& RedHat

Red Hat Quay 3.2

Use Red Hat Quay

Use Red Hat Quay

Last Updated: 2020-04-30

Red Hat Quay 3.2 Use Red Hat Quay

Use Red Hat Quay

Legal Notice

Copyright © 2020 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Learn to use Red Hat Quay

Table of Contents

Table of Contents
[3 2 Y o P 4
CHAPTER 1. CREATING A REPOSITORY ..ottt ittt et titeeeeeeennaeeeeeannaaeeeennnnns 5
1.1. CREATING AN IMAGE REPOSITORY VIA THE Ul 5
1.2. CREATING AN IMAGE REPOSITORY VIA DOCKER 5
1.3. CREATING AN APPLICATION REPOSITORY VIA THE Ul 5
CHAPTER 2. WORKING WITH TAGS .ottt ittt ttteee e tanneeeeeennneaeeennnaeeeeennnnns 6
2.1. VIEWING AND MODIFYING TAGS 6
2.1.1. Adding a new tag to a tagged image 6
2.1.2. Moving a tag 6
2.1.3. Deleting a tag 6
2.1.4. Viewing tag history and going back in time 6
2.1.4.1. Viewing tag history 6
2.1.4.2. Going back in time 7
2.1.5. Fetching an image by tag or digest 7
2.2. TAG EXPIRATION 7
2.3. SECURITY SCANNING 8
CHAPTER 3.SETTINGUP ACUSTOMGIT TRIGGER i ittt e et eieee e 9
3.1. CREATING A TRIGGER 9
3.2. POST TRIGGER-CREATION SETUP 9
3.2.1. SSH public key access 9
3.2.2. Webhook 10
CHAPTER 4. SKIPPING A SOURCE CONTROL-TRIGGERED BUILDttt iiiiieee e, n
CHAPTER 5. REPOSITORY NOTIFICATIONS oot ittt it tttee e etnaeneeeennaanaenenns 12
5.1. REPOSITORY EVENTS 12
5.1.1. Repository Push 12
5.1.2. Dockerfile Build Queued 12
5.1.3. Dockerfile Build Started 13
5.1.4. Dockerfile Build Successfully Completed 14
5.1.5. Dockerfile Build Failed 15
5.1.6. Dockerfile Build Cancelled 16
5.1.7. Vulnerability Detected 17
5.2. NOTIFICATION ACTIONS 17
5.2.1. Quay Notification 17
5.2.2. E-mail 17
5.2.3. Webhook POST 17
5.2.4. Flowdock Notification 18
5.2.5. Hipchat Notification 18
5.2.6. Slack Notification 18
CHAPTER 6. BUILDING DO CKERFILES ... ittt ittt tttneeeeetennaeaeeannnaeeeanenns 19
6.1. VIEWING AND MANAGING BUILDS 19
6.2. MANUALLY STARTING A BUILD 19
6.3. BUILD TRIGGERS 19
6.3.1. Creating a new build trigger 19
6.3.2. Manually triggering a build trigger 19
6.3.3. Build Contexts 19
CHAPTER7.SETUP GITHUB BUILD TRIGGERS ... ittt ittt itieneeeeeeennaenaannnns 21

Red Hat Quay 3.2 Use Red Hat Quay

CHAPTER 8. AUTOMATIALLY BUILD DOCKERFILESWITHBUILDWORKERScciiiiiiiiinnnnn.
8.1. ENABLE BUILDING
8.2. SET UP THE BUILD WORKERS
8.2.1. Pull the build worker image
8.2.2. Run the build worker image
8.3.SET UP GITHUB BUILD (OPTIONAL)

CHAPTER 9. CREATING AN OAUTH APPLICATIONINGITHUB i
9.1. CREATE NEW GITHUB APPLICATION

CHAPTER 10. DOWNLOADING SQUASHED DOCKERIMAGES ...ttt iitiniiennnennnnenn,
10.1. DOWNLOADING A SQUASHED IMAGE
10.2. CAVEATS & WARNINGS
10.2.1. Prime the cache!
10.2.2. Isn't piping curl insecure?
ADDITIONAL RESOURCES

22
22
23
23
24

25
25

26
26
26
26
27
27

Table of Contents

Red Hat Quay 3.2 Use Red Hat Quay

PREFACE

Whether you deployed your own Red Hat Quay service or are using the Quay.io registry, follow
descriptions here to start using your Quay repository to store and work with images.

CHAPTER 1. CREATING A REPOSITORY

CHAPTER 1. CREATING A REPOSITORY

There are two ways to create a repository in Quay: via a docker push and via the Quay Ul. These are
essentially the same, whether you are using Quay.io or your own instance of Red Hat Quay.

1.1. CREATING AN IMAGE REPOSITORY VIA THE Ul

To create a repository in the Quay U, click the +icon in the top right of the header on any Quay page
and choose New Repository. Select Container Image Repository on the next page, choose a
namespace (only applies to organizations), enter a repository name and then click the Create
Repository button. The repository will start out empty unless a Dockerfile is uploaded as well.

1.2. CREATING AN IMAGE REPOSITORY VIA DOCKER

First, tag the repository. Here are examples for pushing images to Quay.io or your own Red Hat Quay
setup (for example, reg.example.com).

docker tag Ou123imageid quay.io/namespace/repo_name
docker tag Ou123imageid reg.example.com/namespace/repo_name

Then push to the appropriate Quay registry. For example:

docker push quay.io/namespace/repo_name
docker push reg.example.com/namespace/repo_name

1.3. CREATING AN APPLICATION REPOSITORY VIA THE Ul

To create a repository in the Quay U, click the +icon in the top right of the header on any Quay page
and choose New Repository. Select Application Repository on the next page, choose a namespace
(only applies to organizations), enter a repository name and then click the Create Repository button.
The repository will start out empty.

Red Hat Quay 3.2 Use Red Hat Quay

CHAPTER 2. WORKING WITH TAGS

Tags provide a way to identify the version of an image, as well as offering a means of naming the same
image in different ways. Besides an image’s version, an image tag can identify its uses (such as devel,
testing, or prod) or the fact that it is the most recent version (latest).

From the Tags tab of an image repository, you can view, modify, add, move, delete, and see the history

of tags. You also can fetch command-lines you can use to download (pull) a specific image (based on its
name and tag) using different commands.

2.1. VIEWING AND MODIFYING TAGS

The tags of a repository can be viewed and modified in the tags panel of the repository page, found by
clicking on the Tags tab.

Repository Tags Expanded
-~ £+ Actions ~ 1-250f287 > Filter Tags...
TAG LAST MODIFIED | SECURITY SCAN SIZE IMAGE
v latest 16 hours ago) 10 fixable 711.0 MB SHA256 9a347939468¢ A o)
master 16 hours ago) 10 fixable 711.0 MB SHA256 014514e8efdb I EA o)
dbb57f7 18 hours ago) 10 fixable 696.1 MB SHA256 2592cT71fe8f5 EA o)
3e28797 aday ago) 15 fixable 693.5 MB SHA256 0d37d281173e EA ¢)

2.1.1. Adding a new tag to a tagged image

A new tag can be added to a tagged image by clicking on the gear icon next to the tag and choosing
Add New Tag. Quay.io will confirm the addition of the new tag to the image.

2.1.2. Moving a tag

Moving a tag to a different image is accomplished by performing the same operation as adding a new
tag, but giving an existing tag name. Quay.io will confirm that you want the tag moved, rather than
added.

2.1.3. Deleting a tag

A specific tag and all its images can be deleted by clicking on the tag’s gear icon and choosing Delete
Tag. This will delete the tag and any images unique to it. Images will not be deleted until no tag
references them either directly or indirectly through a parent child relationship.

2.1.4. Viewing tag history and going back in time

2.1.4.1. Viewing tag history

To view the image history for a tag, click on the View Tags History menu item located under the
Actions menu. The page shown will display each image to which the tag pointed in the past and when it
pointed to that image.

CHAPTER 2. WORKING WITH TAGS

2.1.4.2. Going back in time

To revert the tag to a previous image, find the history line where your desired image was overwritten,
and click on the Restore link.

2.1.5. Fetching an image by tag or digest

From the Tags tab, you can view different ways of pulling images from the clients that are ready to use
those images.

1. Select a particular repository/image
2. Select Tags in the left column
3. Select the Fetch Tag icon for a particular image/tag combination
4. When the Fetch Tag pop-up appears, select the Image format box to see a drop-down menu

that shows different ways that are available to pull the image. The selections offer full command
lines for pulling a specific container image to the local system:

Fetch Tag: W latest

Image Format: (Select Image Format) e ‘

@ Docker Pull (by tag)

& Docker Pull (by digest)
é Squashed Docker Image
@ rkt Fetch

You can select to pull a regular of an image by tag name or by digest name using the docker command.
You can pull a squashed version of the image with docker by selecting Squashed Docker Image. There
is also an example for pulling the image using the rkt command. . Choose the type of pull you want, then
select Copy Command. The full command-line is copied into your clipboard. These two commands
show a docker pull by tag and by digest:

docker pull quay.io/cnegus/whatever:latest

docker pull
quay.io/cnegus/whatever@sha256:€02231a6aa8ba7f5da3859a359f99d77e371cb47e643ce78e101958
782581fb9

Paste the command into a command-line shell on a system that has the docker command and service
available, and press Enter. At this point, the container image is ready to run on your local system.

On RHEL and Fedora systems, you can substitute podman for docker to pull and run the selected
image.

2.2. TAG EXPIRATION

On the Repository Tag page there is a Ul column titled Expires that indicates when a tag will expire.
Users can set this by clicking on the time that it will expire or by clicking the Settings button (gear icon)

Red Hat Quay 3.2 Use Red Hat Quay

on the right and choosing Change Expiration. The tag will get deleted from the repository when the
expiration time is reached.

Alternatively, adding a label like quay.expires-after=20h via the Dockerfile LABEL command will cause
tags to automatically expire. The time values could be something like 1h, 2d, 3w for hour, day and weeks,
respectively.

2.3. SECURITY SCANNING

By clicking the on the vulnerability or fixable count next to a tab you can jump into the security scanning
information for that tag. There you can find which CVEs your image is susceptible to, and what
remediation options you may have available.

CHAPTER 3. SETTING UP A CUSTOM GIT TRIGGER

CHAPTER 3. SETTING UP A CUSTOM GIT TRIGGER

A Custom Git Trigger is a generic way for any git server to act as a build trigger. It relies solely on SSH
keys and webhook endpoints; everything else is left to the user to implement.

3.1. CREATING A TRIGGER

Creating a Custom Git Trigger is similar to the creation of any other trigger with a few subtle
differences:

® |tis not possible for Quay to automatically detect the proper robot account to use with the
trigger. This must be done manually in the creation process.

® There are extra steps after the creation of the trigger that must be done in order to use the
trigger. These steps are detailed below.

3.2. POST TRIGGER-CREATION SETUP

Once a trigger has been created, there are 2 additional steps requiredbefore the trigger can be used:
® Provide read access to the SSH public key generated when creating the trigger.
® Setup a webhook that POSTs to the Quay endpoint to trigger a build.

The key and the URL are both available at all times by selecting View Credentials from the gear located
in the trigger listing.

Trigger Credentials

In order to use this trigger, the following first requires action:
¢ You must give the following public key read access to the git repository.
¢ You must set your repository to POST to the following URL to trigger a build.
For more information, refer to the Custom Git Triggers documentation.
SSH Public Key:
ssh-rsa AAAAB3NzaC1lyc2EAAAADAQABAAABAQDV2pbbxUd8iilwCExfL3LMUEwze8xm3CVS

Webhook Endpoint URL:

http://%24token:NJKMIE8A2597TKBPV2W2TJ2R6VNX3X2E3ZK5I13T6 JEKRHKSSASVKD64EP(

Done

3.2.1. SSH public key access

Red Hat Quay 3.2 Use Red Hat Quay

Depending on the Git server setup, there are various ways to install the SSH public key that Quay
generates for a custom git trigger. For example, Git documentation describes a small server setup in
which simply adding the key to $HOME/.ssh/authorize_keys would provide access for builders to clone
the repository. For any git repository management software that isn't officially supported, there is
usually a location to input the key often labeled as Deploy Keys.

3.2.2. Webhook

In order to automatically trigger a build, one must POST a JSON payload to the webhook URL with the
following format:

{
"commit": "1c002dd", // required
"ref": "refs/heads/master”, // required
"default_branch": "master”, / required
"commit_info": { // optional
"url": "gitsoftware.com/repository/commits/1234567", // required
"message": "initial commit", // required
"date": "timestamp”, // required
"author": { // optional
"username": "user", // required
"avatar_url": "gravatar.com/user.png", /I required
"url": "gitsoftware.com/users/user" / required
b
"committer": { // optional
"username": "user", // required
"avatar_url": "gravatar.com/user.png", /I required
"url": "gitsoftware.com/users/user" / required
}
}
}
v NOTE

This request requires a Content-Type header containing application/json in order to be
valid.

Once again, this can be accomplished in various ways depending on the server setup, but for most cases
can be done via a post-receive git hook.

10

https://git-scm.herokuapp.com/book/en/v2/Git-on-the-Server-Getting-Git-on-a-Server
https://git-scm.herokuapp.com/book/en/v2/Customizing-Git-Git-Hooks#idp26374144

CHAPTER 4. SKIPPING A SOURCE CONTROL-TRIGGERED BUILD

CHAPTER 4. SKIPPING A SOURCE CONTROL-TRIGGERED
BUILD

To specify that a commit should be ignored by the Quay build system, add the text [skip build] or
[build skip] anywhere in the commit message.

1

Red Hat Quay 3.2 Use Red Hat Quay

CHAPTER 5. REPOSITORY NOTIFICATIONS

Quay supports adding notifications to a repository for various events that occur in the repository’s
lifecycle. To add notifications, click the Settings tab while viewing a repository and select Create
Notification. From the When this event occurs field, select the items for which you want to receive
notifications:

€ cnegus /whatever A Create repository notification

When this event occurs

Please select the event -

Push to Repository
Dockerfile Build Queued
Dockerfile Build Started

ockerfile Build Successfully Completed

Create Notification

L
®@0o
(® Dockerfile Build Failed
@r

ocker Build Cancelled

¥ Package Vulnerability Found

After selecting an event, further configure it by adding how you will be notified of that event.

NOTE

- Adding notifications requires repository admin permission.

The following are examples of repository events.

5.1. REPOSITORY EVENTS

5.1.1. Repository Push

A successful push of one or more images was made to the repository:

"name": "repository",
"repository": "dgangaia/test"”,
"namespace": "dgangaia”,
"docker_url": "quay.io/dgangaia/test"”,
"homepage": "https://quay.io/repository/dgangaia/repository",
"updated_tags": [
"latest"
]
}

5.1.2. Dockerfile Build Queued

Here is a sample response for a Dockerfile build has been queued into the build system. The response
can differ based on the use of optional attributes.

{
"build_id": "296ec063-5f86-4706-a469-f0a400bfodf2",

12

CHAPTER 5. REPOSITORY NOTIFICATIONS

"trigger_kind": "github", //Optional
"name": "test",

"repository": "dgangaia/test"”,

"namespace": "dgangaia”,

"docker_url": "quay.io/dgangaia/test"”,

"trigger_id": "38b6e180-9521-4ff7-9844-acf371340b9e", //Optional
"docker_tags": [
"master”,
"latest"
1,
"repo”: "test",

"trigger_metadata": {

"default_branch": "master”,

"commit": "b7f7d2b948aacbe844ee465122a85a9368b2b735",

"ref": "refs/heads/master”,

"git_url": "git@github.com:dgangaia/test.git”,

"commit_info": { /[Optional
"url": "https://github.com/dgangaia/test/commit/b7f7d2b948aacbe844ee465122a85a9368b2b735",
"date": "2019-03-06T12:48:24+11:00",
"message": "adding 5",

"author": { //Optional

"username": "dgangaia”,

"url": "https://github.com/dgangaia”, //Optional

"avatar_url": "https://avatarsi.githubusercontent.com/u/435942547?v=4" //Optional
13
"committer": {

"username": "web-flow",
"url": "https://github.com/web-flow",
"avatar_url": "https://avatars3.githubusercontent.com/u/198644477?v=4"
}
}
b

"is_manual": false,

"manual_user": null,

"homepage": "https://quay.io/repository/dgangaia/test/build/296ec063-5f86-4706-a469-
f0a400bfodf2"

}

5.1.3. Dockerfile Build Started

Here is an example of a Dockerfile build being started by the build system. The response can differ
based on some attributes being optional.

"build_id": "a8cc247a-a662-4fee-8dcb-7d7e822b71ba",
"trigger_kind": "github", /[Optional
"name": "test",

"repository": "dgangaia/test"”,

"namespace": "dgangaia”,

"docker_url": "quay.io/dgangaia/test"”,

"trigger_id": "38b6e180-9521-4ff7-9844-acf371340b9e", /[Optional
"docker_tags": [

"master”,

"latest"

1,

13

Red Hat Quay 3.2 Use Red Hat Quay

"build_name": "50bc599",
"trigger_metadata": { //Optional
"commit": "50bc5996d4587fd4b2d8edc4af652d4cec293c42",
"ref": "refs/heads/master”,
"default_branch": "master”,
"git_url": "git@github.com:dgangaia/test.git",
"commit_info": { /[Optional
"url": "https://github.com/dgangaia/test/commit/50bc5996d4587fd4b2d8edc4af652d4cec293c42",
"date": "2019-03-06T14:10:14+11:00",
"message": "test build",

"committer": { //Optional
"username": "web-flow",
"url": "https://github.com/web-flow", //Optional
"avatar_url": "hitps://avatars3.githubusercontent.com/u/198644477?v=4" //Optional
b
"author": { //Optional
"username": "dgangaia”,
"url": "https://github.com/dgangaia”, /[Optional
"avatar_url": "hitps://avatarsi.githubusercontent.com/u/435942547?v=4" //Optional
}
}
}

"homepage": "https://quay.io/repository/dgangaia/test/build/a8cc247a-a662-4fee-8dch-

7d7e822b71ba"

5.1.4. Dockerfile Build Successfully Completed

Here is a sample response of a Dockerfile build that has been successfully completed by the build
system.

NOTE
i This event will occur simultaneously with a Repository Push event for the built image(s)

14

"build_id": "296ec063-5f86-4706-a469-f0a400bfadf2",
"trigger_kind": "github", //Optional
"name": "test",

"repository": "dgangaia/test"”,

"namespace": "dgangaia”,

"docker_url": "quay.io/dgangaia/test"”,

"trigger_id": "38b6e180-9521-4ff7-9844-acf371340b9e", //Optional
"docker_tags": [

"master”,

"latest"

],
"build_name": "b7{7d2b",
"image_id": "sha256:0339f178f26ae24930e9ad32751d6839015109eabdf1c25b3b0f2abf8934f6ch",
"trigger_metadata": {
"commit": "b7f7d2b948aacbe844ee465122a85a9368b2b735",
"ref": "refs/heads/master”,
"default_branch": "master”,
"git_url": "git@github.com:dgangaia/test.git",

CHAPTER 5. REPOSITORY NOTIFICATIONS

"commit_info": { //Optional
"url": "https://github.com/dgangaia/test/commit/b7f7d2b948aacbe844ee465122a85a9368b2b735",
"date": "2019-03-06T12:48:24+11:00",
"message": "adding 5",

"committer": { //Optional
"username": "web-flow",
"url": "https://github.com/web-flow", /[Optional
"avatar_url": "https://avatars3.githubusercontent.com/u/198644477?v=4"

//Optional

b

"author": { /[Optional
"username”: "dgangaia”,
"url": "https://github.com/dgangaia”, //Optional

"avatar_url": "https://avatarsi.githubusercontent.com/u/43594254?v=4" //Optional
}

}

2
"homepage": "https://quay.io/repository/dgangaia/test/build/296ec063-5{86-4706-a469-

f0a400bfadf2",
"manifest_digests": [

"quay.io/dgangaia/test@sha256:2a7af5265344cc3704d5d47c4604b1efcbd227a7a6a6ff73d6e4e08a27f
d7d99",

"quay.io/dgangaia/test@sha256:569e7db1a867069835e8e97d50c96eccafde65f08ea3e0d5debaf16e25
45d9d1"

]
}

5.1.5. Dockerfile Build Failed

A Dockerfile build has failed

"build_id": "5346a21d-3434-4764-85be-5be1296f293c",

"trigger_kind": "github", //Optional

"name": "test",

"repository": "dgangaia/test"”,

"docker_url": "quay.io/dgangaia/test"”,

"error_message": "Could not find or parse Dockerfile: unknown instruction: GIT",
"namespace": "dgangaia”,

"trigger_id": "38b6e180-9521-4ff7-9844-acf371340b9e", //Optional
"docker_tags": [

"master”,

"latest"

],

"build_name": "6ae9a86",
"trigger_metadata": { //Optional
"commit": "6ae9a86930fc73dd07b02e4c5bf63ee60bei180ad",
"ref": "refs/heads/master”,
"default_branch": "master”,
"git_url": "git@github.com:dgangaia/test.git",
"commit_info": { //Optional
"url": "https://github.com/dgangaia/test/commit/6ae9a86930fc73dd07b02e4c5bf63ee60be180ad",
"date": "2019-03-06T14:18:16+11:00",

15

Red Hat Quay 3.2 Use Red Hat Quay

"message": "failed build test",

"committer": { //Optional
"username": "web-flow",
"url": "https://github.com/web-flow", /[Optional
"avatar_url": "hitps://avatars3.githubusercontent.com/u/198644477?v=4" //Optional
b
"author": { /[Optional
"username": "dgangaia”,
"url": "https://github.com/dgangaia”, //Optional
"avatar_url": "https://avatarsi.githubusercontent.com/u/435942547?v=4" //Optional
}
}
b
"homepage": "https://quay.io/repository/dgangaia/test/build/5346a21d-3434-4764-85be-
5be1296f293c"
}

5.1.6. Dockerfile Build Cancelled

A Dockerfile build was cancelled

"build_id": "cbd534c5-f1c0-4816-b4e3-55446b851e70",
"trigger_kind": "github",
"name": "test",
"repository": "dgangaia/test"”,
"namespace": "dgangaia”,
"docker_url": "quay.io/dgangaia/test"”,
"trigger_id": "38b6e180-9521-4ff7-9844-acf371340b9e",
"docker_tags": [
"master”,
"latest"

]

build_name": "cbce83c",
"trigger_metadata": {
"commit": "cbce83c04bfb59734fc42a83aab738704ba7ec4 1",
"ref": "refs/heads/master”,
"default_branch": "master”,
"git_url": "git@github.com:dgangaia/test.git",
"commit_info": {
"url": "https://github.com/dgangaia/test/commit/cbce83c04bfb59734fc42a83aab738704ba7ec4 1",
"date": "2019-03-06T14:27:53+11:00",
"message": "testing cancel build",
"committer": {
"username": "web-flow",
"url": "https://github.com/web-flow",
"avatar_url": "hitps://avatars3.githubusercontent.com/u/198644477?v=4"
b
"author": {
"username”: "dgangaia”,
"url": "https://github.com/dgangaia”,
"avatar_url": "hitps://avatarsi.githubusercontent.com/u/435942547?v=4"

16

CHAPTER 5. REPOSITORY NOTIFICATIONS

"homepage": "https://quay.io/repository/dgangaia/test/build/cbd534c5-f1c0-4816-b4e3-
55446b851e70"

}

5.1.7. Vulnerability Detected

A vulnerability was detected in the repository

"repository": "dgangaia/repository",

"namespace": "dgangaia”,

"name": "repository",

"docker_url": "quay.io/dgangaia/repository”,

"homepage": "https://quay.io/repository/dgangaia/repository",
"tags": ["latest", "othertag"],

"vulnerability": {
"id": "CVE-1234-5678",
"description”: "This is a bad vulnerability",
"link": "http://url/to/vuln/info",
"priority": "Critical",
"has_fix": true

5.2. NOTIFICATION ACTIONS

5.2.1. Quay Notification

A notification will be added to the Quay.io notification area. The notification area can be found by
clicking on the bell icon in the top right of any Quay.io page.

Quay.io notifications can be setup to be sent to a User, Team, or the organization as a whole.

5.2.2. E-mail

An e-mail will be sent to the specified address describing the event that occurred.

NOTE

All e-mail addresses will have to be verified on a per-repository basis

5.2.3. Webhook POST

An HTTP POST call will be made to the specified URL with the event'’s data (see above for each event's
data format).

When the URL is HTTPS, the call will have an SSL client certificate set from Quay.io. Verification of this
certificate will prove the call originated from Quay.io. Responses with status codes in the 2xx range are
considered successful. Responses with any other status codes will be considered failures and result in a
retry of the webhook notification.

17

Red Hat Quay 3.2 Use Red Hat Quay

18

5.2.4. Flowdock Notification

Posts a message to Flowdock.

5.2.5. Hipchat Notification

Posts a message to HipChat.

5.2.6. Slack Notification

Posts a message to Slack.

CHAPTER 6. BUILDING DOCKERFILES

CHAPTER 6. BUILDING DOCKERFILES

Quay.io supports the ability to build Dockerfiles on our build fleet and push the resulting image to the
repository.

6.1. VIEWING AND MANAGING BUILDS

Repository Builds can be viewed and managed by clicking the Builds tab in the Repository View.

6.2. MANUALLY STARTING A BUILD

To manually start a repository build, click the +icon in the top right of the header on any repository page
and choose New Dockerfile Build. An uploaded Dockerfile, .tar.gz, or an HTTP URL to either can be
used for the build.

NOTE

You will not be able to specify the Docker build context when manually starting a build.

6.3. BUILD TRIGGERS

Repository builds can also be automatically triggered by events such as a push to an SCM (GitHub,
BitBucket or GitLab) or via a call to a webhook.

6.3.1. Creating a new build trigger

To setup a build trigger, click the Create Build Trigger button on the Builds view page and follow the
instructions of the dialog. You will need to grant Quay.io access to your repositories in order to setup the
trigger and your account requires admin access on the SCM repository .

6.3.2. Manually triggering a build trigger

To trigger a build trigger manually, click the icon next to the build trigger and choose Run Now.

6.3.3. Build Contexts

When building an image with Docker, a directory is specified to become the build context. This holds true
for both manual builds and build triggers because the builds conducted by Quay.io are no different from
running docker build on your own machine.

Quay.io build contexts are always the specified subdirectory from the build setup and fallback to the root
of the build source if none is specified. When a build is triggered, Quay.io build workers clone the git
repository to the worker machine and enter the build context before conducting a build.

For builds based on tar archives, build workers extract the archive and enter the build context. For
example:

example
.git
Dockerfile

19

http://docs.docker.com/reference/builder/
https://access.redhat.com/documentation/en-us/red_hat_quay/3/html-single/use_red_hat_quay/#webhook

Red Hat Quay 3.2 Use Red Hat Quay

file
subdir
L— Dockerfile

Imagine the example above is the directory structure for a GitHub repository called "example". If no
subdirectory is specified in the build trigger setup or while manually starting a build, the build will operate
in the example directory.

If subdir is specified to be the subdirectory in the build trigger setup, only the Dockerfile within it is
visible to the build. This means that you cannot use the ADD command in the Dockerfile to add file,

because it is outside of the build context.

Unlike the Docker Hub, the Dockerfile is part of the build context on Quay. Thus, it must not appear in
the .dockerignore file.

20

CHAPTER 7. SET UP GITHUB BUILD TRIGGERS

CHAPTER 7. SET UP GITHUB BUILD TRIGGERS

Red Hat Quay supports using GitHub or GitHub Enterprise as a trigger to building images.
1. Initial setup: If you have not yet done so, please enable build support in Red Hat Quay .

2. Create an OAuth application in GitHub: Following the instructions at Create a GitHub
Application.

NOTE

This application must be different from that used for GitHub Authentication.

3. Visit the management panel: Sign in to a superuser account and visit
http://yourregister/superuser to view the management panel.

4. Enable GitHub triggers:

® Click the configuration tab and scroll down to the section entitled GitHub (Enterprise) Build
Triggers.

©) Github (Enterprise) Build Triggers

If enabled, users can setup Github or Github Enterprise triggers to invoke Registry builds.

Note: A registered Github (Enterprise) OAuth application (separate from Github Authentication) is required. View instructions on how to Create an OAuth Application in GitHub
. Enable Github Triggers

Github: (aGithubEnterprisems)

Github Endpoint: https://my.githubserver

OAuth Client ID:

OAuth Client Secret:

® Check the "Enable GitHub Triggers" box
e Fillin the credentials from the application created above
® (lick "Save Configuration Changes"

® Restart the container (you will be prompted)

21

https://access.redhat.com/documentation/en-us/red_hat_quay/3/html-single/use_red_hat_quay/index#build-support
https://access.redhat.com/documentation/en-us/red_hat_quay/3/html-single/use_red_hat_quay/index#github-app
http://yourregister/superuser

Red Hat Quay 3.2 Use Red Hat Quay

CHAPTER 8. AUTOMATIALLY BUILD DOCKERFILES WITH
BUILD WORKERS

Red Hat Quay supports building Dockerfiles using a set of worker nodes. Build triggers, such as GitHub
webhooks (Setup Instructions), can be configured to automatically build new versions of your
repositories when new code is committed. This document will walk you through enabling the feature flag
and setting up multiple build workers to enable this feature.

8.1. ENABLE BUILDING

1. Visit the management panel: Sign in to a superuser account and visit
http://yourregister/superuser to view the management panel:

2. Enable Dockerfile Build Support:

® Click the configuration tab and scroll down to the section entitled Dockerfile Build Support.

= Dockerfile Build Support

If enabled, users can submit Dockerfiles to be built and pushed by the Enterprise Registry.

Enable Dockerfile Build

Note: Build workers are required for this feature. See Adding Build Workers for instructions on how to setup build workers.

® Check the "Enable Dockerfile Build" box
® Click "Save Configuration Changes"

® Restart the container (you will be prompted)

8.2. SET UP THE BUILD WORKERS

22

https://access.redhat.com/documentation/en-us/red_hat_quay/3/html-single/use_red_hat_quay/index#github-build-triggers
http://yourregister/superuser

CHAPTER 8. AUTOMATIALLY BUILD DOCKERFILES WITH BUILD WORKERS

& Build Trigger

Enterprise
Registry

A .'\.I"l\.-’ i |r.'\.'
WIEL S Rl

CoOnnections

Build Workers

One or more build workers will communicate with Red Hat Quay to build new containers when triggered.
The machines must have Docker installed and must not be used for any other work. The following
procedure needs to be done every time a new worker needs to be added, but it can be automated fairly
easily.

8.2.1. Pull the build worker image

Pull down the latest copy of the image. Make sure to pull the version tagged matching your Red Hat
Quay version.

docker pull quay.io/redhat/quay-builder:v3.2.2

8.2.2. Run the build worker image

Run this container on each build worker. Since the worker will be orchestrating docker builds, we need to
mount in the docker socket. This orchestration will use a large amount of CPU and need to manipulate
the docker images on disk — we recommend that dedicated machines be used for this task.

Use the environment variable SERVER to tell the worker the hostname at which Red Hat Quay is
accessible:

23

Red Hat Quay 3.2 Use Red Hat Quay

Security Websocket Address

Using SSL wss://your.quayenterprise.dnsname

Without SSL ws://your.quayenterprise.dnsname

Here's what the full command looks like:

docker run --restart on-failure \
-e SERVER=ws://myquayenterprise \
--privileged=true \
-v /mnt/docker.sock:/var/run/docker.sock \
quay.io/redhat/quay-builder:v3.2.2

When the container starts, each build worker will auto-register and start building containers once a job is
triggered and it is assigned to a worker.

If Red Hat Quay is setup to use a SSL certificate that is not globally trusted, for example a self-signed
certificate, Red Hat Quay'’s public SSL certificates must be mounted onto the quay-builder container’s
SSL trust store. An example command to mount a certificate found at the host’s
/path/to/ssl/rootCA.pem looks like:

docker run --restart on-failure \
-e SERVER=wss://myquayenterprise \
--privileged=true \
-v /path/to/ssl/rootCA.pem:/etc/pki/ca-trust/source/anchors/rootCA.pem \
-v /mnt/docker.sock:/var/run/docker.sock \
quay.io/redhat/quay-builder:v3.2.2

8.3.SET UP GITHUB BUILD (OPTIONAL)

If your organization plans to have builds be conducted via pushes to GitHub (or GitHub Enterprise),
please continue with the Setting up GitHub Build.

24

CHAPTER 9. CREATING AN OAUTH APPLICATION IN GITHUB

CHAPTER 9. CREATING AN OAUTH APPLICATION IN GITHUB

You can authorize your registry to access a GitHub account and its repositories by registering it as a
GitHub OAuth application.

9.1. CREATE NEW GITHUB APPLICATION

1. Loginto GitHub (Enterprise)

2. Visit the Applications page under your organization’s settings.

3. Click Register New Application. The Register a new OAuth application configuration screenis

displayed:

Applications / Register a new OAuth application

Application name

CoreOS Enterprise Registry Login

Something users will recognize and trust @

Drag & drop

Homepage URL

https://my.registry.url

The full URL to your application homepage

choose an image

Application description

This is displayed to all potential users of your application

Authorization callback URL

https://my.registry.url/oauth2/github/callback

Your application's callback URL. Read our QAuth documentation for more information

4. Set Homepage URL: Enter the Quay Enterprise URL as the Homepage URL

NOTE

If using public GitHub, the Homepage URL entered must be accessible by your
users. It can still be an internal URL.

5. Set Authorization callback URL: Enter
https://{$RED_HAT_QUAY_URL}/oauth2/github/callback as the Authorization callback URL.

6. Save your settings by clicking the Register application button. The new new application’s
summary is shown:

7. Record the Client ID and Client Secret shown for the new application.

25

https://github.com/settings/applications/new
https:/oauth2/github/callback

Red Hat Quay 3.2 Use Red Hat Quay

CHAPTER 10. DOWNLOADING SQUASHED DOCKER IMAGES

Docker images are composed of image layers which include all of the intermediary data used to reach
their current state. When iterating on a solution locally on a developer’'s machine, layers provide an
efficient workflow.

There are scenarios, however, in which the layers cease to be efficient. For example, when deploying
software to an ephemeral machine, that machine doesn’t care about the whole layer history, it just needs
the end state of the image. This is why Quay.io supports Squashed Images.

10.1. DOWNLOADING A SQUASHED IMAGE

To download a squashed image:

1. Navigate to the Tags tab of a Quay Repository View. For an organization named abcsales and
a repo named myweb, the URL would be https://quay.io/repository/abcsales/myweb?
tab=tags) on Quay.io. For a Red Hat Quay registry, replace quay.io with your registry name.

2. On the left side of the table, click on the Fetch Tag icon for the tag you want to download. A
modal dialog appears with a dropdown for specifying the desired format of the download.

3. Select Squashed Docker Image from the dropdown and then select a robot that has read
permission to be able to pull the repository.

Fetch Tag: W latest

Image Format: é Squashed Docker Image -
1]

Pull Credentials: B dgangaiattestread -

Command:

>_ curl -L -f https://dgangailat+testread:I8EHHPRSFVTEHCLVUIOQ4RAS1VAXH2TA4QYMT29ZRWEBRIFCY1QHNSY

3

Copy Command Close

4. Click on the Copy Command button.
5. Paste this command into a shell on the machine where you have a Docker service running.

6. Type docker images to see that the image is loaded and read to use.

10.2. CAVEATS & WARNINGS

10.2.1. Prime the cache!

When the first pull of a squashed image occurs, the registry streams the image as it is being flattened in
real time. Afterwards, the end result is cached and served directly. Thus, it is recommended to pull the
first squashed image on a developer machine before deploying, so that all of the production machines
can pull the cached result.

26

https://quay.io/repository/abcsales/myweb?tab=tags

CHAPTER 10. DOWNLOADING SQUASHED DOCKER IMAGES

10.2.2. Isn't piping curl insecure?

You may be familiar with installers that pipe curl into bash (curl website.com/installer | /bin/bash).
These scripts are insecure because they allow arbitrary code execution. The Quay script to download
squashed images uses curl to download a tarball that is streamed into docker load. This is just as secure
as running docker pull because it never executes anything we've downloaded from the internet.

ADDITIONAL RESOURCES

27

	Table of Contents
	PREFACE
	CHAPTER 1. CREATING A REPOSITORY
	1.1. CREATING AN IMAGE REPOSITORY VIA THE UI
	1.2. CREATING AN IMAGE REPOSITORY VIA DOCKER
	1.3. CREATING AN APPLICATION REPOSITORY VIA THE UI

	CHAPTER 2. WORKING WITH TAGS
	2.1. VIEWING AND MODIFYING TAGS
	2.1.1. Adding a new tag to a tagged image
	2.1.2. Moving a tag
	2.1.3. Deleting a tag
	2.1.4. Viewing tag history and going back in time
	2.1.4.1. Viewing tag history
	2.1.4.2. Going back in time

	2.1.5. Fetching an image by tag or digest

	2.2. TAG EXPIRATION
	2.3. SECURITY SCANNING

	CHAPTER 3. SETTING UP A CUSTOM GIT TRIGGER
	3.1. CREATING A TRIGGER
	3.2. POST TRIGGER-CREATION SETUP
	3.2.1. SSH public key access
	3.2.2. Webhook

	CHAPTER 4. SKIPPING A SOURCE CONTROL-TRIGGERED BUILD
	CHAPTER 5. REPOSITORY NOTIFICATIONS
	5.1. REPOSITORY EVENTS
	5.1.1. Repository Push
	5.1.2. Dockerfile Build Queued
	5.1.3. Dockerfile Build Started
	5.1.4. Dockerfile Build Successfully Completed
	5.1.5. Dockerfile Build Failed
	5.1.6. Dockerfile Build Cancelled
	5.1.7. Vulnerability Detected

	5.2. NOTIFICATION ACTIONS
	5.2.1. Quay Notification
	5.2.2. E-mail
	5.2.3. Webhook POST
	5.2.4. Flowdock Notification
	5.2.5. Hipchat Notification
	5.2.6. Slack Notification

	CHAPTER 6. BUILDING DOCKERFILES
	6.1. VIEWING AND MANAGING BUILDS
	6.2. MANUALLY STARTING A BUILD
	6.3. BUILD TRIGGERS
	6.3.1. Creating a new build trigger
	6.3.2. Manually triggering a build trigger
	6.3.3. Build Contexts

	CHAPTER 7. SET UP GITHUB BUILD TRIGGERS
	CHAPTER 8. AUTOMATIALLY BUILD DOCKERFILES WITH BUILD WORKERS
	8.1. ENABLE BUILDING
	8.2. SET UP THE BUILD WORKERS
	8.2.1. Pull the build worker image
	8.2.2. Run the build worker image

	8.3. SET UP GITHUB BUILD (OPTIONAL)

	CHAPTER 9. CREATING AN OAUTH APPLICATION IN GITHUB
	9.1. CREATE NEW GITHUB APPLICATION

	CHAPTER 10. DOWNLOADING SQUASHED DOCKER IMAGES
	10.1. DOWNLOADING A SQUASHED IMAGE
	10.2. CAVEATS & WARNINGS
	10.2.1. Prime the cache!
	10.2.2. Isn’t piping curl insecure?

	ADDITIONAL RESOURCES

