& RedHat

Red Hat Process Automation Manager
7.5

Running and modifying the employee roster
starter application for Red Hat Business
Optimizer using an IDE

Last Updated: 2020-04-30

Red Hat Process Automation Manager 7.5 Running and modifying the
employee roster starter application for Red Hat Business Optimizer using
an IDE

Red Hat Customer Content Services
brms-docs@redhat.com

Legal Notice

Copyright © 2020 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document describes how to run and modify the OptaWeb Employee Rostering starter
application included as a reference implementation in Red Hat Process Automation Manager 7.5.

Table of Contents

Table of Contents

o L 3

CHAPTER 1. OVERVIEW OF THE EMPLOYEE ROSTERING STARTER APPLICATIONccooiian, 4

CHAPTER 2. BUILDING AND RUNNING THE EMPLOYEE ROSTERING STARTER APPLICATION 5
2.1. PREPARING DEPLOYMENT FILES 5
2.2. BUILDING AND RUNNING THE EMPLOYEE ROSTERING STARTER APPLICATION FROM THE COMMAND
LINE 5
2.3. BUILDING AND RUNNING THE EMPLOYEE ROSTERING STARTER APPLICATION WITH PERSISTENT
DATA STORAGE FROM THE COMMAND LINE 6
2.4. BUILDING AND RUNNING THE EMPLOYEE ROSTERING STARTER APPLICATION USING ECLIPSE 7
2.5.RUNNING THE SUPPLIED PRE-BUILT WAR FILE 10

CHAPTER 3. OVERVIEW OF THE SOURCE CODE OF THE EMPLOYEE ROSTERING STARTER APPLICATION
12

CHAPTER 4. MODIFYING THE EMPLOYEE ROSTERING STARTER APPLICATIONcooiiiian, 14

APPENDIX A. VERSIONING INFORMATION ... i e it 15

Red Hat Process Automation Manager 7.5 Running and modifying the employee roster starter application for Red |

PREFACE

PREFACE

As a business rules developer, you can use an IDE to build, run, and modify the employee-rostering
starter application that uses the Red Hat Business Optimizer functionality.

Prerequisites

® You use anintegrated development environment, such as Eclipse (including Red Hat
CodeReady Studio) or IntelliJ IDEA.

® You have an understanding of the Java language.

Red Hat Process Automation Manager 7.5 Running and modifying the employee roster starter application for Red |

CHAPTER 1. OVERVIEW OF THE EMPLOYEE ROSTERING
STARTER APPLICATION

The employee rostering starter application assigns employees to shifts on various positions in an
organization. For example, you can use the application to distribute shifts in a hospital between nurses,
guard duty shifts across a number of locations, or shifts on an assembly line between workers.

Optimal employee rostering must take a number of variables into account. For example, different skills
can be required for shifts in different positions. Also, some employees might be unavailable for some
time slots or might prefer a particular time slot. Moreover, an employee can have a contract that limits
the number of hours that the employee can work in a single time period.

The Red Hat Business Optimizer rules for this starter application use both hard and soft constraints.
During an optimization, the planning engine may not violate hard constraints, for example, if an
employee is unavailable (out sick), or that an employee cannot work two spots in a single shift. The
planning engine tries to adhere to soft constraints, such as an employee’s preference to not work a
specific shift, but can violate them if the optimal solution requires it.

CHAPTER 2. BUILDING AND RUNNING THE EMPLOYEE ROSTERING STARTER APPLICATION

CHAPTER 2. BUILDING AND RUNNING THE EMPLOYEE
ROSTERING STARTER APPLICATION

You can build the employee rostering starter application from the source code and run it using a JBoss
EAP or WildFly application server.

You can use the command line to build the application, then install it into a stand-alone server.

Alternatively, you can use your IDE, for example, Eclipse (including Red Hat CodeReady Studio), to build
and run the application.

You can also deploy and run the pre-built WAR file that is supplied with the source code.

For information about using the application, see Deploying and using the employee roster starter
application for Red Hat Business Optimizer on Red Hat OpenShift Container Platform.

2.1. PREPARING DEPLOYMENT FILES

You must download and prepare the deployment files before building and deploying the application.

Procedure

1. Download the rhpam-7.5.1-reference-implementation.zip file from the Software Downloads
page for Red Hat Process Automation Manager 7.5.

2. Unzip the downloaded archive.

3. Unzip the rhpam-7.5-employee-rostering.zip file that is extracted from the reference
implementation archive.

The employee-rostering-distribution-7.26.0.Final-redhat-00005 folder is created. This folder
is the base folder in subsequent parts of this document.

NOTE

File and folder names might have higher version numbers than specifically noted
in this document.

2.2. BUILDING AND RUNNING THE EMPLOYEE ROSTERING STARTER
APPLICATION FROM THE COMMAND LINE

You can use the command line to build the employee rostering starter application and run it.
If you use this procedure, the data is stored in memory and is lost when the server is stopped. To build

and run the application with a database server for persistent storage, see Section 2.3, “Building and
running the employee rostering starter application with persistent data storage from the command line”.

Prerequisites
® You prepared the deployment files as described in Section 2.1, “Preparing deployment files”.
® A Java Development Kit is installed.

® Maven is installed.

https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.5/html-single/deploying_and_using_the_employee_roster_starter_application_for_red_hat_business_optimizer_on_red_hat_openshift_container_platform
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?downloadType=distributions&product=rhpam&productChanged=yes

Red Hat Process Automation Manager 7.5 Running and modifying the employee roster starter application for Red |

® The host has access to the Internet. The build process uses the Internet for downloading Maven
packages from external repositories.

Procedure

1. In a terminal window, change to the sources directory.

2. Enter the following command:

I mvn clean install

3. Wait for the build process to complete.
4. Use one of the following methods to run the application:
a. Run the WildFly server deployed as part of the build process:

i. Inthe local/appserver/wildfly-14.0.1-final/standalone/deployments subdirectory,
create the optaweb-employee-rostering-webapp-<version>.war.dodeploy file. The
<version> must be the same as in the existing optaweb-employee-rostering-webapp-
<versions.war symlink in the same directory.

ii. Inthe local/appserver/wildfly-14.0.1-final/bin subdirectory, enter the ./standalone.sh
command.

b. Deploy the optaweb-employee-rostering-webapp/target/optaweb-employee-rostering-
*.war file into an existing WildFly or JBoss EAP server and start the application server.

c. Use the following commands to run a server using Maven:

mvn -N wildfly:start wildfly:deploy
mvn gwt:codeserver
NOTE

If you use Maven to start the server, the Ul uses the gwt codeserver and
monitors the gwtui source. In this case, if you change gwtui code, the
codeserver picks the changes up automatically; there is no need to rebuild
the application for gwtui code changes.

Later, to stop this server, use the command:
I mvn -N wildfly:shutdown

5. To access the application, enter http://localhost:8080/gwtui/gwtui.html in a web browser.

2.3. BUILDING AND RUNNING THE EMPLOYEE ROSTERING STARTER
APPLICATION WITH PERSISTENT DATA STORAGE FROM THE
COMMAND LINE

If you use the command line to build the employee rostering starter application and run it, you can
provide a database server for persistent data storage.

http://localhost:8080/gwtui/gwtui.html

CHAPTER 2. BUILDING AND RUNNING THE EMPLOYEE ROSTERING STARTER APPLICATION

Prerequisites

® You prepared the deployment files as described in Section 2.1, “Preparing deployment files”.
® A Java Development Kit is installed.
® Maven is installed.

® The host has access to the Internet. The build process uses the Internet for downloading Maven
packages from external repositories.

® You have a deployed WildFly or Red Hat JBoss EAP application server and a deployed MySQL
or PostrgeSQL database server.

® You have set up a JDBC data source in the application server for the database server.

Procedure

1. In a terminal window, change to the sources directory.

2. Enter the following command:

mvn clean install -Dproductized -Dorg.optaweb.employeerostering.persistence.datasource=
<dsname> -Dorg.optaweb.employeerostering.persistence.dialect=<dialect>

In the preceding command, replace the following values:
® <dsname> with the name of the data source in the application server.

® <dijalect> with one of the following strings, depending on the type of database server:

o For MySQL, org.hibernate.dialect.MySQL5Dialect
o For PostgreSQL, org.hibernate.dialect.PostgreSQLDialect
3. Wait for the build process to complete.
4. Deploy the optaweb-employee-rostering-webapp/target/optaweb-employee-rostering-
7.26.0.Final-redhat-00005.war directory into the application server and start the application

server.

5. To access the application, enter http://localhost:8080/gwtui/gwtui.html in a web browser.

2.4. BUILDING AND RUNNING THE EMPLOYEE ROSTERING STARTER
APPLICATION USING ECLIPSE

You can use Eclipse, including Red Hat CodeReady Studio, to build the employee rostering starter
application and run it.

Prerequisites

® You prepared the deployment files as described in Section 2.1, “Preparing deployment files”.

® Eclipseisinstalled.

http://localhost:8080/gwtui/gwtui.html

Red Hat Process Automation Manager 7.5 Running and modifying the employee roster starter application for Red |

® The host has access to the Internet. The build process uses the Internet for downloading Maven
packages from external repositories.

® Google Chrome is installed in order to run the application with the suggested configuration.

NOTE

You can modify the configuration to use another web browser.

Procedure

1. Start Eclipse.

2. From the main menu, select File > Import....

3. Select the Maven > Existing Maven projectswizard.

4. For the root directory, select the root directory of the application source.

5. Click Finish.

(@)

. Optionally, to avoid seeing many errors in Eclipse:

a. Inthe root directory of the application source, enter the mvn clean install command and
wait for the build to finish.

b. In the Eclipse navigation tree, right-click employee-rostering-shared and select Build Path
> Configure Build Path....

c. Click the Source tab, then click Add Folder....
d. Select the employee-rostering-shared/target/generated-sources folder and click OK.
7. From the main menu, select Run > External Tools > External Tools Configurations....

8. Under Program, create the following launch configurations:
a. Open OptaWeb Employee Rostering in Chrome:

® Name: Open OptaWeb Employee Rostering in Chrome
® | ocation:/ust/bin/google-chrome
® Working Directory: ${workspace_loc:/employee-rostering}

® Arguments: --incognito http://localhost:8080/gwtui/gwtui.html

NOTE

You can change the name, location. and arguments to use another
browser instead of Chrome.

b. Kill Code Server:

o Name: Kill Code Server

® | ocation:/usr/sbin/fuser

CHAPTER 2. BUILDING AND RUNNING THE EMPLOYEE ROSTERING STARTER APPLICATION

e Working Directory: ${workspace_loc:/employee-rostering}
® Arguments: fuser -k 9876/tcp
9. From the main menu, select Run > Run Configurations....

10. Under Maven Build, create the following launch configurations:
a. OptaWeb Employee Rostering Build:

® Name: OptaWeb Employee Rostering Build

® Base directory: ${workspace_loc:/employee-rostering}
® Goals: clean install

® Parameter: gwt:skipCompilation Value: true

b. OptaWeb Employee Rostering Start Code Server:

® Name: OptaWeb Employee Rostering Start Code Server
® Base directory: ${workspace_loc:/employee-rostering}
® Goals: gwt:codeserver
® Parameter: gwt:skipCompilation Value: true

c. OptaWeb Employee Rostering Start Webserver:
® Name: OptaWeb Employee Rostering Start Webserver
® Base directory: ${workspace_loc:/employee-rostering}
® Goals: wildfly:start wildfly:deploy
® Parameter: gwt:skipCompilation Value: true

d. OptaWeb Employee Rostering Stop Webserver:
® Name: OptaWeb Employee Rostering Stop Webserver
® Base directory: ${workspace_loc:/employee-rostering}
® Goals: wildfly:shutdown
® Parameter: gwt:skipCompilation Value: true

1. Under Launch Group, create a launch group named OptaWeb Employee Rostering Run. Add
the following launches to it:

® Program::Kill Code Server Launch mode: inherit Post launch action: Wait until
terminated

e Maven Build::OptaWeb Employee Rostering Stop Webserver Launch mode: inherit Post
launch action: Wait until terminated

e Maven Build::OptaWeb Employee Rostering Build Launch mode: inherit Post launch
action: Wait until terminated

Red Hat Process Automation Manager 7.5 Running and modifying the employee roster starter application for Red |

e Maven Build::OptaWeb Employee Rostering Start Webserver Launch mode: inherit Post
launch action: none

e Maven Build::OptaWeb Employee Rostering Start Code server Launch mode: inherit
Post launch action: Wait for console output (regexp) The code server is ready at

e Program::Open OptaWeb Employee Rostering in Chrome Launch mode: inherit Post
launch action: none

12. To build, run, and immediately acccess the application, run the OptaWeb Employee Rostering
Run launch group. You can then change the application and rerun the launch group to test your
changes.

NOTE

When you use this method to run the application, the Ul uses the gwt codeserver
and monitors the gwtui source. If you change gwtui code, the codeserver picks
the changes up automatically; there is no need to rebuild the application for gwtui
code changes.

2.5. RUNNING THE SUPPLIED PRE-BUILT WAR FILE
To access the Employee Rostering starter application, you can deploy and run the pre-built employee-

rostering-webapp-7.26.0.Final-redhat-00005.war file that is supplied with Red Hat Process
Automation Manager.

Prerequisites

® You prepared the deployment files as described in Section 2.1, “Preparing deployment files”.
® A Java Development Kit is installed.

® You have a deployed WildFly or Red Hat JBoss EAP application server.

Procedure

1. In your WildFly or Red Hat JBoss EAP application server, enable property replacement. For
more information about enabling and disabling property replacement in Red Hat JBoss EAP,
see Property Replacement in the Red Hat JBoss Enterprise Application Platform 7.2
Configuration Guide.

a. Start the application server in standalone mode.

b. Start the management CLI by entering the following command:
I EAP_HOME/bin/jboss-cli.sh --connect
c. Inthe management CLI enter the following command:
I /subsystem=ee:write-attribute(name="spec-descriptor-property-replacement",value=true)

2. Stop the application server.

3. Deploy the binaries/employee-rostering-webapp-7.26.0.Final-redhat-00005.war directory
into the application server and start the application server.

10

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.2/html/configuration_guide/jboss_eap_management#property_replacement

CHAPTER 2. BUILDING AND RUNNING THE EMPLOYEE ROSTERING STARTER APPLICATION

4. To access the application, enter http://localhost:8080/gwtui/gwtui.html in a web browser.

1

http://localhost:8080/gwtui/gwtui.html

Red Hat Process Automation Manager 7.5 Running and modifying the employee roster starter application for Red |

12

CHAPTER 3. OVERVIEW OF THE SOURCE CODE OF THE
EMPLOYEE ROSTERING STARTER APPLICATION

The employee rostering starter application consists of the following principal components:

® The server that implements the rostering logic using Red Hat Business Optimizer and provides a
REST API.

® The client that implements a user interface using the gwt library and calls the server using the
REST APL.

While some code is shared between the client and the server, you can build and use these components
independently. In particular, you can implement a different user interface and use the REST API to call
the server.

In addition to the two main components, the employee rostering template contains a generator of
random source data (useful for demonstration and testing purposes) and a benchmarking application.

Modules and key classes

The Java source code of the employee rostering template contains several Maven modules. Each of
these modules includes a separate Maven project file (pom.xml), but they are intended for building in a
common project.

The modules contain a number of files, including Java classes. This document lists all the modules, as
well as the classes and other files that contain the key information for the employee rostering
calculations.

® employee-rostering-benchmark module: Contains an additional application that generates
random data and benchmarks the solution.

e employee-rostering-distribution module: Contains readme files.
e employee-rostering-docs module: Contains documentation files.

e employee-rostering-gwtui module: Contains the client application with the user interface,
developed using the gwt toolkit.

o employee-rostering-server module: Contains the server application that uses Red Hat
Business Optimizer to perform the rostering calculation.

o src/main/resources/org/optaweb/employeerostering/server/solver/employeeRostering
ScoreRules.drl file: Contains the rules for the Red Hat Business Optimizer calculation.
These rules are written in the Drools rules language. You can modify the rules to change the
logic for employee rostering.

o src/main/java/org.optaweb.employeerostering.server.roster/rosterGenerator.java
class: generates random input data for demonstration and testing purposes. If you change
the requires input data, change the generator accordingly.

e employee-rostering-shared module: Contains the data structures shared between the server
and client applications. In particular, under
src/main/java/org/optaweb/employeerostering/shared/*, this module includes the Java
classes that define the input data for the rostering calculations, including the following classes:

o employee/EmployeeAvailability.java defines availability information for an employee. For
every time slot, an employee can be unavailable, available, or it can be a preferred timeslot

CHAPTER 3. OVERVIEW OF THE SOURCE CODE OF THE EMPLOYEE ROSTERING STARTER APPLICATIOM

Tor the employee.

o employee/Employee.java defines an employee. An employee has a name, a list of skills, and
works under a contract. Skills are represented by EmployeeSkillProficiency objects.

o roster/Roster.java defines the calculated rostering information.

o shift/Shift.java defines a shift to which an employee can be assigned. A shift is defined by a
time slot and a spot. For example, in a diner there could be a shift in the Kitchen spot for the
February 20 8AM-4PM time slot. Multiple shifts can be defined for a given spot and time
slot; in this case, multiple employees are required for this spot and time slot.

o skill/Skill.java defines a skill that an employee can have.

o spot/Spot.java defines a spot where employees can be placed. For example, in a diner
Kitchen can be a spot.

o contract/Contract.java defines a contract that sets the limits of work time for an employee
in various time periods.

o tenant/Tenant.java defines a tenant. Each tenant represents an independent set of data;
any change in the data for one tenant does not affect any other tenants.
The employee-rostering-shared module also includes other shared artifacts:

o *View.java classes define value sets that are calculated from other information; the client
application can read these values through the REST API, but not write them.

o *RestService.java interfaces define the REST API. Both the server and the client
application separately define implementations of these interfaces.

e employee-rostering-shared-gwt module: Contains some of the classes required for the GWT
client application.

e employee-rostering-webapp module: Contains the HTML and other files necessary for
building the entire application (client and server).

13

Red Hat Process Automation Manager 7.5 Running and modifying the employee roster starter application for Red |

CHAPTER 4. MODIFYING THE EMPLOYEE ROSTERING
STARTER APPLICATION

To modify the employee rostering starter application to suit your needs, you must change the rules that
govern the optimization process. You must also ensure that the data structures include the required
data and provide the required calculations for the rules. If the required data is not present in the user
interface, you must also modify the user interface.

The following procedure outlines the general approach to modifying the employee rostering starter
application.

Prerequisites

® You have a build environment that successfully builds the application.

® You can read and modify Java code.

Procedure
1. Plan the required changes. Answer the following questions:

® \What are the additional scenarios that must be avoided? These scenarios are hard
constraints.

® What are the additional scenarios that the optimizer must try to avoid when possible? These
scenarios are soft constraints.

® What datais required to calculate if each scenario is happening in a potential solution?

® Which of the data can be derived from the information that the user enters in the existing
version?

® Which of the data can be hardcoded?
® Which of the data must be entered by the user and is not entered in the current version?

2. If any required data can be calculated from the current data or can be hardcoded, add the
calculations or hardcoding to existing view or utility classes. If the data must be calculated on
the server side, add REST API endpoints to read it.

3. If any required data must be entered by the user, add the data to the classes representing the
data entities (for example, the Employee class), add REST API endpoints to read and write the
data, and modify the user interface to enter the data.

4. When all the data is available, modify the rules. For most modifications, you must add a new rule.
The rules are located in the
src/main/resources/org/optaweb/employeerostering/server/solver/employeeRosteringSco
reRules.drl file of the employee-rostering-server module.

Use the Drools language for the rules. For reference information about the Drools rule
language, see Rule Language Reference. Classes defined in the optaweb-employee-rostering-
shared and optaweb-employee-rostering-server modules are available to the decision engine.

5. After modifying the application, build and run it.

14

https://docs.jboss.org/drools/release/7.26.0.Final/drools-docs/html_single/#_droolslanguagereferencechapter

APPENDIX A. VERSIONING INFORMATION

APPENDIX A. VERSIONING INFORMATION

Documentation last updated on Thursday, October 31, 2019.

15

	Table of Contents
	PREFACE
	CHAPTER 1. OVERVIEW OF THE EMPLOYEE ROSTERING STARTER APPLICATION
	CHAPTER 2. BUILDING AND RUNNING THE EMPLOYEE ROSTERING STARTER APPLICATION
	2.1. PREPARING DEPLOYMENT FILES
	2.2. BUILDING AND RUNNING THE EMPLOYEE ROSTERING STARTER APPLICATION FROM THE COMMAND LINE
	2.3. BUILDING AND RUNNING THE EMPLOYEE ROSTERING STARTER APPLICATION WITH PERSISTENT DATA STORAGE FROM THE COMMAND LINE
	2.4. BUILDING AND RUNNING THE EMPLOYEE ROSTERING STARTER APPLICATION USING ECLIPSE
	2.5. RUNNING THE SUPPLIED PRE-BUILT WAR FILE

	CHAPTER 3. OVERVIEW OF THE SOURCE CODE OF THE EMPLOYEE ROSTERING STARTER APPLICATION
	CHAPTER 4. MODIFYING THE EMPLOYEE ROSTERING STARTER APPLICATION
	APPENDIX A. VERSIONING INFORMATION

