
Red Hat Enterprise Virtualization

Performance on Red Hat Storage

Performance Engineering

Version 1.0

May 2013

1801 Varsity Drive™
Raleigh NC 27606-2072 USA
Phone: +1 919 754 3700
Phone: 888 733 4281
Fax: +1 919 754 3701
PO Box 13588
Research Triangle Park NC 27709 USA

Linux is a registered trademark of Linus Torvalds. Red Hat, Red Hat Enterprise Linux and the Red Hat
"Shadowman" logo are registered trademarks of Red Hat, Inc. in the United States and other
countries.

Intel® and Xeon® are registered trademarks of Intel Corporation or its subsidiaries in the United
States and other countries.

All other trademarks referenced herein are the property of their respective owners.

© 2013 by Red Hat, Inc. This material may be distributed only subject to the terms and conditions set
forth in the Open Publication License, V1.0 or later (the latest version is presently available at
http://www.opencontent.org/openpub/).

The information contained herein is subject to change without notice. Red Hat, Inc. shall not be liable
for technical or editorial errors or omissions contained herein.

Distribution of modified versions of this document is prohibited without the explicit permission of Red
Hat Inc.

Distribution of this work or derivative of this work in any standard (paper) book form for commercial
purposes is prohibited unless prior permission is obtained from Red Hat Inc.

The GPG fingerprint of the security@redhat.com key is:
CA 20 86 86 2B D6 9D FC 65 F6 EC C4 21 91 80 CD DB 42 A6 0E

www.redhat.com ii

http://www.opencontent.org/openpub/
mailto:security@redhat.com

Table of Contents
1 Executive Summary... 1

2 Configuration.. 2

2.1 Connectivity..2

2.2 Hardware..2

2.3 Software..3

3 Workloads ... 4

4 Results... 6

4.1 Tuning...6

4.2 Scalability...10

4.3 Scaling Hosts..15

4.3.1 Large File I/O..15
4.3.2 Small File I/O..17

4.4 Detailed Performance...19

4.4.1 Large File I/O..19
4.4.2 Small File I/O..24

 Appendix A: RHEV GUI displays.. 36

 Appendix B: Gluster Volume Information... 38

 Appendix C: timed-par-for-all.sh... 39

refarch-feedback@redhat.com iii www.redhat.com

1 Executive Summary
In this set of tests, 128 RHEV (Red Hat Enterprise Virtualization) virtual machines (VMs)
using Red Hat Storage (RHS) were used to characterize performance with varying numbers
of hypervisors and Gluster servers. Each hypervisor and RHS server was connected through
a network switch via a single 10-GbE NIC. This performance study can be used to:

• provide guidelines in recommendations regarding:
◦ the ratio of hypervisors (hosts) to Gluster servers
◦ the number of VMs per host
◦ any host or VM tuning

• understand I/O bottlenecks
• compare basic workload local I/O to Gluster mount I/O in VM

Conclusion: In this case study, RHEV/RHS achieved near linear throughput as up to eight
RHS servers and 16 RHEV hosts were added.

Conclusion: for small-file workloads, VM-local I/O has a significant performance advantage
over I/O through a Gluster mount, even when the VM-local I/O is to a virtual disk image stored
within the same Gluster volume.

There are some important differences between the VMs used in this study and more “real
world” applications:

• All VMs were executing an I/O workload 100% of the time -- As such the results seen
here should be interpreted accordingly. For example, to support 1000 VMs that may
only be doing I/O to a Gluster volume for a small fraction of elapsed time on average,
the VM density on Gluster storage could be proportionally increased provided peak
loads are taken into consideration. The activity of VMs in an existing configuration can
be measured to make these estimates.

• VMs possessed only 500MB of RAM -- VMs were sized to allow as many VMs as
possible into the fewest hosts. This is not necessarily a good deployment model for
more real-world configurations and in fact many applications could benefit from
additional VM memory for cache-friendly applications such as software builds.

• VMs possessed only one vCPU -- this was also to allow a maximum number of VMs as
possible into a single host in order to focus on VM I/O performance. However, such a
low density of CPUs per VM would be inappropriate for applications such as Hadoop
where there is a significant computational component.

1 www.redhat.com

2 Configuration

2.1 Connectivity
The figure below describes the physical connectivity of the hardware used in testing.

Figure 2.1-1: RHEV on RHS Physical Configuration

2.2 Hardware

Servers (8)

Dell PowerEdge R510, BIOS v 1.9.0
12core/24cpu Intel Xeon CPU X5650 @2.67 GHz
48 GB RAM
1x Intel 82599EB 10-Gigabit HBA
1x PERC H700 MegaRAID controller (12 drives in a
 RAID6 LUN with 256-KB stripe size)
BIOS: hyperthreading and virtualization disabled,
 power management set to “OS control”

Hosts (16)
Virtual Machines (128)
RHEV Management (1)

Dell PowerEdge R510, BIOS v 1.9.0
12core/24cpu Intel Xeon CPU X5650 @2.67 GHz
48 GB RAM
1x Intel 82599EB 10-Gigabit HBA

Storage
Cisco Nexus 7010 switch, 4x 48-port line cards
Single VLAN using Jumbo Frames shared by servers
 and hosts

Table 2.2-1: RHEV on RHS Hardware Information

www.redhat.com 2

RHEV host 16 RHEV host 1

...

1 network switch, single 10-GbE VLAN

...

 Gluster 2-replica volume

 VM VM

Replication pair 4Replication pair 1

VM VM

...

Gluster
server

1

Gluster
server

2

...

Gluster
server

7

Gluster
server

8

2.3 Software
The following table includes version information of components used in testing.

Servers
kernel-2.6.32-220.23.1 (RHEL 6.2z)
glusterfs-3.3.0.7rhs-1

Hosts

kernel-2.6.32-279.22.1 (RHEL 6.3 + RHEV 3.1 host RPMs)
glusterfs-3.3.0.7rhs-1, glusterfs-fuse-3.3.0.7rhs-1(update 4)
vdsm-4.9.6-44.0.el6_3
KVM: cache=none, io=threads, format=qcow2, with six
 backing images to avoid all images residing on any one
 replication pair)

Virtual Machines
kernel-2.6.32-279.24.1
glusterfs-3.3.0.7rhs-1

RHEV Manager
kernel-2.6.32-279
RHEV-M: v3.1.0-22
vdsm-bootstrap-4.9.6.39.0.el6_3

Table 2.3-1: RHEV on RHS Version Information

3 www.redhat.com

3 Workloads
A set of non-overlapping, pure workloads representing the extremes of I/O activity found in
typical applications were applied to this system. The alternative is to attempt to apply a variety
of mixed workloads but either there are too many mixed workloads to consider or else it is
risky and difficult to identify which mixed workload best represents a given application.

• large-file workloads - the iozone benchmark (http://www.iozone.org) was used (with -
+m option to distribute processes across VMs).
◦ sequential (32 GB per server total)
◦ random (4 GB per server total)
◦ reads and writes (64 KB records)

• small-file workloads – the smallfile benchmark was used (with -host-set option to
distribute threads across VMs.
◦ create – open new file, write 4 KB, close file
◦ append – open existing file, write 4 KB, close file
◦ read – open existing file, read 4 KB, close file

▪ uncached – drop cache on all VMs and RHS servers before read
▪ cached – perform uncached read prior to another read

◦ rename – rename file from one directory to another
◦ delete – unlink file

A single thread was executed within each VM.

The configurations for testing varied in three ways
• the number of RHS servers (2, 4, or 8)
• the number of RHEV hosts (2, 4, 8 or 16)
• the VM I/O mount type (virtio-block or virtio-net)

resulting in a matrix of 24 configurations per workload. Two I/O access configuration options1
utilizing Gluster for file access from within a VM were configured:

• virtio-net – The VM mounts the Gluster volume to access files within so data travels
through the virtio-net driver.

• virtio-block – The VM accesses files in a local file system (an ext4 file system
mounted on an LVM volume using /dev/vda) where the OS issues I/O requests via the
virtio-block driver. The host's VM process (qemu-kvm) relays the I/O requests to a
virtual disk image file on the Gluster volume.

1 There are others including having the VM mount the Gluster volume via NFS but NFS has been extensively
characterized in other contexts and the Gluster specific data paths were judged the most comparison relevant
at this time.

www.redhat.com 4

http://www.iozone.org/

The following figure illustrates the two I/O paths available to each VM. There is a wide variety
of terminology applied to virtualization and cloud, so it seems worth the time to clarify this.

The virtio-block path identified below is also referred to as a “Live VM store”. In other words,
the VM image is allowed to change and is persistent. The VMs (“guests” in KVM
terminology), are actually backed by qcow2 images with a common backing image. This
allows us to create a “golden image” VM in RHEV, provision it with all the software and
configuration that it needs to function correctly, and then make a RHEV template from it,
which can be used to clone this golden image into a set of guests sharing the invariant parts
of the golden image.

The virtio-net path identified below is also referred to as a “virtual disk store for guests”. We
create the guests in the same way that we did with the virtio-block path, but we do not run the
workload inside the guest's disk image. Instead we create a Gluster mount point inside the
guest and let the guest access the Gluster volume directly over the network.

Figure 3-1: Virtio Paths Within the VM

5 www.redhat.com

LVM logical volume

Virtual Machine
RHEL Hypervisor

virtio-block pathvirtio-net path

FUSE (glusterfs mount)

virtio-block (/dev/vda)

ext4 mountpoint

10-GbE network
driver (ixgbe)

virtio-net

FUSE (glusterfs mount)

4 Results
Performance results generally consist of two basic categories: throughput and response time.
Before running throughput tests, there was an effort to understand response time and its
impact on the end-user of VMs running on virtualized storage.

4.1 Tuning
Performance tuning has a significant impact on this system as the following graphs highlight.
They measure the effect of tuning (excluding network and storage bricks which were
measured elsewhere). Tuning changes reflected in these graphs include:

• Kernel: The tuned RPM package, distributed with RHEL6, supplies an assortment of
predefined tuning profiles that configure a variety of kernel and block device
parameters persistently across reboots with a single command. For example, the
Gluster servers used the tuned RHS virtualization profile rhs-virtualization. This profile
mounts the XFS brick with the nobarrier option as write barriers are not required
because the PERC H700 MegaRAID has a non-volatile battery-backed write cache
and disk write caching is disabled. Additionally, the profile forces use of the deadline
I/O scheduler.

• Gluster volume: (applied using gluster volume set <volume> group virt):
◦ disable quick-read, read-ahead, io-cache translators
◦ enable eager-lock, remote-dio volume parameters

• Server: decreased queue depth to 128, tuned profile rhs-virtualization
• Host: tuned profile virtual-host
• VM: decreased queue depth to 8, tuned profile rhs-guest. This profile is not included in

the RHEL, RHEV or RHS distributions but is identical to the virtual-guest profile
distributed with RHEL 6.3 with the addition of increasing block device read_ahead_kb
by 16x.

• Network: SELinux and iptables were disabled. Jumbo Frames (MTU=9000) were
enabled on the 10-GbE NIC for each server and host.

www.redhat.com 6

Large File

The impact of the tuning is clearly vital with regard to large file performance, particularly for:

7 www.redhat.com

Figure 4.1-1: Tuning Results on Large File Virtio-Block

rnd-write rnd-read seq-write seq-read
0

1000

2000

3000

4000

5000

6000

7000

Effect of Tuning on Large File Virtio-Block I/O
2 replicas, 8 servers, 16 hosts, 128 VMs, 32G per Server, 64K recsz

untuned tuned

T
h

ro
u

g
h

p
u

t i
n

 M
B

 p
e

r
S

e
c

Figure 4.1-2: Tuning Results on Large File Virtio-Net

rnd-write rnd-read seq-write seq-read
0

1000

2000

3000

4000

5000

6000

7000

Effect of Tuning on Large File Virtio-Net I/O
2 replicas, 8 servers, 16 hosts, 128 VMs, 32G per Server, 64K recsz

untuned tuned

T
h

ro
u

g
h

p
u

t i
n

 M
B

 p
e

r
S

e
c

1. reads where the additional (adaptive) readahead in the block device and removal of
(non-adaptive) readahead from the Gluster volume lessen the impact of I/O contention
between guests.

2. random writes where eager-lock significantly reduces protocol overhead and
network.remote-dio allows the RHS server to buffer writes (such as NFS) for more
optimal I/O scheduling.

Small File

For small files, there is only one case (virtio-net cached reads) where the tuning appears to
significantly lessen performance. Every other case indicates the tuning is either neutral or
significantly improves performance.

www.redhat.com 8

Figure 4.1-3: Results of Tuning on Small File Virtio-Block

create append read cached read rename delete
0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

Effect of Tuning on Small File Virtio-Block I/O

2 replicas, 8 servers, 16 hosts, 128 VMs, 4K xfrsz
untuned tuned

T
h

ro
u

g
h

p
u

t i
n

 F
ile

s
p

e
r

S
e

c

The case of virtio-net cached reads is most likely negatively impacted by disabling the io-
cache translator in the VMs, a result of using the same volume for both the VM disk images
and application file I/O. Ideally, system administrators would opt to provision separate Gluster
volumes for virtualization and application I/O so each could be tuned appropriately for their
intended workloads.

9 www.redhat.com

Figure 4.1-4: Results of Tuning on Small File Virtio-Net

create append read cached read rename delete
0

5000

10000

15000

20000

25000

Effect of Tuning on Small File Virtio-Net I/O
2 replicas, 8 servers, 16 hosts, 128 VMs, 4K xfrsz

untuned tuned

T
h

ro
u

g
h

p
u

t i
n

 F
ile

s
p

e
r

S
e

c

4.2 Scalability
Each of the scalability graphs present both read and write results with the read results
measured on the left Y-axis while the write results are measured on the right Y-axis. Each
axis is scaled so the top of the axis corresponds approximately to the maximum achievable
result for the network configuration, in this case 1 10-GbE NIC per server and host. The X-
axis is scaled starting at zero.

These graphs clearly indicate scaling but they also highlight that for this workload, placing so
many guests into a single pair of RHEV hosts and RHS servers would produce less than
optimal results. With 128 guests performing sequential I/O on two RAID LUNs, the workload
is transformed into a somewhat random, non-sequential workload at the disk drives.
Furthermore, additional context switching is introduced in the RHEV hosts.

Sequential I/O
This figure graphs the performance of large file virtio-block sequential I/O as additional
servers and hosts are added.

Note that scaling is greater than linear but by the time scaling reaches eight servers and
hosts, a significant percentage of the available network bandwidth (60% for reads, 45% for
writes) has been achieved.

www.redhat.com 10

Figure 4.2-1: Sequential I/O Performance via Virtio-Block

0 1 2 3 4 5 6 7 8 9
0

1000

2000

3000

4000

5000

6000

7000

8000

0

500

1000

1500

2000

2500

3000

3500

4000

Scaling the Sequential I/O of 128 VMs
1 host per server, virtio-block, 64-KB transfer size, 1 thread per VM

seq-read seq-write

RHS servers = RHEV hosts

re
a

d
 M

B
/s

w
rit

e
 M

B
/s

 (
2

-r
e

p
lic

a
)

This figure graphs the performance of large file virtio-net sequential I/O as additional servers
and hosts are added.

Again the throughput increases with greater than linear scaling and the virtio-net path
achieves roughly 80% of available network bandwidth on reads and approximately 50% on
writes, slightly better than the virtio-block path throughput.

11 www.redhat.com

Figure 4.2-2: Sequential I/O Performance via Virtio-Net

0 1 2 3 4 5 6 7 8 9
0

1000

2000

3000

4000

5000

6000

7000

8000

0

500

1000

1500

2000

2500

3000

3500

4000

Scaling the Sequential I/O of 128 VMs using Gluster mount within VM
1 host per server, virtio-net, 64-KB transfer size, 1 thread per VM

seq-read seq-write

RHS servers = RHEV hosts

re
a

d
 M

B
/s

w
rit

e
 M

B
/s

 (
2

-r
e

p
lic

a
)

Random I/O

Given the hypothesis was that sequential I/O was being converted to random I/O when there
are too many guests/server, the next two figures graph the throughput for a random I/O
workload. Only one Y-axis is used in these graphs and it is not scaled to the maximum
network bandwidth.

www.redhat.com 12

Figure 4.2-3: Random I/O Scaling Performance via Virtio-Block

0 1 2 3 4 5 6 7 8 9
0

200

400

600

800

1000

1200

1400

1600

Scaling the Random I/O of 128 VMs
1 host per server, virtio-block, 64-KB transfer size, 1 thread per VM

rnd-write rnd-read

RHS servers = RHEV hosts

M
B

/s

The scaling for reads is almost perfectly linear, the strongest evidence of scalability thus far
both in RHEV and RHS but the virtio-net path is approximately 25% slower. The most likely
cause being Gluster client consumes significant CPU resources and requires more context
switching (between the glusterfs process and the application) and each VM has only one
vCPU.

For random writes, the virtio-block path is 3x faster than the virtio-net path. The write curves
also increase faster than linear. Note that the VMs can buffer writes so they are able to re-
order and even merge write requests to reduce the non-sequentiality of these requests. As
such random writes appear more as sequential writes in this workload than is preferred. It
would take a great amount of time to perform a random write test sufficiently large enough to
prevent this re-ordering effect (33 GB per server of data was used in testing).

13 www.redhat.com

Figure 4.2-4: Random I/O Scaling Performance via Virtio-Net

0 1 2 3 4 5 6 7 8 9
0

200

400

600

800

1000

1200

1400

1600

Scaling the Random I/O of 128 VMs using Gluster Mount Within VM
1 hopst per server, virtio-net, 64-KB transfer size, 1 thread per VM

rnd-write rnd-read

RHS servers = RHEV hosts

M
B

/s

VM Response Time

One concern with virtualization is the inevitable increase in response time that results from
sharing physical hardware with other VMs. Prior to the lengthy procedure of executing the
defined test matrix, testing was performed to determine if any system tuning would provide
reasonable response time while achieving good throughput. While the higher throughput is
desired, it is obviously not worth reducing the VMs to an unusable state.

Initial testing highlighted problems with response times for basic VM operations with 90%
percentile response times measured in minutes in some cases, an unacceptable
environment. It was observed that the response time of VMs could be greatly reduced without
much loss of throughput by two changes:

• reducing the queue depths on the block devices in the VMs from 128 to 8 I/O requests

• reducing the block device queue depth on the Gluster servers from 256 to the Linux
default of 128 I/O requests

The following figure graphs effect of queue depth tuning on both throughput (in MB/s) and VM
response time of VMs for a large file, virtio-block, sequential write workload concurrently with
a command to copy a small file locally in parallel to all 128 VMs via ssh (see Appendix C for
command). The sequential write workload proved to be the worst case for inducing high
response times in VMs.

Response times drop steadily until optimal tuning is achieved and does not drop further but
the I/O throughput does begin to drop as queue depths are reduced. This is because VM
block device queue depths are effectively added to the queue depth of the block device in the

www.redhat.com 14

Figure 4.2-5: Analysis of Server/VM Queue Depths vs. Seq I/O

RHS server. As such, with 8 VMs at 128 requests/VM the maximum queue depth is greater
than 5 times larger than it would be for a bare metal server. A write workload is more able to
fill these block device queues because the application does not have to block before it issues
the next request. Consequently, sequential writes resulted in worst-case response times.

Note: not all workloads will benefit from such VM tuning. If there are few VMs with high I/O
requirements, it is not recommended to reduce nr_requests. However, with many VMs and
concern about fairness and response time, this technique can be effective.

4.3 Scaling Hosts
To get a more high-level view of the results, graphs are presented indicating how throughput
scales with RHEV hosts when eight RHS servers are used. Note that eight RHS servers with
replication corresponds to four replication pairs of servers. For writes or metadata changes,
both members of each replication pair must interact with the Gluster client. With reads
however, Gluster need only access one replica on a single server.

Recall that each host has 24 cores so the VM:core ratio does not exceed one until eight hosts
are used.

4.3.1 Large File I/O
This section examines large file sequential I/O throughput for a fixed storage server count.

15 www.redhat.com

Figure 4.3.1-1: Scaling Hosts for Large File Sequential I/O

2 hosts 4 hosts 8 hosts 16 hosts
0

1000

2000

3000

4000

5000

6000

7000

Effect of Host Scaling on Large File Sequential I/O
2 replicas, 8 servers, 128 VMs, 32G per server, 64K recsz

Virtio-Block Write Virtio-Block Read
Virtio-Net Write Virtio-Net Read

T
h

ro
u

g
h

p
u

t i
n

 M
B

 p
e

r
S

e
c

Sequential read scaling is good up to four hosts and scaling ceases when eight hosts are
used. This is expected behavior for a sequential read workload where the network is typically
the bottleneck and 75% of network and storage speeds are achieved. The difference between
virtio-net and virtio-block reflects the increased cost of running a Gluster mount per VM in the
virtio-net case, whereas with virtio-block the cost of the gluster mount is amortized across a
number of VMs and there is less context switching (only one Gluster mount instance/host).

Sequential write scaling ceases at four hosts because the Gluster client must generate twice
the network traffic for writes and synchronously write to all 128 streams.

Note the difference in units between the sequential I/O graphed above and random I/O
graphs. Gluster is most efficient at large file sequential I/O with large transfer sizes. As a
result the virtio-block and virtio-net curves for each workload are quite close. With 128 VMs
reading and writing sequentially, the throughput is respectable considering the amount of
concurrent streams (16 streams/server reads, 32 streams/server writes).

Random reads reflect a significant advantage for virtio-block with two hosts while virtio-net
only achieves 2/3 the throughput of virtio-block by the time four hosts are engaged. Random
I/O places a greater load on Gluster because the writes cannot be aggregated. At two hosts
there are 64 VMs/host and each VM has approximately half a physical core available to it on

www.redhat.com 16

Figure 4.3.1-2: Scaling Hosts for Large File Random I/O

2 hosts 4 hosts 8 hosts 16 hosts
0

5000

10000

15000

20000

25000

30000

Effect of Host Scaling on Large File Random I/O
2 replicas, 8 servers, 128 VMs, 32G per server, 64K recsz

Virtio-Block Write Virtio-Block Read
Virtio-Net Write Virtio-Net Read

T
h

ro
u

g
h

p
u

t i
n

 IO
P

S

average. Each of these VMs must run its own Gluster client with all of its context switching. It
would appear that Gluster's extra CPU load is responsible for the throughput increase from
two to four hosts.
For random writes, virtio-block has the clear advantage because the VMs can buffer the
writes while virtio-net cannot.

4.3.2 Small File I/O
This section examines small file I/O throughput as a function of hosts with a fixed storage
server count.

virtio-block
• Operation types involving modification of the file system do not scale with hosts and

stop increasing at approximately four hosts, whereas read operations scale up to eight
hosts.

• There is little difference between cached and uncached read operations. This is
surprising until realizing the round trip behavior of these two cases is roughly the same
because there is imsifficient memory in each VM to buffer all of the 4-KB files that the
VM would read, but the metadata (directories, etc) would be cacheable. For example,
each VM reads 32K files for a total of 128 MB of data but the VM itself only has 512
MB to run the Linux OS.

17 www.redhat.com

Figure 4.3.2-1: Scaling Hosts for Small File via Virtio-Block

2 hosts 4 hosts 8 hosts 16 hosts
0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

Effect of Host Scaling on Small File Virtio-Block I/O
2 replicas, 8 servers, 128 VMs, 10 dirs, 100 files/dir, 4K xfrsz

create append read cached read rename delete

T
h

ro
u

g
h

p
u

t i
n

 F
ile

s
p

e
r

S
e

c

• Reads start out at the 2-host level with much lower throughput, scale perfectly up to
four hosts, and level off by the time eight hosts are engaged. This suggests that
processing in the server is the bottleneck by the time eight hosts are involved. In fact
this is observed with host read throughput reaching 600 MB/s in one case. However,
the other host in the replica pair was idle during this test. This is an opportunity for
RHS enhancement in balancing the load evenly across both members of replication
pair.

• Note there is little difference between the create and append graphs. Although there is
a large difference in the behavior of create and append operations at the brick layer,
there is little difference at the Gluster protocol layer. As such, the bottleneck is at the
protocol processing level and not at the disk I/O level. Even metadata updates such as
those caused by the rename() and unlink() system calls appear this way. The number
of round trips to the RHS servers is not much different in each case.

Note the factor of 10 difference in the Y-axis in the graph for virtio-net. This is primarily due to
the fact that each VM must support overhead of a Gluster mount with its separate FUSE
process, as well as extra round trips are required between the Gluster client and the host to
access individual small files inside the Gluster volume. Whereas in the case of virtio-block,
the Gluster volume is unaware of the small files being accessed in the test and the workload
appears as random I/O to the virtual machine disk image.

virtio-net
The round-trip behavior of Gluster mounts in the VM is very different. The most scalable
operation is delete while the read and cached-read operations start out as expected with

www.redhat.com 18

Figure 4.3.2-2: Scaling Hosts for Small File via Virtio-Net

2 hosts 4 hosts 8 hosts 16 hosts
0

1000

2000

3000

4000

5000

6000

7000

8000

Effect of Host Scaling on Small File Virtio-Net I/O
2 replicas, 8 servers, 128 VMs, 10 dirs, 100 files/dir, 4K xfrsz

create append read cached read rename delete

T
h

ro
u

g
h

p
u

t i
n

 F
ile

s
p

e
r

S
e

c

cached-read being faster as metadata does not have to be retrieved. However, by the time
16 hosts are engaged, cached-read performance equals that of (uncached) read. This may
be surprising but recall that the total amount of memory available for caching is in the eight
RHS servers (Gluster client does not cache).

4.4 Detailed Performance

4.4.1 Large File I/O
Results are presented as pairs of surface plots.

• Y-axis (vertical) indicates throughput
• X-axis (left to right) indicates number of hosts
• Z-axis (front to back) indicates number of RHS servers

Both X-axis and Z-axis are logarithmic-scale graphs because powers of two were used as
data points to minimize the number of points to collect over a broad range. This results in
some odd appearance when throughput is scaling linearly with two, four and eight RHS
servers.

Graphs are presented in pairs with virtio-block and virtio-net graphs side by side in order to
compare the behavior of virtualized storage when accessed via these different paths. When
the Y-axis of the two graphs does not have the same scale, the virtio-net graph is shortened
to call attention to it. In all graphs, throughput is expected to rise as the data progresses to the
right (increased hosts) or move to the back of the graph (increased servers). The object is to
determine what ratios (hosts:server and VMs:host) results in best performance.

The iozone (http://www.iozone.org/) benchmark was used for large file I/O with the “-+m”
option that enables distributed workload generation. Workload categories are

1. read vs. write – direction of data transfer

2. random vs. sequential – sequential I/O transfer represents file access starting with
first byte of file in order of byte offset until last byte of file is reached. Random I/O is the
opposite where chunks of the file are transferred in random order, without repetition,
until entire file is transferred.

19 www.redhat.com

http://www.iozone.org/

For example, the following command will initiate I/O using a separate thread on each of two
VMs on a single host writing 8 GB/thread in 4-KB transfer sizes with no rewrite test:

iozone -+m 2vm.ioz -w -c -e -i 0 -+n -r 4k -s 8g -t 2

where 2vm.ioz contains records such as:

gprfvm000310ge /mnt/test /usr/local/bin/iozone
gprfvm000710ge /mnt/test /usr/local/bin/iozone

Sequential Reads

In the sequential read workload, similar results are observed with either the virtio-block or
virtio-net path, with best results at eight hosts and eight servers. Note that at two Gluster
servers, the throughput does not vary with the number of hosts at all. This is entirely
reasonable for sequential reads which is typically a network-limited workload. With eight hosts
and eight servers, 6100 MB/s is achieved, slightly less than 800 MB/s/server, a respectable
result for 128 VMs reading in parallel. This result is achieve because of XFS prefetching
configured by the kernel tuning.

www.redhat.com 20

Figure 4.4.1-1: Sequential Read Results

Sequential Writes

In the sequential write workload, with two RHS servers throughput does not vary with host
count at all. The virtio-block graph shows best performance with eight servers and 16 hosts.
Whereas with virtio-net, the peak throughput appears to occur at four hosts and eight servers.
Peak throughput is approximately 2000 MB/s, or 250 MB/s/server. With a replication factor of
2x on network, the maximum network limited throughput would be roughly 4000 MB/s, or 500
MB/s/server. Write throughput is somewhat limited by the requirement to synchronize
replication and resulting latency.

21 www.redhat.com

Figure 4.4.1-2: Sequential Write Results

Random Reads

For random reads, the virtio-net path appears to offer significantly lower throughput and the
throughput is relatively insensitive to the number of hosts. This workload is typically limited by
how fast disks are able to seek. Thus the number of Gluster servers should determine
random throughput. However, the throughput is expected to be the same whether doing virtio-
block or virtio-net I/O. This suggests that there is additional overhead in the client I/O path
when virtio-net is running. One factor is that there are many more Gluster clients (128)
interacting with servers in this case. Another factor is the additional caching and prefetching
occurring in virtio-block tests. Since the amount of data (4 GB/server) was far less than the
amount of memory, the virtio-block configuration would eventually be able to contain the
entire data set within memory, whereas in the virtio-net case there would be no caching in the
VM or host. Note the dip at 16 RHEV hosts and two RHS servers. This is the point at which
the RHS server is being pushed into I/O contention. In fact, with virtio-net case iostat data
indicates that from the server that the maximum I/O queue depth was achieved with this
workload (128 requests), further indicating server I/O saturation at 700 reads/sec and 150
writes/sec.

www.redhat.com 22

Figure 4.4.1-3: Random Read Results

Random Writes

For random writes, there is a factor of 5x drop from virtio-block peak performance to the virtio-
net peak. Recall that the same amount of data must travel over the network. The difference is
because in virtio-net, the Gluster client in the VM does not buffer writes and there is no I/O
scheduling. Thus all the work is performed in the Gluster server. This is reflected in the virtio-
net graph where throughput is dependent of the number of servers. Whereas the kernel of the
virtio-block VM is using its buffer cache and block device queue to schedule and aggregate
writes before they reach Gluster. This can result in a larger average I/O size being issued to
Gluster as well as a more optimized write sequence.

23 www.redhat.com

Figure 4.4.1-4: Random Write Results

4.4.2 Small File I/O

The small file benchmark (https://github.com/bengland2/smallfile) is used to generate file
operations. For example, to create 32K files of size 4KB in a Gluster mount point using 1
thread (process) in each of 8 VMs, you can use the command:

smallfile_cli.py –top /mnt/glusterfs/smf.d –host-set
“g1,g2,...,g8” --threads 1 –file-size 4 –files 32768

For small files, the differences between virtio-block and virtio-net are much greater, because
Gluster client is receiving a very different workload in the two cases. For virtio-block case, the
small files are being created on an ext4 file system embedded within a large virtual disk file in
the Gluster volume and as such Gluster is receiving a mixture of read and write requests to a
set of large virtual disk image files (e.g., multiple inodes can be fetched by a single Gluster
read of the region in the virtual disk image where the inode table is located). Additionally, in
the virtio-block case metadata can be cached by the VM OS to eliminate round trips to
Gluster servers. Whereas in the virtio-net case, each small file requires both metadata and
data round-trip operations being sent to both Gluster servers containing the replicas for that
one file. Thus there are far more round trips and synchronizations involved in a small file
virtio-net operation.

Creates

www.redhat.com 24

Figure 4.4.2-1: Create Results

https://github.com/bengland2/smallfile

For virtio-block, peak throughput comes with eight servers and eight hosts, whereas with
virtio-net, peak throughput comes with 16 hosts and eight RHS servers. There is greater than
a 10 factor decrease from virtio-block to virtio-net.

For the virtio-block case, where Gluster files are already created, there is a much higher
percentage of data transfer (WRITE) operations. As a result not so much time is spent in
metadata operations and some of the writes are bigger than 4-KB (e.g., 8 KB). The following
graph shows the percentage of time spent in Gluster operation types for the virtio-block case
(smaller test run).

The next figure is a Wireshark screenshot focuses on Gluster round trips between one
replication pair of servers and one host. The LOOKUP and FSYNC traffic is noise caused by
the test harness. Note that FSYNC is the most expensive operation in terms of time. On
average they take 100 msec. The writes proceed to the disk image files in parallel without
blocking on I/O completion. Most of the writes are 128-KB writes but they complete in 9 msec
on average. These are very large considering the files being written by the application are 4-
KB in size. Write aggregation is the reason that virtio-block outperforms virtio-net.

25 www.redhat.com

Figure 4.4.2-2: Percentage of Time Spent Per Operation Type

46 30 28
0

2

4

6

8

10

12

Smallfile 4KB File Creates on Virtio-Block Mount
16 Hosts, 128 VMs, 1 Thread/VM

vol-rhevfs2-FSYNC-%t vol-rhevfs2-LOOKUP-%t vol-rhevfs2-WRITE-%t

Sample DurationT
im

e
 P

e
rc

e
n

ta
g

e
 S

p
e

n
t i

n
 O

p
e

ra
tio

n
 (

g
lu

st
e

r
vo

lu
m

e
 p

ro
fil

e
)

In the virtio-net case, the VM is responsible for talking to the Gluster servers to create the file.
There are many protocol round-trips that the VM must execute to create this 4-KB file, as
shown in the wireshark Gluster plugin capture, such as the LOOKUP calls to verify the file
already exists. These LOOKUP calls are performed on every brick in parallel for every file
because the file could be located on a different brick than the one specified by the consistent
hashing algorithm.

www.redhat.com 26

Figure 4.4.2-3: Wireshark Data Capture

This figure graphs the percentage of time spent on Gluster operations during a small file
virtio-net test. Note that the FXATTROP, LOOKUP and CREATE operations consume the
majority of the time as opposed to the actual WRITE operations. Although not ideal, it is the
logical result of having VMs as Gluster clients.

27 www.redhat.com

Figure 4.4.2-4: Percentage of Time Spent in Gluster Operations

1 2 3 4
0

1

2

3

4

5

6

7

Small File 4-KB File Creates on Virtio-Net Mount
16 Hosts, 128 VMs, 1 Thread/VM

vol-rhevfs2-CREATE-%t

vol-rhevfs2-FINODELK-%t

vol-rhevfs2-FLUSH-%t

vol-rhevfs2-FSYNC-%t

vol-rhevfs2-FXATTROP-%t

vol-rhevfs2-LOOKUP-%t

vol-rhevfs2-READ-%t

vol-rhevfs2-STAT-%t

vol-rhevfs2-WRITE-%t

10 Second Samples

T
im

e
 P

e
rc

e
n

ta
g

e
 S

p
e

n
t i

n
 O

p
e

ra
tio

n
 (

g
lu

st
e

r
vo

lu
m

e
 p

ro
fil

e
)

Appends
For small file appends, the benchmark is just appending data to an existing file. Although this
may be expected to be significantly faster, it is not. In either case the bottleneck is not the
metadata journaling associated with a new file. With virtio-block, there is scaling up through
eight hosts (most likely due to buffering in VM) but virtio-net throughput is level as the host
count increases indicating a bottleneck in the server count.

www.redhat.com 28

Figure 4.4.2-5: Append Results

Reads
In the small file reads, cache is dropped on all VMs and servers prior to testing so data must
travel from disk to application.

The uncached read graphs above have radically different shapes for virtio-block and virtio-
net. In the virtio-block case, almost half the maximum throughput is achieved with just four
hosts and two servers, and close to all of the maximum throughput is achieved with eight
hosts and four servers. Whereas for virtio-net, throughput is relatively insensitive to the
number of hosts and is more directly related to the number of Gluster servers. The hypothesis
on for virtio-block case is that VMs may have prefetched and cache much metadata whereas
in the virtio-net case, there was no significant caching of metadata in the VM (Gluster client
will not cache metadata for more than one second). This shifts the bottleneck from round trips
to the server and disk accesses to metadata caching in the VM, where additional hosts may
have resulted in additional throughput.

29 www.redhat.com

Figure 4.4.2-6: Read Results

Cached Reads

The cached read case has similarities to the uncached case. Peak throughput is achieved
with eight hosts and eight servers, but throughput increases by more than 4x from the two
host two server configuration. This result suggests that in the two VM two host configuration
there were enough VMs to cause CPU resource starvation. After the VMs obtain sufficient
CPU resources at four hosts (32 VMs/host), additional hosts do not help. Recall that each
host has 24 cores. In the virtio-net case, there were 32768 files/thread x 128 threads = 4
million files = 16 GB of data total. This data should have been easily cacheable by a single
Gluster server. The fact that virtio-net throughput with 16 hosts went from 7,000 to 20,000
files/sec as the servers scaled from from four to eight suggests that there was a limit on how
many small file requests/sec Gluster could process. This limitation has been measured before
and comparable numbers have been observed due to Gluster small file bottlenecks.

www.redhat.com 30

Figure 4.4.2-7: Cached Read Results

The next figure captures Gluster traffic for a single VM with a single thread reading 4-KB files.

Each file requires metadata round-trips such as OPEN and RELEASE.

31 www.redhat.com

Figure 4.4.2-8: Wireshark Data capture

The next figure graphs the percentage of time was spent in Gluster operations for the virtio-
net case. A very small percentage of time in the server is spent on reads and the majority of
time is spent on file lookup.

www.redhat.com 32

Figure 4.4.2-9: Wireshark Data Capture

The following figure graphs how Gluster is reporting how the servers spend their time. There
is only one significant operation occurring (LOOKUP was omitted as it was only 2%).

In the above virtio-block graph, Gluster is only performing reads while all metadata is
processed inside the VM, transparently to Gluster. This results in metadata caching and
prefetching far better than what Gluster can presently do.

33 www.redhat.com

Figure 4.4.2-10: Small File Virtio-Block Read Time

1 2 3 4 5 6 7 8 9
0

2

4

6

8

10

12

Small File Virtio-Block Reads
128 VMs, 4-KB file transfers, 1 thread per VM

vol-rhevfs2-READ-%t

5-sec Samples%
 T

im
e

 S
p

e
n

t i
n

 G
lu

st
e

r
O

p
e

ra
tio

n
 (

G
lu

st
e

r
vo

lu
m

e
 p

ro
fil

e
)

Renames

Virtio-block is roughly 20x faster than virtio-net in file renaming. For virtio-block or virtio-net,
there is little scaling for the rename operation. For virtio-block, throughput actually decreases
as the host count doubles from eight to 16. For virtio-net, as the number of Gluster servers
increases from two to four, throughput decreases slightly (negative scaling) and does not
linearly increase as servers increase from four to eight. This suggests that renames may be a
problematic operation for large RHEV on RHS configurations.

www.redhat.com 34

Figure 4.4.2-11: Rename Results

Deletes

For the above delete graphs, virtio-block has a 15:1 performance advantage over virtio-net
although virtio-net starts to show some scaling increasing from four to eight servers, whereas
virtio-block is not showing linear scaling as servers increase, and is showing actual decreases
in throughput with low Gluster server counts. Note that these workloads are radically different
in that virtio-block is doing random writes at the Gluster level, whereas with virtio-net Gluster
is actually deleting individual files.

35 www.redhat.com

Figure 4.4.2-12: Delete Results

Appendix A: RHEV GUI displays
Data Center

www.redhat.com 36

Hosts

Virtual Machines

37 www.redhat.com

Appendix B: Gluster Volume Information
Volume Name: rhevfs
Type: Distributed-Replicate
Volume ID: d762f1bc-bcd0-4f55-85ea-738d06f1131c
Status: Started
Number of Bricks: 4 x 2 = 8
Transport-type: tcp
Bricks:
Brick1: gprfs023-10ge:/mnt/brick0
Brick2: gprfs024-10ge:/mnt/brick0
Brick3: gprfs022-10ge:/mnt/brick0
Brick4: gprfs021-10ge:/mnt/brick0
Brick5: gprfs018-10ge:/mnt/brick0
Brick6: gprfs019-10ge:/mnt/brick0
Brick7: gprfs017-10ge:/mnt/brick0
Brick8: gprfs020-10ge:/mnt/brick0
Options Reconfigured:
performance.quick-read: off
performance.read-ahead: off
performance.io-cache: off
performance.stat-prefetch: off
cluster.eager-lock: enable
network.remote-dio: on
storage.linux-aio: off
performance.write-behind: on
diagnostics.latency-measurement: on
diagnostics.count-fop-hits: on
nfs.register-with-portmap: off
nfs.port: 6013
cluster.self-heal-daemon: on
nfs.disable: off

www.redhat.com 38

Appendix C: timedparforall.sh
#!/bin/bash
execute a command in parallel on a set of host specified in param 1
you must quote the command if it's more than a single word

logdir=/tmp/par-for-all.$$
echo "log directory is $logdir"
elapsed_times="$logdir/elapsed-times.list"
cmd="$2"
hostlist=$1
OK=0
SSH="ssh -o StrictHostKeyChecking=no -nTx "
#echo "starting in parallel on : "
rm -rf $logdir && mkdir -p $logdir
for n in `cat $hostlist` ; do
 #echo -n " $n"
 eval "time ($SSH ${USER}@$n \"$cmd\" > $logdir/$n.log 2>&1) 2>>$elapsed_times &"
 pids="$pids $!"
 pace.py 0.10
done
echo
j=0
host_array=(`cat $hostlist`)
for p in $pids ; do
 h=${host_array[$j]}
 wait $p
 s=$?
 chars=`wc -c < $logdir/$h.log`
 if [$chars -ge 1 -o $s != $OK] ; then
 echo
 echo "--- $h ---"
 if [$s != $OK] ; then
 echo "pid $p on host $h returns $s"
 fi
 cat $logdir/$h.log
 fi
 retcodes="$retcodes $s"
 ((j = $j + 1))
done
awk '/^real/ { print $2 }' $elapsed_times | tr 'sm' ' ' | awk '{print 60*$1 + $2 }' | /shared/stats
for s in $retcodes ; do
 if [$s != $OK] ; then exit $s ; fi
done
exit $OK

39 www.redhat.com

	1 Executive Summary
	2 Configuration
	2.1 Connectivity
	2.2 Hardware
	2.3 Software

	3 Workloads
	4 Results
	4.1 Tuning
	4.2 Scalability
	4.3 Scaling Hosts
	4.3.1 Large File I/O
	4.3.2 Small File I/O

	4.4 Detailed Performance
	4.4.1 Large File I/O
	4.4.2 Small File I/O

	Appendix A: RHEV GUI displays
	Appendix B: Gluster Volume Information
	Appendix C: timed-par-for-all.sh

