
Red Hat Satellite 6.4

Transitioning from Red Hat Satellite 5 to Red
Hat Satellite 6

Supporting transition from Satellite 5 to Satellite 6

Last Updated: 2019-10-31

Red Hat Satellite 6.4 Transitioning from Red Hat Satellite 5 to Red Hat
Satellite 6

Supporting transition from Satellite 5 to Satellite 6

Red Hat Satellite Documentation Team
satellite-doc-list@redhat.com

Legal Notice

Copyright © 2019 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document describes how to perform a transition of an existing Satellite 5.6 or 5.7 Server to a
new Satellite 6 Server. It describes the necessary preparations and prerequisites, the bootstrap
script, which is used for the migration of clients, and how to retire the old Satellite 5.6 or 5.7
deployment after the transition is finished.

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. INTRODUCTION

CHAPTER 2. COMPARING SATELLITE 5 AND SATELLITE 6
2.1. DESIGN AND CONCEPTS

2.1.1. Red Hat Satellite 5
2.1.2. Red Hat Satellite 6
2.1.3. Comparison of Concepts

2.2. SYSTEM ARCHITECTURES
2.2.1. Red Hat Satellite 5
2.2.2. Red Hat Satellite 6

2.3. CONTENT MANAGEMENT
2.3.1. Red Hat Satellite 5
2.3.2. Red Hat Satellite 6

2.4. DISCONNECTED CONTENT MANAGEMENT
2.4.1. Red Hat Satellite 5
2.4.2. Red Hat Satellite 6

2.5. ORGANIZATIONAL STRUCTURES
2.5.1. Red Hat Satellite 5
2.5.2. Red Hat Satellite 6

2.6. APPLICATION LIFE CYCLES
2.6.1. Red Hat Satellite 5
2.6.2. Red Hat Satellite 6

CHAPTER 3. TRANSITIONING FROM SATELLITE 5 TO 6
3.1. PREREQUISITES
3.2. THE TRANSITIONING WORKFLOW
3.3. PERFORMING THE TRANSITION

3.3.1. Installing the Bootstrap Script
3.3.2. Migrating a Red Hat Enterprise Linux 6 System

3.4. RETIRING THE OLD SATELLITE 5 SERVER
3.4.1. Migrating Subscriptions to the New Satellite 6

CHAPTER 4. TRANSITIONING TO THE SATELLITE 6 API
4.1. EXAMPLE API SCRIPTS

4.1.1. Listing Systems and Hosts
4.1.2. Deleting and Creating Users

4.2. SATELLITE 6 API TIPS

APPENDIX A. GLOSSARY OF TERMS

3

4
4
4
4
4
6
6
7
9
9
9

10
10
10
11
11
11

12
12
13

15
15
15
15
15
16
17
18

20
20
21
23
29

31

Table of Contents

1

Red Hat Satellite 6.4 Transitioning from Red Hat Satellite 5 to Red Hat Satellite 6

2

CHAPTER 1. INTRODUCTION
Satellite enables you to perform the transition from Satellite 5 Server to Satellite 6 Server. There is a
significant difference between Satellite 5 and Satellite 6. Therefore, the in-place upgrade process (such
as from version 4.x to 5.x) does not apply for version 5 to 6. You need to install Satellite 6 on a new
server and migrate clients to the new Satellite 6 instance. Consequently, this is referred to as a transition
process and not an upgrade process. Red Hat gives customers a whole year of duplicate Satellite
subscriptions so that you can build and test a Satellite 6 Server before migrating only the Satellite 5
clients to the new system.

Transitioning Workflow

The transition process from Satellite 5 to Satellite 6 consists of the following steps:

1. Review the documentation, learn and understand the basics of the Satellite 6 Product. If you
have Satellite 5.8 running on a s390 system, you must build a fresh Satellite 6 on an x86_64
architecture system. Satellite 6 cannot run on s390 systems.

2. Install Satellite 6 on a new machine, activate it with a manifest and synchronize Red Hat content
from CDN.

3. Install the bootstrap script on client systems.

4. Make sure that you meet the prerequisites and run the bootstrap script to migrate your clients.

Supported Versions of Red Hat Enterprise Linux

Unlike Satellite 5, Satellite 6 does not support clients run on Red Hat Enterprise Linux 4 and older.
Ensure all your clients are configured on one of the following Red Hat Enterprise Linux versions before
you start the transition:

Red Hat Enterprise Linux 5.7 and later.

Red Hat Enterprise Linux 6.1 and later.

Red Hat Enterprise Linux 7.0 and later.

CHAPTER 1. INTRODUCTION

3

CHAPTER 2. COMPARING SATELLITE 5 AND SATELLITE 6

2.1. DESIGN AND CONCEPTS

2.1.1. Red Hat Satellite 5

Red Hat Satellite 5 is life cycle management tool that includes the ability to deploy, manage and
monitor a large number of systems. Satellite 5 can be set up in a connected or disconnected mode in
which Red Hat software is distributed to client systems using the original pooled subscription approach.
The pooled subscription concept is similar to the way in which clients consume entitlements from
Red Hat Network Classic.

Features and Functionality

The popular functionality of Satellite 5 includes the ability to provision a large number of systems using
kickstart files and activation keys to install and configure systems to a predictable state. This
provisioning process associates systems to designated organizations, software and configuration
channels, as well as placing systems in predefined system groups. The Satellite 5 provisioning
functionality enables administrators to provision thousands of systems in a consistent manner.

Another popular feature is the ability to manage software and configuration files across large numbers
of systems in local or remote environments after those systems have been provisioned. One of the well
understood concepts of managing software and configuration files in Satellite 5 is the concept of
channels. All software and configuration is managed and distributed through channels, and any client
needing access to software or configuration content needs to be associated with one or more relevant
channels. Further, the ability to clone channels enabled administrators to create the much needed
development-production environments required by most enterprises.

Red Hat Satellite 5 provides organizations with the benefits of Red Hat Network without the need for
public Internet access for servers or client systems. This brings together the tools, services, and
information repositories needed to maximize the reliability, security, and performance of your systems.

2.1.2. Red Hat Satellite 6

Red Hat Satellite 6 is the evolution of Red Hat’s life cycle management platform. It provides the
capabilities that administrators have come to expect in a tool focused on managing systems and
content for a global enterprise. Satellite 6 covers the use cases requested by Satellite 5 customers, but
also includes functionality that enables larger scale, federation of content, better control of systems
during the provisioning process, and a much more simplified approach to life cycle management.
Satellite 6 also further evolves the inherent approach to certificate-based entitlements and integrated
subscription management.

2.1.3. Comparison of Concepts

The following table outlines some key concepts and their respective implementation in both Satellite 5
and Satellite 6.

Table 2.1. Comparison of Satellite 5 and Satellite 6 Concepts

Concept Description Satellite 5 Satellite 6

Red Hat Satellite 6.4 Transitioning from Red Hat Satellite 5 to Red Hat Satellite 6

4

Open source projects A single project
approach versus a
modular approach.

Spacewalk Foreman, Katello,
Puppet, Candlepin, and
Pulp

Subscription types Pool- or channel-based
versus certificate-
based. Subscription
management has
improved over the years
from a pool- or channel-
based approach to a
more specific
certificate-based
approach. Certificate-
based subscription
management provides
better overall control of
subscriptions used by
clients.

Entitlements Subscriptions

Subscription methods
(or Satellite subscription
consumption).

The way that Satellite is
enabled to synchronize
and distribute Red Hat
content. Certificates are
activated during
installation; manifests
are uploaded after
installation.

Certificate file Manifest file

Organization
management

Both Satellite 5 and 6
have a concept of
multiple organizations,
but Satellite 6 also
includes functionality to
include the context of
the location.

Organizations Organizations and
Locations

Concept Description Satellite 5 Satellite 6

CHAPTER 2. COMPARING SATELLITE 5 AND SATELLITE 6

5

Software and
configuration content

Distributed through
channels versus
distributed through
content views published
and promoted through
environments. In
Satellite 6 a content
view contains a chosen
set of software
repositories and
configuration modules
that are published and
promoted to an
environment. Client
systems consume its
software and
configurations through
its environment
associations.

Software Channels Products and
repositories

Configuration Configuration Channels Puppet Repositories

Proxy services Red Hat
Satellite Proxy Server

Red Hat
Satellite Capsule Server

Command-line tools Various CLI tools Hammer

Virtualization and cloud
providers

 KVM and Xen OpenStack, Red Hat
Enterprise Virtualization,
KVM, VMware, EC2

Database support Embedded PostgreSQL,
managed PostgreSQL,
external PostgreSQL,
Oracle Database 10g
Release 2 or 11g
(Standard or Enterprise
Edition)

Embedded PostgreSQL
for 6.0.

Concept Description Satellite 5 Satellite 6

2.2. SYSTEM ARCHITECTURES

2.2.1. Red Hat Satellite 5

Red Hat Satellite 5 is based on an open source project called Spacewalk and is comprised of several key
components arranged in the following architecture.

Figure 2.1. Red Hat Satellite 5 System Architecture

Red Hat Satellite 6.4 Transitioning from Red Hat Satellite 5 to Red Hat Satellite 6

6

Figure 2.1. Red Hat Satellite 5 System Architecture

Web UI

The Satellite web UI runs through an Apache web server and provides the main entry point for
Satellite operations.

Front-end API

The front-end API provides the ability to interact with Satellite 5 through an XML-RPC API. This
allows system administrators to write scripts to perform repetitive tasks, or develop third-party
applications around Satellite. The front-end API exposes most of the web UI functionality using
XML-RPC.

Back-end API

The back end provides a set of APIs that the different client utilities (rhn_register, yum) connect to.
These are not documented and are used solely by the client utilities.

Taskomatic

Taskomatic is a separate service within Red Hat Satellite 5 that runs various asynchronous jobs, such
as cleaning up the sessions table, or sending email notifications for new errata. The majority of these
jobs run periodically, and you can adjust the frequency with which they occur.

Search Server

Satellite contains a standalone search server that runs as a daemon that allows you to quickly find a
system, package, or errata, as opposed to paging through hundreds of items in a list. It uses Apache’s
Lucene search engine library, which provides more relevant search results and a richer query
language.

2.2.2. Red Hat Satellite 6

Red Hat Satellite 6 is based upon several open source projects arranged in the following architecture.

Figure 2.2. Red Hat Satellite 6 System Architecture

CHAPTER 2. COMPARING SATELLITE 5 AND SATELLITE 6

7

Figure 2.2. Red Hat Satellite 6 System Architecture

Foreman

Foreman is an open source application used for provisioning and life cycle management of physical
and virtual systems. Foreman automatically configures these systems using various methods,
including kickstart and Puppet modules. Foreman also provides historical data for reporting,
auditing, and troubleshooting.

Katello

Katello is a subscription and repository management application. It provides a means to subscribe to
Red Hat repositories and download content. You can create and manage different versions of this
content and apply them to specific systems within user-defined stages of the application life cycle.

Candlepin

Candlepin is a service within Katello that handles subscription management.

Pulp

Pulp is a service within Katello that handles repository and content management.

Hammer

Hammer is a CLI tool that provides command line and shell equivalents of most web UI functions.

REST API

Red Hat Satellite 6 includes a REST-based API service that allows system administrators and
developers to write custom scripts and third-party applications that interface with Red Hat Satellite.

Red Hat Satellite 6.4 Transitioning from Red Hat Satellite 5 to Red Hat Satellite 6

8

Capsule

Red Hat Satellite Capsule Server acts as a proxy for some of the main Satellite functions including
repository storage, DNS, DHCP, and Puppet Master configuration. Each Satellite Server also
contains integrated Capsule Server services.

Note that Red Hat Satellite 6 can be installed only on x86_64 architecture systems.

2.3. CONTENT MANAGEMENT

2.3.1. Red Hat Satellite 5

Red Hat Satellite 5 architecture includes Red Hat Satellite Proxy Server, a package-caching mechanism
that reduces the bandwidth requirements for Red Hat Satellite and enables custom package
deployment. The Satellite Proxy acts as a go-between for client systems and the Satellite Server.

From the client’s perspective, there is no difference between a Satellite Proxy and a Satellite. From the
Satellite Server’s perspective, a Satellite Proxy is a special type of Satellite client.

Satellite Proxy servers are exclusive to Satellite 5; you cannot use Satellite Proxy servers with Satellite 6.
Instead, Satellite 6 introduces the concept of Capsules, which provide much the same functionality.

2.3.2. Red Hat Satellite 6

Satellite 6 architecture includes Capsule Servers to provide a similar level of functionality for Satellite 6
that Proxy servers provide for Satellite 5.

IMPORTANT

You cannot tier Capsule Servers the same way you can with Proxy servers. You can see
this in the following illustration.

Figure 2.3. Comparison of Satellite 5 Proxy and Satellite 6 Capsule Servers

CHAPTER 2. COMPARING SATELLITE 5 AND SATELLITE 6

9

Figure 2.3. Comparison of Satellite 5 Proxy and Satellite 6 Capsule Servers

The first release of Capsule Servers, delivered with Satellite 6.0, can provide the following functionality:

Mirror repository content (Pulp Node). Content can be staged on a Pulp Node before it is used
by a host.

Mirror Puppet content (Puppet Master)

Use DHCP, DNS, and TFTP, and integrate with Identity Management (IdM).

2.4. DISCONNECTED CONTENT MANAGEMENT

A key difference between Satellite 5 and Satellite 6 is in the area of "disconnected" content
management. Both versions of Satellite can provision and keep hosts synchronized without direct
connection to the Internet, but the way they achieve this is slightly different.

2.4.1. Red Hat Satellite 5

Red Hat Satellite 5 achieves disconnected content management by using the katello-disconnected
utility and a synchronization host. An intermediary system with an Internet connection is needed to act
as a synchronization host. This synchronization host is in a separate network from Satellite Server.

The synchronization host imports content from the Red Hat Content Delivery Network (CDN). The
content is then exported onto a media, such as DVDs, CDs, or external hard drives and transferred to
the disconnected Satellite Server.

2.4.2. Red Hat Satellite 6

Red Hat Satellite 6 achieves disconnected content management by using a second Internet facing
Satellite and the Inter-Satellite Synchronization (ISS) feature.

The connected Satellite imports content from the Red Hat Content Delivery Network (CDN). The

Red Hat Satellite 6.4 Transitioning from Red Hat Satellite 5 to Red Hat Satellite 6

10

content is then exported onto a media, such as DVDs, CDs, or external hard drives and transferred to
the disconnected Satellite Server. The Inter-Satellite Synchronization feature enables full or
incremental updates to be made. See Synchronizing Content Between Satellite Servers in the Content
Management Guide for more information.

2.5. ORGANIZATIONAL STRUCTURES

2.5.1. Red Hat Satellite 5

Red Hat Satellite 5 can group systems, content, and configuration into multiple and distinct
organizations. This is useful for companies with multiple divisions, such a Finance, Marketing, Sales, and
so forth. Each organization acts as an individually managed Satellite, each with their own configuration
and system profiles. However, Satellite can share content (software channels) among multiple
organizations.

Red Hat Satellite 5 also has the ability to synchronize content across multiple Satellite Servers. This
allows administrators to provide geographically dispersed Satellites that share the same software
channels. For example, a company might have offices in three separate locations and each might require
a Satellite, but synchronizing content from a chosen parent Satellite Server.

Figure 2.4. Example Topology for Red Hat Satellite 5

All systems management operations occur on the Satellite to which they are registered.

2.5.2. Red Hat Satellite 6

Red Hat Satellite 6 takes a consolidated approach to Organization and Location management. System
administrators define multiple Organizations and multiple Locations in a single Satellite Server. For
example, a company might have three Organizations (Finance, Marketing, and Sales) across three
countries (United States, United Kingdom, and Japan). In this example, the Satellite Server manages all
Organizations across all geographical Locations, creating nine distinct contexts for managing systems. In
addition, users can define specific locations and nest them to create a hierarchy. For example, Satellite
administrators might divide the United States into specific cities, such as Boston, Phoenix, or San
Francisco.

Figure 2.5. Example Topology for Red Hat Satellite 6

CHAPTER 2. COMPARING SATELLITE 5 AND SATELLITE 6

11

https://access.redhat.com/documentation/en-us/red_hat_satellite/6.4/html/content_management_guide/using_iss

Figure 2.5. Example Topology for Red Hat Satellite 6

The main Satellite Server retains the management function, while the content and configuration is
synchronized between the main Satellite Server and a Satellite Capsule assigned to certain locations.

2.6. APPLICATION LIFE CYCLES

2.6.1. Red Hat Satellite 5

The application life cycle in Red Hat Satellite 5 follows stages in a path. For example, applications might
move along a path from "Development" to "Testing" to "General Availability". Each stage in Red Hat
Satellite 5 uses System Definitions to manage systems at a particular point in the life cycle. A System
Definition in Red Hat Satellite 5 is a set of Software Channels and Configuration Channels that are used
in Kickstart Profiles.

Figure 2.6. The Application Life Cycle of Red Hat Satellite 5

Red Hat Satellite 6.4 Transitioning from Red Hat Satellite 5 to Red Hat Satellite 6

12

Figure 2.6. The Application Life Cycle of Red Hat Satellite 5

2.6.2. Red Hat Satellite 6

The Red Hat Satellite 6 application life cycle is broken up into two key components: Life Cycle
Environments and Content Views.

The application life cycle is divided into life cycle environments , which mimic each stage of the life cycle.
These life cycle environments are linked in an environment path. You can promote content along the
environment path to the next life cycle stage when required. For example, if development completes on
a particular version of an application, you can promote this version to the testing environment and start
development on the next version.

Figure 2.7. An Environment Path Containing Four Environments.

CHAPTER 2. COMPARING SATELLITE 5 AND SATELLITE 6

13

Figure 2.7. An Environment Path Containing Four Environments.

Content views are managed selections of content, which contain one or more yum or Puppet
repositories with optional filtering. These filters can be either inclusive or exclusive, and tailor a system
view of content for life-cycle management. They are used to customize content to be made available to
client systems. Content view versions are promoted along an environment path during the application
life cycle. Published content views are used with life cycle environments.

Red Hat Satellite 6.4 Transitioning from Red Hat Satellite 5 to Red Hat Satellite 6

14

CHAPTER 3. TRANSITIONING FROM SATELLITE 5 TO 6
This chapter describes how to perform migrating of clients from the old Satellite 5 to Satellite 6 using
the bootstrap script, and how to retire the old Satellite instance after the transition process is finished.

The bootstrap script used for transition handles content registration, Product certificates, and Puppet
configuration. The bootstrap script has the advantage of subscribing a Red Hat Enterprise Linux system
to a Satellite 6, regardless of where it is registered (RHN, Satellite 5, SAM, RHSM), or if it is registered at
all.

The bootstrap script enables you to:

Migrate a client from Satellite 5 to Satellite 6.

Migrate a client from one Satellite 6 instance to another.

Register a new Red Hat Enterprise Linux system to Satellite 6.

3.1. PREREQUISITES

If you have Satellite 5.8 running on a s390 system, you must build a fresh Satellite 6 on an
x86_64 architecture system. Satellite 6 cannot run on s390 systems.

Ensure you start with a fully-functional, up-to-date Satellite 6.

The Satellite 6 instance must be synchronized with the required Red Hat content before you
start the transition process.

You have configured activation keys for the hosts. For more information on configuring
activation keys, see Managing Activation Keys in the Content Management Guide.

Optionally, configure host collections to match your environment. For more information on
creating a host collection, see Configuring Host Collections in Managing Hosts.

3.2. THE TRANSITIONING WORKFLOW

The workflow includes the following steps:

1. Installing the Bootstrap Script on a Client.

2. Migrating a Red Hat Enterprise Linux System:

a. Running the bootstrap script on a client system.

b. Approving the Puppet certificate in the web UI as an administrator.

c. Ensuring the completing of the transition process on a client system.

3.3. PERFORMING THE TRANSITION

Satellite 6 uses the bootstrap script to migrate existing clients from the old Satellite 5 instance.

The bootstrap script handles content registration, Product certificates, and Puppet configuration.

3.3.1. Installing the Bootstrap Script

CHAPTER 3. TRANSITIONING FROM SATELLITE 5 TO 6

15

https://access.redhat.com/documentation/en-us/red_hat_satellite/6.4/html/content_management_guide/managing_activation_keys
https://access.redhat.com/documentation/en-us/red_hat_satellite/6.4/html/managing_hosts/chap-red_hat_satellite-managing_hosts-configuring_host_collections

The bootstrap script package, katello-client-bootstrap, is installed by default on the base system of
Satellite Server and the script itself is installed in the /var/www/html/pub/ directory to make it
available to clients. It can be accessed using a URL in the following form:

satellite.example.com/pub/bootstrap.py

The script includes documentation in a readme file. To view the file on the Satellite CLI:

$ less /usr/share/doc/katello-client-bootstrap-version/README.md

Installing the Bootstrap Script on a Client

As the script is only required once, and only for the root user, you can place it in /root and remove after
use. As root, install the bootstrap script on client systems as follows:

1. Ensure you are in the root directory:

cd

2. Download the script:

curl -O http://satellite.example.com/pub/bootstrap.py

This will install the script to the current directory.

3. Make the script executable:

chmod +x bootstrap.py

4. To confirm that the script can now be run, view the usage statement as follows:

./bootstrap.py -h

5. Optionally, when the transition process is complete, remove the script:

cd
rm bootstrap.py

3.3.2. Migrating a Red Hat Enterprise Linux 6 System

Migrating a Red Hat Enterprise Linux 6 System

1. Enter the bootstrap command as follows with values suitable for your environment.
For the --server option, specify the FQDN name of Satellite Server or Capsule Server. For --
location, --organization, and --hostgroup options, use quoted names, not labels, as arguments
to the options.

bootstrap.py --login=admin \
--server satellite6.example.com \
--location="Example Location" \

Red Hat Satellite 6.4 Transitioning from Red Hat Satellite 5 to Red Hat Satellite 6

16

--organization="Example Organization" \
--hostgroup="Example Host Group" \
--activationkey=activation_key

The script will prompt you for the password corresponding to the Satellite user name you
entered with the --login option.

2. The script will run and send notices of progress to stdout. Watch for output prompting you to
approve the Puppet certificate. For example:

[NOTIFICATION], [2016-04-26 10:16:00], [Visit the UI and approve this certificate via
Infrastructure->Capsules]
[NOTIFICATION], [2016-04-26 10:16:00], [if auto-signing is disabled]
[RUNNING], [2016-04-26 10:16:00], [/usr/bin/puppet agent --test --noop --tags no_such_tag -
-waitforcert 10]

3. The client will wait until an administrator approves the Puppet certificate. Sign the Puppet
certificate as follows:

a. In the web UI, navigate to Infrastructure > Capsules.

b. Select Certificates to the right of the name of the Capsule corresponding to the FQDN
given with the --server option.

c. In the Actions column select Sign to approve the client’s Puppet certificate.

d. Return to the client to see the remainder of the bootstrap process completing.

4. In the web UI, navigate to Hosts > All hosts and ensure that the client is connected to the
correct host group.

For more information about using the bootstrap script, see Registering Hosts to Satellite 6 Using The
Bootstrap Script in Managing Hosts.

3.4. RETIRING THE OLD SATELLITE 5 SERVER

This section shows how to retire the old Satellite 5 Server after you have performed the complete
migration from Red Hat Satellite 5 Server to a new Satellite 6 Server and you do not need the old
Satellite 5 Server anymore. If you have migrated your Satellite 5 to the new RHSM system, proceed to
Section 3.4.1, “Migrating Subscriptions to the New Satellite 6” .

If you have not migrated your Satellite 5 to the new RHSM system, create new manifests as described in
Managing Subscriptions in the Content Management Guide and add them to the new Satellite 6.
Optionally, run the following Python script to delete the profile of the old Satellite from RHN:

#!/usr/bin/env python

import getpass
import os
import sys
import libxml2
import xmlrpclib
from optparse import OptionParser

DEFAULT_SERVERFQDN="xmlrpc.rhn.redhat.com"

CHAPTER 3. TRANSITIONING FROM SATELLITE 5 TO 6

17

https://access.redhat.com/documentation/en-us/red_hat_satellite/6.4/html/managing_hosts/chap-red_hat_satellite-managing_hosts-managing_hosts#sect-Red_Hat_Satellite-Managing_Hosts-Adding_New_Hosts_to_Satellite_6_Using_The_Bootstrap_Script
https://access.redhat.com/documentation/en-us/red_hat_satellite/6.4/html/content_management_guide/managing_subscriptions

3.4.1. Migrating Subscriptions to the New Satellite 6

This section describes how to migrate subscriptions from the old Satellite 5 Server to the new Satellite 6
Server.

parser = OptionParser()
parser.add_option("-l", "--login", dest="login", help="Login user for RHN Satellite/Hosted",
metavar="LOGIN")
parser.add_option("-p", "--password", dest="password", help="Password for specified user. Will
prompt if omitted", metavar="PASSWORD")
parser.add_option("-s", "--server", dest="serverfqdn", help="FQDN of satellite server - omit https://
(default: %s)" % DEFAULT_SERVERFQDN, metavar="SERVERFQDN",
default=DEFAULT_SERVERFQDN)
(options, args) = parser.parse_args()

if not options.login:
 print "Must specify login option. See usage:"
 parser.print_help()
 print "\nExample usage: ./decommissionServer.py -l admin -p password"
 sys.exit(1)
else:
 login = options.login
 password = options.password
 serverfqdn = options.serverfqdn

if not password: password = getpass.getpass("%s's password:" % login)

SATELLITE_URL = "https://%s/rpc/api" % serverfqdn
SATELLITE_LOGIN = login
SATELLITE_PASSWORD = password
SYSTEMID_FILE = "/etc/sysconfig/rhn/systemid"

Check For root
Have to be root to open the SYSTEMID_FILE which is chmod'd 0600
if os.getuid() != 0:
 print "This script requires root-level access to run."
 sys.exit(1)

Log into Satellite and get an authentication token
client = xmlrpclib.Server(SATELLITE_URL, verbose=0)
key = client.auth.login(SATELLITE_LOGIN, SATELLITE_PASSWORD)

Parse /etc/sysconfig/rhn/systemid to ge the system ID
Use the systemid and delete the systems RHN profile
parsed_file = libxml2.parseDoc(file(SYSTEMID_FILE).read())
systemid = parsed_file.xpathEval('string(//member[* ="system_id"]/value/string)').split('-')[1]
print systemid
try:
 client.system.deleteSystems(key,int(systemid))
 print "The system with SystemID " + systemid + " was successfully deleted"
except xmlrpclib.Fault, e:
 print "XMLRPC fault \n\t%s" % e

Logout of Satellite
client.auth.logout(key)

Red Hat Satellite 6.4 Transitioning from Red Hat Satellite 5 to Red Hat Satellite 6

18

1. Configure new subscriptions:

a. Log in to the Customer Portal and go to SUBSCRIPTIONS.

b. Navigate to Inventory and click Satellite Organizations.

c. Select the check box to the left of the name of the old Satellite 5 Server and click Delete
Selected. In the alert box that appears, click Delete to delete the unit.

d. Click on the name of the new Satellite 6 Server and select the check box to the left of the
name of the transition subscription. Click Remove selected. In the alert box click Remove
to remove the subscription.

e. Click Attach a subscription, select the real Satellite subscription, and click Attach
selected.

f. Run the following command on the new Satellite 6 Server to refresh subscription manager.

subscription-manager refresh

2. Enable repositories on the new Satellite 6 Server

a. On the old Satellite 5 Server use the following command to view what channels you had
enabled.

spacewalk-channel -l

b. On the new Satellite 6 Server use the following command to list enabled repositories for an
organization:

hammer product list --organization "organization_name"

c. Configure the new Satellite 6 Server to ensure all necessary repositories are enabled.
For Web UI users

Navigate to Content → Red Hat Repositories and select repositories to be enabled.

For CLI Users

Enable repositories using either the name or ID number. Optionally, include the release
version and base architecture.

hammer repository-set enable \
--product "product_name" \
--name "repository_name" \
--organization "org_name" \
--releasever "" \
--basearch "x86_64"

CHAPTER 3. TRANSITIONING FROM SATELLITE 5 TO 6

19

https://access.redhat.com/

CHAPTER 4. TRANSITIONING TO THE SATELLITE 6 API
One of the many differences between Red Hat Satellite 5 and Satellite 6 is the API. Satellite 5 uses an
XMLRPC-based API. Satellite 6 uses a REST-based API. This fundamental difference requires that any
existing scripts or tools that have been integrated with the Satellite 5 API must be reviewed and at least
partially rewritten before use with the Satellite 6 REST API.

This section provides some comparisons of how to achieve the same use case within each Product. This
is not designed to be a tutorial in any specific programming language. Neither are the scripts secured
over HTTPS. They provide a starting point for anyone maintaining Satellite 5 API scripts to start the
transition to the Satellite 6 API.

IMPORTANT

The Satellite 6 transition tools do not transition the Satellite 5 API or scripts to Satellite 6.
Use this section as a starting point to begin your own transition process.

Further Information

You can find further API documentation in the API Guide and at the following locations on your own
Satellite Servers:

Satellite 6: https://satellite6.example.com/apidoc/v2.html

Satellite 5: https://satellite5.example.com/rpc/api

4.1. EXAMPLE API SCRIPTS

The examples in this section cover the following:

1. Systems and hosts in Red Hat Satellite

a. Authenticate and request a list of systems (Satellite 5) or hosts (Satellite 6) available to the
user who logged in.

2. Users and Roles

a. Authenticate and request a list of all users visible to the user who logged in.

b. Delete the example user if it exists.

c. Create a new example user and ensure that its role is set to Administrator.

This section provides a total of five different ways to achieve the same result; two examples for
Satellite 5 and three examples for Satellite 6.

A Satellite 5 Python script

A Satellite 6 Python script

A Satellite 6 Ruby script

A Satellite 5 spacecmd example

A Satellite 6 hammer example

NOTE

Red Hat Satellite 6.4 Transitioning from Red Hat Satellite 5 to Red Hat Satellite 6

20

https://access.redhat.com/documentation/en-us/red_hat_satellite/6.4/html/api_guide
https://satellite6.example.com/apidoc/v2.html
https://satellite5.example.com/rpc/api

NOTE

The spacecmd command is not a supported feature in Satellite 5.6. It is supported in
Satellite 5.7, and is shown here for the sake of completeness.

A total of 10 examples are provided. The first examples cover the simpler use cases of listing systems
and hosts, followed by the more complex examples covering users and roles.

4.1.1. Listing Systems and Hosts

The examples in this section describe different ways to list systems and hosts available to the user who
logged in.

Using Python to List Available Systems on Satellite 5

This example uses a Python script to connect to Satellite 5, authenticate, and retrieve a list of available
systems.

Using Python to List Available Hosts on Satellite 6

This example uses a Python script to connect to Satellite 6, authenticate, and retrieve a list of available
hosts.

#!/usr/bin/python
import xmlrpclib

Define Satellite location and login details
SATELLITE_URL = "http://localhost/rpc/api"
SATELLITE_LOGIN = "admin"
SATELLITE_PASSWORD = "password"

client = xmlrpclib.Server(SATELLITE_URL, verbose=0)

Authenticate and get session key
key = client.auth.login(SATELLITE_LOGIN, SATELLITE_PASSWORD)

Get list of systems available to user
list = client.system.listSystems(key)
for system in list:
 print system.get('id')
 print system.get('name')

Logout
client.auth.logout(key)

#!/usr/bin/python
import json
import requests

Define Satellite location and login details
SAT_API = "https://localhost/api/v2/"
USERNAME = "admin"
PASSWORD = "changeme"
SSL_VERIFY = False

CHAPTER 4. TRANSITIONING TO THE SATELLITE 6 API

21

Using Ruby to List Available Hosts on Satellite 6

This example uses a Ruby script to connect to Satellite 6, authenticate, and retrieve a list of available
hosts.

Using the Command Line to List Available Systems on Satellite 5

def get_json(location):
 """
 Performs a GET using the passed URL location
 """

 r = requests.get(location, auth=(USERNAME, PASSWORD), verify=SSL_VERIFY)

 return r.json()

def main():
 # List all hosts available to the user
 hosts = get_json(SAT_API + "hosts/")

 # Pretty Print the returned JSON of Hosts
 print json.dumps(hosts, sort_keys=True, indent=4)

if __name__ == "__main__":

 main()

#!/usr/bin/env ruby
require 'json'
require 'rest-client'

url = 'https://localhost/api/v2/'
$username = 'admin'
$password = 'changeme'

def get_json(location)
 response = RestClient::Request.new(
 :method => :get,
 :url => location,
 :user => $username,
 :password => $password,
 :headers => { :accept => :json,
 :content_type => :json }
).execute
 results = JSON.parse(response.to_str)
end

hosts = get_json(url+"hosts/")
#puts JSON.pretty_generate(hosts)

puts "Hosts within Satellite are:"
hosts['results'].each do |name|
 puts name['name']
end

exit()

Red Hat Satellite 6.4 Transitioning from Red Hat Satellite 5 to Red Hat Satellite 6

22

Use the following command to list available systems on Satellite 5:

spacecmd -u username -p password system_list

An example session might appear as follows:

spacecmd -u admin -p password system_list

INFO: Spacewalk Username: admin
INFO: Connected to https://localhost/rpc/api as admin
test_02.example.com

Using the Command Line to List Available Hosts on Satellite 6

Use the following command to list available hosts on Satellite 6:

hammer host list

An example session might appear as follows:

hammer host list

[Foreman] password for admin:
---|-----------------|-------------------|------------|--------------|------------------
ID	NAME	OPERATING SYSTEM	HOST GROUP	IP	MAC
1 | test.example.com | RHEL Server 6.5 | | 10.34.34.235 | e4:1f:13:6b:ed:0c

4.1.2. Deleting and Creating Users

The examples in this section describe different ways to locate, create, and delete users.

Using Python to Manage Users on Satellite 5

This example uses a Python script to connect to and authenticate against a Satellite 5 Server. It then
goes on to search for a specific user (example), to delete that user if it exists, and then recreate it with
Administrator privileges.

#!/usr/bin/python
import xmlrpclib

Define Satellite location and login details
SATELLITE_URL = "http://localhost/rpc/api"
SATELLITE_LOGIN = "admin"
SATELLITE_PASSWORD = "password"

client = xmlrpclib.Server(SATELLITE_URL, verbose=0)

Authenticate and get session key
key = client.auth.login(SATELLITE_LOGIN, SATELLITE_PASSWORD)

Get list of users
list = client.user.list_users(key)
print "Existing users in Satellite:"

CHAPTER 4. TRANSITIONING TO THE SATELLITE 6 API

23

Using Python to Manage Users on Satellite 6

This example performs the same task as the previous example. That is, it uses a Python script to connect
to and authenticate against a Satellite 6 Server, search for a specific user, delete that user if it exists,
and then recreate it with Administrator privileges.

for user in list:
 print user.get('login')

Look for user example and if found, delete the user
for user in list:
 if user.get('login') == 'example':
 deleteuser = client.user.delete(key, 'example')
 if deleteuser == 1:
 print "User example deleted"

Create a user called example
createuser = client.user.create(key, 'example', 'password', 'Example', 'User', "root@localhost")
if createuser == 1:
 print "User example created"
 # Admin Org Admin role to the example user
 adminrole = client.user.addRole(key, 'example', 'org_admin')
 if adminrole == 1:
 print "Made example an Org Admin"

Logout
client.auth.logout(key)

#!/usr/bin/python
import json
import requests

Define Satellite location and login details
SAT_API = "https://localhost/api/v2/"
POST_HEADERS = {'content-type': 'application/json'}
USERNAME = "admin"
PASSWORD = "changeme"
SSL_VERIFY = False

def get_json(location):
 """
 Performs a GET using the passed URL location
 """
 r = requests.get(location, auth=(USERNAME, PASSWORD), verify=SSL_VERIFY)

 return r.json()

def post_json(location, json_data):
 """
 Performs a POST and passes the data to the URL location
 """
 result = requests.post(
 location,
 data=json_data,
 auth=(USERNAME, PASSWORD),
 verify=SSL_VERIFY,

Red Hat Satellite 6.4 Transitioning from Red Hat Satellite 5 to Red Hat Satellite 6

24

Using Ruby to Manage Users on Satellite 6

This example uses Ruby to perform the same task as the previous examples.

 headers=POST_HEADERS)

 return result.json()

def delete_json(location):
 """
 Performs a DELETE and passes the id to the URL location
 """
 result = requests.delete(
 location,
 auth=(USERNAME, PASSWORD),
 verify=SSL_VERIFY)

 return result.json()

def main():
 # List all users within the Satellite
 users = get_json(SAT_API + "users/")

 #print json.dumps(users, indent=4)
 print "Users known are:"
 for login in users['results']:
 print login['login']

 # Look for user example and if found, delete the user
 for delete in users['results']:
 if delete['login'] == 'example':
 id = delete ['id']
 id = str(id)

 delete = delete_json(SAT_API + "/users/" + id)
 #print json.dumps(delete, indent=4)
 print "User example deleted"

 # Create a user called example as admin role
 createuser = post_json(SAT_API + "/users/", json.dumps({ "mail": "root@localhost", "firstname":
"Example", "lastname": "User", "login": "example", "password": "redhat", "admin": 'true',
"auth_source_id": 1 }))
 #print json.dumps(createuser, indent=4)
 print "Admin user example created"

if __name__ == "__main__":
 main()

#!/usr/bin/env ruby
require 'json'
require 'rest-client'

url = 'https://localhost/api/v2/'
$username = 'admin'
$password = 'changeme'

CHAPTER 4. TRANSITIONING TO THE SATELLITE 6 API

25

def get_json(location)
 response = RestClient::Request.new(
 :method => :get,
 :url => location,
 :user => $username,
 :password => $password,
 :headers => { :accept => :json,
 :content_type => :json }
).execute
 results = JSON.parse(response.to_str)
end

def post_json(location, json_data)
 response = RestClient::Request.new(
 :method => :post,
 :url => location,
 :user => $username,
 :password => $password,
 :headers => { :accept => :json,
 :content_type => :json},
 :payload => json_data
).execute
 results = JSON.parse(response.to_str)
end

def delete_json(location)
 response = RestClient::Request.new(
 :method => :delete,
 :url => location,
 :user => $username,
 :password => $password,
 :headers => { :accept => :json,
 :content_type => :json }
).execute
 results = JSON.parse(response.to_str)
end

List all users within the Satellite
users = get_json(url+"users/")

#puts JSON.pretty_generate(users)
puts "Users known are:"
users['results'].each do |name|
 puts name['login']
end

Look for user example and if found, delete the user
users['results'].each do |name|
 if name['login'] == 'example'
 id = name['id']
 delete = delete_json(url+"users/"+id.to_s)
 #puts JSON.pretty_generate(delete)
 puts "User example deleted"
 end
end

Red Hat Satellite 6.4 Transitioning from Red Hat Satellite 5 to Red Hat Satellite 6

26

Using the Command Line to Manage Users on Satellite 5

This example uses the spacecmd command to perform the same task as the previous examples.

spacecmd -u admin -p password user_list
spacecmd -u admin -p password user_delete example
spacecmd -u admin -p password user_create
spacecmd -u admin -p password user_addrole example org_admin

An example session might appear as follows:

spacecmd -u admin -p password user_list
INFO: Spacewalk Username: admin
INFO: Connected to https://localhost/rpc/api as admin
admin
example

spacecmd -u admin -p password user_delete example
INFO: Spacewalk Username: admin
INFO: Connected to https://localhost/rpc/api as admin

Delete this user [y/N]: y

spacecmd -u admin -p password user_list
INFO: Spacewalk Username: admin
INFO: Connected to https://localhost/rpc/api as admin
admin

spacecmd -u admin -p password user_create
INFO: Spacewalk Username: admin
INFO: Connected to https://localhost/rpc/api as admin
Username: example
First Name: Example
Last Name: User
Email: root@localhost
PAM Authentication [y/N]: n
Password:
Repeat Password:

spacecmd -u admin -p password user_list
INFO: Spacewalk Username: admin
INFO: Connected to https://localhost/rpc/api as admin
admin
example

Create a user called example as admin role
data = JSON.generate({ :mail => "root@localhost", :firstname => "Example", :lastname => "User",
:login => "example", :password => "password", :admin => 'true', :auth_source_id => 1})
createuser = post_json(url+"users/", data)

#puts JSON.pretty_generate(createuser)
puts "Admin user example created"

exit()

CHAPTER 4. TRANSITIONING TO THE SATELLITE 6 API

27

spacecmd -u admin -p password user_addrole example org_admin
INFO: Spacewalk Username: admin
INFO: Connected to https://localhost/rpc/api as admin

spacecmd -u admin -p password user_details example
INFO: Spacewalk Username: admin
INFO: Connected to https://localhost/rpc/api as admin
Username: example
First Name: Example
Last Name: User
Email Address: root@localhost
Organization: MY ORG
Last Login:
Created: 8/19/14 8:42:52 AM EDT
Enabled: True

Roles

activation_key_admin
channel_admin
config_admin
monitoring_admin
org_admin
system_group_admin

Using the Command Line to Manage Users on Satellite 6

This example uses the hammer command to perform the same task as the previous examples.

hammer shell
> user list
> user delete --id 4 --login example
> user create --admin true --firstname Example --lastname User --login example --mail
root@localhost --password redhat --auth-source-id 1

An example session might appear as follows:

hammer shell
[Foreman] password for admin:
Welcome to the hammer interactive shell
Type 'help' for usage information

hammer> user list
---|---------|--------------|---------------
ID	LOGIN	NAME	EMAIL
4 | example | Example User | root@localhost
3 | admin | Admin User | root@localhost
---|---------|--------------|---------------

hammer> user delete --id 4 --login example
User deleted
hammer> user list
---|-------|------------|---------------
ID | LOGIN | NAME | EMAIL

Red Hat Satellite 6.4 Transitioning from Red Hat Satellite 5 to Red Hat Satellite 6

28

---|-------|------------|---------------
3	admin	Admin User	root@localhost

hammer> user create --admin true --firstname Example --lastname User --login example --mail
root@localhost --password redhat --auth-source-id 1
User created
hammer> user list
---|----------|--------------|---------------
ID	LOGIN	NAME	EMAIL
3 | admin | Admin User | root@localhost
5 | example | Example User | root@localhost
---|----------|--------------|---------------
hammer>

4.2. SATELLITE 6 API TIPS

This section provides some general tips to help optimize your experience with the Satellite 6 API.

Browsing the Satellite 6 API

If you have already logged in to the Satellite 6 web UI, you can see the default results of GET requests
at /api/v2/<API-NAME>. For example:

https://satellite6.example.com/api/v2/users/

https://satellite6.example.com/api/v2/users/3

Using Satellite 6 API Requests on the Command Line

You can use the curl command to interact with the Satellite 6 API. For example:

Example 4.1. Example GET Requests

Example GET requests to list organizations, hosts, and users within Satellite 6.

SATUSER=admin
SATPASS='changeme'
SATURL="https://localhost"

curl -k -u $SATUSER:$SATPASS -X GET -H \
'Accept: application/json' $SATURL/api/v2/organizations | json_reformat
curl -k -u $SATUSER:$SATPASS -X GET -H \
'Accept: application/json' $SATURL/api/v2/hosts | json_reformat
curl -k -u $SATUSER:$SATPASS -X GET -H \
'Accept: application/json' $SATURL/api/v2/users | json_reformat
curl -k -u $SATUSER:$SATPASS -X GET -H \
'Accept: application/json' $SATURL/api/v2/users/3 | json_reformat

Example 4.2. Example DELETE Request

An example DELETE request to remove an existing user with known ID "9" based on a previous list of
users.

CHAPTER 4. TRANSITIONING TO THE SATELLITE 6 API

29

https://satellite6.example.com/api/v2/users/
https://satellite6.example.com/api/v2/users/3

curl -k -u $SATUSER:$SATPASS -X DELETE -H \
'Accept: application/json' $SATURL/api/v2/users/9 | json_reformat

Example 4.3. Example POST Request

An example POST request to create a new user called example, passing the true flag to enable
administrator privileges for the user.

curl -k -u $SATUSER:$SATPASS -X POST \
-d '{ "mail": "root@localhost", "firstname": "Example", \
"lastname": "User", "login": "example", "password": "redhat", \
"admin": 'true', "auth_source_id": 1 }' \
-H 'Accept: application/json' \
-H 'Content-Type: application/json' \
$SATURL/api/v2/users | json_reformat

Example 4.4. Example PUT Request

An example PUT request to change the email address of the existing example user with known ID
"10" to example@localhost.

curl -k -u $SATUSER:$SATPASS -X PUT \
-d '{ "id": 10, "mail": "example@localhost" }' \
-H 'Accept: application/json' \
-H 'Content-Type: application/json' \
$SATURL/api/v2/users/10 | json_reformat

Red Hat Satellite 6.4 Transitioning from Red Hat Satellite 5 to Red Hat Satellite 6

30

APPENDIX A. GLOSSARY OF TERMS
The following terms are used throughout this document. Familiarize yourself with these terms to help
your understanding of Red Hat Satellite 6.

Activation Key

A registration token used in a Kickstart file to control actions at registration. These are similar to
Activation Keys in Red Hat Satellite 5, but provide a subset of features because Puppet controls
package and configuration management after registration.

Application Life Cycle Environment

An Application Life Cycle Environment represents a step, or stage, in a promotion path through the
Software Development Life Cycle (SDLC). Promotion paths are also known as development paths.
Content such as packages and Puppet modules move through life cycle environments by publishing
and promoting Content Views. All Content Views have versions, which means you can promote a
specific version through a typical promotion path; for example, from development to test to
production. Channel cloning implements this concept in Red Hat Satellite 5.

Attach

The process of associating a Subscription to a Host that provides access to RPM content.

Capsule

A Capsule is an additional server that can be used in a Red Hat Satellite 6 deployment to facilitate
content federation and distribution in addition to other localized services (Puppet Master, DHCP,
DNS, TFTP, and more).

Catalog

A Catalog is a document that describes the desired system state for one specific computer. It lists all
of the resources that need to be managed, as well as any dependencies between those resources.

Compute Profile

Compute Profiles specify default attributes for new virtual machines on a compute resource.

Compute Resource

A Compute Resource is virtual or cloud infrastructure, which Red Hat Satellite 6 uses for deployment
of hosts and systems. Examples include Red Hat Enterprise Virtualization Manager, OpenStack, EC2,
and VMware.

Content

Content includes software packages (RPM files) and Puppet modules. These are synchronized into
the Library and then promoted into Life Cycle Environments using Content Views so that they can
be consumed by Hosts.

Content Delivery Network (CDN)

The Content Delivery Network (CDN) is the mechanism used to deliver Red Hat content in a
geographically co-located fashion. For example, content that is synchronized by a Satellite in Europe
pulls content from a source in Europe.

Content Host

A Content Host is the part of a host that manages tasks related to content and subscriptions.

Content View

A Content View is a definition of content that combines Products, packages, and Puppet modules

APPENDIX A. GLOSSARY OF TERMS

31

A Content View is a definition of content that combines Products, packages, and Puppet modules
with capabilities for intelligent filtering and creating snapshots. Content Views are a refinement of
the combination of channels and cloning from Red Hat Satellite 5.

External Node Classifier

An External Node Classifier is a Puppet construct that provides additional data for a Puppet Master
to use when configuring Hosts. Red Hat Satellite 6 acts as an External Node Classifier to Puppet
Masters in a Satellite deployment.

Facter

Facter is a program that provides information (facts) about the system on which it is run; for
example, Facter can report total memory, operating system version, architecture, and more. Puppet
modules enable specific configurations based on host data gathered by Facter.

Hammer

Hammer is a command line tool for Red Hat Satellite 6. Use Hammer to manage Red Hat Satellite 6
as a standard CLI, for scripts, and also through an interactive shell.

Hiera

Hiera is a key-value look-up tool for configuration data which allows keeping site-specific data out of
Puppet manifests.

Host

A Host refers to any system, either physical or virtual, that Red Hat Satellite 6 manages.

Host Collection

A Host Collection is equivalent to a Satellite 5 System Group, that is, a user defined group of one or
more Hosts.

Host Group

A Host Group is a template for building a Host. This includes the content view (which defines the
available RPM files and Puppet modules) and the Puppet classes to apply (which ultimately
determines the software and configuration).

Location

A Location is collection of default settings that represent a physical place. These can be nested so
that you can set up an hierarchical collection of locations. For example, you can set up defaults for
"Middle East", which are refined by "Tel Aviv", which are further refined by "Data Center East", and
then finally by "Rack 22".

Library

The Library contains every version, including the latest synchronized version, of the software that
the user will ever deploy. For an Information Technology Infrastructure Library (ITIL) organization or
department, this is the Definitive Media Library (previously named the Definitive Software Library).

Manifest

A manifest transfers subscriptions from the Customer Portal to Red Hat Satellite 6. This is similar in
function to certificates used with Red Hat Satellite 5.
For more information about certificates and subscription types, see:

Subscription Concepts and Workflows .

Migrating from RHN Classic .

Red Hat Satellite 6.4 Transitioning from Red Hat Satellite 5 to Red Hat Satellite 6

32

https://access.redhat.com/documentation/en-US/Red_Hat_Subscription_Management/1/html/Subscription_Concepts_and_Workflows/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Subscription_Management/1/html/MigratingRHN/index.html

Organization

An Organization is an isolated collection of systems, content, and other functionality within a
Satellite 6 deployment.

Product

A collection of content repositories. Products can be Red Hat Products or newly-created Products
made up of software and configuration content.

Promote

The act of moving a content view comprised of software and configuration content from one
Application Life Cycle Environment to another, such as moving from development to QA to
production.

Provisioning Template

A Provisioning Template is a user-defined template for Kickstart files, snippets, and other
provisioning actions. In Satellite 6 they provide similar functionality to Kickstart Profiles and cobbler
Snippets in Red Hat Satellite 5.

Pulp Node

A Pulp Node is a Capsule Server component that mirrors content. This is similar to the Red Hat
Satellite 5 Proxy. The main difference is that content can be staged on the Pulp Node before it is
used by a Host.

Puppet Agent

The Puppet Agent is an agent that runs on a Host and applies configuration changes to that Host.

Puppet Master

A Puppet Master is a Capsule Server component that provides Puppet manifests to Hosts for
execution by the Puppet Agent.

Puppet Module

A Puppet module is a self-contained bundle of code and data that you can use to manage resources
such as users, files, and services.

Repository

A Repository provides storage for a collection of content. For example, a yum repository or a Puppet
repository.

Role

A Role specifies a collection of permissions that are applied to a set of resources, such as Hosts.

Smart Proxy

A Smart Proxy is a Capsule Server component that can integrate with external services, such as DNS
or DHCP.

Smart Variable

A Smart Variable is a configuration value that controls how a Puppet Class behaves. This can be set
on a Host, a Host Group, an Organization, or a Location.

Standard Operating Environment (SOE)

A Standard Operating Environment (SOE) is a controlled version of the operating system on which
applications are deployed.

APPENDIX A. GLOSSARY OF TERMS

33

Subscription

Subscriptions are the means by which you receive content and service from Red Hat.

Synchronizing

Synchronizing refers to mirroring content from external resources into the Red Hat Satellite 6
Library.

Synchronization Plans

Synchronization Plans provide scheduled execution of content synchronization.

User Group

A User Group is a collection of roles which can be assigned to a collection of users. This is similar to a
Role in Red Hat Satellite 5.

User

A user is anyone registered to use Red Hat Satellite. Authentication and authorization is possible
through built-in logic, through external LDAP resources, or with Kerberos.

Red Hat Satellite 6.4 Transitioning from Red Hat Satellite 5 to Red Hat Satellite 6

34

	Table of Contents
	CHAPTER 1. INTRODUCTION
	CHAPTER 2. COMPARING SATELLITE 5 AND SATELLITE 6
	2.1. DESIGN AND CONCEPTS
	2.1.1. Red Hat Satellite 5
	2.1.2. Red Hat Satellite 6
	2.1.3. Comparison of Concepts

	2.2. SYSTEM ARCHITECTURES
	2.2.1. Red Hat Satellite 5
	2.2.2. Red Hat Satellite 6

	2.3. CONTENT MANAGEMENT
	2.3.1. Red Hat Satellite 5
	2.3.2. Red Hat Satellite 6

	2.4. DISCONNECTED CONTENT MANAGEMENT
	2.4.1. Red Hat Satellite 5
	2.4.2. Red Hat Satellite 6

	2.5. ORGANIZATIONAL STRUCTURES
	2.5.1. Red Hat Satellite 5
	2.5.2. Red Hat Satellite 6

	2.6. APPLICATION LIFE CYCLES
	2.6.1. Red Hat Satellite 5
	2.6.2. Red Hat Satellite 6

	CHAPTER 3. TRANSITIONING FROM SATELLITE 5 TO 6
	3.1. PREREQUISITES
	3.2. THE TRANSITIONING WORKFLOW
	3.3. PERFORMING THE TRANSITION
	3.3.1. Installing the Bootstrap Script
	3.3.2. Migrating a Red Hat Enterprise Linux 6 System

	3.4. RETIRING THE OLD SATELLITE 5 SERVER
	3.4.1. Migrating Subscriptions to the New Satellite 6

	CHAPTER 4. TRANSITIONING TO THE SATELLITE 6 API
	4.1. EXAMPLE API SCRIPTS
	4.1.1. Listing Systems and Hosts
	4.1.2. Deleting and Creating Users

	4.2. SATELLITE 6 API TIPS

	APPENDIX A. GLOSSARY OF TERMS

