& RedHat

Red Hat Managed Integration 1

Using the Push Notifications Service

For Red Hat Managed Integration 1

Last Updated: 2020-01-16

Red Hat Managed Integration 1 Using the Push Notifications Service

For Red Hat Managed Integration 1

Legal Notice

Copyright © 2020 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document provides instructions for using the Push Notifications service, Red Hat Managed
Integration 1.

Table of Contents

Table of Contents

o L 3
CHAPTER 1. PUSH NOTIFICATIONS TERMINOLOGY ... i i 4
CHAPTER 2. SETTING UP THE PUSH NOTIFICATIONS MOBILESERVICE, 5
2.1. OBTAINING FIREBASE CLOUD MESSAGING CREDENTIALS 5
2.2. OBTAINING APPLE PUSH NOTIFICATION SERVICE CREDENTIALS 5
2.3. CREATING A VARIANT 5
2.4.SETTING UP THE PUSH NOTIFICATIONS SERVICE SDK 6
CHAPTER 3. REGISTERING DEVICE ON PUSH NOTIFICATIONS SERVICEo, 7
CHAPTER 4. SENDING A PUSH NOTIFICATION USING THE UNIFIED PUSHADMINUI 8
CHAPTER 5. HANDLING INCOMING PUSH NOTIFICATIONS ... i n

Red Hat Managed Integration 1 Using the Push Notifications Service

PREFACE

PREFACE

The Push Notifications service allows you to send native push notifications to different mobile operating
systems.

® Code once and push notifications to iOS and Android.
® Push notifications to either iOS only or Android only.
® Push notifications to different variants of a mobile app.
The service supports:
® Apple Push Notification Service
® Firebase Cloud Messaging
The Push Notifications service offers a unified Notification Service API to the above mentioned Push

Network Services. It can be seen as a broker that distributes push messages to different 3rd party Push
Networks.

NOTE

® The payload of the push notification is delivered to 3rd party Push Network
providers, Google or Apple. AeroGear recommends that users do not send any
sensitive personal or confidential information (for example, a social security
number, financial account or transactional information) as part of any Push
Notification. Users of push notifications should not have an expectation of secure
transmission.

® For analytic purposes, the service stores the content of the alert key sent to the
UnifiedPush Server. The content of the alert key belongs to the metadata, which
is deleted after 30 days, using a nightly job within the UnifiedPush Server.

® You are only able to send push notifications to a real device, sending push
notifications to an emulator fails.

® Push is a signaling mechanism and is not suitable to be used as a data carrying
system, for example, a chat application.

Additional resources

® Apple Push Notification Service

® Firebase Cloud Messaging

https://developer.apple.com/notifications/
https://firebase.google.com/products/cloud-messaging/
https://developer.apple.com/notifications/
https://firebase.google.com/products/cloud-messaging/

Red Hat Managed Integration 1Using the Push Notifications Service

CHAPTER 1. PUSH NOTIFICATIONS TERMINOLOGY

This section describes terminology that is associated with Push Notifications.

Push Application

A logical construct that represents an Mobile App, for example, Mobile HR.
Push Notification Message

A simple message to be sent to a Push Application.
Sender Endpoint API

A RESTful API that receives Push Notification Message requests for a PushApplication or some of its
different Variants. The Server translates this request into the platform specific details and delivers
the payload to the 3rd party cloud providers, which eventually might deliver the message to the
physical device.

Variant

A variant of the Push Application, representing a specific mobile platform, like iOS or Android, or

even more fine-grained differentiation like iPad or iPhone. There can be multiple variants for a single
Push Application (for example, Mobile HR Android, Mobile HR iPad, Mobile HR iOS free or _Mobile HR
iOS premium). Each supported variant type contains some platform specific properties, such as a
Google APl key (Android) or passphrase and certificate (Apple).

APNs
Apple Push Notification service.
Installation

Represents an actual device, registered with the UnifiedPush Server. Userl running HR Android app,
while User2 runs HR iPhone premium on his phone.

Administrative User Interface

(AUI) The Unified Push Admin Ul Web Ul that allows you manage Push Applications and Variants,
view statistics and send Push Notifications to devices.

https://developer.apple.com/library/archive/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/APNSOverview.html#//apple_ref/doc/uid/TP40008194-CH8-SW1

CHAPTER 2. SETTING UP THE PUSH NOTIFICATIONS MOBILE SERVICE

CHAPTER 2. SETTING UP THE PUSH NOTIFICATIONS MOBILE
SERVICE

2.1. OBTAINING FIREBASE CLOUD MESSAGING CREDENTIALS

This procedure describes how to obtain Firebase Cloud Messaging Credentials.

Prerequisites

Before the Android application is able to receive the notifications, you must set up access to Firebase
Cloud Messaging. The following credentials are necessary to set up Firebase Cloud Messaging for your

app:
® Server key
® SenderID

e google-services.json file containing the credentials required to connect your app to Firebase
and Google services.

Procedure

1. From the Project Settings screen, switch to the Cloud Messaging tab, where you can find the
Server key and Sender ID (known in GCM as Project Number). There is also a Legacy server
key but it should not be used for new projects.

2. Download the google-services.json file as described in the Google Documentation.

2.2. OBTAINING APPLE PUSH NOTIFICATION SERVICE CREDENTIALS

This procedure describes how to enable Push Notifications for your iOS application and get the
credentials required for push from Apple.

Procedure

1. Follow the official Apple guide to enable push notifications for your Xcode project.

2. Follow the official Apple guide to generate an APNs client TLS certificate and export the client
TLS identity from your Mac.

NOTE

Make sure to protect the p12 file with a password.

_,f"

2.3. CREATING A VARIANT

This procedure describes how to register your app on the UnifiedPush Server

Procedure

1. Log into the Solution Explorer.

2. Click Open Console beside Push Notification Service.

https://support.google.com/firebase/answer/7015592?hl=en
https://help.apple.com/xcode/mac/current/#/devdfd3d04a1
https://help.apple.com/developer-account/#/dev82a71386a

Red Hat Managed Integration 1Using the Push Notifications Service

3. If push applications already exist, they are displayed, click "Create Application" to navigate to
the Welcome page. If no push applications exist, the Welcome page is displayed.

4. Click Start Here to dismiss the Welcome Page and go to the Create Application screen
5. Enter a name for your application and click Create App to go to the Variant screen
6. Click Add a Variant
7. Enter a name for your variant and select the platform that you intend to target
8. Enter the Push Network details necessary for your push network and click Create
9. Copy each of the various code snippets into its corresponding file in your application
10. Build and deploy your app

11. Click the Skip the wizardlink to finish.

2.4.SETTING UP THE PUSH NOTIFICATIONS SERVICE SDK

This section helps you to set up the Push Notifications service SDK in your App. It describes how to set
up and initialize the Push Notifications service SDK.

Android
A Firebase account.
iOS

An APNs service.

Procedure

1. Import the libraries

2. Install cordova-plugin-aerogear-push:
I $ cordova plugin add @aerogear/cordova-plugin-aerogear-push
3. Install the Unified Push Server package needed for device registration:

I $ npm install --save @aerogear/push

https://firebase.google.com/
https://developer.apple.com/library/archive/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/APNSOverview.html#//apple_ref/doc/uid/TP40008194-CH8-SW1

CHAPTER 3. REGISTERING DEVICE ON PUSH NOTIFICATIONS SERVICE

CHAPTER 3. REGISTERING DEVICE ON PUSH NOTIFICATIONS
SERVICE

To receive native push notifications from a Push Network, for example APNs or FCM, the mobile device
is identified with a unique device-token assigned by that Push Network. This device-token is passed, by
the operating system, to the mobile application. Refer to the operating system and Push Network
documentation for further details.
Every time a user launches a mobile app, that app receives the device-token, from a platform-specific
method (or callback). Since the Push Network may assign a new token to a device, AeroGear
recommends that the app registers the device-token with the UnifiedPush Server each time.
The required metadata for an Installation:

e deviceToken: _ldentifies the device/user-agent within its Push Network.

® variantID: The ID of the variant, where the client belongs to

® variantSecret: Password of the actual variant
The AeroGear UnifiedPush Server is able to store some user-specific metadata as well:

e deviceType: The device type of the device or the user agent.

® operatingSystem: The name of the underlying Operating System.

® osVersion: The version of the used Operating System.

® alias: Application specific alias to identify users with the system. For instance an email address
or a username.

® categories: Used to apply one or more "tags".

The device-token needs to be registered with the UnifiedPush Server, to indicate there is a new
Installation for a Variant. This registration is performed by calling an endpoint of the server.

import { PushRegistration } from "@aerogear/push";

new PushRegistration(app.config).register().then(() => {

// Registration with UPS successful, you can now send push notifications from the UPS Ul
}).catch(err => {

// Error on device registration

hE

NOTE

Optionally, you can pass the parameters below to the register method

{

alias: 'some-alias’,
categories: ['one’, 'or', 'more’, 'categories'],
timeout: 5000 // in milliseconds

}

Red Hat Managed Integration 1Using the Push Notifications Service

CHAPTER 4. SENDING A PUSH NOTIFICATION USING THE

UNIFIED PUSH ADMIN Ul

The Unified Push Admin Ul allows you to send Push Notifications.

Prerequisites

® Make sure the Push Notifications service is provisioned.

® Select aroute in OpenShift.

® Login with your OpenShift credentials.

Admin Ul

NOTE

On first login you need to provide the OpenShift OAuth service permissions to read your
user account.

Open the Unified Push Admin Ul in a browser.

Select the target application from the home page and click Send Notification To This App

=) / £ AeroGear UnifiedPus x

[localhost aw/ e =

AEROGEAR UNIFIEDPUSH SERVER

Applications » My Test Application: Variants

My Test Application ey (Mo szt

Analytics ~ Variants Sender AP Activity log
You have 1 Variants

Y .
I'I Variants App Notifications

Bandriod test application g # Editname W Remove My Test Application
16 Jun, 13:29:25, 2015
Google's Cloud Messaging Network (GCM) will be used. To learn more about GCM, visit our Android, Chrome or Apache Cordova guides for push,
. X D see all notifications
Project Number: 1084300276834
Google API Key: AlzaSyA4x5Y2870spmihuBva7DLCOJIOTUAMBWY
Edit Network Options || C'Renew Variant secret

This s a list of devices using this variable. To see installation instructions and code snippet click here
Showing 1 to 1 of 1 Devices

Device token Device type Categories Alias Receiving

APA91bHKGWVV_4SpcBrmQhA}-. ANDROID v

When the Send Push dialog displays, enter text in the Message form.

CHAPTER 4. SENDING A PUSH NOTIFICATION USING THE UNIFIED PUSH ADMIN Ul

== / AeroGear UnifiedPus x __

[BEE
& *® @ [D tocalhost:8080/ag-pushi/app/8784f4c2-67b0-424f-9d3e-6d73c682114d/variants QfvE =
% Bookmarks () aerogear-unified- (] aerogear ¥ CB () Release-Process-

» [Other bookmarks

M “Github Notif/ag- & Google Actualités [l The Coder's Way @ Writinga Comm= 8 Main: AeroGear I [index.html €) Admin Ul - sebisc) 657d42...6dab(

Send push to Application One

Message Hello AeroGear UnifiedPusht

Categories

You can provide multiple values at a time by separating them by commas,

[SUITRE send Push Notification

4. Click Send Push Notification to send the message to the target application.

Java API

1. Add unifiedpush-java-client as a dependency to your project.

<dependency>

<groupld>org.jboss.aerogear</groupld>
<artifactld>unifiedpush-java-client</artifactld>
<version>[version]</version>

</dependency>

2. Send the message to the target application.

final PushSender sender = DefaultPushSender

.withRootServerURL("<pushServerURL e.g http(s)//host:port/context>")
.pushApplicationld("<pushApplicationld e.g. 1234456-234320>")
.masterSecret("<masterSecret e.g. 1234456-234320>")

.build();
final UnifiedMessage unifiedMessage = UnifiedMessage
.withMessage()
.alert("Hello from Java Sender API!")
.build();

sender.send(unifiedMessage, () -> {
//do cool stuff

h;

Node.js API
1. Add unifiedpush-node-sender as a dependency to your project.
I npm i unifiedpush-node-sender

2. Send the message to the target application.

https://github.com/aerogear/aerogear-unifiedpush-java-client/
https://github.com/aerogear/aerogear-unifiedpush-nodejs-client/

Red Hat Managed Integration 1Using the Push Notifications Service

const agSender = require('unifiedpush-node-sender');

const settings = {
url: "<pushServerURL e.g http(s)//host:port/context>",
applicationld: "<pushApplicationld e.g. 1234456-234320>",
masterSecret: "<masterSecret e.g. 1234456-234320>"

1

const message = {
alert: "Hello from the Node.js Sender API!"

I§

const options = {
config: {
ttl: 3600
}
b

agSender(settings).then((client) => {
client.sender.send(message, options).then((response) => {
console.log('success', response);
}).catch((error) => {
console.log('error', error);
)
Wk

REST

1. Send the message to the target application.

curl -u "<pushApplicationld>:<masterSecret>" \
-v -H "Accept: application/json" -H "Content-type: application/json" \
-X POST -d\
1
"message": {
"alert": "Hello from the curl HTTP Sender!",
"sound": "default"
}
A
<pushServerURL>/rest/sender

NOTE

The 3rd party Push Network is responsible for delivering the Push Notification to the
target application.

-

10

CHAPTER 5. HANDLING INCOMING PUSH NOTIFICATIONS

CHAPTER 5. HANDLING INCOMING PUSH NOTIFICATIONS

This section describes how to handle incoming push notifications in your foregrounded application.

NOTE

Push notifications that arrive when the application is in the background are always
handled by the OS.

Procedure
1. Add the following code to your app:

import { PushRegistration } from "@aerogear/push";
PushRegistration.onMessageReceived((notification: any) => {

console.log('Received a push notification', notification);

hE

2. Build and run your app.

1

	Table of Contents
	PREFACE
	CHAPTER 1. PUSH NOTIFICATIONS TERMINOLOGY
	CHAPTER 2. SETTING UP THE PUSH NOTIFICATIONS MOBILE SERVICE
	2.1. OBTAINING FIREBASE CLOUD MESSAGING CREDENTIALS
	2.2. OBTAINING APPLE PUSH NOTIFICATION SERVICE CREDENTIALS
	2.3. CREATING A VARIANT
	2.4. SETTING UP THE PUSH NOTIFICATIONS SERVICE SDK

	CHAPTER 3. REGISTERING DEVICE ON PUSH NOTIFICATIONS SERVICE
	CHAPTER 4. SENDING A PUSH NOTIFICATION USING THE UNIFIED PUSH ADMIN UI
	CHAPTER 5. HANDLING INCOMING PUSH NOTIFICATIONS

