
Clifford Perry Bryan Kearney

Red Hat Satellite 5 and 6
Puppet Guide

Using Puppet with Red Hat Satellite 5 and 6
Edition 1

Red Hat Satellite 5 and 6 Puppet Guide

Using Puppet with Red Hat Satellite 5 and 6
Edition 1

Cliffo rd Perry
Red Hat Engineering
cperry@redhat.com

Bryan Kearney
Red Hat Engineering
bkearney@redhat.com

Legal Notice

Copyright © 2014 Red Hat, Inc.

This document is licensed by Red Hat under the Creative Commons Attribution-ShareAlike 3.0 Unported
License. If you distribute this document, or a modified version of it, you must provide attribution to Red
Hat, Inc. and provide a link to the original. If the document is modified, all Red Hat trademarks must be
removed.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert, Section
4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, MetaMatrix, Fedora, the Infinity Logo,
and RHCE are trademarks of Red Hat, Inc., registered in the United States and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and other
countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to or
endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack Logo are either registered trademarks/service marks or
trademarks/service marks of the OpenStack Foundation, in the United States and other countries and
are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or
sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

A technical white paper for a successful delivery of Red Hat Satellite and Puppet within your
infrastructure

http://creativecommons.org/licenses/by-sa/3.0/

. .

. .

. .

. .

. .

Table of Contents

Chapter 1. Introduction
1.1. Introduction
1.2. Objective
1.3. Plans for Supported Versions

Chapter 2. Red Hat Satellite 5 and Puppet
2.1. Overview
2.2. Initial Satellite 5 Configuration
2.3. Import Puppet Packages
2.4. Clone Channels
2.4.1. RHEL 6 Child Channel for Satellite + Puppet 3.6
2.4.2. RHEL 5 Child Channel for Satellite + Puppet 2.7
2.4.3. RHEL 6 child channel for puppet master

2.5. System Groups
2.6. Activation Keys
2.7. GPG Keys
2.8. Install & Configure Puppet Master
2.8.1. Installation of Puppet Master Apache Rack Application
2.8.2. Apache Configuration
2.8.3. x509 (SSL) Certificates
2.8.4. Puppet Clients

2.9. Kickstart Provisioning
2.10. Cobbler as External Node Classifier
2.10.1. Puppet Master
2.10.2. Satellite Server

2.11. Puppet Modules
2.12. Summary

Chapter 3. Red Hat Satellite 6 and Puppet
3.1. Satellite 6 Application Lifecycle
3.2. Preparing for Satellite 6
3.2.1. Use Channel Cloning for Application Lifecycle
3.2.2. Utilize Puppet Modules
3.2.3. Store Puppet Modules in GIT
3.2.4. Do not use Dynamic Scoping
3.2.5. Do not use Node Definitions inside of Manifests
3.2.6. Limit the use of Hiera functions inside of Manifests

Revision History

Index

2
2
2
2

3
3
3
4
7
9
9

10
11
12
14
15
16
17
18
19
19
23
23
24
26
27

29
29
29
29
29
30
30
30
30

31

31

Table of Contents

1

Chapter 1. Introduction

1.1. Introduction
Within the world of Linux Configuration Management there are many tools and technologies to choose
from. One of the most popular vendor neutral choices is Puppet. Red Hat for its next generation of
Systems Management products will be providing support for Puppet as a key component for the Red Hat
Satellite 6 product. Today many Satellite 5 customers are already using Puppet to coincide with their
Satellite 5 deployment or looking to bring Puppet into their environment.

Puppet Support

Puppet is currently not supported by Red Hat with Red Hat Satellite and this white paper is not
providing support for Puppet with the current Satellite 5 releases.

1.2. Objective
The objective of this technical guide is to help provide information for Satellite 5 customers to have some
recommendations for usage of Puppet and Satellite 5, in a manner which will allow them to move smoothly
to the future Satellite 6 product. We will provide technical information and guidance for today and then
provide insight on how Satellite 6 will be using Puppet, so that the transition from one to the other in the
future is successfully completed. Additionally Satellite 6 will provide a supported Puppet environment for
our Red Hat Enterprise Linux (RHEL) customers.

We will start with a detailed description of how to use Satellite 5 with Puppet today - allowing the reader, if
already familiar with Puppet and/or Satellite 5, to quickly see how to implement a functioning deployment.
We will then review the future Red Hat Satellite 6 products usage of Puppet and this will allow the reader to
translate current usage into future usage.

1.3. Plans for Supported Versions
Currently the Satellite 6 product plans to provide Puppet 2.7 (or later) for RHEL 5 managed systems and
Puppet 3.6 (or later) for RHEL 6 and RHEL 7 managed systems and the server pieces. These packages
will be supported Red Hat versions of the upstream packages. Satellite customers can download
community versions of these packages today from either EPEL
(https://fedoraproject.org/wiki/EPEL) or from the Puppet Labs community site
(http://docs.puppetlabs.com/guides/puppetlabs_package_repositories.html)

Red Hat Satellite 6 will not support integrating with Puppet packages which are not provided with the
Satellite subscription.

Red Hat Satellite 5 and 6 Puppet Guide

2

https://fedoraproject.org/wiki/EPEL
http://docs.puppetlabs.com/guides/puppetlabs_package_repositories.html

Chapter 2. Red Hat Satellite 5 and Puppet

2.1. Overview
Objective: This section is aimed at current Satellite 5 customers or those about to deploy Satellite 5 and
looking for guidance on how to use Satellite 5 and Puppet side-by-side in a manner that will allow a smooth
transition to the future Satellite 6 product. This section is tested by Satellite Engineering using
recommended practises. Usage of a modular puppet deployment will allow for smoothest migration and re-
use of the modules even if the puppet masters and location providing node definitions changes when
going to Satellite 6.

Currently the Satellite 6 product plans to provide Puppet 2.7 for RHEL 5 managed systems and Puppet 3.6
for RHEL 6 & 7 managed systems. This section will initially guide you through downloading community
available versions of puppet. When Satellite 6 is released you will be able to upgrade or reinstall the
puppet client to the Red Hat supported package versions. Additionally for a fully supported puppet
deployment you would reconfigure the puppet client to register and pull content from the Satellite 6 puppet
master verses a previously established puppet master environment.

This section is going to guide a customer for creating a new Satellite 5 deployment. If you already using
Satellite you will see many familiar aspects of the product and can use this guidance as a basis for any
modifications you may choose to implement to achieve similar end results. If you are new to Satellite 5, a lot
of our customers have invested time, resources and customizations for their own Standard Operating
Environments (SOE) using similar processes as outlined below. We have additional detailed
documentation including a guide for using Satellite 5 to deploy SOE’s online.

2.2. Initial Satellite 5 Configuration
RHEL versions

This process assumes that you are using both RHEL 5 and 6 within your environment, but is also
applicable to RHEL 7. Please make adjustments as required for your own needs.

Objective: Within this section we are going to outline the basic installation, backing up the database and
updating the Satellite software. Additionally we show an example of how to import Red Hat content into
Satellite 5. If you already familiar or have a Satellite 5 instance up and running you can skip to Import
Puppet Packages.

Follow the Red Hat Satellite 5 Installation documentation and install Satellite 5.

Technical Side Note

It is always recommended to have backups of your Satellite database. We recommend to take an
offline/cold backup after initial installation is complete, and then use the online backup capabilities to
take updates at various points during this process. This will allow you to restore your database if
needed, without losing too much data. Examples such as after syncing content and after cloning
channels steps below. Please see the Satellite Install Guide for the section on performing backups.
The db-control command is used to perform backups of your database.

Once installed it is recommended to perform a yum update to download any Satellite 5 errata that are
available, typically important bugfixes. You can find details for Satellite errata (and all released errata) from
our public site https://rhn.redhat.com/errata.

Chapter 2. Red Hat Satellite 5 and Puppet

3

https://rhn.redhat.com/errata

Once Installed and updated you will want to import the RHEL content, this is achieved by using the
satellite-sync command line tool to import RHEL 5 and 6 content.

Import the RHEL 5 and RHEL 6 x86_64 channels, including the supplementary and optional channels,
along with RHN Tools child channel. Example:

satellite-sync --email -crhel-x86_64-server-5 -crhn-tools-rhel-x86_64-server-5 -
crhel-x86_64-server-6 -crhn-tools-rhel-x86_64-server-6 -crhel-x86_64-server-
optional-6 -crhel-x86_64-server-supplementary-5

This process can take several hours to complete. Once you have the channels you can move to getting
Puppet content downloaded into your Satellite.

2.3. Import Puppet Packages
Objective: Within this section we will walk through the process of importing 3rd party RHEL 5 and 6
puppet RPM’s into Satellite 5 and make them available via child channels of the main RHEL channels. We
will show how to use 3rd party yum repos, configure them and import into Satellite.

Puppet Package Notes

As with all 3rd party custom content Red Hat does not support the usage of the content. We do
support the usage of Satellite as a means to centrally manage Red Hat, custom content and 3rd
party content.
This document describes how to import and use the Puppet Labs public GPG Key to verify the
signature of their signed RPM's. The other main option available is to resign those RPMs with
your own company/organizations GPG Key. This will then allow the puppet packages to be
deployed and installed with the same GPG Key as used with your own custom RPM's.

Within this guide we will create custom child channels for the Puppet content based off the main RHEL
base channels.

Create Custom Child channel for RHEL 5 and RHEL 6 Puppet packages

Login to Satellite 5 WebUI

Click through - Channels -> Manage Software Channels -> Create New Channel ->

Enter:

 Channel Name: Puppet EL6 Server x86_64
 Channel Label: puppet-rhel6-server-x86_64
 Parent Channel: Red Hat Enterprise Linux Server (v. 6 for 64-bit x86_64)
 Architecture: x86_64
 Yum Repository Checksum Type: sha256
 Channel Summary: Public Puppet Packages for RHEL
 GPG key URL: http://yum.puppetlabs.com/RPM-GPG-KEY-puppetlabs
 GPG key ID: 4BD6EC30
 GPG key Fingerprint: 47B3 20EB 4C7C 375A A9DA E1A0 1054 B7A2 4BD6 EC30

Click onto Create channel

Red Hat Satellite 5 and 6 Puppet Guide

4

GPG Information

The GPG Key information is not required. Within this context it is informative for the Satellite
Administrator as to where the GPG is found upstream.

Next create a new repo to associate to the channels

Go to Manage Repositories and Create New Repository

Enter:

 Repository Label*: puppet-repo-rhel6-server-x86_64
 Repository URL*: http://yum.puppetlabs.com/el/6Server/products/x86_64/

Repeat to create a second repo for dependencies.

 Repository Label*: puppet-deps-repo-rhel6-server-x86_64
 Repository URL*: http://yum.puppetlabs.com/el/6Server/dependencies/x86_64/

Go to Manage Software Channels -> Puppet EL6 Server x86_64 -> Repositories

Now click and associate the two new repos with this channel.

Click onto Sync tab and then hit 'Sync Now'.

Scheduling of external repositories

You can also schedule to have the Puppet Labs repository regularly imported into the Satellite from
this page.

It will take a couple of minutes for the import to start and several more before it completes. You can monitor
the status as it progresses by reviewing log file:

 /var/log/rhn/reposync/puppet-rhel6-server-x86_64.log

Repeat the process for RHEL 5 Server packages to import from Puppet Labs.

For the EL5 content the details for the Channel are as follows.

 Channel Name*: Puppet EL5 Server x86_64
 Channel Label*: puppet-rhel5-server-x86_64
 Parent Channel: Red Hat Enterprise Linux Server (v. 5 for 64-bit x86_64)
 Architecture: x86_64
 Yum Repository Checksum Type: sha1
 Channel Summary*: Public Puppet Packages for RHEL
 GPG key URL: http://yum.puppetlabs.com/RPM-GPG-KEY-puppetlabs
 GPG key ID: 4BD6EC30
 GPG key Fingerprint: 47B3 20EB 4C7C 375A A9DA E1A0 1054 B7A2 4BD6 EC30

For the EL5 repos the details are:

Chapter 2. Red Hat Satellite 5 and Puppet

5

 Repository Label*: puppet-repo-rhel5-server-x86_64
 Repository URL*: http://yum.puppetlabs.com/el/5Server/products/x86_64/

 Repository Label*: puppet-deps-repo-rhel5-server-x86_64
 Repository URL*: http://yum.puppetlabs.com/el/5Server/dependencies/x86_64/

Within the guide we are going to use mod_passenger to provide a more scalable puppet master server
environment. For this we need to download a select few (from 1000’s) of packages from the EPEL repo. If
you have sufficient disk space you can download the entire repo similar to the Puppet Repo packages and
selectively clone the listed packages.

Within Satellite, go to create a new repository and enter:

 Repository Label*: epel-repo-rhel6-server-x86_64
 Repository URL*: http://dl.fedoraproject.org/pub/epel/6/x86_64/

Next create a Custom child channel off the main RHEL 6 channel to use. On the Create Software Channel
page enter:

 Channel Name*: EPEL Puppet Master Deps EL6 Server x86_64
 Channel Label*: epel-puppet-rhel6-server-x86_64
 Parent Channel: Red Hat Enterprise Linux Server (v. 6 for 64-bit x86_64)
 Architecture: x86_64
 Yum Repository Checksum Type: sha256
 Channel Summary*: Public EPEL Repo Packages for RHEL
 Channel Description: Selectively sync’d Public EPEL Repo Packages for RHEL -
containing required dependencies for deploying Puppet Master within Apache Passenger
 GPG key URL: http://dl.fedoraproject.org/pub/epel/RPM-GPG-KEY-EPEL-6

Once created click onto Repositories and associate the new channel to the previously created EPEL repo.

Do Not Use WebUI To Initiate EPEL Repo Sync

Do not use the WebUI to initiate a sync of the EPEL repo as we will use the command line tool to
selectively sync

The packages we want from the EL6 EPEL repo are:

1. mod_passenger

2. libev

3. rubygem-daemon_controller

4. rubygem-fastthread

5. rubygem-passenger

6. rubygem-passenger-native

7. rubygem-passenger-native-libs

8. rubygem-rack

Using the include only option for spacewalk-repo-sync we will specify the packages required. Example is:

Red Hat Satellite 5 and 6 Puppet Guide

6

spacewalk-repo-sync -c epel-puppet-rhel6-server-x86_64 -i
mod_passenger,libev,rubygem-daemon_controller,rubygem-fastthread,rubygem-
passenger,rubygem-passenger-native,rubygem-passenger-native-libs,rubygem-rack

Once this is setup, we are going to use ability of Satellite 5 to clone and lock in content into custom cloned
channels, this helps to prevent accidental upgrades or other packages being installed, which was not
desired. We will clone en-mass the main RHEL channels, and then selectively clone the content from
puppet. We will want the 3.x puppet server pieces to be available to the puppet master serving your
environment. We will want the 3.x puppet client packages for the RHEL 6 managed systems, finally, we will
want the 2.x puppet client packages available for the RHEL 5 managed systems. At the end of this section
your Satellite will be ready to use.

2.4. Clone Channels
Objective: We will go through a standard process used by many customers to create cloned channels of
content. Channel cloning is frequently used to provide a set snapshot in time of RPMs which are made
available to systems. Often customers will clone another cloned channel, going through a DEVEL -> TEST
-> PROD life cycle. Since we are interested in a subset of the 3rd party Puppet repo content we will use
channel cloning to copy over only the packages we want. Channel cloning is being used to control what
RPMs the managed systems see as available to them.

Within the Satellite browse to Channels -> Manage Software Channels -> Clone Channel. Select the
options:

 Clone From: Red Hat Enterprise Linux Server (v.6 for 64-bit x86_64)
 Clone: Current state of the channel (all errata)

Figure 2.1. Satellite 5 Clone Channel

Chapter 2. Red Hat Satellite 5 and Puppet

7

Click the Create Channel button leaving all defaults and click the Create Channel button. This process will
take several minutes depending on hardware profile.

Figure 2.2. Satellite 5 Clone Channel Details

Initial Cloning of Errata Slowness

The main RHEL channels have 1000’s of packages and errata which are being copied/cloned in
the database. If this has never been done before then the first time will be slower still, due to no
database statics having been previously gathered for this task. You can run in a terminal the db-
control command with the gather-stats option before, during and after to help prime the pump as
much as possible.

db-control report-stats
Tables with empty statistics: 2
Tables with stale statistics: 392
db-control gather-stats
Gathering statistics...
WARNING: this may be a very slow process.

Repeat the Channel Clone for all Red Hat channels:

Red Hat Enterprise Linux Server (v.6 for 64-bit x86_64)

RHEL Server Optional (v.6 64-bit x86_64)

RHN Tools for RHEL (v.6 for 64-bit x86_64)

Red Hat Enterprise Linux (v.5 for 64-bit x86_64)

RHEL Supplementary (v.5 for 64-bit x86_64)

Red Hat Satellite 5 and 6 Puppet Guide

8

Red Hat Network Tools for RHEL Server (v.5 64-bit x86_64)

Once completed we will now create three child channels.

1. RHEL 6 child channel for Satellite + Puppet 3.6.x managed systems to subscribe to

2. RHEL 5 child channel for Satellite + Puppet 2.7.x managed systems to subscribe to

3. RHEL 6 child channel for puppet master to subscribe to

At time of writing this document EPEL only provided Puppet 2.6 for EL5 and 2.7 for EL6, while Puppet Labs
repos provided the newest Puppet 3.x+ for both EL5 and EL6. As noted earlier it is Red Hat’s plan to
provide Puppet 2.7 for RHEL 5 and Puppet 3.6 for RHEL 6 and 7. We have imported the Puppet Labs Repo
and will now selectively copy/clone the older versions and dependencies we need from repo for our
requirements.

2.4.1. RHEL 6 Child Channel for Satellite + Puppet 3.6

Within Satellite click through to create a custom child channel, Channels -> Manage Software Channels ->
create new channel

 Channel Name*: Custom Clone of Puppet EL6 Server x86_64
 Channel Label*: custom-clone-client-puppet-rhel6-server-x86_64
 Parent Channel: Clone of Red Hat Enterprise Linux Server (v. 6 for 64-bit
x86_64)
 Architecture: x86_64
 Yum Repository Checksum Type: sha256
 Channel Summary*: Client Side 3.x Puppet Packages for RHEL
 GPG key URL: http://yum.puppetlabs.com/RPM-GPG-KEY-puppetlabs
 GPG key ID: 4BD6EC30
 GPG key Fingerprint: 47B3 20EB 4C7C 375A A9DA E1A0 1054 B7A2 4BD6 EC30

Click the Create Channel button. Next go to Packages -> Add -> Select:

 Channel: Puppet EL6 Server x86_64

Hit the View Packages button. Now search and select the newest following 7 packages:

1. facter

2. hiera

3. puppet-3.6.x

4. ruby-augeas

5. rubygem-json

6. ruby-rgen

7. ruby-shadow

Click the Confirm Addition button then confirm by clicking the Add Package(s) button.

2.4.2. RHEL 5 Child Channel for Satellite + Puppet 2.7

Repeat the same process as above but with this specific data and packages.

Chapter 2. Red Hat Satellite 5 and Puppet

9

 Channel Name*: Custom Clone of Puppet EL5 Server x86_64
 Channel Label*: custom-clone-client-puppet-rhel5-server-x86_64
 Parent Channel: Clone of Red Hat Enterprise Linux (v. 5 for 64-bit x86_64)
 Architecture: x86_64
 Yum Repository Checksum Type: sha1
 Channel Summary*: Client Side 2.x Puppet Packages for RHEL
 GPG key URL: http://yum.puppetlabs.com/RPM-GPG-KEY-puppetlabs
 GPG key ID: 4BD6EC30
 GPG key Fingerprint: 47B3 20EB 4C7C 375A A9DA E1A0 1054 B7A2 4BD6 EC30

 Channel: Puppet EL5 Server x86_64

Now search and select newest following 7 packages:

1. augeas-libs

2. facter

3. puppet-2.7.x

4. ruby

5. ruby-augeas

6. ruby-libs

7. ruby-shadow

2.4.3. RHEL 6 child channel for puppet master

Repeat the same process as above but with this specific data and packages.

 Channel Name*: Custom Clone Puppet Master of Puppet EL6 Server x86_64
 Channel Label*: custom-clone-master-puppet-rhel6-server-x86_64
 Parent Channel: Clone of Red Hat Enterprise Linux Server (v. 6 for 64-bit
x86_64)
 Architecture: x86_64
 Yum Repository Checksum Type: sha256
 Channel Summary*: Master 3.x Puppet Packages for RHEL
 GPG key URL: http://yum.puppetlabs.com/RPM-GPG-KEY-puppetlabs
 GPG key ID: 4BD6EC30
 GPG key Fingerprint: 47B3 20EB 4C7C 375A A9DA E1A0 1054 B7A2 4BD6 EC30

Click the Create Channel button. Next go to Packages -> Add -> Select:

 Channel: Puppet EL6 Server x86_64

Hit the View Packages button. Now search and select the newest following 8 packages:

1. facter

2. hiera

3. puppet-3.6.x

4. puppet-server-3.6.x

5. ruby-augeas

Red Hat Satellite 5 and 6 Puppet Guide

10

6. rubygem-json

7. ruby-rgen

8. ruby-shadow

Next we will add the mod_passenger and associated packages from EPEL into this channel. Go to
Packages -> Add -> Select:

 Channel: EPEL Puppet Master Deps EL6 Server x86_64

Hit the View Packages button. Now click the Select All button and then confirm the addition of the 8
packages.

At this stage the custom channels will look something like:

Figure 2.3. Satellite 5 Manage Software Channels Overview

2.5. System Groups
Objective: System Groups are used to help logically group systems with similar traits or commonality.
You can then use System Groups to act on one group or do logical Unions and Intersections of different
groups. Many customers create System Groups for location, function, OS type, Environment (Dev, Test,
Prod) types. We are going to create one to group the systems managed by Puppet by each major RHEL

Chapter 2. Red Hat Satellite 5 and Puppet

11

version. This allows the administrator to quickly see which systems are managed by puppet. Satellite
allows selecting systems on a per-group basis to then perform management tasks, such as scheduling
package installations, reboots or provisioning events.

We are now going to create System Groups within Satellite, these we will create as an example two
System Groups:

1. RHEL 6 Puppet

2. RHEL 5 Puppet

Within Satellite, go to Systems -> System Groups -> create new group, Enter:

 Name*: RHEL 6 Puppet
 Description*: RHEL 6 Puppet Managed Systems

Click the Create Group button. Repeat for RHEL 5.

2.6. Activation Keys
Objective: Activation keys are a very powerful component of Satellite 5. They allow you to combine many
aspects of Satellite and define what the initial state of a system will be with respect to subscribed channels
as well as helping to ensure they have correct packages installed. We are going to create two activation
keys one for RHEL 5 based Puppet Managed systems and one for RHEL 6 based.

Within Satellite go to Systems -> Activation Keys -> create new key. Enter options as:

 Description: RHEL 6 Puppet Systems
 Key: rhel6-puppet
 Base Channels: Clone of Red Hat Enterprise Linux Server (v.6 for 64-bit x86_64)
 Add-On Entitlements: Provisioning

and click the Create Activation Key button.

Red Hat Satellite 5 and 6 Puppet Guide

12

Figure 2.4 . Satellite 5 Activation Key Details

Next go to the Child Channels tab and select all but the Custom Clone Puppet Master of Puppet EL6
Server x86_64 child channel and click the Update Key button.

Chapter 2. Red Hat Satellite 5 and Puppet

13

Figure 2.5. Satellite 5 Activation Key Channels

Next go to the Groups tab and click Join, select the RHEL 6 Puppet System Group, click Join Selected
Groups.

Finally go to the Packages tab and enter within the main box puppet and click the Update Key button. We
should now be finished with this Activation Key.

Repeat the above process to create a RHEL 5 based Activation Key and remember to select the correct
Cloned/custom channels from the options.

At this point you can add the activation keys into any custom registration scripts or bootstrap.sh scripts.
Additionally they can be used manually on the command line, along with the rhnreg_ks cmd line tool. If
used at this stage you should successfully have in the end the system registered to Satellite to the correct
System Groups, Channels and have the puppet package installed (but not configured). Example:

rpm --import http://yum.puppetlabs.com/RPM-GPG-KEY-puppetlabs
rpm -Uvh http://<Satellite>.example.com/pub/rhn-org-trusted-ssl-cert-1.0-
1.noarch.rpm
rhnreg_ks --activationkey 1-rhel6-puppet --force --
serverUrl=https://<Satellite>.example.com/XMLRPC --sslCACert=/usr/share/rhn/RHN-ORG-
TRUSTED-SSL-CERT

2.7. GPG Keys
Objective: GPG keys are used to sign RPM content as a validation that it can be trusted. Red Hat ships
our GPG keys as standard. For 3rd party content you have to establish what their published key is and
then configure systems to know and trust it. Satellite cannot install or add GPG Keys after a system is
installed and registered. If you have established systems you will need to manually (or scripted) deploy the

Red Hat Satellite 5 and 6 Puppet Guide

14

Puppet Labs GPG key to the systems or as noted previously if one is already in use GPG resign the
specific packages to your own custom GPG key. We will show how to manually configure an individual
system for the 3rd party GPG key and then a method to capture the GPG key into Satellite for Kickstart
provisioned systems.

One method to manually install the Puppet Labs GPG key is using the following command as root:

rpm --import http://yum.puppetlabs.com/RPM-GPG-KEY-puppetlabs

For systems being provisioned via Satellite you can copy the GPG key to Satellite and associate it with the
kickstart profiles to ensure it is installed on systems at time of (re)installation. To do this download the
GPG key to your local workstation from http://yum.puppetlabs.com/RPM-GPG-KEY-puppetlabs.
Next within Satellite go to Systems -> Kickstart -> GPG and SSL Keys -> create new stored key/cert

 Description*: Puppet GPG Key
 Type: GPG
 Select file to upload: * Browse to local copy to upload

2.8. Install & Configure Puppet Master
Objective: We are getting close to completing the initial tasks for infrastructure setup. We will walk
through setting up a Puppet Master which is used in conjunction with Satellite 5. At the end we will show
how to manually test with a client that communication to the puppet master is working. We will then tie the
two together with Kickstart profile provisioning of Satellite.

We are going to guide you through getting the Puppet Master (server) components installed and running
on a RHEL 6 based system. To start with have a freshly installed RHEL 6 Server x86_64.

Puppet Master Deployment Notes

This system is a different RHEL instance from the one which Satellite runs on.
We recommend to review official Puppet Labs documentation for requirements and
recommendations for installation and configuration of a Puppet Master. This documentation
guide is provided is an example but should be taken in consideration with official documentation
which can change over time.

http://docs.puppetlabs.com/puppet/

http://docs.puppetlabs.com/guides/installation.html

Register the puppet master RHEL system to Satellite and ensure that it is fully up to date. Next subscribe it
to the Puppet Master child channel, Optional and RHN Tools child channels.

Chapter 2. Red Hat Satellite 5 and Puppet

15

http://yum.puppetlabs.com/RPM-GPG-KEY-puppetlabs
http://docs.puppetlabs.com/puppet/
http://docs.puppetlabs.com/guides/installation.html

Figure 2.6. Satellite 5 System Channel Selection

Now install the puppet-server packages:

rpm --import http://yum.puppetlabs.com/RPM-GPG-KEY-puppetlabs
yum install puppet-server

Reviewing the puppet documentation for installation perform any specific changes required within
configuration, especially noting the dns_alt_names option, if you plan to have more than one valid cname
or Fully Qualified Domain Name (FQDN) for your puppet master deployment.

You can use puppet to manage the puppet master itself. As such you may want to configure on your
puppet master within the /etc/puppet/puppet.conf file within the [main] block the server option to read the
same as your hostname.

Puppet and puppetmaster services by default are disabled. Use the following commands to enable puppet
and confirm. We will configure puppetmaster next to run within apache web services.

puppet resource service puppet ensure=running enable=true
Notice: /Service[puppet]/ensure: ensure changed 'stopped' to 'running'
service { 'puppet':
 ensure => 'running',
 enable => 'true',
}
chkconfig --list | grep -i pupp
puppet 0:off 1:off 2:on 3:on 4:on 5:on 6:off
puppetmaster 0:off 1:off 2:off 3:off 4:off 5:off 6:off
service puppet status
puppet (pid 15624) is running...

Now we will install and configure mod_passenger for usage by the Puppet Master. Please cross reference
the main Puppet documentation - See http://docs.puppetlabs.com/guides/passenger.html

rpm --import http://dl.fedoraproject.org/pub/epel/RPM-GPG-KEY-EPEL-6
yum install httpd httpd-devel mod_ssl ruby-devel rubygems gcc
yum install mod_passenger

2.8.1. Installation of Puppet Master Apache Rack Application

Use the commands shown below to copy over a stock configuration file supplied via RPM into the default
configuration location required for this Puppet Master setup.

Red Hat Satellite 5 and 6 Puppet Guide

16

http://docs.puppetlabs.com/guides/passenger.html

mkdir -p /usr/share/puppet/rack/puppetmasterd
mkdir /usr/share/puppet/rack/puppetmasterd/public
/usr/share/puppet/rack/puppetmasterd/tmp
cp /usr/share/puppet/ext/rack/files/config.ru
/usr/share/puppet/rack/puppetmasterd/
chown puppet:puppet /usr/share/puppet/rack/puppetmasterd/config.ru
service puppetmaster restart
Stopping puppetmaster: [FAILED]
Starting puppetmaster: [OK]

2.8.2. Apache Configuration

Create an Apache Virtual Host file. Below is slightly modified version listed on Puppet Labs documentation.
Create the file as /etc/httpd/conf.d/puppetmaster.conf. Please note to change the paths for Apache SSL
Certs listed below to correct ones discovered on your own system, based on FQDN.

Contents:

And the passenger performance tuning settings:
PassengerHighPerformance On
Set this to about 1.5 times the number of CPU cores in your master:
PassengerMaxPoolSize 12
Recycle master processes after they service 1000 requests
PassengerMaxRequests 1000
Stop processes if they sit idle for 10 minutes
PassengerPoolIdleTime 600

Listen 8140
<VirtualHost *:8140>
 SSLEngine On

 # Only allow high security cryptography. Alter if needed for compatibility.
 SSLProtocol All -SSLv2
 SSLCipherSuite HIGH:!ADH:RC4+RSA:-MEDIUM:-LOW:-EXP
 SSLCertificateFile /var/lib/puppet/ssl/certs/puppet-server.example.com.pem
 SSLCertificateKeyFile /var/lib/puppet/ssl/private_keys/puppet-
server.example.pem
 SSLCertificateChainFile /var/lib/puppet/ssl/ca/ca_crt.pem
 SSLCACertificateFile /var/lib/puppet/ssl/ca/ca_crt.pem
 SSLCARevocationFile /var/lib/puppet/ssl/ca/ca_crl.pem
 SSLVerifyClient optional
 SSLVerifyDepth 1
 SSLOptions +StdEnvVars +ExportCertData

 # These request headers are used to pass the client certificate
 # authentication information on to the puppet master process
 RequestHeader set X-SSL-Subject %{SSL_CLIENT_S_DN}e
 RequestHeader set X-Client-DN %{SSL_CLIENT_S_DN}e
 RequestHeader set X-Client-Verify %{SSL_CLIENT_VERIFY}e

 DocumentRoot /usr/share/puppet/rack/puppetmasterd/public

 <Directory /usr/share/puppet/rack/puppetmasterd/>
 Options None
 AllowOverride None
 Order allow,deny
 Allow from all
 </Directory>

Chapter 2. Red Hat Satellite 5 and Puppet

17

 ErrorLog /var/log/httpd/puppet-server_ssl_error.log
 CustomLog /var/log/httpd/puppet-server_ssl_access.log combined
</VirtualHost>

By default SELinux will deny mod_passenger. This can be resolved by creating custom SELinux policy or
using an alternative method of installing your puppet master.

If you wish to learn more about creating a simple SELinux policy review the Red Hat Documentation. The
best source of information can be found within the Red Hat Enterprise Linux 6 Security-Enhanced Linux
User Guide - https://access.redhat.com/site/documentation/en-
US/Red_Hat_Enterprise_Linux/6/html/Security-Enhanced_Linux/index.html. Additionally
there is other 3rd party sites which show how to create a simple SELinux policy for mod_passenger for
puppet usage - one such article can be found here -
http://linuxfollies.blogspot.com.es/2012/01/puppet-apache-modpassenger-and-

selinux.html.

Once you have a working SELinux policy in place ensure that you are running within Enforcing mode.
Additionally you will next want to ensure Apache is enabled by default. Please note that we have
configured Apache to listen to port 8140 - ensure any firewall rules in place accommodate for incoming
traffic to this port.

setenforce 1
chkconfig httpd on

2.8.3. x509 (SSL) Certificates

By default SSL Cert creation to allow client/server communication is manually done. For ease of use within
this guide I’m using the autosigning ability - to trust any system which can communicate to the puppet
master. This may not be ideal within your environment, please review the Puppet documentation to
determine the best solution for you. Example autosign configurations can be found here
http://docs.puppetlabs.com/guides/configuring.html#autosignconf.

1. Add on the puppet master within configuration file /etc/puppet/puppet.conf section

[puppetmasterd]
 ssl_client_header = SSL_CLIENT_S_DN
 ssl_client_verify_header = SSL_CLIENT_VERIFY

2. To enable autosigning for Certificates

echo "*" > /etc/puppet/autosign.conf

3. We are now going to restart services, looking for any errors.

service httpd stop
Stopping httpd: [OK]
service puppetmaster restart
Stopping puppetmaster: [OK]
Starting puppetmaster: [OK]
service httpd restart
Stopping httpd: [FAILED]
Starting httpd: [OK]
#

4. Create a place holder manifest file to initiate with. Create file /etc/puppet/manifests/site.pp with:

Red Hat Satellite 5 and 6 Puppet Guide

18

https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Security-Enhanced_Linux/index.html
http://linuxfollies.blogspot.com.es/2012/01/puppet-apache-modpassenger-and-selinux.html
http://docs.puppetlabs.com/guides/configuring.html#autosignconf

CONTENTS OF /etc/puppet/manifests/site.pp
node "default" { }

We now have the basic framework for a functional puppet master environment. If you were to now install
the puppet client package onto a system and then configure it to point to the PuppetMaster it should
function and return no errors.

2.8.4. Puppet Clients

To manually test a puppet client system to the Satellite, use the following example commands:

rpm --import http://yum.puppetlabs.com/RPM-GPG-KEY-puppetlabs
rpm -Uvh http://<Satellite>.example.com/pub/rhn-org-trusted-ssl-cert-1.0-
1.noarch.rpm
rhnreg_ks --activationkey 1-rhel6-puppet --force --
serverUrl=https://<Satellite>.example.com/XMLRPC --sslCACert=/usr/share/rhn/RHN-ORG-
TRUSTED-SSL-CERT

Then edit the /etc/puppet/puppet.conf file and add within the [main] section the server line to point to your
puppet master

[main]
 server = puppet.example.com

You can now run the following test command on the puppet client

puppet agent --test
Info: Retrieving plugin
Info: Caching catalog for puppet.example.com
Info: Applying configuration version '1390552206'
Notice: Finished catalog run in 0.02 seconds
#

Assuming that all is well we will now tie the puppet and Satellite environments together so that newly
installed systems are correctly configured to communicate with both Satellite for content and general
management and with the puppet master for configuration of systems via puppet modules.

Confirm Puppet Client Configuration

You can use the follow option of puppet to see all possible options and their current settings

puppet config print

or to see the specific server value:

puppet config print server

2.9. Kickstart Provisioning
Objective: We are now going to show how to configure and use kickstart provisioning to tie activation
keys, system groups, puppet master location and GPG key all together for a system that is provisioned
and talking to Satellite + puppet. This will be the default method to configure the puppet clients.

Chapter 2. Red Hat Satellite 5 and Puppet

19

We will use the cobbler snippet capabilities to ensure that by default newly provisioned systems are
correctly configured. Cobbler snippets are small scripts which can be re-used and associated easily with
multiple kickstart profiles. So a change to the one snippet is automatically propagated out to all associated
kickstart profiles vs manually editing %post scripts within each profile.

Other options are available to install the puppet RPMs and configured to talk to the puppet master but will
not be detailed. These options include manually or scripting the process such as creating a simple bash
script to:

Manually import the GPG key, subscribing to the correct child channel and installation of the puppet
client, then configuring the puppet.

Re-using the bash scripting within %post of the kickstart profile

Re-using the bash scripting within a bootstrap.sh script

Using a re-activation key and activation key chained together

Using Satellite’s own configuration management system to lay down the puppet.conf file with the static
puppet server url line within it

Below are two versions of the example snippets we will add. One for RHEL 5 and the other for RHEL 6

EL6

#raw
FILE=/etc/sysconfig/puppet
if [-f $FILE]
then
 echo "Puppet config file $FILE exists - proceeding."
 echo "PUPPET_SERVER=puppet.example.com" >> /etc/sysconfig/puppet
 perl -pi -e 's/\[main\]/\[main\]\n server = puppet.example.com/g'
/etc/puppet/puppet.conf
 puppet agent --test --waitforcert 60 --no-splay --server=puppet.example.com --
onetime --verbose
 chkconfig puppet on
else
 echo "File $FILE does not exist - exiting."
fi
#end

EL5

#raw
FILE=/etc/sysconfig/puppet
if [-f $FILE]
then
 echo "PUPPET_SERVER=puppet.example.redhat.com" >> /etc/sysconfig/puppet
 perl -pi -e 's/\[main\]/\[main\]\n server = puppet.example.com/g'
/etc/puppet/puppet.conf
 puppetd --test --waitforcert 60 --no-splay --server=puppet.example.com --onetime
--verbose
 chkconfig puppet on
else
 echo "File $FILE does not exist - exiting."
fi
#end

Within Satellite, go to Systems -> Kickstart -> Kickstart Snippets -> create new snippet, enter options:

Red Hat Satellite 5 and 6 Puppet Guide

20

 Snippet Name* puppet-config-el6
 Contents* <Enter above EL6 code, including the #raw and #end>

And click the Create Snippet button. Repeat for the RHEL 5 version.

We will now create a kickstart profile used for the kickstarting of physical systems for RHEL 6 and to use
the puppet-config-el6 snippet along with the el6 puppet activation key.

Within Satellite Kickstart go to Profiles -> create new kickstart profile and within the Wizard select:

 Label*: rhel6-minimal-puppet-x86_64
 Base Channel*: Red Hat Enterprise Linux Server (v.6 for 64-bit x86_64)
 Kickstartable Tree*: ks-rhel-x86_64-server-6-6.5

Click the Next button then Next again and then enter your default root password and click the Finish
button. You will now be able to further edit the kickstart profile. I recommend to select the options for
Logging of custom scripts - in case debugging is required.

Click onto the System Details -> GPG & SSL tab, select the Puppet GPG Key and click the Update keys
button.

Click onto the Activation Keys tab for the Kickstart profile and select the RHEL 6 Puppet Systems key
and click the Update Activation Keys button.

Figure 2.7. Satellite 5 Kickstart Profile Activation Keys

Next click onto the Scripts tab -> add new kickstart script. Enter

Chapter 2. Red Hat Satellite 5 and Puppet

21

 Script Name* EL6-Puppet
 Script Contents*

$SNIPPET('spacewalk/1/puppet-config-el6')

 Script Execution Time* Post Script
 Template - selected

Figure 2.8. Satellite 5 Kickstart Script

This kickstart profile can now be used to install or reinstall systems to RHEL 6 with a puppet client
configured to communicate with Satellite 5 + Puppet Master.

Repeat the above process to create a RHEL 5 based profile.

Red Hat Satellite 5 and 6 Puppet Guide

22

2.10. Cobbler as External Node Classifier
Objective: One of the powers of puppet is the ability to dynamically make changes based on the specific
system in question. Within the Satellite 6 section we discuss key considerations when creating puppet
modules. This section outlines how you can use the cobbler daemon shipped within Satellite 5 as a means
to store this additional meta-data about the system. We will walk through how to use Satellite 5 to create
system profiles within cobbler and then using cobbler to add/change management values. We will then
walk through configuring puppet to talk to cobbler for this information.

Please note that the older cobbler shipped with Satellite 5.x is not fully compatible with newer puppet
parameterized classes for modules, but does support the basic usage of them as outlined in this
document. There are many other options to use as an External Node Classified (ENC).

Further details on ENC's and Cobbler can be found online at the following locations

http://docs.puppetlabs.com/guides/external_nodes.html

https://fedorahosted.org/cobbler/wiki/UsingCobblerWithConfigManagementSyste

m

2.10.1. Puppet Master

On the Puppet Master we are going to do a minimal installation of cobbler reusing the version that is
provided by Satellite. We will then configure the puppet master to call out to the cobbler server for node
definitions.

The first step is to install cobbler - one way to achieve this is to copy the Satellite Installation ISO onto the
Puppet Master and locally mount it. Once mounted change directory into where all the main RPMs are. We
will then use yum to install cobbler and dependencies.

mkdir sat56-iso
mount -o loop satellite-5.6.0-20130927-rhel-6-x86_64.iso sat56-iso
cd sat56-iso/Satellite/
yum localinstall cobbler-2.0.7-37.el6sat.noarch.rpm libyaml-0.1.2-5.el6.x86_64.rpm
PyYAML-3.09-3.el6sat.x86_64.rpm

Next we have to configure the puppet installed cobbler to communicate with the Satellite’s main cobbler. To
do this, we will need to know the Satellite’s IP address. Open within a text editor the /etc/cobbler/settings
file and change line from

server: 127.0.0.1

to:

server: IP-address-of-Satellite-Server

To confirm that the cobbler section is functioning you can manually run cobbler-ext-nodes command with
the option localhost. It will return empty data.

cobbler-ext-nodes localhost
classes: []
parameters: {}

The final step on the Puppet Master is to configure it to use cobbler as an external node classifier. To do
this we will edit the /etc/puppet/puppet.conf configuration file and add the following new section to it:

Chapter 2. Red Hat Satellite 5 and Puppet

23

http://docs.puppetlabs.com/guides/external_nodes.html
https://fedorahosted.org/cobbler/wiki/UsingCobblerWithConfigManagementSystem

[master]
 node_terminus = exec
 external_nodes = /usr/bin/cobbler-ext-nodes

2.10.2. Satellite Server

Within Satellite for each system that you want to manage with puppet you will need to generate a system
profile for it within cobbler. There is several ways to achieve this including usage of API (recommended for
ease of automation and bulk change), or spacecmd tool from Spacewalk, or the cobbler command line or
using the Satellite WebUI. If using the Satellite WebUI browse to Systems -> System Profile Name ->
Provisioning -> Select the Puppet Kickstart Profile and then click the Create Cobbler System Record
button, and then Continue to confirm.

As root we will now use the cobbler command line tool to list and see the system records for known
systems and then show how you can set various management classes. These management classes are
read by puppet when it calls out to the ENC to determine what puppet modules are available to the system
being managed by puppet. These management classes can be either global or a per-system basis. Within
the example below we will show how to enable/set the ntp class.

To list the system profiles known to cobbler and puppet use:

cobbler system list
 example1.example.com:1
 example2.example.com:1
 example3.example.com:1
#

To get a lot more detailed information on a specific system use the system report option within cobbler:

cobbler system report example1.example.com:1

If your environment is not setup correctly at this point you will see the DNS Name is incorrect on the profile
- puppet requires the full hostname and correct DNS resolution. The above command will also list all the
Management Classes specifically assigned to the system profile.

Alternatively, to see just the management classes exposed for a system you can call directly the cobbler-
ext-nodes command which is what puppet calls to find details for a system:

cobbler-ext-nodes example1.example.com

There is 4 distinct locations that you can enable a puppet module (class) within cobbler - globally within
the cobbler configuration file, on a per kickstart tree distro level, on a per kickstart profile level, and finally
on a per individual system basis. We will now walk through each of the four methods using dummy
example puppet modules.

1. If you had example puppet modules called ntpfred and ntpsally and wanted to enable it globally for
all systems, you will need to edit the /etc/cobbler/settings file and look for the line:

mgmt_classes: []

You would edit this to read:

mgmt_classes: [ntpfred, ntpsally]

Then restart the cobblerd daemon:

Red Hat Satellite 5 and 6 Puppet Guide

24

service cobblerd restart
Stopping cobbler daemon: [OK]
Starting cobbler daemon: [OK]
#

2. If you had an example puppet module called ntpabc and wanted to enable it at a kickstart tree
distribution level, you can use:

cobbler distro edit --name=ks-rhel-x86_64-server-6-65 --mgmt-classes="ntpabc"

This will be inherited by any kickstart profile using this kickstart tree distribution.

3. If you had an example puppet module called ntpxzy and wanted to enable it at a kickstart profile
level, you can use:

cobbler profile edit --name=rhel6-minimal-puppet-
x86_64:1:GLOBALSUPPORTSERVIREDHATINC --mgmt-classes="ntpxyz"

This will be inherited by any system associated with this kickstart profile.

4. If you had an example ntp puppet module and wanted to enable it on only a specific system, or
select few, you can use:

cobbler system edit --name example1.example.com:1 --mgmt-classes="ntp" --dns-
name=example1.example.com

In the end, you can use cobbler-ext-nodes to list all enabled puppet modules for the system, which would
look something similar to:

cobbler-ext-nodes example1.example.com
classes: [ntpfred, ntpsally, ntpabc, ntpxzy, ntp]
parameters: {from_cobbler: 1, media_path: /ks/dist/ks-rhel-x86_64-server-6-6.5,
org: 1,
 use_ipv6_gateway: 'false'}

#

If you followed the above examples you will want to blank out and remove the bogus entries by re-running
the commands but this time with --mgmt-classes="”. Failure to remove the bogus modules will result in
puppet attempting to look for the ntpfred and associated modules and throw an error when it fails to find
them. Example error:

puppet agent --test --noop
err: Could not retrieve catalog from remote server: Error 400 on SERVER: Could not
find class ntpfred for example1.example.com on node example1.example.com

We now have a functioning system for puppet using an External Node Classifier to lookup details about
managed systems via cobbler running on the Satellite, and using cobbler to define what puppet modules
are allowed for give system(s). Next we will show how the populate a puppet module into the puppet
master.

Chapter 2. Red Hat Satellite 5 and Puppet

25

Support of command line options listed

Since the usage of puppet with Satellite 5 is not supported by Red Hat and this white paper is
written to provide a recommended guidance on such deployment we have listed several cobbler
command line options that are not officially document nor supported by Red Hat. As we have
shown, they are functional and work but not rigorously tested and supported by Red Hat.
Specifically the usage of cobbler-ext-nodes and the setting of mgmt-classes are not documented
within official product documents for Red Hat Satellite 5.

2.11. Puppet Modules
Objective: We know that customers will often do a mixture of using 3rd party puppet modules such as
those from puppetforge or their own custom modules. We will now show in detail how to deploy a custom
puppet module using the popular puppetforge ntp module.

The ntp module can be downloaded from http://forge.puppetlabs.com/puppetlabs/ntp - use
the Download as a .tar.gz link and place into /root/ of your puppet master. You can also store approved
modules within a git repo and then import them from that repo into your puppet master. This would allow
you to version control different revisions over time of the same module as changes are made to it.

You can list what modules are available by using the following command, which initially is empty:

puppet module list
/etc/puppet/modules (no modules installed)
/usr/share/puppet/modules (no modules installed)
#

We are now going to import the ntp module which we downloaded (this can work for custom as well as
puppetforge content):

puppet module install ~/puppetlabs-ntp-3.0.3.tar.gz
Notice: Preparing to install into /etc/puppet/modules ...
Notice: Downloading from https://forge.puppetlabs.com ...
Notice: Installing -- do not interrupt ...
/etc/puppet/modules
└─┬ puppetlabs-ntp (v3.0.3)
 └── puppetlabs-stdlib (v4.1.0)
#

And now, if we list, we see it is installed and available:

puppet module list
/etc/puppet/modules
├── puppetlabs-ntp (v3.0.3)
└── puppetlabs-stdlib (v4.1.0)
/usr/share/puppet/modules (no modules installed)
#

With the ntp module now uploaded within the puppet master you can now enable the ntp module for all
system associated with your puppet kickstart profile used earlier to install systems:

cobbler system edit --name example1.example.com:1 --mgmt-classes="ntp" --dns-
name=example1.example.com

Red Hat Satellite 5 and 6 Puppet Guide

26

http://forge.puppetlabs.com/puppetlabs/ntp

On your test puppet client if you now run puppet agent with the noop option (to only show what would
happen) you should see a lot of output similar to:

puppet agent --test --noop
info: Caching catalog for example1.example.com
info: Applying configuration version '1399189234'
notice: /Stage[main]/Ntp::Config/File[/etc/ntp.conf]/content:
--- /etc/ntp.conf 2014-05-08 03:43:02.000000000 -0400
+++ /tmp/puppet-file20140508-29183-13wlryo-0 2014-05-08 07:01:27.000000000 -
0400
@@ -1,51 +1,24 @@
-# Permit time synchronization with our time source, but do not
-# permit the source to query or modify the service on this system.
+# ntp.conf: Managed by puppet.
+#

[… OUTUT REMOVED …]

-server 127.127.1.0
-fudge 127.127.1.0 stratum 10

notice: /Stage[main]/Ntp::Config/File[/etc/ntp.conf]/content: current_value
{md5}e0275b9f2a204940fe8d8192c1c2df9e, should be
{md5}60f05f47809aa69d4dddb9dae8db528f (noop)
notice: Class[Ntp::Config]: Would have triggered 'refresh' from 1 events
info: Class[Ntp::Config]: Scheduling refresh of Class[Ntp::Service]
notice: Class[Ntp::Service]: Would have triggered 'refresh' from 1 events
info: Class[Ntp::Service]: Scheduling refresh of Service[ntp]
notice: /Stage[main]/Ntp::Service/Service[ntp]: Would have triggered 'refresh' from
1 events
notice: Class[Ntp::Service]: Would have triggered 'refresh' from 1 events
notice: Stage[main]: Would have triggered 'refresh' from 2 events
notice: Finished catalog run in 1.03 seconds
#

We now have a puppet master with a module in it where cobbler running as the puppet masters ENC
defines what modules are available to which systems. With puppet running as an active service on
managed systems puppet will pull down and apply changes automatically over time to keep systems within
puppet managed defined system state.

2.12. Summary
We have now shown end to end on how to setup Red Hat Satellite 5 and Puppet to work together to
manage an environment of RHEL systems. When used in this manner, along with the additional notes and
comments within the following section, you should find that moving from Satellite 5 + puppet to a fully
supported puppet deployment within Satellite 6 will be smooth to achieve with minimal re-architecture of
your modules.

We have shown how to import upstream puppet RPMs into Satellite. We then used cloned and custom
channels to lock content into known good state. We used system groups and activation keys to logically
group puppet managed systems together at time of registration. We installed and configured a puppet
master next to Satellite, using the Satellite’s cobbler daemon as its External Node Classifier. We have
created kickstart profiles, with post installation scripts that will install required packages and then register
the system at time of provisioning to the puppet master. Finally, we have shown how to manage and
enable puppet modules for sets of managed systems, which will be applied to the systems every time the
puppet daemon on the clients connects to the puppet master.

Chapter 2. Red Hat Satellite 5 and Puppet

27

We hope this information provides useful insight on one example deployment of using an unsupported
puppet today, with Satellite 5, in readiness for future Satellite 6.

Red Hat Satellite 5 and 6 Puppet Guide

28

Chapter 3. Red Hat Satellite 6 and Puppet

3.1. Satellite 6 Application Lifecycle
Satellite 6 has been designed based on numerous customer design sessions and community
recommendations based on the usage of Spacewalk. The usage patterns which are most commonly
reported is to deploy software into a series of “environments” which each environment is more locked
down and hardened then the one before it. A typical scenario is that software is deployed first to “Test”,
then to “Stage”, and then to “Production”

Satellite 6 will support this pattern by allowing customers to mirror all the software and configuration they
use into a central Library. The software is then promoted out through a series of environments. Satellite 6
will allow users to combine Puppet configuration with these packages into single views of both
configuration and software, which can be promoted together. During the promotion, Satellite 6 will ensure
that all managed Puppetmasters in the enterprise are updated correctly with the appropriate Puppet
modules for each content view.

3.2. Preparing for Satellite 6
The following sections outline recommendations for getting ready for Satellite 6.

3.2.1. Use Channel Cloning for Application Lifecycle

Channel Cloning in Satellite 5 is a great way to set up a Application Lifecycle environment like Satellite 6
delivers. Customers should begin to use channel cloning to support a lifecycle which works in their
enterprise.

Thomas Cameron provides a very good overview of this in his Satellite Power User T ips and Tricks
presentation which you can view - http://www.redhat.com/about/events-
webinars/webinars/2013-12-12-tips-and-tricks-red-hat-satellite or get the slides -
http://people.redhat.com/tcameron/Summit2012/Satellite_System_Deployment/came

ron_t_1040_RHNSatellite_Power_User_Tips-n-Tricks_Pt_1.pdf for it.

Rich Jerrido provides another source of excellent guidance for channel cloning within this article Errata
Management Guide for Satellite 5.x - https://access.redhat.com/site/articles/469173

3.2.2. Utilize Puppet Modules

Puppet Modules -
http://docs.puppetlabs.com/puppet/latest/reference/modules_fundamentals.html -
are a good way to package and manage complex Puppet deployments. While more complex than just
writing scripts, the extra effort of modularizing the work will make scaling the Puppet environment that
much easier in the future.

Customers should begin to use Puppet modules for their configuration recipes. Customers should keep
Puppet modules as modular as possible - covering a single component of the system if possible. Using
role and profile classes -
http://docs.puppetlabs.com/puppet/latest/reference/modules_fundamentals.html is
recommended. This will allow users to map the modules or role and profile classes to Satellite 6 host
groups. Puppet Labs provides a good overview -
http://docs.puppetlabs.com/puppet/latest/reference/modules_fundamentals.html

for writing modules.

Chapter 3. Red Hat Satellite 6 and Puppet

29

http://www.redhat.com/about/events-webinars/webinars/2013-12-12-tips-and-tricks-red-hat-satellite
http://people.redhat.com/tcameron/Summit2012/Satellite_System_Deployment/cameron_t_1040_RHNSatellite_Power_User_Tips-n-Tricks_Pt_1.pdf
https://access.redhat.com/site/articles/469173
http://docs.puppetlabs.com/puppet/latest/reference/modules_fundamentals.html
http://docs.puppetlabs.com/puppet/latest/reference/modules_fundamentals.html
http://docs.puppetlabs.com/puppet/latest/reference/modules_fundamentals.html

Customers should define Modulefiles for modules so dependencies are explicitly declared. They should
build modules artifacts as archives as if using Puppet Forge. This will allow import of modules into Satellite
6 and for it to display details of the modules.

3.2.3. Store Puppet Modules in GIT

The modules which are created by the customer, or downloaded from the Forge
https://forge.puppetlabs.com/, should be stored in git. Customers can then promote them to their
environments using tools like r10k https://github.com/adrienthebo/r10k or Librarian
https://github.com/rodjek/librarian-puppet which deploy the modules to the Puppet master.

Customers may choose to invest in using Git Dynamic Branches
http://terrarum.net/administration/puppet-infrastructure-with-r10k.html to mirror
the environments defined in the channel cloning above. However, note that Satellite 6 will provide similar
features and will mirror content from your git branches into the Library and Content Views.

If a Customer wishes to get a preview of how Satellite 6 will manage puppet modules, checkout the Satellite
6.0 Beta program, alternatively look how to mirror the Puppet Forge
http://www.pulpproject.org/2012/08/29/mirroring-puppet-forge-with-pulp/ and
creating modules from git https://github.com/pulp/pulp_puppet/blob/puppet-
tools/docs/user-guide/recipes.rst#building-and-importing-modules.

3.2.4. Do not use Dynamic Scoping

Dynamic scoping will not be supported by Satellite 6. Dynamic scoping was deprecated in Puppet 2.7 and
removed in Puppet 3. Please see this page -
https://docs.puppetlabs.com/guides/scope_and_puppet.html for more information on
Dynamic Scoping.

3.2.5. Do not use Node Definitions inside of Manifests

The use of Node definitions within manifests will not be supported in Satellite 6.

3.2.6. Limit the use of Hiera functions inside of Manifests

Satellite 6 provides smart parameter support which provides a similar solution to variable population to
what is provided by Hiera. Hiera function calls will be supported within Satellite 6. However, the user
experience with smart variables will be a superior experience

Customers should edit their modules to limit the use of Hiera function calls. These should be documented
so that when they transition to Satellite 6 then can be exposed as smart variables.

Red Hat Satellite 5 and 6 Puppet Guide

30

https://forge.puppetlabs.com/
https://github.com/adrienthebo/r10k
https://github.com/rodjek/librarian-puppet
http://terrarum.net/administration/puppet-infrastructure-with-r10k.html
http://www.pulpproject.org/2012/08/29/mirroring-puppet-forge-with-pulp/
https://github.com/pulp/pulp_puppet/blob/puppet-tools/docs/user-guide/recipes.rst#building-and-importing-modules
https://docs.puppetlabs.com/guides/scope_and_puppet.html

Revision History
Revision 1.0-1 Tue July 22 2014 Clifford Perry

Fixed title and content formatting

Revision 1.0-0 Tue July 1 2014 Clifford Perry
Formatting and fixes completed

Revision 0.9-0 Fri June 6 2014 Clifford Perry
First Completed Document

Revision 0.0-0 Thu May 8 2014 Bryan Kearney
Initial creation by publican

Index

Revision History

31

	Table of Contents
	Chapter 1. Introduction
	1.1. Introduction
	1.2. Objective
	1.3. Plans for Supported Versions

	Chapter 2. Red Hat Satellite 5 and Puppet
	2.1. Overview
	2.2. Initial Satellite 5 Configuration
	2.3. Import Puppet Packages
	2.4. Clone Channels
	2.4.1. RHEL 6 Child Channel for Satellite + Puppet 3.6
	2.4.2. RHEL 5 Child Channel for Satellite + Puppet 2.7
	2.4.3. RHEL 6 child channel for puppet master

	2.5. System Groups
	2.6. Activation Keys
	2.7. GPG Keys
	2.8. Install & Configure Puppet Master
	2.8.1. Installation of Puppet Master Apache Rack Application
	2.8.2. Apache Configuration
	2.8.3. x509 (SSL) Certificates
	2.8.4. Puppet Clients

	2.9. Kickstart Provisioning
	2.10. Cobbler as External Node Classifier
	2.10.1. Puppet Master
	2.10.2. Satellite Server

	2.11. Puppet Modules
	2.12. Summary

	Chapter 3. Red Hat Satellite 6 and Puppet
	3.1. Satellite 6 Application Lifecycle
	3.2. Preparing for Satellite 6
	3.2.1. Use Channel Cloning for Application Lifecycle
	3.2.2. Utilize Puppet Modules
	3.2.3. Store Puppet Modules in GIT
	3.2.4. Do not use Dynamic Scoping
	3.2.5. Do not use Node Definitions inside of Manifests
	3.2.6. Limit the use of Hiera functions inside of Manifests

	Revision History
	Index

