

OPENSHIFT GEARS

How to run arbitrary code on you servers and still sleep at night

PRESENTER

Mike McGrath:Operations Manager,
OpenShift Principal Architect

AGENDA

DEVS / ADMINS WHY YOU SHOULD CARE

DETAILS GEARS AND SECURITY

FUTURE ADVANCED USES AND ROADMAP

OPENSHIFT

OpenShift is Red Hat's Platform as a Service with Origin, Online, and Enterprise

JAVA, PERL, PHP, NODEJS, ETC.

APP CREATION

DEMO

Create a simple application against OpenShift Online for experiments later in the talk

Who Cares?

- Super low cost proof of concepts
- OpenShift online has a completely free version
- Lots of language support
- Has several built-in features like jenkins, git, etc.

- Easy place to stash applications
- Highly controlled release model
- Easy to self service in Enterprise
- High Density

Try it Free: Everyone gets 3 free gears in online, there's no reason not to try it.

INTRODUCTION TO GEARS

PRINCIPLES

- In the form of a UUID
- Every user gets a UID
- All gear content is inside the users home directory

- Unique MCS Label
- Keyed off UID
- Determines access to system
- Protects intra-gear shenanigans

CGROUPS

- Resource Protection
- CPU limits
- Memory Limits
- Overcommit

PAM

- Using pam limits for process protections
- Using pam_namespace
- Unique /tmp/ dirs

UNIX USER

- Well understood
- Deeply tested

- Limited resource constraints
- · Security protections limited

G a

Gear UUID: Every gear gets a unique UUID. An application consists of several gears, each with their own

SELinux

- Military grade security
- Highly customizable
- Two layers
 - First protects the system
 - Second protects the gears

- Complicated
- Sometimes a little too good

///// S

SELinux in OpenShift: We handle it, you don't have to worry about the complicated.

CGroups

- Helps keep a system online
- Keeps gear resources contained
- Keeps gear performance predictable
- Provides several accounting metrics
- · Can be customized live

Be wary of OOMs even when system memory is available

CGroups: All gears on a node have identical cgroups configurations

PAM

(Bad) **

- Fairly well understood by senior staff
- Keeps processes contained
- :(){ :|: & };:
- Namespaces easy to setup

- Less well understood by junior staff
- Can be intrusive to non-gear accounts
- Namespaces can be confusing

PAM: namespaces in OpenShift are controlled by pam, still kernel namespaces, different user space than LXC

DEEP DIVE: SELINUX

s0:c6,c134 ar_lib_t

SELinux uses labels to identify files. openshift_t is a commor be a common file label. MCS

have access to what process openshift lib t might cess label a nes at the end of the label:

unconfined u:object r:openshift var lib t:s0:c6,c134

DEEP DIVE: CGROUPS

CGROUPS

We'll look at the cgroups configurations in /cgroups/ as well as how to view metrics and limits from within a running gear. Cgroups is useful even outside of OpenShift.

DEEP DIVE: CGROUPS

- memory.memsw.limit_in_bytes
- memory.memsw.usage_in_bytes
- memory.memsw.max_usage_in_bytes
- memory.memsw vs memory
- memory.failcnt

- cpu.cfs_period_us
- cpu.cfs_quota_us
- cpu.shares
- · cpuacct.usage

- cgroup.procs
- freezer.state (FROZEN, THAWED)

THE DEMO

LETS SEE IT

INTRODUCTION TO GEARS

PRINCIPLES (Again) *

UNIX USER

- In the form of a UUID
- Every user gets a UID
- All gear content is inside the users home directory

SELINUX

- Unique MCS Label
- Keyed off UID
- Determines access to system
- Protects intra-gear shenanigans

CGROUPS

- Resource Protection
- CPU limits
- Memory Limits
- Overcommit

PAM

- Using pam limits for process protections
- Using pam_namespace
- Unique /tmp/ dirs

THE FUTURE

- Custom cartridge format
- Additional Scaling Features
- Admin Console
- Stronger network separation

- Integration with other layers (like laaS)
- Additional languages
- Larger applications
- Higher performance

End

Questions?