
Resource Management using
Control Groups in Red Hat®

Enterprise Linux 6
Case Study: Database Performance

OLTP Workload

Oracle 10g

Red Hat® Enterprise Linux 6

Intel Nehalem EX

Version 1.0
November 2010

Resource Management using Control Groups in Red Hat Enterprise Linux 6
Case Study: Database Performance

1801 Varsity Drive™
Raleigh NC 27606-2072 USA
Phone: +1 919 754 3700
Phone: 888 733 4281
Fax: +1 919 754 3701
PO Box 13588

Research Triangle Park NC 27709 USA

Linux is a registered trademark of Linus Torvalds. Red Hat, Red Hat Enterprise Linux and the Red Hat
"Shadowman" logo are registered trademarks of Red Hat, Inc. in the United States and other
countries.

UNIX is a registered trademark of The Open Group.

Intel, the Intel logo, Xeon and Itanium are registered trademarks of Intel Corporation or its subsidiaries
in the United States and other countries.

All other trademarks referenced herein are the property of their respective owners.

© 2010 by Red Hat, Inc. This material may be distributed only subject to the terms and conditions set
forth in the Open Publication License, V1.0 or later (the latest version is presently available at
 http://www.opencontent.org/openpub/).

The information contained herein is subject to change without notice. Red Hat, Inc. shall not be liable
for technical or editorial errors or omissions contained herein.

Distribution of modified versions of this document is prohibited without the explicit permission of Red
Hat Inc.

Distribution of this work or derivative of this work in any standard (paper) book form for commercial
purposes is prohibited unless prior permission is obtained from Red Hat Inc.

The GPG fingerprint of the security@redhat.com key is:
CA 20 86 86 2B D6 9D FC 65 F6 EC C4 21 91 80 CD DB 42 A6 0E

 www.redhat.com 2

http://www.opencontent.org/openpub/
mailto:security@redhat.com

Table of Contents

 1 Executive Summary...4

 2 Introduction...5
 2.1 Definitions..6

 2.1.1 Hierarchy..6

 2.1.2 Subsystem..6

 3 Testbed Configuration..8
 3.1 Hardware...8

 3.2 Software...8

 3.3 Storage..8

 3.4 Control Groups..9

 3.4.1 Creation..10

 3.4.2 Cpuset..11
 3.4.2.1 NUMA Pinning.. 11

 4 Usage Scenarios..12
 4.1 Application Consolidation..12

 4.2 Performance Optimization...15

 4.3 Dynamic Resource Management..17

 4.3.1 Single Instance...18

 4.3.2 Multi Instance...19

 4.4 Application Isolation...22

 5 References...27

 3 www.redhat.com

 1 Executive Summary
Previously known as container groups, task control groups (cgroups) provide a method of
allocating memory, processor and I/O resources across process groups, whether those
process groups are applications or virtual guests.

For the purposes of this document, all testing was performed on bare metal without
virtualization. Also, this document focuses on using the cpuset and memory subsystems to
manage CPU and memory as well as to pin cgroups to specific Non-Uniform Memory Access
(NUMA) nodes.

The following benefits of cgroups are demonstrated in four use cases using a database
workload:

1. Application Consolidation - Cgroups may be used to consolidate multiple applications
onto larger servers by providing the user control over the level of resources allocated
to each application.

2. Performance Optimization – Judicious mapping of cgroups to system resources can
result in significant performance improvements. E.g., If cgroups are used to pin each
application to the memory and CPUs in a separate NUMA node, it results in reduced
memory latency and better overall performance.

3. Dynamic Resource Management – Often certain applications, in an application mix
running on a server, require additional resources at specific times. Cgroups may be
used dynamically alter the resources allocated to each application, as needed, for
optimal system performance.

4. Application Isolation – Confining each application to its own cgroup ensures that an
attempt by a rouge application to hog a system resource (e.g., CPU or memory) does
not impact other applications running in other cgroups.

 www.redhat.com 4

 2 Introduction
The saturation of one or more system resources is most commonly the cause of poor system
performance. In the standard multi user environment, system resources are controlled by the
operating system (OS) and are shared via a scheduling algorithm.

Resource control is a method of allocating the resources of a system in a controlled manner.
Red Hat Enterprise Linux 6 provides new ways of grouping tasks and dividing system
resources into groups for improved performance.

The use of cgroups provides an administrator a mechanism for aggregating/partitioning sets
of tasks, and all their future children, into hierarchical groups with specific behavior. The user
can monitor any cgroups they configure, deny cgroups access to certain resources, and even
reconfigure their cgroups dynamically on a running system. The control group configuration
service (cgconfig) can be configured to start at system boot and reestablish any predefined
cgroups so they remain persistent after reboot.

Control groups provide:
• Resource limits: set memory or file system cache limits on specific groups

• Isolation: groups can be given separate namespaces so that each group does not
detect the processes, network connections, or files belonging to others

• Control: freezing groups or checkpointing and restarting

• Prioritization: different groups may receive more I/O throughput or CPU cycles than
others

• Accounting: measure the resources used by specific systems

In using control groups, a set of tasks can be associated with a set of parameters for one or
more subsystems. For example, an application in a particular control group is given a user
specified share of the resources of that system. These shares are minimums and not
maximums, meaning if one group is allocated 20% of the CPU processing power of a server
and another group is allocated 80% but is not using the 80%, the other group is able to utilize
the remaining CPUs.

Not only do cgroups provide capabilities much like that of numactl and taskset to pin tasks
to NUMA nodes or to specific CPUs, they can also be used to dynamically manage resources
such as disk I/O, memory, and network bandwidth. Although taskset is also able to set CPU
affinity on the fly, cgroups can provide the numactl functionality dynamically as well. Note
that even though memory can be reallocated in mid test, it is neither recommended nor
supported at this time.

Although control groups were written as the low-level mechanism in Linux for containers and
virtual machines, they are not restricted to virtual machines. They can manage the resources
and performance of ordinary processes as well.

 5 www.redhat.com

http://en.wikipedia.org/wiki/Namespace_(computer_science)
http://en.wikipedia.org/wiki/Main_memory

 2.1 Definitions

 2.1.1 Hierarchy
A cgroup hierarchy is a tree of cgroups that has zero or more subsystems attached to it. Each
hierarchy presents itself to the user as a virtual file system or cgroup, in which each directory
is a single cgroup containing various control files and descendant cgroups as subdirectories.
So within this file system, each directory defines a new group and as such, groups can be
arranged to form an arbitrarily nested hierarchy by creating new sub-directories.

 2.1.2 Subsystem
Simplified, a subsystem (or resource controller) is something that acts upon a group of tasks
(i.e., processes). It is a module that makes use of the task grouping facilities provided by
cgroups to treat groups of tasks in specific ways. A subsystem is typically a resource
controller that schedules a resource or applies limits per cgroup, but in reality could be
anything that wants to act on a group of processes (e.g., a virtualization subsystem). An
example would be the cpuset subsystem, which limits which processors on which tasks can
run and for how long.

Subsystems are also known as resource controllers. The terms resource controller or simply
controller are often seen in control group literature such as man pages or kernel
documentation. Both of these terms are synonymous with subsystem and are used because a
subsystem typically schedules a resource or applies a limit to the cgroups in the hierarchy to
which it is attached. For instance, the CPU resource controller allocates processing resources
to a cgroup on a proportional basis, and with interactive, real-time tasks, each task are
assigned a specific number of CPU cycles.

Cgroups are similar to processes in as much as they are hierarchical and child cgroups inherit
certain attributes from their parent cgroup. The fundamental difference is that many different
hierarchies of cgroups can exist simultaneously on a system. If the Linux process model is a
single tree of processes, then the cgroup model is one or more separate, unconnected trees
of tasks (i.e., processes).

Multiple separate hierarchies of cgroups are necessary because each hierarchy is attached to
one or more subsystems. A subsystem represents a single resource, such as CPU time or
memory.

Each of the subsystems described are implemented by mounting one or more subsystems as
virtual file systems.

The available control group subsystems in Red Hat Enterprise Linux 6 and their functions are:

• blkio - this subsystem sets limits on input/output access to and from block devices
such as physical drives (disk, solid state, USB, etc.)

• cpu - this subsystem uses the scheduler to provide cgroup tasks access to the CPU

• cpuacct - this subsystem generates automatic reports on CPU resources used by
tasks in a cgroup

 www.redhat.com 6

• cpuset - this subsystem assigns individual CPUs (on a multicore system) and memory
nodes to tasks in a cgroup

• devices - this subsystem allows or denies access to devices by tasks in a cgroup

• freezer - this subsystem suspends or resumes tasks in a cgroup

• memory - this subsystem sets limits on memory use by tasks in a cgroup, and
generates automatic reports on memory resources used by those tasks

• net_cls - this subsystem tags network packets with a class identifier that allows the
Linux traffic controller to identify packets originating from a particular cgroup task

• ns — the namespace subsystem

NOTE: This document focuses on using the cpuset and memory cgroup subsystems to
manage both CPU and memory as well as to restrict (aka: pin) cgroups to specific NUMA
nodes.

 7 www.redhat.com

 3 Testbed Configuration
The following configuration details describe the testbed used to test control groups with an
Oracle OLTP workload.

 3.1 Hardware
Server Specifications

Intel Nehalem EX

Quad Socket, 32 CPU (32 cores)
Intel® Xeon® CPU X7560 @2.27GHz
128GB RAM (32GB per NUMA node)

1 x 72 GB SAS 15K internal disk drive

2 x QLogic ISP2432-based 4Gb FC HBA

Table 1: Hardware Configuration

 3.2 Software
 Software Version

Red Hat Enterprise Linux (RHEL) 6 (2.6.32-71.el6 kernel)

Oracle 10.2.0.4

Table 2: Software Configuration

 3.3 Storage

Hardware Specifications

1 x HP StorageWorks HSV200
Fibre Channel Storage Array

[28 x 136GB 15K RPM SCSI disks]

Controller Firmware Version: 6110

Software Version: CR0ECAxc3p-6110

Disk Firmware Version: HP03

1 x HP StorageWorks 2/32
SAN Switch

Kernel: 2.4.19
Fabric OS: v4.1.1
BootProm: 3.2.4

Table 3: Storage Hardware

 www.redhat.com 8

 3.4 Control Groups
This section includes the control group configurations used during testing. Reference the Red
Hat Enterprise Linux 6 Resource Management Guide for complete details regarding
control groups.

The cgroup configuration file (/etc/cgconfig.conf) content used for this effort defines four
groups, test1 through test4, to control the resources of four oracle database instances.

mount {
 cpuset = /cgroup/cpuset;
 cpu = /cgroup/cpu;
 cpuacct = /cgroup/cpuacct;
 memory = /cgroup/memory;
 devices = /cgroup/devices;
 freezer = /cgroup/freezer;
 net_cls = /cgroup/net_cls;
 blkio = /cgroup/blkio;
}

group test1 {
 perm {
 task {
 uid = oracle;
 gid = dba;
 }
 admin {
 uid = root;
 gid = root;
 }
 }
 cpuset {
 cpuset.cpus=0-31;
 cpuset.mems=0-3;
 }
}
group test2 {
 perm {
 task {
 uid = oracle2;
 gid = dba;
 }
 admin {
 uid = root;
 gid = root;
 }
 }
 cpuset {
 cpuset.cpus=0-31;
 cpuset.mems=0-3;
 }

 9 www.redhat.com

http://docs.redhat.com/docs/en-US/Red_Hat_Enterprise_Linux/6/html/Resource_Management_Guide/index.html
http://docs.redhat.com/docs/en-US/Red_Hat_Enterprise_Linux/6/html/Resource_Management_Guide/index.html

}
group test3 {
 perm {
 task {
 uid = oracle3;
 gid = dba;
 }
 admin {
 uid = root;
 gid = root;
 }
 }
 cpuset {
 cpuset.cpus=0-31;
 cpuset.mems=0-3;
 }
}
group test4 {
 perm {
 task {
 uid = oracle4;
 gid = dba;
 }
 admin {
 uid = root;
 gid = root;
 }
 }
 cpuset {
 cpuset.cpus=0-31;
 cpuset.mems=0-3;
 }
}

The specified CPUs and NUMA nodes, defined by cpuset.cpus and cpuset.mems
respectively, default to using all available resources and were modified dynamically during
testing. Users with preferences regarding the resource levels they wish to allocate to their
application(s) can configure cgroups accordingly in their configuration file.

 3.4.1 Creation
The following cgcreate commands were used to create the four control groups, test1
through test4, for use in testing.

cgcreate -t oracle:dba -g cpuset:test1
cgcreate -t oracle2:dba -g cpuset:test2
cgcreate -t oracle3:dba -g cpuset:test3
cgcreate -t oracle4:dba -g cpuset:test4

 www.redhat.com 10

 3.4.2 Cpuset
The cpuset subsystem assigns individual CPUs and memory nodes to control groups. The
changes to cpusets were performed before each single instance test as well as dynamically
during multi instance using the cgset command to set subsystem parameters from a user
account with permission to modify the specific control group.

The subsystem parameters modified in this testing were cpuset.cpus (specifies the CPUs that
tasks in the cgroup are permitted to use) and cpuset.mems (specifies the NUMA or memory
nodes that tasks in this cgroup are permitted to use).

 3.4.2.1 NUMA Pinning

The NUMA configuration for the Nehalem EX server used in testing.
numactl --hardware
available: 4 nodes (0-3)
node 0 cpus: 0 4 8 12 16 20 24 28
node 0 size: 32649 MB
node 0 free: 21762 MB
node 1 cpus: 1 5 9 13 17 21 25 29
node 1 size: 32768 MB
node 1 free: 26818 MB
node 2 cpus: 2 6 10 14 18 22 26 30
node 2 size: 32768 MB
node 2 free: 25832 MB
node 3 cpus: 3 7 11 15 19 23 27 31
node 3 size: 32768 MB
node 3 free: 30561 MB
node distances:
node 0 1 2 3
 0: 10 21 21 21
 1: 21 10 21 21
 2: 21 21 10 21
 3: 21 21 21 10

Using the CPU list per NUMA node as output above by numactl, the following commands
were used to pin the four cgroups to the CPUs and memory of the four NUMA nodes.
cgset -r cpuset.cpus='0,4,8,12,16,20,24,28' test1
cgset -r cpuset.mems='0' test1
cgset -r cpuset.cpus='1,5,9,13,17,21,25,29' test2
cgset -r cpuset.mems='1' test2
cgset -r cpuset.cpus='2,6,10,14,18,22,26,30' test3
cgset -r cpuset.mems='2' test3
cgset -r cpuset.cpus='3,7,11,15,19,23,27,31' test4
cgset -r cpuset.mems='3' test4

 11 www.redhat.com

 4 Usage Scenarios
A series of tests were performed with an Oracle database executing an OLTP workload. The
objective of these tests was to understand the effects of adjusting the memory and cpusets
cgroup subsystems and characterize any performance impact.

 4.1 Application Consolidation
Cgroups can be used to consolidate multiple applications onto larger servers by providing the
user control over the level of resources allocated to each application. This test did not pin
cgroups to NUMA nodes in order to be able to allocate CPUs existing in one NUMA node to
applications executing elsewhere.

Figures 1 and 2 illustrate the test configurations comparing unrestricted instances with no
defined cgroups to using cgroups to allocate 2, 4, 8, and 14 CPUs to cgroups 1 through 4
respectively.

 www.redhat.com 12

Figure 1: Instances Unpinned, No Cgroups

 13 www.redhat.com

Figure 2: Instances Unpinned, Cgroups with 2,4,8,16 CPUs

Figure 3 graphs the performance of each database instance with and without CPU resource
management. The first test allowed the instances free reign to all system resources while the
second allocated 2, 4, 8, and 14 CPUs to cgroups 1 through 4, respectively. This is typically
done to accommodate applications or processes that require additional processing power,
whether it be always or at specific times. In this case, database instances 3 and 4 are able to
take advantage of the extra CPUs and reflect improved performance by 23% and 36%,
respectively.
A common problem faced when consolidating applications on a larger system is that
applications tend to acquire resources as required and as a result their performance can be
uneven and unpredictable as observed in the unrestricted resources data in Figure 3. The
ability to govern the resources allocated to each application provides system administrators
the necessary control to determine how much of each resource an application is allowed
which brings more predictability into the picture.

 www.redhat.com 14

Figure 3: Application Consolidation Results

Unrestricted Resources Controlled Resources
0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

160,000

Resource Management
Oracle OLTP Workload

Instance 1
Instance 2
Instance 3
Instance 4

T
ra

ns
a

ct
io

ns
 P

e
r

M
in

ut
e

 4.2 Performance Optimization
In this test, cpuset was used to govern the resources used in a multi instance database
workload. This test required running four database instances, each executing an OLTP
workload with a System Global Area (SGA) of 24GB. The same test was performed with and
without NUMA pinning using cgroups as illustrated in Figures 4 and 5. The default is no policy
(all instances share all resources).

NUMA pinning locks a specific task or tasks to a NUMA node so its CPU and memory
allocations are always local, avoiding the lesser bandwidth of cross-node memory transfers.

 15 www.redhat.com

Figure 4: Instances Unpinned, No Cgroups

The multi instance testing was executed with both of the NUMA configurations described with
the following results.

 www.redhat.com 16

Figure 5: NUMA Pinned Instances using Cgroups

Figure 6 compares the single instance scalability limits versus those when consolidating
applications for better hardware utilization. While the advantages of multi instance over single
instance are obvious, cgroups may be used to take advantage of NUMA layout and improve
the server consolidation experience. Each instance using only memory and CPUs local to
each NUMA node reduces latency and improves the performance of other instances as much
as 12.5%.

 4.3 Dynamic Resource Management
Because cgroups can be used to isolate applications from each other and govern the
resources available to them, they are particularly useful in situations where multiple
applications are pooled together on a larger server and certain applications require additional
resources at specific times.

 17 www.redhat.com

Figure 6: Results of NUMA Pinning with Cgroups

1 Instance SMP 4 Instance 4 Instance Cgroup
0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

400,000

450,000

500,000

Cgroup NUMA Pinning
Oracle OLTP Workload

Instance 4
Instance 3
Instance 2
Instance 1

T
ra

ns
a

ct
io

ns
 P

e
r

M
in

ut
e

 4.3.1 Single Instance
An OLTP workload was run using a 96GB SGA in the different cgroups to characterize the
effects of CPU resource control. The four cgroups used were configured with 2, 4, 6, and 8
CPUs as illustrated in Figure 7.

The following commands were used to configure the cgroup CPU counts for this testing.

cgset -r cpuset.cpus='0-1' test1
cgset -r cpuset.cpus='0-3' test1
cgset -r cpuset.cpus='0-5' test1
cgset -r cpuset.cpus='0-7' test1

 www.redhat.com 18

Figure 7: Instances Unpinned, Varying Cgroup CPU Counts

The results of the test show how cgroups can be used to scale workloads. By placing
workloads in different cgroups with varying processing power, the user is able to allocate the
amount of resources utilized by the workload.

 4.3.2 Multi Instance
In this test, two instances were executed in two different cgroups. Instance 1 ran in a cgroup
with four CPUs while Instance 2 ran in a cgroup with 64 CPUs as depicted in Figures 9 and
10.

The following commands were used to configure the cgroup CPU counts for this testing.
cgset -r cpuset.cpus='0-3' test1
cgset -r cpuset.cpus='4-35' test2
sleep 600
cgset -r cpuset.cpus='0-31' test1
cgset -r cpuset.cpus='32-35' test2

 19 www.redhat.com

Figure 8: Resource Management, Single Instance Results

2 4 6 8
0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

160,000

180,000

200,000

Single Instance
Oracle OLTP Workload

Cgroup CPU Count

T
ra

ns
a

ct
io

ns
 P

e
r

M
in

ut
e

 www.redhat.com 20

Figure 9: Dynamic Resource Management, 4 CPU vs. 32 CPU

Figure 10: Dynamic Resource Management, 32 CPU vs. 4 CPU

During the test, the CPU counts of each group were switched to highlight the ability to
dynamically govern the processing power of any given cgroup and its applications.

Figure 11 graphs the transaction rate of Instance 1 at approximately 88K TPM and Instance 2
at 186K. During the run, the amount of CPUs in cgroup 1 was increased to 64 while the CPUs
in cgroup 2 were reduced to four. As the resources were modified, the transaction rate of the
instances reflected the change with Instance 1 then running at 190K TPM and instance 2
closer to 87K.
Dynamic modification of application performance is also very useful in environments where
some applications must perform additional tasks (e.g., system backups, batch processing,
etc.).

 21 www.redhat.com

Figure 11: Dynamic Resource Management, Multi Instance Results

cgrp 1 (4), cgrp 2 (32) cgrp 1 (32), cgrp 2 (4)
0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

160,000

180,000

200,000

Multi Instance
Oracle OLTP Workload

Instance 1
Instance 2

Control Group CPU Count

T
ra

ns
a

ct
io

ns
 P

e
r

M
in

ut
e

 4.4 Application Isolation
Cgroups provide process isolation that eliminates the adverse affect misbehaving applications
can have on system resources and other applications.
Figures 12 and 13 illustrate how cgroups were used to confine each database instance to a
NUMA node and to reduce the memory for Instance 1.

 www.redhat.com 22

Figure 12: Database Instances Pinned to NUMA Nodes

This test executed the same OLTP workload with each of the four database instances pinned
to its own NUMA node. As listed in Table 4, the first cgroup was configured to limit the
memory of database instance 1 to 8GB while the second cgroup allowed each instance the
use of all the resources within that NUMA node. The memory reduction in cgroup 1
demonstrates the resource isolation that cgroups are able to provide.

The following command was used to reduce the memory resource for cgroup 1.
cgset -r memory.limit_in_bytes=8589934592 test1

 23 www.redhat.com

Figure 13: Instance 1 Reduced Memory to Induce Swapping

Cgroup NUMA Node DB Instance Memory (GB)

1
[test1]

0 1 8

1 2 32

2 3 32

3 4 32

2
[test2]

0 1 32

1 2 32

2 3 32

3 4 32

Table 4: Isolation Cgroup Configuration

Figure 14 graphs the free memory on the system during both the regular and reduced
(throttled) memory tests. The results indicate that each test consumed the same amount of

 www.redhat.com 24

Figure 14: Isolated Application Memory Usage

0

20,000,000

40,000,000

60,000,000

80,000,000

100,000,000

120,000,000

140,000,000

Memory Use
Oracle OLTP Workload

Regular
Throttled

Time

F
re

e
 M

e
m

o
ry

memory and that there was a minimum of 60GB of free memory available throughout the test
period.

Figure 15 verifies how when testing with the throttled memory (TM) of cgroup 1, database
instance 1 exceeded the available memory and forced swapping to occur even though free
memory was available on the system, as observed in Figure 14. The same test using other
cgroups with unrestricted, or regular memory (RM), generated no swapping.

 25 www.redhat.com

Figure 15: Isolated Application Swapping

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

Memory Swapping

Oracle OLTP Workload

TM Swap In
TM Swap Out
RM Swap In
RM Swap Out

Time

S
w

a
p

 (
G

B
)

The resulting data graphed in Figure 16 verifies that even though the application in cgroup
test1 exceeded the allocated memory which lead to swapping and reduced performance, it
did not affect the performance of the other database instances which were able to make use
of the additional memory not used by instance 1 and gained up to 12% in performance.

In this configuration, the available memory can be used by other applications. More
importantly, misbehaving or rogue applications can not monopolize system resources (e.g., a
typo in the SGA size can no longer wield enough force to cripple a system), bringing more
critical applications down with them.

 www.redhat.com 26

Figure 16: Cgroup Memory Resource Management Results

Regular Throttled
0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

400,000

Memory Resource Management
Oracle OLTP Workload

Instance 4
Instance 3
Instance 2
Instance 1

Cgroup Memory Configuration

T
ra

ns
ac

tio
n s

 P
er

 M
in

ut
e

 5 References
1. Red Hat Enterprise Linux 6 Resource Management Guide

http://docs.redhat.com/docs/en-
US/Red_Hat_Enterprise_Linux/6/html/Resource_Management_Guide/index.html

2. Linux Kernel Source Documentation - Cgroups
http://www.kernel.org/doc/Documentation/cgroups/cgroups.txt

 27 www.redhat.com

http://www.kernel.org/doc/Documentation/cgroups/cgroups.txt
http://www.mjmwired.net/kernel/Documentation

	 1 Executive Summary
	 2 Introduction
	 2.1 Definitions
	 2.1.1 Hierarchy
	 2.1.2 Subsystem

	 3 Testbed Configuration
	 3.1 Hardware
	 3.2 Software
	 3.3 Storage
	 3.4 Control Groups
	 3.4.1 Creation
	 3.4.2 Cpuset
	 3.4.2.1 NUMA Pinning

	 4 Usage Scenarios
	 4.1 Application Consolidation
	 4.2 Performance Optimization
	 4.3 Dynamic Resource Management
	 4.3.1 Single Instance
	 4.3.2 Multi Instance

	 4.4 Application Isolation

	 5 References

