
Red Hat Managed Integration 1

Developing a Data Sync App

For Red Hat Managed Integration 1

Last Updated: 2020-01-21

Red Hat Managed Integration 1 Developing a Data Sync App

For Red Hat Managed Integration 1

Legal Notice

Copyright © 2020 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document provides a comprehensive description and usage instructions for creating a Data
Sync application, Red Hat Managed Integration 1.

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

PREFACE

CHAPTER 1. INTRODUCTION
1.1. INTRODUCING DATA SYNC
1.2. DATA SYNC TECHNICAL OVERVIEW
1.3. DATA SYNC TERMINOLOGY
1.4. GETTING STARTED WITH HELLO WORLD DATA SYNC

CHAPTER 2. QUERYING A DATA SYNC SERVER USING A DATA SYNC CLIENT

CHAPTER 3. ADDING A MUTATION TO A DATA SYNC CLIENT

CHAPTER 4. SUPPORTING OFFLINE FUNCTIONALITY IN YOUR MOBILE APP
4.1. ABOUT OFFLINE FUNCTIONALITY
4.2. CREATING AN OFFLINE CLIENT

CHAPTER 5. DETECTING MUTATIONS WHILE OFFLINE

CHAPTER 6. PERFORMING MUTATIONS WHILE OFFLINE
6.1. SUPPORTING APP RESTARTS WHILE OFFLINE
6.2. ENSURING SPECIFIED MUTATIONS ARE PERFORMED ONLINE ONLY
6.3. LISTENING FOR EVENTS
6.4. USING CACHE UPDATE HELPERS

6.4.1. Using cache update helpers for mutations
6.4.2. Using cache update helpers for subscriptions
6.4.3. Using cache update helpers for multiple subscriptions

CHAPTER 7. DETECTING NETWORK STATUS

CHAPTER 8. SUPPORTING REAL-TIME UPDATES IN YOUR MOBILE APP
8.1. INTRODUCTION TO REAL-TIME UPDATES
8.2. IMPLEMENTING REAL-TIME UPDATES ON A DATA SYNC SERVER

8.2.1. Implementing a SubscriptionServer using voyager-subscription
8.2.2. Implementing a Publish Subscribe Mechanism
8.2.3. Defining subscriptions in the schema
8.2.4. Implementing resolvers

8.3. CONFIGURING A PUBLISH SUBSCRIBE MECHANISM
8.3.1. Using the Apollo PubSub mechanism
8.3.2. Using the MQTT PubSub mechanism

8.4. CONFIGURING AMQ ONLINE FOR MQTT MESSAGING
8.4.1. Creating an address space
8.4.2. Creating an Address
8.4.3. Creating an AMQ Online user

8.5. USING GRAPHQL MQTT PUBSUB WITH AMQ ONLINE
8.5.1. Using environment variables for configuration
8.5.2. Troubleshooting MQTT Connection Issues

8.5.2.1. Troubleshooting MQTT Events
8.5.2.2. Troubleshooting MQTT Configuration Issues

8.6. IMPLEMENTING REAL-TIME UPDATES ON ON THE CLIENT
8.6.1. Setting up a client to use subscriptions
8.6.2. Using Subscriptions
8.6.3. Handling network state changes

CHAPTER 9. SUPPORTING AUTHENTICATION AND AUTHORIZATION IN YOUR MOBILE APP

4

5
5
5
6
7

10

14

16
16
17

18

19
19

20
20
21
21
22
22

24

25
25
25
26
27
27
27
28
28
28
29
29
30
31
31

34
34
34
34
35
35
36
37

38

Table of Contents

1

. .

. .

. .

9.1. CONFIGURING YOUR SERVER FOR AUTHENTICATION AND AUTHORIZATION USING RED HAT SINGLE
SIGN-ON

9.1.1. Protecting Data Sync Server using Red Hat Single Sign-On
9.1.2. Using the hasRole directive in a schema

9.2. AUTHENTICATION OVER WEBSOCKETS USING RED HAT SINGLE SIGN-ON
9.2.1. Red Hat Single Sign-On Authorization in Subscriptions

9.3. IMPLEMENTING AUTHENTICATION AND AUTHORIZATION ON YOUR CLIENT

CHAPTER 10. RESOLVING CONFLICTS IN YOUR DATA SYNC APP
10.1. INTRODUCTION
10.2. DETECTING CONFLICTS ON THE SERVER

10.2.1. Implementing version based conflict detection
10.2.2. Implementing hash based conflict detection
10.2.3. About the structure of the conflict error

10.3. RESOLVING CONFLICTS ON THE CLIENT
10.3.1. Implementing conflict resolution on the client
10.3.2. About the default conflict implementation
10.3.3. Implementing conflict resolution strategies
10.3.4. Listening to conflicts
10.3.5. Handling pre-conflict errors

CHAPTER 11. ALLOWING USERS UPLOAD FILES FROM YOUR MOBILE APP
11.1. ENABLING FILE UPLOADS ON THE SERVER
11.2. IMPLEMENTING FILE UPLOAD ON THE CLIENT

11.2.1. Introduction
11.2.2. Enabling File Upload

11.3. UPLOADING FILES FROM GRAPHQL
11.3.1. Executing mutations

CHAPTER 12. RUNNING A DATA SYNC APP ON RED HAT MANAGED INTEGRATION
12.1. DEPLOYING YOUR DATA SYNC SERVER APPLICATION
12.2. CONNECTING THE DATA SYNC CLIENT TO YOUR DATA SYNC SERVER APPLICATION

38
38
39
41
41

43

44
44
44
45
46
46
47
47
48
49
49
50

51
51
51
52
52
52
52

54
54
54

Red Hat Managed Integration 1 Developing a Data Sync App

2

Table of Contents

3

PREFACE
Unlike other mobile services which provide a server and an API, Data Sync is a framework that allows you
to develop services. Typically, you develop a Data Sync service as follows:

1. Design a GraphQL schema.

2. Develop a Data Sync server and Data Sync client, with the features you require

3. Containerize your Data Sync server and deploy it to OpenShift.

4. Configure your mobile app to point to the Data Sync server.

5. Complete your mobile app development.

6. Build and run your mobile app.

Red Hat Managed Integration 1 Developing a Data Sync App

4

https://graphql.org/learn

CHAPTER 1. INTRODUCTION

1.1. INTRODUCING DATA SYNC

Data Sync is a JavaScript framework that enables a developer to add real time data synchronization to
both mobile and web clients. The Data Sync framework also provides offline capabilities that allow a
client to continue operating offline and once connectivity is re-established, the client is automatically
synchronized. An app built using the Data Sync framework typically connects to a data source for data
persistence; however, an app built using the Data Sync framework works without a data source.

An app built using the Data Sync framework comprises of two components:

The Data Sync client is a JavaScript client offering client side extensions and server side
integration. The Data Sync client can be integrated into frameworks such as React and Angular.

The Data Sync server is a framework for building Node.js based GraphQL API. The Data Sync
server offers enterprise extensions for ensuring data security, integrity, and monitoring. It can
be integrated into existing Node.js application.

The Data Sync framework uses the Apollo platform as the GraphQL implementation.

Additional resources

Real-time data synchronization across mobile and web clients.

Websockets allow for real-time data synchronization across multiple Data Sync clients. Data
Sync clients receive updates from the Data Sync server without having to explicitly query
their local data as conflict detection is handled by the Data Sync server.

A Data Sync client can perform any operation regardless of the connectivity state.

If network connectivity is a concern, a Data Sync client can perform any operation
regardless of its connectivity state. A Data Sync client can perform the same operations
when it is on-line or off-line, and this functionality ensures that you can safely use Data Sync
to create business critical applications.

Offers fully customizable conflict detection and resolution to the developer.

Data Sync enables users to detect and resolve conflicts on the Data Sync server resulting in
the seamless transmission of data to various Data Sync clients. Data Sync also allows for
conflict resolution on the Data Sync client should a developer want to adopt this strategy.

Instant synchronous queries provide instant feedback for developers.

When a Data Sync client is on-line, instant queries allow a developer to quickly react to
errors and display results to users when the operation is executed. Developers can retrieve
an instant response or error from the Data Sync server however the Data Sync client must
have a connection to the Data Sync server.

Flexible data sources.

Data Sync can connect to various data sources, for example, cloud storage, databases such
as MongoDB and PostgreSQL, and existing back-end data sources.

1.2. DATA SYNC TECHNICAL OVERVIEW

CHAPTER 1. INTRODUCTION

5

https://www.apollographql.com/

This section describes the technical aspects of Data Sync.

Table 1.1. Data Sync case study

Component Technical Role

Sync Client The Sync client is a client side JavaScript library used
for building web and mobile applications. It allows for
simple Sync server integration.

Sync Server The Sync server is based on the Apollo Server
framework and it performs two primary functions. It
sends and retrieves data from a data source, and it
syncs data across the Sync clients. The Sync server
uses GraphQL to create custom connections that in
turn allow various types of Sync clients to connect.

Data sources The data source stores data. This data is typically
what is synchronized across the Sync clients.

For more information about the Apollo Server framework, start here to learn about the Apollo platform .

1.3. DATA SYNC TERMINOLOGY

This section describes terminology that is associated with Data Sync.

Data Sync terms

GraphQL

A query language for your API, and a server-side runtime for executing queries that use a type
system. For more information, see GraphQL.

Apollo

Apollo is an implementation of GraphQL designed for the needs of product engineering teams
building modern, data-driven applications. Apollo includes two open-source libraries, Apollo Server
and Apollo Client. The Data Sync Framework leverages Apollo functionality.

Red Hat Managed Integration 1 Developing a Data Sync App

6

https://www.apollographql.com/docs/apollo-server/
https://graphql.org/learn
https://www.apollographql.com/

1

2

3

Sync Server

The Sync Server is a framework for building Node.js based GraphQL API.

Sync Client

The Sync Client is a JavaScript client offering client side extensions and server side integration. The
Sync Client can be integrated into frameworks such as React and Angular.

Data sources

The Data Sync framework is typically used in conjunction with a data source for data persistence;
however, an app built using the Data Sync framework works without a data source.

Data Sync framework

Data Sync is a JavaScript framework that enables a developer to add the capability to synchronize
data in real-time for both mobile and web clients.

Additional resources

Learn GraphQL

Voyager Server GitHub repository

Voyager Client GitHub repository

Apollo Server

Apollo Client

1.4. GETTING STARTED WITH HELLO WORLD DATA SYNC

In this example, you add the Data Sync Server library to your Express node.js project, create an index-
1.js file, run the server, and query GraphQL.

Data Sync Server is a set of Node.js libraries that can be used to build a Data Sync server.

Data Sync Server is the starting point for developing a Data Sync application.

Prerequisites

You have Node.js and npm installed.

You have created a node.js project.

Procedure

1. Add libraries to your Node.js application:

See https://graphql.org/

See https://expressjs.com/

The Data Sync Server library that enables data sync

$ npm install graphql 1
$ npm install express 2
$ npm install @aerogear/voyager-server 3

CHAPTER 1. INTRODUCTION

7

https://graphql.org/learn
https://github.com/aerogear/voyager-server
https://github.com/aerogear/aerogear-js-sdk/tree/master/packages/sync
https://www.apollographql.com/docs/apollo-server
https://www.apollographql.com/docs/react
https://expressjs.com/
https://graphql.org/
https://expressjs.com/

2. Create an index-1.js file with the following content:

3. Run the server:

4. Browse http://localhost:4000/graphql and interact with the playground. For example:

5. Check the output. For the example above, the output should be:

const express = require('express')
//Include our server libraries
const { VoyagerServer, gql } = require('@aerogear/voyager-server')

//Provide your graphql schema
const typeDefs = gql`
 type Query {
 hello: String
 }
`

//Create the resolvers for your schema
const resolvers = {
 Query: {
 hello: (obj, args, context, info) => {
 return `Hello world`
 }
 }
}

//Initialize the library with your Graphql information
const apolloServer = VoyagerServer({
 typeDefs,
 resolvers
})

//Connect the server to express
const app = express()
apolloServer.applyMiddleware({ app })

app.listen(4000, () =>
 console.log(`� Server ready at http://localhost:4000/graphql`)
)

$ node index-1.js

� Server ready at http://localhost:4000/graphql

{
 hello
}

{
 "data": {
 "hello": "Hello world"
 }
}

Red Hat Managed Integration 1 Developing a Data Sync App

8

http://localhost:4000/graphql

To get started with the Data Sync framework, see the sample application. In this app, you can explore a
more complex schema.

Before proceeding, make sure you have an understanding of the following GraphQL concepts:

Schema design

Resolvers

Subscriptions

CHAPTER 1. INTRODUCTION

9

https://github.com/aerogear/ionic-showcase

CHAPTER 2. QUERYING A DATA SYNC SERVER USING A DATA
SYNC CLIENT

This section describes how to use the Voyager Client to create mobile and web applications that can
communicate with the Voyager server application.

Data Sync provides JavaScript libraries which integrate your javascript app with a server that also uses
Data Sync. The client libraries are based on the Apollo client.

You will add the libraries to your mobile project, configure the client classes, connect to the server, and
confirm that it works.

Prerequisites

You have Node.js and npm installed.

You have created an empty web project that supports ES6, using the webpack getting started
guide.

You have completed the server getting started guide and the application is running.

Procedure

1. Create an address book server:

a. Create an index-2.js file with the following content:

const express = require('express')
//Include our server libraries
const { VoyagerServer, gql } = require('@aerogear/voyager-server')

//Provide your graphql schema
const typeDefs = gql`
type Query {
 info: String!
 addressBook: [Person!]!
}

type Mutation {
 post(name: String!, address: String!): Person!
}

type Person {
 id: ID!
 address: String!
 name: String!
}
`

let persons = [{
 id: 'person-0',
 name: 'Alice Roberts',
 address: '1 Red Square, Waterford'
}]

Red Hat Managed Integration 1 Developing a Data Sync App

10

https://www.apollographql.com/docs/react/
https://webpack.js.org/guides/getting-started/

b. Run the server:

c. Browse http://localhost:4000/graphql and interact with the playground. For example:

d. Check the output. For the example above, the output should be:

let idCount = persons.length
const resolvers = {
 Query: {
 info: () => `This is a simple example`,
 addressBook: () => persons,
 },
 Mutation: {

 post: (parent, args) => {
 const person = {
 id: `person-${idCount++}`,
 address: args.address,
 name: args.name,
 }
 persons.push(person)
 return person
 }
 },
}

//Initialize the library with your Graphql information
const apolloServer = VoyagerServer({
 typeDefs,
 resolvers
})

//Connect the server to express
const app = express()
apolloServer.applyMiddleware({ app })

app.listen(4000, () =>
 console.log(`� Server ready at http://localhost:4000/graphql`)
)

$ node index-2.js

� Server ready at http://localhost:4000/graphql

{
 addressBook {
 name
 address

 }
}

{
 "data": {
 "addressBook": [

CHAPTER 2. QUERYING A DATA SYNC SERVER USING A DATA SYNC CLIENT

11

http://localhost:4000/graphql

2. Add the following libraries to your javascript client:

NOTE

A prerequisite is that you have created an empty web project that supports ES6,
using the webpack getting started guide.

3. Create an index.js file to make the same query as step 1, but from JavaScript.
In this example, a config object is created, and the httpUrl field is set to the URL of the Voyager
server application. If the client app uses subscriptions, then the wsUrl field is also required.

src/index.js

 {
 "name": "Alice Roberts",
 "address": "1 Red Square, Waterford"
 }
]
 }
}

npm install @aerogear/voyager-client
npm install graphql
npm install graphql-tag

// gql is a utility function that handles gql queries
import gql from 'graphql-tag';

import { OfflineClient } from '@aerogear/voyager-client';

// connect to the local service.
let config = {
 httpUrl: "http://localhost:4000/graphql",
 wsUrl: "ws://localhost:4000/graphql",
}

async function queryPeople() {

 // Actually create the client
 let offlineClient = new OfflineClient(config);
 let client = await offlineClient.init();

 // Execute the query
 client.query({
 fetchPolicy: 'network-only',
 query: gql`
 query addressBook{
 addressBook{
 name
 address
 }
 }
 `
 })

Red Hat Managed Integration 1 Developing a Data Sync App

12

https://webpack.js.org/guides/getting-started/

4. Build and run the client application.

5. Browse the client application and check the console output.
It should include an array similar to the following:

address: "1 Red Square, Waterford"
name: "Alice Roberts"
__typename: "Person"

 //Print the response of the query
 .then(({data}) => {
 console.log(data.addressBook)
 });
}

queryPeople();

CHAPTER 2. QUERYING A DATA SYNC SERVER USING A DATA SYNC CLIENT

13

CHAPTER 3. ADDING A MUTATION TO A DATA SYNC CLIENT

Prerequisites

You have Node.js and npm installed.

You have completed the Queries section and the server is still running.

Procedure

1. Modify the client application to perform the mutation:

src/index.js

2. Build and run the client application.

3. Browse the client application and check the console output.
It should include an array similar to the following:

// gql is a utility function that handles gql queries
import gql from 'graphql-tag';

import { OfflineClient } from '@aerogear/voyager-client';

// connect to the local service.
let config = {
 httpUrl: "http://localhost:4000/graphql",
 wsUrl: "ws://localhost:4000/graphql",
}

async function addPerson() {

 // Actually create the client
 let offlineClient = new OfflineClient(config);
 let client = await offlineClient.init();

 // Execute the mutation
 client.mutate({
 mutation: gql`
 mutation {
 post(name: "John Doe", address: "1 Red Hill") {
 id
 }
 }
 `
 })
 //Print the response of the query
 .then(({data}) => {
 console.log(data)
 });
}

addPerson();

Red Hat Managed Integration 1 Developing a Data Sync App

14

index#querying-a-data-sync-server-using-a-data-sync-client

4. Browse http://localhost:4000/graphql and enter the playground query for the addressbook.
For example:

Results should be similar to:

{
 "data": {
 "post": {
 "id": "person-1"
 }
 }
}

{
 addressBook {
 name
 address

}

{
 "data": {
 "addressBook": [
 {
 "name": "Alex Smith",
 "address": "1 Square Place, City"
 },
 {
 "name": "John Doe",
 "address": "1 Red Hill"
 }
]
 }
}

CHAPTER 3. ADDING A MUTATION TO A DATA SYNC CLIENT

15

http://localhost:4000/graphql

CHAPTER 4. SUPPORTING OFFLINE FUNCTIONALITY IN
YOUR MOBILE APP

4.1. ABOUT OFFLINE FUNCTIONALITY

Your mobile app can run offline and allows users to query and create mutations using the
@aerogear/voyager-client module.

All queries are performed against the cache, a mutation store (or offline store) supports offline
mutations.

If a client goes offline for a long period of time, the mutation store negotiates local updates with the
server using conflict resolution strategies.

When a client comes online again, the mutations are replicated back to the server.

Developers can attach listeners to get notifications about updates applied on the server or failing, and
take appropriate actions.

Mutations and Local Cache

By default queries and the results of mutations are cached.

Mutations can change query results, make sure to call the refetchQueries or update options of the
mutate method to ensure the local cache is kept up to date.

The @aerogear/voyager-client module also provides cache helper functions to reduce the amount of
code required, as described in Section 6.4, “Using cache update helpers” .

Red Hat Managed Integration 1 Developing a Data Sync App

16

For more information about mutate and the options available, see Apollo’s document about mutations .

4.2. CREATING AN OFFLINE CLIENT

The @aerogear/voyager-client module provides an OfflineClient class which exposes the following
functionality:

direct access to the mutation store

allows you to register multiple offline event listeners as described in Section 6.3, “Listening for
events”

automatically ensures the mobile app’s local cache is kept up to date. This client automatically
generates update methods as described in Section 6.4, “Using cache update helpers” .

To create the client:

This client can replace an Apollo client as it supports the same functionality.

import { OfflineClient } from '@aerogear/voyager-client';

let config = {
 httpUrl: "http://localhost:4000/graphql",
 wsUrl: "ws://localhost:4000/graphql",
}

async function setupClient() {

 let offlineClient = new OfflineClient(config);
 let client = await offlineClient.init();
}

setupClient();

CHAPTER 4. SUPPORTING OFFLINE FUNCTIONALITY IN YOUR MOBILE APP

17

https://www.apollographql.com/docs/react/data/mutations/

CHAPTER 5. DETECTING MUTATIONS WHILE OFFLINE
If a mutation occurs while the device is offline, the client.mutate function:

returns immediately

returns a promise with an error

You can check the error object to isolate errors related to the offline state. Invoking the
watchOfflineChange() method on an error object, watches for when an offline change is synced with
the server, and sends a notification when triggered.

For example:

NOTE

In addition to watching individual mutations, you can add a global offline listener when
creating a client as described in Section 6.3, “Listening for events”.

 client.mutate(...).catch((error)=> {
 // 1. Detect if this was an offline error
 if(error.networkError && error.networkError.offline){
 const offlineError: OfflineError = error.networkError;
 // 2. We can still track when offline change is going to be replicated.
 offlineError.watchOfflineChange().then(...)
 }
 });

Red Hat Managed Integration 1 Developing a Data Sync App

18

1

2

3

4

CHAPTER 6. PERFORMING MUTATIONS WHILE OFFLINE
The @aerogear/voyager-client module provides an offlineMutate method which extends Apollo’s
mutate function with some extra functionality. This includes automatically adding some fields to each
operation’s context.

To set up the offline client, see Section 4.2, “Creating an offline client” .

Once set up is complete, offlineMutate is then available to use.

NOTE

The offlineMutate method accepts the same parameters as mutate with some additional
optional parameters also available.

The query or queries which should be updated with the result of the mutation.

The type of operation being performed. Should be "add", "refresh" or "delete". Defaults to "add" if
not provided.

The field on the object used to identify it. Defaults to "id" if not provided.

The type of object being operated on.

6.1. SUPPORTING APP RESTARTS WHILE OFFLINE

An Apollo client holds all mutation parameters in memory. An offline Apollo client continues to store
mutation parameters and once online, it restores all mutations to memory. Any update functions that are
supplied to mutations cannot be cached by an Apollo client resulting in the loss of all optimistic
responses after a restart. Update functions supplied to mutations cannot be saved in the cache. As a
result, all optimisticResponses disappear from the application after a restart and only reappear when the
Apollo client becomes online and successfully syncs with the server.

To prevent the loss of all optimisticResponses after a restart, you can configure the Update Functions to
restore all optimisticResponses.

 const { CacheOperation } = require('@aerogear/voyager-client');

 client.offlineMutate({
 ...
 updateQuery: GET_TASKS, 1
 operationType: CacheOperation.ADD, 2
 idField: "id", 3
 returnType: "Task" 4
 ...
 })

const updateFunctions = {
 // Can contain update functions from each component
 ...ItemUpdates,
 ...TasksUpdates
}

CHAPTER 6. PERFORMING MUTATIONS WHILE OFFLINE

19

You can also use getUpdateFunction to automatically generate functions:

6.2. ENSURING SPECIFIED MUTATIONS ARE PERFORMED ONLINE
ONLY

If you wish to ensure certain mutations are only executed when the client is online, use the GraphQL
directive @onlineOnly, for example:

6.3. LISTENING FOR EVENTS

To handle all notifications about offline related events, use the offlineQueueListener listener in the
config object

The following events are emitted:

onOperationEnqueued - Called when new operation is being added to offline queue

onOperationSuccess - Called when back online and operation succeeds

onOperationFailure - Called when back online and operation fails with GraphQL error

queueCleared - Called when offline operation queue is cleared

let config = {
 mutationCacheUpdates: updateFunctions,
}

const { createMutationOptions, CacheOperation } = require('@aerogear/voyager-client');

const updateFunctions = {
 // Can contain update functions from each component
 createTask: getUpdateFunction({
 mutationName: 'createTask',
 idField: 'id',
 updateQuery: GET_TASKS,
 operationType: CacheOperation.ADD
 }),
 deleteTask: getUpdateFunction({
 mutationName: 'deleteTask',
 idField: 'id',
 updateQuery: GET_TASKS,
 operationType: CacheOperation.DELETE
 })
}

let config = {
 ...
 mutationCacheUpdates: updateFunctions,
 ...
}

exampleMutation(...) @onlineOnly {
 ...
}

Red Hat Managed Integration 1 Developing a Data Sync App

20

You can use this listener to build User Interfaces that show pending changes.

6.4. USING CACHE UPDATE HELPERS

The @aerogear/voyager-client module provides an out of the box solution for managing updates to your
application’s cache. It can intelligently generate cache update methods for both mutations and
subscriptions.

6.4.1. Using cache update helpers for mutations

The following example shows how to use these helper methods for mutations. To use these methods,
create an offline client as described in Section 4.2, “Creating an offline client” and then use the
offlineMutate method. The offlineMutate function accepts a MutationHelperOptions object as a
parameter.

You can also provide more than one query to update the cache by providing an array to the
updateQuery parameter:

The following example shows how to prepare an offline mutation to add a task using the
mutationOptions object and how to update the GET_TASK query for the client’s cache.

If you do not want to use the offline client you can also use the createMutationOptions function
directly. This function provides an Apollo compatible MutationOptions object to pass to your pre-

const { createMutationOptions, CacheOperation } = require('@aerogear/voyager-client');

const mutationOptions = {
 mutation: ADD_TASK,
 variables: {
 title: 'item title'
 },
 updateQuery: {
 query: GET_TASKS,
 variables: {
 filterBy: 'some filter'
 }
 },
 typeName: 'Task',
 operationType: CacheOperation.ADD,
 idField: 'id'
};

const mutationOptions = {
 ...
 updateQuery: [
 { query: GET_TASKS, variables: {} }
]
 ,
 ...
};

const { createMutationOptions, CacheOperation } = require('@aerogear/voyager-client');

client.offlineMutate<Task>(mutationOptions);

CHAPTER 6. PERFORMING MUTATIONS WHILE OFFLINE

21

existing client. The following example shows how to use this function where mutationOptions is the
same object as the previous code example.

6.4.2. Using cache update helpers for subscriptions

The @aerogear/voyager-client module provides a subscription helper which can generate the necessary
options to be used with Apollo Client’s subscribeToMore function.

To use this helper, we first need to create some options, for example:

This options object informs the subscription helper that for every data object received because of the
TASK_ADDED_SUBSCRIPTION the GET_TASKS query should also be kept up to date in the cache.

You can then create the required cache update functions:

To use this helper, pass this subscriptionOptions variable to the subscribeToMore function of our
ObservableQuery.

The cache is kept up to date while automatically performing data deduplication.

6.4.3. Using cache update helpers for multiple subscriptions

The @aerogear/voyager-client module provides the ability to automatically call subscribeToMore on
your ObservableQuery. This can be useful in a situation where you may have multiple subscriptions
which can affect one single query. For example, if you have a TaskAdded, TaskDeleted, and a
TaskUpdated subscription you require three separate subscribeToMore function calls. To avoid this,
use the subscribeToMoreHelper function from the @aerogear/voyager-client module to automatically
handle this by passing an array of subscriptions and their corresponding queries:

const options = createMutationOptions(mutationOptions);

client.mutate<Task>(options);

const { CacheOperation } = require('@aerogear/voyager-client');

const options = {
 subscriptionQuery: TASK_ADDED_SUBSCRIPTION,
 cacheUpdateQuery: GET_TASKS,
 operationType: CacheOperation.ADD
}

const { createSubscriptionOptions } = require('@aerogear/voyager-client');

const subscriptionOptions = createSubscriptionOptions(options);

const query = client.watchQuery<AllTasks>({
 query: GET_TASKS
});

query.subscribeToMore(subscriptionOptions);

const { CacheOperation } = require('@aerogear/voyager-client');

Red Hat Managed Integration 1 Developing a Data Sync App

22

const addOptions = {
 subscriptionQuery: TASK_ADDED_SUBSCRIPTION,
 cacheUpdateQuery: GET_TASKS,
 operationType: CacheOperation.ADD
}

const deleteOptions = {
 subscriptionQuery: TASK_DELETED_SUBSCRIPTION,
 cacheUpdateQuery: GET_TASKS,
 operationType: CacheOperation.DELETE
}

const updateOptions = {
 subscriptionQuery: TASK_UPDATED_SUBSCRIPTION,
 cacheUpdateQuery: GET_TASKS,
 operationType: CacheOperation.REFRESH
}

const query = client.watchQuery<AllTasks>({
 query: GET_TASKS
});

subscribeToMoreHelper(query, [addOptions, deleteOptions, updateOptions]);

CHAPTER 6. PERFORMING MUTATIONS WHILE OFFLINE

23

CHAPTER 7. DETECTING NETWORK STATUS
Use the NetworkStatus interface to check the current network status, or to register a listener which
performs actions when the status of the network changes.

Two default implementations are provided:

WebNetworkStatus for web browsers

CordovaNetworkStatus for Cordova

The following example demonstrates how to register a listener using CordovaNetworkStatus:

import { CordovaNetworkStatus, NetworkInfo } from '@aerogear/voyager-client';
const networkStatus = new CordovaNetworkStatus();

networkStatus.onStatusChangeListener({
 onStatusChange: info => {
 const online = info.online;
 if (online) {
 //client is online, perform some actions
 } else {
 //client is offline
 }
 }
});

let config = {
 ...
 networkStatus: networkStatus,
 ...
};

//create a new client using the config

Red Hat Managed Integration 1 Developing a Data Sync App

24

CHAPTER 8. SUPPORTING REAL-TIME UPDATES IN YOUR
MOBILE APP

8.1. INTRODUCTION TO REAL-TIME UPDATES

After developing some queries and mutations, you might want to implement real-time updates.

Real-time updates are supported in the GraphQL specification by an operation type called
Subscription. To support subscriptions in a production environment, Data Sync implements
subscriptions using an MQTT PubSub subscription mechanism; however, you might want to use the
Apollo PubSub module to develop proof-of-concept applications.

When coding for real-time updates, use the following modules:

@aerogear/voyager-server - supports clients that use voyager-client to enable GraphQL
queries and mutations

@aerogear/voyager-subscriptions - supports clients that use voyager-client to enable
GraphQL subscriptions

@aerogear/graphql-mqtt-subscriptions - supports GraphQL resolvers connections to a MQTT
broker

GraphQL Subscriptions enable clients to subscribe to server events over a websocket connection.

The flow can be summarized as follows:

Client connects to the server using websockets, and subscribes to certain events.

As events occur, the server notifies the clients that are subscribed to those events.

Any currently connected client that is subscribed to a given event receives updates.

The client can close the connection at any time and no longer receives updates.

To receive updates, the client must be currently connected to the server. The client does not receive
events from subscriptions while offline. To support inactive clients, use Push Notifications.

Additional resources

For more information about GraphQL subscriptions, see the Subscriptions documentation.

8.2. IMPLEMENTING REAL-TIME UPDATES ON A DATA SYNC SERVER

The follow code shows typical code for a Data Sync Server without subscriptions:

const apolloServer = VoyagerServer({
 typeDefs,
 resolvers
})

const app = express()
apolloServer.applyMiddleware({ app })

CHAPTER 8. SUPPORTING REAL-TIME UPDATES IN YOUR MOBILE APP

25

https://www.apollographql.com/docs/apollo-server/data/subscriptions/

The following sections outline the steps required to enable real-time updates:

1. Implement a SubscriptionServer

2. Implement a Publish Subscribe Mechanism

3. Define subscriptions in the schema

4. Implement resolvers

8.2.1. Implementing a SubscriptionServer using voyager-subscription

To allow you create GraphQL subscription types in your schema:

1. Install the @aerogear/voyager-subscriptions package:

$ npm i @aerogear/voyager-subscriptions

2. Configure SubscriptionServer using @aerogear/voyager-subscriptions

The createSubscriptionServer code:

returns a SubscriptionServer instance

installs handlers for

managing websocket connections

delivering subscriptions on the server

provides integrations with other modules such as @aerogear/voyager-keycloak.

app.listen({ port }, () =>
 console.log(`� Server ready at http://localhost:${port}${apolloServer.graphqlPath}`)
)

const { createSubscriptionServer } = require('@aerogear/voyager-subscriptions')

const apolloServer = VoyagerServer({
 typeDefs,
 resolvers
})

const app = express()
apolloServer.applyMiddleware({ app })
const port = 4000

const server = app.listen({ port }, () => {
 console.log(`� Server ready at http://localhost:${port}${apolloServer.graphqlPath}`)

 createSubscriptionServer({ schema: apolloServer.schema }, {
 server,
 path: '/graphql'
 })
})

Red Hat Managed Integration 1 Developing a Data Sync App

26

Additional resources

For more information about arguments and options, see the subscriptions-transport-ws
module.

8.2.2. Implementing a Publish Subscribe Mechanism

WARNING

This procedure describes an in-memory implementation which is useful for
prototyping but not suitable for production. Red Hat recommends using MQTT
PubSub in production. See Section 8.3, “Configuring a Publish Subscribe
mechanism” for more information about all the implementation methods.

To provide a channel to push updates to the client using the default PubSub provided by apollo-server,
you implement a Publish Subscribe mechanism, for example:

Addtional Information

Subscriptions depend on a publish subscribe mechanism to generate the events that notify a
subscription. There are several PubSub implementations available based on the PubSubEngine
interface.

8.2.3. Defining subscriptions in the schema

Subscriptions are a root level type. They are defined in the schema similar to Query and Mutation. For
example, in the following schema, a Task type is defined and so are mutations and subscriptions.

type Subscription {
 taskCreated: Task
}

type Mutation {
 createTask(title: String!, description: String!): Task
}

type Task {
 id: ID!
 title: String!
 description: String!
}

8.2.4. Implementing resolvers

Inside the resolver map, subscription resolvers return an AsyncIterator, which listens for events. To



const { PubSub } = require('apollo-server')

const pubsub = new PubSub()

CHAPTER 8. SUPPORTING REAL-TIME UPDATES IN YOUR MOBILE APP

27

https://npm.im/subscriptions-transport-ws
npm.im/@aerogear/graphql-mqtt-subscriptions
https://en.wikipedia.org/wiki/Publish%E2%80%93subscribe_pattern
https://www.apollographql.com/docs/apollo-server/features/subscriptions/#pubsub-implementations

Inside the resolver map, subscription resolvers return an AsyncIterator, which listens for events. To
generate an event, call the publish method. The pubsub.publish code is typically located inside a
mutation resolver.

In the following example, when a new task is created, the createTask resolver publishes the result of this
mutation to the TaskCreated channel.

NOTE

This subscription server does not implement authentication or authorization. For
information about implementing authenication and authorization, see Supporting
authentication and authorization in your mobile app.

Additional resources

For information on how to use subscriptions in your client code, see Realtime Updates.

8.3. CONFIGURING A PUBLISH SUBSCRIBE MECHANISM

You can use the Apollo PubSub mechanism for development, but you must use the MQTT PubSub
mechanism for production.

8.3.1. Using the Apollo PubSub mechanism

The Section 8.2, “Implementing real-time updates on a Data Sync server” section describes how to set
up the default PubSub provided by apollo-server. For a production system, use MQTT PubSub.

8.3.2. Using the MQTT PubSub mechanism

The @aerogear/graphql-mqtt-subscriptions module provides an AsyncIterator interface used for
implementing subscription resolvers It connects the Data Sync server to an MQTT broker to support
horizontally scalable subscriptions.

Initialize an MQTT client and pass that client to the @aerogeaar/graphql-mqtt-subscriptions module,
for example:

const TASK_CREATED = 'TaskCreated'

const resolvers = {
 Subscription: {
 taskCreated: {
 subscribe: () => pubSub.asyncIterator(TASK_CREATED)
 }
 },
 Mutation: {
 createTask: async (obj, args, context, info) => {
 const task = tasks.create(args)
 pubSub.publish(TASK_CREATED, { taskCreated: task })
 return task
 }
 },
}

const mqtt = require('mqtt')

Red Hat Managed Integration 1 Developing a Data Sync App

28

index#implementing-authentication-and-authorization-on-your-client
https://npmjs.com/package/@aerogear/graphql-mqtt-subscriptions
https://npm.im/@aerogear/graphql-mqtt-subscriptions

In the example, an mqtt client is created using mqtt.connect and then this client is passed into an
MQTTPubSub instance. The pubsub instance can then be used to publish and subscribe to events in
the server.

Additional resources

mqtt.connect documentation.

MQTTPubSub documentation

8.4. CONFIGURING AMQ ONLINE FOR MQTT MESSAGING

Red Hat AMQ supports the MQTT protocol which makes it a suitable PubSub technology for powering
GraphQL subscriptions at scale.

This section provides recommendations for:

Configuring AMQ Online for MQTT messaging.

Connecting to AMQ Online and using it as a pubsub within server applications.

Terminology

AMQ Online is a mechanism that allows developers to consume the features of Red Hat AMQ
within OpenShift.

Red Hat AMQ provides fast, lightweight, and secure messaging for Internet-scale applications.
AMQ Broker supports multiple protocols and fast message persistence.

MQTT stands for MQ Telemetry Transport. It is a publish-subscribe, extremely simple and
lightweight messaging protocol.

AMQ Online includes many configuration options that address the specific needs of your application.
The minimum configuration steps for using AMQ Online for MQTT messaging and enabling GraphQL
subscriptions are:

1. Create an AddressSpace

2. Create an Address

3. Create a MessagingUser

8.4.1. Creating an address space

A user can request messaging resources by creating an AddressSpace. There are two types of address

const { MQTTPubSub } = require('@aerogear/graphql-mqtt-subscriptions')

const client = mqtt.connect('mqtt://test.mosquitto.org', {
 reconnectPeriod: 1000,
})

const pubsub = new MQTTPubSub({
 client
})

CHAPTER 8. SUPPORTING REAL-TIME UPDATES IN YOUR MOBILE APP

29

https://www.npmjs.com/package/mqtt#connect
https://npmjs.com/package/@aerogear/graphql-mqtt-subscriptions
https://access.redhat.com/documentation/en-us/red_hat_amq/7.5/html/installing_and_managing_amq_online_on_openshift/index
https://access.redhat.com/documentation/en-us/red_hat_amq/7.5/html/introducing_red_hat_amq_7/about
http://mqtt.org/

A user can request messaging resources by creating an AddressSpace. There are two types of address
spaces, standard and brokered. You must use the brokered address space for MQTT based
applications.

Procedure

1. Create an address space. For example, the following resource creates a brokered
AddressSpace:

2. Create the AddressSpace.

oc create -f brokered-address-space.yaml

3. Check the status of the address space:

oc get <`AddressSpace` name> -o yaml

The output displays information about the address space, including details required for
connecting applications.

Additional resources

See Creating address spaces using the command line for more information.

8.4.2. Creating an Address

An adress is part of an AddressSpace and represents a destination for sending and receiving messages.
Use an Address with type topic to represent an MQTT topic.

1. Create an address definition:

apiVersion: enmasse.io/v1beta1
kind: Address
metadata:
 name: myaddressspace.myaddress # must have the format <`AddressSpace` name>.
<address name>
spec:
 address: myaddress
 type: topic
 plan: brokered-topic

2. Create the address:

oc create -f topic-address.yaml

NOTE

apiVersion: enmasse.io/v1beta1
kind: AddressSpace
metadata:
 name: myaddressspace
spec:
 type: brokered
 plan: brokered-single-broker

Red Hat Managed Integration 1 Developing a Data Sync App

30

https://access.redhat.com/documentation/en-us/red_hat_amq/7.5/html/using_amq_online_on_openshift/managing-address-spaces-messaging#create-address-space-cli-messaging

NOTE

See the Configuring your server for real-time updates guide for more information about
using pubsub.asyncIterator(). Create an Address for each topic name passed into
pubsub.asyncIterator().

Additional resources

See Creating addresses using the command line for more information.

8.4.3. Creating an AMQ Online user

A messaging client connects using an AMQ Online user, also known as a`MessagingUser`. A
MessagingUser specifies an authorization policy that controls which addresses can be used and the
operations that can be performed on those addresses.

Users are configured as MessagingUser resources. Users can be created, deleted, read, updated, and
listed.

1. Create a user definition:

apiVersion: user.enmasse.io/v1beta1
kind: MessagingUser
metadata:
 name: myaddressspace.mymessaginguser # must be in the format <`AddressSpace`
name>.<username>
spec:
 username: mymessaginguser
 authentication:
 type: password
 password: cGFzc3dvcmQ= # must be Base64 encoded. Password is 'password'
 authorization:
 - addresses: ["*"]
 operations: ["send", "recv"]

2. Create the MessagingUser.

oc create -f my-messaging-user.yaml

An application can now connect to an AMQ Online address using this user’s credentials.

For more information see the AMQ Online User Model .

8.5. USING GRAPHQL MQTT PUBSUB WITH AMQ ONLINE

Prerequisites

The following AMQ Online resources are available for MQTT Applications

AddressSpace

Address

MessagingUser

This section describes how to use @aerogear/graphql-mqtt-subscriptions to connect to an AMQ

CHAPTER 8. SUPPORTING REAL-TIME UPDATES IN YOUR MOBILE APP

31

https://access.redhat.com/documentation/en-us/red_hat_amq/7.5/html/using_amq_online_on_openshift/managing-address-spaces-messaging#create-address-space-cli-messaging
https://access.redhat.com/documentation/en-us/red_hat_amq/7.5/html/using_amq_online_on_openshift/con-user-model-messaging

This section describes how to use @aerogear/graphql-mqtt-subscriptions to connect to an AMQ
Online Address.

1. Retrieve the connection details for the AddressSpace you want to use:

oc get addressspace <addressspace> -o yaml

2. Determine which method you want to use to connect to the address:

Using the service hostname - Allows clients to connect from within the OpenShift cluster.
Red Hat recommends that applications running inside OpenShift connect using the service
hostname. The service hostname is only accessible within the OpenShift cluster. This
ensures messages routed between your application and AMQ Online stay within the
OpenShift cluster and never go onto the public internet.

Using the external hostname - Allows clients to connect from outside the OpenShift cluster.
The external hostname allows connections from outside the OpenShift cluster. This is useful
for the following cases:

Production applications running outside of OpenShift connecting and publishing
messages.

Quick Prototyping and local development. Create a non-production AddressSpace,
allowing developers to connect applications from their local environments.

3. To connect to an AMQ Online Address using the service hostname

a. Retrieve the service hostname:

b. Add code to create the connection, for example:

c. To encrypt all messages between your application and the AMQ Online broker, enable TLS,
for example:

oc get addressspace <addressspace name> -o jsonpath='{.status.endpointStatuses[?
(@.name=="messaging")].serviceHost

const mqtt = require('mqtt')
const { MQTTPubSub } = require('@aerogear/graphql-mqtt-subscriptions')

const client = mqtt.connect({
 host: '<internal host name>',
 username: '<MessagingUser name>',
 password: '<MessagingUser password>',
 port: 5762,
})

const pubsub = new MQTTPubSub({ client })

const mqtt = require('mqtt')
const { MQTTPubSub } = require('@aerogear/graphql-mqtt-subscriptions')

const host = '<internal host name>'

const client = mqtt.connect({

Red Hat Managed Integration 1 Developing a Data Sync App

32

https://npm.im/@aerogear/graphql-mqtt-subscriptions

4. To connect to an AMQ Online Address using the external hostname:

NOTE

The external hostname typically accept only accept TLS connections.

a. Retrieve the external hostname:

b. Connect to the external hostname, for example:

5. If you use TLS, note the following additional mqtt.connect options:

servername - when connecting to a message broker in OpenShift using TLS, this property
must be set otherwise the connection will fail, because the messages are being routed
through a proxy resulting in the client being presented with multiple certificates. By setting
the servername, the client will use Server Name Indication (SNI) to request the correct
certificate as part of the TLS connection setup.

protocol - must be set to 'tls'

rejectUnauthorizated - must be set to false, otherwise the connection will fail. This tells the
client to ignore certificate errors. Again, this is needed because the client is presented with
multiple certificates and one of the certificates is for a different hostname than the one
being requested, which normally results in an error.

 host: host,
 servername: host,
 username: '<MessagingUser name>',
 password: '<MessagingUser password>',
 port: 5761,
 protocol: 'tls',
 rejectUnauthorized: false,
})

const pubsub = new MQTTPubSub({ client })

oc get addressspace <addressspace name> -o jsonpath='{.status.endpointStatuses[?
(@.name=="messaging")].externalHost

const mqtt = require('mqtt')
const { MQTTPubSub } = require('@aerogear/graphql-mqtt-subscriptions')

const host = '<internal host name>'

const client = mqtt.connect({
 host: host,
 servername: host,
 username: '<MessagingUser name>',
 password: '<MessagingUser password>',
 port: 443,
 protocol: 'tls',
 rejectUnauthorized: false,
})

const pubsub = new MQTTPubSub({ client })

CHAPTER 8. SUPPORTING REAL-TIME UPDATES IN YOUR MOBILE APP

33

https://en.wikipedia.org/wiki/Server_Name_Indication

port - must be set to 5761 for service hostname or 443 for external hostname.

8.5.1. Using environment variables for configuration

Red Hat recommends that you use environment variables for connection, for example:

In this example, the connection options can be configured using environment variables, but sensible
defaults for the host, port and protocol are provided for local development.

8.5.2. Troubleshooting MQTT Connection Issues

8.5.2.1. Troubleshooting MQTT Events

The mqtt module emits various events during runtime. It recommended to add listeners for these
events for regular operation and for troubleshooting.

Read the MQTT documentation to learn about all of the events and what causes them.

8.5.2.2. Troubleshooting MQTT Configuration Issues

If your application is experiencing connection errors, the most important thing to check is the

const mqtt = require('mqtt')
const { MQTTPubSub } = require('@aerogear/graphql-mqtt-subscriptions')

const host = process.env.MQTT_HOST || 'localhost'

const client = mqtt.connect({
 host: host,
 servername: host,
 username: process.env.MQTT_USERNAME,
 password: process.env.MQTT_PASSWORD,
 port: process.env.MQTT_PORT || 1883,
 protocol: process.env.MQTT_PROTOCOL || 'mqtt',
 rejectUnauthorized: false,
})

const pubsub = new MQTTPubSub({ client })

client.on('connect', () => {
 console.log('client has connected')
})

client.on('reconnect', () => {
 console.log('client has reconnected')
})

client.on('offline', () => {
 console.log('Client has gone offline')
})

client.on('error', (error) => {
 console.log(`an error has occurred ${error}`)
})

Red Hat Managed Integration 1 Developing a Data Sync App

34

https://www.npmjs.com/package/mqtt

configuration being passed into mqtt.connect. Because your application may run locally or in OpenShift,
it may connect using internal or external hostnames, and it may or may not use TLS. It is very easy to
accidentally provide the wrong configuration.

The Node.js mqtt module does not report any errors if parameters such as hostname or port are
incorrect. Instead, it will silently fail and allow your application to start without messaging capabilities.

It may be necessary to handle this scenario in your application. The following workaround can be used.

This code can be used to detect if the MQTT client hasn’t connected. This can be helpful for detecting
potential configuration issues and allows your application to respond to that scenario.

8.6. IMPLEMENTING REAL-TIME UPDATES ON ON THE CLIENT

A core concept of the GraphQL specification is an operation type called Subscription, they provide a
mechanism for real time updates. For more information on GraphQL subscriptions see the
Subscriptions documentation.

To do this GraphQL Subscriptions utilise websockets to enable clients to subscribe to published
changes.

The architecture of websockets is as follows:

Client connects to websocket server.

Upon certain events, the server can publish the results of these events to the websocket.

Any currently connected client to that websocket receives these results.

The client can close the connection at any time and no longer receives updates.

Websockets are a perfect solution for delivering messages to currently active clients. To receive updates
the client must be currently connected to the websocket server, updates made over this websocket while
the client is offline are not consumed by the client. For this use case Push Notifications are
recommended.

Voyager Client comes with subscription support out of the box including auto-reconnection upon device
restart or network reconnect. To enable subscriptions on your client set the following paramater in the
Voyager Client config object. A DataSyncConfig interface is also available from Voyager Client if you
wish to use it.

8.6.1. Setting up a client to use subscriptions

To set up a client to use subscriptions:

1. Provide a wsUrl string in the config object as follows:

const TIMEOUT = 10 // number of seconds to wait before checking if the client is connected

setTimeout(() => {
 if (!client.connected) {
 console.log(`client not connected after ${TIMEOUT} seconds`)
 // process.exit(1) if you wish
 }
}, TIMEOUT * 1000)

CHAPTER 8. SUPPORTING REAL-TIME UPDATES IN YOUR MOBILE APP

35

https://www.apollographql.com/docs/apollo-server/features/subscriptions.html

where <your_websocket_url> is the full URL of the websocket endpoint of your GraphQL
server.

2. Use the object from step 1 to initialise Voyager Client:

8.6.2. Using Subscriptions

A standard flow to utilise subscriptions is as follows:

1. Make a network query to get data from the server

2. Watch the cache for changes to queries

3. Subscribe to changes pushed from the server

4. Unsubscibe when leaving the view where there is an active subscription

In the three examples below, subscribeToMore ensures that any further updates received from the
server force the updateQuery function to be called with subscriptionData from the server.

Using subscribeToMore ensures the cache is easily updated as all GraphQL queries are automatically
notified.

For more information, see the subscribeToMore documentation.

To allow Voyager Client to automatically generate the updateQuery function for you, please see the
Cache Update Helpers section.

You can then use this query in our application to subscribe to changes so that the front end is always
updated when new data is returned from the server.

const config = {
 wsUrl: "ws://<your_websocket_url>"
}

const { createClient } = require("@aerogear/voyager-client");

const client = createClient(config)

getTasks() {
 const tasks = client.watchQuery({
 query: GET_TASKS
 });

 tasks.subscribeToMore({
 document: TASK_ADDED_SUBSCRIPTION,
 updateQuery: (prev, { subscriptionData }) => {
 // Update logic here.
 }
 });
 return tasks;
}

this.tasks = [];
this.getTasks().subscribe(result => {

Red Hat Managed Integration 1 Developing a Data Sync App

36

https://www.apollographql.com/docs/angular/features/subscriptions/#subscribetomore

Note that it is also a good idea to unsubscribe from a query upon leaving a page. This prevents possible
memory leaks. This can be done by calling unsubscribe() as shown in the following example. This code
should be placed in the appropriate place.

8.6.3. Handling network state changes

When using subscriptions to provide your client with realtime updates it is important to monitor network
state because the client will be out of sync if the server if updated when the the client is offline.

To avoid this, Voyager Client provides a NetworkStatus interface which can be used along with the
NetworkInfo interface to implement custom checks of network status.

Use the following example to re-run a query after a client returns to an online state:

 this.tasks = result.data && result.data.allTasks;
})

this.getTasks().unsubscribe();

const { CordovaNetworkStatus, NetworkInfo } = require("@aerogear/voyager-client");
const networkStatus = new CordovaNetworkStatus();

networkStatus.onStatusChangeListener({
 onStatusChange(networkInfo: NetworkInfo) {
 const online = networkInfo.online;
 if (online) {
 client.watchQuery({
 query: GET_TASKS
 });
 }
 }
});

CHAPTER 8. SUPPORTING REAL-TIME UPDATES IN YOUR MOBILE APP

37

CHAPTER 9. SUPPORTING AUTHENTICATION AND
AUTHORIZATION IN YOUR MOBILE APP

9.1. CONFIGURING YOUR SERVER FOR AUTHENTICATION AND
AUTHORIZATION USING RED HAT SINGLE SIGN-ON

Using the {keycloak-service} service and the @aerogear/voyager-keycloak module, it is possible to add
security to a Data Sync Server application.

The @aerogear/voyager-keycloak module provides the following features out of the box:

Authentication - Ensure only authenticated users can access your server endpoints, including
the main GraphQL endpoint.

Authorization - Use the @hasRole() directive within the GraphQL schema to implement role
based access control (RBAC) on the GraphQL level.

Integration with GraphQL context - Use the context object within the GraphQL resolvers to
access user credentials and several helper functions.

Prerequisites

There is a Red Hat Single Sign-On service available.

You must add a valid keycloak.json config file to your project.

Create a client for your application in the Keycloak administration console.

Click on the Installation tab.

Select Keycloak OIDC JSON for Format option, and click Download.

9.1.1. Protecting Data Sync Server using Red Hat Single Sign-On

Procedure

1. Import the @aerogear/voyager-keycloak module

2. Read the Keycloak config and pass it to initialise the KeycloakSecurityService.

3. Use the keycloakService instance to protect your app:

4. Configure the Voyager server so that the keycloakService is used as the security service:

const { KeycloakSecurityService } = require('@aerogear/voyager-keycloak')

const keycloakConfig = JSON.parse(fs.readFileSync(path.resolve(__dirname,
'./path/to/keycloak.json')))
const keycloakService = new KeycloakSecurityService(keycloakConfig)

const app = express()
keycloakService.applyAuthMiddleware(app)

Red Hat Managed Integration 1 Developing a Data Sync App

38

https://www.npmjs.com/package/@aerogear/voyager-keycloak

The Keycloak Example Server Guide has an example server based off the instructions above and shows
all of the steps needed to get it running.

9.1.2. Using the hasRole directive in a schema

The Voyager Keycloak module provides the @hasRole directive to define role based authorisation in
your schema. The @hasRole directive is a special annotation that can be applied to:

fields

queries

mutations

subscriptions

The @hasRole usage is as follows:

@hasRole(role: String)

Example - @hasRole(role: "admin"])

If the authenticated user has the role admin they will be authorized.

@hasRole(role: [String])

Example - @hasRole(role: ["admin", "editor"])

If the authenticated user has at least one of the roles in the list, they will be authorized.

The default behaviour is to check client roles. For example, @hasRole(role: "admin") will check that
user has a client role called admin. @hasRole(role: "realm:admin") will check if that user has a realm
role called admin

The syntax for checking a realm role is @hasRole(role: "realm:<role>"). For example, @hasRole(role:
"realm:admin"). Using a list of roles, it is possible to check for both client and realm roles at the same
time.

Example: Using the @hasRole Directive to Apply Role Based Authorization in a Schema

The following example demonstrates how the @hasRole directive can be used to define role based
authorization on various parts of a GraphQL schema. This example schema represents publishing an
application like a news or blog website.

const voyagerConfig = {
 securityService: keycloakService
}
const server = VoyagerServer(apolloConfig, voyagerConfig)

type Post {
 id: ID!
 title: String!
 author: Author!
 content: String!
 createdAt: Int!
}

CHAPTER 9. SUPPORTING AUTHENTICATION AND AUTHORIZATION IN YOUR MOBILE APP

39

https://github.com/aerogear/voyager-server/blob/master/examples/keycloak

There are two types:

Post - An article or a blog post

Author - Represents the person that authored a Post

There are two queries:

allPosts - Returns a list of posts

getAuthor - Returns details about an Author

There are two mutations:

editPost - Edits an existing post

deletePost - Delete a post.

Role Based Authorization on Queries and Mutations

In the example schema, the @hasRole directive has been applied to the editPost and deletePost
mutations. The same can be done on queries.

Only users with the roles editor and/or admin are allowed to perform the editPost mutation.

Only users with the role admin are allowed to perform the deletePost mutation.

This example shows how the @hasRole directive can be used on various queries and mutations.

Role Based Authorization on Fields

In the example schema, the Author type has the fields address and age which both have hasRole(role:
"admin") applied.

This means that users without the role admin are not authorized to request these fields in any query or
mutation.

For example, non-admin users are allowed to run the getAuthor query, but cannot request the address
or age fields.

type Author {
 id: ID!
 name: String!
 posts: [Post]!
 address: String! @hasRole(role: "admin")
 age: Int! @hasRole(role: "admin")
}

type Query {
 allPosts:[Post]!
 getAuthor(id: ID!):Author!
}

type Mutation {
 editPost:[Post]! @hasRole(role: ["editor", "admin"])
 deletePost(id: ID!):[Post] @hasRole(role: "admin")
}

Red Hat Managed Integration 1 Developing a Data Sync App

40

9.2. AUTHENTICATION OVER WEBSOCKETS USING RED HAT SINGLE
SIGN-ON

Prerequisites:

Configure Data Sync Server for Authentication and Authorization

Configuring Your Server for real-time updates

This section describes how to implement authentication and authorization over websockets with Red
Hat Single Sign-On. For more information on authentication over websockets, read Apollo’s
Authentication Over Websocket documention.

The Voyager Client supports adding token information to connectionParams that will be sent with the
first WebSocket message. In the server, this token is used to authenticate the connection and to allow
the subscription to proceeed. Read the section on Red Hat Single Sign-On Authentication in Voyager
Client to ensure the Red Hat Single Sign-On token is sent to the server.

In the server, createSubscriptionServer accepts a SecurityService instance in addition to the regular
options that can be passed to a standard SubscriptionServer. The KeycloakSecurityService from
@aerogear/voyager-keycloak is used to validate the Red Hat Single Sign-On token passed by the
client in the initial WebSocket message.

The example shows how the Red Hat Single Sign-On securityService is created and how it is passed
into createSubscriptionServer. This enables Red Hat Single Sign-On authentication on all
subscriptions.

9.2.1. Red Hat Single Sign-On Authorization in Subscriptions

The Red Hat Single Sign-On securityService will validate and parse the token sent by the client into a

const { createSubscriptionServer } = require('@aerogear/voyager-subscriptions')
const { KeycloakSecurityService } = require('@aerogear/voyager-keycloak')
const keycloakConfig = require('./keycloak.json') // typical Keycloak OIDC installation

const apolloServer = VoyagerServer({
 typeDefs,
 resolvers
})

securityService = new KeycloakSecurityService(keycloakConfig)

const app = express()

keycloakService.applyAuthMiddleware(app)
apolloServer.applyMiddleware({ app })

const server = app.listen({ port }, () =>
 console.log(`� Server ready at http://localhost:${port}${apolloServer.graphqlPath}`)

 createSubscriptionServer({ schema: apolloServer.schema }, {
 securityService,
 server,
 path: '/graphql'
 })
)

CHAPTER 9. SUPPORTING AUTHENTICATION AND AUTHORIZATION IN YOUR MOBILE APP

41

https://www.apollographql.com/docs/apollo-server/features/subscriptions/#authentication-over-websocket

The Red Hat Single Sign-On securityService will validate and parse the token sent by the client into a
Token Object . This token is available in Subscription resolvers with context.auth and can be used to
implement finer grained role based access control.

The above example shows role based access control inside a subscription resolver. context.auth is a full
Keycloak Token Object which means methods like hasRealmRole and hasApplicationRole are
available.

The user details can be accessed through context.auth.content. Here is an example.

{
 "jti": "dc1d6286-c572-43c1-99c7-4f36982b0e56",
 "exp": 1561495720,
 "nbf": 0,
 "iat": 1561461830,
 "iss": "http://localhost:8080/auth/realms/voyager-testing",
 "aud": "voyager-testing-public",
 "sub": "57e1dcda-990f-4cc2-8542-0d1f9aae302b",
 "typ": "Bearer",
 "azp": "voyager-testing-public",
 "nonce": "552c3cba-a6c2-490a-9914-28784ba0e4bc",
 "auth_time": 1561459720,
 "session_state": "ed35e1b4-b43c-438f-b1a3-18b1be8c6307",
 "acr": "0",
 "allowed-origins": [
 "*"
],
 "realm_access": {
 "roles": [
 "developer",
 "uma_authorization"
]
 },
 "resource_access": {
 "voyager-testing-public": {
 "roles": [
 "developer"
]
 },
 "account": {
 "roles": [
 "manage-account",
 "manage-account-links",

const resolvers = {
 Subscription: {
 taskAdded: {
 subscribe: (obj, args, context, info) => {
 const role = 'admin'
 if (!context.auth.hasRole(role)) {
 return new Error(`Access Denied - missing role ${role}`)
 }
 return pubSub.asyncIterator(TASK_ADDED)
 }
 },
}

Red Hat Managed Integration 1 Developing a Data Sync App

42

https://github.com/keycloak/keycloak-nodejs-connect/blob/master/middleware/auth-utils/token.js
https://github.com/keycloak/keycloak-nodejs-connect/blob/master/middleware/auth-utils/token.js

 "view-profile"
]
 }
 },
 "preferred_username": "developer"
}

Having access to the user details (e.g. context.auth.content.sub is the authenticated user’s ID) means
it is possible to implement Subscription Filters and to subscribe to more fine grained pubsub topics
based off the user details.

9.3. IMPLEMENTING AUTHENTICATION AND AUTHORIZATION ON
YOUR CLIENT

With Voyager Client, user information can be passed to a Data Sync server application in two ways, by
using headers or by using tokens.

Headers are used to authentication HTTP requests to the server, which are used for queries and
mutations.

Tokens are used to authenticate WebSocket connections, which are used for subscriptions.

Both ways can be set by the authContextProvider configuration option. For example:

For information about how to perform authentication and authorization on the server, see the Server
Authentication and Authorization Guide.

//get the token value from somewhere, for example the authentication service
const token = "REPLACE_WITH_REAL_TOKEN";

const config = {
 ...
 authContextProvider: function() {
 return {
 header: {
 "Authorization": `Bearer ${token}`
 },
 token: token
 }
 },
 ...
};

//create a new client

CHAPTER 9. SUPPORTING AUTHENTICATION AND AUTHORIZATION IN YOUR MOBILE APP

43

https://www.apollographql.com/docs/apollo-server/features/subscriptions/#subscription-filters

CHAPTER 10. RESOLVING CONFLICTS IN YOUR DATA SYNC
APP

10.1. INTRODUCTION

Mobile apps allow users to modify data while offline. This can result in conflicts.

A conflict occurs when two or more users try to modify the same data. The system needs to resolve the
conflicting data.

Conflict resolution can be handled in two phases:

Conflict detection is the ability of an application to detect the possibility of incorrect data
being stored.

Conflict resolution is the process of ensuring that the correct data is stored.

With Red Hat Data Sync:

You implement conflict detection exclusively in the code associated with mutations.

The Data Sync Server module provides conflict detection on the server side.

The Voyager Client module provides conflict resolution on the client side.

10.2. DETECTING CONFLICTS ON THE SERVER

A typical flow for detecting conflicts includes the following steps:

1. A Mutation Occurs - A client tries to modify or delete an object on the server using a GraphQL
mutation

2. Read the Object - The server reads the current object that the client is trying to modify from
the data source

3. Conflict Detection - The server compares the current object with the data sent by the client to
see if there is a conflict. The developer chooses how the comparison is performed.

The aerogear/voyager-conflicts module helps developers with the Conflict Detection steps regardless
of the storage technology, while the fetching and storing of data is the responsibility of the developer.

This release supports the following implementations:

VersionedObjectState - depends on the version field supplied in objects (the version field is
used by default when importing conflictHandler). For details, please see: Section 10.2.1,
“Implementing version based conflict detection”

HashObjectState - depends on a hash calculated from the entire object. For details, please see:
Section 10.2.2, “Implementing hash based conflict detection”

These implementations are based on the ObjectState interface and that interface can be extended to
provide custom implementations for conflict detection.

Prerequisites

Red Hat Managed Integration 1 Developing a Data Sync App

44

GraphQL server with resolvers.

Database or any other form of data storage that can cause data conflicts. Red Hat recommends
that you store data in a secure location. If you use a database, it is your responsibility to
administer, maintain and backup that database. If you use any other form of data storage, you
are responsible for backing up the data.

10.2.1. Implementing version based conflict detection

Version based conflict resolution is the recommended and simplest approach for conflict detection and
resolution. The core idea is that every object has a version property with an integer value. A conflict
occurs when the version number sent by the client does not match the version stored in the server. This
means a different client has already updated the object.

Procedure

1. Import the @aerogear/voyager-conflicts package.

2. Add a version field to the GraphQL type that should support conflict resolution. The version
should also be stored in the data storage.

3. Add an example mutation.

4. Implement the resolver. Every conflict can be handled using a set of predefined steps, for
example:

In the example above, the throw statement ensures that the client receives all necessary data to resolve
the conflict client-side. For more information about this data, please see Structure of the Conflict Error .

Since the conflict will be resolved on the client, it is not required to persist the data. However, if there is
no conflict, the data sent by the client should be persisted. For more information on resolving the
conflict client-side, please see: Resolving Conflicts on the Client.

const { conflictHandler } = require('@aerogear/voyager-conflicts')

type Task {
 title: String
 version: Int
}

type Mutation {
 updateTask(title: String!, version: Int!): Task
}

// 1. Read data from data source
const serverData = db.find(clientData.id)
// 2. Check for conflicts
const conflict = conflictHandler.checkForConflicts(serverData, clientData)
// 3. If there is a conflict, return the details to the client
if(conflict) {
 throw conflict;
}
// 4. Save object to data source
db.save(clientData.id, clientData)

CHAPTER 10. RESOLVING CONFLICTS IN YOUR DATA SYNC APP

45

https://npmjs.com/package/@aerogear/voyager-conflicts

10.2.2. Implementing hash based conflict detection

Hash based conflict detection is a mechanism to detect conflicts based on the total object being
updated by the client. It does this by hashing each object and comparing the hashes. This tells the server
whether or not the objects are equivalent and can be considered conflict free.

Procedure

1. Import the @aerogear/voyager-conflicts package.

2. When using the HashObjectState implementation, a hashing function must be provided. The
function signature should be as follows:

3. Provide this function when instantiating the HashObjectState:

4. Implement the resolver. Every conflict can be handled using a set of predefined steps, for
example:

In the example above, the throw statement ensures the client receives all necessary data to resolve the
conflict client-side. For more information about this data please see Structure of the Conflict Error .

Since the conflict will be resolved on the client, it is not required to persist the data. However, if there is
no conflict, the data sent by the client should be persisted. For more information on resolving the
conflict client-side, please see: Resolving Conflicts on the Client.

10.2.3. About the structure of the conflict error

The server needs to return a specific error when a conflict is detected containing both the server and
client states. This allows the client to resolve the conflict.

const { HashObjectState } = require('@aerogear/voyager-conflicts')

const hashFunction = (object) {
 // Using the Hash library of your choice
 const hashedObject = Hash(object)
 // return the hashedObject in string form
 return hashedObject;
}

const conflictHandler = new HashObjectState(hashFunction)

// 1. Read data from data source
const serverData = db.find(clientData.id)
// 2. Check for conflicts
const conflict = conflictHandler.checkForConflicts(serverData, clientData)
// 3. If there is a conflict, return the details to the client
if(conflict) {
 throw conflict;
}
// 4. Save object to data source
db.save(clientData.id, clientData)

 "extensions": {
 "code": "INTERNAL_SERVER_ERROR",

Red Hat Managed Integration 1 Developing a Data Sync App

46

https://npmjs.com/package/@aerogear/voyager-conflicts

10.3. RESOLVING CONFLICTS ON THE CLIENT

A typical flow for resolving conflicts includes the following steps:

1. A Mutation Occurs - A client tries to modify or delete an object on the server using a GraphQL
mutation.

2. Read the Object - The server reads the current object the client is trying to modify from the
data source (usually a database).

3. Conflict Detection - The server compares the current object with the data sent by the client to
see if there was a conflict. If there is a conflict, the server returns a response to the client
containing information outlined in Structure of the Conflict Error

4. Conflict Resolution - The client attempts to resolve this conflict and makes a new request to
the server in the hope that this data is no longer conflicted.

The conflict resolution implementation requires the following additions to your application:

A returnType added to the context of any mutation. see: Working With Conflict Resolution on
the Client.

Additional metadata inside types (for example version field) depending on the conflict
implementation you chose. see: Version Based Conflict Detection .

Server-side resolvers to return conflicts back to clients first. For more information, see: Server
Side Conflict Detection.

Developers can either use the default conflict resolution implementations, or implement their own
conflict resolution implementations using the conflict resolution mechanism.

By default, when no changes are made on the same fields, the implementation attempts to resend the
modified payload back to the server. When changes on the server and on the client affect the same
fields, one of the specified conflict resolution strategies can be used. The default strategy applies client
changes on top of the server side data. Developers can modify strategies to suit their needs.

10.3.1. Implementing conflict resolution on the client

To enable conflict resolution, the server side resolvers must be configured to perform conflict detection.
Detection can rely on different implementations and return the conflict error back to the client. See
Server Side Conflict Detection for more information.

Procedure

Provide the mutation context with the returnType parameter to resolve conflicts. This parameter

 "exception": {
 "conflictInfo": {
 "serverState": {
 //..
 },
 "clientState": {
 //..
 }
 },
 }
 }

CHAPTER 10. RESOLVING CONFLICTS IN YOUR DATA SYNC APP

47

Provide the mutation context with the returnType parameter to resolve conflicts. This parameter
defines the Object type being operated on. You can implement this in two ways:

If using Data Sync’s offlineMutate you can provide the returnType parameter directly as
follows:

If using Apollo’s mutate function, provide the returnType parameter as follows:

The client automatically resolves the conflicts based on the current strategy and notifies listeners as
required.

Conflict resolution works with the recommended defaults and does not require any specific handling on
the client.

NOTE

For advanced use cases, the conflict implementation can be customised by supplying a
custom conflictProvider in the application config. See Conflict Resolution Strategies
below.

10.3.2. About the default conflict implementation

By default, conflict resolution is configured to rely on a version field on each GraphQL type. You must
save a version field to the database in order to detect changes on the server. For example:

The version field is controlled on the server and maps the last version that was sent from the server. All
operations on the version field happen automatically. Make sure that the version field is always passed
to the server for mutations that supports conflict resolution:

client.offlineMutate({
 ...
 returnType: 'Task'
 ...
})

client.mutate({
 ...
 context: {
 returnType: 'Task'
 }
 ...
})

type User {
 id: ID!
 version: String!
 name: String!
}

type Mutation {
 updateUser(id: ID!, version: String!): User
}

Red Hat Managed Integration 1 Developing a Data Sync App

48

10.3.3. Implementing conflict resolution strategies

Data Sync allows developers to define custom conflict resolution strategies. You can provide custom
conflict resolution strategies to the client in the config by using the provided
ConflictResolutionStrategies type. By default developers do not need to pass any strategy as
UseClient is the default. Custom strategies can also be used to provide different resolution strategies
for certain operations:

This custom strategy object provides two distinct strategies. The strategies are named to match the
operation. You pass the name of the object as an argument to conflictStrategy in your config object:

10.3.4. Listening to conflicts

Data Sync allows developers to receive information about the data conflict.

When a conflict occurs, Data Sync attempts to perform a field level resolution of data - it checks all
fields of its type to see if both the client or server has changed the same field. The client can be notified
in one of two scenarios.

If both client and server have changed any of the same fields, the conflictOccurred method of
the ConflictListener is triggered.

If the client and server have not changed any of the same fields, and the data can be easily
merged, the mergeOccurred method of your ConflictListener is triggered.

Developers can supply their own conflictListener implementation, for example:

let customStrategy = {
 resolve = (base, server, client, operationName) => {
 let resolvedData;
 switch (operationName) {
 case "updateUser":
 delete client.socialKey
 resolvedData = Object.assign(base, server, client)
 break
 case "updateRole":
 client.role = "none"
 resolvedData = Object.assign(base, server, client)
 break
 default:
 resolvedData = Object.assign(base, server, client)
 }
 return resolvedData
 }
}

let config = {
...
 conflictStrategy: customStrategy
...
}

class ConflictLogger implements ConflictListener {
 conflictOccurred(operationName, resolvedData, server, client) {
 console.log("Conflict occurred with the following:")

CHAPTER 10. RESOLVING CONFLICTS IN YOUR DATA SYNC APP

49

10.3.5. Handling pre-conflict errors

Data Sync provides a mechanism for developers to check for a 'pre-conflict' before a mutation occurs. It
checks whether or not the data being sent conflicts locally. This happens when a mutation (or the act of
creating a mutation) is initiated.

For example, consider a user performing the following actions:

1. opens a form

2. begins working on the pre-populated data on this form

3. the client receives new data from the server from subscriptions

4. the client is now conflicted but the user is unaware

5. when the user presses Submit Data Sync notices that their data is conflicted and provides the
developer with the information to warn the user

To use this feature, and therefore potentially save unecessary round-trips to the server with data which
is definitely conflicted, developers can make use of the error returned by Data Sync.

An example of how developers can use this error:

 console.log(`data: ${JSON.stringify(resolvedData)}, server: ${JSON.stringify(server)}, client:
${JSON.stringify(client)}, operation: ${JSON.stringify(operationName)}`);
 }
 mergeOccurred(operationName, resolvedData, server, client) {
 console.log("Merge occurred with the following:")
 console.log(`data: ${JSON.stringify(resolvedData)}, server: ${JSON.stringify(server)}, client:
${JSON.stringify(client)}, operation: ${JSON.stringify(operationName)}`);
 }
}

let config = {
...
 conflictListener: new ConflictLogger()
...
}

return client.offlineMutate({
 ...
}).then(result => {
 // handle the result
}).catch(error => {
 if (error.networkError && error.networkError.localConflict) {
 // handle pre-conflict here by potentially
 // providing an alert with a chance to update data before pressing send again
 }
})

Red Hat Managed Integration 1 Developing a Data Sync App

50

CHAPTER 11. ALLOWING USERS UPLOAD FILES FROM YOUR
MOBILE APP

11.1. ENABLING FILE UPLOADS ON THE SERVER

Data Sync Server provides support for uploading binary data along with the GraphQL queries. The
implementation relies on upstream Apollo Server capabilities.

The upload functionality uses the GraphQL multipart form requests specification. File upload needs to
be implemented on both server and client:

1. On the client HTML FileList objects are mapped into a mutation and sent to the server in a
multipart request.

2. On the server: The multipart request is handled. The server processes it and provides an upload
argument to a resolver. In the resolver function, the upload promise resolves an object.

NOTE

File upload is based on graphql-multipart-request-spec.

Procedure

To enable file uploads, create a schema and use the Upload scalar. For example:

The following schema enables file uploads. The Upload scalar will be injected as one of the arguments in
the resolvers. The Upload scalar contains all file metadata and a Readable Stream that can be used to
save the file to a specific location.

See Official Apollo blog post for more information.

11.2. IMPLEMENTING FILE UPLOAD ON THE CLIENT

const { ApolloServer, gql } = require('apollo-server');

const typeDefs = gql`
 type File {
 filename: String!
 mimetype: String!
 encoding: String!
 }
 type Query {
 uploads: [File]
 }
 type Mutation {
 singleUpload(file: Upload!): File!
 }
`;

 async singleUpload(parent, { file }) {
 const { stream, filename, mimetype, encoding } = await file;
 // Save file and return required metadata
 }

CHAPTER 11. ALLOWING USERS UPLOAD FILES FROM YOUR MOBILE APP

51

https://github.com/jaydenseric/graphql-multipart-request-spec
https://nodejs.org/api/stream.html#stream_readable_streams
https://blog.apollographql.com/file-uploads-with-apollo-server-2-0-5db2f3f60675

Voyager Client provides support for uploading binary data along with the GraphQL queries. The binary
upload implementation uses the apollo-upload-client package built by the Apollo community.

11.2.1. Introduction

The upload functionality uses the GraphQL multipart form requests specification. The File upload needs
to be implemented on both server and client:

1. On the client HTML FileList objects are mapped into a mutation and sent to the server in a
multipart request.

2. On the server: The multipart request is handled. The server processes it and provides an upload
argument to a resolver. In the resolver function, the upload promise resolves an object.

NOTE

File upload is based on graphql-multipart-request-spec.

11.2.2. Enabling File Upload

File upload feature needs to be enabled by passing fileUpload flag to config object:

11.3. UPLOADING FILES FROM GRAPHQL

File upload capability adds a new GraphQL scalar Upload that can be used for mutations that operate
on binary data. The Upload scalar maps html FileList HTML5 object in GraphQL schemas. The first
step required to work with binary uploads is to write mutation that will contain Upload scalar. The
following example demonstrates how to upload a profile picture:

11.3.1. Executing mutations

The Upload scalar will be mapped to object returned from HTML file input.

const config = {
 ...
 fileUpload: true
 ...
};

//create a new client

import gql from 'graphql-tag'
import { Mutation } from 'react-apollo'

export const UPLOAD_PROFILE = gql`
mutation changeProfilePicture($file: Upload!) {
 changeProfilePicture(file: $file) {
 filename
 mimetype
 encoding
 }
}
`;

Red Hat Managed Integration 1 Developing a Data Sync App

52

https://github.com/jaydenseric/graphql-multipart-request-spec

The following example shows file upload in a React application.

const uploadOneFile = () => {
 return (
 <Mutation mutation={UPLOAD_PROFILE}>
 {uploadFile => (
 <input
 type="file"
 required
 onChange={({ target: { validity, files: [file] } }) =>
 validity.valid && uploadFile({ variables: { file } });
 }
 />
)}
 </Mutation>
);
};

CHAPTER 11. ALLOWING USERS UPLOAD FILES FROM YOUR MOBILE APP

53

CHAPTER 12. RUNNING A DATA SYNC APP ON RED HAT
MANAGED INTEGRATION

12.1. DEPLOYING YOUR DATA SYNC SERVER APPLICATION

Prerequisites

You have a Data Sync server application working locally

Procedure

1. Log in to the Solution Explorer.

2. Navigate to the OpenShift console.

3. Click Create Project.

4. Enter the details for your application, when prompted.

5. Navigate to the Project Overview screen.

6. Search for the Data Sync App in the Service Catalog.

7. In the Configuration section:

a. Enter the Git URL for the application repository.

NOTE

To use a private repository, see Creating New Applications.

b. Enter information for the required fields (indicated by *).

c. Complete any optional fields, if necessary.

8. Complete the Wizard to start provisioning the Data Sync server application.

9. Wait for the service to display a ready status.

10. On the Project Overview screen, use the application URL displayed in the top right corner to
verify your application is available.

12.2. CONNECTING THE DATA SYNC CLIENT TO YOUR DATA SYNC
SERVER APPLICATION

Prerequisites

You have deployed your Data Sync server application.

You have set up a web project that supports ES6. For example:

Using Create React App

Red Hat Managed Integration 1 Developing a Data Sync App

54

https://access.redhat.com/documentation/en-us/openshift_dedicated/3/html-single/developer_guide/index#dev-guide-new-app
https://reactjs.org/docs/create-a-new-react-app.html

Using Ionic Getting Started

Using Getting Started with Angular

Using Webpack Getting Started Guide

Procedure

1. Get the hostname of the Data Sync Server application.

a. In your teriminal, run the command:

b. Verify the output as:

c. Record the value for <sync-server-hostname>.

2. Make sure the @aerogear/voyager-client, graphql, and graphql-tag libraries are added to your
project. If necessary, add them by using the following commands:

3. In your project source code, import and configure the client using the server hostname.

The client is now ready to make queries and mutations to the Data Sync server application.

$ oc get route <data-sync-application-name>

NAME HOST/PORT PATH SERVICES PORT
TERMINATION WILDCARD
<sync-server-application-name> <sync-server-hostname> data-sync-app <all>
None

npm install @aerogear/voyager-client
npm install graphql
npm install graphql-tag

const config = {
 httpUrl: 'http://<sync-server-hostname>/graphql',
 wsUrl: 'ws://<sync-server-hostname>/graphql'
}

CHAPTER 12. RUNNING A DATA SYNC APP ON RED HAT MANAGED INTEGRATION

55

https://ionicframework.com/getting-started
https://angular.io/start
https://webpack.js.org/guides/getting-started/

	Table of Contents
	PREFACE
	CHAPTER 1. INTRODUCTION
	1.1. INTRODUCING DATA SYNC
	1.2. DATA SYNC TECHNICAL OVERVIEW
	1.3. DATA SYNC TERMINOLOGY
	1.4. GETTING STARTED WITH HELLO WORLD DATA SYNC

	CHAPTER 2. QUERYING A DATA SYNC SERVER USING A DATA SYNC CLIENT
	CHAPTER 3. ADDING A MUTATION TO A DATA SYNC CLIENT
	CHAPTER 4. SUPPORTING OFFLINE FUNCTIONALITY IN YOUR MOBILE APP
	4.1. ABOUT OFFLINE FUNCTIONALITY
	4.2. CREATING AN OFFLINE CLIENT

	CHAPTER 5. DETECTING MUTATIONS WHILE OFFLINE
	CHAPTER 6. PERFORMING MUTATIONS WHILE OFFLINE
	6.1. SUPPORTING APP RESTARTS WHILE OFFLINE
	6.2. ENSURING SPECIFIED MUTATIONS ARE PERFORMED ONLINE ONLY
	6.3. LISTENING FOR EVENTS
	6.4. USING CACHE UPDATE HELPERS
	6.4.1. Using cache update helpers for mutations
	6.4.2. Using cache update helpers for subscriptions
	6.4.3. Using cache update helpers for multiple subscriptions

	CHAPTER 7. DETECTING NETWORK STATUS
	CHAPTER 8. SUPPORTING REAL-TIME UPDATES IN YOUR MOBILE APP
	8.1. INTRODUCTION TO REAL-TIME UPDATES
	8.2. IMPLEMENTING REAL-TIME UPDATES ON A DATA SYNC SERVER
	8.2.1. Implementing a SubscriptionServer using voyager-subscription
	8.2.2. Implementing a Publish Subscribe Mechanism
	8.2.3. Defining subscriptions in the schema
	8.2.4. Implementing resolvers

	8.3. CONFIGURING A PUBLISH SUBSCRIBE MECHANISM
	8.3.1. Using the Apollo PubSub mechanism
	8.3.2. Using the MQTT PubSub mechanism

	8.4. CONFIGURING AMQ ONLINE FOR MQTT MESSAGING
	8.4.1. Creating an address space
	8.4.2. Creating an Address
	8.4.3. Creating an AMQ Online user

	8.5. USING GRAPHQL MQTT PUBSUB WITH AMQ ONLINE
	8.5.1. Using environment variables for configuration
	8.5.2. Troubleshooting MQTT Connection Issues
	8.5.2.1. Troubleshooting MQTT Events
	8.5.2.2. Troubleshooting MQTT Configuration Issues

	8.6. IMPLEMENTING REAL-TIME UPDATES ON ON THE CLIENT
	8.6.1. Setting up a client to use subscriptions
	8.6.2. Using Subscriptions
	8.6.3. Handling network state changes

	CHAPTER 9. SUPPORTING AUTHENTICATION AND AUTHORIZATION IN YOUR MOBILE APP
	9.1. CONFIGURING YOUR SERVER FOR AUTHENTICATION AND AUTHORIZATION USING RED HAT SINGLE SIGN-ON
	9.1.1. Protecting Data Sync Server using Red Hat Single Sign-On
	9.1.2. Using the hasRole directive in a schema

	9.2. AUTHENTICATION OVER WEBSOCKETS USING RED HAT SINGLE SIGN-ON
	9.2.1. Red Hat Single Sign-On Authorization in Subscriptions

	9.3. IMPLEMENTING AUTHENTICATION AND AUTHORIZATION ON YOUR CLIENT

	CHAPTER 10. RESOLVING CONFLICTS IN YOUR DATA SYNC APP
	10.1. INTRODUCTION
	10.2. DETECTING CONFLICTS ON THE SERVER
	10.2.1. Implementing version based conflict detection
	10.2.2. Implementing hash based conflict detection
	10.2.3. About the structure of the conflict error

	10.3. RESOLVING CONFLICTS ON THE CLIENT
	10.3.1. Implementing conflict resolution on the client
	10.3.2. About the default conflict implementation
	10.3.3. Implementing conflict resolution strategies
	10.3.4. Listening to conflicts
	10.3.5. Handling pre-conflict errors

	CHAPTER 11. ALLOWING USERS UPLOAD FILES FROM YOUR MOBILE APP
	11.1. ENABLING FILE UPLOADS ON THE SERVER
	11.2. IMPLEMENTING FILE UPLOAD ON THE CLIENT
	11.2.1. Introduction
	11.2.2. Enabling File Upload

	11.3. UPLOADING FILES FROM GRAPHQL
	11.3.1. Executing mutations

	CHAPTER 12. RUNNING A DATA SYNC APP ON RED HAT MANAGED INTEGRATION
	12.1. DEPLOYING YOUR DATA SYNC SERVER APPLICATION
	12.2. CONNECTING THE DATA SYNC CLIENT TO YOUR DATA SYNC SERVER APPLICATION

