& RedHat

Red Hat Satellite 6.4

Monitoring Red Hat Satellite

Collecting metrics from Red Hat Satellite 6

Last Updated: 2019-08-02

Red Hat Satellite 6.4 Monitoring Red Hat Satellite

Collecting metrics from Red Hat Satellite 6

Red Hat Satellite Documentation Team
satellite-doc-list@redhat.com

Legal Notice

Copyright © 2019 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide describes how to gather metrics from Red Hat Satellite 6 for analysis. It is aimed at
Satellite administrators.

Table of Contents

CHAPTER 1. OVERVIEW .. e

CHAPTER 2. PERFORMANCE CO-PILOT ...

2.1. PERFORMANCE METRIC DOMAIN AGENTS

CHAPTER 3. INSTALLING PCPPACKAGES i

3.1. CONFIGURING PCP DATA COLLECTION
3.2. ENABLING ACCESS TO METRICS VIA THE WEB Ul
3.3. VERIFYING PCP CONFIGURATION

CHAPTER4.PCP METRICS ... e

4.1. IDENTIFYING AVAILABLE METRICS

CHAPTERS.RETRIEVINGMETRICS

5.1. RETRIEVING METRICS VIA THE CLI
5.1.1. Retrieving Live Metrics using CLI
5.1.2. Retrieving Archived Metrics using CLI
5.2. RETRIEVING METRICS VIA THE WEB Ul

CHAPTER 6. METRICS DATARETENTIONo

6.1. CHANGING DEFAULT LOGGING INTERVAL
6.2. CHANGING DATA RETENTION POLICY
6.3. CONFIRMING DATA STORAGE USAGE

Table of Contents

Red Hat Satellite 6.4 Monitoring Red Hat Satellite

CHAPTER 1. OVERVIEW

CHAPTER 1. OVERVIEW

Obtaining metrics from Satellite is useful for troubleshooting a current issue, and capacity planning. This
guide describes how to collect live metrics and archive them for a fixed period of time. If you need to
raise a support case with Red Hat to resolve a performance issue, the archived data provides valuable
insight. Note that Red Hat Support can only access the archived data if you upload it to a Support Case.
You can collect the following metrics from Satellite:

® Basic statistics from Red Hat Enterprise Linux, including system load, memory utilization, and
input/output operations;

® Process statistics, including memory and CPU utilization;
® Apache HTTP Server activity statistics;

® PostgreSQL activity statistics;

® Satellite application statistics.

Use Performance Co-Pilot (PCP) to collect and archive Satellite metrics.

Red Hat Satellite 6.4 Monitoring Red Hat Satellite

CHAPTER 2. PERFORMANCE CO-PILOT

Performance Co-Pilot (PCP) is a suite of tools and libraries for acquiring, storing, and analyzing system-
level performance measurements. PCP can be used to analyze live and historical metrics. Metrics can be
retrieved and presented via the CLI, or a web Ul

2.1. PERFORMANCE METRIC DOMAIN AGENTS

A Performance Metric Domain Agent (PMDA) is a PCP add-on which enables access to metrics of an
application or service. To gather all metrics relevant to Satellite, you must install PMDAs for Apache
HTTP Server and PostgreSQL.

CHAPTER 3. INSTALLING PCP PACKAGES

CHAPTER 3. INSTALLING PCP PACKAGES

This procedure describes how to install the PCP packages.

Prerequisites

® Ensure you have a minimum of 20 GB space available in the /var/log/pcp directory.
The default PCP data retention policy is to retain only that data collected during the past 14
days. Data storage per day is estimated to use usually between 100 MB and 500 MB of disk
space, but may use up to several gigabytes.

® Ensure that the base system on which Satellite Server is running is Red Hat Enterprise Linux 7.6.
or later. The minimum supported version for the PCP packages is PCP version 4.1.

Procedure

1. Install the PCP packages:

yum install pcp \
pcp-pmda-apache \
pcp-pmda-postgresql \
pcp-system-tools

2. Enable and start the Performance Metrics Collector daemon, and the Performance Metrics
Logger daemon:

systemctl enable pmcd pmlogger
systemctl start pmecd pmlogger

3.1. CONFIGURING PCP DATA COLLECTION

This procedure describes how to configure PCP to collect metrics about processes, Satellite, Apache
HTTP Server, and PostgreSQL.

Procedure

1. Configure PCP to collect data about important Satellite processes.

By default, PCP collects basic system metrics. This step enables detailed metrics about the
following Satellite processes:

® Java

® PostgreSQL
® MongoDB

e Dynflow

® Passenger
® Pulp

® Qpid

Red Hat Satellite 6.4 Monitoring Red Hat Satellite

cat >/var/lib/pcp/pmdas/proc/hotproc.conf <<EOF
#pmdahotproc
Version 1.0

fname == "java" ||

fname ~ /(qdrouterd|qpidd)/ ||
(fname == "postgres" && psargs ~ /-D/) ||
fname == "mongod" ||

fname ~ /Adynflow/ ||

psargs ~ /Passenger RackApp/ ||
fname ~ /Awsgi:pulp/ ||

psargs ~ /celery (beat|worker)/ ||
psargs ~ /pulp_streamer/ ||
psargs ~ /smart-proxy/ ||

psargs ~ /squid.conf/

EOF

2. Configure PCP to log the process metrics being collected.

mkdir -p /var/lib/pcp/config/pmlogconf/foreman-hotproc
cat >/var/lib/pcp/config/pmlogconf/foreman-hotproc/summary << EOF
#pmlogconf-setup 2.0
ident foreman hotproc metrics
probe hotproc.control.config I="" ? include : exclude
hotproc.psinfo.psargs
hotproc.psinfo.cnswap
hotproc.psinfo.nswap
hotproc.psinfo.rss
hotproc.psinfo.vsize
hotproc.psinfo.cstime
hotproc.psinfo.cutime
hotproc.psinfo.stime
hotproc.psinfo.utime
hotproc.io.write_bytes
hotproc.io.read_bytes
hotproc.schedstat.cpu_time
hotproc.fd.count
EOF

3. Install the process monitoring PMDA.

cd /var/lib/pcp/pmdas/proc
./Install

4. Configure PCP to collect metrics from Apache HTTP Server.

a. Enable the Apache HTTP Server extended status module.

#cat >/etc/httpd/conf.d/01-status.conf <<EOF
ExtendedStatus On
LoadModule status_module modules/mod_status.so

<Location "/server-status">
PassengerEnabled off
SetHandler server-status

CHAPTER 3. INSTALLING PCP PACKAGES

Order deny,allow
Deny from all

Allow from localhost
</Location>

EOF

b. Enable the Apache HTTP Server PMDA.

cd /var/lib/pcp/pmdas/apache
/Install

c. Prevent the Satellite installer overwriting the extended status module’s configuration file.
Add the following line to the /etc/foreman-installer/custom-hiera.yaml configuration file.

I apache::purge_configs: false

5. Configure PCP to collect metrics from PostgreSQL.

a. Change to the /var/lib/pcp/pmdas/postgresql directory.
I # cd /var/lib/pcp/pmdas/postgresql
b. Run the installer.

I # ./Install

c. Configure the PCP database interface to permit access to the PostgreSQL database.
Edit the /etc/pepdbi.conf configuration file, inserting the following lines:

$database = "dbi:Pg:dbname=foreman;host=localhost";
$username = "foreman";

$password = "6gXNImM5niibiEcbz8nuiJBNsyjjdRHA"; ﬂ
$os_user = "foreman";

ﬂ The value for $password is stored in /etc/foreman/database.yml configuration file.

d. Change the SELinux pcp_pmcd_t domain permission to permit PCP access to the
PostgreSQL database.

I # semanage permissive -a pcp_pmcd_t

e. Verify the PostgreSQL PMDA is able to connect to PostgreSQL.
Examine the /var/log/pcp/pmcd/postgresql.log file to confirm the connection is
established. Without a successful database connection, the PostgreSQL PMDA will remain
active, but not be able to provide any metrics.

I [Tue Aug 14 09:21:06] pmdapostgresql(25056) Info: PostgreSQL connection established

If you find errors in /var/log/pcp/pmecd/postgresql.log, restart the pmcd service.

I # systemctl restart pmcd

Red Hat Satellite 6.4 Monitoring Red Hat Satellite

6. Enable telemetry functionality in Satellite.
To enable collection of metrics from Satellite, you must send metrics via the statsd protocol
into the pcp-mmvstatsd daemon. The metrics are aggregated and available via the PCP MMV
API.

a. Install the Foreman Telemetry and pcp-mmvstatsd packages.

I # yum install foreman-telemetry pcp-mmvstatsd

b. Enable and start the pcp-mmvstatsd service.

systemctl enable pcp-mmvstatsd
systemctl start pcp-mmuvstatsd

c. Enable the Satellite telemetry functionality.
Add the following lines to /etc/foreman/settings.yaml configuration file:

‘telemetry:
:prefix: 'fm_rails'
:statsd:
:enabled: true
:host: '127.0.0.1:8125'
:protocol: 'statsd'
:prometheus:
:enabled: false
slogger:
:enabled: false
level: 'INFO'

7. Schedule daily storage of metrics in archive files:

cat >/etc/cron.daily/refresh_mmv <<EOF

#!/bin/bash

echo "log mandatory on 1 minute mmv" | /usr/bin/pmic -P
EOF

chmod +x /etc/cron.daily/refresh_mmv

8. Restart the Apache HTTP Server and PCP to begin data collection:

I # systemctl restart httpd pmcd pmlogger

3.2. ENABLING ACCESS TO METRICS VIA THE WEB UlI

This procedure describes how to access metrics collected by PCP, via the web UL

Procedure

1. Enable the Red Hat Enterprise Linux optional repository:

I # subscription-manager repos --enable rhel-7-server-optional-rpms

2. Install the PCP web APl and applications:

CHAPTER 3. INSTALLING PCP PACKAGES

I # yum install pcp-webapi pcp-webapp-grafana pcp-webapp-vector

3. Start and enable the PCP web service:

systemctl start pmwebd
systemctl enable pmwebd

4. Open firewall port to allow access to the PCP web service:

firewall-cmd --add-port=44323/tcp
firewall-cmd --permanent --add-port=44323/tcp

3.3. VERIFYING PCP CONFIGURATION

To verify PCP is configured correctly, and services are active, run the following command:

| #oco
This outputs a summary of the active PCP configuration.

Example output from the pcp command:

Performance Co-Pilot configuration on satellite.example.com:

platform: Linux satellite.example.com 3.10.0-862.3.3.el7.x86_64 #1 SMP Wed Jun 13 05:44:23 EDT
2018 x86_64
hardware: 8 cpus, 4 disks, 1 node, 23380MB RAM
timezone: AEST-10
services: pmcd pmwebd
pmcd: Version 3.12.2-1, 9 agents, 1 client
pmda: root pmcd proc xfs linux apache mmv postgresql jbd2
pmlogger: primary logger: /var/log/pcp/pmlogger/satellite.example.com/20180802.00.10

In this example, both the Performance Metrics Collector Daemon (pmcd), and the Performance Metrics
Web Daemon (pmwebd) services are running. It also confirms the PMDAs which are collecting metrics.
Finally, it lists the currently actively archive file, in which pmlogger is storing metrics.

Red Hat Satellite 6.4 Monitoring Red Hat Satellite

CHAPTER 4. PCP METRICS

Metrics are stored in a tree-like structure. For example, all network metrics are stored in a node named
network. Each metric may be a single value, or a list of values, known as instances. For example, kernel
load has three instances, a 1-minute, 5-minute, and 15-minute average.

For every metric entry, PCP stores both its data and metadata. This includes the metrics description,
data type, units, and dimensions. For example, the metadata enables PCP to output multiple metrics
with different dimensions.

The value of a counter metric only increases. For example, a count of disk write operations on a specific
device only increases. When you query the value of a counter metric, PCP converts this into a rate value
by default.

In addition to system metrics such as CPU, memory, kernel, XFS, disk, and network, the following metrics
are configured:

Metric Description

hotproc.* Basic metrics of key Satellite processes
apache.* Apache HTTP Server metrics
postgresql.* Basic PostgreSQL statistics
mmv.fm_rails_* Satellite metrics

4.1. IDENTIFYING AVAILABLE METRICS

® To list all metrics available via PCP, enter the following command:
I # pminfo

® To list all Satellite metrics and their descriptions, enter the following command:
I # foreman-rake telemetry:metrics

® To list the archived metrics, enter the following command:
I # less /var/log/pcp/pmlogger/$(hostname)/pmlogger.log

® The pmlogger daemon archives data as it is received, according to its configuration. To confirm
the active archive file, enter the following command:

I # pcp | grep logger

The output includes the file name of the active archive file, for example:

I /var/log/pcp/pmlogger/satellite.example.com/20180814.00.10

10

CHAPTER 5. RETRIEVING METRICS

CHAPTER 5. RETRIEVING METRICS

You can retrieve metrics from PCP using the CLI or the web Ul interfaces. A number of CLI tools are
provided with PCP, which can either output live data, or data from archived sources. The web Ul
interfaces are provided by the Grafana and Vector web applications. Vector connects directly to the
PCP daemon, and can only display live data. Grafana reads from PCP archive files and can display data
to up to 1year old.

5.1. RETRIEVING METRICS VIA THE CLI

Using the CLI tools provided with PCP, you can retrieve metrics either live, or from an archive file.

5.1.1. Retrieving Live Metrics using CLI

To output metrics on disk partition write instances, enter the following command:

I # pmval -f 1 disk.partitions.write

In this example, PCP converts the number of writes to disk partitions from a counter value, to a rate
value. The -f 1 specifies that the value be abbreviated to one decimal place.

Example output

metric: disk.partitions.write

host: satellite.example.com

semantics: cumulative counter (converting to rate)
units: count (converting to count / sec)

samples: all
vdai vda2 sr0
0.0 12.0 0.0
0.0 1.0 0.0
0.0 1.0 0.0
0.0 2.0 0.0

To monitor system metrics with a two second interval:

I # pmstat -t 2sec

5.1.2. Retrieving Archived Metrics using CLI

You can use the PCP CLI tools to retrieve metrics from an archive file. To do that, add the --archive
parameter and specify the archive file.

® To list all metrics which were enabled when the archive file was created, enter the following
command:

I pminfo --archive archive_file
® To confirm the host and time period covered by an archive file, enter the following command:

I # pmdumplog -l archive_file

1

Red Hat Satellite 6.4 Monitoring Red Hat Satellite

Examples

® To list disk writes for each partition, over the time period covered by the archive file:

pmval --archive /var/log/pcp/pmlogger/satellite.example.com/20180816.00.10 \
-f 1 disk.partitions.write

® To list disk write operations per partition, with a two second interval, between the time period
14:00 and 14:15;

pmval --archive /var/log/pcp/pmlogger/satellite.example.com/20180816.00.10 \
-d -t 2sec \
-f 3 disk.partitions.write \
-S @14:00 -T @14:15

® To list average values of all performance metrics, including the time of minimum/maximum value
and the actual minimum/maximum value, between the time period 14:00 and 14:30. To output
the values in tabular formatting:

pmlogsummary /var/log/pcp/pmlogger/satellite.example.com/20180816.00.10 \
-HIfilmM \
-S @14:00\
-T @14:30\
disk.partitions.write \
mem.freemem

® To list system metrics stored in an archive, starting from 14:00. The metrics are displayed in a
format similar to the top tool.

pcp --archive /var/log/pcp/pmlogger/satellite.example.com/20180816.00.10\
-S @14:00\
atop

5.2. RETRIEVING METRICS VIA THE WEB Ul
To access the web Ul interfaces to PCP metrics, open the URL of either the following web applications:

Vector
http://satellite.example.com:44323/vector
Grafana

http://satellite.example.com:44323/grafana

Both applications provide a dashboard-style view, with default widgets displaying the values of metrics.
You can add and remove metrics to suit your requirements. Also, you can select the time span shown for
each widget. Only Grafana provides the option of selecting a custom time range from the archived
metrics.

For more details on using Grafana, see the Grafana Labs web site. For more details on using Vector, see
the Vector web site.

12

https://grafana.com/
http://getvector.io/

CHAPTER 5. RETRIEVING METRICS

Figure 5.1. Example Grafana dashboard

\G) PCP+Grafana Zoom Out Aug 13, 2018 03:40:58 to Aug 17, 2018 03:40:58 « z = # -
I 1-minute load average network ilo bytes/s disk read/write kbytes/s
1.5 200 K 250
150 K 200
1.0
150
100 K
100
05
50K i . |
g 5 | SRS o . 1l
B8/14 8115 8/16 BT 814 815 8/16 81T 814 8/15 B/16 BT
I running/blocked processes available/used memory kbytes filesystem fullness %
8 25 Mil 1.0
s 23 Mil 05 .
20 Ml No datapoints @
4 0
18 Mil
2 — TWW’FWWMWN 05
0 13 Mil 1.0
814 815 816 817 814 8/15 8/16 817 B8/14 815 8/16 8Nt

Figure 5.2. Example Vector dashboard

Hostname satellite.example.com v Widget

Window 10 min Interval 2 sec

CPU Utilization x Disk 10PS x

®sys user @ vda read vdbread @ vdc read vdd read
® vda write vdbwrite @ vdc write @ vdd write

100%

80%

60%

40%

20%

0% - - L)
13:48:29 13:49:10 13:50:00 13:50:19 13:48:29 13:49:10 13:50:00 13:50:19

13

Red Hat Satellite 6.4 Monitoring Red Hat Satellite

CHAPTER 6. METRICS DATA RETENTION

The storage capacity required by PCP data logging is determined by the following factors:
® the metrics being logged,
® the logging interval,
® and the retention policy.

The default logging (sampling) interval is 60 seconds.

The default retention policy is to keep archives for the last 14 days, compressing archives older than one
day. PCP archive logs are stored in the /var/log/pcp/pmlogger/ hostname directory.

6.1. CHANGING DEFAULT LOGGING INTERVAL

This procedure describes how to change the default logging interval.

Procedure

1. Edit the /etc/pep/pmlogger/control.d/local configuration file.

2. Edit the LOCALHOSTNAME line and append -t XXs, where XX is the desired time interval,
measured in seconds.

3. Restart the pmlogger service.

6.2. CHANGING DATA RETENTION POLICY

This procedure describes how to change the data retention policy.

Procedure
1. Edit the /etc/cron.d/pcp-pmlogger file.
2. Find the line containing pmlogger_daily.
3. Change the value for parameter -X to the desired number of days after which data is archived.
4. Add parameter -k, and add a value for the number of days after which data is deleted.

For example, the parameters -x 4 -k 7 specify that data will be compressed after 4 days, and
deleted after 7 days.

6.3. CONFIRMING DATA STORAGE USAGE

To confirm data storage usage, enter the following command:

I # less /var/log/pcp/pmlogger/$(hostname)/pmlogger.log

This lists all available metrics, grouped by the frequency at which they are logged. For each group it also
lists the storage required to store the listed metrics, per day.

Example storage statistics

14

CHAPTER 6. METRICS DATA RETENTION

I logged every 60 sec: 61752 bytes or 84.80 Mbytes/day

15

	Table of Contents
	CHAPTER 1. OVERVIEW
	CHAPTER 2. PERFORMANCE CO-PILOT
	2.1. PERFORMANCE METRIC DOMAIN AGENTS

	CHAPTER 3. INSTALLING PCP PACKAGES
	3.1. CONFIGURING PCP DATA COLLECTION
	3.2. ENABLING ACCESS TO METRICS VIA THE WEB UI
	3.3. VERIFYING PCP CONFIGURATION

	CHAPTER 4. PCP METRICS
	4.1. IDENTIFYING AVAILABLE METRICS

	CHAPTER 5. RETRIEVING METRICS
	5.1. RETRIEVING METRICS VIA THE CLI
	5.1.1. Retrieving Live Metrics using CLI
	5.1.2. Retrieving Archived Metrics using CLI

	5.2. RETRIEVING METRICS VIA THE WEB UI

	CHAPTER 6. METRICS DATA RETENTION
	6.1. CHANGING DEFAULT LOGGING INTERVAL
	6.2. CHANGING DATA RETENTION POLICY
	6.3. CONFIRMING DATA STORAGE USAGE

