
Red Hat Enterprise Virtualization

3.0 (RHEV) Disaster Recovery

Site to Site Failover

John Herr, Senior Software Engineer

RHCA, RHCVA. 

Version 1.0

January 2012



1801 Varsity Drive™
Raleigh NC 27606-2072 USA
Phone: +1 919 754 3700
Phone: 888 733 4281
Fax: +1 919 754 3701
PO Box 13588
Research Triangle Park NC 27709 USA

Linux is a registered trademark of Linus Torvalds. Red Hat, Red Hat Enterprise Linux and the Red Hat 
"Shadowman" logo are registered trademarks of Red Hat, Inc. in the United States and other 
countries.

Microsoft and Windows are U.S. registered trademarks of Microsoft Corporation.

UNIX is a registered trademark of The Open Group.

Intel, the Intel logo and Xeon are registered trademarks of Intel Corporation or its subsidiaries in the 
United States and other countries.

All other trademarks referenced herein are the property of their respective owners.

© 2012 by Red Hat, Inc. This material may be distributed only subject to the terms and conditions set 
forth in the Open Publication License, V1.0 or later (the latest version is presently available at 
http://www.opencontent.org/openpub/).

The information contained herein is subject to change without notice. Red Hat, Inc. shall not be liable 
for technical or editorial errors or omissions contained herein.

Distribution of modified versions of this document is prohibited without the explicit permission of Red 
Hat Inc.

Distribution of this work or derivative of this work in any standard (paper) book form for commercial 
purposes is prohibited unless prior permission is obtained from Red Hat Inc.

The GPG fingerprint of the security@redhat.com key is:
CA 20 86 86 2B D6 9D FC 65 F6 EC C4 21 91 80 CD DB 42 A6 0E

Send feedback to refarch-feedback@redhat.com

www.redhat.com ii refarch-feedback@redhat.com

http://www.opencontent.org/openpub/
mailto:refarch-feedback@redhat.com?subject=Feedback%20on%20Red%20Hat%20Enterprise%20Virtualization%20(RHEV)%20Disaster%20Recovery%20-%20Site%20to%20Site%20Failover
mailto:security@redhat.com


Table of Contents

1 Executive Summary......................................................................................... 1

2 Red Hat Enterprise Virtualization..................................................................... 2

2.1 RHEV Hypervisor.............................................................................................................. 2

2.2 Red Hat Enterprise Virtualization...................................................................................... 3

3 Reference Architecture Environment................................................................ 5

4 REST API....................................................................................................... 13

4.1 Parsing Output................................................................................................................. 15

4.2 Command Line Shortcuts................................................................................................ 16

5 RHEV Manager Database.............................................................................. 18

6 Network Preparation....................................................................................... 19

6.1 DHCP............................................................................................................................... 19

6.2 DNS................................................................................................................................. 19

7 Failover........................................................................................................... 20

7.1 Failover Scenarios........................................................................................................... 20

7.1.1 iSCSI Data Domain.................................................................................................... 20
7.1.2 Fibre Data Domain..................................................................................................... 21
7.1.3 NFS Data Domain...................................................................................................... 21

7.2 RHEV Manager............................................................................................................... 22

7.3 Storage Domains............................................................................................................. 26

7.3.1 Red Hat Enterprise Virtualization Manager service................................................... 26
7.3.2 Database Tables........................................................................................................ 26

7.3.2.1 storage_domain_static table................................................................................ 26
7.3.2.2 storage_server_connections................................................................................ 27
7.3.2.3 lun_storage_server_connection_map.................................................................. 27
7.3.2.4 luns....................................................................................................................... 28

7.3.3 Domain Information................................................................................................... 29
7.3.4 Data Domain.............................................................................................................. 29

7.3.4.1 NFS Data Domain................................................................................................ 29
7.3.4.2 Fibre Data Domain............................................................................................... 31
7.3.4.3 iSCSI Data Domain.............................................................................................. 35

refarch-feedback@redhat.com iii www.redhat.com



7.3.5 Export Storage Domain............................................................................................. 45
7.3.6 ISO Storage Domain.................................................................................................. 46
7.3.7 RHEV Manager Service (jbossas)............................................................................. 47

7.4 Hypervisors...................................................................................................................... 48

7.4.1 Moving the VMs......................................................................................................... 56
7.4.2 Starting the Virtual Machines..................................................................................... 57

8 Automating the Failover................................................................................. 58

8.1 Functions......................................................................................................................... 60

8.1.1 dust_settle()............................................................................................................... 60
8.1.2 output()....................................................................................................................... 61
8.1.3 check_needed_commands()..................................................................................... 61
8.1.4 REST_get_cert()........................................................................................................ 62
8.1.5 REST_submit().......................................................................................................... 63
8.1.6 get_scsi_domain()..................................................................................................... 63
8.1.7 fix_scsi_domain()....................................................................................................... 64
8.1.8 get_iscsi_info()........................................................................................................... 64
8.1.9 fix_iscsi_domain()...................................................................................................... 65
8.1.10 REST_get_dc()........................................................................................................ 66
8.1.11 REST_get_hc()........................................................................................................ 67
8.1.12 REST_get_hh.......................................................................................................... 67
8.1.13 get_hosts_status()................................................................................................... 67
8.1.14 REST_check_host_status()..................................................................................... 68
8.1.15 REST_approve_host()............................................................................................. 68
8.1.16 fix_host_network()................................................................................................... 69
8.1.17 REST_activate_host().............................................................................................. 70
8.1.18 REST_fence_host()................................................................................................. 70
8.1.19 fix_rhevm_networking()........................................................................................... 71
8.1.20 REST_get_vm()....................................................................................................... 72
8.1.21 REST_get_networks()............................................................................................. 72
8.1.22 REST_move_vms()................................................................................................. 73
8.1.23 fix_nfs_domain()...................................................................................................... 73
8.1.24 usage()..................................................................................................................... 73
8.1.25 read_cfg()................................................................................................................. 74

8.2 Main Script....................................................................................................................... 75

8.2.1 Interpreter.................................................................................................................. 75
8.2.2 Variable Declarations................................................................................................. 75
8.2.3 Main Code.................................................................................................................. 76

8.3 Failover NFS ................................................................................................................... 80

refarch-feedback@redhat.com iv www.redhat.com



8.4 Failover iSCSI.................................................................................................................. 84

8.5 Failover Fibre................................................................................................................... 87

9 Conclusion...................................................................................................... 91

Appendix A:  Revision History........................................................................... 92

refarch-feedback@redhat.com v www.redhat.com



1 Executive Summary
Recovering business critical systems during a site level disaster is often difficult for many 
large and small enterprise environments. With careful planning and adequate resources, the 
Red Hat Enterprise Virtualization solution can be brought up at a designated backup location 
with minimal downtime. 

This paper demonstrates the process of failing a RHEV environment to a backup location 
during a site level disaster. Simulating a site to site LUN mirroring solution, three separate 
environments with running virtual machines are failed over to a backup location and brought 
up with minimal downtime. 

• NFS Data Storage Domain

• iSCSI Data Storage Domain

• Fibre Data Storage Domain

A script to automate the recovery of the failed over environment is created with explanations 
of the script contents.

The goal of this paper is to provide the reader with an understanding of the tasks involved in 
recovering a RHEV environment during a disaster using both manual and scripted processes.

refarch-feedback@redhat.com 1 www.redhat.com



2 Red Hat Enterprise Virtualization
2.1 RHEV Hypervisor
A hypervisor is a computer software platform that allows multiple “guest” operating systems to 
run concurrently on a host computer. The guest virtual machines interact with the hypervisor 
which translates guest I/O and memory requests into corresponding requests for resources 
on the host computer.

Running fully virtualized guests, i.e., guests with unmodified guest operating systems, used to 
require complex hypervisors and previously incurred a performance penalty for emulation and 
translation of I/O and memory requests.

Over the last few years chip vendors Intel and AMD have been steadily adding CPU features 
that offer hardware enhancements to support virtualization. Most notable are:

1. First-generation hardware assisted virtualization: Removes the requirement for 
hypervisor to scan and rewrite privileged kernel instructions using Intel VT 
(Virtualization Technology) and AMD's SVM (Secure Virtual Machine) technology.

2. Second-generation hardware assisted virtualization: Offloads virtual to physical 
memory address translation to CPU/chip-set using Intel EPT (Extended Page Tables) 
and AMD RVI (Rapid Virtualization Indexing) technology. This provides significant 
reduction in memory address translation overhead in virtualized environments.

3. Third-generation hardware assisted virtualization: Allows PCI I/O devices to be 
attached directly to virtual machines using Intel VT-d (Virtualization Technology for 
directed I/O) and AMD IOMMU. Also, SR-IOV (Single Root I/O Virtualization) which 
allows special PCI devices to be split into multiple virtual devices. This provides 
significant improvement in guest I/O performance. 

The great interest in virtualization has led to the creation of several different hypervisors. 
However, many of these pre-date hardware-assisted virtualization, and are therefore some-
what complex pieces of software. With the advent of the above hardware extensions, writing a 
hypervisor has become significantly easier and it is now possible to enjoy the benefits of 
virtualization while leveraging existing open source achievements to date.

Red Hat Enterprise Virtualization uses the Kernel-based Virtual Machine (KVM)1, which turns 
Linux into a hypervisor. Red Hat Enterprise Linux 5.4 provided the first commercial-strength 
implementation of KVM, which is developed as part of the upstream Linux community. RHEV 
3.0 uses the RHEL 6 KVM hypervisor, and inherits performance, scalability and hardware 
support enhancements from RHEL 6.

1 http://www.redhat.com/promo/qumranet/ 

www.redhat.com 2 refarch-feedback@redhat.com



2.2 Red Hat Enterprise Virtualization
Virtualization offers tremendous benefits for enterprise IT organizations – server 
consolidation, hardware abstraction, and internal clouds deliver a high degree of operational 
efficiency.

Red Hat Enterprise Virtualization (RHEV) combines the KVM hypervisor (powered by the Red 
Hat Enterprise Linux kernel) with an enterprise grade, multi-hypervisor management platform 
that provides key virtualization features such as live migration, high availability, power 
management, and virtual machine life cycle management. Red Hat Enterprise Virtualization 
delivers a secure, robust virtualization platform with unmatched performance and scalability 
for Red Hat Enterprise Linux and Windows guests. 

Red Hat Enterprise Virtualization consists of the following two components:

• RHEV Manager (RHEV-M): A feature-rich virtualization management system that 
provides advanced capabilities for hosts and guests.

• RHEV Hypervisor: A modern, scalable, high performance hypervisor based on RHEL 
KVM. It can be deployed as RHEV-H, a small footprint secure hypervisor image 
included with the RHEV subscription, or as a RHEL server (purchased separately) 
managed by RHEV-M.

A host is a physical server which provides the CPU, memory, and connectivity to storage and 
networks that are used for the virtual machines (VM). The local storage of the standalone host 
is used for the RHEV-H executables along with logs and enough space for ISO uploads.

A cluster is a group of hosts of similar architecture. The requirement of similar architecture 
allows a virtual machine to be migrated from host to host in the cluster without having to shut 
down and restart the virtual machine. A cluster consists of one or more hosts, but a host can 
only be a member of one cluster.

A data center is a collection of one or more clusters that have resources in common. 
Resources that have been allocated to a data center can be used only by the hosts belonging 
to that data center. The resources relate to storage and networks. 

A storage domain is a shared or local storage location for virtual machine image files, 
import/export or for ISO images. Storage domain types supported in RHEV 3.0 are NFS, 
iSCSI, Fibre Channel, and local disk storage.

The RHEV network architecture supports both virtual machine traffic and traffic among RHEV 
hypervisors and the RHEV-M server. All hosts have a network interface assigned to the 
logical network named rhevm. This network is used for the communications between the 
hypervisor and the manager. Additional logical networks are created on the data center and 
applied to one or more clusters. To become operational, the host attaches an interface to the 
local network. While the actual physical network can span across data centers, the logical 
network can only be used by the clusters and hosts of the creating data center. 

refarch-feedback@redhat.com 3 www.redhat.com



Figure 2.2.1:RHEV Environment provides a graphical representation of a typical Red Hat 
Enterprise Virtualization environment with each component listed.

www.redhat.com 4 refarch-feedback@redhat.com

Figure 2.2.1:RHEV Environment



3 Reference Architecture Environment
This environment used in the writing of this reference architecture simulates two individual 
sites, sitea.example and siteb.example. Each site is a separate network with different network 
addresses and domain names. 

Each site consists of its own DNS server, DHCP server, NFS server, iSCSI server, RHEV 
Manager, and hypervisor.

The two sites are connected together and to a public network via a gateway system. This 
gateway system uses network address translation (NAT) to map public IP addresses to 
addresses of systems at sitea.example and siteb.example.

refarch-feedback@redhat.com 5 www.redhat.com



The Figure 3.1: Reference Architecture Environment depicts the environment being used 
and is followed by a brief description of the systems and processes involved.

www.redhat.com 6 refarch-feedback@redhat.com

Figure 3.1: Reference Architecture Environment



Gateway This virtual machine routes traffic between the public, sitea.example, 
and siteb.example networks. This system also provides Static NAT 
translation of public IP addresses to certain systems on the 
sitea.example and siteb.example networks.

Each site contains the following systems. Each system is isolated to its respective network 
and provides services to that network only. The following virtual machines exist on a seperate 
hypervisor and not the hypervisors used by the RHEV Environment in this paper.

rdr-dns This virtual machine provides DNS resolution and DHCP for the 
sitea.example network.

rdr-nfs This virtual machine exports NFS shares for the Export Domain, ISO 
Domain, and Data Domain. The rsync command is used within a cron 
job on rdr-nfs.siteb.example to copy the data from the Export Domain 
and ISO Domain on sitea.example to siteb.example.LUN mirroring is 
simulated on the virtual disk backing the data domain.

rdr-iscsi This virtual machine provides an iSCSI target LUN for use as a Data 
Domain. This system has two virtual disks presented to it. The first 
virtual disk is used for the operating system. The second virtual disk 
used as the iSCSI target. LUN Mirroring for the secondvirtual disk is 
simulated by using the dd command on the hypervisor system to 
copy the virtual disk of rdr-iscsi.sitea.example to rdr-
iscsi.siteb.example.

rdr-ie This virtual machine is used to connect to the RHEV Manager.

rhev-m This physical system is the RHEV Manager. This system is 
connected to fibre storage and is presented a single LUN. The OS is 
installed on this LUN. Mirroring of the presented LUN is simulated 
between the rhev-h.sitea.example and rhev-h.siteb.example systems.

rhev-h This physical system is the RHEV Hypervisor. The OS is installed to 
local storage on this system. This system is presented a single fibre 
LUN when using a fibre Data Center.

LUN Mirroring LUN mirroring for the rhev-m and rhev-h systems is 
simulated by presenting the both the sitea.example and 
siteb.example LUNS to a single system. The dd command is then 
used to copy the data from the sitea.example LUN to the 
siteb.example LUN.

LUN mirroring for the disk backing the NFS data domain and the 
iSCSI data domains is simulated using the dd command on the 
hypervisor hosting the rdr-nfs and rdr-iscsi virtual machines.

refarch-feedback@redhat.com 7 www.redhat.com



The following virtual machines exist within the RHEV Environment used in this paper. These 
virtual machines are migrated during the site level failover.

rdr-devel-vm This virtual machine uses the rdr-dc-vm for login account information.

rdr-web-vm This virtual machine uses the rdr-dc-vm for login account information. 
It also runs httpd to provide web services.

rdr-w7-vm This virtual machine is a Windows 7 desktop client.

rdr-dc-vm This virtual machine is a domain controller. It is used by the rdr-
devel-vm, rdr-web-vm, and rdr-w7-vm to provide login account 
information.

Server Export Storage Domain Type

rdr-nfs.sitea.example

/exports/isodomain ISO

/exports/exports_configured Export

/exports/datadomain Data

rdr-nfs.siteb.example

/exports/ISO ISO

/exports/EXPORT Export

/exports/DATA Data

Table 3.1:NFS Exports

www.redhat.com 8 refarch-feedback@redhat.com



System Specifications

Gateway
[Virtual Machine]

RHEL 6.1.0.2
Kernel 2.6.32-131.17.1.el6.x86_64

1 x QEMU Virtual CPU version (cpu64-rhel6) @ 2.67 GHz

512 MB Memory

2 x VirtIO Disk File 
@ 8 GB          Operating System
@ 30GB         Installation Repo

3 x VirtIO Network Adapters

rdr-dns.site{a,b}.example
[Virtual Machine]

RHEL 6.1.0.2
Kernel 2.6.32-131.17.1.el6.x86_64

1 x QEMU Virtual CPU version (cpu64-rhel6) @ 2.67 GHz

512 MB Memory

1 x VirtIO Disk File @ 8 GB

2 x VirtIO Network Adapters

rdr-nfs.site{a,b}.example
[Virtual Machine]

RHEL 6.1.0.2
Kernel 2.6.32-131.17.1.el6.x86_64

1 x QEMU Virtual CPU version (cpu64-rhel6) @ 2.67 GHz

512 MB Memory

4 x VirtIO Disk Files 
@ 8 GB          Operating System
@ 100 GB      Not Used
@ 100 GB      ISO Domain
@ 100 GB      Exports Domain

2 x VirtIO Network Adapters

rdr-iscsi.site{a,b}.example
[Virtual Machine]

RHEL 6.1.0.2
Kernel 2.6.32-131.17.1.el6.x86_64

1 x QEMU Virtual CPU version (cpu64-rhel6) @ 2.67 GHz

512 MB Memory

2 x VirtIO Disk Files 
@ 8 GB          Operating System
@ 200 GB      Data Domain

2 x VirtIO Network Adapters

refarch-feedback@redhat.com 9 www.redhat.com



System Specifications

rdr-ie.site{a,b}.example
[Virtual Machine]

Microsoft Windows XP Professional SP3

1 x Virtual CPU
Qemu Virtual CPU version (cpu64-rhel6) @ 2.67 GHz

2 GB Memory

1 x Virtual IDE Disk File @ 20 GB

1 x Virtual Network Adapter

rdr-rhev-m.sitea.example
[HP Proliant DL580 G5]

RHEL 6.2

rhevm 3.0.0_0001-62.el6

4 x Quad Core Intel XEON X7350 CPUs @2.93 GHz

64 GB Memory

1 x LUN @ 50 GB

2 x Single Port Broadcom NetXtreme BCM5708 Network 
Adapter

rdr-rhev-m.siteb.example
[HP Proliant DL370 G6]

RHEL 6.2

rhevm 3.0.0_0001-62.el6

2 x Quad Core Intel XEON W5580 CPUs @3.2 GHz

48 GB Memory

1 x LUN @ 50 GB

1 x Quad Port HP NC375i Network Adapter

rdr-rhev-
h.site{a,b}.example
[HP Proliant BL460c G6]

RHEv Hypervisor

2 x Quad Core Intel Xeon CPU X550 @2.67 GHz

48 GB Memory

2 x 146 GB SAS internal disk drives (mirrored)

2 x Qlogic ISP2532-based 8Gb FC HBA
1 x 200 GB LUN

2 x Broadcom NetXtreme II BCM57711E Flex-10 10Gb 
Ethernet Controller

rdr-devel-vm
[Virtual Machine]

RHEL 6.1
Kernel 2.6.32-131.17.1.el6.x86_64

1 x Virtual CPU

512 MB Memory

1 x VirtIO Disk @ 8GB

1 x VirtIO Network Adapter

rdr-web-vm RHEL 6.1

www.redhat.com 10 refarch-feedback@redhat.com



System Specifications

[Virtual Machine]

Kernel 2.6.32-131.17.1.el6.x86_64

1 x Virtual CPU

512 MB Memory

1 x VirtIO Disk @ 8GB

1 x VirtIO Network Adapter

rdr-w7-vm
[Virtual Machine]

Microsoft Windows 7

1 x Virtual CPU

2 GB Memory

1 x VirtIO Disk @ 20GB

1 x VirtIO Network Adapter

rdr-dc-vm
[Virtual Machine]

Microsoft Windows Server 2008 R2

1 x Virtual CPU

2 GB Memory

1 x VirtIO Disk @ 40GB

1 x VirtIO Network Adapter

Table 3.2: Server Hardware Configuration

System Hardware Address Interface IP Address

rdr-rhevm.sitea.example

00:18:71:eb:a0:39 eth0

00:1e:0b:ce:42:78 eth1 192.168.200.40

00:1e:0b:ce:42:7a eth2

rdr-rhevm.siteb.example

00:25:b3:a9:b0:01 eth0

00:25:b3:a9:b0:00 eth1 192.168.201.40

00:25:b3:a9:b0:02 eth2

00:25:b3:a9:b0:03 eth3

Table 3.3: RHEV Manager NIC Assignments

refarch-feedback@redhat.com 11 www.redhat.com



System Hardware Address Network

rdr-rhevh.sitea.example
00:17:a4:77:24:34 rhevm

00:17:a4:77:24:36 public

rdr-rhevh.siteb.example
00:17:a4:77:24:38 rhevm

00:17:a4:77:24:3a public

Table 3.4: RHEV Hypervisor NIC Assignments

www.redhat.com 12 refarch-feedback@redhat.com



4 REST API
The Red Hat Enterprise Virtualization Manager provides the REST API to access and modify 
virtualization environments. The REST API, may be used to perform tasks associated with a 
site level fail over. Accessing the REST API may be done using programming languages, 
such as Python and PERL,as well as the curl command. This reference architecture uses 
XML code and the curl command.

Calls to the REST API should be done using a secure (HTTPS) connection. A certificate file 
from the server is needed before calls using the secure connection can be made. The 
following curl command downloads the certificate and places it in a file called rhevm.cer.

# curl -# -o rhevm.cer http://rdr-rhevm.sitea.example:8080/ca.crt 
##################################################################### 100.0%

When the curl command is used to submit requests to the REST API, the request must 
specify the certificate to use, the content type of the submitted data, the type of request being 
made, authentication information, and the URL to submit the information to. The certificate is 
specified using the --cacert option.

The type of content being submitted is specified using the --header option. 

The type of request being submitted is specified using the --request option. The request 
types can be POST, PUT, GET, and DELETE. 

Authentication information is specified using the --user option. This options takes the user 
name in the form of user@domain:password. 

The following curl command queries information about the cluster and returns the output as 
XML.2

# curl --cacert rhevm.cer \ 
  --header "Content-Type: application/xml"    \
  --request "GET"                             \
  --user "admin@internal:[PASSWORD]"          \
  https://rdr-rhevm.sitea.example:8443/api 

[ ... XML OUTPUT TRUNCATED ... ]

Some calls to the REST API require that XML code is submitted with the request. This XML 
code can be submitted using the --data option. This option takes one argument. If the 
argument begins with an @ symbol, then the remainder of the argument is taken as a file 
name that contains the XML code to be transmitted. If the argument does not begin with an @ 
symbol, then it is assumed to be XML code that is included within the command.

2 http://docs.redhat.com/docs/en-US/Red_Hat_Enterprise_Virtualization/3.0/html-
single/REST_API_Guide/index.html

refarch-feedback@redhat.com 13 www.redhat.com

https://rdr-rhevm.sitea.example:8443/api
mailto:user@domain


The following command submits a request to approve a new host. This command uses a file 
that contains the XML code needed.

# echo “<action/>” > approve.xml

# curl --silent --cacert rhevm.cer      \ 
  --header "Content-Type: application/xml"         \
  --request "POST"                                 \
  --user "admin@internal:[PASSWORD]"               \
  --data @approve.xml                              \
  https://rdr-rhevm.sitea.example:8443/api/hosts/5ee01ada-0016-11e1-a866-
001e0bce4278/approve

The following command submits the same request to approve a new host, but specifies the 
XML code within the command.

# curl --silent --cacert rhevm.cer      \ 
  --header "Content-Type: application/xml"         \
  --request "POST"                                 \
  --user "admin@internal:[PASSWORD]"               \
  --data "<action/>"                               \
  https://rdr-rhevm.sitea.example:8443/api/hosts/5ee01ada-0016-11e1-a866-
001e0bce4278/approve 

www.redhat.com 14 refarch-feedback@redhat.com

https://rdr-rhevm.sitea.example:8443/api/hosts/5ee01ada-0016-11e1-a866-001e0bce4278/approve
https://rdr-rhevm.sitea.example:8443/api/hosts/5ee01ada-0016-11e1-a866-001e0bce4278/approve


4.1 Parsing Output
The output returned by the REST API is in XML format. XML format can be difficult to parse 
and read. The xpath command, provided by the perl-XML-XPath package, allows the 
output to be easily parsed. The output is parsed using a syntax similar in format to accessing 
files and directories on a filesystem. The outermost tag is treated as the parent directory 
entry. Each sub-tag is accessed as if it was a subdirectory of its parent tag.

The following examples demonstrate the usage of xpath as it is used in this reference 
architecture. For more information on xpath and its capabilities, see the documentation 
provided by the perl-XML-XPath package or other online resources.

For an example, consider a file called host.xml that contains the following XML code.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?> 
<hosts> 
    <host id="4f2b4996-12ba-11e1-90af-001871eba039" 
href="/api/hosts/4f2b4996-12ba-11e1-90af-001871eba039"> 
        <name>rdr-rhevh.sitea.example</name> 
        <address>192.168.200.42</address> 
        <status> 
            <state>non_responsive</state> 
        </status> 
        <cluster id="ddbf36dc-12b9-11e1-ae84-001871eba039" 
href="/api/clusters/ddbf36dc-12b9-11e1-ae84-001871eba039"/> 
    </host> 
    <host id="805bb14c-2505-11e1-b809-0025b3a9b001" 
href="/api/hosts/805bb14c-2505-11e1-b809-0025b3a9b001"> 
        <name>rdr-rhevh.siteb.example</name> 
        <address>192.168.201.42</address> 
        <status> 
            <state>pending_approval</state> 
        </status> 
        <cluster id="99408929-82cf-4dc7-a532-9d998063fa95" 
href="/api/clusters/99408929-82cf-4dc7-a532-9d998063fa95"/> 
    </host> 
</hosts> 

To determine the name of the hosts in the cluster, executing the following command returns 
the values in the <NAMES> tags under the <HOSTS> and <HOST> parent tags.

# cat host.xml | xpath /hosts/host/name 
Found 2 nodes: 
-- NODE -- 
<name>rdr-rhevh.sitea.example</name>-- NODE -- 
<name>rdr-rhevh.siteb.example</name> 

refarch-feedback@redhat.com 15 www.redhat.com



Elements of a tag are accessed using @ character. Executing the following returns the 
element identified as id from within the <HOST> tag.

# cat host.xml | xpath /hosts/host/@id 
Found 2 nodes: 
-- NODE -- 
 id="4f2b4996-12ba-11e1-90af-001871eba039"-- NODE -- 
 id="805bb14c-2505-11e1-b809-0025b3a9b001" 

Multiple tags and elements are retrieved at the same time by using the pipe character 
between the queries. The entire query must be enclosed in quotes to prevent the bash shell 
from interpreting the pipe character as a bash reserved character. Executing the following 
returns both the <NAME> tag and id element.

# cat host.xml | xpath "/hosts/host/name | /hosts/host/@id" 
Found 4 nodes: 
-- NODE -- 
 id="4f2b4996-12ba-11e1-90af-001871eba039"-- NODE -- 
<name>rdr-rhevh.sitea.example</name>-- NODE -- 
 id="805bb14c-2505-11e1-b809-0025b3a9b001"-- NODE -- 
<name>rdr-rhevh.siteb.example</name> 

A specific tag can be retrieved by specifying an element.

# cat host.xml | xpath "/hosts/host[@id=\"805bb14c-2505-11e1-b809-
0025b3a9b001\"]/name"
Found 1 nodes: 
-- NODE -- 
<name>rdr-rhevh.siteb.example</name> 

4.2 Command Line Shortcuts
The curl command, when used with the REST API, can become long and confusing. The 
variable and alias capabilities of bash allow the command line to be shortened and simplified. 
Shortening the command line makes the command line more readable and also helps prevent 
typos.

The common curl command line options used in this reference architecture are assigned to 
an alias in bash as follows.

# alias curl='curl --silent --cacert rhevm.cer --header "Content-Type: 
application/xml" --user "admin@internal:[PASSWORD]"' 

Since all the URIs to access the REST API begin the same, the base URI is assigned to a 
variable in bash to further reduce the length and complexity of the command line.

# APIBASE="https://rdr-rhevm.sitea.example:8443/api"

www.redhat.com 16 refarch-feedback@redhat.com

https://rdr-rhevm.sitea.example:8443/api


Many of the calls to the REST API require sending one or more unique identifiers (UIDs) to 
complete the call successfully. These UIDs can be lengthy and difficult to type. Using the 
associative array capabilities of bash, a more human readable name can be created and used 
instead of typing the UID directly. This greatly reduces the complexity of the commands.

In-depth discussion of associative arrays in bash is beyond the scope of this document. See 
the bash man page or online bash tutorials for more information.

Associative arrays in bash must be declared priot to use. The following example declares a 
bash associative array called EX and assigns UIDs to keys called host1 and cluster.

# declare -A EX 

# EX[host1]="5ee01ada-0016-11e1-a866-001e0bce4278" 

# EX[cluster]="32421bf1-2344-4342-4cce-23e8ce90248a" 

The individual values for a key are accessed as follows.

# echo ${EX[host1]} 
5ee01ada-0016-11e1-a866-001e0bce4278 

# echo ${EX[cluster]} 
32421bf1-2344-4342-4cce-23e8ce90248a

All the keys and all the values are accessed as shown below.

# echo ${!EX[@]} 
cluster host1 

# echo ${EX[@]} 
32421bf1-2344-4342-4cce-23e8ce90248a 5ee01ada-0016-11e1-a866-001e0bce4278 

Using the methods described above, the command to approve a new host changes from a 
complex looking command to a command that is shorter and easier to type and read.

The original complex command to approve a host.

curl --silent --cacert rhevm.cer --header "Content-Type: application/xml" \
>  --user "admin@internal:[PASSWORD]"     \
>  --data “<action><cluster id=\”32421bf1-2344-4342-4cce-
23e8ce90248a\”/></action>”     \
>  https://rdr-rhevm.sitea.example:8443/api/hosts/5ee01ada-0016-11e1-a866-
001e0bce4278/approve

The shortened command to approve a host.

# curl –request “POST”       \
>  --data “<action><cluster id=\”${EX[cluster]}\”></action>”    \
>  ${APIBASE}/hosts/${EX[host1]}/approve

refarch-feedback@redhat.com 17 www.redhat.com

https://rdr-rhevm.sitea.example:8443/api/hosts/5ee01ada-0016-11e1-a866-001e0bce4278/approve
https://rdr-rhevm.sitea.example:8443/api/hosts/5ee01ada-0016-11e1-a866-001e0bce4278/approve
mailto:admin@internal


5 RHEV Manager Database
Information about the configuration and state of the cluster is stored in a PostgreSQL 
database called rhevm. This database is stored on the Red Hat Enterprise Virtualization 
Manager. During a site level failover, the database is modified to fix information about the 
storage domain configuration.

Modifications to the database can be made by sending SQL statements to the PostgreSQL 
database, through the REST API, or by using the web portal. While all modifications can be 
made manually, it is prone to user errors that can render the environment unusable. Manually 
updating the database is not supported by Red Hat. Utilizing the REST API and web portal is 
used whenever possible. There are only a few instances where manual manipulation of the 
database is necessary.

Manipulations to the database are made using the root account on the RHEV Manager and 
the psql command. The RHEV Manager service (jbossas) must be stopped before any 
changes are manually made to the database. Care must be taken when manually 
manipulating the database since it can cause data loss if done incorrectly. As always, creating 
a backup of the database before making any changes is highly recommended.

The pg_dump command is used to backup the database and the pg_restore command is 
used to restore the database if needed. The following example shows how to backup the 
database using the pg_dump command.

# pg_dump --format custom --username postgres --file rhevm_db.pgdump rhevm 

The jbossas service must be stopped before restoring the rhevm database. It is best to 
remove the database before restoring it. The pg_restore command is used to restore the 
database and the --clean option removes the the database before restoring it.

# service jbossas stop 
Stopping jbossas:                                          [  OK  ] 

# pg_restore --dbname rhevm --clean --username postgres rhevm_db.pgdump

Querying and manipulating the database is done using the psql command. SQL statements 
are passed via standard input (STDIN) or by using the --command option. The following 
example views the contents of the luns table in the rhevm database.

# echo "select * from luns;" | psql --dbname rhevm --username postgres 
           phisical_volume_id           |    lun_id     | 
volume_group_id             |      serial       | lun_mapping | vendor_id | 
product_id  | device_size 
----------------------------------------+---------------
+----------------------------------------+-------------------+-------------
+-----------+--------------+------------- 
 VfXIWw-fU2H-utOS-uS1D-LypB-eh4j-RTdWnl | 1IET_00010001 | DIv0nZ-atbO-uLm7-
Hq5q-5XRQ-eM4x-KaNFmR | SIET_VIRTUAL-DISK |           1 | IET       | 
VIRTUAL-DISK |         199 

www.redhat.com 18 refarch-feedback@redhat.com



6 Network Preparation
Correct network configuration is crucial to ensure the failed over environment functions as 
desired. IP addresses must be changed to reflect the new environment as does name 
resolution. This applies to physical servers as well as the virtual machines.

6.1 DHCP
DHCP is used to provide the network configuration to the systems in the environment and 
allows for an easier failover. Without DHCP, it would be necessary to connect to each 
physical and virtual system in the environment and manually reconfigure its network 
configuration. This includes IP information, routing, and name resolution. 

The DHCP servers used in this reference architecture supply IP addresses, FQDN host 
names, DNS servers, and default gateways to each physical server and virtual machine.

All the systems at SiteA receive IP addresses on the 192.168.200.0/24 network and fully 
qualified domain names on the sitea.example domain. All the systems, except the RHEV 
Manager system, at SiteB receive IP adresses on the 192.168.201.0/24 network and fully 
qualified domain names on the siteb.example network.

The RHEV Manager system receives an IP address on the 192.168.201.0/24 network, but it 
receives a fully qualified domain name on the SiteA network. The RHEV Manager requires 
the same FQDN due to the certificates it created at the time it was installed. The certificates 
are created using the hosts FQDN.

The entry in the DHCP configuration file for the RHEV Manager provides the server with IP 
addresses, DNS servers, and a gateway on the SiteB network, but it provides it an FQDN on 
the sitea.example domain.

6.2 DNS
The RHEV Manager must have a DNS entry that resolves its original FQDN to the new IP 
address and back since the certificates use the original FQDN. Similar considerations may be 
needed for the virtual machines in the environment as well, depending on its function and the 
applications it runs.

Certificate validation is an example when this might be needed. Applications and scripts that 
access the virtual machines by using their FQDNs are another example.

The system names used after the failover remain the same, but the FQDNs change. This 
allows scripts and applications that use the DNS resolvable short name to continue to work if 
DNS is configured properly. For example: rdr-nfs.sitea.example becomes rdr-
nfs.siteb.example.

The DNS server at siteb.example contains forward and reverse zone definitions for the 
systems on the siteb.example domain. It also contains a forward and reverse zone definition 
for the sitea.example domain. The configuration file for the sitea.example zones only contain 
entries for rdr-rhevm and rdr-dns. Both definitions point to IP addresses on the SiteB network.

refarch-feedback@redhat.com 19 www.redhat.com



7 Failover
The following section walks through the failover of three Red Hat Enterprise Virtualization 
environments. The configuration of the environments are identical except for the type of Data 
Storage Domain used. Refer to Section 3: Reference Architecture Environment for the 
configuration of the environment. The process to failover the environments is identical with 
the exception of the Data Storage Domains. For brevity, the duplicated tasks have been 
consolidated and not repeated three times.

For each environment, the datacenter, cluster, and the SiteA hypervisor are configured. All 
the virtual machines in the environment are powered on and functioning as well. Each has the 
identical Export Storage Domain and ISO Storage Domain configured. The Export and ISO 
Storage Domains use rsync to copy the data from the NFS export directories at SiteA to 
SiteB.

After the failover occurs, the RHEV Hypervisor at SiteB is installed, configured, and added to 
the SiteB cluster.

7.1 Failover Scenarios

7.1.1 iSCSI Data Domain
The first simulated failover uses an iSCSI target as the Data Storage Domain. To simulate a 
site wide failure, the virtual machines acting as the Storage Domains are halted. The virtual 
machines rdr-nfs.sitea.example and rdr-iscsi.sitea.example provide NFS exports and an 
iSCSI target to be used as Storage Domains. These virtual machines are running on a system 
outside the RHEV environment and are halted by issuing a virsh destroy command on 
the system running them. This does not give the systems time to gracefully power down.

The physical server running the RHEV Manager and the RHEV Hypervisor have the power 
removed at the same time as the virsh destroy command is executed against the virtual 
machines.

LUN mirroring is simulated on the iSCSI server by using the dd command to copy the logical 
volume that backs the iSCSI target on the rdr-iscsi.sitea.example virtual machine to the 
logical volume that backs the iSCSI target on the rdr-iscsi.siteb.example system.

LUN mirroring is simulated on the RHEV Manager system by removing the LUN mapping to 
the rdr-rhevm.sitea.example system and mounting it and the LUN used for the rdr-
rhevm.siteb.example system onto a single system. The dd command is used to copy one 
LUN to the other. The LUNS are then mapped to the correct systems.

All the systems at SiteB are then powered on.

www.redhat.com 20 refarch-feedback@redhat.com



7.1.2 Fibre Data Domain
The second simulated failover uses a fibre LUN as the Data Storage Domain. To simulate a 
site wide failure, the virtual machines acting as the Storage Domains are halted. The virtual 
machine rdr-nfs.sitea.example provides NFS exports to be used as Storage Domains. These 
virtual machines are running on a system outside the RHEV environment and are halted by 
issuing a virsh destroy command on the system running them. This does not give the 
systems time to gracefully power down.

The physical server running the RHEV Manager and the RHEV Hypervisor have the power 
removed at the same time as the virsh destroy command is executed against the virtual 
machines.

LUN mirroring is simulated on the RHEV Manager and RHEV Hypervisor systems by 
removing the LUN mapping to the systems and mounting the LUNs used at SiteA and the 
LUNs used at SiteB onto a single system. The dd command is used to copy one LUN to the 
other. The LUNS are then mapped to the correct systems.

All the systems at SiteB are then powered on.

7.1.3 NFS Data Domain
The third simulated failover uses an NFS export as the Data Storage Domain. To simulate a 
site wide failure, the virtual machines acting as the Storage Domains are halted. The virtual 
machine rdr-nfs.sitea.example provide NFS exports to be used as Storage Domains. These 
virtual machines are running on a system outside the RHEV environment and are halted by 
issuing a virsh destroy command on the system running them. This does not give the 
systems time to gracefully power down.

The physical server running the RHEV Manager and the RHEV Hypervisor have the power 
removed at the same time as the virsh destroy command is executed against the virtual 
machines.

LUN mirroring is simulated on the NFS server for the Data Storage Domain by using the dd 
command to copy the logical volume that backs the exported directory on the rdr-
nfs.sitea.example virtual machine to the logical volume that backs the exported directory on 
the rdr-nfs.siteb.example system.

LUN mirroring is simulated on the RHEV Manager system by removing the LUN mapping to 
the system and mounting the LUN used at SiteA and the LUN used at SiteB onto a single 
system. The dd command is used to copy one LUN to the other. The LUNS are then mapped 
to the correct systems.

All the systems at SiteB are then powered on.

refarch-feedback@redhat.com 21 www.redhat.com



7.2 RHEV Manager
Network configuration on the RHEV Manager may need to be modified on the failed over 
RHEV Manager. This is due to the different network adapters and hardware addresses that 
are in the new system.

The udev rules and interface configuration files need to be modified to account for the new 
hardware addresses. This helps avoid modifying the firewalls, reconfiguring bonding, and 
possibly other configurations.

View the current running network configuration using the ip addr command. The output 
shows the current interfaces start enumerating at eth3 instead of eth0. The udev rules need 
to be modified to adjust the nic enumeration.

# ip addr
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 16436 qdisc noqueue state UNKNOWN 
    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00 
    inet 127.0.0.1/8 scope host lo 
    inet6 ::1/128 scope host 
       valid_lft forever preferred_lft forever 
2: eth5: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN qlen 1000 
    link/ether 00:25:b3:a9:b0:00 brd ff:ff:ff:ff:ff:ff 
3: eth3: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN qlen 1000 
    link/ether 00:25:b3:a9:b0:01 brd ff:ff:ff:ff:ff:ff 
4: eth6: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN qlen 1000 
    link/ether 00:25:b3:a9:b0:02 brd ff:ff:ff:ff:ff:ff 
5: eth4: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN qlen 1000 
    link/ether 00:25:b3:a9:b0:03 brd ff:ff:ff:ff:ff:ff 

www.redhat.com 22 refarch-feedback@redhat.com



Edit the /etc/udev/rules.d/70-persistent-net.rules file. Each network adapter is configured 
using a single line in the configuration file. The file below shows the single line wrapped 
across three lines.

# This file was automatically generated by the /lib/udev/write_net_rules 
# program, run by the persistent-net-generator.rules rules file. 
# 
# You can modify it, as long as you keep each rule on a single 
# line, and change only the value of the NAME= key. 

# PCI device 0x8086:0x10b9 (e1000e) 
SUBSYSTEM=="net", ACTION=="add", DRIVERS=="?*", 
ATTR{address}=="00:18:71:eb:a0:39", ATTR{type}=="1", KERNEL=="eth*", 
NAME="eth0" 

# PCI device 0x14e4:0x164c (bnx2) 
SUBSYSTEM=="net", ACTION=="add", DRIVERS=="?*", 
ATTR{address}=="00:1e:0b:ce:42:78", ATTR{type}=="1", KERNEL=="eth*", 
NAME="eth1" 

# PCI device 0x14e4:0x164c (bnx2) 
SUBSYSTEM=="net", ACTION=="add", DRIVERS=="?*", 
ATTR{address}=="00:1e:0b:ce:42:7a", ATTR{type}=="1", KERNEL=="eth*", 
NAME="eth2" 

# PCI device 0x4040:0x0100 (netxen_nic) 
SUBSYSTEM=="net", ACTION=="add", DRIVERS=="?*", 
ATTR{address}=="00:25:b3:a9:b0:01", ATTR{type}=="1", KERNEL=="eth*", 
NAME="eth3" 

# PCI device 0x4040:0x0100 (netxen_nic) 
SUBSYSTEM=="net", ACTION=="add", DRIVERS=="?*", 
ATTR{address}=="00:25:b3:a9:b0:03", ATTR{type}=="1", KERNEL=="eth*", 
NAME="eth4" 

# PCI device 0x4040:0x0100 (netxen_nic) 
SUBSYSTEM=="net", ACTION=="add", DRIVERS=="?*", 
ATTR{address}=="00:25:b3:a9:b0:00", ATTR{type}=="1", KERNEL=="eth*", 
NAME="eth5" 

# PCI device 0x4040:0x0100 (netxen_nic) 
SUBSYSTEM=="net", ACTION=="add", DRIVERS=="?*", 
ATTR{address}=="00:25:b3:a9:b0:02", ATTR{type}=="1", KERNEL=="eth*", 
NAME="eth6" 

refarch-feedback@redhat.com 23 www.redhat.com



Each network adapter has an entry in the file. This includes the current adapters as well as 
the original adapters. The entries for the original adapters need to be removed or commented. 
The entries for the new adapters need to be enumerated correctly. The information from 
Table 3.3: RHEV Manager NIC Assignments, shows that the network interface connected to 
the network on the original RHEV Manager is eth1. The same table also shows that the 
network adapter with the hardware address of 00:25:b3:a9:b0:00 should is connected to the 
network.

Modify the file to ensure the network is configured correctly.

# This file was automatically generated by the /lib/udev/write_net_rules 
# program, run by the persistent-net-generator.rules rules file. 
# 
# You can modify it, as long as you keep each rule on a single 
# line, and change only the value of the NAME= key. 

# PCI device 0x8086:0x10b9 (e1000e) 
# SUBSYSTEM=="net", ACTION=="add", DRIVERS=="?*", 
ATTR{address}=="00:18:71:eb:a0:39", ATTR{type}=="1", KERNEL=="eth*", 
NAME="eth0" 

# PCI device 0x14e4:0x164c (bnx2) 
# SUBSYSTEM=="net", ACTION=="add", DRIVERS=="?*", 
ATTR{address}=="00:1e:0b:ce:42:78", ATTR{type}=="1", KERNEL=="eth*", 
NAME="eth1" 

# PCI device 0x14e4:0x164c (bnx2) 
# SUBSYSTEM=="net", ACTION=="add", DRIVERS=="?*", 
ATTR{address}=="00:1e:0b:ce:42:7a", ATTR{type}=="1", KERNEL=="eth*", 
NAME="eth2" 

# PCI device 0x4040:0x0100 (netxen_nic) 
SUBSYSTEM=="net", ACTION=="add", DRIVERS=="?*", 
ATTR{address}=="00:25:b3:a9:b0:01", ATTR{type}=="1", KERNEL=="eth*", 
NAME="eth3" 

# PCI device 0x4040:0x0100 (netxen_nic) 
SUBSYSTEM=="net", ACTION=="add", DRIVERS=="?*", 
ATTR{address}=="00:25:b3:a9:b0:03", ATTR{type}=="1", KERNEL=="eth*", 
NAME="eth2" 

# PCI device 0x4040:0x0100 (netxen_nic) 
SUBSYSTEM=="net", ACTION=="add", DRIVERS=="?*", 
ATTR{address}=="00:25:b3:a9:b0:00", ATTR{type}=="1", KERNEL=="eth*", 
NAME="eth1" 

# PCI device 0x4040:0x0100 (netxen_nic) 
SUBSYSTEM=="net", ACTION=="add", DRIVERS=="?*", 
ATTR{address}=="00:25:b3:a9:b0:02", ATTR{type}=="1", KERNEL=="eth*", 
NAME="eth0" 

www.redhat.com 24 refarch-feedback@redhat.com



The interface configuration files may contain hardware specific configuration. Issue the 
following commands to see how many interface configuration files there are and view the 
contents of each.

# ls -1 /etc/sysconfig/network-scripts/ifcfg-* 
/etc/sysconfig/network-scripts/ifcfg-eth0 
/etc/sysconfig/network-scripts/ifcfg-eth1 
/etc/sysconfig/network-scripts/ifcfg-eth2 
/etc/sysconfig/network-scripts/ifcfg-lo 

# cat /etc/sysconfig/network-scripts/ifcfg-eth0 
DEVICE="eth0" 
HWADDR="00:18:71:EB:A0:39" 
NM_CONTROLLED="yes" 
ONBOOT="no" 
 
# cat /etc/sysconfig/network-scripts/ifcfg-eth1 
DEVICE="eth1" 
BOOTPROTO="dhcp" 
HWADDR="00:1E:0B:CE:42:78" 
IPV6INIT="yes" 
MTU="1500" 
NM_CONTROLLED="yes" 
ONBOOT="yes" 
TYPE="Ethernet" 

# cat /etc/sysconfig/network-scripts/ifcfg-eth2 
DEVICE="eth2" 
HWADDR="00:1E:0B:CE:42:7A" 
NM_CONTROLLED="yes" 
ONBOOT="no"

The configuration files define the HWADDR variable. The variable is used to ensure an 
interface configuration file is assigned to the correct network adapter. This prevents the 
configuration files from using the new network adapters. 

Comment the lines defining the HWADDR variable.

# sed --in-place --expression 's/^HWADDR/# HWADDR/' /etc/sysconfig/network-
scripts/ifcfg-eth* 

# cat /etc/sysconfig/network-scripts/ifcfg-eth0 
DEVICE="eth0" 
# HWADDR="00:18:71:EB:A0:39" 
NM_CONTROLLED="yes" 
ONBOOT="no" 

The network configuration should now be fixed. Reboot the system to ensure all 
configurations are used.

# init 6

After rebooting the system, the RHEV Manager is accessible through its web portal.

refarch-feedback@redhat.com 25 www.redhat.com



7.3 Storage Domains
The REST API does not allow modification of storage domain attributes. ISO Storage 
Domains and Export Storage Domains can be imported into the environment, but Data 
Storage Domains require the RHEV Managers database to be manually updated. Importing 
the ISO and Export Storage Domains requires the metadata stored on the storage domain to 
be manually modified. Manually updating the database will be done for all storage domains.

7.3.1 Red Hat Enterprise Virtualization Manager service
Before manipulating any database entries, the Red Hat Enterprise Virtualization Manager 
service must be stopped. Failure to stop the service can result in unpredictable behavior.

The service is called jbossas and is stopped using the service command.

# service jbossas stop 

Stopping jbossas:                                          [  OK  ] 

7.3.2 Database Tables
There are four tables involved when manually manipulating the database. The tables are the 
storage_domain_static, storage_server_connections, lun_storage_server_connection_map, and 
the luns tables. The tables needing modification and the modifications themselves depend on 
the type of storage being used.

7.3.2.1 storage_domain_static table.
The storage_domain_static table holds the storage domain names, UIDs that map to entries in 
the storage_server_connections and luns tables, as well as other information. 

This table does not need any updates made to it, it is used for the information contained it in 
only. The table contains the following columns:

• id

• storage

• storage_name

• storage_domain_type

• storage_type

• storage_domain_format_type

• _create_date

• _update_date

Only the storage and storage_name columns are needed when manipulating the database. 
The storage_name column contains the name of the storage domain as it is presented in the 
user interface. The storage column contains a UID which maps to an entry in either the 
storage_server_connections or the luns table.

www.redhat.com 26 refarch-feedback@redhat.com



7.3.2.2 storage_server_connections
The storage_server_connections table contains information about network attached storage 
such as NFS and iSCSI.

This table gets updated when modifying the connection parameters for network attached 
storage. The table contains the following columns:

• id

• connection

• user_name

• password

• iqn

• port

• portal

• storage_type

7.3.2.3 lun_storage_server_connection_map
The lun_storage_server_connection_map table gets updated when modifying the parameters 
for fibre or iSCSI based storage. The table contains the following columns:

• lun_id

• storage_server_connection

The lun_id column links to the lun_id column in the luns table as a foreign key. Special 
consideration must be made when updating the lun_id columns in either table.

refarch-feedback@redhat.com 27 www.redhat.com



7.3.2.4 luns
The luns table contains disk parameters such as serial number, vendor, and LVM UIDs for 
fibre and iSCSI based storage.

This table contains the following columns:

• phisical_volume_id

• lun_id

• volume_group_id

• serial

• lun_mapping

• vendor_id

• product_id

• device_size

All columns except the phisical_volume_id, volume_group_id, and device_size are subject to 
modification when fibre or iSCSI storage is attached.

The phisical_volume_id and volume_group_id map to information concerning LVM. Since 
mirrored LUNs are used, the LVM information should not change. The same holds true for the 
device_size column.

www.redhat.com 28 refarch-feedback@redhat.com



7.3.3 Domain Information
The UID for each storage domain must be known to make modifications to the correct entries 
in the tables. The storage_domain_static table contains this information. The following is a 
sample of the table and the data stored in it. The table stores the user friendly name of the 
storage domain in the storage_name column and a UID of the storage domain in the storage 
column.

# echo "SELECT storage_name,storage FROM storage_domain_static;" | psql -d 
rhevm -U postgres 

 storage_name |                storage                 
--------------+---------------------------------------- 
 DataDomain   | DIv0nZ-atbO-uLm7-Hq5q-5XRQ-eM4x-KaNFmR 
 ISODomain    | cf810eeb-24df-4fdd-ae98-62416bd3e047 
 ExportDomain | 6364acf1-754a-4525-9d97-3c6d5c8f9b6f 
(3 rows) 

7.3.4 Data Domain
Data storage domains can be backed by NFS, fibre, or iSCSI storage. Each of these storage 
types require different modifications to the database. These modifications can be an update to 
a single entry in a database table to multiple updates to multiple tables.

7.3.4.1 NFS Data Domain
An NFS based storage domain requires a change to the connection column in the 
storage_server_connections table. It is useful to query the storage_name and storage columns of 
the storage_domain_static table to display the mapping between the user friendly name of the 
storage domain and its UID. The UID is needed to locate the correct entry in the 
storage_server_connections table.

Query the storage_domain_static table to view its entries. The output shows that the UID for 
the data storage domain called DataDomain is 5caa3ebc-6a61-48f4-9201-
f261b9402e12 . This UID is used to determine which entry in the storage_server_connections 
table need modification.

# echo "SELECT storage_name,storage FROM storage_domain_static;" | psql -d 
rhevm -U postgres 
 storage_name |               storage                
--------------+-------------------------------------- 
 DataDomain   | 5caa3ebc-6a61-48f4-9201-f261b9402e12 
 ExportDomain | b6a5ff4b-330d-4ac6-9874-8a408f903da0 
 ISODomain    | 58611688-43e6-4366-b6af-7c04a7363a1d 
(3 rows) 

refarch-feedback@redhat.com 29 www.redhat.com



Connection information for NFS based storage domains is contained in the connection column 
of the storage_server_connections table. Using the UID from the storage_domain_static table for 
the export storage domain called ExportDomain as reference, query the 
storage_server_connections table for the NFS storage information. Only the id and connection 
columns need to be queried and ultimately updated.

# echo "SELECT id, connection FROM storage_server_connections;" | psql -d 
rhevm -U postgres 
                  id                  |                    connection 
--------------------------------------
+--------------------------------------------------- 
 5caa3ebc-6a61-48f4-9201-f261b9402e12 | rdr-
nfs.sitea.example:/exports/datadomain 

 b6a5ff4b-330d-4ac6-9874-8a408f903da0 | rdr-
nfs.sitea.example:/exports/exports_configured 

 58611688-43e6-4366-b6af-7c04a7363a1d | rdr-
nfs.sitea.example:/exports/isodomain 
(3 rows) 

Referring to Table 3.1:NFS Exports, the NFS export should be rdr-
nfs.siteb.example:/exports/DATA. Update the storage_server_connections table with 
the correct information and verify the table has the correct data in it.

# echo "UPDATE storage_server_connections SET connection='rdr-
nfs.siteb.example:/exports/DATA' where id='5caa3ebc-6a61-48f4-9201-
f261b9402e12';" | psql -d rhevm -U postgres 
UPDATE 1 

# echo "SELECT id, connection FROM storage_server_connections;" | psql -d 
rhevm -U postgres
                  id                  |                    connection 
--------------------------------------
+--------------------------------------------------- 
 b6a5ff4b-330d-4ac6-9874-8a408f903da0 | rdr-
nfs.sitea.example:/exports/exports_configured 

 58611688-43e6-4366-b6af-7c04a7363a1d | rdr-
nfs.sitea.example:/exports/isodomain 

 5caa3ebc-6a61-48f4-9201-f261b9402e12 | rdr-nfs.siteb.example:/exports/DATA 

The database now contains the correct information to allow it to activate the data storage 
domain.

www.redhat.com 30 refarch-feedback@redhat.com



7.3.4.2 Fibre Data Domain
Query the storage_name and storage columns to display a mapping between the user friendly 
name of the storage domain and its UID.

# echo "SELECT storage_name,storage FROM storage_domain_static;" | psql -d 
rhevm -U postgres 
 storage_name |                storage                 
--------------+---------------------------------------- 
 DataDomain   | qDlAWy-0YPw-Ie1T-8Yt5-vldq-h1q1-tmaJSa 
 ISODomain    | 11121133-c07c-414d-8c54-4ce7d26c1495 
 ExportDomain | da180f76-5b46-4bb3-b83f-8a9704b16e58 
(3 rows) 

Correcting the database for a fibre based storage domain requires an update to the luns table 
only. The storage column of the storage_domain_static table contains an entry that maps to the 
volume_group_id column of the luns table.

View the luns table. Table 7.3.4.1: luns Table - Fibre contains the information in an easier to 
read format.

# echo "SELECT * FROM luns;" | psql -d rhevm -U postgres 
           phisical_volume_id           |              lun_id 
|            volume_group_id             |                     serial 
| lun_mapping | vendor_id | product_id | device_size 
----------------------------------------+-----------------------------------
+----------------------------------------
+------------------------------------------------+-------------+-----------
+------------+------------- 
 yQAp5K-X4Ik-tvx9-vGS9-RNly-11JB-Jz4DNC | 3600c0ff000d7e69d69b89d4e01000000 
| qDlAWy-0YPw-Ie1T-8Yt5-vldq-h1q1-tmaJSa | 
SHP_MSA2324fc_00c0ffd7e69d000069b89d4e01000000 |          24 | HP        | 
MSA2324fc  |         200 
(1 row) 

Column Value

phisical_volume_id yQAp5K-X4Ik-tvx9-vGS9-RNly-11JB-Jz4DNC

lun_id 3600c0ff000d7e69d69b89d4e01000000

volume_group_id qDlAWy-0YPw-Ie1T-8Yt5-vldq-h1q1-tmaJSa

serial SHP_MSA2324fc_00c0ffd7e69d000069b89d4e01000000

lun_mapping 24

vendor_id HP

product_id MSA2324fc

device_size 200

Table 7.3.4.1: luns Table - Fibre

refarch-feedback@redhat.com 31 www.redhat.com



The phisical_volume_id column contains the UID of the LVM physical volume on the 
hypervisor host. The volume_group_id column contains the UID of the LVM volume group on 
the hypervisor host. The device _size column contains the size of the fibre LUN. Since the 
environment uses mirrored luns for the data, neither of these entries change during a failover. 

The information to modify the remaining columns is obtained from the new hypervisor host. 
Login to the hypervisor as the admin user and press the F2 key to access a support shell. 
Execute the following pvs command to view the physical volume UID and name of the 
physical volumes on the system.

# pvs --noheadings --options pv_uuid,pv_name 
  XGPO3I-y74E-mdc6-AbCe-bmxN-XdmG-gf1cD9 
/dev/mapper/3600508b1001030374142384343301800p4 

  yQAp5K-X4Ik-tvx9-vGS9-RNly-11JB-Jz4DNC 
/dev/mapper/3600c0ff000d7e69d85b89d4e01000000  

Looking for the value stored in the phisical_volume_id column of the luns table, the output 
shows that the physical volume name for the fibre LUN is 
/dev/mapper/3600c0ff000d7e69d85b89d4e01000000.

This physical volume name is used for several command. To avoid errors when entering it, 
assign it to the variable PVNAME.

# PVNAME=/dev/mapper/3600c0ff000d7e69d85b89d4e01000000 

The values for the vendor_id, product_id, and serial columns of the database is retrieved by 
querying page 0x80 of the scsi device. This is done using the scsi_id command. All the 
options are required in order to return the output in the appropriate format.

# scsi_id --page=0x80 --whitelisted --export --replace-whitespace --device=$
{PVNAME} 
ID_SCSI=1 
ID_VENDOR=HP 
ID_VENDOR_ENC=HP\x20\x20\x20\x20\x20\x20 
ID_MODEL=MSA2324fc 
ID_MODEL_ENC=MSA2324fc\x20\x20\x20\x20\x20\x20\x20 
ID_REVISION=M112 
ID_TYPE=disk 
ID_SERIAL_RAW="SHP      MSA2324fc      00c0ffd7e69d000085b89d4e01000000" 
ID_SERIAL=SHP_MSA2324fc_00c0ffd7e69d000085b89d4e01000000 
ID_SERIAL_SHORT=00c0ffd7e69d000085b89d4e01000000 

The lines for ID_VENDOR, ID_MODEL, and ID_SERIAL are used for the vendor_id, 
product_id, and serial columns respectively.

www.redhat.com 32 refarch-feedback@redhat.com



The value for the lun_id column is retrieved by querying page 0x83 of the scsi device. The 
line for ID_SERIAL contains the value to use in the lun_id column.

# scsi_id --page=0x83 --whitelisted --export --replace-whitespace --device=$
{PVNAME} 
ID_SCSI=1 
ID_VENDOR=HP 
ID_VENDOR_ENC=HP\x20\x20\x20\x20\x20\x20 
ID_MODEL=MSA2324fc 
ID_MODEL_ENC=MSA2324fc\x20\x20\x20\x20\x20\x20\x20 
ID_REVISION=M112 
ID_TYPE=disk 
ID_SERIAL_RAW="3600c0ff000d7e69d85b89d4e01000000" 
ID_SERIAL=3600c0ff000d7e69d85b89d4e01000000 
ID_SERIAL_SHORT=600c0ff000d7e69d85b89d4e01000000 
ID_WWN=0x600c0ff000d7e69d 
ID_WWN_VENDOR_EXTENSION=0x85b89d4e01000000 
ID_WWN_WITH_EXTENSION=0x600c0ff000d7e69d85b89d4e01000000 
ID_SCSI_SERIAL=00c0ffd7e69d000085b89d4e01000000 

The multipath command provides the information for the lun_mapping column and also for 
the device_size column. The value for the lun_mapping column is the last number in the scsi 
identifier. The scsi identifier is the four numbers that are seperated by colons. The last 
number in the scsi identifier is the same and it is the value to place in the lun_mapping 
column of the database. The number 26 is the value to use in the database.

The value for the device_size column does not change when using mirrored luns, but the value 
can be verified if desired.

# multipath -ll ${PVNAME} 
3600c0ff000d7e69d85b89d4e01000000 dm-10 HP,MSA2324fc 
size=200G features='1 queue_if_no_path' hwhandler='0' wp=rw 
`-+- policy='round-robin 0' prio=50 status=active 
  |- 1:0:0:26 sdb 8:16 active ready running 
  |- 2:0:0:26 sdd 8:48 active ready running 
  |- 2:0:1:26 sde 8:64 active ready running 
  `- 1:0:1:26 sdc 8:32 active ready running 

refarch-feedback@redhat.com 33 www.redhat.com



The entry in the luns table can be updated since all the information needed is known. The 
following table contains the information gathered.

Column Value

phisical_volume_id yQAp5K-X4Ik-tvx9-vGS9-RNly-11JB-Jz4DNC

lun_id 3600c0ff000d7e69d85b89d4e01000000

volume_group_id qDlAWy-0YPw-Ie1T-8Yt5-vldq-h1q1-tmaJSa

serial SHP_MSA2324fc_00c0ffd7e69d000085b89d4e01000000

lun_mapping 26

vendor_id HP

product_id MSA2324fc

device_size 200

Table 7.3.4.2: luns Table - Fibre - Fixed

On the RHEV Manager server, update the database entry using the information gathered.

# echo "UPDATE luns SET lun_id='3600c0ff000d7e69d85b89d4e01000000', 
serial='SHP_MSA2324fc_00c0ffd7e69d000085b89d4e01000000', lun_mapping='26', 
vendor_id='HP', product_id='MSA2324fc' WHERE phisical_volume_id='yQAp5K-
X4Ik-tvx9-vGS9-RNly-11JB-Jz4DNC';" | psql -d rhevm -U postgres 

UPDATE 1 

# echo "SELECT * FROM luns;" | psql -d rhevm -U postgres 
           phisical_volume_id           |              lun_id 
|            volume_group_id             |                     serial 
| lun_mapping | vendor_id | product_id | device_size 
----------------------------------------+-----------------------------------
+----------------------------------------
+------------------------------------------------+-------------+-----------
+------------+------------- 
 yQAp5K-X4Ik-tvx9-vGS9-RNly-11JB-Jz4DNC | 3600c0ff000d7e69d85b89d4e01000000 
| qDlAWy-0YPw-Ie1T-8Yt5-vldq-h1q1-tmaJSa | 
SHP_MSA2324fc_00c0ffd7e69d000085b89d4e01000000 |          26 | HP        | 
MSA2324fc  |         200 
(1 row) 

Updating the database to fix the fibre based data storage domain is complete.

www.redhat.com 34 refarch-feedback@redhat.com



7.3.4.3 iSCSI Data Domain
Query the storage_name and storage columns to display a mapping between the user friendly 
name of the storage domain and its UID.

# echo "SELECT storage_name,storage FROM storage_domain_static;" | psql -d 
rhevm -U postgres 

 storage_name |                storage                 
--------------+---------------------------------------- 
 DataDomain   | DIv0nZ-atbO-uLm7-Hq5q-5XRQ-eM4x-KaNFmR 
 ISODomain    | cf810eeb-24df-4fdd-ae98-62416bd3e047 
 ExportDomain | 6364acf1-754a-4525-9d97-3c6d5c8f9b6f 
(3 rows) 

Correcting the database for iSCSI storage domains requires changes to the 
storage_server_connections, lun_storage_server_connection_map, and luns tables.

Using the UID gathered from the storage_domain_static table, query the luns table for the 
entry where the volume_group_id column matches the UID. The output is difficult to read, its 
contents are placed in Table 7.3.4.3: storage_domain_static Table - iSCSI for readability.

# echo "SELECT * FROM luns WHERE volume_group_id='DIv0nZ-atbO-uLm7-Hq5q-
5XRQ-eM4x-KaNFmR';" | psql -d rhevm -U postgres

           phisical_volume_id           |    lun_id     | 
volume_group_id             |      serial       | lun_mapping | vendor_id | 
product_id  | device_size 
----------------------------------------+---------------
+----------------------------------------+-------------------+-------------
+-----------+--------------+------------- 
 VfXIWw-fU2H-utOS-uS1D-LypB-eh4j-RTdWnl | 1IET_00010001 | DIv0nZ-atbO-uLm7-
Hq5q-5XRQ-eM4x-KaNFmR | SIET_VIRTUAL-DISK |           1 | IET       | 
VIRTUAL-DISK |         199 
(1 row) 

refarch-feedback@redhat.com 35 www.redhat.com



Column Value

phisical_volume_id VfXIWw-fU2H-utOS-uS1D-LypB-eh4j-RTdWnl

lun_id 1IET_00010001

volume_group_id DIv0nZ-atbO-uLm7-Hq5q-5XRQ-eM4x-KaNFmR

serial SIET_VIRTUAL-DISK

lun_mapping 1

vendor_id IET

product_id VIRTUAL-DISK

device_size 199

Table 7.3.4.3: storage_domain_static Table - iSCSI

The lun_id, serial, lun_mapping, vendor_id, and product_id columns can change when the 
Red Hat Enterprise Virtualization environment is brought up at the new site. The remaining 
columns should not change since the storage device is a mirrored LUN.

The values for the changing columns is derived from the scsi device parameters as reported 
by the scsi_id command. The scsi_id command is executed twice, once to query page 
0x80 of the scsi device and once to query page 0x83.

Before the scsi_id command can be executed to retrieve the needed information, the iSCSI 
target must be temporarily presented to a server.

The iscsiadm command is used to discover the iSCSI targets on the siteb.example network. 
The rdr-iscsi.siteb.example server presents storage as an iSCSI target on the siteb.example 
network. Discovering and mounting iSCSI targets requires the iscsi-initiator-utils 
package to be installed.

www.redhat.com 36 refarch-feedback@redhat.com



Discover the iSCSI targets presented by the rdr-iscsi.siteb.example server. The output is 
explained below and entered into Table 7.3.4.4: iSCSI Target Information.

# iscsiadm --mode discovery --type sendtargets --portal rdr-
iscsi.siteb.example 

Starting iscsid:                                           [  OK  ] 
192.168.201.32:3260,1 iqn.2011-11.siteb.example:rdr-iscsi.data 

The information returned by the discovery mode of the iscsiadm command is used to modify 
the storage_server_connections table. The output of the discovery mode is in the following 
format:

IP_ADDRESS:PORT,TPGT TARGET_NAME

Where:

IP_ADDRESS is the IP address of the iSCSI targets server.

PORT is the port to use when connecting via iSCSI.

TPGT is the Target Portal Group Tag

TARGET_NAME is the iqn of the iSCSI target.

The output maps to the columns in the storage_server_connections table as follows:

connection:port,portal iqn

Table Column Value

connection 192.168.201.32

iqn iqn.2011-11.siteb.example:rdr-iscsi.data 

port 3260

portal 1

Table 7.3.4.4: iSCSI Target Information

Login to the iSCSI target presented by rdr-iscsi.siteb.example.

# iscsiadm --mode node --targetname iqn.2011-11.siteb.example:rdr-iscsi.data 
--portal rdr-iscsi.siteb.example --login 

Logging in to [iface: default, target: iqn.2011-11.siteb.example:rdr-
iscsi.data, portal: 192.168.201.32,3260] (multiple) 
Login to [iface: default, target: iqn.2011-11.siteb.example:rdr-iscsi.data, 
portal: 192.168.201.32,3260] successful. 

Checking the status of the iscsi service displays information about the attached devices. This 
information includes the LUN number used for the lun_mapping column in the luns table. 
The status also displays the linux scsi device name. The device name is needed to use the 
scsi_id command.

refarch-feedback@redhat.com 37 www.redhat.com



Get the status of the iscsi service. The last two lines of the output show the iSCSI target is 
attached as device sde using LUN number 8. The LUN number is the value needed for the 
lun_mapping column.

# service iscsi status 
iSCSI Transport Class version 2.0-870 
version 2.0-872.28.el6 
Target: iqn.2011-11.siteb.example:rdr-iscsi.data 

Current Portal: 192.168.201.32:3260,1 
Persistent Portal: 192.168.201.32:3260,1 

********** 
Interface: 
********** 
Iface Name: default 
Iface Transport: tcp 
Iface Initiatorname: iqn.1994-05.com.redhat:363bfeb2a6c3 
Iface IPaddress: 192.168.201.40 
Iface HWaddress: <empty> 
Iface Netdev: <empty> 

[ ... Output Truncated ...]
 

Attached SCSI devices: 
************************ 
Host Number: 4 State: running 
scsi4 Channel 00 Id 0 Lun: 0 
scsi4 Channel 00 Id 0 Lun: 8 

Attached scsi disk sde State: running 

The linux device name and LUN id can also be determined by looking at the /dev/disk/by-path 
directory and the /sys/block/*/device directories.

# ls -l /dev/disk/by-path 
total 0 
lrwxrwxrwx. 1 root root  9 Jan  8 23:51 ip-192.168.201.32:3260-iscsi-
iqn.2011-11.siteb.example:rdr-iscsi.data-lun-8 -> ../../sde 

# ls -l /sys/block/*/device 
lrwxrwxrwx. 1 root root 0 Jan  8 12:18 /sys/block/sda/device 
-> ../../../2:0:0:22/ 
lrwxrwxrwx. 1 root root 0 Jan  8 12:18 /sys/block/sdb/device 
-> ../../../2:0:1:22/ 
lrwxrwxrwx. 1 root root 0 Jan  8 18:19 /sys/block/sdc/device 
-> ../../../3:0:0:22/ 
lrwxrwxrwx. 1 root root 0 Jan  8 18:19 /sys/block/sdd/device 
-> ../../../3:0:1:22/ 
lrwxrwxrwx. 1 root root 0 Jan  8 23:51 /sys/block/sde/device 
-> ../../../4:0:0:8/ 

www.redhat.com 38 refarch-feedback@redhat.com



The scsi_id command can be executed against the device /dev/sde to gather the remaining 
information needed to modify the database. The --page option specifies the device page to 
query. The --device option specifies the device to query.

By default the scsi_id command blacklists all devices and does not return any information 
when queried. The --whitelisted option changes this behavior and treats the device as 
whitelisted.

The --export option is used to print all data returned from the page using key/value pairs. 
This information may contain spaces. The --replace-whitespace option converts all 
whitespaces returned with underscores.

Query page 0x80 of scsi device /dev/sde.

# scsi_id --page=0x80 --whitelisted --export --replace-whitespace 
--device=/dev/sde 

ID_SCSI=1 
ID_VENDOR=RA-Group 
ID_VENDOR_ENC=RA-Group 
ID_MODEL=iscsi101 
ID_MODEL_ENC=iscsi101 
ID_REVISION=0001 
ID_TYPE=disk 
ID_SERIAL_RAW="SRA-Groupiscsi101" 
ID_SERIAL=SRA-Groupiscsi101 
ID_SERIAL_SHORT= 

Page 0x80 provides the values for the serial,vendor_id, and product_id columns of the luns 
table. The value for the serial column is taken from the value specified by the ID_SERIAL 
key. The vendor_id and product_id columns take their values from the ID_VENDOR and 
ID_MODEL keys respectively.

Values for all columns but the lun_id column are known. The value for the lun_id column is 
the value specified by the ID_SERIAL key when querying page 0x83 of the scsi device.

Query page 0x83 to get the value for the lun_id column.

# scsi_id --page=0x83 --whitelisted --export --replace-whitespace 
--device=/dev/sde 
ID_SCSI=1 
ID_VENDOR=RA-Group 
ID_VENDOR_ENC=RA-Group 
ID_MODEL=iscsi101 
ID_MODEL_ENC=iscsi101 
ID_REVISION=0001 
ID_TYPE=disk 
ID_SERIAL_RAW="1IET     00010008" 
ID_SERIAL=1IET_00010008 
ID_SERIAL_SHORT=IET_00010008 
ID_SCSI_SERIAL=                           00ufo 

refarch-feedback@redhat.com 39 www.redhat.com



The information gathered is presented in Table 7.3.4.5: luns Table Information - iSCSI.

luns Table Column Value

lun_id 1IET_00010008 

serial SRA-Groupiscsi101

lun_mapping 8

vendor_id RA-Group 

product_id iscsi101

Table 7.3.4.5: luns Table Information - iSCSI

All the information needed to modify the row for the iSCSI storage domain is known. The 
iSCSI target no longer needs to be connected. Log out of the iSCSI target.

# iscsiadm --mode node --targetname iqn.2011-11.siteb.example:rdr-iscsi.data 
--portal rdr-iscsi.siteb.example --logout 
Logging out of session [sid: 1, target: iqn.2011-11.siteb.example:rdr-
iscsi.data, portal: 192.168.201.32,3260] 
Logout of [sid: 1, target: iqn.2011-11.siteb.example:rdr-iscsi.data, portal: 
192.168.201.32,3260] successful. 

The luns and lun_storage_server_connection_map tables can be updated. However, there is a 
foreign key policy configured between the lun_id columns of the luns table and the 
lun_storage_server_connection_map table. This prevents modifying the entry in the luns table.

This issue is resolved by inserting a new entry into the luns table, then modifying the 
lun_storage_server_connection_map table, and finally removing the original entry from the luns 
table. 

www.redhat.com 40 refarch-feedback@redhat.com



Using the information from Table 7.3.4.3: storage_domain_static Table - iSCSI and Table
7.3.4.5: luns Table Information - iSCSI, insert a new entry into the luns table.

# echo "INSERT INTO luns VALUES ('VfXIWw-fU2H-utOS-uS1D-LypB-eh4j-RTdWnl', 
'1IET_00010008', 'DIv0nZ-atbO-uLm7-Hq5q-5XRQ-eM4x-KaNFmR', 'SRA-
Groupiscsi101', '8', 'RA-Group', 'iscsi101', '199');" | psql -d rhevm -U 
postgres 

INSERT 262022 1 

# echo "SELECT * FROM luns;" | psql -d rhevm -U postgres 

           phisical_volume_id           |    lun_id     | 
volume_group_id             |      serial       | lun_mapping | vendor_id | 
product_id  | device_size 
----------------------------------------+---------------
+----------------------------------------+-------------------+-------------
+-----------+--------------+------------- 
 VfXIWw-fU2H-utOS-uS1D-LypB-eh4j-RTdWnl | 1IET_00010001 | DIv0nZ-atbO-uLm7-
Hq5q-5XRQ-eM4x-KaNFmR | SIET_VIRTUAL-DISK |           1 | IET       | 
VIRTUAL-DISK |         199 
 VfXIWw-fU2H-utOS-uS1D-LypB-eh4j-RTdWnl | 1IET_00010008 | DIv0nZ-atbO-uLm7-
Hq5q-5XRQ-eM4x-KaNFmR | SRA-Groupiscsi101 |           8 | RA-Group  | 
iscsi101     |         199 
(2 rows) 

The new entry is now in the luns table. This allows the lun_id column of the 
lun_storage_server_connection_map table to be modified. View the 
lun_storage_server_connection_map table.

# echo "SELECT * FROM lun_storage_server_connection_map;" | psql -d rhevm -U 
postgres 

    lun_id     |      storage_server_connection       
---------------+-------------------------------------- 
 1IET_00010001 | 56fd614d-e267-4756-b175-3035b6d4fa78  

Modify the lun_id in the table so it contains the new lun_id value.

# echo "UPDATE lun_storage_server_connection_map SET lun_id='1IET_00010008' 
WHERE lun_id='1IET_00010001';" | psql -d rhevm -U postgres 
UPDATE 1 

# echo "SELECT * FROM lun_storage_server_connection_map;" | psql -d rhevm -U 
postgres
    lun_id     |      storage_server_connection       
---------------+-------------------------------------- 
 1IET_00010008 | 56fd614d-e267-4756-b175-3035b6d4fa78 
(1 row) 

refarch-feedback@redhat.com 41 www.redhat.com



The lun_storage_server_connection_map table contains the correct lun_id, the original entry in 
the luns table can be removed. The UID in the storage_server_connection column is noted for 
later use.

Remove the original entry from the luns table.

# echo "DELETE FROM luns where volume_group_id='DIv0nZ-atbO-uLm7-Hq5q-5XRQ-
eM4x-KaNFmR' AND lun_id='1IET_00010001';" | psql -d rhevm -U postgres 

DELETE 1 

# echo "SELECT * FROM luns;" | psql -d rhevm -U postgres

           phisical_volume_id           |    lun_id     | 
volume_group_id             |      serial       | lun_mapping | vendor_id | 
product_id | device_size 
----------------------------------------+---------------
+----------------------------------------+-------------------+-------------
+-----------+------------+------------- 
 VfXIWw-fU2H-utOS-uS1D-LypB-eh4j-RTdWnl | 1IET_00010008 | DIv0nZ-atbO-uLm7-
Hq5q-5XRQ-eM4x-KaNFmR | SRA-Groupiscsi101 |           8 | RA-Group  | 
iscsi101   |         199 
(1 row) 

The storage_server_connections table contains incorrect connection information for the iSCSI 
target. View the table to see the current configuration.

# echo "SELECT * FROM storage_server_connections;" | psql -d rhevm -U 
postgres 

                  id                  |              connection 
| user_name | password |                      iqn                       | 
port | portal | storage_type 
--------------------------------------
+---------------------------------------+-----------+----------
+------------------------------------------------+------+--------
+-------------- 
 56fd614d-e267-4756-b175-3035b6d4fa78 | 192.168.200.32 
|           |          | iqn.2011-11.sitea.example:rdr-iscsi.datadomain | 
3260 | 1      |            3 
 6364acf1-754a-4525-9d97-3c6d5c8f9b6f | rdr-
nfs.siteb.example:/exports/EXPORT |           |          | 
|      |        |            1 
 cf810eeb-24df-4fdd-ae98-62416bd3e047 | rdr-nfs.siteb.example:/exports/ISO 
|           |          |                                                | 
|        |            1 
(3 rows) 

www.redhat.com 42 refarch-feedback@redhat.com



The entry for the iSCSI storage domain must be modified. Table 7.3.4.6:
storage_server_connections Table Information - iSCSI is completed using the UID from 
the storage_server_connection column of the lun_storage_server_connection_map table as 
noted above, to determine the entry in the storage_server_connections table that contains the 
values for the iSCSI storage domain.

Table Column Value

id 56fd614d-e267-4756-b175-3035b6d4fa78

connection 192.168.200.32

user_name

password

iqn iqn.2011-11.sitea.example:rdr-iscsi.datadomain

port 3260

portal 1

storage_type 3

Table 7.3.4.6: storage_server_connections Table Information - iSCSI

refarch-feedback@redhat.com 43 www.redhat.com



Only the connection, iqn, port and portal columns need modified since the new connection 
does not require authentication.

Modify the entry in the table using the information from Table 7.3.4.4: iSCSI Target
Information.

# echo "UPDATE storage_server_connections SET 
connection='192.168.201.32',iqn='iqn.2011-11.siteb.example:rdr-
iscsi.data',port='3260',portal='1' WHERE id='56fd614d-e267-4756-b175-
3035b6d4fa78';" | psql -d rhevm -U postgres 

UPDATE 1 

# echo "SELECT * FROM storage_server_connections;" | psql -d rhevm -U 
postgres
                  id                  |              connection 
| user_name | password |                   iqn                    | port | 
portal | storage_type 
--------------------------------------
+---------------------------------------+-----------+----------
+------------------------------------------+------+--------+-------------- 
 6364acf1-754a-4525-9d97-3c6d5c8f9b6f | rdr-
nfs.siteb.example:/exports/EXPORT |           |          | 
|      |        |            1 
 cf810eeb-24df-4fdd-ae98-62416bd3e047 | rdr-nfs.siteb.example:/exports/ISO 
|           |          |                                          |      | 
|            1 
 56fd614d-e267-4756-b175-3035b6d4fa78 | 192.168.201.32 
|           |          | iqn.2011-11.siteb.example:rdr-iscsi.data | 3260 | 1 
|            3 
(3 rows) 

The database now contains the correct information to activate the iSCSI data storage domain.

www.redhat.com 44 refarch-feedback@redhat.com



7.3.5 Export Storage Domain
Export storage domains in the RHEV Environment use NFS based storage. The process to 
modify the database to fix export storage domains is the same process as fixing an NFS 
based data storage domain. 

NFS based storage requires a change to the connection column in the 
storage_server_connections table. Query the storage_name and storage columns of the 
storage_domain_static table to display a mapping between the user friendly name of the 
storage domain and its UID.

# echo "SELECT storage_name,storage FROM storage_domain_static;" | psql -d 
rhevm -U postgres 
 storage_name |                storage                 
--------------+---------------------------------------- 
 DataDomain   | qDlAWy-0YPw-Ie1T-8Yt5-vldq-h1q1-tmaJSa 
 ISODomain    | 11121133-c07c-414d-8c54-4ce7d26c1495 
 ExportDomain | da180f76-5b46-4bb3-b83f-8a9704b16e58 
(3 rows) 

Connection information for NFS based storage domains is contained in the connection column 
of the storage_server_connections table. Using the UID from the storage_domain_static table for 
the export storage domain called ExportDomain as reference, query the 
storage_server_connections table for the NFS storage information. Only the id and connection 
columns need to be queried and updated since the export storage domain is NFS.

# echo "SELECT id, connection FROM storage_server_connections;" | psql -d 
rhevm -U postgres 
                  id                  |                    connection 
--------------------------------------
+--------------------------------------------------- 
 da180f76-5b46-4bb3-b83f-8a9704b16e58 | rdr-
nfs.sitea.example:/exports/exports_configured 

 11121133-c07c-414d-8c54-4ce7d26c1495 | rdr-
nfs.sitea.example:/exports/isodomain 
(2 rows) 

refarch-feedback@redhat.com 45 www.redhat.com



Referring to Table 3.1:NFS Exports, the NFS export should be rdr-
nfs.siteb.example:/exports/EXPORT. Update the storage_server_connections table 
with the correct information and verify the table has the correct data in it.

# echo "UPDATE storage_server_connections SET connection='rdr-
nfs.siteb.example:/exports/EXPORT' where id='da180f76-5b46-4bb3-b83f-
8a9704b16e58';" | psql -d rhevm -U postgres 
UPDATE 1 

# echo "SELECT id, connection FROM storage_server_connections;" | psql -d 
rhevm -U postgres
                  id                  |                connection 
--------------------------------------
+------------------------------------------ 
 11121133-c07c-414d-8c54-4ce7d26c1495 | rdr-
nfs.sitea.example:/exports/isodomain 

 da180f76-5b46-4bb3-b83f-8a9704b16e58 | rdr-
nfs.siteb.example:/exports/EXPORT 
(2 rows) 

The database now contains the correct information to allow it to activate the export storage 
domain.

7.3.6 ISO Storage Domain
Like the export storage domains, ISO Storage domains use NFS storage. Fixing the database 
for the ISO storage domain is done the same as an export storage domain.

Using the UID gathered in from the storage_domain_static table, query the id and connection 
columns of the storage_server_connections table.

# echo "SELECT id, connection FROM storage_server_connections WHERE 
id='11121133-c07c-414d-8c54-4ce7d26c1495';" | psql -d rhevm -U postgres 
                  id                  |                connection 
--------------------------------------
+------------------------------------------ 
 11121133-c07c-414d-8c54-4ce7d26c1495 | rdr-
nfs.sitea.example:/exports/isodomain 
(1 row) 

www.redhat.com 46 refarch-feedback@redhat.com



Update the storage_server_connections table with the correct information.

# echo "UPDATE storage_server_connections SET connection='rdr-
nfs.siteb.example:/exports/ISO' where id='11121133-c07c-414d-8c54-
4ce7d26c1495';" | psql -d rhevm -U postgres 
UPDATE 1 

# echo "SELECT id, connection FROM storage_server_connections WHERE 
id='11121133-c07c-414d-8c54-4ce7d26c1495';" | psql -d rhevm -U postgres 
                  id                  |             connection             
--------------------------------------+------------------------------------ 
 11121133-c07c-414d-8c54-4ce7d26c1495 | rdr-nfs.siteb.example:/exports/ISO 
(1 row) 

The database now contains the correct information to allow it to activate the ISO storage 
domain.

7.3.7 RHEV Manager Service (jbossas)
Once all the modifications to the database are complete, it is safe to start the RHEV Manager 
service.

# service jbossas start 
Starting jbossas:                                          [  OK  ] 

The service must be started to connect to the web interface or the REST API.

refarch-feedback@redhat.com 47 www.redhat.com



7.4 Hypervisors
New hypervisors must be installed and added to the RHEV environment. Depending on the 
environment, hypervisors may be installed prior to failover to assist in limiting downtime 
during a failover. The servers running the hypervisors must have compatible architectures 
with the original hypervisors.

This paper does not discuss the installation of a hypervisor.3 When configuring the hypervisor 
to join the RHEV environment, the original FQDN of rdr-rhevm.sitea.example must be used. 

Enabling remote access to the hypervisor itself makes certain tasks easier and allows for a 
more complete automation solution. A public key is placed in the /root/.ssh/authorized_keys 
file on the RHEV Hypervisor. This allows remote execution of commands into the hypervisor 
using ssh. The public key is placed in the /root/.ssh/authorized_keys file by logging into the 
RHEV Hypervisor as the user admin and pressing the F2 key. This brings up a support shell. 
The following commands, issued at the command prompt, place a copy the public key from 
/root/.ssh on the RHEV Manager into the /root/.ssh/authorized_keys file..

# cd /root/.ssh 

# ssh rdr-rhevm.sitea.example "cat /root/.ssh/id_rsa.pub" >> authorized_keys 
root@rdr-rhevm.sitea.example's password: [PASSWORD]

Once the hypervisor is configured and added to the RHEV environment, it is approved into 
the environment using the web portal or using the REST API.

The UID of the host and the cluster are needed in order to approve the hypervisor into the 
environment using the REST API. The REST API is used to gather the UIDs using the URI 
paths /api/hosts and /api/clusters respectively. The UIDs of the hosts are stored in an 
associative array named HH. The UIDs of the clusters are stored in an array named HC. 

# curl --request "GET" ${APIBASE}/hosts  | xpath '/hosts/host/@id' 
Found 2 nodes: 
-- NODE -- 
 id="4f2b4996-12ba-11e1-90af-001871eba039"-- NODE -- 
 id="9f9f3b04-3a78-11e1-86d7-0025b3a9b001" 

# curl --request "GET" ${APIBASE}/hosts | xpath '/hosts/host[@id="4f2b4996-
12ba-11e1-90af-001871eba039"]/name' 
Found 1 nodes: 
-- NODE -- 
<name>rdr-rhevh.sitea.example</name> 

# curl --request "GET" ${APIBASE}/hosts | xpath '/hosts/host[@id="9f9f3b04-
3a78-11e1-86d7-0025b3a9b001"]/name' 
Found 1 nodes: 
-- NODE -- 
<name>rdr-rhevh.siteb.example</name> 

# declare -A HH 

3 http://docs.redhat.com/docs/en-US/Red_Hat_Enterprise_Virtualization/3.0/html/Installation_Guide/index.html

www.redhat.com 48 refarch-feedback@redhat.com



# HH[rdr-rhevh.sitea.example]=4f2b4996-12ba-11e1-90af-001871eba039 
# HH[rdr-rhevh.siteb.example]=9f9f3b04-3a78-11e1-86d7-0025b3a9b001 

# curl --request "GET" ${APIBASE}/clusters | xpath '/clusters/cluster/@id' 
Found 3 nodes: 
-- NODE -- 
 id="99408929-82cf-4dc7-a532-9d998063fa95"-- NODE -- 
 id="ddbf36dc-12b9-11e1-ae84-001871eba039"-- NODE -- 
 id="9495276a-205a-11e1-9bb5-001871eba039" 

# curl --request "GET" ${APIBASE}/clusters | xpath 
'/clusters/cluster[@id="99408929-82cf-4dc7-a532-9d998063fa95"]/name' 
Found 1 nodes: 
-- NODE -- 
<name>Default</name> 

# curl --request "GET" ${APIBASE}/clusters | xpath 
'/clusters/cluster[@id="ddbf36dc-12b9-11e1-ae84-001871eba039"]/name' 
Found 1 nodes: 
-- NODE -- 
<name>SiteA</name> 

# curl --request "GET" ${APIBASE}/clusters | xpath 
'/clusters/cluster[@id="9495276a-205a-11e1-9bb5-001871eba039"]/name' 
Found 1 nodes: 
-- NODE -- 
<name>SiteB</name> 
 
# declare -A HC 
# HC[Default]=99408929-82cf-4dc7-a532-9d998063fa95 
# HC[SiteA]=ddbf36dc-12b9-11e1-ae84-001871eba039 
# HC[SiteB]=9495276a-205a-11e1-9bb5-001871eba039 

To approve the hypervisor using the REST API, issue the following command:

# curl --request "POST" --data "<action><cluster id=\"$
{HC[SiteB]}\"/></action>" ${APIBASE}/hosts/${HH[rdr-
rhevh.siteb.example]}/approve 
<?xml version="1.0" encoding="UTF-8" standalone="yes"?> 
<action> 
    <cluster id="9495276a-205a-11e1-9bb5-001871eba039"/> 
    <status> 
        <state>complete</state> 
    </status> 
</action> 

refarch-feedback@redhat.com 49 www.redhat.com



After the host is approved, check the status to ensure the host is in a usable state. A call to 
the REST API displays this information.

# curl --request "GET" ${APIBASE}/hosts/${HH[rdr-rhevh.siteb.example]} | 
xpath '/host/status' 
Found 1 nodes: 
-- NODE -- 
<status> 
        <state>non_operational</state> 
        <detail>network_unreachable</detail> 
    </status> 

The status indicates there is a required network that is unreachable from this host. Viewing 
the event logs indicates the missing network is called public. 

# curl --request "GET" ${APIBASE}/events

    <event id="504" href="/api/events/504"> 
        <description>Detected new Host rdr-rhevh.siteb.example. Host state 
was set to Non Operational.</description> 
        <code>13</code> 
        <severity>normal</severity> 
        <time>2011-12-13T14:18:28.438-06:00</time> 
        <host id="805bb14c-2505-11e1-b809-0025b3a9b001" 
href="/api/hosts/805bb14c-2505-11e1-b809-0025b3a9b001"/> 
        <cluster id="9495276a-205a-11e1-9bb5-001871eba039" 
href="/api/clusters/9495276a-205a-11e1-9bb5-001871eba039"/> 
    </event> 
    <event id="503" href="/api/events/503"> 
        <description>Host rdr-rhevh.siteb.example does not comply with the 
cluster SiteB networks, the following networks are missing on host: 'public' 
</description> 
        <code>519</code> 
        <severity>warning</severity> 
        <time>2011-12-13T14:18:28.217-06:00</time> 
        <host id="805bb14c-2505-11e1-b809-0025b3a9b001" 
href="/api/hosts/805bb14c-2505-11e1-b809-0025b3a9b001"/> 
        <cluster id="9495276a-205a-11e1-9bb5-001871eba039" 
href="/api/clusters/9495276a-205a-11e1-9bb5-001871eba039"/> 
    </event> 

To attach the missing network called public to a network interface on the server, the UUID of 
a network interface on the RHEV Hypervisor and the UUID of the PUBLIC network are needed. 
The REST API provides the /api/networks URI to retrieve the network names and UIDs.

www.redhat.com 50 refarch-feedback@redhat.com



Query the REST API for the networks. The output shows three networks, two named rhevm 
and one named public. Two networks with the same name exist since both the Default data 
center and the RefArch datacenter have networks named rhevm defined. Since only one 
network named public exists, this is the network the hypervisor needs.

# curl --request "GET" ${APIBASE}/networks | xpath '/networks/network/@id' 
Found 3 nodes: 
-- NODE -- 
 id="00000000-0000-0000-0000-000000000009"-- NODE -- 
 id="ee84a644-289c-494c-bad1-6a891fe5c8a7"-- NODE -- 
 id="bf2317b6-3f86-4583-b985-6c34afc81c16" 

# curl --request "GET" ${APIBASE}/networks | xpath 
'/networks/network[@id="00000000-0000-0000-0000-000000000009"]/name' 
Found 1 nodes: 
-- NODE -- 
<name>rhevm</name> 

# curl --request "GET" ${APIBASE}/networks | xpath 
'/networks/network[@id="ee84a644-289c-494c-bad1-6a891fe5c8a7"]/name' 
Found 1 nodes: 
-- NODE -- 
<name>rhevm</name> 

# curl --request "GET" ${APIBASE}/networks | xpath 
'/networks/network[@id="bf2317b6-3f86-4583-b985-6c34afc81c16"]/name' 
Found 1 nodes: 
-- NODE -- 
<name>public</name> 

If multiple networks called public existed, the /API/NETWORKS URI could provide the datacenter 
UID for the network as well. The output shows two unique data center UIDs, showing one 
datacenter has multiple networks defined.

# curl --request "GET" ${APIBASE}/networks | xpath 
'/networks/network[@id="00000000-0000-0000-0000-
000000000009"]/data_center/@id' 
Found 1 nodes: 
-- NODE -- 
 id="632b8642-12b8-11e1-9936-001871eba039" 

# curl --request "GET" ${APIBASE}/networks | xpath 
'/networks/network[@id="ee84a644-289c-494c-bad1-
6a891fe5c8a7"]/data_center/@id' 
Found 1 nodes: 
-- NODE -- 
 id="10b3c00e-9371-48ce-8d28-28158cf26d96" 

# curl --request "GET" ${APIBASE}/networks | xpath 
'/networks/network[@id="bf2317b6-3f86-4583-b985-
6c34afc81c16"]/data_center/@id' 
Found 1 nodes: 
-- NODE -- 
 id="10b3c00e-9371-48ce-8d28-28158cf26d96" 

refarch-feedback@redhat.com 51 www.redhat.com



The /api/datacenters URI provides the datacenter UID and name. This URI is used to gather 
the user friendly name of the datacenter using the UIDs of the datacenter. Since the 
datacenter UIDs are used in various calls to the REST API, add them to an associative array. 

# curl --request "GET" ${APIBASE}/datacenters | xpath 
'/data_centers/data_center[@id="632b8642-12b8-11e1-9936-001871eba039"]/name' 
Found 1 nodes: 
-- NODE -- 
<name>Default</name> 

# curl --request "GET" ${APIBASE}/datacenters | xpath 
'/data_centers/data_center[@id="10b3c00e-9371-48ce-8d28-28158cf26d96"]/name' 
Found 1 nodes: 
-- NODE -- 
<name>RefArch</name> 

# declare -A DC 
# DC[Default]=632b8642-12b8-11e1-9936-001871eba039 
# DC[RefArch]=10b3c00e-9371-48ce-8d28-28158cf26d96 

www.redhat.com 52 refarch-feedback@redhat.com



The last piece of information needed to attach the public network to the host is the UID of a 
nic on the host. This environment uses the interface with the MAC address of 
00:17:A4:77:24:3A for the public network. The following gathers the needed information.

# curl --request "GET" ${APIBASE}/hosts/${HH[rdr-rhevh.siteb.example]}/nics 
| xpath '/host_nics/host_nic/@id' 
Found 8 nodes: 
-- NODE -- 
 id="f9a68349-6489-4944-9f42-078c9d0c5ec8"-- NODE -- 
 id="aff0cf2d-b0c0-48c1-a294-8360839f9518"-- NODE -- 

# curl --request "GET" ${APIBASE}/hosts/${HH[rdr-rhevh.siteb.example]}/nics 
| xpath '/host_nics/host_nic[@id="f9a68349-6489-4944-9f42-
078c9d0c5ec8"]/name' 
Found 1 nodes: 
-- NODE -- 
<name>eth0</name> 

# curl --request "GET" ${APIBASE}/hosts/${HH[rdr-rhevh.siteb.example]}/nics 
| xpath '/host_nics/host_nic[@id="f9a68349-6489-4944-9f42-
078c9d0c5ec8"]/mac/@address' 
Found 1 nodes: 
-- NODE -- 
 address="00:17:A4:77:24:38" 

# curl --request "GET" ${APIBASE}/hosts/${HH[rdr-rhevh.siteb.example]}/nics 
| xpath '/host_nics/host_nic[@id="aff0cf2d-b0c0-48c1-a294-
8360839f9518"]/name' 
Found 1 nodes: 
-- NODE -- 
<name>eth1</name>

# curl --request "GET" ${APIBASE}/hosts/${HH[rdr-rhevh.siteb.example]}/nics 
| xpath '/host_nics/host_nic[@id="aff0cf2d-b0c0-48c1-a294-
8360839f9518"]/mac/@address' 
Found 1 nodes: 
-- NODE -- 
 address="00:17:A4:77:24:3A" 

refarch-feedback@redhat.com 53 www.redhat.com



All the information needed to attach the public network to the host is now known. The REST 
API provides a means to attach the network to a host. The URI to attach the host requires the 
UIDs of the host and nic. The request also requires the UID of the network to be passed in an 
XML format. The XML code is passed using the ---data option to the curl command.

The URI to attach the network is /api/hosts/HOST_UID/nics/NIC_UID/attach.

The XML code used is:

<action>
  <network id=”NET_UID”/>
</action>

The following values are used in the above URI and XML code.

HOST_UID ${HH[rdr-rhevh.siteb.example]}

NIC_UID aff0cf2d-b0c0-48c1-a294-8360839f9518

NET_UID bf2317b6-3f86-4583-b985-6c34afc81c16

Attach the network to the host using the following command.

# curl --request "POST" --data "<action><network id=\"bf2317b6-3f86-4583-
b985-6c34afc81c16\"/></action>" ${APIBASE}/hosts/${HH[rdr-
rhevh.siteb.example]}/nics/aff0cf2d-b0c0-48c1-a294-8360839f9518/attach 
<?xml version="1.0" encoding="UTF-8" standalone="yes"?> 
<action> 
    <network id="bf2317b6-3f86-4583-b985-6c34afc81c16"/> 
    <status> 
        <state>complete</state> 
    </status> 
</action> 

After the network is attached to the interface on the host, the network configuration must be 
saved. Failing to save the network configuration makes the network unavailable if the host is 
rebooted. The following command and URI save the network configuration of the host.

# curl --request "POST" --data "<action/>" ${APIBASE}/hosts/${HH[rdr-
rhevh.siteb.example]}/commitnetconfig 
<?xml version="1.0" encoding="UTF-8" standalone="yes"?> 
<action> 
    <status> 
        <state>complete</state> 
    </status> 
</action> 

www.redhat.com 54 refarch-feedback@redhat.com



The host is activated and used in the environment. The following activates the host.

# curl --request "POST" --data "<action/>" ${APIBASE}/hosts/${HH[rdr-
rhevh.siteb.example]}/activate 
<?xml version="1.0" encoding="UTF-8" standalone="yes"?> 
<action> 
    <status> 
        <state>complete</state> 
    </status> 
</action> 

The hypervisors at the original site, SiteA, show to be the STORAGE POOL MANAGER (SPM). 
These hypervisors need to be fenced to allow a hypervisor at SiteB to become the SPM. The 
Data Storage Domain must be fixed and accessible before the fencing process will work.

Fence the hypervisor from SiteA.

# curl --request "POST" --data 
"<action><fence_type>manual</fence_type></action>" ${APIBASE}/hosts/$
{HH[rdr-rhevh.sitea.example]}/fence 

<?xml version="1.0" encoding="UTF-8" standalone="yes"?> 
<action> 
    <fence_type>manual</fence_type> 
    <status> 
        <state>complete</state> 
    </status> 
</action> 

The Spm Status of the SiteA hypervisor changes to None. After a few seconds, the Spm Status 
of the SiteB hypervisor changes to Contend. After a few minutes, the status should change to 
SPM. The SiteB hypervisor is now the Storage Pool Manager. All the storage domains 
become active.

refarch-feedback@redhat.com 55 www.redhat.com



7.4.1 Moving the VMs
The virtual machines are assigned to the SiteA cluster. They cannot be started until they are 
assigned to the SiteB cluster. The REST API is used to assign the VM to the SiteB cluster.

The UID of the virtual machine is needed for the REST API request. The /api/vms URI 
retrieves the information about the virtual machines.

# curl --request "GET" ${APIBASE}/vms | xpath "/vms/vm/@id | /vms/vm/name" 
Found 8 nodes: 
-- NODE -- 
 id="bdbd6360-7c5b-4f97-9534-1afab57de724"-- NODE -- 
<name>rdr-devel-vm</name>-- NODE -- 

 id="0d1d84e7-be6f-49fb-9294-a232a8cbd044"-- NODE -- 
<name>rdr-w2k8</name>-- NODE -- 

 id="808f87e6-3a2f-46ba-a35b-4089cf18360d"-- NODE -- 
<name>rdr-W7</name>-- NODE -- 

 id="2dc70b1c-7c7f-49d6-b3dd-ba891e5283f8"-- NODE -- 
<name>rdr-web-vm</name> 

A PUT request is made to the /api/vms URI to modify the properties of the virtual machine. 
The name of the new cluster is submitted as XML code. The following loop changes the 
virtual machine to be in the SiteB cluster.

# for vmid in bdbd6360-7c5b-4f97-9534-1afab57de724 0d1d84e7-be6f-49fb-9294-
a232a8cbd044 808f87e6-3a2f-46ba-a35b-4089cf18360d 2dc70b1c-7c7f-49d6-b3dd-
ba891e5283f8 
> do 
> curl --request "PUT" --data 
"<vm><cluster><name>SiteB</name></cluster></vm>" ${APIBASE}/vms/${vmid} 
> done 

[ ...OUTPUT TRUNCATED... ]

www.redhat.com 56 refarch-feedback@redhat.com



7.4.2 Starting the Virtual Machines
The virtual machines need to be powered on if they do not come up automatically. This is 
done using the web portal to prevent any resource race conditions.

Virtual machines can be powered on using the REST API as well. The following loop starts 
the virtual machines with a delay of 5 seconds between each start request.

# for vmid in bdbd6360-7c5b-4f97-9534-1afab57de724 0d1d84e7-be6f-49fb-9294-
a232a8cbd044 808f87e6-3a2f-46ba-a35b-4089cf18360d 2dc70b1c-7c7f-49d6-b3dd-
ba891e5283f8 
> do 
> curl --request "POST" --data "<action/>" ${APIBASE}/vms/${vmid}/start 
> sleep 5 
> done 
<?xml version="1.0" encoding="UTF-8" standalone="yes"?> 
<action> 
    <status> 
        <state>complete</state> 
    </status> 
</action> 
<?xml version="1.0" encoding="UTF-8" standalone="yes"?> 
<action> 
    <status> 
        <state>complete</state> 
    </status> 
</action> 
<?xml version="1.0" encoding="UTF-8" standalone="yes"?> 
<action> 
    <status> 
        <state>complete</state> 
    </status> 
</action> 
<?xml version="1.0" encoding="UTF-8" standalone="yes"?> 
<action> 
    <status> 
        <state>complete</state> 
    </status> 
</action> 

refarch-feedback@redhat.com 57 www.redhat.com



8 Automating the Failover
Automating the failover process can be easily done using various scripting languages such as 
Python, Perl, bash, etc..

This section demonstrates using scripts to automate the failover of the environments used in 
this reference architecture. 

This scripts are not designed to work for every environment and is not meant for a production 
environment since it does not perform extensive error checking. The intent of the scripts are 
to demonstrate the automation of a site level failover of a Red Hat Enterprise Virtualization 
environment is possible with a little planning. The scripts are written in bash as it is more 
widely known than other languages such as python or Perl. 

The scripts use a configuration file to store their settings. Each line of the configuration file 
begins with the type of entry followed by a keyword and up to three values. If a line begins 
with a pound (#) or semicolon (;) then it is considered a comment line and is ignored. The 
types and keys that may exist in the configuration file are listed in Table 8.1: Configuration
File.

The following example shows a type of CONFIG followed by a keyword and then a value. The 
keywords in this example are logfile and working_dir. 

CONFIG logfile rdr.log 
CONFIG working_dir /tmp/rdr 

The information from the configuration file is stored in associative arrays that have identical 
names to the Type column in Table 8.1: Configuration File with a key from the Key column. 
Referencing the Type and keys are done using the syntax of Type[key]. This is identical to 
how the associative arrays are referenced in the script. For instance, when the key logfile of 
type CONFIG is referenced, it will be presented in the document as CONFIG[logfile].

www.redhat.com 58 refarch-feedback@redhat.com



Type Key Value

API

host Hostname of the RHEV Manager

port
Secure port to connect to when making 
REST API requests.

base The base URI for the API. Usually api.

user
User name to use when accessing the 
REST API. Format admin@internal

pass Password for the API user.

cert
Name of the cert on the RHEV Manager as 
accessed via URL. Usually ca.crt.

cert_port
Port to connect to on the RHEV Manager 
when retrieving the certificate. Usually 8080.

DB
user

PostgreSQL user name to use when 
accessing the database.

pass Password for PostgreSQL user if needed.

CONFIG
logfile File to log output to.

working_dir Directory to place log files and such.

Storage_Domain [Data Domain Name]

The connection information for the Storage 
Domains after failover.

The first value after the key identifies 
the type of storage as either nfs, 
fibre, or iscsi.

If the storage type is nfs, the second 
value specifies the NFS export to use.

If the storage type is fibre, the 
second value after the key identifies 
the host name of a hypervisor that can 
be used to gather information about the 
fibre LUN. The third value after the key 
identifies the scsi serial number as 
presented by the storage.
The host needs remote ssh access into 
the root account.

If the storage type is iscsi, the 
second value after the key identifies 
the host name or IP address of the 
iscsi target.
The third value specifies the iqn of the 
iSCSI target.

refarch-feedback@redhat.com 59 www.redhat.com



Type Key Value

SITE_INFO

datacenter
The name of the datacenter performing a 
failover.

main_site_cluster Cluster name for the main site.

bkup_site_cluster Cluster name for the site to fail over to.

VIRT_NET [hypervisor name]

The virtual networks that need to be 
configured on the hypervisors.

The first value after the key is the 
network interfaces hardware address 
to map to a virtual network.
The second value after the key is the 
name of the virtual network to map.

RHEVM_NIC
[NIC Hardware 
Address]

The network hardware address to interface 
name mappings to use on the RHEV 
Manager.

The first value after the key is the 
interface name to map to. 

START_VM [VM name] Delay in seconds to wait before starting this 
virtual machine.

Table 8.1: Configuration File

8.1 Functions
Most of the work in the scripts are done using functions. Functions make fixing and changing 
aspects of the script easier. They also break the script into pieces that allow for a better 
understanding of their purpose.

Some of the functions allow the script to look nicer when executed, but most functions 
perform the tasks associated with the failover. An explanation of how the function works is 
provided. The following functions are used in the script. 

8.1.1 dust_settle()
Certain aspects of the failover process can take time to compete. This is not a concern when 
manually performing a failover since the processes are usually finished before the next 
process or command needs executed.

Because the system executes processes and commands much faster than can be done by 
hand, automating the process can cause some race conditions. Adding sleep statements to 
the script can fix this problem. However, when the script is sleeping, there is no indication if 
the script is sleeping or has entered a non-responsive state.

The dust_settle() function displays a countdown, presented in seconds, indicating the script is 
still active and in a sleep state. The function accepts one argument indicating the number of 
seconds to sleep.

www.redhat.com 60 refarch-feedback@redhat.com



dust_settle() { 
  count=$1 

  for (( count=$1; count>0; count-- )) 
  do 
    output "                \r\c" screen 
    output "   --- ${count} \r\c" screen 
    sleep 1 
  done 
  output "                " screen 
} 

8.1.2 output()
Although printing to Standard Out (STDOUT) and to a logfile is easily done using the echo 
command and redirection, this can make the script look cluttered and can make changes to 
the output tedious. 

The output() function allows cleaner output and versatility as to when and where to display 
the output.

The function accepts one or two arguments. The first argument specifies the text to print. The 
second argument indicates where to print the text. If the second argument is the word screen, 
then the text is printed to STDOUT. If the second argument is the word log and a file to log 
output to has been specified, then the text is printed to the file. Finally, if the second argument 
is not specified then the output is printed to STDOUT and to the file if it has been specified.

The name of the file for writing the output to is specified using the CONFIG[logfile] and 
CONFIG[working_dir] entry's in the configuration file. These entries specify the name of the 
logfile and the directory to place the file, respectively.

The code for the output() function is:

output() { 
  if [ "$2" != "log" ] && [ ! ${CONFIG[quiet]} ] 
  then 
    echo -e "$1" 
  fi 

  if [ "$2" != "screen" ] && [ ${CONFIG[logfile]} ] 
  then 
    echo -e "$1" >> ${CONFIG[working_dir]}/${CONFIG[logfile]} 
  fi 
} 

8.1.3 check_needed_commands()
The xpath command is needed to parse the XML output returned from the REST API calls. 
This function checks to see if the xpath command is installed into the users path. This 
function also checks if the iscsiadm command is installed. If a command is not installed in 
the users path, the script prints a suggested package that might contain the script and exits. 
This function does not take any arguments to function.

refarch-feedback@redhat.com 61 www.redhat.com



An associative array called NEEDED_CMDS is defined. This array contains the name of the 
command and the package that contains the command.

Declare the NEEDED_CMDS associative array and add entries for the xpath and iscsiadm 
commands. This information is not stored in the configuration file since it required by the 
script.

declare -A NEEDED_CMDS 

NEEDED_CMDS[iscsiadm]=iscsi-initiator-utils 
NEEDED_CMDS[xpath]=perl-XML-XPath 

The check_needed_commands() function.

check_needed_commands() { 
  missing=0 
  for command in ${!NEEDED_CMDS[@]} 
  do 
    which ${command} > /dev/null 2>&1 
    if [ $? -ne 0 ] 
    then 
      output "${command}: not found and is needed." 
      output "     This command may be provided by the ${NEEDED_CMDS[$
{command}]} package." 
      missing=1 
    fi 
  done 

  if [ ${missing} -eq 1 ] 
  then 
    output "Exiting..." 
    exit 
  fi 
} 

8.1.4 REST_get_cert()
The REST_get_cert() function retrieves the certificate from the RHEV Manager. This function 
does not take any arguments. The configuration file stores the values needed for this function 
to operate. The function uses the CONFIG[working_dir] from the configuration file as the 
location to store the certificate. 

The function also uses the API[cert], API[host], and the API[cert_port] definitions. These 
specify the name of the certificate on the REST API server, the servers host name,and port 
respectively. This information is stored an associative array called API.

The function takes no arguments when called.

REST_get_cert() { 
  output "Retrieving certificate..... \c" 
  curl --silent -o ${CONFIG[working_dir]}/${API[cert]} http://${API[host]}:$
{API[cert_port]}/${API[cert]} 
  output "Done" 
} 

www.redhat.com 62 refarch-feedback@redhat.com



8.1.5 REST_submit()
The REST_submit() is used to submit requests to the REST API instead of issuing lengthy 
curl commands throughout the script. This function accepts up to three arguments when 
called. The third argument is optional, but the first two are mandatory. 

The first argument specifies the request type to make to the REST API. Common values for 
this argument are GET, POST, and PUT. 

The second argument specifies the branch of the API to submit to. To query the virtual 
machines, this argument would be vms.

The optional third argument is the XML code to send to the REST API when needed. The 
third argument is used with the POST and PUT requests.

The function uses the CONFIG[working_dir], API[cert], API[host], API[user], API[pass], 
API[port], and API[base] values from the configuration file to complete the requests. 

The function builds the request to the REST API.

REST_submit() { 
  # request_type, api_branch, data 
  curl --silent                                              \ 
       --cacert  ${CONFIG[working_dir]}/${API[cert]}         \ 
       --header  "Content-Type: application/xml"             \ 
       --user    "${API[user]}:${API[pass]}"                 \ 
       --request "$1"                                        \ 
       --data    "$3"                                        \ 
       https://${API[host]}:${API[port]}/${API[base]}/$2 
} 

8.1.6 get_scsi_domain()
The get_scsi_domain() function takes a fibre storage domain as its only argument. The 
function then connects to the server specified in the FIBRE[STORAGE DOMAIN] array. 
Using the wwid stored in the array and the scsi_id command, the function gathers the 
information needed to modify the database. The information is then stored into the 
FIBRE[STORAGE DOMAIN] element of the array.

get_scsi_domain() { 
  sname=$1 
  fibre_info=( $( echo ${FIBRE[${sname}]} | tr '|' ' ' ) ) 

  dev_wwn=( $( ssh ${fibre_info[0]} 'for disk in $( ls -d /sys/block/sd* | 
sed "s/^.*\///" ) 
  do 
    echo -e "${disk} \c" 
    scsi_id --whitelisted --page 0x83 --export /dev/${disk} | grep 
ID_SCSI_SERIAL | sed "s/^.*=//" 
  done' | grep ${fibre_info[1]} ) ) 

  out1=( $( ssh ${fibre_info[0]} "scsi_id --page=0x80 --whitelisted --export 

refarch-feedback@redhat.com 63 www.redhat.com



--replace-whitespace --device=/dev/${dev_wwn}" | awk -F '=' '/^ID_VENDOR=|
^ID_MODEL=|^ID_SERIAL=/ { printf "|" $2 }' ) ) 

  out2=( $( ssh ${fibre_info[0]} "scsi_id --page=0x83 --whitelisted --export 
--replace-whitespace --device=/dev/${dev_wwn}" | awk -F '=' '/^ID_SERIAL=/ { 
printf "|" $2 }' ) ) 
 
  out3=( $( ssh ${fibre_info[0]} "ls -l /sys/block/${dev_wwn}/device " | awk 
-F ':' '{ sub(/\/$/, ""); print $NF }' ) ) 

  FIBRE[${sname}]="${FIBRE[${sname}]}${out1}${out2}|${out3}" 
} 

8.1.7 fix_scsi_domain()
The fix_scsi_domain() function uses the information populated in the FIBRE[STORAGE 
DOMAIN] array to fix the RHEV Manager database. The get_scsi_domain() must be called 
before this function.

fix_scsi_domain() { 
  sname=$1 
  id=$( echo "SELECT storage FROM storage_domain_static WHERE 
storage_name='${sname}';" | psql -d rhevm -U postgres --tuples-only | sed 
's/^\s*//' ) 

  iscsi_tmp=( $( echo ${FIBRE[${sname}]} | tr '|' ' ' ) ) 

  echo "UPDATE luns SET lun_id='${iscsi_tmp[5]}', serial='${iscsi_tmp[4]}', 
lun_mapping='${iscsi_tmp[6]}', vendor_id='${iscsi_tmp[2]}', product_id='$
{iscsi_tmp[3]}' WHERE volume_group_id='${id}';" | psql -d rhevm -U postgres 
--tuples-only 
} 

8.1.8 get_iscsi_info()

The get_iscsi_info() function takes an iSCSI Storage Domain as its only option. The function 
uses the value stored in ISCSI[ [STORAGE DOMAIN] ] to log into the iSCSI target and 
retrieve the necessary information from the scsi_id command. The information is then 
appended to the original value of ISCSI[ [STORAGE DOMAIN] ].

get_iscsi_info() { 
  sname=$1 
  iscsi_info=( $( echo ${ISCSI[${sname}]} | tr '|' ' ' ) ) 

  iscsiadm --mode discovery --type sendtargets --portal ${iscsi_info[0]} 

  iscsiadm --mode node --targetname ${iscsi_info[1]} --portal $
{iscsi_info[0]} --login 

  sleep 5 
  iscsi_device=$( ls -l /dev/disk/by-path | sed -n "/${iscsi_info[1]}/p" | 

www.redhat.com 64 refarch-feedback@redhat.com



sed 's/.*\///' ) 

  tmp1=$( scsi_id --page=0x80 --whitelisted --export --replace-whitespace 
--device=/dev/${iscsi_device} | awk -F '=' '/^ID_VENDOR=|^ID_MODEL=|
^ID_SERIAL=/ { printf "|" $2 }' ) 

  tmp2=$( scsi_id --page=0x83 --whitelisted --export --replace-whitespace 
--device=/dev/${iscsi_device} | awk -F '=' '/^ID_SERIAL=/ { printf "|" $2 }' 
) 

  tmp3=$( ls -l /sys/block/${iscsi_device}/device | awk -F ':' '{ sub(/\/$/, 
""); print $NF }' ) 

  ISCSI[${sname}]="${ISCSI[${sname}]}${tmp1}${tmp2}|${tmp3}" 

  iscsiadm --mode node --targetname ${iscsi_info[1]} --portal $
{iscsi_info[0]} --logout 

} 

8.1.9 fix_iscsi_domain()
The fix_iscsi_info() function takes an iSCSI Storage Domain as its only option. It uses the 
value from ISCSI[ [STORAGE DOMAIN] ] to modify the database tables to fix the storage 
information.

fix_iscsi_domain() { 
  sname=$1 
  id=$( echo "SELECT storage FROM storage_domain_static WHERE 
storage_name='${sname}';" | psql -d rhevm -U postgres --tuples-only | sed 
's/^\s*//' ) 

  orig_lid=$( echo "SELECT lun_id FROM luns WHERE volume_group_id='${id}';" 
| psql -d rhevm -U postgres --tuples-only | sed 's/^\s*//' ) 

  tmp=$( echo "SELECT phisical_volume_id,device_size FROM luns WHERE 
volume_group_id='${id}';" | psql -d rhevm -U postgres --tuples-only | sed 
's/^\s*//' | tr --delete ' ' ) 
  ISCSI[${sname}]="${ISCSI[${sname}]}|${tmp}" 

  ssc_id=$( echo "SELECT storage_server_connection FROM 
lun_storage_server_connection_map WHERE lun_id='${orig_lid}';" | psql -d 
rhevm -U postgres --tuples-only | sed 's/^\s*//' ) 

  iscsi_tmp=( $( echo ${ISCSI[${sname}]} | tr '|' ' ' ) ) 

  echo "INSERT INTO luns VALUES ('${iscsi_tmp[7]}', '${iscsi_tmp[5]}', '$
{id}', '${iscsi_tmp[4]}', '${iscsi_tmp[6]}', '${iscsi_tmp[2]}', '$
{iscsi_tmp[3]}', '${iscsi_tmp[8]}');" | psql -d rhevm -U postgres --tuples-
only 

  echo "UPDATE lun_storage_server_connection_map SET lun_id='$
{iscsi_tmp[5]}' WHERE lun_id='${orig_lid}';" | psql -d rhevm -U postgres 
--tuples-only 

refarch-feedback@redhat.com 65 www.redhat.com



  echo "DELETE FROM luns WHERE volume_group_id='${id}' AND lun_id='$
{orig_lid}';" | psql -d rhevm -U postgres --tuples-only 
  echo "UPDATE storage_server_connections SET connection='${iscsi_tmp[0]}', 
iqn='${iscsi_tmp[1]}' WHERE id='${ssc_id}';" | psql -d rhevm -U postgres 
--tuples-only 

} 

8.1.10 REST_get_dc()
The REST_get_dc() function queries the REST API for datacenter information. It parses the 
returned XML for the datacenter name and UID. The names and UIDs are stored in an 
associative array called DC. The name is used for the key of the array and the UID is the 
value.

REST_get_DC()

REST_get_dc() { 
  output "Getting Datacenter UIDs..." 

  while read uid name 
  do 
    DC[${name}]=${uid} 
  done < <( 
    REST_submit GET datacenters \ 
    | xpath '/data_centers/data_center/@id | /data_centers/data_center/name' 
\ 
    | sed -e 's/id=\|"//g' -e 's/<name>/ /g' -e 's/<\/name>/\n/g' 
    ) 
} 

www.redhat.com 66 refarch-feedback@redhat.com



8.1.11 REST_get_hc()
The REST_get_hc() function queries the REST API for cluster information. It parses the 
returned XML for the cluster name and UID. The names and UIDs are then stored in an 
associative array called HC. The name is used for the key of the array and the UID is the 
value.

REST_get_hc() { 
  output "Getting Cluster UIDs..." 

  while read uid name 
  do 
    HC[${name}]=${uid} 
  done < <( 
    REST_submit GET clusters \ 
    | xpath '/clusters/cluster/@id | /clusters/cluster/name' \ 
    | sed -e 's/id=\|"//g' -e 's/<name>/ /g' -e 's/<\/name>/\n/g' 
    ) 
}

8.1.12 REST_get_hh
The REST_get_hh() function queries the REST API for hypervisor host information. It parses 
the returned XML for the host name and UID. The names and UIDs are then stored in an 
associative array called HH. The name is used for the key of the array and the UID is the 
value.

REST_get_hh() { 
  output "Getting Host UIDs..." 

  while read uid name 
  do 
    HH[${name}]=${uid} 
  done < <( 
    REST_submit GET hosts \ 
    | xpath '/hosts/host/@id | /hosts/host/name' \ 
    | sed -e 's/id=\|"//g' -e 's/<name>/ /g' -e 's/<\/name>/\n/g' 
    ) 
} 

8.1.13 get_hosts_status()
The get_hosts_status() function checks the state of all the hosts and places the names into one 
of three arrays indicating what type of action is needed for the host. The function calls the 
REST_check_host_status() function to return the status of a single host.

If the status of the host is returned as pending_approval, then the host name is placed into the 
array called host_approve. This array is later parsed and an attempt is made to approve the 

refarch-feedback@redhat.com 67 www.redhat.com



hosts stored in the array.

If the status of the host is returned as non_responsive, then the host name is placed into the 
array called host_fence. This array is later parsed and an attempt is made to fence the hosts 
stored in the array.

If the status of the host is returned as non_operational, then the host name is placed into the 
array called host_activate. This array is later parsed and an attempt is made to activate the 
hosts stored in the array.

get_hosts_status() { 

  output "Getting status of Hypervisor Hosts" 

  unset -v host_approve host_fence host_activate 

  for host in ${!HH[@]} 
  do 
    case $( REST_check_host_status ${host} 2>/dev/null ) in 
      pending_approval) 
        host_approve[${#host_approve[@]}]=${host} 
        ;; 
      non_responsive) 
        host_fence[${#host_fence[@]}]=${host} 
        ;; 
      non_operational) 
        host_activate[${#host_activate[@]}]=${host} 
        ;; 
      *) 
        ;; 
    esac 
  done 
} 

8.1.14 REST_check_host_status()
The REST_check_host_status() function submits a query to the REST API requesting 
information about a host. The function takes the name of the host to check as its only 
argument and returns the state of the host as reported by the REST API.

REST_check_host_status() { 
  REST_submit GET hosts/${HH[$1]}       \ 
    | xpath "/host/status/state"        \ 
    | sed -e 's/<state>\|<\/state>//g' 
} 

www.redhat.com 68 refarch-feedback@redhat.com



8.1.15 REST_approve_host()
The REST_approve_host() function accepts two arguments. The first argument specifies the 
host name to approve and the second argument specifies the cluster to place the host into.

The events on the RHEV Manager are queried using the REST API and are checked after the 
host has been approved. An attempt to fix the virtual network configuration on the host is 
made if an event code of 519 is found. The networking is fixed using the 
REST_fix_host_network() function.

REST_approve_host() { 
  host=$1 
  cluster=$2 

  tmp_approve=$( 
    REST_submit GET events          \ 
    | xpath "/events/event[1]/@id"  \ 
    | sed -e 's/.*id="\|".*$//g' 
    ) 

  tmp_out=$( REST_submit POST hosts/${HH[${host}]}/approve "<action><cluster 
id=\"${HC[${cluster}]}\"/></action>" 2>&1 ) 
  output "${tmp_out}" log 

  output "Giving hosts time to finish approval process." 
  dust_settle 5 

  tapp_arr=( $( 
    REST_submit GET "events?search=type%3D519&from=${tmp_approve}" \ 
    | xpath "/events/event/description"                             \ 
    | awk '{ print $2 $(NF-1) }'                                    \ 
    | tr "'" " " 
    ) ) 

  if [ "${tapp_arr[0]}" ] 
  then 
    output "Detected event code: 519" 
    output "  --- Attempting to fix network '${tapp_arr[1]}' on ${host}." 

    for nic in ${!VIRT_NET[@]} 
    do 
      t_nic_arr=( $( echo ${nic} | tr '|' ' ' ) ) 
      if [ "${t_nic_arr[0]}" = "${host}" ]                \ 
        && [ "${VIRT_NET[${nic}]}" = "${tapp_arr[1]}" ] 
      then 
        fix_host_network ${host} ${t_nic_arr[1]} ${tapp_arr[1]} 2>/dev/null 
      fi 
    done 
  fi 
} 

refarch-feedback@redhat.com 69 www.redhat.com



8.1.16 fix_host_network()
The fix_host_network() function is called by the REST_approve_function(). This function 
accepts three arguments, the hypervisor host name, the interface hardware address, and a 
network name. This function attempts to attach a virtual network to a network interface on a 
hypervisor host. It queries the host for the UID of the interface that matches the hardware 
address specified when the function was called. Once the interface is attached, the function 
commits the network changes.

fix_host_network() { 
  thost=$1 
  tnic=$2 
  tnet=$3 

  fix_arr=( $( 
    REST_submit GET "hosts/${HH[${thost}]}/nics"                         \ 
    | xpath "/host_nics/host_nic/@id | /host_nics/host_nic/mac/@address" \ 
    | sed -e s'/id=/\n/g' -e 's/"\|address=//g'                          \ 
    | grep -i ${tnic} 
    ) ) 

  output "   --- Attaching nic ${tnic} to network ${tnet}" 
  tmp_out=$( REST_submit POST hosts/${HH[${thost}]}/nics/$
{fix_arr[0]}/attach "<action><network id=\"${DCN[${tnet}]}\"/></action>" 
2>&1 ) 
  output "${tmp_out}" log 

  tmp_out=$( REST_submit POST hosts/${HH[${thost}]}/commitnetconfig 
"<action/>" 2>&1 ) 
  output "${tmp_out}" log 
} 

8.1.17 REST_activate_host()
The REST_activate_host() function accepts a single argument specifying a host name to 
activate. The function then attempts to activate the host.

REST_activate_host() { 
  thost=$1 

  output "   --- Activating Host" 
  tmp_out=$( REST_submit POST hosts/${HH[${thost}]}/activate "<action/>" 
2>&1 ) 
  output "${tmp_out}" log 
} 

www.redhat.com 70 refarch-feedback@redhat.com



8.1.18 REST_fence_host()
The REST_fence_host() function accepts a single argument specifying a host name to fence. 
The function then attempts to fence the host.

REST_fence_host() { 
 thost=$1 

  output "   --- Fencing Host" 
  tmp_out=$( REST_submit POST hosts/${HH[${thost}]}/fence 
"<action><fence_type>manual</fence_type></action>" 2>&1 ) 
  output "${tmp_out}" log 
} 

8.1.19 fix_rhevm_networking()
The fix_rhevm_networking() function uses the keys and values stored in the RHEVM_NIC[] 
array as a reference to comment the lines in the /etc/udev/rules.d/70-persistent-net.rules file 
that are not in the RHEVM_NIC[] array. The RHEVM_NIC[] array is populated from the 
configuration file.

After the lines have been commented, the function modifies the /etc/udev/rules.d/70-
persistent-net.rules file to map the correct interface name to the network hardware address.

The function then modifies the /etc/sysconfig/network-script/ifcfg-* files by commenting any 
lines beginning with HWADDR.

Finally the function suggests rebooting the system and then exits the script.

fix_rhevm_networking() { 
  # Comment out any lines in the 70-persistent-net.rules that are not needed 
  # 
  output "Removing old interfaces." 
  string=$( echo "${!RHEVM_NIC[@]}" | sed 's/ /\\|/g' ) 

  sed -i "/^#\|^$\|${string}/! s/^/# /" /etc/udev/rules.d/70-persistent-
net.rules 

  # Name the interfaces appropriately. 
  # 
  output "Renaming interfaces:" 
  for mac in ${!RHEVM_NIC[@]} 
  do 
    output "   --- ${mac} to ${RHEVM_NIC[${mac}]}" 
    sed -i "/${mac}/ s/NAME=\".*\"/NAME=\"${RHEVM_NIC[${mac}]}\"/" 
/etc/udev/rules.d/70-persistent-net.rules 
  done 

  # Fix the ifcfg-eth* files so they do not have HWADDR lines defined. 
  # 
  output "Removing HWADDR lines from interface configuration files." 

refarch-feedback@redhat.com 71 www.redhat.com



  sed -i 's/^HWADDR/# &/' /etc/sysconfig/network-scripts/ifcfg-* 

 
  echo -e "\n\n\n\n" 
  echo    "The system should now be rebooted to ensure everything comes up 
correctly." 
  echo -e "\n\n\n\n" 

  exit 
} 

8.1.20 REST_get_vm()
The REST_get_vm() function queries the REST API to get the name of the virtual machines, 
their UIDs and the UID of the cluster they are currently in. The function also queries the 
creation time of the virtual machine. The creation date is used as a delimiter for the sed 
command and is discarded.

The function uses the name of the virtual machine as a key for the VM array and the UID for 
the value. A second array called VMCluster is created, this array uses the name as the key 
and the cluster UID as the value.

REST_get_vm() { 
  output "Getting VM UIDs..." 

  while read uid name cl_uid create_time 
  do 
    VM[${name}]=${uid} 
    VMCluster[${name}]=${cl_uid} 
  done < <( 
    REST_submit GET vms \ 
    | xpath '/vms/vm/@id | /vms/vm/name | /vms/vm/cluster/@id | 
/vms/vm/creation_time' \ 
    | sed -e 's/id=\|"//g' -e 's/<name>\|<\/name>\|<creation_time>/ /g' -e 
's/<\/creation_time>/\n/g' 
    ) 
} 

8.1.21 REST_get_networks()
The REST_get_networks() function queries the REST API for the networks that are configured 
for the datacenter specified by SITE_INFO[datacenter]. An associative array called DCN is 
populated with the information, using the network name as the key and the network UID as 
the value.

REST_get_networks() { 
  output "Getting Networks for Datacenter ${SITE_INFO[datacenter]}..." 

  while read uid name dc_uid state 
  do 
    if [ "${dc_uid}" = "${DC[${SITE_INFO[datacenter]}]}" ] 
    then 
      DCN[${name}]=${uid} 

www.redhat.com 72 refarch-feedback@redhat.com



    fi 
  done < <( 
    REST_submit GET networks \ 
    | xpath '/networks/network/@id | /networks/network/name | 
/networks/network/data_center/@id | /networks/network/status/state' \ 
    | sed -e 's/id=\|"//g' -e 's/<name>\|<\/name>\|<state>/ /g' -e 
's/<\/state>/\n/g' 
    ) 
} 

8.1.22 REST_move_vms()
The REST_move_vms() function moves virtual machines in the cluster defined by 
SITE_INFO[main_site_cluster] and modifies their settings to place them in the cluster defined 
by the SITE_INFO[bkup_site_cluster] configuration option.

REST_move_vms() { 
  output "Moving Virtual Machines from cluster $
{SITE_INFO[main_site_cluster]} to cluster ${SITE_INFO[bkup_site_cluster]}." 

  for vm in ${!VM[@]} 
  do 
    if [ "${VMCluster[${vm}]}" = "${HC[${SITE_INFO[main_site_cluster]}]}" ] 
    then 
      output "   --- ${vm}" 
      tmp_out=$( REST_submit "PUT" vms/${VM[${vm}]} "<vm><cluster><name>$
{SITE_INFO[bkup_site_cluster]}</name></cluster></vm>" 2>&1 ) 
      output "${tmp_out}" log 
    fi 
  done 
} 

8.1.23 fix_nfs_domain()
The fix_nfs_domain() function updates the RHEV Managers database to reflect the NFS 
information stored in the NFS[] array.

fix_nfs_domain() { 
  sname=$1 
  id=$( echo "SELECT storage FROM storage_domain_static WHERE 
storage_name='${sname}';" \ 
    | psql -d rhevm -U postgres --tuples-only | sed 's/^\s*//' ) 

  echo "UPDATE storage_server_connections SET connection='${NFS[${sname}]}' 
WHERE id='${id}';" \ 
    | psql -d rhevm -U postgres --tuples-only 
} 

refarch-feedback@redhat.com 73 www.redhat.com



8.1.24 usage()
A function to display the options that the script takes is useful. The usage() function displays 
this information and then exits the script.

usage() { 
  echo -e "\nusage: $0 OPTIONS\n" 
  echo "  -c cfg_file  : Specify the configuration file to use." 
  echo "  -n           : Fix the RHEV Manager networking." 
  echo "  -d           : Fix the storage information in the database." 
  echo "  -h           : Fix the host and virtual machines." 
  echo "  -s           : Start the virtual machines." 
  echo "  -?           : Display usage." 

  exit 
} 

8.1.25 read_cfg()
The read_cfg() function reads the configuration file and places its contents into the appropriate 
associative arrays. The associative arrays must be defined before this function is called.

The function requires a single argument when it is called. This argument is the name of the 
configuration file to use. If the configuration file exists, all blank lines and lines beginning with 
a pound (#) or semicolon (;) are removed.

The first entry on a line is considered a type of configuration entry. This entry is read and 
converted to all lower case characters. The case statement is used to determine which 
associative arrays to assign the entry and how to parse the line.

read_cfg() { 
  # 
  # This function is passed the name of the configuration file to read. 
  # Normal invocation: read_cfg /some/file_name 
  # 

  while read type key value1 value2 value3 
  do 
    type=$( echo ${type} | tr [:upper:] [:lower:] ) 
    case ${type} in 
      rhevm_nic) 
        RHEVM_NIC[${key}]=${value1} 
        ;; 
      config) 
        CONFIG[${key}]=${value1} 
        ;; 
      api) 
        API[${key}]=${value1} 
        ;; 
      db) 
        DB[${key}]=${value1} 
        ;; 
      storage_domain) 
        case ${value1} in 

www.redhat.com 74 refarch-feedback@redhat.com



          iscsi) 
            ISCSI[${key}]="${value2}|${value3}" 
            ;; 
          fibre) 
            FIBRE[${key}]="${value2}|${value3}" 
            ;; 
          nfs) 
            NFS[${key}]=${value2} 
            ;; 
        esac 
        ;; 
      site_info) 
        SITE_INFO[${key}]=${value1} 
        ;; 
      virt_net) 
        VIRT_NET[${key}|${value1}]=${value2} 
        ;; 
      start_vm) 
        START_VM[${#START_VM[@]}]="${key}|${value1}" 
        ;; 
    esac 
  done < <( 
    cat $1 | grep --extended-regexp --invert-match "^\s*$|^;|^#" 
    ) 
} 

8.2 Main Script
The main part of the script sets up the script environment, checks command line options, and 
controls how the functions are called. The interpreter part of the script is placed before the 
functions, while the rest of the script is appended below the functions section.

8.2.1 Interpreter
The script uses the /bin/bash as its interpreter. The interpreter is specified using the following 
line. This line must be the first line in the script.

#! /bin/bash

refarch-feedback@redhat.com 75 www.redhat.com



8.2.2 Variable Declarations
The declaration of the variables used within the script can be done anywhere in the script that 
is outside of a function.

Associative arrays must be declared before they are used. Default values can be assigned to 
arrays in case the definitions have not been specified in the configuration file.

## Variable Declarations 
declare -A API DB CONFIG 
declare -A SITE_INFO VIRT_NET RHEVM_NIC 
declare -A ISCSI FIBRE NFS 
declare -A DC HC HH DCN 
declare -A VM VMCluster 
declare -A NEEDED_CMDS 

NEEDED_CMDS[iscsiadm]=iscsi-initiator-utils 
NEEDED_CMDS[xpath]=perl-XML-XPath 

# Setup some deafult values for fallback. 
API[api_port]=8443 
API[api_base]=api 
API[api_user]=admin@internal 
API[api_cert]=ca.crt 
API[api_cert_port]=8080 
CONFIG[working_dir]=/tmp/rdr 
DB[user]=postgres 

8.2.3 Main Code
The main code begins by checking the command line options. The bash built-in getopts 
function is used to parse command line options.

## Main 
## 

while getopts ":c:ndhs" opt 
do 
  case ${opt} in 
      c) CONFIG[cfg_file]=${OPTARG} 
         ;; 
      n) CONFIG[fix_net]=1 
         ;; 
      d) CONFIG[fix_db]=1 
         ;; 
      h) CONFIG[fix_env]=1 
         ;; 
      s) CONFIG[start_vms]=1 
         ;; 
      *) usage 
         ;; 
  esac 
done 

www.redhat.com 76 refarch-feedback@redhat.com



The script checks that the configuration file exists and can be read. If it can, the script 
continues to create the CONFIG[working_dir] directory.

if [ "${CONFIG[cfg_file]}" ] 
then 
  output "Reading configuration file ${CONFIG[cfg_file]}." 

  if [ -e "${CONFIG[cfg_file]}" ] 
  then 
    read_cfg ${CONFIG[cfg_file]} 
  else 
    output "Configuration file ${OPTARG} does not exist." 
    exit 
  fi 
else 
  usage 
fi 

The directory specified as the working directory is checked for its existence. If it does not 
exist, it is created.

# Make sure the working directory exists 
if [ "${CONFIG[working_dir]}" ] && [ ! -d ${CONFIG[working_dir]} ] 
then 
  mkdir -p ${CONFIG[working_dir]} 
fi 

If the script was called with the -n option, then it proceeds to fix the network configuration of 
the RHEV Manager. The fix_rhevm_networking() function will cause the script to exit.

# Fix the RHEV Managers network configuration. 
if [ "${CONFIG[fix_net]}" ] 
then 
  output "Fixing the RHEV Managers networking." 
  fix_rhevm_networking 
fi 

If the script was not called with the -n option, then check to see if the needed commands 
exist. This check is not necessary to fix the networking on the RHEV Manager since the 
fix_rhevm_networking() function does not use them.

output "Checking to ensure all needed commands are available for the 
script." 
check_needed_commands 

refarch-feedback@redhat.com 77 www.redhat.com



If the script was called with the -d option, fix the RHEV Managers database. First back up the 
database in case something goes wrong. Stop the RHEV Manager service so the database 
does not get corrupted. Fix each of the storage domains and start the RHEV Manager 
service.

# Fix the RHEV Managers database for storage. 
if [ "${CONFIG[fix_db]}" ] 
then 
  output "Backing up the RHEVM database." 
  pg_dump --format custom --username ${DB[user]} --file $
{CONFIG[working_dir]}/${DB[backup_file]} rhevm 

  output "Fixing the RHEV Managers database to fix storage issues." 

  service jbossas stop 
  dust_settle 3 

  service jbossas status | grep -q running 
  is_running=$? 

  if [ ${is_running} -eq 0 ] 
  then 
    output "jbossas service is running. Failed to stop." 
    output "   --- Aborting operation." 
    exit 
  fi 

  output -e "\nFixing iSCSI Storage Domains" 
  for sd in "${!ISCSI[@]}" 
  do 
    output "  --- ${sd}" 

    get_iscsi_info ${sd} 
    fix_iscsi_domain ${sd} 
  done 

  output -e "\nFixing NFS Storage Domains" 
  for sd in "${!NFS[@]}" 
  do 
    output "  --- ${sd}" 

    fix_nfs_domain ${sd} 
  done 

  output -e "\nFixing FIBRE Storage Domains" 
  for sd in "${!FIBRE[@]}" 
  do 
    output "  --- ${sd}" 

    get_scsi_domain ${sd} 
    fix_scsi_domain ${sd} 
  done 

  service jbossas start 
  output "Waiting to let jbossas services finish." 

www.redhat.com 78 refarch-feedback@redhat.com



  dust_settle 30 

fi 

If the script was called with the -h option, fix the RHEV environment. The REST API is 
needed for this section, so ensure the RHEV Manager service is running. The first call to 
dust_settle() allows the RHEV Manager to determine which hosts are non-responsive before 
the script continues.

The certificate is retrieved from the RHEV Manager and the datacenter, cluster, host, and 
virtual machine information is gathered. The status of all hosts is retrieved and placed into a 
queue to be approved, activated, or fenced.

Hosts are then approved and the status checked again. Hosts are then activated and then 
fenced. The script sleeps to give the RHEV Manager time to elect a new Storage Pool 
Manager before moving the virtual machines to the SiteB cluster.

# Fix the RHEV environment hosts and virtual machines.. 
if [ "${CONFIG[fix_env]}" ] 
then 
  output "Fixing the RHEV Managers environment." 
  service jbossas status | grep -q running 
  is_running=$? 

  if [ ${is_running} -eq 1 ] 
  then 
    output "jbossas service is not running. Starting service." 
    service jbossas start 
    dust_settle 3 

    service jbossas status | grep -q running 
    is_running=$? 

    if [ ${is_running} -eq 1 ] 
    then 
      output "jbossas service is not running. Failed to start." 
      output "   --- Aborting operation." 
      exit 
    fi 
  fi 

  dust_settle 120 

  REST_get_cert 

  REST_get_dc 2>/dev/null 
  REST_get_hc 2>/dev/null 
  REST_get_hh 2>/dev/null 
  REST_get_vm 2>/dev/null 
  REST_get_networks 2>/dev/null 

  get_hosts_status 

  for host in ${host_approve} 

refarch-feedback@redhat.com 79 www.redhat.com



  do 
    output "Approving Host: ${host}" 
    REST_approve_host ${host} ${SITE_INFO[bkup_site_cluster]} 2>/dev/null 
  done 

  dust_settle 20 
  get_hosts_status 

 for host in ${host_activate} 
  do 
    output "Attempting to Activate Host: ${host}" 
    REST_activate_host ${host} 
  done 

  output "Giving hosts time to finish activating." 
  dust_settle 40 

  get_hosts_status 

  for host in ${host_fence} 
  do 
    output "Fencing Host: ${host}" 
    REST_fence_host ${host} 
  done 

  output "Giving environment time to elect new Storage Pool Manager if 
necessary." 
  dust_settle 180 
 
  REST_move_vms 

fi 

If the script was called with the -s option, then start the virtual machines that are defined in 
the configuration file.

if [ "${CONFIG[start_vms]}" ] 
then 
  REST_get_cert 
  output "Starting the virtual machines." 
  REST_get_vm 2>/dev/null 

  for temp in "${START_VM[@]}" 
  do 
    tarr=( $( echo ${temp} | tr '|' ' ' ) ) 
    output "   --- ${tarr[0]} (${tarr[1]})" 
    dust_settle ${tarr[1]} 

    REST_submit POST vms/${VM[${tarr[0]}]}/start "<action/>" > /dev/null 
2>&1 
  done 
fi 

www.redhat.com 80 refarch-feedback@redhat.com



8.3 Failover NFS 
The following example shows the process of performing a site level failover of an environment 
using an NFS Data Storage Domain. The failover is done using the created script.

1. Place the script and configuration files in the /root/rdr directory on the SiteA RHEV 
Manager.

2. Power on the virtual machines at SiteA. 

3. Once the virtual machines are completely booted, remove the power from the RHEV 
Manager, RHEV Hypervisor, and NFS server.

4. Simulate the LUN mirroring process.

5. Mount the LUNs to the correct servers and power them on.

6. Fix the networking on the RHEV Manager by executing the script using the –n option.

# cd /root/rdr

# ./rhevm-failover.sh -c rhevm-failover.cfg -n

Reading configuration file rhevm-failover.cfg. 
Fixing the RHEV Managers networking. 
Removing old interfaces. 
Renaming interfaces: 
   --- 00:25:b3:a9:b0:02 to eth2 
   --- 00:25:b3:a9:b0:03 to eth3 
   --- 00:25:b3:a9:b0:00 to eth1 
   --- 00:25:b3:a9:b0:01 to eth0 
Removing HWADDR lines from interface configuration files. 

The system should now be rebooted to ensure everything comes up correctly. 

7. Reboot the RHEV Manager.

# init 6

8. Edit the scripts configuration file and verify the configuration for the storage domains.

Storage_Domain DataDomain nfs rdr-nfs.siteb.example:/exports/DATA 
Storage_Domain ISODomain nfs rdr-nfs.siteb.example:/exports/ISO 
Storage_Domain ExportDomain nfs rdr-nfs.siteb.example:/exports/EXPORT
 

9. Configure the RHEV Hypervisor. Configure networking, remote ssh access, then join it 
to the RHEV Manager.

refarch-feedback@redhat.com 81 www.redhat.com



10.Fix the RHEV Managers database, the environment and start the virtual machines. 
This is done by executing the script with the -d, -h, and -s options.

# ./rhevm-failover.sh -c rhevm-failover.cfg -d hs
Reading configuration file rhevm-failover.cfg. 
Checking to ensure all needed commands are available for the script. 
xpath: not found and is needed. 
     This command may be provided by the perl-XML-XPath package. 
iscsiadm: not found and is needed. 
     This command may be provided by the iscsi-initiator-utils package. 
Exiting... 

11.Since the original RHEV Manager was installed using the base configuration, it did not 
have the xpath and iscsiadm packages installed. These commands are needed by 
the script. Install the perl-XML-XPath and iscsi-initiator-utils packages to 
provide the needed commands.

# yum install perl-XML-XPath iscsi-initiator-utils 
Loaded plugins: product-id, rhnplugin, security, subscription-manager, 
versionlock 
Updating certificate-based repositories. 

[ ... OUTPUT REMOVED FOR BREVITY ... ]

Running rpm_check_debug 
Running Transaction Test 
Transaction Test Succeeded 
Running Transaction 
  Installing : iscsi-initiator-utils-6.2.0.872-34.el6.x86_64 
1/2 
  Installing : perl-XML-XPath-1.13-10.el6.noarch 
2/2 
Installed products updated. 

Installed: 
  iscsi-initiator-utils.x86_64 0:6.2.0.872-34.el6 
perl-XML-XPath.noarch 0:1.13-10.el6                                       

Complete! 

12.Once the packages are installed, execute the script again.

# ./rhevm-failover.sh -c rhevm-failover.cfg -dhs 
Reading configuration file rhevm-failover.cfg. 
Checking to ensure all needed commands are available for the script. 
Backing up the RHEVM database. 
Fixing the RHEV Managers database to fix storage issues. 
Stopping jbossas:                                          [  OK  ] 
                

  --- DataDomain 

www.redhat.com 82 refarch-feedback@redhat.com



UPDATE 1 
  --- ISODomain 
UPDATE 1 
  --- ExportDomain 
UPDATE 1 

Starting jbossas:                                          [  OK  ] 
Waiting to let jbossas services finish. 
                
Fixing the RHEV Managers environment. 
                
Retrieving certificate..... Done 
Getting Datacenter UIDs... 
Getting Cluster UIDs... 
Getting Host UIDs... 
Getting VM UIDs... 
Getting Networks for Datacenter RefArch... 
Getting status of Hypervisor Hosts 
Approving Host: rdr-rhevh.siteb.example 
Giving hosts time to finish approval process. 
                
Detected event code: 519 
  --- Attempting to fix network 'public' on rdr-rhevh.siteb.example. 
   --- Attaching nic 00:17:A4:77:24:3A to network public 
                
Getting status of Hypervisor Hosts 
Attempting to Activate Host: rdr-rhevh.siteb.example 
   --- Activating Host 
Giving hosts time to finish activating. 
                
Getting status of Hypervisor Hosts 
Fencing Host: rdr-rhevh.sitea.example 
   --- Fencing Host 
Giving environment time to elect new Storage Pool Manager if necessary. 
                
Moving Virtual Machines from cluster SiteA to cluster SiteB. 
   --- rdr-devel-vm 
   --- rdr-web-vm 
   --- rdr-W7 
   --- rdr-w2k8 
Retrieving certificate..... Done 
Starting the virtual machines. 
Getting VM UIDs... 
   --- rdr-devel-vm (5) 
                
   --- rdr-w2k8 (10) 
                
   --- rdr-W7 (5) 
                
   --- rdr-web-vm (5) 

The virtual machines are now running in the new environment.

refarch-feedback@redhat.com 83 www.redhat.com



8.4 Failover iSCSI
The following sequence shows a site level failover of an environment using an iSCSI Data 
Storage Domain. The failover is done using the created script.

1. Place the script and configuration files in the /root/rdr directory on the SiteA RHEV 
Manager.

2. Power on the virtual machines at SiteA. 

3. Once the virtual machines are completely booted, remove the power from the RHEV 
Manager, RHEV Hypervisor, and NFS server.

4. Simulate the LUN mirroring process.

5. Present the LUNs to the correct servers and power them on.

6. Fix the networking on the RHEV Manager by executing the script using the –n option.

# cd /root/rdr

# ./rhevm-failover.sh -c rhevm-failover.cfg -n

Reading configuration file rhevm-failover.cfg. 
Fixing the RHEV Managers networking. 
Removing old interfaces. 
Renaming interfaces: 
   --- 00:25:b3:a9:b0:02 to eth2 
   --- 00:25:b3:a9:b0:03 to eth3 
   --- 00:25:b3:a9:b0:00 to eth1 
   --- 00:25:b3:a9:b0:01 to eth0 
Removing HWADDR lines from interface configuration files. 

 

The system should now be rebooted to ensure everything comes up correctly. 

7. Reboot the RHEV Manager.

# init 6

8. Configure the RHEV Hypervisor. Configure networking, remote ssh access, then join it 
to the RHEV Manager.

9. Edit the scripts configuration file and verify the configuration for the storage domains.

Storage_Domain DataDomain iscsi 192.168.201.32 iqn.2011-
11.siteb.example:rdr-iscsi.dat a 
Storage_Domain ISODomain nfs rdr-nfs.siteb.example:/exports/ISO 
Storage_Domain ExportDomain nfs rdr-nfs.siteb.example:/exports/EXPORT
 

www.redhat.com 84 refarch-feedback@redhat.com



10. Install the perl-XML-XPath and iscsi-initiator-utils packages.

# yum install perl-XML-XPath iscsi-initiator-utils 
Loaded plugins: product-id, rhnplugin, security, subscription-manager, 
versionlock 
Updating certificate-based repositories. 

[ ... OUTPUT REMOVED FOR BREVITY ... ]

Running rpm_check_debug 
Running Transaction Test 
Transaction Test Succeeded 
Running Transaction 
  Installing : iscsi-initiator-utils-6.2.0.872-34.el6.x86_64 
1/2 
  Installing : perl-XML-XPath-1.13-10.el6.noarch 
2/2 
Installed products updated. 

Installed: 
  iscsi-initiator-utils.x86_64 0:6.2.0.872-34.el6 
perl-XML-XPath.noarch 0:1.13-10.el6                                       

Complete! 

11.Fix the RHEV Managers database, the environment and start the virtual machines. 
This is done by executing the script with the -d, -h, and -s options.

# ./rhevm-failover.sh -c rhevm-failover.cfg -dhs 
Reading configuration file rhevm-failover.cfg. 
Checking to ensure all needed commands are available for the script. 
Backing up the RHEVM database. 
Fixing the RHEV Managers database to fix storage issues. 
Stopping jbossas:                                          [  OK  ] 
                

  --- DataDomain 
Starting iscsid:                                           [  OK  ] 
192.168.201.32:3260,1 iqn.2011-11.siteb.example:rdr-iscsi.data 
Logging in to [iface: default, target: iqn.2011-11.siteb.example:rdr-
iscsi.data, portal: 192.168.201.32,3260] (multiple) 
Login to [iface: default, target: iqn.2011-11.siteb.example:rdr-iscsi.data, 
portal: 192.168.201.32,3260] successful. 
Logging out of session [sid: 1, target: iqn.2011-11.siteb.example:rdr-
iscsi.data, portal: 192.168.201.32,3260] 
Logout of [sid: 1, target: iqn.2011-11.siteb.example:rdr-iscsi.data, portal: 
192.168.201.32,3260] successful. 
INSERT 34956 1 
UPDATE 1 
DELETE 1 
UPDATE 1 

  --- ISODomain 

refarch-feedback@redhat.com 85 www.redhat.com



UPDATE 1 
  --- ExportDomain 
UPDATE 1 

Starting jbossas:                                          [  OK  ] 
Waiting to let jbossas services finish. 
                
Fixing the RHEV Managers environment. 
                
Retrieving certificate..... Done 
Getting Datacenter UIDs... 
Getting Cluster UIDs... 
Getting Host UIDs... 
Getting VM UIDs... 
Getting Networks for Datacenter RefArch... 
Getting status of Hypervisor Hosts 
Approving Host: rdr-rhevh.siteb.example 
Giving hosts time to finish approval process. 
                
Detected event code: 519 
  --- Attempting to fix network 'public' on rdr-rhevh.siteb.example. 
   --- Attaching nic 00:17:A4:77:24:3A to network public 
                
Getting status of Hypervisor Hosts 
Attempting to Activate Host: rdr-rhevh.siteb.example 
   --- Activating Host 
Giving hosts time to finish activating. 
                
Getting status of Hypervisor Hosts 
Fencing Host: rdr-rhevh.sitea.example 
   --- Fencing Host 
Giving environment time to elect new Storage Pool Manager if necessary. 
                
Moving Virtual Machines from cluster SiteA to cluster SiteB. 
   --- rdr-devel-vm 
   --- rdr-web-vm 
   --- rdr-W7 
   --- rdr-w2k8 
Retrieving certificate..... Done 
Starting the virtual machines. 
Getting VM UIDs... 
   --- rdr-devel-vm (5) 
                
   --- rdr-w2k8 (10) 
                
   --- rdr-W7 (5) 
                
   --- rdr-web-vm (5) 

The virtual machines are now running in the new environment.

www.redhat.com 86 refarch-feedback@redhat.com



8.5 Failover Fibre
The following shows the process of performing a site level failover of an environment using an 
iSCSI Data Storage Domain. The failover is done using the created script.

1. Place the script and configuration files in the /root/rdr directory on the SiteA RHEV 
Manager.

2. Power on the virtual machines at SiteA. 

3. Once the virtual machines are completely booted, remove the power from the RHEV 
Manager, RHEV Hypervisor, and NFS server.

4. Simulate the LUN mirroring process.

5. Present the LUNs to the correct servers and power them on.

6. Fix the networking on the RHEV Manager by executing the script using the –n option.

# cd /root/rdr

# ./rhevm-failover.sh -c rhevm-failover.cfg -n

Reading configuration file rhevm-failover.cfg. 
Fixing the RHEV Managers networking. 
Removing old interfaces. 
Renaming interfaces: 
   --- 00:25:b3:a9:b0:02 to eth2 
   --- 00:25:b3:a9:b0:03 to eth3 
   --- 00:25:b3:a9:b0:00 to eth1 
   --- 00:25:b3:a9:b0:01 to eth0 
Removing HWADDR lines from interface configuration files. 

The system should now be rebooted to ensure everything comes up correctly. 

7. Reboot the RHEV Manager.

# init 6

8. Generate an ssh key pair for root on the RHEV Manager.

# ssh-keygen 
Generating public/private rsa key pair. 
Enter file in which to save the key (/root/.ssh/id_rsa): 
Enter passphrase (empty for no passphrase): 
Enter same passphrase again: 
Your identification has been saved in /root/.ssh/id_rsa. 
Your public key has been saved in /root/.ssh/id_rsa.pub. 
The key fingerprint is: 
60:fa:d2:47:cd:3c:54:c8:15:4c:02:2a:0e:04:c8:18 root@rdr-rhevm.sitea.example 
The key's randomart image is: 

refarch-feedback@redhat.com 87 www.redhat.com



+--[ RSA 2048]----+ 
|Eo.     .o.==.   | 
|oo     .  oo.    | 
|  . . +   .      | 
|   o + . =       | 
|    o   S =      | 
|     o .   .     | 
|    . o .        | 
|     . .         | 
|                 | 
+-----------------+ 

9. Configure the RHEV Hypervisor. Configure the networking, remote ssh access, and 
join it to the RHEV Manager.

10.Place the public key of the RHEV Managers root user in the /root/.ssh/authorized keys 
file on the RHEV Hypervisor.

# ssh rdr-rhevm.sitea.example "cat /root/.ssh/id_rsa.pub" >> authorized_keys 
root@rdr-rhevm.sitea.example's password: [PASSWORD]

11.Edit the scripts configuration file and verify the configuration for the storage domains.

Storage_Domain DataDomain fibre rdr-rhevh.siteb.example 
00c0ffd7e69d000085b89d4e01000000
Storage_Domain ISODomain nfs rdr-nfs.siteb.example:/exports/ISO 
Storage_Domain ExportDomain nfs rdr-nfs.siteb.example:/exports/EXPORT

12. Install the perl-XML-XPath and iscsi-initiator-utils packages.

# yum install perl-XML-XPath iscsi-initiator-utils 
Loaded plugins: product-id, rhnplugin, security, subscription-manager, 
versionlock 
Updating certificate-based repositories. 

[ ... OUTPUT REMOVED FOR BREVITY ... ]

Running rpm_check_debug 
Running Transaction Test 
Transaction Test Succeeded 
Running Transaction 
  Installing : iscsi-initiator-utils-6.2.0.872-34.el6.x86_64 
1/2 
  Installing : perl-XML-XPath-1.13-10.el6.noarch 
2/2 
Installed products updated. 

Installed: 
  iscsi-initiator-utils.x86_64 0:6.2.0.872-34.el6 
perl-XML-XPath.noarch 0:1.13-10.el6                                       

Complete! 

www.redhat.com 88 refarch-feedback@redhat.com



13.Fix the RHEV Managers database, the environment and start the virtual machines. 
This is done by executing the script with the -d, -h, and -s options.

# ./rhevm-failover.sh -c rhevm-failover.cfg -dhs 
Reading configuration file rhevm-failover.cfg. 
Checking to ensure all needed commands are available for the script. 
Backing up the RHEVM database. 
Fixing the RHEV Managers database to fix storage issues. 
Stopping jbossas:                                          [  OK  ] 
                

  --- ISODomain 
UPDATE 1 
  --- ExportDomain 
UPDATE 1 

  --- DataDomain 
The authenticity of host 'rdr-rhevh.siteb.example (192.168.201.42)' can't be 
established. 
RSA key fingerprint is 2b:d7:37:7b:97:2f:8a:c5:ec:78:46:95:19:50:1e:02. 
Are you sure you want to continue connecting (yes/no)? yes 
Warning: Permanently added 'rdr-rhevh.siteb.example,192.168.201.42' (RSA) to 
the list of known hosts. 
UPDATE 1 
Starting jbossas:                                          [  OK  ] 
Waiting to let jbossas services finish. 
                
Fixing the RHEV Managers environment. 
                
Retrieving certificate..... Done 
Getting Datacenter UIDs... 
Getting Cluster UIDs... 
Getting Host UIDs... 
Getting VM UIDs... 
Getting Networks for Datacenter RefArch... 
Getting status of Hypervisor Hosts 
Approving Host: rdr-rhevh.siteb.example 
Giving hosts time to finish approval process. 
                
Detected event code: 519 
  --- Attempting to fix network 'public' on rdr-rhevh.siteb.example. 
   --- Attaching nic 00:17:A4:77:24:3A to network public 
                
Getting status of Hypervisor Hosts 
Attempting to Activate Host: rdr-rhevh.siteb.example 
   --- Activating Host 
Giving hosts time to finish activating. 
                
Getting status of Hypervisor Hosts 
Fencing Host: rdr-rhevh.sitea.example 
   --- Fencing Host 
Giving environment time to elect new Storage Pool Manager if necessary. 
                
Moving Virtual Machines from cluster SiteA to cluster SiteB. 

refarch-feedback@redhat.com 89 www.redhat.com



   --- rdr-devel-vm 
   --- rdr-web-vm 
   --- rdr-W7 
   --- rdr-w2k8 
Retrieving certificate..... Done 
Starting the virtual machines. 
Getting VM UIDs... 
   --- rdr-devel-vm (5) 
                
   --- rdr-w2k8 (10) 
                
   --- rdr-W7 (5) 
                
   --- rdr-web-vm (5) 

The virtual machines are now running in the new environment.

www.redhat.com 90 refarch-feedback@redhat.com



9 Conclusion
This paper demonstrated the site wide failover and recovery of three separate RHEV 
environments. 

• NFS Data Storage Domain

• iSCSI Data Storage Domain

• Fibre Data Storage Domain

Simulated LUN mirroring was used to replicate data volumes across sites. Each site 
consisted of individual data domains and network infrastructures.

DHCP and DNS were used to reduce site recovery times. Name resolution issues were 
discussed and solutions provided.

The use of simple scripting and the REST API to assist in the site recovery process was 
shown.

The goals achieved in this paper include, failing a RHEV environment over to a designated 
backup site during a site level disaster. A quick recovery of the failed over environment can 
be performed easily through the use of scripts. The scripts automate the tasks involved and 
minimize the time involved to restore the environment to a working state.

refarch-feedback@redhat.com 91 www.redhat.com



Appendix A:  DNS Configuration Files
A.1 SiteA
/etc/named.conf

options { 
listen-on port 53 { 127.0.0.1; 192.168.200.34; 10.16.136.0/21; }; 
listen-on-v6 port 53 { ::1; }; 
directory "/var/named"; 
dump-file "/var/named/data/cache_dump.db"; 

        statistics-file "/var/named/data/named_stats.txt"; 
        memstatistics-file "/var/named/data/named_mem_stats.txt"; 

recursion yes; 

forwarders { 10.16.143.247; 10.16.143.248; }; 
}; 

logging { 
        channel default_debug { 
                file "data/named.run"; 
                severity dynamic; 
        }; 
}; 

zone "." IN { 
type hint; 
file "named.ca"; 

}; 

zone "sitea.example" IN { 
type master; 
file "named.sitea.example"; 
allow-update { none; }; 

}; 

zone "200.168.192.in-addr.arpa" IN { 
type master; 
file "reverse.sitea.example"; 
allow-update { none; }; 

}; 

include "/etc/named.rfc1912.zones"; 

www.redhat.com 92 refarch-feedback@redhat.com



/var/named/named.sitea.example

$ORIGIN sitea.example. 
$TTL 3H 
@ IN SOA rdr-dns.sitea.example. root.sitea.example. ( 

1 ; serial 
1D ; refresh 
1H ; retry 
1W ; expire 
3H ) ; minimum 

IN NS rdr-dns.sitea.example. 

rdr-gatewayIN A 192.168.200.1 
rdr-nfs IN A 192.168.200.30 
rdr-iscsi IN A 192.168.200.32 
rdr-dns IN A 192.168.200.34 
rdr-rhevm IN A 192.168.200.40 
rdr-rhevh IN A 192.168.200.42 
rdr-ie IN A 192.168.200.36 
rdr-dc-vm IN A 192.168.200.50 
rdr-w7-vm IN A 192.168.200.52 
rdr-web-vm IN A 192.168.200.54 
rdr-devel-vm IN A 192.168.200.56 

/var/named/reverse.sitea.example

$ORIGIN 200.168.192.in-addr.arpa. 
$TTL 3H 
@ IN SOA rdr-dns.sitea.example. root.sitea.example. ( 

1 ; serial 
1D ; refresh 
1H ; retry 
1W ; expire 
3H ) ; minimum 

IN NS rdr-dns.sitea.example. 

1 IN PTR rdr-gateway.sitea.example. 
30 IN PTR rdr-nfs.sitea.example. 
32 IN PTR rdr-iscsi.sitea.example. 
34 IN PTR rdr-dns.sitea.example. 
40 IN PTR rdr-rhevm.sitea.example. 
42 IN PTR rdr-rhevh.sitea.example. 
36 IN PTR rdr-ie.sitea.example. 
50 IN PTR rdr-dc-vm.sitea.example. 
52 IN PTR rdr-w7-vm.sitea.example. 
54 IN PTR rdr-web-vm.sitea.example. 
56 IN PTR rdr-devel-vm.sitea.example. 

refarch-feedback@redhat.com 93 www.redhat.com



A.2 SiteB
/etc/named.conf

options { 
listen-on port 53 { 127.0.0.1; 192.168.201.34; 10.16.136.0/21; }; 
listen-on-v6 port 53 { ::1; }; 
directory "/var/named"; 
dump-file "/var/named/data/cache_dump.db"; 

        statistics-file "/var/named/data/named_stats.txt"; 
        memstatistics-file "/var/named/data/named_mem_stats.txt"; 

recursion yes; 

forwarders { 10.16.143.247; 10.16.143.248; }; 
}; 

logging { 
        channel default_debug { 
                file "data/named.run"; 
                severity dynamic; 
        }; 
}; 

zone "." IN { 
type hint; 
file "named.ca"; 

}; 

zone "sitea.example" IN { 
type master; 
file "named.sitea.example"; 
allow-update { none; }; 

}; 

zone "siteb.example" IN { 
type master; 
file "named.siteb.example"; 
allow-update { none; }; 

}; 

zone "201.168.192.in-addr.arpa" IN { 
type master; 
file "reverse.siteb.example"; 
allow-update { none; }; 

}; 

include "/etc/named.rfc1912.zones"; 

www.redhat.com 94 refarch-feedback@redhat.com



/var/named/named.sitea.example

$ORIGIN sitea.example. 
$TTL 3H 
@ IN SOA rdr-dns.sitea.example. root.sitea.example. ( 

5 ; serial 
1D ; refresh 
1H ; retry 
1W ; expire 
3H ) ; minimum 

IN NS rdr-dns.sitea.example. 

rdr-rhevm IN A 192.168.201.40 
rdr-dns IN A 192.168.201.34 

/var/named/named.siteb.example

$ORIGIN siteb.example. 
$TTL 3H 
@ IN SOA rdr-dns.siteb.example. root.siteb.example. ( 

5 ; serial 
1D ; refresh 
1H ; retry 
1W ; expire 
3H ) ; minimum 

IN NS rdr-dns.siteb.example. 

rdr-gatewayIN A 192.168.201.1 
rdr-nfs IN A 192.168.201.30 
rdr-iscsi IN A 192.168.201.32 
rdr-dns IN A 192.168.201.34 
rdr-rhevm IN A 192.168.201.40 
rdr-rhevh IN A 192.168.201.42 
rdr-ie IN A 192.168.201.36 
rdr-dc-vm IN A 192.168.201.50 
rdr-w7-vm IN A 192.168.201.52 
rdr-web-vm IN A 192.168.201.54 
rdr-devel-vm IN A 192.168.201.56 

refarch-feedback@redhat.com 95 www.redhat.com



/var/named/reverse.siteb.example

$ORIGIN 201.168.192.in-addr.arpa. 
$TTL 3H 
@ IN SOA rdr-dns.siteb.example. root.siteb.example. ( 

5 ; serial 
1D ; refresh 
1H ; retry 
1W ; expire 
3H ) ; minimum 

IN NS rdr-dns.siteb.example. 

1 IN PTR rdr-gateway.siteb.example. 
30 IN PTR rdr-nfs.siteb.example. 
32 IN PTR rdr-iscsi.siteb.example. 
34 IN PTR rdr-dns.siteb.example. 
42 IN PTR rdr-rhevh.siteb.example. 
36 IN PTR rdr-ie.siteb.example. 
50 IN PTR rdr-dc-vm.siteb.example. 
52 IN PTR rdr-w7-vm.siteb.example. 
54 IN PTR rdr-web-vm.siteb.example. 
56 IN PTR rdr-devel-vm.siteb.example. 

40 IN PTR rdr-rhevm.sitea.example. 

www.redhat.com 96 refarch-feedback@redhat.com



Appendix B:  DHCP Configuration Files
B.1 SiteA
/etc/dhcp/dhcpd.conf

option domain-name "sitea.example"; 
option domain-name-servers 192.168.200.34; 
option routers 192.168.200.1; 

default-lease-time 600; 
max-lease-time 7200; 

log-facility local7; 

subnet 192.168.200.0 netmask 255.255.255.0 { 
  range 192.168.200.100 192.168.200.120; 
} 

host rdr-gateway { 
  hardware ethernet 52:54:00:48:bb:69; 
  fixed-address 192.168.200.1; 
} 

host rdr-nfs { 
  hardware ethernet 52:54:00:ee:2b:52; 
  fixed-address 192.168.200.30; 
} 

host rdr-iscsi { 
  hardware ethernet 52:54:00:0b:90:38; 
  fixed-address 192.168.200.32; 
} 

host rdr-dns { 
  hardware ethernet 52:54:00:0b:90:38; 
  fixed-address 192.168.200.34; 
} 

host rdr-rhevm { 
  hardware ethernet 00:1e:0b:ce:42:78; 
  fixed-address 192.168.200.40; 
} 

host rhevh { 
  hardware ethernet 00:17:a4:77:24:34; 
#  hardware ethernet 00:17:a4:77:24:38; 
  fixed-address 192.168.200.42; 
} 

host rdr-ie { 
  hardware ethernet 52:54:00:00:8c:ed; 
  fixed-address 192.168.200.36; 

refarch-feedback@redhat.com 97 www.redhat.com



} 

host rdr-dc-vm { 
  hardware ethernet 00:16:3e:1e:0a:09; 
  fixed-address 192.168.200.50; 
} 

host rdr-w7-vm { 
  hardware ethernet 00:16:3e:7f:53:40; 
  fixed-address 192.168.200.52; 
} 

host rdr-web-vm { 
  hardware ethernet 00:16:3e:60:51:86; 
  fixed-address 192.168.200.54; 
} 

host rdr-devel-vm { 
  hardware ethernet 00:16:3e:69:70:0a; 
  fixed-address 192.168.200.56; 
} 

B.2 SiteB
/etc/dhcp/dhcpd.conf

option domain-name "siteb.example"; 
option domain-name-servers 192.168.201.34; 
option routers 192.168.201.1; 

default-lease-time 600; 
max-lease-time 7200; 

log-facility local7; 

subnet 192.168.201.0 netmask 255.255.255.0 { 
  range 192.168.201.100 192.168.201.120; 
} 

host rdr-gateway { 
  hardware ethernet 52:54:00:8c:95:5a; 
  fixed-address 192.168.201.1; 
} 

host rdr-nfs { 
  hardware ethernet 52:54:00:f8:df:5e; 
  fixed-address 192.168.201.30; 
} 

host rdr-iscsi { 
  hardware ethernet 52:54:00:aa:d5:7e; 
  fixed-address 192.168.201.32; 
} 

www.redhat.com 98 refarch-feedback@redhat.com



 
host rdr-dns { 
  hardware ethernet 52:54:00:ea:8e:6d; 
  fixed-address 192.168.201.34; 
} 

host rdr-rhevm { 
  hardware ethernet 00:25:b3:a9:b0:00; 
  fixed-address 192.168.201.40; 
} 

host rdr-rhevh { 
  hardware ethernet 00:17:a4:77:24:38; 
  fixed-address 192.168.201.42; 
} 

host rdr-ie { 
  hardware ethernet 52:54:00:f9:3b:11; 
  fixed-address 192.168.201.36; 
} 

host rdr-dc-vm { 
  hardware ethernet 00:16:3e:1e:0a:09; 
  fixed-address 192.168.201.50; 
} 

host rdr-w7-vm { 
  hardware ethernet 00:16:3e:7f:53:40; 
  fixed-address 192.168.201.52; 
} 

host rdr-web-vm { 
  hardware ethernet 00:16:3e:60:51:86; 
  fixed-address 192.168.201.54; 
} 

host rdr-devel-vm { 
  hardware ethernet 00:16:3e:69:70:0a; 
  fixed-address 192.168.201.56; 
} 

refarch-feedback@redhat.com 99 www.redhat.com



Appendix C:  Revision History

Revision 1.0 Tuesday January 17, 2012 John Herr

Initial Release

www.redhat.com 100 refarch-feedback@redhat.com


