
How to Build an RPM
Author: Chris Negus
Editor: Allison Pranger
10/08/2013

OVERVIEW

You have created some software that you want to install on Red Hat Enterprise Linux systems. Now that it is

done, the question is, “How do you gather up the software to make it easy for others to install and manage?”

The answer is to package it into an RPM.

Although it is possible to just drop your software (via a tarball or another type of archive file) into a Linux

system, packaging your Linux software as an RPM lets you:

• Include metadata with the package that describes its components, version number, size, package

group, project URL, and many other pieces of information.

• Add the package to a yum repository so clients can easily find your software.

• Have clients use common Linux tools (yum, rpm, and PackageKit) to install, remove, and manage

your software.

• Easily update and deploy new versions of the software, using the same Linux installation tools.

You do not have to be a programmer to create RPMs: you only need to understand how to create a SPEC

file and use commands to build that SPEC file and package contents into an RPM. These procedures are

outlined in this document. Building an RPM is not only useful for managing your company's software, but it is

also listed as a skill that could be tested for on a Red Hat Certified Engineer (RHCE) exam.

If you want more information on building RPMs after you complete this tutorial, refer to the following:

• Red Hat Network Satellite Deployment Guide: RPM Building:

https://access.redhat.com/site/documentation/en-

US/Red_Hat_Network_Satellite/5.3/html/Deployment_Guide/satops-rpm-building.html

• Red Hat Network Satellite User Guide: RPMs: https://access.redhat.com/site/documentation/en-

US/Red_Hat_Network_Satellite/5.4/html/User_Guide/chap-User_Guide-RPMs.html

• Red Hat Network Satellite Channel Management Guide: Building Custom Packages:

https://access.redhat.com/site/documentation/en-

US/Red_Hat_Network_Satellite/5.1.1/html/Channel_Management_Guide/Channel_Management_Gui

de-Building_Custom_Packages.html

UNDERSTANDING THE PROCESS OF BUILDING RPMS

The process of building an RPM requires knowing how to use a text editor and how to run a few commands

to build, sign, and distribute the RPM. With your software in hand, most of the work needed to build the RPM

involves creating a SPEC file. Within the SPEC file, you can:

• Identify the commands, configuration files, documentation, and other items in your package.

• Define where components are ultimately installed on the target Linux system.

• Set permissions and ownership of each file.

• Note when your package is dependent on other components being available.

How to Build an RPM | Chris Negus 1

• Tag files as configuration or documentation files.

• Have extra commands executed on the target system when the package is installed or uninstalled

(such as creating user accounts, making directories, or moving files around).

• Add changelog entries to identify what changes have gone into each version of your software.

Once you have mastered the most critical features for building an RPM (as covered in this document), you

will find that there is a wealth of features in RPM packaging tools to provide more powerful and flexible ways

to create RPMs. For example, you can add platform-specific tags to an SPEC file so you can use the same

file to build RPMs for multiple computer architectures.

REBUILDING AN EXISTING SOURCE CODE PACKAGE INTO AN RPM

The best way to learn how to create an RPM package is to start with an existing source code RPM package

and rebuild it. Going through the process will let you see the procedures and components that go into

building an RPM. This section outlines steps for rebuilding the tree RPM package from an existing source

code package.

NOTE: Once you build this RPM, do not use it on a production system as the package will conflict with one
already in your Red Hat Enterprise Linux software channels.

1. Log In: Log into a Red Hat Enterprise Linux system as a regular user (not root).

2. Get a Source Code Package: Download a working source code package. This example uses the

tree source code package:

$ wget ftp://ftp.redhat.com/pub/redhat/linux/enterprise/6Workstation/en/os/SRPMS/tree-
1.5.3-2.el6.src.rpm

3. Install the Source Code: Install the source code (which should be in your current directory) into a

new rpmbuild directory:

$ rpm -ihv tree-1.5.3-2.el6.src.rpm

This creates an rpmbuild directory structure in your home directory similar to the following:

~/SPECS
~/SPECS/tree.spec
~/BUILDROOT
~/SOURCES
~/SOURCES/tree-1.5.3.tgz
~/SOURCES/tree-1.2-no-strip.patch
~/SOURCES/tree-no-color-by-default.patch
~/SOURCES/tree-1.2-carrot.patch
~/SOURCES/tree-preserve-timestamps.patch

Notice that the new rpmbuild directory in your home directory includes a SPECS directory (which

includes the tree.spec file) and a SOURCES directory. The SOURCES directory includes the tree-

1.5.3.tgz tarball of the code and four patch files.

4. Edit the Spec File: Review (and possibly change) the spec file. Using either the vim or emacs

editor will add color to the file as you edit it: vim ~/rpmbuild/SPECS/tree.spec. An example

of that file is shown below. Save and exit the file after you are done changing it.

How to Build an RPM | Chris Negus 2

Summary: File system tree viewer
Name: tree
Version: 1.5.3
Release: 2%{?dist}
Group: Applications/File
License: GPLv2+
Url: http://mama.indstate.edu/users/ice/tree/
Source: ftp://mama.indstate.edu/linux/tree/tree-%{version}.tgz
Patch1: tree-1.2-carrot.patch
Patch2: tree-1.2-no-strip.patch
Patch3: tree-preserve-timestamps.patch
Patch4: tree-no-color-by-default.patch

BuildRoot: %{_tmppath}/%{name}-%{version}-%{release}-root-%(%{__id_u} -n)

%description
The tree utility recursively displays the contents of directories in a tree-
like format. Tree is basically a UNIX port of the DOS tree utility.%prep
%setup -q
Fixed spelling mistake in man page.
%patch1 -p1 -b .carrot
Don't strip binary in the Makefile -- let rpmbuild do it.
%patch2 -p1 -b .no-strip
Preserve timestamp on man page.
%patch3 -p1 -b .preserve-timestamps
Disable color output by default.
%patch4 -p1 -b .no-color-by-default
%build
make CFLAGS="$RPM_OPT_FLAGS" "CPPFLAGS=$(getconf LFS_CFLAGS)" %{?_smp_mlags}

%install
rm -rf $RPM_BUILD_ROOT
mkdir -p $RPM_BUILD_ROOT%{_bindir}
make BINDIR=$RPM_BUILD_ROOT%{_bindir} \
 MANDIR=$RPM_BUILD_ROOT%{_mandir}/man1 \
 install
chmod -x $RPM_BUILD_ROOT%{_mandir}/man1/tree.1

%clean
rm -rf $RPM_BUILD_ROOT

%files
%defattr(-,root,root)
%{_bindir}/tree
%{_mandir}/man1/tree.1*
%doc README LICENSE
%changelog
 ...

After you install the rpm-build package, you can read about features of SPEC files in the

/usr/share/doc/rpm-build*/spec file. The Name is the base name of the package. The

Summary is a one-line description of the package. Version is the upstream version number on the

package, while Release is the number you add as the packager to reflect multiple builds of the

same upstream version (such as for bug fixes).

How to Build an RPM | Chris Negus 3

The URL points to the project site that produced the source code, and Source points to where the

original source code used to make the package came from. BuildRoot identifies the location of the

temporary directory where the RPM will be built. Other lines prepare the build environment, add

patches, compile and build the software, identify the files and permissions in the package, and

allow you to keep a log to the changes over time.

At the end of this document, you can find some rpm -qp options that you can use to check the

content of the package you build.

5. Build the RPM: Use the rpmbuild command to turn your spec file and content into the RPM

package for distribution. You can also package the source code into a separate source RPM

(src.rpm). Install the rpm-build package (as root) and run rpmbuild (from your regular user

account):

yum install rpm-build Run as root
$ rpmbuild -ba ~/rpmbuild/SPECS/tree.spec Run as regular user account

This results in a binary RPM and a source RPM in the RPMS and SRPMS subdirectories,

respectively.

6. Sign the RPM: Signing an RPM requires that you create a public and private key pair, use the

private key to sign your RPM, and then distribute the public key to clients so they can use that key

to check your signed package.

$ gpg --gen-key Generate public/private keys

When you generate your public/private keys, you can use most of the defaults. The end of the

output will be similar to the following:

pub 2048R/99A9CF07 2011-09-16
Key fingerprint = 90BF B5DC 628E C9E0 88D0 E5D1 E828 4641 99A9 CF07
uid Chris Negus (My own build of the tree package.) <cnegus@redhat.com>
sub 2048R/48E60E56 2011-09-16

Use the key ID generated (in this case, 99A9CF07) to export your private key to a public key:

$ gpg -a -o RPM-GPG-KEY-ABC –-export 99A9CF07 Export public key

To make sure the key ID is used to sign your package, add a _gpg_name line to the .rpmmacros

file in your home directory:

$ vi ~/.rpmmacros Add _gpg_name keyID to your .rpmmacros file
%_gpg_name 99A9CF07

Now you are ready to sign the package:

$ rpm –-resign ~/rpmbuild/RPMS/x86_64/tree-1.5.3-2.el6.x86_64.rpm Sign pkg

7. Publish the RPM in a yum Repository: One way to make your RPM accessible is to create a yum

repository that is accessible from your web server. Assuming a web server is running on the system

on which you build your RPM, these steps publish the RPM and make a yum repository:

How to Build an RPM | Chris Negus 4

mkdir /var/www/html/abc
cp ~/RPM-GPG-KEY-ABC /var/www/html/abc/ Make the public key available
cp ~/rpmbuild/RPMS/x86_84/tree-1.5.3-2.el6.x86_64.rpm /var/www/html/abc/
createrepo /var/www/html/abc Create the repository

8. Create a Repository (.repo) File: Create a .repo file that identifies the URL to the repository.

Clients that want to install the package will be able to simply copy the abc.repo file to their own

RHEL system's /etc/yum.repos.d directory to enable it. Replace whatever.example.com

with the FQDN of your own web server:

$ vim abc.repo
 [abc-repo]
 name=My ABC yum repository
 baseurl=http://whatever.example.com/abc
 gpgkey= http://whatever.example.com/RPM-GPG-KEY-ABC

$ cp abc.repo /var/www/html/abc

9. Prepare Clients to Install the RPM: To install your RPM, clients can simply copy your .repo file

to their systems, then use the yum command to install any package from your repository:

wget http://whatever.example.com/abc/abc.repo -O /etc/yum.repos.d/abc.repo
yum install tree

To update your RPM in the future, you can simply rebuild the RPM, copy the latest version to your yum

repository directory, and rerun the createrepo command. Clients will get the new RPM the next time they

install or update the package.

CHECKING YOUR RPM PACKAGE

Once you have finished building your RPM, you can use the rpm command to check its contents and make

sure the signature worked properly. You can do this on any Red Hat Enterprise Linux system, as long as you

can get the package and the public key. Start by importing the key used to sign the package and checking

the signature:

rpm --import ~/RPM-GPG-KEY-ABC Import key file
$ rpm -K ~/rpmbuild/RPMS/x86_64/tree-1.5.3-2.el6.x86_64.rpm Check signature
~/rpmbuild/RPMS/x86_64/tree-1.5.3-2.el6.x86_64.rpm: sha1 md5 OK

Next, check the contents of the file. This can be accomplished in various way. The following options query

(q) a package (p), as opposed to the RPM database, and show information (i):

$ rpm -qpi ~/rpmbuild/RPMS/x86_64/tree-1.5.3-2.el6.x86_64.rpm
Name : tree Relocations: (not relocatable)
Version : 1.5.3 Vendor: (none)
Release : 2.el6 Build Date: Thu 15 Sep 2011 11:53:37 PM EDT
Install Date: (not installed) Build Host: cnegus.linuxtoys.net
Group : Applications/File Source RPM: tree-1.5.3-2.el6.src.rpm
Size : 73868 License: GPLv2+
Signature : (none)
URL : http://mama.indstate.edu/users/ice/tree/
Summary : File system tree viewer
Description :

How to Build an RPM | Chris Negus 5

The tree utility recursively displays the contents of directories in a
tree-like format. Tree is basically a UNIX port of the DOS tree
utility.

With the -l (lowercase L) option, you can list the contents of a package:

$ rpm -qpl ~/rpmbuild/RPMS/x86_64/tree-1.5.3-2.el6.x86_64.rpm
/usr/bin/tree
/usr/share/doc/tree-1.5.3
/usr/share/doc/tree-1.5.3/LICENSE
/usr/share/doc/tree-1.5.3/README
/usr/share/man/man1/tree.1.gz

There are many other options to the rpm command for checking and working with RPM packages. Refer to

the rpm man page for details (type man rpm).

BUILDING AN RPM FROM SCRATCH

To create your own RPM, you need to create your own spec file (and put it in the SPECS directory) and

gather into a tarball the executables, scripts, user documentation files, and configuration files you want

included in the RPM. You can create your spec file by simply copying an existing spec file and modifying it.

As an alternative, you can use the vim or emacs command to open any new file that ends in .spec. The

editor will automatically create a template within the new file for writing an RPM spec file. You can then

follow the rest of the procedure described earlier in this document.

To look at an example of a tarball of content for an RPM, try untarring the tree tarball included in the tree

source code package:

$ tar xvf ~/rpmbuild/SOURCES/tree-1.5.3.tgz
tree-1.5.3/CHANGES
tree-1.5.3/INSTALL
tree-1.5.3/LICENSE
tree-1.5.3/Makefile
tree-1.5.3/README
tree-1.5.3/tree.c
tree-1.5.3/strverscmp.c
tree-1.5.3/man/tree.1
tree-1.5.3/man/tree.1.fr

To create your own tarball, you can simply put your content in a directory (such as ~/abc-1.0) and gather it

into a tarball that is placed into the SOURCES directory:

$ tar -cvzf ~/rpmbuild/SOURCES/abc-1.0-1.tar.gz ~/abc-1.0/

GETTING MORE HELP WITH RPMS

There is more to building RPMs than is described in this document. Most of the complexity comes in building

the spec files. You can identify dependencies on other components, set the types and permissions of files in

the RPM, and run scripts when the package is installed or uninstalled. Below are some other places you can

look for help.

How to Build an RPM | Chris Negus 6

Copyright © 2013 Red Hat, Inc. “Red Hat,” Red Hat Linux, the Red Hat “Shadowman” logo, and the products
listed are trademarks of Red Hat, Inc., registered in the U.S. and other countries. Linux® is the registered
trademark of Linus Torvalds in the U.S. and other countries.

www.redhat.com

How to Create an RPM Package (Fedora Project)

Thousands of RPM packages have been created for the Fedora Project. The FedoraProject.org site has an

excellent document on creating RPMs that are similar to those you would use for Red Hat Enterprise Linux:

http://fedoraproject.org/wiki/How_to_create_an_RPM_package.

Packaging Software with RPM (IBM)

More information to help you get started building your first RPM can also be found at the following site:

http://www.ibm.com/developerworks/library/l-rpm1/.

How to Build an RPM | Chris Negus 7

http://FedoraProject.org/
http://www.ibm.com/developerworks/library/l-rpm1/
http://fedoraproject.org/wiki/How_to_create_an_RPM_package

	OVERVIEW
	Understanding the Process of Building RPMs
	Rebuilding an Existing Source Code Package into an RPM
	Checking Your RPM Package
	Building an RPM from Scratch
	Getting More Help with RPMs
	How to Create an RPM Package (Fedora Project)
	Packaging Software with RPM (IBM)

