& RedHat

Red Hat Quay 3.5

Manage Red Hat Quay

Manage Red Hat Quay

Last Updated: 2022-11-21






Red Hat Quay 3.5 Manage Red Hat Quay

Manage Red Hat Quay



Legal Notice

Copyright © 2022 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Manage Red Hat Quay



Table of Contents

PREF ACE . e e

CHAPTER 1. ADVANCED RED HAT QUAY CONFIGURATION .............couet.

1.1. USING RED HAT QUAY CONFIG TOOL TO MODIFY RED HAT QUAY
1.1.1. Running the Config Tool from the Red Hat Quay Operator
1.1.2. Running the Config Tool from the command line

1.2. USING THE API TO MODIFY RED HAT QUAY

1.3. EDITING THE CONFIG.YAML FILE TO MODIFY RED HAT QUAY
1.3.1. Add name and company to Red Hat Quay sign-in
1.3.2. Disable TLS Protocols
1.3.3. Rate limit API calls
1.3.4. Adjust database connection pooling

1.3.4.1. Database connection arguments

1.3.4.2. Database SSL configuration
1.3.4.2.1. PostgreSQL SSL connection arguments
1.3.4.2.2. MySQL SSL connection arguments

1.3.4.3. HTTP connection counts

1.3.4.4. Dynamic process counts

1.3.4.5. Environment variables

1.3.4.6. Turning off connection pooling

CHAPTER 2. USING THE CONFIGURATION APl ...

2.1.RETRIEVING THE DEFAULT CONFIGURATION
2.2. RETRIEVING THE CURRENT CONFIGURATION
2.3. VALIDATING CONFIGURATION USING THE API
2.4. DETERMINING THE REQUIRED FIELDS

CHAPTER 3. GETTING RED HAT QUAY RELEASE NOTIFICATIONS ..............

CHAPTER 4. USING SSL TO PROTECT CONNECTIONS TO RED HAT QUAY

4.1. INTRODUCTION TO USING SSL

4.2. CREATE A CERTIFICATE AUTHORITY AND SIGN A CERTIFICATE
4.2.1. Create a Certificate Authority
4.2.2. Sign a certificate

4.3. CONFIGURING SSL USING THE COMMAND LINE

4.4, CONFIGURING SSL USING THE Ul

45. TESTING SSL CONFIGURATION USING THE COMMAND LINE

4.6. TESTING SSL CONFIGURATION USING THE BROWSER

4.7. CONFIGURING PODMAN TO TRUST THE CERTIFICATE AUTHORITY
4.8. CONFIGURING THE SYSTEM TO TRUST THE CERTIFICATE AUTHORITY

CHAPTER 5. ADDING TLS CERTIFICATES TO THE RED HAT QUAY CONTAINER

5.1.ADD TLS CERTIFICATES TO RED HAT QUAY
5.2. ADD CERTS WHEN DEPLOYED ON KUBERNETES

CHAPTER 6. CONFIGURING ACTION LOG STORAGE FOR ELASTICSEARCH

CHAPTER7.CLAIRSECURITY SCANNING ... ...
7.1. SETTING UP CLAIR ON A RED HAT QUAY OPENSHIFT DEPLOYMENT

7.1.1. Deploying Via the Quay Operator
7.1.2. Manually Deploying Clair

7.2.SETTING UP CLAIR ON A NON-OPENSHIFT RED HAT QUAY DEPLOYMENT

7.3. USING CLAIR

Table of Contents

O O O 00 00 00 00 00 0 N O O O

3o

10

........................ 22

22
22

........................... 24

....................... 26

26
26
26

31
32



Red Hat Quay 3.5 Manage Red Hat Quay

7.4. CONFIGURING CLAIR FOR DISCONNECTED ENVIRONMENTS 33
7.5. CLAIR UPDATER URLS 34
7.6. ADDITIONAL INFORMATION 34
CHAPTER 8. SCAN POD IMAGES WITH THE CONTAINER SECURITY OPERATOR ... ..o iiiiiiieinnns, 35
8.1. RUN THE CSO IN OPENSHIFT 35
8.2. QUERY IMAGE VULNERABILITIES FROM THE CLI 37
CHAPTER 9. INTEGRATE RED HAT QUAY INTO OPENSHIFT WITH THE BRIDGE OPERATOR ............ 38
9.1. RUNNING THE QUAY BRIDGE OPERATOR 38
9.1.1. Prerequisites 38
9.1.2. Setting up and configuring OpenShift and Red Hat Quay 38
9.1.2.1. Red Hat Quay setup 39
9.1.2.2. OpenShift Setup 39
CHAPTER 10. REPOSITORY MIRRORING .. ittt ittt it ttitee e enneneeeennnaaeennnnns 43
10.1. REPOSITORY MIRRORING 43
10.2. REPOSITORY MIRRORING VERSUS GEO-REPLICATION 43
10.3. USING REPOSITORY MIRRORING 44
10.4. MIRRORING CONFIGURATION Ul 45
10.5. MIRRORING CONFIGURATION FIELDS 45
10.6. MIRRORING WORKER 46
10.7. CREATING A MIRRORED REPOSITORY 46
10.7.1. Repository mirroring settings 46
10.7.2. Advanced settings 47
10.7.3. Synchronize now 48
10.8. EVENT NOTIFICATIONS FOR MIRRORING 49
10.9. MIRRORING TAG PATTERNS 49
10.9.1. Pattern syntax 49
10.9.2. Example tag patterns 49
10.10. WORKING WITH MIRRORED REPOSITORIES 50
10.11. REPOSITORY MIRRORING RECOMMENDATIONS 52

CHAPTER 11. BACKING UP AND RESTORING RED HAT QUAY ON AN OPENSHIFT CONTAINER PLATFORM

[ 2 @ 1 | N AP 53
11.1. BACKING UP RED HAT QUAY 53
11.2. RESTORING RED HAT QUAY 56

CHAPTER 12. LDAP AUTHENTICATION SETUP FORRED HAT QUAY ... it 60
12.1. CONSIDERATIONS PRIOR TO ENABLING LDAP 60

12.1.1. Existing Quay deployments 60
12.1.2. Manual User Creation and LDAP authentication 60
12.2. SET UP LDAP CONFIGURATION 60
12.2.1. Full LDAP URI 60
12.2.2. Team Synchronization 61
12.2.3. Base and Relative Distinguished Names 61
12.2.4. Additional User Filters 62
12.2.5. Administrator DN 63
12.2.6. UID and Mail attributes 63
12.2.7. Validation 64
12.3. COMMON ISSUES 64
12.4. CONFIGURE AN LDAP USER AS SUPERUSER 64

CHAPTER 13. PROMETHEUS AND GRAFANA METRICS UNDERRED HAT QUAY ... ...iiiiiiiiiinnnnnn. 66

13.1. EXPOSING THE PROMETHEUS ENDPOINT 66



Table of Contents

13.1.1. Setting up Prometheus to consume metrics 66
13.1.2. DNS configuration under Kubernetes 66
13.1.3. DNS configuration for a manual cluster 66
CHAPTER 14. GEO-REPLICATION .ttt ettt ettt ittt e eaeeeesennnaeeeeaannnneenennn, 67
14.1. GEO-REPLICATION FEATURES 67
14.2. GEO-REPLICATION REQUIREMENTS AND CONSTRAINTS 67
14.3. GEO-REPLICATION ARCHITECTURE 68
14.4. ENABLE STORAGE REPLICATION 68
14.4.1. Run Red Hat Quay with storage preferences 69
CHAPTER 15. RED HAT QUAY TROUBLESHOOTING ...ttt ittt eiiieeeeeannneeennnns 70
CHAPTER 16. SCHEMA FOR RED HAT QUAY CONFIGURATION ... ittt eeeeaanaannns 71
ADDITIONAL RESOURCES 88



Red Hat Quay 3.5 Manage Red Hat Quay




PREFACE

PREFACE

Once you have deployed a Red Hat Quay registry, there are many ways you can further configure and
manage that deployment. Topics covered here include:

Advanced Red Hat Quay configuration

Setting notifications to alert you of a new Red Hat Quay release
Securing connections with SSL and TLS certificates

Directing action logs storage to Elasticsearch

Configuring image security scanning with Clair

Scan pod images with the Container Security Operator
Integrate Red Hat Quay into OpenShift with the Quay Bridge Operator
Mirroring images with repository mirroring

Sharing Quay images with a BitTorrent service

Authenticating users with LDAP

Enabling Quay for Prometheus and Grafana metrics

Setting up geo-replication

Troubleshooting Quay



Red Hat Quay 3.5 Manage Red Hat Quay

CHAPTER 1. ADVANCED RED HAT QUAY CONFIGURATION

You can configure your Red Hat Quay after initial deployment using several different interfaces:

® The Red Hat Quay Config Tool: Running the Quay container in config mode presents a Web-
based interface for configuring the Red Hat Quay cluster. This is the recommended method for
most configuration of the Red Hat Quay service itself.

e Editing the config.yaml: The config.yaml file holds most of the configuration information for
the Red Hat Quay cluster. Editing that file directly is possible, but it is only recommended for
advanced tuning and performance features that are not available through the Config Tool.

® Red Hat Quay API: Some Red Hat Quay configuration can be done through the API.

While configuration for specific features is covered in separate sections, this section describes how to
use each of those interfaces and perform some more advanced configuration.

1.1. USING RED HAT QUAY CONFIG TOOL TO MODIFY RED HAT QUAY

The Red Hat Quay Config Tool is made available by running a Quay container in config mode alongside
the regular Red Hat Quay service. Running the Config Tool is different for Red Hat Quay clusters
running on OpenShift than it is for those running directly on host systems.

1.1.1. Running the Config Tool from the Red Hat Quay Operator

If you are running the Red Hat Quay Operator from OpenShift, the Config Tool is probably already
available for you to use. To access the Config Tool, do the following:

1. From the OpenShift console, select the project in which Red Hat Quay is running. For example,
quay-enterprise.

2. From the left column, select Networking = Routes. You should see routes to both the Red Hat
Quay application and Config Tool, as shown in the following image:

Routes
Filter by name.

‘ 2 Accepted

Rejected ‘ 0| Pending Selectall fitters 2ltems

Name 1 Namespace Status Location Service

@ example- @ quay-enterprise [] Accepted https://example- 9 example-
quayecosystem-quay quayecosystem-quay- quayecosystem-quay
quay-
enterprise.apps.c

com

GD) example- @ quay-enterprise © Accepted https://example- © example-
Networking quayecosystem-quay- quayecosystem-quay- quayecosystem-quay-
_ config config-quay- config
Services

enterprise.apps.c

Routes

comE

3. Select the route to the Config Tool (for example, example-quayecosystem-quay-config) and
select it. The Config tool Web Ul should open in your browser.

4. Select Modify configuration for this cluster. You should see the Config Tool, ready for you to
change features of your Red Hat Quay cluster, as shown in the following image:



CHAPTER 1. ADVANCED RED HAT QUAY CONFIGURATION

Red Hat Quay Setup

Almost done! @ = @
Configure your Redis database and other settings below L=

# Custom SSL Certificates

This section lists any custom or self-signed SSL certificates that are installed in the Project Quay container on startup after being read from the
extra ca certs directory inthe configuration volume.

Customn certificates are typically used in place of publicly signed certificates for corporate-internal services.

Please make sure that all customn names used for downstream services (such as Clair) are listed in the certificates below.

Upload certificates: Select file
ect custom certificate to add to configuration. Must be in PEM format and end extension 'crt'
vavert @ Certificate example-gquayecosystem-guay-guay-enterprise.apps.cnegus-ocp44h.devcluster.openshift.com ¢
quay. s valid quay-enterprise quay-enterprise@ls99743640
® Certificat example-quayecosystemn-clair example-guayecosystem-clair.guay-enterprise.svc
. Lert cale . .
claircrt i example-quayecosystem-clair.quay-enterprisesvc.local ¢
< valic

example-quayecosystem-clair@ls99743641

Save Configuration Changes

5. When you have made the changes you want, select Save Configuration Changes. The Config
Tool will validate your changes.

6. Make any corrections as needed by selecting Continue Editing or select Next to continue on.

7. When prompted, it is recommended that you select Download Configuration. That will

download a tarball of your new config.yaml, as well as any certificates and keys used with your
Red Hat Quay setup.

8. Select Go to deployment rollout, then Populate the configuration to deployments. The Red
Hat Quay pods will be restarted and the changes will take effect.

The config.yaml file you saved can be used to make advanced changes to your configuration or just
kept for future reference.

1.1.2. Running the Config Tool from the command line

If you are running Red Hat Quay directly from a host system, using tools such as the podman or docker

commands, after the initial Red Hat Quay deployment, you can restart the Config Tool to modify your
Red Hat Quay cluster. Here's how:

1. Start quay in config mode On the first quay node run the following, replacing my-secret-
password with your password. If you would like to modify an existing config bundle, you can

simply mount your configuration directory into the Quay container as you would in registry
mode.

# podman run --rm -it --name quay_config -p 8080:8080 \
-v path/to/config-bundle:/conf/stack \

registry.redhat.io/quay/quay-rhel8:v3.5.7 config my-secret-password

2. Open browser: When the quay configuration tool starts up, open a browser to the URL and port
8080 of the system you are running the configuration tool on (for example
https://myquay.example.com:8080). You are prompted for a username and password.


https://myquay.example.com:8080

Red Hat Quay 3.5 Manage Red Hat Quay

At this point, you can begin modifying your Red Hat Quay cluster as described earlier.

1.2. USING THE API TO MODIFY RED HAT QUAY

See the Red Hat Quay API Guide for information on how to access Red Hat Quay API.

1.3. EDITING THE conFig.yamL FILE TO MODIFY RED HAT QUAY

Some advanced Red Hat Quay configuration that is not available through the Config Tool can be
achieved by editing the config.yaml file directly. Available settings are described in the Schema for Red
Hat Quay configuration The following are examples of settings you can change directly in the
config.yaml file.

1.3.1. Add name and company to Red Hat Quay sign-in

Setting the following will cause users to be prompted for their name and company when they first sign
in. Although this is optional, it can provide you with extra data about your Red Hat Quay users:

+ FEATURE_USER_METADATA: true

1.3.2. Disable TLS Protocols

You can change the SSL_PROTOCOLS setting to remove SSL protocols that you do not want to
support in your Red Hat Quay instance. For example, to remove TLS vl support from the default
SSL_PROTOCOLS : ['TLSVI,'TLSVL.T,'TLSV1.2'], change it as follows:

+SSL_PROTOCOLS : ['TLSVLT, TLSV1.2"]

1.3.3. Rate limit API calls

Adding the FEATURE_RATE_LIMITS parameter to the config.yaml causes nginx to limit certain API
calls to 30 per second. If that feature is not set, API calls are limied to 300 per second (effectively
unlimited). Rate limiting can be an important feature, if you need to make sure the resources available
are not overwhelmed with traffic.

Some namespace may require unlimited access (perhaps they are important to Cl/CD and take priority,
for example). In this case, those namespace may be placed in a list in config.yaml for
NON_RATE_LIMITED_NAMESPACES.

1.3.4. Adjust database connection pooling

Red Hat Quay is composed of many different processes which all run within the same container. Many of
these processes interact with the database.

If enabled, each process that interacts with the database will contain a connection pool. These per-
process connection pools are configured to maintain a maximum of 20 connections. Under heavy load, it
is possible to fill the connection pool for every process within a Red Hat Quay container. Under certain
deployments and loads, this may require analysis to ensure Red Hat Quay does not exceed the
database’s configured maximum connection count.

Overtime, the connection pools will release idle connections. To release all connections immediately,
Red Hat Quay requires a restart.


https://access.redhat.com/documentation/en-us/red_hat_quay/3/html-single/red_hat_quay_api_guide/index
https://access.redhat.com/documentation/en-us/red_hat_quay/3/html/manage_red_hat_quay/quay-schema

CHAPTER 1. ADVANCED RED HAT QUAY CONFIGURATION

Database connection pooling may be toggled by setting the environment variable
DB_CONNECTION_POOLING={true|false}

If database connection pooling is enabled, it is possible to change the maximum size of the connection
pool. This can be done through the following config.yaml option:

DB _CONNECTION_ARGS:
max_connections: 10

1.3.4.1. Database connection arguments

You can customize Red Hat Quay database connection settings within the config.yaml file. These are
entirely dependent upon the underlying database driver, such as psycopg2 for Postgres and pymysq|l
for MySQL. It is also possible to pass in arguments used by Peewee’s Connection Pooling mechanism as
seen below.

DB_CONNECTION_ARGS:
max_connections: n # Max Connection Pool size. (Connection Pooling only)
timeout: n # Time to hold on to connections. (Connection Pooling only)
stale_timeout: n # Number of seconds to block when the pool is full. (Connection Pooling only)

1.3.4.2. Database SSL configuration

Some key-value pairs defined under DB_CONNECTION_ARGS are generic while others are database-
specific. In particular, SSL configuration depends on the database you are deploying.

1.3.4.2.1. PostgreSQL SSL connection arguments

A sample PostgreSQL SSL configuration is given below:

DB_CONNECTION_ARGS:
sslmode: verify-ca
sslrootcert: /path/to/cacert

The sslmode option determines whether or with what priority a secure SSL TCP/IP connection will be
negotiated with the server. There are six modes:

® disable: only try a non-SSL connection
® allow: first try a non-SSL connection; if that fails, try an SSL connection
e prefer: (default) first try an SSL connection; if that fails, try a non-SSL connection

® require: only try an SSL connection. If a root CA file is present, verify the certificate in the same
way as if verify-ca was specified

e verify-ca: only try an SSL connection, and verify that the server certificate is issued by a trusted
certificate authority (CA)

e verify-full: only try an SSL connection, verify that the server certificate is issued by a trusted
CA and that the requested server host name matches that in the certificate

More information on the valid arguments for PostgreSQL is available at
https://www.postgresql.org/docs/current/libpg-connect.html.


https://www.postgresql.org/docs/current/libpq-connect.html

Red Hat Quay 3.5 Manage Red Hat Quay

1.3.4.2.2. MySQL SSL connection arguments

A sample MySQL SSL configuration follows:

DB_CONNECTION_ARGS:
ssl:
ca: /path/to/cacert

Information on the valid connection arguments for MySQL is available at
https://dev.mysqgl.com/doc/refman/8.0/en/connecting-using-uri-or-key-value-pairs.html.

1.3.4.3. HTTP connection counts

It is possible to specify the quantity of simultaneous HTTP connections using environment variables.
These can be specified as a whole, or for a specific component. The default for each is 50 parallel
connections per process.

Environment variables:

WORKER_CONNECTION_COUNT_REGISTRY=n
WORKER_CONNECTION_COUNT_WEB=n
WORKER_CONNECTION_COUNT_SECSCAN=n
WORKER_CONNECTION_COUNT=n

Specifying a count for a specific component will override any value set in
WORKER_CONNECTION_COUNT.

1.3.4.4. Dynamic process counts

To estimate the quantity of dynamically sized processes, the following calculation is used by default.

NOTE

Red Hat Quay queries the available CPU count from the entire machine. Any limits
applied using kubernetes or other non-virtualized mechanisms will not affect this
behavior; Red Hat Quay will makes its calculation based on the total number of

processors on the Node. The default values listed are simply targets, but shall not exceed
the maximum or be lower than the minimum.

Each of the following process quantities can be overridden using the environment variable specified
below.

® registry - Provides HTTP endpoints to handle registry action
o minimum: 8
©  maximum: 64
o default: $CPU_COUNT x 4
o environment variable: WORKER_COUNT_REGISTRY

® web - Provides HTTP endpoints for the web-based interface

o minimum: 2

10


https://dev.mysql.com/doc/refman/8.0/en/connecting-using-uri-or-key-value-pairs.html

CHAPTER 1. ADVANCED RED HAT QUAY CONFIGURATION

o  maximum: 32

o default: $CPU_COUNT x 2

o environment_variable: WORKER_COUNT_WEB
® secscan - Interacts with Clair

o minimum: 2

o  maximum: 4

o default: $CPU_COUNT x 2

o environment variable: WORKER_COUNT_SECSCAN

1.3.4.5. Environment variables

Red Hat Quay allows overriding default behavior using environment variables. This table lists and
describes each variable and the values they can expect.

Table 1.1. Worker count environment variables

Variable Description Values

WORKER_COUNT_REGISTRY Specifies the number of Integer between 8 and 64
processes to handle Registry
requests within the Quay
container.

WORKER_COUNT_WEB Specifies the number of Integer between 2 and 32
processes to handle Ul/Web
requests within the container.

WORKER_COUNT_SECSCAN Specifies the number of Integer between 2 and 4
processes to handle Security
Scanning (e.g. Clair) integration
within the container.

DB_CONNECTION_POOLING Toggle database connection "true" or "false"
pooling. In 3.4, it is disabled by
default.

1.3.4.6. Turning off connection pooling

Red Hat Quay deployments with a large amount of user activity can regularly hit the 2k maximum
database connection limit. In these cases, connection pooling, which is enabled by default for Red Hat
Quay, can cause database connection count to rise exponentially and require you to turn off connection
pooling.

If turning off connection pooling is not enough to prevent hitting that 2k database connection limit, you

need to take additional steps to deal with the problem. In this case you might need to increase the
maximum database connections to better suit your workload.

1



Red Hat Quay 3.5 Manage Red Hat Quay

CHAPTER 2. USING THE CONFIGURATION API

The configuration tool exposes 4 endpoints that can be used to build, validate, bundle and deploy a
configuration. The config-tool APl is documented at https://github.com/quay/config-
tool/blob/master/pkg/lib/editor/APl.md. In this section, you will see how to use the API to retrieve the
current configuration and how to validate any changes you make.

2.1.RETRIEVING THE DEFAULT CONFIGURATION

If you are running the configuration tool for the first time, and do not have an existing configuration, you
can retrieve the default configuration. Start the container in config mode:

$ sudo podman run --rm -it --name quay_config \
-p 8080:8080 \
registry.redhat.io/quay/quay-rhel8:v3.5.7 config secret

Use the config endpoint of the configuration API to get the default:

I $ curl -X GET -u quayconfig:secret http://quay-server:8080/api/v1/config | jq

The value returned is the default configuration in JSON format:

{

"config.yaml": {
"AUTHENTICATION_TYPE": "Database",
"AVATAR_KIND": "local",
"DB_CONNECTION_ARGS": {

"autorollback": true,

"threadlocals": true

|3

"DEFAULT_TAG_EXPIRATION": "2w",
"EXTERNAL_TLS TERMINATION": false,
"FEATURE_ACTION_LOG_ROTATION": false,
"FEATURE_ANONYMOUS_ ACCESS": true,
"FEATURE_APP_SPECIFIC_TOKENS": true,

2.2. RETRIEVING THE CURRENT CONFIGURATION

If you have already configured and deployed the Quay registry, stop the container and restart it in
configuration mode, loading the existing configuration as a volume:

$ sudo podman run --rm -it --name quay_config \
-p 8080:8080 \
-v $QUAY/config:/conf/stack:Z \
registry.redhat.io/quay/quay-rhel8:v3.5.7 config secret

Use the config endpoint of the API to get the current configuration:

12


https://github.com/quay/config-tool/blob/master/pkg/lib/editor/API.md

CHAPTER 2. USING THE CONFIGURATION API

I $ curl -X GET -u quayconfig:secret http://quay-server:8080/api/v1/config | jq

The value returned is the current configuration in JSON format, including database and Redis
configuration data:

{

"config.yaml": {

"BROWSER_API_CALLS XHR_ONLY": false,
"BUILDLOGS_REDIS": {

"host": "quay-server",

"password": "strongpassword"”,

"port": 6379
b
"DATABASE_SECRET_KEY": "4b1c5663-88c6-47ac-b4a8-bb594660f08b",
"DB_CONNECTION_ARGS": {

"autorollback": true,

"threadlocals": true

}

DB_URI": "postgresql://quayuser:quaypass@quay-server:5432/quay",
"DEFAULT_TAG_EXPIRATION": "2w",

2.3. VALIDATING CONFIGURATION USING THE API

You can validate a configuration by posting it to the config/validate endpoint:

curl -u quayconfig:secret --header 'Content-Type: application/json' --request POST --data '

{

"config.yaml": {

"BROWSER_API _CALLS XHR_ONLY": false,
"BUILDLOGS_REDIS": {

"host": "quay-server",

"password": "strongpassword",

"port": 6379
2
"DATABASE_SECRET_KEY": "4b1c5663-88c6-47ac-b4a8-bb594660f08b",
"DB_CONNECTION_ARGS": {

"autorollback": true,

"threadlocals": true
2
"DB_URI": "postgresql://quayuser:quaypass@quay-server:5432/quay",
"DEFAULT_TAG_EXPIRATION": "2w",

}

} http://quay-server:8080/api/v1/config/validate | jq

13



Red Hat Quay 3.5 Manage Red Hat Quay

The returned value is an array containing the errors found in the configuration. If the configuration is
valid, an empty array [] is returned.

2.4. DETERMINING THE REQUIRED FIELDS

You can determine the required fields by posting an empty configuration structure to the
config/validate endpoint:

curl -u quayconfig:secret --header 'Content-Type: application/json' --request POST --data '
{
"config.yaml": {

}

} http://quay-server:8080/api/v1/config/validate | jq

The value returned is an array indicating which fields are required:

[

{
"FieldGroup": "Database”,

"Tags": [
"DB_URI"

],
"Message": "DB_URI is required.”
|3

{
"FieldGroup": "DistributedStorage",

"Tags": [
"DISTRIBUTED_STORAGE_CONFIG"

],
"Message": "DISTRIBUTED_STORAGE_CONFIG must contain at least one storage location."
|3

{
"FieldGroup": "HostSettings",

"Tags": [
"SERVER_HOSTNAME"
],
"Message": "SERVER_HOSTNAME is required"
2

{
"FieldGroup": "HostSettings",

"Tags": [
"SERVER_HOSTNAME"

],
"Message": "SERVER_HOSTNAME must be of type Hostname"
2

{
"FieldGroup": "Redis",

"Tags": [
"BUILDLOGS REDIS"

],
"Message": "BUILDLOGS_REDIS is required"
}

]

14



CHAPTER 3. GETTING RED HAT QUAY RELEASE NOTIFICATIONS

CHAPTER 3. GETTING RED HAT QUAY RELEASE
NOTIFICATIONS

To keep up with the latest Red Hat Quay releases and other changes related to Red Hat Quay, you can
sign up for update notifications on the Red Hat Customer Portal . After signing up for notifications, you
will receive notifications letting you know when there is new a Red Hat Quay version, updated
documentation, or other Red Hat Quay news.

1. Loginto the Red Hat Customer Portal with your Red Hat customer account credentials.

2. Select your user name (upper-right corner) to see Red Hat Account and Customer Portal
selections:

@ ﬁ https://access.redhat.com

SUBSCRIPTIONS DOWNLOADS CONTAINERS SUPPORT CASES p @ e

Christopher Jones

Christopher Jones For your security, if you're on a public computer and have

Red Hat Account Number: 5405401 finished using your Red Hat services, please be sure to log
out.

Red Hat Account Customer Portal

Account Details My Profile

User Management Notifications

Account Maintenance Help

Account Team

GET STARTED

3. Select Notifications. Your profile activity page appears.

4. Select the Notifications tab.

5. Select Manage Notifications.

6. Select Follow, then choose Products from the drop-down box.

7. From the drop-down box next to the Products, search for and select Red Hat Quay:

My Activity Motifications (active tab) Scheduled Locked documents

Overview Manage Notifications

Pages/Threads

Users Add Notification:

Manage Notifications

(active tab) Follow Products* -« Add another option
Current Natifications | auay Q

Red Hat Quay

8. Select the SAVE NOTIFICATION button. Going forward, you will receive notifications when
there are changes to the Red Hat Quay product, such as a new release.

15


https://access.redhat.com
https://access.redhat.com

Red Hat Quay 3.5 Manage Red Hat Quay

CHAPTER 4. USING SSL TO PROTECT CONNECTIONS TO RED
HAT QUAY

4.1. INTRODUCTION TO USING SSL

To configure Red Hat Quay with a self-signed certificate, you need to create a Certificate Authority
(CA) and then generate the required key and certificate files.

The following examples assume you have configured the server hostname quay-server.example.com
using DNS or another naming mechanism, such as adding an entry in your /etc/hosts file:

$ cat /etc/hosts

192.168.1.112 quay-server.example.com

4.2. CREATE A CERTIFICATE AUTHORITY AND SIGN A CERTIFICATE

At the end of this procedure, you will have a certificate file and a primary key file named ssl.cert and
ssl.key, respectively.

4.2.1. Create a Certificate Authority
1. Generate the root CA key:

I $ openssl genrsa -out rootCA.key 2048

2. Generate the root CA cert:

I $ openssl req -x509 -new -nodes -key rootCA.key -sha256 -days 1024 -out rootCA.pem

3. Enter the information that will be incorporated into your certificate request, including the server
hostname, for example:

Country Name (2 letter code) [XX]:IE

State or Province Name (full name) [[:GALWAY

Locality Name (eg, city) [Default City].GALWAY

Organization Name (eg, company) [Default Company Ltd]:QUAY

Organizational Unit Name (eg, section) [:DOCS
Common Name (eg, your name or your server's hostname) []:quay-server.example.com

4.2.2. Sign a certificate

1. Generate the server key:

I $ openssl genrsa -out ssl.key 2048

2. Generate a signing request:

I $ openssl req -new -key ssl.key -out ssl.csr

16


https://en.wikipedia.org/wiki/Self-signed_certificate

3.

4.

5.

CHAPTER 4. USING SSL TO PROTECT CONNECTIONS TO RED HAT QUAY

Enter the information that will be incorporated into your certificate request, including the server
hostname, for example:

Country Name (2 letter code) [XX]:IE

State or Province Name (full name) [[:GALWAY

Locality Name (eg, city) [Default City].GALWAY

Organization Name (eg, company) [Default Company Ltd]:QUAY

Organizational Unit Name (eg, section) [:DOCS

Common Name (eg, your name or your server's hostname) []:quay-server.example.com

Create a configuration file openssl.cnf, specifying the server hostname, for example:

opensssl.cnf

[req]

reg_extensions = v3_req

distinguished_name = req_distinguished_name
[req_distinguished_name]

[v3_req]

basicConstraints = CA:FALSE

keyUsage = nonRepudiation, digitalSignature, keyEncipherment
subjectAltName = @alt_names

[alt_names]

DNS.1 = quay-server.example.com
IP.1=192.168.1.112

Use the configuration file to generate the certificate ssl.cert:

$ openssl x509 -req -in ssl.csr -CA rootCA.pem -CAkey rootCA .key -CAcreateserial -out
ssl.cert -days 356 -extensions v3_req -extfile openssl.cnf

4.3. CONFIGURING SSL USING THE COMMAND LINE

Another option when configuring SSL is to use the command line interface.

1.

Copy the certificate file and primary key file to your configuration directory, ensuring they are
named ssl.cert and ssl.key respectively:

$ cp ~/ssl.cert SQUAY/config
$ cp ~/ssl.key $QUAY/config
$ cd $QUAY/config

Edit the config.yaml file and specify that you want Quay to handle TLS:

config.yaml

SERVER_HOSTNAME: quay-server.example.com

PREFERRED_URL_SCHEME: https

Stop the Quay container and restart the registry:

17



Red Hat Quay 3.5 Manage Red Hat Quay

$ sudo podman rm -f quay

$ sudo podman run -d --rm -p 80:8080 -p 443:8443 \
--name=quay \
-v $QUAY/config:/conf/stack:Z \
-v $QUAY/storage:/datastorage:Z \
registry.redhat.io/quay/quay-rhel8:v3.5.7

4.4. CONFIGURING SSL USING THE UlI

This section configures SSL using the Quay Ul. To configure SSL using the command line interface, see
the following section.

1. Start the Quay container in configuration mode:

$ sudo podman run --rm -it --name quay_config -p 80:8080 -p 443:8443
registry.redhat.io/quay/quay-rhel8:v3.5.7 config secret
2. Inthe Server Configuration section, select Red Hat Quay handles TLS for TLS. Upload the
certificate file and private key file created earlier, ensuring that the Server Hostname matches
the value used when creating the certs. Validate and download the updated configuration.

3. Stop the Quay container and then restart the registry:

$ sudo podman rm -f quay

$ sudo podman run -d --rm -p 80:8080 -p 443:8443 \
--name=quay \

-v $QUAY/config:/conf/stack:Z \

-v $QUAY/storage:/datastorage:Z \
registry.redhat.io/quay/quay-rhel8:v3.5.7

4.5. TESTING SSL CONFIGURATION USING THE COMMAND LINE

® Use the podman login command to attempt to log in to the Quay registry with SSL enabled:

$ sudo podman login quay-server.example.com

Username: quayadmin

Password:

Error: error authenticating creds for "quay-server.example.com": error pinging docker registry

quay-server.example.com: Get "https://quay-server.example.com/v2/": x509: certificate
signed by unknown authority

® Podman does not trust self-signed certificates. As a workaround, use the --tls-verify option:

$ sudo podman login --tls-verify=false quay-server.example.com
Username: quayadmin
Password:

Login Succeeded!

Configuring Podman to trust the root Certificate Authority (CA) is covered in a subsequent section.

18



CHAPTER 4. USING SSL TO PROTECT CONNECTIONS TO RED HAT QUAY

4.6. TESTING SSL CONFIGURATION USING THE BROWSER

When you attempt to access the Quay registry, in this case, hitps:/quay-server.example.com, the
browser warns of the potential risk:

& > C A Notsecure | quay-serverexample.com

A

Your connection is not private

Attackers might be trying to steal your information from quay-server.example.com (for
example, passwords, messages or credit cards). Learn more

NET::ERR_CERT_AUTHORITY_INVALID

Q To get Chrome’s highest level of security, turn on enhanced protection

Advanced Back to safety

Proceed to the log in screen, and the browser will notify you that the connection is not secure:

& - C (A Notsecure quay-server.example.com

Your connection to this site is not
@RED | L

secure

You should not enter any sensitive
information on this site (for example,

passwords or credit cards) because it could @ R E D H ATa Q U AY
be stolen by attackers. Learn more
You have chosen to disable security

warnings for this site. Re-enable warnings

B Certificate (Invalid)
& Cookies (4 in use)

R Site settings

Sign in to Project Quay

Configuring the system to trust the root Certificate Authority (CA) is covered in the subsequent
section.

4.7. CONFIGURING PODMAN TO TRUST THE CERTIFICATE
AUTHORITY

Podman uses two paths to locate the CA file, namely, /etc/containers/certs.d/ and /etc/docker/certs.d/.

19


https://quay-server.example.com

Red Hat Quay 3.5 Manage Red Hat Quay

® Copy the root CA file to one of these locations, with the exact path determined by the server
hostname, and naming the file ca.crt:

I $ sudo cp rootCA.pem /etc/containers/certs.d/quay-server.example.com/ca.crt

® Alternatively, if you are using Docker, you can copy the root CA file to the equivalent Docker
directory:

I $ sudo cp rootCA.pem /etc/docker/certs.d/quay-server.example.com/ca.crt
You should no longer need to use the --tls-verify=false option when logging in to the registry:

$ sudo podman login quay-server.example.com

Username: quayadmin
Password:
Login Succeeded!

4.8. CONFIGURING THE SYSTEM TO TRUST THE CERTIFICATE
AUTHORITY

1. Copy the root CA file to the consolidated system-wide trust store:
I $ sudo cp rootCA.pem /etc/pki/ca-trust/source/anchors/
2. Update the system-wide trust store configuration:
I $ sudo update-ca-trust extract
3. You can use the trust list command to ensure that the Quay server has been configured:

$ trust list | grep quay
label: quay-server.example.com

Now, when you browse to the registry at https://quay-server.example.com, the lock icon
shows that the connection is secure:

20


https://quay-server.example.com

CHAPTER 4. USING SSL TO PROTECT CONNECTIONS TO RED HAT QUAY

& > C (& quay-serverexamplecom

@ RED 1 Connection is secure I
| Your information (for example, passwords
or credit card numbers) is private when it is
sent to this site. Learn more

@ RED HAT QUAY

& Certificate (Valid)
@& Cookies (4 in use)

$ Site settings

Sign in to Project Quay

4. Toremove the root CA from system-wide trust, delete the file and update the configuration:

$ sudo rm /etc/pki/ca-trust/source/anchors/rootCA.pem
$ sudo update-ca-trust extract

$ trust list | grep quay

$

More information can be found in the RHEL 8 documentation in the chapter Using shared system
certificates.

21


https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/security_hardening/using-shared-system-certificates_security-hardening

Red Hat Quay 3.5 Manage Red Hat Quay

CHAPTER 5. ADDING TLS CERTIFICATES TO THE RED HAT
QUAY CONTAINER

To add custom TLS certificates to Red Hat Quay, create a new directory named extra_ca_certs/
beneath the Red Hat Quay config directory. Copy any required site-specific TLS certificates to this new
directory.

5.1. ADD TLS CERTIFICATES TO RED HAT QUAY

1. View certificate to be added to the container

$ cat storage.crt

MIIDTTCCAjWgAwIBAglJAMVr9ngjJhzbMAOGCSqGSIb3DQEBCWUAMDOXCzAJBGNV
[..]

2. Create certs directory and copy certificate there

$ mkdir -p quay/config/extra_ca_certs

$ cp storage.crt quay/config/extra_ca_certs/
$ tree quay/config/

—— config.yaml

—— extra_ca_certs

| |— storage.crt

3. Obtain the Quay container's CONTAINER ID with podman ps:

$ sudo podman ps

CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS
5a3e82c4a75f <registry>/<repo>/quay:v3.5.7 "/sbin/my_init" 24 hours ago Up

18 hours 0.0.0.0:80->80/tcp, 0.0.0.0:443->443/tcp, 443/tcp grave_keller

4. Restart the container with that ID:

I $ sudo podman restart 5a3e82c4a75f

5. Examine the certificate copied into the container namespace:

$ sudo podman exec -it 5a3e82c4a75f cat /etc/ssl/certs/storage.pem

MIIDTTCCAjWgAwIBAgIJAMVr9ngjJhzbMAOGCSqGSIb3DQEBCWUAMDOXCzAJBGNV

5.2. ADD CERTS WHEN DEPLOYED ON KUBERNETES

When deployed on Kubernetes, Red Hat Quay mounts in a secret as a volume to store config assets.
Unfortunately, this currently breaks the upload certificate function of the superuser panel.

To get around this error, a base64 encoded certificate can be added to the secret after Red Hat Quay
has been deployed. Here's how:

22



CHAPTER 5. ADDING TLS CERTIFICATES TO THE RED HAT QUAY CONTAINEF

1. Begin by base64 encoding the contents of the certificate:

$ cat ca.crt

MIIDIjCCAn6gAwWIBAgIBATANBgkghkiGOWOBAQsFADASMRcwFQYDVQQKDASMQUIu
TEICQO09SRS5TTzEeMBWGA1UEAwWwWVQ2VydGimaWNhdGUgQXV0aG9yaXRSMB4XDTE2
MDExXMjA2NTkxMFoXDTM2MDEXxMjA2NTkxMFowOTEXMBUGA1UECgwOTEFCLkxJQKNP
UkUuUO08xHjAcBgNVBAMMFUNIcnRpZmljYXRIIEF1dGhveml0e TCCASIwDQYJKoZI

[..]

$ cat ca.crt | base64 -w 0

[..]
c1psWGpgeGIPQMNEWkJPMjJ5d0pDemVnR2QNCNnRsbW9JAEF4YNnFSdVA3PTOKLSOtLS 1F
TkQgQOVSVEIGSUNBVEULLSOtLQo=

2. Use the kubectl tool to edit the quay-enterprise-config-secret.

I $ kubectl --namespace quay-enterprise edit secret/quay-enterprise-config-secret

3. Add an entry for the cert and paste the full base64 encoded string under the entry:

custom-cert.crt:
c1psWGpaeGIPQMNEWKJPM|J5d0pDemVnR2QNCnRsbW9JdEF4YnFSAVA3PTOKLSOILS1F
TkQgQOVSVEIGSUNBVEULLSOtLQo=

4. Finally, recycle all Red Hat Quay pods. Use kubectl delete to remove all Red Hat Quay pods.
The Red Hat Quay Deployment will automatically schedule replacement pods with the new
certificate data.

23



Red Hat Quay 3.5 Manage Red Hat Quay

CHAPTER 6. CONFIGURING ACTION LOG STORAGE FOR
ELASTICSEARCH

By default, the past three months of usage logs are stored in the Red Hat Quay database and exposed
via the web Ul on organization and repository levels. Appropriate administrative privileges are required
to see log entries. For deployments with a large amount of logged operations, you can now store the
usage logs in Elasticsearch instead of the Red Hat Quay database backend. To do this, you need to
provide your own Elasticsearch stack, as it is not included with Red Hat Quay as a customizable
component.

Enabling Elasticsearch logging can be done during Red Hat Quay deployment or post-deployment using
the Red Hat Quay Config Tool. The resulting configuration is stored in the config.yaml file. Once
configured, usage log access continues to be provided the same way, via the web Ul for repositories and
organizations.

Here's how to configure action log storage to change it from the default Red Hat Quay database to use
Elasticsearch:

1. Obtain an Elasticsearch account.
2. Open the Red Hat Quay Config Tool (either during or after Red Hat Quay deployment).

3. Scroll to the Action Log Storage Configuration setting and select Elasticsearch instead of
Database. The following figure shows the Elasticsearch settings that appear:

& Action Log Storage Configuration

Action logs can be stored in the database or Elasticsearch. In the latter case, the actions logs can (optionally) be sent to a data stream first.
Action Logs Storage: Elasticsearch j
Elasticsearch hostname: The Elasticsearch server hostname

Elasticsearch port: 9200

Elasticsearch access key: The Elasticsearch access key

Elasticsearch secret key: The Elasticsearch secret key

AWS region: The AWS region

Index prefix: logentry_

Logs Producer: j

4. Fillin the following information for your Elasticsearch instance:

® Elasticsearch hostname: The hostname or IP address of the system providing the
Elasticsearch service.

® Elasticsearch port The port number providing the Elasticsearch service on the host you just

entered. Note that the port must be accessible from all systems running the Red Hat Quay
registry. The default is TCP port 9200.

24



CHAPTER 6. CONFIGURING ACTION LOG STORAGE FOR ELASTICSEARCH

® Elasticsearch access key. The access key needed to gain access to the Elastic search
service, if required.

® Elasticsearch secret key. The secret key needed to gain access to the Elastic search
service, if required.

® AWS region: If you are running on AWS, set the AWS region (otherwise, leave it blank).

® Index prefix Choose a prefix to attach to log entries.

® | ogs Producer: Choose either Elasticsearch (default) or Kinesis to direct logs to an
intermediate Kinesis stream on AWS. You need to set up your own pipeline to send logs

from Kinesis to Elasticsearch (for example, Logstash). The following figure shows additional
fields you would need to fill in for Kinesis:

AWS region: The AWS region

Index prefix: logentry_

Logs Producer: Kinesis j
Stream name: The Kinesis stream name

AWS access key: The AWS access key

AWS secret key: The AWS secret key

AWS region: The AWS region

5. If you chose Elasticsearch as the Logs Producer, no further configuration is needed. If you chose
Kinesis, fill in the following:

® Stream name: The name of the Kinesis stream.

® AWS access key. The name of the AWS access key needed to gain access to the Kinesis
stream, if required.

® AWS secret key. The name of the AWS secret key needed to gain access to the Kinesis
stream, if required.

® AWS region: The AWS region.

6. When you are done, save the configuration. The Config Tool checks your settings. If there is a
problem connecting to the Elasticsearch or Kinesis services, you will see an error and have the
opportunity to continue editing. Otherwise, logging will begin to be directed to your
Elasticsearch configuration after the cluster restarts with the new configuration.

25



Red Hat Quay 3.5 Manage Red Hat Quay

CHAPTER 7. CLAIR SECURITY SCANNING

Clair is a set of micro services that can be used with Red Hat Quay to perform vulnerability scanning of
container images associated with a set of Linux operating systems. The micro services design of Clair
makes it appropriate to run in a highly scalable configuration, where components can be scaled
separately as appropriate for enterprise environments.

Clair uses the following vulnerability databases to scan for issues in your images:
® Alpine SecDB database
® AWS Updatelnfo
® Debian Oval database
® Oracle Oval database
® RHEL Oval database
® SUSE Oval database
® Ubuntu Oval database
® Pyup.io (python) database

For information on how Clair does security mapping with the different databases, see ClairCore Severity
Mapping.
NOTE

With the release of Red Hat Quay 3.4, the new Clair V4 (image
registry.redhat.io/quay/clair-rhel8 fully replaces the prior Clair V2 (image
quay.io/redhat/clair-jwt). See below for how to run V2 in read-only mode while V4 is
updating.

7.1.SETTING UP CLAIR ON A RED HAT QUAY OPENSHIFT
DEPLOYMENT

7.1.1. Deploying Via the Quay Operator

To set up Clair V4 on a new Red Hat Quay deployment on OpenShift, it is highly recommended to use
the Quay Operator. By default, the Quay Operator will install or upgrade a Clair deployment along with
your Red Hat Quay deployment and configure Clair security scanning automatically.

7.1.2. Manually Deploying Clair

To configure Clair V4 on an existing Red Hat Quay OpenShift deployment running Clair V2, first ensure
Red Hat Quay has been upgraded to at least version 3.4.0. Then use the following steps to manually set
up Clair V4 alongside Clair V2.

1. Set your current project to the name of the project in which Red Hat Quay is running. For
example:

I $ oc project quay-enterprise

26


https://quay.github.io/claircore/concepts/severity_mapping.html

clairv4-postgres.yaml

apiVersion: apps/v1
kind: Deployment
metadata:
name: clairv4-postgres
namespace: quay-enterprise
labels:
quay-component: clairv4-postgres
spec:
replicas: 1
selector:
matchLabels:
quay-component: clairv4-postgres
template:
metadata:
labels:
quay-component: clairv4-postgres
spec:
volumes:
- name: postgres-data
persistentVolumeClaim:
claimName: clairv4-postgres
containers:
- name: postgres
image: postgres:11.5
imagePullPolicy: "lIfNotPresent”
ports:
- containerPort: 5432
env:
- name: POSTGRES_USER
value: "postgres"
- name: POSTGRES_DB
value: "clair"
- name: POSTGRES_PASSWORD
value: "postgres"
- name: PGDATA
value: "/etc/postgres/data”
volumeMounts:
- name: postgres-data
mountPath: "/etc/postgres”
apiVersion: vi
kind: PersistentVolumeClaim
metadata:
name: clairv4-postgres
labels:
quay-component: clairv4-postgres
spec:
accessModes:
- "ReadWriteOnce"
resources:
requests:

CHAPTER 7. CLAIR SECURITY SCANNING

2. Create a Postgres deployment file for Clair v4 (for example, clairv4-postgres.yaml) as follows.

27



Red Hat Quay 3.5 Manage Red Hat Quay

storage: "5Gi"
volumeName: "clairv4-postgres”
apiVersion: vi
kind: Service
metadata:
name: clairv4-postgres
labels:
quay-component: clairv4-postgres
spec:
type: ClusterlP
ports:
- port: 5432
protocol: TCP
name: postgres
targetPort: 5432
selector:
quay-component: clairv4-postgres

3. Deploy the postgres database as follows:

I $ oc create -f ./clairv4-postgres.yaml

4. Create a Clair config.yaml file to use for Clair v4. For example:

config.yaml

introspection_addr: :8089
http_listen_addr: :8080
log_level: debug
indexer:

connstring: host=clairv4-postgres port=5432 dbname=clair user=postgres
password=postgres ssimode=disable

scanlock_retry: 10

layer_scan_concurrency: 5

migrations: true
matcher:

connstring: host=clairv4-postgres port=5432 dbname=clair user=postgres
password=postgres ssimode=disable

max_conn_pool: 100

run: "

migrations: true

indexer_addr: clair-indexer
notifier:

connstring: host=clairv4-postgres port=5432 dbname=clair user=postgres
password=postgres ssimode=disable

delivery: 1m

poll_interval: 5m

migrations: true

auth:
psk:
key: MTU5YzA4Y2ZkNzJoMQ== )
iss: ["quay"]
# tracing and metrics
trace:

28



CHAPTER 7. CLAIR SECURITY SCANNING

name: "jaeger"
probability: 1
jaeger:
agent_endpoint: "localhost:6831"
service_name: "clair"
metrics:
name: "prometheus”

To generate a Clair pre-shared key (PSK), enable scanning in the Security Scanner
section of the User Interface and click Generate PSK.

More information about Clair's configuration format can be found in upstream Clair documentation.

1. Create a secret from the Clair config.yaml:

I $ oc create secret generic clairv4-config-secret --from-file=./config.yami

2. Create the Clair v4 deployment file (for example, clair-combo.yaml) and modify it as
necessary:

clair-combo.yaml

apiVersion: extensions/vibetal
kind: Deployment
metadata:
labels:
quay-component: clair-combo
name: clair-combo
spec:
replicas: 1
selector:
matchLabels:
quay-component: clair-combo
template:
metadata:
labels:
quay-component: clair-combo
spec:
containers:

- image: registry.redhat.io/quay/clair-rhel8:v3.5.7 ﬂ
imagePullPolicy: IfNotPresent
name: clair-combo
env:

- name: CLAIR_CONF
value: /clair/config.yaml

- name: CLAIR_MODE
value: combo

ports:

- containerPort: 8080
name: clair-http
protocol: TCP

- containerPort: 8089
name: clair-intro

29


https://quay.github.io/clair/reference/config.html

Red Hat Quay 3.5 Manage Red Hat Quay

protocol: TCP
volumeMounts:
- mountPath: /clair/
name: config
imagePullSecrets:

- name: redhat-pull-secret
restartPolicy: Always
volumes:

- name: config

secret:
secretName: clairv4-config-secret
apiVersion: vi
kind: Service
metadata:
name: clairv4 g
labels:
quay-component: clair-combo
spec:
ports:
- name: clair-http
port: 80
protocol: TCP
targetPort: 8080
- name: clair-introspection
port: 8089
protocol: TCP
targetPort: 8089
selector:
quay-component: clair-combo
type: ClusterIP

ﬂ Change image to latest clair image name and version.

With the Service set to clairv4, the scanner endpoint for Clair v4 is entered later into the
Red Hat Quay config.yamlin the SECURITY_SCANNER_V4_ENDPOINT as http://clairv4.

3. Create the Clair v4 deployment as follows:

I $ oc create -f ./clair-combo.yaml

4. Modify the config.yaml file for your Red Hat Quay deployment to add the following entries at
the end:

FEATURE_SECURITY_SCANNER: true
SECURITY_SCANNER_V4_ENDPOINT: http://clairv4 0

ﬂ Identify the Clair v4 service endpoint

5. Redeploy the modified config.yaml to the secret containing that file (for example, quay-
enterprise-config-secret:

30


http://clairv4

CHAPTER 7. CLAIR SECURITY SCANNING

$ oc delete secret quay-enterprise-config-secret
$ oc create secret generic quay-enterprise-config-secret --from-file=./config.yaml

6. Forthe new config.yaml to take effect, you need to restart the Red Hat Quay pods. Simply
deleting the quay-app pods causes pods with the updated configuration to be deployed.

At this point, images in any of the organizations identified in the namespace whitelist will be scanned by
Clair v4.

7.2.SETTING UP CLAIR ON A NON-OPENSHIFT RED HAT QUAY
DEPLOYMENT

For Red Hat Quay deployments not running on OpenShift, it is possible to configure Clair security
scanning manually. Red Hat Quay deployments already running Clair V2 can use the instructions below
to add Clair V4 to their deployment.

1. Deploy a (preferably fault-tolerant) Postgres database server. Note that Clair requires the
uuid-ossp extension to be added to its Postgres database. If the user supplied in Clair's
config.yaml has the necessary privileges to create the extension then it will be added
automatically by Clair itself. If not, then the extension must be added before starting Clair. If the
extension is not present, the following error will be displayed when Clair attempts to start.

I ERROR: Please load the "uuid-ossp" extension. (SQLSTATE 42501)

2. Create a Clair config file in a specific folder, for example, /etc/clairv4/config/config.yaml).

config.yaml

introspection_addr: :8089
http_listen_addr: :8080
log_level: debug
indexer:

connstring: host=clairv4-postgres port=5432 dbname=clair user=postgres
password=postgres ssimode=disable

scanlock_retry: 10

layer_scan_concurrency: 5

migrations: true
matcher:

connstring: host=clairv4-postgres port=5432 dbname=clair user=postgres
password=postgres ssimode=disable

max_conn_pool: 100

run: "

migrations: true

indexer_addr: clair-indexer
notifier:

connstring: host=clairv4-postgres port=5432 dbname=clair user=postgres
password=postgres ssimode=disable

delivery_interval: 1m

poll_interval: 5m

migrations: true

# tracing and metrics

trace:
name: "jaeger"

31



Red Hat Quay 3.5 Manage Red Hat Quay

probability: 1
jaeger:
agent_endpoint: "localhost:6831"
service_name: "clair"
metrics:
name: "prometheus”

More information about Clair's configuration format can be found in upstream Clair documentation.

1. Run Clair via the container image, mounting in the configuration from the file you created.

$ podman run -p 8080:8080 -p 8089:8089 -e CLAIR_CONF=/clair/config.yaml -e
CLAIR_MODE=combo -v /etc/clair4/config:/clair -d registry.redhat.io/quay/clair-rhel8:v3.5.7

2. Follow the remaining instructions from the previous section for configuring Red Hat Quay to use
the new Clair V4 endpoint.

Running multiple Clair containers in this fashion is also possible, but for deployment scenarios beyond a
single container the use of a container orchestrator like Kubernetes or OpenShift is strongly
recommended.

7.3. USING CLAIR

1. Login to your Red Hat Quay cluster and select an organization for which you have configured
Clair scanning.

2. Select a repository from that organization that holds some images and select Tags from the left
navigation. The following figure shows an example of a repository with two images that have
been scanned:

& Repositories B8 clairv4-org /ubuntu ¥

Compact SdeEhlal]

0 Repository Tags

- 1-20f2

®»

LAST MODIFIED
!

..J , 18.04 9 days ago ™ 6 82 fixable 255 MB SHA256 bSBT46cBagsy & £F
&

12.04 10 days ago (@ B 26.4 MB SHAZSG 61B44cebldds &

3. If vulnerabilities are found, select to under the Security Scan column for the image to see either
all vulnerabilities or those that are fixable. The following figure shows information on all
vulnerabilities found:

32


https://quay.github.io/clair/reference/config.html

CHAPTER 7. CLAIR SECURITY SCANNING

€ B clairvd-orgubuntu ‘ b5874'6C88899
=2 . Quay Security Scanner has detected 146 vulnerabilities.
Patches are available for 82 vulnerabilities.
ﬁ 31%

A 6 High-level vulnerabilities.
45 Medium-level vulnerabilities.

" 57 Low-level vulnerabilities.
’ 39% A 38 Negligible-level vulnerabilities.
Vulnerabilities F [ only show fixable
SEVERITY |
CVE-2019-3462 % A Hig apt 1612 © 1.7.0ubuntuo. file: c3e6bb316dfabbBlddd478aaa3104f532883..
CVE-2019-3462 % A libapt-pkg5.0 1612 © 1.7.0ubuntu0 FETN file:c3e6bb316dfach8lddad78aaa310d7532883..
CVE-2018-16864 % A Hig libudevl 237-3ubuntulo39 © 239-7ubuntul0G file:c3e6bb316dfachBlddad782aa31007532883..

7.4. CONFIGURING CLAIR FOR DISCONNECTED ENVIRONMENTS

Clair utilizes a set of components called Updaters to handle the fetching and parsing of data from
various vulnerability databases. These Updaters are set up by default to pull vulnerability data directly
from the internet and work out of the box. For customers in disconnected environments without direct
access to the internet this poses a problem. Clair supports these environments through the ability to
work with different types of update workflows that take into account network isolation. Using the clairctl
command line utility, any process can easily fetch Updater data from the internet via an open host,
securely transfer the data to an isolated host, and then import the Updater data on the isolated host
into Clair itself.

The steps are as follows.

1. First ensure that your Clair configuration has disabled automated Updaters from running.

config.yaml

matcher:
disable_updaters: true

. Export out the latest Updater data to a local archive. This requires the clairctl tool which can be
run directly as a binary, or via the Clair container image. Assuming your Clair configuration is in
/etc/clairv4/config/config.yaml, to run via the container image:

$ podman run -it --rm -v /etc/clairv4/config:/cfg:Z -v /path/to/output/directory:/updaters:Z --
entrypoint /bin/clairctl registry.redhat.io/quay/clair-rhel8:v3.5.7 --config /cfg/config.yaml
export-updaters /updaters/updaters.gz

Note that you need to explicitly reference the Clair configuration. This will create the Updater
archive in /etc/clairv4/updaters/updaters.gz. If you want to ensure the archive was created
without any errors from the source databases, you can supply the --strict flag to clairctl. The
archive file should be copied over to a volume that is accessible from the disconnected host
running Clair. From the disconnected host, use the same procedure now to import the archive
into Clair.

$ podman run -it --rm -v /etc/clairv4/config:/cfg:Z -v /path/to/output/directory:/updaters:Z --
entrypoint /bin/clairctl registry.redhat.io/quay/clair-rhel8:v3.5.7 --config /cfg/config.yaml
import-updaters /updaters/updaters.gz

33



Red Hat Quay 3.5 Manage Red Hat Quay

7.5. CLAIR UPDATER URLS

The following are the HTTP hosts and paths that Clair will attempt to talk to in a default configuration.
This list is non-exhaustive, as some servers will issue redirects and some request URLs are constructed
dynamically.

https://secdb.alpinelinux.org/
http://repo.us-west-2.amazonaws.com/2018.03/updates/x86_64/mirror.list
https://cdn.amazonlinux.com/2/core/latest/x86_64/mirror list
https://www.debian.org/security/oval/
https://linux.oracle.com/security/oval/
https://packages.vmware.com/photon/photon_oval_definitions/
https://github.com/pyupio/safety-db/archive/
https://catalog.redhat.com/api/containers/
https://www.redhat.com/security/data/
https://support.novell.com/security/oval/

https://people.canonical.com/~ubuntu-security/oval/

7.6. ADDITIONAL INFORMATION

For detailed documentation on the internals of Clair, including how the microservices are structured,
please see the Upstream Clair and ClairCore documentation.

34


https://quay.github.io/clair
https://quay.github.io/claircore

CHAPTER 8. SCAN POD IMAGES WITH THE CONTAINER SECURITY OPERATOF

CHAPTER 8. SCAN POD IMAGES WITH THE CONTAINER
SECURITY OPERATOR

Using the Container Security Operator, (CSO) you can scan container images associated with active
pods, running on OpenShift (4.2 or later) and other Kubernetes platforms, for known vulnerabilities. The
CSO:

® Watches containers associated with pods on all or specified namespaces

® Queries the container registry where the containers came from for vulnerability information
provided an image’s registry supports image scanning (such as a Quay registry with Clair
scanning)

® Exposes vulnerabilities via the ImageManifestVuln object in the Kubernetes API

Using the instructions here, the CSO is installed in the marketplace-operators namespace, so it is
available to all namespaces on your OpenShift cluster.

9’ NOTE

To see instructions on installing the CSO on Kubernetes, select the Install button from
the Container Security OperatorHub.io page.

8.1. RUN THE CSO IN OPENSHIFT
To start using the CSO in OpenShift, do the following:

1. Go to Operators = OperatorHub (select Security) to see the available Container Security
Operator.

2. Select the Container Security Operator, then select Install to go to the Create Operator
Subscription page.

3. Check the settings (all namespaces and automatic approval strategy, by default), and select
Subscribe. The Container Security appears after a few moments on the Installed Operators
screen.

4. Optionally, you can add custom certificates to the CSO. In this example, create a certificate
named quay.crt in the current directory. Then run the following command to add the cert to the
CSO (restart the Operator pod for the new certs to take effect):

$ oc create secret generic container-security-operator-extra-certs --from-file=quay.crt -n
openshift-operators

5. Open the OpenShift Dashboard (Home — Dashboards). A link to Image Security appears under
the status section, with a listing of the number of vulnerabilities found so far. Select the link to
see a Security breakdown, as shown in the following figure:

35


https://operatorhub.io/operator/container-security-operator
https://operatorhub.io/operator/container-security-operator

Red Hat Quay 3.5 Manage Red Hat Quay

Dashboards
Quay Image Security *
Overview
breakdown
Container images from Quay are analyzed
Details View settings Status to identify vulnerabilities. Images from other
registries are not scanned
Cluster AP Address Quay Image Severity Fixable
& Cluster @& Control Plane

https://api.ci-In-fin8t8k-d5d6b.origin-ci-int-
aws.devrhcloud.com:6443

Cluster ID
3ffl67bb-9187-40a7-9a46-6cc764a38a03

Security

abilities

7 minutes ago

1High 19

1total

sing act

edmac
Openshift Cluster Manager Aclient in the cluster is using deprecated extensions/vibetal APl that will be remaved
Fixable Vulnerabilities edmac
Provider o ‘ ;
nss-tools namespaces
AWS i edmac
OpenShift Version Cluster Utilization _ ed mac
4.3.0-0.nightly-2019-12-19-105827
1035 (@ Updated mac
[TISAPA— Dacriirra leana 100 1075 1020 1035

6. You can do one of two things at this point to follow up on any detected vulnerabilities:

® Select the link to the vulnerability. You are taken to the container registry, Red Hat Quay or
other registry where the container came from, where you can see information about the
vulnerability. The following figure shows an example of detected vulnerabilities from a
Quay.io registry:

(D RED HAT Quayio  EXPLORE

APPLICATIONS REPOSITORIES TUTORIAL

+ o [@

Iy ro4fd70e06e7

Quay Security Scanner has detected 6 vulnerabilities.

Patches are available for 6 vulnerabilities.

A 6 High-level vulnerabilities.
D
Vulnerabilities Filter Vulnerabilities () Only show fixable
CVE SEVERITY | PACKAGE CURRENT VERSIOP FIXED IN VERSION
RHSA-2019:4190 A High nss-util 34403l © 0:3.44.0-4.e17_7

® Select the namespaces link to go to the ImageManifestVuln screen, where you can see the
name of the selected image and all namespaces where that image is running. The following
figure indicates that a particular vulnerable image is running in two namespaces:

Project: all projects =

ImageManifestVuln

Create ImageManifestVuln

Filter by name...

Name T Namespace Created

VOB sha256 fo4fd/0e06e745c2d8406
53b8b%0ac79b55d55e7a25bcd4
b83d5512a846575a2

@ quay-enterprise 9 minutes ago

At this point, you know what images are vulnerable, what you need to do to fix those vulnerabilities, and
every namespace that the image was run in. So you can:

36



CHAPTER 8. SCAN POD IMAGES WITH THE CONTAINER SECURITY OPERATOF

® Alert anyone running the image that they need to correct the vulnerability

® Stop the images from running (by deleting the deployment or other object that started the pod
the imageisin)

Note that if you do delete the pod, it may take a few minutes for the vulnerability to reset on the
dashboard.

8.2. QUERY IMAGE VULNERABILITIES FROM THE CLI

You can query information on security from the command line. To query for detected vulnerabilities,
type:

$ oc get vuln --all-namespaces
NAMESPACE NAME AGE
default sha256.ca90... 6m56s
skynet sha256.ca90... 9m37s

To display details for a particular vulnerability, identify one of the vulnerabilities, along with its
namespace and the describe option. This example shows an active container whose image includes an
RPM package with a vulnerability:

$ oc describe vuln --namespace mynamespace sha256.ac50e3752...
Name: sha256.ac50e3752...
Namespace: quay-enterprise

Spec:
Features:
Name: nss-util
Namespace Name: centos:7
Version: 3.44.0-3.el7
Versionformat: rpm
Vulnerabilities:
Description: Network Security Services (NSS) is a set of libraries...

37



Red Hat Quay 3.5 Manage Red Hat Quay

CHAPTER 9. INTEGRATE RED HAT QUAY INTO OPENSHIFT
WITH THE BRIDGE OPERATOR

Using the Quay Bridge Operator, you can replace the integrated container registry in OpenShift with a
Red Hat Quay registry. By doing this, your integrated OpenShift registry becomes a highly available,
enterprise-grade Red Hat Quay registry with enhanced role based access control (RBAC) features.

The primary goals of the Bridge Operator is to duplicate the features of the integrated OpenShift
registry in the new Red Hat Quay registry. The features enabled with this Operator include:

® Synchronizing OpenShift namespaces as Red Hat Quay organizations.

o Creating Robot accounts for each default namespace service account

o Creating Secrets for each created Robot Account (associating each Robot Secret to a
Service Account as Mountable and Image Pull Secret)

o Synchronizing OpenShift ImageStreams as Quay Repositories
® Automatically rewriting new Builds making use of ImageStreams to output to Red Hat Quay
® Automatically importing an ImageStream tag once a build completes

Using this procedure with the Quay Bridge Operator, you enable bi-directional communication between
your Red Hat Quay and OpenShift clusters.

' WARNING
A You cannot have more than one OpenShift Container Platform cluster pointing to

the same Red Hat Quay instance from a Quay Bridge Operator. If you did, it would
prevent you from creating namespaces of the same name on the two clusters.

9.1. RUNNING THE QUAY BRIDGE OPERATOR

9.1.1. Prerequisites

Before setting up the Bridge Operator, have the following in place:
® An existing Red Hat Quay environment for which you have superuser permissions

® A Red Hat OpenShift Container Platform environment (4.2 or later is recommended) for which
you have cluster administrator permissions

® An OpenShift command line tool (o¢ command)

9.1.2. Setting up and configuring OpenShift and Red Hat Quay

Both Red Hat Quay and OpenShift configuration is required:

38



CHAPTER 9. INTEGRATE RED HAT QUAY INTO OPENSHIFT WITH THE BRIDGE OPERATOF

9.1.2.1. Red Hat Quay setup

Create a dedicated Red Hat Quay organization, and from a new application you create within that
organization, generate an OAuth token to be used with the Quay Bridge Operator in OpenShift

1. Login to Red Hat Quay as a user with superuser access and select the organization for which
the external application will be configured.

2. Inthe left navigation, select Applications.

3. Select Create New Application and entering a name for the new application (for example,
openshift).

4. With the new application displayed, select it.

5. In the left navigation, select Generate Token to create a new OAuth2 token.

6. Select all checkboxes to grant the access needed for the integration.

7. Review the assigned permissions and then select Authorize Application, then confirm it.

8. Copy and save the generated Access Token that appears to use in the next section.

9.1.2.2. OpenShift Setup

Setting up OpenShift for the Quay Bridge Operator requires several steps, including:

® Creating an OpenShift secret Using the OAuth token created earlier in Quay, create an
OpenShift secret.

® Adding MutatingWebhookConfiguration support: To support Red Hat Quay integration with
OpenShift, any new Build requests should be intercepted so that the output can be modified to
target Red Hat Quay instead of OpenShift's integrated registry.
Support for dynamic interception of API requests that are performed as part of OpenShift’s typical build
process is facilitated through a MutatingWebhookConfiguration. A MutatingWebhookConfiguration
allows for invoking an API running within a project on OpenShift when certain APl requests are received.
Kubernetes requires that the webhook endpoint is secured via SSL using a certificate that makes use of
the certificate authority for the cluster. Fortunately, OpenShift provides support for generating a
certificate signed by the cluster.
1. Using the OpenShift oc command line tool, log in to OpenShift as a cluster administrator.
2. Choose an OpenShift namespace to use, such as openshift-operators or create a new one.
3. Create an OpenShift secret, replacing <access_token> with the Access Token obtained earlier

from Red Hat Quay. For example, this creates a secret with your <access_token> called quay-
integration with a key called token:

I $ oc create secret generic quay-integration --from-literal=token=<access_token>

The result places the newly created private key and certificate within a secret specified. The
secret will be mounted into the appropriate located within the operator as declared in the
Deployment of the Operator.

4. Create a Service for the Operator’s webhook endpoint:

39



Red Hat Quay 3.5 Manage Red Hat Quay

40

quay-webhook.yaml

apiVersion: vi
kind: Service
metadata:
labels:
name: quay-bridge-operator
name: quay-bridge-operator
namespace: openshift-operators
spec:
ports:
- name: https
port: 443
protocol: TCP
targetPort: 8443
selector:
name: quay-bridge-operator
sessionAffinity: None
type: ClusterIP

. Create the webhook service as follows:

I $ oc create -f quay-webhook.yaml

. Download the webhook-create-signed-cert.sh script, so you can use it to generate a certificate

signed by a Kubernetes certificate authority.

. Execute the following command to request the certificate:

$ ./webhook-create-signed-cert.sh --namespace openshift-operators \
--secret quay-bridge-operator-webhook-certs \
--service quay-bridge-operator

. Execute the following command to retrieve the CA and format the result as a single line so that

it can be entered into the MutatingWebhookConfiguration resource:

$ oc get configmap -n kube-system \
extension-apiserver-authentication \
-o=jsonpath="{.data.client-ca-file}' | base64 | tr -d "\n'

. Replace the ${CA_BUNDLE} variable in the following MutatingWebhookConfiguration YAML:

quay-mutating-webhook.yaml

apiVersion: admissionregistration.k8s.io/v1
kind: MutatingWebhookConfiguration
metadata:
name: quay-bridge-operator
webhooks:
- name: quayintegration.redhatcop.redhat.io
clientConfig:
service:
namespace: openshift-operators
name: quay-bridge-operator


https://github.com/quay/quay-bridge-operator/blob/redhat-3.5/hack/webhook-create-signed-cert.sh

CHAPTER 9. INTEGRATE RED HAT QUAY INTO OPENSHIFT WITH THE BRIDGE OPERATOF

path: "/admissionwebhook"
caBundle: "${CA_BUNDLE}" @)
rules:

- operations: [ "CREATE"]
apiGroups: [ "build.openshift.io" ]
apiVersions: ["v1"]
resources: [ "builds" ]

failurePolicy: Fail

matchPolicy: Exact

timeoutSeconds: 30

sideEffects: None

admissionReviewVersions: [vibetal]

Replace ${CA_BUNDLE} with the output of the previous step. It will appear as one long
line that you copy and paste to replace ${CA_BUNDLE?}.

10. Create the MutatingWebhookConfiguration as follows:

$ oc create -f quay-mutating-webhook.yaml

Until the operator is running, new requests for builds will fail since the webserver the
MutatingWebhookConfiguration invokes is not available and a proper is response is required in
order for the object to be persisted in etcd.

1. Go to the OpenShift console and install the Quay Bridge Operator as follows:

Select OperatorHub and search for Quay Bridge Operator.
Select Install

Choose Installation Mode (all namespaces), Update Channel, and Approval Strategy
(Automatic or Manual).

Select Subscribe

12. Create the custom resource (CR) called Quaylntegration. For example:

quay-integration.yaml

apiVersion: redhatcop.redhat.io/vialphat
kind: QuaylIntegration
metadata:
name: example-quayintegration
spec:
clusterID: openshift ﬂ
credentialsSecretName: openshift-operators/quay-integration 9
quayHostname: https://<QUAY_URL>
whitelistNamespaces:
- default
insecureRegistry: false 6

The clusterID value should be unique across the entire ecosystem. This value is optional
and defaults to openshift.

41



Red Hat Quay 3.5 Manage Red Hat Quay

Q For credentialsSecretName, replace openshift-operators/quay-integration with the
name of the namespace and the secret containing the token you created earlier.

9 Replace QUAY_URL with the hostname of your Red Hat Quay instance.

Q The whitelistNamespaces is optional. If not used, the Bridge Operator will sync all
namespaces to Red Hat Quay except the openshift prefixed project. In this example, the
white listed namespace (default) will now have an associated Red Hat Quay organization.

Use any namespace you like here.

9 If Quay is using self signed certificates, set the property insecureRegistry: true.

The result is that organizations within Red Hat Quay should be created for the related
namespaces in OpenShift.

13. Create the Quaylntegration as follows:

I $ oc create -f quay-integration.yaml

At this point a Quay integration resource is created, linking the OpenShift cluster to the Red Hat Quay
instance.

The whitelisted namespace you created should now have a Red Hat Quay organization. If you were to

use a command such as 0c hew-app to create a new application in that namespace, you would see a new
Red Hat Quay repository created for it instead of using the internal registry.

42



CHAPTER 10. REPOSITORY MIRRORING

CHAPTER 10. REPOSITORY MIRRORING

10.1. REPOSITORY MIRRORING
Red Hat Quay repository mirroring lets you mirror images from external container registries (or another
local registry) into your Red Hat Quay cluster. Using repository mirroring, you can synchronize images to
Red Hat Quay based on repository names and tags.
From your Red Hat Quay cluster with repository mirroring enabled, you can:

® Choose a repository from an external registry to mirror

® Add credentials to access the external registry

e |dentify specific container image repository names and tags to sync

® Setintervals at which a repository is synced

® Check the current state of synchronization
To use the mirroring functionality, you need to:

® Enable Repository Mirroring in the Red Hat Quay configuration

® Run arepository mirroring worker

® Create mirrored repositories

All repository mirroring configuration can be performed using the configuration tool Ul or via the Quay
API

10.2. REPOSITORY MIRRORING VERSUS GEO-REPLICATION
Quay geo-replication mirrors the entire image storage backend data between 2 or more different
storage backends while the database is shared (one Quay registry with two different blob storage
endpoints). The primary use cases for geo-replication are:

® Speeding up access to the binary blobs for geographically dispersed setups

® Guaranteeing that the image content is the same across regions
Repository mirroring synchronizes selected repositories (or subsets of repositories) from one registry to
another. The registries are distinct, with registry is separate database and image storage. The primary

use cases for mirroring are:

® |ndependent registry deployments in different datacenters or regions, where a certain subset of
the overall content is supposed to be shared across the datacenters / regions

® Automatic synchronization or mirroring of selected (whitelisted) upstream repositories from
external registries into a local Quay deployment

NOTE

Repository mirroring and geo-replication can be used simultaneously.

43



Red Hat Quay 3.5 Manage Red Hat Quay

Table 10.1. Red Hat Quay Repository mirroring versus geo-replication

Feature / Capability Geo-replication Repository mirroring

What is the feature designed to A shared, global registry Distinct, different registries
do?

What happens if replication or The remote copy is used (slower) No image is served
mirroring hasn't been completed

yet?

Is access to all storage backends Yes (all Red Hat Quay nodes) No (distinct storage)

in both regions required?

Can users push images from both Yes No
sites to the same repository?

Is all registry content and Yes No
configuration identical across all
regions (shared database)

Can users select individual No,by default Yes
namespaces or repositories to be

mirrored?

Can users apply filters to No Yes

synchronization rules?

10.3. USING REPOSITORY MIRRORING
Here are some features and limitations of Red Hat Quay repository mirroring:
® With repository mirroring, you can mirror an entire repository or selectively limit which images
are synced. Filters can be based on a comma-separated list of tags, a range of tags, or other
means of identifying tags through regular expressions.
® Once arepository is set as mirrored, you cannot manually add other images to that repository.
® Because the mirrored repository is based on the repository and tags you set, it will hold only the
content represented by the repo/tag pair. In other words, if you change the tag so that some

images in the repository no longer match, those images will be deleted.

® Only the designated robot can push images to a mirrored repository, superseding any role-
based access control permissions set on the repository.

e With a mirrored repository, a user can pull images (given read permission) from the repository
but not push images to the repository.

e Changing settings on your mirrored repository is done from the Mirrors tab on the Repositories
page for the mirrored repository you create.

® |mages are synced at set intervals, but can also be synced on demand.

44



CHAPTER 10. REPOSITORY MIRRORING

10.4. MIRRORING CONFIGURATION Ul

1. Start the Quay container in configuration mode and select the Enable Repository Mirroring
check box. If you want to require HTTPS communications and verify certificates during
mirroring, select the HTTPS and cert verification check box.

& Repository Mirroring

If enabled, scheduled mirroring of repositories from remote registries will be available.

4 Enable Repository Mirroring

A repository mirror service must be running to use this feature. Documentation on setting up and running this service can be found at Running Repository Mirroring Service.

|| Require HTTPS and verify certificates of Quay registry during mirror.

2. Validate and download the configuration file, and then restart Quay in registry mode using the
updated config file.

10.5. MIRRORING CONFIGURATION FIELDS

Table 10.2. Mirroring configuration

Field Type Description
FEATURE_REPO_MIRROR Boolean Enable or disable repository
mirroring

Default: false

REPO_MIRROR_INTERVAL Number The number of seconds between
checking for repository mirror
candidates
Default: 30

REPO_MIRROR_SERVER_HOSTNAME String Replaces the

SERVER_HOSTNAME as the
destination for mirroring.

Default: None

Example:
openshift-quay-service

REPO_MIRROR_TLS_VERIFY Boolean Require HTTPS and verify
certificates of Quay registry
during mirror.

Default: false

45



Red Hat Quay 3.5 Manage Red Hat Quay

10.6. MIRRORING WORKER

® To run the repository mirroring worker, start by running a Quay pod with the repomirror option:

$ sudo podman run -d --name mirroring-worker \
-v $QUAY/config:/conf/stack:Z \
registry.redhat.io/quay/quay-rhel8:v3.5.7 repomirror

e |f you have configured TLS communications using a certificate /root/ca.crt, then the following
example shows how to start the mirroring worker:

$ sudo podman run -d --name mirroring-worker \
-v $QUAY/config:/conf/stack:Z \
-v /root/ca.crt:/etc/pki/ca-trust/source/anchors/ca.crt \
registry.redhat.io/quay/quay-rhel8:v3.5.7 repomirror

10.7. CREATING A MIRRORED REPOSITORY

The steps shown in this section assume you already have enabled repository mirroring in the
configuration for your Red Hat Quay cluster and that you have a deployed a mirroring worker.

When mirroring a repository from an external container registry, create a new private repository.
Typically the same name is used as the target repository, for example, quay-rhel8:

@ RED HAT QUAY  EXPLORE  REPOSITORIES  TUTORIAL +- 4 quayad

& Repositories Create New Repository

Click to set repository description

o Ppublic

10.7.1. Repository mirroring settings

1. In the Settings tab, set the Repository State to Mirror:
@ RED HAT QUAY  EXPLORE  REPOSITORIES  TUTORIAL +- 4 quayad.
€ Repositories &, quayadmin /quay-rhel8 ¥
@  Repository Settings

@ User and Robot Permissions

»
D

& Events and Notifications

& No notifications have been setup for this repository.

& Repository Visibility

te is currently Mirror. The images and tags are maintained by Quay and Users can not push or modify them.

46



CHAPTER 10. REPOSITORY MIRRORING

2. Inthe Mirror tab, enter the details for connecting to the external registry, along with the tags,
scheduling and access information:

@RED HAT QUAY  EXPLORE  REPOSITORIES  TUTORI + A quayad.
€ &, quayadmin/quay-rhel8 ¥

€  Repository Mirroring

External Repository

Robot User

........

.....

3. Enter the details as required in the following fields:

® Registry Location: The external repository you want to mirror, for example,
registry.redhat.io/quay/quay-rhel8

® Tags: This field is required. You may enter a comma-separated list of individual tags or tag
patterns. (See Tag Patterns section for details.)

NOTE

In order for Quay to get the list of tags in the remote repository, one of the
following requirements must be met:

o Animage with the "latest" tag must exist in the remote repository OR

o At least one explicit tag, without pattern matching, must exist in the list
of tags that you specify

® Start Date: The date on which mirroring begins. The current date and time is used by
default.

® Sync Interval: Defaults to syncing every 24 hours. You can change that based on hours or
days.

® Robot User: Create a new robot account or choose an existing robot account to do the
mirroring.

e Username: The username for accessing the external registry holding the repository you are
mirroring.

® Password: The password associated with the Username. Note that the password cannot

include characters that require an escape character (\).

10.7.2. Advanced settings

® |nthe Advanced Settings section, configure TLS and proxy, if required:

47



Red Hat Quay 3.5 Manage Red Hat Quay

48

Verify TLS: Check this box if you want to require HTTPS and to verify certificates, when
communicating with the target remote registry.

HTTP Proxy: Identify the HTTP proxy server needed to access the remote site, if one is
required.

HTTPS Proxy: Identify the HTTPS proxy server needed to access the remote site, if one is
required.

No Proxy: List of locations that do not require proxy

10.7.3. Synchronize now

To perform an immediate mirroring operation, press the Sync Now button on the repository’s
Mirroring tab. The logs are available on the Usage Logs tab:

1l | 2 oponton

E o

& Q

When the mirroring is complete, the images will appear in the Tags tab:

€ Repostories &, quayuser / quay-rhel8 ¥

O  ReposioyTags e

Below is an example of a completed Repository Mirroring screen:



CHAPTER 10. REPOSITORY MIRRORING

— &, quayadmin/quay-rhel8 ¢

©  Repository Mirroring

......

nnnnn

nnnnnnnnnnnnnn

10.8. EVENT NOTIFICATIONS FOR MIRRORING
There are three notification events for repository mirroring:

® Repository Mirror Started

® Repository Mirror Success

® Repository Mirror Unsuccessful

The events can be configured inside the Settings tab for each repository, and all existing notification
methods such as email, slack, Quay Ul and webhooks are supported.

10.9. MIRRORING TAG PATTERNS

As noted above, at least one Tag must be explicitly entered (ie. not a tag pattern) or the tag "latest"
must exist in the report repository. (The tag "latest” will not be synced unless specified in the tag list.).
This is required for Quay to get the list of tags in the remote repository to compare to the specified list
to mirror.

10.9.1. Pattern syntax

Pattern Description

* Matches all characters

? Matches any single character
[seq] Matches any character in seq
[lseq] Matches any character not in seq

10.9.2. Example tag patterns

49



Red Hat Quay 3.5 Manage Red Hat Quay

Example Pattern Example Matches

v3* v32,v3.1,v3.2, v3.2-4beta, v3.3
v3.* v3.1,v3.2, v3.2-4beta

v3.? v3.1,v3.2,v3.3

v3.[12] v3.1,v3.2

v3.[12]* v3.1,v3.2,v3.2-4beta

v3.[1]* v3.2,v3.2-4beta, v3.3

10.10. WORKING WITH MIRRORED REPOSITORIES

Once you have created a mirrored repository, there are several ways you can work with that repository.
Select your mirrored repository from the Repositories page and do any of the following:

e Enable/disable the repository. Select the Mirroring button in the left column, then toggle the
Enabled check box to enable or disable the repository temporarily.

® Check mirror logs To make sure the mirrored repository is working properly, you can check the
mirror logs. To do that, select the Usage Logs button in the left column. Here's an example:

& Repositaries & johnjones/ubi7repo T¢
Usage Logs From 8/9/19 to 8/16/19 dil | & Ewportlogs
‘5 @®Grouped O Stacked @ Changed Repositary Mirar Repositary Mirtor sync success @ Creats Repositary
Started Repository Miror
2
D :
2
1
il
1
7~ 1
oSy
1
o '
Q
Q
08i09 0810 0811 0812 0813 08/14 0815 08116
Showing & matchinglogs | Filter Log:

Mirror finished successfullyfor ' registry.access. redhat. com/ubi?/ubi-minimal' with tag pattern 'latest' Fri, Aug 16, 2019 10:4% AM (anonymous) (Mo data)

Mirror started for ' registry.access. redhat. com/ubi7/ubi-minimal' with tag pattern 'latest' Fri, Aug 16, 2019 10:4% AM (anonymous) (Mo data)

@ Immediate mirror scheduled Fri, Aug 16, 2019 10:48 AM quay (Mo data)

Mirror finished successfullyfor ' registry. access. redhat. com/ubi7/ubi-minimal' with tag pattern 'latest' Fri, Aug 16, 2019 10:18 AM (anonymaous) (Mo data)

Mirror started for ' registry.access. redhat. com/ubi7/ubi-minimal' with tag pattern 'latest' Fri, Aug 16, 2019 10: 18 AM (anonymous) (Mo data)

@ CreateRepository quay /& ubiZminimal Fri, Aug 16, 2019 10:01 AM quay (Mo data)

Load More Logs

50



CHAPTER 10. REPOSITORY MIRRORING

® Sync mirror now: To immediately sync the images in your repository, select the Sync Now
button.

® Change credentials: To change the username and password, select DELETE from the
Credentials line. Then select None and add the username and password needed to log into the
external registry when prompted.

® Cancel mirroring: To stop mirroring, which keeps the current images available but stops new
ones from being synced, select the CANCEL button.

® Setrobot permissions: Red Hat Quay robot accounts are named tokens that hold credentials
for accessing external repositories. By assigning credentials to a robot, that robot can be used
across multiple mirrored repositories that need to access the same external registry.
You can assign an existing robot to a repository by going to Account Settings, then selecting the
Robot Accounts icon in the left column. For the robot account, choose the link under the
REPOSITORIES column. From the pop-up window, you can:

o Check which repositories are assigned to that robot.

o Assign read, write or Admin privileges to that robot from the PERMISSION field shown in
this figure:

Set permissions for ga johnjones+mirrorrobo

Select repositoriesin 2 johnjones:

v - REPOSITORY NAME

v 5 ubiZrepo

® Change robot credentials: Robots can hold credentials such as Kubernetes secrets, Docker

login information, and Mesos bundles. To change robot credentials, select the Options gear on
the robot’s account line on the Robot Accounts window and choose View Credentials. Add the
appropriate credentials for the external repository the robot needs to access.

Credentials for johnjones+mirrorrobo

Robot Token Username & Robot Token:

e — johnjones+mirrorrobo

~ ANRIHERYXUNLIOS0OWETEHMDREMES MPZUA0S3YFD2 1KO1MIDCDX02 3EQKTNS QXEK
rkt Configuration

Docker Login Regenerate Token:

Click the link below to regenerate the token for this robot. Note that all existing logins of this robot account will become invalid
Docker Configuration
Regenerate Token

2 ¢ ¢ 5 O ¢

Mesos Credentials

® Check and change general setting Select the Settings button (gear icon) from the left column
on the mirrored repository page. On the resulting page, you can change settings associated
with the mirrored repository. In particular, you can change User and Robot Permissions, to
specify exactly which users and robots can read from or write to the repo.

51



Red Hat Quay 3.5 Manage Red Hat Quay

10.11. REPOSITORY MIRRORING RECOMMENDATIONS

52

Repository mirroring pods can run on any node including other nodes where Quay is already
running

Repository mirroring is scheduled in the database and run in batches. As a result, more workers
could mean faster mirroring, since more batches will be processed.

The optimal number of mirroring pods depends on:

o The total number of repositories to be mirrored
o The number of images and tags in the repositories and the frequency of changes
o Parallel batches

You should balance your mirroring schedule across all mirrored repositories, so that they do not
all start up at the same time.

For a mid-size deployment, with approximately 1000 users and 1000 repositories, and with
roughly 100 mirrored repositories, it is expected that you would use 3-5 mirroring pods, scaling
up to 10 if required.



R 11. BACKING UP AND RESTORING RED HAT QUAY ON AN OPENSHIFT CONTAINER PLATFORM DEPLOYMENT

CHAPTER 11. BACKING UP AND RESTORING RED HAT QUAY
ON AN OPENSHIFT CONTAINER PLATFORM DEPLOYMENT

Use the content within this section to back up and restore Red Hat Quay on an OpenShift Container
Platform deployment.

11.1. BACKING UP RED HAT QUAY

This procedure is exclusively for OpenShift Container Platform and NooBaa deployments.

Prerequisites

® A Red Hat Quay deployment on OpenShift Container Platform.

Procedure

1. Backup the QuayRegistry custom resource by exporting it:

$ oc get quayregistry <quay-registry-name> -n <quay-namespace> -0 yaml > quay-
registry.yaml

2. Edit the resulting quayregistry.yaml and remove the status section and the following metadata
fields:

metadata.creationTimestamp
metadata.finalizers
metadata.generation
metadata.resourceVersion
metadata.uid

3. Backup the managed keys secret:

NOTE

If you are running a version older than Red Hat Quay 3.7.0, this step can be
skipped. Some secrets are automatically generated while deploying Quay for the
first time. These are stored in a secret called <quay-registry-name>-quay-
registry-managed-secret-keys in the QuayRegistry namespace.

$ oc get secret -n <quay-namespace> <quay-registry-name>-quay-registry-managed-secret-
keys -0 yaml > managed-secret-keys.yaml

4. Edit the the resulting managed-secret-keys.yaml file and remove all owner references. Your
managed-secret-keys.yaml file should look similar to the following:

apiVersion: vi

kind: Secret

type: Opaque

metadata:
name: <quayname>-quay-registry-managed-secret-keys
namespace: <quay-namespace>

data:

53



Red Hat Quay 3.5 Manage Red Hat Quay

CONFIG_EDITOR_PW: <redacted>
DATABASE_SECRET_KEY: <redacted>
DB_ROOT_PW: <redacted>

DB_URI: <redacted>

SECRET_KEY: <redacted>
SECURITY_SCANNER_V4 PSK: <redacted>

All information under the data property should remain the same.

Backup the current Quay configuration:

$ oc get secret -n <quay-namespace> $(oc get quayregistry <quay-registry-name> -n
<quay-namespace> -0 jsonpath="'{.spec.configBundleSecret}') -o yaml > config-bundle.yaml

Backup the /conf/stack/config.yaml file mounted inside of the Quay pods:

I $ oc exec -it quay-pod-name -- cat /conf/stack/config.yaml > quay-config.yaml

Scale down the Quay the Quay Operator:

$ oc scale --replicas=0 deployment $(oc get deployment -n <quay-operator-namespace>
lawk '/*quay-operator/ {print $1}') -n <quay-operator-namespace>

. Scale down the Quay namespace:

$ oc scale --replicas=0 deployment $(oc get deployment -n <quay-namespace> - quay-
component=quay -o jsonpath="{.items[0].metadata.name}') -n <quay-namespace>

Wait for the registry-quay-app pods to disappear. You can check their status by running the
following command:

I $ oc get pods -n <quay-namespace>

Example output:

registry-quay-config-editor-77847fc4f5-nsbbv  1/1  Running 0 Imis
registry-quay-database-66969cd859-n2ssm 1/1 Running 0 6d1h
registry-quay-mirror-758fc68ff7-5wxIp 1/1 Running 0 8m29s
registry-quay-mirror-758fc68ff7-1bl82 1/1 Running 0 8m29s
registry-quay-redis-7cc5f6¢c977-95698 1/1 Running 0 5d21h

. ldentify the Quay PostgreSQL pod name:

$ oc get pod -I quay-component=postgres -n <quay-namespace> -0
jsonpath='{.items[0].metadata.name}'

Exampe output:

I quayregistry-quay-database-59f54bb7-58xs7

54

1.

Obtain the Quay database name:



R 11. BACKING UP AND RESTORING RED HAT QUAY ON AN OPENSHIFT CONTAINER PLATFORM DEPLOYMENT

$ oc -n <quay-namespace> rsh $(oc get pod -l app=quay -o NAME -n <quay-namespace>
|head -n 1) cat /conf/stack/config.yamljawk -F"/" '/ADB_URI/ {print $4}'
quayregistry-quay-database

2. Download a backup database:

$ oc exec quayregistry-quay-database-59f54bb7-58xs7 -- /usr/bin/pg_dump -C quayregistry-
quay-database > backup.sql

3. Decode and export the AWS_ACCESS_KEY_ID:

$ export AWS_ACCESS_KEY_ID=$(oc get secret -| app=noobaa -n <quay-namespace> -0
jsonpath='{.items[0].data.AWS_ACCESS_KEY_ID}' |base64 -d)
4. Decode and export the AWS_SECRET_ACCESS_KEY_ID:

$ export AWS_SECRET_ACCESS_KEY=%(oc get secret -| app=noobaa -n <quay-
namespace> -0 jsonpath='{.items[0].data.AWS_SECRET_ACCESS_KEY}' |base64 -d)

5. Create a new directory and copy all blobs to it:

I $ mkdir blobs

$ aws s3 sync --no-verify-ssl --endpoint https://$(oc get route s3 -n openshift-storage -o
jsonpath="{.spec.host}') s3://$(oc get cm -I app=noobaa -n <quay-namespace> -0
jsonpath='{.items[0].data.BUCKET_NAMEY}") ./blobs

NOTE
You can also use rclone or sc3md instead of the AWS command line utility.

1. Scale up the Quay the Quay Operator:

$ oc scale --replicas=1 deployment $(oc get deployment -n <quay-operator-namespace>
lawk '/*quay-operator/ {print $1}') -n <quay-operator-namespace>

2. Scale up the Quay namespace:

I $ oc scale --replicas=1 deployment $(oc get deployment -n <quay-namespace> - quay-
component=quay -o jsonpath='{.items[0].metadata.name}') -n <quay-namespace>
3. Check the status of the Operator:
I $ oc get quayregistry <quay-registry-name> -n <quay-namespace> -o yam|
Example output:
apiVersion: quay.redhat.com/v1

kind: QuayRegistry
metadata:

55


https://rclone.org/
https://s3tools.org/s3cmd

Red Hat Quay 3.5 Manage Red Hat Quay

name: example-registry

namespace: <quay-namespace>
spec:

components:

- kind: quay
managed: true

- kind: clairpostgres
managed: true
configBundleSecret: init-config-bundle-secret
status:
configEditorCredentialsSecret: example-registry-quay-config-editor-credentials-fg2gdgtm24
configEditorEndpoint: https://example-registry-quay-config-editor-quay-
enterprise.apps.docs.gcp.quaydev.org
currentVersion: 3.7.0
lastUpdated: 2022-05-11 13:28:38.199476938 +0000 UTC
registryEndpoint: https://example-registry-quay-quay-enterprise.apps.docs.gcp.quaydev.org
0 5d21h

11.2. RESTORING RED HAT QUAY

This procedure is used to restore Red Hat Quay when the Red Hat Quay Operator manages the
database. It should be performed after a backup of your Quay registry has been performed.

Prerequisites
® Red Hat Quay is deployed on OpenShift Container Platform using the Quay Operator.

® Your Red Hat Quay database has been backed up.

Procedure

1. Restore the backed up Quay configuration and the randomly generated keys:

I $ oc create -f ./config-bundle.yaml

I $ oc create -f ./managed-secret-keys.yaml

NOTE

If you receive the error Error from server (AlreadyExists): error when creating
"./config-bundle.yaml": secrets "config-bundle-secret™ already exists, you
must delete your exist resource with $ oc delete Secret config-bundle-secret -
h <quay-namespace> and recreate it with $ oc create -f ./config-bundle.yaml.

2. Restore the QuayRegistry custom resource:
I $ oc create -f ./quay-registry.yaml

3. Scale down the Quay the Quay Operator:

56



R 11. BACKING UP AND RESTORING RED HAT QUAY ON AN OPENSHIFT CONTAINER PLATFORM DEPLOYMENT

$ oc scale --replicas=0 deployment $(oc get deployment -n <quay-operator-namespace>
lawk '/*quay-operator/ {print $1}') -n <quay-operator-namespace>

. Scale down the Quay namespace:

$ oc scale --replicas=0 deployment $(oc get deployment -n <quay-namespace> - quay-
component=quay -o jsonpath="{.items[0].metadata.name}') -n <quay-namespace>

Identify your Quay database pod:

I $ oc get pod - quay-component=postgres -n <quay-namespace> -0
jsonpath='{.items[0].metadata.name}'

Example output:

I quayregistry-quay-database-59f54bb7-58xs7

Upload the backup by copying it from the local environment and into the pod:

$ oc cp ./backup.sql -n <quay-namespace> registry-quay-database-66969cd859-
n2ssm:/tmp/backup.sql

Open aremote terminal to the database:

I $ oc rsh -n <quay-namespace> registry-quay-database-66969cd859-n2ssm
Enter psql:

I bash-4.4$ psql

You can list the database by running the following command:

I postgres=#\|

Example output:

List of databases

Name Owner | Encoding | Collate | Ctype | Access
privileges
+ + + + +
postgres | postgres | UTF8 | en_US.utf8 | en_US.utf8 |

quayregistry-quay-database | quayregistry-quay-database | UTF8 | en_US.utf8 |
en_US.utf8 |

. Drop the database:

I postgres=# DROP DATABASE "quayregistry-quay-database";

Example output:

I DROP DATABASE

57



Red Hat Quay 3.5 Manage Red Hat Quay

58

1.

12.

13.

14.

15.

16.

17.

18.

19.

Exit the postgres CLI to re-enter bash-4.4:

|

Redirect your PostgreSQL database to your backup database:
I sh-4.4$ psql < /tmp/backup.sql

Exit bash:

I sh-4.4$ exit

Export the AWS_ACCESS_KEY_ID:

$ export AWS_ACCESS_KEY_ID=$(oc get secret -| app=noobaa -n <quay-namespace> -0
jsonpath='{.items[0].data.AWS_ACCESS_KEY_ID}' |base64 -d)

Export the AWS_SECRET_ACCESS_KEY:

$ export AWS_SECRET_ACCESS_KEY=%(oc get secret -| app=noobaa -n <quay-
namespace> -o jsonpath='{.items[0].data.AWS_SECRET_ACCESS_KEY}' |base64 -d)

Upload all blobs to the bucket by running the following command:

$ aws s3 sync --no-verify-ssl --endpoint https://$(oc get route s3 -n openshift-storage -o
jsonpath="{.spec.host}') ./blobs s3://$(oc get cm -I app=noobaa -n <quay-namespace> -0
jsonpath='{.items[0].data.BUCKET_NAME}")

Scale up the Quay the Quay Operator:

$ oc scale --replicas=1 deployment $(oc get deployment -n <quay-operator-namespace>
lawk '/Aquay-operator/ {print $1}') -n <quay-operator-namespace>
Scale up the Quay namespace:

$ oc scale --replicas=1 deployment $(oc get deployment -n <quay-namespace> - quay-
component=quay -o jsonpath='{.items[0].metadata.name}') -n <quay-namespace>

Check the status of the Operator and ensure it has come back online:
I $ oc get quayregistry -n <quay-namespace> <registry-name> -o yaml|
Example output:

apiVersion: quay.redhat.com/v1
kind: QuayRegistry
metadata:

name: example-registry
namespace: quay-enterprise



R 11. BACKING UP AND RESTORING RED HAT QUAY ON AN OPENSHIFT CONTAINER PLATFORM DEPLOYMENT

spec:
components:
- kind: quay
managed: true

- kind: clairpostgres
managed: true
configBundleSecret: init-config-bundle-secret
status:
configEditorCredentialsSecret: example-registry-quay-config-editor-credentials-fg2gdgtm24
configEditorEndpoint: hitps://example-registry-quay-config-editor-quay-
enterprise.apps.docs.gcp.quaydev.org
currentVersion: 3.7.0
lastUpdated: 2022-05-11 13:28:38.199476938 +0000 UTC
registryEndpoint: https://example-registry-quay-quay-enterprise.apps.docs.gcp.quaydev.org
0 5d21h

59



Red Hat Quay 3.5 Manage Red Hat Quay

CHAPTER 12. LDAP AUTHENTICATION SETUP FOR RED HAT
QUAY

The Lightweight Directory Access Protocol (LDAP) is an open, vendor-neutral, industry standard
application protocol for accessing and maintaining distributed directory information services over an
Internet Protocol (IP) network. Red Hat Quay supports using LDAP as an identity provider.

12.1. CONSIDERATIONS PRIOR TO ENABLING LDAP

12.1.1. Existing Quay deployments

Conflicts between user names can arise when you enable LDAP for an existing Quay deployment that
already has users configured. Consider the scenario where a particular user, alice, was manually created
in Quay prior to enabling LDAP. If the user name alice also exists in the LDAP directory, Quay will create
a new user alice-1 when alice logs in for the first time using LDAP, and will map the LDAP credentials to
this account. This might not be want you want, for consistency reasons, and it is recommended that you
remove any potentially conflicting local account names from Quay prior to enabling LDAP.

12.1.2. Manual User Creation and LDAP authentication

When Quay is configured for LDAP, LDAP-authenticated users are automatically created in Quay’s
database on first log in, if the configuration option FEATURE_USER_CREATION is set to true. If this
option is set to false, the automatic user creation for LDAP users will fail and the user is not allowed to
log in. In this scenario, the superuser needs to create the desired user account first. Conversely, if
FEATURE_USER_CREATION is set to true, this also means that a user can still create an account from
the Quay login screen, even if there is an equivalent user in LDAP.

12.2. SET UP LDAP CONFIGURATION

In the config tool, locate the Authentication section and select “"LDAP” from the drop-down menu.
Update LDAP configuration fields as required.

28 Internal Authentication

Authentication for the registry can be handled by either the registry itself, LDAP, Keystone, or external JWT endpoint.

Additional external authentication providers (such as GitHub) can be used in addition for login into the UI.

It is highly recommended to require encrypted client passwords. External passwords used in the Docker client will be stored in plaintext! Enable this requirement now.

Authentication: LDAP

® Hereis an example of the resulting entry in the config.yaml file:

I AUTHENTICATION_TYPE: LDAP

12.2.1. Full LDAP URI

60



CHAPTER 12. LDAP AUTHENTICATION SETUP FOR RED HAT QUAY

LDAP URI: Idap://117.17.8.101

Custom TLS Please select a file to upload as Idap.crt: | Choose File | No file chosen
Certificate:

Allow insecure: Allow fallback to non-TLS connections

e The full LDAP URI, including the Idap;// or Idaps;// prefix.
e A URI beginning with /daps;// will make use of the provided SSL certificate(s) for TLS setup.

® Hereis an example of the resulting entry in the config.yaml file:

I LDAP_URI: Idaps://Idap.example.org

12.2.2. Team Synchronization

Team synchronization: Enable Team Synchronization Support

® |f enabled, organization administrators who are also superusers can set teams to have their
membership synchronized with a backing group in LDAP.

Team synchronization: ¥/ Enable Team Synchronization Support

Resynchronization duration: 60m
30m, 1h 1d

Self-service team syncing

setup: If enabled, this feature will allow *any organization administrator* to read the membership of any LDAP group.

Allow non-superusers to enable and manage team syncing

® The resynchronization duration is the period at which a team must be re-synchronized. Must be
expressed in a duration string form: 30m, 1h, 1d.

® Optionally allow non-superusers to enable and manage team syncing under organizations in
which they are administrators.

® Hereis an example of the resulting entries in the config.yaml file:

FEATURE_TEAM_SYNCING: true
TEAM_RESYNC_STALE_TIME: 60m
FEATURE_NONSUPERUSER_TEAM_SYNCING_SETUP: true

12.2.3. Base and Relative Distinguished Names

61



Red Hat Quay 3.5 Manage Red Hat Quay

Base DN: dc=example,dc=org

User Relative DN: ou=NYC

Secondary User * O0U=SFO  Remove

Relative DNs:
Add

® A Distinguished Name path which forms the base path for looking up all LDAP records. Example:
dc=my,dc=domain,dc=com

e Optional list of Distinguished Name path(s) which form the secondary base path(s) for looking
up all user LDAP records, relative to the Base DN defined above. These path(s) will be tried if
the user is not found via the primary relative DN.

® User Relative DN is relative to BaseDN. Example: ou=NYC not ou=NYC,dc=example,dc=org

® Multiple “Secondary User Relative DNs” may be entered if there are multiple Organizational
Units where User objects are located at. Simply type in the Organizational Units and click on Add
button to add multiple RDNs. Example: ou=Users,ou=NYC and ou=Users,ou=SFO

® The "User Relative DN" searches with subtree scope. For example, if your Organization has
Organizational Units NYC and SFO under the Users OU (ou=SFO,ou=Users and
ou=NYC,ou=Users), Red Hat Quay can authenticate users from both the NYC and SFO
Organizational Units if the User Relative DN is set to Users (ou=Users).

® Hereis an example of the resulting entries in the config.yaml file:

LDAP_BASE_DN:

- dc=example

- dc=com

LDAP_USER_RDN:

- ou=users
LDAP_SECONDARY_USER_RDNS:
- ou=bots

- ou=external

12.2.4. Additional User Filters

62

Additional User Filter

NOTE: Thi: is added d lookups, so be VERY ful with th ify.
Expression: is query is added unescaped to user lookups, so be careful wi e query you specify.

(memberof=cn=developers,ou=groups,dc=example,dc=org)

base_dn

e |f specified, the additional filter used for all user lookup queries. Note that all Distinguished
Names used in the filter must be full paths; the Base DN is not added automatically here. Must
be wrapped in parens. Example: (&(someFirstField=someValue)



CHAPTER 12. LDAP AUTHENTICATION SETUP FOR RED HAT QUAY

(someOtherField=someOtherValue))

® Hereis an example of the resulting entry in the config.yaml file:

I LDAP_USER_FILTER: (memberof=cn=developers,ou=groups,dc=example,dc=com)

12.2.5. Administrator DN

Administrator DN: cn=quayenterprise,ou=svc,0u=NYC dc=example,dc=org

Administrator DN

password: Mote: This will be stored in plaintext inside the config.yaml, so setting up a dedicated account or using a password hash is highly

recommended.

® The Distinguished Name and password for the administrator account. This account must be able
to login and view the records for all user accounts. Example:
uid=admin,ou=employees,dc=my,dc=domain,dc=com

® The password will be stored in plaintext inside the config.yaml, so setting up a dedicated
account or using a password hash is highly recommended.

® Hereis an example of the resulting entries in the config.yaml file:

LDAP_ADMIN_DN: cn=admin,dc=example,dc=com
LDAP_ADMIN_PASSWD: changeme

12.2.6. UID and Mail attributes

UID Attribute: uid

Mail Attribute: mail

® The UID attribute is the name of the property field in LDAP user record to use as the username.
Typically "uid".

® The Mail attribute is the name of the property field in LDAP user record that stores user e-mail
address(es). Typically "mail".

e Either of these may be used during login.
® The logged in username must exist in User Relative DN.
® sAMAccountName is the UID attribute for against Microsoft Active Directory setups.

® Hereis an example of the resulting entries in the config.yaml file:

LDAP_UID_ATTR: uid
LDAP_EMAIL_ATTR: malil

63



Red Hat Quay 3.5 Manage Red Hat Quay

12.2.7. Validation

Once the configuration is completed, click on “Save Configuration Changes” button to validate the
configuration.

Validating configuration

CONFIGURATION VALIDATED

+" Configuration Validated Continue Editing

All validation must succeed before proceeding, or additional configuration may be performed by
selecting the "Continue Editing" button.

12.3. COMMON ISSUES
Invalid credentials
Administrator DN or Administrator DN Password values are incorrect

Verification of superuser %USERNAME% failed: Username not found The user either does not exist in
the remote authentication system OR LDAP auth is misconfigured.

Red Hat Quay can connect to the LDAP server via Username/Password specified in the Administrator
DN fields however cannot find the current logged in user with the UID Attribute or Mail Attribute fields
in the User Relative DN Path. Either current logged in user does not exist in User Relative DN Path, or
Administrator DN user do not have rights to search/read this LDAP path.

12.4. CONFIGURE AN LDAP USER AS SUPERUSER

Once LDAP is configured, you can log in to your Red Hat Quay instance with a valid LDAP username and
password. You are prompted to confirm your Red Hat Quay username as shown in the following figure:

Confirm Username

The username testadmin was automatically generated to conform to the Docker CLI guidelines for use as a namespace in.
Please confirm the selected username or enter a different username below:

testadmin

To attach superuser privilege to an LDAP user, modify the config.yaml file with the username. For
example:

64



CHAPTER 12. LDAP AUTHENTICATION SETUP FOR RED HAT QUAY

SUPER_USERS:
- testadmin

Restart the Red Hat Quay container with the updated config.yaml file. The next time you log in, the user
will have superuser privileges.

65



Red Hat Quay 3.5 Manage Red Hat Quay

CHAPTER 13. PROMETHEUS AND GRAFANA METRICS UNDER
RED HAT QUAY

Red Hat Quay exports a Prometheus- and Grafana-compatible endpoint on each instance to allow for
easy monitoring and alerting.

13.1. EXPOSING THE PROMETHEUS ENDPOINT

The Prometheus- and Grafana-compatible endpoint on the Red Hat Quay instance can be found at
port 9091. See Monitoring Quay with Prometheus and Grafana for details on configuring Prometheus
and Grafana to monitor Quay repository counts.

13.1.1. Setting up Prometheus to consume metrics

Prometheus needs a way to access all Red Hat Quay instances running in a cluster. In the typical setup,
this is done by listing all the Red Hat Quay instances in a single named DNS entry, which is then given to
Prometheus.

13.1.2. DNS configuration under Kubernetes

A simple Kubernetes service can be configured to provide the DNS entry for Prometheus. Details on
running Prometheus under Kubernetes can be found at Prometheus and Kubernetes and Monitoring
Kubernetes with Prometheus.

13.1.3. DNS configuration for a manual cluster

SkyDNS is a simple solution for managing this DNS record when not using Kubernetes. SkyDNS can run
on an etcd cluster. Entries for each Red Hat Quay instance in the cluster can be added and removed in
the etcd store. SkyDNS will regularly read them from there and update the list of Quay instances in the
DNS record accordingly.

66


https://prometheus.io/
https://access.redhat.com/solutions/3750281
http://kubernetes.io/docs/user-guide/services/
https://coreos.com/blog/prometheus-and-kubernetes-up-and-running.html
https://coreos.com/blog/monitoring-kubernetes-with-prometheus.html
https://github.com/skynetservices/skydns
https://github.com/coreos/etcd

CHAPTER 14. GEO-REPLICATION

CHAPTER 14. GEO-REPLICATION

Geo-replication allows multiple, geographically distributed Quay deployments to work as a single
registry from the perspective of a client or user. It significantly improves push and pull performance in a
globally-distributed Quay setup. Image data is asynchronously replicated in the background with
transparent failover / redirect for clients.

NOTE

Deploying Red Hat Quay with geo-replication on OpenShift is not supported by the
Operator.

14.1. GEO-REPLICATION FEATURES
® When geo-replication is configured, container image pushes will be written to the preferred
storage engine for that Red Hat Quay instance (typically the nearest storage backend within
the region).
e After the initial push, image data will be replicated in the background to other storage engines.
e The list of replication locations is configurable and those can be different storage backends.

® Animage pull will always use the closest available storage engine, to maximize pull performance.

e |f replication hasn’t been completed yet, the pull will use the source storage backend instead.

14.2. GEO-REPLICATION REQUIREMENTS AND CONSTRAINTS

® Asingle database, and therefore all metadata and Quay configuration, is shared across all
regions.

® Asingle Redis cache is shared across the entire Quay setup and needs to accessible by all Quay
pods.

® The exact same configuration should be used across all regions, with exception of the storage
backend, which can be configured explicitly using the
QUAY_DISTRIBUTED_STORAGE_PREFERENCE environment variable.

® Geo-Replication requires object storage in each region. It does not work with local storage or
NFS.

® FEach region must be able to access every storage engine in each region (requires a network
path).

® Alternatively, the storage proxy option can be used.

® The entire storage backend (all blobs) is replicated. This is in contrast to repository mirroring,
which can be limited to an organization or repository or image.

® All Quay instances must share the same entrypoint, typically via load balancer.

e All Quay instances must have the same set of superusers, as they are defined inside the
common configuration file.

67



Red Hat Quay 3.5 Manage Red Hat Quay

If the above requirements cannot be met, you should instead use two or more distinct Quay
deployments and take advantage of repository mirroring functionality.

14.3. GEO-REPLICATION ARCHITECTURE

Client

|

Global load balancer
or geo-aware DNS resolution for Quay and Clair

=

—
Clair RDS
instance
USEC2 EU EC2
v f ? v
Clair < > Clair
us instances instances EU
load balancer load balancer
load balancer load balancer
USEC2 EU EC2
dl
<
Quay Quay Quay - > Quay Quay Quay
instances instances instances instances instances instances
- -
N =
us EU
S3 Bucket S3 Bucket

ot

W

Quay RDS Shared Redis
instance instance

In the example shown above, Quay is running in two separate regions, with a common database and a
common Redis instance. Localized image storage is provided in each region and image pulls are served
from the closest available storage engine. Container image pushes are written to the preferred storage
engine for the Quay instance, and will then be replicated, in the background, to the other storage
engines.

14.4. ENABLE STORAGE REPLICATION
1. Scroll down to the section entitled Registry Storage.

2. Click Enable Storage Replication.

68



14.4.1.

3.

CHAPTER 14. GEO-REPLICATION

Add each of the storage engines to which data will be replicated. All storage engines to be used
must be listed.

If complete replication of all images to all storage engines is required, under each storage
engine configuration click Replicate to storage engine by default. This will ensure that all
images are replicated to that storage engine. To instead enable per-namespace replication,
please contact support.

When you are done, click Save Configuration Changes. Configuration changes will take effect
the next time Red Hat Quay restarts.

After adding storage and enabling “Replicate to storage engine by default” for Georeplications,
you need to sync existing image data across all storage. To do this, you need to oc exec (or
docker/kubectl exec) into the container and run:

# scl enable python27 bash
# python -m util.backfillreplication

This is a one time operation to sync content after adding new storage.

Run Red Hat Quay with storage preferences

Copy the config.yaml to all machines running Red Hat Quay

For each machine in each region, add a QUAY_DISTRIBUTED_STORAGE_PREFERENCE
environment variable with the preferred storage engine for the region in which the machine is
running.

For example, for a machine running in Europe with the config directory on the host available
from $QUAY/config:

$ sudo podman run -d --rm -p 80:8080 -p 443:8443 \
--name=quay \
-v $QUAY/config:/conf/stack:Z \
-e QUAY_DISTRIBUTED_STORAGE_PREFERENCE=europestorage \
registry.redhat.io/quay/quay-rhel8:v3.5.7

NOTE

The value of the environment variable specified must match the name of a
Location ID as defined in the config panel.

Restart all Red Hat Quay containers

69



Red Hat Quay 3.5 Manage Red Hat Quay

CHAPTER 15. RED HAT QUAY TROUBLESHOOTING

Common failure modes and best practices for recovery.

70

I'm receiving HTTP Status Code 429

I'm authorized but I'm still getting 403s

Base image pull in Dockerfile fails with 403

Cannot add a build trigger

Build logs are not loading

I'm receiving "Cannot locate specified Dockerfile" * Could not reach any registry endpoint
Cannot access private repositories using EC2 Container Service
Docker is returning ani/o timeout

Docker login is failing with an odd error

Pulls are failing with an odd error

| just pushed but the timestamp is wrong

Pulling Private Quay.io images with Marathon/Mesos fails


http://docs.quay.io/issues/429.html
http://docs.quay.io/issues/auth-failure.html
http://docs.quay.io/issues/base-pull-issue.html
http://docs.quay.io/issues/cannot-add-trigger.html
http://docs.quay.io/issues/cannot-load-build-logs.html
http://docs.quay.io/issues/cannot-locate-dockerfile.html
http://docs.quay.io/issues/could-not-reach-any-registry-endpoint.html
http://docs.quay.io/issues/ecs-auth-failure.html
http://docs.quay.io/issues/iotimeout.html
http://docs.quay.io/issues/odd-login-failure.html
http://docs.quay.io/issues/odd-pull-failure.html
http://docs.quay.io/issues/push-timestamp-wrong.html
http://docs.quay.io/issues/quay-mesos.html

CHAPTER 16. SCHEMA FOR RED HAT QUAY CONFIGURATION

CHAPTER 16. SCHEMA FOR RED HAT QUAY CONFIGURATION

Most Red Hat Quay configuration information is stored in the config.yaml file that is created using the
browser-based config tool when Red Hat Quay is first deployed. This chapter describes the schema of
those settings that are available to use in the " config.yaml™ file.

The following fields required (all other are optional):

AUTHENTICATION_TYPE
BUILDLOGS_REDIS
DATABASE_SECRET KEY

DB_URI

DEFAULT TAG_EXPIRATION
DISTRIBUTED_STORAGE_CONFIG
DISTRIBUTED_STORAGE_PREFERENCE
PREFERRED_URL_SCHEME
SECRET_KEY

SERVER_HOSTNAME
TAG_EXPIRATION_OPTIONS
USER_EVENTS_REDIS

® ACTION_LOG_ARCHIVE_LOCATION [string]: If action log archiving is enabled, the storage
engine in which to place the archived data.

o Example: s3_us_east

® ACTION_LOG_ARCHIVE_PATH [string]: If action log archiving is enabled, the path in storage
in which to place the archived data.

o Example: archives/actionlogs

e ACTION_LOG_ROTATION_THRESHOLD [string]: If action log archiving is enabled, the time
interval after which to rotate logs.

o Example: 30d

e ALLOW_PULLS WITHOUT_STRICT_LOGGING [boolean]: If true, pulls in which the pull audit
log entry cannot be written will still succeed. Useful if the database can fallback into a read-only
state and it is desired for pulls to continue during that time. Defaults to False.

o Example: True

e APP_SPECIFIC_TOKEN_EXPIRATION [string, null]: The expiration for external app tokens.
Defaults to None.

o Pattern: A[0-9]+(w|m|d|h|s)$

® AUTHENTICATION_TYPE [string] required: The authentication engine to use for credential
authentication.

o enum: Database, LDAP, JWT, Keystone, OIDC.
o Example: Database

o AVATAR_KIND [string]: The types of avatars to display, either generated inline (local) or
Gravatar (gravatar)

o enum:local, gravatar

71



Red Hat Quay 3.5 Manage Red Hat Quay

e BITBUCKET_TRIGGER_CONFIG ['object’, 'null']: Configuration for using BitBucket for build
triggers.

o consumer_key [string] required: The registered consumer key(client ID) for this Red Hat
Quay instance.

®  Example: 0e8dbe15c4c7630b6780

e BLACKLISTED_EMAIL_DOMAINS [array]: The array of email-address domains that is used if
FEATURE_BLACKLISTED_EMAILS is set to true.

o Example: "example.com”, "example.org"

® BLACKLIST_V2_SPEC [string]: The Docker CLI versions to which Red Hat Quay will respond
that V2 is unsupported. Defaults to <1.6.0.

o Reference:
http://pythonhosted.org/semantic_version/reference.html#semantic_version.Spec

o Example: <1.8.0
® BRANDING [object]: Custom branding for logos and URLs in the Red Hat Quay UI.
o Required: logo
o properties:
B |ogo [string]: Main logo image URL.
e Example: /static/img/quay-horizontal-color.svg
m footer_img [string]: Logo for Ul footer.
o Example: /static/img/RedHat.svg
m  footer_url[string]: Link for footer image.
e Example: https://redhat.com

e BROWSER_API_CALLS_XHR_ONLY [boolean]: If enabled, only API calls marked as being
made by an XHR will be allowed from browsers. Defaults to True.

o Example: False
® BUILDLOGS_REDIS [object] required: Connection information for Redis for build logs caching.
o HOST [string] required: The hostname at which Redis is accessible.
®  Example: my.redis.cluster
o PASSWORD [string]: The password to connect to the Redis instance.
®  Example: mypassword
o PORT [number]: The port at which Redis is accessible.

® Example: 1234

72


http://pythonhosted.org/semantic_version/reference.html#semantic_version.Spec
https://redhat.com

CHAPTER 16. SCHEMA FOR RED HAT QUAY CONFIGURATION

® CONTACT_INFO [array]: If specified, contact information to display on the contact page. If only
a single piece of contact information is specified, the contact footer will link directly.

(o}

(o}

Min Items: 1

Unique Items: True

B array item O[string]: Adds a link to send an e-mail
®m  Pattern: Amailto:(.)+$

®  Example: mailto:support@quay.io
array item 1[string]: Adds a link to visit an IRC chat room
m  Pattern: Airc://()+$

m  Example: irc://chat.freenode.net:6665/quay
array item 2[string]: Adds a link to call a phone number
m  Pattern: Mel:()+$

®  Example: tel:+1-888-930-3475

array item 3 [string]: Adds a link to a defined URL

®m  Pattern: Ahttp(s)?://(.)+$

®  Example: https://twitter.com/quayio

e DB_CONNECTION_ARGS [object]: If specified, connection arguments for the database such
as timeouts and SSL.

(o}

threadlocals [boolean] required: Whether to use thread-local connections. Should
ALWAYS be true.

autorollback [boolean] required: Whether to use auto-rollback connections. Should
ALWAYS be true.

ssl [object]: SSL connection configuration

B ca [string] required: Absolute container path to the CA certificate to use for SSL
connections.

m  Example: conf/stack/ssl-ca-cert.pem

e DATABASE_SECRET_KEY [string] required: Key used to encrypt sensitive fields within the
database. It is imperative that once set, this value is never changed. The consequence of
changing this is invalidating all reliant fields (repository mirror username and password
configurations, for example).

o Example:

40157269433064266822674401740626984898972632465622168464725100311621640999
470

® DB_URI[string] required: The URI at which to access the database, including any credentials.

o Reference: https://www.postgresql.org/docs/9.3/static/libpg-connect.htmI#AEN39495

73


irc://chat.freenode.net:6665/quay
https://twitter.com/quayio
https://www.postgresql.org/docs/9.3/static/libpq-connect.html#AEN39495

Red Hat Quay 3.5 Manage Red Hat Quay

o Example: mysql+pymysql://username:password@dns.of.database/quay

e DEFAULT_NAMESPACE_MAXIMUM_BUILD_COUNT [number, null]: If not None, the default
maximum number of builds that can be queued in a namespace.

o Example: 20

e DEFAULT_TAG_EXPIRATION [string] required: The default, configurable tag expiration time
for time machine. Defaults to 2w.

o Pattern: A[0-9]+(w|m|d|h|s)$

e DIRECT_OAUTH_CLIENTID_WHITELIST [array]: A list of client IDs of Red Hat Quay-
managed applications that are allowed to perform direct OAuth approval without user approval.

o Min Items: None
o Unique Items: True

o Reference: https://coreos.com/quay-enterprise/docs/latest/direct-oauth.html

®  array item [string]

e DISTRIBUTED_STORAGE_CONFIG [object] required: Configuration for storage engine(s) to
use in Red Hat Quay. Each key represents an unique identifier for a storage engine. The value
consists of a tuple of (key, value) forming an object describing the storage engine parameters.

o OCS/ Noobaa:

rhocsStorage:

- RHOCSStorage

- access_key: access_key_here
secret_key: secret_key_here
bucket_name: quay-datastore-9b2108a3-29f5-43f2-a9d5-2872174f9a56
hostname: s3.openshift-storage.svc.cluster.local
is_secure: 'true'
port: '443'
storage_path: /datastorage/registry

o Ceph/RadosGW Storage / Hitachi HCP

radosGWStorage:

- RadosGWStorage

- access_key: access_key_here
secret_key: secret_key_here
bucket_name: bucket_name_here
hostname: hostname_here
is_secure: 'true'
port: '443'
storage_path: /datastorage/registry

o AWS S3 Storage:

s3Storage:
- S3Storage
- host: s3.ap-southeast-2.amazonaws.com
s3_access_key: s3_access_key_here

74


https://coreos.com/quay-enterprise/docs/latest/direct-oauth.html

CHAPTER 16. SCHEMA FOR RED HAT QUAY CONFIGURATION

s3_secret_key: s3_secret_key_here
s3_bucket: s3_bucket_here
storage_path: /datastorage/registry

o Azure Storage:

azureStorage:
- AzureStorage
- azure_account_name: azure_account_name_here
azure_account_key: azure_account_key_here
azure_container: azure_container_here
sas_token: some/path/
storage_path: /datastorage/registry

o Google Cloud Storage

googleCloudStorage:
- GoogleCloudStorage
- access_key: access_key_here
secret_key: secret_key_here
bucket_name: bucket_name_here
storage_path: /datastorage/registry

o Swift Storage:

swiftStorage:

- SwiftStorage

- swift_user: swift_user_here
swift_password: swift_password_here
swift_container: swift_container_here
auth_url: https://example.org/swift/v1/quay
auth_version: 1
ca_cert_path: /conf/stack/swift.cert"
storage_path: /datastorage/registry

DISTRIBUTED_STORAGE_DEFAULT_LOCATIONS [array]: The list of storage engine(s) (by
ID in DISTRIBUTED_STORAGE_CONFIG) whose images should be fully replicated, by default,
to all other storage engines.

o  Min Items: None
o Example: s3_us_east, s3_us_west
B array item [string]

DISTRIBUTED_STORAGE_PREFERENCE [array] required: The preferred storage engine(s)
(by ID in DISTRIBUTED_STORAGE_CONFIG) to use. A preferred engine means it is first
checked for pulling and images are pushed to it.

o Min Items: None
B Example: [u’'s3_us_east', u’s3_us_west']

B array item [string]

75



Red Hat Quay 3.5 Manage Red Hat Quay

76

o preferred_url_scheme [string] required: The URL scheme to use when hitting Red Hat
Quay. If Red Hat Quay is behind SSL at all, this must be https.

B enum: http, https
®  Example: https
DOCUMENTATION_ROOT [string]: Root URL for documentation links.

ENABLE_HEALTH_DEBUG_SECRET [string, null]: If specified, a secret that can be given to
health endpoints to see full debug info when not authenticated as a superuser.

o Example: somesecrethere

EXPIRED_APP_SPECIFIC_TOKEN_GC [string, null]: Duration of time expired external app
tokens will remain before being garbage collected. Defaults to 1d.

o pattern: A[0-9]+(w|m|d|h|s)$

EXTERNAL_TLS_TERMINATION [boolean]: If TLS is supported, but terminated at a layer
before Red Hat Quay, must be true.

o Example: True

FEATURE_ACI_CONVERSION [boolean]: Whether to enable conversion to ACls. Defaults to
False.

o Example: False

FEATURE_ACTION_LOG_ROTATION [boolean]: Whether or not to rotate old action logs to
storage. Defaults to False.

o Example: False
FEATURE_ADVERTISE_V2 [boolean]: Whether the v2/ endpoint is visible. Defaults to True.

o Example: True

FEATURE_AGGREGATED_LOG_COUNT_RETRIEVAL [boolean]: Whether to allow retrieval
of aggregated log counts. Defaults to True.

o Example: True

FEATURE_ANONYMOUS_ACCESS [boolean]: Whether to allow anonymous users to browse
and pull public repositories. Defaults to True.

o Example: True

FEATURE_APP_REGISTRY [boolean]: Whether to enable support for App repositories.
Defaults to False.

o Example: False

FEATURE_APP_SPECIFIC_TOKENS [boolean]: If enabled, users can create tokens for use by
the Docker CLI. Defaults to True.

o Example: False

FEATURE_BITBUCKET_BUILD [boolean]: Whether to support Bitbucket build triggers.
Defaults to False.



CHAPTER 16. SCHEMA FOR RED HAT QUAY CONFIGURATION

o Example: False
FEATURE_BLACKLISTED_EMAIL

FEATURE_BUILD_SUPPORT [boolean]: Whether to support Dockerfile build. Defaults to True.

o Example: True

FEATURE_CHANGE_TAG_EXPIRATION [boolean]: Whether users and organizations are
allowed to change the tag expiration for tags in their namespace. Defaults to True.

o Example: False

FEATURE_DIRECT_LOGIN [boolean]: Whether users can directly login to the Ul. Defaults to
True.

o Example: True

FEATURE_GARBAGE_COLLECTION [boolean]: Whether garbage collection of repositories is
enabled. Defaults to True.

o Example: True

FEATURE_GITHUB_BUILD [boolean]: Whether to support GitHub build triggers. Defaults to
False.

o Example: False
FEATURE_GITHUB_LOGIN [boolean]: Whether GitHub login is supported. Defaults to False.

o Example: False

FEATURE_GITLAB_BUILD[boolean]: Whether to support GitLab build triggers. Defaults to
False.

o Example: False
FEATURE_GOOGLE_LOGIN [boolean]: Whether Google login is supported. Defaults to False.

o Example: False

FEATURE_INVITE_ONLY_USER_CREATION [boolean]: Whether users being created must be
invited by another user. Defaults to False.

o Example: False

FEATURE_LIBRARY_SUPPORT [boolean]: Whether to allow for "namespace-less"” repositories
when pulling and pushing from Docker. Defaults to True.

o Example: True

FEATURE_LOG_EXPORT [boolean]: Whether to allow exporting of action logs. Defaults to
True.

o Example: True

FEATURE_MAILING [boolean]: Whether emails are enabled. Defaults to True.

o Example: True

77



Red Hat Quay 3.5 Manage Red Hat Quay

78

FEATURE_NONSUPERUSER_TEAM_SYNCING_SETUP [boolean]: If enabled, non-superusers
can setup syncing on teams to backing LDAP or Keystone. Defaults To False.

o Example: True

FEATURE_PARTIAL_USER_AUTOCOMPLETE [boolean]: If set to true, autocompletion will
apply to partial usernames. Defaults to True.

o Example: True

FEATURE_PERMANENT_SESSIONS [boolean]: Whether sessions are permanent. Defaults to
True.

o Example: True

FEATURE_PROXY_STORAGE [boolean]: Whether to proxy all direct download URLs in storage
via the registry nginx. Defaults to False.

o Example: False

FEATURE_PUBLIC_CATALOG [boolean]: If set to true, the _catalog endpoint returns public
repositories. Otherwise, only private repositories can be returned. Defaults to False.

o Example: False

FEATURE_RATE_LIMITS [boolean]: Whether to enable rate limits on APl and registry
endpoints. Defaults to False.

o Example: False

FEATURE_READER_BUILD_LOGS [boolean]: If set to true, build logs may be read by those
with read access to the repo, rather than only write access or admin access. Defaults to False.

o Example: False

FEATURE_READONLY_APP_REGISTRY [boolean]: Whether to App repositories are read-
only. Defaults to False.

o Example: True

FEATURE_RECAPTCHA [boolean]: Whether Recaptcha is necessary for user login and
recovery. Defaults to False.

o Example: False
o Reference: https:;//www.google.com/recaptcha/intro/

FEATURE_REPO_MIRROR [boolean]: If set to true, enables repository mirroring. Defaults to
False.

o Example: False

FEATURE_REQUIRE_ENCRYPTED_BASIC_AUTH [boolean]: Whether non-encrypted
passwords (as opposed to encrypted tokens) can be used for basic auth. Defaults to False.

o Example: False

FEATURE_REQUIRE_TEAM_INVITE [boolean]: Whether to require invitations when adding a
user to a team. Defaults to True.


https://www.google.com/recaptcha/intro/

CHAPTER 16. SCHEMA FOR RED HAT QUAY CONFIGURATION

o Example: True

FEATURE_RESTRICTED_V1_PUSH [boolean]: If set to true, only namespaces listed in
VI_PUSH_WHITELIST support V1 push. Defaults to True.

o Example: True

FEATURE_SECURITY_NOTIFICATIONS [boolean]: If the security scanner is enabled, whether
to turn on/off security notifications. Defaults to False.

o Example: False

FEATURE_SECURITY_SCANNER [boolean]: Whether to turn on/off the security scanner.
Defaults to False.

o Reference: https://access.redhat.com/documentation/en-us/red_hat_quay/3.5/html-
single/manage_red_hat_quay/#clair-initial-setup

o Example: False

FEATURE_STORAGE_REPLICATION [boolean]: Whether to automatically replicate between
storage engines. Defaults to False.

o Example: False
FEATURE_SUPER_USERS [boolean]: Whether superusers are supported. Defaults to True.

o Example: True

FEATURE_TEAM_SYNCING [boolean]: Whether to allow for team membership to be synced
from a backing group in the authentication engine (LDAP or Keystone).

o Example: True

FEATURE_USER_CREATION [boolean]: Whether users can be created (by non-superusers).
Defaults to True.

o Example: True

FEATURE_USER_LAST_ACCESSED [boolean]: Whether to record the last time a user was
accessed. Defaults to True.

o Example: True

FEATURE_USER_LOG_ACCESS [boolean]: If set to true, users will have access to audit logs
for their namespace. Defaults to False.

o Example: True

FEATURE_USER_METADATA [boolean]: Whether to collect and support user metadata.
Defaults to False.

o Example: False

FEATURE_USERNAME_CONFIRMATION [boolean]: If set to true, users can confirm their
generated usernames. Defaults to True.

o Example: False

79


https://access.redhat.com/documentation/en-us/red_hat_quay/3.5/html-single/manage_red_hat_quay/#clair-initial-setup

Red Hat Quay 3.5 Manage Red Hat Quay

e FEATURE_USER_RENAME [boolean]: If set to true, users can rename their own namespace.
Defaults to False.

(o}

Example: True

® FRESH_LOGIN_TIMEOUT [string]: The time after which a fresh login requires users to reenter
their password

(o}

Example: 5m

e GITHUB_LOGIN_CONFIG [object, 'null']: Configuration for using GitHub (Enterprise) as an
external login provider.

(o}

(o}

Reference: https://coreos.com/quay-enterprise/docs/latest/github-auth.html

allowed_organizations [array]: The names of the GitHub (Enterprise) organizations
whitelisted to work with the ORG_RESTRICT option.

B Min Items: None
B Unique Items: True
® array item [string]

API_ENDPOINT [string]: The endpoint of the GitHub (Enterprise) API to use. Must be
overridden for github.com.

®  Example: https://api.github.com/

CLIENT_ID [string] required: The registered client ID for this Red Hat Quay instance;
cannot be shared with GITHUB_TRIGGER_CONFIG.

m  Reference: https://coreos.com/quay-enterprise/docs/latest/github-app.html
®  Example: 0e8dbe15c4c7630b6780

CLIENT_SECRET [string] required: The registered client secret for this Red Hat Quay
instance.

m  Reference: https://coreos.com/quay-enterprise/docs/latest/github-app.html
®  Example: e4a58ddd3d7408b7aec109e85564a0d153d3e846

GITHUB_ENDPOINT [string] required: The endpoint of the GitHub (Enterprise) being hit.

®  Example: https:/github.com/

ORG_RESTRICT [boolean]: If true, only users within the organization whitelist can login
using this provider.

Example: True

e GITHUB_TRIGGER_CONFIG [object, null]: Configuration for using GitHub (Enterprise) for
build triggers.

(o}

(o}

80

Reference: https://coreos.com/quay-enterprise/docs/latest/github-build.html

API_ENDPOINT [string]: The endpoint of the GitHub (Enterprise) API to use. Must be
overridden for github.com.


https://coreos.com/quay-enterprise/docs/latest/github-auth.html
https://api.github.com/
https://coreos.com/quay-enterprise/docs/latest/github-app.html
https://coreos.com/quay-enterprise/docs/latest/github-app.html
https://github.com/
https://coreos.com/quay-enterprise/docs/latest/github-build.html

CHAPTER 16. SCHEMA FOR RED HAT QUAY CONFIGURATION

®  Example: https://api.github.com/

o CLIENT_ID [string] required: The registered client ID for this Red Hat Quay instance;
cannot be shared with GITHUB_LOGIN_CONFIG.

m  Reference: https://coreos.com/quay-enterprise/docs/latest/github-app.html
®  Example: 0e8dbe15c4c7630b6780

o CLIENT_SECRET [string] required: The registered client secret for this Red Hat Quay
instance.

m  Reference: https://coreos.com/quay-enterprise/docs/latest/github-app.html
®  Example: e4a58ddd3d7408b7aec109e85564a0d153d3e846

o GITHUB_ENDPOINT [string] required: The endpoint of the GitHub (Enterprise) being hit.

m  Example: https://github.com/

o GITLAB_TRIGGER_CONFIG [object]: Configuration for using Gitlab (Enterprise) for external
authentication.

o CLIENT_ID [string] required: The registered client ID for this Red Hat Quay instance.

®  Example: 0e8dbe15c4c7630b6780

o CLIENT_SECRET [string] required: The registered client secret for this Red Hat Quay
instance.

® Example: e4a58ddd3d7408b7aec109e85564a0d153d3e846
m  gitlab_endpoint [string] required: The endpoint at which Gitlab(Enterprise) is running.

o Example: hitps:/gitlab.com

® GOOGLE_LOGIN_CONFIG [object, null]: Configuration for using Google for external
authentication

o CLIENT_ID [string] required: The registered client ID for this Red Hat Quay instance.

®  Example: 0e8dbe15c4c7630b6780

o CLIENT_SECRET [string] required: The registered client secret for this Red Hat Quay
instance.

® Example: e4a58ddd3d7408b7aecl09e85564a0d153d3e846

e GPG2_PRIVATE_KEY_FILENAME [string]: The filename of the private key used to decrypte
ACls.

o Example: /path/to/file

e GPG2_PRIVATE_KEY_NAME [string]: The name of the private key used to sign ACls.

o Example: gpg2key

e GPG2_PUBLIC_KEY_FILENAME [string]: The filename of the public key used to encrypt ACls.

o Example: /path/to/file

81


https://api.github.com/
https://coreos.com/quay-enterprise/docs/latest/github-app.html
https://coreos.com/quay-enterprise/docs/latest/github-app.html
https://github.com/
https://gitlab.com

Red Hat Quay 3.5 Manage Red Hat Quay

82

HEALTH_CHECKER [string]: The configured health check.

o Example: 'RDSAwareHealthCheck’', {'access_key': 'foo’, 'secret_key': 'bar'})

JWT_AUTH_ISSUER [string]: The endpoint for JWT users.
o Example: http://192.168.99.101:6060
o Pattern: Ahttp(s)?://(.)+$
JWT_GETUSER_ENDPOINT [string]: The endpoint for JWT users.
o Example: http://192.168.99.101:6060
o Pattern: Ahttp(s)?://(.)+$
JWT_QUERY_ENDPOINT [string]: The endpoint for JWT queries.
o Example: http://192.168.99.101:6060
o Pattern: Ahttp(s)?://(.)+$
JWT_VERIFY_ENDPOINT [string]: The endpoint for JWT verification.
o Example: http://192.168.99.101:6060
o Pattern: Ahttp(s)?://(.)+$
LDAP_ADMIN_DN [string]: The admin DN for LDAP authentication.
LDAP_ADMIN_PASSWD [string]: The admin password for LDAP authentication.

LDAP_ALLOW_INSECURE_FALLBACK [boolean]: Whether or not to allow SSL insecure
fallback for LDAP authentication.

LDAP_BASE_DN [string]: The base DN for LDAP authentication.
LDAP_EMAIL_ATTR [string]: The email attribute for LDAP authentication.
LDAP_UID_ATTR [string]: The uid attribute for LDAP authentication.
LDAP_URI [string]: The LDAP URI.

LDAP_USER_FILTER [string]: The user filter for LDAP authentication.
LDAP_USER_RDN [array]: The user RDN for LDAP authentication.
LOGS_MODEL [string]: Logs model for action logs.

o enum: database, transition_reads_both_writes_es, elasticsearch

o Example: database

LOGS_MODEL_CONFIG [object]: Logs model config for action logs
o elasticsearch_config[object]: Elasticsearch cluster configuration

B access_key [string]: Elasticsearch user (or IAM key for AWS ES)


http://192.168.99.101:6060
http://192.168.99.101:6060
http://192.168.99.101:6060
http://192.168.99.101:6060

CHAPTER 16. SCHEMA FOR RED HAT QUAY CONFIGURATION

® Example: some_string
®  host [string]: Elasticsearch cluster endpoint
e Example: host.elasticsearch.example
® index_prefix [string]: Elasticsearch’s index prefix
® Example: logentry_
® index_settings [object]: Elasticsearch’s index settings
®m  use_ssl[boolean]: Use ssl for Elasticsearch. Defaults to True
® Example: True
®m secret_key [string]: Elasticsearch password (or IAM secret for AWS ES)
® Example: some_secret_string
B aws_region [string]: Amazon web service region
® Example: us-east-1
B port [number]: Elasticsearch cluster endpoint port
® Example: 1234
o kinesis_stream_config [object]: AWS Kinesis Stream configuration
B aws_secret_key [string]: AWS secret key
e Example: some_secret_key
B stream_name [string]: Kinesis stream to send action logs to
® Example: logentry-kinesis-stream
B aws_access_key [string]: AWS access key
® Example: some_access_key
® retries [number]: Max number of attempts made on a single request
® Example: 5

B read_timeout [number]: Number of seconds before timeout when reading from a
connection

® Example:5

B max_pool_connections [number]: The maximum number of connections to keep in a
connection pool

® Example: 10
B aws_region [string]: AWS region

® Example: us-east-1

83



Red Hat Quay 3.5 Manage Red Hat Quay
B connect_timeout [number]: Number of seconds before timeout when attempting to
make a connection
® Example: 5
o producer [string]: Logs producer if logging to Elasticsearch
®  enum: kafka, elasticsearch, kinesis_stream
m  Example: kafka
o kafka_config [object]: Kafka cluster configuration
®  topic [string]: Kafka topic to publish log entries to
e Example: logentry
®  bootstrap_servers [array]: List of Kafka brokers to bootstrap the client from

®  max_block_seconds [number]: Max number of seconds to block duringa send(), either
because the buffer is full or metadata unavailable

® Example: 10

® LOG_ARCHIVE_LOCATION [string]: If builds are enabled, the storage engine in which to place
the archived build logs.

o Example: s3_us_east

® | OG_ARCHIVE_PATH [string]: If builds are enabled, the path in storage in which to place the
archived build logs.

o Example: archives/buildlogs
® | OGS_MODEL [string]: Logs model for action logs.
® enum: database, transition_reads_both_writes_es, elasticsearch
® Example: database

e MAIL_DEFAULT_SENDER [string, null]: If specified, the e-mail address used as the from when
Red Hat Quay sends e-mails. If none, defaults to support@quay.io.

o Example: support@myco.com

® MAIL_PASSWORD [string, null]: The SMTP password to use when sending e-mails.
o Example: mypassword

® MAIL_PORT [number]: The SMTP port to use. If not specified, defaults to 587.
o Example: 588

® MAIL_SERVER [string]: The SMTP server to use for sending e-mails. Only required if
FEATURE_MAILING is set to true.

o Example: smtp.somedomain.com

® MAIL_USERNAME [string, 'null']: The SMTP username to use when sending e-mails.

84



CHAPTER 16. SCHEMA FOR RED HAT QUAY CONFIGURATION

o Example: myuser

MAIL_USE_TLS [boolean]: If specified, whether to use TLS for sending e-mails.

o Example: True

MAXIMUM_LAYER_SIZE [string]: Maximum allowed size of an image layer. Defaults to 20G.
o Pattern: A[0-9]+(G|M)$

o Example: 100G

PREFERRED_URL_SCHEME [string]: The URL scheme to use when hitting Red Hat Quay. If
Red Hat Quay is behind SSL at all, this must be https

o enum: http or https
o Example: https

PROMETHEUS_NAMESPACE [string]: The prefix applied to all exposed Prometheus metrics.
Defaults to quay.

o Example: myregistry

PUBLIC_NAMESPACES [array]: If a namespace is defined in the public namespace list, then it
will appear on all user’s repository list pages, regardless of whether that user is a member of the
namespace. Typically, this is used by an enterprise customer in configuring a set of "well-known"
namespaces.

o  Min Items: None
o Unique Items: True

B array item [string]

RECAPTCHA_SECRET_KEY [string]: If recaptcha is enabled, the secret key for the Recaptcha
service.

RECAPTCHA_SITE_KEY [string]: If recaptcha is enabled, the site key for the Recaptcha
service.

REGISTRY_STATE [string]: The state of the registry.
o enum: normal or read-only
o Example: read-only

REGISTRY_TITLE [string]: If specified, the long-form title for the registry. Defaults to Quay
Enterprise.

o Example: Corp Container Service

REGISTRY_TITLE_SHORT [string]: If specified, the short-form title for the registry. Defaults to
Quay Enterprise.

o Example: CCS

REPO_MIRROR_INTERVAL [number]: The number of seconds between checking for
repository mirror candidates. Defaults to 30.

85



Red Hat Quay 3.5 Manage Red Hat Quay

86

o Example: 30

REPO_MIRROR_SERVER_HOSTNAME [string]: Replaces the SERVER_HOSTNAME as the
destination for mirroring. Defaults to unset.

o Example: openshift-quay-service

REPO_MIRROR_TLS_VERIFY [boolean]: Require HTTPS and verify certificates of Quay
registry during mirror. Defaults to True.

o Example: True

SEARCH_MAX_RESULT_PAGE_COUNT [number]: Maximum number of pages the user can
paginate in search before they are limited. Defaults to 10.

o Example: 10

SEARCH_RESULTS_PER_PAGE [number]: Number of results returned per page by search
page. Defaults to 10.

o Example: 10

SECRET_KEY [string] required: Key used to encrypt sensitive fields within the database and a
run time. It is imperative that once set, this value is never changed. The consequence of
changing this is invalidating all reliant fields (encrypted password credentials, for example).

o Example:
40157269433064266822674401740626984898972632465622168464725100311621640999
470

SECURITY_SCANNER_ENDPOINT [string]: The endpoint for the security scanner.
o Pattern: Ahttp(s)?://(.)+$
o Example: http://192.168.99.101:6060

SECURITY_SCANNER_INDEXING_INTERVAL [number]: The number of seconds between
indexing intervals in the security scanner. Defaults to 30.

o Example: 30

SECURITY_SCANNER_NOTIFICATIONS [boolean]: Whether or not to the security scanner
notification feature

o Example: false

SECURITY_SCANNER_V4_ENDPOINT [string]: The endpoint for the V4 security scanner.
o Pattern: Ahttp(s)?://(.)+$
o Example: http://192.168.99.101:6060

SECURITY_SCANNER_V4_PSK [string]: The generated pre-shared key (PSK) for Clair.

SERVER_HOSTNAME [string] required: The URL at which Red Hat Quay is accessible, without
the scheme.

o Example: quay.io


http://192.168.99.101:6060
http://192.168.99.101:6060

CHAPTER 16. SCHEMA FOR RED HAT QUAY CONFIGURATION
SESSION_COOKIE_SECURE [boolean]: Whether the secure property should be set on session
cookies. Defaults to False. Recommended to be True for all installations using SSL.

o Example: True
o Reference: https://en.wikipedia.org/wiki/Secure_cookies

SSL_CIPHERS [array]: If specified, the nginx-defined list of SSL ciphers to enabled and
disabled.

o Example: CAMELLIA, !3DES

SSL_PROTOCOLS [array]: If specified, nginx is configured to enabled a list of SSL protocols
defined in the list. Removing an SSL protocol from the list disables the protocol during Red Hat
Quay startup.

o SSL_PROTOCOLS: ['TLSVI,' TLSVL.T, TLSV1.2"]

SUCCESSIVE_TRIGGER_FAILURE_DISABLE_THRESHOLD [number]: If not None, the
number of successive failures that can occur before a build trigger is automatically disabled.
Defaults to 100.

o Example: 50

SUCCESSIVE_TRIGGER_INTERNAL_ERROR_DISABLE_THRESHOLD [number]: If not None,
the number of successive internal errors that can occur before a build trigger is automatically
disabled. Defaults to 5.

SUPER_USERS [array]: Red Hat Quay usernames of those users to be granted superuser
privileges.

o Min Items: None
o Unique Items: True

B array item [string]

TAG_EXPIRATION_OPTIONS [array] required: The options that users can select for expiration
of tags in their namespace (if enabled).

o  Min Items: None
o array item [string]
o Pattern: A[0-9]+(w|m|d|h|s)$

TEAM_RESYNC_STALE_TIME [string]: If team syncing is enabled for a team, how often to
check its membership and resync if necessary (Default: 30m).

o Pattern: A[0-9]+(w|m|d|h|s)$
o Example: 2h

USERFILES_LOCATION [string]: ID of the storage engine in which to place user-uploaded files

o Example: s3_us_east

USERFILES_PATH [string]: Path under storage in which to place user-uploaded files

87


https://en.wikipedia.org/wiki/Secure_cookies

Red Hat Quay 3.5 Manage Red Hat Quay

o Example: userfiles

e USER_EVENTS_REDIS [object] required: Connection information for Redis for user event
handling.

o HOST [string] required: The hostname at which Redis is accessible.
®  Example: my.redis.cluster

o PASSWORD [string]: The password to connect to the Redis instance.
®  Example: mypassword

o PORT [number]: The port at which Redis is accessible.
® Example: 1234

o CONSUMER_SECRET [string] required: The registered consumer secret(client secret) for
this Red Hat Quay instance

® Example: e4a58ddd3d7408b7aecl09e85564a0d153d3e846
® USERFILES_LOCATION [string]: ID of the storage engine in which to place user-uploaded files.
o Example: s3_us_east
® USERFILES_PATH [string]: Path under storage in which to place user-uploaded files.
o Example: userfiles

e USER_RECOVERY_TOKEN_LIFETIME [string]: The length of time a token for recovering a
user accounts is valid. Defaults to 30m.

o Example: 10m
o Pattern: A[0-9]+(w|m|d|h|s)$

® V1_PUSH_WHITELIST [array]: The array of namespace names that support V1 push if
FEATURE_RESTRICTED_V1_PUSH is set to true.

o Example: some, namespaces
e V2 PAGINATION_SIZE [number]: The number of results returned per page in V2 registry APIs.
o Example: 100

e WEBHOOK_HOSTNAME_BLACKLIST [array]: The set of hostnames to disallow from
webhooks when validating, beyond localhost.

o Example: someexternaldomain.com

ADDITIONAL RESOURCES

88



	Table of Contents
	PREFACE
	CHAPTER 1. ADVANCED RED HAT QUAY CONFIGURATION
	1.1. USING RED HAT QUAY CONFIG TOOL TO MODIFY RED HAT QUAY
	1.1.1. Running the Config Tool from the Red Hat Quay Operator
	1.1.2. Running the Config Tool from the command line

	1.2. USING THE API TO MODIFY RED HAT QUAY
	1.3. EDITING THE CONFIG.YAML FILE TO MODIFY RED HAT QUAY
	1.3.1. Add name and company to Red Hat Quay sign-in
	1.3.2. Disable TLS Protocols
	1.3.3. Rate limit API calls
	1.3.4. Adjust database connection pooling
	1.3.4.1. Database connection arguments
	1.3.4.2. Database SSL configuration
	1.3.4.3. HTTP connection counts
	1.3.4.4. Dynamic process counts
	1.3.4.5. Environment variables
	1.3.4.6. Turning off connection pooling



	CHAPTER 2. USING THE CONFIGURATION API
	2.1. RETRIEVING THE DEFAULT CONFIGURATION
	2.2. RETRIEVING THE CURRENT CONFIGURATION
	2.3. VALIDATING CONFIGURATION USING THE API
	2.4. DETERMINING THE REQUIRED FIELDS

	CHAPTER 3. GETTING RED HAT QUAY RELEASE NOTIFICATIONS
	CHAPTER 4. USING SSL TO PROTECT CONNECTIONS TO RED HAT QUAY
	4.1. INTRODUCTION TO USING SSL
	4.2. CREATE A CERTIFICATE AUTHORITY AND SIGN A CERTIFICATE
	4.2.1. Create a Certificate Authority
	4.2.2. Sign a certificate

	4.3. CONFIGURING SSL USING THE COMMAND LINE
	4.4. CONFIGURING SSL USING THE UI
	4.5. TESTING SSL CONFIGURATION USING THE COMMAND LINE
	4.6. TESTING SSL CONFIGURATION USING THE BROWSER
	4.7. CONFIGURING PODMAN TO TRUST THE CERTIFICATE AUTHORITY
	4.8. CONFIGURING THE SYSTEM TO TRUST THE CERTIFICATE AUTHORITY

	CHAPTER 5. ADDING TLS CERTIFICATES TO THE RED HAT QUAY CONTAINER
	5.1. ADD TLS CERTIFICATES TO RED HAT QUAY
	5.2. ADD CERTS WHEN DEPLOYED ON KUBERNETES

	CHAPTER 6. CONFIGURING ACTION LOG STORAGE FOR ELASTICSEARCH
	CHAPTER 7. CLAIR SECURITY SCANNING
	7.1. SETTING UP CLAIR ON A RED HAT QUAY OPENSHIFT DEPLOYMENT
	7.1.1. Deploying Via the Quay Operator
	7.1.2. Manually Deploying Clair

	7.2. SETTING UP CLAIR ON A NON-OPENSHIFT RED HAT QUAY DEPLOYMENT
	7.3. USING CLAIR
	7.4. CONFIGURING CLAIR FOR DISCONNECTED ENVIRONMENTS
	7.5. CLAIR UPDATER URLS
	7.6. ADDITIONAL INFORMATION

	CHAPTER 8. SCAN POD IMAGES WITH THE CONTAINER SECURITY OPERATOR
	8.1. RUN THE CSO IN OPENSHIFT
	8.2. QUERY IMAGE VULNERABILITIES FROM THE CLI

	CHAPTER 9. INTEGRATE RED HAT QUAY INTO OPENSHIFT WITH THE BRIDGE OPERATOR
	9.1. RUNNING THE QUAY BRIDGE OPERATOR
	9.1.1. Prerequisites
	9.1.2. Setting up and configuring OpenShift and Red Hat Quay
	9.1.2.1. Red Hat Quay setup
	9.1.2.2. OpenShift Setup



	CHAPTER 10. REPOSITORY MIRRORING
	10.1. REPOSITORY MIRRORING
	10.2. REPOSITORY MIRRORING VERSUS GEO-REPLICATION
	10.3. USING REPOSITORY MIRRORING
	10.4. MIRRORING CONFIGURATION UI
	10.5. MIRRORING CONFIGURATION FIELDS
	10.6. MIRRORING WORKER
	10.7. CREATING A MIRRORED REPOSITORY
	10.7.1. Repository mirroring settings
	10.7.2. Advanced settings
	10.7.3. Synchronize now

	10.8. EVENT NOTIFICATIONS FOR MIRRORING
	10.9. MIRRORING TAG PATTERNS
	10.9.1. Pattern syntax
	10.9.2. Example tag patterns

	10.10. WORKING WITH MIRRORED REPOSITORIES
	10.11. REPOSITORY MIRRORING RECOMMENDATIONS

	CHAPTER 11. BACKING UP AND RESTORING RED HAT QUAY ON AN OPENSHIFT CONTAINER PLATFORM DEPLOYMENT
	11.1. BACKING UP RED HAT QUAY
	11.2. RESTORING RED HAT QUAY

	CHAPTER 12. LDAP AUTHENTICATION SETUP FOR RED HAT QUAY
	12.1. CONSIDERATIONS PRIOR TO ENABLING LDAP
	12.1.1. Existing Quay deployments
	12.1.2. Manual User Creation and LDAP authentication

	12.2. SET UP LDAP CONFIGURATION
	12.2.1. Full LDAP URI
	12.2.2. Team Synchronization
	12.2.3. Base and Relative Distinguished Names
	12.2.4. Additional User Filters
	12.2.5. Administrator DN
	12.2.6. UID and Mail attributes
	12.2.7. Validation

	12.3. COMMON ISSUES
	12.4. CONFIGURE AN LDAP USER AS SUPERUSER

	CHAPTER 13. PROMETHEUS AND GRAFANA METRICS UNDER RED HAT QUAY
	13.1. EXPOSING THE PROMETHEUS ENDPOINT
	13.1.1. Setting up Prometheus to consume metrics
	13.1.2. DNS configuration under Kubernetes
	13.1.3. DNS configuration for a manual cluster


	CHAPTER 14. GEO-REPLICATION
	14.1. GEO-REPLICATION FEATURES
	14.2. GEO-REPLICATION REQUIREMENTS AND CONSTRAINTS
	14.3. GEO-REPLICATION ARCHITECTURE
	14.4. ENABLE STORAGE REPLICATION
	14.4.1. Run Red Hat Quay with storage preferences


	CHAPTER 15. RED HAT QUAY TROUBLESHOOTING
	CHAPTER 16. SCHEMA FOR RED HAT QUAY CONFIGURATION
	ADDITIONAL RESOURCES


