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1 Executive Summary
In this set of tests, 128 RHEV (Red Hat Enterprise Virtualization) virtual machines (VMs) 
using Red Hat Storage (RHS) were used to characterize performance with varying numbers 
of hypervisors and Gluster servers.  Each hypervisor and RHS server was connected through 
a network switch via a single 10-GbE NIC. This performance study can be used to:

• provide guidelines in recommendations regarding:
◦ the ratio of hypervisors (hosts) to Gluster servers
◦ the number of VMs per host
◦ any host or VM tuning

• understand I/O bottlenecks
• compare basic workload local I/O to Gluster mount I/O in VM

Conclusion: In this case study, RHEV/RHS achieved near linear throughput as up to eight 
RHS servers and 16 RHEV hosts were added.

Conclusion: for small-file workloads, VM-local I/O has a significant performance advantage 
over I/O through a Gluster mount, even when the VM-local I/O is to a virtual disk image stored 
within the same Gluster volume. 

There are some important differences between the VMs used in this study and more “real 
world” applications:

• All VMs were executing an I/O workload 100% of the time -- As such the results seen 
here should be interpreted accordingly. For example, to support 1000 VMs that may 
only be doing I/O to a Gluster volume for a small fraction of elapsed time on average, 
the VM density on Gluster storage could be proportionally increased provided peak 
loads are taken into consideration. The activity of VMs in an existing configuration can 
be measured to make these estimates.

• VMs possessed only 500MB of RAM -- VMs were sized to allow as many VMs as 
possible into the fewest hosts. This is not necessarily a good deployment model for 
more real-world configurations and in fact many applications could benefit from 
additional VM memory for cache-friendly applications such as software builds.  

• VMs possessed only one vCPU -- this was also to allow a maximum number of VMs as 
possible into a single host in order to focus on VM I/O performance. However, such a 
low density of CPUs per VM would be inappropriate for applications such as Hadoop 
where there is a significant computational component.  
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2 Configuration

2.1  Connectivity
The figure below describes the physical connectivity of the hardware used in testing.

Figure 2.1-1: RHEV on RHS Physical Configuration

2.2  Hardware

Servers (8)

Dell PowerEdge R510, BIOS v 1.9.0
12core/24cpu Intel Xeon CPU X5650 @2.67 GHz
48 GB RAM
1x Intel 82599EB 10-Gigabit HBA
1x PERC H700 MegaRAID controller (12 drives in a 
   RAID6 LUN with 256-KB stripe size)
BIOS: hyperthreading and virtualization disabled, 
   power management set to “OS control”

Hosts (16)
Virtual Machines (128)
RHEV Management (1)

Dell PowerEdge R510, BIOS v 1.9.0
12core/24cpu Intel Xeon CPU X5650 @2.67 GHz
48 GB RAM
1x Intel 82599EB 10-Gigabit HBA

Storage
Cisco Nexus 7010 switch, 4x 48-port line cards
Single VLAN using Jumbo Frames shared by servers 
   and hosts

Table 2.2-1: RHEV on RHS Hardware Information
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2.3  Software
The following table includes version information of components used in testing.

Servers
kernel-2.6.32-220.23.1 (RHEL 6.2z)
glusterfs-3.3.0.7rhs-1

Hosts

kernel-2.6.32-279.22.1 (RHEL 6.3 + RHEV 3.1 host RPMs)
glusterfs-3.3.0.7rhs-1, glusterfs-fuse-3.3.0.7rhs-1(update 4)
vdsm-4.9.6-44.0.el6_3
KVM: cache=none, io=threads, format=qcow2, with six 
  backing images to avoid all images residing on any one 
  replication pair)

Virtual Machines
kernel-2.6.32-279.24.1 
glusterfs-3.3.0.7rhs-1

RHEV Manager
kernel-2.6.32-279 
RHEV-M:  v3.1.0-22
vdsm-bootstrap-4.9.6.39.0.el6_3

Table 2.3-1: RHEV on RHS Version Information
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3 Workloads 
A set of non-overlapping, pure workloads representing the extremes of I/O activity found in 
typical applications were applied to this system. The alternative is to attempt to apply a variety 
of mixed workloads but either there are too many mixed workloads to consider or else it is 
risky and difficult to identify which mixed workload best represents a given application.  

• large-file workloads - the iozone benchmark (http://www.iozone.org) was used (with -
+m option to distribute processes across VMs).
◦ sequential (32 GB per server total)
◦ random (4 GB per server total)
◦ reads and writes (64 KB records)

• small-file workloads – the smallfile benchmark was used (with -host-set option to 
distribute threads across VMs.
◦ create – open new file, write 4 KB, close file
◦ append – open existing file, write 4 KB, close file
◦ read – open existing file, read 4 KB, close file

▪ uncached – drop cache on all VMs and RHS servers before read
▪ cached – perform uncached read prior to another read

◦ rename – rename file from one directory to another
◦ delete – unlink file

A single thread was executed within each VM. 

The configurations for testing varied in three ways
• the number of RHS servers (2, 4, or 8)
• the number of RHEV hosts (2, 4, 8 or 16)
• the VM I/O mount type (virtio-block or virtio-net)

resulting in a matrix of 24 configurations per workload. Two I/O access configuration options1 
utilizing Gluster for file access from within a VM were configured:

• virtio-net – The VM mounts the Gluster volume to access files within so data travels 
through the virtio-net driver.

• virtio-block – The VM accesses files in a local file system (an ext4 file system 
mounted on an LVM volume using /dev/vda) where the OS issues I/O requests via the 
virtio-block driver. The host's VM process (qemu-kvm) relays the I/O requests to a 
virtual disk image file on the Gluster volume.

1 There are others including having the VM mount the Gluster volume via NFS but NFS has been extensively 
characterized in other contexts and the Gluster specific data paths were judged the most comparison relevant 
at this time.
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The following figure illustrates the two I/O paths available to each VM.  There is a wide variety 
of terminology applied to virtualization and cloud, so it seems worth the time to clarify this.  

The virtio-block path identified below is also referred to as a “Live VM store”.  In other words, 
the VM image is allowed to change and is persistent.  The VMs (“guests” in KVM 
terminology), are actually backed by qcow2 images with a common backing image.  This 
allows us to create a “golden image” VM in RHEV, provision it with all the software and 
configuration that it needs to function correctly, and then make a RHEV template from it, 
which can be used to clone this golden image into a set of guests sharing the invariant parts 
of the golden image.  

The virtio-net path identified below is also referred to as a “virtual disk store for guests”.  We 
create the guests in the same way that we did with the virtio-block path, but we do not run the 
workload inside the guest's disk image.  Instead we create a Gluster mount point inside the 
guest and let the guest access the Gluster volume directly over the network.

Figure 3-1: Virtio Paths Within the VM
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4 Results
Performance results generally consist of two basic categories: throughput and response time.  
Before running throughput tests, there was an effort to understand response time and its 
impact on the end-user of VMs running on virtualized storage.  

4.1  Tuning
Performance tuning has a significant impact on this system as the following graphs highlight. 
They measure the effect of tuning (excluding network and storage bricks which were 
measured elsewhere). Tuning changes reflected in these graphs include:

• Kernel: The tuned RPM package, distributed with RHEL6, supplies an assortment of 
predefined tuning profiles that configure a variety of kernel and block device 
parameters persistently across reboots with a single command. For example, the 
Gluster servers used the tuned RHS virtualization profile rhs-virtualization. This profile 
mounts the XFS brick with the nobarrier option as write barriers are not required 
because the PERC H700 MegaRAID has a non-volatile battery-backed write cache 
and disk write caching is disabled. Additionally, the profile forces use of the deadline 
I/O scheduler.

• Gluster volume: (applied using gluster volume set <volume> group virt): 
◦ disable quick-read, read-ahead, io-cache translators
◦ enable eager-lock, remote-dio volume parameters

• Server: decreased queue depth to 128, tuned profile rhs-virtualization
• Host: tuned profile virtual-host
• VM: decreased queue depth to 8, tuned profile rhs-guest. This profile is not included in 

the RHEL, RHEV or RHS distributions but is identical to the virtual-guest profile 
distributed with RHEL 6.3 with the addition of increasing block device read_ahead_kb 
by 16x.   

• Network: SELinux and iptables were disabled. Jumbo Frames (MTU=9000) were 
enabled on the 10-GbE NIC for each server and host.
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Large File

The impact of the tuning is clearly vital with regard to large file performance, particularly for:
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Figure 4.1-1: Tuning Results on Large File Virtio-Block
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Figure 4.1-2: Tuning Results on Large File Virtio-Net
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1. reads where the additional (adaptive) readahead in the block device and removal of 
(non-adaptive) readahead from the Gluster volume lessen the impact of I/O contention 
between guests.

2. random writes where eager-lock significantly reduces protocol overhead and 
network.remote-dio allows the RHS server to buffer writes (such as NFS) for more 
optimal I/O scheduling.

Small File

For small files, there is only one case (virtio-net cached reads) where the tuning appears to 
significantly lessen performance. Every other case indicates the tuning is either neutral or 
significantly improves performance. 
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Figure 4.1-3: Results of Tuning on Small File Virtio-Block
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The case of virtio-net cached reads is most likely negatively impacted by disabling the io-
cache translator in the VMs, a result of using the same volume for both the VM disk images 
and application file I/O. Ideally, system administrators would opt to provision separate Gluster 
volumes for virtualization and application I/O so each could be tuned appropriately for their 
intended workloads.
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Figure 4.1-4: Results of Tuning on Small File Virtio-Net
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4.2  Scalability
Each of the scalability graphs present both read and write results with the read results 
measured on the left Y-axis while the write results are measured on the right Y-axis. Each 
axis is scaled so the top of the axis corresponds approximately to the maximum achievable 
result for the network configuration, in this case 1 10-GbE NIC per server and host. The X-
axis is scaled starting at zero. 

These graphs clearly indicate scaling but they also highlight that for this workload, placing so 
many guests into a single pair of RHEV hosts and RHS servers would produce less than 
optimal results. With 128 guests performing sequential I/O on two RAID LUNs, the workload 
is transformed into a somewhat random, non-sequential workload at the disk drives.  
Furthermore, additional context switching is introduced in the RHEV hosts. 

Sequential I/O
This figure graphs the performance of large file virtio-block sequential I/O as additional 
servers and hosts are added.

Note that scaling is greater than linear but by the time scaling reaches eight servers and 
hosts, a significant percentage of the available network bandwidth (60% for reads, 45% for 
writes) has been achieved.
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Figure 4.2-1: Sequential I/O Performance via Virtio-Block
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This figure graphs the performance of large file virtio-net sequential I/O as additional servers 
and hosts are added. 

Again the throughput increases with greater than linear scaling and the virtio-net path 
achieves roughly 80% of available network bandwidth on reads and approximately 50% on 
writes, slightly better than the virtio-block path throughput.

11 www.redhat.com

Figure 4.2-2: Sequential I/O Performance via Virtio-Net
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Random I/O

Given the hypothesis was that sequential I/O was being converted to random I/O when there 
are too many guests/server, the next two figures graph the throughput for a random I/O 
workload. Only one Y-axis is used in these graphs and it is not scaled to the maximum 
network bandwidth.
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Figure 4.2-3: Random I/O Scaling Performance via Virtio-Block
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The scaling for reads is almost perfectly linear, the strongest evidence of scalability thus far 
both in RHEV and RHS but the virtio-net path is approximately 25% slower. The most likely 
cause being Gluster client consumes significant CPU resources and requires more context 
switching (between the glusterfs process and the application) and each VM has only one 
vCPU.

For random writes, the virtio-block path is 3x faster than the virtio-net path. The write curves 
also increase faster than linear. Note that the VMs can buffer writes so they are able to re-
order and even merge write requests to reduce the non-sequentiality of these requests. As 
such random writes appear more as sequential writes in this workload than is preferred. It 
would take a great amount of time to perform a random write test sufficiently large enough to 
prevent this re-ordering effect (33 GB per server of data was used in testing).
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Figure 4.2-4: Random I/O Scaling Performance via Virtio-Net
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VM Response Time

One concern with virtualization is the inevitable increase in response time that results from 
sharing physical hardware with other VMs. Prior to the lengthy procedure of executing the 
defined test matrix, testing was performed to determine if any system tuning would provide 
reasonable response time while achieving good throughput. While the higher throughput is 
desired, it is obviously not worth reducing the VMs to an unusable state.  

Initial testing highlighted problems with response times for basic VM operations with 90% 
percentile response times measured in minutes in some cases, an unacceptable 
environment. It was observed that the response time of VMs could be greatly reduced without 
much loss of throughput by two changes:

• reducing the queue depths on the block devices in the VMs from 128 to 8 I/O requests

• reducing the block device queue depth on the Gluster servers from 256 to the Linux 
default of 128 I/O requests

The following figure graphs effect of queue depth tuning on both throughput (in MB/s) and VM 
response time of VMs for a large file, virtio-block, sequential write workload concurrently with 
a command to copy a small file locally in parallel to all 128 VMs via ssh (see Appendix C for 
command). The sequential write workload proved to be the worst case for inducing high 
response times in VMs.

Response times drop steadily until optimal tuning is achieved and does not drop further but 
the I/O throughput does begin to drop as queue depths are reduced. This is because VM 
block device queue depths are effectively added to the queue depth of the block device in the 
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Figure 4.2-5: Analysis of Server/VM Queue Depths vs. Seq I/O



RHS server. As such, with 8 VMs at 128 requests/VM the maximum queue depth is greater 
than 5 times larger than it would be for a bare metal server. A write workload is more able to 
fill these block device queues because the application does not have to block before it issues 
the next request. Consequently, sequential writes resulted in worst-case response times.  

Note: not all workloads will benefit from such VM tuning. If there are few VMs with high I/O 
requirements, it is not recommended to reduce nr_requests. However, with many VMs and 
concern about fairness and response time, this technique can be effective.

4.3  Scaling Hosts
To get a more high-level view of the results, graphs are presented indicating how throughput 
scales with RHEV hosts when eight RHS servers are used. Note that eight RHS servers with 
replication corresponds to four replication pairs of servers. For writes or metadata changes, 
both members of each replication pair must interact with the Gluster client. With reads 
however, Gluster need only access one replica on a single server.

Recall that each host has 24 cores so the VM:core ratio does not exceed one until eight hosts 
are used.

4.3.1  Large File I/O
This section examines large file sequential I/O throughput for a fixed storage server count.
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Figure 4.3.1-1: Scaling Hosts for Large File Sequential I/O

2 hosts 4 hosts 8 hosts 16 hosts
0

1000

2000

3000

4000

5000

6000

7000

Effect of Host Scaling on Large File Sequential I/O
2 replicas, 8 servers, 128 VMs, 32G per server, 64K recsz

Virtio-Block Write Virtio-Block Read
Virtio-Net Write Virtio-Net Read

T
h

ro
u

g
h

p
u

t i
n

 M
B

 p
e

r 
S

e
c 



Sequential read scaling is good up to four hosts and scaling ceases when eight hosts are 
used. This is expected behavior for a sequential read workload where the network is typically 
the bottleneck and 75% of network and storage speeds are achieved. The difference between 
virtio-net and virtio-block reflects the increased cost of running a Gluster mount per VM in the 
virtio-net case, whereas with virtio-block the cost of the gluster mount is amortized across a 
number of VMs and there is less context switching (only one Gluster mount instance/host).

Sequential write scaling ceases at four hosts because the Gluster client must generate twice 
the network traffic for writes and synchronously write to all 128 streams.  

Note the difference in units between the sequential I/O graphed above and random I/O 
graphs. Gluster is most efficient at large file sequential I/O with large transfer sizes. As a 
result the virtio-block and virtio-net curves for each workload are quite close. With 128 VMs 
reading and writing sequentially, the throughput is respectable considering the amount of 
concurrent streams (16 streams/server reads, 32 streams/server writes).

Random reads reflect a significant advantage for virtio-block with two hosts while virtio-net 
only achieves 2/3 the throughput of virtio-block by the time four hosts are engaged. Random 
I/O places a greater load on Gluster because the writes cannot be aggregated. At two hosts 
there are 64 VMs/host and each VM has approximately half a physical core available to it on 
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Figure 4.3.1-2: Scaling Hosts for Large File Random I/O
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average. Each of these VMs must run its own Gluster client with all of its context switching. It 
would appear that Gluster's extra CPU load is responsible for the throughput increase from 
two to four hosts.
For random writes, virtio-block has the clear advantage because the VMs can buffer the 
writes while virtio-net cannot.

4.3.2  Small File I/O
This section examines small file I/O throughput as a function of hosts with a fixed storage 
server count.

virtio-block
• Operation types involving modification of the file system do not scale with hosts and 

stop increasing at approximately four hosts, whereas read operations scale up to eight 
hosts.  

• There is little difference between cached and uncached read operations. This is 
surprising until realizing the round trip behavior of these two cases is roughly the same 
because there is imsifficient memory in each VM to buffer all of the 4-KB files that the 
VM would read, but the metadata (directories, etc) would be cacheable. For example, 
each VM reads 32K files for a total of 128 MB of data but the VM itself only has 512 
MB to run the Linux OS.
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Figure 4.3.2-1: Scaling Hosts for Small File via Virtio-Block
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• Reads start out at the 2-host level with much lower throughput, scale perfectly up to 
four hosts, and level off by the time eight hosts are engaged. This suggests that 
processing in the server is the bottleneck by the time eight hosts are involved. In fact 
this is observed with host read throughput reaching 600 MB/s in one case. However, 
the other host in the replica pair was idle during this test. This is an opportunity for 
RHS enhancement in balancing the load evenly across both members of replication 
pair.

• Note there is little difference between the create and append graphs. Although there is 
a large difference in the behavior of create and append operations at the brick layer, 
there is little difference at the Gluster protocol layer. As such, the bottleneck is at the 
protocol processing level and not at the disk I/O level. Even metadata updates such as 
those caused by the rename() and unlink() system calls appear this way. The number 
of round trips to the RHS servers is not much different in each case.  

Note the factor of 10 difference in the Y-axis in the graph for virtio-net. This is primarily due to 
the fact that each VM must support overhead of a Gluster mount with its separate FUSE 
process, as well as extra round trips are required between the Gluster client and the host to 
access individual small files inside the Gluster volume. Whereas in the case of virtio-block, 
the Gluster volume is unaware of the small files being accessed in the test and the workload 
appears as random I/O to the virtual machine disk image.

virtio-net  
The round-trip behavior of Gluster mounts in the VM is very different. The most scalable 
operation is delete while the read and cached-read operations start out as expected with 
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Figure 4.3.2-2: Scaling Hosts for Small File via Virtio-Net
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cached-read being faster as metadata does not have to be retrieved. However, by the time 
16 hosts are engaged, cached-read performance equals that of (uncached) read. This may 
be surprising but recall that the total amount of memory available for caching is in the eight 
RHS servers (Gluster client does not cache).

4.4  Detailed Performance

4.4.1  Large File I/O
Results are presented as pairs of surface plots.

• Y-axis (vertical) indicates throughput 
• X-axis (left to right) indicates number of hosts
• Z-axis (front to back) indicates number of RHS servers

Both X-axis and Z-axis are logarithmic-scale graphs because powers of two were used as 
data points to minimize the number of points to collect over a broad range. This results in 
some odd appearance when throughput is scaling linearly with two, four and eight RHS 
servers. 

Graphs are presented in pairs with virtio-block and virtio-net graphs side by side in order to 
compare the behavior of virtualized storage when accessed via these different paths. When 
the Y-axis of the two graphs does not have the same scale, the virtio-net graph is shortened 
to call attention to it. In all graphs, throughput is expected to rise as the data progresses to the 
right (increased hosts) or move to the back of the graph (increased servers). The object is to 
determine what ratios (hosts:server and VMs:host) results in best performance.

The iozone (http://www.iozone.org/) benchmark was used for large file I/O with the “-+m” 
option that enables distributed workload generation. Workload categories are

1. read vs. write – direction of data transfer

2. random vs. sequential – sequential I/O transfer represents file access starting with 
first byte of file in order of byte offset until last byte of file is reached. Random I/O is the 
opposite where chunks of the file are transferred in random order, without repetition, 
until entire file is transferred.
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For example, the following command will initiate I/O using a separate thread on each of two 
VMs on a single host writing 8 GB/thread in 4-KB transfer sizes with no rewrite test:

iozone -+m 2vm.ioz -w -c -e -i 0 -+n -r 4k -s 8g -t 2 

where 2vm.ioz contains records such as:

gprfvm000310ge /mnt/test /usr/local/bin/iozone
gprfvm000710ge /mnt/test /usr/local/bin/iozone

Sequential Reads

In the sequential read workload, similar results are observed with either the virtio-block or 
virtio-net path, with best results at eight hosts and eight servers. Note that at two Gluster 
servers, the throughput does not vary with the number of hosts at all. This is entirely 
reasonable for sequential reads which is typically a network-limited workload. With eight hosts 
and eight servers, 6100 MB/s is achieved, slightly less than 800 MB/s/server, a respectable 
result for 128 VMs reading in parallel. This result is achieve because of XFS prefetching 
configured by the kernel tuning.
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Figure 4.4.1-1: Sequential Read Results



Sequential Writes

In the sequential write workload, with two RHS servers throughput does not vary with host 
count at all. The virtio-block graph shows best performance with eight servers and 16 hosts. 
Whereas with virtio-net, the peak throughput appears to occur at four hosts and eight servers. 
Peak throughput is approximately 2000 MB/s, or 250 MB/s/server. With a replication factor of 
2x on network, the maximum network limited throughput would be roughly 4000 MB/s, or 500 
MB/s/server. Write throughput is somewhat limited by the requirement to synchronize 
replication and resulting latency.
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Figure 4.4.1-2: Sequential Write Results



Random Reads

For random reads, the virtio-net path appears to offer significantly lower throughput and the 
throughput is relatively insensitive to the number of hosts. This workload is typically limited by 
how fast disks are able to seek. Thus the number of Gluster servers should determine 
random throughput. However, the throughput is expected to be the same whether doing virtio-
block or virtio-net I/O. This suggests that there is additional overhead in the client I/O path 
when virtio-net is running. One factor is that there are many more Gluster clients (128) 
interacting with servers in this case. Another factor is the additional caching and prefetching 
occurring in virtio-block tests. Since the amount of data (4 GB/server) was far less than the 
amount of memory, the virtio-block configuration would eventually be able to contain the 
entire data set within memory, whereas in the virtio-net case there would be no caching in the 
VM or host. Note the dip at 16 RHEV hosts and two RHS servers. This is the point at which 
the RHS server is being pushed into I/O contention. In fact, with virtio-net case iostat data 
indicates that from the server that the maximum I/O queue depth was achieved with this 
workload (128 requests), further indicating server I/O saturation at 700 reads/sec and 150 
writes/sec.
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Figure 4.4.1-3: Random Read Results



Random Writes

For random writes, there is a factor of 5x drop from virtio-block peak performance to the virtio-
net peak. Recall that the same amount of data must travel over the network. The difference is 
because in virtio-net, the Gluster client in the VM does not buffer writes and there is no I/O 
scheduling. Thus all the work is performed in the Gluster server. This is reflected in the virtio-
net graph where throughput is dependent of the number of servers. Whereas the kernel of the 
virtio-block VM is using its buffer cache and block device queue to schedule and aggregate 
writes before they reach Gluster. This can result in a larger average I/O size being issued to 
Gluster as well as a more optimized write sequence.
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Figure 4.4.1-4: Random Write Results



4.4.2  Small File I/O

The small file benchmark (https://github.com/bengland2/smallfile) is used to generate file 
operations. For example, to create 32K files of size 4KB in a Gluster mount point using 1 
thread (process) in each of 8 VMs, you can use the command:

smallfile_cli.py –top /mnt/glusterfs/smf.d –host-set 
“g1,g2,...,g8” --threads 1 –file-size 4 –files 32768

For small files, the differences between virtio-block and virtio-net are much greater, because 
Gluster client is receiving a very different workload in the two cases. For virtio-block case, the 
small files are being created on an ext4 file system embedded within a large virtual disk file in 
the Gluster volume and as such Gluster is receiving a mixture of read and write requests to a 
set of large virtual disk image files (e.g., multiple inodes can be fetched by a single Gluster 
read of the region in the virtual disk image where the inode table is located). Additionally, in 
the virtio-block case metadata can be cached by the VM OS to eliminate round trips to 
Gluster servers. Whereas in the virtio-net case, each small file requires both metadata and 
data round-trip operations being sent to both Gluster servers containing the replicas for that 
one file. Thus there are far more round trips and synchronizations involved in a small file 
virtio-net operation.

Creates
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Figure 4.4.2-1: Create Results

https://github.com/bengland2/smallfile


For virtio-block, peak throughput comes with eight servers and eight hosts, whereas with 
virtio-net, peak throughput comes with 16 hosts and eight RHS servers. There is greater than 
a 10 factor decrease from virtio-block to virtio-net. 

For the virtio-block case, where Gluster files are already created, there is a much higher 
percentage of data transfer (WRITE) operations. As a result not so much time is spent in 
metadata operations and some of the writes are bigger than 4-KB (e.g., 8 KB). The following 
graph shows the percentage of time spent in Gluster operation types for the virtio-block case 
(smaller test run).

The next figure is a Wireshark screenshot focuses on Gluster round trips between one 
replication pair of servers and one host. The LOOKUP and FSYNC traffic is noise caused by 
the test harness. Note that FSYNC is the most expensive operation in terms of time. On 
average they take 100 msec. The writes proceed to the disk image files in parallel without 
blocking on I/O completion. Most of the writes are 128-KB writes but they complete in 9 msec 
on average. These are very large considering the files being written by the application are 4-
KB in size. Write aggregation is the reason that virtio-block outperforms virtio-net.
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Figure 4.4.2-2: Percentage of Time Spent Per Operation Type
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In the virtio-net case, the VM is responsible for talking to the Gluster servers to create the file. 
There are many protocol round-trips that the VM must execute to create this 4-KB file, as 
shown in the wireshark Gluster plugin capture, such as the LOOKUP calls to verify the file 
already exists. These LOOKUP calls are performed on every brick in parallel for every file 
because the file could be located on a different brick than the one specified by the consistent 
hashing algorithm.
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Figure 4.4.2-3: Wireshark Data Capture



This figure graphs the percentage of time spent on Gluster operations during a small file 
virtio-net test. Note that the FXATTROP, LOOKUP and CREATE operations consume the 
majority of the time as opposed to the actual WRITE operations. Although not ideal, it is the 
logical result of having VMs as Gluster clients.
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Figure 4.4.2-4: Percentage of Time Spent in Gluster Operations
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Appends
For small file appends, the benchmark is just appending data to an existing file. Although this 
may be expected to be significantly faster, it is not. In either case the bottleneck is not the 
metadata journaling associated with a new file. With virtio-block, there is scaling up through 
eight hosts (most likely due to buffering in VM) but virtio-net throughput is level as the host 
count increases indicating a bottleneck in the server count.
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Figure 4.4.2-5: Append Results



Reads
In the small file reads, cache is dropped on all VMs and servers prior to testing so data must 
travel from disk to application.  

The uncached read graphs above have radically different shapes for virtio-block and virtio-
net. In the virtio-block case, almost half the maximum throughput is achieved with just four 
hosts and two servers, and close to all of the maximum throughput is achieved with eight 
hosts and four servers. Whereas for virtio-net, throughput is relatively insensitive to the 
number of hosts and is more directly related to the number of Gluster servers. The hypothesis 
on for virtio-block case is that VMs may have prefetched and cache much metadata whereas 
in the virtio-net case, there was no significant caching of metadata in the VM (Gluster client 
will not cache metadata for more than one second). This shifts the bottleneck from round trips 
to the server and disk accesses to metadata caching in the VM, where additional hosts may 
have resulted in additional throughput.    
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Figure 4.4.2-6: Read Results



Cached Reads

The cached read case has similarities to the uncached case. Peak throughput is achieved 
with eight hosts and eight servers, but throughput increases by more than 4x from the two 
host two server configuration. This result suggests that in the two VM two host configuration 
there were enough VMs to cause CPU resource starvation. After the VMs obtain sufficient 
CPU resources at four hosts (32 VMs/host), additional hosts do not help. Recall that each 
host has 24 cores. In the virtio-net case, there were 32768 files/thread x 128 threads = 4 
million files = 16 GB of data total. This data should have been easily cacheable by a single 
Gluster server. The fact that virtio-net throughput with 16 hosts went from 7,000 to 20,000 
files/sec as the servers scaled from from four to eight suggests that there was a limit on how 
many small file requests/sec Gluster could process. This limitation has been measured before 
and comparable numbers have been observed due to Gluster small file bottlenecks.
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Figure 4.4.2-7: Cached Read Results



The next figure captures Gluster traffic for a single VM with a single thread reading 4-KB files.

Each file requires metadata round-trips such as OPEN and RELEASE.  
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Figure 4.4.2-8: Wireshark Data capture



The next figure graphs the percentage of time was spent in Gluster operations for the virtio-
net case. A very small percentage of time in the server is spent on reads and the majority of 
time is spent on file lookup.
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Figure 4.4.2-9: Wireshark Data Capture



The following figure graphs how Gluster is reporting how the servers spend their time. There 
is only one significant operation occurring (LOOKUP was omitted as it was only 2%).

In the above virtio-block graph, Gluster is only performing reads while all metadata is 
processed inside the VM, transparently to Gluster. This results in metadata caching and 
prefetching far better than what Gluster can presently do. 
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Figure 4.4.2-10: Small File Virtio-Block Read Time
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Renames

Virtio-block is roughly 20x faster than virtio-net in file renaming. For virtio-block or virtio-net, 
there is little scaling for the rename operation. For virtio-block, throughput actually decreases 
as the host count doubles from eight to 16. For virtio-net, as the number of Gluster servers 
increases from two to four, throughput decreases slightly (negative scaling) and does not 
linearly increase as servers increase from four to eight. This suggests that renames may be a 
problematic operation for large RHEV on RHS configurations.
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Figure 4.4.2-11: Rename Results



Deletes

For the above delete graphs, virtio-block has a 15:1 performance advantage over virtio-net 
although virtio-net starts to show some scaling increasing from four to eight servers, whereas 
virtio-block is not showing linear scaling as servers increase, and is showing actual decreases 
in throughput with low Gluster server counts. Note that these workloads are radically different 
in that virtio-block is doing random writes at the Gluster level, whereas with virtio-net Gluster 
is actually deleting individual files.
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Figure 4.4.2-12: Delete Results



Appendix A: RHEV GUI displays
Data Center
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Hosts

Virtual Machines
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Appendix B: Gluster Volume Information
Volume Name: rhevfs
Type: Distributed-Replicate
Volume ID: d762f1bc-bcd0-4f55-85ea-738d06f1131c
Status: Started
Number of Bricks: 4 x 2 = 8
Transport-type: tcp
Bricks:
Brick1: gprfs023-10ge:/mnt/brick0
Brick2: gprfs024-10ge:/mnt/brick0
Brick3: gprfs022-10ge:/mnt/brick0
Brick4: gprfs021-10ge:/mnt/brick0
Brick5: gprfs018-10ge:/mnt/brick0
Brick6: gprfs019-10ge:/mnt/brick0
Brick7: gprfs017-10ge:/mnt/brick0
Brick8: gprfs020-10ge:/mnt/brick0
Options Reconfigured:
performance.quick-read: off 
performance.read-ahead: off 
performance.io-cache: off 
performance.stat-prefetch: off 
cluster.eager-lock: enable 
network.remote-dio: on 
storage.linux-aio: off 
performance.write-behind: on 
diagnostics.latency-measurement: on 
diagnostics.count-fop-hits: on 
nfs.register-with-portmap: off 
nfs.port: 6013 
cluster.self-heal-daemon: on 
nfs.disable: off 
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Appendix C: timedparforall.sh
#!/bin/bash
# execute a command in parallel on a set of host specified in param 1
# you must quote the command if it's more than a single word

logdir=/tmp/par-for-all.$$
echo "log directory is $logdir"
elapsed_times="$logdir/elapsed-times.list"
cmd="$2"
hostlist=$1
OK=0
SSH="ssh -o StrictHostKeyChecking=no -nTx "
#echo "starting in parallel on : "
rm -rf $logdir && mkdir -p $logdir
for n in `cat $hostlist` ; do 
  #echo -n " $n" 
  eval "time ( $SSH ${USER}@$n \"$cmd\" > $logdir/$n.log 2>&1 ) 2>>$elapsed_times &"
  pids="$pids $!"
  pace.py 0.10
done
echo
j=0
host_array=( `cat $hostlist` )
for p in $pids ; do 
  h=${host_array[$j]}
  wait $p
  s=$?
  chars=`wc -c < $logdir/$h.log`
  if [ $chars -ge 1 -o $s != $OK ] ; then
    echo
    echo "--- $h ---"
    if [ $s != $OK ] ; then
      echo "pid $p on host $h returns $s"
    fi
    cat $logdir/$h.log
  fi
  retcodes="$retcodes $s"
  (( j = $j + 1 ))
done
awk  '/^real/ { print $2 }' $elapsed_times | tr 'sm' '  ' | awk '{print 60*$1 + $2 }' | /shared/stats
for s in $retcodes ; do
  if [ $s != $OK ] ; then exit $s ; fi
done
exit $OK
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