http://en.wikipedia.org/wiki/Idempotence#Computer_science_meaning

Create a Data Input variable for the Troubleshoot task and give it the name errorStack and
standard type of String. In the task assignments, map from the process variable wsErrorStack
to errorStack. This makes the stack trace of the thrown root exception available to the actor of
this user task. To display the stack trace, create a task form for this user task.

This form only requires one field of type Long text; give the field the label of Web Service
Error and call it something like errorStack. Set the size and height of the field to appropriate
values for an exception stack (e.g., 200 and 10 respectively). Set the field as read-only and
enter its input binding expression as errorStack, which is the name of the task variable.

This task form helps provide a technical administrator more information about the cause of
the error that occurred while calling the external web service. The administrator can review
this information and use it to troubleshoot and correct the problem, before completing the task
and having the process retry the web service call.

refarch-feedback@redhat.com 63 www.redhat.com

Figure 5.4.6-3:

5.4.7 Mortgage Calculations
Once the applicant's credit score is determined, the next step is to assess the risk of the
requested mortgage and determine the interest rate that can be offered to this applicant.

Such calculations are a natural fit for a rule engine. Using business rules to calculate the
interest rate accelerates development and greatly reduces the cost of maintenance.

Once again, the only requirement is to insert the relevant objects into the rule engine's
working memory. The mortgage amount is also recalculated to make sure it is updated with
the correct value, as the down payment is subject to change (in sections that follow):

application.setMortgageAmount(
application.getProperty().getPrice() - application.getDownPayment());

kcontext.getKnowledgeRuntime().insert(application.getApplicant());
kcontext.getKnowledgeRuntime().insert(application.getProperty());
kcontext.getKnowledgeRuntime().insert(application);

if(application.getAppraisal() != null)
kcontext.getKnowledgeRuntime().insert(application.getAppraisal());

This time the rules operate directly on the application object by setting its apr field to the
calculated interest rate value. The last set of rules clean up the working memory by retracting
all the existing objects.

The process simply adds a business rule task, using the above lines of code as its on entry
actions and settings its ruleflow-group attribute to apr-calculation so that Mortgage
Calculations rules execute.

www.redhat.com 64 refarch-feedback@redhat.com

Figure 5.4.7-1:

5.4.8 Qualify Borrower
While the lending risk is already reflected in the calculated interest rate, there are also cases
where the lender refuses to provide the applicant with a mortgage. One such case is the
front-end ratio for the mortgage application exceeds the 28% threshold.

Calculating the front-end ratio is a simple matter of determining the monthly mortgage
payment (this process ignores other housing costs) and dividing it by the applicant's income.
This requires relatively simple arithmetics that is not a natural fit for a rule engine. For
simplicity, this calculation can be performed in a script task.

Create a process variable called borrowerQualified of the standard type of Boolean. The
script task will set this boolean variable to true or false, indicating whether the applicant is
qualified for the mortgage based on the APR and front-end ratio.

Create a Script Task called Qualify Borrower and use the following code snippet as its Script:

System.out.println("Qualify Borrower");
double monthlyRate = application.getApr() / 1200;
double tempDouble = Math.pow(

1+monthlyRate, application.getAmortization() * 12);
tempDouble = tempDouble / (tempDouble - 1);
tempDouble = tempDouble * monthlyRate * application.getMortgageAmount();
System.out.println("Monthly Payment: " + tempDouble);
boolean qualified =

(application.getApplicant().getIncome() / 12 * 0.28 > tempDouble);

kcontext.setVariable("borrowerQualified", Boolean.valueOf(qualified));

Place the new script task after the mortgage calculation business rules:

refarch-feedback@redhat.com 65 www.redhat.com

Figure 5.4.8-1:

5.4.9 Increase Down Payment
In an effort to avoid losing a business opportunity, the process explores alternative ways to
qualify the mortgage applicant. One simple solution is to request a larger down payment.

Create a diverging XOR gateway after (preferably above) the Qualify Borrower script node.
From this gateway, create two distinct sequence flows to handle the cases where the
borrower may have been qualified or not qualified based on the monthly payment calculation.

Draw a sequence flow to the right and attach it to following nodes, at this point a node that
simply prints out the application object and continues to terminate the process. Name this
sequence flow Qualified and set a Java condition expression to verify that the
borrowerQualified process variable is true:

Create a user task node on the left side of this gateway and draw a second sequence flow to
it. Call this new sequence flow Not Qualified and set the condition expression language to
Java again. The condition expression should look for borrowQualified to be false this time:

return borrowerQualified.booleanValue() == false;

www.redhat.com 66 refarch-feedback@redhat.com

Figure 5.4.9-1:

The new user task will allow the business to contact the applicant and request a larger down
payment to avoid declining the mortgage application. Once again, the task is assigned to the
broker group and the input and output variables are taskIntputApplication and
taskOutputApplication, which are both mapped to the application process variable. The task
form for the Increase Down Payment task uses the application object to render the required
data on the screen and updates the downPayment field of its output application variable

Once the down payment has been revised, mortgage calculations need to be renewed to
determine if the applicant is now qualified. Create a new converging gateway between the
credit report and mortgage calculations nodes to allow the process to join that flow and create
a new loop to potentially continually revise the down payment amount upwards until the
mortgage is qualified.

While the loop allows the down payment to be increased continually without setting an
arbitrary restriction on the number of loops, it also effectively removes the possibility of not
qualifying a mortgage application. In other words, any application that is not qualified results
in an infinite number of attempts to increase the down payment, even if the applicant is
neither willing or able to do so.

A simple solution is to inspect the down payment and detect whether it has in fact been
increased. Once the task fails to increase the down payment, a separate path may be taken
to avoid an infinite loop scenario. To detect an increase in the down payment create a new
process variable of standard type Integer and call it downPayment. On entry to the user task
to increase down payment, add a new action that sets this process variable to the down
payment value before its potential update by the user:

kcontext.setVariable("downPayment", application.getDownPayment());

Now that a different path can be taken for a mortgage that cannot be qualified, it would also
be better process design to provide two distinct paths of mortgage approval and denial which
would include two separate termination flows for the process.

refarch-feedback@redhat.com 67 www.redhat.com

Figure 5.4.9-2:

Instead of immediately merging back into the main process flow, place a diverging XOR
gateway after the user task to increase down payment. Create two outgoing sequence flows
from this new gateway, where one merges back into the main process flow and gets back into
the loop, but the other goes to a new script task node called Deny Mortgage and a new End
Event after that. For the sake of consistency, also rename the previously created printing
script task to Approve Mortgage.

The choice of sequence flow is based on whether the down payment was in fact increased or
not. Accordingly, name the two sequence flows Yes and No. Use a Java condition expression
that compares the previously recorded value of the down payment with its potentially updated
value:

This way, the loop continues while the applicant increases the down payment and repeated
as long as it's not enough to qualify them, or until such point that the applicant declines to
raise the down payment amount any further.

www.redhat.com 68 refarch-feedback@redhat.com

Figure 5.4.9-3:

5.4.10 Financial Review
While the business process frequently solicits input from users, all the decisions so far have
been automated. It is common for most business processes to have some sort of manual
override. In this example, a manager may have the authority to approve a mortgage
application that does not meet the standard criteria. As a last resort before declining the
application, provide a user task form assigned to the manager group that allows a manager to
approve the mortgage.

Create a variable called brokerOverride of the standard type of boolean. Once again map the
application process variable to taskInputApplication, used by the task form, designed as
instructed in the section on the Financial Review form, but this time allow the output to only be
a boolean variable called brokerOverrideTaskOutput that maps back to brokerOverride.

Use this final decision in a diverging XOR gateway to decide whether to still proceed to
decline the mortgage, or to approve it. Approving it means another converging gateway to
merge the approval resulting from regular qualification with that of the manual override:

refarch-feedback@redhat.com 69 www.redhat.com

Figure 5.4.10-1:

5.4.11 Appraisal
Notice that up to this point, mortgage calculations have been based on the down payment as
a ratio of the transaction price. One missing important step in this process is the appraisal of
the property.

Property appraisal can be costly, so a well-designed business process delays incurring such a
cost until other factors have all been taken into account. For this reason, the process adds the
appraisal task as a last step before approving the mortgage.

However, appraisal does not act in a silo and much like most other steps of the business
process, it can also result in a loop that affects other decisions. For example an applicant may
easily qualify but the property maybe appraised at a lower value than the sale price. This
necessitates a new round of calculation and as a result, the applicant may no longer qualify
and need to increase the provided down payment. It may also be that the application had only
been approved based on a higher down payment and/or a manager's override, but the
appraisal throws an additional wrinkle into the mix, requiring yet further increases in the down
payment amount or a renewed managerial override.

Fortunately, tying this additional requirement into the process is not complicated. The
modularity of BPM and rules allow us to add this additional step with relative ease.

Creating a new diverging XOR gateway before Approve Mortgage. For better modeling
readability, give this gateway a name of “Appraised?” and then create a Yes sequence flow
that connects to a converging gateway and approves the mortgage afterwards. To check and
see if the property has already been appraised, simply verify that the appraisal field of the
application variable is not null:

www.redhat.com 70 refarch-feedback@redhat.com

Figure 5.4.11-1:

The No sequence flow goes to a new user task called Appraisal, with a task form designed as
described in the corresponding section, the Appraisal form. The appraisal task is assigned to
the appraiser group and simply takes the application as its input and updates it as its output.
The only part of the application that may be updated is the value field of the appraisal object
within application.

Once appraisal is performed, compare the appraised value with the sale price of the property:

return (application.getAppraisal().getValue() >=
application.getProperty().getPrice());

Place another diverging gateway after the appraisal task and creating two sequence flows
leaving it, Sufficient Appraisal if appraisal value is at least the sale price of the property, and
Low Appraisal if it is appraised at a lower price:

In the case of a low appraisal, mortgage calculations would need to be repeated and there is
a possibility that an otherwise qualified mortgage application would be declined unless there
is further down payment increases or a manager override.

Business rules are designed to take appraisals into account, as demonstrated in Figure 5.6.3-
7: Low Down Payment based on Appraisal Result.

refarch-feedback@redhat.com 71 www.redhat.com

Figure 5.4.11-2:

5.4.12 Swimlanes and Business Continuity
The mortgage application business process includes a total of five user tasks, with each being
assigned to a different group while Data Correction and Increase Down Payment are both
assigned to the same group. Assigning tasks to groups has the advantage of avoiding tight
coupling between individuals and business processes that may need attention outside that
individual's working hours. In this model, any member of a group of users is able to view all
assigned tasks and claim a task to work on. Further configuration makes it possible to notify
group members or make more advanced assignment decisions.

In a process like this where the same task may be executed multiple times, or even in a case
where a mortgage broker might need to contact the same customer once to correct data and
another time to request a higher down payment, there is great business value in having the
same group member handle both tasks.

Swimlanes allow a task to be assigned to a group, but to undergo assignment a single time
for each business process instance. In other words, once a task in a swimlane has been
claimed by an actor, all other instances of the same task or other tasks in the same swimlane
will automatically be assigned to that actor again for the lifetime of the process instance. This
avoids the situation where a user will have to deal with a different mortgage broker at each
turning point, for the same mortgage application.

The user tasks in this process are as follows. A single swimlane will be used for the two tasks
assigned to the broker group with a second swimlane used for the Financial Review task for
the manager.

User Task Name Group Assignment Swimlane

Data Correction broker yes

Increase Down Payment broker yes

Financial Review manager yes

Troubleshoot admin no

Appraisal appraiser no

Table 5.4.12-1: User Tasks, Swimlanes

www.redhat.com 72 refarch-feedback@redhat.com

To create a swimlane, open the Swimlanes group from the palette and drag and drop the
Lane onto the canvas. Resize the lane as appropriate to cover the two broker tasks and their
adjacent nodes. Double-click the lane to give it name; call the lane broker to make clear that
associated user activities will be performed by a member of the broker group.

By default, nodes are placed one on top of each other in the order in which they are placed in
the canvas. Based on this behavior, the swimlane node covers all the process activity as it is
placed and resized in the process. Select the lane and use the toolbar menu to send it to the
back. Resize the lane in a way that its borders are around the nodes, so that they remain
visible:

refarch-feedback@redhat.com 73 www.redhat.com

Figure 5.4.12-1:

5.4.13 Final Process Model
The final business process model is as follows:

www.redhat.com 74 refarch-feedback@redhat.com

Figure 5.4.13-1:

5.5 Forms

5.5.1 Process Form
While remote callers can use the REST API to start a new instance of the
MortgageApplication business process, users are also able to provide the same information
through a Business Central form.

The process requires an Application object, a custom type, which itself embeds other custom
types created in the data modeler. To be more precise, an Application object provided to the
process contains an Applicant and a Property object. The process form therefore also
embeds two subforms called MortgageApplicant and MortgageProperty. The naming pattern
serves to remind that these subforms are not generic forms used for the corresponding data
types, but rather created to represent the applicant and property fields of the application
object. For example, ApplicationApplicant does not include a field for creditScore, since
creditScore is not part of the input; it is calculated based on credit data that can be obtained
with the applicant's social security number.

5.5.1.1 Applicant subform
Create a new form called MortgageApplicant. Add a data origin item called applicant, to be
derived from a variable called applicant and also be mapped to the applicant variable upon
submission. The type of this data origin is com.redhat.bpms.examples.mortgage.Applicant.

Once the data origin is defined, go to add fields by origin and add the individual fields:

refarch-feedback@redhat.com 75 www.redhat.com

Figure 5.5.1-1:

Figure 5.5.1-2:

Edit each added field by hovering over them and clicking the pencil icon. The generated
values for each field are mostly sufficient but change the label to something more user
friendly:

Make sure to scroll all the way done and click the save button after editing a field.

Once all three fields have been added with a proper label, save the form and close it.

www.redhat.com 76 refarch-feedback@redhat.com

Figure 5.5.1-3:

Figure 5.5.1-4:

5.5.1.2 Property subform
Follow similar steps to create a subform called MortgageProperty with both the fields from
com.redhat.bpms.examples.mortgage.Property.

5.5.1.3 Process Form
When a process is started in Business Central, the expected process form name is derived
from the process ID. The easiest and least error-prone approach to creating a process form
with the correct name is to open the process and select to edit process form from the top
menu:

refarch-feedback@redhat.com 77 www.redhat.com

Figure 5.5.1-5:

Figure 5.5.1-6:

Add application as the only data origin for the process form:

Once again, go to add fields by origin to add the individual fields. Add applicant, property,
down payment and amortization respectively:

Those fields of application that are not of basic and primitive type cannot be directly mapped
to a field on the form. Edit each such fields and associate them with a previously created form
that corresponds to the data type.

www.redhat.com 78 refarch-feedback@redhat.com

Figure 5.5.1-7:

Figure 5.5.1-8:

Edit the applicant field. Set its label to the more user friendly value of Mortgage Applicant. The
field type should be simple subform. Selected the previously created Applicant subform as the
default form for this field. Scroll down to the bottom and click save to store the properties and
view the effect on the master form.

refarch-feedback@redhat.com 79 www.redhat.com

Figure 5.5.1-9:

Follow similar steps to use the Property subform for the property field and set proper labels
for down payment and amortization.

www.redhat.com 80 refarch-feedback@redhat.com

Figure 5.5.1-10:

5.5.2 Data Correction
The data correction task form is very similar to the process form. The biggest difference is that
the application variable is named differently for the task and there are in fact separate variable
names for application on its input to and output from the task:

Similar to the process form, go to add fields by origin to add the individual fields. Add
applicant, property, down payment and amortization respectively.

Edit each such field and set a proper label for them.

In the case of applicant and property, in additional to setting a user friendly label, also set the
corresponding previously created form as the default form of the field. Scroll down to the
bottom and click save to store the properties for each field, and view the effect on the master
form.

The final data correction form looks as follows:

refarch-feedback@redhat.com 81 www.redhat.com

Figure 5.5.2-1:

Figure 5.5.2-2:

5.5.3 Increase Down Payment
The task form to increase the down payment is very simple and consists of only four fields.

The sale price of the property is included, mostly as a reminder. The request to increase down
payment is always due to a rejection of the original mortgage application. In the regular turn of
event, the mortgage interest rate is calculated based on various factors and is in turn used to
derive the monthly payment. The mortgage may not qualify and a higher down payment
requested, simply because this calculated interest rate is too high. In another scenario, the
appraisal of the property may result in a value that is lower than the sale price.

Base on these two common causes, the mortgage apr and the appraisal value (if appraisal is
even performed yet) are presented as part of the task form.

These three fields (property price, appraisal value and mortgage APR) should be marked as
read-only so that they cannot be modified by the task.

The fourth and final field of this task form is the down payment itself, which may be updated
by the task.

Instead of using subforms, this task form directly navigates and references the values
corresponding to the form fields. The input binding values for property price, appraisal value
and mortgage APR respectively are taskInputApplication/property/price,
taskInputApplication/appraisal/value and taskInputApplication/apr. All three fields are marked
read-only and their output binding field is left blank.

Down payment has taskInputApplication/downPayment as its input binding and
taskOutputApplication/downPayment as its output binding.

www.redhat.com 82 refarch-feedback@redhat.com

Figure 5.5.3-1:

5.5.4 Financial Review
The financial review task form allows a manager to review a declined mortgage application
and potentially override the decision. The information displayed along with the task to enable
such a decision includes all the financial data pertaining to the mortgage application, including
both the data provided by the applicant and the rates and values computed by the process.
This includes Property Sale Price, Appraised Value, Down Payment, Amortization, Mortgage
APR, Credit Score and Annual Income. All of these fields are marked as read-only and much
like the Increase Down Payment task form, they are linked directly to the field nested within
the application object instead of using a subform.

The decision to override the process and approve the mortgage application is made through
this form through a simple checkbox that is mapped to a task variable in its output binding
expression. This boolean variable is mapped by the task to an equivalent process variable
which is used in a gateway to determine if the mortgage should be approved.

refarch-feedback@redhat.com 83 www.redhat.com

Figure 5.5.4-1:

5.5.5 Appraisal
The appraisal of the property happens only once in the process and is never updated.
Accordingly, the appraisal value has no input binding and starts as blank before being entered
into the task and updated within the appraisal field of the application object.

The appraisal field of the task may both be modeled as a simple field, or as a subform for the
custom appraisal type. Modeling a simple field is easier and faster to do, while the subform is
reusable and the associated extra effort pays off in terms of consistency and future ease of
use.

www.redhat.com 84 refarch-feedback@redhat.com

Figure 5.5.5-1:

5.6 Business Rules

5.6.1 Validation
To validate the correctness of supplied data as part of the mortgage application, write a
number of business rules using the web designer's guided rule editor.

For example, assume that this business does not offer mortgages for any properties with a
sale price that is lower than $50,000. To enforce this rule, create a new item of type guided
rule and call it Validate Property Price. Click the plus sign across from when to create the
condition for this rule. From the dialog that opens, select Property to declare the constraint on
the price field of the property:

refarch-feedback@redhat.com 85 www.redhat.com

Figure 5.6.1-1:

The guided rule will then include a numbered item for its condition, simply stating:

There is a property

To further refine the condition, click on this sentence to open a dialog and add a restriction on
the price field:

Use the drop-down to constrain price when less than a value; click the pencil icon and declare
the value to be a literal value and enter it as 50000.

www.redhat.com 86 refarch-feedback@redhat.com

Figure 5.6.1-2:

Now click the plus icon next to then, to create a consequence for this rule. From the dialog,
select to insert a ValidationError when the rule's conditions are met, which in this case means,
when the property price is less than 50,000:

refarch-feedback@redhat.com 87 www.redhat.com

Figure 5.6.1-3:

Once the action has been updated to reflect the selection, click on the phrase Insert
ValidationError to further configure the action. Select to add a cause field and set this field to
have a literal value that explains the validation error, for example: Property price too low

Next, click on (show options) and then click the corresponding plus icon to create a new
option. Choose the ruleflow-group attribute from the drop-down and set its value to validation:

Save this rule and enter a meaningful description for the purpose of the repository revision.
The ruleflow-group of this rule ties it to a business rule task node in the process and causes
the process engine to evaluate this rule when that node is reached. If the condition of the rule
it true, the rule is said to have fired, which means its consequence, also known as its action,
will be executed. In this case the action is to create a new instance of the ValidationError
class, set the value of its cause field to a descriptive message and insert the object in the
working memory. The XOR gateway in the process looks at the working memory to decide
which path to take.

www.redhat.com 88 refarch-feedback@redhat.com

Figure 5.6.1-4:

An example of a slightly more complicated rule is one that validates the amount of the down
payment but ensuring that it is not a negative number and also that it is not larger than the
sale price of the property itself.

For this purpose, create a rule called Validate Down Payment. Add a condition and select
Property as the constraint. Click on There is a Property and enter a variable name for this
constraint; for example: property.

Click the plus logo across from this new constraint which also has a down arrow
superimposed on it. This indicates that a new constraint will be added directly under the
constraint in question. This time declare the constraint to apply to Application. Further
configure the generated There is an Application constraint by clicking on it and choosing to
add a restriction on its downPayment field. Constrain any down payment that is less than the
literal value of 0 and then click the right arrow next to it to add more options to this constraint.
Select the option or greater than and use the Expression editor to select property.price.

When these conditions apply, then choose to Insert fact ValidationError with its cause field set
to: Down payment can't be negative or larger than property value

Once again, show options and add an option, setting the ruleflow-group attribute to validation
before saving and committing the rule to the repository.

Follow a similar pattern to create three more validation rules.

refarch-feedback@redhat.com 89 www.redhat.com

Figure 5.6.1-5:

Create another guided rule and call it Validate Income.

Add the constraint on the Applicant. Add a restriction on the income field of the applicant and
look for an income that is less than 10000.

Once again, create a corresponding validation error with an appropriate cause description:

Income too low

Remember to add a ruleflow-group attribute to the rule and set it to validation.

www.redhat.com 90 refarch-feedback@redhat.com

Figure 5.6.1-6:

Next, create a guided rule and call it Validate SSN. This will be a simple validation to make
sure that the provided social security number is nine digits long and does not start with a zero.
A more comprehensive validation is possible by following the guidelines of the Social Security
Administration.

Add the constraint on the Applicant. Add a restriction on the ssn field of the applicant and look
for any number that is either less than 100000000 or greater than 999999999.

Create a corresponding validation error with an appropriate cause description:

Invalid Social Security Number

Add a ruleflow-group attribute to the rule and set it to validation.

refarch-feedback@redhat.com 91 www.redhat.com

Figure 5.6.1-7:

Finally, create the last validation rule and call it Validate Amortization. Assume that only fixed-
rate mortgages of 10, 15 and 30 years are provided by this business. Any amortization value
other than these three would therefore be rejected.

Add the constraint on the Application. Add a restriction on the amortization field of the
application and make the rule applicable if the amortization:

is not contained in the (comma separated) list

Provide of list of the acceptable amortization values: 10, 15, 30.

Create a corresponding validation error with an appropriate cause description:

Amortization can only be 10, 15 or 30 years

Add a ruleflow-group attribute to the rule and set it to validation.

Given the possibility that processes may run in a single knowledge session in a single-
threaded model, it is important for the rules to clean up after themselves. In this case, the last
set of rules would proceed to remove the Application, Applicant and Property objects that
have been inserted for the express reason of validation. A negative salience attribute is
employed on the rules to ensure that they don't execute before the actual validation rules.

www.redhat.com 92 refarch-feedback@redhat.com

Figure 5.6.1-8:

Create a new DRL file as a new item in the package and call it: Retract Facts After Validation

Write rules that simply seek and remove any facts of these known types:

package com.redhat.bpms.examples.mortgage;

rule "Retract Applicant after Validation"
dialect "mvel"
ruleflow-group "validation"
salience -10
when

fact : Applicant()
then

retract(fact);
System.out.println("Executed Rule: " +

drools.getRule().getName());
end

rule "Retract Application after Validation"
dialect "mvel"
ruleflow-group "validation"
salience -10
when

fact : Application()
then

retract(fact);
System.out.println("Executed Rule: " +

drools.getRule().getName());
end

rule "Retract Appraisal after Validation"
dialect "mvel"
ruleflow-group "validation"
salience -10
when

fact : Appraisal()
then

retract(fact);
System.out.println("Executed Rule: " +

drools.getRule().getName());
end

rule "Retract Property after Validation"
dialect "mvel"
ruleflow-group "validation"
salience -10
when

fact : Property()
then

retract(fact);
System.out.println("Executed Rule: " +

drools.getRule().getName());
end

refarch-feedback@redhat.com 93 www.redhat.com

5.6.2 Reset Validation
Once a validation error has been raised, the process enters a loop of data correction and
validation, until such time that the data is deemed completely valid. Errors are signaled by
inserting a ValidationError object in the rule engine's working memory. This object is used by
the XOR gateway to determine if data correction is necessary, but immediately after such a
determination, the error object must be removed so that the next validation can take place
with a clean slate.

To reset validation, write a simple guided rule that looks for the ValidationError object and
removes it. Associate this rule with the business rule task in the process by specifying the
correct ruleflow group.

www.redhat.com 94 refarch-feedback@redhat.com

Figure 5.6.2-1:

5.6.3 Mortgage Calculations
This simplified business model prices a mortgage by first calculating a minimum interest rate,
based on only the length of the fixed-term mortgage (i.e., APR) and the applicant's credit
score. This is followed by a look at the down payment ratio and the APR is adjusted upward if
less than 20% is provided. Finally, jumbo mortgages are identified and result in yet another
potential increase in the mortgage APR.

Calculating the interest rate based on credit score and amortization is a natural tabular format
and a great fit for a decision table. Create a guided decision table as a new item and call it
Mortgage Calculation. Select to use the wizard and proceed to the next step. There is no
need to import any Java types so once again, click next.

Choose Applicant and Application as the two fact patterns to use, as they hold the applicant's
credit score and selected amortization respectively.

refarch-feedback@redhat.com 95 www.redhat.com

Figure 5.6.3-1:

In the next step, select each pattern, a field for that pattern and then create a constraint for
that give field of the selected pattern.

Credit scores are considered in brackets so to designate a bracket, two separate constraints
are required for the credit score where one defines the acceptable lower bound and the other,
the upper bound.

Select Applicant and then creditScore, as its field. Click on the created condition template and
complete it by declaring a column header of Credit Score >= to indicate that the provided
values in the table are the lower bound. Set the operator to greater than or equal to. Set the
value list based on credit score brackets: ,660,680,700,720,740

The creating table allows an analyst to easily create or update rules. By providing a value list,
the application limits the credit score brackets to know values and generate a drop-down
instead of a free-form text field. The preceding comma allows a blank value in the drop-down,
which, when used, is equivalent to not specifying a lower bound for the credit score:

Select the creditScore field once again and click the double right arrow to add another
condition based on this same field. This time the condition sets the upper bound value for the
applicant’s credit score. Name the column header Credit Score < this time and choose the
operator of less than. Use the same value list again to allow empty values.

Next, select the amortization field of Application and add a condition based on this field. Call
the column header Fixed Mortgage Term and use the equal to operator. Set the value list to
only allow acceptable amortizations: 10, 15, 30.

www.redhat.com 96 refarch-feedback@redhat.com

Figure 5.6.3-2:

Click next to set the action corresponding with the condition. Selection Application as the
pattern and then apr as its field. Click on the created action template under Chosen fields and
enter the column header as Mortgage APR.

Skip the remaining steps, as there is no need to insert any facts and the columns may be left
expanded.

refarch-feedback@redhat.com 97 www.redhat.com

Figure 5.6.3-3:

Once the table is created, an important step is to set its ruleflow-group attribute to apr-
calculation so that it is associated with the corresponding business rule task in the process.
To do this, expand the decision table configuration by clicking the plus sign and select to add
a new column. Choose the following option:

Add a new Metadata\Attribute column

This action creates the attribute group under options. Expand options and enter the ruleflow
group as the default attribute for all table rows:

Selecting the checkbox to hide the column helps shield rule analysts from technical details
that are not directly relevant to the rules or the business requirements.

www.redhat.com 98 refarch-feedback@redhat.com

Figure 5.6.3-4:

Fill out the decision table so that a mortgage APR is provided for each bracket of credit scores
for any given amortization (only 10, 15 and 30).

Save the guided decision table and provide a meaningful description for its repository
revision.

refarch-feedback@redhat.com 99 www.redhat.com

Figure 5.6.3-5:

After calculating the base interest rate for a given credit score and amortization, the
immediate next step in the calculation is to consider the down payment. The base interest
rate assumes an industry-standard down payment of twenty percent. Anything below that
results in a higher interest rate.

Mortgage calculation takes place before appraisal to avoid the unnecessary cost of property
appraisal for an applicant that is not otherwise qualified. However even if the application
appears to qualify, property appraisal may result in an assessment of a property value that is
significantly lower than the transaction price. Such an assessment may impact the down
payment ratio and require a renewed calculation, this time based on the appraised value of
the property.

Create two separate rules to cover the evaluation of the down payment in the two separate
cases of before and after appraisal.

Call the first guided rule as follows: Low Down Payment before Appraisal

To create this rule as shown above, set the first constraint to: The following does not exist

Proceed to click on the generated phrase and select Appraisal the fact type. This composite
constraint states that this rule is only applicable if an appraisal has not yet been performed.

Click the plus icon again to create a new pattern and select Property, then configuring it to
have a variable name of property so that it can be referenced in the consequence of the rule.

Create a third pattern for Application and set a restriction on its mortgageAmount field to be
greater than the following formula: property.price * 8 / 10

www.redhat.com 100 refarch-feedback@redhat.com

Figure 5.6.3-6:

If the mortgage amount is greater than 80% of the property price, it follows that the down
payment has been less than 20% of the total price.

Show options and add the ruleflow-group attribute, setting it to apr-calculation.

Also add the salience attribute and give it a value of -3. This ensures that the base APR
calculation rules in the decision table, with a default salience of 0, have already executed
before this rule.

Finally, add the no-loop attribute and check the corresponding box. This attribute avoids an
infinite rule where the update of the application by this rule, through an APR surcharge, may
trick the rule engine into thinking that something has changed and this rule must be
reevaluated. In the case of this particular rule, it is nothing but a safety precaution.

The action of this rule is more complicated than any previous one. The guided rule facilities
make it easy to author and update rules but are often not appropriate for more difficult
technical syntax. Luckily, adding free-form drl is directly supported in the guided rule editor.

Enter the following DRL as the first part of this rule's consequence:

double ratio = application.getMortgageAmount().doubleValue() /
property.getPrice().doubleValue();

int brackets = (int)((ratio - 0.8) / 0.05);
brackets++;
double aprSurcharge = 0.75 * brackets;

At this point, with the rule executing, it is known that the ratio of the mortgage amount to the
total property sale price is higher than 80% but this first line calculates this ratio.

While any ratio greater than 0.8 (as is certainly the case here) triggers an APR surcharge, the
amount of the surcharge is constant for every little bracket of five percent. A ratio between
80% and 85% triggers an APR surcharge of 0.75 while the next bracket, between 85% and
90%, doubles the surcharge. The bracket number is calculated above and reindexed to 1
before being multiplied by 0.75 to determine the exact applicable surcharge.

Finally, add a second action to: Change field values of application...

Select the apr field and set it to the following formula: application.getApr() + aprSurcharge

refarch-feedback@redhat.com 101 www.redhat.com

Evaluating the sufficiency of the down payment after an appraisal is very similar. This is only
necessary if the appraisal has resulted in an assessment of a value for the property that is
lower than the sale price. In this case, the mortgage amount remain the same (down payment
subtracted from the sale price) but it needs to be lower than 80% of the appraised value. In
other words, it is being divided by a smaller denominator.

The rule is otherwise similar:

www.redhat.com 102 refarch-feedback@redhat.com

Figure 5.6.3-7:

The next potential adjustment to the calculated mortgage interest rate concerns jumbo loans.
For simplicity, this business entity assumes a uniform conforming loan threshold of $417,000.
Any mortgage amount above this threshold is considered a jumbo loan and subject to an APR
surcharge of 0.5.

This rule is give a salience of -5 and applied after potential down payment surcharges.

Once again, the no-loop attribute has been added and selected as a precaution.

refarch-feedback@redhat.com 103 www.redhat.com

Figure 5.6.3-8:

As was the case with validation, it is also important here for the rules to clean up after
themselves. Create a new DRL and call it: Retract Facts After Calculation

The rules to find and retract the fact types are almost identical:

package com.redhat.bpms.examples.mortgage;

rule "Retract Applicant after Calculation"
dialect "mvel"
ruleflow-group "apr-calculation"
salience -10
when

fact : Applicant()
then

retract(fact);
System.out.println("Executed Rule: " +

drools.getRule().getName());
end

rule "Retract Application after Calculation"
dialect "mvel"
ruleflow-group "apr-calculation"
salience -10
when

fact : Application()
then

retract(fact);
System.out.println("Executed Rule: " +

drools.getRule().getName());
end

rule "Retract Appraisal after Calculation"
dialect "mvel"
ruleflow-group "apr-calculation"
salience -10
when

fact : Appraisal()
then

retract(fact);
System.out.println("Executed Rule: " +

drools.getRule().getName());
end

rule "Retract Property after Calculation"
dialect "mvel"
ruleflow-group "apr-calculation"
salience -10
when

fact : Property()
then

retract(fact);
System.out.println("Executed Rule: " +

drools.getRule().getName());
end

www.redhat.com 104 refarch-feedback@redhat.com

5.7 Credit Report Web Service
For the purpose of this reference architecture where the focus is on the BPM Suite, assume
that an external web service provides the required information on the credit worthiness of
mortgage application.

For the sake of simplicity, create a basic Web Service that takes an applicant's social security
number as its only input and returns their Credit Score as the result.

Creating a simple Web Service using JSR-18122 and JSR-22423 requires a simple Web
Application with an empty web.xml file and an annotated Java class:

package com.redhat.bpms.examples.mortgage;

import javax.jws.WebMethod;
import javax.jws.WebService;

@WebService
public class CreditService
{

@WebMethod
public Integer getCreditScore(Integer ssn)
{

int lastDigit = ssn - 10 * (ssn / 10);
int score = 600 + (lastDigit * 20);
System.out.println("For ssn " + ssn + ", will return credit score

of " + score);
return score;

}
}

This class simply uses the last digit of the social security number to mock up a credit score.
The web deployment descriptor remains empty:

<?xml version="1.0" encoding="UTF-8"?>
<web-app version="3.0" xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd">

</web-app>

Assuming that these two files are deployed in a standard web application structure and
deployed as jboss-mortgage-demo-ws.war on a local service, the following address would be
used to access this service:

http://localhost:8080/jboss-mortgage-demo-ws/CreditService?WSDL

22 https://jcp.org/en/jsr/detail?id=181
23 https://jcp.org/en/jsr/detail?id=224

refarch-feedback@redhat.com 105 www.redhat.com

http://localhost:8080/jboss-mortgage-demo-ws/CreditService?WSDL
https://jcp.org/en/jsr/detail?id=224
https://jcp.org/en/jsr/detail?id=181

6 Life Cycle

6.1 Asset Repository Interaction
Business Central uses Git as the implementation of its asset repository. In BPMS 6, this is
implemented as a simply file-based Git repository in a hidden folder. Users are advised not to
directly interact with this file-based repository.

When running, Business Central provides access to its repository through both the git:// and
ssh:// protocols. While either protocol may be used to retrieve (i.e., pull) data from the
repository, adding or updating data (i.e., push) is only possible through authenticated SSH to
ensure security. The credentials used to log in to Business Central may also be used to
authenticate with the asset repository through SSH.

When a design-time cluster is set up, the asset repositories of the cluster nodes are
synchronized by ZooKeeper. This means that data may be pull from or even pushed to any
single node while relying on the cluster to replicate the changes across the available nodes.

6.2 JBoss Developer Studio
While this reference architecture uses the web tooling and process designer to create the
sample mortgage application, software developers will often benefit from a Java IDE with
better development support and integration with other Java and non-Java technology.

JBoss Developer Studio is based on Eclipse and available from the Red Hat customer
support portal. JBDS provides plugins with tools and interfaces for JBoss BRMS and BPMS,
called the Drools plugin and the jBPM plugin respectively.

One of the plugins that is included in JBDS is the eclipse Git plugin. This plugin can be used
to synchronize the content of the JBDS workspace with the asset repository of BPMS.

To set up a BPMS project in JBDS, after it has been created in the web designer environment,
use Import and select Projects from Git. Select the option to Clone URI. Copy and paste the
ssh URL for the repository in question into the URI field of the JDBS cloning dialog. This URL
can be found in the Authoring / Administration page of Business Central, after changing it
from the default of git to ssh. Depending on the IP address of the BPMS server in question,
the user name used to access Business Central and the configured ssh port, this URL will be
similar to the following:

ssh://10.16.139.101:8003/Mortgage

Pasting into the URI field automatically fills out the various fields including Host, Repository
Path, Protocol and Port. Also fill in the user name and password configured to access
Business Central; credentials are required when using the ssh protocol and allow additions
and modifications to be pushed back to the server.

www.redhat.com 106 refarch-feedback@redhat.com

The completed dialog for the reference environment looks as follows:

Select Next to move forward to the next dialog. JBoss BPM Suite 6.0 uses the default master
branch in its asset repository so this is typically the one and only branch that will be presented
and selected at the next step. The third step is to select a local branch, also typically assigned
to master, and a remote name which is set to origin by convention. In this step, select a local
directory that will host the local copy of the repository. This is where the JBDS project will be
stored.

Clicking Next after selecting the local destination opens the import project wizard selection.
Select the last option to import the repository as a general project. The structure of the BPMS
asset repository does not fit the expected structure of a jBPM project. This is remedied later
by opening a jBPM file and when prompted, converting the project into a jBPM project. At this
point, continue to select a descriptive local project name and finish the import process.24

Once a JBDS project has been set up as a clone of a BPMS asset repository, it acts like any
other project that uses Git as source control. Changes can be made and committed locally
and when ready, those changes can be pushed upstream to the asset repository. Similarly,
changes made through the web tools can be retrieved by pulling from the remote repository.

JBoss BPM Suite 6.0 only uses the master branch of Git but developers may still take
advantage of other branching and tagging features through third-party tooling. This can take
place when working with a clone in JBDS or when otherwise interacting with the asset
repository, as long as Business Central only deals with the master branch.

24 https://access.redhat.com/site/documentation/en-
US/Red_Hat_JBoss_BPM_Suite/6.0/html/Getting_Started_Guide/Connecting_JBoss_Developer_Studio_to_t
he_Asset_Repository1.html

refarch-feedback@redhat.com 107 www.redhat.com

Figure 6.2-1:

https://access.redhat.com/site/documentation/en-US/Red_Hat_JBoss_BPM_Suite/6.0/html/Getting_Started_Guide/Connecting_JBoss_Developer_Studio_to_the_Asset_Repository1.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_JBoss_BPM_Suite/6.0/html/Getting_Started_Guide/Connecting_JBoss_Developer_Studio_to_the_Asset_Repository1.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_JBoss_BPM_Suite/6.0/html/Getting_Started_Guide/Connecting_JBoss_Developer_Studio_to_the_Asset_Repository1.html

6.3 Process Simulation
Business process simulation is a valuable analytic instrument for the purpose of assessing
the behavior of business processes over time. This can help estimate the number of external
calls, plan for human resources to handle the user tasks and otherwise assist in sizing and
estimating technical and business aspects of the process.

In the web process designer, make sure to validate the process, view all issues and correct
them before proceeding to process simulation.

From the toolbar of the web process designer, open the process simulation menu item and
selected Process Paths:

This brings up a dialog that shows all the possible process paths, as calculated for this
process. The number of paths depends on the number of decision points and the potential
complexity of the process. For this process, you may see around 42 different paths
calculated. Select a path and click the Show Path button to see it in the process designer:

www.redhat.com 108 refarch-feedback@redhat.com

Figure 6.3-1:

Figure 6.3-2:

Before running process simulation, various simulation properties need to be set up for the
business process. This includes a probability value for each sequence flow that leaves a
diverging gateway. As logically expected, the sum of probability values for all sequence flows
leaving any given diverging gateway should always be 100. If this sum is not 100, validation
will show a validation issue of type simulation to warn the user of the problem and prompt its
correction.

Other simulation properties include the cost of executing a node per time unit, the minimum
and maximum processing time that's envisioned for a node and how it may be distributed. For
user tasks, staff availability and the number of working hours also effect process simulation.

For the boundary event of this mortgage process, the probability relates to the chances that
an error would occur when calling the web service. In this case there are no multiple outgoing
paths that must add up to 100.

From the same drop-down menu, select Run Process Simulation, enter the number of
process instances to create and the interval at which they will be created in the desired time
unit. Running simulation on the mortgage process for 200 instances with one instance started
every 5 minutes generated a report such as the following:

refarch-feedback@redhat.com 109 www.redhat.com

Figure 6.3-3:

6.4 Business Activity Monitoring
The Dashbuilder application included in BPM Suite 6 allows the creation of reports, panels,
pages and entire workspaces for the purpose of Business Activity Monitoring. The BPMS
database is set up as a source of data by default but other external data sources may also be
defined and added.

Business Central includes links to both Business Dashboards and the Process & Task
Dashboard. These links redirect the browser to the jBPM dashboard of the Dashbuilder
application. The jBPM dashboard is preconfigured with sample reports on BPMS processes
and tasks by running queries against the BPMS database.

Start the mortgage process multiple times and use various users to claim the tasks that get
created. Undeploy the credit web service for a number of process instantiations to create a
number of Troubleshoot tasks. Then proceed to log in to Business Central as different users
and claim the tasks to generate a more meaningful report:

www.redhat.com 110 refarch-feedback@redhat.com

Figure 6.4-1:

6.5 Governance
Red Hat provides an implementation of the SOA Repository Artifact Model and
Protocol (S-RAMP) specification by OASIS.25 The specification and the implemented
product can provide design-time governance for BPMS.

To use Red Hat JBoss S-RAMP Repository, download the separately provided Red Hat
JBoss S-RAMP Repository 6.0.0 Installer from the Red Hat Customer Support Portal.26

While S-RAMP Repository is a core component of JBoss Fuse Service Works, it is also
an entitlement provided for BPM Suite 6 and used for design-time governance with BPMS.
For complete documentation of this component, refer to the Design Time Governance section
of the JBoss FSW documentation.27

While the JBoss S-RAMP Repository may be configured to share the same Maven Repository
with BPMS and therefore be aware of built artifacts, no integration is provided between the
Git-based asset repository used in BPMS and S-RAMP in BPM Suite 6.0. To govern individual
assets used in BPMS, manually upload the assets to S-RAMP. The S-RAMP repository
provides a user-friendly interface, a REST API and a command-line interface that can all be
used to create a manual or semi-automatic process for managing the BPMS asset repository
content. Better integration with design-time governance is left to future versions of JBoss
BPM Suite.

Governance workflows can be defined and implemented as BPMN 2.0 processes. This is
achieved by configuring a query that detects interesting changes in the governance repository
and triggers the deployed business process.28

6.6 Process Execution
While the simplest way to run a process is through Business Central, several alternative
methods have been provided to accommodate various client requirements.

6.6.1 Business Central
Business Central provides a unified environment for design and development as well as
execution and monitoring of business processes. The form designer helps create process
forms that can instantiate a process while collecting the required initial information from the
user. Forms that have been created with this tool are automatically associated with the
process through a naming convention and any future attempt to run the process from
Business Central renders the form and uses it to populate the process variables.

25 https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=s-ramp
26 https://access.redhat.com/jbossnetwork/restricted/softwareDetail.html?

softwareId=27873&product=bpm.suite&version=&downloadType=distributions
27 https://access.redhat.com/site/documentation/en-

US/Red_Hat_JBoss_Fuse_Service_Works/6/html/Development_Guide_Volume_3_Governance/chap-
Design-Time_Governance.html

28 https://access.redhat.com/site/documentation/en-
US/Red_Hat_JBoss_Fuse_Service_Works/6/html/Development_Guide_Volume_3_Governance/chap-
Design-Time_Governance.html#sect-Governance_Workflows

refarch-feedback@redhat.com 111 www.redhat.com

https://access.redhat.com/site/documentation/en-US/Red_Hat_JBoss_Fuse_Service_Works/6/html/Development_Guide_Volume_3_Governance/chap-Design-Time_Governance.html#sect-Governance_Workflows
https://access.redhat.com/site/documentation/en-US/Red_Hat_JBoss_Fuse_Service_Works/6/html/Development_Guide_Volume_3_Governance/chap-Design-Time_Governance.html#sect-Governance_Workflows
https://access.redhat.com/site/documentation/en-US/Red_Hat_JBoss_Fuse_Service_Works/6/html/Development_Guide_Volume_3_Governance/chap-Design-Time_Governance.html#sect-Governance_Workflows
https://access.redhat.com/site/documentation/en-US/Red_Hat_JBoss_Fuse_Service_Works/6/html/Development_Guide_Volume_3_Governance/chap-Design-Time_Governance.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_JBoss_Fuse_Service_Works/6/html/Development_Guide_Volume_3_Governance/chap-Design-Time_Governance.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_JBoss_Fuse_Service_Works/6/html/Development_Guide_Volume_3_Governance/chap-Design-Time_Governance.html
https://access.redhat.com/jbossnetwork/restricted/softwareDetail.html?softwareId=27873&product=bpm.suite&version=&downloadType=distributions
https://access.redhat.com/jbossnetwork/restricted/softwareDetail.html?softwareId=27873&product=bpm.suite&version=&downloadType=distributions
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=s-ramp

6.6.2 Remote Client
Business Central also provides a REST server that can be used to start and interact with
processes from a remote client. The client is deemed logically remote as it only interacts with
the process through XML or JSON data sent through HTTP or JMS. This does not preclude
the client application from physically residing in the same JVM or even being bundled in the
same Web Application as Business Central.

The URL for sending REST / HTTP calls to Business Central always includes a static part that
can be called the application context, which locates the server and the web application
deployment. For a local default installation, the application context may be
http://localhost:8080/business-central. This is always followed by /rest, which is the sub-
context for REST calls. All requests need to be authenticated calls. What follows that varies
and depends on the type of call and the deployment and process that is being targeted.

6.6.2.1 Simple Process Calls
Simple process calls allow callers to start a new process instance, signal a waiting process,
abort a running process, retrieve information about process variables or otherwise interact
with a running process instance.

These calls either use simple HTTP GET methods or require HTTP POST methods that
accept both JSON and XML as input.

For example, a process may be started through an HTTP POST call to the following URL:

/runtime/{deploymentId}/process/{procDefID}/start

For the BPMS example application running on a local default installation:

http://localhost:8080/business-
central/rest/runtime/com.redhat.bpms.examples:mortgage:1/process/com.redhat.bpms.examp
les.mortgage.MortgageApplication/start

If any process variables are expected when the process is started, they should be provided as
query parameters. To represent a map, submit each key-value pair of the map as a separate
query parameter which suffixing the key with “map_”. For example, to pass a map of process
variables with two entries where one sets the process variable name to John and the other
sets the process variable age to 30, provide the following query parameters:

.../start?map_name=John&map_age=30

A simpler example is a REST call to retrieve basic information about a running process
instance. This is achieved through an HTTP GET call to the following URL:

/runtime/{deploymentId}/process/instance/{procInstanceID}

For the BPMS example application running on a local default installation, to query the first
process instance that was created, this URL would look as follows:

http://localhost:8080/business-
central/rest/runtime/com.redhat.bpms.examples:mortgage:1/process/instance/1

Note that this only queries the runtime, which excludes any process that has reached a wait
state (user task, async callback, etc). Use History Calls for more complete information.

www.redhat.com 112 refarch-feedback@redhat.com

http://localhost:8080/business-central/rest/runtime/com.redhat.bpms.examples:mortgage:1/process/instance/1
http://localhost:8080/business-central/rest/runtime/com.redhat.bpms.examples:mortgage:1/process/instance/1
http://localhost:8080/business-central/rest/runtime/com.redhat.bpms.examples:mortgage:1/process/com.redhat.bpms.examples.mortgage.MortgageApplication/start
http://localhost:8080/business-central/rest/runtime/com.redhat.bpms.examples:mortgage:1/process/com.redhat.bpms.examples.mortgage.MortgageApplication/start
http://localhost:8080/business-central/rest/runtime/com.redhat.bpms.examples:mortgage:1/process/com.redhat.bpms.examples.mortgage.MortgageApplication/start
http://localhost:8080/business-central

6.6.2.2 Simple Task Calls
Simple task calls allow callers to manage the lifecycle of a task by claiming it, releasing it,
forwarding it, skipping it or otherwise managing or altering its assignment and lifecycle.

Simple task calls also query the task content and data, as well as complete a task while
assigning required variables to the task.

These calls either use simple HTTP GET methods or require HTTP POST methods that
accept both JSON and XML as input.

For example, a task content may be retrieved through an HTTP GET call to the following
URL:

/task/content/{contentID}

For the BPMS example application running on a local default installation, to retrieve the
details of task 1, this URL would look as follows:

http://localhost:8080/business-central/rest/task/1/

To claim this task for a given user, make an HTTP POST call to the following URL:

http://localhost:8080/business-central/rest/task/1/claim

The next step, according to the task lifecycle, would be to start work on the task on behalf of
the user. This, again, is simply a matter of making an HTTP POST call to the following URL:

http://localhost:8080/business-central/rest/task/1/start

Finally, the task may be completed by making a call to:

http://localhost:8080/business-central/rest/task/1/complete

If any variables are expected when the task is completed, they should be provided as query
parameters. To represent a map in HTTP calls, submit each key-value pair of the map as a
separate query parameter which suffixing the key with “map_”. For example, to pass a map of
process variables with two entries where one sets the process variable name to John and the
other sets the process variable age to 30, provide the following query parameters:

.../complete?map_name=John&map_age=30

6.6.2.3 History Calls
To access the audit log and retrieve historical process and task information, issue simple GET
commands to the history API.

For example, for an overview of all the process instances of the MortgageApplication process,
send an HTTP GET query without any parameters as follows:

http://localhost:8080/business-
central/rest/history/process/com.redhat.bpms.examples.mortgage.MortgageApplication

To get information on a specific process instance, use the process instance ID, for example:

http://localhost:8080/business-central/rest/history/instance/1

To retrieve the variable values of this process:

refarch-feedback@redhat.com 113 www.redhat.com

http://localhost:8080/business-central/rest/history/instance/1
http://localhost:8080/business-central/rest/history/process/com.redhat.bpms.examples.mortgage.MortgageApplication
http://localhost:8080/business-central/rest/history/process/com.redhat.bpms.examples.mortgage.MortgageApplication
http://localhost:8080/business-central/rest/task/1/complete
http://localhost:8080/business-central/rest/task/1/start
http://localhost:8080/business-central/rest/task/1/claim
http://localhost:8080/business-central/rest/task/1/

http://localhost:8080/business-central/rest/history/instance/1/variable

This can be further narrowed down to investigate how the value of a particular process
variable changed over time. For example, to inquire about the application variable of this
process, use the following query:

http://localhost:8080/business-central/rest/history/instance/1/variable/application

To view the value of the application in all process instances of all process definitions in this
deployment, issue the following query:

http://localhost:8080/business-central/rest/history/variable/application

There is also a query that searches the variables directly for a value. As a practical matter,
this results in a search of all process instances of any process definition type for a process
variable with a given value.

For example, to look for mortgage applications by an applicant with a given Social Security
Number, the following query may be issued:

http://localhost:8080/business-central/rest/history/variable/ssn/value/333224442

6.6.2.4 Command Execution
Advanced users looking to send a batch of commands via the REST API can use the execute
operation. This is the only way to have the REST API process multiple commands in one
operation.

The execute calls are available through both REST and JMS API. The only accepted input
format is JAXB, which means that REST calls over HTTP may only send XML and cannot use
the JSON format.

Issue Execute commands to /runtime/{deploymentId}/execute. For the sample deployment,
the URL would be:

http://localhost:8080/business-
central/rest/runtime/com.redhat.bpms.examples:mortgage:1/execute

The posted content must be the JAXB representation of an accepted command. Refer to the
official Red Hat documentation for a full list of commands.29

6.6.2.5 Client API for REST or JMS calls
A client API is available to help Java clients interact with the BPMS REST API.

For example, to start a new instance of the mortgage process:

String deploymentId = "com.redhat.bpms.examples:mortgage:1";
String applicationContext = "http://localhost:8080/business-central";
String processId = "com.redhat.bpms.examples.mortgage.MortgageApplication";
URL jbpmURL = new URL(applicationContext);

RemoteRestRuntimeFactory remoteRestSessionFactory =
new RemoteRestRuntimeFactory(deploymentId, jbpmURL, userId, password);

29 https://access.redhat.com/site/documentation/en-
US/Red_Hat_JBoss_BPM_Suite/6.0/html/Development_Guide/Execute_calls.html

www.redhat.com 114 refarch-feedback@redhat.com

https://access.redhat.com/site/documentation/en-US/Red_Hat_JBoss_BPM_Suite/6.0/html/Development_Guide/Execute_calls.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_JBoss_BPM_Suite/6.0/html/Development_Guide/Execute_calls.html
http://localhost:8080/business-central/rest/runtime/com.redhat.bpms.examples:mortgage:1/execute
http://localhost:8080/business-central/rest/runtime/com.redhat.bpms.examples:mortgage:1/execute
http://localhost:8080/business-central/rest/history/variable/ssn/value/333224442
http://localhost:8080/business-central/rest/history/variable/application
http://localhost:8080/business-central/rest/history/instance/1/variable/application
http://localhost:8080/business-central/rest/history/instance/1/variable

RuntimeEngine runtimeEngine = remoteRestSessionFactory.newRuntimeEngine();
KieSession kieSession = runtimeEngine.getKieSession();

Map<String, Object> processVariables = new HashMap<String, Object>();
Application application = new Application();
application.setAmortization(30);
...
processVariables.put("application", application);

kieSession.startProcess(processId, processVariables);

This code results in the start process command being sent to the REST API.

Notice the choice of runtime factory in the above example:

RemoteRestRuntimeFactory remoteRestSessionFactory =
new RemoteRestRuntimeFactory(deploymentId, jbpmURL, userId, password);

An alternative choice would have been the JMS API:

RemoteJmsRuntimeEngineFactory jmsFactory =
 new RemoteJmsRuntimeEngineFactory(deploymentId, new InitialContext());

RuntimeEngine runtimeEngine = jmsFactory.newRuntimeEngine();

The RuntimeEngine interface provides abstraction from the underlying method and protocol
so the rest of the client code remains unchanged when using JMS instead of HTTP REST
calls.

The client API may also be used to create Command objects and execute them through
REST/HTTP or JMS, or in fact execute a batch of commands at once.

6.6.3 Local Application
While the Business Central forms may provide a suitable method of starting processes and
completing tasks for some client requirements, many will require greater control and flexibility
on their user interface. In some cases the starting of processes and the completion of tasks
may not directly be user-driven and in other cases when it is, the command may come from a
JSF or other UI technology.

These applications can be deployed on the same server or cluster as BPMS. By declaring a
dependency on the required BPMS modules and configuring the appropriate datasource,
custom code may be used to interact with processes and tasks.

Custom applications can declare a maven dependency on the required packages, including
the BPMS project.

Java EE dependency injection can simplify access to the KieSession, for example:

@Inject
@Singleton
private RuntimeManager runtimeManager;

RuntimeEngine runtime = runtimeManager.getRuntimeEngine(EmptyContext.get());

refarch-feedback@redhat.com 115 www.redhat.com

KieSession ksession = runtime.getKieSession();

ProcessInstance processInstance = ksession.startProcess(...

The runtime strategy may be specified through annotations as @Singleton,
@PerProcessInstance or @PerRequest.

To interact with tasks, use the RuntimeManager to get the RuntimeEngine and then retrieve
the TaskService and KieSession from the engine. At the end, if outside a container managed
transaction, dispose of the retrieved engine explicitly.

Even when calls to start a process or complete a task originate from a custom application
deployed alongside BPMS, the decision to treat it as a local client or a REST client requires
some thought and depends on whether a loosely-coupled or a tightly-coupled design between
the application and BPMS is more desirable.

6.7 Maven Integration
JBoss BPM Suite 6.0 uses Maven for build management. While the Maven repository is
locally maintained and accessible through the file system, it is often the case that a BPMS
cluster should be treated as a logical entity and intrusive integration including access to the
local file system of an instance may have adverse side effects.

Once a project has been built by Business Central, BPMS 6.0 serves its Maven artifact by
HTTP through the /maven2 sub-context. For example, to access the Maven project file for the
mortgage application, the following query may be used:

http://localhost:8080/business-
central/maven2/com/redhat/bpms/examples/mortgage/1/mortgage-1.pom

Similarly, the build JAR artifact for the project may be retrieved from the following URL:

http://localhost:8080/business-
central/maven2/com/redhat/bpms/examples/mortgage/1/mortgage-1.jar

www.redhat.com 116 refarch-feedback@redhat.com

http://localhost:8080/business-central/maven2/com/redhat/bpms/examples/mortgage/1/mortgage-1.jar
http://localhost:8080/business-central/maven2/com/redhat/bpms/examples/mortgage/1/mortgage-1.jar
http://localhost:8080/business-central/maven2/com/redhat/bpms/examples/mortgage/1/mortgage-1.pom
http://localhost:8080/business-central/maven2/com/redhat/bpms/examples/mortgage/1/mortgage-1.pom

6.8 Session Strategy
JBoss BPM Suite support three different strategies for session management and reuse. Each
strategy is described in more detail here. The choice of session strategy largely depends on
the anticipated level of concurrency as well as the use of the rule engine in the processes.
Using a single global session means that any object inserted into rule engine working memory
for a process instance may impact firing of rules for other instances of the same process or
even an entirely different process definition.

The concurrency consideration is also an important one in the choice of session strategy.
Generally speaking, any work done within the scope of a KIE session is single-threaded.
When a session is shared between various requests (or process instances), that means that
the processing is serialized. This may or may not be acceptable for a given use case.

6.8.1 Singleton
In this model, a single KIE session is created within the given scope and used for all new and
existing process instances of all process definitions.

When creating a deployment through Business Central, use Singleton to select this strategy.

The equivalent annotation, used in the client API, is @Singleton.

6.8.2 Per Process Instance
In this model, a new KIE session is created within the given scope for every new process
instance of a given process definition and reused again when signaling, continuing or
otherwise executing the same process instance in the future.

When creating a deployment through Business Central, use Process instance to select this
strategy.

The equivalent annotation, used in the client API, is @PerProcessInstance.

6.8.3 Per Request Session
In this model, a new KIE session is created for every request, regardless of whether a new
process instance is being created or a process instance previously created in another session
is being continued.

When creating a deployment through Business Central, use Request to select this strategy.

The equivalent annotation, used in the client API, is @PerRequest.

6.9 Timer Implementation
BPMS 6 requires and uses timers for various reasons. The default timer used in BPMS 6.0 is
an internal implementation using thread pools. Upon initialization, the BPMS environment
looks for a Java system property called org.quartz.properties. If found, the value of this
property is presumed to be the fully qualified location of the quartz property file.

In a cluster environment, Quartz should be configured to use a central database for
persistence. The recommended interval for cluster discovery is 20 seconds and is set in the

refarch-feedback@redhat.com 117 www.redhat.com

org.quartz.jobStore.clusterCheckinInterval of the quartz-definition.properties file. Depending
on your set up consider the performance impact and modify the setting as necessary.

Refer to the official Red Hat documentation for details on how to configure Quartz in BPMS
6.0.30

6.10 REST Deployment
One required step in build automation is deployment of business processes. To accommodate
this requirement, the REST API provides support for deployment.

Assuming the deployment ID of the mortgage application, issue an HTTP POST to the
following URL to trigger deployment:

http://localhost:8080/business-
central/rest/deployment/com.redhat.bpms.examples:mortgage:1/deploy

The deploy operation is asynchronous and deployment will continue and complete after the
response of the REST operation has been returned.

The session startegy can also be specified at the time of deployment through the REST
interface. For example, to use “per process instance” as the session strategy:

http://localhost:8080/business-
central/rest/deployment/com.redhat.bpms.examples:mortgage:1/deploy?
strategy=PER_PROCESS_INSTANCE

6.11 Continuous Integration
Standard and widely used software tooling such as Git and Maven make it easier to include
BPMS applications in an organization's various automated processes. Assets can be easily
retrieved from and placed in the asset repository as outlined in Asset Repository Interaction.
Maven Integration makes it easier to include BPMS In the build process and deployment. To
deploy BPMS projects, deployment can be triggered through a simple REST call.

Additional functionality exposed through the REST API allows a caller to create an
organizational unit, create a repository and create a project within that repository. At that
point, assets can be pushed to the project repository before triggering build and deployment.
Refer to the official Red Hat documentation for further details on the REST API for the
Knowledge Store.31

This collection of features and resources helps implement continuous integration in BPMS
projects.

30 https://access.redhat.com/site/documentation/en-
US/Red_Hat_JBoss_BPM_Suite/6.0/html/Installation_Guide/Setting_up_Quartz.html

31 https://access.redhat.com/site/documentation/en-
US/Red_Hat_JBoss_BPM_Suite/6.0/html/Development_Guide/chap-REST_API.html#sect-
Knowledge_Store_REST_API

www.redhat.com 118 refarch-feedback@redhat.com

https://access.redhat.com/site/documentation/en-US/Red_Hat_JBoss_BPM_Suite/6.0/html/Development_Guide/chap-REST_API.html#sect-Knowledge_Store_REST_API
https://access.redhat.com/site/documentation/en-US/Red_Hat_JBoss_BPM_Suite/6.0/html/Development_Guide/chap-REST_API.html#sect-Knowledge_Store_REST_API
https://access.redhat.com/site/documentation/en-US/Red_Hat_JBoss_BPM_Suite/6.0/html/Development_Guide/chap-REST_API.html#sect-Knowledge_Store_REST_API
http://localhost:8080/business-central/rest/deployment/com.redhat.bpms.examples:mortgage:1/deploy?strategy=PER_PROCESS_INSTANCE
http://localhost:8080/business-central/rest/deployment/com.redhat.bpms.examples:mortgage:1/deploy?strategy=PER_PROCESS_INSTANCE
http://localhost:8080/business-central/rest/deployment/com.redhat.bpms.examples:mortgage:1/deploy?strategy=PER_PROCESS_INSTANCE
http://localhost:8080/business-central/rest/deployment/com.redhat.bpms.examples:mortgage:1/deploy
http://localhost:8080/business-central/rest/deployment/com.redhat.bpms.examples:mortgage:1/deploy
https://access.redhat.com/site/documentation/en-US/Red_Hat_JBoss_BPM_Suite/6.0/html/Installation_Guide/Setting_up_Quartz.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_JBoss_BPM_Suite/6.0/html/Installation_Guide/Setting_up_Quartz.html

7 Conclusion
This reference environment sets up a cluster of BPMS 6.0.1 on top of a JBoss EAP 6 Cluster,
as outlined and automated in the JBoss EAP 6 Clustering Reference Architecture. This
automation is further extended in this reference architecture to include the configuration of the
BPMS servers on top of the EAP cluster.

Combined with a ZooKeeper ensemble, a central database and other related configuration,
this environment is set up as both a design-time and runtime cluster. The design-time cluster
helps replicate assets during development, a step which may not necessary for most
production servers, as long as deployments are properly pushed to every node.

By walking through every step in the design and development of the example application,
various design techniques and best practices are outlined and presented in near-realistic
circumstances.

Various other technical considerations are discussed as the software development life cycle
for BPMS is reviewed, touching on disparate topics including the design environment, build
and deployment, governance and monitoring, execution and runtime configuration.

refarch-feedback@redhat.com 119 www.redhat.com

Appendix A: Revision History

Revision 1.0 04/09/14 Babak Mozaffari

Initial Release

www.redhat.com 120 refarch-feedback@redhat.com

Appendix B: Contributors
We would like to thank the following individuals for their time and patience as we collaborated
on this process. This document would not have been possible without their many
contributions.

Contributor Title Contribution

Maciej Swiderski Sr. Software Engineer Review, Cluster, Exception
Handling, Troubleshooting

Ivo Bek Quality Engineer Review

Prakash Aradhya Sr. Principal Product Manager, Technical Review

Eric Schabell Sr. Principal Product Marketing Manager Review

Jeffrey DeLong Sr. Manager, Solution Architecture Review

Jeffrey Bride Manager, Solution Architecture Review

refarch-feedback@redhat.com 121 www.redhat.com

	1 Executive Summary
	2 Red Hat JBoss BPM Suite 6
	2.1 Overview
	2.2 Installation Options
	2.2.1 Server Platform
	2.2.2 Clustering
	2.2.3 Red Hat JBoss Developer Studio

	2.3 Administration and Configuration
	2.3.1 Business Central
	2.3.2 Asset Repository
	2.3.3 Data Persistence
	2.3.4 Audit Logging
	2.3.5 Task Execution Configuration

	2.4 Design and Development
	2.4.1 Data Model
	2.4.2 Process Designer
	2.4.3 Forms

	2.5 Process Simulation
	2.6 Business Activity Monitoring
	2.7 REST API
	2.7.1 Knowledge Store REST API
	2.7.2 Deployment REST API
	2.7.3 Runtime REST API

	3 Reference Architecture Environment
	3.1 Overview
	3.2 BPMS 6.0.1
	3.3 JBoss EAP 6 Cluster
	3.3.1 JBoss EAP 6 Clustering Reference Architecture
	3.3.2 JBoss EAP Apache HTTP Server

	3.4 ZooKeeper Cluster
	3.5 PostgreSQL database
	3.6 BPM Example Application
	3.7 Runtime Cluster

	4 Creating the Environment
	4.1 Prerequisites
	4.2 Downloads
	4.3 Installation
	4.3.1 JBoss EAP Apache HTTP Server
	4.3.2 JBoss Enterprise Application Platform
	4.3.3 ZooKeeper
	4.3.4 JBoss BPM Suite

	4.4 Configuration
	4.4.1 JBoss EAP Apache HTTP Server
	4.4.2 PostgreSQL Database
	4.4.3 JBoss Enterprise Application Server
	4.4.4 ZooKeeper
	4.4.5 JBoss BPM Suite

	4.5 Review
	4.5.1 JBoss EAP Apache HTTP Server
	4.5.2 PostgreSQL Database
	4.5.3 JBoss Enterprise Application Server
	4.5.4 ZooKeeper
	4.5.5 JBoss BPM Suite

	5 Design and Development
	5.1 BPM Suite Example Application
	5.2 Project Setup
	5.2.1 Business Central
	5.2.2 Repositories
	5.2.3 Projects

	5.3 Data Model
	5.4 Business Process
	5.4.1 Create New Process
	5.4.2 Start Process Form
	5.4.3 Validation
	5.4.4 Data Correction
	5.4.5 Web Service Task
	5.4.6 Error Handling
	5.4.7 Mortgage Calculations
	5.4.8 Qualify Borrower
	5.4.9 Increase Down Payment
	5.4.10 Financial Review
	5.4.11 Appraisal
	5.4.12 Swimlanes and Business Continuity
	5.4.13 Final Process Model

	5.5 Forms
	5.5.1 Process Form
	5.5.1.1 Applicant subform
	5.5.1.2 Property subform
	5.5.1.3 Process Form

	5.5.2 Data Correction
	5.5.3 Increase Down Payment
	5.5.4 Financial Review
	5.5.5 Appraisal

	5.6 Business Rules
	5.6.1 Validation
	5.6.2 Reset Validation
	5.6.3 Mortgage Calculations

	5.7 Credit Report Web Service

	6 Life Cycle
	6.1 Asset Repository Interaction
	6.2 JBoss Developer Studio
	6.3 Process Simulation
	6.4 Business Activity Monitoring
	6.5 Governance
	6.6 Process Execution
	6.6.1 Business Central
	6.6.2 Remote Client
	6.6.2.1 Simple Process Calls
	6.6.2.2 Simple Task Calls
	6.6.2.3 History Calls
	6.6.2.4 Command Execution
	6.6.2.5 Client API for REST or JMS calls

	6.6.3 Local Application

	6.7 Maven Integration
	6.8 Session Strategy
	6.8.1 Singleton
	6.8.2 Per Process Instance
	6.8.3 Per Request Session

	6.9 Timer Implementation
	6.10 REST Deployment
	6.11 Continuous Integration

	7 Conclusion
	Appendix A: Revision History
	Appendix B: Contributors

