Satellite 6 Performance Tuning Guide

Red Hat Performance Engineering

Jun 24, 2020

Authors
Legal notice
Abstract
Introduction

System Requirements

5.1 Quick TuningGuide e

Top Performance Considerations

Configuring your environment for Performance

7.1 CPU . e
7.2 MEMOTY . . . o v it e e e e e
73 Disk. . ..o
74 Network
7.5 Server Power Management

Satellite Configuration Tuning

8.1 Tunedprofile e
8.2 Apache HTTPD Performance Tuning

8.3 Configuring how many processes can be launched by Apache httpd

8.4 Increasing the MaxOpenFiles Limit
8.5 Calculating the maximum open files limit for qdrouterd
8.6 qdrouterd SEttings e e e e e
8.7 Calculating the maximum open files limit forqpidd
8.8 gpiddsettings e e
8.9 Maximum asynchronous input-output (AIO) requests
8.10 Storage Considerations v v v v it e e e
8.11 mgmt-pub-interval setting
8.12 Passenger Tuning
8.13 Foreman Tuning
8.14 Dynflow Tuning e
8.15 PostgreSQL Tuning
8.16 Benchmarking raw DB performance
8.17 MongoDbTuning e
8.18 Benchmarking raw performance

CONTENTS:

CHAPTER
ONE

Pradeep Surisetty <psuriset@redhat.com>

Jan Hutar <jhutar@redhat.com>

Mike McCune <mmccune @redhat.com>

Sureshkumar Thirugnanasambandan <sthirugn @redhat.com>
Imaanpreet Kaur <ikaur@redhat.com>

Andrew Puch <apuch @redhat.com>

AUTHORS

mailto:psuriset@redhat.com
mailto:jhutar@redhat.com
mailto:mmccune@redhat.com
mailto:sthirugn@redhat.com
mailto:ikaur@redhat.com
mailto:apuch@redhat.com

Satellite 6 Performance Tuning Guide

2 Chapter 1. Authors

CHAPTER
TWO

LEGAL NOTICE

Copyright © 2019 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons Attribution—Share
Alike 3.0 Unported license (“CC-BY-SA”).

An explanation of CC-BY-SA is available at http://creativecommons.org/licenses/by-sa/3.0/

In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must provide the URL for
the original version. Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law. Red Hat, Red Hat Enterprise Linux, the
Shadowman logo, JBoss, OpenShift, Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered
in the United States and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.
Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States and/or other
countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to or endorsed by
the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks or trade-
marks/service marks of the OpenStack Foundation, in the United States and other countries and are used with the
OpenStack Foundation’s permission. We are not affiliated with, endorsed or sponsored by the OpenStack Foundation,
or the OpenStack community.

All other trademarks are the property of their respective owners.

http://creativecommons.org/licenses/by-sa/3.0/

Satellite 6 Performance Tuning Guide

4 Chapter 2. Legal notice

CHAPTER
THREE

ABSTRACT

The performance tuning guide aims to cover the set of tunings and tips that can be used as a reference to scale up your
Red Hat Satellite 6.7 environment.

Satellite 6 Performance Tuning Guide

6 Chapter 3. Abstract

CHAPTER
FOUR

INTRODUCTION

This document aims to provide the guidelines for tuning Red Hat Satellite 6 for performance and scalability. Although
a lot of care has been given to make the content applicable to cover a wide set of use cases, if there is some use case
which has not been covered, please feel free to reach out to Red Hat for support for the undocumented use case.

Red Hat Satellite is a complete system management product that enables system administrators to manage the full
life cycle of Red Hat product deployments. Red Hat Satellite can manage these deployments across physical, virtual
and private clouds. Red Hat Satellite delivers system provisioning, configuration management, software management,
subscription management, and does so while maintaining high scalability and security.

For more information on Red Hat Satellite 6, please visit:

https://access.redhat.com/documentation/en/red-hat-satellite/

https://access.redhat.com/documentation/en/red-hat-satellite/

Satellite 6 Performance Tuning Guide

8 Chapter 4. Introduction

CHAPTER
FIVE

SYSTEM REQUIREMENTS

For details of Red Hat Satellite 6 hardware and software requirements, please take a look at Preparing your environ-
ment for installation, inside the installation guide.

5.1 Quick Tuning Guide

Users who wish to tune their Satellite based on expected managed host counts and hardware allocation can utilize the
built in tuning profiles included in Satellite 6.7 and later that are available via the installation routine’s new tuning flag:

satellite-installer —-help
Usage:
satellite-installer [OPTIONS]

Options:
[....]

——tuning INSTALLATION_SIZE
large, extra-large, extra-extra-large

for an installation size. Choices:
(default: "default")

Tune default,

—medium,

There are 4 sizes provided based on estimates of the number of managed hosts your Satellite will be hosting.

Name Number of managed hosts | Recommend RAM | Recommend Cores
default 0-5000 20G 4

medium 5000-10000 32G 8

large 10000-20000 64G 16

extra-large 20000-60000 128G 32

extra-extra-large | 60000+ 256G+ 48+

Instructions for use:

1. Determine the profile you wish to use

2. Run satellite-installer —tuning large. This will apply the chose tuning profile.

3. Resume operations

NOTE: The specific tuning settings for each profile can be viewed in the configuration files contained in
/usr/share/foreman-installer/config/foreman. hiera/tuning/sizes

Satellite 6 Performance Tuning Guide

10 Chapter 5. System Requirements

CHAPTER
SIX

TOP PERFORMANCE CONSIDERATIONS

This is the list of things that you can do to improve the performance and scalability of Red Hat Satellite 6:

Configuring httpd

Configuring passenger to increase concurrency
Configure candlepin

Configure pulp

Configure Foreman’s performance and scalability
Configure Dynflow

Deploy external Capsule(s) in lieu of internal capsules
Configure katello-agent for scalability

Configure hammer to reduce API timeouts

Configure gpid and gdrouterd

Improve PostgreSQL to handle more concurrent loads

Configure the storage for DB workloads

Consider storage needs and network for compatibility with MongoDB

Ensure the storage requirements for Content Views are met

Ensure the system requirements are met

Improve the environment for remote execution

11

Satellite 6 Performance Tuning Guide

12 Chapter 6. Top Performance Considerations

CHAPTER
SEVEN

CONFIGURING YOUR ENVIRONMENT FOR PERFORMANCE

7.1 CPU

The more physical cores that are available to Satellite 6.7, the higher throughput can be achieved for the tasks. Some
of the Satellite components such as Puppet, MongoDB, PostgreSQL are CPU intensive applications and can really
benefit from the higher number of available CPU cores.

7.2 Memory

The higher amount of memory available in the system running Satellite, the better will be the response times for the
Satellite operations. Since Satellite uses PostgreSQL and MongoDB as the database solutions, any additional memory
coupled with the tunings will provide a boost to the response times of the applications due to increased data retention
in the memory.

7.3 Disk

With Satellite doing heavy IOPS due to repository synchronizations, package data retrieval, high frequency database
updates for the subscription records of the content hosts, it is advised that Satellite be installed on a high speed SSD
drive so as to avoid performance bottlenecks which may happen due to increased Disk reads or writes. Satellite 6
requires disk IO to be at or above 60-80 megabytes per second of average throughput for read operations. Anything
below this value can have severe implications for the operation of the Satellite.

7.3.1 Benchmark disk performance

We are working to update foreman-maintain to only warn the users when its internal quick ‘fio’ benchmark results in
numbers below our recommended throughput but will not require a whitelist parameter to continue.

Also working on an updated benchmark script you can run (which will likely be integrated into foreman-maintain in
the future) to get a more accurate real-world storage information.

Note:

* One may have to temporarily reduce the RAM in order to run the io benchmark, aka if the box has 256GB that
is a lot of pulp space, so add mem=20G kernel option in grub. This is needed because script will execute a series
of fio based IO tests against a targeted directory specified in its execution. This test will create a very large file
that is double (2x) the size of the physical RAM on this system to ensure that we are not just testing the caching
at the OS level of the storage.

13

Satellite 6 Performance Tuning Guide

¢ Please bear above in mind when performing benchmark of other filesystems if you have them (like PostgreSQL
or MongoDB storage) which might have significantly smaller capacity than Pulp storage and perhaps on different
set of storage (SAN, iSCSI, etc).

This test does not use directio and will utilize the OS + caching as normal operations would.

You can find our first version of the script storage-benchmark. To execute just download to your Satellite, chmod +x
the script and run:

./storage-benchmark /var/lib/pulp
This test creates a test file that is double (2X) the size of this system's
RAM in GB. This benchmark will create a test file of size:

64 Gigabytes
in the: [/var/lib/pulp/storage-benchmark] location. This is to ensure that the test
—utilizes

a combination of cached and non-cached data during the test.

*%*x*x WARNING! Please verify you have enough free space to create a 64 GB
file in this location before proceeding.

Do you wish to proceed? (Y/N) Y

Starting IO tests via the 'fio' command. This may take up to an hour or more
depending on the size of the files being tested. Be patient!

*kxkxxxkkkkk*x%x Running READ test via fio:

read-test: (g=0): rw=read, bs=(R) 4096B-4096B, (W) 4096B-4096B, (T) 4096B-4096B,
—ioengine=psync, iodepth=1

fio-3.1
Starting 1 process

As noted in the README block in the script: generally you wish to see on average 100MB/sec or higher in the tests
below:

* Local SSD based storage should values of 600MB/sec or higher.
» Spinning disks should see values in the range of 100-200MB/sec or higher.
If you see values below this, please open a support ticket for assistance.

Refer this blog for more detailed info.

7.4 Network

The communication between the Satellite and Capsules is impacted by the network performance. A decent network
with a minimum jitter and low latency is required to enable hassle free operations such as Satellite and Capsule
synchronization (at least make sure it is not causing connection resets, etc).

14 Chapter 7. Configuring your environment for Performance

https://github.com/RedHatSatellite/satellite-support/blob/master/storage-benchmark
https://access.redhat.com/solutions/3397771

Satellite 6 Performance Tuning Guide

7.5 Server Power Management

Your server by default is likely to be configured to conserve power. While this is a good approach to keep the max
power consumption in check, it also has a side effect of lowering the performance that Satellite may be able to achieve.
For a server running Satellite, it is recommended to set the BIOS to enable the system to be run in performance mode
to boost the maximum performance levels that Satellite can achieve.

7.5. Server Power Management 15

Satellite 6 Performance Tuning Guide

16 Chapter 7. Configuring your environment for Performance

CHAPTER
EIGHT

SATELLITE CONFIGURATION TUNING

Red Hat Satellite as a product comes with a number of components that communicate with each other to produce
a final outcome. All these components can be tuned independently of each other to achieve the maximum possible
performance for the scenario desired.

8.1 Tuned profile

Red Hat Enterprise Linux 7 enables the tuned daemon by default during installation. On bare-metal, it is recommended
that Red Hat Satellite 6 and capsule servers run the ‘throughput-performance’ tuned profile. While, if virtualized, they
should run the ‘virtual-guest’ profile. If it is not certain the system is currently running the correct profile, check with
the ‘tuned-adm active’ command as shown above. More information about tuned is located in the Red Hat Enterprise
Linux Performance Tuning Guide:

service tuned start

chkconfig tuned on

RHEL 7 (bare-metal) :

tuned-adm profile throughput-performance
RHEL 7 (virtual machine)

tuned-adm profile virtual-guest

Transparent Huge Pages is a memory management technique used by the Linux kernel which reduces the overhead
of using Translation Lookaside Buffer (TLB) by using larger sized memory pages. Due to databases having Sparse
Memory Access patterns instead of Contiguous Memory access patterns, database workloads often perform poorly
when Transparent Huge Pages is enabled. To improve performance of MongoDB, Red Hat recommends Transparent
Huge Pages be disabled. For details on disabling Transparent Huge Pages, see Red Hat Solution.

8.2 Apache HTTPD Performance Tuning

Apache httpd forms a core part of the Satellite and acts as a web server for handling the requests that are being made
through the Satellite Web UI or exposed APIs. To increase the concurrency of the operations, httpd forms the first
point where tuning can help to boost the performance of the Satellite.

17

https://access.redhat.com/solutions/1320153

Satellite 6 Performance Tuning Guide

8.3 Configuring how many processes can be launched by Apache
httpd

The version of Apache httpd that ships with Red Hat Satellite 6 by default uses prefork request handling mechanism.
With the prefork model of handling the requests, httpd will launch a new process to handle the incoming connection
by the client.

When the number of requests to the apache exceed the maximum number of child processes that can be launched to
handle the incoming connections, an HTTP 503 Service Unavailable Error is raised by Apache.

Amidst httpd running out of processes to handle the incoming connections can also result in multiple component
failure on the Satellite side due to the dependency of components like Passenger, Pulp on the availability of httpd
processes.

Based on your expected peak load, you might want to modify the configuration of apache prefork to enable it to handle
more concurrent requests.

An example modification to the prefork configuration for a server which may desire to handle 150 concurrent con-
tent host registrations to Satellite may look like the configuration file example that follows (see how to use custom-
hiera.yaml file; this will modify config file /etc/httpd/conf.modules.d/prefork.conf):

File: /etc/foreman-installer/custom-hiera.yaml
apache: :mod: :prefork::serverlimit: 582

apache: :mod: :prefork::maxclients: 582

apache: ::mod: :prefork::startservers: 10

In the above example, the ServerLimit parameter is set only to be able to raise MaxClients value.

The MaxClients (see MaxRequestWorker which is a new name in Apache docs) parameter is being used to set the
maximum number of child processes that httpd can launch to handle the incoming requests.

The StartServers parameter defines how many server processes will be launched by default when the httpd process is
started.

Note: While accounting for the limits to be set for the ServerLimit, please take a note of the values for Passenger-
MaxPoolSize, PassengerMaxRequestQueueSize, number of hosts that may run the client registration in parallel and
max number of pulp processes that can be launched. The following formula can be used to estimate the value of
ServerLimit parameter:

ServerLimit = PassengerMaxPoolSize + PassengerMaxRequestQueueSize + Amount of content hosts be-
ing registered in parallel + number of launchable pulp processes

For example, an adequate value for ServerLimit on a Satellite 6.5 configuration that has PassengerMaxPoolSize set
to 24, PassengerMaxRequestQueueSize set to 400 and expecting to register 150 content hosts in parallel with pulp
configuration not being modified, can be calculated as shown below:

ServerLimit = 24 + 400 + 150 + 8 = 582

18 Chapter 8. Satellite Configuration Tuning

Satellite 6 Performance Tuning Guide

8.4 Increasing the MaxOpenFiles Limit

With the tuning in place, apache httpd can easily open a lot of file descriptors on the server which may exceed the
default limit of most of the linux systems in place. To avoid any kind of issues that may arise as a result of exceeding
max open files limit on the system, please create the following file and directory and set the contents of the file as
specified in the below given example:

File: /etc/systemd/system/httpd.service.d/limits.conf
[Service]
LimitNOFILE=640000

Once the file has been edited, the following commands need to be run to make the tunings come into effect::
systemctl daemon-reload foreman-maintain service restart

8.5 Calculating the maximum open files limit for qdrouterd

Calculate the limit for open files in qdrouterd using this formula: (Nx3) + 100, where N is the number of content hosts.
Each content host may consume up to three file descriptors in the router, and 100 filedescriptors are required to run
the router itself.

The following settings permit Satellite to scale up to 10,000 content hosts.

8.6 gdrouterd settings

Add/Update qpid::router::open_file_limit in custom-hiera.yaml as shown below:

File: /etc/foreman-installer/custom-hiera.yaml
gpid::router::open_file_limit: 150100

Note The change must be applied via:

satellite-installer
systemctl daemon-reload
foreman—-maintain service restart

8.7 Calculating the maximum open files limit for qpidd

Calculate the limit for open files in qpidd using this formula: (Nx4) + 500, where N is the number of content hosts. A
single content host can consume up to four file descriptors and 500 file descriptors are required for the operations of
Broker (a component of gpidd).

8.4. Increasing the MaxOpenFiles Limit 19

Satellite 6 Performance Tuning Guide

8.8 qgpidd settings

Add/Update gpid::open_file_limit in /etc/foreman-installer/custom-hiera.yaml as shown below:

File: /etc/foreman-installer/custom-hiera.yaml
gpid::open_file_limit: 65536

Note The change must be applied via:

satellite-installer
systemctl daemon-reload
foreman—-maintain service restart

8.9 Maximum asynchronous input-output (AlO) requests

Increase the maximum number of allowable concurrent AIO requests by increasing the kernel parameter fs.aio-max-
nr.1. Edit configuration file /etc/sysctl.conf, setting the value of fs.aio-max-nr to the desired maximum.

fs.aio-max-nr=23456
In this example, 23456 is the maximum number of allowable concurrent AIO requests.

This number should be bigger than 33 multiplied by the maximum number of the content hosts planned to be registered
to Satellite. To apply the changes:

sysctl -p
Rebooting the machine also ensures that this change is applied.

8.10 Storage Considerations

Plan to have enough storage capacity for directory /var/lib/qpidd in advance when you are planning an installation that
will use katello-agent extensively. In Red Hat Satellite 6, /var/lib/qpidd requires 2MB disk space per content host. See
this bug for more details.

8.11 mgmt-pub-interval setting

You might see the following error in /var/log/journal in Red Hat Enterprise Linux 7:

satellite.example.com gpidd[92464]: [Broker] error Channel exception: not-attached: |
—Channel 2 is not attached(/builddir/build/BUILD/gpid-cpp-0.30/src/gpid/amgp_0_10/
—SessionHandler.cpp: 39)satellite.example.com agpidd[92464]: [Protocol] error,
—Connectiongpid.10.1.10.1:5671-10.1.10.1:53790 timed out: closing

This error message appears because qpid maintains management objects for queues, sessions, and connections and
recycles them every ten seconds by default. The same object with the same ID is created, deleted, and created again.
The old management object is not yet purged, which is why qpid throws this error. Here’s a workaround: lower
the mgmt-pub-interval parameter from the default 10seconds to something lower. Add it to /etc/qpid/qpidd.conf and
restart the qpidd service. See also Bug 1335694 comment 7.

20 Chapter 8. Satellite Configuration Tuning

https://bugzilla.redhat.com/show_bug.cgi?id=1366323
https://bugzilla.redhat.com/show_bug.cgi?id=1335694

Satellite 6 Performance Tuning Guide

8.12 Passenger Tuning

Passenger is a ruby application server which is used for serving the Foreman related requests to the clients. Passenger
executes as a module inside the Apache httpd2 and handles the incoming requests directed towards the use of Foreman
API or Satellite UL

For any Satellite configuration that is supposed to handle a large number of clients or frequent operations, it is impor-
tant for the Passenger to be tuned appropriately.

The below snippet provides an idea for tuning Passenger (see how to use custom-hiera.yaml file; this will modify
/etc/httpd/conf.modules.d/passenger_extra.conf file):

File: /etc/foreman-installer/custom-hiera.yaml
apache: :mod: :passenger: :passenger_max_pool_size: 48
apache: :mod: :passenger: :passenger_max_request_queue_size: 400

In the above example, we set the tuning for two important keys inside Passenger:

PassengerMaxPoolSize: The parameter defines how many ruby application instances can be launched by Passenger
once the process has started. To calculate an optimal value for the parameter, multiply the total number of VCPUs
available in your deployment by 2 and that is the value for the PassengerMaxPoolSize parameter.

PassengerMaxRequestQueueSize: The PassengerMaxRequestQueueSize parameter defines how many requests can
passenger queue for processing. The value for this parameter should never exceed the value of ServerLimit parameter
set for the Apache httpd2.

8.13 Foreman Tuning

Foreman is the central application which provides the majority of the Satellite functionality as well as the GUI of
Satellite. Under heavy load, the Foreman might need some amount of scaling up so as to provide adequate response
times to the incoming requests.

Installer option “~foreman-passenger-min-instances 12” (defaults to 1) can be used to tune Foreman application (that
will set “PassengerMinInstances” in /etc/httpd/conf.d/05-foreman-ssl.conf file).

PassengerMinInstances: The configuration key tells how many application instances should be running every time
even when no load is being experienced by the application. To calculate an optimal value for the configuration key,
divide the value of PassengerMaxPoolSize by 2. One of the repercussions that may be seen with such a tuning is the
increased memory usage on the system attributed to the fact of having more foreman instances running during ideal
conditions.

8.14 Dynflow Tuning

Dynflow is the workflow management system and task orchestrator which is built as a plugin inside Foreman and is
used to execute the different tasks of Satellite in an out-of-order execution manner. Under the conditions when there
are a lot of clients checking in on Satellite and running a number of tasks, the Dynflow can take some help from an
added tuning specifying how many executors can it launch.

The following configuration snippet provides more information about the tunings involved related to Dynflow:

File: /etc/sysconfig/dynflowd:

EXECUTORS_COUNT=2

8.12. Passenger Tuning 21

Satellite 6 Performance Tuning Guide

In the above tuning example, we worked with one configuration key:

EXECUTORS_COUNT: The key is used to configure how many executors will be launched by the Dynflow to handle
the workflow management and task orchestration jobs. Usually an optimal value for this is in the range of 1-5 with
diminishing gains if taken beyond that. Some of the tasks which may see an improvement over with the increased
executor count is the ability to handle more number of concurrent package reporting from the content hosts.

8.15 PostgreSQL Tuning

PostgreSQL is the primary SQL based database that is used by Satellite for the storage of persistent context across a
wide variety of tasks that Satellite does. The database sees an extensive usage is usually working on to provide the
Satellite with the data which it needs for its smooth functioning. This makes PostgreSQL a heavily used process which
if tuned can have a number of benefits on the overall operational response of Satellite.

The below set of tunings can be applied to PostgreSQL to improve its response times (see how to use custom-hiera.yaml
file; this will modify /var/lib/pgsql/data/postgresql.conf file):

File: /etc/foreman-installer/custom-hiera.yaml
postgresqgl::server::config_entries:
max_connections: 1000
shared_buffers: 2GB
work_mem: 8MB
checkpoint_segments: 32
autovacuum_vacuum_cost_limit: 2000

In the above tuning configuration, there are a certain set of keys which we have altered:

max_connections: The key defines the maximum number of connections that can be accepted by the PostgreSQL
processes that are running. An optimal value for the parameter will be equal to the nearest multiple of 100 of
the ServerLimit value of Apache httpd2 multiplied by 2. For example, if ServerLimit is set to 582, we can set the
max_connections to 1000.

shared_buffers: The shared buffers define the memory used by all the active connections inside postgresql to store the
data for the different database operations. An optimal value for this will vary between 2 GB to a maximum of 25% of
your total system memory depending upon the frequency of the operations being conducted on Satellite.

work_mem: The work_mem is the memory that is allocated on per process basis for Postgresql and is used to store
the intermediate results of the operations that are being performed by the process. Setting this value to 8 MB should
be more than enough for most of the intensive operations on Satellite.

checkpoint_segments: The key defines the threshold after which the database should flush the contents WAL. Every
segment is usually of 16 MB in size and the total checkpoint size is defined by checkpoint_segments multiplied by 16
MB. Once this much amount of WAL logs are filled, a checkpoint occurs flushing the contents of the WAL to storage.

autovacuum_vacuum_cost_limit: The key defines the cost limit value for the vacuuming operation inside the auto-
vacuum process to clean up the dead tuples inside the database relations. The cost limit defines the number of tuples
that can be processed in a single run by the process. An optimal value for this is 2000 based on the general load that
Satellite pushes on the PostgreSQL server process.

22 Chapter 8. Satellite Configuration Tuning

Satellite 6 Performance Tuning Guide

8.16 Benchmarking raw DB performance

To get a list of the top table sizes in disk space for both Candlepin and Foreman, check postgres-size-report script in
satellite-support git repository.

PGbench utility (note you may need to resize PostgreSQL data directory /var/lib/pgsql/ directory to 100GB or what
does benchmark take to run) might be used to measure PostgreSQL performance on your system. Use yum install
postgresql-contrib to install it. Some resources are:

* https://github.com/RedHatSatellite/satellite-support
Choice of filesystem for PostgreSQL data directory might matter as well:

* https://blog.pgaddict.com/posts/postgresql-performance-on-ext4-and-xfs
Note:

* Never do any testing on production system and without valid backup.

» Before you start testing, see how big the database files are. Testing with a really small database would not
produce any meaningful results. E.g. if the DB is only 20G and the buffer pool is 32G, it won’t show problems
with large number of connections because the data will be completely buffered.

8.17 MongoDb Tuning

Under certain circumstances, mongod consumes randomly high memory (up to 1/2 of all RAM) and this aggressive
memory usage limits other processes or can cause OOM Kkiller to kill mongod. In order to overcome this situation,
tune the cache size by referring the following steps:

1. Update custom-hiera.yaml:

Edit /etc/foreman-installer/custom-hiera.yaml and add the entry below inserting the value that is 20% of the physi-
cal RAM while keeping in mind the guidlines in this case, approximately 6GB for a 32GB server. Please note the
formatting of the second line and the indent:

mongodb: :server::config_data:
storage.wiredTiger.engineConfig.cacheSizeGB: 6

2. Run installer to apply changes:

’# satellite—installer

For more details, please refer to this Kbase article.

8.18 Benchmarking raw performance

To get a size report of MongoDB, use mongo-size-report from satellite-support repository.
Utility used for checking 10 speed specific to MongoDB:
¢ https://www.mongodb.com/blog/post/checking-disk-performance-with-the-mongoperf

For MongoDB benchmark meant to run on (stage) Satellite installs, check mongo-benchmark tool in satellite-support
git repository.

Depending on a disk drive type, file system choice (ext4 or xfs) for MongoDB storage directory might be important:

* https://scalegrid.io/blog/xfs-vs-ext4-comparing-mongodb-performance-on-aws-ec2/

8.16. Benchmarking raw DB performance 23

https://github.com/RedHatSatellite/satellite-support/blob/master/postgres-size-report
https://github.com/RedHatSatellite/satellite-support
https://github.com/RedHatSatellite/satellite-support
https://blog.pgaddict.com/posts/postgresql-performance-on-ext4-and-xfs
https://access.redhat.com/documentation/en-us/red_hat_satellite/6.7/html/installing_satellite_server_from_a_connected_network/preparing_your_environment_for_installation#hardware_storage_prerequisites
https://access.redhat.com/solutions/4505561
https://github.com/RedHatSatellite/satellite-support/blob/master/mongo-size-report
https://github.com/RedHatSatellite/satellite-support/
https://www.mongodb.com/blog/post/checking-disk-performance-with-the-mongoperf
https://github.com/RedHatSatellite/satellite-support/blob/master/mongo-benchmark
https://github.com/RedHatSatellite/satellite-support
https://scalegrid.io/blog/xfs-vs-ext4-comparing-mongodb-performance-on-aws-ec2/

Satellite 6 Performance Tuning Guide

Note:

» Never do any testing on production system and without valid backup.

24 Chapter 8. Satellite Configuration Tuning

	Authors
	Legal notice
	Abstract
	Introduction
	System Requirements
	Quick Tuning Guide

	Top Performance Considerations
	Configuring your environment for Performance
	CPU
	Memory
	Disk
	Network
	Server Power Management

	Satellite Configuration Tuning
	Tuned profile
	Apache HTTPD Performance Tuning
	Configuring how many processes can be launched by Apache httpd
	Increasing the MaxOpenFiles Limit
	Calculating the maximum open files limit for qdrouterd
	qdrouterd settings
	Calculating the maximum open files limit for qpidd
	qpidd settings
	Maximum asynchronous input-output (AIO) requests
	Storage Considerations
	mgmt-pub-interval setting
	Passenger Tuning
	Foreman Tuning
	Dynflow Tuning
	PostgreSQL Tuning
	Benchmarking raw DB performance
	MongoDb Tuning
	Benchmarking raw performance

