
Designing, developing, and

deploying integration solutions

with JBoss Fuse

Red Hat JBoss Fuse 6.1

Babak Mozaffari

Consulting Software Engineer

Systems Engineering

Version 1.1

December 2014

100 East Davie Street

Raleigh NC 27601 USA

Phone: +1 919 754 3700

Phone: 888 733 4281

Fax: +1 919 754 3701

PO Box 13588

Research Triangle Park NC 27709 USA

Linux is a registered trademark of Linus Torvalds. Red Hat, Red Hat Enterprise Linux, the Shadowman

logo, JBoss, MetaMatrix, Fedora, the Infinity Logo, and RHCE are trademarks of Red Hat, Inc.,

registered in the United States and other countries.

Apache, ServiceMix, Camel, CXF, and ActiveMQ are trademarks of Apache Software Foundation. Any

other names contained herein may be trademarks of their respective owners.

All other trademarks referenced herein are the property of their respective owners.

© 2014 by Red Hat, Inc. This material may be distributed only subject to the terms and conditions set

forth in the Open Publication License, V1.0 or later (the latest version is presently available at

http://www.opencontent.org/openpub/).

The information contained herein is subject to change without notice. Red Hat, Inc. shall not be liable

for technical or editorial errors or omissions contained herein.

Distribution of modified versions of this document is prohibited without the explicit permission of Red

Hat Inc.

Distribution of this work or derivative of this work in any standard (paper) book form for commercial

purposes is prohibited unless prior permission is obtained from Red Hat Inc.

The GPG fingerprint of the security@redhat.com key is:

CA 20 86 86 2B D6 9D FC 65 F6 EC C4 21 91 80 CD DB 42 A6 0E

www.redhat.com ii refarch-feedback@redhat.com

http://www.opencontent.org/openpub/
mailto:security@redhat.com

Comments and Feedback

In the spirit of open source, we invite anyone to provide feedback and comments on any reference

architectures. Although we review our papers internally, sometimes issues or typographical errors are

encountered. Feedback allows us to not only improve the quality of the papers we produce, but allows

the reader to provide their thoughts on potential improvements and topic expansion to the papers.

Feedback on the papers can be provided by emailing refarch-feedback@redhat.com. Please refer to

the title within the email.

Staying In Touch

Join us on some of the popular social media sites where we keep our audience informed on new

reference architectures as well as offer related information on things we find interesting.

Like us on Facebook:

https://www.facebook.com/rhrefarch

Follow us on Twitter:

https://twitter.com/RedHatRefArch

Plus us on Google+:

https://plus.google.com/114152126783830728030/

refarch-feedback@redhat.com III www.redhat.com

https://plus.google.com/114152126783830728030/
https://twitter.com/RedHatRefArch
https://www.facebook.com/rhrefarch
mailto:refarch-feedback@redhat.com?subject=JBoss%20Fuse%20Reference%20Architecture

Table of Contents

1 Executive Summary... 1

2 JBoss Fuse 6.. 2

2.1 Overview.. 2

2.2 Development Environment.. 2

2.3 Dependency Injection.. 3

2.3.1 Spring XML.. 3

2.3.2 Blueprint XML.. 3

2.4 Fuse Fabric.. 4

2.5 Components.. 5

2.5.1 Apache Camel.. 5

2.5.2 Apache CXF... 6

2.5.3 Apache ActiveMQ... 7

2.6 Deployment... 8

2.6.1 OSGi Bundle.. 8

2.6.2 Fuse Feature.. 9

2.6.3 Fabric Profile.. 10

2.6.4 Other Options... 10

3 Reference Architecture Environment.. 11

3.1 Overview.. 11

3.1.1 Order Fulfillment... 11

3.2 Fabric Ensemble.. 11

3.3 MySQL Database.. 12

4 Creating the Environment... 13

4.1 Prerequisites.. 13

4.2 Downloads... 13

4.3 Installation... 13

4.3.1 MySQL Database... 13

4.3.2 JBoss Fuse.. 13

4.4 Configuration... 14

4.4.1 MySQL Database... 14

4.4.2 JBoss Fuse.. 15

4.5 Deployment... 15

4.6 Execution... 19

www.redhat.com iv refarch-feedback@redhat.com

4.6.1 Legacy File Drop.. 19

4.6.2 SOAP-based Web Service.. 21

4.6.3 XML RESTful Service.. 22

4.6.4 JSON RESTful Service.. 22

5 Design and Development... 23

5.1 Overview.. 23

5.2 Integrated Development Environment... 23

5.2.1 JBoss Developer Studio.. 23

5.2.2 JBoss Fuse IDE plugins... 24

5.2.3 Creating a Fuse Project... 26

5.2.4 Sample Project Review.. 27

5.2.5 Sample Project Execution.. 35

5.3 Initial Project Iteration.. 37

5.3.1 Overview.. 37

5.3.2 Project Structure.. 37

5.3.3 File Polling Project... 37

5.3.4 Fuse Feature.. 49

5.3.5 Aggregation POM.. 52

5.3.6 Fuse Fabric Deployment.. 53

5.3.7 Fuse Fabric Ensemble... 56

5.4 Request Aggregation... 58

5.4.1 Requirements... 58

5.4.2 Content Based Router... 59

5.4.3 Unmarshalling CSV... 62

5.4.4 Aggregated Type.. 66

5.4.5 Setting Camel Message Headers.. 67

5.4.6 Direct VM Call.. 68

5.4.7 Aggregator Component.. 71

5.4.8 Distributed Aggregation... 76

5.4.9 JDBC Driver Dependency.. 79

5.5 Order Processing Service... 84

5.6 Web Service Interface... 86

5.7 RESTful Service Interface... 91

5.8 Asynchronous Messaging... 97

5.8.1 Overview.. 97

5.8.2 Producer.. 97

5.8.3 Consumer.. 98

refarch-feedback@redhat.com v www.redhat.com

5.8.4 Dependencies.. 98

5.8.5 Testing.. 99

5.8.6 Broker Configuration.. 100

6 Conclusion.. 101

www.redhat.com vi refarch-feedback@redhat.com

1 Executive Summary
Red Hat JBoss Fuse is a small-footprint, open source Enterprise Service Bus (ESB). It

delivers a robust, cost-effective, and open integration platform that lets enterprises easily

connect their disparate applications, services, or devices in real time. An integrated enterprise

is able to provide better products and services to its customers. A flexible architecture coupled

with popular and proven integration tools enables Red Hat JBoss Fuse to provide integration

everywhere.
1

This reference architecture reviews Red Hat JBoss Fuse 6.1 and walks through the

design, implementation and deployment of a sample application. The section on design and

development starts with a very simple project, assuming little to no prior experience. Once

deployed and successfully tested, further requirements are defined and iteratively addressed,

leading to a more complex and comprehensive solution. Without attempting to provide a

thorough tutorial or educational content, this reference architecture allows a new user with the

adequate technical background to quickly get up to speed with the basics of Fuse 6 and start

creating real-world integration solutions.

Requirements for the sample application include support for receiving requests in various

legacy and modern formats, message validation, auditing and throttling, as well as the use of

ActiveMQ messaging as an asynchronous bridge to the back-end order processing servers.

Some of the components from Apache Camel and Apache CXF are used in the Fuse

application to satisfy these requirements and while covering every product feature is not

feasible within the time and scope constraints of this effort, these cherry-picked examples

serve to demonstrate some of the product capabilities and establish patterns that can help

developers moving forward. Build, packaging and dependency management is discussed and

the application is deployed on a Fabric ensemble across three machines to provide better

horizontal scalability and eliminate a single point of failure.

1 https://access.redhat.com/products/red-hat-jboss-fuse/

refarch-feedback@redhat.com 1 www.redhat.com

2.3 Dependency Injection
Red Hat JBoss Fuse offers a choice between the Spring XML and Blueprint XML

dependency injection frameworks. When trying to decide between the blueprint and Spring

dependency injection frameworks, bear in mind that blueprint offers one major advantage

over Spring: when new dependencies are introduced in blueprint through XML schema

namespaces, blueprint has the capability to resolve these dependencies automatically at run

time. By contrast, when packaging your project as an OSGi bundle, Spring requires you to

add new dependencies explicitly to the maven-bundle-plugin configuration.
7
 The use of

blueprint is normally preferred in an OSGi environment but Spring may be adopted as the

framework of choice to enable deployment on Java EE containers in the future.

2.3.1 Spring XML
While primarily a dependency injection framework, Spring also includes a suite of services

and APIs that enable it to act as a container.

Refer to the IoC Container documentation from the Spring Reference Manual for details on

how to use Spring for dependency injection.
8

The Spring extensibility mechanism allows it to include XML configuration for Apache Camel,

Apache CXF and ActiveMQ, while Spring Dynamic Modules support integration of Spring

applications with OSGi containers.

When using Spring as the dependency injection model, the configuration files for your

application should reside in the following location: src/main/resources/META-INF/spring/*.xml

2.3.2 Blueprint XML
Blueprint is a dependency injection framework defined in the OSGi specification. Historically,

blueprint was originally sponsored by Spring and was based loosely on Spring DM.

Consequently, the functionality offered by blueprint is quite similar to Spring XML, but

blueprint is a more lightweight framework and it has been specially tailored for the OSGi

container.
9

The Blueprint extensibility mechanism allows it to include XML configuration for Apache

Camel, Apache CXF and ActiveMQ. Injection is supported through beans that are either

automatically or explicitly wired togethet. The XML syntax allows OSGi services to be easily

exported or consumed.

In a Maven project, blueprint configuration files for your application should reside in the

following location: src/main/resources/META-INF/blueprint/*.xml

7 https://access.redhat.com/documentation/en-

US/Red_Hat_JBoss_Fuse/6.1/html/Getting_Started/files/Concepts-Injection.html

8 http://static.springsource.org/spring/docs/3.1.x/spring-framework-reference/html/beans.html

9 https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.1/html/Getting_Started/Concepts-

Injection.html

refarch-feedback@redhat.com 3 www.redhat.com

https://access.redhat.com/products/red-hat-jboss-fuse/

2.4 Fuse Fabric
Fuse Fabric is a technology layer that allows a group of containers to form a cluster that

shares a common set of configuration information and a common set of repositories from

which to access runtime artifacts. Fabric containers are managed by a Fabric Agent that

installs a set of bundles that are specified in the profiles assigned to the container. The agent

requests artifacts from the Fabric Ensemble. The ensemble has a list of repositories that it

can access. These repositories are managed using a Maven proxy and include a repository

that is local to the ensemble.
10

In a fabric container, you cannot directly deploy bundles to a container, whether directly or as

part of a feature. A container's configuration is managed by a Fabric Agent that updates its

contents and configuration based on one or more profiles. So to deploy to a container, you

must either add the bundle or install the feature to an existing profile or create a new profile

that is configured to include the bundle or feature in question.

10 https://access.redhat.com/documentation/en-

US/Red_Hat_JBoss_Fuse/6.1/html/Deploying_into_the_Container/FESBIntroFabric.html

www.redhat.com 4 refarch-feedback@redhat.com

https://access.redhat.com/documentation/en-US/Fuse_IDE/
https://access.redhat.com/articles/310603
https://access.redhat.com/articles/348423
http://www.jboss.org/products/fuse/overview/
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.1/html/Getting_Started/Concepts-MavenEssentials.html
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.1/html/Getting_Started/Concepts-MavenEssentials.html

2.5 Components

2.5.1 Apache Camel
Apache Camel is an open-source project that provides the EIP-based routing technology

used by JBoss Fuse. Camel supports both a Java-based and XML-based syntax for building

routes. This reference architecture uses the XML syntax within blueprint configuration files.

The router schema for blueprint, which defines the XML DSL, is defined in the following XML

schema namespace: http://camel.apache.org/schema/blueprint

To define a Camel route in XML syntax using blueprint dependency injection, use a

configuration file that resembles the following:

<?xml version="1.0" encoding="UTF-8"?>
<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.osgi.org/xmlns/blueprint/v1.0.0

http://www.osgi.org/xmlns/blueprint/v1.0.0/blueprint.xsd
 http://camel.apache.org/schema/blueprint

http://camel.apache.org/schema/blueprint/camel-blueprint.xsd">

<camelContext xmlns="http://camel.apache.org/schema/blueprint">
<route>

...
</route>

</camelContext>
</blueprint>

A local routing rule always starts with a <from> element, which specifies the source of

messages (consumer endpoint) for the routing rule. You can then add an arbitrarily long chain

of processors to the rule (for example, <filter>). You typically finish off the rule with a <to>

element, which specifies the target (producer endpoint) for the messages that pass through

the rule. However, it is not always necessary to end a rule with <to>. There are alternative

ways of specifying the message target in a rule.

Refer to the Apache Camel Development Guide as part of the official Red Hat documentation

for further details on Camel development.
11

Camel includes a large number of components that are described in the Apache Camel

Component Reference as part of the official Red Hat Documentation.
12

11 https://access.redhat.com/documentation/en-

US/Red_Hat_JBoss_Fuse/6.1/html/Apache_Camel_Development_Guide/

12 https://access.redhat.com/documentation/en-

US/Red_Hat_JBoss_Fuse/6.1/html/Apache_Camel_Component_Reference/index.html

refarch-feedback@redhat.com 5 www.redhat.com

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.1/html/Getting_Started/Concepts-Injection.html
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.1/html/Getting_Started/Concepts-Injection.html
http://static.springsource.org/spring/docs/3.1.x/spring-framework-reference/html/beans.html
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.1/html/Getting_Started/files/Concepts-Injection.html
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.1/html/Getting_Started/files/Concepts-Injection.html

2.5.2 Apache CXF
Apache CXF is an open source services framework. JBoss Fuse primarily leverages the

capabilities and features of Apache CXF to provide comprehensive support for SOAP-based

and RESTful Web Services.

Apache CXF is often used within a Camel route to specify either a consumer or producer

endpoint. For example, to expose a WSDL for a SOAP-based web service using Apache CXF

and Camel, it is enough to simply write a simple Java interface with a single method and no

annotations, and then use this interface to generate the endpoint:

<?xml version="1.0" encoding="UTF-8"?>
<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:cxf="http://camel.apache.org/schema/blueprint/cxf"
xsi:schemaLocation="http://www.osgi.org/xmlns/blueprint/v1.0.0

http://www.osgi.org/xmlns/blueprint/v1.0.0/blueprint.xsd
 http://camel.apache.org/schema/blueprint
http://camel.apache.org/schema/blueprint/camel-blueprint.xsd">

<cxf:cxfEndpoint id="myWS" address="/myWS/"
serviceClass="..." />

<camelContext trace="false"
xmlns="http://camel.apache.org/schema/blueprint">

<route>
<from uri="cxf:bean:myWS" />
<log message="My Web Service was invoked..." />
...

</route>
</camelContext>

</blueprint>

Refer to the official Apache CXF Development Guide as part of the Red Hat documentation

for further details.
13

13 https://access.redhat.com/documentation/en-

US/Red_Hat_JBoss_Fuse/6.1/html/Apache_CXF_Development_Guide/index.html

www.redhat.com 6 refarch-feedback@redhat.com

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.1/html/Deploying_into_the_Container/FESBIntroFabric.html
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.1/html/Deploying_into_the_Container/FESBIntroFabric.html

2.5.3 Apache ActiveMQ
ActiveMQ is a fast and powerful messaging server. Within Camel, the ActiveMQ component

allows messages to be sent to a JMS Queue or Topic, or messages to be consumed from a

JMS Queue or Topic using Apache ActiveMQ.

The following example includes two Camel routes where the first one simply picks up the

contents of a file and places it on a JMS queue. The second route creates a queue consumer

and process messages on this queue:

<?xml version="1.0" encoding="UTF-8"?>
<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:cxf="http://camel.apache.org/schema/blueprint/cxf"

xsi:schemaLocation="http://www.osgi.org/xmlns/blueprint/v1.0.0
http://www.osgi.org/xmlns/blueprint/v1.0.0/blueprint.xsd
 http://camel.apache.org/schema/blueprint
http://camel.apache.org/schema/blueprint/camel-blueprint.xsd">

<camelContext xmlns="http://camel.apache.org/schema/blueprint"
xmlns:order="http://fusesource.com/examples/order/v7" id="jms-

example-context">

<route id="file-to-jms-queue">
<from uri="file:..." />
<to uri="amq:incoming" />

</route>

<route id="jms-route">
<from uri="amq:incoming" />
...

</route>
</camelContext>

</blueprint>

refarch-feedback@redhat.com 7 www.redhat.com

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.1/html/Apache_Camel_Component_Reference/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.1/html/Apache_Camel_Component_Reference/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.1/html/Apache_Camel_Development_Guide/
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.1/html/Apache_Camel_Development_Guide/

2.6 Deployment
Red Hat JBoss Fuse is a multi-faceted container that supports a variety of deployment

models. However because the Red Hat JBoss Fuse container is fundamentally an OSGi

container, the OSGi bundle is also the native format for the container and after deployment,

all of the other deployment unit types are converted into OSGi bundles.

2.6.1 OSGi Bundle
An OSGi bundle is a tightly coupled, dynamically loadable collection of classes, JARs, and

configuration files that explicitly declare any external dependencies. In OSGi, a bundle is the

primary deployment format. Bundles are applications that are packaged in JARs, and can be

installed, started, stopped, updated, and removed.
14

A bundle is a JAR file with metadata in its OSGi manifest file. A bundle contains class files

and, optionally, other resources and native libraries. You can explicitly declare which

packages in the bundle are visible externally (exported packages) and which external

packages a bundle requires (imported packages).

OSGi uses a graph model for class loading rather than a tree model (as used by the JVM).

Bundles can share and re-use classes in a standardized way, with no runtime class-loading

conflicts.

Each bundle has its own internal classpath so that it can serve as an independent unit if

required.

The benefits of class loading in OSGi include:

• Sharing classes directly between bundles. There is no requirement to promote JARs to

a parent class-loader.

• You can deploy different versions of the same class at the same time, with no conflict.

It is fairly easy to change a simple Maven-based Java project to build a bundle. It is simply

enough to:

1. Change the Maven packaging from jar to bundle

2. Add maven-bundle-plugin as a build plugin

For example:

<packaging>bundle</packaging>
...

<build>
<plugins>

<plugin>
<groupId>org.apache.felix</groupId>
<artifactId>maven-bundle-plugin</artifactId>
<version>2.3.7</version>

...

14 https://access.redhat.com/documentation/en-

US/Red_Hat_JBoss_Fuse/6.1/html/Deploying_into_the_Container/bundles.html

www.redhat.com 8 refarch-feedback@redhat.com

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.1/html/Apache_CXF_Development_Guide/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.1/html/Apache_CXF_Development_Guide/index.html

2.6.2 Fuse Feature
Because applications and other tools typically consist of multiple OSGi bundles, it is often

convenient to aggregate inter-dependent or related bundles into a larger unit of deployment.

Red Hat JBoss Fuse therefore provides a scalable unit of deployment, the feature, which

enables you to deploy multiple bundles (and, optionally, dependencies on other features) in a

single step.

JBoss Fuse Features are the preferred and recommended deployment approach. It is a

concept that is simple and convenient, without being too abstract to understand the bundles

and dependencies that form the backbone of the deployment.

To create a feature, start by creating a feature repository. A feature repository is a location that

stores feature descriptor files. Generally, because features can depend recursively on other

features and because of the complexity of the dependency chains, the project normally

requires access to all of the standard Red Hat JBoss Fuse feature repositories.
15

A feature repository is itself an XML file:

<?xml version="1.0" encoding="UTF-8"?>
<features name="CustomRepository">

...
</features>

To add a feature to the custom feature repository, insert a new feature element as a child of

the root features element. You must give the feature a name and you can list any number of

bundles belonging to the feature, by inserting bundle child elements.

The contents of the bundle element can be any valid URL, including a direct file reference to a

built bundle JAR file, however using Maven references to bundles can streamline the build

process:

<?xml version="1.0" encoding="UTF-8"?>
<features name="fulfillment-feature_repository">
 <feature name="fulfillment-feature">
 <bundle>mvn:com.redhat.refarch.fuse/fulfillment/1.0.0</bundle>
 <bundle>file:/opt/myBundle.jar</bundle>

...

 <feature>camel-blueprint</feature>
...

 </feature>
</features>

Each feature builds upon the bundles and dependencies of other features to satisfy its

requirements. JBoss Fuse includes a number of preconfigured features, made available in

system feature repositories in the Fuse installation.

15 https://access.redhat.com/documentation/en-

US/Red_Hat_JBoss_Fuse/6.1/html/Deploying_into_the_Container/Locate-CustomRepo.html

refarch-feedback@redhat.com 9 www.redhat.com

2.6.3 Fabric Profile
A profile is a description of how to provision a logical group of containers. Each profile can

have none, one, or more parents, which allows you to have profile hierarchies. A container

can be assigned one or more profiles. Profiles are also versioned, which enables you to

maintain different versions of each profile, and then upgrade or roll back containers, by

changing the version of the profiles they use.

JBoss Fuse Fabric includes a number of profiles by default, each with a set of bundles and

features associated with them. An easy to get started with a profile is to inherit one that

includes the required features. Alternatively, the default profile can be inherited and set up

with any needed features. One advantage of inheriting from the default profile as opposed to

creating one from scratch is that the provided feature repositories would be preconfigured.

2.6.4 Other Options

2.6.4.1 Fuse Application Bundle

The Fuse Application Bundle (FAB) deployment model is fundamentally different from that of

standard OSGi bundles. When a FAB is installed, the FAB runtime automatically figures out

what dependencies are required, by scanning the Maven metadata, and these dependencies

are then installed dynamically.

However, Fuse Application Bundles have been DEPRECATED in JBoss Fuse 6.1 and will be

removed in future versions.
16

2.6.4.2 Web Application Archive

The Web Application Archive (WAR) format is supported in two ways:

Web Applications built and packaged as WAR files may be deployed to JBoss Fuse through

the PAX War URL handler, acting as a wrapper.
17

It is also possible to create and deploy web applications based on Fuse technology, including

Camel and CXF. This would involve deploying the Camel servlet or bootstrapping a CXF

Servlet in a WAR. Under the WAR deployment model, all of the requisite JBoss Fuse libraries

are packaged into your application's WAR file.

16 https://access.redhat.com/documentation/en-

US/Red_Hat_JBoss_Fuse/6.1/html/Release_Notes/FMQReleaseNotesNew.html#idp108848

17 https://access.redhat.com/documentation/en-

US/Red_Hat_JBoss_Fuse/6.1/html/Deploying_into_the_Container/DeployWar.html#DeployWar-Convert

www.redhat.com 10 refarch-feedback@redhat.com

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.1/html/Deploying_into_the_Container/bundles.html
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.1/html/Deploying_into_the_Container/bundles.html

3 Reference Architecture Environment

3.1 Overview
This reference architecture consists of a Fuse Fabric ensemble with three member nodes

distributed over separate logical machines. Red Hat JBoss Fuse 6.1 is installed on three

machines running Red Hat Enterprise Linux 6.1 and each installation is used to start a root

and a child container. Assume that the nodes have host names of fuse-node1, fuse-node2

and fuse-node3.

An instance of MySQL database is installed on a fourth node called fuse-web and accessed

from the ensemble. Avoiding a single point of failure for the database is outside the scope of

this reference architecture and it is assumed that a proper high availability strategy is

employed to avoid system downtime due to database failure.

3.1.1 Order Fulfillment
In this reference architecture, JBoss Fuse 6.1 is used to design and deploy an order

fulfillment system, showcasing the capabilities of the product in each step as various common

challenges are discussed and resolved by applying appropriate solutions.

It is assumed that legacy systems not equipped to use web services provide order data in the

form of flat files. Processing these files presents several challenges, including picking up the

files, aggregating the information of an order that is split in two separate files and making sure

this aggregation is consistent throughout the distributed ensemble. Apache Camel is used to

implement file polling and provides a reliable and efficient way to process these files with little

development effort. Apache Camel also provides the capability of aggregating multiple

requests, in this case two separate but related flat files, into a single business request. The

database aggregation feature is used to support a distributed deployment.

Apache CXF is used to expose the order fulfillment service as JSON and XML RESTful

services as well as a SOAP over HTTP web service. ActiveMQ is leveraged as a JMS

implementation and support asynchronous messaging, allowing for fire and forget, parallel

processing, and seamless distribution of work.

3.2 Fabric Ensemble
Red Hat JBoss Fuse 6.1 is installed on three separate Linux machines running RHEL 6.1.

After setup and minimal configuration, an instance of JBoss Fuse is started on each of 3

machines. A Fuse Fabric is created with all three nodes joining it as members. A child

container is set up on each Fuse instance.

The Order Fulfillment application includes a Fuse Feature which describes the application

bundle along with all of its dependencies. A Fabric profile is configured with this Feature and

applied to the child containers in order to deploy the application.

refarch-feedback@redhat.com 11 www.redhat.com

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.1/html/Deploying_into_the_Container/Locate-CustomRepo.html
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.1/html/Deploying_into_the_Container/Locate-CustomRepo.html

3.3 MySQL Database
While it is very likely that an enterprise database would be required for every large-scale

deployment, the only database requirement in this reference application is to coordinate and

aggregate parts of the same order that may potentially be picked up and processed by two

separate nodes of the Fuse ensemble.

Apache Camel provides a JDBC-based implementation of the aggregation repository as part

of its SQL Component. Using this feature requires two tables to be created for each

aggregation repository, where one stores pieces of an aggregation waiting for completion and

the other records completed aggregations. The name of these tables depend on the

configuration of the aggregation repository and each is very simple, with a text ID column

serving as its primary key and a blob column called exchange to store the individual and

completed aggregation parts.

www.redhat.com 12 refarch-feedback@redhat.com

Figure 3.3-1: Fuse Fabric Deployment

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.1/html/Deploying_into_the_Container/DeployWar.html#DeployWar-Convert
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.1/html/Deploying_into_the_Container/DeployWar.html#DeployWar-Convert
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.1/html/Release_Notes/FMQReleaseNotesNew.html#idp108848
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.1/html/Release_Notes/FMQReleaseNotesNew.html#idp108848

4 Creating the Environment

4.1 Prerequisites
Prerequisites for creating this reference architecture include a supported Operating System

and JDK. Refer to Red Hat documentation for supported environments.
18

The reference architecture environment requires Maven to build and install bundles and

features into the Maven repository, where they can be accessed by Fuse. This application

also relies on a MySQL database to aggregate parts of the same business request that may

be picked up by physically separate nodes.

4.2 Downloads
The attachments to this document include the reference application, along with other Maven

artifacts to allow building and deploying this application to a Fuse Fabric. These files may be

downloaded from:

https://access.redhat.com/node/1274103/40/1

If you do not have access to the Red Hat customer portal, See the Comments and Feedback

section to contact us for alternative methods of access to these files.

Download the full installation of JBoss Fuse 6.1.1 from Red Hat's Customer Support Portal:
19

• Red Hat JBoss Fuse 6.1.1 Full Install

4.3 Installation

4.3.1 MySQL Database
The installation process for MySQL Database Server is beyond the scope of this reference

architecture document. On a RHEL system, installing MySQL can be as simple as running:

yum install mysql-server.x86_64

4.3.2 JBoss Fuse
Red Hat JBoss Fuse 6.1 is packaged and distributed as a simple archive file. As a pure Java

application, there is no installation process and it can simply needs to be extracted:

unzip jboss-fuse-full-6.1.1.redhat-412.zip

18 https://access.redhat.com/articles/310603

19 https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?

downloadType=distributions&product=jboss.fuse&version=6.1.1

refarch-feedback@redhat.com 13 www.redhat.com

4.4 Configuration
In the reference environment, only a couple of ports are used for intra-node communication.

This includes ports 1099 which is used by Fabric to look up and talk to remote instances.

JBoss Fuse uses ZooKeeper to replicate assets and enable the ensemble to synchronize it

state. The environment therefore also uses the ZooKeeper client port, set to 2181 by default.

The CXF server on child containers would run on port 8182 by default so that is another

required access port. This reference architecture uses IPTables, the default Red Hat

Firewall, to block all network packets by default and only allow configured ports and

addresses to communicate. Refer to the Red Hat documentation on IPTables20
 for further

details and see the appendix on IPTables configuration for the firewall rules used for the

active cluster in this reference environment.

This reference environment has been set up and tested with Security-Enhanced Linux

(SELinux) enabled in ENFORCING mode. Once again, refer to the Red Hat documentation on

SELinux for further details on using and configuring this feature.
21

 For any other operating

system, consult the respective documentation for security and firewall solutions to ensure that

maximum security is maintained while the ports required by your application are opened.

4.4.1 MySQL Database
For the purpose of this reference architecture, create a MySQL database called fuse and a

database user with jboss and password as its username and password.

Execute the following SQL statements through the MySQL administration tool to create the

database tables used by the application:

CREATE TABLE order_aggregation
 (id varchar(255) NOT NULL,

exchange blob NOT NULL,
constraint aggregation_pk PRIMARY KEY (id));

CREATE TABLE order_aggregation_completed
 (id varchar(255) NOT NULL,

exchange blob NOT NULL,
constraint aggregation_completed_pk PRIMARY KEY (id));

These DDL statements are included in the attachments in a file called mysql.ddl.

20 https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Security_Guide/sect-

Security_Guide-IPTables.html

21 https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Security-

Enhanced_Linux/

www.redhat.com 14 refarch-feedback@redhat.com

4.4.2 JBoss Fuse
The only required configuration after extracting the archive file and before running JBoss

Fuse is setting up an administrative user. By default, JBoss Fuse uses a property file to store

user, password and role information: etc/users.properties

The last line of this file includes a default administrative user, but is commented out:

#All users specified in this file, will be uploaded to the fabric registry
and will
#be available to all containers that join the fabric.
#The password of the first user in the file will also be used as a registry
(zookeeper) password
#unless a password is explicitly specified.
#admin=admin,admin

Uncomment this line and configure this user's password as password:

admin=password,admin

Alternatively, if JBoss Fuse is started without a user being configured, you will get prompted

to create one before most operations, for example:

JBossFuse:karaf@node1> fabric:create --zookeeper-password password --wait-
for-provisioning
No user found in etc/users.properties or specified as an option. Please
specify one ...
New user name: admin
Password for admin:
Verify password for admin:

While adding an administrative user is the only required step to use JBoss Fuse, there are

multiple other options that may be modified prior to starting the server. The main configuration

file for a JBoss Fuse instance is: etc/system.properties

Modify the name of each JBoss Fuse instance in the ensemble to a unique name, for

example:

#
Name of this Karaf instance.
#
karaf.name=fuse.node1

4.5 Deployment
Use Maven to build the reference application before you can deploy it to a Fabric.

The attached artifacts include a code directory with an aggregation POM and three modules:

ls code/
features fulfillment mysql-fragment pom.xml

refarch-feedback@redhat.com 15 www.redhat.com

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?downloadType=distributions&product=jboss.fuse&version=6.1.1
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?downloadType=distributions&product=jboss.fuse&version=6.1.1
https://access.redhat.com/articles/310603
https://access.redhat.com/node/1274103/40/1

Use Maven to build all three modules and install them in the repository by running the install

target:

mvn install

[INFO] Scanning for projects...
[INFO]
--
[INFO] Reactor Build Order:
[INFO]
[INFO] MySQLFragment
[INFO] Order Fulfillment JBoss Fuse Application
[INFO] Fulfillment feature repository
[INFO] Parent Project
...
...

[INFO] Reactor Summary:
[INFO]
[INFO] MySQLFragment SUCCESS [1.135s]
[INFO] Order Fulfillment JBoss Fuse Application SUCCESS [1.437s]
[INFO] Fulfillment feature repository SUCCESS [0.502s]
[INFO] Parent Project SUCCESS [0.005s]
[INFO]
--
[INFO] BUILD SUCCESS
[INFO]
--
[INFO] Total time: 3.631s
[INFO] Finished at: ...
[INFO] Final Memory: 26M/310M
[INFO]
--

You can start JBoss Fuse in the background by running the bin/start script and then use the

bin/client script to enter the Fuse shell environment, or alternatively, run bin/fuse:

[root@fuse-node1 ~]# bin/client

 _ ____ ______
 | | _ \ | ____|
 | | |_) | ___ ___ ___ | |__ _ _ ___ ___
 _ | | _ < / _ \/ __/ __| | __| | | / __|/ _ \
| |__| | |_) | (_) __ __ \ | | | |_| __ \ __/
 ____/|____/ ___/|___/___/ |_| __,_|___/___|

 JBoss Fuse (6.1.0.redhat-379)
 http://www.redhat.com/products/jbossenterprisemiddleware/fuse/

Hit '<tab>' for a list of available commands
and '[cmd] --help' for help on a specific command.

Open a browser to http://localhost:8181 to access the management console

Create a new Fabric via 'fabric:create'

www.redhat.com 16 refarch-feedback@redhat.com

https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Security-Enhanced_Linux/
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Security-Enhanced_Linux/
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Security_Guide/sect-Security_Guide-IPTables.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Security_Guide/sect-Security_Guide-IPTables.html

or join an existing Fabric via 'fabric:join [someUrls]'

Hit '<ctrl-d>' or 'osgi:shutdown' to shutdown JBoss Fuse.

JBossFuse:admin@fuse.node1>

Provision a JBoss Fuse Fabric from the first node, specifying a default password and initially

including only the current node. Include --wait-for-provisioning as an argument so that the

command only comes back once the Fabric has been created. Note that the other arguments

set default values and are therefore optional:

JBossFuse:admin@fuse.node1> fabric:create --zookeeper-password password
--wait-for-provisioning fuse.node1
Waiting for container: fuse.node1
Waiting for container fuse.node1 to provision.
Using specified zookeeper password:password
JBossFuse:admin@fuse.node1>

Start the Fuse shell environment from the other two nodes and join the Fabric you created:

JBossFuse:admin@fuse.node2> fabric:join --zookeeper-password password fuse-
node1
JBossFuse:admin@fuse.node2>

Repeat the same command from node 3.

Once the other two nodes have joined the Fuse Fabric, the remaining commands can be

issued from any of the member nodes.

Create child containers for each of the three nodes. You will then proceed to create Fuse

profiles with the application's Feature assigned to it and you will set that profile as the only

profile of all three child containers.

refarch-feedback@redhat.com 17 www.redhat.com

To create the child containers:

JBossFuse:admin@fuse.node1> container-create-child fuse.node1 child1
The following containers have been created successfully:

Container: child1.
JBossFuse:admin@fuse.node1> container-create-child fuse.node2 child2
The following containers have been created successfully:

Container: child2.
JBossFuse:admin@fuse.node1> container-create-child fuse.node3 child3
The following containers have been created successfully:

Container: child3.

Create the new profile by inheriting from only the default profile:

JBossFuse:admin@fuse.node1> fabric:profile-create --parents default
fulfillment-profile
JBossFuse:admin@fuse.node1>

Add the application's feature repository to this profile. Once the repository has been added,

the feature itself can be set on the profile:

JBossFuse:admin@fuse.node1> profile-edit -r
mvn:com.redhat.refarch.fuse/fulfillment-feature/1.0.0/xml/features
fulfillment-profile
Adding feature repository:mvn:com.redhat.refarch.fuse/fulfillment-
feature/1.0.0/xml/features to profile:fulfillment-profile version:1.0
JBossFuse:admin@fuse.node1> profile-edit --features fulfillment-feature
fulfillment-profile
Adding feature:fulfillment-feature to profile:fulfillment-profile
version:1.0
JBossFuse:admin@fuse.node1>

Finally, set this as the main and only profile of all three child containers:

JBossFuse:admin@fuse.node1> fabric:container-change-profile child1
fulfillment-profile
JBossFuse:admin@fuse.node1> fabric:container-change-profile child2
fulfillment-profile
JBossFuse:admin@fuse.node1> fabric:container-change-profile child3
fulfillment-profile

When a child container is created, a set of directories are created under the instances

directory of the Fuse installation path. For a container called child1, there would be an

equivalent instances/child1 directory. The log file for this container would be:

• instances/child1/data/log/karaf.log

Review this log file to troubleshoot any potential deployment issues. In case of a need to

investigate deployment problems, it is often helpful to change the container profile as soon as

it is created so any further changes to the profile can be monitored step by step.

www.redhat.com 18 refarch-feedback@redhat.com

4.6 Execution
The child container log files provides multiple clues as to the successful deployment of the

application. Given the inclusion of several Camel contexts and routes, the log should includes

multiple instances of Camel context and route startups:

... Apache Camel 2.12.0.redhat-610379 (CamelContext: camel-5)
started in 0.914 seconds
...
... Total 1 routes, of which 1 is started.
...

Other artifacts have their own separate indication of a successful startup. For example, the

SOAP web service registration:

... registering MBean org.apache.cxf:bus.id=fulfillment-
cxf1902998028,type=Bus.Service.Endpoint,service="{http://ws.fulfillment.fuse
.refarch.redhat.com/}OrderFulfillmentService",port="OrderFulfillmentServiceP
ort",instance.id=1129779289:
javax.management.modelmbean.RequiredModelMBean@1349574f

The Apache CXF RESTful service provides the following log message:

Setting the server's publish address to be /orderRS

The ActiveMQ destination is deployed with routes producing to it and consuming from it, with

a confirmation message such as:

Route: route3 started and consuming from: Endpoint[amq://queue:order]

4.6.1 Legacy File Drop
The application is configured to poll the following directory for comma-separated files. Create

this directory, either physically, or using a symbolic link:

/fulfillment/input

Two sample files are provided in the code directory of the attachment that can be dropped to

generate an order. Copy these two files to the above directory within no more than a few

seconds of one another:

code/fulfillment/requests/file/123-orders.csv

code/fulfillment/requests/file/123-customers.csv

After dropping in the first file, you should notice the following the log file:

org.apache.camel.camel-core - 2.12.0.redhat-610379 | Will parse 123-
orders.csv for order items
org.apache.camel.camel-core - 2.12.0.redhat-610379 | Aggregate route
received [Order [itemId=item #1, quantity=5], Order [itemId=item #2,
quantity=7]]

refarch-feedback@redhat.com 19 www.redhat.com

Notice that the orders file is parsed and received by the aggregate route, at which time it is

stored in the database, waiting for its counterpart customer file before proceeding any further.

Once the customer file is also dropped in:

org.apache.camel.camel-core - 2.12.0.redhat-610379 | Will parse 123-
customer.csv for customer
org.apache.camel.camel-core - 2.12.0.redhat-610379 | Aggregate route
received Customer [customerId=333224444, firstName=Babak,
lastName=Mozaffari, telephone=310-555-1234]
org.apache.camel.camel-core - 2.12.0.redhat-610379 | Aggregated: Order
[customer=Customer [customerId=333224444, firstName=Babak,
lastName=Mozaffari, telephone=310-555-1234], orders=[Order [itemId=item #1,
quantity=5], Order [itemId=item #2, quantity=7]]]

Got order with 2 items
Order for item #1 in the following quantity: 5
Order for item #2 in the following quantity: 7

org.jboss.amq.mq-fabric - 6.1.0.redhat-379 | OSGi environment detected!
org.apache.activemq.activemq-osgi - 5.9.0.redhat-610379 | Adding new broker
connection URL: tcp://fuse-node1.cloud.lab.eng.bos.redhat.com:61616
org.apache.activemq.activemq-osgi - 5.9.0.redhat-610379 | Successfully
connected to tcp://fuse-node1.cloud.lab.eng.bos.redhat.com:61616
org.apache.camel.camel-core - 2.12.0.redhat-610379 | Receiving order Order
[itemId=item #1, quantity=5]

Notice that after parsing and the arrival of the customer data in the aggregating node,

aggregation is deemed complete and the order is processed. This prompts a connection to an

ActiveMQ destination and each order in the file is fired off separately. In a Fuse ensemble,

you are likely to only see one order being received on the first node. The other order is likely

to be distributed to another node.

Shortly after, you might see an error and a timeout resulting from a renewed attempt to

aggregate the first file:

2014-10-24 05:16:47,098 | INFO | teRecoverChecker | route1
| rg.apache.camel.util.CamelLogger 176 | 121 - org.apache.camel.camel-core
- 2.12.0.redhat-610379 | Aggregated: [Order [itemId=item #1, quantity=5],
Order [itemId=item #2, quantity=7]]
2014-10-24 05:16:47,113 | ERROR | teRecoverChecker | DefaultErrorHandler
| rg.apache.camel.util.CamelLogger 215 | 121 - org.apache.camel.camel-core
- 2.12.0.redhat-610379 | Failed delivery for (MessageId: ID-fuse-node1-
cloud-lab-eng-bos-redhat-com-35358-1414140905761-0-5 on ExchangeId: ID-fuse-
node1-cloud-lab-eng-bos-redhat-com-35358-1414140905761-3-6). Exhausted after
delivery attempt: 2 caught: org.apache.camel.CamelExecutionException:
Exception occurred during execution on the exchange: Exchange[Message:
[Order [itemId=item #1, quantity=5], Order [itemId=item #2, quantity=7]]]

Message History

This is a known issue in JBoss Fuse 6.1.
22

22 https://issues.jboss.org/browse/ENTESB-1956

www.redhat.com 20 refarch-feedback@redhat.com

4.6.2 SOAP-based Web Service
The main Fuse instance runs on port 8181 by default, so a child created in any node would

pick the next port by default for its http listening, which is port 8182. This can be confirmed by

accessing the CXF page of any of the servers, for example, point your browser to:

http://fuse-node1:8182/cxf/

The expected response page would show one SOAP service as well as on RESTful service

deployed:

Available SOAP services:
OrderFulfillmentServicePortType
process
Endpoint address: http://fuse-node1:8182/cxf/orderWS/
WSDL :
{http://ws.fulfillment.fuse.refarch.redhat.com/}OrderFulfillmentService
Target namespace: http://ws.fulfillment.fuse.refarch.redhat.com/

Available RESTful services:
Endpoint address: http://fuse-node1:8182/cxf/orderRS
WADL : http://fuse-node1:8182/cxf/orderRS?_wadl

Using curl, you can send a SOAP request to any of the servers. A request has been

provided in the attachments for your convenience:

curl -X POST -d @code/fulfillment/requests/ws/request.xml
http://fuse-node1:8182/cxf/orderWS/

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body><ns1:processResponse
xmlns:ns1="http://ws.fulfillment.fuse.refarch.redhat.com/">
<return>OK</return></ns1:processResponse></soap:Body></soap:Envelope>

Upon succesfully reaching and invoking the web service, you will see an OK response

returned in a SOAP envelope.

The server log output is also similar, although not identical, to the log generated for the file

drops:

org.apache.camel.camel-core - 2.12.0.redhat-610379 | Order Web Service
received request
fulfillment - 1.0.0 |

Got order with 2 items
Order for Chair in the following quantity: 4
Order for Table in the following quantity: 1

org.apache.camel.camel-core - 2.12.0.redhat-610379 | Receiving order Order
[itemId=Chair, quantity=4]

Once again, one of the order items is asynchronously handed off to another node:

org.apache.camel.camel-core - 2.12.0.redhat-610379 | Receiving order Order
[itemId=Table, quantity=1]

refarch-feedback@redhat.com 21 www.redhat.com

The curl command in this example only specified the request file, the HTTP method as POST

and the endpoint address of the service. SOAP-based web services standardized on the

request and response content type, therefore not requiring such details to be specified.

4.6.3 XML RESTful Service
Unlike SOAP-based web services, a RESTful service may accept or return either XML or

JSON as its message content type. The use of HTTP headers to specify the media type is

therefore required.

Once again, use curl with the provided request file:

curl -X POST -H 'Content-Type: application/xml'
-H 'Accept: application/xml' -d @code/fulfillment/requests/rest/request.xml
http://fuse-node1:8182/cxf/orderRS/

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<return><result>OK</result></return>

Notice that for a request to the RESTful service, both the request and expected response

content type is specified. In this case, they are both set as XML and a succesful XML

response is expected to be received and printed.

The server log once again shows the order being processed and the asynchronous messages

being distributed among the servers:

fulfillment - 1.0.0 |

Got order with 2 items
Order for Chair in the following quantity: 4
Order for Table in the following quantity: 1

org.apache.camel.camel-core - 2.12.0.redhat-610379 | Receiving order Order
[itemId=Chair, quantity=4]

The other node:

org.apache.camel.camel-core - 2.12.0.redhat-610379 | Receiving order Order
[itemId=Table, quantity=1]

4.6.4 JSON RESTful Service
Using JSON as the request and response format is a minor variation of a POX service

invocation. Point to the JSON sample request file and set the content type and accept

headers accordingly:

curl -X POST -H 'Content-Type: application/json'
-H 'Accept: application/json'
-d @code/fulfillment/requests/rest/request.json
http://fuse-node1:8182/cxf/orderRS/

{"result":"OK"}

The JSON requests reach the same service as the XML requests and the server logs are

identical.

www.redhat.com 22 refarch-feedback@redhat.com

https://issues.jboss.org/browse/ENTESB-1956

5 Design and Development

5.1 Overview
This section performs a step by step walkthrough of the design and development of the

reference architecture application. The first few steps approach the product from the

perspective of a beginner, taking small steps to understand and validate how a project is set

up and deployed. Gradually and incrementally, the guide tackles more difficult requirements

and assumes a more advanced user, providing fewer details and concentrating on specific

challenges and use cases.

5.2 Integrated Development Environment
This reference architecture uses JBoss Fuse IDE plugins for JBoss Developer Studio 8.

5.2.1 JBoss Developer Studio
Download the Stand-alone installer for JBoss Developer Studio (JBDS) 8.0.0 from

the Red Hat Customer Support Portal.
23

The installer is an executable JAR file. Installing a recent version of the JDK and having the

java and associated commands in the execution path is a prerequisite to using JBDS and

JBoss Fuse itself.

In most operating systems, it is enough to simply double-click the JBoss Developer Studio

installation JAR file to start installing the IDE. You can also trigger the installation from the

command line:

java -jar jboss-devstudio-8.0.0.GA-v20141020-1042-B317-installer-
standalone.jar

Accept the license, choose a location to install the product and proceed with the installation.

Select the default or preferred JDK location. Is it not necessary to configure any platform or

server location while installing JBoss Developer Studio.

Start JBoss Developer Studio by locating the shortcut created in the designated location.

Select a location for the IDE workspace. Once started, an initial welcome screen appears.

Close this screen to enter the familiar Eclipse framework environment.

23 https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?

downloadType=distributions&product=jbossdeveloperstudio&version=7.1.1

refarch-feedback@redhat.com 23 www.redhat.com

http://fuse-node1:8182/cxf/orderWS/
http://fuse-node1:8182/cxf/

5.2.2 JBoss Fuse IDE plugins
By default, JBoss Developer Studio opens in the JBoss perspective which in turn opens the

JBoss Central view. This view has two tabs in the bottom, where the default selected tab is

Getting Started. Change it to the Software/Update tab and check the box to Enable Early

Access:

The first category of features and plugins for update is the JBoss Developer Studio

Integration Stack. The third option is JBoss Integration and SOA Development, which also

includes JBoss Fuse.

Select only JBoss Integration and SOA Development and click the install button at the bottom

of the pane.

www.redhat.com 24 refarch-feedback@redhat.com

Figure 5.2.2-1: JBDS Software Update

The selected feature includes a large number of plugins for various JBoss integration

products. Only three of these items relate to JBoss Fuse and others may be deselected:

Proceed forward, accepting the terms and completing the installation of the plugins. Once

installed, restart JBoss Developer Studio to ensure all the changes have taken effect.

While not required, you may find it convenient to open the Fuse Integration perspective

instead of the default JBoss perspective. The active perspective is displayed at the top-right

corner of JBoss Developer Studio and perspectives can be opened and added by pressing

the button to its immediate left.

refarch-feedback@redhat.com 25 www.redhat.com

Figure 5.2.2-2: JBDS Fuse Plugins

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?downloadType=distributions&product=jbossdeveloperstudio&version=7.1.1
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?downloadType=distributions&product=jbossdeveloperstudio&version=7.1.1

5.2.3 Creating a Fuse Project
Click the drop-down for the New toolbar icon at the top left of the JBoss Developer Studio

window and select Fuse Project. Alternatively, you can click the icon to open the New wizard

dialog, open the group called Fuse Tooling and select Fuse Project from there.

The new project wizard prompts you to select a location for the project. For temporary and

testing purposes, it is easiest to let JBDS simply create the project in the designated

workspace. Carefully pick a location for those projects that you intend to keep and use. Select

Next to choose a Maven archetype:

www.redhat.com 26 refarch-feedback@redhat.com

Figure 5.2.3-1: New Fuse Project

5.2.4 Sample Project Review
Once created, the sample project contains a Camel context with a single Camel route. This

includes a Java bean in the form of both an interface and an implementation class. The

archetype also creates a Maven Project Object Model (POM) file to build and run the project.

Note that the Camel blueprint archetype was selected and therefore the blueprint dependency

injection model will be used.

The sample project builds a Camel route that is triggered by a timer every 5 seconds, at

which time it invokes a simple Java method that returns a message with the current time. The

Camel logger is used to print this message. This route gets invoked continuously every 5

seconds unless or until stopped.

In a Maven project using blueprint, any service descriptor must be placed under the

src/main/resources/OSGI-INF/blueprint directory and have a “.xml” file extension. The

generated project has one such file, called blueprint.xml:

<?xml version="1.0" encoding="UTF-8"?>
<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:camel="http://camel.apache.org/schema/blueprint"
 xsi:schemaLocation="
 http://www.osgi.org/xmlns/blueprint/v1.0.0
http://www.osgi.org/xmlns/blueprint/v1.0.0/blueprint.xsd
 http://camel.apache.org/schema/blueprint
http://camel.apache.org/schema/blueprint/camel-blueprint.xsd">

 <bean id="helloBean" class="com.redhat.refarch.fusetest.HelloBean">
 <property name="say" value="Hi from Camel"/>
 </bean>

 <camelContext id="blueprintContext" trace="false"
xmlns="http://camel.apache.org/schema/blueprint">
 <route id="timerToLog">
 <from uri="timer:foo?period=5000"/>
 <setBody>
 <method ref="helloBean" method="hello"/>
 </setBody>
 <log message="The message contains ${body}"/>
 <to uri="mock:result"/>
 </route>
 </camelContext>

</blueprint>

Reviewing this file can help you understand some of the basics of JBoss Fuse development.

refarch-feedback@redhat.com 27 www.redhat.com

A blueprint service descriptor is an XML file with a single root element called blueprint and

defined in the http://www.osgi.org/xmlns/blueprint/v1.0.0 namespace:

<?xml version="1.0" encoding="UTF-8"?>
<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:camel="http://camel.apache.org/schema/blueprint"
xsi:schemaLocation="
http://www.osgi.org/xmlns/blueprint/v1.0.0
http://www.osgi.org/xmlns/blueprint/v1.0.0/blueprint.xsd
http://camel.apache.org/schema/blueprint
http://camel.apache.org/schema/blueprint/camel-blueprint.xsd">

The blueprint namespace is defined as the default namespace for any element that does not

configure it otherwise. The XML schema instance namespace is defined with a prefix of xsi for

later use, as is the Camel namespace with a prefix of camel. The schema location for each

namespace is provided.

The service describes a simple blueprint service bean for later use:

 <bean id="helloBean" class="com.redhat.refarch.fusetest.HelloBean">
 <property name="say" value="Hi from Camel"/>
 </bean>

For further information on service beans, refer to the official Red Hat documentation.
24

The Java class implementing the bean is provided at the following location:

src/main/java/com/redhat/refarch/fusetest/HelloBean.java and contains the following code:

public class HelloBean implements Hello {

 private String say = "Hello World";

 public String hello() {
 SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
 return say + " at " + sdf.format(new Date());
 }

 public String getSay() {
 return say;
 }

 public void setSay(String say) {
 this.say = say;
 }
}

The Java bean allows for the say variable value to be modified and uses it to return a phrase

in its say method that includes the current time.

The service descriptor then defines the Camel context:

 <camelContext id="blueprintContext" trace="false"
xmlns="http://camel.apache.org/schema/blueprint">

The Camel context changes the default and implicit namespace definition from blueprint to

camel blueprint for all its child elements.

24 https://access.redhat.com/documentation/en-

US/Red_Hat_JBoss_Fuse/6.1/html/Deploying_into_the_Container/DeploySimple.html#DeploySimple-

Blueprint-DefBean

www.redhat.com 28 refarch-feedback@redhat.com

This configuration also turns off Camel route tracing. The Camel Tracer prints a log message

for every component in the Camel route and can be very useful for understanding and

debugging Camel functionality, however it is very verbose and can be counterproductive in

routine use.

This Camel context includes a single Camel route. While a single Camel context may include

two or more nodes, this reference environment elects to separate the routes and insert each

in its own distinct Camel context and file:

 <route id="timerToLog">
 <from uri="timer:foo?period=5000"/>
 <setBody>
 <method ref="helloBean" method="hello"/>
 </setBody>
 <log message="The message contains ${body}"/>
 <to uri="mock:result"/>
 </route>

The route is given an ID, which is optional since the context only includes a single route.

The Camel route begins with a timer that is arbitrarily named foo. This timer is configured on

the spot to invoke the route every 5000 milliseconds, or in other words, every 5 seconds. For

further information on the Camel Timer component, refer to the official Red Hat

documentation.
25

The first action on the Camel route, once invoked, is to set the message body. The service

refers to the previously defined bean, invoking the hello method of helloBean and setting the

response as the Camel route message body.

The next step in the pipeline makes use of the Camel logger. In its simplest form as shown

here, the Camel Log component simply logs the provided message. This message can

include variables such as body and header. For example to print the value of a header

variable called myVar, use: ${header.myVar}

The logger may also be used as a destination with the “log:” URI and include a large number

of options to modify its behavior. For example, to view all headers and properties as well as

the message body, use the showAll option:

<to uri="log:com.redhat.refarch.fusetest?showAll=true"/>

Multiple options can be added using an ampersand, which has to be escaped in the XML

format, for example:

<to uri="log:com.redhat.refarch.fusetest?showAll=true&multiline=true"/>

For further information on log options, refer to the Red Hat documentation on the subject.
26

Finally, the message is routed to a mock destination which is a Camel component that retains

messages in memory for testing and validation purposes.
27

25 https://access.redhat.com/documentation/en-

US/Red_Hat_JBoss_Fuse/6.1/html/Apache_Camel_Component_Reference/IDU-Timer.html

26 https://access.redhat.com/documentation/en-

US/Red_Hat_JBoss_Fuse/6.1/html/Apache_Camel_Component_Reference/IDU-Log.html

27 https://access.redhat.com/documentation/en-

US/Red_Hat_JBoss_Fuse/6.1/html/Apache_Camel_Component_Reference/IDU-Mock.html

refarch-feedback@redhat.com 29 www.redhat.com

The pom file for this sample JBoss Fuse project is fairly standard. It is configured to build and

package an OSGi bundle.

Each Maven project is uniquely identified by the combination of its group ID, artifact ID and

version. You entered values for all three while creating the project through the new project

wizard dialog. Optionally, edit the pom file to change the name of the OSGi bundle that will be

generated and eventually installed in an OSGi container.

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/maven-v4_0_0.xsd">

 <modelVersion>4.0.0</modelVersion>

 <groupId>com.redhat.refarch</groupId>
 <artifactId>fusetest</artifactId>
 <packaging>bundle</packaging>
 <version>1.0.0-SNAPSHOT</version>

 <name>A Camel Blueprint Route</name>
 <url>http://www.myorganization.org</url>

To avoid duplication and ease maintenance, pom files allow properties to be defined and used

later. These build properties are not used by the automatically generated pom file:

<properties>
 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
 <project.reporting.outputEncoding>UTF-8</project.reporting.outputEncoding>
</properties>

Instead of relying on a user's default Maven settings, a pom file can also define repositories

that are used to resolve dependencies:

<repositories>
 <repository>
 <id>release.fusesource.org</id>
 <name>FuseSource Release Repository</name>
 <url>http://repo.fusesource.com/nexus/content/repositories/releases</url>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 <releases>
 <enabled>true</enabled>
 </releases>
 </repository>
 <repository>
 ...
 ...
 </repository>
</repositories>

www.redhat.com 30 refarch-feedback@redhat.com

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.1/html/Deploying_into_the_Container/DeploySimple.html#DeploySimple-Blueprint-DefBean
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.1/html/Deploying_into_the_Container/DeploySimple.html#DeploySimple-Blueprint-DefBean
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.1/html/Deploying_into_the_Container/DeploySimple.html#DeploySimple-Blueprint-DefBean

Plugin repositories can similarly be configured:

<pluginRepositories>
 <pluginRepository>
 <id>release.fusesource.org</id>
 <name>FuseSource Release Repository</name>
 <url>http://repo.fusesource.com/nexus/content/repositories/releases</url>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 <releases>
 <enabled>true</enabled>
 </releases>
 </pluginRepository>
 <pluginRepository>
 <id>ea.fusesource.org</id>
 <name>FuseSource Community Early Access Release Repository</name>
 <url>http://repo.fusesource.com/nexus/content/groups/ea</url>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 <releases>
 <enabled>true</enabled>
 </releases>
 </pluginRepository>
 ...
 ...
</pluginRepositories>

This project uses the Camel timer, log, mock and other basic features, all part of the camel-

core project. Dependency injection is performed through camel-blueprint. These

dependencies must be declared in the pom file:

 <dependencies>
 <dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-core</artifactId>
 <version>2.12.0.redhat-610379</version>
 </dependency>
 <dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-blueprint</artifactId>
 <version>2.12.0.redhat-610379</version>
 </dependency>

refarch-feedback@redhat.com 31 www.redhat.com

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.1/html/Apache_Camel_Component_Reference/IDU-Mock.html
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.1/html/Apache_Camel_Component_Reference/IDU-Mock.html
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.1/html/Apache_Camel_Component_Reference/IDU-Log.html
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.1/html/Apache_Camel_Component_Reference/IDU-Log.html
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.1/html/Apache_Camel_Component_Reference/IDU-Timer.html
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.1/html/Apache_Camel_Component_Reference/IDU-Timer.html

Logging also introduces a number of dependencies:

 <!-- logging -->
 <dependency>
 <groupId>org.slf4j</groupId>
 <artifactId>slf4j-api</artifactId>
 <version>1.7.5</version>
 </dependency>
 <dependency>
 <groupId>org.slf4j</groupId>
 <artifactId>slf4j-log4j12</artifactId>
 <version>1.7.5</version>
 </dependency>
 <dependency>
 <groupId>org.slf4j</groupId>
 <artifactId>jcl-over-slf4j</artifactId>
 <version>1.7.5</version>
 </dependency>
 <dependency>
 <groupId>log4j</groupId>
 <artifactId>log4j</artifactId>
 <version>1.2.17</version>
 </dependency>

Finally, camel-test-blueprint is only required for testing. Accordingly, it is given a scope of test

to avoid its inclusion in the production deployment:

 <!-- testing -->
 <dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-test-blueprint</artifactId>
 <version>2.12.0.redhat-610379</version>
 <scope>test</scope>
 </dependency>
 </dependencies>

Like most Maven projects, the default Maven goal is to install the project in the Maven

repository:

 <build>
 <defaultGoal>install</defaultGoal>

www.redhat.com 32 refarch-feedback@redhat.com

Build plugins provide Maven with a mechanism to extend its use to various products and

features. Installing the project simply requires Java compilation and the inclusion of

resources:

 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <version>2.5.1</version>
 <configuration>
 <source>1.6</source>
 <target>1.6</target>
 </configuration>
 </plugin>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-resources-plugin</artifactId>
 <version>2.6</version>
 <configuration>
 <encoding>UTF-8</encoding>
 </configuration>
 </plugin>

Generating an OSGi bundle adds a requirement to insert a manifest file with further

information about the project. Maven uses a dedicated plugin for this purpose:

 <!-- to generate the MANIFEST-FILE of the bundle -->
 <plugin>
 <groupId>org.apache.felix</groupId>
 <artifactId>maven-bundle-plugin</artifactId>
 <version>2.3.7</version>
 <extensions>true</extensions>
 <configuration>
 <instructions>
 <Bundle-SymbolicName>fusetest</Bundle-SymbolicName>
 <Private-Package>com.redhat.refarch.fusetest.*</Private-Package>
 <Import-Package>*</Import-Package>
 </instructions>
 </configuration>
 </plugin>

Note that the manifest file declares a symbolic name for the OSGi bundle, specifies its base

working package and declares packages that are imported. In this case, the sample project

imports all declared dependency packages.

refarch-feedback@redhat.com 33 www.redhat.com

Finally, another Maven build plugin is required to easily and quickly run the project through

the camel:run goal, without the benefit of a container or the effort of proper deployment.

 <!-- to run the example using mvn camel:run -->
 <plugin>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-maven-plugin</artifactId>
 <version>2.12.0.redhat-610379</version>
 <configuration>
 <useBlueprint>true</useBlueprint>
 </configuration>
 </plugin>

 </plugins>
 </build>

</project>

The camel:run goal is only used for testing and development. In larger projects, as

development progresses and external dependencies multiply, this approach of local execution

often stops being feasible.

www.redhat.com 34 refarch-feedback@redhat.com

5.2.5 Sample Project Execution
JBoss Developer Studio comes pre-installed with a Maven plugin that allows you to build and

even run some Maven projects within the IDE environment.

Right-click on the pom.xml file and select Run As from the context menu. Two instances of

Maven Build appears for a pom file, where the second option is followed by an ellipsis.

Initially, both options behave identically. Once a Maven file is executed through the plugin, the

first option acts as a quick action and runs the most recent Maven goal without prompting you

for the goal and other configuration options.

Select the first Maven Build option from the Run As menu that appears for your project

pom.xml. In the Goals dialog box, type “install camel:run”:

Run this Maven goal to execute the project and save this configuration under the given name.

refarch-feedback@redhat.com 35 www.redhat.com

Figure 5.2.5-1: Maven Run Configuration

Once executed, observe the Console view. Adjust the size of the view or maximize it for better

monitoring ability.

You should see a message printed every 5 seconds, invoked by the timer:

With Maven in your execution path, it is very easy to reproduce the same results in a

command prompt. First, to build the project and install it in the Maven repository:

mvn install

Look for a success prompt:

[INFO]
[INFO] --- maven-bundle-plugin:2.3.7:install (default-install) @ fusetest

[INFO] Installing com/redhat/refarch/fusetest/1.0.0-SNAPSHOT/fusetest-1.0.0-
SNAPSHOT.jar
[INFO] Writing OBR metadata
[INFO]
--
[INFO] BUILD SUCCESS
[INFO]
--
[INFO] Total time: 5.124s

Then:

mvn camel:run

After initial setup, the timer thread will start and log a line every 5 seconds:

[ntext) thread #0 - timer://foo] timerToLog INFO The
message contains Hi from Camel at ...

www.redhat.com 36 refarch-feedback@redhat.com

Figure 5.2.5-2: JBDS Output Console

5.3 Initial Project Iteration

5.3.1 Overview
In this iteration, you will design, develop and deploy a very simple application that covers

various aspects of using JBoss Fuse without diving deep into technical details, or being

concerned with potential challenges. Once able to understand and replicate this process, you

will be able to develop a generic Fuse application and deploy it to a distributed and highly-

available environment.

5.3.2 Project Structure
To allow the use of multiple Maven projects, creating a directory that will serve as the single

parent directory for all the projects. This guide assumes that this parent directory is called

code.

5.3.3 File Polling Project

refarch-feedback@redhat.com 37 www.redhat.com

Figure 5.3.3-1: Simple File Polling

5.3.3.1 Development

Create a directory called fulfillment under the previously created code directory. This directory

will host the file polling project, which in turn will gradually evolve into the Order Fulfillment

application.

Use JBoss Developer Studio to create a new Fuse Project. Instead of the default workspace,

browse and point to code/fulfillment as the project location.

Select the camel-archetype-blueprint artifact from the org.apache.camel.archetypes group as

the project archetype. Enter the following Maven project configuration:

• groupId: com.redhat.refarch.fuse

• artifactId: fulfillment

• version: 1.0.0

Accept the proposed package as it defaults to a combination of the group and artifact:

com.redhat.refarch.fuse.fulfillment.

The created project uses a few Apache Camel features. You will only use the project structure

and build files.

Delete the blueprint service descriptor, the Java Bean and the associated test package:

• code/fulfillment/src/main/resources/OSGI-INF/blueprint/blueprint.xml

• code/fulfillment/src/main/java/com/redhat/refarch/fuse/fulfillment/Hello.java

• code/fulfillment/src/main/java/com/redhat/refarch/fuse/fulfillment/HelloBean.java

• code/fulfillment/src/test/java/*

www.redhat.com 38 refarch-feedback@redhat.com

Use JBoss Developer Studio to create a new Camel XML file under

src/main/resources/OSGI-INF/blueprint/blueprint.xml. When JBDS is set to the Fuse

Integration perspective, you can use the drop-down from the toolbar and select Camel XML

File, while having previously selected the blueprint directory so that it becomes the containing

folder in the wizard.

Alternatively, right-click on the src/main/resources/OSGI-INF/blueprint directory, select New

and choose Camel XML File. Enter the filename as csv.xml, since this Camel route will be

used to pick up and process CSV files. Set the framework to OSGi Blueprint:

refarch-feedback@redhat.com 39 www.redhat.com

Figure 5.3.3-2: New Camel Context

5.3.3.2 Graphical Development

The Camel context file opens the Fuse Tooling Routes Editor by default. This graphical editor

allows you to define and configure Camel routes through drag and drop, and property editing.

It is particular helpful as a learning tool, although more advanced users will often prefer to

directly edit the Camel XML files.

Locate the palette of Camel tools and components on the right-side edge of the canvas. From

the Endpoints group, drag and drop Endpoint onto the canvas

Drag and drop Log onto the canvas, placing it or later moving it, to the right of the previously

placed Endpoint.

Click on the Endpoint node and hover the mouse over the arrow that appears to display its

label as “Create Connection”:

Click the arrow and drag it onto the log node, dropping it there. Click on the first node, the

Endpoint, and open the properties view. Set up the properties for this node as follows:

• Uri: file:///fulfillment/input/

• Id: CSV File Poll

Then click on the log node and set up the log message:

• Message: Received ${file:name} with the following content: ${body}

At this point, you have created a very simple Fuse application consisting of a single Camel

context with a single route. The first node uses the Apache Camel File component to poll the

specified directory and pick up any files that are dropped in there.
28

 Any dropped file is

processed and passed down the route to the next node, which is a simple logger.

The log simply prints a message, including the name of the file that's been picked up and its

content, respectively identified by the ${file:name} and ${body} variables.

28 https://access.redhat.com/documentation/en-

US/Red_Hat_JBoss_Fuse/6.1/html/Apache_Camel_Component_Reference/IDU-File2.html

www.redhat.com 40 refarch-feedback@redhat.com

Figure 5.3.3-3: Connecting Nodes

5.3.3.3 Service Descriptor

Review the content of Camel csv.xml file, either by using a third-party editor or right-clicking

on the file in JBDS and selecting XML Editor in the Open With menu:

<?xml version="1.0" encoding="UTF-8"?>
<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 xmlns:camel="http://camel.apache.org/schema/blueprint"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.osgi.org/xmlns/blueprint/v1.0.0
 http://www.osgi.org/xmlns/blueprint/v1.0.0/blueprint.xsd
 http://camel.apache.org/schema/blueprint
 http://camel.apache.org/schema/blueprint/camel-blueprint.xsd">

 <camelContext trace="false"
xmlns="http://camel.apache.org/schema/blueprint">

 <route>
 <from uri="file:///fulfillment/input/" customId="true"

id="CSV File Poll">
 <description/>
 </from>
 <log message="Received ${file:name} with the following content: $
{body}"/>
 </route>
</camelContext>

</blueprint>

The route definition is straight forward and easy to understand.

5.3.3.4 Build

Open a terminal and navigate to the code/fulfillment directory where the project root is

located. Use Maven to build the project:

mvn install

5.3.3.5 Execution

Run the project using Maven:

mvn camel:run

This starts the Camel route and has it poll for files in the designated directory:

Route: route1 started and consuming from:
Endpoint[file:///fulfillment/input/]

INFO Total 1 routes, of which 1 is started.
INFO Apache Camel 2.12.0.redhat-610379 (CamelContext: camel-1)

started in 0.323 seconds

Create a simple file and drop it in this directory. You can use your favorite text editor to type a

few words and save the file with in that directory, or in a Linux / Unix environment (including

OS X), open another terminal and type:

echo "Testing" > /fulfillment/input/test.csv

refarch-feedback@redhat.com 41 www.redhat.com

The file is detected and picked up almost immediately. Observe the other terminal for the log

output:

[0 - file:///fulfillment/input/] route1
INFO Received test.csv with the following content: Testing

5.3.3.6 Maven POM File

Review and make sure to understand the generated Maven file that successfully builds and

runs this simple application. The Maven application is identified by its group, artifact and

version attributes, which you specified while creating the JBDS project:

 <groupId>com.redhat.refarch.fuse</groupId>
 <artifactId>fulfillment</artifactId>
 <packaging>bundle</packaging>
 <version>1.0.0</version>

 <name>A Camel Blueprint Route</name>
 <url>http://www.myorganization.org</url>

Note that the packaging is set to bundle so that building the project with Maven would create

an OSGi bundle and not a simple Java JAR file.

The project file then configures the repositories and plugin repositories to be used for this

project. This enables Maven to download any dependencies that are listed, but not available

in the local repository. The dependencies are listed next in the pom file:

 <dependencies>
 <dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-core</artifactId>
 <version>2.12.0.redhat-610379</version>
 </dependency>
 <dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-blueprint</artifactId>
 <version>2.12.0.redhat-610379</version>
 </dependency>

Camel and Camel Blueprint are the two functional dependencies of this project. The

application is built on top of the blueprint dependency injection model using a Camel context,

so camel-blueprint is an obvious dependency. This module itself depends on camel-core, as

do various features such as the file polling component and the log.

Notice that the version of required Camel components is listed as 2.12.0.redhat-610379. This

is a release version of Camel that is provided by Red Hat. Look at the FuseSource Release

Repository and follows its address to find these libraries, for example:

http://repo.fusesource.com/nexus/content/repositories/releases/org/apache/camel/camel-

blueprint/2.12.0.redhat-610379/

www.redhat.com 42 refarch-feedback@redhat.com

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.1/html/Apache_Camel_Component_Reference/IDU-File2.html
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.1/html/Apache_Camel_Component_Reference/IDU-File2.html

Another listed dependency is slf4j and its associated modules. This is used for logging to

the console:

 <!-- logging -->
 <dependency>
 <groupId>org.slf4j</groupId>
 <artifactId>slf4j-api</artifactId>
 <version>1.7.5</version>
 </dependency>
 <dependency>
 <groupId>org.slf4j</groupId>
 <artifactId>slf4j-log4j12</artifactId>
 <version>1.7.5</version>
 </dependency>
 <dependency>
 <groupId>org.slf4j</groupId>
 <artifactId>jcl-over-slf4j</artifactId>
 <version>1.7.5</version>
 </dependency>
 <dependency>
 <groupId>log4j</groupId>
 <artifactId>log4j</artifactId>
 <version>1.2.17</version>
 </dependency>

Finally, the Maven file has a testing dependency that is no longer requires, since the

generated route and its associated test have been removed:

 <!-- testing -->
 <dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-test-blueprint</artifactId>
 <version>2.12.0.redhat-610379</version>
 <scope>test</scope>
 </dependency>
 </dependencies>

Manually remove this dependency, or find it in the Dependencies tab of JBDS while opening

the file with the Maven POM Editor, and select it and press the remove button.

The pom file also selects install as the default Maven goal for this project:

 <build>
 <defaultGoal>install</defaultGoal>

The required plugins are configured to compile any Java classes and include any provided

resources.

refarch-feedback@redhat.com 43 www.redhat.com

To create an OSGi bundle, the required build plugin extension is declared:

 <!-- to generate the MANIFEST-FILE of the bundle -->
 <plugin>
 <groupId>org.apache.felix</groupId>
 <artifactId>maven-bundle-plugin</artifactId>
 <version>2.3.7</version>
 <extensions>true</extensions>
 <configuration>
 <instructions>
 <Bundle-SymbolicName>fulfillment</Bundle-SymbolicName>
 <Private-Package>com.redhat.refarch.fuse.fulfillment.*</Private-
Package>
 <Import-Package>*</Import-Package>
 </instructions>
 </configuration>
 </plugin>

Finally, the camel-maven-plugin is configured to allow you to run the project through Maven

without having to use an OSGi container.

5.3.3.7 Container Setup

While Camel can be very helpful to quickly test and validate simple projects, deploying to a

proper container is almost always a production requirement. Set up a JBoss Fuse

environment as previously outlined in the chapter 3, titled Reference Architecture

Environment. For the purpose of this application, it is enough to download, unzip and run

JBoss Fuse:

unzip jboss-fuse-full-6.1.0.redhat-379.zip

jboss-fuse-6.1.0.redhat-379/bin/fuse

Assuming the JDK dependency is available and found, you will be greeted by a prompt along

with a warning that no user has been set up. You will also notice that the fuse instance is

simply called root:

No user found in etc/users.properties. Please use the 'esb:create-admin-
user' command to create one.

JBossFuse:karaf@root>

While not necessary for the purpose of this simple application, it is generally required to set

up an administrator account for every JBoss Fuse installation. You can configure an account

by editing jboss-fuse-6.1.0.redhat-379/etc/users.properties and uncommenting the user

configuration, while changing the password, or through the fuse shell:

JBossFuse:karaf@root> esb:create-admin-user
Please specify a user...
New user name: admin
Password for admin: password
Verify password for admin: password

JBossFuse:karaf@root>

www.redhat.com 44 refarch-feedback@redhat.com

http://repo.fusesource.com/nexus/content/repositories/releases/org/apache/camel/camel-blueprint/2.12.0.redhat-610379/
http://repo.fusesource.com/nexus/content/repositories/releases/org/apache/camel/camel-blueprint/2.12.0.redhat-610379/

It is also good practice to properly name each Fuse installation. Do this by editing jboss-fuse-

6.1.0.redhat-379/etc/system.properties and changing the karaf.name property to a more

meaningful and unique name:

#
Name of this Karaf instance.
#
karaf.name=root

Create a simple Fabric Ensemble with a single Fabric Server, appropriate only for testing

purposes since it provides no fault tolerance.
29

Start by creating the first Fabric container. Specify a zookeeper password that will be required

for other nodes to join, or in subsequence sessions:

JBossFuse:karaf@root> fabric:create --zookeeper-password password --wait-
for-provisioning
Waiting for container: root
Waiting for container root to provision.
Using specified zookeeper password:password

JBossFuse:karaf@root>

Extend the fabric by creating a child container. This container will run in its own JVM instance

and can be used to deploy and run the application, while being managed from the previously

created container. Call this child container child1:

JBossFuse:karaf@root> fabric:container-create-child root child1
The following containers have been created successfully:

Container: child1.

JBossFuse:karaf@root>

This process creates and runs a JVM for a child container and usually takes a few seconds.

Look and tail the log file for this child container at jboss-fuse-6.1.0.redhat-

379/instances/child1/data/log/karaf.log

Use the container-info command to get the status of the newly created container:

JBossFuse:karaf@root> container-info child1
Name: child1
Version: 1.0
Alive: false
Resolver: localhostname
Network Address: babaks-mbp.home
SSH Url: null
JMX Url: null
Process ID: null
Profiles: default
Provision Status:

Notice the provision status has no value when you first query the container.

29 https://access.redhat.com/documentation/en-

US/Red_Hat_JBoss_Fuse/6.1/html/Fabric_Guide/GetStart.html#Deploy-Fabric-Create

refarch-feedback@redhat.com 45 www.redhat.com

A few seconds later, when the container has been successfully provisioned, the container info

looks as follows:

JBossFuse:karaf@root> container-info child1
Name: child1
Version: 1.0
Alive: true
Resolver: localhostname
Network Address: babaks-mbp.home
SSH Url: babaks-mbp.home:8102
JMX Url: service:jmx:rmi://babaks-
mbp.home:44445/jndi/rmi://babaks-mbp.home:1100/karaf-child1
Process ID: 10696
Profiles: default
Provision Status: success
Blueprint Status: started

The blueprint status of started indicates that the container is ready for use.

Connect to the container to install the application:

JBossFuse:karaf@root> fabric:container-connect child1
Connected
 _ ____ ______
 | | _ \ | ____|
 | | |_) | ___ ___ ___ | |__ _ _ ___ ___
 _ | | _ < / _ \/ __/ __| | __| | | / __|/ _ \
| |__| | |_) | (_) __ __ \ | | | |_| __ \ __/
 ____/|____/ ___/|___/___/ |_| __,_|___/___|

 JBoss Fuse (6.1.0.redhat-379)
 http://www.redhat.com/products/jbossenterprisemiddleware/fuse/

Hit '<tab>' for a list of available commands
and '[cmd] --help' for help on a specific command.

Open a browser to http://localhost:8181 to access the management console

Create a new Fabric via 'fabric:create'
or join an existing Fabric via 'fabric:join [someUrls]'

Hit '<ctrl-d>' or 'osgi:shutdown' to shutdown JBoss Fuse.

JBossFuse:admin@child1>

5.3.3.8 Container Deployment

To deploy your application, it is important to fully understand its dependencies.

The new child container is always set up with the default Fuse profile, resulting in a number of

OSGi bundles being installed, started or otherwise available. This includes the minimum

required components for JBoss Fuse to run and start an application.

www.redhat.com 46 refarch-feedback@redhat.com

The fulfillment application depends on camel-core and camel-blueprint for dependency

injection, route execution and file polling. Specifically, its pom file declares dependency on:

 <dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-core</artifactId>
 <version>2.12.0.redhat-610379</version>
 </dependency>
 <dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-blueprint</artifactId>
 <version>2.12.0.redhat-610379</version>
 </dependency>

To install an OSGi bundle, use osgi:install:

JBossFuse:admin@child1> osgi:install --help
DESCRIPTION
 osgi:install

Installs one or more bundles.

SYNTAX
 osgi:install [options] urls

ARGUMENTS
 urls
 Bundle URLs separated by whitespaces

OPTIONS
 --help
 Display this help message
 -s, --start
 Starts the bundles after installation

In the case of the fulfillment project, you have previously built the project by running mvn

install. That means the dependencies have been resolved and the project bundle along with

the dependency bundles have all been installed in your default local Maven repository. The

default local Maven repository is typically located under a directory called “.m2” in the user's

home directory. To verify and view the built project bundle, look inside the following directory

within the user's home directory:

.m2/repository/com/redhat/refarch/fuse/fulfillment/1.0.0/

Similarly, the camel-core and camel-blueprint bundles will be built and installed in your local

repository under the following address relative to your home directory:

• .m2/repository/org/apache/camel/camel-core/2.12.0.redhat-610379/

• .m2/repository/org/apache/camel/camel-blueprint/2.12.0.redhat-610379/

refarch-feedback@redhat.com 47 www.redhat.com

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.1/html/Fabric_Guide/GetStart.html#Deploy-Fabric-Create
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.1/html/Fabric_Guide/GetStart.html#Deploy-Fabric-Create

The fulfillment application, as currently built to only include file polling, depends on both

camel-blueprint and camel-core. However camel-blueprint itself depends on camel-core, so

the order of installation is first camel-core, followed by camel-blueprint and then fulfillment

itself. For a bundle built through Maven and available in the repository, the OSGi URL is in the

form of mvn:groupId/artifactId/version, resulting in the following install commands:

JBossFuse:admin@child1> osgi:install -s mvn:org.apache.camel/camel-
core/2.12.0.redhat-610379
Bundle ID: 102

JBossFuse:admin@child1> osgi:install -s mvn:org.apache.camel/camel-
blueprint/2.12.0.redhat-610379
Bundle ID: 103

JBossFuse:admin@child1> osgi:install -s
mvn:com.redhat.refarch.fuse/fulfillment/1.0.0
Bundle ID: 104

Look at the last few lines of the child1 container log and make sure that the container and the

Camel route have started successfully. The log file for the child container is located at:

jboss-fuse-6.1.0.redhat-379/instances/child1/data/log/karaf.log

The following is an example of the last few lines of a successful startup log:

... BlueprintCamelContext | e.camel.impl.DefaultCamelContext 1730
| 102 - org.apache.camel.camel-core - 2.12.0.redhat-610379 | StreamCaching
is not in use. If using streams then its recommended to enable stream
caching. See more details at http://camel.apache.org/stream-caching.html
... BlueprintCamelContext | e.camel.impl.DefaultCamelContext 2224
| 102 - org.apache.camel.camel-core - 2.12.0.redhat-610379 | Route: route1
started and consuming from: Endpoint[file:///fulfillment/input/]
... BlueprintCamelContext | e.camel.impl.DefaultCamelContext 1568
| 102 - org.apache.camel.camel-core - 2.12.0.redhat-610379 | Total 1 routes,
of which 1 is started.
... BlueprintCamelContext | e.camel.impl.DefaultCamelContext 1569
| 102 - org.apache.camel.camel-core - 2.12.0.redhat-610379 | Apache Camel
2.12.0.redhat-610379 (CamelContext: camel-1) started in 0.144 seconds

Follow the instructions in the Execution section to create a sample file and invoke the file

polling project. Once again, the container log file can be used to validate that the application

is successfully deployed and running on the container:

... | INFO | lfillment/input/ | route1 |
rg.apache.camel.util.CamelLogger 176 | 102 - org.apache.camel.camel-core -
2.12.0.redhat-610379 | Received test.csv with the following content: Testing

www.redhat.com 48 refarch-feedback@redhat.com

5.3.4 Fuse Feature
Because applications and other tools typically consist of multiple OSGi bundles, it is often

convenient to aggregate inter-dependent or related bundles into a larger unit of deployment.

Red Hat JBoss Fuse therefore provides a scalable unit of deployment, the Feature, which

enables you to deploy multiple bundles (and, optionally, dependencies on other Features) in a

single step.
30

A Fuse Feature needs to be configured in a Feature repository. Start by creating a custom

Feature repository called fulfillment-feature_repository. Create a directory called feature under

the previously created code/ directory and a the following repository XML file:

code/features/src/main/resources/fulfillment.xml

Edit the above Feature repository file and provide the following content:

<?xml version="1.0" encoding="UTF-8"?>
<features name="fulfillment-feature_repository">

...
</features>

Create a Feature called fulfillment-feature by adding a <feature> element in the repository:

<?xml version="1.0" encoding="UTF-8"?>
<features name="fulfillment-feature_repository">

 <feature name="fulfillment-feature">

 </feature>

</features>

The fulfillment Feature includes the application and its dependencies. The application itself is

built through Maven as an OSGi bundle. Add it to the Feature with the following bundle

declaration:

 <bundle>mvn:com.redhat.refarch.fuse/fulfillment/1.0.0</bundle>

30 https://access.redhat.com/documentation/en-

US/Red_Hat_JBoss_Fuse/6.1/html/Deploying_into_the_Container/DeployFeatures.html

refarch-feedback@redhat.com 49 www.redhat.com

JBoss Fuse Features allow building on top of other Features to simplify dependency

management. To find out the configured Features, first query the Feature Repositories

configured for the target container:

JBossFuse:admin@child1> features:listrepositories
Repository
repo-0
karaf-2.3.0.redhat-610379
org.ops4j.pax.web-3.0.6
karaf-enterprise-2.3.0.redhat-610379
camel-2.12.0.redhat-610379
cxf-2.7.0.redhat-610379
jclouds-1.7.1
fabric-camel-cxf-1.0.0.redhat-379
hawtio-1.2-redhat-379
spring-2.3.0.redhat-610379
fabric-activemq-demo-1.0.0.redhat-379
activemq-5.9.0.redhat-610379
activemq-core-5.9.0.redhat-610379
fabric-1.0.0.redhat-379
camel-example-sap-1.0.0.redhat-379
camel-sap-1.0.0.redhat-379
servicemix-4.5.0.redhat-610379
fabric-cxf-demo-1.0.0.redhat-379
repo-0
quickstart-jms-6.1.0.redhat-379

The fulfillment application requires camel-core and camel-blueprint. As can be seen from the

list of Feature Repositories above, a Feature Repository called camel-2.12.0.redhat-610379 is

configured on the target container. To view all the Features configured in all these

repositories:

JBossFuse:admin@child1> features:list
State Version Name Repository Description
... ... naming repo-0
... ... document repo-0
...
... ... xml-specs-api camel-2.12.0.redhat-610379
... ... camel camel-2.12.0.redhat-610379
... ... camel-core camel-2.12.0.redhat-610379
... ... camel-spring camel-2.12.0.redhat-610379
... ... camel-blueprint camel-2.12.0.redhat-610379
... ... camel-ahc camel-2.12.0.redhat-610379
... ... camel-amqp camel-2.12.0.redhat-610379

Look at the Features configured in the camel-2.12.0.redhat-610379 repository. Remember

that by design, Fuse Features declare all their dependencies. That means that declaring a

dependency on camel-blueprint is enough to install and import camel-core.

www.redhat.com 50 refarch-feedback@redhat.com

Edit the fulfillment-feature repository and add camel-blueprint as a dependency Feature:

<?xml version="1.0" encoding="UTF-8"?>
<features name="fulfillment-feature_repository">
 <feature name="fulfillment-feature">
 <bundle>mvn:com.redhat.refarch.fuse/fulfillment/1.0.0</bundle>

 <feature>camel-blueprint</feature>
 </feature>
</features>

To build this Feature, create a simple Maven POM file to create the appropriate package:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/maven-v4_0_0.xsd">

 <modelVersion>4.0.0</modelVersion>
 <groupId>com.redhat.refarch.fuse</groupId>
 <artifactId>fulfillment-feature</artifactId>
 <packaging>jar</packaging>
 <version>1.0.0</version>
 <name>Fulfillment feature repository</name>

 <build>
 <plugins>
 <plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>build-helper-maven-plugin</artifactId>
 <version>1.5</version>
 <executions>
 <execution>
 <id>attach-artifacts</id>
 <phase>package</phase>
 <goals>
 <goal>attach-artifact</goal>
 </goals>
 <configuration>
 <artifacts>
 <artifact>
 <file>target/classes/fulfillment.xml</file>
 <type>xml</type>
 <classifier>features</classifier>
 </artifact>
 </artifacts>
 </configuration>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>
</project>

refarch-feedback@redhat.com 51 www.redhat.com

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.1/html/Deploying_into_the_Container/DeployFeatures.html
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.1/html/Deploying_into_the_Container/DeployFeatures.html

5.3.5 Aggregation POM
At this point, the fulfillment and fulfillment-feature projects are set up as two distinct modules,

each with their own Maven build process. In some cases, although not in this example, one

module may depend on another and require it to be built first.

Whether for module inter-dependency or simply convenience, an aggregation POM can be

very useful.

Create a file called pom.xml under your code/ directory with the following content:

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/maven-v4_0_0.xsd">

 <modelVersion>4.0.0</modelVersion>
 <groupId>com.redhat.refarch.fuse</groupId>
 <artifactId>order-fulfillment</artifactId>
 <version>1.0.0</version>
 <packaging>pom</packaging>
 <url>http://maven.apache.org</url>
 <name>Parent Project</name>

 <modules>
 <module>fulfillment</module>
 <module>features</module>
 </modules>

</project>

The group and artifact ID for your aggregation project has no functional significance. Choose

a unique group and artifact ID to avoid clashing with other projects and one that is meaningful

for this aggregation.

This aggregation POM allows you to clean both the fulfillment and fulfillment-feature projects

by simply running mvn clean from the root code/ directory and install both of them by running

mvn install from code/:

mvn install
...
[INFO]
--
[INFO] Building A Camel Blueprint Route 1.0.0
[INFO]
--
...
[INFO]
--
[INFO] Building Fulfillment feature repository 1.0.0
[INFO]
--

www.redhat.com 52 refarch-feedback@redhat.com

5.3.6 Fuse Fabric Deployment

5.3.6.1 Profiles

JBoss Fuse Fabrics use profiles as the basic unit of deployment. Profiles can be created and

edited for a Fabric and deployed to any number of containers to simplify deployment across

an ensemble and promote consistency. You can also create different versions of a profile,

which makes it possible to support rolling upgrades across the containers in your fabric.
31

A profile is a description of how to provision a logical group of containers. Each profile can

have none, one, or more parents, which allows you to have profile hierarchies. A container

can be assigned one or more profiles. Profiles are also versioned, which enables you to

maintain different versions of each profile, and then upgrade or roll back containers, by

changing the version of the profiles they use. A profile can include the following resources:
32

• OSGi bundle URLs

• Web ARchive (WAR) URLs

• Fuse Application Bundle (FAB) URLs

• OSGi Configuration Admin PIDs

• Apache Karaf feature repository URLs

• Apache Karaf features

• Maven artifact repository URLs

• Blueprint XML files or Spring XML files (for example, for defining broker configurations

or Camel routes)

• Any kind of resource that might be needed by an application (for example, Java

properties file, JSON file, XML file, YML file)

• System properties that affect the Apache Karaf container (analogous to editing

etc/config.properties)

• System properties that affect installed bundles (analogous to editing

etc/system.properties)

JBoss Fuse Fabric comes preconfigured with a number of profiles. Most notably, that

includes:

• default: The default profile defines all of the basic requirements for a Fabric container.

For example it specifies the fabric-agent feature, the Fabric registry URL, and the list of

Maven repositories from which artifacts can be downloaded.

• karaf: Inherits from the default profile and defines the Karaf feature repositories,

which makes the Apache Karaf features accessible.

31 https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.1/html/Fabric_Guide/Profiles.html

32 https://access.redhat.com/documentation/en-

US/Red_Hat_JBoss_Fuse/6.1/html/Fabric_Guide/Profiles.html#Profiles-Intro

refarch-feedback@redhat.com 53 www.redhat.com

• feature-camel: Inherits from karaf, defines the Camel feature repositories, and installs

some core Camel features: such as camel-core and camel-blueprint. If you are

deploying a Camel application, it is recommended that you inherit from this profile.

• jboss-fuse-full: Includes all of the features and bundles required for the JBoss Fuse full

container.

For a more comprehensive list, refer to the official Red Hat documentation.
33

Note that the feature-camel profile is a perfect fit for the fulfillment application, as it has

developed up to this point. However, this reference architecture elects not to make use of this

profile. By starting with a blank slate and inheriting from the simpler default profile, you will

have more control and awareness over the modules and Features used by your application.

Follow these instructions to create a profile and use it to deploy the fulfillment application to

the child container. If you have already created the child1 container and deployed the OSGi

bundles to it, as described in the 5.3.3.8 section, a quick and simple way to revert is to delete

the container and recreate it:

JBossFuse:karaf@root> fabric:container-delete child1
JBossFuse:karaf@root> fabric:container-create-child root child1
The following containers have been created successfully:

Container: child1.
JBossFuse:karaf@root>

To monitor progress as the child1 container is provisioned, you can also use the shell:watch

command:

shell:watch fabric:container-list

[id] [version] [connected] [profiles]
[provision status]
root* 1.0 true fabric, fabric-
ensemble-0000-1, jboss-fuse-full success
 child1 1.0 true default

[id] [version] [connected] [profiles]
[provision status]
root* 1.0 true fabric, fabric-
ensemble-0000-1, jboss-fuse-full success
 child1 1.0 true default
installing

[id] [version] [connected] [profiles]
[provision status]
root* 1.0 true fabric, fabric-
ensemble-0000-1, jboss-fuse-full success
 child1 1.0 true default
success

33 https://access.redhat.com/documentation/en-

US/Red_Hat_JBoss_Fuse/6.1/html/Fabric_Guide/Profiles.html#Profiles-Intro

www.redhat.com 54 refarch-feedback@redhat.com

5.3.6.2 Creating a profile

Create a basic profile called fulfillment-profile that inherits from the default profile:

JBossFuse:karaf@root> fabric:profile-create --parents default fulfillment-
profile
JBossFuse:karaf@root>

5.3.6.3 Assinging a profile

Now that the new profile has been created, assign it to the child1 container:

JBossFuse:karaf@root> fabric:container-change-profile child1 fulfillment-
profile
JBossFuse:karaf@root>

You can check the container log to monitor the deployment of this profile to the container.

Previously installed bundles are removed and a new set of bundles are derived from the

profile inheritance and its features, then installed and started as the case might be.

5.3.6.4 Feature deployment to profile

Apply the fulfillment-feature you created to this new profile. Make sure you have used mvn

install to build and install the feature repository to your local Maven repository. Construct the

Maven URL of the feature repository using its group ID, artifact ID and version:

mvn:com.redhat.refarch.fuse/fulfillment-feature/1.0.0/xml/features

Use this Maven URL to add the fulfillment-feature_repository feature repository to the profile:

JBossFuse:karaf@root> profile-edit -r
mvn:com.redhat.refarch.fuse/fulfillment-feature/1.0.0/xml/features
fulfillment-profile
Adding feature repository:mvn:com.redhat.refarch.fuse/fulfillment-
feature/1.0.0/xml/features to profile:fulfillment-profile version:1.0
JBossFuse:karaf@root>

Now that fulfillment-feature_repository is added to the profile as a repository, the next and

final step is to add the feature:

JBossFuse:karaf@root> profile-edit --features fulfillment-feature
fulfillment-profile
Adding feature:fulfillment-feature to profile:fulfillment-profile
version:1.0
JBossFuse:karaf@root>

Once again, follow the instructions in the Execution section to create a sample file and invoke

the file polling project. Once again, the container log file can be used to validate that the

application is successfully deployed and running on the container:

... | INFO | lfillment/input/ | route1 |
rg.apache.camel.util.CamelLogger 176 | 102 - org.apache.camel.camel-core -
2.12.0.redhat-610379 | Received test.csv with the following content: Testing

refarch-feedback@redhat.com 55 www.redhat.com

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.1/html/Fabric_Guide/Profiles.html#Profiles-Intro
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.1/html/Fabric_Guide/Profiles.html#Profiles-Intro
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.1/html/Fabric_Guide/Profiles.html

5.3.7 Fuse Fabric Ensemble
Once a Fuse Fabric has been created with a given ZooKeeper password, it is very easy to

create a Fabric Ensemble.

Install JBoss Fuse on the second node by unzipping the archive and changing the Karaf

name property to a unique name, for example root2.

Create an administrator account, either by editing the users.properties file or through the

create-admin-user command as described in the previous Container Setup section.

Once these few initialization steps have been performed and Fuse has been started on

another node, join the Fuse Fabric created by the first node:

JBossFuse:karaf@root2> fabric:join --zookeeper-password password fuse-node1
JBossFuse:karaf@root2>

At this point, your second node has joined the Fuse Fabric. Since a Fuse Ensemble requires

an odd number of members
34

, repeat these steps on a third node and join the Fabric from

there as well:

JBossFuse:karaf@root3> fabric:join --zookeeper-password password fuse-node1
JBossFuse:karaf@root3>

Now go back to the first node and list the available containers:

JBossFuse:admin@root> fabric:container-list
[id] [version] [connected] [profiles]
[provision status]
root1* 1.0 true fabric,

fabric-ensemble-0000-1, jboss-fuse-full success
 child1 1.0 true default

success
root2 1.0 true fabric

success
root3 1.0 true fabric

success
JBossFuse:admin@fuse.node1>

Create child containers for nodes 2 and 3 from the first node:

JBossFuse:admin@root> fabric:container-create-child root2 child2
The following containers have been created successfully:

Container: child2.
JBossFuse:admin@root> fabric:container-create-child root3 child3
The following containers have been created successfully:

Container: child3.
JBossFuse:admin@root>

34 https://access.redhat.com/documentation/en-

US/Red_Hat_JBoss_Fuse/6.1/html/Getting_Started/Deploy.html#Deploy-Scalable

www.redhat.com 56 refarch-feedback@redhat.com

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.1/html/Fabric_Guide/Profiles.html#Profiles-Intro
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.1/html/Fabric_Guide/Profiles.html#Profiles-Intro

Using Fuse Profiles provides the advantage of simple and consistent deployment and

management of environments. Assign fulfillment-profile to the two newly created child

containers to deploy the application to the second and third nodes:

JBossFuse:karaf@root> fabric:container-change-profile child2 fulfillment-
profile
JBossFuse:karaf@root> fabric:container-change-profile child3 fulfillment-
profile
JBossFuse:karaf@root>

Monitor the log files for the child containers on the second and third node to make sure that

the application has been successfully deployed. These log files will be located at:

Node2: jboss-fuse-6.1.0.redhat-379/instances/child2/data/log/karaf.log

Node3: jboss-fuse-6.1.0.redhat-379/instances/child3/data/log/karaf.log

At this point, the application is running on all three nodes. You can test this by following the

instructions in the Execution section to create a sample file on each of the 3 nodes and

invoking the file polling project. The container log file on the node where the file is dropped

can be used to validate that the application is executing and processing the file:

... | INFO | lfillment/input/ | route1 |
rg.apache.camel.util.CamelLogger 176 | 102 - org.apache.camel.camel-core -
2.12.0.redhat-610379 | Received test.csv with the following content: Testing

refarch-feedback@redhat.com 57 www.redhat.com

5.4 Request Aggregation

5.4.1 Requirements
Based on the requirements, the legacy requests are received as files in comma-separated

value format. For each order, two separate files are provided:

The first file, containing the customer information, is always called xxxxxx-customer.csv where

xxxxxx is the order number. This file contains a single line with four values:

• Customer's social security number

• Customer's first name

• Customer's last name

• Customer contact telephone number

The second file contains the order information and is called xxxxxx-orders.csv. The order

number in the names of the customer and order items files links them together. The order

items file may include any number of lines, where each line is a single order item. Each line

includes two comma-separated values:

• Order Item ID

• Quantity (numeric)

Due to the HA file system that is in use, it is conceivable that two different members of the

Fuse Ensemble would pick up the customer and order files of the same order. The Ensemble

must therefore synchronize and be able to merge back the pieces of the order (customer info

and order items) together.

Once both the orders and the customer information for a particular order are received, a

proper request containing the entirety of the information is to be formed and sent to a

separate order processing service, implemented as a Java bean.

www.redhat.com 58 refarch-feedback@redhat.com

Figure 5.4.1-1:

Aggregating Two Files

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.1/html/Getting_Started/Deploy.html#Deploy-Scalable
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.1/html/Getting_Started/Deploy.html#Deploy-Scalable

5.4.2 Content Based Router
Given the two distinct file types that may dropped in the designated directory, your application

needs to first determine the file format and then route it to the appropriate parsing

mechanism. This is a very common Enterprise Integration Pattern
35

, commonly referred to as

the Content-Based Router.

To implement a content-based router with JBoss Fuse, use a Camel choice followed by a

number of when elements and finally an otherwise to capture any remaining conditions.
36

Open the route previously created in section 5.3.3.2. Remove the log element. Instead, locate

the choice element in the right-hand palette in the Routing group, and drag and drop it onto

the canvas. Connect from the CSV File Poll to this new choice node.

Locate the When element in the right-hand palette in the Routing group and drag and drop

two of them onto the canvas. Connect from your choice to one When, and then again to the

other.

Select the first when node and rename it by opening the properties panel and setting its ID to

“when orders”. Make sure the syntax language for the when expression is set to simple and

enter the expression as:

${file:name} regex '.*orders\.csv'

This expression uses regular expressions to compare the name of the dropped file to

the given value. In regular expressions, the dot (.) character is a wildcard that refers to any

character. It is followed by the asterisk (*) quantifier which means zero or more characters are

acceptable. In other words, this expression looks for any number of characters followed by

orders. The filename should have a csv extension. To look for the dot extension separator,

escape it with a backslash (\) to distinguish it from the common regular expressions wildcard

notation that you used earlier. In summary, this regular expression matches any file name that

ends with “orders.csv”.

Select the second when node and rename it by opening the properties panel and setting its ID

to “when customer”. Make sure the syntax language for the when expression is set to simple

and enter the expression as:

${file:name} regex '.*customer\.csv'

This expression looks for any file name ending with customer.csv.

Find the Log element in the Endpoints group in the right-hand palette. Drag and drop two Log

nodes and connect from each of the When nodes to a Log node. Set the log message and the

node Id of each Log node by selecting them and opening the properties view. For logging

after picking up an orders file:

Message: Will parse ${file:name} for order items

35 https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.1/html-

single/Apache_Camel_Development_Guide/index.html#IntroToEIP

36 https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.1/html-

single/Apache_Camel_Development_Guide/index.html#MsgRout-ContentBased

refarch-feedback@redhat.com 59 www.redhat.com

Id: Log Orders

Set the properties for logging after picking up a customer file as follows:

Message: Will parse ${file:name} for customer
Id: Log Customer

The design view provides the following service model:

www.redhat.com 60 refarch-feedback@redhat.com

Figure 5.4.2-1: Content-Based Router

The final blueprint service descriptor XML is as follows:

<?xml version="1.0" encoding="UTF-8"?>
<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 xmlns:camel="http://camel.apache.org/schema/blueprint"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.osgi.org/xmlns/blueprint/v1.0.0
http://www.osgi.org/xmlns/blueprint/v1.0.0/blueprint.xsd
 http://camel.apache.org/schema/blueprint
http://camel.apache.org/schema/blueprint/camel-blueprint.xsd">

 <camelContext trace="false"
xmlns="http://camel.apache.org/schema/blueprint">
 <route>
 <from uri="file:///fulfillment/input/" customId="true" id="CSV File
Poll">
 <description/>
 </from>
 <choice>
 <when customId="true" id="when orders">
 <simple>${file:name} regex '.*orders\.csv'</simple>
 <log message="Will parse ${file:name} for order items"
customId="true" id="Log Orders"/>
 </when>
 <when customId="true" id="when customer">
 <simple>${file:name} regex '.*customer\.csv'</simple>
 <log message="Will parse ${file:name} for customer"
customId="true" id="Log Customer"/>
 </when>
 </choice>
 </route>
</camelContext>

</blueprint>

You can test the application at its current stage, either by building the application and feature,

applying the feature to a profile and setting the profile on a fuse container, or by simply testing

it locally using mvn camel:run.

Follow the same steps as outlined in the previous Execution section but create files with

names corresponding to the regular expressions, for example, 12345-orders.csv and 12345-

customer.csv. The log statements show that the content-based router is behaving as

expected:

[0 - file:///fulfillment/input/] route1
INFO Will parse 12345-orders.csv for order items

[0 - file:///fulfillment/input/] route1
INFO Will parse 12345-customer.csv for customer

refarch-feedback@redhat.com 61 www.redhat.com

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.1/html-single/Apache_Camel_Development_Guide/index.html#MsgRout-ContentBased
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.1/html-single/Apache_Camel_Development_Guide/index.html#MsgRout-ContentBased
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.1/html-single/Apache_Camel_Development_Guide/index.html#IntroToEIP
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.1/html-single/Apache_Camel_Development_Guide/index.html#IntroToEIP

5.4.3 Unmarshalling CSV
Use the Bindy37

 component of Apache Camel to parse flat files and comma-separated

values files in particular. The first step is to add Bindy as a Maven dependency of the project.

Open the project pom file with the (default) Maven POM Editor. Look at the existing and

observe the current version of Camel, used by JBoss Fuse. Add camel-bindy with the same

version as a dependency:

37 http://camel.apache.org/bindy.html

www.redhat.com 62 refarch-feedback@redhat.com

Figure 5.4.3-1: Maven Dependency

According to the (hypothetical) requirements, the CSV file containing the customer includes

the following fields:

• The customer's social security number, as a 9 digit number

• The customer's first name

• The customer's last name

• The customer's telephone number as free-form text

An example of a customer comma-separated values file is as follows:

333224444,Babak,Mozaffari,310-555-1234

Create a Java class to represent this data:

package com.redhat.refarch.fuse.fulfillment.customer;

import java.io.Serializable;

import org.apache.camel.dataformat.bindy.annotation.CsvRecord;
import org.apache.camel.dataformat.bindy.annotation.DataField;

@CsvRecord(separator = ",")
public class Customer implements Serializable
{

private static final long serialVersionUID = 1L;
@DataField(pos = 1)
private long customerId;
@DataField(pos = 2)
private String firstName;
@DataField(pos = 3)
private String lastName;
@DataField(pos = 4)
private String telephone;

Bindy annotations are used to mark this class as a CSV record and map the fields to the

values in the file in the presented order.

Use JBoss Developer Studio to generate getters and setters for this class, as well as a

standard toString method to help log the contents of the created Java objects.

The CSV file containing the orders contains one line per order item. Each order item has only

the two following fields:

• The order item ID, as free-form text

• The quantity, which is an integer

An example of an orders comma-separated values file is as follows:

item #1,5
item #2,7

refarch-feedback@redhat.com 63 www.redhat.com

Create a Java class to represent order items:

package com.redhat.refarch.fuse.fulfillment.item;

import java.io.Serializable;

import org.apache.camel.dataformat.bindy.annotation.CsvRecord;
import org.apache.camel.dataformat.bindy.annotation.DataField;

@CsvRecord(separator = ",")
public class OrderItem implements Serializable
{

private static final long serialVersionUID = 1L;
@DataField(pos = 1)
private String itemId;
@DataField(pos = 2)
private int quantity;

Again, use JBoss Developer Studio to generate getters and setters for this class, as well as a

standard toString method to help log the contents of the created Java objects.

Notice that the Customer and OrderItem classes have been created in different packages.

This is due to known issues with certain versions of Apache Camel that cause unexpected

and incorrect behavior when a given Java package hosts more than a single model class.
38

Now that the dependency has been declared and Java model classes have been created for

the CSV data, proceed to add the required components to parse and convert the files to Java

objects.

38 https://issues.apache.org/jira/browse/CAMEL-6234

www.redhat.com 64 refarch-feedback@redhat.com

http://camel.apache.org/bindy.html

Locate the Unmarshall element in the Transformation group in the right-hand palette. Drag

and drop two Unmarshall nodes and connect from each of the Log nodes to an Unmarshall

node. Open the properties view of each Unmarshall node and configure the behavior:

Use the bindy tab and select the type of the file as CSV. Under class type, enter the fully

qualified model class name that represents each row of the data:

• com.redhat.refarch.fuse.fulfillment.item.OrderItem

• com.redhat.refarch.fuse.fulfillment.customer.Customer

Set the node ID of each Unmarshall node to better represent its behavior in the service

diagram, for example setting them to Unmarshall Orders and Unmarshall Customer.

The application now recognizes the type of file dropped in the input folder by its name and

sends it to the correct unmarshaller, which in turn converts the text to Java objects. To run the

application and see the created Java objects, use a log statement to print the full message

after one or both unmarshaller nodes:

<to uri="log:com.redhat.refarch.fusetest?showAll=true&multiline=true" />

Execute the route by dropping appropriately-named files in the designed directory, for

example 12345-orders.csv and 12345-customer.csv.

refarch-feedback@redhat.com 65 www.redhat.com

Figure 5.4.3-2: Camel Bindy CSV Unmarshaller

5.4.4 Aggregated Type
While separate files are dropped for the customer and order items, from a business

perspective, they are part of the same request. The Customer and OrderItem objects need to

be merged into a single Order entity. Create an Order class that represents this aggregate

entity and save it in the main package:

package com.redhat.refarch.fuse.fulfillment;

import java.io.Serializable;
import java.util.List;

import com.redhat.refarch.fuse.fulfillment.customer.Customer;
import com.redhat.refarch.fuse.fulfillment.item.OrderItem;

public class Order implements Serializable
{

private static final long serialVersionUID = 1L;
private Customer customer;
private List<OrderItem> orders;

public Customer getCustomer()
{

return customer;
}

public void setCustomer(Customer customer)
{

this.customer = customer;
}

public List<OrderItem> getOrders()
{

return orders;
}

public void setOrders(List<OrderItem> orders)
{

this.orders = orders;
}

@Override
public String toString()
{

return "Order [customer=" + customer + ", orders=" + orders + "]";
}

}

You can simply declare the two fields and then use JBoss Developer Studio to generate the

setters and getters, as well as the toString method.

www.redhat.com 66 refarch-feedback@redhat.com

https://issues.apache.org/jira/browse/CAMEL-6234

5.4.5 Setting Camel Message Headers
To create objects of the Order class, you first need to be able to match order item files with

their corresponding customer files. Customers and order items are tied together by the order

number, which is part of the file name. This means that the order number must be saved

before the file is unmarshalled into Java objects.

Given that the two execution paths merge for aggregation to take place, you would also

ideally store some sort of flag to indicate whether a customer or an order items file was picked

up. Note that there are many simple ways to achieving this objective. You can simply look at

the class of the parsed object to determine whether it was a customer or order items. You can

also use a static SetHeader node with a constant expression.

The following solution satisfies both these requirements. It has the downside that it duplicates

the logic for distinguishing an order items file from a customer file, but you can optionally

change the CBR logic to use this header property:

package com.redhat.refarch.fuse.fulfillment.file;

import java.util.regex.Matcher;
import java.util.regex.Pattern;

import org.apache.camel.Exchange;

public class SetOrderHeaderBean
{

public static final String DATA_TYPE = "dataType";
public static final String ORDERS = "orders";
public static final String CUSTOMER = "customer";
public static final String ORDER_NO = "orderNo";

public void setHeader(Exchange exchange)
{

String filename =
(String)exchange.getIn().getHeader(Exchange.FILE_NAME_ONLY);

Pattern pattern = Pattern.compile(
"(\\d*)\\-(" + CUSTOMER + "|" + ORDERS + ")\\.csv");

Matcher matcher = pattern.matcher(filename);
if(matcher.matches())
{

String orderNo = matcher.group(1);
String fileType = matcher.group(2);
exchange.getIn().setHeader(ORDER_NO, orderNo);
exchange.getIn().setHeader(DATA_TYPE, fileType);

}
else
{

throw new IllegalArgumentException(
"Cannot handle file called " + filename);

}
}

}

refarch-feedback@redhat.com 67 www.redhat.com

Your Java class sets two header values in the Camel message. Use two groups in the regular

expressions:

(\\d+)\\-(" + CUSTOMER + "|" + ORDERS + ")\\.csv

The first group looks for digits “\d” quantified by a wildcard so that any (non-zero) number of

digits are acceptable. These digits form the order number. They are followed by a dash that

has been escaped, then followed by the literal value of customer or orders, which is captured

by the second group. In summary, the first group is the order number and the second group is

the data type. Store these two values in the header under the respective keys of orderNo and

dataType. Any file name that does not conform to this patterns is invalid and unexpected, so it

is best to throw an exception so that the issue can be quickly identified and corrected.

To use this bean, drag and drop a Bean node under the canvas from the Endpoints group of

the right-hand palette. Set the node properties as follows:

• Bean Type: com.redhat.refarch.fuse.fulfillment.file.SetOrderHeaderBean

• Method: setHeader

• Id: Set Headers

After setting these properties, select the connection between the first (CSV File Poll) and

second (choice) nodes of the route and press the delete key to remove it. Instead, connect

from the first node to this new Set Headers bean node and from this node to the choice node.

Save the Camel Context file to have the diagram rearrange itself.

5.4.6 Direct VM Call
Finally, place an endpoint at the end of each branch of the content-based router to redirect

execution to a different context and route, with the following endpoint URI:

direct-vm:aggregator

Set the Id for the nodes to Aggregate Order Items and Aggregate Customer respectively for

modeling purposes:

www.redhat.com 68 refarch-feedback@redhat.com

Figure 5.4.6-1: Final CSV Camel Route

Once again, you can use a log statement to print the full message at the end of each branch

of the CBR:

<to uri="log:com.redhat.refarch.fusetest?showAll=true&multiline=true" />

Your final Camel file should look as follows:

<?xml version="1.0" encoding="UTF-8"?>
<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"

xmlns:camel="http://camel.apache.org/schema/blueprint"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.osgi.org/xmlns/blueprint/v1.0.0
http://www.osgi.org/xmlns/blueprint/v1.0.0/blueprint.xsd
http://camel.apache.org/schema/blueprint
http://camel.apache.org/schema/blueprint/camel-blueprint.xsd">

<camelContext trace="false"
xmlns="http://camel.apache.org/schema/blueprint">

 <route>
 <from uri="file:///fulfillment/input/"

customId="true" id="CSV File Poll">
 <description/>
 </from>
 <bean method="setHeader"

beanType="com.redhat.refarch.fuse.fulfillment.file.SetOrderHeaderBean"
customId="true" id="Set Headers"/>

 <choice>
 <when customId="true" id="when orders">
 <simple>${file:name} regex '.*orders\.csv'</simple>
 <log message="Will parse ${file:name} for order items"

customId="true" id="Log Orders"/>
 <unmarshal customId="true" id="Unmarshall Orders">
 <bindy type="Csv"

classType="com.redhat.refarch.fuse.fulfillment.item.OrderItem"/>
 </unmarshal>
 <to uri="direct-vm:aggregator" customId="true"

id="Aggregate Order Items"/>
 </when>
 <when customId="true" id="when customer">
 <simple>${file:name} regex '.*customer\.csv'</simple>
 <log message="Will parse ${file:name} for customer"

customId="true" id="Log Customer"/>
 <unmarshal customId="true" id="Unmarshall Customer">
 <bindy type="Csv"

classType="com.redhat.refarch.fuse.fulfillment.customer.Customer"/>
 </unmarshal>
 <to uri="direct-vm:aggregator" customId="true"

id="Aggregate Customer"/>
 </when>
 </choice>
 </route>
</camelContext>

</blueprint>

refarch-feedback@redhat.com 69 www.redhat.com

To summarize, your application should now consist of a single camel context with a single

camel route in it. The route starts with polling for files in a predefined directory and once

found, it uses the file name to determine its type as well as the associate order number.

Depending on the file type, a content-based router sends the file to be unmarshalled into

either a Customer or a number of OrderItem objects. Once this is done, both branches of the

execution redirect the message to a new Camel route that exists within the same VM, though

not necessarily the same Camel context.

You can create a new Camel route within the existing Camel context but for better IDE

modeling compatibility as well as structural practices, create a new context by using JBDS to

create a new Camel XML file in the same blueprint directory. Call this new file aggregator.xml

and select OSGi Blueprint as the dependency framework.

Place an Endpoint and a Log node on the canvas. Set up the Endpoint as follows:

• Uri: direct-vm:aggregator

• Id: Parsed Object

Set up the logger to print the following: Aggregate route received ${body}

Save the Camel XML file. The completed context definition looks as follows:

<?xml version="1.0" encoding="UTF-8"?>
<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"

xmlns:camel="http://camel.apache.org/schema/blueprint"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.osgi.org/xmlns/blueprint/v1.0.0
http://www.osgi.org/xmlns/blueprint/v1.0.0/blueprint.xsd
http://camel.apache.org/schema/blueprint
http://camel.apache.org/schema/blueprint/camel-blueprint.xsd">

 <camelContext trace="false"
xmlns="http://camel.apache.org/schema/blueprint">
 <route>
 <from uri="direct-vm:aggregator" customId="true" id="Parsed Object">
 <description/>
 </from>
 <log message="Aggregate route received ${body}"/>
 </route>
 </camelContext>
</blueprint>

Build and run the application by executing Maven with the install and camel:run targets. Drop

files with expected file names in the designated directory. The log will show the file picked up

after the content-based router has classified it, as well as the message passed being dispatch

through the Direct VM component to the new Camel context and route:

[1 - file:///fulfillment/input/] route2
INFO Will parse 123-orders.csv for order items

[1 - file:///fulfillment/input/] route1
INFO Aggregate route received [Order [itemId=item #1,

quantity=5], Order [itemId=item #2, quantity=7]]

www.redhat.com 70 refarch-feedback@redhat.com

5.4.7 Aggregator Component

5.4.7.1 Overview

The Apache Camel Aggregator enables you to combine a batch of related messages into a

single message.
39

Use the aggregator to combine the order items and the customer for a given order number

into a single order object.

The Aggregator has three important properties, as described in ENTERPRISE INTEGRATION

PATTERNS:

• CORRELATION EXPRESSION: Determines which messages should be aggregated together.

The correlation expression is evaluated on each incoming message to produce a

correlation key. Incoming messages with the same correlation key are then grouped

into the same batch. For example, if you want to aggregate all incoming messages into

a single message, you can use a constant expression.

• COMPLETENESS CONDITION: Determines when a batch of messages is complete. You can

specify this either as a simple size limit or, more generally, you can specify a predicate

condition that flags when the batch is complete.

• AGGREGATION ALGORITHM: Combines the message exchanges for a single correlation key

into a single message exchange.

The correlation between a customer and the order items happens through the order number

and has largely been previously handled by Setting Camel Message Headers. The order

number has been stored under the orderNo header key:

<correlationExpression>
<header>orderNo</header>

</correlationExpression>

Determining the completion of the aggregation for this use case is very simple. There are

always two, and exactly two pieces to an order:

<completionSize>
<constant>2</constant>

</completionSize>

You can also set a timeout to stop waiting and expecting a second piece of the order after a

given amount of time, specified here in milliseconds:

<completionTimeout>
<constant>20000</constant>

</completionTimeout>

39 https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.1/html-

single/Apache_Camel_Development_Guide/index.html#MsgRout-Aggregator

refarch-feedback@redhat.com 71 www.redhat.com

file:///fulfillment/input/

5.4.7.2 Aggregation Strategy

The aggregation algorithm is simply a matter of instantiating the Order class and setting both

the list of order items and the customer on the order object. While simple, the aggregation

algorithm requires a custom implementation. Implement the AggregationStrategy interface:

package com.redhat.refarch.fuse.fulfillment.file;

import static com.redhat.refarch.fuse.fulfillment.file.SetOrderHeaderBean.*;
import java.util.List;
import org.apache.camel.Exchange;
import org.apache.camel.processor.aggregate.AggregationStrategy;
...

public class OrderAggregationStrategy implements AggregationStrategy
{

 @Override
 public Exchange aggregate(Exchange oldExchange, Exchange newExchange)
 {
 if(oldExchange != null)
 {
 Object oldBody = oldExchange.getIn().getBody();
 if(CUSTOMER.equals(oldExchange.getIn().getHeader(DATA_TYPE)))
 {
 Customer customer = (Customer)oldBody;
 @SuppressWarnings("unchecked")
 List<OrderItem> orderList =

(List<OrderItem>)newExchange.getIn().getBody();

 Order order = new Order();
 order.setCustomer(customer);
 order.setOrders(orderList);

 newExchange.getIn().setBody(order);
 }
 else if(ORDERS.equals(oldExchange.getIn().getHeader(DATA_TYPE)))
 {
 @SuppressWarnings("unchecked")
 List<OrderItem> orderList = (List<OrderItem>)oldBody;
 Customer customer = (Customer)newExchange.getIn().getBody();

 Order order = new Order();
 order.setCustomer(customer);
 order.setOrders(orderList);

 newExchange.getIn().setBody(order);
 }
 }
 return newExchange;
 }

}

www.redhat.com 72 refarch-feedback@redhat.com

Manually edit the blueprint service descriptor and declare OrderAggregationStrategy as a

bean outside the Camel context:

...
</camelContext>

<bean id="orderAggregationStrategy" class=
 "com.redhat.refarch.fuse.fulfillment.file.OrderAggregationStrategy"/>

</blueprint>

5.4.7.3 Configuration

Drag and drop Aggregate from the Routing group onto the canvas. In the Properties panel,

set the following values:

• Correlation Expression: orderNo, language: header

• Completion Size Expression: 2, language: constant

• Completion Timeout Expression: 20000, language: constant

• Strategy Ref: orderAggregationStrategy (Select from drop-down)

• Id: OrderAggregation

Drag and drop Log onto the canvas and set its message to: Aggregated: ${body}

Connect from the previous log node to the Order Aggregation node and then from there to the

new log node. Save the blueprint service descriptor file.

5.4.7.4 Review

The completed camel route should look as follows:

refarch-feedback@redhat.com 73 www.redhat.com

Figure 5.4.7-1: Aggregator Route

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.1/html-single/Apache_Camel_Development_Guide/index.html#MsgRout-Aggregator
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.1/html-single/Apache_Camel_Development_Guide/index.html#MsgRout-Aggregator

The XML representation of the completed aggregator Camel file would look as follows:

<?xml version="1.0" encoding="UTF-8"?>
<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"

xmlns:camel="http://camel.apache.org/schema/blueprint"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.osgi.org/xmlns/blueprint/v1.0.0
http://www.osgi.org/xmlns/blueprint/v1.0.0/blueprint.xsd
http://camel.apache.org/schema/blueprint
http://camel.apache.org/schema/blueprint/camel-blueprint.xsd">

 <camelContext trace="false"
xmlns="http://camel.apache.org/schema/blueprint">

 <route>
 <from uri="direct-vm:aggregator" customId="true" id="Parsed Object">
 <description/>
 </from>
 <log message="Aggregate route received ${body}"/>
 <aggregate strategyRef="orderAggregationStrategy"

customId="true" id="Order Aggregation">
 <correlationExpression>
 <header>orderNo</header>
 </correlationExpression>
 <completionPredicate>
 <simple></simple>
 </completionPredicate>
 <completionTimeout>
 <constant>20000</constant>
 </completionTimeout>
 <completionSize>
 <constant>2</constant>
 </completionSize>
 <optimisticLockRetryPolicy/>
 <log message="Aggregated: ${body}"/>
 </aggregate>
 </route>
 </camelContext>

<bean id="orderAggregationStrategy" class=
 "com.redhat.refarch.fuse.fulfillment.file.OrderAggregationStrategy"/>

</blueprint>

www.redhat.com 74 refarch-feedback@redhat.com

5.4.7.5 Test and Execution

At this point, you can build, run and test the application once again. Drop an order CSV and a

customer CSV file in the polled directory with valid content, as used in the previous sections.

Make sure to copy the two files to the directory only a few seconds apart from each other. The

configured timeout will occur if the second file is not detected within 20 seconds of the first

file.

The log statements show each file being picked up, correctly recognized, parsed into a Java

object, received by the aggregate route and finally, aggregated using the

OrderAggregationStrategy implementation:

[2 - file:///fulfillment/input/] route2
INFO Will parse 123-orders.csv for order items

[2 - file:///fulfillment/input/] route1
INFO Aggregate route received [Order [itemId=item #1,

quantity=5], Order [itemId=item #2, quantity=7]]

[2 - file:///fulfillment/input/] route2
INFO Will parse 123-customer.csv for customer

[2 - file:///fulfillment/input/] route1
INFO Aggregate route received Customer [customerId=333224444,

firstName=Babak, lastName=Mozaffari, telephone=310-555-1234]

[2 - file:///fulfillment/input/] route1
INFO Aggregated: Order [customer=Customer [customerId=333224444,
firstName=Babak, lastName=Mozaffari, telephone=310-555-1234],
orders=[Order [itemId=item #1, quantity=5], Order [itemId=item #2,

quantity=7]]]

refarch-feedback@redhat.com 75 www.redhat.com

5.4.8 Distributed Aggregation
Understanding how the Camel aggregator works, is key to determining how it will function in

various environments and under different circumstances.

Notice that when the second piece of the order is dropped in the polling directory, the

aggregation strategy receives both the first and second objects from the system:

public Exchange aggregate(Exchange oldExchange, Exchange newExchange)

The Camel aggregator component uses the aggregation repository to store the incomplete

parts as they are received, as well as to query and retrieve previous parts when a subsequent

part is being processed. By default, Camel uses a memory-based repository implementation.

For an environment that distributes processing, a memory-based aggregation repository is not

an acceptable solution. If the HA file system results in the orders being picked up by one node

and the customer by another, with a memory-based aggregation repository, these two nodes

would be unaware of each other and not able to properly aggregate the request.

As part of its SQL Component, Apache Camel provides a JDBC-based aggregation

repository.
40

 When using this component, aggregation pieces are stored to a configured

database instead of remaining in-memory. This could be a single remote database or a

clustered enterprise RDBMS solution. Avoiding a single point of failure and configuring

connection pools and datasources to point to a cluster of databases are standard industry

practices and outside the scope of this reference architecture.

40 https://access.redhat.com/documentation/en-

US/Red_Hat_JBoss_Fuse/6.1/html/Apache_Camel_Component_Reference/IDU-SQLComponent.html#IDU-

SQLComponent_HSH_UsingtheJDBCbasedaggregationrepository

www.redhat.com 76 refarch-feedback@redhat.com

The use of the JDBC Aggregation Repository requires setting up a datasource as well as a

transaction manager in the Camel route. At this point in the complexity of the application,

running it stand-alone becomes more difficult and certain design choices create container

dependencies.

Manually edit the blueprint service descriptor and declare JdbcAggregationRepository as a

bean outside the Camel context:

...
</camelContext>

<bean id="aggreationRepo" class=
 "org.apache.camel.processor.aggregate.jdbc.JdbcAggregationRepository">

<property name="dataSource" ref="aggregationDS" />
<property name="repositoryName" value="order_aggregation" />
<property name="transactionManager" ref="txManager" />

</bean>

</blueprint>

refarch-feedback@redhat.com 77 www.redhat.com

Figure 5.4.8-1: JDBC Aggregator

The Camel SQL component itself uses Spring-JDBC when database connectivity is required.

Spring also provides a JDBC-based datasource implementation as well as a datasource

transaction manager, both the most common options for use with Camel SQL.

Install and configure a MySQL database server. A brief description of the necessary steps is

provided in the previous chapter on Creating the Environment but details on how to configure

and work with MySQL remain outside the scope of this guide. This reference architecture

assumes a database called fuse, accessible with the username of jboss and password of

password. The repository name configured for the JDBC Aggregation Repository determines

the expected table names. For the given configuration, create tables as follow:

CREATE TABLE order_aggregation (id varchar(255) NOT NULL,
exchange blob NOT NULL, constraint aggregation_pk PRIMARY KEY (id));

CREATE TABLE order_aggregation_completed (id varchar(255) NOT NULL,
exchange blob NOT NULL,
constraint aggregation_completed_pk PRIMARY KEY (id));

Add beans for the transaction manager and the datasource outside the Camel context of the

aggregator blueprint service descriptor:

...
<bean id="txManager" class=
 "org.springframework.jdbc.datasource.DataSourceTransactionManager">

<property name="dataSource" ref="aggregationDS" />
</bean>

<bean id="aggregationDS" class=
 "org.springframework.jdbc.datasource.SimpleDriverDataSource">

<property name="driverClass" value="com.mysql.jdbc.Driver" />
<property name="url" value="jdbc:mysql://fuse-web/fuse" />
<property name="username" value="jboss" />
<property name="password" value="password" />

</bean>
</blueprint>

www.redhat.com 78 refarch-feedback@redhat.com

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.1/html/Apache_Camel_Component_Reference/IDU-SQLComponent.html#IDU-SQLComponent_HSH_UsingtheJDBCbasedaggregationrepository
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.1/html/Apache_Camel_Component_Reference/IDU-SQLComponent.html#IDU-SQLComponent_HSH_UsingtheJDBCbasedaggregationrepository
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.1/html/Apache_Camel_Component_Reference/IDU-SQLComponent.html#IDU-SQLComponent_HSH_UsingtheJDBCbasedaggregationrepository

5.4.9 JDBC Driver Dependency
The use of the Spring JDBC datasource creates an implicit dependency on the JDBC drivers

of the database being used. This reference architecture uses the MySQL database which

provides JDBC drivers as OSGi bundles, however this particular dependency is more

complicated than the previous ones.

The OSGi model heavily relies on a chain of explicit dependencies, expressed in a clear

format to the container at the time of deployment. Dependency injection, whether through the

blueprint or sprint model, identifies dependencies and buildling blocks at compile and deploy

time. On the other hand, JDBC driver connectivity often relies on Java reflection to remain

database-agonistic and refers to all driver classes through their standard interface, which is

java.sql.Driver. As a result, the OSGi container often remains unaware of the bundle's

dependency on the JDBC driver bundle.

5.4.9.1 OSGi Fragment Bundle

An OSGi Bundle Fragment is a bundle that attaches itself to a host bundle, sharing its

classloader and making all its content available to the host bundle.
41

Using an OSGi fragment bundle allows you to create a new and simple bundle that explicitly

declares a dependency on the MySQL JDBC driver, while attaching itself to the Spring-JDBC

bundle. The ultimate affect of deploying this fragment is force a dependency on MySQL

drivers by Spring-JDBC.

To maintain a clean separation between the various project artifacts, create a new directory

under code/ and call it mysql-fragment.

Create a new Maven project, with nothing other than a project object model, in the same

com.redhat.refarch.fuse group with an artifact ID of mysql-fragment.

Selective a descriptive name and description for the project and build it as an OSGi bundle:

...
 <groupId>com.redhat.refarch.fuse</groupId>
 <artifactId>mysql-fragment</artifactId>
 <version>1.0.0</version>
 <packaging>bundle</packaging>
 <name>MySQLFragment</name>
 <description>OSGi Fragment Bundle</description>
...

MySQL drivers are used by the Spring-JDBC bundle declared as the

org.springframework.jdbc package. Use this package as the fragment host.

To declare a dependency on the bundle containing the MySQL JDBC drivers, import the

com.mysql.jdbc package.

41 http://wiki.osgi.org/wiki/Fragment

refarch-feedback@redhat.com 79 www.redhat.com

The final Maven file is called code/mysql-fragment/pom.xml and looks as follows:

<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.redhat.refarch.fuse</groupId>
 <artifactId>mysql-fragment</artifactId>
 <version>1.0.0</version>
 <packaging>bundle</packaging>
 <name>MySQLFragment</name>
 <description>OSGi Fragment Bundle</description>
 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.felix</groupId>
 <artifactId>maven-bundle-plugin</artifactId>
 <version>2.1.0</version>
 <extensions>true</extensions>
 <configuration>
 <instructions>
 <Bundle-SymbolicName>${project.artifactId}</Bundle-SymbolicName>
 <Fragment-Host>org.springframework.jdbc</Fragment-Host>
 <Import-Package>com.mysql.jdbc</Import-Package>
 </instructions>
 </configuration>
 </plugin>
 </plugins>
 </build>
</project>

To build this bundle, Maven must view it as a non-empty project. This requires a Maven

directory structure with at least one file in there. Create the following directory and empty file:

code/mysql-fragment/src/main/resources/META-INF/.ignore

Remember that this new bundle is simply an intermediary and the MySQL bundle itself must

still be included. Since you use a feature to deploy the application through a profile, edit the

feature and add the MySQL bundle as well as this fragment bundle to the feature. Mark the

fragment bundle as a dependency so that it is guaranteed to load the MySQL driver classes

into the Spring-JDBC classloader before an attempt is made to initialize the datasource.

5.4.9.2 Feature Dependencies

The previously created Fuse Feature only depended on the camel-blueprint feature to use file

polling and logging. The current iteration of the project also requires the following predefined

features:

• camel-bindy: To unmarshall CSV files into Java objects

• camel-sql: To use a JDBC aggregation repository

• spring-jdbc: To create a datasource and transaction manager for database connectivity

www.redhat.com 80 refarch-feedback@redhat.com

Your final feature descriptor should resemble the following:

<?xml version="1.0" encoding="UTF-8"?>
<features name="fulfillment-feature_repository">
 <feature name="fulfillment-feature">
 <bundle dependency='true'>

mvn:com.redhat.refarch.fuse/mysql-fragment/1.0.0</bundle>
 <bundle>mvn:mysql/mysql-connector-java/5.1.32</bundle>
 <bundle>mvn:com.redhat.refarch.fuse/fulfillment/1.0.0</bundle>

 <feature>camel-blueprint</feature>
 <feature>camel-bindy</feature>
 <feature>camel-sql</feature>
 <feature>spring-jdbc</feature>
 </feature>
</features>

Also remember to edit the Aggregation POM file and add the new fragment bundle to it, so

that all 3 artifacts can be built through a single top-level Maven command:

<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/xsd/maven-4.0.0.xsd">

 <modelVersion>4.0.0</modelVersion>
 <groupId>com.redhat.refarch.fuse</groupId>
 <artifactId>order-fulfillment</artifactId>
 <version>1.0.0</version>
 <packaging>pom</packaging>
 <url>http://maven.apache.org</url>
 <name>Parent Project</name>

 <modules>
 <module>mysql-fragment</module>
 <module>fulfillment</module>
 <module>features</module>
 </modules>

</project>

5.4.9.3 Import Implicit Dependency Packages

There are other instances of the issue of implicit and non-declared dependencies that require

special attention. The fulfillment project itself relies on both the com.mysql.jdbc and

org.apache.camel.impl packages. While both bundles are included, due to the implicit usage,

they have to be explicitly imported. The manifest file of the fulfillment bundle should therefore

include the following import package statement, which it cannot derive at compile time:

Import-Package: ...,org.apache.camel.impl,com.mysql.jdbc

refarch-feedback@redhat.com 81 www.redhat.com

http://wiki.osgi.org/wiki/Fragment

Include the following in the pom file of your fulfillment project:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/maven-v4_0_0.xsd">

 <modelVersion>4.0.0</modelVersion>

 <groupId>com.redhat.refarch.fuse</groupId>
 <artifactId>fulfillment</artifactId>
 <packaging>bundle</packaging>
 <version>1.0.0</version>
...
 <!-- to generate the MANIFEST-FILE of the bundle -->
 <plugin>
 <groupId>org.apache.felix</groupId>
 <artifactId>maven-bundle-plugin</artifactId>
 <version>2.3.7</version>
 <extensions>true</extensions>
 <configuration>
 <instructions>
 <Bundle-SymbolicName>fulfillment</Bundle-SymbolicName>
 <Private-Package>com.redhat.refarch.fuse.fulfillment.*</Private-Package>
 <Import-Package>*,org.apache.camel.impl,com.mysql.jdbc</Import-Package>
 </instructions>
 </configuration>
 </plugin>
...

With these updates, running mvn install from the top code/ directory builds the fragment

bundle as well as the main application bundle, before creating a feature repository with a

single feature that lists all the project dependencies.

Deploy the updated application in a fabric as previously described in the Fuse Fabric

Deployment section. If your fuse environment is already configured and the application

deployed, a quicker way to refresh the container to take advantage of the updated code is to

restart the child1 container.

Test the deployed application in the same manner as the previous Test and Execution. The

expected results are the same. You might however notice a second execution of the

aggregate node, as if it was never completed and had timed out. This is a known issue in

JBoss Fuse 6.1.
42

42 https://issues.jboss.org/browse/ENTESB-1956

www.redhat.com 82 refarch-feedback@redhat.com

5.4.9.4 Container-Only Build

It is fairly common for enterprise applications to require container services that prevent them

from running directly through Maven's camel:run target. After this iteration, the fulfillment

application will only be deployed to a Fuse Fabric and executed within the container.

Update the Maven pom file at this stage to remove unnecessary dependencies. The only

listed items should be compile-time dependencies. For the fulfillment application in its current

iteration, this only includes camel-core and camel-bindy. Both dependencies are provided to

the application in the container through a predefined Fuse Feature and should be included

with a scope of provided in the pom file:

<dependencies>
<dependency>

<groupId>org.apache.camel</groupId>
<artifactId>camel-core</artifactId>
<version>2.12.0.redhat-610379</version>
<scope>provided</scope>

</dependency>
<dependency>

<groupId>org.apache.camel</groupId>
<artifactId>camel-bindy</artifactId>
<version>2.12.0.redhat-610379</version>
<scope>provided</scope>

</dependency>
</dependencies>

The camel-maven-plugin build plugin was included in the pom file to enable the use of

camel:run. Remove this snippet from your pom file:

<!-- to run the example using mvn camel:run -->
<plugin>

<groupId>org.apache.camel</groupId>
<artifactId>camel-maven-plugin</artifactId>
<version>2.10.0.fuse-71-047</version>
<configuration>

<useBlueprint>true</useBlueprint>
</configuration>

</plugin>

</plugins>

Update the pom file and set a unique and identifiable name that describes the application.

This will be the exported name of the OSGi bundle in the container:

<groupId>com.redhat.refarch.fuse</groupId>
<artifactId>fulfillment</artifactId>
<packaging>bundle</packaging>
<version>1.0.0</version>

<name>Order Fulfillment JBoss Fuse Application</name>

refarch-feedback@redhat.com 83 www.redhat.com

5.5 Order Processing Service
Create a new blueprint service to receive aggregated orders and process them. For the

purpose of this application and in the current iteration, simply use a Java bean to print the

content of the order object. Create a new Java class and use the @org.apache.camel.Body

annotation to accept the Camel message body as an argument:
43

package com.redhat.refarch.fuse.fulfillment.process;

import java.io.StringWriter;

import org.apache.camel.Body;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import com.redhat.refarch.fuse.fulfillment.Order;
import com.redhat.refarch.fuse.fulfillment.item.OrderItem;

public class OrderFulfillmentBean
{

 public void process(@Body Order order)
 {
 Logger logger = LoggerFactory.getLogger(getClass());
 StringWriter stringWriter = new StringWriter();
 stringWriter.append("\n\nGot order with ");
 stringWriter.append(String.valueOf(order.getOrders().size()));
 stringWriter.append(" items");
 for(OrderItem orderItem : order.getOrders())
 {
 stringWriter.append("\n\tOrder for ");
 stringWriter.append(orderItem.getItemId());
 stringWriter.append(" in the following quantity: ");
 stringWriter.append(String.valueOf(orderItem.getQuantity()));
 }
 logger.info(stringWriter.toString());
 }
}

Create a new context by using JBDS to create a new Camel XML file in the same blueprint

directory. Call this new file process-order.xml and select OSGi Blueprint as the dependency

framework.

Place an Endpoint and a Bean node on the canvas.

Set up the Endpoint node as follows:

• Uri: direct-vm:process-order

• Id: Process Order

43 https://access.redhat.com/documentation/en-

US/Red_Hat_JBoss_Fuse/6.1/html/Apache_Camel_Development_Guide/BasicPrinciples-

BeanIntegration.html#BasicPrinciples-BeanIntegration-BasicAnnotations

www.redhat.com 84 refarch-feedback@redhat.com

https://issues.jboss.org/browse/ENTESB-1956

Configure the Bean node to use the new Java class:

• Bean Type: com.redhat.refarch.fuse.fulfillment.process.OrderFulfillmentBean

• Method: process

• Id: Process Order

Connect the receiving endpoint node to the bean and save the service. This simple service

now receives an order object in the message and print its details.

Add an endpoint node to the end of the aggregate service and configure it:

• Uri: direct-vm:process-order

• Id: Process Order

This new final node of the aggregate route redirects execution to the process-order route in a

different context. The message body is picked up by this route and the order object is

traversed and printed by the Java bean.

Test the application with the latest updates and make sure it is correctly configured:

INFO | lfillment/input/ | route2 |
rg.apache.camel.util.CamelLogger 176 | 107 - org.apache.camel.camel-core -
2.12.0.redhat-610379 | Will parse 123-customer.csv for customer
INFO | lfillment/input/ | route1 |
rg.apache.camel.util.CamelLogger 176 | 107 - org.apache.camel.camel-core -
2.12.0.redhat-610379 | Aggregate route received Customer
[customerId=333224444, firstName=Babak, lastName=Mozaffari, telephone=310-
555-1234]
INFO | lfillment/input/ | route2 |
rg.apache.camel.util.CamelLogger 176 | 107 - org.apache.camel.camel-core -
2.12.0.redhat-610379 | Will parse 123-orders.csv for order items
INFO | lfillment/input/ | route1 |
rg.apache.camel.util.CamelLogger 176 | 107 - org.apache.camel.camel-core -
2.12.0.redhat-610379 | Aggregate route received [Order [itemId=item #1,
quantity=5], Order [itemId=item #2, quantity=7]]
INFO | lfillment/input/ | route1 |
rg.apache.camel.util.CamelLogger 176 | 107 - org.apache.camel.camel-core -
2.12.0.redhat-610379 | Aggregated: Order [customer=Customer
[customerId=333224444, firstName=Babak, lastName=Mozaffari, telephone=310-
555-1234], orders=[Order [itemId=item #1, quantity=5], Order [itemId=item
#2, quantity=7]]]
INFO | lfillment/input/ | OrderFulfillmentBean |
ent.process.OrderFulfillmentBean 29 | 102 - fulfillment - 1.0.0 |

Got order with 2 items
Order for item #1 in the following quantity: 5
Order for item #2 in the following quantity: 7

refarch-feedback@redhat.com 85 www.redhat.com

5.6 Web Service Interface
Create a new Camel service to accept order requests in SOAP over HTTP format. JBoss

Fuse uses Apache CXF to provide extensive Web Service support.
44

The request type for the order web service is defined by the Order class and the response, as

per the requirements, is just a confirmation string. Furthermore, the SOAP-based web service

merely acts as a facade, providing an interface to calling clients and placing the message on

the Camel route to be processed by subsequent nodes. Based on these requirements, the

CXF Service Endpoint Interface (SEI) approach is a perfect fit.
45

Create a simple Java interface describing the web service. Include a single method to

represent the required web service operation with Order as the input argument and simple

text as the response:

package com.redhat.refarch.fuse.fulfillment.ws;

import com.redhat.refarch.fuse.fulfillment.Order;

public interface OrderFulfillmentService
{

public String process(Order order);
}

Create a new context by using JBDS to create a new Camel XML file in the blueprint

directory. Call this new file ws.xml and select OSGi Blueprint as the dependency framework.

Manually edit the blueprint service descriptor to declare a CXF endpoint. First add an XML

schema namespace for CXF:

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
xmlns:cxf="http://camel.apache.org/schema/blueprint/cxf"

...

Declare the CXF endpoint to point to the Java interface to describe its interface and specify its

relative binding address as /orderWS/. The CXF endpoint ID, set to orderWS, is used to

reference it from the Camel route.

...
</camelContext>

<cxf:cxfEndpoint id="orderWS" address="/orderWS/" serviceClass=
 "com.redhat.refarch.fuse.fulfillment.ws.OrderFulfillmentService" />

</blueprint>

44 https://access.redhat.com/documentation/en-

US/Red_Hat_JBoss_Fuse/6.1/html/Apache_Camel_Development_Guide/CamelCxf.html

45 https://access.redhat.com/documentation/en-

US/Red_Hat_JBoss_Fuse/6.1/html/Apache_Camel_Development_Guide/ImplWs-JavaFirst-SEI.html

www.redhat.com 86 refarch-feedback@redhat.com

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.1/html/Apache_Camel_Development_Guide/BasicPrinciples-BeanIntegration.html#BasicPrinciples-BeanIntegration-BasicAnnotations
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.1/html/Apache_Camel_Development_Guide/BasicPrinciples-BeanIntegration.html#BasicPrinciples-BeanIntegration-BasicAnnotations
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.1/html/Apache_Camel_Development_Guide/BasicPrinciples-BeanIntegration.html#BasicPrinciples-BeanIntegration-BasicAnnotations

Save the Camel file and use the design view to create the Camel route with IDE assistance.

Place an Endpoint and a Log node on the canvas.

Set up the Endpoint node as follows:

• Uri: cxf:bean:orderWS

• Id: Order Web Service

Configure the log message as: Order Web Service received request

Connect the endpoint node to the log and save the service. At this point, the service is able to

receive SOAP requests and log them. Drop another Endpoint node onto the canvas as the

third node and connect from the log node to it. Set up its properties:

• Uri: direct-vm:process-order

• Id: Process Order

Next, as a final and fourth node, drop a Transformation node from the Transformation group

onto the canvas. Set the expression language to constant and the expression itself to OK.

Name the node by setting its Id to: OK Response

Given the purely declarative references to CXF by the service, no compile-time dependency

is introduced and as a result, there is no need to update the project pom file. On the other

hand, update the fulfillment.xml feature file to add deploy-time dependency on CXF:

 <feature>camel-blueprint</feature>
 <feature>camel-bindy</feature>
 <feature>camel-sql</feature>
 <feature>spring-jdbc</feature>
 <feature>camel-cxf</feature>
 </feature>
</features>

After the update, redeploy the application to the OSGi container. CXF services deployed to

the child container listen on port 8182 by default. To verify the port, connect to the container to

look it up:

JBossFuse:karaf@root> container-connect child1
Connected
 _ ____ ______
 | | _ \ | ____|
 | | |_) | ___ ___ ___ | |__ _ _ ___ ___
 _ | | _ < / _ \/ __/ __| | __| | | / __|/ _ \
| |__| | |_) | (_) __ __ \ | | | |_| __ \ __/
 ____/|____/ ___/|___/___/ |_| __,_|___/___|

...

JBossFuse:admin@child1> config:list | grep org.osgi.service.http.port
 org.osgi.service.http.port = 8182
JBossFuse:admin@child1>

refarch-feedback@redhat.com 87 www.redhat.com

Once you know the address and port of CXF services, you can list available services by

issuing a GET request to the following URL: http://localhost:8182/cxf/

Available SOAP services:
OrderFulfillmentServicePortType
process
Endpoint address: http://localhost:8182/cxf/orderWS/
WSDL :
{http://ws.fulfillment.fuse.refarch.redhat.com/}OrderFulfillmentService
Target namespace: http://ws.fulfillment.fuse.refarch.redhat.com/

Available RESTful services:

The web service is listed above and its WSDL URL is provided. Use an HTTP GET request to

retrieve the WSDL at http://localhost:8182/cxf/orderWS/?wsdl:

<?xml version='1.0' encoding='UTF-8'?><wsdl:definitions
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:tns="http://ws.fulfillment.fuse.refarch.redhat.com/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:ns1="http://schemas.xmlsoap.org/soap/http"
name="OrderFulfillmentService"
targetNamespace="http://ws.fulfillment.fuse.refarch.redhat.com/">
 <wsdl:types>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:tns="http://ws.fulfillment.fuse.refarch.redhat.com/"
attributeFormDefault="unqualified" elementFormDefault="unqualified"
targetNamespace="http://ws.fulfillment.fuse.refarch.redhat.com/">
 <xs:complexType name="order">
 <xs:sequence>
 <xs:element minOccurs="0" name="customer" type="tns:customer"/>
 <xs:element maxOccurs="unbounded" minOccurs="0" name="orders"
nillable="true" type="tns:orderItem"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="customer">
 <xs:sequence>
 <xs:element name="customerId" type="xs:long"/>
 <xs:element minOccurs="0" name="firstName" type="xs:string"/>
 <xs:element minOccurs="0" name="lastName" type="xs:string"/>
 <xs:element minOccurs="0" name="telephone" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="orderItem">
 <xs:sequence>
 <xs:element minOccurs="0" name="itemId" type="xs:string"/>
 <xs:element name="quantity" type="xs:int"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="process" type="tns:process"/>
 <xs:complexType name="process">

www.redhat.com 88 refarch-feedback@redhat.com

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.1/html/Apache_Camel_Development_Guide/ImplWs-JavaFirst-SEI.html
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.1/html/Apache_Camel_Development_Guide/ImplWs-JavaFirst-SEI.html
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.1/html/Apache_Camel_Development_Guide/CamelCxf.html
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.1/html/Apache_Camel_Development_Guide/CamelCxf.html

 <xs:sequence>
 <xs:element minOccurs="0" name="arg0" type="tns:order"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="processResponse" type="tns:processResponse"/>
 <xs:complexType name="processResponse">
 <xs:sequence>
 <xs:element minOccurs="0" name="return" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
</xs:schema>
 </wsdl:types>
 <wsdl:message name="processResponse">
 <wsdl:part element="tns:processResponse" name="parameters">
 </wsdl:part>
 </wsdl:message>
 <wsdl:message name="process">
 <wsdl:part element="tns:process" name="parameters">
 </wsdl:part>
 </wsdl:message>
 <wsdl:portType name="OrderFulfillmentServicePortType">
 <wsdl:operation name="process">
 <wsdl:input message="tns:process" name="process">
 </wsdl:input>
 <wsdl:output message="tns:processResponse" name="processResponse">
 </wsdl:output>
 </wsdl:operation>
 </wsdl:portType>
 <wsdl:binding name="OrderFulfillmentServiceSoapBinding"
type="tns:OrderFulfillmentServicePortType">
 <soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
 <wsdl:operation name="process">
 <soap:operation soapAction="" style="document"/>
 <wsdl:input name="process">
 <soap:body use="literal"/>
 </wsdl:input>
 <wsdl:output name="processResponse">
 <soap:body use="literal"/>
 </wsdl:output>
 </wsdl:operation>
 </wsdl:binding>
 <wsdl:service name="OrderFulfillmentService">
 <wsdl:port binding="tns:OrderFulfillmentServiceSoapBinding"
name="OrderFulfillmentServicePort">
 <soap:address location="http://localhost:8182/cxf/orderWS/"/>
 </wsdl:port>
 </wsdl:service>
</wsdl:definitions>

As shown above, default values have been generated for the Web Service name,

namespace, operation name, request schema and other factors.

refarch-feedback@redhat.com 89 www.redhat.com

To invoke the web service, send a sample request through HTTP POST to the service URL,

which in this example is http://localhost:8182/cxf/orderWS/:

<soapenv:Envelope
xmlns:fulfill="http://ws.fulfillment.fuse.refarch.redhat.com/"
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<soapenv:Header />
<soapenv:Body>

<fulfill:process>
<arg0>

<customer>
<customerId>333224444</customerId>
<firstName>Babak</firstName>
<lastName>Mozaffari</lastName>
<telephone>3105551234</telephone>

</customer>
<orders>

<itemId>Chair</itemId>
<quantity>4</quantity>

</orders>
<orders>

<itemId>Table</itemId>
<quantity>1</quantity>

</orders>
</arg0>

</fulfill:process>
</soapenv:Body>

</soapenv:Envelope>

The expected response:

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>

<ns1:processResponse
xmlns:ns1="http://ws.fulfillment.fuse.refarch.redhat.com/">

<return>OK</return>
</ns1:processResponse>

</soap:Body>
</soap:Envelope>

The return value is the hardcoded OK value, which is returned by the transformation node.

Look at the container log to see the processing results:

INFO | tp1951416716-183 | route4 |
rg.apache.camel.util.CamelLogger 176 | 108 - org.apache.camel.camel-core -
2.12.0.redhat-610379 | Order Web Service received request
INFO | tp1951416716-183 | OrderFulfillmentBean |
ent.process.OrderFulfillmentBean 29 | 102 - fulfillment - 1.0.0 |

Got order with 2 items
Order for Chair in the following quantity: 4
Order for Table in the following quantity: 1

www.redhat.com 90 refarch-feedback@redhat.com

http://localhost:8182/cxf/orderWS/?wsdl
http://localhost:8182/cxf/

5.7 RESTful Service Interface
To create a RESTful service that accepts XML and JSON requests for the Order service, take

a slightly different approach. Instead of a Camel XML file, create a JAX-RS blueprint service.
46

You can use the rest quickstart under your Fuse installation as a baseline for the new

artifacts.

To use the Order class as an argument to the REST service, annotate it as a JAXB root

element. In cases where the data model classes are not under your control and annotating

the class is not practical, you can also use advanced configuration to map a regular Java

class to XML and JSON format.

Add the XmlRootElement annotation to the class:

@XmlRootElement(name = "Order")
public class Order implements Serializable

In this approach, the service receives the request and is responsible for redirecting the

message to the appropriate Camel route. The service is implemented using standard JAX-RS

API. To use JAX-RS annotations in your Java classes, declare a compile-time dependency on

the JSR 311 API module:

<dependency>
<groupId>org.apache.servicemix.specs</groupId>
<artifactId>org.apache.servicemix.specs.jsr311-api-1.1.1</artifactId>
<scope>provided</scope>
<version>2.3.0.redhat-610394</version>

</dependency>

Your application declares a REST server with a single service, so the relative path of the

service may be left as blank:

@Path("/")
public class OrderFulfillmentService
{

Again, you only need a single operation for the service, so a relative context for the operation

is not required. Set this operation to accept both XML and JSON as the request format and

POST as the HTTP method:

@POST
@Path("/")
@Consumes({MediaType.APPLICATION_XML, MediaType.APPLICATION_JSON})
public Response addOrder(Order order)

46 https://access.redhat.com/documentation/en-

US/Red_Hat_JBoss_Fuse/6.1/html/Apache_CXF_Development_Guide/RESTGuide.html

refarch-feedback@redhat.com 91 www.redhat.com

Given that the REST service is only a facade to accept requests in XML and JSON format,

the only responsibility of the service implementation is to redirect the request to the Order

Processing Service and return a confirmation response. Use a Camel producer to send the

request to a Camel route. Use dependency injection to create the producer:

@Produce(uri = "direct-vm:process-order")
private ProducerTemplate template;

Implement the service method to redirect the request:

template.sendBody(order);

Your JAX-RS service should return the response in the expected and requested format, which

is normally a JSON response when the request is JSON and an XML response when the

request is XML. To take advantage of the automatic mapping provided by the framework, the

method should return a JAXB object.

Create an inner class that can serve as the response type and be annotated as a JAXB root

element:

@XmlRootElement
private static class Return
{

@SuppressWarnings("unused")
public String result;

}

Instantiate this class in the service operation and set the return value to a constant value of

OK, similar to the Web Service implementation:

Return result = new Return();
result.result = "OK";

Finally, use the JAX-RS API to create a response based on javax.ws.rs.core.Response and

have it implicitly build the correct media type:

return Response.ok(result).build();

www.redhat.com 92 refarch-feedback@redhat.com

http://localhost:8182/cxf/orderWS/

The completed service class is as follows:

package com.redhat.refarch.fuse.fulfillment.rest;

import javax.ws.rs.Consumes;
import javax.ws.rs.POST;
import javax.ws.rs.Path;
import javax.ws.rs.core.MediaType;
import javax.ws.rs.core.Response;
import javax.xml.bind.annotation.XmlRootElement;

import org.apache.camel.Produce;
import org.apache.camel.ProducerTemplate;

import com.redhat.refarch.fuse.fulfillment.Order;

@Path("/")
public class OrderFulfillmentService
{

@Produce(uri = "direct-vm:process-order")
private ProducerTemplate template;

@POST
@Path("/")
@Consumes({MediaType.APPLICATION_XML, MediaType.APPLICATION_JSON})
public Response addOrder(Order order)
{

template.sendBody(order);
Return result = new Return();
result.result = "OK";
return Response.ok(result).build();

}

@XmlRootElement
private static class Return
{

@SuppressWarnings("unused")
public String result;

}
}

refarch-feedback@redhat.com 93 www.redhat.com

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.1/html/Apache_CXF_Development_Guide/RESTGuide.html
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.1/html/Apache_CXF_Development_Guide/RESTGuide.html

The blueprint service descriptor is largely standard and unchanged from the quickstart:

<?xml version="1.0" encoding="UTF-8"?>
<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:jaxrs="http://cxf.apache.org/blueprint/jaxrs"
xmlns:cxf="http://cxf.apache.org/blueprint/core"
xsi:schemaLocation="

http://www.osgi.org/xmlns/blueprint/v1.0.0
http://www.osgi.org/xmlns/blueprint/v1.0.0/blueprint.xsd
http://cxf.apache.org/blueprint/jaxrs
http://cxf.apache.org/schemas/blueprint/jaxrs.xsd
http://cxf.apache.org/blueprint/core
http://cxf.apache.org/schemas/blueprint/core.xsd"

>

 <jaxrs:server id="orderServer" address="/orderRS">
<jaxrs:serviceBeans>
 <ref component-id="orderService" />
</jaxrs:serviceBeans>
<jaxrs:providers>
 <bean class="com.fasterxml.jackson.jaxrs.json.JacksonJsonProvider" />
</jaxrs:providers>

 </jaxrs:server>

 <bean id="orderService" class=
"com.redhat.refarch.fuse.fulfillment.rest.OrderFulfillmentService" />

</blueprint>

The JAX-RS server runs on the same CXF server as the Web Service Interface and therefore

shares the same URL context. Once again, you can list available services by issuing a GET

request to the following URL: http://localhost:8182/cxf/

Available SOAP services:
OrderFulfillmentServicePortType
process
Endpoint address: http://localhost:8182/cxf/orderWS/
WSDL :
{http://ws.fulfillment.fuse.refarch.redhat.com/}OrderFulfillmentService
Target namespace: http://ws.fulfillment.fuse.refarch.redhat.com/

Available RESTful services:
Endpoint address: http://localhost:8182/cxf/orderRS
WADL : http://localhost:8182/cxf/orderRS?_wadl

Notice that the service listens on the same relative URL as is set for the jaxrs:server, relative

to the CXF server.

www.redhat.com 94 refarch-feedback@redhat.com

Add the following two features to the project feature file:

code/features/src/main/resources/fulfillment.xml

...
 <feature>camel-cxf</feature>
 <feature>swagger</feature>
 </feature>
</features>

Redeploy the application to the container and test that the new REST service has been

successfully deployed by posting JSON and XML requests to the service address. For

example, using the curl tool:

curl -X POST -H 'Content-Type: application/xml'
-H 'Accept: application/xml'
-d @request.xml
http://localhost:8182/cxf/orderRS/

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<return><result>OK</result></return>

Notice that the content type and the Accept header both indicate XML as the desired media

type. The request should therefore also be in XML format and the response will come back as

XML. The request.xml file for this request looks as follows:

<Order>
<customer>

<customerId>333224444</customerId>
<firstName>Babak</firstName>
<lastName>Mozaffari</lastName>
<telephone>3105551234</telephone>

</customer>
<orders>

<itemId>Chair</itemId>
<quantity>4</quantity>

</orders>
<orders>

<itemId>Table</itemId>
<quantity>1</quantity>

</orders>
</Order>

refarch-feedback@redhat.com 95 www.redhat.com

To send a similar request in JSON and receive a JSON response:

curl -X POST -H 'Content-Type: application/json'
-H 'Accept: application/json'
-d @request.json
http://localhost:8182/cxf/orderRS/

{"result":"OK"}

The request.json file:

{
"customer":
{

"customerId": "333224444",
"firstName": "Babak",
"lastName": "Mozaffari",
"telephone": "3105551234"

},

"orders":
[

{
"itemId": "Chair",
"quantity": "4"

},

{
"itemId": "Table",
"quantity": "1"

}
]

}

www.redhat.com 96 refarch-feedback@redhat.com

http://localhost:8182/cxf/
http://www.w3.org/2001/XMLSchema-instance

5.8 Asynchronous Messaging

5.8.1 Overview
Once orders are received by the application, regardless of the protocol and interface used by

the client, each order item needs to be processed individually. It is assumed that the

processing of each single order is an expensive and lengthy process, best handled by using a

fire and forget pattern to allow processing to happen asynchronously. JBoss Fuse includes

ActiveMQ as a reliable messaging platform with high performance. Use a JMS queue to

process the order items.

5.8.2 Producer
Order items are enclosed in a Java Order object and processed by a Java bean, so the

easiest and most direct way to send each item to a queue for processing is to a use a Camel

producer in the Java bean. Use dependency injection to create a producer that points to an

ActiveMQ JMS Queue, called order:

@Produce(uri = "amq:queue:order")
private ProducerTemplate template;

Add a loop at the end of the Java bean method to send each order, individually, to this queue.

The final bean class looks as follows:

public class OrderFulfillmentBean
{

@Produce(uri = "amq:queue:order")
private ProducerTemplate template;

public void process(@Body Order order)
{

Logger logger = LoggerFactory.getLogger(getClass());
StringWriter stringWriter = new StringWriter();
stringWriter.append("\n\nGot order with ");
stringWriter.append(String.valueOf(order.getOrders().size()));
stringWriter.append(" items");
for(OrderItem orderItem : order.getOrders())
{

stringWriter.append("\n\tOrder for ");
stringWriter.append(orderItem.getItemId());
stringWriter.append(" in the following quantity: ");
stringWriter.append(String.valueOf(

orderItem.getQuantity()));
}
logger.info(stringWriter.toString());
for(OrderItem orderItem : order.getOrders())
{

template.sendBody(orderItem);
}

}
}

refarch-feedback@redhat.com 97 www.redhat.com

When an ActiveMQ destination is specified as the target Camel route, the Camel producer

effectively acts as a JMS producer.

5.8.3 Consumer
Create a new Camel context by using JBDS to create a new Camel XML file in the OSGI-INF

blueprint directory. Call this file message-consumer and select OSGi Blueprint as the

dependency injection framework.

Place an Endpoint and a Log node on the canvas.

Set up the Endpoint node as follows:

• Uri: amq:queue:order

• Id: Receive Order Message

Configure the log message as: Receiving order ${body}

Connect the endpoint node to the log and save the service. By specifying an endpoint

address with the amq:queue context, you have created a Camel ActiveMQ consumer.

Messages produced by the order fulfillment bean Camel producer are sent to the queue and

consumed by this Camel route:

<?xml version="1.0" encoding="UTF-8"?>
<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"

 xmlns:camel="http://camel.apache.org/schema/blueprint"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.osgi.org/xmlns/blueprint/v1.0.0
 http://www.osgi.org/xmlns/blueprint/v1.0.0/blueprint.xsd
 http://camel.apache.org/schema/blueprint
 http://camel.apache.org/schema/blueprint/camel-blueprint.xsd">

 <camelContext trace="false"
xmlns="http://camel.apache.org/schema/blueprint">

 <route>
 <from uri="amq:queue:order" customId="true"

id="Receive Order Message">
 <description/>
 </from>
 <log message="Receiving order ${body}"/>
 </route>
 </camelContext>

</blueprint>

5.8.4 Dependencies
The provided mq-fabric-camel feature includes all required Camel/ActiveMQ dependencies

and configures a default broker so that messages can be both produced and consumed. The

default broker is started on port 61616 of the server and configured for discover through the

OSGi registry with the default credentials of admin and password. This requires that the fabric

ensemble zookeeper password would also be set to the default value of password.

www.redhat.com 98 refarch-feedback@redhat.com

Edit the project feature declaration and add mq-fabric-camel as a feature dependency:

<?xml version="1.0" encoding="UTF-8"?>
<features name="fulfillment-feature_repository">
 <feature name="fulfillment-feature">
 <bundle dependency='true'>mvn:com.redhat.refarch.fuse/mysql-
fragment/1.0.0</bundle>
 <bundle>mvn:mysql/mysql-connector-java/5.1.32</bundle>
 <bundle>mvn:com.redhat.refarch.fuse/fulfillment/1.0.0</bundle>

 <feature>camel-blueprint</feature>
 <feature>camel-bindy</feature>
 <feature>camel-sql</feature>
 <feature>spring-jdbc</feature>
 <feature>camel-cxf</feature>
 <feature>swagger</feature>
 <feature>mq-fabric-camel</feature>
 </feature>
</features>

5.8.5 Testing
Use Maven to build the project, include the new Camel context, modified Java bean and

updated feature repository. Redeploy the application to the container and invoke the order

services through one of the previously defined interfaces. For example, to use the RESTful

service as the gateway to the Order Fulfillment Service, send a request in JSON:

curl -X POST -H 'Content-Type: application/json'
-H 'Accept: application/json'
-d @request.json
http://localhost:8182/cxf/orderRS/

{"result":"OK"}

Look at the log file for the application container, normally called karaf.log under the created

instance. In addition to the previous log messages where the order is received and printed,

you will see log statements pertaining to the ActiveMQ broker being set up and connections

being established:

INFO | t-1.0.0-thread-1 | FabricDiscoveryAgentFactory |
bric.FabricDiscoveryAgentFactory 44 | 199 - org.jboss.amq.mq-fabric -
6.1.0.redhat-379 | OSGi environment detected!
INFO | ZooKeeperGroup-0 | DiscoveryTransport |
ort.discovery.DiscoveryTransport 78 | 117 - org.apache.activemq.activemq-
osgi - 5.9.0.redhat-610379 | Adding new broker connection URL:
tcp://....cloud.lab.eng.bos.redhat.com:61616
INFO | ActiveMQ Task-1 | FailoverTransport |
sport.failover.FailoverTransport 1055 | 117 - org.apache.activemq.activemq-
osgi - 5.9.0.redhat-610379 | Successfully connected to
tcp://....cloud.lab.eng.bos.redhat.com:61616
INFO | t-1.0.0-thread-1 | BlueprintCamelContext |
e.camel.impl.DefaultCamelContext 2224 | 121 - org.apache.camel.camel-core -
2.12.0.redhat-610379 | Route: route3 started and consuming from:
Endpoint[amq://queue:order]

refarch-feedback@redhat.com 99 www.redhat.com

Subsequently, you can see each of the JMS messages being consumed:

INFO | qtp369188086-297 | OrderFulfillmentBean |
ent.process.OrderFulfillmentBean 34 | 108 - fulfillment - 1.0.0 |

Got order with 2 items
Order for Chair in the following quantity: 4
Order for Table in the following quantity: 1

INFO | qtp369188086-297 | FabricDiscoveryAgentFactory |
bric.FabricDiscoveryAgentFactory 44 | 199 - org.jboss.amq.mq-fabric -
6.1.0.redhat-379 | OSGi environment detected!

INFO | ZooKeeperGroup-0 | DiscoveryTransport |
ort.discovery.DiscoveryTransport 78 | 117 - org.apache.activemq.activemq-
osgi - 5.9.0.redhat-610379 | Adding new broker connection URL:
tcp://....cloud.lab.eng.bos.redhat.com:61616

INFO | ActiveMQ Task-1 | FailoverTransport |
sport.failover.FailoverTransport 1055 | 117 - org.apache.activemq.activemq-
osgi - 5.9.0.redhat-610379 | Successfully connected to
tcp://....cloud.lab.eng.bos.redhat.com:61616

INFO | sConsumer[order] | route3 |
rg.apache.camel.util.CamelLogger 176 | 121 - org.apache.camel.camel-core -
2.12.0.redhat-610379 | Receiving order Order [itemId=Chair, quantity=4]

INFO | sConsumer[order] | route3 |
rg.apache.camel.util.CamelLogger 176 | 121 - org.apache.camel.camel-core -
2.12.0.redhat-610379 | Receiving order Order [itemId=Table, quantity=1]

5.8.6 Broker Configuration
With the fulfillment profile including the mq-fabric-camel feature, each container that is

assigned the profile will start a default broker. This broker is set up as part of a group called

default, In a fabric ensemble where such a profile is assigned to multiple containers, multiple

brokers will be created in the same group, resulting in a distributed network of message

brokers.

ActiveMQ brokers may also be created manually using the fabric:mq-create command. Use

the group option to specify the group name and indicate the containers to which the

generated profile should be added. The final argument to the command is the name of the

booker that will be created:

JBossFuse:admin@child1> mq-create --assign-container child1 --group broker-
group order-broker

Refer to the official Red Hat documentation for JBoss ActiveMQ for further details.
47

47 https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_A-MQ/index.html

www.redhat.com 100 refarch-feedback@redhat.com

6 Conclusion
Red Hat JBoss Fuse leverages Apache Camel and Apache CXF to provide a large number of

features and integration capabilities. ActiveMQ can be used as a fast reliable messaging

server and with Fuse Fabric as the deployment platform, high-availability can be combined

with horizontal scaling to provide robust enterprise solutions.

This reference architecture sets up a Fuse Fabric ensemble with three nodes to eliminate any

given node from being a single point of failure. By exposing the same service through multiple

interfaces, this reference architecture demonstrates the abilities of JBoss Fuse to both

integrate legacy systems and accelerate new development.

While there are simply too many features and capabilities in JBoss Fuse 6.1 for any such

effort to cover, every attempt is made to touch upon the various technologies and provide a

framework that can easily be expanded based on individual requirements.

refarch-feedback@redhat.com 101 www.redhat.com

Appendix A: Revision History

Revision 1.1 Babak Mozaffari

Updated documentation links for Fuse GA 6.1

Revision 1.0 Babak Mozaffari

Initial Release

www.redhat.com 102 refarch-feedback@redhat.com

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_A-MQ/index.html

Appendix B: Contributors
We would like to thank the following individuals for their time and patience as we collaborated

on this process. This document would not have been possible without their many

contributions.

Contributor Title Contribution

Gary Lamperillo Principal Solution Architect Technical Review

John Osborne Solution Architect Technical Review

Vishal Ghariwala Principal Product Manager – Technical
Technical Review

refarch-feedback@redhat.com 103 www.redhat.com

Appendix C: IPTables configuration
An ideal firewall configuration constraints open ports to the required services based on

respective clients. This reference environment includes a set of ports for the active cluster

along with another set used by the passive cluster, which has an offset of 100 over the

original set. Other than the TCP ports accessed by callers, there are also a number of UDP

ports that are used within the cluster itself for replication, failure detection and other HA

functions. The following iptables configuration opens the ports for known JBoss services

within the set of IP addresses used in the reference environment, while also allowing UDP

communication between them on any port. The required multicast addresses and ports are

also accepted. This table shows the ports for the active domain. The passive domain would

include an offset of 100 over many of these ports and different usage and configuration of

components may lead to alternate firewall requirements.

Rules for the JBoss Fuse 6.1 reference architecture environment
*filter
:INPUT ACCEPT [0:0]
:FORWARD ACCEPT [0:0]
:OUTPUT ACCEPT [75:8324]
-A INPUT -m state --state RELATED,ESTABLISHED -j ACCEPT
-A INPUT -p icmp -j ACCEPT
-A INPUT -i lo -j ACCEPT
-A INPUT -p tcp -m state --state NEW -m tcp --dport 22 -j ACCEPT
-A INPUT -s 10.19.137.0/24 -p tcp -m tcp --dport 1099 -j ACCEPT
-A INPUT -s 10.19.137.0/24 -p tcp -m tcp --dport 2181 -j ACCEPT
-A INPUT -s 10.19.137.0/24 -p tcp -m tcp --dport 8182 -j ACCEPT
-A INPUT -j REJECT --reject-with icmp-host-prohibited
-A FORWARD -j REJECT --reject-with icmp-host-prohibited
COMMIT

www.redhat.com 104 refarch-feedback@redhat.com

	1 Executive Summary
	2 JBoss Fuse 6
	2.1 Overview
	2.2 Development Environment
	2.3 Dependency Injection
	2.3.1 Spring XML
	2.3.2 Blueprint XML

	2.4 Fuse Fabric
	2.5 Components
	2.5.1 Apache Camel
	2.5.2 Apache CXF
	2.5.3 Apache ActiveMQ

	2.6 Deployment
	2.6.1 OSGi Bundle
	2.6.2 Fuse Feature
	2.6.3 Fabric Profile
	2.6.4 Other Options
	2.6.4.1 Fuse Application Bundle
	2.6.4.2 Web Application Archive

	3 Reference Architecture Environment
	3.1 Overview
	3.1.1 Order Fulfillment

	3.2 Fabric Ensemble
	3.3 MySQL Database

	4 Creating the Environment
	4.1 Prerequisites
	4.2 Downloads
	4.3 Installation
	4.3.1 MySQL Database
	4.3.2 JBoss Fuse

	4.4 Configuration
	4.4.1 MySQL Database
	4.4.2 JBoss Fuse

	4.5 Deployment
	4.6 Execution
	4.6.1 Legacy File Drop
	4.6.2 SOAP-based Web Service
	4.6.3 XML RESTful Service
	4.6.4 JSON RESTful Service

	5 Design and Development
	5.1 Overview
	5.2 Integrated Development Environment
	5.2.1 JBoss Developer Studio
	5.2.2 JBoss Fuse IDE plugins
	5.2.3 Creating a Fuse Project
	5.2.4 Sample Project Review
	5.2.5 Sample Project Execution

	5.3 Initial Project Iteration
	5.3.1 Overview
	5.3.2 Project Structure
	5.3.3 File Polling Project
	5.3.3.1 Development
	5.3.3.2 Graphical Development
	5.3.3.3 Service Descriptor
	5.3.3.4 Build
	5.3.3.5 Execution
	5.3.3.6 Maven POM File
	5.3.3.7 Container Setup
	5.3.3.8 Container Deployment

	5.3.4 Fuse Feature
	5.3.5 Aggregation POM
	5.3.6 Fuse Fabric Deployment
	5.3.6.1 Profiles
	5.3.6.2 Creating a profile
	5.3.6.3 Assinging a profile
	5.3.6.4 Feature deployment to profile

	5.3.7 Fuse Fabric Ensemble

	5.4 Request Aggregation
	5.4.1 Requirements
	5.4.2 Content Based Router
	5.4.3 Unmarshalling CSV
	5.4.4 Aggregated Type
	5.4.5 Setting Camel Message Headers
	5.4.6 Direct VM Call
	5.4.7 Aggregator Component
	5.4.7.1 Overview
	5.4.7.2 Aggregation Strategy
	5.4.7.3 Configuration
	5.4.7.4 Review
	5.4.7.5 Test and Execution

	5.4.8 Distributed Aggregation
	5.4.9 JDBC Driver Dependency
	5.4.9.1 OSGi Fragment Bundle
	5.4.9.2 Feature Dependencies
	5.4.9.3 Import Implicit Dependency Packages
	5.4.9.4 Container-Only Build

	5.5 Order Processing Service
	5.6 Web Service Interface
	5.7 RESTful Service Interface
	5.8 Asynchronous Messaging
	5.8.1 Overview
	5.8.2 Producer
	5.8.3 Consumer
	5.8.4 Dependencies
	5.8.5 Testing
	5.8.6 Broker Configuration

	6 Conclusion
	Appendix A: Revision History
	Appendix B: Contributors
	Appendix C: IPTables configuration

