
Red Hat OpenStack Platform 17.0

Director Installation and Usage

An end-to-end scenario on using Red Hat OpenStack Platform director to create an
OpenStack cloud

Last Updated: 2024-02-12

Red Hat OpenStack Platform 17.0 Director Installation and Usage

An end-to-end scenario on using Red Hat OpenStack Platform director to create an OpenStack
cloud

OpenStack Team
rhos-docs@redhat.com

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Install Red Hat OpenStack Platform 17 in an enterprise environment using the Red Hat OpenStack
Platform director. This includes installing the director, planning your environment, and creating an
OpenStack environment with the director.

. .

. .

. .

. .

. .

. .

. .

Table of Contents

MAKING OPEN SOURCE MORE INCLUSIVE

CHAPTER 1. INTRODUCTION TO DIRECTOR
1.1. UNDERSTANDING THE UNDERCLOUD
1.2. UNDERSTANDING THE OVERCLOUD
1.3. UNDERSTANDING HIGH AVAILABILITY IN RED HAT OPENSTACK PLATFORM
1.4. UNDERSTANDING CONTAINERIZATION IN RED HAT OPENSTACK PLATFORM
1.5. WORKING WITH CEPH STORAGE IN RED HAT OPENSTACK PLATFORM
1.6. DEFAULT FILE LOCATIONS

1.6.1. Description of the contents of the undercloud directory
1.6.2. Description of the contents of the overcloud directory

CHAPTER 2. PLANNING YOUR UNDERCLOUD
2.1. CONTAINERIZED UNDERCLOUD
2.2. PREPARING YOUR UNDERCLOUD NETWORKING
2.3. DETERMINING ENVIRONMENT SCALE
2.4. UNDERCLOUD DISK SIZING
2.5. VIRTUALIZATION SUPPORT
2.6. CHARACTER ENCODING CONFIGURATION
2.7. CONSIDERATIONS WHEN RUNNING THE UNDERCLOUD WITH A PROXY
2.8. UNDERCLOUD REPOSITORIES

CHAPTER 3. UNDERSTANDING HEAT TEMPLATES
3.1. HEAT TEMPLATES
3.2. ENVIRONMENT FILES
3.3. CORE OVERCLOUD HEAT TEMPLATES
3.4. PLAN ENVIRONMENT METADATA
3.5. INCLUDING ENVIRONMENT FILES IN OVERCLOUD CREATION
3.6. USING CUSTOMIZED CORE HEAT TEMPLATES
3.7. JINJA2 RENDERING

CHAPTER 4. HEAT PARAMETERS
4.1. EXAMPLE 1: CONFIGURING THE TIME ZONE
4.2. EXAMPLE 2: CONFIGURING RABBITMQ FILE DESCRIPTOR LIMIT
4.3. EXAMPLE 3: ENABLING AND DISABLING PARAMETERS
4.4. EXAMPLE 4: ROLE-BASED PARAMETERS
4.5. IDENTIFYING PARAMETERS THAT YOU WANT TO MODIFY

CHAPTER 5. CONFIGURATION HOOKS
5.1. PRE-CONFIGURATION: CUSTOMIZING SPECIFIC OVERCLOUD ROLES
5.2. PRE-CONFIGURATION: CUSTOMIZING ALL OVERCLOUD ROLES
5.3. POST-CONFIGURATION: CUSTOMIZING ALL OVERCLOUD ROLES
5.4. PUPPET: CUSTOMIZING HIERADATA FOR ROLES
5.5. PUPPET: CUSTOMIZING HIERADATA FOR INDIVIDUAL NODES
5.6. PUPPET: APPLYING CUSTOM MANIFESTS

CHAPTER 6. PREPARING FOR DIRECTOR INSTALLATION
6.1. PREPARING THE UNDERCLOUD
6.2. REGISTERING THE UNDERCLOUD AND ATTACHING SUBSCRIPTIONS
6.3. ENABLING REPOSITORIES FOR THE UNDERCLOUD
6.4. INSTALLING DIRECTOR PACKAGES
6.5. PREPARING CONTAINER IMAGES
6.6. CONTAINER IMAGE PREPARATION PARAMETERS

9

10
10
11

12
13
14
14
14
14

17
17
17
18
19
19

20
21
22

24
24
25
26
27
28
29
32

35
35
35
35
36
36

38
38
40
42
44
45
45

48
48
49
50
50
50
51

Table of Contents

1

. .

. .

. .

6.7. GUIDELINES FOR CONTAINER IMAGE TAGGING
6.8. OBTAINING CONTAINER IMAGES FROM PRIVATE REGISTRIES
6.9. LAYERING IMAGE PREPARATION ENTRIES
6.10. DEPLOYING A VENDOR PLUGIN
6.11. EXCLUDING CEPH STORAGE CONTAINER IMAGES
6.12. MODIFYING IMAGES DURING PREPARATION
6.13. UPDATING EXISTING PACKAGES ON CONTAINER IMAGES
6.14. INSTALLING ADDITIONAL RPM FILES TO CONTAINER IMAGES
6.15. MODIFYING CONTAINER IMAGES WITH A CUSTOM DOCKERFILE
6.16. PREPARING A SATELLITE SERVER FOR CONTAINER IMAGES

CHAPTER 7. INSTALLING DIRECTOR ON THE UNDERCLOUD
7.1. CONFIGURING DIRECTOR
7.2. DIRECTOR CONFIGURATION PARAMETERS
7.3. CONFIGURING THE UNDERCLOUD WITH ENVIRONMENT FILES
7.4. COMMON HEAT PARAMETERS FOR UNDERCLOUD CONFIGURATION
7.5. CONFIGURING HIERADATA ON THE UNDERCLOUD
7.6. CONFIGURING THE UNDERCLOUD FOR BARE METAL PROVISIONING OVER IPV6
7.7. CONFIGURING UNDERCLOUD NETWORK INTERFACES
7.8. INSTALLING DIRECTOR
7.9. OBTAINING IMAGES FOR OVERCLOUD NODES

7.9.1. Installing the overcloud images
7.9.2. Minimal overcloud image

7.10. UPDATING THE UNDERCLOUD CONFIGURATION
7.11. UNDERCLOUD CONTAINER REGISTRY

CHAPTER 8. PLANNING YOUR OVERCLOUD
8.1. NODE ROLES
8.2. OVERCLOUD NETWORKS
8.3. OVERCLOUD STORAGE

8.3.1. Configuration considerations for overcloud storage nodes
8.4. OVERCLOUD SECURITY
8.5. OVERCLOUD HIGH AVAILABILITY
8.6. CONTROLLER NODE REQUIREMENTS
8.7. COMPUTE NODE REQUIREMENTS
8.8. RED HAT CEPH STORAGE NODE REQUIREMENTS
8.9. CEPH STORAGE NODES AND RHEL COMPATIBILITY
8.10. OBJECT STORAGE NODE REQUIREMENTS
8.11. OVERCLOUD REPOSITORIES
8.12. NODE PROVISIONING AND CONFIGURATION

CHAPTER 9. COMPOSABLE SERVICES AND CUSTOM ROLES
9.1. SUPPORTED ROLE ARCHITECTURE
9.2. EXAMINING THE ROLES_DATA FILE
9.3. CREATING A ROLES_DATA FILE
9.4. SUPPORTED CUSTOM ROLES
9.5. EXAMINING ROLE PARAMETERS
9.6. CREATING A NEW ROLE
9.7. GUIDELINES AND LIMITATIONS
9.8. EXAMINING COMPOSABLE SERVICE ARCHITECTURE
9.9. ADDING AND REMOVING SERVICES FROM ROLES
9.10. ENABLING DISABLED SERVICES
9.11. CREATING A GENERIC NODE WITH NO SERVICES

54
56
58
58
60
60
61
61

62
63

67
67
67
73
74
74
75
78
80
80
81

82
83
84

85
85
86
88
88
89
90
90
91

92
92
92
93
96

97
97
97
98
99

102
104
106
107
108
109
110

Red Hat OpenStack Platform 17.0 Director Installation and Usage

2

. .

. .

CHAPTER 10. CONFIGURING OVERCLOUD NETWORKING
10.1. EXAMPLE NETWORK CONFIGURATION FILES

10.1.1. Example network data schema for IPv4
10.1.2. Example network data schema for IPv6

10.2. NETWORK ISOLATION
10.2.1. Networks required for each role
10.2.2. Network definition file configuration options
10.2.3. Configuring network isolation

10.3. COMPOSABLE NETWORKS
10.3.1. Adding a composable network
10.3.2. Including a composable network in a role
10.3.3. Assigning OpenStack services to composable networks
10.3.4. Enabling custom composable networks
10.3.5. Renaming the default networks

10.4. CUSTOM NETWORK INTERFACE TEMPLATES
10.4.1. Custom network architecture
10.4.2. Network interface reference
10.4.3. Example network interface layout

10.5. ADDITIONAL OVERCLOUD NETWORK CONFIGURATION
10.5.1. Configuring custom interfaces
10.5.2. Configuring routes and default routes
10.5.3. Configuring policy-based routing
10.5.4. Configuring jumbo frames
10.5.5. Configuring ML2/OVN northbound path MTU discovery for jumbo frame fragmentation
10.5.6. Configuring the native VLAN on a trunked interface
10.5.7. Increasing the maximum number of connections that netfilter tracks

10.6. NETWORK INTERFACE BONDING
10.6.1. Network interface bonding for overcloud nodes
10.6.2. Creating Open vSwitch (OVS) bonds
10.6.3. Open vSwitch (OVS) bonding options
10.6.4. Using Link Aggregation Control Protocol (LACP) with Open vSwitch (OVS) bonding modes
10.6.5. Creating Linux bonds

10.7. UPDATING THE FORMAT OF YOUR NETWORK CONFIGURATION FILES
10.7.1. Updating the format of your network configuration file
10.7.2. Automatically converting NIC templates to Jinja2 Ansible format
10.7.3. Manually converting NIC templates to Jinja2 Ansible format
10.7.4. Heat parameter to Ansible variable mappings
10.7.5. Heat parameter to provisioning definition file mappings
10.7.6. Changes to the network data schema

CHAPTER 11. PROVISIONING AND DEPLOYING YOUR OVERCLOUD
11.1. PROVISIONING THE OVERCLOUD NETWORKS

11.1.1. Configuring and provisioning overcloud network definitions
11.1.2. Configuring and provisioning network VIPs for the overcloud

11.2. PROVISIONING BARE METAL OVERCLOUD NODES
11.2.1. Registering nodes for the overcloud
11.2.2. Creating an inventory of the bare-metal node hardware

11.2.2.1. Using director introspection to collect bare metal node hardware information
11.2.2.2. Manually configuring bare-metal node hardware information

11.2.3. Provisioning bare metal nodes for the overcloud
11.2.4. Bare-metal node provisioning attributes
11.2.5. Removing failed bare-metal nodes from the node definition file
11.2.6. Designating overcloud nodes for roles by matching resource classes

112
112
112
113
113
115
115
117
119
119
123
124
124
125
126
126
127
136
137
137
139
140
141

143
143
144
146
146
146
147
148
149
151
151
152
153
155
157
158

160
160
160
162
163
163
166
166
168
171

176
181

183

Table of Contents

3

. .

. .

. .

11.2.7. Designating overcloud nodes for roles by matching profiles
11.2.8. Configuring whole disk partitions for the Object Storage service
11.2.9. Example node definition file
11.2.10. Enabling virtual media boot
11.2.11. Defining the root disk for multi-disk Ceph clusters
11.2.12. Properties that identify the root disk
11.2.13. Using the overcloud-minimal image to avoid using a Red Hat subscription entitlement

11.3. CONFIGURING AND DEPLOYING THE OVERCLOUD
11.3.1. Prerequisites
11.3.2. Configuring your overcloud by using environment files
11.3.3. Creating an environment file for undercloud CA trust
11.3.4. Disabling TSX on new deployments
11.3.5. Validating your overcloud configuration
11.3.6. Creating your overcloud
11.3.7. Deployment command options
11.3.8. Validating your overcloud deployment
11.3.9. Accessing the overcloud

11.4. CONFIGURING A BASIC OVERCLOUD WITH PRE-PROVISIONED NODES
11.4.1. Pre-provisioned node requirements
11.4.2. Creating a user on pre-provisioned nodes
11.4.3. Registering the operating system for pre-provisioned nodes
11.4.4. Configuring SSL/TLS access to director
11.4.5. Configuring networking for the control plane
11.4.6. Using a separate network for pre-provisioned nodes
11.4.7. Mapping pre-provisioned node hostnames
11.4.8. Configuring Ceph Storage for pre-provisioned nodes
11.4.9. Creating the overcloud with pre-provisioned nodes
11.4.10. Accessing the overcloud
11.4.11. Scaling pre-provisioned nodes

CHAPTER 12. ANSIBLE-BASED OVERCLOUD REGISTRATION
12.1. RED HAT SUBSCRIPTION MANAGER (RHSM) COMPOSABLE SERVICE
12.2. RHSMVARS SUB-PARAMETERS
12.3. REGISTERING THE OVERCLOUD WITH THE RHSM COMPOSABLE SERVICE
12.4. APPLYING THE RHSM COMPOSABLE SERVICE TO DIFFERENT ROLES
12.5. REGISTERING THE OVERCLOUD TO RED HAT SATELLITE SERVER
12.6. SWITCHING TO THE RHSM COMPOSABLE SERVICE
12.7. RHEL-REGISTRATION TO RHSM MAPPINGS
12.8. DEPLOYING THE OVERCLOUD WITH THE RHSM COMPOSABLE SERVICE
12.9. RUNNING ANSIBLE-BASED REGISTRATION MANUALLY

CHAPTER 13. CONFIGURING NFS STORAGE
13.1. SUPPORTED CONFIGURATIONS AND LIMITATIONS
13.2. CONFIGURING NFS STORAGE
13.3. CONFIGURING AN EXTERNAL NFS SHARE FOR CONVERSION

CHAPTER 14. PERFORMING OVERCLOUD POST-INSTALLATION TASKS
14.1. CHECKING OVERCLOUD DEPLOYMENT STATUS
14.2. CREATING BASIC OVERCLOUD FLAVORS
14.3. CREATING A DEFAULT TENANT NETWORK
14.4. CREATING A DEFAULT FLOATING IP NETWORK
14.5. CREATING A DEFAULT PROVIDER NETWORK
14.6. CREATING ADDITIONAL BRIDGE MAPPINGS
14.7. VALIDATING THE OVERCLOUD

183
184
186
187
188
190
190
192
192
192
192
194
194
195
197

203
204
205
205
206
207
208
208
212
214
214
215
215
216

218
218
218

220
220
222
222
223
224
224

226
226
226
227

229
229
229
230
231
231

233
233

Red Hat OpenStack Platform 17.0 Director Installation and Usage

4

. .

. .

. .

. .

. .

14.8. PROTECTING THE OVERCLOUD FROM REMOVAL

CHAPTER 15. PERFORMING BASIC OVERCLOUD ADMINISTRATION TASKS
15.1. ACCESSING OVERCLOUD NODES THROUGH SSH
15.2. MANAGING CONTAINERIZED SERVICES
15.3. MODIFYING THE OVERCLOUD ENVIRONMENT
15.4. IMPORTING VIRTUAL MACHINES INTO THE OVERCLOUD
15.5. LAUNCHING THE EPHEMERAL HEAT PROCESS
15.6. RUNNING THE DYNAMIC INVENTORY SCRIPT
15.7. REMOVING AN OVERCLOUD STACK

CHAPTER 16. CONFIGURING THE OVERCLOUD WITH ANSIBLE
16.1. ANSIBLE-BASED OVERCLOUD CONFIGURATION (CONFIG-DOWNLOAD)
16.2. CONFIG-DOWNLOAD WORKING DIRECTORY
16.3. CHECKING CONFIG-DOWNLOAD LOG
16.4. PERFORMING GIT OPERATIONS ON THE WORKING DIRECTORY
16.5. DEPLOYMENT METHODS THAT USE CONFIG-DOWNLOAD
16.6. RUNNING CONFIG-DOWNLOAD ON A STANDARD DEPLOYMENT
16.7. RUNNING CONFIG-DOWNLOAD WITH SEPARATE PROVISIONING AND CONFIGURATION
16.8. RUNNING CONFIG-DOWNLOAD WITH THE ANSIBLE-PLAYBOOK-COMMAND.SH SCRIPT
16.9. RUNNING CONFIG-DOWNLOAD WITH MANUALLY CREATED PLAYBOOKS
16.10. LIMITATIONS OF CONFIG-DOWNLOAD
16.11. CONFIG-DOWNLOAD TOP LEVEL FILES
16.12. CONFIG-DOWNLOAD TAGS
16.13. CONFIG-DOWNLOAD DEPLOYMENT STEPS

CHAPTER 17. MANAGING CONTAINERS WITH ANSIBLE
17.1. TRIPLEO-CONTAINER-MANAGE ROLE DEFAULTS AND VARIABLES
17.2. TRIPLEO-CONTAINER-MANAGE MOLECULE SCENARIOS
17.3. TRIPLEO_CONTAINER_MANAGE ROLE VARIABLES
17.4. TRIPLEO-CONTAINER-MANAGE HEALTHCHECKS
17.5. TRIPLEO-CONTAINER-MANAGE DEBUG

CHAPTER 18. USING THE VALIDATION FRAMEWORK
18.1. ANSIBLE-BASED VALIDATIONS
18.2. CHANGING THE VALIDATION CONFIGURATION FILE
18.3. LISTING VALIDATIONS
18.4. RUNNING VALIDATIONS
18.5. CREATING A VALIDATION
18.6. VIEWING VALIDATION HISTORY
18.7. VALIDATION FRAMEWORK LOG FORMAT
18.8. VALIDATION FRAMEWORK LOG OUTPUT FORMATS
18.9. IN-FLIGHT VALIDATIONS

CHAPTER 19. SCALING OVERCLOUD NODES
19.1. ADDING NODES TO THE OVERCLOUD
19.2. SCALING UP BARE-METAL NODES
19.3. SCALING DOWN BARE-METAL NODES
19.4. REMOVING OR REPLACING A COMPUTE NODE

19.4.1. Removing a Compute node manually
19.4.2. Replacing a removed Compute node

19.5. REPLACING CEPH STORAGE NODES
19.6. USING SKIP DEPLOY IDENTIFIER
19.7. BLACKLISTING NODES

234

235
235
235
238
239
240
241
242

245
245
245
246
246
247
247
248
249
251

254
255
255
256

258
258
259
260
262
262

264
264
264
265
266
267
267
268
269
270

271
272
273
275
276
279
282
283
283
283

Table of Contents

5

. .

. .

. .

. .

. .

. .

. .

. .

CHAPTER 20. REPLACING CONTROLLER NODES
20.1. PREPARING FOR CONTROLLER REPLACEMENT
20.2. REMOVING A CEPH MONITOR DAEMON
20.3. PREPARING THE CLUSTER FOR CONTROLLER NODE REPLACEMENT
20.4. REPLACING A BOOTSTRAP CONTROLLER NODE
20.5. UNPROVISION AND REMOVE CONTROLLER NODES
20.6. DEPLOYING A NEW CONTROLLER NODE TO THE OVERCLOUD
20.7. DEPLOYING CEPH SERVICES ON THE NEW CONTROLLER NODE
20.8. CLEANING UP AFTER CONTROLLER NODE REPLACEMENT

CHAPTER 21. REBOOTING NODES
21.1. REBOOTING THE UNDERCLOUD NODE
21.2. REBOOTING CONTROLLER AND COMPOSABLE NODES
21.3. REBOOTING STANDALONE CEPH MON NODES
21.4. REBOOTING A CEPH STORAGE (OSD) CLUSTER
21.5. REBOOTING OBJECT STORAGE SERVICE (SWIFT) NODES
21.6. REBOOTING COMPUTE NODES

CHAPTER 22. SHUTTING DOWN AND STARTING UP THE UNDERCLOUD AND OVERCLOUD
22.1. UNDERCLOUD AND OVERCLOUD SHUTDOWN ORDER
22.2. SHUTTING DOWN INSTANCES ON OVERCLOUD COMPUTE NODES
22.3. SHUTTING DOWN COMPUTE NODES
22.4. STOPPING SERVICES ON CONTROLLER NODES
22.5. SHUTTING DOWN CEPH STORAGE NODES
22.6. SHUTTING DOWN CONTROLLER NODES
22.7. SHUTTING DOWN THE UNDERCLOUD
22.8. PERFORMING SYSTEM MAINTENANCE
22.9. UNDERCLOUD AND OVERCLOUD STARTUP ORDER
22.10. STARTING THE UNDERCLOUD
22.11. STARTING CONTROLLER NODES
22.12. STARTING CEPH STORAGE NODES
22.13. STARTING COMPUTE NODES
22.14. STARTING INSTANCES ON OVERCLOUD COMPUTE NODES

CHAPTER 23. ADDITIONAL INTROSPECTION OPERATIONS
23.1. PERFORMING INDIVIDUAL NODE INTROSPECTION
23.2. PERFORMING NODE INTROSPECTION AFTER INITIAL INTROSPECTION
23.3. PERFORMING NETWORK INTROSPECTION FOR INTERFACE INFORMATION
23.4. RETRIEVING HARDWARE INTROSPECTION DETAILS

CHAPTER 24. AUTOMATICALLY DISCOVERING BARE METAL NODES
24.1. ENABLING AUTO-DISCOVERY
24.2. TESTING AUTO-DISCOVERY
24.3. USING RULES TO DISCOVER DIFFERENT VENDOR HARDWARE

CHAPTER 25. CONFIGURING AUTOMATIC PROFILE TAGGING
25.1. POLICY FILE SYNTAX
25.2. POLICY FILE EXAMPLE
25.3. IMPORTING POLICY FILES INTO DIRECTOR

CHAPTER 26. CREATING VIRTUALIZED CONTROL PLANES
26.1. VIRTUALIZED CONTROL PLANE ARCHITECTURE
26.2. PROVISIONING VIRTUALIZED CONTROLLERS USING THE RED HAT VIRTUALIZATION DRIVER

CHAPTER 27. PERFORMING ADVANCED CONTAINER IMAGE MANAGEMENT

286
286
288
290
293
294
296
298
299

302
302
302
303
303
304
305

308
308
308
309
309
310
311
311
311
312
312
313
313
314
315

316
316
316
316
318

323
323
323
324

326
326
328
329

331
331
332

335

Red Hat OpenStack Platform 17.0 Director Installation and Usage

6

. .

. .

. .

27.1. PINNING CONTAINER IMAGES FOR THE UNDERCLOUD
27.2. PINNING CONTAINER IMAGES FOR THE OVERCLOUD

CHAPTER 28. TROUBLESHOOTING DIRECTOR ERRORS
28.1. TROUBLESHOOTING NODE REGISTRATION
28.2. TROUBLESHOOTING HARDWARE INTROSPECTION
28.3. TROUBLESHOOTING OVERCLOUD CREATION AND DEPLOYMENT
28.4. TROUBLESHOOTING NODE PROVISIONING
28.5. TROUBLESHOOTING IP ADDRESS CONFLICTS DURING PROVISIONING
28.6. TROUBLESHOOTING "NO VALID HOST FOUND" ERRORS
28.7. TROUBLESHOOTING CONTAINER CONFIGURATION
28.8. TROUBLESHOOTING COMPUTE NODE FAILURES
28.9. CREATING AN SOSREPORT
28.10. LOG LOCATIONS

CHAPTER 29. TIPS FOR UNDERCLOUD AND OVERCLOUD SERVICES
29.1. TUNING DEPLOYMENT PERFORMANCE
29.2. CHANGING THE SSL/TLS CIPHER RULES FOR HAPROXY

CHAPTER 30. POWER MANAGEMENT DRIVERS
30.1. INTELLIGENT PLATFORM MANAGEMENT INTERFACE (IPMI)
30.2. REDFISH
30.3. DELL REMOTE ACCESS CONTROLLER (DRAC)
30.4. INTEGRATED LIGHTS-OUT (ILO)
30.5. FUJITSU INTEGRATED REMOTE MANAGEMENT CONTROLLER (IRMC)
30.6. RED HAT VIRTUALIZATION
30.7. MANUAL-MANAGEMENT DRIVER

335
336

338
338
338
339
340
341

342
343
345
346
346

348
348
348

350
350
350
350
351
351
352
352

Table of Contents

7

Red Hat OpenStack Platform 17.0 Director Installation and Usage

8

MAKING OPEN SOURCE MORE INCLUSIVE
Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright’s message .

MAKING OPEN SOURCE MORE INCLUSIVE

9

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

CHAPTER 1. INTRODUCTION TO DIRECTOR
The Red Hat OpenStack Platform (RHOSP) director is a toolset for installing and managing a complete
RHOSP environment. Director is based primarily on the OpenStack project TripleO. With director you
can install a fully-operational, lean, and robust RHOSP environment that can provision and control bare
metal systems to use as OpenStack nodes.

Director uses two main concepts: an undercloud and an overcloud. First you install the undercloud, and
then use the undercloud as a tool to install and configure the overcloud.

1.1. UNDERSTANDING THE UNDERCLOUD

The undercloud is the main management node that contains the Red Hat OpenStack Platform director
toolset. It is a single-system OpenStack installation that includes components for provisioning and
managing the OpenStack nodes that form your OpenStack environment (the overcloud). The
components that form the undercloud have multiple functions:

Environment planning

The undercloud includes planning functions that you can use to create and assign certain node roles.
The undercloud includes a default set of node roles that you can assign to specific nodes: Compute,
Controller, and various Storage roles. You can also design custom roles. Additionally, you can select
which Red Hat OpenStack Platform services to include on each node role, which provides a method
to model new node types or isolate certain components on their own host.

Bare metal system control

The undercloud uses the out-of-band management interface, usually Intelligent Platform
Management Interface (IPMI), of each node for power management control and a PXE-based
service to discover hardware attributes and install OpenStack on each node. You can use this feature
to provision bare metal systems as OpenStack nodes. For a full list of power management drivers,
see Chapter 30, Power management drivers .

Orchestration

The undercloud contains a set of YAML templates that represent a set of plans for your environment.
The undercloud imports these plans and follows their instructions to create the resulting OpenStack
environment. The plans also include hooks that you can use to incorporate your own customizations
as certain points in the environment creation process.

Undercloud components

The undercloud uses OpenStack components as its base tool set. Each component operates within a
separate container on the undercloud:

Red Hat OpenStack Platform 17.0 Director Installation and Usage

10

OpenStack Identity (keystone) - Provides authentication and authorization for the director
components.

OpenStack Bare Metal (ironic) - Manages bare metal nodes.

OpenStack Networking (neutron) and Open vSwitch - Control networking for bare metal
nodes.

OpenStack Orchestration (Ephemeral Heat) - Provides the orchestration of nodes after
director writes the overcloud image to disk.

1.2. UNDERSTANDING THE OVERCLOUD

The overcloud is the resulting Red Hat OpenStack Platform (RHOSP) environment that the undercloud
creates. The overcloud consists of multiple nodes with different roles that you define based on the
OpenStack Platform environment that you want to create. The undercloud includes a default set of
overcloud node roles:

Controller

Controller nodes provide administration, networking, and high availability for the OpenStack
environment. A recommended OpenStack environment contains three Controller nodes together in
a high availability cluster.
A default Controller node role supports the following components. Not all of these services are
enabled by default. Some of these components require custom or pre-packaged environment files to
enable:

OpenStack Dashboard (horizon)

OpenStack Identity (keystone)

OpenStack Compute (nova) API

OpenStack Networking (neutron)

OpenStack Image Service (glance)

OpenStack Block Storage (cinder)

OpenStack Object Storage (swift)

OpenStack Orchestration (heat)

OpenStack Shared File Systems (manila)

OpenStack Bare Metal (ironic)

OpenStack Load Balancing-as-a-Service (octavia)

OpenStack Key Manager (barbican)

MariaDB

Open vSwitch

Pacemaker and Galera for high availability services.

CHAPTER 1. INTRODUCTION TO DIRECTOR

11

Compute

Compute nodes provide computing resources for the OpenStack environment. You can add more
Compute nodes to scale out your environment over time. A default Compute node contains the
following components:

OpenStack Compute (nova)

KVM/QEMU

Open vSwitch

Storage

Storage nodes provide storage for the OpenStack environment. The following list contains
information about the various types of Storage node in RHOSP:

Ceph Storage nodes - Used to form storage clusters. Each node contains a Ceph Object
Storage Daemon (OSD). Additionally, director installs Ceph Monitor onto the Controller
nodes in situations where you deploy Ceph Storage nodes as part of your environment.

Block storage (cinder) - Used as external block storage for highly available Controller nodes.
This node contains the following components:

OpenStack Block Storage (cinder) volume

OpenStack Telemetry agents

Open vSwitch.

Object storage (swift) - These nodes provide an external storage layer for OpenStack Swift.
The Controller nodes access object storage nodes through the Swift proxy. Object storage
nodes contain the following components:

OpenStack Object Storage (swift) storage

OpenStack Telemetry agents

Open vSwitch.

1.3. UNDERSTANDING HIGH AVAILABILITY IN RED HAT OPENSTACK
PLATFORM

The Red Hat OpenStack Platform (RHOSP) director uses a Controller node cluster to provide highly
available services to your OpenStack Platform environment. For each service, director installs the same
components on all Controller nodes and manages the Controller nodes together as a single service. This
type of cluster configuration provides a fallback in the event of operational failures on a single Controller
node. This provides OpenStack users with a certain degree of continuous operation.

The OpenStack Platform director uses some key pieces of software to manage components on the
Controller node:

Pacemaker - Pacemaker is a cluster resource manager. Pacemaker manages and monitors the
availability of OpenStack components across all nodes in the cluster.

HAProxy - Provides load balancing and proxy services to the cluster.

Red Hat OpenStack Platform 17.0 Director Installation and Usage

12

Galera - Replicates the RHOSP database across the cluster.

Memcached - Provides database caching.

NOTE

From version 13 and later, you can use director to deploy High Availability for
Compute Instances (Instance HA). With Instance HA you can automate
evacuating instances from a Compute node when the Compute node fails.

1.4. UNDERSTANDING CONTAINERIZATION IN RED HAT OPENSTACK
PLATFORM

Each OpenStack Platform service on the undercloud and overcloud runs inside an individual Linux
container on their respective node. This containerization provides a method to isolate services, maintain
the environment, and upgrade Red Hat OpenStack Platform (RHOSP).

Red Hat OpenStack Platform 17.0 supports installation on the Red Hat Enterprise Linux 9.0 operating
system. Red Hat OpenStack Platform previously used Docker to manage containerization. OpenStack
Platform 17.0 uses these tools for OpenStack Platform deployment and upgrades.

Podman

Pod Manager (Podman) is a container management tool. It implements almost all Docker CLI
commands, not including commands related to Docker Swarm. Podman manages pods, containers,
and container images. Podman can manage resources without a daemon running in the background.
For more information about Podman, see the Podman website.

Buildah

Buildah specializes in building Open Containers Initiative (OCI) images, which you use in conjunction
with Podman. Buildah commands replicate the contents of a Dockerfile. Buildah also provides a
lower-level coreutils interface to build container images, so that you do not require a Dockerfile to
build containers. Buildah also uses other scripting languages to build container images without
requiring a daemon.
For more information about Buildah, see the Buildah website.

Skopeo

Skopeo provides operators with a method to inspect remote container images, which helps director
collect data when it pulls images. Additional features include copying container images from one
registry to another and deleting images from registries.

Red Hat supports the following methods for managing container images for your overcloud:

Pulling container images from the Red Hat Container Catalog to the image-serve registry on
the undercloud and then pulling the images from the image-serve registry. When you pull
images to the undercloud first, you avoid multiple overcloud nodes simultaneously pulling
container images over an external connection.

Pulling container images from your Satellite 6 server. You can pull these images directly from
the Satellite because the network traffic is internal.

This guide contains information about configuring your container image registry details and performing
basic container operations.

CHAPTER 1. INTRODUCTION TO DIRECTOR

13

https://podman.io/
https://buildah.io/

1.5. WORKING WITH CEPH STORAGE IN RED HAT OPENSTACK
PLATFORM

It is common for large organizations that use Red Hat OpenStack Platform (RHOSP) to serve thousands
of clients or more. Each OpenStack client is likely to have their own unique needs when consuming block
storage resources. Deploying glance (images), cinder (volumes), and nova (Compute) on a single node
can become impossible to manage in large deployments with thousands of clients. Scaling OpenStack
externally resolves this challenge.

However, there is also a practical requirement to virtualize the storage layer with a solution like Red Hat
Ceph Storage so that you can scale the RHOSP storage layer from tens of terabytes to petabytes, or
even exabytes of storage. Red Hat Ceph Storage provides this storage virtualization layer with high
availability and high performance while running on commodity hardware. While virtualization might seem
like it comes with a performance penalty, Ceph stripes block device images as objects across the cluster,
meaning that large Ceph Block Device images have better performance than a standalone disk. Ceph
Block devices also support caching, copy-on-write cloning, and copy-on-read cloning for enhanced
performance.

For more information about Red Hat Ceph Storage, see Red Hat Ceph Storage .

1.6. DEFAULT FILE LOCATIONS

In RHOSP 17, you can find all the configuration files in a single directory. The name of the directory is a
combination of the openstack command used and the name of the stack. The directories have default
locations but you can change the default locations by using the --working-dir option. You can use this
option with any tripleoclient command that reads or creates files used with the deployment.

Default location Command

$HOME/tripleo-
deploy/undercloud

undercloud install, which is based on tripleo deploy

$HOME/tripleo-deploy/<stack> tripleo deploy, <stack> is standalone by default

$HOME/overcloud-
deploy/<stack>

overcloud deploy, <stack> is overcloud by default

1.6.1. Description of the contents of the undercloud directory

You can find the following files and directories in the ~/tripleo-deploy/undercloud directory. They are a
subset of what is available in the ~/overcloud-deploy directory:

heat_launcher
install-undercloud.log
tripleo-ansible-inventory.yaml
tripleo-config-generated-env-files
tripleo-undercloud-outputs.yaml
tripleo-undercloud-passwords.yaml
undercloud-install-20220823210316.tar.bzip2

1.6.2. Description of the contents of the overcloud directory

You can find the following files and directories in the ~/overcloud-deploy/overcloud directory, where

Red Hat OpenStack Platform 17.0 Director Installation and Usage

14

https://access.redhat.com/products/red-hat-ceph-storage

You can find the following files and directories in the ~/overcloud-deploy/overcloud directory, where
overcloud is the name of the stack:

cli-config-download
cli-enable-ssh-admin
cli-grant-local-access
cli-undercloud-get-horizon-url
config-download
environment
heat-launcher
outputs
overcloud-deployment_status.yaml
overcloud-export.yaml
overcloud-install-20220823213643.tar.bzip2
overcloud-passwords.yaml
overcloudrc
tempest-deployer-input.conf
tripleo-ansible-inventory.yaml
tripleo-heat-templates
tripleo-overcloud-baremetal-deployment.yaml
tripleo-overcloud-network-data.yaml
tripleo-overcloud-roles-data.yaml
tripleo-overcloud-virtual-ips.yaml

The following table describes the content of those files and directories:

Directory Description

cli-* Directories used by ansible-runner for CLI ansible-based workflows.

config-download The config-download directory, it was previously called ~/config-
download or /var/lib/mistral/<stack>.

environment Contains the saved stack environment generated with the openstack
stack environment show <stack> command.

heat-launcher The ephemeral Heat working directory containing the ephemeral Heat
configuration and database backups.

outputs Contains saved stack outputs generated with the openstack stack
output show <stack> <output> command.

<stack>-deployment_status.yaml Contains the saved stack status.

<stack>-export.yaml Contains stack export information, generated with the openstack
overcloud export <stack> command.

<stack>-install-*.tar.bzip2 A tarball of the working directory.

<stack>-passwords.yaml Contains the stack passwords.

CHAPTER 1. INTRODUCTION TO DIRECTOR

15

<stack>rc Stack rc credential file required to use the overcloud APIs.

temployer-deployer-input.conf Contains the Tempest configuration.

tripleo-ansible-inventory.yaml Ansible inventory for the overcloud.

tripleo-heat-templates Contains a copy of rendered jinja2 templates. You can find the source
templates in /usr/share/openstack-tripleo-heat-templates or you
can specify the templates with the --templates options on the CLI.

tripleo-overcloud-baremetal-
deployment.yaml

Baremetal deployment input for provisioning overcloud nodes.

tripleo-overcloud-network-
data.yaml

Network deployment input for provisioning overcloud networks.

tripleo-overcloud-roles-data.yaml Roles data which is specified with the -r option on the CLI.

tripleo-overcloud-virtual-ips.yaml VIP deployment input for provisioning overcloud network VIPs.

Directory Description

Red Hat OpenStack Platform 17.0 Director Installation and Usage

16

CHAPTER 2. PLANNING YOUR UNDERCLOUD
Before you configure and install director on the undercloud, you must plan your undercloud host to
ensure it meets certain requirements.

2.1. CONTAINERIZED UNDERCLOUD

The undercloud is the node that controls the configuration, installation, and management of your final
Red Hat OpenStack Platform (RHOSP) environment, which is called the overcloud. The undercloud
itself uses OpenStack Platform components in the form of containers to create a toolset called director.
This means that the undercloud pulls a set of container images from a registry source, generates
configuration for the containers, and runs each OpenStack Platform service as a container. As a result,
the undercloud provides a containerized set of services that you can use as a toolset to create and
manage your overcloud.

Since both the undercloud and overcloud use containers, both use the same architecture to pull,
configure, and run containers. This architecture is based on the OpenStack Orchestration service (heat)
for provisioning nodes and uses Ansible to configure services and containers. It is useful to have some
familiarity with heat and Ansible to help you troubleshoot issues that you might encounter.

2.2. PREPARING YOUR UNDERCLOUD NETWORKING

The undercloud requires access to two main networks:

The Provisioning or Control Plane network, which is the network that director uses to provision
your nodes and access them over SSH when executing Ansible configuration. This network also
enables SSH access from the undercloud to overcloud nodes. The undercloud contains DHCP
services for introspection and provisioning other nodes on this network, which means that no
other DHCP services should exist on this network. The director configures the interface for this
network.

The External network, which enables access to OpenStack Platform repositories, container
image sources, and other servers such as DNS servers or NTP servers. Use this network for
standard access the undercloud from your workstation. You must manually configure an
interface on the undercloud to access the external network.

The undercloud requires a minimum of 2 x 1 Gbps Network Interface Cards: one for the Provisioning or
Control Plane network and one for the External network.

When you plan your network, review the following guidelines:

Red Hat recommends using one network for provisioning and the control plane and another
network for the data plane.

The provisioning and control plane network can be configured on top of a Linux bond or on
individual interfaces. If you use a Linux bond, configure it as an active-backup bond type.

On non-controller nodes, the amount of traffic is relatively low on provisioning and control
plane networks, and they do not require high bandwidth or load balancing.

On Controllers, the provisioning and control plane networks need additional bandwidth. The
reason for increased bandwidth is that Controllers serve many nodes in other roles. More
bandwidth is also required when frequent changes are made to the environment.

For best performance, Controllers with more than 50 compute nodes—​or if more than four

CHAPTER 2. PLANNING YOUR UNDERCLOUD

17

For best performance, Controllers with more than 50 compute nodes—​or if more than four
bare metal nodes are provisioned simultaneously—​should have 4-10 times the bandwidth
than the interfaces on the non-controller nodes.

The undercloud should have a higher bandwidth connection to the provisioning network when
more than 50 overcloud nodes are provisioned.

Do not use the same Provisioning or Control Plane NIC as the one that you use to access the
director machine from your workstation. The director installation creates a bridge by using the
Provisioning NIC, which drops any remote connections. Use the External NIC for remote
connections to the director system.

The Provisioning network requires an IP range that fits your environment size. Use the following
guidelines to determine the total number of IP addresses to include in this range:

Include at least one temporary IP address for each node that connects to the Provisioning
network during introspection.

Include at least one permanent IP address for each node that connects to the Provisioning
network during deployment.

Include an extra IP address for the virtual IP of the overcloud high availability cluster on the
Provisioning network.

Include additional IP addresses within this range for scaling the environment.

To prevent a Controller node network card or network switch failure disrupting overcloud
services availability, ensure that the keystone admin endpoint is located on a network that uses
bonded network cards or networking hardware redundancy. If you move the keystone endpoint
to a different network, such as internal_api, ensure that the undercloud can reach the VLAN or
subnet. For more information, see the Red Hat Knowledgebase solution How to migrate
Keystone Admin Endpoint to internal_api network.

2.3. DETERMINING ENVIRONMENT SCALE

Before you install the undercloud, determine the scale of your environment. Include the following factors
when you plan your environment:

How many nodes do you want to deploy in your overcloud?

The undercloud manages each node within an overcloud. Provisioning overcloud nodes consumes
resources on the undercloud. You must provide your undercloud with enough resources to
adequately provision and control all of your overcloud nodes.

How many simultaneous operations do you want the undercloud to perform?

Most OpenStack services on the undercloud use a set of workers. Each worker performs an
operation specific to that service. Multiple workers provide simultaneous operations. The default
number of workers on the undercloud is determined by halving the total CPU thread count on the
undercloud. In this instance, thread count refers to the number of CPU cores multiplied by the hyper-
threading value. For example, if your undercloud has a CPU with 16 threads, then the director services
spawn 8 workers by default. Director also uses a set of minimum and maximum caps by default:

Service Minimum Maximum

OpenStack Orchestration (heat) 4 24

Red Hat OpenStack Platform 17.0 Director Installation and Usage

18

https://access.redhat.com/solutions/4911721

All other service 2 12

Service Minimum Maximum

The undercloud has the following minimum CPU and memory requirements:

An 8-thread 64-bit x86 processor with support for the Intel 64 or AMD64 CPU extensions. This
provides 4 workers for each undercloud service.

A minimum of 24 GB of RAM.

To use a larger number of workers, increase the vCPUs and memory of your undercloud using the
following recommendations:

Minimum: Use 1.5 GB of memory for each thread. For example, a machine with 48 threads
requires 72 GB of RAM to provide the minimum coverage for 24 heat workers and 12 workers for
other services.

Recommended: Use 3 GB of memory for each thread. For example, a machine with 48 threads
requires 144 GB of RAM to provide the recommended coverage for 24 heat workers and 12
workers for other services.

2.4. UNDERCLOUD DISK SIZING

The recommended minimum undercloud disk size is 100 GB of available disk space on the root disk:

20 GB for container images

10 GB to accommodate QCOW2 image conversion and caching during the node provisioning
process

70 GB+ for general usage, logging, metrics, and growth

2.5. VIRTUALIZATION SUPPORT

Red Hat only supports a virtualized undercloud on the following platforms:

Platform Notes

Kernel-based Virtual Machine (KVM) Hosted by Red Hat Enterprise Linux, as listed on
Certified Guest Operating Systems in Red Hat
OpenStack Platform, Red Hat Virtualization,
OpenShift Virtualization and Red Hat Enterprise
Linux with KVM

Red Hat Virtualization Hosted by Red Hat Virtualization 4.x, as listed on
Certified Red Hat Hypervisors.

Microsoft Hyper-V Hosted by versions of Hyper-V as listed on the Red
Hat Customer Portal Certification Catalogue.

CHAPTER 2. PLANNING YOUR UNDERCLOUD

19

https://access.redhat.com/articles/973163
https://access.redhat.com/solutions/certified-hypervisors
https://access.redhat.com/ecosystem/search/#/ecosystem/Red Hat OpenStack Platform

VMware ESX and ESXi Hosted by versions of ESX and ESXi as listed on the
Red Hat Customer Portal Certification Catalogue.

Platform Notes

IMPORTANT

Ensure your hypervisor supports Red Hat Enterprise Linux 9.0 guests.

Virtual machine requirements

Resource requirements for a virtual undercloud are similar to those of a bare-metal undercloud.
Consider the various tuning options when provisioning such as network model, guest CPU capabilities,
storage backend, storage format, and caching mode.

Network considerations

Power management

The undercloud virtual machine (VM) requires access to the overcloud nodes' power management
devices. This is the IP address set for the pm_addr parameter when registering nodes.

Provisioning network

The NIC used for the provisioning network, ctlplane, requires the ability to broadcast and serve
DHCP requests to the NICs of the overcloud’s bare-metal nodes. Create a bridge that connects the
VM’s NIC to the same network as the bare metal NICs.

Allow traffic from an unknown address

You must configure your virtual undercloud hypervisor to prevent the hypervisor blocking the
undercloud from transmitting traffic from an unknown address. The configuration depends on the
platform you are using for your virtual undercloud:

Red Hat Enterprise Virtualization: Disable the anti-mac-spoofing parameter.

VMware ESX or ESXi:

On IPv4 ctlplane network: Allow forged transmits.

On IPv6 ctlplane network: Allow forged transmits, MAC address changes, and
promiscuous mode operation.
For more information about how to configure VMware ESX or ESXi, see Securing
vSphere Standard Switches on the VMware docs website.

You must power off and on the director VM after you apply these settings. It is not sufficient to only
reboot the VM.

2.6. CHARACTER ENCODING CONFIGURATION

Red Hat OpenStack Platform has special character encoding requirements as part of the locale settings:

Use UTF-8 encoding on all nodes. Ensure the LANG environment variable is set to en_US.UTF-
8 on all nodes.

Red Hat OpenStack Platform 17.0 Director Installation and Usage

20

https://access.redhat.com/ecosystem/search/#/ecosystem/Red Hat OpenStack Platform
https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.security.doc/GUID-3507432E-AFEA-4B6B-B404-17A020575358.html

Avoid using non-ASCII characters if you use Red Hat Ansible Tower to automate the creation of
Red Hat OpenStack Platform resources.

2.7. CONSIDERATIONS WHEN RUNNING THE UNDERCLOUD WITH A
PROXY

Running the undercloud with a proxy has certain limitations, and Red Hat recommends that you use Red
Hat Satellite for registry and package management.

However, if your environment uses a proxy, review these considerations to best understand the different
configuration methods of integrating parts of Red Hat OpenStack Platform with a proxy and the
limitations of each method.

System-wide proxy configuration

Use this method to configure proxy communication for all network traffic on the undercloud. To
configure the proxy settings, edit the /etc/environment file and set the following environment variables:

http_proxy

The proxy that you want to use for standard HTTP requests.

https_proxy

The proxy that you want to use for HTTPs requests.

no_proxy

A comma-separated list of domains that you want to exclude from proxy communications.

The system-wide proxy method has the following limitations:

The maximum length of no_proxy is 1024 characters due to a fixed size buffer in the pam_env
PAM module.

dnf proxy configuration

Use this method to configure dnf to run all traffic through a proxy. To configure the proxy settings, edit
the /etc/dnf/dnf.conf file and set the following parameters:

proxy

The URL of the proxy server.

proxy_username

The username that you want to use to connect to the proxy server.

proxy_password

The password that you want to use to connect to the proxy server.

proxy_auth_method

The authentication method used by the proxy server.

For more information about these options, run man dnf.conf.

The dnf proxy method has the following limitations:

This method provides proxy support only for dnf.

The dnf proxy method does not include an option to exclude certain hosts from proxy
communication.

CHAPTER 2. PLANNING YOUR UNDERCLOUD

21

Red Hat Subscription Manager proxy

Use this method to configure Red Hat Subscription Manager to run all traffic through a proxy. To
configure the proxy settings, edit the /etc/rhsm/rhsm.conf file and set the following parameters:

proxy_hostname

Host for the proxy.

proxy_scheme

The scheme for the proxy when writing out the proxy to repo definitions.

proxy_port

The port for the proxy.

proxy_username

The username that you want to use to connect to the proxy server.

proxy_password

The password to use for connecting to the proxy server.

no_proxy

A comma-separated list of hostname suffixes for specific hosts that you want to exclude from proxy
communication.

For more information about these options, run man rhsm.conf.

The Red Hat Subscription Manager proxy method has the following limitations:

This method provides proxy support only for Red Hat Subscription Manager.

The values for the Red Hat Subscription Manager proxy configuration override any values set
for the system-wide environment variables.

Transparent proxy

If your network uses a transparent proxy to manage application layer traffic, you do not need to
configure the undercloud itself to interact with the proxy because proxy management occurs
automatically. A transparent proxy can help overcome limitations associated with client-based proxy
configuration in Red Hat OpenStack Platform.

2.8. UNDERCLOUD REPOSITORIES

You run Red Hat OpenStack Platform 17.0 on Red Hat Enterprise Linux 9.0. As a result, you must lock
the content from these repositories to the respective Red Hat Enterprise Linux version.

WARNING

Any repositories except the ones specified here are not supported. Unless
recommended, do not enable any other products or repositories except the ones
listed in the following tables or else you might encounter package dependency
issues. Do not enable Extra Packages for Enterprise Linux (EPEL).

NOTE



Red Hat OpenStack Platform 17.0 Director Installation and Usage

22

NOTE

Satellite repositories are not listed because RHOSP 17.0 does not support Satellite.
Satellite support is planned for a future release. Only Red Hat CDN is supported as a
package repository and container registry.

Core repositories

The following table lists core repositories for installing the undercloud.

Name Repository Description of requirement

Red Hat Enterprise Linux 9 for
x86_64 - BaseOS (RPMs)
Extended Update Support (EUS)

rhel-9-for-x86_64-baseos-
eus-rpms

Base operating system repository
for x86_64 systems.

Red Hat Enterprise Linux 9 for
x86_64 - AppStream (RPMs)

rhel-9-for-x86_64-appstream-
eus-rpms

Contains Red Hat OpenStack
Platform dependencies.

Red Hat Enterprise Linux 9 for
x86_64 - High Availability (RPMs)
Extended Update Support (EUS)

rhel-9-for-x86_64-
highavailability-eus-rpms

High availability tools for Red Hat
Enterprise Linux. Used for
Controller node high availability.

Red Hat OpenStack Platform 17.0
for RHEL 9 (RPMs)

openstack-17-for-rhel-9-
x86_64-rpms

Core Red Hat OpenStack
Platform repository, which
contains packages for Red Hat
OpenStack Platform director.

Red Hat Fast Datapath for RHEL
9 (RPMS)

fast-datapath-for-rhel-9-
x86_64-rpms

Provides Open vSwitch (OVS)
packages for OpenStack
Platform.

CHAPTER 2. PLANNING YOUR UNDERCLOUD

23

CHAPTER 3. UNDERSTANDING HEAT TEMPLATES
The custom configurations in this guide use heat templates and environment files to define certain
aspects of the overcloud. This chapter provides a basic introduction to heat templates so that you can
understand the structure and format of these templates in the context of Red Hat OpenStack Platform
director.

3.1. HEAT TEMPLATES

Director uses Heat Orchestration Templates (HOT) as the template format for the overcloud
deployment plan. Templates in HOT format are usually expressed in YAML format. The purpose of a
template is to define and create a stack, which is a collection of resources that OpenStack Orchestration
(heat) creates, and the configuration of the resources. Resources are objects in Red Hat OpenStack
Platform (RHOSP) and can include compute resources, network configuration, security groups, scaling
rules, and custom resources.

A heat template has three main sections:

parameters

These are settings passed to heat, which provide a way to customize a stack, and any default values
for parameters without passed values. These settings are defined in the parameters section of a
template.

resources

Use the resources section to define the resources, such as compute instances, networks, and
storage volumes, that you can create when you deploy a stack using this template. Red Hat
OpenStack Platform (RHOSP) contains a set of core resources that span across all components.
These are the specific objects to create and configure as part of a stack. RHOSP contains a set of
core resources that span across all components. These are defined in the resources section of a
template.

outputs

Use the outputs section to declare the output parameters that your cloud users can access after the
stack is created. Your cloud users can use these parameters to request details about the stack, such
as the IP addresses of deployed instances, or URLs of web applications deployed as part of the stack.

Example of a basic heat template:

heat_template_version: 2013-05-23

description: > A very basic Heat template.

parameters:
 key_name:
 type: string
 default: lars
 description: Name of an existing key pair to use for the instance
 flavor:
 type: string
 description: Instance type for the instance to be created
 default: m1.small
 image:
 type: string
 default: cirros
 description: ID or name of the image to use for the instance

Red Hat OpenStack Platform 17.0 Director Installation and Usage

24

resources:
 my_instance:
 type: OS::Nova::Server
 properties:
 name: My Cirros Instance
 image: { get_param: image }
 flavor: { get_param: flavor }
 key_name: { get_param: key_name }

output:
 instance_name:
 description: Get the instance's name
 value: { get_attr: [my_instance, name] }

This template uses the resource type type: OS::Nova::Server to create an instance called
my_instance with a particular flavor, image, and key that the cloud user specifies. The stack can return
the value of instance_name, which is called My Cirros Instance.

When heat processes a template, it creates a stack for the template and a set of child stacks for
resource templates. This creates a hierarchy of stacks that descend from the main stack that you define
with your template. You can view the stack hierarchy with the following command:

$ openstack stack list --nested

3.2. ENVIRONMENT FILES

An environment file is a special type of template that you can use to customize your heat templates. You
can include environment files in the deployment command, in addition to the core heat templates. An
environment file contains three main sections:

resource_registry

This section defines custom resource names, linked to other heat templates. This provides a method
to create custom resources that do not exist within the core resource collection.

parameters

These are common settings that you apply to the parameters of the top-level template. For
example, if you have a template that deploys nested stacks, such as resource registry mappings, the
parameters apply only to the top-level template and not to templates for the nested resources.

parameter_defaults

These parameters modify the default values for parameters in all templates. For example, if you have
a heat template that deploys nested stacks, such as resource registry mappings,the parameter
defaults apply to all templates.

IMPORTANT

Use parameter_defaults instead of parameters when you create custom environment
files for your overcloud, so that your parameters apply to all stack templates for the
overcloud.

Example of a basic environment file:

resource_registry:

CHAPTER 3. UNDERSTANDING HEAT TEMPLATES

25

 OS::Nova::Server::MyServer: myserver.yaml

parameter_defaults:
 NetworkName: my_network

parameters:
 MyIP: 192.168.0.1

This environment file (my_env.yaml) might be included when creating a stack from a certain heat
template (my_template.yaml). The my_env.yaml file creates a new resource type called
OS::Nova::Server::MyServer. The myserver.yaml file is a heat template file that provides an
implementation for this resource type that overrides any built-in ones. You can include the
OS::Nova::Server::MyServer resource in your my_template.yaml file.

MyIP applies a parameter only to the main heat template that deploys with this environment file. In this
example, MyIP applies only to the parameters in my_template.yaml.

NetworkName applies to both the main heat template, my_template.yaml, and the templates that are
associated with the resources that are included in the main template, such as the
OS::Nova::Server::MyServer resource and its myserver.yaml template in this example.

NOTE

For RHOSP to use the heat template file as a custom template resource, the file
extension must be either .yaml or .template.

3.3. CORE OVERCLOUD HEAT TEMPLATES

Director contains a core heat template collection and environment file collection for the overcloud. This
collection is stored in /usr/share/openstack-tripleo-heat-templates.

The main files and directories in this template collection are:

overcloud.j2.yaml

This is the main template file that director uses to create the overcloud environment. This file uses
Jinja2 syntax to iterate over certain sections in the template to create custom roles. The Jinja2
formatting is rendered into YAML during the overcloud deployment process.

overcloud-resource-registry-puppet.j2.yaml

This is the main environment file that director uses to create the overcloud environment. It provides a
set of configurations for Puppet modules stored on the overcloud image. After director writes the
overcloud image to each node, heat starts the Puppet configuration for each node by using the
resources registered in this environment file. This file uses Jinja2 syntax to iterate over certain
sections in the template to create custom roles. The Jinja2 formatting is rendered into YAML during
the overcloud deployment process.

roles_data.yaml

This file contains the definitions of the roles in an overcloud and maps services to each role.

network_data.yaml

This file contains the definitions of the networks in an overcloud and their properties such as subnets,
allocation pools, and VIP status. The default network_data.yaml file contains the default networks:
External, Internal Api, Storage, Storage Management, Tenant, and Management. You can create a
custom network_data.yaml file and add it to your openstack overcloud deploy command with the
-n option.

plan-environment.yaml

Red Hat OpenStack Platform 17.0 Director Installation and Usage

26

This file contains the definitions of the metadata for your overcloud plan. This includes the plan
name, main template to use, and environment files to apply to the overcloud.

capabilities-map.yaml

This file contains a mapping of environment files for an overcloud plan.

deployment

This directory contains heat templates. The overcloud-resource-registry-puppet.j2.yaml
environment file uses the files in this directory to drive the application of the Puppet configuration
on each node.

environments

This directory contains additional heat environment files that you can use for your overcloud
creation. These environment files enable extra functions for your resulting Red Hat OpenStack
Platform (RHOSP) environment. For example, the directory contains an environment file to enable
Cinder NetApp backend storage (cinder-netapp-config.yaml).

network

This directory contains a set of heat templates that you can use to create isolated networks and
ports.

puppet

This directory contains templates that control Puppet configuration. The overcloud-resource-
registry-puppet.j2.yaml environment file uses the files in this directory to drive the application of
the Puppet configuration on each node.

puppet/services

This directory contains legacy heat templates for all service configuration. The templates in the
deployment directory replace most of the templates in the puppet/services directory.

extraconfig

This directory contains templates that you can use to enable extra functionality.

3.4. PLAN ENVIRONMENT METADATA

You can define metadata for your overcloud plan in a plan environment metadata file. Director applies
metadata during the overcloud creation, and when importing and exporting your overcloud plan.

A plan environment metadata file includes the following parameters:

version

The version of the template.

name

The name of the overcloud plan and the container in OpenStack Object Storage (swift) that you
want to use to store the plan files.

template

The core parent template that you want to use for the overcloud deployment. This is most often
overcloud.yaml, which is the rendered version of the overcloud.yaml.j2 template.

environments

Defines a list of environment files that you want to use. Specify the name and relative locations of
each environment file with the path sub-parameter.

parameter_defaults

A set of parameters that you want to use in your overcloud. This functions in the same way as the
parameter_defaults section in a standard environment file.

CHAPTER 3. UNDERSTANDING HEAT TEMPLATES

27

passwords

A set of parameters that you want to use for overcloud passwords. This functions in the same way as
the parameter_defaults section in a standard environment file. Usually, the director populates this
section automatically with randomly generated passwords.

The following snippet is an example of the syntax of a plan environment file:

version: 1.0
name: myovercloud
description: 'My Overcloud Plan'
template: overcloud.yaml
environments:
- path: overcloud-resource-registry-puppet.yaml
- path: environments/containers-default-parameters.yaml
- path: user-environment.yaml
parameter_defaults:
 ControllerCount: 1
 ComputeCount: 1
 OvercloudComputeFlavor: compute
 OvercloudControllerFlavor: control
workflow_parameters:
 tripleo.derive_params.v1.derive_parameters:
 num_phy_cores_per_numa_node_for_pmd: 2

You can include the plan environment metadata file with the openstack overcloud deploy command
with the -p option:

(undercloud) $ openstack overcloud deploy --templates \
 -p /my-plan-environment.yaml \
 [OTHER OPTIONS]

You can also view plan metadata for an existing overcloud plan with the following command:

(undercloud) $ openstack object save overcloud plan-environment.yaml --file -

3.5. INCLUDING ENVIRONMENT FILES IN OVERCLOUD CREATION

Include environment files in the deployment command with the -e option. You can include as many
environment files as necessary. However, the order of the environment files is important as the
parameters and resources that you define in subsequent environment files take precedence. For
example, you have two environment files that contain a common resource type
OS::TripleO::NodeExtraConfigPost, and a common parameter TimeZone:

environment-file-1.yaml

resource_registry:
 OS::TripleO::NodeExtraConfigPost: /home/stack/templates/template-1.yaml

parameter_defaults:
 RabbitFDLimit: 65536
 TimeZone: 'Japan'

environment-file-2.yaml

Red Hat OpenStack Platform 17.0 Director Installation and Usage

28

resource_registry:
 OS::TripleO::NodeExtraConfigPost: /home/stack/templates/template-2.yaml

parameter_defaults:
 TimeZone: 'Hongkong'

You include both environment files in the deployment command:

$ openstack overcloud deploy --templates -e environment-file-1.yaml -e environment-file-2.yaml

The openstack overcloud deploy command runs through the following process:

1. Loads the default configuration from the core heat template collection.

2. Applies the configuration from environment-file-1.yaml, which overrides any common settings
from the default configuration.

3. Applies the configuration from environment-file-2.yaml, which overrides any common settings
from the default configuration and environment-file-1.yaml.

This results in the following changes to the default configuration of the overcloud:

OS::TripleO::NodeExtraConfigPost resource is set to /home/stack/templates/template-
2.yaml, as defined in environment-file-2.yaml.

TimeZone parameter is set to Hongkong, as defined in environment-file-2.yaml.

RabbitFDLimit parameter is set to 65536, as defined in environment-file-1.yaml.
environment-file-2.yaml does not change this value.

You can use this mechanism to define custom configuration for your overcloud without values from
multiple environment files conflicting.

3.6. USING CUSTOMIZED CORE HEAT TEMPLATES

When creating the overcloud, director uses a core set of heat templates located in
/usr/share/openstack-tripleo-heat-templates. If you want to customize this core template collection,
use the following Git workflows to manage your custom template collection:

Procedure

Create an initial Git repository that contains the heat template collection:

a. Copy the template collection to the /home/stack/templates directory:

$ cd ~/templates
$ cp -r /usr/share/openstack-tripleo-heat-templates .

b. Change to the custom template directory and initialize a Git repository:

$ cd ~/templates/openstack-tripleo-heat-templates
$ git init .

c. Configure your Git user name and email address:

CHAPTER 3. UNDERSTANDING HEAT TEMPLATES

29

$ git config --global user.name "<USER_NAME>"
$ git config --global user.email "<EMAIL_ADDRESS>"

Replace <USER_NAME> with the user name that you want to use.

Replace <EMAIL_ADDRESS> with your email address.

a. Stage all templates for the initial commit:

$ git add *

b. Create an initial commit:

$ git commit -m "Initial creation of custom core heat templates"

This creates an initial master branch that contains the latest core template collection. Use
this branch as the basis for your custom branch and merge new template versions to this
branch.

Use a custom branch to store your changes to the core template collection. Use the following
procedure to create a my-customizations branch and add customizations:

a. Create the my-customizations branch and switch to it:

$ git checkout -b my-customizations

b. Edit the files in the custom branch.

c. Stage the changes in git:

$ git add [edited files]

d. Commit the changes to the custom branch:

$ git commit -m "[Commit message for custom changes]"

This adds your changes as commits to the my-customizations branch. When the master
branch updates, you can rebase my-customizations off master, which causes git to add
these commits on to the updated template collection. This helps track your customizations
and replay them on future template updates.

When you update the undercloud, the openstack-tripleo-heat-templates package might also
receive updates. When this occurs, you must also update your custom template collection:

a. Save the openstack-tripleo-heat-templates package version as an environment variable:

$ export PACKAGE=$(rpm -qv openstack-tripleo-heat-templates)

b. Change to your template collection directory and create a new branch for the updated
templates:

$ cd ~/templates/openstack-tripleo-heat-templates
$ git checkout -b $PACKAGE

Red Hat OpenStack Platform 17.0 Director Installation and Usage

30

c. Remove all files in the branch and replace them with the new versions:

$ git rm -rf *
$ cp -r /usr/share/openstack-tripleo-heat-templates/* .

d. Add all templates for the initial commit:

$ git add *

e. Create a commit for the package update:

$ git commit -m "Updates for $PACKAGE"

f. Merge the branch into master. If you use a Git management system (such as GitLab), use
the management workflow. If you use git locally, merge by switching to the master branch
and run the git merge command:

$ git checkout master
$ git merge $PACKAGE

The master branch now contains the latest version of the core template collection. You can now rebase
the my-customization branch from this updated collection.

Update the my-customization branch,:

a. Change to the my-customizations branch:

$ git checkout my-customizations

b. Rebase the branch off master:

$ git rebase master

This updates the my-customizations branch and replays the custom commits made to this
branch.

Resolve any conflicts that occur during the rebase:

a. Check which files contain the conflicts:

$ git status

b. Resolve the conflicts of the template files identified.

c. Add the resolved files:

$ git add [resolved files]

d. Continue the rebase:

$ git rebase --continue

Deploy the custom template collection:

CHAPTER 3. UNDERSTANDING HEAT TEMPLATES

31

a. Ensure that you have switched to the my-customization branch:

git checkout my-customizations

b. Run the openstack overcloud deploy command with the --templates option to specify
your local template directory:

$ openstack overcloud deploy --templates /home/stack/templates/openstack-tripleo-heat-
templates [OTHER OPTIONS]

NOTE

Director uses the default template directory (/usr/share/openstack-tripleo-heat-
templates) if you specify the --templates option without a directory.

IMPORTANT

Red Hat recommends using the methods in Chapter 5, Configuration hooks instead of
modifying the heat template collection.

3.7. JINJA2 RENDERING

The core heat templates in /usr/share/openstack-tripleo-heat-templates contain a number of files that
have the j2.yaml file extension. These files contain Jinja2 template syntax and director renders these
files to their static heat template equivalents that have the .yaml extension. For example, the main
overcloud.j2.yaml file renders into overcloud.yaml. Director uses the resulting overcloud.yaml file.

The Jinja2-enabled heat templates use Jinja2 syntax to create parameters and resources for iterative
values. For example, the overcloud.j2.yaml file contains the following snippet:

parameters:
...
{% for role in roles %}
 ...
 {{role.name}}Count:
 description: Number of {{role.name}} nodes to deploy
 type: number
 default: {{role.CountDefault|default(0)}}
 ...
{% endfor %}

When director renders the Jinja2 syntax, director iterates over the roles defined in the roles_data.yaml
file and populates the {{role.name}}Count parameter with the name of the role. The default
roles_data.yaml file contains five roles and results in the following parameters from our example:

ControllerCount

ComputeCount

BlockStorageCount

ObjectStorageCount

CephStorageCount

Red Hat OpenStack Platform 17.0 Director Installation and Usage

32

A example rendered version of the parameter looks like this:

parameters:
 ...
 ControllerCount:
 description: Number of Controller nodes to deploy
 type: number
 default: 1
 ...

Director renders Jinja2-enabled templates and environment files only from within the directory of your
core heat templates. The following use cases demonstrate the correct method to render the Jinja2
templates.

Use case 1: Default core templates

Template directory: /usr/share/openstack-tripleo-heat-templates/

Environment file: /usr/share/openstack-tripleo-heat-templates/environments/ssl/enable-internal-
tls.j2.yaml

Director uses the default core template location (--templates) and renders the enable-internal-
tls.j2.yaml file into enable-internal-tls.yaml. When you run the openstack overcloud deploy
command, use the -e option to include the name of the rendered enable-internal-tls.yaml file.

$ openstack overcloud deploy --templates \
 -e /usr/share/openstack-tripleo-heat-templates/environments/ssl/enable-internal-tls.yaml
 ...

Use case 2: Custom core templates

Template directory: /home/stack/tripleo-heat-installer-templates

Environment file: /home/stack/tripleo-heat-installer-templates/environments/ssl/enable-internal-
tls.j2.yaml

Director uses a custom core template location (--templates /home/stack/tripleo-heat-templates) and
director renders the enable-internal-tls.j2.yaml file within the custom core templates into enable-
internal-tls.yaml. When you run the openstack overcloud deploy command, use the -e option to
include the name of the rendered enable-internal-tls.yaml file.

$ openstack overcloud deploy --templates /home/stack/tripleo-heat-templates \
 -e /home/stack/tripleo-heat-templates/environments/ssl/enable-internal-tls.yaml
 ...

Use case 3: Incorrect usage

Template directory: /usr/share/openstack-tripleo-heat-templates/

Environment file: /home/stack/tripleo-heat-installer-templates/environments/ssl/enable-internal-
tls.j2.yaml

Director uses a custom core template location (--templates /home/stack/tripleo-heat-installer-
templates). However, the chosen enable-internal-tls.j2.yaml is not located within the custom core
templates, so it will not render into enable-internal-tls.yaml. This causes the deployment to fail.

CHAPTER 3. UNDERSTANDING HEAT TEMPLATES

33

Processing Jinja2 syntax into static templates

Use the process-templates.py script to render the Jinja2 syntax of the openstack-tripleo-heat-
templates into a set of static templates. To render a copy of the openstack-tripleo-heat-templates
collection with the process-templates.py script, change to the openstack-tripleo-heat-templates
directory:

$ cd /usr/share/openstack-tripleo-heat-templates

Run the process-templates.py script, which is located in the tools directory, along with the -o option to
define a custom directory to save the static copy:

$./tools/process-templates.py -o ~/openstack-tripleo-heat-templates-rendered

This converts all Jinja2 templates to their rendered YAML versions and saves the results to
~/openstack-tripleo-heat-templates-rendered.

Red Hat OpenStack Platform 17.0 Director Installation and Usage

34

CHAPTER 4. HEAT PARAMETERS
Each heat template in the director template collection contains a parameters section. This section
contains definitions for all parameters specific to a particular overcloud service. This includes the
following:

overcloud.j2.yaml - Default base parameters

roles_data.yaml - Default parameters for composable roles

deployment/*.yaml - Default parameters for specific services

You can modify the values for these parameters using the following method:

1. Create an environment file for your custom parameters.

2. Include your custom parameters in the parameter_defaults section of the environment file.

3. Include the environment file with the openstack overcloud deploy command.

4.1. EXAMPLE 1: CONFIGURING THE TIME ZONE

The Heat template for setting the timezone (puppet/services/time/timezone.yaml) contains a
TimeZone parameter. If you leave the TimeZone parameter blank, the overcloud sets the time to UTC
as a default.

To obtain lists of timezones run the timedatectl list-timezones command. The following example
command retrieves the timezones for Asia:

$ sudo timedatectl list-timezones|grep "Asia"

After you identify your timezone, set the TimeZone parameter in an environment file. The following
example environment file sets the value of TimeZone to Asia/Tokyo:

parameter_defaults:
 TimeZone: 'Asia/Tokyo'

4.2. EXAMPLE 2: CONFIGURING RABBITMQ FILE DESCRIPTOR LIMIT

For certain configurations, you might need to increase the file descriptor limit for the RabbitMQ server.
Use the deployment/rabbitmq/rabbitmq-container-puppet.yaml heat template to set a new limit in
the RabbitFDLimit parameter. Add the following entry to an environment file:

parameter_defaults:
 RabbitFDLimit: 65536

4.3. EXAMPLE 3: ENABLING AND DISABLING PARAMETERS

You might need to initially set a parameter during a deployment, then disable the parameter for a future
deployment operation, such as updates or scaling operations. For example, to include a custom RPM
during the overcloud creation, include the following entry in an environment file:

CHAPTER 4. HEAT PARAMETERS

35

parameter_defaults:
 DeployArtifactURLs: ["http://www.example.com/myfile.rpm"]

To disable this parameter from a future deployment, it is not sufficient to remove the parameter.
Instead, you must set the parameter to an empty value:

parameter_defaults:
 DeployArtifactURLs: []

This ensures the parameter is no longer set for subsequent deployments operations.

4.4. EXAMPLE 4: ROLE-BASED PARAMETERS

Use the [ROLE]Parameters parameters, replacing [ROLE] with a composable role, to set parameters
for a specific role.

For example, director configures sshd on both Controller and Compute nodes. To set a different sshd
parameters for Controller and Compute nodes, create an environment file that contains both the
ControllerParameters and ComputeParameters parameter and set the sshd parameters for each
specific role:

parameter_defaults:
 ControllerParameters:
 BannerText: "This is a Controller node"
 ComputeParameters:
 BannerText: "This is a Compute node"

4.5. IDENTIFYING PARAMETERS THAT YOU WANT TO MODIFY

Red Hat OpenStack Platform director provides many parameters for configuration. In some cases, you
might experience difficulty identifying a certain option that you want to configure, and the
corresponding director parameter. If there is an option that you want to configure with director, use the
following workflow to identify and map the option to a specific overcloud parameter:

1. Identify the option that you want to configure. Make a note of the service that uses the option.

2. Check the corresponding Puppet module for this option. The Puppet modules for Red Hat
OpenStack Platform are located under /etc/puppet/modules on the director node. Each
module corresponds to a particular service. For example, the keystone module corresponds to
the OpenStack Identity (keystone).

If the Puppet module contains a variable that controls the chosen option, move to the next
step.

If the Puppet module does not contain a variable that controls the chosen option, no
hieradata exists for this option. If possible, you can set the option manually after the
overcloud completes deployment.

3. Check the core heat template collection for the Puppet variable in the form of hieradata. The
templates in deployment/* usually correspond to the Puppet modules of the same services. For
example, the deployment/keystone/keystone-container-puppet.yaml template provides
hieradata to the keystone module.

If the heat template sets hieradata for the Puppet variable, the template should also

Red Hat OpenStack Platform 17.0 Director Installation and Usage

36

If the heat template sets hieradata for the Puppet variable, the template should also
disclose the director-based parameter that you can modify.

If the heat template does not set hieradata for the Puppet variable, use the configuration
hooks to pass the hieradata using an environment file. See Section 5.4, “Puppet:
Customizing hieradata for roles” for more information on customizing hieradata.

Procedure

1. To change the notification format for OpenStack Identity (keystone), use the workflow and
complete the following steps:

a. Identify the OpenStack parameter that you want to configure (notification_format).

b. Search the keystone Puppet module for the notification_format setting:

$ grep notification_format /etc/puppet/modules/keystone/manifests/*

In this case, the keystone module manages this option using the
keystone::notification_format variable.

c. Search the keystone service template for this variable:

$ grep "keystone::notification_format" /usr/share/openstack-tripleo-heat-
templates/deployment/keystone/keystone-container-puppet.yaml

The output shows that director uses the KeystoneNotificationFormat parameter to set
the keystone::notification_format hieradata.

The following table shows the eventual mapping:

Director parameter Puppet hieradata OpenStack Identity (keystone)
option

KeystoneNotificationFormat keystone::notification_forma
t

notification_format

You set the KeystoneNotificationFormat in an overcloud environment file, which then sets the
notification_format option in the keystone.conf file during the overcloud configuration.

CHAPTER 4. HEAT PARAMETERS

37

CHAPTER 5. CONFIGURATION HOOKS
Use configuration hooks to inject your own custom configuration functions into the overcloud
deployment process. You can create hooks to inject custom configuration before and after the main
overcloud services configuration, and hooks for modifying and including Puppet-based configuration.

5.1. PRE-CONFIGURATION: CUSTOMIZING SPECIFIC OVERCLOUD
ROLES

The overcloud uses Puppet for the core configuration of OpenStack components. Director provides a
set of hooks that you can use to perform custom configuration for specific node roles before the core
configuration begins. These hooks include the following configurations:

IMPORTANT

Previous versions of this document used the OS::TripleO::Tasks::*PreConfig resources
to provide pre-configuration hooks on a per role basis. The heat template collection
requires dedicated use of these hooks, which means that you should not use them for
custom use. Instead, use the OS::TripleO::*ExtraConfigPre hooks outlined here.

OS::TripleO::ControllerExtraConfigPre

Additional configuration applied to Controller nodes before the core Puppet configuration.

OS::TripleO::ComputeExtraConfigPre

Additional configuration applied to Compute nodes before the core Puppet configuration.

OS::TripleO::CephStorageExtraConfigPre

Additional configuration applied to Ceph Storage nodes before the core Puppet configuration.

OS::TripleO::ObjectStorageExtraConfigPre

Additional configuration applied to Object Storage nodes before the core Puppet configuration.

OS::TripleO::BlockStorageExtraConfigPre

Additional configuration applied to Block Storage nodes before the core Puppet configuration.

OS::TripleO::[ROLE]ExtraConfigPre

Additional configuration applied to custom nodes before the core Puppet configuration. Replace
[ROLE] with the composable role name.

In this example, append the resolv.conf file on all nodes of a particular role with a variable nameserver:

Procedure

1. Create a basic heat template ~/templates/nameserver.yaml that runs a script to write a
variable nameserver to the resolv.conf file of a node:

heat_template_version: 2014-10-16

description: >
 Extra hostname configuration

parameters:
 server:
 type: string
 nameserver_ip:

Red Hat OpenStack Platform 17.0 Director Installation and Usage

38

 type: string
 DeployIdentifier:
 type: string

resources:
 CustomExtraConfigPre:
 type: OS::Heat::SoftwareConfig
 properties:
 group: script
 config:
 str_replace:
 template: |
 #!/bin/sh
 echo "nameserver _NAMESERVER_IP_" > /etc/resolv.conf
 params:
 _NAMESERVER_IP_: {get_param: nameserver_ip}

 CustomExtraDeploymentPre:
 type: OS::Heat::SoftwareDeployment
 properties:
 server: {get_param: server}
 config: {get_resource: CustomExtraConfigPre}
 actions: ['CREATE']
 input_values:
 deploy_identifier: {get_param: DeployIdentifier}

outputs:
 deploy_stdout:
 description: Deployment reference, used to trigger pre-deploy on changes
 value: {get_attr: [CustomExtraDeploymentPre, deploy_stdout]}

In this example, the resources section contains the following parameters:

CustomExtraConfigPre

This defines a software configuration. In this example, we define a Bash script and heat
replaces _NAMESERVER_IP_ with the value stored in the nameserver_ip parameter.

CustomExtraDeploymentPre

This executes a software configuration, which is the software configuration from the
CustomExtraConfigPre resource. Note the following:

The config parameter references the CustomExtraConfigPre resource so that heat
knows which configuration to apply.

The server parameter retrieves a map of the overcloud nodes. This parameter is
provided by the parent template and is mandatory in templates for this hook.

The actions parameter defines when to apply the configuration. In this case, you want to
apply the configuration when the overcloud is created. Possible actions include
CREATE, UPDATE, DELETE, SUSPEND, and RESUME.

input_values contains a parameter called deploy_identifier, which stores the
DeployIdentifier from the parent template. This parameter provides a timestamp to the
resource for each deployment update to ensure that the resource reapplies on
subsequent overcloud updates.

2. Create an environment file ~/templates/pre_config.yaml that registers your heat template to

CHAPTER 5. CONFIGURATION HOOKS

39

2. Create an environment file ~/templates/pre_config.yaml that registers your heat template to
the role-based resource type. For example, to apply the configuration only to Controller nodes,
use the ControllerExtraConfigPre hook:

resource_registry:
 OS::TripleO::ControllerExtraConfigPre: /home/stack/templates/nameserver.yaml

parameter_defaults:
 nameserver_ip: 192.168.1.1

3. Add the environment file to the stack, along with your other environment files:

$ openstack overcloud deploy --templates \
 ...
 -e /home/stack/templates/pre_config.yaml \
 ...

This applies the configuration to all Controller nodes before the core configuration begins on
either the initial overcloud creation or subsequent updates.

IMPORTANT

You can register each resource to only one heat template per hook. Subsequent usage
overrides the heat template to use.

5.2. PRE-CONFIGURATION: CUSTOMIZING ALL OVERCLOUD ROLES

The overcloud uses Puppet for the core configuration of OpenStack components. Director provides a
hook that you can use to configure all node types before the core configuration begins:

OS::TripleO::NodeExtraConfig

Additional configuration applied to all nodes roles before the core Puppet configuration.

In this example, append the resolv.conf file on each node with a variable nameserver:

Procedure

1. Create a basic heat template ~/templates/nameserver.yaml that runs a script to append the
resolv.conf file of each node with a variable nameserver:

heat_template_version: 2014-10-16

description: >
 Extra hostname configuration

parameters:
 server:
 type: string
 nameserver_ip:
 type: string
 DeployIdentifier:
 type: string

resources:

Red Hat OpenStack Platform 17.0 Director Installation and Usage

40

 CustomExtraConfigPre:
 type: OS::Heat::SoftwareConfig
 properties:
 group: script
 config:
 str_replace:
 template: |
 #!/bin/sh
 echo "nameserver _NAMESERVER_IP_" >> /etc/resolv.conf
 params:
 _NAMESERVER_IP_: {get_param: nameserver_ip}

 CustomExtraDeploymentPre:
 type: OS::Heat::SoftwareDeployment
 properties:
 server: {get_param: server}
 config: {get_resource: CustomExtraConfigPre}
 actions: ['CREATE']
 input_values:
 deploy_identifier: {get_param: DeployIdentifier}

outputs:
 deploy_stdout:
 description: Deployment reference, used to trigger pre-deploy on changes
 value: {get_attr: [CustomExtraDeploymentPre, deploy_stdout]}

In this example, the resources section contains the following parameters:

CustomExtraConfigPre

This parameter defines a software configuration. In this example, you define a Bash script
and heat replaces _NAMESERVER_IP_ with the value stored in the nameserver_ip
parameter.

CustomExtraDeploymentPre

This parameter executes a software configuration, which is the software configuration from
the CustomExtraConfigPre resource. Note the following:

The config parameter references the CustomExtraConfigPre resource so that heat
knows which configuration to apply.

The server parameter retrieves a map of the overcloud nodes. This parameter is
provided by the parent template and is mandatory in templates for this hook.

The actions parameter defines when to apply the configuration. In this case, you only
apply the configuration when the overcloud is created. Possible actions include
CREATE, UPDATE, DELETE, SUSPEND, and RESUME.

The input_values parameter contains a sub-parameter called deploy_identifier, which
stores the DeployIdentifier from the parent template. This parameter provides a
timestamp to the resource for each deployment update to ensure that the resource
reapplies on subsequent overcloud updates.

2. Create an environment file ~/templates/pre_config.yaml that registers your heat template as
the OS::TripleO::NodeExtraConfig resource type.

CHAPTER 5. CONFIGURATION HOOKS

41

resource_registry:
 OS::TripleO::NodeExtraConfig: /home/stack/templates/nameserver.yaml

parameter_defaults:
 nameserver_ip: 192.168.1.1

3. Add the environment file to the stack, along with your other environment files:

$ openstack overcloud deploy --templates \
 ...
 -e /home/stack/templates/pre_config.yaml \
 ...

This applies the configuration to all nodes before the core configuration begins on either the
initial overcloud creation or subsequent updates.

IMPORTANT

You can register the OS::TripleO::NodeExtraConfig to only one heat template.
Subsequent usage overrides the heat template to use.

5.3. POST-CONFIGURATION: CUSTOMIZING ALL OVERCLOUD ROLES

IMPORTANT

Previous versions of this document used the OS::TripleO::Tasks::*PostConfig
resources to provide post-configuration hooks on a per role basis. The heat template
collection requires dedicated use of these hooks, which means that you should not use
them for custom use. Instead, use the OS::TripleO::NodeExtraConfigPost hook
outlined here.

A situation might occur where you have completed the creation of your overcloud but you want to add
additional configuration to all roles, either on initial creation or on a subsequent update of the overcloud.
In this case, use the following post-configuration hook:

OS::TripleO::NodeExtraConfigPost

Additional configuration applied to all nodes roles after the core Puppet configuration.

In this example, append the resolv.conf file on each node with a variable nameserver:

Procedure

1. Create a basic heat template ~/templates/nameserver.yaml that runs a script to append the
resolv.conf file of each node with a variable nameserver:

heat_template_version: 2014-10-16

description: >
 Extra hostname configuration

parameters:
 servers:
 type: json

Red Hat OpenStack Platform 17.0 Director Installation and Usage

42

 nameserver_ip:
 type: string
 DeployIdentifier:
 type: string
 EndpointMap:
 default: {}
 type: json

resources:
 CustomExtraConfig:
 type: OS::Heat::SoftwareConfig
 properties:
 group: script
 config:
 str_replace:
 template: |
 #!/bin/sh
 echo "nameserver _NAMESERVER_IP_" >> /etc/resolv.conf
 params:
 _NAMESERVER_IP_: {get_param: nameserver_ip}

 CustomExtraDeployments:
 type: OS::Heat::SoftwareDeploymentGroup
 properties:
 servers: {get_param: servers}
 config: {get_resource: CustomExtraConfig}
 actions: ['CREATE']
 input_values:
 deploy_identifier: {get_param: DeployIdentifier}

In this example, the resources section contains the following parameters:

CustomExtraConfig

This defines a software configuration. In this example, you define a Bash script and heat
replaces _NAMESERVER_IP_ with the value stored in the nameserver_ip parameter.

CustomExtraDeployments

This executes a software configuration, which is the software configuration from the
CustomExtraConfig resource. Note the following:

The config parameter references the CustomExtraConfig resource so that heat knows
which configuration to apply.

The servers parameter retrieves a map of the overcloud nodes. This parameter is
provided by the parent template and is mandatory in templates for this hook.

The actions parameter defines when to apply the configuration. In this case, you want
apply the configuration when the overcloud is created. Possible actions include
CREATE, UPDATE, DELETE, SUSPEND, and RESUME.

input_values contains a parameter called deploy_identifier, which stores the
DeployIdentifier from the parent template. This parameter provides a timestamp to the
resource for each deployment update to ensure that the resource reapplies on
subsequent overcloud updates.

2. Create an environment file ~/templates/post_config.yaml that registers your heat template as

CHAPTER 5. CONFIGURATION HOOKS

43

2. Create an environment file ~/templates/post_config.yaml that registers your heat template as
the OS::TripleO::NodeExtraConfigPost: resource type.

resource_registry:
 OS::TripleO::NodeExtraConfigPost: /home/stack/templates/nameserver.yaml

parameter_defaults:
 nameserver_ip: 192.168.1.1

3. Add the environment file to the stack, along with your other environment files:

$ openstack overcloud deploy --templates \
 ...
 -e /home/stack/templates/post_config.yaml \
 ...

This applies the configuration to all nodes after the core configuration completes on either
initial overcloud creation or subsequent updates.

IMPORTANT

You can register the OS::TripleO::NodeExtraConfigPost to only one heat template.
Subsequent usage overrides the heat template to use.

5.4. PUPPET: CUSTOMIZING HIERADATA FOR ROLES

The heat template collection contains a set of parameters that you can use to pass extra configuration
to certain node types. These parameters save the configuration as hieradata for the Puppet
configuration on the node:

ControllerExtraConfig

Configuration to add to all Controller nodes.

ComputeExtraConfig

Configuration to add to all Compute nodes.

BlockStorageExtraConfig

Configuration to add to all Block Storage nodes.

ObjectStorageExtraConfig

Configuration to add to all Object Storage nodes.

CephStorageExtraConfig

Configuration to add to all Ceph Storage nodes.

[ROLE]ExtraConfig

Configuration to add to a composable role. Replace [ROLE] with the composable role name.

ExtraConfig

Configuration to add to all nodes.

Procedure

1. To add extra configuration to the post-deployment configuration process, create an
environment file that contains these parameters in the parameter_defaults section. For
example, to increase the reserved memory for Compute hosts to 1024 MB and set the VNC

Red Hat OpenStack Platform 17.0 Director Installation and Usage

44

keymap to Japanese, use the following entries in the ComputeExtraConfig parameter:

parameter_defaults:
 ComputeExtraConfig:
 nova::compute::reserved_host_memory: 1024
 nova::compute::vnc_keymap: ja

2. Include this environment file in the openstack overcloud deploy command, along with any
other environment files relevant to your deployment.

IMPORTANT

You can define each parameter only once. Subsequent usage overrides previous values.

5.5. PUPPET: CUSTOMIZING HIERADATA FOR INDIVIDUAL NODES

You can set Puppet hieradata for individual nodes using the heat template collection:

Procedure

1. Identify the system UUID from the introspection data for a node:

$ openstack baremetal introspection data save 9dcc87ae-4c6d-4ede-81a5-9b20d7dc4a14 |
jq .extra.system.product.uuid

This command returns a system UUID. For example:

"f5055c6c-477f-47fb-afe5-95c6928c407f"

2. Create an environment file to define node-specific hieradata and register the per_node.yaml
template to a pre-configuration hook. Include the system UUID of the node that you want to
configure in the NodeDataLookup parameter:

resource_registry:
 OS::TripleO::ComputeExtraConfigPre: /usr/share/openstack-tripleo-heat-
templates/puppet/extraconfig/pre_deploy/per_node.yaml
parameter_defaults:
 NodeDataLookup: '{"f5055c6c-477f-47fb-afe5-95c6928c407f":
{"nova::compute::vcpu_pin_set": ["2", "3"]}}'

3. Include this environment file in the openstack overcloud deploy command, along with any
other environment files relevant to your deployment.

The per_node.yaml template generates a set of hieradata files on nodes that correspond to each
system UUID and contains the hieradata that you define. If a UUID is not defined, the resulting hieradata
file is empty. In this example, the per_node.yaml template runs on all Compute nodes as defined by the
OS::TripleO::ComputeExtraConfigPre hook, but only the Compute node with system UUID f5055c6c-
477f-47fb-afe5-95c6928c407f receives hieradata.

You can use this mechanism to tailor each node according to specific requirements.

5.6. PUPPET: APPLYING CUSTOM MANIFESTS

CHAPTER 5. CONFIGURATION HOOKS

45

In certain circumstances, you might want to install and configure some additional components on your
overcloud nodes. You can achieve this with a custom Puppet manifest that applies to nodes after the
main configuration completes. As a basic example, you might want to install motd on each node

Procedure

1. Create a heat template ~/templates/custom_puppet_config.yaml that launches Puppet
configuration.

heat_template_version: 2014-10-16

description: >
 Run Puppet extra configuration to set new MOTD

parameters:
 servers:
 type: json
 DeployIdentifier:
 type: string
 EndpointMap:
 default: {}
 type: json

resources:
 ExtraPuppetConfig:
 type: OS::Heat::SoftwareConfig
 properties:
 config: {get_file: motd.pp}
 group: puppet
 options:
 enable_hiera: True
 enable_facter: False

 ExtraPuppetDeployments:
 type: OS::Heat::SoftwareDeploymentGroup
 properties:
 config: {get_resource: ExtraPuppetConfig}
 servers: {get_param: servers}

This example includes the /home/stack/templates/motd.pp within the template and passes it to
nodes for configuration. The motd.pp file contains the Puppet classes necessary to install and
configure motd.

2. Create an environment file ~templates/puppet_post_config.yaml that registers your heat
template as the OS::TripleO::NodeExtraConfigPost: resource type.

resource_registry:
 OS::TripleO::NodeExtraConfigPost: /home/stack/templates/custom_puppet_config.yaml

3. Include this environment file in the openstack overcloud deploy command, along with any
other environment files relevant to your deployment.

$ openstack overcloud deploy --templates \
 ...
 -e /home/stack/templates/puppet_post_config.yaml \

Red Hat OpenStack Platform 17.0 Director Installation and Usage

46

 ...

This applies the configuration from motd.pp to all nodes in the overcloud.

CHAPTER 5. CONFIGURATION HOOKS

47

CHAPTER 6. PREPARING FOR DIRECTOR INSTALLATION
To install and configure director, you must complete some preparation tasks to ensure you have
registered the undercloud to the Red Hat Customer Portal or a Red Hat Satellite server, you have
installed the director packages, and you have configured a container image source for the director to
pull container images during installation.

6.1. PREPARING THE UNDERCLOUD

Before you can install director, you must complete some basic configuration on the host machine.

Procedure

1. Log in to your undercloud as the root user.

2. Create the stack user:

[root@director ~]# useradd stack

3. Set a password for the user:

[root@director ~]# passwd stack

4. Disable password requirements when using sudo:

[root@director ~]# echo "stack ALL=(root) NOPASSWD:ALL" | tee -a /etc/sudoers.d/stack
[root@director ~]# chmod 0440 /etc/sudoers.d/stack

5. Switch to the new stack user:

[root@director ~]# su - stack
[stack@director ~]$

6. Create directories for system images and heat templates:

[stack@director ~]$ mkdir ~/images
[stack@director ~]$ mkdir ~/templates

Director uses system images and heat templates to create the overcloud environment. Red Hat
recommends creating these directories to help you organize your local file system.

7. Check the base and full hostname of the undercloud:

[stack@director ~]$ hostname
[stack@director ~]$ hostname -f

If either of the previous commands do not report the correct fully-qualified hostname or report
an error, use hostnamectl to set a hostname:

[stack@director ~]$ sudo hostnamectl set-hostname undercloud.example.com

8. If you are not using a DNS server that can resolve the fully qualified domain name (FQDN) of

Red Hat OpenStack Platform 17.0 Director Installation and Usage

48

the undercloud host, edit the /etc/hosts and include an entry for the system hostname. The IP
address in /etc/hosts must match the address that you plan to use for your undercloud public
API. For example, if the system uses undercloud.example.com as the FQDN and uses 10.0.0.1
for its IP address, add the following line to the /etc/hosts file:

10.0.0.1 undercloud.example.com undercloud

9. If you plan for the Red Hat OpenStack Platform director to be on a separate domain than the
overcloud or its identity provider, then you must add the additional domains to /etc/resolv.conf:

search overcloud.com idp.overcloud.com

6.2. REGISTERING THE UNDERCLOUD AND ATTACHING
SUBSCRIPTIONS

Before you can install director, you must run subscription-manager to register the undercloud and
attach a valid Red Hat OpenStack Platform subscription.

Procedure

1. Log in to your undercloud as the stack user.

2. Register your system either with the Red Hat Content Delivery Network or with a Red Hat
Satellite. For example, run the following command to register the system to the Content
Delivery Network. Enter your Customer Portal user name and password when prompted:

[stack@director ~]$ sudo subscription-manager register

3. Find the entitlement pool ID for Red Hat OpenStack Platform (RHOSP) director:

[stack@director ~]$ sudo subscription-manager list --available --all --matches="Red Hat
OpenStack"
Subscription Name: Name of SKU
Provides: Red Hat Single Sign-On
 Red Hat Enterprise Linux Workstation
 Red Hat CloudForms
 Red Hat OpenStack
 Red Hat Software Collections (for RHEL Workstation)
 Red Hat Virtualization
SKU: SKU-Number
Contract: Contract-Number
Pool ID: Valid-Pool-Number-123456
Provides Management: Yes
Available: 1
Suggested: 1
Service Level: Support-level
Service Type: Service-Type
Subscription Type: Sub-type
Ends: End-date
System Type: Physical

4. Locate the Pool ID value and attach the Red Hat OpenStack Platform 17.0 entitlement:

CHAPTER 6. PREPARING FOR DIRECTOR INSTALLATION

49

[stack@director ~]$ sudo subscription-manager attach --pool=Valid-Pool-Number-123456

5. Lock the undercloud to Red Hat Enterprise Linux 9.0:

$ sudo subscription-manager release --set=9.0

6.3. ENABLING REPOSITORIES FOR THE UNDERCLOUD

Enable the repositories that are required for the undercloud, and update the system packages to the
latest versions.

Procedure

1. Log in to your undercloud as the stack user.

2. Disable all default repositories, and enable the required Red Hat Enterprise Linux repositories:

[stack@director ~]$ sudo subscription-manager repos --disable=*
[stack@director ~]$ sudo subscription-manager repos --enable=rhel-9-for-x86_64-baseos-
eus-rpms --enable=rhel-9-for-x86_64-appstream-eus-rpms --enable=rhel-9-for-x86_64-
highavailability-eus-rpms --enable=openstack-17-for-rhel-9-x86_64-rpms --enable=fast-
datapath-for-rhel-9-x86_64-rpms

These repositories contain packages that the director installation requires.

3. Perform an update on your system to ensure that you have the latest base system packages:

[stack@director ~]$ sudo dnf update -y
[stack@director ~]$ sudo reboot

6.4. INSTALLING DIRECTOR PACKAGES

Install packages relevant to Red Hat OpenStack Platform director.

Procedure

1. Install the command line tools for director installation and configuration:

[stack@director ~]$ sudo dnf install -y python3-tripleoclient

6.5. PREPARING CONTAINER IMAGES

The undercloud installation requires an environment file to determine where to obtain container images
and how to store them. Generate and customize this environment file that you can use to prepare your
container images.

NOTE

If you need to configure specific container image versions for your undercloud, you must
pin the images to a specific version. For more information, see Pinning container images
for the undercloud.

Red Hat OpenStack Platform 17.0 Director Installation and Usage

50

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.0/html-single/director_installation_and_usage/index#ref_pinning-container-images-for-the-undercloud_assembly_performing-advanced-overcloud-container-image-management

Procedure

1. Log in to your undercloud host as the stack user.

2. Generate the default container image preparation file:

$ openstack tripleo container image prepare default \
 --local-push-destination \
 --output-env-file containers-prepare-parameter.yaml

This command includes the following additional options:

--local-push-destination sets the registry on the undercloud as the location for container
images. This means that director pulls the necessary images from the Red Hat Container
Catalog and pushes them to the registry on the undercloud. Director uses this registry as
the container image source. To pull directly from the Red Hat Container Catalog, omit this
option.

--output-env-file is an environment file name. The contents of this file include the
parameters for preparing your container images. In this case, the name of the file is
containers-prepare-parameter.yaml.

NOTE

You can use the same containers-prepare-parameter.yaml file to define a
container image source for both the undercloud and the overcloud.

3. Modify the containers-prepare-parameter.yaml to suit your requirements.

6.6. CONTAINER IMAGE PREPARATION PARAMETERS

The default file for preparing your containers (containers-prepare-parameter.yaml) contains the
ContainerImagePrepare heat parameter. This parameter defines a list of strategies for preparing a set
of images:

parameter_defaults:
 ContainerImagePrepare:
 - (strategy one)
 - (strategy two)
 - (strategy three)
 ...

Each strategy accepts a set of sub-parameters that defines which images to use and what to do with the
images. The following table contains information about the sub-parameters that you can use with each
ContainerImagePrepare strategy:

Parameter Description

excludes List of regular expressions to exclude image names
from a strategy.

CHAPTER 6. PREPARING FOR DIRECTOR INSTALLATION

51

includes List of regular expressions to include in a strategy. At
least one image name must match an existing image.
All excludes are ignored if includes is specified.

modify_append_tag String to append to the tag for the destination image.
For example, if you pull an image with the tag 17.0.0-
5.161 and set the modify_append_tag to -hotfix,
the director tags the final image as 17.0.0-5.161-
hotfix.

modify_only_with_labels A dictionary of image labels that filter the images
that you want to modify. If an image matches the
labels defined, the director includes the image in the
modification process.

modify_role String of ansible role names to run during upload but
before pushing the image to the destination registry.

modify_vars Dictionary of variables to pass to modify_role.

push_destination Defines the namespace of the registry that you want
to push images to during the upload process.

If set to true, the push_destination is set
to the undercloud registry namespace using
the hostname, which is the recommended
method.

If set to false, the push to a local registry
does not occur and nodes pull images
directly from the source.

If set to a custom value, director pushes
images to an external local registry.

If you set this parameter to false in production
environments while pulling images directly from Red
Hat Container Catalog, all overcloud nodes will
simultaneously pull the images from the Red Hat
Container Catalog over your external connection,
which can cause bandwidth issues. Only use false to
pull directly from a Red Hat Satellite Server hosting
the container images.

If the push_destination parameter is set to false
or is not defined and the remote registry requires
authentication, set the
ContainerImageRegistryLogin parameter to
true and include the credentials with the
ContainerImageRegistryCredentials
parameter.

Parameter Description

Red Hat OpenStack Platform 17.0 Director Installation and Usage

52

pull_source The source registry from where to pull the original
container images.

set A dictionary of key: value definitions that define
where to obtain the initial images.

tag_from_label Use the value of specified container image metadata
labels to create a tag for every image and pull that
tagged image. For example, if you set
tag_from_label: {version}-{release}, director
uses the version and release labels to construct a
new tag. For one container, version might be set to
17.0.0 and release might be set to 5.161, which
results in the tag 17.0.0-5.161. Director uses this
parameter only if you have not defined tag in the set
dictionary.

Parameter Description

IMPORTANT

When you push images to the undercloud, use push_destination: true instead of
push_destination: UNDERCLOUD_IP:PORT. The push_destination: true method
provides a level of consistency across both IPv4 and IPv6 addresses.

The set parameter accepts a set of key: value definitions:

Key Description

ceph_image The name of the Ceph Storage container image.

ceph_namespace The namespace of the Ceph Storage container
image.

ceph_tag The tag of the Ceph Storage container image.

ceph_alertmanager_image

ceph_alertmanager_namespace

ceph_alertmanager_tag

The name, namespace, and tag of the Ceph Storage
Alert Manager container image.

ceph_grafana_image

ceph_grafana_namespace

ceph_grafana_tag

The name, namespace, and tag of the Ceph Storage
Grafana container image.

CHAPTER 6. PREPARING FOR DIRECTOR INSTALLATION

53

ceph_node_exporter_image

ceph_node_exporter_namespace

ceph_node_exporter_tag

The name, namespace, and tag of the Ceph Storage
Node Exporter container image.

ceph_prometheus_image

ceph_prometheus_namespace

ceph_prometheus_tag

The name, namespace, and tag of the Ceph Storage
Prometheus container image.

name_prefix A prefix for each OpenStack service image.

name_suffix A suffix for each OpenStack service image.

namespace The namespace for each OpenStack service image.

neutron_driver The driver to use to determine which OpenStack
Networking (neutron) container to use. Use a null
value to set to the standard neutron-server
container. Set to ovn to use OVN-based containers.

tag Sets a specific tag for all images from the source. If
not defined, director uses the Red Hat OpenStack
Platform version number as the default value. This
parameter takes precedence over the
tag_from_label value.

Key Description

NOTE

The container images use multi-stream tags based on the Red Hat OpenStack Platform
version. This means that there is no longer a latest tag.

6.7. GUIDELINES FOR CONTAINER IMAGE TAGGING

The Red Hat Container Registry uses a specific version format to tag all Red Hat OpenStack Platform
container images. This format follows the label metadata for each container, which is version-release.

version

Corresponds to a major and minor version of Red Hat OpenStack Platform. These versions act as
streams that contain one or more releases.

release

Corresponds to a release of a specific container image version within a version stream.

For example, if the latest version of Red Hat OpenStack Platform is 17.0.0 and the release for the
container image is 5.161, then the resulting tag for the container image is 17.0.0-5.161.

The Red Hat Container Registry also uses a set of major and minor version tags that link to the latest
release for that container image version. For example, both 17.0 and 17.0.0 link to the latest release in

Red Hat OpenStack Platform 17.0 Director Installation and Usage

54

the 17.0.0 container stream. If a new minor release of 17.0 occurs, the 17.0 tag links to the latest release
for the new minor release stream while the 17.0.0 tag continues to link to the latest release within the
17.0.0 stream.

The ContainerImagePrepare parameter contains two sub-parameters that you can use to determine
which container image to download. These sub-parameters are the tag parameter within the set
dictionary, and the tag_from_label parameter. Use the following guidelines to determine whether to use
tag or tag_from_label.

The default value for tag is the major version for your OpenStack Platform version. For this
version it is 17.0. This always corresponds to the latest minor version and release.

parameter_defaults:
 ContainerImagePrepare:
 - set:
 ...
 tag: 17.0
 ...

To change to a specific minor version for OpenStack Platform container images, set the tag to a
minor version. For example, to change to 17.0.2, set tag to 17.0.2.

parameter_defaults:
 ContainerImagePrepare:
 - set:
 ...
 tag: 17.0.2
 ...

When you set tag, director always downloads the latest container image release for the version
set in tag during installation and updates.

If you do not set tag, director uses the value of tag_from_label in conjunction with the latest
major version.

parameter_defaults:
 ContainerImagePrepare:
 - set:
 ...
 # tag: 17.0
 ...
 tag_from_label: '{version}-{release}'

The tag_from_label parameter generates the tag from the label metadata of the latest
container image release it inspects from the Red Hat Container Registry. For example, the labels
for a certain container might use the following version and release metadata:

 "Labels": {
 "release": "5.161",
 "version": "17.0.0",
 ...
 }

The default value for tag_from_label is {version}-{release}, which corresponds to the version
and release metadata labels for each container image. For example, if a container image has

CHAPTER 6. PREPARING FOR DIRECTOR INSTALLATION

55

17.0.0 set for version and 5.161 set for release, the resulting tag for the container image is
17.0.0-5.161.

The tag parameter always takes precedence over the tag_from_label parameter. To use
tag_from_label, omit the tag parameter from your container preparation configuration.

A key difference between tag and tag_from_label is that director uses tag to pull an image only
based on major or minor version tags, which the Red Hat Container Registry links to the latest
image release within a version stream, while director uses tag_from_label to perform a
metadata inspection of each container image so that director generates a tag and pulls the
corresponding image.

6.8. OBTAINING CONTAINER IMAGES FROM PRIVATE REGISTRIES

The registry.redhat.io registry requires authentication to access and pull images. To authenticate with
registry.redhat.io and other private registries, include the ContainerImageRegistryCredentials and
ContainerImageRegistryLogin parameters in your containers-prepare-parameter.yaml file.

ContainerImageRegistryCredentials

Some container image registries require authentication to access images. In this situation, use the
ContainerImageRegistryCredentials parameter in your containers-prepare-parameter.yaml
environment file. The ContainerImageRegistryCredentials parameter uses a set of keys based on the
private registry URL. Each private registry URL uses its own key and value pair to define the username
(key) and password (value). This provides a method to specify credentials for multiple private registries.

parameter_defaults:
 ContainerImagePrepare:
 - push_destination: true
 set:
 namespace: registry.redhat.io/...
 ...
 ContainerImageRegistryCredentials:
 registry.redhat.io:
 my_username: my_password

In the example, replace my_username and my_password with your authentication credentials. Instead
of using your individual user credentials, Red Hat recommends creating a registry service account and
using those credentials to access registry.redhat.io content.

To specify authentication details for multiple registries, set multiple key-pair values for each registry in
ContainerImageRegistryCredentials:

parameter_defaults:
 ContainerImagePrepare:
 - push_destination: true
 set:
 namespace: registry.redhat.io/...
 ...
 - push_destination: true
 set:
 namespace: registry.internalsite.com/...
 ...
 ...
 ContainerImageRegistryCredentials:

Red Hat OpenStack Platform 17.0 Director Installation and Usage

56

 registry.redhat.io:
 myuser: 'p@55w0rd!'
 registry.internalsite.com:
 myuser2: '0th3rp@55w0rd!'
 '192.0.2.1:8787':
 myuser3: '@n0th3rp@55w0rd!'

IMPORTANT

The default ContainerImagePrepare parameter pulls container images from
registry.redhat.io, which requires authentication.

For more information, see Red Hat Container Registry Authentication .

ContainerImageRegistryLogin

The ContainerImageRegistryLogin parameter is used to control whether an overcloud node system
needs to log in to the remote registry to fetch the container images. This situation occurs when you
want the overcloud nodes to pull images directly, rather than use the undercloud to host images.

You must set ContainerImageRegistryLogin to true if push_destination is set to false or not used for
a given strategy.

parameter_defaults:
 ContainerImagePrepare:
 - push_destination: false
 set:
 namespace: registry.redhat.io/...
 ...
 ...
 ContainerImageRegistryCredentials:
 registry.redhat.io:
 myuser: 'p@55w0rd!'
 ContainerImageRegistryLogin: true

However, if the overcloud nodes do not have network connectivity to the registry hosts defined in
ContainerImageRegistryCredentials and you set ContainerImageRegistryLogin to true, the
deployment might fail when trying to perform a login. If the overcloud nodes do not have network
connectivity to the registry hosts defined in the ContainerImageRegistryCredentials, set
push_destination to true and ContainerImageRegistryLogin to false so that the overcloud nodes
pull images from the undercloud.

parameter_defaults:
 ContainerImagePrepare:
 - push_destination: true
 set:
 namespace: registry.redhat.io/...
 ...
 ...
 ContainerImageRegistryCredentials:
 registry.redhat.io:
 myuser: 'p@55w0rd!'
 ContainerImageRegistryLogin: false

CHAPTER 6. PREPARING FOR DIRECTOR INSTALLATION

57

https://access.redhat.com/RegistryAuthentication

6.9. LAYERING IMAGE PREPARATION ENTRIES

The value of the ContainerImagePrepare parameter is a YAML list. This means that you can specify
multiple entries.

The following example demonstrates two entries where director uses the latest version of all images
except for the nova-api image, which uses the version tagged with 17.0-hotfix:

parameter_defaults:
 ContainerImagePrepare:
 - tag_from_label: "{version}-{release}"
 push_destination: true
 excludes:
 - nova-api
 set:
 namespace: registry.redhat.io/rhosp-rhel9
 name_prefix: openstack-
 name_suffix: ''
 tag:17.0
 - push_destination: true
 includes:
 - nova-api
 set:
 namespace: registry.redhat.io/rhosp-rhel9
 tag: 17.0-hotfix

The includes and excludes parameters use regular expressions to control image filtering for each
entry. The images that match the includes strategy take precedence over excludes matches. The
image name must match the includes or excludes regular expression value to be considered a match.

6.10. DEPLOYING A VENDOR PLUGIN

To use some third-party hardware as a Block Storage back end, you must deploy a vendor plugin. The
following example demonstrates how to deploy a vendor plugin to use Dell EMC hardware as a Block
Storage back end.

Procedure

1. Create a new container images file for your overcloud:

$ sudo openstack tripleo container image prepare default \
 --local-push-destination \
 --output-env-file containers-prepare-parameter-dellemc.yaml

2. Edit the containers-prepare-parameter-dellemc.yaml file.

3. Add an exclude parameter to the strategy for the main Red Hat OpenStack Platform container
images. Use this parameter to exclude the container image that the vendor container image will
replace. In the example, the container image is the cinder-volume image:

parameter_defaults:
 ContainerImagePrepare:
 - push_destination: true
 excludes:

Red Hat OpenStack Platform 17.0 Director Installation and Usage

58

 - cinder-volume
 set:
 namespace: registry.redhat.io/rhosp-rhel9
 name_prefix: openstack-
 name_suffix: ''
 tag: 16.2
 ...
 tag_from_label: "{version}-{release}"

4. Add a new strategy to the ContainerImagePrepare parameter that includes the replacement
container image for the vendor plugin:

parameter_defaults:
 ContainerImagePrepare:
 ...
 - push_destination: true
 includes:
 - cinder-volume
 set:
 namespace: registry.connect.redhat.com/dellemc
 name_prefix: openstack-
 name_suffix: -dellemc-rhosp16
 tag: 16.2-2
 ...

5. Add the authentication details for the registry.connect.redhat.com registry to the
ContainerImageRegistryCredentials parameter:

parameter_defaults:
 ContainerImageRegistryCredentials:
 registry.redhat.io:
 [service account username]: [service account password]
 registry.connect.redhat.com:
 [service account username]: [service account password]

6. Save the containers-prepare-parameter-dellemc.yaml file.

7. Include the containers-prepare-parameter-dellemc.yaml file with any deployment commands,
such as as openstack overcloud deploy:

$ openstack overcloud deploy --templates
 ...
 -e containers-prepare-parameter-dellemc.yaml
 ...

When director deploys the overcloud, the overcloud uses the vendor container image instead of
the standard container image.

IMPORTANT

The containers-prepare-parameter-dellemc.yaml file replaces the standard containers-
prepare-parameter.yaml file in your overcloud deployment. Do not include the standard
containers-prepare-parameter.yaml file in your overcloud deployment. Retain the standard
containers-prepare-parameter.yaml file for your undercloud installation and updates.

CHAPTER 6. PREPARING FOR DIRECTOR INSTALLATION

59

6.11. EXCLUDING CEPH STORAGE CONTAINER IMAGES

The default overcloud role configuration uses the default Controller, Compute, and Ceph Storage roles.
However, if you use the default role configuration to deploy an overcloud without Ceph Storage nodes,
director still pulls the Ceph Storage container images from the Red Hat Container Registry because the
images are included as a part of the default configuration.

If your overcloud does not require Ceph Storage containers, you can configure director to not pull the
Ceph Storage containers images from the Red Hat Container Registry.

Procedure

1. Edit the containers-prepare-parameter.yaml file to exclude the Ceph Storage containers:

parameter_defaults:
 ContainerImagePrepare:
 - push_destination: true
 excludes:
 - ceph
 - prometheus
 set:
 … ​

The excludes parameter uses regular expressions to exclude any container images that contain
the ceph or prometheus strings.

2. Save the containers-prepare-parameter.yaml file.

6.12. MODIFYING IMAGES DURING PREPARATION

It is possible to modify images during image preparation, and then immediately deploy the overcloud
with modified images.

NOTE

Red Hat OpenStack Platform (RHOSP) director supports modifying images during
preparation for RHOSP containers, not for Ceph containers.

Scenarios for modifying images include:

As part of a continuous integration pipeline where images are modified with the changes being
tested before deployment.

As part of a development workflow where local changes must be deployed for testing and
development.

When changes must be deployed but are not available through an image build pipeline. For
example, adding proprietary add-ons or emergency fixes.

To modify an image during preparation, invoke an Ansible role on each image that you want to modify.
The role takes a source image, makes the requested changes, and tags the result. The prepare
command can push the image to the destination registry and set the heat parameters to refer to the
modified image.

The Ansible role tripleo-modify-image conforms with the required role interface and provides the

Red Hat OpenStack Platform 17.0 Director Installation and Usage

60

The Ansible role tripleo-modify-image conforms with the required role interface and provides the
behaviour necessary for the modify use cases. Control the modification with the modify-specific keys in
the ContainerImagePrepare parameter:

modify_role specifies the Ansible role to invoke for each image to modify.

modify_append_tag appends a string to the end of the source image tag. This makes it obvious
that the resulting image has been modified. Use this parameter to skip modification if the
push_destination registry already contains the modified image. Change modify_append_tag
whenever you modify the image.

modify_vars is a dictionary of Ansible variables to pass to the role.

To select a use case that the tripleo-modify-image role handles, set the tasks_from variable to the
required file in that role.

While developing and testing the ContainerImagePrepare entries that modify images, run the image
prepare command without any additional options to confirm that the image is modified as you expect:

sudo openstack tripleo container image prepare \
 -e ~/containers-prepare-parameter.yaml

IMPORTANT

To use the openstack tripleo container image prepare command, your undercloud
must contain a running image-serve registry. As a result, you cannot run this command
before a new undercloud installation because the image-serve registry will not be
installed. You can run this command after a successful undercloud installation.

6.13. UPDATING EXISTING PACKAGES ON CONTAINER IMAGES

NOTE

Red Hat OpenStack Platform (RHOSP) director supports updating existing packages on
container images for RHOSP containers, not for Ceph containers.

Procedure

The following example ContainerImagePrepare entry updates in all packages on the container
images by using the dnf repository configuration of the undercloud host:

ContainerImagePrepare:
- push_destination: true
 ...
 modify_role: tripleo-modify-image
 modify_append_tag: "-updated"
 modify_vars:
 tasks_from: yum_update.yml
 compare_host_packages: true
 yum_repos_dir_path: /etc/yum.repos.d
 ...

6.14. INSTALLING ADDITIONAL RPM FILES TO CONTAINER IMAGES

CHAPTER 6. PREPARING FOR DIRECTOR INSTALLATION

61

You can install a directory of RPM files in your container images. This is useful for installing hotfixes,
local package builds, or any package that is not available through a package repository.

NOTE

Red Hat OpenStack Platform (RHOSP) director supports installing additional RPM files
to container images for RHOSP containers, not for Ceph containers.

Procedure

The following example ContainerImagePrepare entry installs some hotfix packages on only the
nova-compute image:

ContainerImagePrepare:
- push_destination: true
 ...
 includes:
 - nova-compute
 modify_role: tripleo-modify-image
 modify_append_tag: "-hotfix"
 modify_vars:
 tasks_from: rpm_install.yml
 rpms_path: /home/stack/nova-hotfix-pkgs
 ...

6.15. MODIFYING CONTAINER IMAGES WITH A CUSTOM DOCKERFILE

You can specify a directory that contains a Dockerfile to make the required changes. When you invoke
the tripleo-modify-image role, the role generates a Dockerfile.modified file that changes the FROM
directive and adds extra LABEL directives.

NOTE

Red Hat OpenStack Platform (RHOSP) director supports modifying container images
with a custom Dockerfile for RHOSP containers, not for Ceph containers.

Procedure

1. The following example runs the custom Dockerfile on the nova-compute image:

ContainerImagePrepare:
- push_destination: true
 ...
 includes:
 - nova-compute
 modify_role: tripleo-modify-image
 modify_append_tag: "-hotfix"
 modify_vars:
 tasks_from: modify_image.yml
 modify_dir_path: /home/stack/nova-custom
 ...

2. The following example shows the /home/stack/nova-custom/Dockerfile file. After you run any

Red Hat OpenStack Platform 17.0 Director Installation and Usage

62

2. The following example shows the /home/stack/nova-custom/Dockerfile file. After you run any
USER root directives, you must switch back to the original image default user:

FROM registry.redhat.io/rhosp-rhel9/openstack-nova-compute:latest

USER "root"

COPY customize.sh /tmp/
RUN /tmp/customize.sh

USER "nova"

6.16. PREPARING A SATELLITE SERVER FOR CONTAINER IMAGES

Red Hat Satellite 6 offers registry synchronization capabilities. This provides a method to pull multiple
images into a Satellite server and manage them as part of an application life cycle. The Satellite also acts
as a registry for other container-enabled systems to use. For more information about managing
container images, see Managing Container Images in the Red Hat Satellite 6 Content Management
Guide.

The examples in this procedure use the hammer command line tool for Red Hat Satellite 6 and an
example organization called ACME. Substitute this organization for your own Satellite 6 organization.

NOTE

This procedure requires authentication credentials to access container images from
registry.redhat.io. Instead of using your individual user credentials, Red Hat
recommends creating a registry service account and using those credentials to access
registry.redhat.io content. For more information, see "Red Hat Container Registry
Authentication".

Procedure

1. Create a list of all container images:

$ sudo podman search --limit 1000 "registry.redhat.io/rhosp-rhel9" --format="{{ .Name }}" |
sort > satellite_images
$ sudo podman search --limit 1000 "registry.redhat.io/rhceph" | grep rhceph-5-dashboard-
rhel8
$ sudo podman search --limit 1000 "registry.redhat.io/rhceph" | grep rhceph-5-rhel8
$ sudo podman search --limit 1000 "registry.redhat.io/openshift" | grep ose-prometheus

If you plan to install Ceph and enable the Ceph Dashboard, you need the following ose-
prometheus containers:

registry.redhat.io/openshift4/ose-prometheus-node-exporter:v4.6
registry.redhat.io/openshift4/ose-prometheus:v4.6
registry.redhat.io/openshift4/ose-prometheus-alertmanager:v4.6

2. Copy the satellite_images file to a system that contains the Satellite 6 hammer tool.
Alternatively, use the instructions in the Hammer CLI Guide to install the hammer tool to the
undercloud.

3. Run the following hammer command to create a new product (OSP Containers) in your

CHAPTER 6. PREPARING FOR DIRECTOR INSTALLATION

63

https://access.redhat.com/documentation/en-us/red_hat_satellite/6.6/html/content_management_guide/managing_container_images
https://access.redhat.com/RegistryAuthentication
https://access.redhat.com/documentation/en-us/red_hat_satellite/6.6/html-single/hammer_cli_guide/index

3. Run the following hammer command to create a new product (OSP Containers) in your
Satellite organization:

$ hammer product create \
 --organization "ACME" \
 --name "OSP Containers"

This custom product will contain your images.

4. Add the overcloud container images from the satellite_images file:

$ while read IMAGE; do \
 IMAGE_NAME=$(echo $IMAGE | cut -d"/" -f3 | sed "s/openstack-//g") ; \
 IMAGE_NOURL=$(echo $IMAGE | sed "s/registry.redhat.io\///g") ; \
 hammer repository create \
 --organization "ACME" \
 --product "OSP Containers" \
 --content-type docker \
 --url https://registry.redhat.io \
 --docker-upstream-name $IMAGE_NOURL \
 --upstream-username USERNAME \
 --upstream-password PASSWORD \
 --name $IMAGE_NAME ; done < satellite_images

5. Add the Ceph Storage container image:

$ hammer repository create \
 --organization "ACME" \
 --product "OSP Containers" \
 --content-type docker \
 --url https://registry.redhat.io \
 --docker-upstream-name rhceph/rhceph-5-rhel8 \
 --upstream-username USERNAME \
 --upstream-password PASSWORD \
 --name rhceph-5-rhel8

NOTE

If you want to install the Ceph dashboard, include --name rhceph-5-dashboard-
rhel8 in the hammer repository create command:

$ hammer repository create \
 --organization "ACME" \
 --product "OSP Containers" \
 --content-type docker \
 --url https://registry.redhat.io \
 --docker-upstream-name rhceph/rhceph-5-dashboard-rhel8 \
 --upstream-username USERNAME \
 --upstream-password PASSWORD \
 --name rhceph-5-dashboard-rhel8

6. Synchronize the container images:

Red Hat OpenStack Platform 17.0 Director Installation and Usage

64

$ hammer product synchronize \
 --organization "ACME" \
 --name "OSP Containers"

Wait for the Satellite server to complete synchronization.

NOTE

Depending on your configuration, hammer might ask for your Satellite server
username and password. You can configure hammer to automatically login using
a configuration file. For more information, see the Authentication section in the
Hammer CLI Guide .

7. If your Satellite 6 server uses content views, create a new content view version to incorporate
the images and promote it along environments in your application life cycle. This largely
depends on how you structure your application lifecycle. For example, if you have an
environment called production in your lifecycle and you want the container images to be
available in that environment, create a content view that includes the container images and
promote that content view to the production environment. For more information, see
Managing Content Views.

8. Check the available tags for the base image:

$ hammer docker tag list --repository "base" \
 --organization "ACME" \
 --lifecycle-environment "production" \
 --product "OSP Containers"

This command displays tags for the OpenStack Platform container images within a content view
for a particular environment.

9. Return to the undercloud and generate a default environment file that prepares images using
your Satellite server as a source. Run the following example command to generate the
environment file:

$ sudo openstack tripleo container image prepare default \
 --output-env-file containers-prepare-parameter.yaml

--output-env-file is an environment file name. The contents of this file include the
parameters for preparing your container images for the undercloud. In this case, the name
of the file is containers-prepare-parameter.yaml.

10. Edit the containers-prepare-parameter.yaml file and modify the following parameters:

push_destination - Set this to true or false depending on your chosen container image
management strategy. If you set this parameter to false, the overcloud nodes pull images
directly from the Satellite. If you set this parameter to true, the director pulls the images
from the Satellite to the undercloud registry and the overcloud pulls the images from the
undercloud registry.

namespace - The URL of the registry on the Satellite server.

name_prefix - The prefix is based on a Satellite 6 convention. This differs depending on
whether you use content views:

If you use content views, the structure is [org]-[environment]-[content view]-

CHAPTER 6. PREPARING FOR DIRECTOR INSTALLATION

65

https://access.redhat.com/documentation/en-us/red_hat_satellite/6.6/html-single/hammer_cli_guide/index#sect-CLI_Guide-Authentication
https://access.redhat.com/documentation/en-us/red_hat_satellite/6.6/html-single/content_management_guide/index#Managing_Content_Views

If you use content views, the structure is [org]-[environment]-[content view]-
[product]-. For example: acme-production-myosp16-osp_containers-.

If you do not use content views, the structure is [org]-[product]-. For example: acme-
osp_containers-.

ceph_namespace, ceph_image, ceph_tag - If you use Ceph Storage, include these
additional parameters to define the Ceph Storage container image location. Note that
ceph_image now includes a Satellite-specific prefix. This prefix is the same value as the
name_prefix option.

The following example environment file contains Satellite-specific parameters:

parameter_defaults:
 ContainerImagePrepare:
 - push_destination: false
 set:
 ceph_image: acme-production-myosp16_1-osp_containers-rhceph-5
 ceph_namespace: satellite.example.com:5000
 ceph_tag: latest
 name_prefix: acme-production-myosp16_1-osp_containers-
 name_suffix: ''
 namespace: satellite.example.com:5000
 neutron_driver: null
 tag: '17.0'
 ...

NOTE

To use a specific container image version stored on your Red Hat Satellite Server, set the
tag key-value pair to the specific version in the set dictionary. For example, to use the
17.0.2 image stream, set tag: 17.0.2 in the set dictionary.

You must define the containers-prepare-parameter.yaml environment file in the undercloud.conf
configuration file, otherwise the undercloud uses the default values:

container_images_file = /home/stack/containers-prepare-parameter.yaml

Red Hat OpenStack Platform 17.0 Director Installation and Usage

66

CHAPTER 7. INSTALLING DIRECTOR ON THE UNDERCLOUD
To configure and install director, set the appropriate parameters in the undercloud.conf file and run
the undercloud installation command. After you have installed director, import the overcloud images
that director will use to write to bare metal nodes during node provisioning.

7.1. CONFIGURING DIRECTOR

The director installation process requires certain settings in the undercloud.conf configuration file,
which director reads from the home directory of the stack user. Complete the following steps to copy
default template as a foundation for your configuration.

Procedure

1. Copy the default template to the home directory of the stack user’s:

[stack@director ~]$ cp \
 /usr/share/python-tripleoclient/undercloud.conf.sample \
 ~/undercloud.conf

2. Edit the undercloud.conf file. This file contains settings to configure your undercloud. If you
omit or comment out a parameter, the undercloud installation uses the default value.

7.2. DIRECTOR CONFIGURATION PARAMETERS

The following list contains information about parameters for configuring the undercloud.conf file. Keep
all parameters within their relevant sections to avoid errors.

IMPORTANT

At minimum, you must set the container_images_file parameter to the environment file
that contains your container image configuration. Without this parameter properly set to
the appropriate file, director cannot obtain your container image rule set from the
ContainerImagePrepare parameter nor your container registry authentication details
from the ContainerImageRegistryCredentials parameter.

Defaults

The following parameters are defined in the [DEFAULT] section of the undercloud.conf file:

additional_architectures

A list of additional (kernel) architectures that an overcloud supports. Currently the overcloud
supports only the x86_64 architecture.

certificate_generation_ca

The certmonger nickname of the CA that signs the requested certificate. Use this option only if you
have set the generate_service_certificate parameter. If you select the local CA, certmonger
extracts the local CA certificate to /etc/pki/ca-trust/source/anchors/cm-local-ca.pem and adds the
certificate to the trust chain.

clean_nodes

Defines whether to wipe the hard drive between deployments and after introspection.

cleanup

Cleanup temporary files. Set this to False to leave the temporary files used during deployment in

CHAPTER 7. INSTALLING DIRECTOR ON THE UNDERCLOUD

67

Cleanup temporary files. Set this to False to leave the temporary files used during deployment in
place after you run the deployment command. This is useful for debugging the generated files or if
errors occur.

container_cli

The CLI tool for container management. Leave this parameter set to podman. Red Hat Enterprise
Linux 9.0 only supports podman.

container_healthcheck_disabled

Disables containerized service health checks. Red Hat recommends that you enable health checks
and leave this option set to false.

container_images_file

Heat environment file with container image information. This file can contain the following entries:

Parameters for all required container images

The ContainerImagePrepare parameter to drive the required image preparation. Usually
the file that contains this parameter is named containers-prepare-parameter.yaml.

container_insecure_registries

A list of insecure registries for podman to use. Use this parameter if you want to pull images from
another source, such as a private container registry. In most cases, podman has the certificates to
pull container images from either the Red Hat Container Catalog or from your Satellite Server if the
undercloud is registered to Satellite.

container_registry_mirror

An optional registry-mirror configured that podman uses.

custom_env_files

Additional environment files that you want to add to the undercloud installation.

deployment_user

The user who installs the undercloud. Leave this parameter unset to use the current default user
stack.

discovery_default_driver

Sets the default driver for automatically enrolled nodes. Requires the enable_node_discovery
parameter to be enabled and you must include the driver in the enabled_hardware_types list.

enable_ironic; enable_ironic_inspector; enable_tempest; enable_validations

Defines the core services that you want to enable for director. Leave these parameters set to true.

enable_node_discovery

Automatically enroll any unknown node that PXE-boots the introspection ramdisk. New nodes use
the fake driver as a default but you can set discovery_default_driver to override. You can also use
introspection rules to specify driver information for newly enrolled nodes.

enable_routed_networks

Defines whether to enable support for routed control plane networks.

enabled_hardware_types

A list of hardware types that you want to enable for the undercloud.

generate_service_certificate

Defines whether to generate an SSL/TLS certificate during the undercloud installation, which is used
for the undercloud_service_certificate parameter. The undercloud installation saves the resulting
certificate /etc/pki/tls/certs/undercloud-[undercloud_public_vip].pem. The CA defined in the
certificate_generation_ca parameter signs this certificate.

Red Hat OpenStack Platform 17.0 Director Installation and Usage

68

heat_container_image

URL for the heat container image to use. Leave unset.

heat_native

Run host-based undercloud configuration using heat-all. Leave as true.

hieradata_override

Path to hieradata override file that configures Puppet hieradata on the director, providing custom
configuration to services beyond the undercloud.conf parameters. If set, the undercloud installation
copies this file to the /etc/puppet/hieradata directory and sets it as the first file in the hierarchy. For
more information about using this feature, see Configuring hieradata on the undercloud.

inspection_extras

Defines whether to enable extra hardware collection during the inspection process. This parameter
requires the python-hardware or python-hardware-detect packages on the introspection image.

inspection_interface

The bridge that director uses for node introspection. This is a custom bridge that the director
configuration creates. The LOCAL_INTERFACE attaches to this bridge. Leave this as the default
br-ctlplane.

inspection_runbench

Runs a set of benchmarks during node introspection. Set this parameter to true to enable the
benchmarks. This option is necessary if you intend to perform benchmark analysis when inspecting
the hardware of registered nodes.

ipv6_address_mode

IPv6 address configuration mode for the undercloud provisioning network. The following list contains
the possible values for this parameter:

dhcpv6-stateless - Address configuration using router advertisement (RA) and optional
information using DHCPv6.

dhcpv6-stateful - Address configuration and optional information using DHCPv6.

ipxe_enabled

Defines whether to use iPXE or standard PXE. The default is true, which enables iPXE. Set this
parameter to false to use standard PXE. For PowerPC deployments, or for hybrid PowerPC and x86
deployments, set this value to false.

local_interface

The chosen interface for the director Provisioning NIC. This is also the device that director uses for
DHCP and PXE boot services. Change this value to your chosen device. To see which device is
connected, use the ip addr command. For example, this is the result of an ip addr command:

2: em0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP qlen
1000
 link/ether 52:54:00:75:24:09 brd ff:ff:ff:ff:ff:ff
 inet 192.168.122.178/24 brd 192.168.122.255 scope global dynamic em0
 valid_lft 3462sec preferred_lft 3462sec
 inet6 fe80::5054:ff:fe75:2409/64 scope link
 valid_lft forever preferred_lft forever
3: em1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noop state DOWN
 link/ether 42:0b:c2:a5:c1:26 brd ff:ff:ff:ff:ff:ff

In this example, the External NIC uses em0 and the Provisioning NIC uses em1, which is currently not

CHAPTER 7. INSTALLING DIRECTOR ON THE UNDERCLOUD

69

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.0/html-single/director_installation_and_usage/index#configuring-hieradata-on-the-undercloud

In this example, the External NIC uses em0 and the Provisioning NIC uses em1, which is currently not
configured. In this case, set the local_interface to em1. The configuration script attaches this
interface to a custom bridge defined with the inspection_interface parameter.

local_ip

The IP address defined for the director Provisioning NIC. This is also the IP address that director
uses for DHCP and PXE boot services. Leave this value as the default 192.168.24.1/24 unless you
use a different subnet for the Provisioning network, for example, if this IP address conflicts with an
existing IP address or subnet in your environment.
For IPv6, the local IP address prefix length must be /64 to support both stateful and stateless
connections.

local_mtu

The maximum transmission unit (MTU) that you want to use for the local_interface. Do not exceed
1500 for the undercloud.

local_subnet

The local subnet that you want to use for PXE boot and DHCP interfaces. The local_ip address
should reside in this subnet. The default is ctlplane-subnet.

net_config_override

Path to network configuration override template. If you set this parameter, the undercloud uses a
JSON or YAML format template to configure the networking with os-net-config and ignores the
network parameters set in undercloud.conf. Use this parameter when you want to configure
bonding or add an option to the interface. For more information about customizing undercloud
network interfaces, see Configuring undercloud network interfaces.

networks_file

Networks file to override for heat.

output_dir

Directory to output state, processed heat templates, and Ansible deployment files.

overcloud_domain_name

The DNS domain name that you want to use when you deploy the overcloud.

NOTE

When you configure the overcloud, you must set the CloudDomain parameter to a
matching value. Set this parameter in an environment file when you configure your
overcloud.

roles_file

The roles file that you want to use to override the default roles file for undercloud installation. It is
highly recommended to leave this parameter unset so that the director installation uses the default
roles file.

scheduler_max_attempts

The maximum number of times that the scheduler attempts to deploy an instance. This value must
be greater or equal to the number of bare metal nodes that you expect to deploy at once to avoid
potential race conditions when scheduling.

service_principal

The Kerberos principal for the service using the certificate. Use this parameter only if your CA
requires a Kerberos principal, such as in FreeIPA.

Red Hat OpenStack Platform 17.0 Director Installation and Usage

70

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.0/html-single/director_installation_and_usage/index#proc_configuring-undercloud-network-interfaces_installing-director-on-the-undercloud

subnets

List of routed network subnets for provisioning and introspection. The default value includes only the
ctlplane-subnet subnet. For more information, see Subnets.

templates

Heat templates file to override.

undercloud_admin_host

The IP address or hostname defined for director admin API endpoints over SSL/TLS. The director
configuration attaches the IP address to the director software bridge as a routed IP address, which
uses the /32 netmask.
If the undercloud_admin_host is not in the same IP network as the local_ip, you must configure
the interface on which you want the admin APIs on the undercloud to listen. By default, the admin
APIs listen on the br-ctlplane interface. For information about how to configure undercloud network
interfaces, see Configuring undercloud network interfaces.

undercloud_debug

Sets the log level of undercloud services to DEBUG. Set this value to true to enable DEBUG log
level.

undercloud_enable_selinux

Enable or disable SELinux during the deployment. It is highly recommended to leave this value set to
true unless you are debugging an issue.

undercloud_hostname

Defines the fully qualified host name for the undercloud. If set, the undercloud installation configures
all system host name settings. If left unset, the undercloud uses the current host name, but you must
configure all system host name settings appropriately.

undercloud_log_file

The path to a log file to store the undercloud install and upgrade logs. By default, the log file is
install-undercloud.log in the home directory. For example, /home/stack/install-undercloud.log.

undercloud_nameservers

A list of DNS nameservers to use for the undercloud hostname resolution.

undercloud_ntp_servers

A list of network time protocol servers to help synchronize the undercloud date and time.

undercloud_public_host

The IP address or hostname defined for director public API endpoints over SSL/TLS. The director
configuration attaches the IP address to the director software bridge as a routed IP address, which
uses the /32 netmask.
If the undercloud_public_host is not in the same IP network as the local_ip, you must set the
PublicVirtualInterface parameter to the public-facing interface on which you want the public APIs
on the undercloud to listen. By default, the public APIs listen on the br-ctlplane interface. Set the
PublicVirtualInterface parameter in a custom environment file, and include the custom environment
file in the undercloud.conf file by configuring the custom_env_files parameter.

For information about customizing undercloud network interfaces, see Configuring undercloud
network interfaces.

undercloud_service_certificate

The location and filename of the certificate for OpenStack SSL/TLS communication. Ideally, you
obtain this certificate from a trusted certificate authority. Otherwise, generate your own self-signed
certificate.

CHAPTER 7. INSTALLING DIRECTOR ON THE UNDERCLOUD

71

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.0/html-single/installing_and_managing_red_hat_openstack_platform_with_director/index#proc_configuring-undercloud-network-interfaces_installing-director-on-the-undercloud
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.0/html-single/director_installation_and_usage/index#proc_configuring-undercloud-network-interfaces_installing-director-on-the-undercloud

undercloud_timezone

Host timezone for the undercloud. If you do not specify a timezone, director uses the existing
timezone configuration.

undercloud_update_packages

Defines whether to update packages during the undercloud installation.

Subnets

Each provisioning subnet is a named section in the undercloud.conf file. For example, to create a
subnet called ctlplane-subnet, use the following sample in your undercloud.conf file:

[ctlplane-subnet]
cidr = 192.168.24.0/24
dhcp_start = 192.168.24.5
dhcp_end = 192.168.24.24
inspection_iprange = 192.168.24.100,192.168.24.120
gateway = 192.168.24.1
masquerade = true

You can specify as many provisioning networks as necessary to suit your environment.

IMPORTANT

Director cannot change the IP addresses for a subnet after director creates the subnet.

cidr

The network that director uses to manage overcloud instances. This is the Provisioning network,
which the undercloud neutron service manages. Leave this as the default 192.168.24.0/24 unless you
use a different subnet for the Provisioning network.

masquerade

Defines whether to masquerade the network defined in the cidr for external access. This provides
the Provisioning network with a degree of network address translation (NAT) so that the
Provisioning network has external access through director.

NOTE

The director configuration also enables IP forwarding automatically using the relevant
sysctl kernel parameter.

dhcp_start; dhcp_end

The start and end of the DHCP allocation range for overcloud nodes. Ensure that this range contains
enough IP addresses to allocate to your nodes. If not specified for the subnet, director determines
the allocation pools by removing the values set for the local_ip, gateway, undercloud_admin_host,
undercloud_public_host, and inspection_iprange parameters from the subnets full IP range.
You can configure non-contiguous allocation pools for undercloud control plane subnets by
specifying a list of start and end address pairs. Alternatively, you can use the dhcp_exclude option to
exclude IP addresses within an IP address range. For example, the following configurations both
create allocation pools 172.20.0.100-172.20.0.150 and 172.20.0.200-172.20.0.250:

Option 1

Red Hat OpenStack Platform 17.0 Director Installation and Usage

72

dhcp_start = 172.20.0.100,172.20.0.200
dhcp_end = 172.20.0.150,172.20.0.250

Option 2

dhcp_start = 172.20.0.100
dhcp_end = 172.20.0.250
dhcp_exclude = 172.20.0.151-172.20.0.199

dhcp_exclude

IP addresses to exclude in the DHCP allocation range. For example, the following configuration
excludes the IP address 172.20.0.105 and the IP address range 172.20.0.210-172.20.0.219:

dhcp_exclude = 172.20.0.105,172.20.0.210-172.20.0.219

dns_nameservers

DNS nameservers specific to the subnet. If no nameservers are defined for the subnet, the subnet
uses nameservers defined in the undercloud_nameservers parameter.

gateway

The gateway for the overcloud instances. This is the undercloud host, which forwards traffic to the
External network. Leave this as the default 192.168.24.1 unless you use a different IP address for
director or want to use an external gateway directly.

host_routes

Host routes for the Neutron-managed subnet for the overcloud instances on this network. This also
configures the host routes for the local_subnet on the undercloud.

inspection_iprange

Temporary IP range for nodes on this network to use during the inspection process. This range must
not overlap with the range defined by dhcp_start and dhcp_end but must be in the same IP subnet.

Modify the values of these parameters to suit your configuration. When complete, save the file.

7.3. CONFIGURING THE UNDERCLOUD WITH ENVIRONMENT FILES

You configure the main parameters for the undercloud through the undercloud.conf file. You can also
perform additional undercloud configuration with an environment file that contains heat parameters.

Procedure

1. Create an environment file named /home/stack/templates/custom-undercloud-params.yaml.

2. Edit this file and include your heat parameters. For example, to enable debugging for certain
OpenStack Platform services include the following snippet in the custom-undercloud-
params.yaml file:

parameter_defaults:
 Debug: True

Save this file when you have finished.

3. Edit your undercloud.conf file and scroll to the custom_env_files parameter. Edit the

CHAPTER 7. INSTALLING DIRECTOR ON THE UNDERCLOUD

73

3. Edit your undercloud.conf file and scroll to the custom_env_files parameter. Edit the
parameter to point to your custom-undercloud-params.yaml environment file:

custom_env_files = /home/stack/templates/custom-undercloud-params.yaml

NOTE

You can specify multiple environment files using a comma-separated list.

The director installation includes this environment file during the next undercloud installation or
upgrade operation.

7.4. COMMON HEAT PARAMETERS FOR UNDERCLOUD
CONFIGURATION

The following table contains some common heat parameters that you might set in a custom
environment file for your undercloud.

Parameter Description

AdminPassword Sets the undercloud admin user password.

AdminEmail Sets the undercloud admin user email address.

Debug Enables debug mode.

Set these parameters in your custom environment file under the parameter_defaults section:

parameter_defaults:
 Debug: True
 AdminPassword: "myp@ssw0rd!"
 AdminEmail: "admin@example.com"

7.5. CONFIGURING HIERADATA ON THE UNDERCLOUD

You can provide custom configuration for services beyond the available undercloud.conf parameters
by configuring Puppet hieradata on the director.

Procedure

1. Create a hieradata override file, for example, /home/stack/hieradata.yaml.

2. Add the customized hieradata to the file. For example, add the following snippet to modify the
Compute (nova) service parameter force_raw_images from the default value of True to False:

nova::compute::force_raw_images: False

If there is no Puppet implementation for the parameter you want to set, then use the following
method to configure the parameter:

Red Hat OpenStack Platform 17.0 Director Installation and Usage

74

nova::config::nova_config:
 DEFAULT/<parameter_name>:
 value: <parameter_value>

For example:

nova::config::nova_config:
 DEFAULT/network_allocate_retries:
 value: 20
 ironic/serial_console_state_timeout:
 value: 15

3. Set the hieradata_override parameter in the undercloud.conf file to the path of the new
/home/stack/hieradata.yaml file:

hieradata_override = /home/stack/hieradata.yaml

7.6. CONFIGURING THE UNDERCLOUD FOR BARE METAL
PROVISIONING OVER IPV6

If you have IPv6 nodes and infrastructure, you can configure the undercloud and the provisioning
network to use IPv6 instead of IPv4 so that director can provision and deploy Red Hat OpenStack
Platform onto IPv6 nodes. However, there are some considerations:

Dual stack IPv4/6 is not available.

Tempest validations might not perform correctly.

IPv4 to IPv6 migration is not available during upgrades.

Modify the undercloud.conf file to enable IPv6 provisioning in Red Hat OpenStack Platform.

Prerequisites

An IPv6 address on the undercloud. For more information, see Configuring an IPv6 address on
the undercloud in the IPv6 Networking for the Overcloud guide.

Procedure

1. Open your undercloud.conf file.

2. Specify the IPv6 address mode as either stateless or stateful:

[DEFAULT]
ipv6_address_mode = <address_mode>
...

Replace <address_mode> with dhcpv6-stateless or dhcpv6-stateful, based on the mode
that your NIC supports.

NOTE

CHAPTER 7. INSTALLING DIRECTOR ON THE UNDERCLOUD

75

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.0/html-single/ipv6_networking_for_the_overcloud/index#sect-pre-Configuring_an_IPv6_on_the_Undercloud

NOTE

When you use the stateful address mode, the firmware, chain loaders, and
operating systems might use different algorithms to generate an ID that the
DHCP server tracks. DHCPv6 does not track addresses by MAC, and does not
provide the same address back if the identifier value from the requester changes
but the MAC address remains the same. Therefore, when you use stateful
DHCPv6 you must also complete the next step to configure the network
interface.

3. If you configured your undercloud to use stateful DHCPv6, specify the network interface to use
for bare metal nodes:

[DEFAULT]
ipv6_address_mode = dhcpv6-stateful
ironic_enabled_network_interfaces = neutron,flat
...

4. Set the default network interface for bare metal nodes:

[DEFAULT]
...
ironic_default_network_interface = neutron
...

5. Specify whether or not the undercloud should create a router on the provisioning network:

[DEFAULT]
...
enable_routed_networks: <true/false>
...

Replace <true/false> with true to enable routed networks and prevent the undercloud
creating a router on the provisioning network. When true, the data center router must
provide router advertisements.

Replace <true/false> with false to disable routed networks and create a router on the
provisioning network.

6. Configure the local IP address, and the IP address for the director Admin API and Public API
endpoints over SSL/TLS:

[DEFAULT]
...
local_ip = <ipv6_address>
undercloud_admin_host = <ipv6_address>
undercloud_public_host = <ipv6_address>
...

Replace <ipv6_address> with the IPv6 address of the undercloud.

7. Optional: Configure the provisioning network that director uses to manage instances:

Red Hat OpenStack Platform 17.0 Director Installation and Usage

76

[ctlplane-subnet]
cidr = <ipv6_address>/<ipv6_prefix>
...

Replace <ipv6_address> with the IPv6 address of the network to use for managing
instances when not using the default provisioning network.

Replace <ipv6_prefix> with the IP address prefix of the network to use for managing
instances when not using the default provisioning network.

8. Configure the DHCP allocation range for provisioning nodes:

[ctlplane-subnet]
cidr = <ipv6_address>/<ipv6_prefix>
dhcp_start = <ipv6_address_dhcp_start>
dhcp_end = <ipv6_address_dhcp_end>
...

Replace <ipv6_address_dhcp_start> with the IPv6 address of the start of the network
range to use for the overcloud nodes.

Replace <ipv6_address_dhcp_end> with the IPv6 address of the end of the network
range to use for the overcloud nodes.

9. Optional: Configure the gateway for forwarding traffic to the external network:

[ctlplane-subnet]
cidr = <ipv6_address>/<ipv6_prefix>
dhcp_start = <ipv6_address_dhcp_start>
dhcp_end = <ipv6_address_dhcp_end>
gateway = <ipv6_gateway_address>
...

Replace <ipv6_gateway_address> with the IPv6 address of the gateway when not using
the default gateway.

10. Configure the DHCP range to use during the inspection process:

[ctlplane-subnet]
cidr = <ipv6_address>/<ipv6_prefix>
dhcp_start = <ipv6_address_dhcp_start>
dhcp_end = <ipv6_address_dhcp_end>
gateway = <ipv6_gateway_address>
inspection_iprange = <ipv6_address_inspection_start>,<ipv6_address_inspection_end>
...

Replace <ipv6_address_inspection_start> with the IPv6 address of the start of the
network range to use during the inspection process.

Replace <ipv6_address_inspection_end> with the IPv6 address of the end of the network
range to use during the inspection process.

NOTE

CHAPTER 7. INSTALLING DIRECTOR ON THE UNDERCLOUD

77

NOTE

This range must not overlap with the range defined by dhcp_start and
dhcp_end, but must be in the same IP subnet.

11. Configure an IPv6 nameserver for the subnet:

[ctlplane-subnet]
cidr = <ipv6_address>/<ipv6_prefix>
dhcp_start = <ipv6_address_dhcp_start>
dhcp_end = <ipv6_address_dhcp_end>
gateway = <ipv6_gateway_address>
inspection_iprange = <ipv6_address_inspection_start>,<ipv6_address_inspection_end>
dns_nameservers = <ipv6_dns>

Replace <ipv6_dns> with the DNS nameservers specific to the subnet.

7.7. CONFIGURING UNDERCLOUD NETWORK INTERFACES

Include custom network configuration in the undercloud.conf file to install the undercloud with specific
networking functionality. For example, some interfaces might not have DHCP. In this case, you must
disable DHCP for these interfaces in the undercloud.conf file so that os-net-config can apply the
configuration during the undercloud installation process.

Procedure

1. Log in to the undercloud host.

2. Create a new file undercloud-os-net-config.yaml and include the network configuration that
you require.
For more information, see Network interface reference.

Here is an example:

network_config:
- name: br-ctlplane
 type: ovs_bridge
 use_dhcp: false
 dns_servers:
 - 192.168.122.1
 domain: lab.example.com
 ovs_extra:
 - "br-set-external-id br-ctlplane bridge-id br-ctlplane"
 addresses:
 - ip_netmask: 172.20.0.1/26
 members:
 - type: interface
 name: nic2

To create a network bond for a specific interface, use the following sample:

network_config:
- name: br-ctlplane
 type: ovs_bridge

Red Hat OpenStack Platform 17.0 Director Installation and Usage

78

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.0/html-single/director_installation_and_usage/index#ref_network-interface-reference_custom-network-interface-templates

 use_dhcp: false
 dns_servers:
 - 192.168.122.1
 domain: lab.example.com
 ovs_extra:
 - "br-set-external-id br-ctlplane bridge-id br-ctlplane"
 addresses:
 - ip_netmask: 172.20.0.1/26
 members:
 - name: bond-ctlplane
 type: linux_bond
 use_dhcp: false
 bonding_options: "mode=active-backup"
 mtu: 1500
 members:
 - type: interface
 name: nic2
 - type: interface
 name: nic3

3. Include the path to the undercloud-os-net-config.yaml file in the net_config_override
parameter in the undercloud.conf file:

[DEFAULT]
...
net_config_override=undercloud-os-net-config.yaml
...

NOTE

Director uses the file that you include in the net_config_override parameter as
the template to generate the /etc/os-net-config/config.yaml file. os-net-config
manages the interfaces that you define in the template, so you must perform all
undercloud network interface customization in this file.

4. Install the undercloud.

Verification

After the undercloud installation completes successfully, verify that the /etc/os-net-
config/config.yaml file contains the relevant configuration:

network_config:
- name: br-ctlplane
 type: ovs_bridge
 use_dhcp: false
 dns_servers:
 - 192.168.122.1
 domain: lab.example.com
 ovs_extra:
 - "br-set-external-id br-ctlplane bridge-id br-ctlplane"
 addresses:
 - ip_netmask: 172.20.0.1/26

CHAPTER 7. INSTALLING DIRECTOR ON THE UNDERCLOUD

79

 members:
 - type: interface
 name: nic2

7.8. INSTALLING DIRECTOR

Complete the following steps to install director and perform some basic post-installation tasks.

Procedure

1. Run the following command to install director on the undercloud:

[stack@director ~]$ openstack undercloud install

This command launches the director configuration script. Director installs additional packages
and configures its services according to the configuration in the undercloud.conf. This script
takes several minutes to complete.

The script generates two files:

/home/stack/tripleo-deploy/undercloud/tripleo-undercloud-passwords.yaml - A list of
all passwords for the director services.

/home/stack/stackrc - A set of initialization variables to help you access the director
command line tools.

2. The script also starts all OpenStack Platform service containers automatically. You can check
the enabled containers with the following command:

[stack@director ~]$ sudo podman ps

3. To initialize the stack user to use the command line tools, run the following command:

[stack@director ~]$ source ~/stackrc

The prompt now indicates that OpenStack commands authenticate and execute against the
undercloud;

(undercloud) [stack@director ~]$

The director installation is complete. You can now use the director command line tools.

7.9. OBTAINING IMAGES FOR OVERCLOUD NODES

Director requires several disk images to provision overcloud nodes:

An introspection kernel and ramdisk for bare metal system introspection over PXE boot.

A deployment kernel and ramdisk for system provisioning and deployment.

An overcloud kernel, ramdisk, and full image, which form a base overcloud system that director
writes to the hard disk of the node.

You can obtain and install the images you need. You can also obtain and install a basic image to

Red Hat OpenStack Platform 17.0 Director Installation and Usage

80

You can obtain and install the images you need. You can also obtain and install a basic image to
provision a bare OS when you do not want to run any other Red Hat OpenStack Platform (RHOSP)
services or consume one of your subscription entitlements.

7.9.1. Installing the overcloud images

Your Red Hat OpenStack Platform (RHOSP) installation includes packages that provide you with the
overcloud-hardened-uefi-full.qcow2 overcloud image for director. This image is necessary for
deployment of the overcloud with the default CPU architecture, x86-64. Importing this image into
director also installs introspection images on the director PXE server.

Procedure

1. Log in to the undercloud as the stack user.

2. Source the stackrc file:

[stack@director ~]$ source ~/stackrc

3. Install the rhosp-director-images-uefi-x86_64 and rhosp-director-images-ipa-x86_64
packages:

(undercloud) [stack@director ~]$ sudo dnf install rhosp-director-images-uefi-x86_64 rhosp-
director-images-ipa-x86_64

4. Create the images directory in the home directory of the stack user, /home/stack/images:

(undercloud) [stack@director ~]$ mkdir /home/stack/images

Skip this step if the directory already exists.

5. Extract the images archives to the images directory:

(undercloud) [stack@director ~]$ cd ~/images
(undercloud) [stack@director images]$ for i in /usr/share/rhosp-director-images/ironic-python-
agent-latest.tar /usr/share/rhosp-director-images/overcloud-hardened-uefi-full-latest.tar; do
tar -xvf $i; done

6. Import the images into director:

(undercloud) [stack@director images]$ openstack overcloud image upload --image-path
/home/stack/images/

This command converts the image format from QCOW to RAW, and provides verbose updates
on the status of the image upload progress.

7. Verify that the overcloud images are copied to /var/lib/ironic/images/:

(undercloud) [stack@director images]$ ls -l /var/lib/ironic/images/
total 1955660
-rw-r--r--. 1 root 42422 40442450944 Jan 29 11:59 overcloud-hardened-uefi-full.raw

8. Verify that director has copied the introspection PXE images to /var/lib/ironic/httpboot:

CHAPTER 7. INSTALLING DIRECTOR ON THE UNDERCLOUD

81

(undercloud) [stack@director images]$ ls -l /var/lib/ironic/httpboot
total 417296
-rwxr-xr-x. 1 root root 6639920 Jan 29 14:48 agent.kernel
-rw-r--r--. 1 root root 420656424 Jan 29 14:48 agent.ramdisk
-rw-r--r--. 1 42422 42422 758 Jan 29 14:29 boot.ipxe
-rw-r--r--. 1 42422 42422 488 Jan 29 14:16 inspector.ipxe

7.9.2. Minimal overcloud image

You can use the overcloud-minimal image to provision a bare OS where you do not want to run any
other Red Hat OpenStack Platform (RHOSP) services or consume one of your subscription
entitlements.

Your RHOSP installation includes the overcloud-minimal package that provides you with the following
overcloud images for director:

overcloud-minimal

overcloud-minimal-initrd

overcloud-minimal-vmlinuz

Procedure

1. Log in to the undercloud as the stack user.

2. Source the stackrc file:

[stack@director ~]$ source ~/stackrc

3. Install the overcloud-minimal package:

(undercloud) [stack@director ~]$ sudo dnf install rhosp-director-images-minimal

4. Extract the images archives to the images directory in the home directory of the stack user
(/home/stack/images):

(undercloud) [stack@director ~]$ cd ~/images
(undercloud) [stack@director images]$ tar xf /usr/share/rhosp-director-images/overcloud-
minimal-latest-17.0.tar

5. Import the images into director:

(undercloud) [stack@director images]$ openstack overcloud image upload --image-path
/home/stack/images/ --image-type os --os-image-name overcloud-minimal.qcow2

The command provides updates on the status of the image upload progress:

Image "file:///var/lib/ironic/images/overcloud-minimal.vmlinuz" was copied.
+---+-------------------+----------+
| Path | Name | Size |
+---+-------------------+----------+
| file:///var/lib/ironic/images/overcloud-minimal.vmlinuz | overcloud-minimal | 11172880 |
+---+-------------------+----------+

Red Hat OpenStack Platform 17.0 Director Installation and Usage

82

Image "file:///var/lib/ironic/images/overcloud-minimal.initrd" was copied.
+--+-------------------+----------+
| Path | Name | Size |
+--+-------------------+----------+
| file:///var/lib/ironic/images/overcloud-minimal.initrd | overcloud-minimal | 63575845 |
+--+-------------------+----------+
Image "file:///var/lib/ironic/images/overcloud-minimal.raw" was copied.
+---+-------------------+------------+
| Path | Name | Size |
+---+-------------------+------------+
| file:///var/lib/ironic/images/overcloud-minimal.raw | overcloud-minimal | 2912878592 |
+---+-------------------+------------+

7.10. UPDATING THE UNDERCLOUD CONFIGURATION

If you need to change the undercloud configuration to suit new requirements, you can make changes to
your undercloud configuration after installation, edit the relevant configuration files and re-run the
openstack undercloud install command.

Procedure

1. Modify the undercloud configuration files. For example, edit the undercloud.conf file and add
the idrac hardware type to the list of enabled hardware types:

enabled_hardware_types = ipmi,redfish,idrac

2. Run the openstack undercloud install command to refresh your undercloud with the new
changes:

[stack@director ~]$ openstack undercloud install

Wait until the command runs to completion.

3. Initialize the stack user to use the command line tools,:

[stack@director ~]$ source ~/stackrc

The prompt now indicates that OpenStack commands authenticate and execute against the
undercloud:

(undercloud) [stack@director ~]$

4. Verify that director has applied the new configuration. For this example, check the list of
enabled hardware types:

(undercloud) [stack@director ~]$ openstack baremetal driver list
+---------------------+----------------------+
| Supported driver(s) | Active host(s) |
+---------------------+----------------------+
idrac	director.example.com
ipmi	director.example.com
redfish	director.example.com
+---------------------+----------------------+

CHAPTER 7. INSTALLING DIRECTOR ON THE UNDERCLOUD

83

The undercloud re-configuration is complete.

7.11. UNDERCLOUD CONTAINER REGISTRY

Red Hat Enterprise Linux 9.0 no longer includes the docker-distribution package, which installed a
Docker Registry v2. To maintain the compatibility and the same level of feature, the director installation
creates an Apache web server with a vhost called image-serve to provide a registry. This registry also
uses port 8787/TCP with SSL disabled. The Apache-based registry is not containerized, which means
that you must run the following command to restart the registry:

$ sudo systemctl restart httpd

You can find the container registry logs in the following locations:

/var/log/httpd/image_serve_access.log

/var/log/httpd/image_serve_error.log.

The image content is served from /var/lib/image-serve. This location uses a specific directory layout
and apache configuration to implement the pull function of the registry REST API.

The Apache-based registry does not support podman push nor buildah push commands, which means
that you cannot push container images using traditional methods. To modify images during deployment,
use the container preparation workflow, such as the ContainerImagePrepare parameter. To manage
container images, use the container management commands:

openstack tripleo container image list

Lists all images stored on the registry.

openstack tripleo container image show

Show metadata for a specific image on the registry.

openstack tripleo container image push

Push an image from a remote registry to the undercloud registry.

openstack tripleo container image delete

Delete an image from the registry.

Red Hat OpenStack Platform 17.0 Director Installation and Usage

84

CHAPTER 8. PLANNING YOUR OVERCLOUD
The following section contains some guidelines for planning various aspects of your Red Hat OpenStack
Platform (RHOSP) environment. This includes defining node roles, planning your network topology, and
storage.

IMPORTANT

Do not rename your overcloud nodes after they have been deployed. Renaming a node
after deployment creates issues with instance management.

8.1. NODE ROLES

Director includes the following default node types to build your overcloud:

Controller

Provides key services for controlling your environment. This includes the dashboard (horizon),
authentication (keystone), image storage (glance), networking (neutron), orchestration (heat), and
high availability services. A Red Hat OpenStack Platform (RHOSP) environment requires three
Controller nodes for a highly available production-level environment.

NOTE

Use environments with one Controller node only for testing purposes, not for
production. Environments with two Controller nodes or more than three Controller
nodes are not supported.

Compute

A physical server that acts as a hypervisor and contains the processing capabilities required to run
virtual machines in the environment. A basic RHOSP environment requires at least one Compute
node.

Ceph Storage

A host that provides Red Hat Ceph Storage. Additional Ceph Storage hosts scale into a cluster. This
deployment role is optional.

Swift Storage

A host that provides external object storage to the OpenStack Object Storage (swift) service. This
deployment role is optional.

The following table contains some examples of different overclouds and defines the node types for
each scenario.

Table 8.1. Node Deployment Roles for Scenarios

 Controller Compute Ceph Storage Swift Storage Total

Small
overcloud

3 1 - - 4

Medium
overcloud

3 3 - - 6

CHAPTER 8. PLANNING YOUR OVERCLOUD

85

Medium
overcloud with
additional
object storage

3 3 - 3 9

Medium
overcloud with
Ceph Storage
cluster

3 3 3 - 9

In addition, consider whether to split individual services into custom roles. For more information about
the composable roles architecture, see "Composable Services and Custom Roles" in the Director
installation and usage guide.

Table 8.2. Node Deployment Roles for Proof of Concept Deployment

 Undercloud Controller Compute Ceph Storage Total

Proof of
concept

1 1 1 1 4

WARNING

The Red Hat OpenStack Platform maintains an operational Ceph Storage cluster
during day-2 operations. Therefore, some day-2 operations, such as upgrades or
minor updates of the Ceph Storage cluster, are not possible in deployments with
fewer than three MONs or three storage nodes. If you use a single Controller node
or a single Ceph Storage node, day-2 operations will fail.

8.2. OVERCLOUD NETWORKS

It is important to plan the networking topology and subnets in your environment so that you can map
roles and services to communicate with each other correctly. Red Hat OpenStack Platform (RHOSP)
uses the Openstack Networking (neutron) service, which operates autonomously and manages
software-based networks, static and floating IP addresses, and DHCP.

By default, director configures nodes to use the Provisioning / Control Plane for connectivity.
However, it is possible to isolate network traffic into a series of composable networks, that you can
customize and assign services.

In a typical RHOSP installation, the number of network types often exceeds the number of physical
network links. To connect all the networks to the proper hosts, the overcloud uses VLAN tagging to
deliver more than one network on each interface. Most of the networks are isolated subnets but some
networks require a Layer 3 gateway to provide routing for Internet access or infrastructure network
connectivity. If you use VLANs to isolate your network traffic types, you must use a switch that supports
802.1Q standards to provide tagged VLANs.

NOTE



Red Hat OpenStack Platform 17.0 Director Installation and Usage

86

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.0/html-single/director_installation_and_usage/index#assembly_composable-services-and-custom-roles

NOTE

It is recommended that you deploy a project network (tunneled with GRE or VXLAN)
even if you intend to use a neutron VLAN mode with tunneling disabled at deployment
time. This requires minor customization at deployment time and leaves the option
available to use tunnel networks as utility networks or virtualization networks in the future.
You still create Tenant networks using VLANs, but you can also create VXLAN tunnels for
special-use networks without consuming tenant VLANs. It is possible to add VXLAN
capability to a deployment with a Tenant VLAN, but it is not possible to add a Tenant
VLAN to an existing overcloud without causing disruption.

Director also includes a set of templates that you can use to configure NICs with isolated composable
networks. The following configurations are the default configurations:

Single NIC configuration - One NIC for the Provisioning network on the native VLAN and
tagged VLANs that use subnets for the different overcloud network types.

Bonded NIC configuration - One NIC for the Provisioning network on the native VLAN and two
NICs in a bond for tagged VLANs for the different overcloud network types.

Multiple NIC configuration - Each NIC uses a subnet for a different overcloud network type.

You can also create your own templates to map a specific NIC configuration.

The following details are also important when you consider your network configuration:

During the overcloud creation, you refer to NICs using a single name across all overcloud
machines. Ideally, you should use the same NIC on each overcloud node for each respective
network to avoid confusion. For example, use the primary NIC for the Provisioning network and
the secondary NIC for the OpenStack services.

Set all overcloud systems to PXE boot off the Provisioning NIC, and disable PXE boot on the
External NIC and any other NICs on the system. Also ensure that the Provisioning NIC has PXE
boot at the top of the boot order, ahead of hard disks and CD/DVD drives.

All overcloud bare metal systems require a supported power management interface, such as an
Intelligent Platform Management Interface (IPMI), so that director can control the power
management of each node.

Make a note of the following details for each overcloud system: the MAC address of the
Provisioning NIC, the IP address of the IPMI NIC, IPMI username, and IPMI password. This
information is useful later when you configure the overcloud nodes.

If an instance must be accessible from the external internet, you can allocate a floating IP
address from a public network and associate the floating IP with an instance. The instance
retains its private IP but network traffic uses NAT to traverse through to the floating IP address.
Note that a floating IP address can be assigned only to a single instance rather than multiple
private IP addresses. However, the floating IP address is reserved for use only by a single
tenant, which means that the tenant can associate or disassociate the floating IP address with a
particular instance as required. This configuration exposes your infrastructure to the external
internet and you must follow suitable security practices.

To mitigate the risk of network loops in Open vSwitch, only a single interface or a single bond
can be a member of a given bridge. If you require multiple bonds or interfaces, you can configure
multiple bridges.

Red Hat recommends using DNS hostname resolution so that your overcloud nodes can

CHAPTER 8. PLANNING YOUR OVERCLOUD

87

Red Hat recommends using DNS hostname resolution so that your overcloud nodes can
connect to external services, such as the Red Hat Content Delivery Network and network time
servers.

Red Hat recommends that the Provisioning interface, External interface, and any floating IP
interfaces be left at the default MTU of 1500. Connectivity problems are likely to occur
otherwise. This is because routers typically cannot forward jumbo frames across Layer 3
boundaries.

NOTE

You can virtualize the overcloud control plane if you are using Red Hat Virtualization
(RHV). For more information, see Creating virtualized control planes .

8.3. OVERCLOUD STORAGE

You can use Red Hat Ceph Storage nodes as the back end storage for your overcloud environment. You
can configure your overcloud to use the Ceph nodes for the following types of storage:

Images

The Image service (glance) manages the images that are used for creating virtual machine instances.
Images are immutable binary blobs. You can use the Image service to store images in a Ceph Block
Device. For information about supported image formats, see The Image service (glance) in Creating
and Managing Images.

Volumes

The Block Storage service (cinder) manages persistent storage volumes for instances. The Block
Storage service volumes are block devices. You can use a volume to boot an instance, and you can
attach volumes to running instances. You can use the Block Storage service to boot a virtual machine
using a copy-on-write clone of an image.

Objects

The Ceph Object Gateway (RGW) provides the default overcloud object storage on the Ceph cluster
when your overcloud storage back end is Red Hat Ceph Storage. If your overcloud does not have Red
Hat Ceph Storage, then the overcloud uses the Object Storage service (swift) to provide object
storage. You can dedicate overcloud nodes to the Object Storage service. This is useful in situations
where you need to scale or replace Controller nodes in your overcloud environment but need to
retain object storage outside of a high availability cluster.

File Systems

The Shared File Systems service (manila) manages shared file systems. You can use the Shared File
Systems service to manage shares backed by a CephFS file system with data on the Ceph Storage
nodes.

Instance disks

When you launch an instance, the instance disk is stored as a file in the instance directory of the
hypervisor. The default file location is /var/lib/nova/instances.

For more information about Ceph Storage, see the Red Hat Ceph Storage Architecture Guide .

8.3.1. Configuration considerations for overcloud storage nodes

Instance security and performance

Using LVM on an instance that uses a back end Block Storage volume causes issues with
performance, volume visibility and availability, and data corruption. Use an LVM filter to mitigate
visibility, availability, and data corruption issues. For more information, see Enabling LVM2 filtering

Red Hat OpenStack Platform 17.0 Director Installation and Usage

88

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.0/html/creating_and_managing_images/assembly_image-service_osp
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/4/html/architecture_guide/index
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.0/html/storage_guide/assembly_configuring-the-block-storage-service_osp-storage-guide#proc-enabling-lvm2-filtering-on-overcloud-nodes_configuring-cinder

on overcloud nodes in the Storage Guide, and the Red Hat Knowledgebase solution Using LVM on a
cinder volume exposes the data to the compute host.

Local disk partition sizes

Consider the storage and retention requirements for your storage nodes, to determine if the
following default disk partition sizes meet your requirements:

Partition Default size

/ 8GB

/tmp 1GB

/var/log 10GB

/var/log/audit 2GB

/home 1GB

/var Allocated the remaining size of the disk after all other partitions are
allocated.

To change the allocated disk size for a partition, update the role_growvols_args extra Ansible
variable in the Ansible_playbooks definition in your overcloud-baremetal-deploy.yaml node
definition file. For more information, see Provisioning bare metal nodes for the overcloud .

If your partitions continue to fill up after you have optimized the configuration of your partition sizes,
then perform one of the following tasks:

Manually delete files from the affected partitions.

Add a new physical disk and add it to the LVM volume group. For more information, see
Configuring and managing logical volumes.

NOTE

Adding a new disk requires a support exception. Contact the Red Hat
Customer Experience and Engagement team to discuss a support exception,
if applicable, or other options.

8.4. OVERCLOUD SECURITY

Your OpenStack Platform implementation is only as secure as your environment. Follow good security
principles in your networking environment to ensure that you control network access properly:

Use network segmentation to mitigate network movement and isolate sensitive data. A flat
network is much less secure.

Restrict services access and ports to a minimum.

Enforce proper firewall rules and password usage.

CHAPTER 8. PLANNING YOUR OVERCLOUD

89

https://access.redhat.com/solutions/3213311
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/configuring_and_managing_logical_volumes/index
https://access.redhat.com/support

Ensure that SELinux is enabled.

For more information about securing your system, see the following Red Hat guides:

Security Hardening for Red Hat Enterprise Linux 9

Using SELinux for Red Hat Enterprise Linux 9

8.5. OVERCLOUD HIGH AVAILABILITY

To deploy a highly-available overcloud, director configures multiple Controller, Compute and Storage
nodes to work together as a single cluster. In case of node failure, an automated fencing and re-
spawning process is triggered based on the type of node that failed. For more information about
overcloud high availability architecture and services, see High Availability Deployment and Usage .

NOTE

Deploying a highly available overcloud without STONITH is not supported. You must
configure a STONITH device for each node that is a part of the Pacemaker cluster in a
highly available overcloud. For more information on STONITH and Pacemaker, see
Fencing in a Red Hat High Availability Cluster and Support Policies for RHEL High
Availability Clusters.

You can also configure high availability for Compute instances with director (Instance HA). This high
availability mechanism automates evacuation and re-spawning of instances on Compute nodes in case
of node failure. The requirements for Instance HA are the same as the general overcloud requirements,
but you must perform a few additional steps to prepare your environment for the deployment. For more
information about Instance HA and installation instructions, see the High Availability for Compute
Instances guide.

8.6. CONTROLLER NODE REQUIREMENTS

Controller nodes host the core services in a Red Hat OpenStack Platform environment, such as the
Dashboard (horizon), the back-end database server, the Identity service (keystone) authentication, and
high availability services.

Processor

64-bit x86 processor with support for the Intel 64 or AMD64 CPU extensions.

Memory

The minimum amount of memory is 32 GB. However, the amount of recommended memory depends
on the number of vCPUs, which is based on the number of CPU cores multiplied by hyper-threading
value. Use the following calculations to determine your RAM requirements:

Controller RAM minimum calculation:

Use 1.5 GB of memory for each vCPU. For example, a machine with 48 vCPUs should
have 72 GB of RAM.

Controller RAM recommended calculation:

Use 3 GB of memory for each vCPU. For example, a machine with 48 vCPUs should have
144 GB of RAM

For more information about measuring memory requirements, see "Red Hat OpenStack Platform

Red Hat OpenStack Platform 17.0 Director Installation and Usage

90

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/security_hardening/
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/using_selinux/
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.0/html-single/high_availability_deployment_and_usage/
https://access.redhat.com/solutions/15575
https://access.redhat.com/articles/2881341
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.0/html-single/high_availability_for_compute_instances/

For more information about measuring memory requirements, see "Red Hat OpenStack Platform
Hardware Requirements for Highly Available Controllers" on the Red Hat Customer Portal.

Disk Storage and layout

A minimum amount of 50 GB storage is required if the Object Storage service (swift) is not running
on the Controller nodes. However, the Telemetry and Object Storage services are both installed on
the Controllers, with both configured to use the root disk. These defaults are suitable for deploying
small overclouds built on commodity hardware. These environments are typical of proof-of-concept
and test environments. You can use these defaults to deploy overclouds with minimal planning, but
they offer little in terms of workload capacity and performance.
In an enterprise environment, however, the defaults could cause a significant bottleneck because
Telemetry accesses storage constantly. This results in heavy disk I/O usage, which severely impacts
the performance of all other Controller services. In this type of environment, you must plan your
overcloud and configure it accordingly.

Network Interface Cards

A minimum of 2 x 1 Gbps Network Interface Cards. Use additional network interface cards for bonded
interfaces or to delegate tagged VLAN traffic.

Power management

Each Controller node requires a supported power management interface, such as an Intelligent
Platform Management Interface (IPMI) functionality, on the server motherboard.

Virtualization support

Red Hat supports virtualized Controller nodes only on Red Hat Virtualization platforms. For more
information, see Creating virtualized control planes .

8.7. COMPUTE NODE REQUIREMENTS

Compute nodes are responsible for running virtual machine instances after they are launched. Compute
nodes require bare metal systems that support hardware virtualization. Compute nodes must also have
enough memory and disk space to support the requirements of the virtual machine instances that they
host.

Processor

64-bit x86 processor with support for the Intel 64 or AMD64 CPU extensions, and the AMD-V or
Intel VT hardware virtualization extensions enabled. It is recommended that this processor has a
minimum of 4 cores.

Memory

A minimum of 6 GB of RAM for the host operating system, plus additional memory to accommodate
for the following considerations:

Add additional memory that you intend to make available to virtual machine instances.

Add additional memory to run special features or additional resources on the host, such as
additional kernel modules, virtual switches, monitoring solutions, and other additional
background tasks.

If you intend to use non-uniform memory access (NUMA), Red Hat recommends 8GB per
CPU socket node or 16 GB per socket node if you have more then 256 GB of physical RAM.

Configure at least 4 GB of swap space.

Disk space

CHAPTER 8. PLANNING YOUR OVERCLOUD

91

https://access.redhat.com/articles/2431181

A minimum of 50 GB of available disk space.

Network Interface Cards

A minimum of one 1 Gbps Network Interface Cards, although it is recommended to use at least two
NICs in a production environment. Use additional network interface cards for bonded interfaces or to
delegate tagged VLAN traffic.

Power management

Each Compute node requires a supported power management interface, such as an Intelligent
Platform Management Interface (IPMI) functionality, on the server motherboard.

8.8. RED HAT CEPH STORAGE NODE REQUIREMENTS

There are additional node requirements using director to create a Ceph Storage cluster:

Hardware requirements including processor, memory, and network interface card selection and
disk layout are available in the Red Hat Ceph Storage Hardware Guide .

Each Ceph Storage node requires a supported power management interface, such as Intelligent
Platform Management Interface (IPMI) functionality, on the motherboard of the server.

Each Ceph Storage node must have at least two disks. RHOSP director uses cephadm to
deploy the Ceph Storage cluster. The cephadm functionality does not support installing Ceph
OSD on the root disk of the node.

8.9. CEPH STORAGE NODES AND RHEL COMPATIBILITY

RHOSP 17.0 is supported on RHEL 9.0. However, hosts that are mapped to the Ceph Storage role
update to the latest major RHEL release. Before upgrading, review the Red Hat Knowledgebase article
Red Hat Ceph Storage: Supported configurations .

8.10. OBJECT STORAGE NODE REQUIREMENTS

Object Storage nodes provide an object storage layer for the overcloud. The Object Storage proxy is
installed on Controller nodes. The storage layer requires bare metal nodes with multiple disks on each
node.

Processor

64-bit x86 processor with support for the Intel 64 or AMD64 CPU extensions.

Memory

Memory requirements depend on the amount of storage space. Use at minimum 1 GB of memory for
each 1 TB of hard disk space. For optimal performance, it is recommended to use 2 GB for each 1 TB
of hard disk space, especially for workloads with files smaller than 100GB.

Disk space

Storage requirements depend on the capacity needed for the workload. It is recommended to use
SSD drives to store the account and container data. The capacity ratio of account and container
data to objects is approximately 1 per cent. For example, for every 100TB of hard drive capacity,
provide 1TB of SSD capacity for account and container data.
However, this depends on the type of stored data. If you want to store mostly small objects, provide
more SSD space. For large objects (videos, backups), use less SSD space.

Disk layout

The recommended node configuration requires a disk layout similar to the following example:

Red Hat OpenStack Platform 17.0 Director Installation and Usage

92

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/5/html-single/hardware_guide/index
https://access.redhat.com/articles/1548993

/dev/sda - The root disk. Director copies the main overcloud image to the disk.

/dev/sdb - Used for account data.

/dev/sdc - Used for container data.

/dev/sdd and onward - The object server disks. Use as many disks as necessary for your
storage requirements.

Network Interface Cards

A minimum of 2 x 1 Gbps Network Interface Cards. Use additional network interface cards for bonded
interfaces or to delegate tagged VLAN traffic.

Power management

Each Controller node requires a supported power management interface, such as an Intelligent
Platform Management Interface (IPMI) functionality, on the server motherboard.

8.11. OVERCLOUD REPOSITORIES

You run Red Hat OpenStack Platform 17.0 on Red Hat Enterprise Linux 9.0. As a result, you must lock
the content from these repositories to the respective Red Hat Enterprise Linux version.

WARNING

Any repositories except the ones specified here are not supported. Unless
recommended, do not enable any other products or repositories except the ones
listed in the following tables or else you might encounter package dependency
issues. Do not enable Extra Packages for Enterprise Linux (EPEL).

NOTE

Satellite repositories are not listed because RHOSP 17.0 does not support Satellite.
Satellite support is planned for a future release. Only Red Hat CDN is supported as a
package repository and container registry. NFV repositories are not listed because
RHOSP 17.0 does not support NFV.

Controller node repositories

The following table lists core repositories for Controller nodes in the overcloud.

Name Repository Description of requirement

Red Hat Enterprise Linux 9 for
x86_64 - BaseOS (RPMs)
Extended Update Support (EUS)

rhel-9-for-x86_64-baseos-
eus-rpms

Base operating system repository
for x86_64 systems.

Red Hat Enterprise Linux 9 for
x86_64 - AppStream (RPMs)

rhel-9-for-x86_64-appstream-
eus-rpms

Contains Red Hat OpenStack
Platform dependencies.



CHAPTER 8. PLANNING YOUR OVERCLOUD

93

Red Hat Enterprise Linux 9 for
x86_64 - High Availability (RPMs)
Extended Update Support (EUS)

rhel-9-for-x86_64-
highavailability-eus-rpms

High availability tools for Red Hat
Enterprise Linux.

Red Hat OpenStack Platform 17
for RHEL 9 x86_64 (RPMs)

openstack-17-for-rhel-9-
x86_64-rpms

Core Red Hat OpenStack
Platform repository.

Red Hat Fast Datapath for RHEL
9 (RPMS)

fast-datapath-for-rhel-9-
x86_64-rpms

Provides Open vSwitch (OVS)
packages for OpenStack
Platform.

Red Hat Ceph Storage Tools 5 for
RHEL 9 x86_64 (RPMs)

rhceph-5-tools-for-rhel-9-
x86_64-rpms

Tools for Red Hat Ceph Storage 5
for Red Hat Enterprise Linux 9.

Name Repository Description of requirement

Compute and ComputeHCI node repositories

The following table lists core repositories for Compute and ComputeHCI nodes in the overcloud.

Name Repository Description of requirement

Red Hat Enterprise Linux 9 for
x86_64 - BaseOS (RPMs)
Extended Update Support (EUS)

rhel-9-for-x86_64-baseos-
eus-rpms

Base operating system repository
for x86_64 systems.

Red Hat Enterprise Linux 9 for
x86_64 - AppStream (RPMs)

rhel-9-for-x86_64-appstream-
eus-rpms

Contains Red Hat OpenStack
Platform dependencies.

Red Hat Enterprise Linux 9 for
x86_64 - High Availability (RPMs)
Extended Update Support (EUS)

rhel-9-for-x86_64-
highavailability-eus-rpms

High availability tools for Red Hat
Enterprise Linux.

Red Hat OpenStack Platform 17
for RHEL 9 x86_64 (RPMs)

openstack-17-for-rhel-9-
x86_64-rpms

Core Red Hat OpenStack
Platform repository.

Red Hat Fast Datapath for RHEL
9 (RPMS)

fast-datapath-for-rhel-9-
x86_64-rpms

Provides Open vSwitch (OVS)
packages for OpenStack
Platform.

Red Hat Ceph Storage Tools 5 for
RHEL 9 x86_64 (RPMs)

rhceph-5-tools-for-rhel-9-
x86_64-rpms

Tools for Red Hat Ceph Storage 5
for Red Hat Enterprise Linux 9.

Real Time Compute repositories

The following table lists repositories for Real Time Compute (RTC) functionality.

Red Hat OpenStack Platform 17.0 Director Installation and Usage

94

Name Repository Description of requirement

Red Hat Enterprise Linux 9 for
x86_64 - Real Time (RPMs)

rhel-9-for-x86_64-rt-rpms Repository for Real Time KVM
(RT-KVM). Contains packages to
enable the real time kernel.
Enable this repository for all
Compute nodes targeted for RT-
KVM. NOTE: You need a separate
subscription to a Red Hat
OpenStack Platform for Real
Time SKU to access this
repository.

Ceph Storage node repositories

The following table lists Ceph Storage related repositories for the overcloud.

Name Repository Description of requirement

Red Hat Enterprise Linux 9 for
x86_64 - BaseOS (RPMs)

rhel-9-for-x86_64-baseos-
rpms

Base operating system repository
for x86_64 systems.

Red Hat Enterprise Linux 9 for
x86_64 - AppStream (RPMs)

rhel-9-for-x86_64-appstream-
rpms

Contains Red Hat OpenStack
Platform dependencies.

Red Hat OpenStack Platform 17
Director Deployment Tools for
RHEL 9 x86_64 (RPMs)

openstack-17-deployment-
tools-for-rhel-9-x86_64-rpms

Packages to help director
configure Ceph Storage nodes.
This repository is included with
standalone Ceph Storage
subscriptions. If you use a
combined OpenStack Platform
and Ceph Storage subscription,
use the openstack-17-for-rhel-
9-x86_64-rpms repository.

Red Hat OpenStack Platform 17
for RHEL 9 x86_64 (RPMs)

openstack-17-for-rhel-9-
x86_64-rpms

Packages to help director
configure Ceph Storage nodes.
This repository is included with
combined OpenStack Platform
and Ceph Storage subscriptions.
If you use a standalone Ceph
Storage subscription, use the
openstack-17-deployment-
tools-for-rhel-9-x86_64-rpms
repository.

Red Hat Ceph Storage Tools 5 for
RHEL 9 x86_64 (RPMs)

rhceph-5-tools-for-rhel-9-
x86_64-rpms

Provides tools for nodes to
communicate with the Ceph
Storage cluster.

CHAPTER 8. PLANNING YOUR OVERCLOUD

95

Red Hat Fast Datapath for RHEL
9 (RPMS)

fast-datapath-for-rhel-9-
x86_64-rpms

Provides Open vSwitch (OVS)
packages for OpenStack
Platform. If you are using OVS on
Ceph Storage nodes, add this
repository to the network
interface configuration (NIC)
templates.

Name Repository Description of requirement

8.12. NODE PROVISIONING AND CONFIGURATION

You provision the overcloud nodes for your Red Hat OpenStack Platform (RHOSP) environment by
using either the OpenStack Bare Metal (ironic) service, or an external tool. When your nodes are
provisioned, you configure them by using director.

Provisioning with the OpenStack Bare Metal (ironic) service

Provisioning overcloud nodes by using the Bare Metal service is the standard provisioning method.
For more information, see Provisioning bare metal overcloud nodes .

Provisioning with an external tool

You can use an external tool, such as Red Hat Satellite, to provision overcloud nodes. This is useful if
you want to create an overcloud without power management control, use networks that have
DHCP/PXE boot restrictions, or if you want to use nodes that have a custom partitioning layout that
does not rely on the overcloud-hardened-uefi-full.qcow2 image. This provisioning method does not
use the OpenStack Bare Metal service (ironic) for managing nodes. For more information, see
Configuring a basic overcloud with pre-provisioned nodes .

Red Hat OpenStack Platform 17.0 Director Installation and Usage

96

CHAPTER 9. COMPOSABLE SERVICES AND CUSTOM ROLES
The overcloud usually consists of nodes in predefined roles such as Controller nodes, Compute nodes,
and different storage node types. Each of these default roles contains a set of services defined in the
core heat template collection on the director node. However, you can also create custom roles that
contain specific sets of services.

You can use this flexibility to create different combinations of services on different roles. This chapter
explores the architecture of custom roles, composable services, and methods for using them.

9.1. SUPPORTED ROLE ARCHITECTURE

The following architectures are available when you use custom roles and composable services:

Default architecture

Uses the default roles_data files. All controller services are contained within one Controller role.

Supported standalone roles

Use the predefined files in /usr/share/openstack-tripleo-heat-templates/roles to generate a
custom roles_data file. For more information, see Section 9.4, “Supported custom roles” .

Custom composable services

Create your own roles and use them to generate a custom roles_data file. Note that only a limited
number of composable service combinations have been tested and verified and Red Hat cannot
support all composable service combinations.

9.2. EXAMINING THE ROLES_DATA FILE

The roles_data file contains a YAML-formatted list of the roles that director deploys onto nodes. Each
role contains definitions of all of the services that comprise the role. Use the following example snippet
to understand the roles_data syntax:

- name: Controller
 description: |
 Controller role that has all the controller services loaded and handles
 Database, Messaging and Network functions.
 ServicesDefault:
 - OS::TripleO::Services::AuditD
 - OS::TripleO::Services::CACerts
 - OS::TripleO::Services::CephClient
 ...
- name: Compute
 description: |
 Basic Compute Node role
 ServicesDefault:
 - OS::TripleO::Services::AuditD
 - OS::TripleO::Services::CACerts
 - OS::TripleO::Services::CephClient
 ...

The core heat template collection contains a default roles_data file located at /usr/share/openstack-
tripleo-heat-templates/roles_data.yaml. The default file contains definitions of the following role
types:

Controller

CHAPTER 9. COMPOSABLE SERVICES AND CUSTOM ROLES

97

Compute

BlockStorage

ObjectStorage

CephStorage.

The openstack overcloud deploy command includes the default roles_data.yaml file during
deployment. However, you can use the -r argument to override this file with a custom roles_data file:

$ openstack overcloud deploy --templates -r ~/templates/roles_data-custom.yaml

9.3. CREATING A ROLES_DATA FILE

Although you can create a custom roles_data file manually, you can also generate the file automatically
using individual role templates. Director provides the openstack overcloud role generate command to
join multiple predefined roles and automatically generate a custom roles_data file.

Procedure

1. List the default role templates:

$ openstack overcloud role list
BlockStorage
CephStorage
Compute
ComputeHCI
ComputeOvsDpdk
Controller
...

2. View the role definition:

$ openstack overcloud role show Compute

3. Generate a custom roles_data.yaml file that contains the Controller, Compute, and
Networker roles:

$ openstack overcloud roles \
 generate -o <custom_role_file> \
 Controller Compute Networker

Replace <custom_role_file> with the name and location of the new role file to generate,
for example, /home/stack/templates/roles_data.yaml.

NOTE

The Controller and Networker roles contain the same networking agents.
This means that the networking services scale from the Controller role to the
Networker role and the overcloud balances the load for networking services
between the Controller and Networker nodes.

To make this Networker role standalone, you can create your own custom Controller role,

Red Hat OpenStack Platform 17.0 Director Installation and Usage

98

To make this Networker role standalone, you can create your own custom Controller role,
as well as any other role that you require. This allows you to generate a roles_data.yaml file
from your own custom roles.

4. Copy the roles directory from the core heat template collection to the home directory of the
stack user:

$ cp -r /usr/share/openstack-tripleo-heat-templates/roles/. /home/stack/templates/roles/

5. Add or modify the custom role files in this directory. Use the --roles-path option with any of the
role sub-commands to use this directory as the source for your custom roles:

$ openstack overcloud role \
 generate -o my_roles_data.yaml \
 --roles-path /home/stack/templates/roles \
 Controller Compute Networker

This command generates a single my_roles_data.yaml file from the individual roles in the
~/roles directory.

NOTE

The default roles collection also contains the ControllerOpenstack role, which does not
include services for Networker, Messaging, and Database roles. You can use the
ControllerOpenstack in combination with the standalone Networker, Messaging, and
Database roles.

9.4. SUPPORTED CUSTOM ROLES

The following table contains information about the available custom roles. You can find custom role
templates in the /usr/share/openstack-tripleo-heat-templates/roles directory.

Role Description File

BlockStorage OpenStack Block Storage (cinder) node. BlockStorage.yaml

CephAll Full standalone Ceph Storage node. Includes OSD,
MON, Object Gateway (RGW), Object Operations
(MDS), Manager (MGR), and RBD Mirroring.

CephAll.yaml

CephFile Standalone scale-out Ceph Storage file role. Includes
OSD and Object Operations (MDS).

CephFile.yaml

CephObject Standalone scale-out Ceph Storage object role.
Includes OSD and Object Gateway (RGW).

CephObject.yaml

CephStorage Ceph Storage OSD node role. CephStorage.yaml

ComputeAlt Alternate Compute node role. ComputeAlt.yaml

ComputeDVR DVR enabled Compute node role. ComputeDVR.yaml

CHAPTER 9. COMPOSABLE SERVICES AND CUSTOM ROLES

99

ComputeHCI Compute node with hyper-converged infrastructure.
Includes Compute and Ceph OSD services.

ComputeHCI.yaml

ComputeInstanceHA Compute Instance HA node role. Use in conjunction
with the environments/compute-
instanceha.yaml` environment file.

ComputeInstanceHA
.yaml

ComputeLiquidio Compute node with Cavium Liquidio Smart NIC. ComputeLiquidio.ya
ml

ComputeOvsDpdkR
T

Compute OVS DPDK RealTime role. ComputeOvsDpdkR
T.yaml

ComputeOvsDpdk Compute OVS DPDK role. ComputeOvsDpdk.y
aml

ComputeRealTime Compute role optimized for real-time behaviour.
When using this role, it is mandatory that an
overcloud-realtime-compute image is available
and the role specific parameters IsolCpusList,
NovaComputeCpuDedicatedSet and
NovaComputeCpuSharedSet are set according
to the hardware of the real-time compute nodes.

ComputeRealTime.y
aml

ComputeSriovRT Compute SR-IOV RealTime role. ComputeSriovRT.ya
ml

ComputeSriov Compute SR-IOV role. ComputeSriov.yaml

Compute Standard Compute node role. Compute.yaml

ControllerAllNovaSta
ndalone

Controller role that does not contain the database,
messaging, networking, and OpenStack Compute
(nova) control components. Use in combination with
the Database, Messaging, Networker, and
Novacontrol roles.

ControllerAllNovaSta
ndalone.yaml

ControllerNoCeph Controller role with core Controller services loaded
but no Ceph Storage (MON) components. This role
handles database, messaging, and network functions
but not any Ceph Storage functions.

ControllerNoCeph.ya
ml

ControllerNovaStand
alone

Controller role that does not contain the OpenStack
Compute (nova) control component. Use in
combination with the Novacontrol role.

ControllerNovaStand
alone.yaml

Role Description File

Red Hat OpenStack Platform 17.0 Director Installation and Usage

100

ControllerOpenstack Controller role that does not contain the database,
messaging, and networking components. Use in
combination with the Database, Messaging, and
Networker roles.

ControllerOpenstack
.yaml

ControllerStorageNf
s

Controller role with all core services loaded and uses
Ceph NFS. This roles handles database, messaging,
and network functions.

ControllerStorageNf
s.yaml

Controller Controller role with all core services loaded. This roles
handles database, messaging, and network functions.

Controller.yaml

ControllerSriov
(ML2/OVN)

Same as the normal Controller role but with the OVN
Metadata agent deployed.

ControllerSriov.yaml

Database Standalone database role. Database managed as a
Galera cluster using Pacemaker.

Database.yaml

HciCephAll Compute node with hyper-converged infrastructure
and all Ceph Storage services. Includes OSD, MON,
Object Gateway (RGW), Object Operations (MDS),
Manager (MGR), and RBD Mirroring.

HciCephAll.yaml

HciCephFile Compute node with hyper-converged infrastructure
and Ceph Storage file services. Includes OSD and
Object Operations (MDS).

HciCephFile.yaml

HciCephMon Compute node with hyper-converged infrastructure
and Ceph Storage block services. Includes OSD,
MON, and Manager.

HciCephMon.yaml

HciCephObject Compute node with hyper-converged infrastructure
and Ceph Storage object services. Includes OSD and
Object Gateway (RGW).

HciCephObject.yaml

IronicConductor Ironic Conductor node role. IronicConductor.ya
ml

Messaging Standalone messaging role. RabbitMQ managed with
Pacemaker.

Messaging.yaml

Networker Standalone networking role. Runs OpenStack
networking (neutron) agents on their own. If your
deployment uses the ML2/OVN mechanism driver,
see additional steps in Deploying a Custom Role with
ML2/OVN.

Networker.yaml

Role Description File

CHAPTER 9. COMPOSABLE SERVICES AND CUSTOM ROLES

101

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.0/html-single/networking_guide/index#create-custom-network-role-ovn

NetworkerSriov Same as the normal Networker role but with the OVN
Metadata agent deployed. See additional steps in
Deploying a Custom Role with ML2/OVN.

NetworkerSriov.yaml

Novacontrol Standalone nova-control role to run OpenStack
Compute (nova) control agents on their own.

Novacontrol.yaml

ObjectStorage Swift Object Storage node role. ObjectStorage.yaml

Telemetry Telemetry role with all the metrics and alarming
services.

Telemetry.yaml

Role Description File

9.5. EXAMINING ROLE PARAMETERS

Each role contains the following parameters:

name

(Mandatory) The name of the role, which is a plain text name with no spaces or special characters.
Check that the chosen name does not cause conflicts with other resources. For example, use
Networker as a name instead of Network.

description

(Optional) A plain text description for the role.

tags

(Optional) A YAML list of tags that define role properties. Use this parameter to define the primary
role with both the controller and primary tags together:

- name: Controller
 ...
 tags:
 - primary
 - controller
 ...

IMPORTANT

If you do not tag the primary role, the first role that you define becomes the primary role.
Ensure that this role is the Controller role.

networks

A YAML list or dictionary of networks that you want to configure on the role. If you use a YAML list,
list each composable network:

 networks:
 - External
 - InternalApi

Red Hat OpenStack Platform 17.0 Director Installation and Usage

102

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.0/html-single/networking_guide/index#create-custom-network-role-ovn

 - Storage
 - StorageMgmt
 - Tenant

If you use a dictionary, map each network to a specific subnet in your composable networks.

 networks:
 External:
 subnet: external_subnet
 InternalApi:
 subnet: internal_api_subnet
 Storage:
 subnet: storage_subnet
 StorageMgmt:
 subnet: storage_mgmt_subnet
 Tenant:
 subnet: tenant_subnet

Default networks include External, InternalApi, Storage, StorageMgmt, Tenant, and Management.

CountDefault

(Optional) Defines the default number of nodes that you want to deploy for this role.

HostnameFormatDefault

(Optional) Defines the default hostname format for the role. The default naming convention uses
the following format:

[STACK NAME]-[ROLE NAME]-[NODE ID]

For example, the default Controller nodes are named:

overcloud-controller-0
overcloud-controller-1
overcloud-controller-2
...

disable_constraints

(Optional) Defines whether to disable OpenStack Compute (nova) and OpenStack Image Storage
(glance) constraints when deploying with director. Use this parameter when you deploy an overcloud
with pre-provisioned nodes. For more information, see Configuring a basic overcloud with pre-
provisioned nodes in the Director installation and usage guide.

update_serial

(Optional) Defines how many nodes to update simultaneously during the OpenStack update
options. In the default roles_data.yaml file:

The default is 1 for Controller, Object Storage, and Ceph Storage nodes.

The default is 25 for Compute and Block Storage nodes.

If you omit this parameter from a custom role, the default is 1.

ServicesDefault

(Optional) Defines the default list of services to include on the node. For more information, see

CHAPTER 9. COMPOSABLE SERVICES AND CUSTOM ROLES

103

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.0/html-single/director_installation_and_usage/index#assembly_configuring-a-basic-overcloud-with-pre-provisioned-nodes

(Optional) Defines the default list of services to include on the node. For more information, see
Section 9.8, “Examining composable service architecture” .

You can use these parameters to create new roles and also define which services to include in your roles.

The openstack overcloud deploy command integrates the parameters from the roles_data file into
some of the Jinja2-based templates. For example, at certain points, the overcloud.j2.yaml heat
template iterates over the list of roles from roles_data.yaml and creates parameters and resources
specific to each respective role.

For example, the following snippet contains the resource definition for each role in the
overcloud.j2.yaml heat template:

 {{role.name}}:
 type: OS::Heat::ResourceGroup
 depends_on: Networks
 properties:
 count: {get_param: {{role.name}}Count}
 removal_policies: {get_param: {{role.name}}RemovalPolicies}
 resource_def:
 type: OS::TripleO::{{role.name}}
 properties:
 CloudDomain: {get_param: CloudDomain}
 ServiceNetMap: {get_attr: [ServiceNetMap, service_net_map]}
 EndpointMap: {get_attr: [EndpointMap, endpoint_map]}
...

This snippet shows how the Jinja2-based template incorporates the {{role.name}} variable to define
the name of each role as an OS::Heat::ResourceGroup resource. This in turn uses each name
parameter from the roles_data file to name each respective OS::Heat::ResourceGroup resource.

9.6. CREATING A NEW ROLE

You can use the composable service architecture to assign roles to bare-metal nodes according to the
requirements of your deployment. For example, you might want to create a new Horizon role to host
only the OpenStack Dashboard (horizon).

Procedure

1. Log in to the undercloud as the stack user.

2. Source the stackrc file:

[stack@director ~]$ source ~/stackrc

3. Copy the roles directory from the core heat template collection to the home directory of the
stack user:

$ cp -r /usr/share/openstack-tripleo-heat-templates/roles/. /home/stack/templates/roles/

4. Create a new file named Horizon.yaml in home/stack/templates/roles.

5. Add the following configuration to Horizon.yaml to create a new Horizon role that contains the
base and core OpenStack Dashboard services:

Red Hat OpenStack Platform 17.0 Director Installation and Usage

104

1

2

- name: Horizon 1
 CountDefault: 1 2
 HostnameFormatDefault: '%stackname%-horizon-%index%'
 ServicesDefault:
 - OS::TripleO::Services::CACerts
 - OS::TripleO::Services::Kernel
 - OS::TripleO::Services::Ntp
 - OS::TripleO::Services::Snmp
 - OS::TripleO::Services::Sshd
 - OS::TripleO::Services::Timezone
 - OS::TripleO::Services::TripleoPackages
 - OS::TripleO::Services::TripleoFirewall
 - OS::TripleO::Services::SensuClient
 - OS::TripleO::Services::FluentdClient
 - OS::TripleO::Services::AuditD
 - OS::TripleO::Services::Collectd
 - OS::TripleO::Services::MySQLClient
 - OS::TripleO::Services::Apache
 - OS::TripleO::Services::Horizon

Set the name parameter to the name of the custom role. Custom role names have a
maximum length of 47 characters.

Set the CountDefault parameter to 1 so that a default overcloud always includes the
Horizon node.

6. Optional: If you want to scale the services in an existing overcloud, retain the existing services on
the Controller role. If you want to create a new overcloud and you want the OpenStack
Dashboard to remain on the standalone role, remove the OpenStack Dashboard components
from the Controller role definition:

- name: Controller
 CountDefault: 1
 ServicesDefault:
 ...
 - OS::TripleO::Services::GnocchiMetricd
 - OS::TripleO::Services::GnocchiStatsd
 - OS::TripleO::Services::HAproxy
 - OS::TripleO::Services::HeatApi
 - OS::TripleO::Services::HeatApiCfn
 - OS::TripleO::Services::HeatApiCloudwatch
 - OS::TripleO::Services::HeatEngine
 # - OS::TripleO::Services::Horizon # Remove this service
 - OS::TripleO::Services::IronicApi
 - OS::TripleO::Services::IronicConductor
 - OS::TripleO::Services::Iscsid
 - OS::TripleO::Services::Keepalived
 ...

7. Generate a new roles data file named roles_data_horizon.yaml that includes the Controller,
Compute, and Horizon roles:

(undercloud)$ openstack overcloud roles \
 generate -o /home/stack/templates/roles_data_horizon.yaml \

CHAPTER 9. COMPOSABLE SERVICES AND CUSTOM ROLES

105

 --roles-path /home/stack/templates/roles \
 Controller Compute Horizon

8. Optional: Edit the overcloud-baremetal-deploy.yaml node definition file to configure the
placement of the Horizon node:

- name: Controller
 count: 3
 instances:
 - hostname: overcloud-controller-0
 name: node00
 ...
- name: Compute
 count: 3
 instances:
 - hostname: overcloud-novacompute-0
 name: node04
 ...
- name: Horizon
 count: 1
 instances:
 - hostname: overcloud-horizon-0
 name: node07

9.7. GUIDELINES AND LIMITATIONS

Note the following guidelines and limitations for the composable role architecture.

For services not managed by Pacemaker:

You can assign services to standalone custom roles.

You can create additional custom roles after the initial deployment and deploy them to scale
existing services.

For services managed by Pacemaker:

You can assign Pacemaker-managed services to standalone custom roles.

Pacemaker has a 16 node limit. If you assign the Pacemaker service
(OS::TripleO::Services::Pacemaker) to 16 nodes, subsequent nodes must use the Pacemaker
Remote service (OS::TripleO::Services::PacemakerRemote) instead. You cannot have the
Pacemaker service and Pacemaker Remote service on the same role.

Do not include the Pacemaker service (OS::TripleO::Services::Pacemaker) on roles that do
not contain Pacemaker-managed services.

You cannot scale up or scale down a custom role that contains
OS::TripleO::Services::Pacemaker or OS::TripleO::Services::PacemakerRemote services.

General limitations:

You cannot change custom roles and composable services during a major version upgrade.

You cannot modify the list of services for any role after deploying an overcloud. Modifying the

Red Hat OpenStack Platform 17.0 Director Installation and Usage

106

You cannot modify the list of services for any role after deploying an overcloud. Modifying the
service lists after Overcloud deployment can cause deployment errors and leave orphaned
services on nodes.

9.8. EXAMINING COMPOSABLE SERVICE ARCHITECTURE

The core heat template collection contains two sets of composable service templates:

deployment contains the templates for key OpenStack services.

puppet/services contains legacy templates for configuring composable services. In some cases,
the composable services use templates from this directory for compatibility. In most cases, the
composable services use the templates in the deployment directory.

Each template contains a description that identifies its purpose. For example, the deployment/time/ntp-
baremetal-puppet.yaml service template contains the following description:

description: >
 NTP service deployment using puppet, this YAML file
 creates the interface between the HOT template
 and the puppet manifest that actually installs
 and configure NTP.

These service templates are registered as resources specific to a Red Hat OpenStack Platform
deployment. This means that you can call each resource using a unique heat resource namespace
defined in the overcloud-resource-registry-puppet.j2.yaml file. All services use the
OS::TripleO::Services namespace for their resource type.

Some resources use the base composable service templates directly:

resource_registry:
 ...
 OS::TripleO::Services::Ntp: deployment/time/ntp-baremetal-puppet.yaml
 ...

However, core services require containers and use the containerized service templates. For example, the
keystone containerized service uses the following resource:

resource_registry:
 ...
 OS::TripleO::Services::Keystone: deployment/keystone/keystone-container-puppet.yaml
 ...

These containerized templates usually reference other templates to include dependencies. For
example, the deployment/keystone/keystone-container-puppet.yaml template stores the output of
the base template in the ContainersCommon resource:

resources:
 ContainersCommon:
 type: ../containers-common.yaml

The containerized template can then incorporate functions and data from the containers-
common.yaml template.

The overcloud.j2.yaml heat template includes a section of Jinja2-based code to define a service list for

CHAPTER 9. COMPOSABLE SERVICES AND CUSTOM ROLES

107

The overcloud.j2.yaml heat template includes a section of Jinja2-based code to define a service list for
each custom role in the roles_data.yaml file:

{{role.name}}Services:
 description: A list of service resources (configured in the heat
 resource_registry) which represent nested stacks
 for each service that should get installed on the {{role.name}} role.
 type: comma_delimited_list
 default: {{role.ServicesDefault|default([])}}

For the default roles, this creates the following service list parameters: ControllerServices,
ComputeServices, BlockStorageServices, ObjectStorageServices, and CephStorageServices.

You define the default services for each custom role in the roles_data.yaml file. For example, the
default Controller role contains the following content:

- name: Controller
 CountDefault: 1
 ServicesDefault:
 - OS::TripleO::Services::CACerts
 - OS::TripleO::Services::CephMon
 - OS::TripleO::Services::CephExternal
 - OS::TripleO::Services::CephRgw
 - OS::TripleO::Services::CinderApi
 - OS::TripleO::Services::CinderBackup
 - OS::TripleO::Services::CinderScheduler
 - OS::TripleO::Services::CinderVolume
 - OS::TripleO::Services::Core
 - OS::TripleO::Services::Kernel
 - OS::TripleO::Services::Keystone
 - OS::TripleO::Services::GlanceApi
 - OS::TripleO::Services::GlanceRegistry
...

These services are then defined as the default list for the ControllerServices parameter.

NOTE

You can also use an environment file to override the default list for the service
parameters. For example, you can define ControllerServices as a parameter_default in
an environment file to override the services list from the roles_data.yaml file.

9.9. ADDING AND REMOVING SERVICES FROM ROLES

The basic method of adding or removing services involves creating a copy of the default service list for a
node role and then adding or removing services. For example, you might want to remove OpenStack
Orchestration (heat) from the Controller nodes.

Procedure

1. Create a custom copy of the default roles directory:

$ cp -r /usr/share/openstack-tripleo-heat-templates/roles ~/.

Red Hat OpenStack Platform 17.0 Director Installation and Usage

108

2. Edit the ~/roles/Controller.yaml file and modify the service list for the ServicesDefault
parameter. Scroll to the OpenStack Orchestration services and remove them:

 - OS::TripleO::Services::GlanceApi
 - OS::TripleO::Services::GlanceRegistry
 - OS::TripleO::Services::HeatApi # Remove this service
 - OS::TripleO::Services::HeatApiCfn # Remove this service
 - OS::TripleO::Services::HeatApiCloudwatch # Remove this service
 - OS::TripleO::Services::HeatEngine # Remove this service
 - OS::TripleO::Services::MySQL
 - OS::TripleO::Services::NeutronDhcpAgent

3. Generate the new roles_data file:

$ openstack overcloud roles generate -o roles_data-no_heat.yaml \
 --roles-path ~/roles \
 Controller Compute Networker

4. Include this new roles_data file when you run the openstack overcloud deploy command:

$ openstack overcloud deploy --templates -r ~/templates/roles_data-no_heat.yaml

This command deploys an overcloud without OpenStack Orchestration services installed on the
Controller nodes.

NOTE

You can also disable services in the roles_data file using a custom environment file.
Redirect the services to disable to the OS::Heat::None resource. For example:

resource_registry:
 OS::TripleO::Services::HeatApi: OS::Heat::None
 OS::TripleO::Services::HeatApiCfn: OS::Heat::None
 OS::TripleO::Services::HeatApiCloudwatch: OS::Heat::None
 OS::TripleO::Services::HeatEngine: OS::Heat::None

9.10. ENABLING DISABLED SERVICES

Some services are disabled by default. These services are registered as null operations
(OS::Heat::None) in the overcloud-resource-registry-puppet.j2.yaml file. For example, the Block
Storage backup service (cinder-backup) is disabled:

 OS::TripleO::Services::CinderBackup: OS::Heat::None

To enable this service, include an environment file that links the resource to its respective heat
templates in the puppet/services directory. Some services have predefined environment files in the
environments directory. For example, the Block Storage backup service uses the
environments/cinder-backup.yaml file, which contains the following entry:

Procedure

1. Add an entry in an environment file that links the CinderBackup service to the heat template
that contains the cinder-backup configuration:

CHAPTER 9. COMPOSABLE SERVICES AND CUSTOM ROLES

109

resource_registry:
 OS::TripleO::Services::CinderBackup: ../podman/services/pacemaker/cinder-backup.yaml
...

This entry overrides the default null operation resource and enables the service.

2. Include this environment file when you run the openstack overcloud deploy command:

$ openstack overcloud deploy --templates -e /usr/share/openstack-tripleo-heat-
templates/environments/cinder-backup.yaml

9.11. CREATING A GENERIC NODE WITH NO SERVICES

You can create generic Red Hat Enterprise Linux 9.0 nodes without any OpenStack services configured.
This is useful when you need to host software outside of the core Red Hat OpenStack Platform
(RHOSP) environment. For example, RHOSP provides integration with monitoring tools such as Kibana
and Sensu. For more information, see the Monitoring Tools Configuration Guide . While Red Hat does not
provide support for the monitoring tools themselves, director can create a generic Red Hat Enterprise
Linux 9.0 node to host these tools.

NOTE

The generic node still uses the base overcloud-hardened-uefi-full.qcow2 image rather
than a base Red Hat Enterprise Linux 9 image. This means the node has some Red Hat
OpenStack Platform software installed but not enabled or configured.

Procedure

1. Create a generic role in your custom roles_data.yaml file that does not contain a
ServicesDefault list:

- name: Generic
- name: Controller
 CountDefault: 1
 ServicesDefault:
 - OS::TripleO::Services::AuditD
 - OS::TripleO::Services::CACerts
 - OS::TripleO::Services::CephClient
 ...
- name: Compute
 CountDefault: 1
 ServicesDefault:
 - OS::TripleO::Services::AuditD
 - OS::TripleO::Services::CACerts
 - OS::TripleO::Services::CephClient
 ...

Ensure that you retain the existing Controller and Compute roles.

2. Create an environment file generic-node-params.yaml to specify how many generic Red Hat
Enterprise Linux 9 nodes you require and the flavor when selecting nodes to provision:

Red Hat OpenStack Platform 17.0 Director Installation and Usage

110

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.0/html/monitoring_tools_configuration_guide

parameter_defaults:
 OvercloudGenericFlavor: baremetal
 GenericCount: 1

3. Include both the roles file and the environment file when you run the openstack overcloud
deploy command:

$ openstack overcloud deploy --templates \
-r ~/templates/roles_data_with_generic.yaml \
-e ~/templates/generic-node-params.yaml

This configuration deploys a three-node environment with one Controller node, one Compute
node, and one generic Red Hat Enterprise Linux 9 node.

CHAPTER 9. COMPOSABLE SERVICES AND CUSTOM ROLES

111

CHAPTER 10. CONFIGURING OVERCLOUD NETWORKING
To configure the physical network for your overcloud, create the following configuration files:

The network configuration file, network_data.yaml, that follows the structure defined in the
network data schema.

The network interface controllers (NICs) configuration files, by using the NIC template file in
Jinja2 ansible format, j2.

10.1. EXAMPLE NETWORK CONFIGURATION FILES

The following are examples of the network data schema for IPv4 and IPv6.

10.1.1. Example network data schema for IPv4

- name: Storage
 name_lower: storage #optional, default: name.lower
 admin_state_up: false #optional, default: false
 dns_domain: storage.localdomain. #optional, default: undef
 mtu: 1442 #optional, default: 1500
 shared: false #optional, default: false
 service_net_map_replace: storage #optional, default: undef
 ipv6: false #optional, default: false
 vip: true #optional, default: false
 subnets:
 subnet01:
 ip_subnet: 172.18.1.0/24
 gateway_ip: 172.18.1.254 #optional, default: undef
 allocation_pools: #optional, default: []
 - start: 172.18.1.10
 end: 172.18.1.250
 enable_dhcp: false #optional, default: false
 routes: #optional, default: []
 - destination: 172.18.0.0/24
 nexthop: 172.18.1.254
 vlan: 21 #optional, default: undef
 physical_network: storage_subnet01 #optional, default: {{name.lower}}_{{subnet name}}
 network_type: flat #optional, default: flat
 segmentation_id: 21 #optional, default: undef
 subnet02:
 ip_subnet: 172.18.0.0/24
 gateway_ip: 172.18.0.254 #optional, default: undef
 allocation_pools: #optional, default: []
 - start: 172.18.0.10
 end: 172.18.0.250
 enable_dhcp: false #optional, default: false
 routes: #optional, default: []
 - destination: 172.18.1.0/24
 nexthop: 172.18.0.254
 vlan: 20 #optional, default: undef
 physical_network: storage_subnet02 #optional, default: {{name.lower}}_{{subnet name}}
 network_type: flat #optional, default: flat
 segmentation_id: 20 #optional, default: undef

Red Hat OpenStack Platform 17.0 Director Installation and Usage

112

10.1.2. Example network data schema for IPv6

10.2. NETWORK ISOLATION

Red Hat OpenStack Platform (RHOSP) provides isolated overcloud networks so that you can host
specific types of network traffic in isolation. Traffic is assigned to specific network interfaces or bonds.
Using bonds provides fault tolerance and, if the correct bonding protocols are used, can also provide
load sharing. If no isolated networks are configured, RHOSP uses the provisioning network for all
services.

Network configuration consists of two parts: the parameters applied to the network as a whole, and the
templates used to configure the network interfaces on the deployed nodes.

- name: Storage
 name_lower: storage
 admin_state_up: false
 dns_domain: storage.localdomain.
 mtu: 1442
 shared: false
 ipv6: true
 vip: true
 subnets:
 subnet01:
 ipv6_subnet: 2001:db8:a::/64
 gateway_ipv6: 2001:db8:a::1
 ipv6_allocation_pools:
 - start: 2001:db8:a::0010
 end: 2001:db8:a::fff9
 enable_dhcp: false
 routes_ipv6:
 - destination: 2001:db8:b::/64
 nexthop: 2001:db8:a::1
 ipv6_address_mode: null
 ipv6_ra_mode: null
 vlan: 21
 physical_network: storage_subnet01 #optional, default: {{name.lower}}_{{subnet name}}
 network_type: flat #optional, default: flat
 segmentation_id: 21 #optional, default: undef
 subnet02:
 ipv6_subnet: 2001:db8:b::/64
 gateway_ipv6: 2001:db8:b::1
 ipv6_allocation_pools:
 - start: 2001:db8:b::0010
 end: 2001:db8:b::fff9
 enable_dhcp: false
 routes_ipv6:
 - destination: 2001:db8:a::/64
 nexthop: 2001:db8:b::1
 ipv6_address_mode: null
 ipv6_ra_mode: null
 vlan: 20
 physical_network: storage_subnet02 #optional, default: {{name.lower}}_{{subnet name}}
 network_type: flat #optional, default: flat
 segmentation_id: 20 #optional, default: undef

CHAPTER 10. CONFIGURING OVERCLOUD NETWORKING

113

You can create the following isolated networks for your RHOSP deployment:

IPMI

Network used for power management of nodes. This network is predefined before the installation of
the undercloud.

Provisioning

Director uses this network for deployment and management. The provisioning network is normally
configured on a dedicated interface. The initial deployment uses DHCP with PXE, then the network is
converted to static IP. By default, PXE boot must occur on the native VLAN, although some system
controllers allow booting from a VLAN. By default, the compute and storage nodes use the
provisioning interface as their default gateway for DNS, NTP, and system maintenance.

Internal API

The Internal API network is used for communication between the RHOSP services using API
communication, RPC messages, and database communication.

Tenant

The Networking service (neutron) provides each tenant (project) with their own networks using one
of the following methods:

VLAN segregation, where each tenant network is a network VLAN.

Tunneling (through VXLAN or GRE.

Network traffic is isolated within each tenant network. Each tenant network has an IP subnet
associated with it, and network namespaces means that multiple tenant networks can use the same
address range without causing conflicts.

Storage

Network used for block Storage, NFS, iSCSI, and others. Ideally, this would be isolated to an entirely
separate switch fabric for performance reasons.

Storage Management

OpenStack Object Storage (swift) uses this network to synchronize data objects between
participating replica nodes. The proxy service acts as the intermediary interface between user
requests and the underlying storage layer. The proxy receives incoming requests and locates the
necessary replica to retrieve the requested data. Services that use a Ceph backend connect over the
Storage Management network, since they do not interact with Ceph directly but rather use the
frontend service. Note that the RBD driver is an exception, as this traffic connects directly to Ceph.

External

Hosts the OpenStack Dashboard (horizon) for graphical system management, the public APIs for
OpenStack services, and performs SNAT for incoming traffic destined for instances.

Floating IP

Allows incoming traffic to reach instances using 1-to-1 IP address mapping between the floating IP
address, and the IP address actually assigned to the instance in the tenant network. If hosting the
Floating IPs on a VLAN separate from external, you can trunk the Floating IP VLAN to the Controller
nodes and add the VLAN through the Networking Service (neutron) after overcloud creation. This
provides a means to create multiple Floating IP networks attached to multiple bridges. The VLANs
are trunked but are not configured as interfaces. Instead, the Networking Service (neutron) creates
an OVS port with the VLAN segmentation ID on the chosen bridge for each Floating IP network.

NOTE

The provisioning network must be a native VLAN, the other networks can be trunked.

Red Hat OpenStack Platform 17.0 Director Installation and Usage

114

The undercloud can be used as a default gateway. However, all traffic is behind an IP masquerade NAT
(Network Address Translation), and is not reachable from the rest of the RHOSP network. The
undercloud is also a single point of failure for the overcloud default route. If there is an external gateway
configured on a router device on the provisioning network, the undercloud neutron DHCP server can
offer that service instead.

10.2.1. Networks required for each role

You can create tenant networks by using VLANs, but you can create VXLAN tunnels for special use
without consuming tenant VLANs. It is possible to add VXLAN capability to a deployment with a tenant
VLAN, but is it not possible to add a tenant VLAN to a deployed overcloud without serious disruption.

The following table details the isolated networks that are attached to each role:

Role Network

Controller provisioning, internal API, storage, storage management, tenant,
external

Compute provisioning, internal API, storage, tenant

Ceph Storage provisioning, internal API, storage, storage management

Cinder Storage provisioning, internal API, storage, storage management

Swift Storage provisioning, internal API, storage, storage management

10.2.2. Network definition file configuration options

Use the following tables to understand the available options for configuring your network definition file,
network_data.yaml, in YAML format:

Table 10.1. Network data YAML options

Name Option Type Default value

name Name of the network. string

name_lower Optional: Lower case
name of the network.

string name.lower()

dns_domain Optional: DNS domain
name for the network.

string

mtu Maximum Transmission
Unit (MTU).

number 1500

ipv6 Optional: Set to true if
using IPv6.

Boolean false

CHAPTER 10. CONFIGURING OVERCLOUD NETWORKING

115

vip Create a VIP on the
network.

Boolean false

subnets Contains the subnets for
the network.

dictionary

Name Option Type Default value

Table 10.2. Network data YAML option for subnet definition

Name Option Type / Element Example

ip_subnet IPv4 CIDR block
notation.

string 192.0.5.0/24

ipv6_subnet IPv6 CIDR block
notation.

string 2001:db6:fd00:1000::/6
4

gateway_ip Optional: Gateway IPv4
address.

string 192.0.5.1

allocation_pools Start and end address
for the subnet.

list / dictionary start: 192.0.5.100

end: 192.0.5.150

ipv6_allocation_pool
s

Start and end address
for the subnet.

list / dictionary start:
2001:db6:fd00:1000:100
::1

end:
2001:db6:fd00:1000:150
::1

routes List of IPv4 networks
that require routing
through the network
gateway.

list / dictionary

routes_ipv6 List of IPv6 networks
that require routing
through the network
gateway.

list / dictionary

vlan Optional: VLAN ID for
the network.

number

NOTE

Red Hat OpenStack Platform 17.0 Director Installation and Usage

116

NOTE

The routes and routes_ipv6 options contain a list of routes. Each route is a dictionary
entry with the destination and nexthop keys. Both options are of type string.

routes:
 - destination: 198.51.100.0/24
 nexthop: 192.0.5.1
 - destination: 203.0.113.0/24
 nexthost: 192.0.5.1

routes:
 - destination: 2001:db6:fd00:2000::/64
 nexthop: 2001:db6:fd00:1000:100::1
 - destination: 2001:db6:fd00:3000::/64
 nexthost: 2001:db6:fd00:1000:100::1

Table 10.3. YAML data options for network virtual IPs

Name Option Type / Element Default value

network Neutron network name. string

ip_address Optional: Pre-defined
fixed IP address.

string

subnet Neutron subnet name.
Specifies the subnet for
the virtual IP neutron
port. Required for
deployments using
routed networks.

string

dns_name Optional: FQDN (Fully
Qualified Domain
Name).

list / dictionary overcloud

name Optional: Virtual IP
name.

string $network_name_virt
ual_ip

10.2.3. Configuring network isolation

To enable and configure network isolation, you must add the required elements to the
network_data.yaml configuration file.

Procedure

1. Create your network YAML definition file:

$ cp /usr/share/openstack-tripleo-heat-templates/network-data-samples/default-network-
isolation-ipv6.yaml /home/stack/templates/network_data.yaml

CHAPTER 10. CONFIGURING OVERCLOUD NETWORKING

117

2. Update the options in your network_data.yaml file to match the requirements for your
overcloud networking environment:

- name: Storage
 name_lower: storage
 vip: true
 ipv6: true
 mtu: 1500
 subnets:
 storage_subnet:
 ipv6_subnet: fd00:fd00:fd00:3000::/64
 ipv6_allocation_pools:
 - start: fd00:fd00:fd00:3000::10
 end: fd00:fd00:fd00:3000:ffff:ffff:ffff:fffe
 vlan: 30
- name: StorageMgmt
 name_lower: storage_mgmt
 vip: true
 ipv6: true
 mtu: 1500
 subnets:
 storage_mgmt_subnet:
 ipv6_subnet: fd00:fd00:fd00:4000::/64
 ipv6_allocation_pools:
 - start: fd00:fd00:fd00:4000::10
 end: fd00:fd00:fd00:4000:ffff:ffff:ffff:fffe
 vlan: 40
- name: InternalApi
 name_lower: internal_api
 vip: true
 ipv6: true
 mtu: 1500
 subnets:
 internal_api_subnet:
 ipv6_subnet: fd00:fd00:fd00:2000::/64
 ipv6_allocation_pools:
 - start: fd00:fd00:fd00:2000::10
 end: fd00:fd00:fd00:2000:ffff:ffff:ffff:fffe
 vlan: 20
- name: Tenant
 name_lower: tenant
 vip: false # Tenant networks do not use VIPs
 ipv6: true
 mtu: 1500
 subnets:
 tenant_subnet:
 ipv6_subnet: fd00:fd00:fd00:5000::/64
 ipv6_allocation_pools:
 - start: fd00:fd00:fd00:5000::10
 end: fd00:fd00:fd00:5000:ffff:ffff:ffff:fffe
 vlan: 50
- name: External
 name_lower: external
 vip: true
 ipv6: true
 mtu: 1500

Red Hat OpenStack Platform 17.0 Director Installation and Usage

118

 subnets:
 external_subnet:
 ipv6_subnet: 2001:db8:fd00:1000::/64
 ipv6_allocation_pools:
 - start: 2001:db8:fd00:1000::10
 end: 2001:db8:fd00:1000:ffff:ffff:ffff:fffe
 gateway_ipv6: 2001:db8:fd00:1000::1
 vlan: 10

10.3. COMPOSABLE NETWORKS

You can create custom composable networks if you want to host specific network traffic on different
networks. Director provides a default network topology with network isolation enabled. You can find this
configuration in the /usr/share/openstack-tripleo-heat-templates/network-data-samples/default-
network-isolation.yaml.

The overcloud uses the following pre-defined set of network segments by default:

Internal API

Storage

Storage management

Tenant

External

You can use composable networks to add networks for various services. For example, if you have a
network that is dedicated to NFS traffic, you can present it to multiple roles.

Director supports the creation of custom networks during the deployment and update phases. You can
use these additional networks for bare metal nodes, system management, or to create separate
networks for different roles. You can also use them to create multiple sets of networks for split
deployments where traffic is routed between networks.

10.3.1. Adding a composable network

Use composable networks to add networks for various services. For example, if you have a network that
is dedicated to storage backup traffic, you can present the network to multiple roles.

You can find a sample file in the /usr/share/openstack-tripleo-heat-templates/network-data-samples
directory.

Procedure

1. List the available sample configuration files:

$ ll /usr/share/openstack-tripleo-heat-templates/network-data-samples/
-rw-r--r--. 1 root root 1554 May 11 23:04 default-network-isolation-ipv6.yaml
-rw-r--r--. 1 root root 1181 May 11 23:04 default-network-isolation.yaml
-rw-r--r--. 1 root root 1126 May 11 23:04 ganesha-ipv6.yaml
-rw-r--r--. 1 root root 1100 May 11 23:04 ganesha.yaml
-rw-r--r--. 1 root root 3556 May 11 23:04 legacy-routed-networks-ipv6.yaml
-rw-r--r--. 1 root root 2929 May 11 23:04 legacy-routed-networks.yaml

CHAPTER 10. CONFIGURING OVERCLOUD NETWORKING

119

-rw-r--r--. 1 root root 383 May 11 23:04 management-ipv6.yaml
-rw-r--r--. 1 root root 290 May 11 23:04 management.yaml
-rw-r--r--. 1 root root 136 May 11 23:04 no-networks.yaml
-rw-r--r--. 1 root root 2725 May 11 23:04 routed-networks-ipv6.yaml
-rw-r--r--. 1 root root 2033 May 11 23:04 routed-networks.yaml
-rw-r--r--. 1 root root 943 May 11 23:04 vip-data-default-network-isolation.yaml
-rw-r--r--. 1 root root 848 May 11 23:04 vip-data-fixed-ip.yaml
-rw-r--r--. 1 root root 1050 May 11 23:04 vip-data-routed-networks.yaml

2. Copy an example of a network configuration file which best suits your needs:

$ cp /usr/share/openstack-tripleo-heat-templates/network-data-samples/default-network-
isolation.yaml /home/stack/templates/network_data.yaml

3. Edit your network_data.yaml configuration file and add a section for your new network:

- name: StorageBackup
 vip: false
 name_lower: storage_backup
 subnets:
 storage_backup_subnet:
 ip_subnet: 172.16.6.0/24
 allocation_pools:
 - start: 172.16.6.4
 - end: 172.16.6.250
 gateway_ip: 172.16.6.1

You can use the following parameters in your network_data.yaml file:

name

Sets the name of the network.

vip

Enables the creation of a virtual IP address on the network.

name_lower

Sets the lowercase version of the name, which director maps to respective networks
assigned to roles in the roles_data.yaml file.

subnets

One or more subnet defintions.

subnet_name

Sets the name of the subnet.

ip_subnet

Sets the IPv4 subnet in CIDR format.

allocation_pools

Sets the IP range for the IPv4 subnet.

gateway_ip

Sets the gateway for the network.

vlan

Sets the VLAN ID for the network.

ipv6

Red Hat OpenStack Platform 17.0 Director Installation and Usage

120

Set the value to true or false.

ipv6_subnet

Sets the IPv6 subnet.

gateway_ipv6

Sets the gateway for the IPv6 network.

ipv6_allocation_pools

Sets the IP range for the IPv6 subnet.

routes_ipv6

Sets the routes for the IPv6 network.

4. Copy the sample network VIP definition template you require from /usr/share/openstack-
tripleo-heat-templates/network-data-samples to your environment file directory. The
following example copies the vip-data-default-network-isolation.yaml to a local environment
file named vip_data.yaml:

$ cp /usr/share/openstack-tripleo-heat-templates/network-data-samples/vip-data-default-
network-isolation.yaml /home/stack/templates/vip_data.yaml

5. Edit your vip_data.yaml configuration file. The virtual IP data is a list of virtual IP address
definitions, each containing the name of the network where the IP address is allocated.

- network: storage_mgmt
 dns_name: overcloud
- network: internal_api
 dns_name: overcloud
- network: storage
 dns_name: overcloud
- network: external
 dns_name: overcloud
 ip_address: <vip_address>
- network: ctlplane
 dns_name: overcloud

Replace <vip_address> with the required virtual IP address.

You can use the following parameters in your vip_data.yaml file:

network

Sets the neutron network name. This is the only required parameter.

ip_address

Sets the IP address of the VIP.

subnet

Sets the neutron subnet name. Use to specify the subnet when creating the virtual IP
neutron port. This parameter is required when your deployment uses routed networks.

dns_name

Sets the FQDN (Fully Qualified Domain Name).

name

Sets the virtual IP name.

6. Copy a sample network configuration template. Jinja2 templates are used to define NIC

CHAPTER 10. CONFIGURING OVERCLOUD NETWORKING

121

configuration templates. Browse the examples provided in the
/usr/share/ansible/roles/tripleo_network_config/templates/ directory, if one of the examples
matches your requirements, use it. If the examples do not match your requirements, copy a
sample configuration file, and modify it for your needs:

$ cp
/usr/share/ansible/roles/tripleo_network_config/templates/single_nic_vlans/single_nic_vlans.j2
/home/stack/templates/

7. Edit your single_nic_vlans.j2 configuration file:

{% set mtu_list = [ctlplane_mtu] %}
{% for network in role_networks %}
{{ mtu_list.append(lookup('vars', networks_lower[network] ~ '_mtu')) }}
{%- endfor %}
{% set min_viable_mtu = mtu_list | max %}
network_config:
- type: ovs_bridge
 name: {{ neutron_physical_bridge_name }}
 mtu: {{ min_viable_mtu }}
 use_dhcp: false
 dns_servers: {{ ctlplane_dns_nameservers }}
 domain: {{ dns_search_domains }}
 addresses:
 - ip_netmask: {{ ctlplane_ip }}/{{ ctlplane_subnet_cidr }}
 routes: {{ ctlplane_host_routes }}
 members:
 - type: interface
 name: nic1
 mtu: {{ min_viable_mtu }}
 # force the MAC address of the bridge to this interface
 primary: true
{% for network in role_networks %}
 - type: vlan
 mtu: {{ lookup('vars', networks_lower[network] ~ '_mtu') }}
 vlan_id: {{ lookup('vars', networks_lower[network] ~ '_vlan_id') }}
 addresses:
 - ip_netmask:
 {{ lookup('vars', networks_lower[network] ~ '_ip') }}/{{ lookup('vars',
networks_lower[network] ~ '_cidr') }}
 routes: {{ lookup('vars', networks_lower[network] ~ '_host_routes') }}
{% endfor %}

8. Set the network_config template in overcloud-baremetal-deploy.yaml configuration file:

- name: CephStorage
 count: 3
 defaults:
 networks:
 - network: storage
 - network: storage_mgmt
 - network: storage_backup
 network_config:
 template: /home/stack/templates/single_nic_vlans.j2

Red Hat OpenStack Platform 17.0 Director Installation and Usage

122

9. Provision the overcloud networks. This action generates an output file which will be used an an
environment file when deploying the overcloud:

(undercloud)$ openstack overcloud network provision --output <deployment_file>
/home/stack/templates/<networks_definition_file>.yaml

Replace <networks_definition_file> with the name of your networks definition file, for
example, network_data.yaml.

Replace <deployment_file> with the name of the heat environment file to generate for
inclusion in the deployment command, for example /home/stack/templates/overcloud-
networks-deployed.yaml.

10. Provision the network VIPs and generate the vip-deployed-environment.yaml file. You use this
file when you deploy the overcloud:

(overcloud)$ openstack overcloud network vip provision --stack <stack> --output
<deployment_file> /home/stack/templates/vip_data.yaml

Replace <stack> with the name of the stack for which the network VIPs are provisioned. If
not specified, the default is overcloud.

Replace <deployment_file> with the name of the heat environment file to generate for
inclusion in the deployment command, for example /home/stack/templates/overcloud-vip-
deployed.yaml.

10.3.2. Including a composable network in a role

You can assign composable networks to the overcloud roles defined in your environment. For example,
you might include a custom StorageBackup network with your Ceph Storage nodes.

Procedure

1. If you do not already have a custom roles_data.yaml file, copy the default to your home
directory:

$ cp /usr/share/openstack-tripleo-heat-templates/roles_data.yaml
/home/stack/templates/roles_data.yaml

2. Edit the custom roles_data.yaml file.

3. Include the network name in the networks list for the role that you want to add the network to.
For example, to add the StorageBackup network to the Ceph Storage role, use the following
example snippet:

- name: CephStorage
 description: |
 Ceph OSD Storage node role
 networks:
 Storage
 subnet: storage_subnet
 StorageMgmt
 subnet: storage_mgmt_subnet
 StorageBackup
 subnet: storage_backup_subnet

CHAPTER 10. CONFIGURING OVERCLOUD NETWORKING

123

4. After you add custom networks to their respective roles, save the file.

When you run the openstack overcloud deploy command, include the custom roles_data.yaml file
using the -r option. Without the -r option, the deployment command uses the default set of roles with
their respective assigned networks.

10.3.3. Assigning OpenStack services to composable networks

Each OpenStack service is assigned to a default network type in the resource registry. These services
are bound to IP addresses within the network type’s assigned network. Although the OpenStack services
are divided among these networks, the number of actual physical networks can differ as defined in the
network environment file. You can reassign OpenStack services to different network types by defining a
new network map in an environment file, for example, /home/stack/templates/service-
reassignments.yaml. The ServiceNetMap parameter determines the network types that you want to
use for each service.

For example, you can reassign the Storage Management network services to the Storage Backup
Network by modifying the highlighted sections:

parameter_defaults:
 ServiceNetMap:
 SwiftStorageNetwork: storage_backup
 CephClusterNetwork: storage_backup

Changing these parameters to storage_backup places these services on the Storage Backup network
instead of the Storage Management network. This means that you must define a set of
parameter_defaults only for the Storage Backup network and not the Storage Management network.

Director merges your custom ServiceNetMap parameter definitions into a pre-defined list of defaults
that it obtains from ServiceNetMapDefaults and overrides the defaults. Director returns the full list,
including customizations, to ServiceNetMap, which is used to configure network assignments for
various services.

Service mappings apply to networks that use vip: true in the network_data.yaml file for nodes that use
Pacemaker. The overcloud load balancer redirects traffic from the VIPs to the specific service
endpoints.

NOTE

You can find a full list of default services in the ServiceNetMapDefaults parameter in the
/usr/share/openstack-tripleo-heat-templates/network/service_net_map.j2.yaml file.

10.3.4. Enabling custom composable networks

Use one of the default NIC templates to enable custom composable networks. In this example, use the
Single NIC with VLANs template, (custom_single_nic_vlans).

Procedure

1. Source the stackrc undercloud credential file:

$ source ~/stackrc

Red Hat OpenStack Platform 17.0 Director Installation and Usage

124

2. Provision the overcloud networks:

$ openstack overcloud network provision \
 --output overcloud-networks-deployed.yaml \
 custom_network_data.yaml

3. Provision the network VIPs:

$ openstack overcloud network vip provision \
 --stack overcloud \
 --output overcloud-networks-vips-deployed.yaml \
 custom_vip_data.yaml

4. Provision the overcloud nodes:

$ openstack overcloud node provision \
 --stack overcloud \
 --output overcloud-baremetal-deployed.yaml \
 overcloud-baremetal-deploy.yaml

5. Construct your openstack overcloud deploy command, specifying the configuration files and
templates in the required order, for example:

$ openstack overcloud deploy --templates \
 --networks-file network_data_v2.yaml \
 -e overcloud-networks-deployed.yaml \
 -e overcloud-networks-vips-deployed.yaml \
 -e overcloud-baremetal-deployed.yaml
 -e custom-net-single-nic-with-vlans.yaml

This example command deploys the composable networks, including your additional custom networks,
across nodes in your overcloud.

10.3.5. Renaming the default networks

You can use the network_data.yaml file to modify the user-visible names of the default networks:

InternalApi

External

Storage

StorageMgmt

Tenant

To change these names, do not modify the name field. Instead, change the name_lower field to the
new name for the network and update the ServiceNetMap with the new name.

Procedure

1. In your network_data.yaml file, enter new names in the name_lower parameter for each
network that you want to rename:

CHAPTER 10. CONFIGURING OVERCLOUD NETWORKING

125

- name: InternalApi
 name_lower: MyCustomInternalApi

2. Include the default value of the name_lower parameter in the service_net_map_replace
parameter:

- name: InternalApi
 name_lower: MyCustomInternalApi
 service_net_map_replace: internal_api

10.4. CUSTOM NETWORK INTERFACE TEMPLATES

After you configure Section 10.2, “Network isolation” , you can create a set of custom network interface
templates to suit the nodes in your environment. For example, you can include the following files:

The environment file to configure network defaults (/usr/share/openstack-tripleo-heat-
templates/environments/network/multiple-nics/network-environment.yaml).

Templates to define your NIC layout for each node. The overcloud core template collection
contains a set of defaults for different use cases. To create a custom NIC template, render a
default Jinja2 template as the basis for your custom templates.

A custom environment file to enable NICs. This example uses a custom environment file
(/home/stack/templates/custom-network-configuration.yaml) that references your custom
interface templates.

Any additional environment files to customize your networking parameters.

If you customize your networks, a custom network_data.yaml file.

If you create additional or custom composable networks, a custom network_data.yaml file and
a custom roles_data.yaml file.

NOTE

Some of the files in the previous list are Jinja2 format files and have a .j2.yaml extension.
Director renders these files to .yaml versions during deployment.

10.4.1. Custom network architecture

The example NIC templates might not suit a specific network configuration. For example, you might
want to create your own custom NIC template that suits a specific network layout. You might want to
separate the control services and data services on to separate NICs. In this situation, you can map the
service to NIC assignments in the following way:

NIC1 (Provisioning)

Provisioning / Control Plane

NIC2 (Control Group)

Internal API

Storage Management

Red Hat OpenStack Platform 17.0 Director Installation and Usage

126

External (Public API)

NIC3 (Data Group)

Tenant Network (VXLAN tunneling)

Tenant VLANs / Provider VLANs

Storage

External VLANs (Floating IP/SNAT)

NIC4 (Management)

Management

10.4.2. Network interface reference

The network interface configuration contains the following parameters:

Interface

Defines a single network interface. The configuration defines each interface using either the actual
interface name ("eth0", "eth1", "enp0s25") or a set of numbered interfaces ("nic1", "nic2", "nic3"):

 - type: interface
 name: nic2

Table 10.4. interface options

Option Default Description

name Name of the interface.

use_dhcp False Use DHCP to get an IP address.

use_dhcpv6 False Use DHCP to get a v6 IP address.

addresses A list of IP addresses assigned to
the interface.

routes A list of routes assigned to the
interface. For more information,
see routes.

mtu 1500 The maximum transmission unit
(MTU) of the connection.

primary False Defines the interface as the
primary interface.

CHAPTER 10. CONFIGURING OVERCLOUD NETWORKING

127

persist_mapping False Write the device alias
configuration instead of the
system names.

dhclient_args None Arguments that you want to pass
to the DHCP client.

dns_servers None List of DNS servers that you want
to use for the interface.

ethtool_opts Set this option to "rx-flow-hash
udp4 sdfn" to improve
throughput when you use VXLAN
on certain NICs.

Option Default Description

vlan

Defines a VLAN. Use the VLAN ID and subnet passed from the parameters section.

For example:

 - type: vlan
 device: nic{{ loop.index + 1 }}
 mtu: {{ lookup('vars', networks_lower[network] ~ '_mtu') }}
 vlan_id: {{ lookup('vars', networks_lower[network] ~ '_vlan_id') }}
 addresses:
 - ip_netmask:
 {{ lookup('vars', networks_lower[network] ~ '_ip') }}/{{ lookup('vars', networks_lower[network] ~
'_cidr') }}
 routes: {{ lookup('vars', networks_lower[network] ~ '_host_routes') }}

Table 10.5. vlan options

Option Default Description

vlan_id The VLAN ID.

device The parent device to attach the
VLAN. Use this parameter when
the VLAN is not a member of an
OVS bridge. For example, use this
parameter to attach the VLAN to
a bonded interface device.

use_dhcp False Use DHCP to get an IP address.

use_dhcpv6 False Use DHCP to get a v6 IP address.

Red Hat OpenStack Platform 17.0 Director Installation and Usage

128

addresses A list of IP addresses assigned to
the VLAN.

routes A list of routes assigned to the
VLAN. For more information, see
routes.

mtu 1500 The maximum transmission unit
(MTU) of the connection.

primary False Defines the VLAN as the primary
interface.

persist_mapping False Write the device alias
configuration instead of the
system names.

dhclient_args None Arguments that you want to pass
to the DHCP client.

dns_servers None List of DNS servers that you want
to use for the VLAN.

Option Default Description

ovs_bond

Defines a bond in Open vSwitch to join two or more interfaces together. This helps with redundancy
and increases bandwidth.

For example:

 members:
 - type: ovs_bond
 name: bond1
 mtu: {{ min_viable_mtu }}
 ovs_options: {{ bond_interface_ovs_options }}
 members:
 - type: interface
 name: nic2
 mtu: {{ min_viable_mtu }}
 primary: true
 - type: interface
 name: nic3
 mtu: {{ min_viable_mtu }}

Table 10.6. ovs_bond options

CHAPTER 10. CONFIGURING OVERCLOUD NETWORKING

129

Option Default Description

name Name of the bond.

use_dhcp False Use DHCP to get an IP address.

use_dhcpv6 False Use DHCP to get a v6 IP address.

addresses A list of IP addresses assigned to
the bond.

routes A list of routes assigned to the
bond. For more information, see
routes.

mtu 1500 The maximum transmission unit
(MTU) of the connection.

primary False Defines the interface as the
primary interface.

members A sequence of interface objects
that you want to use in the bond.

ovs_options A set of options to pass to OVS
when creating the bond.

ovs_extra A set of options to set as the
OVS_EXTRA parameter in the
network configuration file of the
bond.

defroute True Use a default route provided by
the DHCP service. Only applies
when you enable use_dhcp or
use_dhcpv6.

persist_mapping False Write the device alias
configuration instead of the
system names.

dhclient_args None Arguments that you want to pass
to the DHCP client.

dns_servers None List of DNS servers that you want
to use for the bond.

ovs_bridge

Defines a bridge in Open vSwitch, which connects multiple interface, ovs_bond, and vlan objects

Red Hat OpenStack Platform 17.0 Director Installation and Usage

130

Defines a bridge in Open vSwitch, which connects multiple interface, ovs_bond, and vlan objects
together.

The network interface type, ovs_bridge, takes a parameter name.

NOTE

If you have multiple bridges, you must use distinct bridge names other than accepting the
default name of bridge_name. If you do not use distinct names, then during the converge
phase, two network bonds are placed on the same bridge.

If you are defining an OVS bridge for the external tripleo network, then retain the values bridge_name
and interface_name as your deployment framework automatically replaces these values with an external
bridge name and an external interface name, respectively.

For example:

 - type: ovs_bridge
 name: br-bond
 dns_servers: {{ ctlplane_dns_nameservers }}
 domain: {{ dns_search_domains }}
 members:
 - type: ovs_bond
 name: bond1
 mtu: {{ min_viable_mtu }}
 ovs_options: {{ bound_interface_ovs_options }}
 members:
 - type: interface
 name: nic2
 mtu: {{ min_viable_mtu }}
 primary: true
 - type: interface
 name: nic3
 mtu: {{ min_viable_mtu }}

NOTE

The OVS bridge connects to the Networking service (neutron) server to obtain
configuration data. If the OpenStack control traffic, typically the Control Plane and
Internal API networks, is placed on an OVS bridge, then connectivity to the neutron
server is lost whenever you upgrade OVS, or the OVS bridge is restarted by the admin
user or process. This causes some downtime. If downtime is not acceptable in these
circumstances, then you must place the Control group networks on a separate interface
or bond rather than on an OVS bridge:

You can achieve a minimal setting when you put the Internal API network on a
VLAN on the provisioning interface and the OVS bridge on a second interface.

To implement bonding, you need at least two bonds (four network interfaces).
Place the control group on a Linux bond (Linux bridge). If the switch does not
support LACP fallback to a single interface for PXE boot, then this solution
requires at least five NICs.

Table 10.7. ovs_bridge options

CHAPTER 10. CONFIGURING OVERCLOUD NETWORKING

131

Option Default Description

name Name of the bridge.

use_dhcp False Use DHCP to get an IP address.

use_dhcpv6 False Use DHCP to get a v6 IP address.

addresses A list of IP addresses assigned to
the bridge.

routes A list of routes assigned to the
bridge. For more information, see
routes.

mtu 1500 The maximum transmission unit
(MTU) of the connection.

members A sequence of interface, VLAN,
and bond objects that you want
to use in the bridge.

ovs_options A set of options to pass to OVS
when creating the bridge.

ovs_extra A set of options to to set as the
OVS_EXTRA parameter in the
network configuration file of the
bridge.

defroute True Use a default route provided by
the DHCP service. Only applies
when you enable use_dhcp or
use_dhcpv6.

persist_mapping False Write the device alias
configuration instead of the
system names.

dhclient_args None Arguments that you want to pass
to the DHCP client.

dns_servers None List of DNS servers that you want
to use for the bridge.

linux_bond

Defines a Linux bond that joins two or more interfaces together. This helps with redundancy and
increases bandwidth. Ensure that you include the kernel-based bonding options in the
bonding_options parameter.

Red Hat OpenStack Platform 17.0 Director Installation and Usage

132

For example:

- type: linux_bridge
 name: {{ neutron_physical_bridge_name }}
 mtu: {{ min_viable_mtu }}
 use_dhcp: false
 dns_servers: {{ ctlplane_dns_nameservers }}
 domain: {{ dns_search_domains }}
 addresses:
 - ip_netmask: {{ ctlplane_ip }}/{{ ctlplane_subnet_cidr }}
 routes: {{ ctlplane_host_routes }}

Note that nic2 uses primary: true to ensure that the bond uses the MAC address for nic2.

Table 10.8. linux_bond options

Option Default Description

name Name of the bond.

use_dhcp False Use DHCP to get an IP address.

use_dhcpv6 False Use DHCP to get a v6 IP address.

addresses A list of IP addresses assigned to
the bond.

routes A list of routes assigned to the
bond. See routes.

mtu 1500 The maximum transmission unit
(MTU) of the connection.

primary False Defines the interface as the
primary interface.

members A sequence of interface objects
that you want to use in the bond.

bonding_options A set of options when creating
the bond.

defroute True Use a default route provided by
the DHCP service. Only applies
when you enable use_dhcp or
use_dhcpv6.

persist_mapping False Write the device alias
configuration instead of the
system names.

CHAPTER 10. CONFIGURING OVERCLOUD NETWORKING

133

dhclient_args None Arguments that you want to pass
to the DHCP client.

dns_servers None List of DNS servers that you want
to use for the bond.

Option Default Description

linux_bridge

Defines a Linux bridge, which connects multiple interface, linux_bond, and vlan objects together. The
external bridge also uses two special values for parameters:

bridge_name, which is replaced with the external bridge name.

interface_name, which is replaced with the external interface.

For example:

 - type: linux_bridge
 name: bridge_name
 mtu:
 get_attr: [MinViableMtu, value]
 use_dhcp: false
 dns_servers:
 get_param: DnsServers
 domain:
 get_param: DnsSearchDomains
 addresses:
 - ip_netmask:
 list_join:
 - /
 - - get_param: ControlPlaneIp
 - get_param: ControlPlaneSubnetCidr
 routes:
 list_concat_unique:
 - get_param: ControlPlaneStaticRoutes

Table 10.9. linux_bridge options

Option Default Description

name Name of the bridge.

use_dhcp False Use DHCP to get an IP address.

use_dhcpv6 False Use DHCP to get a v6 IP address.

addresses A list of IP addresses assigned to
the bridge.

Red Hat OpenStack Platform 17.0 Director Installation and Usage

134

routes A list of routes assigned to the
bridge. For more information, see
routes.

mtu 1500 The maximum transmission unit
(MTU) of the connection.

members A sequence of interface, VLAN,
and bond objects that you want
to use in the bridge.

defroute True Use a default route provided by
the DHCP service. Only applies
when you enable use_dhcp or
use_dhcpv6.

persist_mapping False Write the device alias
configuration instead of the
system names.

dhclient_args None Arguments that you want to pass
to the DHCP client.

dns_servers None List of DNS servers that you want
to use for the bridge.

Option Default Description

routes

Defines a list of routes to apply to a network interface, VLAN, bridge, or bond.

For example:

 - type: linux_bridge
 name: bridge_name
 ...
 routes: {{ [ctlplane_host_routes] | flatten | unique }}

Option Default Description

ip_netmask None IP and netmask of the destination
network.

default False Sets this route to a default route.
Equivalent to setting
ip_netmask: 0.0.0.0/0.

CHAPTER 10. CONFIGURING OVERCLOUD NETWORKING

135

next_hop None The IP address of the router used
to reach the destination network.

Option Default Description

10.4.3. Example network interface layout

The following snippet for an example controller node NIC template demonstrates how to configure the
custom network scenario to keep the control group separate from the OVS bridge:

network_config:
- type: interface
 name: nic1
 mtu: {{ ctlplane_mtu }}
 use_dhcp: false
 addresses:
 - ip_netmask: {{ ctlplane_ip }}/{{ ctlplane_subnet_cidr }}
 routes: {{ ctlplane_host_routes }}
- type: linux_bond
 name: bond_api
 mtu: {{ min_viable_mtu_ctlplane }}
 use_dhcp: false
 bonding_options: {{ bond_interface_ovs_options }}
 dns_servers: {{ ctlplane_dns_nameservers }}
 domain: {{ dns_search_domains }}
 members:
 - type: interface
 name: nic2
 mtu: {{ min_viable_mtu_ctlplane }}
 primary: true
 - type: interface
 name: nic3
 mtu: {{ min_viable_mtu_ctlplane }}
{% for network in role_networks if not network.startswith('Tenant') %}
- type: vlan
 device: bond_api
 mtu: {{ lookup('vars', networks_lower[network] ~ '_mtu') }}
 vlan_id: {{ lookup('vars', networks_lower[network] ~ '_vlan_id') }}
 addresses:
 - ip_netmask: {{ lookup('vars', networks_lower[network] ~ '_ip') }}/{{ lookup('vars',
networks_lower[network] ~ '_cidr') }}
 routes: {{ lookup('vars', networks_lower[network] ~ '_host_routes') }}
{% endfor %}
- type: ovs_bridge
 name: {{ neutron_physical_bridge_name }}
 dns_servers: {{ ctlplane_dns_nameservers }}
 members:
 - type: linux_bond
 name: bond-data
 mtu: {{ min_viable_mtu_dataplane }}
 bonding_options: {{ bond_interface_ovs_options }}
 members:
 - type: interface
 name: nic4

Red Hat OpenStack Platform 17.0 Director Installation and Usage

136

 mtu: {{ min_viable_mtu_dataplane }}
 primary: true
 - type: interface
 name: nic5
 mtu: {{ min_viable_mtu_dataplane }}
{% for network in role_networks if network.startswith('Tenant') %}
 - type: vlan
 device: bond-data
 mtu: {{ lookup('vars', networks_lower[network] ~ '_mtu') }}
 vlan_id: {{ lookup('vars', networks_lower[network] ~ '_vlan_id') }}
 addresses:
 - ip_netmask: {{ lookup('vars', networks_lower[network] ~ '_ip') }}/{{ lookup('vars',
networks_lower[network] ~ '_cidr') }}
 routes: {{ lookup('vars', networks_lower[network] ~ '_host_routes') }}

This template uses five network interfaces and assigns a number of tagged VLAN devices to the
numbered interfaces. On nic4 and nic5, this template creates the OVS bridges.

10.5. ADDITIONAL OVERCLOUD NETWORK CONFIGURATION

This chapter follows on from the concepts and procedures outlined in Section 10.4, “Custom network
interface templates” and provides some additional information to help configure parts of your overcloud
network.

10.5.1. Configuring custom interfaces

Individual interfaces might require modification. The following example shows the modifications that are
necessary to use a second NIC to connect to an infrastructure network with DHCP addresses, and to
use another NIC for the bond:

network_config:
 # Add a DHCP infrastructure network to nic2
 - type: interface
 name: nic2
 mtu: {{ tenant_mtu }}
 use_dhcp: true
 primary: true
 - type: vlan
 mtu: {{ tenant_mtu }}
 vlan_id: {{ tenant_vlan_id }}
 addresses:
 - ip_netmask: {{ tenant_ip }}/{{ tenant_cidr }}
 routes: {{ [tenant_host_routes] | flatten | unique }}
 - type: ovs_bridge
 name: br-bond
 mtu: {{ external_mtu }}
 dns_servers: {{ ctlplane_dns_nameservers }}
 use_dhcp: false
 members:
 - type: interface
 name: nic10
 mtu: {{ external_mtu }}
 use_dhcp: false
 primary: true
 - type: vlan

CHAPTER 10. CONFIGURING OVERCLOUD NETWORKING

137

 mtu: {{ external_mtu }}
 vlan_id: {{ external_vlan_id }}
 addresses:
 - ip_netmask: {{ external_ip }}/{{ external_cidr }}
 routes: {{ [external_host_routes, [{'default': True, 'next_hop': external_gateway_ip}]] | flatten |
unique }}

The network interface template uses either the actual interface name (eth0, eth1, enp0s25) or a set of
numbered interfaces (nic1, nic2, nic3). The network interfaces of hosts within a role do not have to be
exactly the same when you use numbered interfaces (nic1, nic2, etc.) instead of named interfaces
(eth0, eno2, etc.). For example, one host might have interfaces em1 and em2, while another has eno1
and eno2, but you can refer to the NICs of both hosts as nic1 and nic2.

The order of numbered interfaces corresponds to the order of named network interface types:

ethX interfaces, such as eth0, eth1, etc. These are usually onboard interfaces.

enoX interfaces, such as eno0, eno1, etc. These are usually onboard interfaces.

enX interfaces, sorted alpha numerically, such as enp3s0, enp3s1, ens3, etc. These are usually
add-on interfaces.

The numbered NIC scheme includes only live interfaces, for example, if the interfaces have a cable
attached to the switch. If you have some hosts with four interfaces and some with six interfaces, use
nic1 to nic4 and attach only four cables on each host.

Customizing NIC mappings for pre-provisioned nodes

If you are using pre-provisioned nodes, you can specify os-net-config mappings for specific nodes by
configuring the NetConfigDataLookup heat parameter in an environment file.

NOTE

The configuration of the NetConfigDataLookup heat parameter is equivalent to the
net_config_data_lookup property in your node definition file, overcloud-baremetal-
deploy.yaml. If you are not using pre-provisioned nodes, you must configure the NIC
mappings in your node definition file. For more information on configuring the
net_config_data_lookup property, see Bare-metal node provisioning attributes.

You can assign aliases to the physical interfaces on each node to pre-determine which physical NIC
maps to specific aliases, such as nic1 or nic2, and you can map a MAC address to a specified alias. You
can map specific nodes by using the MAC address or DMI keyword, or you can map a group of nodes by
using a DMI keyword. The following example configures three nodes and two node groups with aliases
to the physical interfaces. The resulting configuration is applied by os-net-config. On each node, you
can see the applied configuration in the interface_mapping section of the /etc/os-net-
config/mapping.yaml file.

Example os-net-config-mappings.yaml

NetConfigDataLookup:
 node1: 1
 nic1: "00:c8:7c:e6:f0:2e"
 node2:
 nic1: "00:18:7d:99:0c:b6"
 node3: 2

Red Hat OpenStack Platform 17.0 Director Installation and Usage

138

1

2

3

4

 dmiString: "system-uuid" 3
 id: 'A8C85861-1B16-4803-8689-AFC62984F8F6'
 nic1: em3
 # Dell PowerEdge
 nodegroup1: 4
 dmiString: "system-product-name"
 id: "PowerEdge R630"
 nic1: em3
 nic2: em1
 nic3: em2
 # Cisco UCS B200-M4"
 nodegroup2:
 dmiString: "system-product-name"
 id: "UCSB-B200-M4"
 nic1: enp7s0
 nic2: enp6s0

Maps node1 to the specified MAC address, and assigns nic1 as the alias for the MAC address on
this node.

Maps node3 to the node with the system UUID "A8C85861-1B16-4803-8689-AFC62984F8F6",
and assigns nic1 as the alias for em3 interface on this node.

The dmiString parameter must be set to a valid string keyword. For a list of the valid string
keywords, see the DMIDECODE(8) man page.

Maps all the nodes in nodegroup1 to nodes with the product name "PowerEdge R630", and
assigns nic1, nic2, and nic3 as the alias for the named interfaces on these nodes.

NOTE

Normally, os-net-config registers only the interfaces that are already connected in an UP
state. However, if you hardcode interfaces with a custom mapping file, the interface is
registered even if it is in a DOWN state.

10.5.2. Configuring routes and default routes

You can set the default route of a host in one of two ways. If the interface uses DHCP and the DHCP
server offers a gateway address, the system uses a default route for that gateway. Otherwise, you can
set a default route on an interface with a static IP.

Although the Linux kernel supports multiple default gateways, it uses only the gateway with the lowest
metric. If there are multiple DHCP interfaces, this can result in an unpredictable default gateway. In this
case, it is recommended to set defroute: false for interfaces other than the interface that uses the
default route.

For example, you might want a DHCP interface (nic3) to be the default route. Use the following YAML
snippet to disable the default route on another DHCP interface (nic2):

No default route on this DHCP interface
- type: interface
 name: nic2
 use_dhcp: true
 defroute: false

CHAPTER 10. CONFIGURING OVERCLOUD NETWORKING

139

Instead use this DHCP interface as the default route
- type: interface
 name: nic3
 use_dhcp: true

NOTE

The defroute parameter applies only to routes obtained through DHCP.

To set a static route on an interface with a static IP, specify a route to the subnet. For example, you can
set a route to the 10.1.2.0/24 subnet through the gateway at 172.17.0.1 on the Internal API network:

 - type: vlan
 device: bond1
 vlan_id: 9
 addresses:
 - ip_netmask: 172.17.0.100/16
 routes:
 - ip_netmask: 10.1.2.0/24
 next_hop: 172.17.0.1

10.5.3. Configuring policy-based routing

To configure unlimited access from different networks on Controller nodes, configure policy-based
routing. Policy-based routing uses route tables where, on a host with multiple interfaces, you can send
traffic through a particular interface depending on the source address. You can route packets that come
from different sources to different networks, even if the destinations are the same.

For example, you can configure a route to send traffic to the Internal API network, based on the source
address of the packet, even when the default route is for the External network. You can also define
specific route rules for each interface.

Red Hat OpenStack Platform uses the os-net-config tool to configure network properties for your
overcloud nodes. The os-net-config tool manages the following network routing on Controller nodes:

Routing tables in the /etc/iproute2/rt_tables file

IPv4 rules in the /etc/sysconfig/network-scripts/rule-{ifname} file

IPv6 rules in the /etc/sysconfig/network-scripts/rule6-{ifname} file

Routing table specific routes in the /etc/sysconfig/network-scripts/route-{ifname}

Prerequisites

You have installed the undercloud successfully. For more information, see Installing director in
the Director Installation and Usage guide.

Procedure

1. Create the interface entries in a custom NIC template from the
/home/stack/templates/custom-nics directory, define a route for the interface, and define
rules that are relevant to your deployment:

Red Hat OpenStack Platform 17.0 Director Installation and Usage

140

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.0/html-single/director_installation_and_usage/index#installing-the-undercloud

 network_config:
 - type: interface
 name: em1
 use_dhcp: false
 addresses:
 - ip_netmask: {{ external_ip }}/{{ external_cidr}}
 routes:
 - default: true
 next_hop: {{ external_gateway_ip }}
 - ip_netmask: {{ external_ip }}/{{ external_cidr}}
 next_hop: {{ external_gateway_ip }}
 route_table: 2
 route_options: metric 100
 rules:
 - rule: "iif em1 table 200"
 comment: "Route incoming traffic to em1 with table 200"
 - rule: "from 192.0.2.0/24 table 200"
 comment: "Route all traffic from 192.0.2.0/24 with table 200"
 - rule: "add blackhole from 172.19.40.0/24 table 200"
 - rule: "add unreachable iif em1 from 192.168.1.0/24"

2. Include your custom NIC configuration and network environment files in the deployment
command, along with any other environment files relevant to your deployment:

$ openstack overcloud deploy --templates \
-e /home/stack/templates/<custom-nic-template>
-e <OTHER_ENVIRONMENT_FILES>

Verification

Enter the following commands on a Controller node to verify that the routing configuration is
functioning correctly:

$ cat /etc/iproute2/rt_tables
$ ip route
$ ip rule

10.5.4. Configuring jumbo frames

The Maximum Transmission Unit (MTU) setting determines the maximum amount of data transmitted
with a single Ethernet frame. Using a larger value results in less overhead because each frame adds data
in the form of a header. The default value is 1500 and using a higher value requires the configuration of
the switch port to support jumbo frames. Most switches support an MTU of at least 9000, but many are
configured for 1500 by default.

The MTU of a VLAN cannot exceed the MTU of the physical interface. Ensure that you include the MTU
value on the bond or interface.

The Storage, Storage Management, Internal API, and Tenant networks can all benefit from jumbo
frames.

You can alter the value of the mtu in the jinja2 template or in the network_data.yaml file. If you set the
value in the network_data.yaml file it is rendered during deployment.

CHAPTER 10. CONFIGURING OVERCLOUD NETWORKING

141

WARNING

Routers typically cannot forward jumbo frames across Layer 3 boundaries. To avoid
connectivity issues, do not change the default MTU for the Provisioning interface,
External interface, and any Floating IP interfaces.

{% set mtu_list = [ctlplane_mtu] %}
{% for network in role_networks %}
{{ mtu_list.append(lookup('vars', networks_lower[network] ~ '_mtu')) }}
{%- endfor %}
{% set min_viable_mtu = mtu_list | max %}
network_config:
- type: ovs_bridge
 name: bridge_name
 mtu: {{ min_viable_mtu }}
 use_dhcp: false
 dns_servers: {{ ctlplane_dns_nameservers }}
 domain: {{ dns_search_domains }}
 addresses:
 - ip_netmask: {{ ctlplane_ip }}/{{ ctlplane_subnet_cidr }}
 routes: {{ [ctlplane_host_routes] | flatten | unique }}
 members:
 - type: interface
 name: nic1
 mtu: {{ min_viable_mtu }}
 primary: true
 - type: vlan
 mtu: 9000 1
 vlan_id: {{ storage_vlan_id }}
 addresses:
 - ip_netmask: {{ storage_ip }}/{{ storage_cidr }}
 routes: {{ [storage_host_routes] | flatten | unique }}
 - type: vlan
 mtu: {{ storage_mgmt_mtu }} 2
 vlan_id: {{ storage_mgmt_vlan_id }}
 addresses:
 - ip_netmask: {{ storage_mgmt_ip }}/{{ storage_mgmt_cidr }}
 routes: {{ [storage_mgmt_host_routes] | flatten | unique }}
 - type: vlan
 mtu: {{ internal_api_mtu }}
 vlan_id: {{ internal_api_vlan_id }}
 addresses:
 - ip_netmask: {{ internal_api_ip }}/{{ internal_api_cidr }}
 routes: {{ [internal_api_host_routes] | flatten | unique }}
 - type: vlan
 mtu: {{ tenant_mtu }}
 vlan_id: {{ tenant_vlan_id }}
 addresses:
 - ip_netmask: {{ tenant_ip }}/{{ tenant_cidr }}
 routes: {{ [tenant_host_routes] | flatten | unique }}



Red Hat OpenStack Platform 17.0 Director Installation and Usage

142

1

2

 - type: vlan
 mtu: {{ external_mtu }}
 vlan_id: {{ external_vlan_id }}
 addresses:
 - ip_netmask: {{ external_ip }}/{{ external_cidr }}
 routes: {{ [external_host_routes, [{'default': True, 'next_hop': external_gateway_ip}]] | flatten |
unique }}

mtu value updated directly in the jinja2 template.

mtu value is taken from the network_data.yaml file during deployment.

10.5.5. Configuring ML2/OVN northbound path MTU discovery for jumbo frame
fragmentation

If a VM on your internal network sends jumbo frames to an external network, and the maximum
transmission unit (MTU) of the internal network exceeds the MTU of the external network, a northbound
frame can easily exceed the capacity of the external network.

ML2/OVS automatically handles this oversized packet issue, and ML2/OVN handles it automatically for
TCP packets.

But to ensure proper handling of oversized northbound UDP packets in a deployment that uses the
ML2/OVN mechanism driver, you need to perform additional configuration steps.

These steps configure ML2/OVN routers to return ICMP "fragmentation needed" packets to the
sending VM, where the sending application can break the payload into smaller packets.

NOTE

In east/west traffic, a RHOSP ML2/OVN deployment does not support fragmentation of
packets that are larger than the smallest MTU on the east/west path. For example:

VM1 is on Network1 with an MTU of 1300.

VM2 is on Network2 with an MTU of 1200.

A ping in either direction between VM1 and VM2 with a size of 1171 or less
succeeds. A ping with a size greater than 1171 results in 100 percent packet loss.
With no identified customer requirements for this type of fragmentation, Red
Hat has no plans to add support.

Procedure

1. Set the following value in the [ovn] section of ml2_conf.ini:

ovn_emit_need_to_frag = True

10.5.6. Configuring the native VLAN on a trunked interface

If a trunked interface or bond has a network on the native VLAN, the IP addresses are assigned directly
to the bridge and there is no VLAN interface.

The following example configures a bonded interface where the External network is on the native VLAN:

CHAPTER 10. CONFIGURING OVERCLOUD NETWORKING

143

network_config:
- type: ovs_bridge
 name: br-ex
 addresses:
 - ip_netmask: {{ external_ip }}/{{ external_cidr }}
 routes: {{ external_host_routes }}
 members:
 - type: ovs_bond
 name: bond1
 ovs_options: {{ bond_interface_ovs_options }}
 members:
 - type: interface
 name: nic3
 primary: true
 - type: interface
 name: nic4

NOTE

When you move the address or route statements onto the bridge, remove the
corresponding VLAN interface from the bridge. Make the changes to all applicable roles.
The External network is only on the controllers, so only the controller template requires a
change. The Storage network is attached to all roles, so if the Storage network is on the
default VLAN, all roles require modifications.

10.5.7. Increasing the maximum number of connections that netfilter tracks

The Red Hat OpenStack Platform (RHOSP) Networking service (neutron) uses netfilter connection
tracking to build stateful firewalls and to provide network address translation (NAT) on virtual networks.
There are some situations that can cause the kernel space to reach the maximum connection limit and
result in errors such as nf_conntrack: table full, dropping packet. You can increase the limit for
connection tracking (conntrack) and avoid these types of errors. You can increase the conntrack limit
for one or more roles, or across all the nodes, in your RHOSP deployment.

Prerequisites

A successful RHOSP undercloud installation.

Procedure

1. Log in to the undercloud host as the stack user.

2. Source the undercloud credentials file:

$ source ~/stackrc

3. Create a custom YAML environment file.

Example

$ vi /home/stack/templates/custom-environment.yaml

4. Your environment file must contain the keywords parameter_defaults and

Red Hat OpenStack Platform 17.0 Director Installation and Usage

144

4. Your environment file must contain the keywords parameter_defaults and
ExtraSysctlSettings. Enter a new value for the maximum number of connections that netfilter
can track in the variable, net.nf_conntrack_max.

Example

In this example, you can set the conntrack limit across all hosts in your RHOSP deployment:

parameter_defaults:
 ExtraSysctlSettings:
 net.nf_conntrack_max:
 value: 500000

Use the <role>Parameter parameter to set the conntrack limit for a specific role:

parameter_defaults:
 <role>Parameters:
 ExtraSysctlSettings:
 net.nf_conntrack_max:
 value: <simultaneous_connections>

Replace <role> with the name of the role.
For example, use ControllerParameters to set the conntrack limit for the Controller role, or
ComputeParameters to set the conntrack limit for the Compute role.

Replace <simultaneous_connections> with the quantity of simultaneous connections that
you want to allow.

Example

In this example, you can set the conntrack limit for only the Controller role in your RHOSP
deployment:

parameter_defaults:
 ControllerParameters:
 ExtraSysctlSettings:
 net.nf_conntrack_max:
 value: 500000

NOTE

The default value for net.nf_conntrack_max is 500000 connections. The
maximum value is: 4294967295.

5. Run the deployment command and include the core heat templates, environment files, and this
new custom environment file.

IMPORTANT

The order of the environment files is important as the parameters and resources
defined in subsequent environment files take precedence.

Example

CHAPTER 10. CONFIGURING OVERCLOUD NETWORKING

145

$ openstack overcloud deploy --templates \
-e /home/stack/templates/custom-environment.yaml

Additional resources

Environment files in the Director Installation and Usage guide

Including environment files in overcloud creation in the Director Installation and Usage guide

10.6. NETWORK INTERFACE BONDING

You can use various bonding options in your custom network configuration.

10.6.1. Network interface bonding for overcloud nodes

You can bundle multiple physical NICs together to form a single logical channel known as a bond. You
can configure bonds to provide redundancy for high availability systems or increased throughput.

Red Hat OpenStack Platform supports Open vSwitch (OVS) kernel bonds, OVS-DPDK bonds, and
Linux kernel bonds.

Table 10.10. Supported interface bonding types

Bond type Type value Allowed bridge types Allowed members

OVS kernel bonds ovs_bond ovs_bridge interface

OVS-DPDK bonds ovs_dpdk_bond ovs_user_bridge ovs_dpdk_port

Linux kernel bonds linux_bond ovs_bridge or
linux_bridge

interface

IMPORTANT

Do not combine ovs_bridge and ovs_user_bridge on the same node.

10.6.2. Creating Open vSwitch (OVS) bonds

You create OVS bonds in your network interface templates. For example, you can create a bond as part
of an OVS user space bridge:

- type: ovs_user_bridge
 name: br-dpdk0
 members:
 - type: ovs_dpdk_bond
 name: dpdkbond0
 rx_queue: {{ num_dpdk_interface_rx_queues }}
 members:
 - type: ovs_dpdk_port
 name: dpdk0
 members:
 - type: interface

Red Hat OpenStack Platform 17.0 Director Installation and Usage

146

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.0/html/director_installation_and_usage/assembly_understanding-heat-templates#con_environment-files_understanding-heat-templates
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.0/html/director_installation_and_usage/assembly_understanding-heat-templates#con_including-environment-files-in-overcloud-creation_understanding-heat-templates

 name: nic4
 - type: ovs_dpdk_port
 name: dpdk1
 members:
 - type: interface
 name: nic5

In this example, you create the bond from two DPDK ports.

The ovs_options parameter contains the bonding options. You can configure a bonding options in a
network environment file with the BondInterfaceOvsOptions parameter:

environment_parameters:
 BondInterfaceOvsOptions: "bond_mode=active_backup"

10.6.3. Open vSwitch (OVS) bonding options

You can set various Open vSwitch (OVS) bonding options with the ovs_options heat parameter in your
NIC template files.

bond_mode=balance-slb

Source load balancing (slb) balances flows based on source MAC address and output VLAN, with
periodic rebalancing as traffic patterns change. When you configure a bond with the balance-slb
bonding option, there is no configuration required on the remote switch. The Networking service
(neutron) assigns each source MAC and VLAN pair to a link and transmits all packets from that MAC
and VLAN through that link. A simple hashing algorithm based on source MAC address and VLAN
number is used, with periodic rebalancing as traffic patterns change. The balance-slb mode is
similar to mode 2 bonds used by the Linux bonding driver. You can use this mode to provide load
balancing even when the switch is not configured to use LACP.

bond_mode=active-backup

When you configure a bond using active-backup bond mode, the Networking service keeps one NIC
in standby. The standby NIC resumes network operations when the active connection fails. Only one
MAC address is presented to the physical switch. This mode does not require switch configuration,
and works when the links are connected to separate switches. This mode does not provide load
balancing.

lacp=[active | passive | off]

Controls the Link Aggregation Control Protocol (LACP) behavior. Only certain switches support
LACP. If your switch does not support LACP, use bond_mode=balance-slb or bond_mode=active-
backup.

other-config:lacp-fallback-ab=true

Set active-backup as the bond mode if LACP fails.

other_config:lacp-time=[fast | slow]

Set the LACP heartbeat to one second (fast) or 30 seconds (slow). The default is slow.

other_config:bond-detect-mode=[miimon | carrier]

Set the link detection to use miimon heartbeats (miimon) or monitor carrier (carrier). The default is
carrier.

other_config:bond-miimon-interval=100

If using miimon, set the heartbeat interval (milliseconds).

bond_updelay=1000

Set the interval (milliseconds) that a link must be up to be activated to prevent flapping.

CHAPTER 10. CONFIGURING OVERCLOUD NETWORKING

147

other_config:bond-rebalance-interval=10000

Set the interval (milliseconds) that flows are rebalancing between bond members. Set this value to
zero to disable flow rebalancing between bond members.

10.6.4. Using Link Aggregation Control Protocol (LACP) with Open vSwitch (OVS)
bonding modes

You can use bonds with the optional Link Aggregation Control Protocol (LACP). LACP is a negotiation
protocol that creates a dynamic bond for load balancing and fault tolerance.

Use the following table to understand support compatibility for OVS kernel and OVS-DPDK bonded
interfaces in conjunction with LACP options.

IMPORTANT

The OVS/OVS-DPDK balance-tcp mode is available as a technology preview only.

IMPORTANT

On control and storage networks, Red Hat recommends that you use Linux bonds with
VLAN and LACP, because OVS bonds carry the potential for control plane disruption
that can occur when OVS or the neutron agent is restarted for updates, hot fixes, and
other events. The Linux bond/LACP/VLAN configuration provides NIC management
without the OVS disruption potential.

Table 10.11. LACP options for OVS kernel and OVS-DPDK bond modes

Objective OVS bond mode Compatible LACP
options

Notes

High availability (active-
passive)

active-backup active, passive, or off

Increased throughput
(active-active)

balance-slb active, passive, or off
Performance is
affected by
extra parsing
per packet.

There is a
potential for
vhost-user lock
contention.

Red Hat OpenStack Platform 17.0 Director Installation and Usage

148

balance-tcp active or passive
Tech preview
only. Not
recommended
for use in
production.

Recirculation
needed for L4
hashing has a
performance
impact.

As with
balance-slb,
performance is
affected by
extra parsing
per packet and
there is a
potential for
vhost-user lock
contention.

LACP must be
enabled.

10.6.5. Creating Linux bonds

You create Linux bonds in your network interface templates. For example, you can create a Linux bond
that bonds two interfaces:

- type: linux_bond
 name: bond_api
 mtu: {{ min_viable_mtu_ctlplane }}
 use_dhcp: false
 bonding_options: {{ bond_interface_ovs_options }}
 dns_servers: {{ ctlplane_dns_nameservers }}
 domain: {{ dns_search_domains }}
 members:
 - type: interface
 name: nic2
 mtu: {{ min_viable_mtu_ctlplane }}
 primary: true
 - type: interface
 name: nic3
 mtu: {{ min_viable_mtu_ctlplane }}

The bonding_options parameter sets the specific bonding options for the Linux bond.

mode

Sets the bonding mode, which in the example is 802.3ad or LACP mode. For more information about
Linux bonding modes, see "Upstream Switch Configuration Depending on the Bonding Modes" in
the Red Hat Enterprise Linux 9 Configuring and Managing Networking guide.

lacp_rate

Defines whether LACP packets are sent every 1 second, or every 30 seconds.

CHAPTER 10. CONFIGURING OVERCLOUD NETWORKING

149

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/configuring_and_managing_networking/configuring-network-bonding_configuring-and-managing-networking#upstream-switch-configuration-depending-on-the-bonding-modes_configuring-network-bonding

updelay

Defines the minimum amount of time that an interface must be active before it is used for traffic.
This minimum configuration helps to mitigate port flapping outages.

miimon

The interval in milliseconds that is used for monitoring the port state using the MIIMON functionality
of the driver.

Use the following additional examples as guides to configure your own Linux bonds:

Linux bond set to active-backup mode with one VLAN:

....

- type: linux_bond
 name: bond_api
 mtu: {{ min_viable_mtu_ctlplane }}
 use_dhcp: false
 bonding_options: "mode=active-backup"
 dns_servers: {{ ctlplane_dns_nameservers }}
 domain: {{ dns_search_domains }}
 members:
 - type: interface
 name: nic2
 mtu: {{ min_viable_mtu_ctlplane }}
 primary: true
 - type: interface
 name: nic3
 mtu: {{ min_viable_mtu_ctlplane }}
 - type: vlan
 mtu: {{ internal_api_mtu }}
 vlan_id: {{ internal_api_vlan_id }}
 addresses:
 - ip_netmask:
 {{ internal_api_ip }}/{{ internal_api_cidr }}
 routes:
 {{ internal_api_host_routes }}

Linux bond on OVS bridge. Bond set to 802.3ad LACP mode with one VLAN:

- type: linux_bond
 name: bond_tenant
 mtu: {{ min_viable_mtu_ctlplane }}
 bonding_options: "mode=802.3ad updelay=1000 miimon=100"
 use_dhcp: false
 dns_servers: {{ ctlplane_dns_nameserver }}
 domain: {{ dns_search_domains }}
 members:
 - type: interface
 name: p1p1
 mtu: {{ min_viable_mtu_ctlplane }}
 - type: interface
 name: p1p2
 mtu: {{ min_viable_mtu_ctlplane }}
 - type: vlan
 mtu: {{ tenant_mtu }}

Red Hat OpenStack Platform 17.0 Director Installation and Usage

150

 vlan_id: {{ tenant_vlan_id }}
 addresses:
 - ip_netmask:
 {{ tenant_ip }}/{{ tenant_cidr }}
 routes:
 {{ tenant_host_routes }}

IMPORTANT

You must set up min_viable_mtu_ctlplane before you can use it. Copy
/usr/share/ansible/roles/tripleo_network_config/templates/2_linux_bonds_vl
ans.j2 to your templates directory and modify it for your needs. For more
information, see Adding a composable network , and refer to the steps that
pertain to the network configuration template.

10.7. UPDATING THE FORMAT OF YOUR NETWORK CONFIGURATION
FILES

The format of the network configuration yaml files has changed in Red Hat OpenStack Platform
(RHOSP) 17.0. The structure of the network configuration file network_data.yaml has changed, and the
NIC template file format has changed from yaml file format to Jinja2 ansible format, j2.

You can convert your existing network configuration file in your current deployment to the RHOSP 17+
format by using the following conversion tools:

convert_v1_net_data.py

convert_heat_nic_config_to_ansible_j2.py

You can also manually convert your existing NIC template files.

The files you need to convert include the following:

network_data.yaml

Controller NIC templates

Compute NIC templates

Any other custom network files

10.7.1. Updating the format of your network configuration file

The format of the network configuration yaml file has changed in Red Hat OpenStack Platform
(RHOSP) 17.0. You can convert your existing network configuration file in your current deployment to
the RHOSP 17+ format by using the convert_v1_net_data.py conversion tool.

Procedure

1. Download the conversion tool:

/usr/share/openstack-tripleo-heat-templates/tools/convert_v1_net_data.py

2. Convert your RHOSP 16+ network configuration file to the RHOSP 17+ format:

CHAPTER 10. CONFIGURING OVERCLOUD NETWORKING

151

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.0/html/director_installation_and_usage/assembly_configuring-overcloud-networking_installing-director-on-the-undercloud#proc_adding-a-composable-network_overcloud_networking

$ python3 convert_v1_net_data.py <network_config>.yaml

Replace <network_config> with the name of the existing configuration file that you want to
convert, for example, network_data.yaml.

10.7.2. Automatically converting NIC templates to Jinja2 Ansible format

The NIC template file format has changed from yaml file format to Jinja2 Ansible format, j2, in Red Hat
OpenStack Platform (RHOSP) 17.0.

You can convert your existing NIC template files in your current deployment to the Jinja2 format by
using the convert_heat_nic_config_to_ansible_j2.py conversion tool.

You can also manually convert your existing NIC template files. For more information, see Manually
converting NIC templates to Jinja2 Ansible format.

The files you need to convert include the following:

Controller NIC templates

Compute NIC templates

Any other custom network files

Procedure

1. Download the conversion tool:

/usr/share/openstack-tripleo-heat-
templates/tools/convert_heat_nic_config_to_ansible_j2.py

2. Convert your Compute and Controller NIC tempate files, and any other custom network files, to
the Jinja2 Ansible format:

$ python3 convert_heat_nic_config_to_ansible_j2.py \
 [--stack <overcloud> | --standalone] --networks_file <network_config.yaml> \
 <network_template>.yaml

Replace <overcloud> with the name or UUID of the overcloud stack. If --stack is not
specified, the stack defaults to overcloud.

NOTE

You can use the --stack option only on your RHOSP 16 deployment because
it requires the Orchestration service (heat) to be running on the undercloud
node. Starting with RHOSP 17, RHOSP deployments use ephemeral heat,
which runs the Orchestration service in a container. If the Orchestration
service is not available, or you have no stack, then use the --standalone
option instead of --stack.

Replace <network_config.yaml> with the name of the configuration file that describes the
network deployment, for example, network_data.yaml.

Replace <network_template> with the name of the network configuration file you want to
convert.

Red Hat OpenStack Platform 17.0 Director Installation and Usage

152

Repeat this command until you have converted all your custom network configuration files. The
convert_heat_nic_config_to_ansible_j2.py script generates a .j2 file for each yaml file you
pass to it for conversion.

3. Inspect each generated .j2 file to ensure the configuration is correct and complete for your
environment, and manually address any comments generated by the tool that highlight where
the configuration could not be converted. For more information about manually converting the
NIC configuration to Jinja2 format, see Heat parameter to Ansible variable mappings .

4. Configure the *NetworkConfigTemplate parameters in your network-environment.yaml file
to point to the generated .j2 files:

parameter_defaults:
 ControllerNetworkConfigTemplate: '/home/stack/templates/custom-nics/controller.j2'
 ComputeNetworkConfigTemplate: '/home/stack/templates/custom-nics/compute.j2'

5. Delete the resource_registry mappings from your network-environment.yaml file for the old
network configuration files:

resource_registry:
 OS::TripleO::Compute::Net::SoftwareConfig: /home/stack/templates/nic-
configs/compute.yaml
 OS::TripleO::Controller::Net::SoftwareConfig: /home/stack/templates/nic-
configs/controller.yaml

10.7.3. Manually converting NIC templates to Jinja2 Ansible format

The NIC template file format has changed from yaml file format to Jinja2 Ansible format, j2, in Red Hat
OpenStack Platform (RHOSP) 17.0.

You can manually convert your existing NIC template files.

You can also convert your existing NIC template files in your current deployment to the Jinja2 format by
using the convert_heat_nic_config_to_ansible_j2.py conversion tool. For more information, see
Automatically converting NIC templates to Jinja2 ansible format .

The files you need to convert include the following:

Controller NIC templates

Compute NIC templates

Any other custom network files

Procedure

1. Create a Jinja2 template. You can create a new template by using the os-net-config schema, or
copy and edit an example template from the
/usr/share/ansible/roles/tripleo_network_config/templates/ directory on the undercloud
node.

2. Replace the heat intrinsic functions with Jinja2 filters. For example, use the following filter to
calculate the min_viable_mtu:

{% set mtu_list = [ctlplane_mtu] %}

CHAPTER 10. CONFIGURING OVERCLOUD NETWORKING

153

https://opendev.org/openstack/os-net-config/src/branch/master/os_net_config/schema.yaml

{% for network in role_networks %}
{{ mtu_list.append(lookup('vars', networks_lower[network] ~ '_mtu')) }}
{%- endfor %}
{% set min_viable_mtu = mtu_list | max %}

3. Use Ansible variables to configure the network properties for your deployment. You can
configure each individual network manually, or programatically configure each network by
iterating over role_networks:

To manually configure each network, replace each get_param function with the equivalent
Ansible variable. For example, if your current deployment configures vlan_id by using
get_param: InternalApiNetworkVlanID, then add the following configuration to your
template:

vlan_id: {{ internal_api_vlan_id }}

Table 10.12. Example network property mapping from heat parameters to Ansible vars

yaml file format Jinja2 ansible format, j2

- type: vlan
 device: nic2
 vlan_id:
 get_param:
InternalApiNetworkVlanID
 addresses:
 - ip_netmask:
 get_param: InternalApiIpSubnet

- type: vlan
 device: nic2
 vlan_id: {{ internal_api_vlan_id }}
 addresses:
 - ip_netmask: {{ internal_api_ip }}/{{
internal_api_cidr }}

To programatically configure each network, add a Jinja2 for-loop structure to your template
that retrieves the available networks by their role name by using role_networks.

Example

{% for network in role_networks %}
 - type: vlan
 mtu: {{ lookup('vars', networks_lower[network] ~ '_mtu') }}
 vlan_id: {{ lookup('vars', networks_lower[network] ~ '_vlan_id') }}
 addresses:
 - ip_netmask: {{ lookup('vars', networks_lower[network] ~ '_ip') }}/{{ lookup('vars',
networks_lower[network] ~ '_cidr') }}
 routes: {{ lookup('vars', networks_lower[network] ~ '_host_routes') }}
{%- endfor %}

For a full list of the mappings from the heat parameter to the Ansible vars equivalent, see Heat
parameter to Ansible variable mappings.

4. Configure the *NetworkConfigTemplate parameters in your network-environment.yaml file
to point to the generated .j2 files:

Red Hat OpenStack Platform 17.0 Director Installation and Usage

154

parameter_defaults:
 ControllerNetworkConfigTemplate: '/home/stack/templates/custom-nics/controller.j2'
 ComputeNetworkConfigTemplate: '/home/stack/templates/custom-nics/compute.j2'

5. Delete the resource_registry mappings from your network-environment.yaml file for the old
network configuration files:

resource_registry:
 OS::TripleO::Compute::Net::SoftwareConfig: /home/stack/templates/nic-
configs/compute.yaml
 OS::TripleO::Controller::Net::SoftwareConfig: /home/stack/templates/nic-
configs/controller.yaml

10.7.4. Heat parameter to Ansible variable mappings

The NIC template file format has changed from yaml file format to Jinja2 ansible format, j2, in Red Hat
OpenStack Platform (RHOSP) 17.x.

To manually convert your existing NIC template files to Jinja2 ansible format, you can map your heat
parameters to Ansible variables to configure the network properties for pre-provisioned nodes in your
deployment. You can also map your heat parameters to Ansible variables if you run openstack
overcloud node provision without specifying the --network-config optional argument.

For example, if your current deployment configures vlan_id by using get_param:
InternalApiNetworkVlanID, then replace it with the following configuration in your new Jinja2 template:

vlan_id: {{ internal_api_vlan_id }}

NOTE

If you provision your nodes by running openstack overcloud node provision with the --
network-config optional argument, you must configure the network properties for your
deploying by using the parameters in overcloud-baremetal-deploy.yaml. For more
information, see Heat parameter to provisioning definition file mappings .

The following table lists the available mappings from the heat parameter to the Ansible vars equivalent.

Table 10.13. Mappings from heat parameters to Ansible vars

Heat parameter Ansible vars

BondInterfaceOvsOptions {{ bond_interface_ovs_options }}

ControlPlaneIp {{ ctlplane_ip }}

ControlPlaneDefaultRoute {{ ctlplane_gateway_ip }}

ControlPlaneMtu {{ ctlplane_mtu }}

ControlPlaneStaticRoutes {{ ctlplane_host_routes }}

CHAPTER 10. CONFIGURING OVERCLOUD NETWORKING

155

ControlPlaneSubnetCidr {{ ctlplane_subnet_cidr }}

DnsSearchDomains {{ dns_search_domains }}

DnsServers {{ ctlplane_dns_nameservers }}

NOTE

This Ansible variable is populated with the IP
address configured in undercloud.conf for
DEFAULT/undercloud_nameservers and
%SUBNET_SECTION%/dns_nameserver
s. The configuration of
%SUBNET_SECTION%/dns_nameserver
s overrides the configuration of
DEFAULT/undercloud_nameservers, so
that you can use different DNS servers for the
undercloud and the overcloud, and different
DNS servers for nodes on different provisioning
subnets.

NumDpdkInterfaceRxQueues {{ num_dpdk_interface_rx_queues }}

Heat parameter Ansible vars

Configuring a heat parameter that is not listed in the table

To configure a heat parameter that is not listed in the table, you must configure the parameter as a
{{role.name}}ExtraGroupVars. After you have configured the parameter as a
{{role.name}}ExtraGroupVars parameter, you can then use it in your new template. For example, to
configure the StorageSupernet parameter, add the following configuration to your network
configuration file:

parameter_defaults:
 ControllerExtraGroupVars:
 storage_supernet: 172.16.0.0/16

You can then add {{ storage_supernet }} to your Jinja2 template.

WARNING

This process will not work if the --network-config option is used with node
provisioning. Users requiring custom vars should not use the --network-config
option. Instead, after creating the Heat stack, apply the node network configuration
to the config-download ansible run.

Converting the Ansible variable syntax to programmatically configure each network

When you use a Jinja2 for-loop structure to retrieve the available networks by their role name by



Red Hat OpenStack Platform 17.0 Director Installation and Usage

156

iterating over role_networks, you need to retrieve the lower case name for each network role to
prepend to each property. Use the following structure to convert the Ansible vars from the above table
to the required syntax:

{{ lookup(‘vars’, networks_lower[network] ~ ‘_<property>’) }}

Replace <property> with the property that you are setting, for example, ip, vlan_id, or mtu.

For example, to populate the value for each NetworkVlanID dynamically, replace {{
<network_name>_vlan_id }} with the following configuration:

{{ lookup(‘vars’, networks_lower[network] ~ ‘_vlan_id’) }}`

10.7.5. Heat parameter to provisioning definition file mappings

If you provision your nodes by running the openstack overcloud node provision command with the --
network-config optional argument, you must configure the network properties for your deployment by
using the parameters in the node definition file overcloud-baremetal-deploy.yaml.

If your deployment uses pre-provisioned nodes, you can map your heat parameters to Ansible variables
to configure the network properties. You can also map your heat parameters to Ansible variables if you
run openstack overcloud node provision without specifying the --network-config optional argument.
For more information about configuring network properties by using Ansible variables, see Heat
parameter to Ansible variable mappings.

The following table lists the available mappings from the heat parameter to the network_config
property equivalent in the node definition file overcloud-baremetal-deploy.yaml.

Table 10.14. Mappings from heat parameters to node definition file overcloud-baremetal-
deploy.yaml

Heat parameter network_config property

BondInterfaceOvsOptions bond_interface_ovs_options

DnsSearchDomains dns_search_domains

NetConfigDataLookup net_config_data_lookup

NeutronPhysicalBridge physical_bridge_name

NeutronPublicInterface public_interface_name

NumDpdkInterfaceRxQueues num_dpdk_interface_rx_queues

{{role.name}}NetworkConfigUpdate network_config_update

The following table lists the available mappings from the heat parameter to the property equivalent in
the networks definition file network_data.yaml.

Table 10.15. Mappings from heat parameters to networks definition file network_data.yaml

CHAPTER 10. CONFIGURING OVERCLOUD NETWORKING

157

Heat parameter IPv4 network_data.yaml
property

IPv6 network_data.yaml
property

<network_name>IpSubne
t - name: <network_name>

 subnets:
 subnet01:
 ip_subnet: 172.16.1.0/24

- name: <network_name>
 subnets:
 subnet01:
 ipv6_subnet:
2001:db8:a::/64

<network_name>Network
VlanID - name: <network_name>

 subnets:
 subnet01:
 ...
 vlan: <vlan_id>

- name: <network_name>
 subnets:
 subnet01:
 ...
 vlan: <vlan_id>

<network_name>Mtu
- name: <network_name>
 mtu:

- name: <network_name>
 mtu:

<network_name>Interface
DefaultRoute - name: <network_name>

 subnets:
 subnet01:
 ip_subnet: 172.16.16.0/24
 gateway_ip: 172.16.16.1

- name: <network_name>
 subnets:
 subnet01:
 ipv6_subnet:
2001:db8:a::/64
 gateway_ipv6:
2001:db8:a::1

<network_name>Interface
Routes - name: <network_name>

 subnets:
 subnet01:
 ...
 routes:
 - destination:
172.18.0.0/24
 nexthop: 172.18.1.254

- name: <network_name>
 subnets:
 subnet01:
 ...
 routes_ipv6:
 - destination:
2001:db8:b::/64
 nexthop: 2001:db8:a::1

10.7.6. Changes to the network data schema

The network data schema was updated in Red Hat OpenStack Platform (RHOSP) 17. The main
differences between the network data schema used in RHOSP 16 and earlier, and network data schema
used in RHOSP 17 and later, are as follows:

The base subnet has been moved to the subnets map. This aligns the configuration for non-
routed and routed deployments, such as spine-leaf networking.

The enabled option is no longer used to ignore disabled networks. Instead, you must remove

Red Hat OpenStack Platform 17.0 Director Installation and Usage

158

The enabled option is no longer used to ignore disabled networks. Instead, you must remove
disabled networks from the configuration file.

The compat_name option is no longer required as the heat resource that used it has been
removed.

The following parameters are no longer valid at the network level: ip_subnet, gateway_ip,
allocation_pools, routes, ipv6_subnet, gateway_ipv6, ipv6_allocation_pools, and
routes_ipv6. These parameters are still used at the subnet level.

A new parameter, physical_network, has been introduced, that is used to create ironic ports in
metalsmith.

New parameters network_type and segmentation_id replace
{{network.name}}NetValueSpecs used to set the network type to vlan.

The following parameters have been deprecated in RHOSP 17:

{{network.name}}NetCidr

{{network.name}}SubnetName

{{network.name}}Network

{{network.name}}AllocationPools

{{network.name}}Routes

{{network.name}}SubnetCidr_{{subnet}}

{{network.name}}AllocationPools_{{subnet}}

{{network.name}}Routes_{{subnet}}

CHAPTER 10. CONFIGURING OVERCLOUD NETWORKING

159

CHAPTER 11. PROVISIONING AND DEPLOYING YOUR
OVERCLOUD

To create an overcloud you must perform the following tasks:

1. Provision the network resources for your physical networks:

a. If you are deploying network isolation or a custom composable network, then create a
network definition file in YAML format.

b. Run the network provisioning command, including the network definition file.

c. Create a network Virtual IP (VIP) definition file in YAML format.

d. Run the network VIP provisioning command, including the network VIP definition file.

2. Provision your bare metal nodes:

a. Create a node definition file in YAML format.

b. Run the bare-metal node provisioning command, including the node definition file.

3. Deploy your overcloud.

a. Run the deployment command, including the heat environment files that the provisioning
commands generate.

11.1. PROVISIONING THE OVERCLOUD NETWORKS

To configure the network resources for your Red Hat OpenStack Platform (RHOSP) physical network
environment, you must perform the following tasks:

1. Configure and provision the network resources for your overcloud.

2. Configure and provision the network Virtual IPs for your overcloud.

11.1.1. Configuring and provisioning overcloud network definitions

You configure the physical network for your overcloud in a network definition file in YAML format. The
provisioning process creates a heat environment file from your network definition file that contains your
network specifications. When you deploy your overcloud, include this heat environment file in the
deployment command.

Prerequisites

The undercloud is installed. For more information, see Installing director .

Procedure

1. Source the stackrc undercloud credential file:

$ source ~/stackrc

2. Copy the sample network definition template you require from /usr/share/openstack-tripleo-
heat-templates/network-data-samples to your environment file directory:

Red Hat OpenStack Platform 17.0 Director Installation and Usage

160

(undercloud)$ cp /usr/share/openstack-tripleo-heat-templates/network-data-samples/default-
network-isolation.yaml /home/stack/templates/network_data.yaml

3. Configure your network definition file for your network environment. For example, you can
update the external network definition:

- name: External
 name_lower: external
 vip: true
 mtu: 1500
 subnets:
 external_subnet:
 ip_subnet: 10.0.0.0/24
 allocation_pools:
 - start: 10.0.0.4
 end: 10.0.0.250
 gateway_ip: 10.0.0.1
 vlan: 10

4. Configure any other networks and network attributes for your environment. For more
information about the properties you can use to configure network attributes in your network
definition file, see Configuring overcloud networking .

5. Provision the overcloud networks:

(undercloud)$ openstack overcloud network provision \
 [--templates <templates_directory> \]
 --output <deployment_file> \
 /home/stack/templates/<networks_definition_file>

Optional: Include the --templates option to use your own templates instead of the default
templates located in /usr/share/openstack-tripleo-heat-templates. Replace
<templates_directory> with the path to the directory that contains your templates.

Replace <deployment_file> with the name of the heat environment file to generate for
inclusion in the deployment command, for example /home/stack/templates/overcloud-
networks-deployed.yaml.

Replace <networks_definition_file> with the name of your networks definition file, for
example, network_data.yaml.

6. When network provisioning is complete, you can use the following commands to check the
created networks and subnets:

(undercloud)$ openstack network list
(undercloud)$ openstack subnet list
(undercloud)$ openstack network show <network>
(undercloud)$ openstack subnet show <subnet>

Replace <network> with the name or UUID of the network you want to check.

Replace <subnet> with the name or UUID of the subnet you want to check.

Next steps

CHAPTER 11. PROVISIONING AND DEPLOYING YOUR OVERCLOUD

161

Configuring and provisioning network VIPs for the overcloud

11.1.2. Configuring and provisioning network VIPs for the overcloud

You configure the network Virtual IPs (VIPs) for your overcloud in a network VIP definition file in YAML
format. The provisioning process creates a heat environment file from your VIP definition file that
contains your VIP specifications. When you deploy your overcloud, include this heat environment file in
the deployment command.

Prerequisites

The undercloud is installed. For more information, see Installing director .

Your overcloud networks are provisioned. For more information, see Configuring and
provisioning overcloud network definitions.

Procedure

1. Source the stackrc undercloud credential file:

$ source ~/stackrc

2. Copy the sample network VIP definition template you require from /usr/share/openstack-
tripleo-heat-templates/network-data-samples to your environment file directory:

(undercloud)$ cp /usr/share/openstack-tripleo-heat-templates/network-data-samples/vip-
data-default-network-isolation.yaml /home/stack/templates/vip_data.yaml

3. Optional: Configure your VIP definition file for your environment. For example, the following
defines the external network and control plane VIPs:

- network: external
 dns_name: overcloud
- network: ctlplane
 dns_name: overcloud

4. Configure any other network VIP attributes for your environment. For more information about
the properties you can use to configure VIP attributes in your VIP definition file, see Adding a
composable network.

5. Provision the network VIPs:

(undercloud)$ openstack overcloud network vip provision \
 [--templates <templates_directory> \]
 --stack <stack> \
 --output <deployment_file> \
 /home/stack/templates/<vip_definition_file>

Optional: Include the --templates option to use your own templates instead of the default
templates located in /usr/share/openstack-tripleo-heat-templates. Replace
<templates_directory> with the path to the directory that contains your templates.

Replace <stack> with the name of the stack for which the network VIPs are provisioned, for
example, overcloud.

Red Hat OpenStack Platform 17.0 Director Installation and Usage

162

Replace <deployment_file> with the name of the heat environment file to generate for
inclusion in the deployment command, for example /home/stack/templates/overcloud-vip-
deployed.yaml.

Replace <vip_definition_file> with the name of your VIP definition file, for example,
vip_data.yaml.

6. When the network VIP provisioning is complete, you can use the following commands to check
the created VIPs:

(undercloud)$ openstack port list
(undercloud)$ openstack port show <port>

Replace <port> with the name or UUID of the port you want to check.

Next steps

Provisioning bare metal overcloud nodes

11.2. PROVISIONING BARE METAL OVERCLOUD NODES

To configure a Red Hat OpenStack Platform (RHOSP) environment, you must perform the following
tasks:

1. Register the bare-metal nodes for your overcloud.

2. Provide director with an inventory of the hardware of the bare-metal nodes.

3. Configure the quantity, attributes, and network layout of the bare-metal nodes in a node
definition file.

4. Assign each bare metal node a resource class that matches the node to its designated role.

You can also perform additional optional tasks, such as matching profiles to designate overcloud nodes.

11.2.1. Registering nodes for the overcloud

Director requires a node definition template that specifies the hardware and power management details
of your nodes. You can create this template in JSON format, nodes.json, or YAML format, nodes.yaml.

Procedure

1. Create a template named nodes.json or nodes.yaml that lists your nodes. Use the following
JSON and YAML template examples to understand how to structure your node definition
template:

Example JSON template

{
 "nodes": [{
 "name": "node01",
 "ports": [{
 "address": "aa:aa:aa:aa:aa:aa",
 "physical_network": "ctlplane",
 "local_link_connection": {

CHAPTER 11. PROVISIONING AND DEPLOYING YOUR OVERCLOUD

163

 "switch_id": "52:54:00:00:00:00",
 "port_id": "p0"
 }
 }],
 "cpu": "4",
 "memory": "6144",
 "disk": "40",
 "arch": "x86_64",
 "pm_type": "ipmi",
 "pm_user": "admin",
 "pm_password": "p@55w0rd!",
 "pm_addr": "192.168.24.205"
 },
 {
 "name": "node02",
 "ports": [{
 "address": "bb:bb:bb:bb:bb:bb",
 "physical_network": "ctlplane",
 "local_link_connection": {
 "switch_id": "52:54:00:00:00:00",
 "port_id": "p0"
 }
 }],
 "cpu": "4",
 "memory": "6144",
 "disk": "40",
 "arch": "x86_64",
 "pm_type": "ipmi",
 "pm_user": "admin",
 "pm_password": "p@55w0rd!",
 "pm_addr": "192.168.24.206"
 }]
}

Example YAML template

nodes:
 - name: "node01"
 ports:
 - address: "aa:aa:aa:aa:aa:aa"
 physical_network: ctlplane
 local_link_connection:
 switch_id: 52:54:00:00:00:00
 port_id: p0
 cpu: 4
 memory: 6144
 disk: 40
 arch: "x86_64"
 pm_type: "ipmi"
 pm_user: "admin"
 pm_password: "p@55w0rd!"
 pm_addr: "192.168.24.205"
 - name: "node02"
 ports:
 - address: "bb:bb:bb:bb:bb:bb"
 physical_network: ctlplane

Red Hat OpenStack Platform 17.0 Director Installation and Usage

164

 local_link_connection:
 switch_id: 52:54:00:00:00:00
 port_id: p0
 cpu: 4
 memory: 6144
 disk: 40
 arch: "x86_64"
 pm_type: "ipmi"
 pm_user: "admin"
 pm_password: "p@55w0rd!"
 pm_addr: "192.168.24.206"

This template contains the following attributes:

name

The logical name for the node.

ports

The port to access the specific IPMI device. You can define the following optional port
attributes:

address: The MAC address for the network interface on the node. Use only the MAC
address for the Provisioning NIC of each system.

physical_network: The physical network that is connected to the Provisioning NIC.

local_link_connection: If you use IPv6 provisioning and LLDP does not correctly
populate the local link connection during introspection, you must include fake data with
the switch_id and port_id fields in the local_link_connection parameter. For more
information on how to include fake data, see Using director introspection to collect bare
metal node hardware information.

cpu

(Optional) The number of CPUs on the node.

memory

(Optional) The amount of memory in MB.

disk

(Optional) The size of the hard disk in GB.

arch

(Optional) The system architecture.

pm_type

The power management driver that you want to use. This example uses the IPMI driver
(ipmi).

NOTE

IPMI is the preferred supported power management driver. For more
information about supported power management types and their options, see
Power management drivers. If these power management drivers do not work
as expected, use IPMI for your power management.

pm_user; pm_password

CHAPTER 11. PROVISIONING AND DEPLOYING YOUR OVERCLOUD

165

The IPMI username and password.

pm_addr

The IP address of the IPMI device.

2. Verify the template formatting and syntax:

$ source ~/stackrc
(undercloud)$ openstack overcloud node import --validate-only ~/nodes.json

3. Save the template file to the home directory of the stack user (/home/stack/nodes.json).

4. Import the template to director to register each node from the template into director:

(undercloud)$ openstack overcloud node import ~/nodes.json

5. Wait for the node registration and configuration to complete. When complete, confirm that
director has successfully registered the nodes:

(undercloud)$ openstack baremetal node list

11.2.2. Creating an inventory of the bare-metal node hardware

Director needs the hardware inventory of the nodes in your Red Hat OpenStack Platform (RHOSP)
deployment for profile tagging, benchmarking, and manual root disk assignment.

You can provide the hardware inventory to director by using one of the following methods:

Automatic: You can use director’s introspection process, which collects the hardware
information from each node. This process boots an introspection agent on each node. The
introspection agent collects hardware data from the node and sends the data back to director.
Director stores the hardware data in the OpenStack internal database.

Manual: You can manually configure a basic hardware inventory for each bare metal machine.
This inventory is stored in the Bare Metal Provisioning service (ironic) and is used to manage
and deploy the bare-metal machines.

The director automatic introspection process provides the following advantages over the manual
method for setting the Bare Metal Provisioning service ports:

Introspection records all of the connected ports in the hardware information, including the port
to use for PXE boot if it is not already configured in nodes.yaml.

Introspection sets the local_link_connection attribute for each port if the attribute is
discoverable using LLDP. When you use the manual method, you must configure
local_link_connection for each port when you register the nodes.

Introspection sets the physical_network attribute for the Bare Metal Provisioning service ports
when deploying a spine-and-leaf or DCN architecture.

11.2.2.1. Using director introspection to collect bare metal node hardware information

After you register a physical machine as a bare metal node, you can automatically add its hardware
details and create ports for each of its Ethernet MAC addresses by using director introspection.

TIP

Red Hat OpenStack Platform 17.0 Director Installation and Usage

166

TIP

As an alternative to automatic introspection, you can manually provide director with the hardware
information for your bare metal nodes. For more information, see Manually configuring bare metal node
hardware information.

Prerequisites

You have registered the bare-metal nodes for your overcloud.

Procedure

1. Log in to the undercloud host as the stack user.

2. Source the stackrc undercloud credentials file:

$ source ~/stackrc

3. Run the pre-introspection validation group to check the introspection requirements:

(undercloud)$ validation run --group pre-introspection \
 --inventory <inventory_file>

Replace <inventory_file> with the name and location of the Ansible inventory file, for
example, ~/tripleo-deploy/undercloud/tripleo-ansible-inventory.yaml.

NOTE

When you run a validation, the Reasons column in the output is limited to 79
characters. To view the validation result in full, view the validation log files.

4. Review the results of the validation report.

5. Optional: Review detailed output from a specific validation:

(undercloud)$ validation history get --full <UUID>

Replace <UUID> with the UUID of the specific validation from the report that you want to
review.

IMPORTANT

A FAILED validation does not prevent you from deploying or running Red
Hat OpenStack Platform. However, a FAILED validation can indicate a
potential issue with a production environment.

6. Inspect the hardware attributes of each node. You can inspect the hardware attributes of all
nodes, or specific nodes:

Inspect the hardware attributes of all nodes:

(undercloud)$ openstack overcloud node introspect --all-manageable --provide

Use the --all-manageable option to introspect only the nodes that are in a managed

CHAPTER 11. PROVISIONING AND DEPLOYING YOUR OVERCLOUD

167

Use the --all-manageable option to introspect only the nodes that are in a managed
state. In this example, all nodes are in a managed state.

Use the --provide option to reset all nodes to an available state after introspection.

Inspect the hardware attributes of specific nodes:

(undercloud)$ openstack overcloud node introspect --provide <node1> [node2] [noden]

Use the --provide option to reset all the specified nodes to an available state after
introspection.

Replace <node1>, [node2], and all nodes up to [noden] with the UUID of each node
that you want to introspect.

7. Monitor the introspection progress logs in a separate terminal window:

(undercloud)$ sudo tail -f /var/log/containers/ironic-inspector/ironic-inspector.log

IMPORTANT

Ensure that the introspection process runs to completion. Introspection usually
takes 15 minutes for bare metal nodes. However, incorrectly sized introspection
networks can cause it to take much longer, which can result in the introspection
failing.

8. Optional: If you have configured your undercloud for bare metal provisioning over IPv6, then you
need to also check that LLDP has set the local_link_connection for Bare Metal Provisioning
service (ironic) ports:

$ openstack baremetal port list --long -c UUID -c "Node UUID" -c "Local Link Connection"

If the Local Link Connection field is empty for the port on your bare metal node, you must
populate the local_link_connection value manually with fake data. The following example
sets the fake switch ID to 52:54:00:00:00:00, and the fake port ID to p0:

$ openstack baremetal port set <port_uuid> \
--local-link-connection switch_id=52:54:00:00:00:00 \
--local-link-connection port_id=p0

Verify that the Local Link Connection field contains the fake data:

$ openstack baremetal port list --long -c UUID -c "Node UUID" -c "Local Link Connection"

After the introspection completes, all nodes change to an available state.

11.2.2.2. Manually configuring bare-metal node hardware information

After you register a physical machine as a bare metal node, you can manually add its hardware details
and create bare-metal ports for each of its Ethernet MAC addresses. You must create at least one bare-
metal port before deploying the overcloud.

TIP

Red Hat OpenStack Platform 17.0 Director Installation and Usage

168

TIP

As an alternative to manual introspection, you can use the automatic director introspection process to
collect the hardware information for your bare metal nodes. For more information, see Using director
introspection to collect bare metal node hardware information.

Prerequisites

You have registered the bare-metal nodes for your overcloud.

You have configured local_link_connection for each port on the registered nodes in
nodes.json. For more information, see Registering nodes for the overcloud .

Procedure

1. Log in to the undercloud host as the stack user.

2. Source the stackrc undercloud credentials file:

$ source ~/stackrc

3. Specify the deploy kernel and deploy ramdisk for the node driver:

(undercloud)$ openstack baremetal node set <node> \
 --driver-info deploy_kernel=<kernel_file> \
 --driver-info deploy_ramdisk=<initramfs_file>

Replace <node> with the ID of the bare metal node.

Replace <kernel_file> with the path to the .kernel image, for example,
file:///var/lib/ironic/httpboot/agent.kernel.

Replace <initramfs_file> with the path to the .initramfs image, for example,
file:///var/lib/ironic/httpboot/agent.ramdisk.

4. Update the node properties to match the hardware specifications on the node:

(undercloud)$ openstack baremetal node set <node> \
 --property cpus=<cpu> \
 --property memory_mb=<ram> \
 --property local_gb=<disk> \
 --property cpu_arch=<arch>

Replace <node> with the ID of the bare metal node.

Replace <cpu> with the number of CPUs.

Replace <ram> with the RAM in MB.

Replace <disk> with the disk size in GB.

Replace <arch> with the architecture type.

5. Optional: Specify the IPMI cipher suite for each node:

CHAPTER 11. PROVISIONING AND DEPLOYING YOUR OVERCLOUD

169

(undercloud)$ openstack baremetal node set <node> \
 --driver-info ipmi_cipher_suite=<version>

Replace <node> with the ID of the bare metal node.

Replace <version> with the cipher suite version to use on the node. Set to one of the
following valid values:

3 - The node uses the AES-128 with SHA1 cipher suite.

17 - The node uses the AES-128 with SHA256 cipher suite.

6. Optional: If you have multiple disks, set the root device hints to inform the deploy ramdisk which
disk to use for deployment:

(undercloud)$ openstack baremetal node set <node> \
 --property root_device='{"<property>": "<value>"}'

Replace <node> with the ID of the bare metal node.

Replace <property> and <value> with details about the disk that you want to use for
deployment, for example root_device='{"size": "128"}'
RHOSP supports the following properties:

model (String): Device identifier.

vendor (String): Device vendor.

serial (String): Disk serial number.

hctl (String): Host:Channel:Target:Lun for SCSI.

size (Integer): Size of the device in GB.

wwn (String): Unique storage identifier.

wwn_with_extension (String): Unique storage identifier with the vendor extension
appended.

wwn_vendor_extension (String): Unique vendor storage identifier.

rotational (Boolean): True for a rotational device (HDD), otherwise false (SSD).

name (String): The name of the device, for example: /dev/sdb1 Use this property only
for devices with persistent names.

NOTE

If you specify more than one property, the device must match all of those
properties.

7. Inform the Bare Metal Provisioning service of the node network card by creating a port with the
MAC address of the NIC on the provisioning network:

(undercloud)$ openstack baremetal port create --node <node_uuid> <mac_address>

Red Hat OpenStack Platform 17.0 Director Installation and Usage

170

Replace <node_uuid> with the unique ID of the bare metal node.

Replace <mac_address> with the MAC address of the NIC used to PXE boot.

8. Validate the configuration of the node:

(undercloud)$ openstack baremetal node validate <node>

| Interface | Result | Reason |

bios	True	
boot	True	
console	True	
deploy	False	Node 229f0c3d-354a-4dab-9a88-ebd318249ad6
		failed to validate deploy image info.
		Some parameters were missing. Missing are:
		[instance_info.image_source]
inspect	True	
management	True	
network	True	
power	True	
raid	True	
rescue	True	
storage	True	

The validation output Result indicates the following:

False: The interface has failed validation. If the reason provided includes missing the
instance_info.image_source parameter, this might be because it is populated during
provisioning, therefore it has not been set at this point. If you are using a whole disk image,
then you might need to only set image_source to pass the validation.

True: The interface has passed validation.

None: The interface is not supported for your driver.

11.2.3. Provisioning bare metal nodes for the overcloud

To provision your bare metal nodes, you define the quantity and attributes of the bare metal nodes that
you want to deploy in a node definition file in YAML format, and assign overcloud roles to these nodes.
You also define the network layout of the nodes.

The provisioning process creates a heat environment file from your node definition file. This heat
environment file contains the node specifications you configured in your node definition file, including
node count, predictive node placement, custom images, and custom NICs. When you deploy your
overcloud, include this file in the deployment command. The provisioning process also provisions the
port resources for all networks defined for each node or role in the node definition file.

Prerequisites

The undercloud is installed. For more information, see Installing director .

The bare metal nodes are registered, introspected, and available for provisioning and
deployment. For more information, see Registering nodes for the overcloud and Creating an
inventory of the bare metal node hardware.

CHAPTER 11. PROVISIONING AND DEPLOYING YOUR OVERCLOUD

171

Procedure

1. Source the stackrc undercloud credential file:

$ source ~/stackrc

2. Create the overcloud-baremetal-deploy.yaml node definition file and define the node count
for each role that you want to provision. For example, to provision three Controller nodes and
three Compute nodes, add the following configuration to your overcloud-baremetal-
deploy.yaml file:

- name: Controller
 count: 3
- name: Compute
 count: 3

3. Optional: Configure predictive node placements. For example, use the following configuration
to provision three Controller nodes on nodes node00, node01, and node02, and three Compute
nodes on node04, node05, and node06:

- name: Controller
 count: 3
 instances:
 - hostname: overcloud-controller-0
 name: node00
 - hostname: overcloud-controller-1
 name: node01
 - hostname: overcloud-controller-2
 name: node02
- name: Compute
 count: 3
 instances:
 - hostname: overcloud-novacompute-0
 name: node04
 - hostname: overcloud-novacompute-1
 name: node05
 - hostname: overcloud-novacompute-2
 name: node06

4. Optional: By default, the provisioning process uses the overcloud-hardened-uefi-full.qcow2
image. You can change the image used on specific nodes, or the image used for all nodes for a
role, by specifying the local or remote URL for the image. The following examples change the
image to a local QCOW2 image:

Specific nodes

- name: Controller
 count: 3
 instances:
 - hostname: overcloud-controller-0
 name: node00
 image:
 href: file:///var/lib/ironic/images/overcloud-custom.qcow2
 - hostname: overcloud-controller-1
 name: node01

Red Hat OpenStack Platform 17.0 Director Installation and Usage

172

 image:
 href: file:///var/lib/ironic/images/overcloud-full-custom.qcow2
 - hostname: overcloud-controller-2
 name: node02
 image:
 href: file:///var/lib/ironic/images/overcloud-full-custom.qcow2

All nodes for a role

- name: Controller
 count: 3
 defaults:
 image:
 href: file:///var/lib/ironic/images/overcloud-custom.qcow2
 instances:
 - hostname: overcloud-controller-0
 name: node00
 - hostname: overcloud-controller-1
 name: node01
 - hostname: overcloud-controller-2
 name: node02

5. Define the network layout for all nodes for a role, or the network layout for specific nodes:

Specific nodes

The following example provisions the networks for a specific Controller node, and allocates a
predictable IP to the node for the Internal API network:

- name: Controller
 count: 3
 defaults:
 network_config:
 template: /home/stack/templates/nic-config/myController.j2
 default_route_network:
 - external
 instances:
 - hostname: overcloud-controller-0
 name: node00
 networks:
 - network: ctlplane
 vif: true
 - network: external
 subnet: external_subnet
 - network: internal_api
 subnet: internal_api_subnet01
 fixed_ip: 172.21.11.100
 - network: storage
 subnet: storage_subnet01
 - network: storage_mgmt
 subnet: storage_mgmt_subnet01
 - network: tenant
 subnet: tenant_subnet01

All nodes for a role

CHAPTER 11. PROVISIONING AND DEPLOYING YOUR OVERCLOUD

173

1

The following example provisions the networks for the Controller and Compute roles:

- name: Controller
 count: 3
 defaults:
 networks:
 - network: ctlplane
 vif: true
 - network: external
 subnet: external_subnet
 - network: internal_api
 subnet: internal_api_subnet01
 - network: storage
 subnet: storage_subnet01
 - network: storage_mgmt
 subnet: storage_mgmt_subnet01
 - network: tenant
 subnet: tenant_subnet01
 network_config:
 template: /home/stack/templates/nic-config/myController.j2 1
 default_route_network:
 - external
- name: Compute
 count: 3
 defaults:
 networks:
 - network: ctlplane
 vif: true
 - network: internal_api
 subnet: internal_api_subnet02
 - network: tenant
 subnet: tenant_subnet02
 - network: storage
 subnet: storage_subnet02
 network_config:
 template: /home/stack/templates/nic-config/myCompute.j2

You can use the example NIC templates located in
/usr/share/ansible/roles/tripleo_network_config/templates to create your own NIC
templates in your local environment file directory.

6. Optional: Configure the disk partition size allocations if the default disk partition sizes do not
meet your requirements. For example, the default partition size for the /var/log partition is 10
GB. Consider your log storage and retention requirements to determine if 10 GB meets your
requirements. If you need to increase the allocated disk size for your log storage, add the
following configuration to your node definition file to override the defaults:

ansible_playbooks:
 - playbook: /usr/share/ansible/tripleo-playbooks/cli-overcloud-node-growvols.yaml
 extra_vars:
 role_growvols_args:
 default:
 /=8GB
 /tmp=1GB
 /var/log=<log_size>GB

Red Hat OpenStack Platform 17.0 Director Installation and Usage

174

 /var/log/audit=2GB
 /home=1GB
 /var=100%

Replace <log_size> with the size of the disk to allocate to log files.

7. If you use the Object Storage service (swift) and the whole disk overcloud image, overcloud-
hardened-uefi-full, you need to configure the size of the /srv partition based on the size of your
disk and your storage requirements for /var and /srv. For more information, see Configuring
whole disk partitions for the Object Storage service.

8. Optional: Designate the overcloud nodes for specific roles by using custom resource classes or
the profile capability. For more information, see Designating overcloud nodes for roles by
matching resource classes and Designating overcloud nodes for roles by matching profiles .

9. Define any other attributes that you want to assign to your nodes. For more information about
the properties you can use to configure node attributes in your node definition file, see Bare
metal node provisioning attributes. For an example node definition file, see Example node
definition file.

10. Provision the overcloud nodes:

(undercloud)$ openstack overcloud node provision \
 [--templates <templates_directory> \]
 --stack <stack> \
 --network-config \
 --output <deployment_file> \
 /home/stack/templates/<node_definition_file>

Optional: Include the --templates option to use your own templates instead of the default
templates located in /usr/share/openstack-tripleo-heat-templates. Replace
<templates_directory> with the path to the directory that contains your templates.

Replace <stack> with the name of the stack for which the bare-metal nodes are
provisioned. If not specified, the default is overcloud.

Include the --network-config optional argument to provide the network definitions to the
cli-overcloud-node-network-config.yaml Ansible playbook.

Replace <deployment_file> with the name of the heat environment file to generate for
inclusion in the deployment command, for example /home/stack/templates/overcloud-
baremetal-deployed.yaml.

Replace <node_definition_file> with the name of your node definition file, for example,
overcloud-baremetal-deploy.yaml.

11. Monitor the provisioning progress in a separate terminal:

(undercloud)$ watch openstack baremetal node list

When provisioning is successful, the node state changes from available to active.

If the node provisioning fails because of a node hardware or network configuration failure,
then you can remove the failed node before running the provisioning step again. For more
information, see Removing failed bare-metal nodes from the node definition file .

CHAPTER 11. PROVISIONING AND DEPLOYING YOUR OVERCLOUD

175

12. Use the metalsmith tool to obtain a unified view of your nodes, including allocations and ports:

(undercloud)$ metalsmith list

13. Verify the association of nodes to hostnames:

(undercloud)$ openstack baremetal allocation list

Next steps

Configuring and deploying the overcloud

11.2.4. Bare-metal node provisioning attributes

Use the following tables to understand the available properties for configuring node attributes, and the
values that are available for you to use when you provision bare-metal nodes with the openstack
baremetal node provision command.

Role properties: Use the role properties to define each role.

Default and instance properties for each role: Use the default or instance properties to specify
the selection criteria for allocating nodes from the pool of available nodes, and to set attributes
and network configuration properties on the bare-metal nodes.

For information on creating baremetal definition files, see Provisioning bare metal nodes for the
overcloud.

Table 11.1. Role properties

Property Value

name (Mandatory) Role name.

count The number of nodes that you want to provision for this role. The default
value is 1.

defaults A dictionary of default values for instances entry properties. An
instances entry property overrides any defaults that you specify in the
defaults parameter.

instances A dictionary of values that you can use to specify attributes for specific
nodes. For more information about supported properties in the instances
parameter, see defaults and instances properties. The number of nodes
defined must not be greater than the value of the count parameter.

hostname_format Overrides the default hostname format for this role. The default generated
hostname is derived from the overcloud stack name, the role, and an
incrementing index, all in lower case. For example, the default format for the
Controller role is %stackname%-controller-%index%. Only the
Compute role does not follow the role name rule. The Compute default
format is %stackname%-novacompute-%index%.

Red Hat OpenStack Platform 17.0 Director Installation and Usage

176

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.0/html/director_installation_and_usage/assembly_provisioning-and-deploying-your-overcloud#proc_provisioning-bare-metal-nodes-for-the-overcloud_ironic_provisioning

ansible_playbooks A dictionary of values for Ansible playbooks and Ansible variables. The
playbooks are run against the role instances after node provisioning, prior to
the node network configuration. For more information about specifying
Ansible playbooks, see ansible_playbooks properties.

Property Value

Table 11.2. defaults and instances properties

Property Value

hostname (instances only) Specifies the hostname of the node that the instance
properties apply to. The hostname is derived from the hostname_format
property. You can use custom hostnames.

name (instances only) The name of the node that you want to provision.

image Details of the image that you want to provision onto the node. For
information about supported image properties, see image properties.

capabilities Selection criteria to match the node capabilities.

config_drive Add data and first-boot commands to the config-drive passed to the node.
For more information, see config_drive properties.

NOTE

Only use config_drive for configuration that must be
performed on first boot. For all other custom
configurations, create an Ansible playbook and use the
ansible_playbooks property to execute the playbook
against the role instances after node provisioning.

managed Set to true (default) to provision the instance with metalsmith. Set to false
to handle the instance as pre-provisioned.

networks List of dictionaries that represent instance networks. For more information
about configuring network attributes, see network properties.

network_config Link to the network configuration file for the role or instance. For more
information about configuring the link to the network configuration file, see
network_config properties.

profile Selection criteria to for profile matching. For more information, see
Designating overcloud nodes for roles by matching profiles.

provisioned Set to true (default) to provision the node. Set to false to unprovision a
node. For more information, see Scaling down bare-metal nodes.

CHAPTER 11. PROVISIONING AND DEPLOYING YOUR OVERCLOUD

177

resource_class Selection criteria to match the resource class of the node. The default value
is baremetal. For more information, see Designating overcloud nodes for
roles by matching resource classes.

root_size_gb Size of the root partition in GiB. The default value is 49.

swap_size_mb Size of the swap partition in MiB.

traits A list of traits as selection criteria to match the node traits.

Property Value

Table 11.3. image properties

Property Value

href Specifies the URL of the root partition or whole disk image that you want to
provision onto the node. Supported URL schemes: file://, http://, and
https://.

NOTE

If you use the file:// URL scheme to specify a local URL for
the image then the image path must point to the
/var/lib/ironic/images/ directory, because
/var/lib/ironic/images is bind-mounted from the
undercloud into the ironic-conductor container explicitly
for serving images.

checksum Specifies the MD5 checksum of the root partition or whole disk image.
Required when the href is a URL.

kernel Specifies the image reference or URL of the kernel image. Use this property
only for partition images.

ramdisk Specifies the image reference or URL of the ramdisk image. Use this
property only for partition images.

Table 11.4. network properties

Property Value

fixed_ip The specific IP address that you want to use for this network.

network The network where you want to create the network port.

subnet The subnet where you want to create the network port.

Red Hat OpenStack Platform 17.0 Director Installation and Usage

178

port Existing port to use instead of creating a new port.

vif Set to true on the provisioning network (ctlplane) to attach the network as
a virtual interface (VIF). Set to false to create the Networking service API
resource without a VIF attachment.

Property Value

Table 11.5. network_config properties

Property Value

template Specifies the Ansible J2 NIC configuration template to use when applying
node network configuration. For information on configuring the NIC
template, see Configuring overcloud networking.

physical_bridge_name The name of the OVS bridge to create for accessing external networks. The
default bridge name is br-ex.

public_interface_name Specifies the name of the interface to add to the public bridge. The default
interface is nic1.

network_config_update Set to true to apply network configuration changes on update. Disabled by
default.

net_config_data_lookup Specifies the NIC mapping configuration, os-net-config, for each node or
node group.

default_route_network The network to use for the default route. The default route network is
ctlplane

networks_skip_config List of networks to skip when configuring the node networking.

dns_search_domains A list of DNS search domains to be added to resolv.conf, in order of
priority.

bond_interface_ovs_opti
ons

The OVS options or bonding options to use for the bond interface, for
example, lacp=active and bond_mode=balance-slb for OVS bonds,
and mode=4 for Linux bonds.

num_dpdk_interface_rx_
queues

Specifies the number of required RX queues for DPDK bonds or DPDK
ports.

Table 11.6. config_drive properties

Property Value

CHAPTER 11. PROVISIONING AND DEPLOYING YOUR OVERCLOUD

179

cloud_config Dictionary of cloud-init cloud configuration data for tasks to run on node
boot. For example, to write a custom name server to the resolve.conf file
on first boot, add the following cloud_config to your config_drive
property:

config_drive:
 cloud_config:
 manage_resolv_conf: true
 resolv_conf:
 nameservers:
 - 8.8.8.8
 - 8.8.4.4
 searchdomains:
 - abc.example.com
 - xyz.example.com
 domain: example.com
 sortlist:
 - 10.0.0.1/255
 - 10.0.0.2
 options:
 rotate: true
 timeout: 1

meta_data Extra metadata to include with the config-drive cloud-init metadata. The
metadata is added to the generated metadata set on the role name:
public_keys, uuid, name, hostname, and instance-type. Cloud-init
makes this metadata available as instance data.

Property Value

Table 11.7. ansible_playbooks properties

Property Value

playbook The path to the Ansible playbook, relative to the roles definition YAML file.

Red Hat OpenStack Platform 17.0 Director Installation and Usage

180

extra_vars Extra Ansible variables to set when running the playbook. Use the following
syntax to specify extra variables:

ansible_playbooks:
 - playbook: a_playbook.yaml
 extra_vars:
 param1: value1
 param2: value2

For example, to grow the LVM volumes of any node deployed with the whole
disk overcloud image overcloud-hardened-uefi-full.qcow2, add the
following extra variable to your playbook property:

ansible_playbooks:
 - playbook: /usr/share/ansible/tripleo-playbooks/cli-overcloud-
node-growvols.yaml
 extra_vars:
 role_growvols_args:
 default:
 /=8GB
 /tmp=1GB
 /var/log=10GB
 /var/log/audit=2GB
 /home=1GB
 /var=100%
 Controller:
 /=8GB
 /tmp=1GB
 /var/log=10GB
 /var/log/audit=2GB
 /home=1GB
 /srv=50GB
 /var=100%

Property Value

11.2.5. Removing failed bare-metal nodes from the node definition file

If the node provisioning fails because of a node hardware or network configuration failure, then you can
remove the failed node before running the provisioning step again. To remove a bare-metal node that
has failed during provisioning, tag the node that you want to remove from the stack in the node
definition file, and unprovision the node before provisioning the working bare-metal nodes.

Prerequisites

The undercloud is installed. For more information, see Installing director .

The bare-metal node provisioning failed because of a node hardware failure.

Procedure

CHAPTER 11. PROVISIONING AND DEPLOYING YOUR OVERCLOUD

181

1. Source the stackrc undercloud credential file:

$ source ~/stackrc

2. Open your overcloud-baremetal-deploy.yaml node definition file.

3. Decrement the count parameter for the role that the node is allocated to. For example, the
following configuration updates the count parameter for the ObjectStorage role to reflect that
the number of nodes dedicated to ObjectStorage is reduced to 3:

- name: ObjectStorage
 count: 3

4. Define the hostname and name of the node that you want to remove from the stack, if it is not
already defined in the instances attribute for the role.

5. Add the attribute provisioned: false to the node that you want to remove. For example, to
remove the node overcloud-objectstorage-1 from the stack, include the following snippet in
your overcloud-baremetal-deploy.yaml file:

- name: ObjectStorage
 count: 3
 instances:
 - hostname: overcloud-objectstorage-0
 name: node00
 - hostname: overcloud-objectstorage-1
 name: node01
 # Removed from cluster due to disk failure
 provisioned: false
 - hostname: overcloud-objectstorage-2
 name: node02
 - hostname: overcloud-objectstorage-3
 name: node03

6. Unprovision the bare-metal nodes:

(undercloud)$ openstack overcloud node unprovision \
 --stack <stack> \
 --network-ports \
 /home/stack/templates/overcloud-baremetal-deploy.yaml

Replace <stack> with the name of the stack for which the bare-metal nodes are
provisioned. If not specified, the default is overcloud.

7. Provision the overcloud nodes to generate an updated heat environment file for inclusion in the
deployment command:

(undercloud)$ openstack overcloud node provision \
--stack <stack> \
--output <deployment_file> \
/home/stack/templates/overcloud-baremetal-deploy.yaml

Replace <deployment_file> with the name of the heat environment file to generate for

Red Hat OpenStack Platform 17.0 Director Installation and Usage

182

Replace <deployment_file> with the name of the heat environment file to generate for
inclusion in the deployment command, for example /home/stack/templates/overcloud-
baremetal-deployed.yaml.

11.2.6. Designating overcloud nodes for roles by matching resource classes

You can designate overcloud nodes for specific roles by using custom resource classes. Resource
classes match your nodes to deployment roles. By default all nodes are assigned the resource class of
baremetal.

NOTE

To change the resource class assigned to a node after the node is provisioned you must
use the scale down procedure to unprovision the node, then use the scale up procedure
to reprovision the node with the new resource class assignment. For more information,
see Scaling overcloud nodes .

Prerequisites

You are performing the initial provisioning of your bare metal nodes for the overcloud.

Procedure

1. Assign each bare metal node that you want to designate for a role with a custom resource class:

(undercloud)$ openstack baremetal node set \
 --resource-class <resource_class> <node>

Replace <resource_class> with a name for the resource class, for example,
baremetal.CPU-PINNING.

Replace <node> with the ID of the bare metal node.

2. Add the role to your overcloud-baremetal-deploy.yaml file, if not already defined.

3. Specify the resource class that you want to assign to the nodes for the role:

- name: <role>
 count: 1
 defaults:
 resource_class: <resource_class>

Replace <role> with the name of the role.

Replace <resource_class> with the name you specified for the resource class in step 1.

4. Return to Provisioning bare metal nodes for the overcloud to complete the provisioning
process.

11.2.7. Designating overcloud nodes for roles by matching profiles

You can designate overcloud nodes for specific roles by using the profile capability. Profiles match node
capabilities to deployment roles.

TIP

CHAPTER 11. PROVISIONING AND DEPLOYING YOUR OVERCLOUD

183

TIP

You can also perform automatic profile assignment by using introspection rules. For more information,
see Configuring automatic profile tagging .

NOTE

To change the profile assigned to a node after the node is provisioned you must use the
scale down procedure to unprovision the node, then use the scale up procedure to
reprovision the node with the new profile assignment. For more information, see Scaling
overcloud nodes.

Prerequisites

You are performing the initial provisioning of your bare metal nodes for the overcloud.

Procedure

1. Existing node capabilities are overwritten each time you add a new node capability. Therefore,
you must retrieve the existing capabilities of each registered node in order to set them again:

$ openstack baremetal node show <node> \
 -f json -c properties | jq -r .properties.capabilities

2. Assign the profile capability to each bare metal node that you want to match to a role profile, by
adding profile:<profile> to the existing capabilities of the node:

(undercloud)$ openstack baremetal node set <node> \
 --property capabilities="profile:<profile>,<capability_1>,...,<capability_n>"

Replace <node> with the name or ID of the bare metal node.

Replace <profile> with the name of the profile that matches the role profile.

Replace <capability_1>, and all capabilities up to <capability_n>, with each capability that
you retrieved in step 1.

3. Add the role to your overcloud-baremetal-deploy.yaml file, if not already defined.

4. Define the profile that you want to assign to the nodes for the role:

- name: <role>
 count: 1
 defaults:
 profile: <profile>

Replace <role> with the name of the role.

Replace <profile> with the name of the profile that matches the node capability.

5. Return to Provisioning bare metal nodes for the overcloud to complete the provisioning
process.

11.2.8. Configuring whole disk partitions for the Object Storage service

Red Hat OpenStack Platform 17.0 Director Installation and Usage

184

The whole disk image, overcloud-hardened-uefi-full, is partitioned into separate volumes. By default,
the /var partition of nodes deployed with the whole disk overcloud image is automatically increased until
the disk is fully allocated. If you use the Object Storage service (swift), configure the size of the /srv
partition based on the size of your disk and your storage requirements for /var and /srv.

Prerequisites

You are performing the initial provisioning of your bare metal nodes for the overcloud.

Procedure

1. Configure the /srv and /var partitions by using role_growvols_args as an extra Ansible variable
in the Ansible_playbooks definition in your overcloud-baremetal-deploy.yaml node definition
file. Set either /srv or /var to an absolute size in GB, and set the other to 100% to consume the
remaining disk space.

The following example configuration sets /srv to an absolute size for the Object Storage
service deployed on the Controller node, and /var to 100% to consume the remaining disk
space:

ansible_playbooks:
 - playbook: /usr/share/ansible/tripleo-playbooks/cli-overcloud-node-growvols.yaml
 extra_vars:
 role_growvols_args:
 default:
 /=8GB
 /tmp=1GB
 /var/log=10GB
 /var/log/audit=2GB
 /home=1GB
 /var=100%
 Controller:
 /=8GB
 /tmp=1GB
 /var/log=10GB
 /var/log/audit=2GB
 /home=1GB
 /srv=50GB
 /var=100%

The following example configuration sets /var to an absolute size, and /srv to 100% to
consume the remaining disk space of the Object Storage node for the Object Storage
service:

ansible_playbooks:
 - playbook: /usr/share/ansible/tripleo-playbooks/cli-overcloud-node-growvols.yaml
 extra_vars:
 role_growvols_args:
 default:
 /=8GB
 /tmp=1GB
 /var/log=10GB
 /var/log/audit=2GB
 /home=1GB
 /var=100%

CHAPTER 11. PROVISIONING AND DEPLOYING YOUR OVERCLOUD

185

 ObjectStorage:
 /=8GB
 /tmp=1GB
 /var/log=10GB
 /var/log/audit=2GB
 /home=1GB
 /var=10GB
 /srv=100%

2. Return to Provisioning bare metal nodes for the overcloud to complete the provisioning
process.

11.2.9. Example node definition file

The following example node definition file defines predictive node placements for three Controller
nodes and three Compute nodes, and the default networks they use. The example also illustrates how to
define custom roles that have nodes designated based on matching a resource class or a node capability
profile.

- name: Controller
 count: 3
 defaults:
 image:
 href: file:///var/lib/ironic/images/overcloud-custom.qcow2
 networks:
 - network: ctlplane
 vif: true
 - network: external
 subnet: external_subnet
 - network: internal_api
 subnet: internal_api_subnet01
 - network: storage
 subnet: storage_subnet01
 - network: storagemgmt
 subnet: storage_mgmt_subnet01
 - network: tenant
 subnet: tenant_subnet01
 network_config:
 template: /home/stack/templates/nic-config/myController.j2
 default_route_network:
 - external
 profile: nodeCapability
 instances:
 - hostname: overcloud-controller-0
 name: node00
 - hostname: overcloud-controller-1
 name: node01
 - hostname: overcloud-controller-2
 name: node02
- name: Compute
 count: 3
 defaults:
 networks:
 - network: ctlplane
 vif: true

Red Hat OpenStack Platform 17.0 Director Installation and Usage

186

 - network: internal_api
 subnet: internal_api_subnet02
 - network: tenant
 subnet: tenant_subnet02
 - network: storage
 subnet: storage_subnet02
 network_config:
 template: /home/stack/templates/nic-config/myCompute.j2
 resource_class: baremetal.COMPUTE
 instances:
 - hostname: overcloud-novacompute-0
 name: node04
 - hostname: overcloud-novacompute-1
 name: node05
 - hostname: overcloud-novacompute-2
 name: node06

11.2.10. Enabling virtual media boot

IMPORTANT

This feature is available in this release as a Technology Preview , and therefore is not fully
supported by Red Hat. It should only be used for testing, and should not be deployed in a
production environment. For more information about Technology Preview features, see
Scope of Coverage Details.

You can use Redfish virtual media boot to supply a boot image to the Baseboard Management
Controller (BMC) of a node so that the BMC can insert the image into one of the virtual drives. The
node can then boot from the virtual drive into the operating system that exists in the image.

Redfish hardware types support booting deploy, rescue, and user images over virtual media. The Bare
Metal Provisioning service (ironic) uses kernel and ramdisk images associated with a node to build
bootable ISO images for UEFI or BIOS boot modes at the moment of node deployment. The major
advantage of virtual media boot is that you can eliminate the TFTP image transfer phase of PXE and
use HTTP GET, or other methods, instead.

To boot a node with the redfish hardware type over virtual media, set the boot interface to redfish-
virtual-media and define the EFI System Partition (ESP) image. Then configure an enrolled node to use
Redfish virtual media boot.

Prerequisites

Redfish driver enabled in the enabled_hardware_types parameter in the undercloud.conf file.

A bare-metal node registered and enrolled.

IPA and instance images in the Image Service (glance).

For UEFI nodes, you must also have an EFI system partition image (ESP) available in the Image
Service (glance).

A bare-metal flavor.

A network for cleaning and provisioning.

CHAPTER 11. PROVISIONING AND DEPLOYING YOUR OVERCLOUD

187

https://access.redhat.com/support/offerings/production/scope_moredetail

Procedure

1. Log in to the undercloud host as the stack user.

2. Source the stackrc undercloud credentials file:

$ source ~/stackrc

3. Set the Bare Metal Provisioning service boot interface to redfish-virtual-media:

(undercloud)$ openstack baremetal node set --boot-interface redfish-virtual-media <node>

Replace <node> with the name of the node.

4. Define the ESP image:

(undercloud)$ openstack baremetal node set --driver-info bootloader=<esp> <node>

Replace <esp> with the Image service (glance) image UUID or the URL for the ESP image.

Replace <node> with the name of the node.

5. Create a port on the bare-metal node and associate the port with the MAC address of the NIC
on the bare-metal node:

(undercloud)$ openstack baremetal port create --pxe-enabled True \
 --node <node_uuid> <mac_address>

Replace <node_uuid> with the UUID of the bare-metal node.

Replace <mac_address> with the MAC address of the NIC on the bare-metal node.

11.2.11. Defining the root disk for multi-disk Ceph clusters

Ceph Storage nodes typically use multiple disks. Director must identify the root disk in multiple disk
configurations. The overcloud image is written to the root disk during the provisioning process.

Hardware properties are used to identify the root disk. For more information about properties you can
use to identify the root disk, see Section 11.2.12, “Properties that identify the root disk” .

Procedure

1. Verify the disk information from the hardware introspection of each node:

(undercloud)$ openstack baremetal introspection data save <node_uuid> | --file
<output_file_name>

Replace <node_uuid> with the UUID of the node.

Replace <output_file_name> with the name of the file that contains the output of the
node introspection.
For example, the data for one node might show three disks:

[

Red Hat OpenStack Platform 17.0 Director Installation and Usage

188

 {
 "size": 299439751168,
 "rotational": true,
 "vendor": "DELL",
 "name": "/dev/sda",
 "wwn_vendor_extension": "0x1ea4dcc412a9632b",
 "wwn_with_extension": "0x61866da04f3807001ea4dcc412a9632b",
 "model": "PERC H330 Mini",
 "wwn": "0x61866da04f380700",
 "serial": "61866da04f3807001ea4dcc412a9632b"
 }
 {
 "size": 299439751168,
 "rotational": true,
 "vendor": "DELL",
 "name": "/dev/sdb",
 "wwn_vendor_extension": "0x1ea4e13c12e36ad6",
 "wwn_with_extension": "0x61866da04f380d001ea4e13c12e36ad6",
 "model": "PERC H330 Mini",
 "wwn": "0x61866da04f380d00",
 "serial": "61866da04f380d001ea4e13c12e36ad6"
 }
 {
 "size": 299439751168,
 "rotational": true,
 "vendor": "DELL",
 "name": "/dev/sdc",
 "wwn_vendor_extension": "0x1ea4e31e121cfb45",
 "wwn_with_extension": "0x61866da04f37fc001ea4e31e121cfb45",
 "model": "PERC H330 Mini",
 "wwn": "0x61866da04f37fc00",
 "serial": "61866da04f37fc001ea4e31e121cfb45"
 }
]

2. Set the root disk for the node by using a unique hardware property:
(undercloud)$ openstack baremetal node set --property root_device='{<property_value>}'
<node-uuid>

Replace <property_value> with the unique hardware property value from the introspection
data to use to set the root disk.

Replace <node_uuid> with the UUID of the node.

NOTE

A unique hardware property is any property from the hardware introspection
step that uniquely identifies the disk. For example, the following command
uses the disk serial number to set the root disk:

(undercloud)$ openstack baremetal node set --property
root_device='{"serial": "61866da04f380d001ea4e13c12e36ad6"}'
1a4e30da-b6dc-499d-ba87-0bd8a3819bc0

3. Configure the BIOS of each node to first boot from the network and then the root disk.

CHAPTER 11. PROVISIONING AND DEPLOYING YOUR OVERCLOUD

189

Director identifies the specific disk to use as the root disk. When you run the openstack overcloud
node provision command, director provisions and writes the overcloud image to the root disk.

11.2.12. Properties that identify the root disk

There are several properties that you can define to help director identify the root disk:

model (String): Device identifier.

vendor (String): Device vendor.

serial (String): Disk serial number.

hctl (String): Host:Channel:Target:Lun for SCSI.

size (Integer): Size of the device in GB.

wwn (String): Unique storage identifier.

wwn_with_extension (String): Unique storage identifier with the vendor extension appended.

wwn_vendor_extension (String): Unique vendor storage identifier.

rotational (Boolean): True for a rotational device (HDD), otherwise false (SSD).

name (String): The name of the device, for example: /dev/sdb1.

IMPORTANT

Use the name property for devices with persistent names. Do not use the name property
to set the root disk for devices that do not have persistent names because the value can
change when the node boots.

11.2.13. Using the overcloud-minimal image to avoid using a Red Hat subscription
entitlement

The default image for a Red Hat OpenStack Platform (RHOSP) deployment is overcloud-hardened-
uefi-full.qcow2. The overcloud-hardened-uefi-full.qcow2 image uses a valid Red Hat OpenStack
Platform (RHOSP) subscription. You can use the overcloud-minimal image when you do not want to
consume your subscription entitlements, to avoid reaching the limit of your paid Red Hat subscriptions.
This is useful, for example, when you want to provision nodes with only Ceph daemons, or when you want
to provision a bare operating system (OS) where you do not want to run any other OpenStack services.
For information about how to obtain the overcloud-minimal image, see Obtaining images for
overcloud nodes.

NOTE

The overcloud-minimal image supports only standard Linux bridges. The overcloud-
minimal image does not support Open vSwitch (OVS) because OVS is an OpenStack
service that requires a Red Hat OpenStack Platform subscription entitlement. OVS is not
required to deploy Ceph Storage nodes. Use linux_bond instead of ovs_bond to define
bonds. For more information about linux_bond, see Creating Linux bonds .

Procedure

Red Hat OpenStack Platform 17.0 Director Installation and Usage

190

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.0/html/director_installation_and_usage/assembly_installing-director-on-the-undercloud#assembly_obtaining-images-for-overcloud-nodes
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.0/html-single/director_installation_and_usage/index#con_creating-linux-bonds_network-interface-bonding

1. Open your overcloud-baremetal-deploy.yaml file.

2. Add or update the image property for the nodes that you want to use the overcloud-minimal
image. You can set the image to overcloud-minimal on specific nodes, or for all nodes for a
role:

Specific nodes

- name: Ceph
 count: 3
 instances:
 - hostname: overcloud-ceph-0
 name: node00
 image:
 href: file:///var/lib/ironic/images/overcloud-minimal.qcow2
 - hostname: overcloud-ceph-1
 name: node01
 image:
 href: file:///var/lib/ironic/images/overcloud-full-custom.qcow2
 - hostname: overcloud-ceph-2
 name: node02
 image:
 href: file:///var/lib/ironic/images/overcloud-full-custom.qcow2

All nodes for a role

- name: Ceph
 count: 3
 defaults:
 image:
 href: file:///var/lib/ironic/images/overcloud-minimal.qcow2
 instances:
 - hostname: overcloud-ceph-0
 name: node00
 - hostname: overcloud-ceph-1
 name: node01
 - hostname: overcloud-ceph-2
 name: node02

3. In the roles_data.yaml role definition file, set the rhsm_enforce parameter to False.

rhsm_enforce: False

4. Run the provisioning command:

(undercloud)$ openstack overcloud node provision \
--stack stack \
--output /home/stack/templates/overcloud-baremetal-deployed.yaml \
/home/stack/templates/overcloud-baremetal-deploy.yaml

5. Pass the overcloud-baremetal-deployed.yaml environment file to the openstack overcloud
deploy command.

CHAPTER 11. PROVISIONING AND DEPLOYING YOUR OVERCLOUD

191

11.3. CONFIGURING AND DEPLOYING THE OVERCLOUD

After you have provisioned the network resources and bare-metal nodes for your overcloud, you can
configure your overcloud by using the unedited heat template files provided with your director
installation, and any custom environment files you create. When you have completed the configuration
of your overcloud, you can deploy the overcloud environment.

IMPORTANT

A basic overcloud uses local LVM storage for block storage, which is not a supported
configuration. Red Hat recommends that you use an external storage solution, such as
Red Hat Ceph Storage, for block storage.

11.3.1. Prerequisites

You have provisioned the network resources and bare-metal nodes required for your overcloud.

11.3.2. Configuring your overcloud by using environment files

The undercloud includes a set of heat templates that form the plan for your overcloud creation. You can
customize aspects of the overcloud with environment files, which are YAML-formatted files that
override parameters and resources in the core heat template collection. You can include as many
environment files as necessary. The environment file extension must be .yaml or .template.

Red Hat recommends that you organize your custom environment files in a separate directory, such as
the templates directory.

You include environment files in your overcloud deployment by using the -e option. Any environment
files that you add to the overcloud using the -e option become part of the stack definition of the
overcloud. The order of the environment files is important because the parameters and resources that
you define in subsequent environment files take precedence.

To modify the overcloud configuration after initial deployment, perform the following actions:

1. Modify parameters in the custom environment files and heat templates.

2. Run the openstack overcloud deploy command again with the same environment files.

Do not edit the overcloud configuration directly because director overrides any manual configuration
when you update the overcloud stack.

NOTE

Open Virtual Networking (OVN) is the default networking mechanism driver in Red Hat
OpenStack Platform 17.0. If you want to use OVN with distributed virtual routing (DVR),
you must include the environments/services/neutron-ovn-dvr-ha.yaml file in the
openstack overcloud deploy command. If you want to use OVN without DVR, you must
include the environments/services/neutron-ovn-ha.yaml file in the openstack
overcloud deploy command.

11.3.3. Creating an environment file for undercloud CA trust

If your undercloud uses TLS and the Certificate Authority (CA) is not publicly trusted, you can use the
CA for SSL endpoint encryption that the undercloud operates. To ensure that the undercloud
endpoints are accessible to the rest of your deployment, configure your overcloud nodes to trust the

Red Hat OpenStack Platform 17.0 Director Installation and Usage

192

undercloud CA.

NOTE

For this approach to work, your overcloud nodes must have a network route to the public
endpoint on the undercloud. It is likely that you must apply this configuration for
deployments that rely on spine-leaf networking.

There are two types of custom certificates you can use in the undercloud:

User-provided certificates - This definition applies when you have provided your own
certificate. This can be from your own CA, or it can be self-signed. This is passed using the
undercloud_service_certificate option. In this case, you must either trust the self-signed
certificate, or the CA (depending on your deployment).

Auto-generated certificates - This definition applies when you use certmonger to generate
the certificate using its own local CA. Enable auto-generated certificates with the
generate_service_certificate option in the undercloud.conf file. In this case, director
generates a CA certificate at /etc/pki/ca-trust/source/anchors/cm-local-ca.pem and the
director configures the undercloud’s HAProxy instance to use a server certificate. Add the CA
certificate to the inject-trust-anchor-hiera.yaml file to present the certificate to OpenStack
Platform.

This example uses a self-signed certificate located in /home/stack/ca.crt.pem. If you use auto-
generated certificates, use /etc/pki/ca-trust/source/anchors/cm-local-ca.pem instead.

Procedure

1. Open the certificate file and copy only the certificate portion. Do not include the key:

$ vi /home/stack/ca.crt.pem

The certificate portion you need looks similar to this shortened example:

-----BEGIN CERTIFICATE-----
MIIDlTCCAn2gAwIBAgIJAOnPtx2hHEhrMA0GCSqGSIb3DQEBCwUAMGExCzAJBgNV
BAYTAlVTMQswCQYDVQQIDAJOQzEQMA4GA1UEBwwHUmFsZWlnaDEQMA4GA1UECg
wH
UmVkIEhhdDELMAkGA1UECwwCUUUxFDASBgNVBAMMCzE5Mi4xNjguMC4yMB4XDTE3
-----END CERTIFICATE-----

2. Create a new YAML file called /home/stack/inject-trust-anchor-hiera.yaml with the following
contents, and include the certificate you copied from the PEM file:

parameter_defaults:
 CAMap:
 undercloud-ca:
 content: |
 -----BEGIN CERTIFICATE-----
 MIIDlTCCAn2gAwIBAgIJAOnPtx2hHEhrMA0GCSqGSIb3DQEBCwUAMGExCzAJBgNV

BAYTAlVTMQswCQYDVQQIDAJOQzEQMA4GA1UEBwwHUmFsZWlnaDEQMA4GA1UECg
wH

CHAPTER 11. PROVISIONING AND DEPLOYING YOUR OVERCLOUD

193

UmVkIEhhdDELMAkGA1UECwwCUUUxFDASBgNVBAMMCzE5Mi4xNjguMC4yMB4XDTE3
 -----END CERTIFICATE-----

NOTE

The certificate string must follow the PEM format.

The CAMap parameter might contain other certificates relevant to SSL/TLS
configuration.

3. Add the /home/stack/inject-trust-anchor-hiera.yaml file to your deployment command.
Director copies the CA certificate to each overcloud node during the overcloud deployment. As
a result, each node trusts the encryption presented by the undercloud’s SSL endpoints.

11.3.4. Disabling TSX on new deployments

From Red Hat Enterprise Linux 8.3 onwards, the kernel disables support for the Intel Transactional
Synchronization Extensions (TSX) feature by default.

You must explicitly disable TSX for new overclouds unless you strictly require it for your workloads or
third party vendors.

Set the KernelArgs heat parameter in an environment file.

parameter_defaults:
 ComputeParameters:
 KernelArgs: "tsx=off"

Include the environment file when you run your openstack overcloud deploy command.

Additional resources

"Guidance on Intel TSX impact on OpenStack guests (applies for RHEL 8.3 and above)"

11.3.5. Validating your overcloud configuration

Before deploying your overcloud, validate your heat templates and environment files.

IMPORTANT

As a result of a change to the API in 17.0, the following validations are currently
unstable:

switch-vlans

network-environment

dhcp-provisioning

A FAILED validation does not prevent you from deploying or running Red Hat
OpenStack Platform. However, a FAILED validation can indicate a potential issue
with a production environment.

Red Hat OpenStack Platform 17.0 Director Installation and Usage

194

https://access.redhat.com/solutions/6036141

Procedure

1. Log in to the undercloud host as the stack user.

2. Source the stackrc undercloud credentials file:

$ source ~/stackrc

3. Update your overcloud stack with all the environment files your deployment requires:

$ openstack overcloud deploy --templates \
 -e environment-file1.yaml \
 -e environment-file2.yaml \
 ...
 --stack-only

4. Validate your overcloud stack:

$ validation run \
 --group pre-deployment \
 --inventory <inventory_file>

Replace <inventory_file> with the name and location of the Ansible inventory file, for
example, ~/tripleo-deploy/undercloud/tripleo-ansible-inventory.yaml.

NOTE

When you run a validation, the Reasons column in the output is limited to 79
characters. To view the validation result in full, view the validation log files.

5. Review the results of the validation report:

$ validation history get [--full] [--validation-log-dir <log_dir>] <uuid>

Optional: Use the --full option to view detailed output from the validation run.

Optional: Use the --validation-log-dir option to write the output from the validation run to
the validation logs.

Replace <uuid> with the UUID of the validation run.

11.3.6. Creating your overcloud

The final stage in creating your Red Hat OpenStack Platform (RHOSP) overcloud environment is to run
the openstack overcloud deploy command to create the overcloud. For information about the options
available to use with the openstack overcloud deploy command, see Deployment command options.

Procedure

1. Collate the environment files and configuration files that you need for your overcloud
environment, both the unedited heat template files provided with your director installation, and
the custom environment files you created. This should include the following files:

overcloud-baremetal-deployed.yaml node definition file.

CHAPTER 11. PROVISIONING AND DEPLOYING YOUR OVERCLOUD

195

overcloud-networks-deployed.yaml network definition file.

overcloud-vip-deployed.yaml network VIP definition file.

The location of the container images for containerized OpenStack services.

Any environment files for Red Hat CDN or Satellite registration.

Any other custom environment files.

2. Organize the environment files and configuration files by their order of precedence, listing
unedited heat template files first, followed by your environment files that contain custom
configuration, such as overrides to the default properties.

3. Construct your openstack overcloud deploy command, specifying the configuration files and
templates in the required order, for example:

(undercloud) $ openstack overcloud deploy --templates \
 [-n /home/stack/templates/network_data.yaml \]
 -e /home/stack/templates/overcloud-baremetal-deployed.yaml\
 -e /home/stack/templates/overcloud-networks-deployed.yaml\
 -e /home/stack/templates/overcloud-vip-deployed.yaml \
 -e /home/stack/containers-prepare-parameter.yaml \
 -e /home/stack/inject-trust-anchor-hiera.yaml \
 [-r /home/stack/templates/roles_data.yaml]

-n /home/stack/templates/network_data.yaml

Specifies the custom network configuration. Required if you use network isolation or custom
composable networks. For information on configuring overcloud networks, see Configuring
overcloud networking.

-e /home/stack/containers-prepare-parameter.yaml

Adds the container image preparation environment file. You generated this file during the
undercloud installation and can use the same file for your overcloud creation.

-e /home/stack/inject-trust-anchor-hiera.yaml

Adds an environment file to install a custom certificate in the undercloud.

-r /home/stack/templates/roles_data.yaml

The generated roles data, if you use custom roles or want to enable a multi-architecture
cloud.

4. When the overcloud creation completes, director provides a recap of the Ansible plays that were
executed to configure the overcloud:

PLAY RECAP ***
overcloud-compute-0 : ok=160 changed=67 unreachable=0 failed=0
overcloud-controller-0 : ok=210 changed=93 unreachable=0 failed=0
undercloud : ok=10 changed=7 unreachable=0 failed=0

Tuesday 15 October 2018 18:30:57 +1000 (0:00:00.107) 1:06:37.514 ******
==

5. When the overcloud creation completes, director provides details to access your overcloud:

Ansible passed.

Red Hat OpenStack Platform 17.0 Director Installation and Usage

196

Overcloud configuration completed.
Overcloud Endpoint: http://192.168.24.113:5000
Overcloud Horizon Dashboard URL: http://192.168.24.113:80/dashboard
Overcloud rc file: /home/stack/overcloudrc
Overcloud Deployed

TIP

You can keep your deployment command in a file that you add to every time you update your
configuration with a new env file.

11.3.7. Deployment command options

The following table lists the additional parameters for the openstack overcloud deploy command.

IMPORTANT

Some options are available in this release as a Technology Preview and therefore are not
fully supported by Red Hat. They should only be used for testing and should not be used
in a production environment. For more information about Technology Preview features,
see Scope of Coverage Details.

Table 11.8. Deployment command options

Parameter Description

--templates [TEMPLATES] The directory that contains the heat templates that
you want to deploy. If blank, the deployment
command uses the default template location at
/usr/share/openstack-tripleo-heat-templates/

--stack STACK The name of the stack that you want to create or
update

-t [TIMEOUT], --timeout [TIMEOUT] The deployment timeout duration in minutes

--libvirt-type [LIBVIRT_TYPE] The virtualization type that you want to use for
hypervisors

--ntp-server [NTP_SERVER] The Network Time Protocol (NTP) server that you
want to use to synchronize time. You can also specify
multiple NTP servers in a comma-separated list, for
example: --ntp-server
0.centos.pool.org,1.centos.pool.org. For a high
availability cluster deployment, it is essential that
your Controller nodes are consistently referring to
the same time source. Note that a typical
environment might already have a designated NTP
time source with established practices.

CHAPTER 11. PROVISIONING AND DEPLOYING YOUR OVERCLOUD

197

https://access.redhat.com/support/offerings/production/scope_moredetail

--no-proxy [NO_PROXY] Defines custom values for the environment variable
no_proxy, which excludes certain host names from
proxy communication.

--overcloud-ssh-user
OVERCLOUD_SSH_USER

Defines the SSH user to access the overcloud nodes.
Normally SSH access occurs through the tripleo-
admin user.

--overcloud-ssh-key OVERCLOUD_SSH_KEY Defines the key path for SSH access to overcloud
nodes.

--overcloud-ssh-network
OVERCLOUD_SSH_NETWORK

Defines the network name that you want to use for
SSH access to overcloud nodes.

-e [EXTRA HEAT TEMPLATE], --environment-
file [ENVIRONMENT FILE]

Extra environment files that you want to pass to the
overcloud deployment. You can specify this option
more than once. Note that the order of environment
files that you pass to the openstack overcloud
deploy command is important. For example,
parameters from each sequential environment file
override the same parameters from earlier
environment files.

--environment-directory A directory that contains environment files that you
want to include in deployment. The deployment
command processes these environment files in
numerical order, then alphabetical order.

-r ROLES_FILE Defines the roles file and overrides the default
roles_data.yaml in the --templates directory. The
file location can be an absolute path or the path
relative to --templates.

-n NETWORKS_FILE Defines the networks file and overrides the default
network_data.yaml in the --templates directory. The
file location can be an absolute path or the path
relative to --templates.

-p PLAN_ENVIRONMENT_FILE Defines the plan Environment file and overrides the
default plan-environment.yaml in the --
templates directory. The file location can be an
absolute path or the path relative to --templates.

--no-cleanup Use this option if you do not want to delete
temporary files after deployment, and log their
location.

Parameter Description

Red Hat OpenStack Platform 17.0 Director Installation and Usage

198

--update-plan-only Use this option if you want to update the plan without
performing the actual deployment.

--validation-errors-nonfatal The overcloud creation process performs a set of
pre-deployment checks. This option exits if any non-
fatal errors occur from the pre-deployment checks. It
is advisable to use this option as any errors can cause
your deployment to fail.

--validation-warnings-fatal The overcloud creation process performs a set of
pre-deployment checks. This option exits if any non-
critical warnings occur from the pre-deployment
checks. openstack-tripleo-validations

--dry-run Use this option if you want to perform a validation
check on the overcloud without creating the
overcloud.

--run-validations Use this option to run external validations from the
openstack-tripleo-validations package.

--skip-postconfig Use this option to skip the overcloud post-
deployment configuration.

--force-postconfig Use this option to force the overcloud post-
deployment configuration.

--skip-deploy-identifier Use this option if you do not want the deployment
command to generate a unique identifier for the
DeployIdentifier parameter. The software
configuration deployment steps only trigger if there
is an actual change to the configuration. Use this
option with caution and only if you are confident that
you do not need to run the software configuration,
such as scaling out certain roles.

--answers-file ANSWERS_FILE The path to a YAML file with arguments and
parameters.

--disable-password-generation Use this option if you want to disable password
generation for the overcloud services.

--deployed-server Use this option if you want to deploy pre-provisioned
overcloud nodes. Used in conjunction with --
disable-validations.

Parameter Description

CHAPTER 11. PROVISIONING AND DEPLOYING YOUR OVERCLOUD

199

--no-config-download, --stack-only Use this option if you want to disable the config-
download workflow and create only the stack and
associated OpenStack resources. This command
applies no software configuration to the overcloud.

--config-download-only Use this option if you want to disable the overcloud
stack creation and only run the config-download
workflow to apply the software configuration.

--output-dir OUTPUT_DIR The directory that you want to use for saved config-
download output. The directory must be writeable
by the mistral user. When not specified, director uses
the default, which is /var/lib/mistral/overcloud.

--override-ansible-cfg
OVERRIDE_ANSIBLE_CFG

The path to an Ansible configuration file. The
configuration in the file overrides any configuration
that config-download generates by default.

--config-download-timeout
CONFIG_DOWNLOAD_TIMEOUT

The timeout duration in minutes that you want to use
for config-download steps. If unset, director sets
the default to the amount of time remaining from the
--timeout parameter after the stack deployment
operation.

--limit NODE1,NODE2 (Technology Preview) Use this option with a
comma-separated list of nodes to limit the config-
download playbook execution to a specific node or
set of nodes. For example, the --limit option can be
useful for scale-up operations, when you want to run
config-download only on new nodes. This argument
might cause live migration of instances between
hosts to fail, see Running config-download with the
ansible-playbook-command.sh script

--tags TAG1,TAG2 (Technology Preview) Use this option with a
comma-separated list of tags from the config-
download playbook to run the deployment with a
specific set of config-download tasks.

--skip-tags TAG1,TAG2 (Technology Preview) Use this option with a
comma-separated list of tags that you want to skip
from the config-download playbook.

Parameter Description

Run the following command to view a full list of options:

(undercloud) $ openstack help overcloud deploy

Red Hat OpenStack Platform 17.0 Director Installation and Usage

200

Some command line parameters are outdated or deprecated in favor of using heat template
parameters, which you include in the parameter_defaults section in an environment file. The following
table maps deprecated parameters to their heat template equivalents.

Table 11.9. Mapping deprecated CLI parameters to heat template parameters

Parameter Description Heat template parameter

--control-scale The number of Controller nodes
to scale out

ControllerCount

--compute-scale The number of Compute nodes to
scale out

ComputeCount

--ceph-storage-scale The number of Ceph Storage
nodes to scale out

CephStorageCount

--block-storage-scale The number of Block Storage
(cinder) nodes to scale out

BlockStorageCount

--swift-storage-scale The number of Object Storage
(swift) nodes to scale out

ObjectStorageCount

--control-flavor The flavor that you want to use
for Controller nodes

OvercloudControllerFlavor

--compute-flavor The flavor that you want to use
for Compute nodes

OvercloudComputeFlavor

--ceph-storage-flavor The flavor that you want to use
for Ceph Storage nodes

OvercloudCephStorageFlavo
r

--block-storage-flavor The flavor that you want to use
for Block Storage (cinder) nodes

OvercloudBlockStorageFlav
or

--swift-storage-flavor The flavor that you want to use
for Object Storage (swift) nodes

OvercloudSwiftStorageFlavo
r

--validation-errors-fatal The overcloud creation process
performs a set of pre-deployment
checks. This option exits if any
fatal errors occur from the pre-
deployment checks. It is advisable
to use this option because any
errors can cause your deployment
to fail.

No parameter mapping

CHAPTER 11. PROVISIONING AND DEPLOYING YOUR OVERCLOUD

201

--disable-validations Disable the pre-deployment
validations entirely. These
validations were built-in pre-
deployment validations, which
have been replaced with external
validations from the openstack-
tripleo-validations package.

No parameter mapping

--config-download Run deployment using the
config-download mechanism.
This is now the default and this
CLI options may be removed in
the future.

No parameter mapping

--rhel-reg Use this option to register
overcloud nodes to the Customer
Portal or Satellite 6.

RhsmVars

--reg-method Use this option to define the
registration method that you want
to use for the overcloud nodes.
satellite for Red Hat Satellite 6
or Red Hat Satellite 5, portal for
Customer Portal.

RhsmVars

--reg-org [REG_ORG] The organization that you want to
use for registration.

RhsmVars

--reg-force Use this option to register the
system even if it is already
registered.

RhsmVars

Parameter Description Heat template parameter

Red Hat OpenStack Platform 17.0 Director Installation and Usage

202

--reg-sat-url
[REG_SAT_URL]

The base URL of the Satellite
server to register overcloud
nodes. Use the Satellite HTTP
URL and not the HTTPS URL for
this parameter. For example, use
http://satellite.example.com and
not https://satellite.example.com.
The overcloud creation process
uses this URL to determine
whether the server is a Red Hat
Satellite 5 or Red Hat Satellite 6
server. If the server is a Red Hat
Satellite 6 server, the overcloud
obtains the katello-ca-
consumer-latest.noarch.rpm
file, registers with subscription-
manager, and installs katello-
agent. If the server is a Red Hat
Satellite 5 server, the overcloud
obtains the RHN-ORG-
TRUSTED-SSL-CERT file and
registers with rhnreg_ks.

RhsmVars

--reg-activation-key
[REG_ACTIVATION_KEY]

Use this option to define the
activation key that you want to
use for registration.

RhsmVars

Parameter Description Heat template parameter

These parameters are scheduled for removal in a future version of Red Hat OpenStack Platform.

11.3.8. Validating your overcloud deployment

Validate your deployed overcloud.

Prerequisites

You have deployed your overcloud.

Procedure

1. Source the stackrc credentials file:

$ source ~/stackrc

2. Validate your overcloud deployment:

$ validation run \
 --group post-deployment \
 [--inventory <inventory_file>]

Replace <inventory_file> with the name of your ansible inventory file. By default, the

CHAPTER 11. PROVISIONING AND DEPLOYING YOUR OVERCLOUD

203

Replace <inventory_file> with the name of your ansible inventory file. By default, the
dynamic inventory is called tripleo-ansible-inventory.

NOTE

When you run a validation, the Reasons column in the output is limited to 79
characters. To view the validation result in full, view the validation log files.

3. Review the results of the validation report:

$ validation show run [--full] <UUID>

Replace <UUID> with the UUID of the validation run.

Optional: Use the --full option to view detailed output from the validation run.

IMPORTANT

A FAILED validation does not prevent you from deploying or running Red Hat OpenStack
Platform. However, a FAILED validation can indicate a potential issue with a production
environment.

Addtional resources

Using the validation framework

11.3.9. Accessing the overcloud

Director generates a credential file containing the credentials necessary to operate the overcloud from
the undercloud. Director saves this file, overcloudrc, in the home directory of the stack user.

Procedure

1. Source the overcloudrc file:

(undercloud)$ source ~/overcloudrc

The command prompt changes to indicate that you are accessing the overcloud:

(overcloud)$

2. To return to interacting with the undercloud, source the stackrc file:

(overcloud)$ source ~/stackrc
(undercloud)$

The command prompt changes to indicate that you are accessing the undercloud:

(undercloud)$

11.4. CONFIGURING A BASIC OVERCLOUD WITH PRE-PROVISIONED

Red Hat OpenStack Platform 17.0 Director Installation and Usage

204

11.4. CONFIGURING A BASIC OVERCLOUD WITH PRE-PROVISIONED
NODES

This chapter contains basic configuration procedures that you can use to configure a Red Hat
OpenStack Platform (RHOSP) environment with pre-provisioned nodes. This scenario differs from the
standard overcloud creation scenarios in several ways:

You can provision nodes with an external tool and let the director control the overcloud
configuration only.

You can use nodes without relying on the director provisioning methods. This is useful if you
want to create an overcloud without power management control, or use networks with
DHCP/PXE boot restrictions.

The director does not use OpenStack Compute (nova), OpenStack Bare Metal (ironic), or
OpenStack Image (glance) to manage nodes.

Pre-provisioned nodes can use a custom partitioning layout that does not rely on the QCOW2
overcloud-full image.

This scenario includes only basic configuration with no custom features.

IMPORTANT

You cannot combine pre-provisioned nodes with director-provisioned nodes.

11.4.1. Pre-provisioned node requirements

Before you begin deploying an overcloud with pre-provisioned nodes, ensure that the following
configuration is present in your environment:

The director node that you created in Chapter 7, Installing director on the undercloud .

A set of bare metal machines for your nodes. The number of nodes required depends on the
type of overcloud you intend to create. These machines must comply with the requirements set
for each node type. These nodes require Red Hat Enterprise Linux 9.0 installed as the host
operating system. Red Hat recommends using the latest version available.

One network connection for managing the pre-provisioned nodes. This scenario requires
uninterrupted SSH access to the nodes for orchestration agent configuration.

One network connection for the Control Plane network. There are two main scenarios for this
network:

Using the Provisioning Network as the Control Plane, which is the default scenario. This
network is usually a layer-3 (L3) routable network connection from the pre-provisioned
nodes to director. The examples for this scenario use following IP address assignments:

Table 11.10. Provisioning Network IP assignments

Node name IP address

Director 192.168.24.1

Controller 0 192.168.24.2

CHAPTER 11. PROVISIONING AND DEPLOYING YOUR OVERCLOUD

205

Compute 0 192.168.24.3

Node name IP address

Using a separate network. In situations where the director’s Provisioning network is a private
non-routable network, you can define IP addresses for nodes from any subnet and
communicate with director over the Public API endpoint. For more information about the
requirements for this scenario, see Section 11.4.6, “Using a separate network for pre-
provisioned nodes”.

All other network types in this example also use the Control Plane network for OpenStack
services. However, you can create additional networks for other network traffic types.

If any nodes use Pacemaker resources, the service user hacluster and the service group
haclient must have a UID/GID of 189. This is due to CVE-2018-16877. If you installed
Pacemaker together with the operating system, the installation creates these IDs automatically.
If the ID values are set incorrectly, follow the steps in the article OpenStack minor update / fast-
forward upgrade can fail on the controller nodes at pacemaker step with "Could not evaluate:
backup_cib" to change the ID values.

To prevent some services from binding to an incorrect IP address and causing deployment
failures, make sure that the /etc/hosts file does not include the node-name=127.0.0.1 mapping.

11.4.2. Creating a user on pre-provisioned nodes

When you configure an overcloud with pre-provisioned nodes, director requires SSH access to the
overcloud nodes. On the pre-provisioned nodes, you must create a user with SSH key authentication
and configure passwordless sudo access for that user. After you create a user on pre-provisioned nodes,
you can use the --overcloud-ssh-user and --overcloud-ssh-key options with the openstack
overcloud deploy command to create an overcloud with pre-provisioned nodes.

By default, the values for the overcloud SSH user and overcloud SSH key are the stack user and
~/.ssh/id_rsa. To create the stack user, complete the following steps.

Procedure

1. On each overcloud node, create the stack user and set a password. For example, run the
following commands on the Controller node:

[root@controller-0 ~]# useradd stack
[root@controller-0 ~]# passwd stack # specify a password

2. Disable password requirements for this user when using sudo:

[root@controller-0 ~]# echo "stack ALL=(root) NOPASSWD:ALL" | tee -a
/etc/sudoers.d/stack
[root@controller-0 ~]# chmod 0440 /etc/sudoers.d/stack

3. After you create and configure the stack user on all pre-provisioned nodes, copy the stack
user’s public SSH key from the director node to each overcloud node. For example, to copy the
director’s public SSH key to the Controller node, run the following command:

Red Hat OpenStack Platform 17.0 Director Installation and Usage

206

https://access.redhat.com/security/cve/CVE-2018-16877
https://access.redhat.com/solutions/4669581

[stack@director ~]$ ssh-copy-id stack@192.168.24.2

IMPORTANT

To copy your SSH keys, you might have to temporarily set PasswordAuthentication Yes
in the SSH configuration of each overcloud node. After you copy the SSH keys, set
PasswordAuthentication No and use the SSH keys to authenticate in the future.

11.4.3. Registering the operating system for pre-provisioned nodes

Each node requires access to a Red Hat subscription. Complete the following steps on each node to
register your nodes with the Red Hat Content Delivery Network. Execute the commands as the root
user or as a user with sudo privileges.

IMPORTANT

Enable only the repositories listed. Additional repositories can cause package and
software conflicts. Do not enable any additional repositories.

Procedure

1. Run the registration command and enter your Customer Portal user name and password when
prompted:

[root@controller-0 ~]# sudo subscription-manager register

2. Find the entitlement pool for Red Hat OpenStack Platform 17.0:

[root@controller-0 ~]# sudo subscription-manager list --available --all --matches="Red Hat
OpenStack"

3. Use the pool ID located in the previous step to attach the Red Hat OpenStack Platform 16
entitlements:

[root@controller-0 ~]# sudo subscription-manager attach --pool=pool_id

4. Disable all default repositories:

[root@controller-0 ~]# sudo subscription-manager repos --disable=*

5. Enable the required Red Hat Enterprise Linux repositories:

[root@controller-0 ~]# sudo subscription-manager repos \
 --enable=rhel-9-for-x86_64-baseos-eus-rpms \
 --enable=rhel-9-for-x86_64-appstream-eus-rpms \
 --enable=rhel-9-for-x86_64-highavailability-eus-rpms \
 --enable=openstack-beta-for-rhel-9-x86_64-rpms \
 --enable=fast-datapath-for-rhel-9-x86_64-rpms

6. If the overcloud uses Ceph Storage nodes, enable the relevant Ceph Storage repositories:

[root@cephstorage-0 ~]# sudo subscription-manager repos \

CHAPTER 11. PROVISIONING AND DEPLOYING YOUR OVERCLOUD

207

 --enable=rhel-9-for-x86_64-baseos-rpms \
 --enable=rhel-9-for-x86_64-appstream-rpms \
 --enable=openstack-beta-deployment-tools-for-rhel-9-x86_64-rpms

7. Lock the RHEL version on all overcloud nodes except Red Hat Ceph Storage nodes:

[root@controller-0 ~]# sudo subscription-manager release --set=9.0

8. Update your system to ensure you have the latest base system packages:

[root@controller-0 ~]# sudo dnf update -y
[root@controller-0 ~]# sudo reboot

The node is now ready to use for your overcloud.

11.4.4. Configuring SSL/TLS access to director

If the director uses SSL/TLS, the pre-provisioned nodes require the certificate authority file used to
sign the director’s SSL/TLS certificates. If you use your own certificate authority, perform the following
actions on each overcloud node.

Procedure

1. Copy the certificate authority file to the /etc/pki/ca-trust/source/anchors/ directory on each
pre-provisioned node.

2. Run the following command on each overcloud node:

[root@controller-0 ~]# sudo update-ca-trust extract

These steps ensure that the overcloud nodes can access the director’s Public API over SSL/TLS.

11.4.5. Configuring networking for the control plane

The pre-provisioned overcloud nodes obtain metadata from director using standard HTTP requests.
This means all overcloud nodes require L3 access to either:

The director Control Plane network, which is the subnet that you define with the network_cidr
parameter in your undercloud.conf file. The overcloud nodes require either direct access to this
subnet or routable access to the subnet.

The director Public API endpoint, that you specify with the undercloud_public_host
parameter in your undercloud.conf file. This option is available if you do not have an L3 route to
the Control Plane or if you want to use SSL/TLS communication. For more information about
configuring your overcloud nodes to use the Public API endpoint, see Section 11.4.6, “Using a
separate network for pre-provisioned nodes”.

Director uses the Control Plane network to manage and configure a standard overcloud. For an
overcloud with pre-provisioned nodes, your network configuration might require some modification to
accommodate communication between the director and the pre-provisioned nodes.

Using network isolation

You can use network isolation to group services to use specific networks, including the Control Plane.

Red Hat OpenStack Platform 17.0 Director Installation and Usage

208

You can use network isolation to group services to use specific networks, including the Control Plane.
You can also define specific IP addresses for nodes on the Control Plane. For more information about
isolating networks and creating predictable node placement strategies, see Network isolation.

NOTE

If you use network isolation, ensure that your NIC templates do not include the NIC used
for undercloud access. These templates can reconfigure the NIC, which introduces
connectivity and configuration problems during deployment.

Assigning IP addresses

If you do not use network isolation, you can use a single Control Plane network to manage all services.
This requires manual configuration of the Control Plane NIC on each node to use an IP address within
the Control Plane network range. If you are using the director Provisioning network as the Control Plane,
ensure that the overcloud IP addresses that you choose are outside of the DHCP ranges for both
provisioning (dhcp_start and dhcp_end) and introspection (inspection_iprange).

During standard overcloud creation, director creates OpenStack Networking (neutron) ports and
automatically assigns IP addresses to the overcloud nodes on the Provisioning / Control Plane network.
However, this can cause director to assign different IP addresses to the ones that you configure
manually for each node. In this situation, use a predictable IP address strategy to force director to use
the pre-provisioned IP assignments on the Control Plane.

If you are using network isolation, create a custom environment file, deployed-ports.yaml, to implement
a predictable IP strategy. The following example custom environment file, deployed-ports.yaml, passes
a set of resource registry mappings and parameters to director, and defines the IP assignments of the
pre-provisioned nodes. The NodePortMap, ControlPlaneVipData, and VipPortMap parameters define
the IP addresses and subnet CIDRs that correspond to each overcloud node.

resource_registry:
 # Deployed Virtual IP port resources
 OS::TripleO::Network::Ports::ExternalVipPort: /usr/share/openstack-tripleo-heat-
templates/network/ports/deployed_vip_external.yaml
 OS::TripleO::Network::Ports::InternalApiVipPort: /usr/share/openstack-tripleo-heat-
templates/network/ports/deployed_vip_internal_api.yaml
 OS::TripleO::Network::Ports::StorageVipPort: /usr/share/openstack-tripleo-heat-
templates/network/ports/deployed_vip_storage.yaml
 OS::TripleO::Network::Ports::StorageMgmtVipPort: /usr/share/openstack-tripleo-heat-
templates/network/ports/deployed_vip_storage_mgmt.yaml

 # Deployed ControlPlane port resource
 OS::TripleO::DeployedServer::ControlPlanePort: /usr/share/openstack-tripleo-heat-
templates/deployed-server/deployed-neutron-port.yaml

 # Controller role port resources
 OS::TripleO::Controller::Ports::ExternalPort: /usr/share/openstack-tripleo-heat-
templates/network/ports/deployed_external.yaml
 OS::TripleO::Controller::Ports::InternalApiPort: /usr/share/openstack-tripleo-heat-
templates/network/ports/deployed_internal_api.yaml
 OS::TripleO::Controller::Ports::StorageMgmtPort: /usr/share/openstack-tripleo-heat-
templates/network/ports/deployed_storage_mgmt.yaml
 OS::TripleO::Controller::Ports::StoragePort: /usr/share/openstack-tripleo-heat-
templates/network/ports/deployed_storage.yaml
 OS::TripleO::Controller::Ports::TenantPort: /usr/share/openstack-tripleo-heat-
templates/network/ports/deployed_tenant.yaml

CHAPTER 11. PROVISIONING AND DEPLOYING YOUR OVERCLOUD

209

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.0/html/director_installation_and_usage/assembly_configuring-overcloud-networking_installing-director-on-the-undercloud#assembly_network-isolation

 # Compute role port resources
 OS::TripleO::Compute::Ports::InternalApiPort: /usr/share/openstack-tripleo-heat-
templates/network/ports/deployed_internal_api.yaml
 OS::TripleO::Compute::Ports::StoragePort: /usr/share/openstack-tripleo-heat-
templates/network/ports/deployed_storage.yaml
 OS::TripleO::Compute::Ports::TenantPort: /usr/share/openstack-tripleo-heat-
templates/network/ports/deployed_tenant.yaml

 # CephStorage role port resources
 OS::TripleO::CephStorage::Ports::StorageMgmtPort: /usr/share/openstack-tripleo-heat-
templates/network/ports/deployed_storage_mgmt.yaml
 OS::TripleO::CephStorage::Ports::StoragePort: /usr/share/openstack-tripleo-heat-
templates/network/ports/deployed_storage.yaml

parameter_defaults:
 NodePortMap: 1
 # Controller node parameters
 controller-00-rack01: 2
 ctlplane: 3
 ip_address: 192.168.24.201
 ip_address_uri: 192.168.24.201
 ip_subnet: 192.168.24.0/24
 external:
 ip_address: 10.0.0.201
 ip_address_uri: 10.0.0.201
 ip_subnet: 10.0.0.10/24
 internal_api:
 ip_address: 172.16.2.201
 ip_address_uri: 172.16.2.201
 ip_subnet: 172.16.2.10/24
 management:
 ip_address: 192.168.1.201
 ip_address_uri: 192.168.1.201
 ip_subnet: 192.168.1.10/24
 storage:
 ip_address: 172.16.1.201
 ip_address_uri: 172.16.1.201
 ip_subnet: 172.16.1.10/24
 storage_mgmt:
 ip_address: 172.16.3.201
 ip_address_uri: 172.16.3.201
 ip_subnet: 172.16.3.10/24
 tenant:
 ip_address: 172.16.0.201
 ip_address_uri: 172.16.0.201
 ip_subnet: 172.16.0.10/24
 ...

 # Compute node parameters
 compute-00-rack01:
 ctlplane:
 ip_address: 192.168.24.11
 ip_address_uri: 192.168.24.11
 ip_subnet: 192.168.24.0/24
 internal_api:

Red Hat OpenStack Platform 17.0 Director Installation and Usage

210

 ip_address: 172.16.2.11
 ip_address_uri: 172.16.2.11
 ip_subnet: 172.16.2.10/24
 storage:
 ip_address: 172.16.1.11
 ip_address_uri: 172.16.1.11
 ip_subnet: 172.16.1.10/24
 tenant:
 ip_address: 172.16.0.11
 ip_address_uri: 172.16.0.11
 ip_subnet: 172.16.0.10/24
 ...

 # Ceph node parameters
 ceph-00-rack01:
 ctlplane:
 ip_address: 192.168.24.101
 ip_address_uri: 192.168.24.101
 ip_subnet: 192.168.24.0/24
 storage:
 ip_address: 172.16.1.101
 ip_address_uri: 172.16.1.101
 ip_subnet: 172.16.1.10/24
 storage_mgmt:
 ip_address: 172.16.3.101
 ip_address_uri: 172.16.3.101
 ip_subnet: 172.16.3.10/24
 ...

 # Virtual IP address parameters
 ControlPlaneVipData:
 fixed_ips:
 - ip_address: 192.168.24.5
 name: control_virtual_ip
 network:
 tags: [192.168.24.0/24]
 subnets:
 - ip_version: 4
 VipPortMap
 external:
 ip_address: 10.0.0.100
 ip_address_uri: 10.0.0.100
 ip_subnet: 10.0.0.100/24
 internal_api:
 ip_address: 172.16.2.100
 ip_address_uri: 172.16.2.100
 ip_subnet: 172.16.2.100/24
 storage:
 ip_address: 172.16.1.100
 ip_address_uri: 172.16.1.100
 ip_subnet: 172.16.1.100/24
 storage_mgmt:
 ip_address: 172.16.3.100
 ip_address_uri: 172.16.3.100
 ip_subnet: 172.16.3.100/24

CHAPTER 11. PROVISIONING AND DEPLOYING YOUR OVERCLOUD

211

1

2

3

 RedisVirtualFixedIPs:
 - ip_address: 192.168.24.6
 use_neutron: false

The NodePortMap mappings define the names of the node assignments.

The short host name for the node, which follows the format <node_hostname>.

The network definitions and IP assignments for the node. Networks include ctlplane, external,
internal_api, management, storage, storage_mgmt, and tenant. The IP assignments include the
ip_address, the ip_address_uri, and the ip_subnet:

IPv4: ip_address and ip_address_uri should be set to the same value.

IPv6:

ip_address: Set to the IPv6 address without brackets.

ip_address_uri: Set to the IPv6 address in square brackets, for example,
[2001:0db8:85a3:0000:0000:8a2e:0370:7334].

11.4.6. Using a separate network for pre-provisioned nodes

By default, director uses the Provisioning network as the overcloud Control Plane. However, if this
network is isolated and non-routable, nodes cannot communicate with the director Internal API during
configuration. In this situation, you might need to define a separate network for the nodes and configure
them to communicate with the director over the Public API.

There are several requirements for this scenario:

The overcloud nodes must accommodate the basic network configuration from Section 11.4.5,
“Configuring networking for the control plane”.

You must enable SSL/TLS on the director for Public API endpoint usage. For more information,
see Enabling SSL/TLS on overcloud public endpoints .

You must define an accessible fully qualified domain name (FQDN) for director. This FQDN
must resolve to a routable IP address for the director. Use the undercloud_public_host
parameter in the undercloud.conf file to set this FQDN.

The examples in this section use IP address assignments that differ from the main scenario:

Table 11.11. Provisioning network IP assignments

Node Name IP address or FQDN

Director (Internal API) 192.168.24.1 (Provisioning Network and Control
Plane)

Director (Public API) 10.1.1.1 / director.example.com

Overcloud Virtual IP 192.168.100.1

Controller 0 192.168.100.2

Red Hat OpenStack Platform 17.0 Director Installation and Usage

212

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.0/html/security_and_hardening_guide/assembly_enabling-ssl-tls-on-overcloud-public-endpoints

1

Compute 0 192.168.100.3

Node Name IP address or FQDN

The following sections provide additional configuration for situations that require a separate network for
overcloud nodes.

IP address assignments

The method for IP assignments is similar to Section 11.4.5, “Configuring networking for the control
plane”. However, since the Control Plane may not be routable from the deployed servers, you can use
the NodePortMap, ControlPlaneVipData, and VipPortMap parameters to assign IP addresses from
your chosen overcloud node subnet, including the virtual IP address to access the Control Plane. The
following example is a modified version of the deployed-ports.yaml custom environment file from
Section 11.4.5, “Configuring networking for the control plane” that accommodates this network
architecture:

parameter_defaults:
 NodePortMap:
 controller-00-rack01
 ctlplane
 ip_address: 192.168.100.2
 ip_address_uri: 192.168.100.2
 ip_subnet: 192.168.100.0/24
...
 compute-00-rack01:
 ctlplane
 ip_address: 192.168.100.3
 ip_address_uri: 192.168.100.3
 ip_subnet: 192.168.100.0/24
...
 ControlPlaneVipData:
 fixed_ips:
 - ip_address: 192.168.100.1
 name: control_virtual_ip
 network:
 tags: [192.168.100.0/24]
 subnets:
 - ip_version: 4
 VipPortMap:
 external:
 ip_address: 10.0.0.100
 ip_address_uri: 10.0.0.100
 ip_subnet: 10.0.0.100/24
....
 RedisVirtualFixedIPs: 1
 - ip_address: 192.168.100.10
 use_neutron: false

The RedisVipPort resource is mapped to network/ports/noop.yaml. This mapping is necessary
because the default Redis VIP address comes from the Control Plane. In this situation, use a noop
to disable this Control Plane mapping.

CHAPTER 11. PROVISIONING AND DEPLOYING YOUR OVERCLOUD

213

11.4.7. Mapping pre-provisioned node hostnames

When you configure pre-provisioned nodes, you must map heat-based hostnames to their actual
hostnames so that ansible-playbook can reach a resolvable host. Use the HostnameMap to map these
values.

Procedure

1. Create an environment file, for example hostname-map.yaml, and include the HostnameMap
parameter and the hostname mappings. Use the following syntax:

parameter_defaults:
 HostnameMap:
 [HEAT HOSTNAME]: [ACTUAL HOSTNAME]
 [HEAT HOSTNAME]: [ACTUAL HOSTNAME]

The [HEAT HOSTNAME] usually conforms to the following convention: [STACK NAME]-
[ROLE]-[INDEX]:

parameter_defaults:
 HostnameMap:
 overcloud-controller-0: controller-00-rack01
 overcloud-controller-1: controller-01-rack02
 overcloud-controller-2: controller-02-rack03
 overcloud-novacompute-0: compute-00-rack01
 overcloud-novacompute-1: compute-01-rack01
 overcloud-novacompute-2: compute-02-rack01

2. Save the hostname-map.yaml file.

11.4.8. Configuring Ceph Storage for pre-provisioned nodes

Complete the following steps on the undercloud host to configure Ceph for nodes that are already
deployed.

Procedure

1. On the undercloud host, create an environment variable, OVERCLOUD_HOSTS, and set the
variable to a space-separated list of IP addresses of the overcloud hosts that you want to use as
Ceph clients:

export OVERCLOUD_HOSTS="192.168.1.8 192.168.1.42"

2. The default overcloud plan name is overcloud. If you use a different name, create an
environment variable OVERCLOUD_PLAN to store your custom name:

export OVERCLOUD_PLAN="<custom-stack-name>"

Replace <custom-stack-name> with the name of your stack.

3. Run the enable-ssh-admin.sh script to configure a user on the overcloud nodes that Ansible
can use to configure Ceph clients:

Red Hat OpenStack Platform 17.0 Director Installation and Usage

214

bash /usr/share/openstack-tripleo-heat-templates/deployed-server/scripts/enable-ssh-
admin.sh

When you run the openstack overcloud deploy command, Ansible configures the hosts that you define
in the OVERCLOUD_HOSTS variable as Ceph clients.

11.4.9. Creating the overcloud with pre-provisioned nodes

The overcloud deployment uses the standard CLI methods. For pre-provisioned nodes, the deployment
command requires some additional options and environment files from the core heat template
collection:

--disable-validations - Use this option to disable basic CLI validations for services not used
with pre-provisioned infrastructure. If you do not disable these validations, the deployment fails.

environments/deployed-server-environment.yaml - Include this environment file to create
and configure the pre-provisioned infrastructure. This environment file substitutes the
OS::Nova::Server resources with OS::Heat::DeployedServer resources.

The following command is an example overcloud deployment command with the environment files
specific to the pre-provisioned architecture:

$ source ~/stackrc
(undercloud)$ openstack overcloud deploy \
 --disable-validations \
 -e /usr/share/openstack-tripleo-heat-templates/environments/deployed-server-environment.yaml \
 -e /home/stack/templates/deployed-ports.yaml \
 -e /home/stack/templates/hostname-map.yaml \
 --overcloud-ssh-user stack \
 --overcloud-ssh-key ~/.ssh/id_rsa \
 <OTHER OPTIONS>

The --overcloud-ssh-user and --overcloud-ssh-key options are used to SSH into each overcloud node
during the configuration stage, create an initial tripleo-admin user, and inject an SSH key into
/home/tripleo-admin/.ssh/authorized_keys. To inject the SSH key, specify the credentials for the
initial SSH connection with --overcloud-ssh-user and --overcloud-ssh-key (defaults to ~/.ssh/id_rsa).
To limit exposure to the private key that you specify with the --overcloud-ssh-key option, director
never passes this key to any API service, such as heat, and only the director openstack overcloud
deploy command uses this key to enable access for the tripleo-admin user.

11.4.10. Accessing the overcloud

Director generates a credential file containing the credentials necessary to operate the overcloud from
the undercloud. Director saves this file, overcloudrc, in the home directory of the stack user.

Procedure

1. Source the overcloudrc file:

(undercloud)$ source ~/overcloudrc

The command prompt changes to indicate that you are accessing the overcloud:

(overcloud)$

CHAPTER 11. PROVISIONING AND DEPLOYING YOUR OVERCLOUD

215

2. To return to interacting with the undercloud, source the stackrc file:

(overcloud)$ source ~/stackrc
(undercloud)$

The command prompt changes to indicate that you are accessing the undercloud:

(undercloud)$

11.4.11. Scaling pre-provisioned nodes

The process for scaling pre-provisioned nodes is similar to the standard scaling procedures in
Chapter 19, Scaling overcloud nodes . However, the process to add new pre-provisioned nodes differs
because pre-provisioned nodes do not use the standard registration and management process from
OpenStack Bare Metal (ironic) and OpenStack Compute (nova).

Scaling up pre-provisioned nodes

When scaling up the overcloud with pre-provisioned nodes, you must configure the orchestration agent
on each node to correspond to the director node count.

Perform the following actions to scale up overcloud nodes:

1. Prepare the new pre-provisioned nodes according to Section 11.4.1, “Pre-provisioned node
requirements”.

2. Scale up the nodes. For more information, see Chapter 19, Scaling overcloud nodes .

3. After you execute the deployment command, wait until the director creates the new node
resources and launches the configuration.

Scaling down pre-provisioned nodes

When scaling down the overcloud with pre-provisioned nodes, follow the scale down instructions in
Chapter 19, Scaling overcloud nodes .

In scale-down operations, you can use hostnames for both OSP provisioned or pre-provisioned nodes.
You can also use the UUID for OSP provisioned nodes. However, there is no UUID for pre-provisoned
nodes, so you always use hostnames. Pass the hostname or UUID value to the openstack overcloud
node delete command.

Procedure

1. Identify the name of the node that you want to remove.

$ openstack stack resource list overcloud -n5 --filter
type=OS::TripleO::ComputeDeployedServerServer

2. Pass the corresponding node name from the stack_name column to the openstack overcloud
node delete command:

$ openstack overcloud node delete --stack <overcloud> <stack>

Replace <overcloud> with the name or UUID of the overcloud stack.

Replace <stack_name> with the name of the node that you want to remove. You can

Red Hat OpenStack Platform 17.0 Director Installation and Usage

216

Replace <stack_name> with the name of the node that you want to remove. You can
include multiple node names in the openstack overcloud node delete command.

3. Ensure that the openstack overcloud node delete command runs to completion:

$ openstack stack list

The status of the overcloud stack shows UPDATE_COMPLETE when the delete operation is
complete.

After you remove overcloud nodes from the stack, power off these nodes. In a standard deployment, the
bare metal services on the director control this function. However, with pre-provisioned nodes, you must
either manually shut down these nodes or use the power management control for each physical system.
If you do not power off the nodes after removing them from the stack, they might remain operational
and reconnect as part of the overcloud environment.

After you power off the removed nodes, reprovision them to a base operating system configuration so
that they do not unintentionally join the overcloud in the future

NOTE

Do not attempt to reuse nodes previously removed from the overcloud without first
reprovisioning them with a fresh base operating system. The scale down process only
removes the node from the overcloud stack and does not uninstall any packages.

Removing a pre-provisioned overcloud

To remove an entire overcloud that uses pre-provisioned nodes, see Section 15.7, “Removing an
overcloud stack” for the standard overcloud removal procedure. After you remove the overcloud, power
off all nodes and reprovision them to a base operating system configuration.

NOTE

Do not attempt to reuse nodes previously removed from the overcloud without first
reprovisioning them with a fresh base operating system. The removal process only
deletes the overcloud stack and does not uninstall any packages.

CHAPTER 11. PROVISIONING AND DEPLOYING YOUR OVERCLOUD

217

CHAPTER 12. ANSIBLE-BASED OVERCLOUD REGISTRATION
Director uses Ansible-based methods to register overcloud nodes to the Red Hat Customer Portal or to
a Red Hat Satellite Server.

I:f you used the rhel-registration method from previous Red Hat OpenStack Platform versions, you
must disable it and switch to the Ansible-based method. For more information, see Section 12.6,
“Switching to the rhsm composable service” and Section 12.7, “rhel-registration to rhsm mappings” .

In addition to the director-based registration method, you can also manually register after deployment.
For more information, see Section 12.9, “Running Ansible-based registration manually”

12.1. RED HAT SUBSCRIPTION MANAGER (RHSM) COMPOSABLE
SERVICE

You can use the rhsm composable service to register overcloud nodes through Ansible. Each role in the
default roles_data file contains a OS::TripleO::Services::Rhsm resource, which is disabled by default.
To enable the service, register the resource to the rhsm composable service file:

resource_registry:
 OS::TripleO::Services::Rhsm: /usr/share/openstack-tripleo-heat-templates/deployment/rhsm/rhsm-
baremetal-ansible.yaml

The rhsm composable service accepts a RhsmVars parameter, which you can use to define multiple
sub-parameters relevant to your registration:

parameter_defaults:
 RhsmVars:
 rhsm_repos:
 - rhel-9-for-x86_64-baseos-eus-rpms
 - rhel-9-for-x86_64-appstream-eus-rpms
 - rhel-9-for-x86_64-highavailability-eus-rpms
 … ​
 rhsm_username: "myusername"
 rhsm_password: "p@55w0rd!"
 rhsm_org_id: "1234567"
 rhsm_release: 9.0

You can also use the RhsmVars parameter in combination with role-specific parameters, for example,
ControllerParameters, to provide flexibility when enabling specific repositories for different nodes
types.

12.2. RHSMVARS SUB-PARAMETERS

Use the following sub-parameters as part of the RhsmVars parameter when you configure the rhsm
composable service. For more information about the Ansible parameters that are available, see the role
documentation.

rhsm Description

rhsm_method Choose the registration method. Either portal, satellite, or disable.

Red Hat OpenStack Platform 17.0 Director Installation and Usage

218

https://github.com/openstack/ansible-role-redhat-subscription/

rhsm_org_id The organization that you want to use for registration. To locate this ID, run
sudo subscription-manager orgs from the undercloud node. Enter your
Red Hat credentials at the prompt, and use the resulting Key value. For more
information on your organization ID, see Understanding the Red Hat
Subscription Management Organization ID.

rhsm_pool_ids The subscription pool ID that you want to use. Use this parameter if you do
not want to auto-attach subscriptions. To locate this ID, run sudo
subscription-manager list --available --all --matches="*Red Hat
OpenStack*" from the undercloud node, and use the resulting Pool ID
value.

rhsm_activation_key The activation key that you want to use for registration.

rhsm_autosubscribe Use this parameter to attach compatible subscriptions to this system
automatically. Set the value to true to enable this feature.

rhsm_baseurl The base URL for obtaining content. The default URL is the Red Hat Content
Delivery Network. If you use a Satellite server, change this value to the base
URL of your Satellite server content repositories.

rhsm_server_hostname The hostname of the subscription management service for registration. The
default is the Red Hat Subscription Management hostname. If you use a
Satellite server, change this value to your Satellite server hostname.

rhsm_repos A list of repositories that you want to enable.

rhsm_username The username for registration. If possible, use activation keys for registration.

rhsm_password The password for registration. If possible, use activation keys for registration.

rhsm_release Red Hat Enterprise Linux release for pinning the repositories. This is set to
9.0 for Red Hat OpenStack Platform

rhsm_rhsm_proxy_host
name

The hostname for the HTTP proxy. For example: proxy.example.com.

rhsm_rhsm_proxy_port The port for HTTP proxy communication. For example: 8080.

rhsm_rhsm_proxy_user The username to access the HTTP proxy.

rhsm_rhsm_proxy_pass
word

The password to access the HTTP proxy.

rhsm Description

IMPORTANT

CHAPTER 12. ANSIBLE-BASED OVERCLOUD REGISTRATION

219

https://access.redhat.com/articles/3047431

IMPORTANT

You can use rhsm_activation_key and rhsm_repos together only if rhsm_method is
set to portal. If rhsm_method is set to satellite, you can only use either
rhsm_activation_key or rhsm_repos.

12.3. REGISTERING THE OVERCLOUD WITH THE RHSM COMPOSABLE
SERVICE

Create an environment file that enables and configures the rhsm composable service. Director uses this
environment file to register and subscribe your nodes.

Procedure

1. Create an environment file named templates/rhsm.yml to store the configuration.

2. Include your configuration in the environment file. For example:

resource_registry:
 OS::TripleO::Services::Rhsm: /usr/share/openstack-tripleo-heat-
templates/deployment/rhsm/rhsm-baremetal-ansible.yaml
parameter_defaults:
 RhsmVars:
 rhsm_repos:
 - rhel-9-for-x86_64-baseos-eus-rpms
 - rhel-9-for-x86_64-appstream-eus-rpms
 - rhel-9-for-x86_64-highavailability-eus-rpms
 … ​
 rhsm_username: "myusername"
 rhsm_password: "p@55w0rd!"
 rhsm_org_id: "1234567"
 rhsm_pool_ids: "1a85f9223e3d5e43013e3d6e8ff506fd"
 rhsm_method: "portal"
 rhsm_release: 9.0

The resource_registry section associates the rhsm composable service with the
OS::TripleO::Services::Rhsm resource, which is available on each role.

The RhsmVars variable passes parameters to Ansible for configuring your Red Hat
registration.

3. Save the environment file.

12.4. APPLYING THE RHSM COMPOSABLE SERVICE TO DIFFERENT
ROLES

You can apply the rhsm composable service on a per-role basis. For example, you can apply different
sets of configurations to Controller nodes, Compute nodes, and Ceph Storage nodes.

Procedure

1. Create an environment file named templates/rhsm.yml to store the configuration.

2. Include your configuration in the environment file. For example:

Red Hat OpenStack Platform 17.0 Director Installation and Usage

220

resource_registry:
 OS::TripleO::Services::Rhsm: /usr/share/openstack-tripleo-heat-
templates/deployment/rhsm/rhsm-baremetal-ansible.yaml
parameter_defaults:
 ControllerParameters:
 RhsmVars:
 rhsm_repos:
 - rhel-9-for-x86_64-baseos-eus-rpms
 - rhel-9-for-x86_64-appstream-eus-rpms
 - rhel-9-for-x86_64-highavailability-eus-rpms
 - openstack-17-for-rhel-9-x86_64-rpms
 - fast-datapath-for-rhel-9-x86_64-rpms
 - rhceph-5-tools-for-rhel-9-x86_64-rpms
 rhsm_username: "myusername"
 rhsm_password: "p@55w0rd!"
 rhsm_org_id: "1234567"
 rhsm_pool_ids: "55d251f1490556f3e75aa37e89e10ce5"
 rhsm_method: "portal"
 rhsm_release: 9.0
 ComputeParameters:
 RhsmVars:
 rhsm_repos:
 - rhel-9-for-x86_64-baseos-eus-rpms
 - rhel-9-for-x86_64-appstream-eus-rpms
 - rhel-9-for-x86_64-highavailability-eus-rpms
 - openstack-17-for-rhel-9-x86_64-rpms
 - rhceph-5-tools-for-rhel-9-x86_64-rpms
 - fast-datapath-for-rhel-9-x86_64-rpms
 rhsm_username: "myusername"
 rhsm_password: "p@55w0rd!"
 rhsm_org_id: "1234567"
 rhsm_pool_ids: "55d251f1490556f3e75aa37e89e10ce5"
 rhsm_method: "portal"
 rhsm_release: 9.0
 CephStorageParameters:
 RhsmVars:
 rhsm_repos:
 - rhel-9-for-x86_64-baseos-rpms
 - rhel-9-for-x86_64-appstream-rpms
 - rhel-9-for-x86_64-highavailability-rpms
 - openstack-17-deployment-tools-for-rhel-9-x86_64-rpms
 rhsm_username: "myusername"
 rhsm_password: "p@55w0rd!"
 rhsm_org_id: "1234567"
 rhsm_pool_ids: "68790a7aa2dc9dc50a9bc39fabc55e0d"
 rhsm_method: "portal"
 rhsm_release: 9.0

The resource_registry associates the rhsm composable service with the
OS::TripleO::Services::Rhsm resource, which is available on each role.

The ControllerParameters, ComputeParameters, and CephStorageParameters parameters
each use a separate RhsmVars parameter to pass subscription details to their respective roles.

NOTE

CHAPTER 12. ANSIBLE-BASED OVERCLOUD REGISTRATION

221

NOTE

Set the RhsmVars parameter within the CephStorageParameters parameter to
use a Red Hat Ceph Storage subscription and repositories specific to Ceph
Storage. Ensure the rhsm_repos parameter contains the standard Red Hat
Enterprise Linux repositories instead of the Extended Update Support (EUS)
repositories that Controller and Compute nodes require.

3. Save the environment file.

12.5. REGISTERING THE OVERCLOUD TO RED HAT SATELLITE
SERVER

Create an environment file that enables and configures the rhsm composable service to register nodes
to Red Hat Satellite instead of the Red Hat Customer Portal.

Procedure

1. Create an environment file named templates/rhsm.yml to store the configuration.

2. Include your configuration in the environment file. For example:

resource_registry:
 OS::TripleO::Services::Rhsm: /usr/share/openstack-tripleo-heat-
templates/deployment/rhsm/rhsm-baremetal-ansible.yaml
parameter_defaults:
 RhsmVars:
 rhsm_activation_key: "myactivationkey"
 rhsm_method: "satellite"
 rhsm_org_id: "ACME"
 rhsm_server_hostname: "satellite.example.com"
 rhsm_baseurl: "https://satellite.example.com/pulp/repos"
 rhsm_release: 9.0

The resource_registry associates the rhsm composable service with the
OS::TripleO::Services::Rhsm resource, which is available on each role.

The RhsmVars variable passes parameters to Ansible for configuring your Red Hat registration.

3. Save the environment file.

12.6. SWITCHING TO THE RHSM COMPOSABLE SERVICE

The previous rhel-registration method runs a bash script to handle the overcloud registration. The
scripts and environment files for this method are located in the core heat template collection at
/usr/share/openstack-tripleo-heat-templates/extraconfig/pre_deploy/rhel-registration/.

Complete the following steps to switch from the rhel-registration method to the rhsm composable
service.

Procedure

1. Exclude the rhel-registration environment files from future deployments operations. In most
cases, exclude the following files:

rhel-registration/environment-rhel-registration.yaml

Red Hat OpenStack Platform 17.0 Director Installation and Usage

222

rhel-registration/environment-rhel-registration.yaml

rhel-registration/rhel-registration-resource-registry.yaml

2. If you use a custom roles_data file, ensure that each role in your roles_data file contains the
OS::TripleO::Services::Rhsm composable service. For example:

- name: Controller
 description: |
 Controller role that has all the controller services loaded and handles
 Database, Messaging and Network functions.
 CountDefault: 1
 ...
 ServicesDefault:
 ...
 - OS::TripleO::Services::Rhsm
 ...

3. Add the environment file for rhsm composable service parameters to future deployment
operations.

This method replaces the rhel-registration parameters with the rhsm service parameters and changes
the heat resource that enables the service from:

resource_registry:
 OS::TripleO::NodeExtraConfig: rhel-registration.yaml

To:

resource_registry:
 OS::TripleO::Services::Rhsm: /usr/share/openstack-tripleo-heat-templates/deployment/rhsm/rhsm-
baremetal-ansible.yaml

You can also include the /usr/share/openstack-tripleo-heat-templates/environments/rhsm.yaml
environment file with your deployment to enable the service.

12.7. RHEL-REGISTRATION TO RHSM MAPPINGS

To help transition your details from the rhel-registration method to the rhsm method, use the following
table to map your parameters and values.

rhel-registration rhsm / RhsmVars

rhel_reg_method rhsm_method

rhel_reg_org rhsm_org_id

rhel_reg_pool_id rhsm_pool_ids

rhel_reg_activation_key rhsm_activation_key

rhel_reg_auto_attach rhsm_autosubscribe

CHAPTER 12. ANSIBLE-BASED OVERCLOUD REGISTRATION

223

rhel_reg_sat_url rhsm_satellite_url

rhel_reg_repos rhsm_repos

rhel_reg_user rhsm_username

rhel_reg_password rhsm_password

rhel_reg_release rhsm_release

rhel_reg_http_proxy_host rhsm_rhsm_proxy_hostname

rhel_reg_http_proxy_port rhsm_rhsm_proxy_port

rhel_reg_http_proxy_username rhsm_rhsm_proxy_user

rhel_reg_http_proxy_password rhsm_rhsm_proxy_password

rhel-registration rhsm / RhsmVars

12.8. DEPLOYING THE OVERCLOUD WITH THE RHSM COMPOSABLE
SERVICE

Deploy the overcloud with the rhsm composable service so that Ansible controls the registration
process for your overcloud nodes.

Procedure

1. Include rhsm.yml environment file with the openstack overcloud deploy command:

openstack overcloud deploy \
 <other cli args> \
 -e ~/templates/rhsm.yaml

This enables the Ansible configuration of the overcloud and the Ansible-based registration.

2. Wait until the overcloud deployment completes.

3. Check the subscription details on your overcloud nodes. For example, log in to a Controller node
and run the following commands:

$ sudo subscription-manager status
$ sudo subscription-manager list --consumed

12.9. RUNNING ANSIBLE-BASED REGISTRATION MANUALLY

You can perform manual Ansible-based registration on a deployed overcloud with the dynamic

Red Hat OpenStack Platform 17.0 Director Installation and Usage

224

inventory script on the director node. Use this script to define node roles as host groups and then run a
playbook against them with ansible-playbook. Use the following example playbook to register
Controller nodes manually.

Procedure

1. Create a playbook that uses the redhat_subscription modules to register your nodes. For
example, the following playbook applies to Controller nodes:

- name: Register Controller nodes
 hosts: Controller
 become: yes
 vars:
 repos:
 - rhel-9-for-x86_64-baseos-eus-rpms
 - rhel-9-for-x86_64-appstream-eus-rpms
 - rhel-9-for-x86_64-highavailability-eus-rpms
 - openstack-17-for-rhel-9-x86_64-rpms
 - fast-datapath-for-rhel-9-x86_64-rpms
 tasks:
 - name: Register system
 redhat_subscription:
 username: myusername
 password: p@55w0rd!
 org_id: 1234567
 release: 9.0
 pool_ids: 1a85f9223e3d5e43013e3d6e8ff506fd
 - name: Disable all repos
 command: "subscription-manager repos --disable *"
 - name: Enable Controller node repos
 command: "subscription-manager repos --enable {{ item }}"
 with_items: "{{ repos }}"

This play contains three tasks:

Register the node.

Disable any auto-enabled repositories.

Enable only the repositories relevant to the Controller node. The repositories are listed
with the repos variable.

2. After you deploy the overcloud, you can run the following command so that Ansible executes
the playbook (ansible-osp-registration.yml) against your overcloud:

$ ansible-playbook -i /usr/bin/tripleo-ansible-inventory ansible-osp-registration.yml

This command performs the following actions:

Runs the dynamic inventory script to get a list of host and their groups.

Applies the playbook tasks to the nodes in the group defined in the hosts parameter of the
playbook, which in this case is the Controller group.

CHAPTER 12. ANSIBLE-BASED OVERCLOUD REGISTRATION

225

CHAPTER 13. CONFIGURING NFS STORAGE
You can configure the overcloud to use shared NFS storage.

13.1. SUPPORTED CONFIGURATIONS AND LIMITATIONS

Supported NFS storage

Red Hat recommends that you use a certified storage back end and driver. Red Hat does not
recommend that you use NFS storage that comes from the generic NFS back end, because its
capabilities are limited compared to a certified storage back end and driver. For example, the
generic NFS back end does not support features such as volume encryption and volume multi-
attach. For information about supported drivers, see the Red Hat Ecosystem Catalog .

For Block Storage (cinder) and Compute (nova) services, you must use NFS version 4.0 or later.
Red Hat OpenStack Platform (RHOSP) does not support earlier versions of NFS.

Unsupported NFS configuration

RHOSP does not support the NetApp feature NAS secure, because it interferes with normal
volume operations. Director disables the feature by default. Therefore, do not edit the following
heat parameters that control whether an NFS back end or a NetApp NFS Block Storage back
end supports NAS secure:

CinderNetappNasSecureFileOperations

CinderNetappNasSecureFilePermissions

CinderNasSecureFileOperations

CinderNasSecureFilePermissions

Limitations when using NFS shares

Instances that have a swap disk cannot be resized or rebuilt when the back end is an NFS share.

13.2. CONFIGURING NFS STORAGE

You can configure the overcloud to use shared NFS storage.

Procedure

1. Create an environment file to configure your NFS storage, for example, nfs_storage.yaml.

2. Add the following parameters to your new environment file to configure NFS storage:

parameter_defaults:
 CinderEnableIscsiBackend: false
 CinderEnableNfsBackend: true
 GlanceBackend: file
 CinderNfsServers: 192.0.2.230:/cinder
 GlanceNfsEnabled: true
 GlanceNfsShare: 192.0.2.230:/glance

NOTE

Red Hat OpenStack Platform 17.0 Director Installation and Usage

226

https://catalog.redhat.com/platform/red-hat-openstack/software

NOTE

Do not configure the CinderNfsMountOptions and GlanceNfsOptions
parameters, as their default values enable NFS mount options that are suitable
for most Red Hat OpenStack Platform (RHOSP) environments. You can see the
value of the GlanceNfsOptions parameter in the
environments/storage/glance-nfs.yaml file. If you experience issues when you
configure multiple services to share the same NFS server, contact Red Hat
Support.

3. Add your NFS storage environment file to the stack with your other environment files and
deploy the overcloud:

(undercloud)$ openstack overcloud deploy --templates \
 -e [your environment files] \
 -e /home/stack/templates/nfs_storage.yaml

13.3. CONFIGURING AN EXTERNAL NFS SHARE FOR CONVERSION

When the Block Storage service (cinder) performs image format conversion on the overcloud Controller
nodes, and the space is limited, conversion of large Image service (glance) images can cause the node
root disk space to be completely used. You can use an external NFS share for the conversion to prevent
the space on the node from being completely filled.

There are two director heat parameters that control the external NFS share configuration:

CinderImageConversionNfsShare

CinderImageConversionNfsOptions

Procedure

1. Log in to the undercloud as the stack user and source the stackrc credentials file.

$ source ~/stackrc

2. In a new or existing storage-related environment file, add information about the external NFS
share.

parameter_defaults:
 CinderImageConversionNfsShare: 192.168.10.1:/convert

NOTE

The default value of the CinderImageConversionNfsOptions parameter, that
controls the NFS mount options, is sufficient for most environments.

3. Include the environment file that contains your new configuration in the openstack overcloud
deploy command with any other environment files that are relevant to your environment.

$ openstack overcloud deploy \
--templates \
…

CHAPTER 13. CONFIGURING NFS STORAGE

227

-e <existing_overcloud_environment_files> \
-e <new_environment_file> \
…

Replace <existing_overcloud_environment_files> with the list of environment files that
are part of your existing deployment.

Replace <new_environment_file> with the new or edited environment file that contains
your NFS share configuration.

Red Hat OpenStack Platform 17.0 Director Installation and Usage

228

CHAPTER 14. PERFORMING OVERCLOUD POST-
INSTALLATION TASKS

This chapter contains information about tasks to perform immediately after you create your overcloud.
These tasks ensure your overcloud is ready to use.

14.1. CHECKING OVERCLOUD DEPLOYMENT STATUS

To check the deployment status of the overcloud, use the openstack overcloud status command. This
command returns the result of all deployment steps.

Procedure

1. Source the stackrc file:

$ source ~/stackrc

2. Run the deployment status command:

$ openstack overcloud status

The output of this command displays the status of the overcloud:

+-----------+---------------------+---------------------+-------------------+
| Plan Name | Created | Updated | Deployment Status |
+-----------+---------------------+---------------------+-------------------+
| overcloud | 2018-05-03 21:24:50 | 2018-05-03 21:27:59 | DEPLOY_SUCCESS |
+-----------+---------------------+---------------------+-------------------+

If your overcloud uses a different name, use the --stack argument to select an overcloud with a
different name:

$ openstack overcloud status --stack <overcloud_name>

Replace <overcloud_name> with the name of your overcloud.

14.2. CREATING BASIC OVERCLOUD FLAVORS

Validation steps in this guide assume that your installation contains flavors. If you have not already
created at least one flavor, complete the following steps to create a basic set of default flavors that
have a range of storage and processing capabilities:

Procedure

1. Source the overcloudrc file:

$ source ~/overcloudrc

2. Run the openstack flavor create command to create a flavor. Use the following options to
specify the hardware requirements for each flavor:

--disk

CHAPTER 14. PERFORMING OVERCLOUD POST-INSTALLATION TASKS

229

Defines the hard disk space for a virtual machine volume.

--ram

Defines the RAM required for a virtual machine.

--vcpus

Defines the quantity of virtual CPUs for a virtual machine.

3. The following example creates the default overcloud flavors:

$ openstack flavor create m1.tiny --ram 512 --disk 0 --vcpus 1
$ openstack flavor create m1.smaller --ram 1024 --disk 0 --vcpus 1
$ openstack flavor create m1.small --ram 2048 --disk 10 --vcpus 1
$ openstack flavor create m1.medium --ram 3072 --disk 10 --vcpus 2
$ openstack flavor create m1.large --ram 8192 --disk 10 --vcpus 4
$ openstack flavor create m1.xlarge --ram 8192 --disk 10 --vcpus 8

NOTE

Use $ openstack flavor create --help to learn more about the openstack flavor create
command.

14.3. CREATING A DEFAULT TENANT NETWORK

The overcloud requires a default Tenant network so that virtual machines can communicate internally.

Procedure

1. Source the overcloudrc file:

$ source ~/overcloudrc

2. Create the default Tenant network:

(overcloud) $ openstack network create default

3. Create a subnet on the network:

(overcloud) $ openstack subnet create default --network default --gateway 172.20.1.1 --
subnet-range 172.20.0.0/16

4. Confirm the created network:

(overcloud) $ openstack network list
+-----------------------+-------------+--------------------------------------+
| id | name | subnets |
+-----------------------+-------------+--------------------------------------+
| 95fadaa1-5dda-4777... | default | 7e060813-35c5-462c-a56a-1c6f8f4f332f |
+-----------------------+-------------+--------------------------------------+

These commands create a basic Networking service (neutron) network named default. The overcloud
automatically assigns IP addresses from this network to virtual machines using an internal DHCP
mechanism.

Red Hat OpenStack Platform 17.0 Director Installation and Usage

230

14.4. CREATING A DEFAULT FLOATING IP NETWORK

To access your virtual machines from outside of the overcloud, you must configure an external network
that provides floating IP addresses to your virtual machines.

This procedure contains two examples. Use the example that best suits your environment:

Native VLAN (flat network)

Non-Native VLAN (VLAN network)

Both of these examples involve creating a network with the name public. The overcloud requires this
specific name for the default floating IP pool. This name is also important for the validation tests in
Section 14.7, “Validating the overcloud”.

By default, Openstack Networking (neutron) maps a physical network name called datacentre to the br-
ex bridge on your host nodes. You connect the public overcloud network to the physical datacentre
and this provides a gateway through the br-ex bridge.

Prerequisites

A dedicated interface or native VLAN for the floating IP network.

Procedure

1. Source the overcloudrc file:

$ source ~/overcloudrc

2. Create the public network:

Create a flat network for a native VLAN connection:

(overcloud) $ openstack network create public --external --provider-network-type flat --
provider-physical-network datacentre

Create a vlan network for non-native VLAN connections:

(overcloud) $ openstack network create public --external --provider-network-type vlan --
provider-physical-network datacentre --provider-segment 201

Use the --provider-segment option to define the VLAN that you want to use. In this
example, the VLAN is 201.

3. Create a subnet with an allocation pool for floating IP addresses. In this example, the IP range is
10.1.1.51 to 10.1.1.250:

(overcloud) $ openstack subnet create public --network public --dhcp --allocation-pool
start=10.1.1.51,end=10.1.1.250 --gateway 10.1.1.1 --subnet-range 10.1.1.0/24

Ensure that this range does not conflict with other IP addresses in your external network.

14.5. CREATING A DEFAULT PROVIDER NETWORK

A provider network is another type of external network connection that routes traffic from private

CHAPTER 14. PERFORMING OVERCLOUD POST-INSTALLATION TASKS

231

A provider network is another type of external network connection that routes traffic from private
tenant networks to external infrastructure network. The provider network is similar to a floating IP
network but the provider network uses a logical router to connect private networks to the provider
network.

This procedure contains two examples. Use the example that best suits your environment:

Native VLAN (flat network)

Non-Native VLAN (VLAN network)

By default, Openstack Networking (neutron) maps a physical network name called datacentre to the br-
ex bridge on your host nodes. You connect the public overcloud network to the physical datacentre
and this provides a gateway through the br-ex bridge.

Procedure

1. Source the overcloudrc file:

$ source ~/overcloudrc

2. Create the provider network:

Create a flat network for a native VLAN connection:

(overcloud) $ openstack network create provider --external --provider-network-type flat --
provider-physical-network datacentre --share

Create a vlan network for non-native VLAN connections:

(overcloud) $ openstack network create provider --external --provider-network-type vlan -
-provider-physical-network datacentre --provider-segment 201 --share

Use the --provider-segment option to define the VLAN that you want to use. In this
example, the VLAN is 201.

These example commands create a shared network. It is also possible to specify a tenant instead
of specifying --share so that only the tenant has access to the new network.

+ If you mark a provider network as external, only the operator may create ports on that
network.

3. Add a subnet to the provider network to provide DHCP services:

(overcloud) $ openstack subnet create provider-subnet --network provider --dhcp --
allocation-pool start=10.9.101.50,end=10.9.101.100 --gateway 10.9.101.254 --subnet-range
10.9.101.0/24

4. Create a router so that other networks can route traffic through the provider network:

(overcloud) $ openstack router create external

5. Set the external gateway for the router to the provider network:

(overcloud) $ openstack router set --external-gateway provider external

Red Hat OpenStack Platform 17.0 Director Installation and Usage

232

6. Attach other networks to this router. For example, run the following command to attach a
subnet subnet1 to the router:

(overcloud) $ openstack router add subnet external subnet1

This command adds subnet1 to the routing table and allows traffic from virtual machines using
subnet1 to route to the provider network.

14.6. CREATING ADDITIONAL BRIDGE MAPPINGS

Floating IP networks can use any bridge, not just br-ex, provided that you map the additional bridge
during deployment.

Procedure

1. To map a new bridge called br-floating to the floating physical network, include the
NeutronBridgeMappings parameter in an environment file:

parameter_defaults:
 NeutronBridgeMappings: "datacentre:br-ex,floating:br-floating"

2. With this method, you can create separate external networks after creating the overcloud. For
example, to create a floating IP network that maps to the floating physical network, run the
following commands:

$ source ~/overcloudrc
(overcloud) $ openstack network create public --external --provider-physical-network floating
--provider-network-type vlan --provider-segment 105
(overcloud) $ openstack subnet create public --network public --dhcp --allocation-pool
start=10.1.2.51,end=10.1.2.250 --gateway 10.1.2.1 --subnet-range 10.1.2.0/24

14.7. VALIDATING THE OVERCLOUD

The overcloud uses the OpenStack Integration Test Suite (tempest) tool set to conduct a series of
integration tests. This section contains information about preparations for running the integration tests.
For full instructions about how to use the OpenStack Integration Test Suite, see the OpenStack
Integration Test Suite Guide.

The Integration Test Suite requires a few post-installation steps to ensure successful tests.

Procedure

1. If you run this test from the undercloud, ensure that the undercloud host has access to the
Internal API network on the overcloud. For example, add a temporary VLAN on the undercloud
host to access the Internal API network (ID: 201) using the 172.16.0.201/24 address:

$ source ~/stackrc
(undercloud) $ sudo ovs-vsctl add-port br-ctlplane vlan201 tag=201 -- set interface vlan201
type=internal
(undercloud) $ sudo ip l set dev vlan201 up; sudo ip addr add 172.16.0.201/24 dev vlan201

2. Run the integration tests as described in the OpenStack Integration Test Suite Guide .

CHAPTER 14. PERFORMING OVERCLOUD POST-INSTALLATION TASKS

233

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.0/html-single/openstack_integration_test_suite_guide/
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.0/html-single/openstack_integration_test_suite_guide/

3. After completing the validation, remove any temporary connections to the overcloud Internal
API. In this example, use the following commands to remove the previously created VLAN on
the undercloud:

$ source ~/stackrc
(undercloud) $ sudo ovs-vsctl del-port vlan201

14.8. PROTECTING THE OVERCLOUD FROM REMOVAL

Set a custom policy for heat to protect your overcloud from being deleted.

Procedure

1. Create an environment file called prevent-stack-delete.yaml.

2. Set the HeatApiPolicies parameter:

parameter_defaults:
 HeatApiPolicies:
 heat-deny-action:
 key: 'actions:action'
 value: 'rule:deny_everybody'
 heat-protect-overcloud:
 key: 'stacks:delete'
 value: 'rule:deny_everybody'

IMPORTANT

The heat-deny-action is a default policy that you must include in your undercloud
installation.

3. Add the prevent-stack-delete.yaml environment file to the custom_env_files parameter in
the undercloud.conf file:

custom_env_files = prevent-stack-delete.yaml

4. Run the undercloud installation command to refresh the configuration:

$ openstack undercloud install

This environment file prevents you from deleting any stacks in the overcloud, which means you cannot
perform the following functions:

Delete the overcloud

Remove individual Compute nor Ceph Storage nodes

Replace Controller nodes

To enable stack deletion, remove the prevent-stack-delete.yaml file from the custom_env_files
parameter and run the openstack undercloud install command.

Red Hat OpenStack Platform 17.0 Director Installation and Usage

234

CHAPTER 15. PERFORMING BASIC OVERCLOUD
ADMINISTRATION TASKS

This chapter contains information about basic tasks you might need to perform during the lifecycle of
your overcloud.

15.1. ACCESSING OVERCLOUD NODES THROUGH SSH

You can access each overcloud node through the SSH protocol.

Each overcloud node contains a tripleo-admin user.

The stack user on the undercloud has key-based SSH access to the tripleo-admin user on each
overcloud node.

All overcloud nodes have a short hostname that the undercloud resolves to an IP address on the
control plane network. Each short hostname uses a .ctlplane suffix. For example, the short
name for overcloud-controller-0 is overcloud-controller-0.ctlplane

Prerequisites

A deployed overcloud with a working control plane network.

Procedure

1. Log in to the undercloud as the stack user.

2. Find the name of the node that you want to access:

(undercloud)$ metalsmith list

3. Connect to the node as the tripleo-admin user:

(undercloud)$ ssh tripleo-admin@overcloud-controller-0

15.2. MANAGING CONTAINERIZED SERVICES

Red Hat OpenStack Platform (RHOSP) runs services in containers on the undercloud and overcloud
nodes. In certain situations, you might need to control the individual services on a host. This section
contains information about some common commands you can run on a node to manage containerized
services.

Listing containers and images

To list running containers, run the following command:

$ sudo podman ps

To include stopped or failed containers in the command output, add the --all option to the command:

$ sudo podman ps --all

To list container images, run the following command:

CHAPTER 15. PERFORMING BASIC OVERCLOUD ADMINISTRATION TASKS

235

$ sudo podman images

Inspecting container properties

To view the properties of a container or container images, use the podman inspect command. For
example, to inspect the keystone container, run the following command:

$ sudo podman inspect keystone

Managing containers with Systemd services

Previous versions of OpenStack Platform managed containers with Docker and its daemon. Now, the
Systemd services interface manages the lifecycle of the containers. Each container is a service and you
run Systemd commands to perform specific operations for each container.

NOTE

It is not recommended to use the Podman CLI to stop, start, and restart containers
because Systemd applies a restart policy. Use Systemd service commands instead.

To check a container status, run the systemctl status command:

$ sudo systemctl status tripleo_keystone
● tripleo_keystone.service - keystone container
 Loaded: loaded (/etc/systemd/system/tripleo_keystone.service; enabled; vendor preset: disabled)
 Active: active (running) since Fri 2019-02-15 23:53:18 UTC; 2 days ago
 Main PID: 29012 (podman)
 CGroup: /system.slice/tripleo_keystone.service
 └─29012 /usr/bin/podman start -a keystone

To stop a container, run the systemctl stop command:

$ sudo systemctl stop tripleo_keystone

To start a container, run the systemctl start command:

$ sudo systemctl start tripleo_keystone

To restart a container, run the systemctl restart command:

$ sudo systemctl restart tripleo_keystone

Because no daemon monitors the containers status, Systemd automatically restarts most containers in
these situations:

Clean exit code or signal, such as running podman stop command.

Unclean exit code, such as the podman container crashing after a start.

Unclean signals.

Timeout if the container takes more than 1m 30s to start.

For more information about Systemd services, see the systemd.service documentation.

Red Hat OpenStack Platform 17.0 Director Installation and Usage

236

https://www.freedesktop.org/software/systemd/man/systemd.service.html

NOTE

Any changes to the service configuration files within the container revert after restarting
the container. This is because the container regenerates the service configuration based
on files on the local file system of the node in /var/lib/config-data/puppet-generated/.
For example, if you edit /etc/keystone/keystone.conf within the keystone container and
restart the container, the container regenerates the configuration using /var/lib/config-
data/puppet-generated/keystone/etc/keystone/keystone.conf on the local file system
of the node, which overwrites any the changes that were made within the container
before the restart.

Monitoring podman containers with Systemd timers

The Systemd timers interface manages container health checks. Each container has a timer that runs a
service unit that executes health check scripts.

To list all OpenStack Platform containers timers, run the systemctl list-timers command and limit the
output to lines containing tripleo:

$ sudo systemctl list-timers | grep tripleo
Mon 2019-02-18 20:18:30 UTC 1s left Mon 2019-02-18 20:17:26 UTC 1min 2s ago
tripleo_nova_metadata_healthcheck.timer tripleo_nova_metadata_healthcheck.service
Mon 2019-02-18 20:18:34 UTC 5s left Mon 2019-02-18 20:17:23 UTC 1min 5s ago
tripleo_keystone_healthcheck.timer tripleo_keystone_healthcheck.service
Mon 2019-02-18 20:18:35 UTC 6s left Mon 2019-02-18 20:17:13 UTC 1min 15s ago
tripleo_memcached_healthcheck.timer tripleo_memcached_healthcheck.service
(...)

To check the status of a specific container timer, run the systemctl status command for the
healthcheck service:

$ sudo systemctl status tripleo_keystone_healthcheck.service
● tripleo_keystone_healthcheck.service - keystone healthcheck
 Loaded: loaded (/etc/systemd/system/tripleo_keystone_healthcheck.service; disabled; vendor
preset: disabled)
 Active: inactive (dead) since Mon 2019-02-18 20:22:46 UTC; 22s ago
 Process: 115581 ExecStart=/usr/bin/podman exec keystone /openstack/healthcheck (code=exited,
status=0/SUCCESS)
 Main PID: 115581 (code=exited, status=0/SUCCESS)

Feb 18 20:22:46 undercloud.localdomain systemd[1]: Starting keystone healthcheck...
Feb 18 20:22:46 undercloud.localdomain podman[115581]: {"versions": {"values": [{"status": "stable",
"updated": "2019-01-22T00:00:00Z", "..."}]}]}}
Feb 18 20:22:46 undercloud.localdomain podman[115581]: 300 192.168.24.1:35357 0.012 seconds
Feb 18 20:22:46 undercloud.localdomain systemd[1]: Started keystone healthcheck.

To stop, start, restart, and show the status of a container timer, run the relevant systemctl command
against the .timer Systemd resource. For example, to check the status of the
tripleo_keystone_healthcheck.timer resource, run the following command:

$ sudo systemctl status tripleo_keystone_healthcheck.timer
● tripleo_keystone_healthcheck.timer - keystone container healthcheck
 Loaded: loaded (/etc/systemd/system/tripleo_keystone_healthcheck.timer; enabled; vendor preset:
disabled)
 Active: active (waiting) since Fri 2019-02-15 23:53:18 UTC; 2 days ago

CHAPTER 15. PERFORMING BASIC OVERCLOUD ADMINISTRATION TASKS

237

If the healthcheck service is disabled but the timer for that service is present and enabled, it means that
the check is currently timed out, but will be run according to timer. You can also start the check manually.

NOTE

The podman ps command does not show the container health status.

Checking container logs

Red Hat OpenStack Platform 17.0 logs all standard output (stdout) from all containers, and standard
errors (stderr) consolidated inone single file for each container in /var/log/containers/stdout.

The host also applies log rotation to this directory, which prevents huge files and disk space issues.

In case a container is replaced, the new container outputs to the same log file, because podman uses
the container name instead of container ID.

You can also check the logs for a containerized service with the podman logs command. For example,
to view the logs for the keystone container, run the following command:

$ sudo podman logs keystone

Accessing containers

To enter the shell for a containerized service, use the podman exec command to launch /bin/bash. For
example, to enter the shell for the keystone container, run the following command:

$ sudo podman exec -it keystone /bin/bash

To enter the shell for the keystone container as the root user, run the following command:

$ sudo podman exec --user 0 -it <NAME OR ID> /bin/bash

To exit the container, run the following command:

exit

15.3. MODIFYING THE OVERCLOUD ENVIRONMENT

You can modify the overcloud to add additional features or alter existing operations.

Procedure

1. To modify the overcloud, make modifications to your custom environment files and heat
templates, then rerun the openstack overcloud deploy command from your initial overcloud
creation. For example, if you created an overcloud using Section 11.3, “Configuring and
deploying the overcloud”, rerun the following command:

$ source ~/stackrc
(undercloud) $ openstack overcloud deploy --templates \
 -e ~/templates/overcloud-baremetal-deployed.yaml \

Red Hat OpenStack Platform 17.0 Director Installation and Usage

238

 -e ~/templates/network-environment.yaml \
 -e ~/templates/storage-environment.yaml \
 --ntp-server pool.ntp.org

Director checks the overcloud stack in heat, and then updates each item in the stack with the
environment files and heat templates. Director does not recreate the overcloud, but rather
changes the existing overcloud.

IMPORTANT

Removing parameters from custom environment files does not revert the
parameter value to the default configuration. You must identify the default value
from the core heat template collection in /usr/share/openstack-tripleo-heat-
templates and set the value in your custom environment file manually.

2. If you want to include a new environment file, add it to the openstack overcloud deploy
command with the`-e` option. For example:

$ source ~/stackrc
(undercloud) $ openstack overcloud deploy --templates \
 -e ~/templates/new-environment.yaml \
 -e ~/templates/network-environment.yaml \
 -e ~/templates/storage-environment.yaml \
 -e ~/templates/overcloud-baremetal-deployed.yaml \
 --ntp-server pool.ntp.org

This command includes the new parameters and resources from the environment file into the
stack.

IMPORTANT

It is not advisable to make manual modifications to the overcloud configuration
because director might overwrite these modifications later.

15.4. IMPORTING VIRTUAL MACHINES INTO THE OVERCLOUD

You can migrate virtual machines from an existing OpenStack environment to your Red Hat OpenStack
Platform (RHOSP) environment.

Procedure

1. On the existing OpenStack environment, create a new image by taking a snapshot of a running
server and download the image:

$ openstack server image create --name <image_name> <instance_name>
$ openstack image save --file <exported_vm.qcow2> <image_name>

Replace <instance_name> with the name of the instance.

Replace <image_name> with the name of the new image.

Replace <exported_vm.qcow2> with the name of the exported virtual machine.

2. Copy the exported image to the undercloud node:

CHAPTER 15. PERFORMING BASIC OVERCLOUD ADMINISTRATION TASKS

239

$ scp exported_vm.qcow2 stack@192.168.0.2:~/.

3. Log in to the undercloud as the stack user.

4. Source the overcloudrc credentials file:

$ source ~/overcloudrc

5. Upload the exported image into the overcloud:

(overcloud) $ openstack image create --disk-format qcow2 -file <exported_vm.qcow2> --
container-format bare <image_name>

6. Launch a new instance:

(overcloud) $ openstack server create --key-name default --flavor m1.demo --image
imported_image --nic net-id=net_id <instance_name>

IMPORTANT

You can use these commands to copy each virtual machine disk from the existing
OpenStack environment to the new Red Hat OpenStack Platform. QCOW snapshots lose
their original layering system.

15.5. LAUNCHING THE EPHEMERAL HEAT PROCESS

In previous versions of Red Hat OpenStack Platform (RHOSP) a system-installed Heat process was
used to install the overcloud. Now, we use ephermal Heat to install the overcloud meaning that the
heat-api and heat-engine processes are started on demand by the deployment, update, and upgrade
commands.

Previously, you used the openstack stack command to create and manage stacks. This command is no
longer available by default. For troubleshooting and debugging purposes, for example if the stack should
fail, you must first launch the ephemeral Heat process to use the openstack stack commands.

Use the openstack overcloud tripleo launch heat command to enable ephemeral heat outside of a
deployment.

Procedure

1. Use the openstack tripleo launch heat command to launch the ephemeral Heat process:

(undercloud)$ openstack tripleo launch heat --heat-dir /home/stack/overcloud-
deploy/overcloud/heat-launcher --restore-db

The command exits after launching the Heat process, the Heat process continues to run in the
background as a podman pod.

2. Use the podman pod ps command to verify that the ephemeral-heat process is running:

(undercloud)$ sudo podman pod ps
POD ID NAME STATUS CREATED INFRA ID # OF CONTAINERS
958b141609b2 ephemeral-heat Running 2 minutes ago 44447995dbcf 3

Red Hat OpenStack Platform 17.0 Director Installation and Usage

240

3. Use the export command to export the OS_CLOUD environment:

(undercloud)$ export OS_CLOUD=heat

4. Use the openstack stack list command to list the installed stacks:

(undercloud)$ openstack stack list
+--------------------------------------+------------+---------+-----------------+----------------------+------
--------+
| ID | Stack Name | Project | Stack Status | Creation Time |
Updated Time |
+--------------------------------------+------------+---------+-----------------+----------------------+------
--------+
| 761e2a54-c6f9-4e0f-abe6-c8e0ad51a76c | overcloud | admin | CREATE_COMPLETE |
2022-08-29T20:48:37Z | None |
+--------------------------------------+------------+---------+-----------------+----------------------+------
--------+

You can debug with commands such as openstack stack environment show and openstack
stack resource list.

5. After you have finished debugging, stop the emphemeral Heat process:

(undercloud)$ openstack tripleo launch heat --kill

NOTE

Sometimes, exporting the heat environment fails. This can happen when other
credentials, such as overcloudrc, are in use. In this case unset the existing environment
and source the heat environment.

(overcloud)$ unset OS_CLOUD
(overcloud)$ unset OS_PROJECT_NAME
(overcloud)$ unset OS_PROJECT_DOMAIN_NAME
(overcloud)$ unset OS_USER_DOMAIN_NAME
(overcloud)$ OS_AUTH_TYPE=none
(overcloud)$ OS_ENDPOINT=http://127.0.0.1:8006/v1/admin
(overcloud)$ export OS_CLOUD=heat

15.6. RUNNING THE DYNAMIC INVENTORY SCRIPT

You can run Ansible-based automation in your Red Hat OpenStack Platform (RHOSP) environment.
Use the tripleo-ansible-inventory.yaml inventory file located in the /home/stack/overcloud-
deploy/<stack> directory to run ansible plays or ad-hoc commands.

NOTE

If you want to run an Ansible playbook or an Ansible ad-hoc command on the undercloud,
you must use the /home/stack/tripleo-deploy/undercloud/tripleo-ansible-
inventory.yaml inventory file.

Procedure

CHAPTER 15. PERFORMING BASIC OVERCLOUD ADMINISTRATION TASKS

241

1. To view your inventory of nodes, run the following Ansible ad-hoc command:

(undercloud) [stack@undercloud ~]$ ansible -i ./overcloud-deploy/overcloud/tripleo-ansible-
inventory.yaml all --list

2. To execute Ansible playbooks on your environment, run the ansible command and include the
full path to inventory file using the -i option. For example:

(undercloud) $ ansible <hosts> -i ./overcloud-deploy/tripleo-ansible-inventory.yaml
<playbook> <options>

Replace <hosts> with the type of hosts that you want to use to use:

controller for all Controller nodes

compute for all Compute nodes

overcloud for all overcloud child nodes. For example, controller and compute nodes

"*" for all nodes

Replace <options> with additional Ansible options.

Use the --ssh-extra-args='-o StrictHostKeyChecking=no' option to bypass
confirmation on host key checking.

Use the -u [USER] option to change the SSH user that executes the Ansible
automation. The default SSH user for the overcloud is automatically defined using the
ansible_ssh_user parameter in the dynamic inventory. The -u option overrides this
parameter.

Use the -m [MODULE] option to use a specific Ansible module. The default is
command, which executes Linux commands.

Use the -a [MODULE_ARGS] option to define arguments for the chosen module.

IMPORTANT

Custom Ansible automation on the overcloud is not part of the standard overcloud stack.
Subsequent execution of the openstack overcloud deploy command might override
Ansible-based configuration for OpenStack Platform services on overcloud nodes.

15.7. REMOVING AN OVERCLOUD STACK

You can delete an overcloud stack and unprovision all the stack nodes.

NOTE

Deleting your overcloud stack does not erase all the overcloud data. If you need to erase
all the overcloud data, contact Red Hat support.

Procedure

1. Log in to the undercloud host as the stack user.

Red Hat OpenStack Platform 17.0 Director Installation and Usage

242

2. Source the stackrc undercloud credentials file:

$ source ~/stackrc

3. Retrieve a list of all the nodes in your stack and their current status:

(undercloud)$ openstack baremetal node list
+--------------------------------------+--------------+--------------------------------------+-------------+--
------------------+-------------+
| UUID | Name | Instance UUID | Power State |
Provisioning State | Maintenance |
+--------------------------------------+--------------+--------------------------------------+-------------+--
------------------+-------------+
| 92ae71b0-3c31-4ebb-b467-6b5f6b0caac7 | compute-0 | 059fb1a1-53ea-4060-9a47-
09813de28ea1 | power on | active | False |
| 9d6f955e-3d98-4d1a-9611-468761cebabf | compute-1 | e73a4b50-9579-4fe1-bd1a-
556a2c8b504f | power on | active | False |
| 8a686fc1-1381-4238-9bf3-3fb16eaec6ab | controller-0 | 6d69e48d-10b4-45dd-9776-
155a9b8ad575 | power on | active | False |
| eb8083cc-5f8f-405f-9b0c-14b772ce4534 | controller-1 | 1f836ac0-a70d-4025-88a3-
bbe0583b4b8e | power on | active | False |
| a6750f1f-8901-41d6-b9f1-f5d6a10a76c7 | controller-2 | e2edd028-cea6-4a98-955e-
5c392d91ed46 | power on | active | False |
+--------------------------------------+--------------+--------------------------------------+-------------+--
------------------+-------------+

4. Delete the overcloud stack and unprovision the nodes and networks:

(undercloud)$ openstack overcloud delete -b <node_definition_file> \
 --networks-file <networks_definition_file> --network-ports <stack>

Replace <node_definition_file> with the name of your node definition file, for example,
overcloud-baremetal-deploy.yaml.

Replace <networks_definition_file> with the name of your networks definition file, for
example, network_data_v2.yaml.

Replace <stack> with the name of the stack that you want to delete. If not specified, the
default stack is overcloud.

5. Confirm that you want to delete the overcloud:

Are you sure you want to delete this overcloud [y/N]?

6. Wait for the overcloud to delete and the nodes and networks to unprovision.

7. Confirm that the bare-metal nodes have been unprovisioned:

(undercloud) [stack@undercloud-0 ~]$ openstack baremetal node list
+--------------------------------------+--------------+---------------+-------------+--------------------+----
---------+
| UUID | Name | Instance UUID | Power State | Provisioning State |
Maintenance |
+--------------------------------------+--------------+---------------+-------------+--------------------+----
---------+

CHAPTER 15. PERFORMING BASIC OVERCLOUD ADMINISTRATION TASKS

243

| 92ae71b0-3c31-4ebb-b467-6b5f6b0caac7 | compute-0 | None | power off |
available | False |
| 9d6f955e-3d98-4d1a-9611-468761cebabf | compute-1 | None | power off |
available | False |
| 8a686fc1-1381-4238-9bf3-3fb16eaec6ab | controller-0 | None | power off | available
| False |
| eb8083cc-5f8f-405f-9b0c-14b772ce4534 | controller-1 | None | power off | available
| False |
| a6750f1f-8901-41d6-b9f1-f5d6a10a76c7 | controller-2 | None | power off | available
| False |
+--------------------------------------+--------------+---------------+-------------+--------------------+----
---------+

8. Remove the stack directories:

$ rm -rf ~/overcloud-deploy/<stack>
$ rm -rf ~/config-download/<stack>

NOTE

The directory paths for your stack might be different from the default if you used
the --output-dir and --working-dir options when deploying the overcloud with
the openstack overcloud deploy command.

Red Hat OpenStack Platform 17.0 Director Installation and Usage

244

CHAPTER 16. CONFIGURING THE OVERCLOUD WITH ANSIBLE
Ansible is the main method to apply the overcloud configuration. This chapter provides information
about how to interact with the overcloud Ansible configuration.

Although director generates the Ansible playbooks automatically, it is a good idea to familiarize yourself
with Ansible syntax. For more information about using Ansible, see https://docs.ansible.com/.

NOTE

Ansible also uses the concept of roles, which are different to OpenStack Platform
director roles. Ansible roles form reusable components of playbooks, whereas director
roles contain mappings of OpenStack services to node types.

16.1. ANSIBLE-BASED OVERCLOUD CONFIGURATION (CONFIG-
DOWNLOAD)

The config-download feature is the method that director uses to configure the overcloud. Director
uses config-download in conjunction with OpenStack Orchestration (heat) to generate the software
configuration and apply the configuration to each overcloud node. Although heat creates all deployment
data from SoftwareDeployment resources to perform the overcloud installation and configuration,
heat does not apply any of the configuration. Heat only provides the configuration data through the
heat API.

As a result, when you run the openstack overcloud deploy command, the following process occurs:

Director creates a new deployment plan based on openstack-tripleo-heat-templates and
includes any environment files and parameters to customize the plan.

Director uses heat to interpret the deployment plan and create the overcloud stack and all
descendant resources. This includes provisioning nodes with the OpenStack Bare Metal service
(ironic).

Heat also creates the software configuration from the deployment plan. Director compiles the
Ansible playbooks from this software configuration.

Director generates a temporary user (tripleo-admin) on the overcloud nodes specifically for
Ansible SSH access.

Director downloads the heat software configuration and generates a set of Ansible playbooks
using heat outputs.

Director applies the Ansible playbooks to the overcloud nodes using ansible-playbook.

16.2. CONFIG-DOWNLOAD WORKING DIRECTORY

The ansible-playbook command creates an Ansible project directory, default name ~/config-
download/overcloud. This project directory stores downloaded software configuration from heat. It
includes all Ansible-related files which you need to run ansible-playbook to configure the overcloud.

The contents of the directory include:

tripleo-ansible-inventory.yaml - Ansible inventory file containing hosts and vars for all the
overcloud nodes.

CHAPTER 16. CONFIGURING THE OVERCLOUD WITH ANSIBLE

245

https://docs.ansible.com/

ansible.log - Log file from the most recent run of ansible-playbook.

ansible.cfg - Configuration file used when running ansible-playbook.

ansible-playbook-command.sh - Executable script used to rerun ansible-playbook.

ssh_private_key - Private ssh key used to access the overcloud nodes.

1. Reproducing ansible-playbook

After the project directory is created, run the ansible-playbook-command.sh command to reproduce
the deployment.

$./ansible-playbook-command.sh

You can run the script with additional arguments, such as check mode --check, limiting hosts --limit, and
overriding variables -e.

$./ansible-playbook-command.sh --check

16.3. CHECKING CONFIG-DOWNLOAD LOG

During the config-download process, Ansible creates a log file, named ansible.log, in the /home/stack
directory on the undercloud.

Procedure

1. View the log with the less command:

$ less ~/ansible.log

16.4. PERFORMING GIT OPERATIONS ON THE WORKING DIRECTORY

The config-download working directory is a local Git repository. Every time a deployment operation
runs, director adds a Git commit to the working directory with the relevant changes. You can perform
Git operations to view configuration for the deployment at different stages and compare the
configuration with different deployments.

Be aware of the limitations of the working directory. For example, if you use Git to revert to a previous
version of the config-download working directory, this action affects only the configuration in the
working directory. It does not affect the following configurations:

The overcloud data schema: Applying a previous version of the working directory software
configuration does not undo data migration and schema changes.

The hardware layout of the overcloud: Reverting to previous software configuration does not
undo changes related to overcloud hardware, such as scaling up or down.

The heat stack: Reverting to earlier revisions of the working directory has no effect on the
configuration stored in the heat stack. The heat stack creates a new version of the software
configuration that applies to the overcloud. To make permanent changes to the overcloud,
modify the environment files applied to the overcloud stack before you rerun the openstack
overcloud deploy command.

Red Hat OpenStack Platform 17.0 Director Installation and Usage

246

Complete the following steps to compare different commits of the config-download working directory.

Procedure

1. Change to the config-download working directory for your overcloud, usually named
overcloud:

$ cd ~/config-download/overcloud

2. Run the git log command to list the commits in your working directory. You can also format the
log output to show the date:

$ git log --format=format:"%h%x09%cd%x09"
a7e9063 Mon Oct 8 21:17:52 2018 +1000
dfb9d12 Fri Oct 5 20:23:44 2018 +1000
d0a910b Wed Oct 3 19:30:16 2018 +1000
...

By default, the most recent commit appears first.

3. Run the git diff command against two commit hashes to see all changes between the
deployments:

$ git diff a7e9063 dfb9d12

16.5. DEPLOYMENT METHODS THAT USE CONFIG-DOWNLOAD

There are four main methods that use config-download in the context of an overcloud deployment:

Standard deployment

Run the openstack overcloud deploy command to automatically run the configuration stage after
the provisioning stage. This is the default method when you run the openstack overcloud deploy
command.

Separate provisioning and configuration

Run the openstack overcloud deploy command with specific options to separate the provisioning
and configuration stages.

Run the ansible-playbook-command.sh script after a deployment

Run the openstack overcloud deploy command with combined or separate provisioning and
configuration stages, then run the ansible-playbook-command.sh script supplied in the config-
download working directory to re-apply the configuration stage.

Provision nodes, manually create config-download, and run Ansible

Run the openstack overcloud deploy command with a specific option to provision nodes, then run
the ansible-playbook command with the deploy_steps_playbook.yaml playbook.

16.6. RUNNING CONFIG-DOWNLOAD ON A STANDARD DEPLOYMENT

The default method for executing config-download is to run the openstack overcloud deploy
command. This method suits most environments.

Prerequisites

CHAPTER 16. CONFIGURING THE OVERCLOUD WITH ANSIBLE

247

A successful undercloud installation.

Overcloud nodes ready for deployment.

Heat environment files that are relevant to your specific overcloud customization.

Procedure

1. Log in to the undercloud host as the stack user.

2. Source the stackrc file:

$ source ~/stackrc

3. Run the deployment command. Include any environment files that you require for your
overcloud:

$ openstack overcloud deploy \
 --templates \
 -e environment-file1.yaml \
 -e environment-file2.yaml \
 ...

4. Wait until the deployment process completes.

During the deployment process, director generates the config-download files in a ~/config-
download/overcloud working directory. After the deployment process finishes, view the Ansible
playbooks in the working directory to see the tasks director executed to configure the overcloud.

16.7. RUNNING CONFIG-DOWNLOAD WITH SEPARATE PROVISIONING
AND CONFIGURATION

The openstack overcloud deploy command runs the heat-based provisioning process and then the
config-download configuration process. You can also run the deployment command to execute each
process individually. Use this method to provision your overcloud nodes as a distinct process so that you
can perform any manual pre-configuration tasks on the nodes before you run the overcloud
configuration process.

Prerequisites

A successful undercloud installation.

Overcloud nodes ready for deployment.

Heat environment files that are relevant to your specific overcloud customization.

Procedure

1. Log in to the undercloud host as the stack user.

2. Source the stackrc file:

$ source ~/stackrc

3. Run the deployment command with the --stack-only option. Include any environment files you

Red Hat OpenStack Platform 17.0 Director Installation and Usage

248

3. Run the deployment command with the --stack-only option. Include any environment files you
require for your overcloud:

$ openstack overcloud deploy \
 --templates \
 -e environment-file1.yaml \
 -e environment-file2.yaml \
 ...
 --stack-only

4. Wait until the provisioning process completes.

5. Enable SSH access from the undercloud to the overcloud for the tripleo-admin user. The
config-download process uses the tripleo-admin user to perform the Ansible-based
configuration:

$ openstack overcloud admin authorize

6. Perform any manual pre-configuration tasks on nodes. If you use Ansible for configuration, use
the tripleo-admin user to access the nodes.

7. Run the deployment command with the --config-download-only option. Include any
environment files required for your overcloud:

$ openstack overcloud deploy \
 --templates \
 -e environment-file1.yaml \
 -e environment-file2.yaml \
 ...
 --config-download-only

8. Wait until the configuration process completes.

During the configuration stage, director generates the config-download files in a ~/config-
download/overcloud working directory. After the deployment process finishes, view the Ansible
playbooks in the working directory to see the tasks director executed to configure the overcloud.

16.8. RUNNING CONFIG-DOWNLOAD WITH THE ANSIBLE-
PLAYBOOK-COMMAND.SH SCRIPT

When you deploy the overcloud, either with the standard method or a separate provisioning and
configuration process, director generates a working directory in ~/config-download/overcloud. This
directory contains the playbooks and scripts necessary to run the configuration process again.

Prerequisites

An overcloud deployed with the one of the following methods:

Standard method that combines provisioning and configuration process.

Separate provisioning and configuration processes.

Procedure

CHAPTER 16. CONFIGURING THE OVERCLOUD WITH ANSIBLE

249

1. Log in to the undercloud host as the stack user.

2. Run the ansible-playbook-command.sh script.
You can pass additional Ansible arguments to this script, which are then passed unchanged to
the ansible-playbook command. This makes it possible to take advantage of Ansible features,
such as check mode (--check), limiting hosts (--limit), or overriding variables (-e). For example:

$./ansible-playbook-command.sh --limit Controller

WARNING

When --limit is used to deploy at scale, only hosts included in the execution
are added to the SSH known_hosts file across the nodes. Therefore, some
operations, such as live migration, may not work across nodes that are not in
the known_hosts file.

NOTE

To ensure that the /etc/hosts file, on all nodes, is up-to-date, run the following
command as the stack user:

(undercloud)$ cd /home/stack/overcloud-deploy/overcloud/config-
download/overcloud
(undercloud)$ ANSIBLE_REMOTE_USER="tripleo-admin" ansible
allovercloud \
 -i /home/stack/overcloud-deploy/overcloud/tripleo-ansible-inventory.yaml \
 -m include_role \
 -a name=tripleo_hosts_entries \
 -e @global_vars.yaml

3. Wait until the configuration process completes.

Additional information

The working directory contains a playbook called deploy_steps_playbook.yaml, which
manages the overcloud configuration tasks. To view this playbook, run the following
command:

$ less deploy_steps_playbook.yaml

The playbook uses various task files contained in the working directory. Some task files are
common to all OpenStack Platform roles and some are specific to certain OpenStack
Platform roles and servers.

The working directory also contains sub-directories that correspond to each role that you
define in your overcloud roles_data file. For example:

$ ls Controller/

Each OpenStack Platform role directory also contains sub-directories for individual servers



Red Hat OpenStack Platform 17.0 Director Installation and Usage

250

Each OpenStack Platform role directory also contains sub-directories for individual servers
of that role type. The directories use the composable role hostname format:

$ ls Controller/overcloud-controller-0

The Ansible tasks in deploy_steps_playbook.yaml are tagged. To see the full list of tags,
use the CLI option --list-tags with ansible-playbook:

$ ansible-playbook -i tripleo-ansible-inventory.yaml --list-tags
deploy_steps_playbook.yaml

Then apply tagged configuration using the --tags, --skip-tags, or --start-at-task with the
ansible-playbook-command.sh script:

$./ansible-playbook-command.sh --tags overcloud

4. When you run the config-download playbooks against the overcloud, you might receive a
message regarding the SSH fingerprint for each host. To avoid these messages, include --ssh-
common-args="-o StrictHostKeyChecking=no" when you run the ansible-playbook-
command.sh script:

$./ansible-playbook-command.sh --tags overcloud --ssh-common-args="-o
StrictHostKeyChecking=no"

16.9. RUNNING CONFIG-DOWNLOAD WITH MANUALLY CREATED
PLAYBOOKS

You can create your own config-download files outside of the standard workflow. For example, you can
run the openstack overcloud deploy command with the --stack-only option to provision the nodes,
and then manually apply the Ansible configuration separately.

Prerequisites

A successful undercloud installation.

Overcloud nodes ready for deployment.

Heat environment files that are relevant to your specific overcloud customization.

Procedure

1. Log in to the undercloud host as the stack user.

2. Source the stackrc file:

$ source ~/stackrc

3. Run the deployment command with the --stack-only option. Include any environment files
required for your overcloud:

$ openstack overcloud deploy \
 --templates \
 -e environment-file1.yaml \

CHAPTER 16. CONFIGURING THE OVERCLOUD WITH ANSIBLE

251

 -e environment-file2.yaml \
 ...
 --stack-only

4. Wait until the provisioning process completes.

5. Enable SSH access from the undercloud to the overcloud for the tripleo-admin user. The
config-download process uses the tripleo-admin user to perform the Ansible-based
configuration:

$ openstack overcloud admin authorize

6. Generate the config-download files:

$ openstack overcloud deploy \
 --stack overcloud --stack-only \
 --config-dir ~/overcloud-deploy/overcloud/config-download/overcloud/

--stack specifies the name of the overcloud.

--stack-only ensures that the command only deploys the heat stack and skips any software
configuration.

--config-dir specifies the location of the config-download files.

7. Change to the directory that contains your config-download files:

$ cd ~/config-download

8. Generate a static inventory file:

$ tripleo-ansible-inventory \
 --stack <overcloud> \
 --ansible_ssh_user tripleo-admin \
 --static-yaml-inventory inventory.yaml

Replace <overcloud> with the name of your overcloud.

9. Use the ~/overcloud-deploy/overcloud/config-download/overcloud files and the static
inventory file to perform a configuration. To execute the deployment playbook, run the
ansible-playbook command:

$ ansible-playbook \
 -i inventory.yaml \
 -e gather_facts=true \
 -e @global_vars.yaml \
 --private-key ~/.ssh/id_rsa \
 --become \
 ~/overcloud-deploy/overcloud/config-download/overcloud/deploy_steps_playbook.yaml

NOTE

Red Hat OpenStack Platform 17.0 Director Installation and Usage

252

NOTE

When you run the config-download/overcloud playbooks against the overcloud,
you might receive a message regarding the SSH fingerprint for each host. To
avoid these messages, include --ssh-common-args="-o
StrictHostKeyChecking=no" in your ansible-playbook command:

$ ansible-playbook \
 -i inventory.yaml \
 -e gather_facts=true \
 -e @global_vars.yaml \
 --private-key ~/.ssh/id_rsa \
 --ssh-common-args="-o StrictHostKeyChecking=no" \
 --become \
 --tags overcloud \
 ~/overcloud-deploy/overcloud/config-
download/overcloud/deploy_steps_playbook.yaml

10. Wait until the configuration process completes.

11. Generate an overcloudrc file manually from the ansible-based configuration:

$ openstack action execution run \
 --save-result \
 --run-sync \
 tripleo.deployment.overcloudrc \
 '{"container":"overcloud"}' \
 | jq -r '.["result"]["overcloudrc.v3"]' > overcloudrc.v3

12. Manually set the deployment status to success:

$ openstack workflow execution create
tripleo.deployment.v1.set_deployment_status_success '{"plan": "<overcloud>"}'

Replace <overcloud> with the name of your overcloud.

NOTE

CHAPTER 16. CONFIGURING THE OVERCLOUD WITH ANSIBLE

253

NOTE

The ~/overcloud-deploy/overcloud/config-download/overcloud/ directory contains a
playbook called deploy_steps_playbook.yaml. The playbook uses various task files
contained in the working directory. Some task files are common to all Red Hat OpenStack
Platform (RHOSP) roles and some are specific to certain RHOSP roles and servers.

The ~/overcloud-deploy/overcloud/config-download/overcloud/ directory also
contains sub-directories that correspond to each role that you define in your overcloud
roles_data file. Each RHOSP role directory also contains sub-directories for individual
servers of that role type. The directories use the composable role hostname format, for
example Controller/overcloud-controller-0.

The Ansible tasks in deploy_steps_playbook.yaml are tagged. To see the full list of
tags, use the CLI option --list-tags with ansible-playbook:

$ ansible-playbook -i tripleo-ansible-inventory.yaml --list-tags
deploy_steps_playbook.yaml

You can apply tagged configuration using the --tags, --skip-tags, or --start-at-task with
the ansible-playbook-command.sh script:

$ ansible-playbook \
 -i inventory.yaml \
 -e gather_facts=true \
 -e @global_vars.yaml \
 --private-key ~/.ssh/id_rsa \
 --become \
 --tags overcloud \
 ~/overcloud-deploy/overcloud/config-
download/overcloud/deploy_steps_playbook.yaml

16.10. LIMITATIONS OF CONFIG-DOWNLOAD

The config-download feature has some limitations:

When you use ansible-playbook CLI arguments such as --tags, --skip-tags, or --start-at-task, do
not run or apply deployment configuration out of order. These CLI arguments are a convenient
way to rerun previously failed tasks or to iterate over an initial deployment. However, to
guarantee a consistent deployment, you must run all tasks from deploy_steps_playbook.yaml
in order.

You can not use the --start-at-task arguments for certain tasks that use a variable in the task
name. For example, the --start-at-task arguments does not work for the following Ansible task:

- name: Run puppet host configuration for step {{ step }}

If your overcloud deployment includes a director-deployed Ceph Storage cluster, you cannot
skip step1 tasks when you use the --check option unless you also skip external_deploy_steps
tasks.

You can set the number of parallel Ansible tasks with the --forks option. However, the
performance of config-download operations degrades after 25 parallel tasks. For this reason,
do not exceed 25 with the --forks option.

Red Hat OpenStack Platform 17.0 Director Installation and Usage

254

16.11. CONFIG-DOWNLOAD TOP LEVEL FILES

The following file are important top level files within a config-download working directory.

Ansible configuration and execution

The following files are specific to configuring and executing Ansible within the config-download
working directory.

ansible.cfg

Configuration file used when running ansible-playbook.

ansible.log

Log file from the last run of ansible-playbook.

ansible-errors.json

JSON structured file that contains any deployment errors.

ansible-playbook-command.sh

Executable script to rerun the ansible-playbook command from the last deployment operation.

ssh_private_key

Private SSH key that Ansible uses to access the overcloud nodes.

tripleo-ansible-inventory.yaml

Ansible inventory file that contains hosts and variables for all the overcloud nodes.

overcloud-config.tar.gz

Archive of the working directory.

Playbooks

The following files are playbooks within the config-download working directory.

deploy_steps_playbook.yaml

Main deployment steps. This playbook performs the main configuration operations for your
overcloud.

pre_upgrade_rolling_steps_playbook.yaml

Pre upgrade steps for major upgrade

upgrade_steps_playbook.yaml

Major upgrade steps.

post_upgrade_steps_playbook.yaml

Post upgrade steps for major upgrade.

update_steps_playbook.yaml

Minor update steps.

fast_forward_upgrade_playbook.yaml

Fast forward upgrade tasks. Use this playbook only when you want to upgrade from one long-life
version of Red Hat OpenStack Platform to the next.

16.12. CONFIG-DOWNLOAD TAGS

The playbooks use tagged tasks to control the tasks that they apply to the overcloud. Use tags with the
ansible-playbook CLI arguments --tags or --skip-tags to control which tasks to execute. The following
list contains information about the tags that are enabled by default:

CHAPTER 16. CONFIGURING THE OVERCLOUD WITH ANSIBLE

255

facts

Fact gathering operations.

common_roles

Ansible roles common to all nodes.

overcloud

All plays for overcloud deployment.

pre_deploy_steps

Deployments that happen before the deploy_steps operations.

host_prep_steps

Host preparation steps.

deploy_steps

Deployment steps.

post_deploy_steps

Steps that happen after the deploy_steps operations.

external

All external deployment tasks.

external_deploy_steps

External deployment tasks that run on the undercloud only.

16.13. CONFIG-DOWNLOAD DEPLOYMENT STEPS

The deploy_steps_playbook.yaml playbook configures the overcloud. This playbook applies all
software configuration that is necessary to deploy a full overcloud based on the overcloud deployment
plan.

This section contains a summary of the different Ansible plays used within this playbook. The play names
in this section are the same names that are used within the playbook and that are displayed in the
ansible-playbook output. This section also contains information about the Ansible tags that are set on
each play.

Gather facts from undercloud

Fact gathering for the undercloud node.
Tags: facts

Gather facts from overcloud

Fact gathering for the overcloud nodes.
Tags: facts

Load global variables

Loads all variables from global_vars.yaml.
Tags: always

Common roles for TripleO servers

Applies common Ansible roles to all overcloud nodes, including tripleo-bootstrap for installing
bootstrap packages, and tripleo-ssh-known-hosts for configuring ssh known hosts.
Tags: common_roles

Red Hat OpenStack Platform 17.0 Director Installation and Usage

256

Overcloud deploy step tasks for step 0

Applies tasks from the deploy_steps_tasks template interface.
Tags: overcloud, deploy_steps

Server deployments

Applies server-specific heat deployments for configuration such as networking and hieradata.
Includes NetworkDeployment, <Role>Deployment, <Role>AllNodesDeployment, etc.
Tags: overcloud, pre_deploy_steps

Host prep steps

Applies tasks from the host_prep_steps template interface.
Tags: overcloud, host_prep_steps

External deployment step [1,2,3,4,5]

Applies tasks from the external_deploy_steps_tasks template interface. Ansible runs these tasks only
against the undercloud node.
Tags: external, external_deploy_steps

Overcloud deploy step tasks for [1,2,3,4,5]

Applies tasks from the deploy_steps_tasks template interface.
Tags: overcloud, deploy_steps

Overcloud common deploy step tasks [1,2,3,4,5]

Applies the common tasks performed at each step, including puppet host configuration, container-
puppet.py, and tripleo-container-manage (container configuration and management).
Tags: overcloud, deploy_steps

Server Post Deployments

Applies server specific heat deployments for configuration performed after the 5-step deployment
process.
Tags: overcloud, post_deploy_steps

External deployment Post Deploy tasks

Applies tasks from the external_post_deploy_steps_tasks template interface. Ansible runs these
tasks only against the undercloud node.
Tags: external, external_deploy_steps

CHAPTER 16. CONFIGURING THE OVERCLOUD WITH ANSIBLE

257

CHAPTER 17. MANAGING CONTAINERS WITH ANSIBLE
Red Hat OpenStack Platform 17.0 uses the tripleo_container_manage Ansible role to perform
management operations on containers. You can also write custom playbooks to perform specific
container management operations:

Collect the container configuration data that heat generates. The tripleo_container_manage
role uses this data to orchestrate container deployment.

Start containers.

Stop containers.

Update containers.

Delete containers.

Run a container with a specific configuration.

Although director performs container management automatically, you might want to customize a
container configuration, or apply a hotfix to a container without redeploying the overcloud.

NOTE

This role supports only Podman container management.

17.1. TRIPLEO-CONTAINER-MANAGE ROLE DEFAULTS AND
VARIABLES

The following excerpt shows the defaults and variables for the tripleo_container_manage Ansible role.

All variables intended for modification should place placed in this file.
tripleo_container_manage_hide_sensitive_logs: '{{ hide_sensitive_logs | default(true)
 }}'
tripleo_container_manage_debug: '{{ ((ansible_verbosity | int) >= 2) | bool }}'
tripleo_container_manage_clean_orphans: true

All variables within this role should have a prefix of "tripleo_container_manage"
tripleo_container_manage_check_puppet_config: false
tripleo_container_manage_cli: podman
tripleo_container_manage_concurrency: 1
tripleo_container_manage_config: /var/lib/tripleo-config/
tripleo_container_manage_config_id: tripleo
tripleo_container_manage_config_overrides: {}
tripleo_container_manage_config_patterns: '*.json'
Some containers where Puppet is run, can take up to 10 minutes to finish
in slow environments.
tripleo_container_manage_create_retries: 120
Default delay is 5s so 120 retries makes a timeout of 10 minutes which is
what we have observed a necessary value for nova and neutron db-sync execs.
tripleo_container_manage_exec_retries: 120
tripleo_container_manage_healthcheck_disabled: false
tripleo_container_manage_log_path: /var/log/containers/stdouts
tripleo_container_manage_systemd_teardown: true

Red Hat OpenStack Platform 17.0 Director Installation and Usage

258

17.2. TRIPLEO-CONTAINER-MANAGE MOLECULE SCENARIOS

Molecule is used to test the tripleo_container_manage role. The following shows a molecule default
inventory:

hosts:
 all:
 hosts:
 instance:
 ansible_host: localhost
 ansible_connection: local
 ansible_distribution: centos8

Usage

Red Hat OpenStack 17.0 supports only Podman in this role. Docker support is on the roadmap.

The Molecule Ansible role performs the following tasks:

Collect container configuration data, generated by the TripleO Heat Templates. This data is
used as a source of truth. If a container is already managed by Molecule, no matter its present
state, the configuration data will reconfigure the container as needed.

Manage systemd shutdown files. It creates the TripleO Container systemd service, required
for service ordering when shutting down or starting a node. It also manages the netns-
placeholder service.

Delete containers that are nonger needed or that require reconfiguration. It uses a custom filter,
named needs_delete() which has a set of rules to determine if the container needs to be
deleted.

A container will not be deleted if, the container is not managed by tripleo_ansible or the
container config_id does not match the input ID.

A container will be deleted, if the container has no config_data or the container has
config_data which does not match data in input. Note that when a container is removed, the
role also disables and removes the systemd services and healtchecks.

Create containers in a specific order defined by start_order container config, where the default
is 0.

If the container is an exec, a dedicated playbook for execs is run, using async so multiple
execs can be run at the same time.

Otherwise, the podman_container is used, in async, to create the containers. If the
container has a restart policy, systemd service is configured. If the container has a
healthcheck script, systemd healthcheck service is configured.

NOTE

tripleo_container_manage_concurrency parameter is set to 1 by default, and putting a
value higher than 2 can expose issues with Podman locks.

Example of a playbook:

- name: Manage step_1 containers using tripleo-ansible

CHAPTER 17. MANAGING CONTAINERS WITH ANSIBLE

259

 block:
 - name: "Manage containers for step 1 with tripleo-ansible"
 include_role:
 name: tripleo_container_manage
 vars:
 tripleo_container_manage_config: "/var/lib/tripleo-config/container-startup-config/step_1"
 tripleo_container_manage_config_id: "tripleo_step1"

17.3. TRIPLEO_CONTAINER_MANAGE ROLE VARIABLES

The tripleo_container_manage Ansible role contains the following variables:

Table 17.1. Role variables

Name Default value Description

tripleo_container_manage_check_
puppet_config

false Use this variable if you want
Ansible to check Puppet container
configurations. Ansible can
identify updated container
configuration using the
configuration hash. If a container
has a new configuration from
Puppet, set this variable to true
so that Ansible can detect the
new configuration and add the
container to the list of containers
that Ansible must restart.

tripleo_container_manage_cli podman Use this variable to set the
command line interface that you
want to use to manage
containers. The
tripleo_container_manage
role supports only Podman.

tripleo_container_manage_concur
rency

1 Use this variable to set the
number of containers that you
want to manage concurrently.

tripleo_container_manage_config /var/lib/tripleo-config/ Use this variable to set the path to
the container configuration
directory.

tripleo_container_manage_config_
id

tripleo Use this variable to set the ID of a
specific configuration step. For
example, set this value to
tripleo_step2 to manage
containers for step two of the
deployment.

Red Hat OpenStack Platform 17.0 Director Installation and Usage

260

tripleo_container_manage_config_
patterns

*.json Use this variable to set the bash
regular expression that identifies
configuration files in the
container configuration directory.

tripleo_container_manage_debug false Use this variable to enable or
disable debug mode. Run the
tripleo_container_manage
role in debug mode if you want to
run a container with a specific
one-time configuration, to output
the container commands that
manage the lifecycle of
containers, or to run no-op
container management
operations for testing and
verification purposes.

tripleo_container_manage_health
check_disable

false Use this variable to enable or
disable healthchecks.

tripleo_container_manage_log_pa
th

/var/log/containers/stdouts Use this variable to set the stdout
log path for containers.

tripleo_container_manage_system
d_order

false Use this variable to enable or
disable systemd shutdown
ordering with Ansible.

tripleo_container_manage_system
d_teardown

true Use this variable to trigger the
cleanup of obsolete containers.

tripleo_container_manage_config_
overrides

{} Use this variable to override any
container configuration. This
variable takes a dictionary of
values where each key is the
container name and the
parameters that you want to
override, for example, the
container image or user. This
variable does not write custom
overrides to the JSON container
configuration files and any new
container deployments, updates,
or upgrades revert to the content
of the JSON configuration file.

tripleo_container_manage_valid_e
xit_code

[] Use this variable to check if a
container returns an exit code.
This value must be a list, for
example, [0,3].

Name Default value Description

CHAPTER 17. MANAGING CONTAINERS WITH ANSIBLE

261

17.4. TRIPLEO-CONTAINER-MANAGE HEALTHCHECKS

Until Red Hat OpenStack 17.0, container healthcheck was implemented by a systemd timer which would
run podman exec to determine if a given container was healthy. Now, it uses the native healthcheck
interface in Podman which is easier to integrate and consume.

To check if a container (for example, keystone) is healthy, run the following command:

$ sudo podman healthcheck run keystone

The return code should be 0 and “healthy”.

"Healthcheck": {
 "Status": "healthy",
 "FailingStreak": 0,
 "Log": [
 {
 "Start": "2020-04-14T18:48:57.272180578Z",
 "End": "2020-04-14T18:48:57.806659104Z",
 "ExitCode": 0,
 "Output": ""
 },
 (...)
]
}

17.5. TRIPLEO-CONTAINER-MANAGE DEBUG

The tripleo_container_manage Ansible role allows you to perform specific actions on a given container.
This can be used to:

Run a container with a specific one-off configuration.

Output the container commands to manage containers lifecycle.

Output the changes made on containers by Ansible.

NOTE

To manage a single container, you need to know two things:

At which step during the overcloud deployment was the container deployed.

The name of the generated JSON file containing the container configuration.

The following is an example of a playbook to manage HAproxy container at step 1 which overrides the
image setting:

- hosts: localhost
 become: true
 tasks:
 - name: Manage step_1 containers using tripleo-ansible
 block:
 - name: "Manage HAproxy container at step 1 with tripleo-ansible"

Red Hat OpenStack Platform 17.0 Director Installation and Usage

262

 include_role:
 name: tripleo_container_manage
 vars:
 tripleo_container_manage_config_patterns: 'haproxy.json'
 tripleo_container_manage_config: "/var/lib/tripleo-config/container-startup-config/step_1"
 tripleo_container_manage_config_id: "tripleo_step1"
 tripleo_container_manage_clean_orphans: false
 tripleo_container_manage_config_overrides:
 haproxy:
 image: quay.io/tripleomastercentos9/centos-binary-haproxy:hotfix

If Ansible is run in check mode, no container is removed or created, however at the end of the playbook
run a list of commands is displayed to show the possible outcome of the playbook. This is useful for
debugging purposes.

$ ansible-playbook haproxy.yaml --check

Adding the diff mode will show the changes that would have been made on containers by Ansible.

$ ansible-playbook haproxy.yaml --check --diff

The tripleo_container_manage_clean_orphans parameter is optional. It can be set to false meaning
orphaned containers, with a specific config_id, will not be removed. It can be used to manage a single
container without impacting other running containers with same config_id.

The tripleo_container_manage_config_overrides parameter is optional and can be used to override a
specific container attribute, for example the image or the container user. The parameter creates
dictionary with container name and the parameters to override. These parameters have to exist and
they define the container configuration in TripleO Heat Templates.

Note the dictionary does not update the overrides in the JSON file so if an update or upgrade is
executed, the container will be re-configured with the configuration in the JSON file.

CHAPTER 17. MANAGING CONTAINERS WITH ANSIBLE

263

CHAPTER 18. USING THE VALIDATION FRAMEWORK
Red Hat OpenStack Platform (RHOSP) includes a validation framework that you can use to verify the
requirements and functionality of the undercloud and overcloud. The framework includes two types of
validations:

Manual Ansible-based validations, which you execute through the validation command set.

Automatic in-flight validations, which execute during the deployment process.

You must understand which validations you want to run, and skip validations that are not relevant to your
environment. For example, the pre-deployment validation includes a test for TLS-everywhere. If you do
not intend to configure your environment for TLS-everywhere, this test fails. Use the --validation
option in the validation run command to refine the validation according to your environment.

18.1. ANSIBLE-BASED VALIDATIONS

During the installation of Red Hat OpenStack Platform (RHOSP) director, director also installs a set of
playbooks from the openstack-tripleo-validations package. Each playbook contains tests for certain
system requirements and a set of groups that define when to run the test:

no-op

Validations that run a no-op (no operation) task to verify to workflow functions correctly. These
validations run on both the undercloud and overcloud.

prep

Validations that check the hardware configuration of the undercloud node. Run these validation
before you run the openstack undercloud install command.

openshift-on-openstack

Validations that check that the environment meets the requirements to be able to deploy OpenShift
on OpenStack.

pre-introspection

Validations to run before the nodes introspection using Ironic Inspector.

pre-deployment

Validations to run before the openstack overcloud deploy command.

post-deployment

Validations to run after the overcloud deployment has finished.

pre-upgrade

Validations to validate your RHOSP deployment before an upgrade.

post-upgrade

Validations to validate your RHOSP deployment after an upgrade.

18.2. CHANGING THE VALIDATION CONFIGURATION FILE

The validation configuration file is a .ini file that you can edit to control every aspect of the validation
execution and the communication between remote machines.

You can change the default configuration values in one of the following ways:

Edit the default /etc/validations.cfg file.

Red Hat OpenStack Platform 17.0 Director Installation and Usage

264

Make your own copy of the default /etc/validations.cfg file, edit the copy, and provide it
through the CLI with the --config argument. If you create your own copy of the configuration
file, point the CLI to this file on each execution with --config.

By default, the location of the validation configuration file is /etc/validation.cfg.

IMPORTANT

Ensure that you correctly edit the configuration file or your validation might fail with
errors, for example:

undetected validations

callbacks written to different locations

incorrectly-parsed logs

Prerequisites

You have a thorough understanding of how to validate your environment.

Procedure

1. Optional: Make a copy of the validation configuration file for editing:

a. Copy /etc/validation.cfg to your home directory.

b. Make the required edits to the new configuration file.

2. Run the validation command:

$ validation run --config <configuration-file>

Replace <configuration-file> with the file path to the configuration file that you want to use.

NOTE

When you run a validation, the Reasons column in the output is limited to 79
characters. To view the validation result in full, view the validation log files.

18.3. LISTING VALIDATIONS

Run the validation list command to list the different types of validations available.

Procedure

1. Source the stackrc file.

$ source ~/stackrc

2. Run the validation list command:

To list all validations, run the command without any options:

CHAPTER 18. USING THE VALIDATION FRAMEWORK

265

$ validation list

To list validations in a group, run the command with the --group option:

$ validation list --group prep

NOTE

For a full list of options, run validation list --help.

18.4. RUNNING VALIDATIONS

To run a validation or validation group, use the validation run command. To see a full list of options, use
the validation run --help command.

NOTE

When you run a validation, the Reasons column in the output is limited to 79 characters.
To view the validation result in full, view the validation log files.

Procedure

1. Source the stackrc file:

$ source ~/stackrc

2. Validate a static inventory file called tripleo-ansible-inventory.yaml.

$ validation run --group pre-introspection -i tripleo-ansible-inventory.yaml

NOTE

You can find the inventory file in the ~/tripleo-deploy/<stack> directory for a
standalone or undercloud deployment or in the ~/overcloud-deploy/<stack>
directory for an overcloud deployment.

3. Enter the validation run command:

To run a single validation, enter the command with the --validation option and the name of
the validation. For example, to check the memory requirements of each node, enter --
validation check-ram:

$ validation run --validation check-ram

To run multiple specific validations, use the --validation option with a comma-separated list
of the validations that you want to run. For more information about viewing the list of
available validations, see Listing validations.

To run all validations in a group, enter the command with the --group option:

$ validation run --group prep

Red Hat OpenStack Platform 17.0 Director Installation and Usage

266

To view detailed output from a specific validation, run the validation history get --full
command against the UUID of the specific validation from the report:

$ validation history get --full <UUID>

18.5. CREATING A VALIDATION

You can create a validation with the validation init command. Execution of the command results in a
basic template for a new validation. You can edit the new validation role to suit your requirements.

IMPORTANT

Red Hat does not support user-created validations.

Prerequisites

You have a thorough understanding of how to validate your environment.

You have access rights to the directory where you run the command.

Procedure

1. Create your validation:

$ validation init <my-new-validation>

Replace <my-new-validation> with the name of your new validation.
The execution of this command results in the creation of the following directory and sub-
directories:

/home/stack/community-validations
├── library
├── lookup_plugins
├── playbooks
└── roles

NOTE

If you see the error message "The Community Validations are disabled by
default, ensure that the enable_community_validations parameter is set to
True in the validation configuration file. The default name and location of
this file is /etc/validation.cfg.

2. Edit the role to suit your requirements.

Additional resources

Section 18.2, “Changing the validation configuration file” .

18.6. VIEWING VALIDATION HISTORY

Director saves the results of each validation after you run a validation or group of validations. View past

CHAPTER 18. USING THE VALIDATION FRAMEWORK

267

Director saves the results of each validation after you run a validation or group of validations. View past
validation results with the validation history list command.

Prerequisites

You have run a validation or group of validations.

Procedure

1. Log in to the undercloud host as the stack user.

2. Source the stackrc file:

$ source ~/stackrc

3. You can view a list of all validations or the most recent validations:

View a list of all validations:

$ validation history list

View history for a specific validation type by using the --validation option:

$ validation history get --validation <validation-type>

Replace <validation-type> with the type of validation, for example, ntp.

4. View the log for a specific validation UUID:

$ validation show run --full 7380fed4-2ea1-44a1-ab71-aab561b44395

Additional resources

Using the validation framework

18.7. VALIDATION FRAMEWORK LOG FORMAT

After you run a validation or group of validations, director saves a JSON-formatted log from each
validation in the /var/logs/validations directory. You can view the file manually or use the validation
history get --full command to display the log for a specific validation UUID.

Each validation log file follows a specific format:

<UUID>_<Name>_<Time>

UUID

The Ansible UUID for the validation.

Name

The Ansible name for the validation.

Time

The start date and time for when you ran the validation.

Red Hat OpenStack Platform 17.0 Director Installation and Usage

268

Each validation log contains three main parts:

plays

stats

validation_output

plays

The plays section contains information about the tasks that the director performed as part of the
validation:

play

A play is a group of tasks. Each play section contains information about that particular group of
tasks, including the start and end times, the duration, the host groups for the play, and the validation
ID and path.

tasks

The individual Ansible tasks that director runs to perform the validation. Each tasks section contains
a hosts section, which contains the action that occurred on each individual host and the results from
the execution of the actions. The tasks section also contains a task section, which contains the
duration of the task.

stats

The stats section contains a basic summary of the outcome of all tasks on each host, such as the tasks
that succeeded and failed.

validation_output

If any tasks failed or caused a warning message during a validation, the validation_output contains the
output of that failure or warning.

18.8. VALIDATION FRAMEWORK LOG OUTPUT FORMATS

The default behaviour of the validation framework is to save validation logs in JSON format. You can
change the output of the logs with the ANSIBLE_STDOUT_CALLBACK environment variable.

To change the validation output log format, run a validation and include the --extra-env-vars
ANSIBLE_STDOUT_CALLBACK=<callback> option:

$ validation run --extra-env-vars ANSIBLE_STDOUT_CALLBACK=<callback> --validation check-ram

Replace <callback> with an Ansible output callback. To view a list of the standard Ansible
output callbacks, run the following command:

$ ansible-doc -t callback -l

The validation framework includes the following additional callbacks:

validation_json

The framework saves JSON-formatted validation results as a log file in /var/logs/validations. This is
the default callback for the validation framework.

validation_stdout

CHAPTER 18. USING THE VALIDATION FRAMEWORK

269

The framework displays JSON-formatted validation results on screen.

http_json

The framework sends JSON-formatted validation results to an external logging server. You must also
include additional environment variables for this callback:

HTTP_JSON_SERVER

The URL for the external server.

HTTP_JSON_PORT

The port for the API entry point of the external server. The default port in 8989.

Set these environment variables with additional --extra-env-vars options:

$ validation run --extra-env-vars ANSIBLE_STDOUT_CALLBACK=http_json \
 --extra-env-vars HTTP_JSON_SERVER=http://logserver.example.com \
 --extra-env-vars HTTP_JSON_PORT=8989 \
 --validation check-ram

IMPORTANT

Before you use the http_json callback, you must add http_json to the
callback_whitelist parameter in your ansible.cfg file:

callback_whitelist = http_json

18.9. IN-FLIGHT VALIDATIONS

Red Hat OpenStack Platform (RHOSP) includes in-flight validations in the templates of composable
services. In-flight validations verify the operational status of services at key steps of the overcloud
deployment process.

In-flight validations run automatically as part of the deployment process. Some in-flight validations also
use the roles from the openstack-tripleo-validations package.

Red Hat OpenStack Platform 17.0 Director Installation and Usage

270

CHAPTER 19. SCALING OVERCLOUD NODES

WARNING

The content for this feature is available in this release as a Documentation Preview,
and therefore is not fully verified by Red Hat. Use it only for testing, and do not use
in a production environment.

If you want to add or remove nodes after the creation of the overcloud, you must update the overcloud.

WARNING

Do not use openstack server delete to remove nodes from the overcloud. Follow
the procedures in this section to remove and replace nodes correctly.

NOTE

Ensure that your bare metal nodes are not in maintenance mode before you begin scaling
out or removing an overcloud node.

Use the following table to determine support for scaling each node type:

Table 19.1. Scale support for each node type

Node type Scale up? Scale down? Notes

Controller N N You can replace
Controller nodes using
the procedures in
Chapter 20, Replacing
Controller nodes.

Compute Y Y

Ceph Storage nodes Y N You must have at least 1
Ceph Storage node
from the initial
overcloud creation.

Object Storage nodes Y Y

IMPORTANT





CHAPTER 19. SCALING OVERCLOUD NODES

271

IMPORTANT

Ensure that you have at least 10 GB free space before you scale the overcloud. This free
space accommodates image conversion and caching during the node provisioning
process.

19.1. ADDING NODES TO THE OVERCLOUD

You can add more nodes to your overcloud.

NOTE

A fresh installation of Red Hat OpenStack Platform does not include certain updates,
such as security errata and bug fixes. As a result, if you are scaling up a connected
environment that uses the Red Hat Customer Portal or Red Hat Satellite Server, RPM
updates are not applied to new nodes. To apply the latest updates to the overcloud
nodes, you must do one of the following:

Complete an overcloud update of the nodes after the scale-out operation.

Use the virt-customize tool to modify the packages to the base overcloud
image before the scale-out operation. For more information, see the Red Hat
Knowledgebase solution Modifying the Red Hat Linux OpenStack Platform
Overcloud Image with virt-customize.

Procedure

1. Create a new JSON file called newnodes.json that contains details of the new node that you
want to register:

{
 "nodes":[
 {
 "mac":[
 "dd:dd:dd:dd:dd:dd"
],
 "cpu":"4",
 "memory":"6144",
 "disk":"40",
 "arch":"x86_64",
 "pm_type":"ipmi",
 "pm_user":"admin",
 "pm_password":"p@55w0rd!",
 "pm_addr":"192.168.24.207"
 },
 {
 "mac":[
 "ee:ee:ee:ee:ee:ee"
],
 "cpu":"4",
 "memory":"6144",
 "disk":"40",
 "arch":"x86_64",
 "pm_type":"ipmi",
 "pm_user":"admin",

Red Hat OpenStack Platform 17.0 Director Installation and Usage

272

https://access.redhat.com/articles/1556833

 "pm_password":"p@55w0rd!",
 "pm_addr":"192.168.24.208"
 }
]
}

2. Register the new nodes:

$ source ~/stackrc
(undercloud)$ openstack overcloud node import newnodes.json

3. Launch the introspection process for each new node:

(undercloud)$ openstack overcloud node introspect \
 --provide <node_1> [node_2] [node_n]

Use the --provide option to reset all the specified nodes to an available state after
introspection.

Replace <node_1>, [node_2], and all nodes up to [node_n] with the UUID of each node
that you want to introspect.

4. Configure the image properties for each new node:

(undercloud)$ openstack overcloud node configure <node>

19.2. SCALING UP BARE-METAL NODES

To increase the count of bare-metal nodes in an existing overcloud, increment the node count in the
overcloud-baremetal-deploy.yaml file and redeploy the overcloud.

Prerequisites

The new bare-metal nodes are registered, introspected, and available for provisioning and
deployment. For more information, see Registering nodes for the overcloud and Creating an
inventory of the bare-metal node hardware.

Procedure

1. Source the stackrc undercloud credential file:

$ source ~/stackrc

2. Open the overcloud-baremetal-deploy.yaml node definition file that you use to provision your
bare-metal nodes.

3. Increment the count parameter for the roles that you want to scale up. For example, the
following configuration increases the Object Storage node count to 4:

- name: Controller
 count: 3
- name: Compute

CHAPTER 19. SCALING OVERCLOUD NODES

273

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.0/html/director_installation_and_usage/assembly_provisioning-and-deploying-your-overcloud#proc_registering-nodes-for-the-overcloud_ironic_provisioning
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.0/html/director_installation_and_usage/assembly_provisioning-and-deploying-your-overcloud#assembly_creating-an-inventory-of-the-bare-metal-node-hardware_ironic_provisioning

 count: 10
- name: ObjectStorage
 count: 4

4. Optional: Configure predictive node placement for the new nodes. For example, use the
following configuration to provision a new Object Storage node on node03:

- name: ObjectStorage
 count: 4
 instances:
 - hostname: overcloud-objectstorage-0
 name: node00
 - hostname: overcloud-objectstorage-1
 name: node01
 - hostname: overcloud-objectstorage-2
 name: node02
 - hostname: overcloud-objectstorage-3
 name: node03

5. Optional: Define any other attributes that you want to assign to your new nodes. For more
information about the properties you can use to configure node attributes in your node
definition file, see Bare-metal node provisioning attributes.

6. If you use the Object Storage service (swift) and the whole disk overcloud image, overcloud-
hardened-uefi-full, configure the size of the /srv partition based on the size of your disk and
your storage requirements for /var and /srv. For more information, see Configuring whole disk
partitions for the Object Storage service.

7. Provision the overcloud nodes:

(undercloud)$ openstack overcloud node provision \
--stack <stack> \
--output <deployment_file> \
/home/stack/templates/overcloud-baremetal-deploy.yaml

Replace <stack> with the name of the stack for which the bare-metal nodes are
provisioned. If not specified, the default is overcloud.

Replace <deployment_file> with the name of the heat environment file to generate for
inclusion in the deployment command, for example /home/stack/templates/overcloud-
baremetal-deployed.yaml.

8. Monitor the provisioning progress in a separate terminal. When provisioning is successful, the
node state changes from available to active:

(undercloud)$ watch openstack baremetal node list

9. Add the generated overcloud-baremetal-deployed.yaml file to the stack with your other
environment files and deploy the overcloud:

(undercloud)$ openstack overcloud deploy --templates \
 -e [your environment files] \
 -e /home/stack/templates/overcloud-baremetal-deployed.yaml \

Red Hat OpenStack Platform 17.0 Director Installation and Usage

274

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.0/html/director_installation_and_usage/assembly_provisioning-and-deploying-your-overcloud#ref_bare-metal-node-provisioning-attributes_ironic_provisioning
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.0/html/director_installation_and_usage/assembly_provisioning-and-deploying-your-overcloud#proc_configuring-whole-disk-partitions-for-object-storage_ironic_provisioning

 --deployed-server \
 --disable-validations \
 ...

19.3. SCALING DOWN BARE-METAL NODES

To scale down the number of bare-metal nodes in your overcloud, tag the nodes that you want to delete
from the stack in the node definition file, redeploy the overcloud, and then delete the bare-metal node
from the overcloud.

Prerequisites

A successful undercloud installation. For more information, see Installing director on the
undercloud.

A successful overcloud deployment. For more information, see Configuring a basic overcloud
with pre-provisioned nodes.

If you are replacing an Object Storage node, replicate data from the node you are removing to
the new replacement node. Wait for a replication pass to finish on the new node. Check the
replication pass progress in the /var/log/swift/swift.log file. When the pass finishes, the Object
Storage service (swift) adds entries to the log similar to the following example:

Mar 29 08:49:05 localhost object-server: Object replication complete.
Mar 29 08:49:11 localhost container-server: Replication run OVER
Mar 29 08:49:13 localhost account-server: Replication run OVER

Procedure

1. Source the stackrc undercloud credential file:

$ source ~/stackrc

2. Decrement the count parameter in the overcloud-baremetal-deploy.yaml file, for the roles
that you want to scale down.

3. Define the hostname and name of each node that you want to remove from the stack, if they
are not already defined in the instances attribute for the role.

4. Add the attribute provisioned: false to the node that you want to remove. For example, to
remove the node overcloud-objectstorage-1 from the stack, include the following snippet in
your overcloud-baremetal-deploy.yaml file:

- name: ObjectStorage
 count: 3
 instances:
 - hostname: overcloud-objectstorage-0
 name: node00
 - hostname: overcloud-objectstorage-1
 name: node01
 # Removed from cluster due to disk failure
 provisioned: false
 - hostname: overcloud-objectstorage-2

CHAPTER 19. SCALING OVERCLOUD NODES

275

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.0/html/director_installation_and_usage/assembly_installing-director-on-the-undercloud
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.0/html/director_installation_and_usage/assembly_provisioning-and-deploying-your-overcloud#assembly_configuring-a-basic-overcloud-with-pre-provisioned-nodes

 name: node02
 - hostname: overcloud-objectstorage-3
 name: node03

After you redeploy the overcloud, the nodes that you define with the provisioned: false
attribute are no longer present in the stack. However, these nodes are still running in a
provisioned state.

NOTE

To remove a node from the stack temporarily, deploy the overcloud with the
attribute provisioned: false and then redeploy the overcloud with the attribute
provisioned: true to return the node to the stack.

5. Delete the node from the overcloud:

(undercloud)$ openstack overcloud node delete \
--stack <stack> \
--baremetal-deployment /home/stack/templates/overcloud-baremetal-deploy.yaml

Replace <stack> with the name of the stack for which the bare-metal nodes are
provisioned. If not specified, the default is overcloud.

NOTE

Do not include the nodes that you want to remove from the stack as
command arguments in the openstack overcloud node delete command.

6. Provision the overcloud nodes to generate an updated heat environment file for inclusion in the
deployment command:

(undercloud)$ openstack overcloud node provision \
--stack <stack> \
--output <deployment_file> \
/home/stack/templates/overcloud-baremetal-deploy.yaml

Replace <deployment_file> with the name of the heat environment file to generate for
inclusion in the deployment command, for example /home/stack/templates/overcloud-
baremetal-deployed.yaml.

7. Add the overcloud-baremetal-deployed.yaml file generated by the provisioning command to
the stack with your other environment files, and deploy the overcloud:

(undercloud)$ openstack overcloud deploy \
 ...
 -e /usr/share/openstack-tripleo-heat-templates/environments/deployed-server-
environment.yaml \
 -e /home/stack/templates/overcloud-baremetal-deployed.yaml \
 --deployed-server \
 --disable-validations \
 ...

19.4. REMOVING OR REPLACING A COMPUTE NODE

Red Hat OpenStack Platform 17.0 Director Installation and Usage

276

In some situations you need to remove a Compute node from the overcloud. For example, you might
need to replace a problematic Compute node. When you delete a Compute node the node’s index is
added by default to the denylist to prevent the index being reused during scale out operations.

You can replace the removed Compute node after you have removed the node from your overcloud
deployment.

Prerequisites

The Compute service is disabled on the nodes that you want to remove to prevent the nodes
from scheduling new instances. To confirm that the Compute service is disabled, use the
following command:

(overcloud)$ openstack compute service list

If the Compute service is not disabled then disable it:

(overcloud)$ openstack compute service set <hostname> nova-compute --disable

TIP

Use the --disable-reason option to add a short explanation on why the service is being
disabled. This is useful if you intend to redeploy the Compute service.

The workloads on the Compute nodes have been migrated to other Compute nodes. For more
information, see Migrating virtual machine instances between Compute nodes .

If Instance HA is enabled, choose one of the following options:

If the Compute node is accessible, log in to the Compute node as the root user and
perform a clean shutdown with the shutdown -h now command.

If the Compute node is not accessible, log in to a Controller node as the root user, disable
the STONITH device for the Compute node, and shut down the bare metal node:

[root@controller-0 ~]# pcs stonith disable <stonith_resource_name>
[stack@undercloud ~]$ source stackrc
[stack@undercloud ~]$ openstack baremetal node power off <UUID>

Procedure

1. Source the undercloud configuration:

(overcloud)$ source ~/stackrc

2. Decrement the count parameter in the overcloud-baremetal-deploy.yaml file, for the roles
that you want to scale down.

3. Define the hostname and name of each node that you want to remove from the stack, if they
are not already defined in the instances attribute for the role.

4. Add the attribute provisioned: false to the node that you want to remove. For example, to
remove the node overcloud-compute-1 from the stack, include the following snippet in your
overcloud-baremetal-deploy.yaml file:

CHAPTER 19. SCALING OVERCLOUD NODES

277

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.0/html/configuring_the_compute_service_for_instance_creation/assembly_managing-instances_managing-instances#assembly_migrating-virtual-machine-instances-between-compute-nodes_migrating-instances

- name: Compute
 count: 2
 instances:
 - hostname: overcloud-compute-0
 name: node00
 - hostname: overcloud-compute-1
 name: node01
 # Removed from cluster due to disk failure
 provisioned: false
 - hostname: overcloud-compute-2
 name: node02

After you redeploy the overcloud, the nodes that you define with the provisioned: false
attribute are no longer present in the stack. However, these nodes are still running in a
provisioned state.

NOTE

If you want to remove a node from the stack temporarily, you can deploy the
overcloud with the attribute provisioned: false and then redeploy the overcloud
with the attribute provisioned: true to return the node to the stack.

5. Delete the node from the overcloud:

(undercloud)$ openstack overcloud node delete \
--stack <stack> \
--baremetal-deployment /home/stack/templates/overcloud-baremetal-deploy.yaml

Replace <stack> with the name of the stack for which the bare-metal nodes are
provisioned. If not specified, the default is overcloud.

NOTE

Do not include the nodes that you want to remove from the stack as
command arguments in the openstack overcloud node delete command.

6. Provision the overcloud nodes to generate an updated heat environment file for inclusion in the
deployment command:

(undercloud)$ openstack overcloud node provision \
--stack <stack> \
--output <deployment_file> \
/home/stack/templates/overcloud-baremetal-deploy.yaml

Replace <stack> with the name of the stack for which the bare-metal nodes are
provisioned. If not specified, the default is overcloud.

Replace <deployment_file> with the name of the heat environment file to generate for
inclusion in the deployment command, for example /home/stack/templates/overcloud-
baremetal-deployed.yaml.

7. If Instance HA is enabled, perform the following actions:

a. Clean up the Pacemaker resources for the node:

Red Hat OpenStack Platform 17.0 Director Installation and Usage

278

$ sudo pcs resource delete <scaled_down_node>
$ sudo cibadmin -o nodes --delete --xml-text '<node id="<scaled_down_node>"/>'
$ sudo cibadmin -o fencing-topology --delete --xml-text '<fencing-level target="
<scaled_down_node>"/>'
$ sudo cibadmin -o status --delete --xml-text '<node_state id="<scaled_down_node>"/>'
$ sudo cibadmin -o status --delete-all --xml-text '<node id="<scaled_down_node>"/>' --
force

Replace <scaled_down_node> with the name of the removed node.

b. Delete the STONITH device for the node:

$ sudo pcs stonith delete <device-name>

8. If you are replacing the removed Compute node on your overcloud deployment, see Replacing a
removed Compute node.

19.4.1. Removing a Compute node manually

If the openstack overcloud node delete command failed due to an unreachable node, then you must
manually complete the removal of the Compute node from the overcloud.

Prerequisites

Performing the Removing or replacing a Compute node procedure returned a status of
UPDATE_FAILED.

Procedure

1. Use the openstack tripleo launch heat command to launch the ephemeral Heat process:

(undercloud)$ openstack tripleo launch heat --heat-dir /home/stack/overcloud-
deploy/overcloud/heat-launcher --restore-db

The command exits after launching the Heat process, the Heat process continues to run in the
background as a podman pod.

2. Use the podman pod ps command to verify that the ephemeral-heat process is running:

(undercloud)$ sudo podman pod ps
POD ID NAME STATUS CREATED INFRA ID # OF CONTAINERS
958b141609b2 ephemeral-heat Running 2 minutes ago 44447995dbcf 3

3. Use the export command to export the OS_CLOUD environment:

(undercloud)$ export OS_CLOUD=heat

4. Use the openstack stack list command to list the installed stacks:

(undercloud)$ openstack stack list
+--------------------------------------+------------+---------+-----------------+----------------------+------
--------+
| ID | Stack Name | Project | Stack Status | Creation Time |

CHAPTER 19. SCALING OVERCLOUD NODES

279

Updated Time |
+--------------------------------------+------------+---------+-----------------+----------------------+------
--------+
| 761e2a54-c6f9-4e0f-abe6-c8e0ad51a76c | overcloud | admin | CREATE_COMPLETE |
2022-08-29T20:48:37Z | None |
+--------------------------------------+------------+---------+-----------------+----------------------+------
--------+

5. Identify the UUID of the node that you want to manually delete:

(undercloud)$ openstack baremetal node list

6. Move the node that you want to delete to maintenance mode:

(undercloud)$ openstack baremetal node maintenance set <node_uuid>

7. Wait for the Compute service to synchronize its state with the Bare Metal service. This can take
up to four minutes.

8. Source the overcloud configuration:

(undercloud)$ source ~/overcloudrc

9. Delete the network agents for the node that you deleted:

(overcloud)$ for AGENT in $(openstack network agent list --host <scaled_down_node> -c ID
-f value) ; do openstack network agent delete $AGENT ; done

Replace <scaled_down_node> with the name of the node to remove.

10. Confirm that the Compute service is disabled on the deleted node on the overcloud, to prevent
the node from scheduling new instances:

(overcloud)$ openstack compute service list

If the Compute service is not disabled then disable it:

(overcloud)$ openstack compute service set <hostname> nova-compute --disable

TIP

Use the --disable-reason option to add a short explanation on why the service is being
disabled. This is useful if you intend to redeploy the Compute service.

11. Remove the deleted Compute service as a resource provider from the Placement service:

(overcloud)$ openstack resource provider list
(overcloud)$ openstack resource provider delete <uuid>

12. Source the undercloud configuration:

(overcloud)$ source ~/stackrc

Red Hat OpenStack Platform 17.0 Director Installation and Usage

280

13. Delete the Compute node from the stack:

(undercloud)$ openstack overcloud node delete --stack <overcloud> <node>

Replace <overcloud> with the name or UUID of the overcloud stack.

Replace <node> with the Compute service host name or UUID of the Compute node that
you want to delete.

NOTE

If the node has already been powered off, this command returns a WARNING
message:

Ansible failed, check log at `~/ansible.log`
WARNING: Scale-down configuration error. Manual cleanup of some
actions may be necessary. Continuing with node removal.

You can ignore this message.

14. Wait for the overcloud node to delete.

15. Check the status of the overcloud stack when the node deletion is complete:

(undercloud)$ openstack stack list

Table 19.2. Result

Status Description

UPDATE_COMPLETE The delete operation completed successfully.

UPDATE_FAILED The delete operation failed.

If the overcloud node fails to delete while in
maintenance mode, then the problem might be
with the hardware.

16. If Instance HA is enabled, perform the following actions:

a. Clean up the Pacemaker resources for the node:

$ sudo pcs resource delete <scaled_down_node>
$ sudo cibadmin -o nodes --delete --xml-text '<node id="<scaled_down_node>"/>'
$ sudo cibadmin -o fencing-topology --delete --xml-text '<fencing-level target="
<scaled_down_node>"/>'
$ sudo cibadmin -o status --delete --xml-text '<node_state id="<scaled_down_node>"/>'
$ sudo cibadmin -o status --delete-all --xml-text '<node id="<scaled_down_node>"/>' --
force

b. Delete the STONITH device for the node:

CHAPTER 19. SCALING OVERCLOUD NODES

281

$ sudo pcs stonith delete <device-name>

17. If you are not replacing the removed Compute node on the overcloud, then decrease the
ComputeCount parameter in the environment file that contains your node counts. This file is
usually named overcloud-baremetal-deployed.yaml. For example, decrease the node count
from four nodes to three nodes if you removed one node:

parameter_defaults:
 ...
 ComputeCount: 3
 ...

Decreasing the node count ensures that director does not provision any new nodes when you
run openstack overcloud deploy.

If you are replacing the removed Compute node on your overcloud deployment, see Replacing a
removed Compute node.

19.4.2. Replacing a removed Compute node

To replace a removed Compute node on your overcloud deployment, you can register and inspect a new
Compute node or re-add the removed Compute node. You must also configure your overcloud to
provision the node.

Procedure

1. Optional: To reuse the index of the removed Compute node, configure the
RemovalPoliciesMode and the RemovalPolicies parameters for the role to replace the
denylist when a Compute node is removed:

parameter_defaults:
 <RoleName>RemovalPoliciesMode: update
 <RoleName>RemovalPolicies: [{'resource_list': []}]

2. Replace the removed Compute node:

To add a new Compute node, register, inspect, and tag the new node to prepare it for
provisioning. For more information, see Configuring and deploying the overcloud.

To re-add a Compute node that you removed manually, remove the node from
maintenance mode:

(undercloud)$ openstack baremetal node maintenance unset <node_uuid>

3. Rerun the openstack overcloud deploy command that you used to deploy the existing
overcloud.

4. Wait until the deployment process completes.

5. Confirm that director has successfully registered the new Compute node:

(undercloud)$ openstack baremetal node list

6. If you performed step 1 to set the RemovalPoliciesMode for the role to update, then you must

Red Hat OpenStack Platform 17.0 Director Installation and Usage

282

6. If you performed step 1 to set the RemovalPoliciesMode for the role to update, then you must
reset the RemovalPoliciesMode for the role to the default value, append, to add the Compute
node index to the current denylist when a Compute node is removed:

parameter_defaults:
 <RoleName>RemovalPoliciesMode: append

7. Rerun the openstack overcloud deploy command that you used to deploy the existing
overcloud.

19.5. REPLACING CEPH STORAGE NODES

You can use director to replace Ceph Storage nodes in a director-created cluster. For more information,
see the Deploying Red Hat Ceph Storage and Red Hat OpenStack Platform together with director
guide.

19.6. USING SKIP DEPLOY IDENTIFIER

During a stack update operation puppet, by default, reapplies all manifests. This can result in a time
consuming operation, which may not be required.

To override the default operation, use the skip-deploy-identifier option.

openstack overcloud deploy --skip-deploy-identifier

Use this option if you do not want the deployment command to generate a unique identifier for the
DeployIdentifier parameter. The software configuration deployment steps only trigger if there is an
actual change to the configuration. Use this option with caution and only if you are confident that you do
not need to run the software configuration, such as scaling out certain roles.

NOTE

If there is a change to the puppet manifest or hierdata, puppet will reapply all manifests
even when --skip-deploy-identifier is specified.

19.7. BLACKLISTING NODES

You can exclude overcloud nodes from receiving an updated deployment. This is useful in scenarios
where you want to scale new nodes and exclude existing nodes from receiving an updated set of
parameters and resources from the core heat template collection. This means that the blacklisted
nodes are isolated from the effects of the stack operation.

Use the DeploymentServerBlacklist parameter in an environment file to create a blacklist.

Setting the blacklist

The DeploymentServerBlacklist parameter is a list of server names. Write a new environment file, or
add the parameter value to an existing custom environment file and pass the file to the deployment
command:

parameter_defaults:
 DeploymentServerBlacklist:
 - overcloud-compute-0

CHAPTER 19. SCALING OVERCLOUD NODES

283

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.0/html/deploying_red_hat_ceph_storage_and_red_hat_openstack_platform_together_with_director

 - overcloud-compute-1
 - overcloud-compute-2

NOTE

The server names in the parameter value are the names according to OpenStack
Orchestration (heat), not the actual server hostnames.

Include this environment file with your openstack overcloud deploy command:

$ source ~/stackrc
(undercloud) $ openstack overcloud deploy --templates \
 -e server-blacklist.yaml \
 [OTHER OPTIONS]

Heat blacklists any servers in the list from receiving updated heat deployments. After the stack
operation completes, any blacklisted servers remain unchanged. You can also power off or stop the os-
collect-config agents during the operation.

WARNING

Exercise caution when you blacklist nodes. Only use a blacklist if you fully
understand how to apply the requested change with a blacklist in effect. It is
possible to create a hung stack or configure the overcloud incorrectly when
you use the blacklist feature. For example, if cluster configuration changes
apply to all members of a Pacemaker cluster, blacklisting a Pacemaker
cluster member during this change can cause the cluster to fail.

Do not use the blacklist during update or upgrade procedures. Those
procedures have their own methods for isolating changes to particular
servers.

When you add servers to the blacklist, further changes to those nodes are
not supported until you remove the server from the blacklist. This includes
updates, upgrades, scale up, scale down, and node replacement. For
example, when you blacklist existing Compute nodes while scaling out the
overcloud with new Compute nodes, the blacklisted nodes miss the
information added to /etc/hosts and /etc/ssh/ssh_known_hosts. This can
cause live migration to fail, depending on the destination host. The
Compute nodes are updated with the information added to /etc/hosts and
/etc/ssh/ssh_known_hosts during the next overcloud deployment where
they are no longer blacklisted. Do not modify the /etc/hosts and
/etc/ssh/ssh_known_hosts files manually. To modify the /etc/hosts and
/etc/ssh/ssh_known_hosts files, run the overcloud deploy command as
described in the Clearing the Blacklist section.

Clearing the blacklist

To clear the blacklist for subsequent stack operations, edit the DeploymentServerBlacklist to use an
empty array:



Red Hat OpenStack Platform 17.0 Director Installation and Usage

284

parameter_defaults:
 DeploymentServerBlacklist: []

WARNING

Do not omit the DeploymentServerBlacklist parameter. If you omit the parameter,
the overcloud deployment uses the previously saved value.

CHAPTER 19. SCALING OVERCLOUD NODES

285

CHAPTER 20. REPLACING CONTROLLER NODES
In certain circumstances a Controller node in a high availability cluster might fail. In these situations, you
must remove the node from the cluster and replace it with a new Controller node.

Complete the steps in this section to replace a Controller node. The Controller node replacement
process involves running the openstack overcloud deploy command to update the overcloud with a
request to replace a Controller node.

IMPORTANT

The following procedure applies only to high availability environments. Do not use this
procedure if you are using only one Controller node.

20.1. PREPARING FOR CONTROLLER REPLACEMENT

Before you replace an overcloud Controller node, it is important to check the current state of your Red
Hat OpenStack Platform environment. Checking the current state can help avoid complications during
the Controller replacement process. Use the following list of preliminary checks to determine if it is safe
to perform a Controller node replacement. Run all commands for these checks on the undercloud.

Procedure

1. Check the current status of the overcloud stack on the undercloud:

$ source stackrc
$ openstack overcloud status

Only continue if the overcloud stack has a deployment status of DEPLOY_SUCCESS.

2. Install the database client tools:

$ sudo dnf -y install mariadb

3. Configure root user access to the database:

$ sudo cp /var/lib/config-data/puppet-generated/mysql/root/.my.cnf /root/.

4. Perform a backup of the undercloud databases:

$ mkdir /home/stack/backup
$ sudo mysqldump --all-databases --quick --single-transaction | gzip >
/home/stack/backup/dump_db_undercloud.sql.gz

5. Check that your undercloud contains 10 GB free storage to accommodate for image caching
and conversion when you provision the new node:

$ df -h

6. If you are reusing the IP address for the new controller node, ensure that you delete the port
used by the old controller:

$ openstack port delete <port>

Red Hat OpenStack Platform 17.0 Director Installation and Usage

286

7. Check the status of Pacemaker on the running Controller nodes. For example, if 192.168.0.47 is
the IP address of a running Controller node, use the following command to view the Pacemaker
status:

$ ssh tripleo-admin@192.168.0.47 'sudo pcs status'

The output shows all services that are running on the existing nodes and those that are stopped
on the failed node.

8. Check the following parameters on each node of the overcloud MariaDB cluster:

wsrep_local_state_comment: Synced

wsrep_cluster_size: 2
Use the following command to check these parameters on each running Controller node. In
this example, the Controller node IP addresses are 192.168.0.47 and 192.168.0.46:

$ for i in 192.168.0.46 192.168.0.47 ; do echo "*** $i ***" ; ssh tripleo-admin@$i "sudo
podman exec \$(sudo podman ps --filter name=galera-bundle -q) mysql -e \"SHOW
STATUS LIKE 'wsrep_local_state_comment'; SHOW STATUS LIKE
'wsrep_cluster_size';\""; done

9. Check the RabbitMQ status. For example, if 192.168.0.47 is the IP address of a running
Controller node, use the following command to view the RabbitMQ status:

$ ssh tripleo-admin@192.168.0.47 "sudo podman exec \$(sudo podman ps -f
name=rabbitmq-bundle -q) rabbitmqctl cluster_status"

The running_nodes key should show only the two available nodes and not the failed node.

10. If fencing is enabled, disable it. For example, if 192.168.0.47 is the IP address of a running
Controller node, use the following command to check the status of fencing:

$ ssh tripleo-admin@192.168.0.47 "sudo pcs property show stonith-enabled"

Run the following command to disable fencing:

$ ssh tripleo-admin@192.168.0.47 "sudo pcs property set stonith-enabled=false"

11. Login to the failed Controller node and stop all the nova_* containers that are running:

$ sudo systemctl stop tripleo_nova_api.service
$ sudo systemctl stop tripleo_nova_api_cron.service
$ sudo systemctl stop tripleo_nova_compute.service
$ sudo systemctl stop tripleo_nova_conductor.service
$ sudo systemctl stop tripleo_nova_metadata.service
$ sudo systemctl stop tripleo_nova_placement.service
$ sudo systemctl stop tripleo_nova_scheduler.service

12. Optional: If you are using the Bare Metal Service (ironic) as the virt driver, you must manually
update the service entries in your cell database for any bare metal instances whose
instances.host is set to the controller that you are removing. Contact Red Hat Support for
assistance.

NOTE

CHAPTER 20. REPLACING CONTROLLER NODES

287

NOTE

This manual update of the cell database when using Bare Metal Service (ironic) as
the virt driver is a temporary workaround to ensure the nodes are rebalanced,
until BZ2017980 is complete.

20.2. REMOVING A CEPH MONITOR DAEMON

If your Controller node is running a Ceph monitor service, complete the following steps to remove the
ceph-mon daemon.

NOTE

Adding a new Controller node to the cluster also adds a new Ceph monitor daemon
automatically.

Procedure

1. Connect to the Controller node that you want to replace:

$ ssh tripleo-admin@192.168.0.47

2. List the Ceph mon services:

$ sudo systemctl --type=service | grep ceph
ceph-4cf401f9-dd4c-5cda-9f0a-fa47fbf12b31@crash.controller-0.service loaded active
running Ceph crash.controller-0 for 4cf401f9-dd4c-5cda-9f0a-fa47fbf12b31
 ceph-4cf401f9-dd4c-5cda-9f0a-fa47fbf12b31@mgr.controller-0.mufglq.service loaded
active running Ceph mgr.controller-0.mufglq for 4cf401f9-dd4c-5cda-9f0a-fa47fbf12b31
 ceph-4cf401f9-dd4c-5cda-9f0a-fa47fbf12b31@mon.controller-0.service loaded active
running Ceph mon.controller-0 for 4cf401f9-dd4c-5cda-9f0a-fa47fbf12b31
 ceph-4cf401f9-dd4c-5cda-9f0a-fa47fbf12b31@rgw.rgw.controller-0.ikaevh.service loaded
active running Ceph rgw.rgw.controller-0.ikaevh for 4cf401f9-dd4c-5cda-9f0a-fa47fbf12b31

3. Stop the Ceph mon service:

$ sudo systemtctl stop ceph-4cf401f9-dd4c-5cda-9f0a-fa47fbf12b31@mon.controller-
0.service

4. Disable the Ceph mon service:

$ sudo systemctl disable ceph-4cf401f9-dd4c-5cda-9f0a-fa47fbf12b31@mon.controller-
0.service

5. Disconnect from the Controller node that you want to replace.

6. Use SSH to connect to another Controller node in the same cluster:

$ ssh tripleo-admin@192.168.0.46

7. The Ceph specification file is modified and applied later in this procedure, to manipulate the file
you must export it:

Red Hat OpenStack Platform 17.0 Director Installation and Usage

288

https://bugzilla.redhat.com/show_bug.cgi?id=2017980

$ sudo cephadm shell --ceph orch ls --export > spec.yaml

8. Remove the monitor from the cluster:

$ sudo cephadm shell -- ceph mon remove controller-0
 removing mon.controller-0 at [v2:172.23.3.153:3300/0,v1:172.23.3.153:6789/0], there will be
2 monitors

9. Disconnect from the Controller node and log back into the Controller node you are removing
from the cluster:

$ ssh tripleo-admin@192.168.0.47

10. List the Ceph mgr services:

$ sudo systemctl --type=service | grep ceph
ceph-4cf401f9-dd4c-5cda-9f0a-fa47fbf12b31@crash.controller-0.service loaded active
running Ceph crash.controller-0 for 4cf401f9-dd4c-5cda-9f0a-fa47fbf12b31
 ceph-4cf401f9-dd4c-5cda-9f0a-fa47fbf12b31@mgr.controller-0.mufglq.service loaded
active running Ceph mgr.controller-0.mufglq for 4cf401f9-dd4c-5cda-9f0a-fa47fbf12b31
 ceph-4cf401f9-dd4c-5cda-9f0a-fa47fbf12b31@rgw.rgw.controller-0.ikaevh.service loaded
active running Ceph rgw.rgw.controller-0.ikaevh for 4cf401f9-dd4c-5cda-9f0a-fa47fbf12b31

11. Stop the Ceph mgr service:

$ sudo systemctl stop ceph-4cf401f9-dd4c-5cda-9f0a-fa47fbf12b31@mgr.controller-
0.mufglq.service

12. Disable the Ceph mgr service:

$ sudo systemctl disable ceph-4cf401f9-dd4c-5cda-9f0a-fa47fbf12b31@mgr.controller-
0.mufglq.service

13. Start a cephadm shell:

$ sudo cephadm shell

14. Verify that the Ceph mgr service for the Controller node is removed from the cluster:

$ ceph -s
cluster:
 id: b9b53581-d590-41ac-8463-2f50aa985001
 health: HEALTH_OK

 services:
 mon: 2 daemons, quorum controller-2,controller-1 (age 2h)
 mgr: controller-2(active, since 20h), standbys: controller1-1
 osd: 15 osds: 15 up (since 3h), 15 in (since 3h)

 data:
 pools: 3 pools, 384 pgs

CHAPTER 20. REPLACING CONTROLLER NODES

289

 objects: 32 objects, 88 MiB
 usage: 16 GiB used, 734 GiB / 750 GiB avail
 pgs: 384 active+clean

The node is not listed if the Ceph mgr service is successfully removed.

15. Export the Red Hat Ceph Storage specification:

$ ceph orch ls --export > spec.yaml

16. In the spec.yaml specification file, remove all instances of the host, for example controller-0,
from the service_type: mon and service_type: mgr.

17. Reapply the Red Hat Ceph Storage specification:

$ ceph orch apply -i spec.yaml

18. Verify that no Ceph daemons remain on the removed host:

$ ceph orch ps controller-0

NOTE

If daemons are present, use the following command to remove them:

$ ceph orch host drain controller-0

Prior to running the ceph orch host drain command, backup the contents of
/etc/ceph. Restore the contents after running the ceph orch host drain
command. You must back up prior to running the ceph orch host drain
command until https://bugzilla.redhat.com/show_bug.cgi?id=2153827 is
resolved.

19. Remove the controller-0 host from the Red Hat Ceph Storage cluster:

$ ceph orch host rm controller-0
 Removed host 'controller-0'

20. Exit the cephadm shell:

$ exit

Additional Resources

For more information on controlling Red Hat Ceph Storage services with systemd, see Understanding
process management for Ceph

For more information on editing and applying Red Hat Ceph Storage specification files, see Deploying
the Ceph monitor daemons using the service specification

20.3. PREPARING THE CLUSTER FOR CONTROLLER NODE
REPLACEMENT

Red Hat OpenStack Platform 17.0 Director Installation and Usage

290

https://bugzilla.redhat.com/show_bug.cgi?id=2153827
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/5/html/administration_guide/understanding-process-management-for-ceph
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/5/html/operations_guide/management-of-monitors-using-the-ceph-orchestrator#deploying-the-ceph-monitor-daemons-using-the-service-specification_ops

Before you replace the node, ensure that Pacemaker is not running on the node and then remove that
node from the Pacemaker cluster.

Procedure

1. To view the list of IP addresses for the Controller nodes, run the following command:

(undercloud)$ metalsmith -c Hostname -c "IP Addresses" list
+------------------------+-----------------------+
| Hostname | IP Addresses |
+------------------------+-----------------------+
overcloud-compute-0	ctlplane=192.168.0.44
overcloud-controller-0	ctlplane=192.168.0.47
overcloud-controller-1	ctlplane=192.168.0.45
overcloud-controller-2	ctlplane=192.168.0.46
+------------------------+-----------------------+

2. Log in to the node and confirm the pacemaker status. If pacemaker is running, use the pcs
cluster command to stop pacemaker. This example stops pacemaker on overcloud-controller-
0:

(undercloud) $ ssh tripleo-admin@192.168.0.45 "sudo pcs status | grep -w Online | grep -w
overcloud-controller-0"
(undercloud) $ ssh tripleo-admin@192.168.0.45 "sudo pcs cluster stop overcloud-controller-
0"

NOTE

In the case that the node is physically unavailable or stopped, it is not necessary
to perform the previous operation, as pacemaker is already stopped on that
node.

3. After you stop Pacemaker on the node, delete the node from the pacemaker cluster. The
following example logs in to overcloud-controller-1 to remove overcloud-controller-0:

(undercloud) $ ssh tripleo-admin@192.168.0.45 "sudo pcs cluster node remove overcloud-
controller-0"

If the node that that you want to replace is unreachable (for example, due to a hardware failure),
run the pcs command with additional --skip-offline and --force options to forcibly remove the
node from the cluster:

(undercloud) $ ssh tripleo-admin@192.168.0.45 "sudo pcs cluster node remove overcloud-
controller-0 --skip-offline --force"

4. After you remove the node from the pacemaker cluster, remove the node from the list of known
hosts in pacemaker:

(undercloud) $ ssh tripleo-admin@192.168.0.45 "sudo pcs host deauth overcloud-controller-
0"

You can run this command whether the node is reachable or not.

5. To ensure that the new Controller node uses the correct STONITH fencing device after

CHAPTER 20. REPLACING CONTROLLER NODES

291

5. To ensure that the new Controller node uses the correct STONITH fencing device after
replacement, delete the devices from the node by entering the following command:

(undercloud) $ ssh tripleo-admin@192.168.0.45 "sudo pcs stonith delete
<stonith_resource_name>"

Replace <stonith_resource_name> with the name of the STONITH resource that
corresponds to the node. The resource name uses the the format <resource_agent>-
<host_mac>. You can find the resource agent and the host MAC address in the
FencingConfig section of the fencing.yaml file.

6. The overcloud database must continue to run during the replacement procedure. To ensure
that Pacemaker does not stop Galera during this procedure, select a running Controller node
and run the following command on the undercloud with the IP address of the Controller node:

(undercloud) $ ssh tripleo-admin@192.168.0.45 "sudo pcs resource unmanage galera-
bundle"

7. Remove the OVN northbound database server for the replaced Controller node from the
cluster:

a. Obtain the server ID of the OVN northbound database server to be replaced:

$ ssh tripleo-admin@<controller_ip> sudo podman exec ovn_cluster_north_db_server
ovs-appctl -t /var/run/ovn/ovnnb_db.ctl cluster/status OVN_Northbound 2>/dev/null|grep -
A4 Servers:

Replace <controller_ip> with the IP address of any active Controller node.

You should see output similar to the following:

Servers:
96da (96da at tcp:172.17.1.55:6643) (self) next_index=26063 match_index=26063 466b
(466b at tcp:172.17.1.51:6643) next_index=26064 match_index=26063 last msg 2936
ms ago
ba77 (ba77 at tcp:172.17.1.52:6643) next_index=26064 match_index=26063 last msg
2936 ms ago

In this example, 172.17.1.55 is the internal IP address of the Controller node that is being
replaced, so the northbound database server ID is 96da.

b. Using the server ID you obtained in the preceding step, remove the OVN northbound
database server by running the following command:

$ ssh tripleo-admin@172.17.1.52 sudo podman exec ovn_cluster_north_db_server ovs-
appctl -t /var/run/ovn/ovnnb_db.ctl cluster/kick OVN_Northbound 96da

In this example, you would replace 172.17.1.52 with the IP address of any active Controller
node, and replace 96da with the server ID of the OVN northbound database server.

8. Remove the OVN southbound database server for the replaced Controller node from the
cluster:

a. Obtain the server ID of the OVN southbound database server to be replaced:

Red Hat OpenStack Platform 17.0 Director Installation and Usage

292

$ ssh tripleo-admin@<controller_ip> sudo podman exec ovn_cluster_north_db_server
ovs-appctl -t /var/run/ovn/ovnnb_db.ctl cluster/status OVN_Southbound 2>/dev/null|grep
-A4 Servers:

Replace <controller_ip> with the IP address of any active Controller node.

You should see output similar to the following:

Servers:
e544 (e544 at tcp:172.17.1.55:6644) last msg 42802690 ms ago
17ca (17ca at tcp:172.17.1.51:6644) last msg 5281 ms ago
6e52 (6e52 at tcp:172.17.1.52:6644) (self)

In this example, 172.17.1.55 is the internal IP address of the Controller node that is being
replaced, so the southbound database server ID is e544.

b. Using the server ID you obtained in the preceding step, remove the OVN southbound
database server by running the following command:

$ ssh tripleo-admin@172.17.1.52 sudo podman exec ovn_cluster_south_db_server ovs-
appctl -t /var/run/ovn/ovnsb_db.ctl cluster/kick OVN_Southbound e544

In this example, you would replace 172.17.1.52 with the IP address of any active Controller
node, and replace e544 with the server ID of the OVN southbound database server.

9. Run the following clean up commands to prevent cluster rejoins.
Substitute <replaced_controller_ip> with the IP address of the Controller node that you are
replacing:

$ ssh tripleo-admin@<replaced_controller_ip> sudo systemctl disable --now
tripleo_ovn_cluster_south_db_server.service tripleo_ovn_cluster_north_db_server.service

$ ssh tripleo-admin@<replaced_controller_ip> sudo rm -rfv /var/lib/openvswitch/ovn/.ovn*
/var/lib/openvswitch/ovn/ovn*.db

20.4. REPLACING A BOOTSTRAP CONTROLLER NODE

If you want to replace the Controller node that you use for bootstrap operations and keep the node
name, complete the following steps to set the name of the bootstrap Controller node after the
replacement process.

IMPORTANT

CHAPTER 20. REPLACING CONTROLLER NODES

293

IMPORTANT

Currently, when a bootstrap Controller node is replaced, the OVN database cluster is
partitioned with two database clusters for both the northbound and southbound
databases. This situation makes instances unusable.

To find the name of the bootstrap Controller node, run the following command:

ssh tripleo-admin@<controller_ip> "sudo hiera -c /etc/puppet/hiera.yaml
ovn_dbs_short_bootstrap_node_name"

Workaround: Do not reuse the original bootstrap node hostname and IP address for the
new Controller node. RHOSP director sorts the hostnames and then selects the first
hostname in the list as the bootstrap node. Choose a name for the new Controller node
so that it does not become the first hostname after sorting.

You can track the progress of the fix for this known issue in BZ 2222543.

Procedure

1. Find the name of the bootstrap Controller node by running the following command:

ssh tripleo-admin@<controller_ip> "sudo hiera -c /etc/puppet/hiera.yaml
pacemaker_short_bootstrap_node_name"

Replace <controller_ip> with the IP address of any active Controller node.

2. Check if your environment files include the ExtraConfig section. If the ExtraConfig parameter
does not exist, create the following environment file ~/templates/bootstrap-controller.yaml
and add the following content:

parameter_defaults:
 ExtraConfig:
 pacemaker_short_bootstrap_node_name: NODE_NAME
 mysql_short_bootstrap_node_name: NODE_NAME

Replace NODE_NAME with the name of an existing Controller node that you want to use in
bootstrap operations after the replacement process.
If your environment files already include the ExtraConfig parameter, add only the lines that
set the pacemaker_short_bootstrap_node_name and
mysql_short_bootstrap_node_name parameters.

For information about troubleshooting the bootstrap Controller node replacement, see the article
Replacement of the first Controller node fails at step 1 if the same hostname is used for a new node .

20.5. UNPROVISION AND REMOVE CONTROLLER NODES

To unprovision and remove Controller nodes, complete the following steps.

Procedure

1. Source the stackrc file:

$ source ~/stackrc

Red Hat OpenStack Platform 17.0 Director Installation and Usage

294

https://bugzilla.redhat.com/show_bug.cgi?id=2222543
https://access.redhat.com/solutions/5662621

2. Identify the UUID of the overcloud-controller-0 node:

(undercloud)$ NODE=$(metalsmith -c UUID -f value show overcloud-controller-0)

3. Set the node to maintenance mode:

$ openstack baremetal node maintenance set $NODE

4. Copy the overcloud-baremetal-deploy.yaml file:

$ cp /home/stack/templates/overcloud-baremetal-deploy.yaml
/home/stack/templates/unprovision_controller-0.yaml

5. In the unprovision_controller-0.yaml file, lower the Controller count to unprovision the
Controller node that you are replacing. In this example, the count is reduced from 3 to 2. Move
the controller-0 node to the instances dictionary and set the provisioned parameter to false:

- name: Controller
 count: 2
 hostname_format: controller-%index%
 defaults:
 resource_class: BAREMETAL.controller
 networks:
 [...]
 instances:
 - hostname: controller-0
 name: <IRONIC_NODE_UUID_or_NAME>
 provisioned: false
- name: Compute
 count: 2
 hostname_format: compute-%index%
 defaults:
 resource_class: BAREMETAL.compute
 networks:
 [...]

6. Run the node unprovision command:

$ openstack overcloud node delete \
 --stack overcloud \
 --baremetal-deployment /home/stack/templates/unprovision_controller-0.yaml

The following nodes will be unprovisioned:
+--------------+-------------------------+--------------------------------------+
| hostname | name | id |
+--------------+-------------------------+--------------------------------------+
| controller-0 | baremetal-35400-leaf1-2 | b0d5abf7-df28-4ae7-b5da-9491e84c21ac |
+--------------+-------------------------+--------------------------------------+

Are you sure you want to unprovision these overcloud nodes and ports [y/N]?

Optional

Delete the ironic node:

CHAPTER 20. REPLACING CONTROLLER NODES

295

$ openstack baremetal node delete <IRONIC_NODE_UUID>

Replace IRONIC_NODE_UUID with the UUID of the node.

20.6. DEPLOYING A NEW CONTROLLER NODE TO THE OVERCLOUD

To deploy a new controller node to the overcloud complete the following steps.

Prerequisites

The new Controller node must be registered, inspected, and tagged ready for provisioning. For
more information, see Provisioning bare metal overcloud nodes

Procedure

1. Log into director and source the stackrc credentials file:

$ source ~/stackrc

2. Provision the overcloud with the original overcloud-baremetal-deploy.yaml environment file:

$ openstack overcloud node provision
 --stack overcloud
 --network-config
 --output /home/stack/templates/overcloud-baremetal-deployed.yaml
 /home/stack/templates/overcloud-baremetal-deploy.yaml

NOTE

Red Hat OpenStack Platform 17.0 Director Installation and Usage

296

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.0/html/director_installation_and_usage/assembly_provisioning-and-deploying-your-overcloud#assembly_provisioning-bare-metal-overcloud-nodes

NOTE

If you want to use the same scheduling, placement, or IP addresses you can edit
the overcloud-baremetal-deploy.yaml environment file. Set the hostname,
name, and networks for the new controller-0 instance in the instances section.
For example:

- name: Controller
 count: 3
 hostname_format: controller-%index%
 defaults:
 resource_class: BAREMETAL.controller
 networks:
 - network: external
 subnet: external_subnet
 - network: internal_api
 subnet: internal_api_subnet01
 - network: storage
 subnet: storage_subnet01
 - network: storage_mgmt
 subnet: storage_mgmt_subnet01
 - network: tenant
 subnet: tenant_subnet01
 network_config:
 template: templates/multiple_nics/multiple_nics_dvr.j2
 default_route_network:
 - external
 instances:
 - hostname: controller-0
 name: baremetal-35400-leaf1-2
 networks:
 - network: external
 subnet: external_subnet
 fixed_ip: 10.0.0.224
 - network: internal_api
 subnet: internal_api_subnet01
 fixed_ip: 172.17.0.97
 - network: storage
 subnet: storage_subnet01
 fixed_ip: 172.18.0.24
 - network: storage_mgmt
 subnet: storage_mgmt_subnet01
 fixed_ip: 172.19.0.129
 - network: tenant
 subnet: tenant_subnet01
 fixed_ip: 172.16.0.11
- name: Compute
 count: 2
 hostname_format: compute-%index%
 defaults:
 [...]

When the node is provisioned, remove the instances section from the
overcloud-baremetal-deploy.yaml file.

CHAPTER 20. REPLACING CONTROLLER NODES

297

3. To create the cephadm user on the new Controller node, export a basic Ceph specification
containing the new host information:

$ openstack overcloud ceph spec --stack overcloud \
 /home/stack/templates/overcloud-baremetal-deployed.yaml \
 -o ceph_spec_host.yaml

NOTE

If your environment uses a custom role, include the --roles-data option.

4. Add the cephadm user to the new Controller node:

$ openstack overcloud ceph user enable \
 --stack overcloud ceph_spec_host.yaml

5. Add the new role to the Ceph cluster:

$ sudo cephadm shell \
 -- ceph orch test add controlller-3 <IP_ADDRESS> <LABELS>
192.168.24.31 _admin mon mgr
Inferring fsid 4cf401f9-dd4c-5cda-9f0a-fa47fbf12b31
Using recent ceph image undercloud-0.ctlplane.redhat.local:8787/rh-
osbs/rhceph@sha256:3075e8708792ebd527ca14849b6af4a11256a3f881ab09b837d7af0f8b2
102ea
Added host 'controller-3' with addr '192.168.24.31'

Replace <IP_ADDRESS> with the IP address of the Controller node.

Replace <LABELS> with any required Ceph labels.

6. Re-run the openstack overcloud deploy command:

$ openstack overcloud deploy --stack overcloud --templates \
 -n /home/stack/templates/network_data.yaml \
 -r /home/stack/templates/roles_data.yaml \
 -e /home/stack/templates/overcloud-baremetal-deployed.yaml \
 -e /home/stack/templates/overcloud-networks-deployed.yaml \
 -e /home/stack/templates/overcloud-vips-deployed.yaml \
 -e /home/stack/templates/bootstrap_node.yaml \
 -e [...]

NOTE

If the replacement Controller node is the bootstrap node, include the
bootstrap_node.yaml environment file.

20.7. DEPLOYING CEPH SERVICES ON THE NEW CONTROLLER NODE

After you provision a new Controller node and the Ceph monitor services are running you can deploy the
mgr, rgw and osd Ceph services on the Controller node.

Prerequisites

Red Hat OpenStack Platform 17.0 Director Installation and Usage

298

Prerequisites

The new Controller node is provisioned and is running Ceph monitor services.

Procedure

1. Modify the spec.yml environment file, replace the previous Controller node name with the new
Controller node name:

$ cephadm shell -- ceph orch ls --export > spec.yml

NOTE

Do not use the basic Ceph environment file ceph_spec_host.yaml as it does not
contain all necessary cluster information.

2. Apply the modified Ceph specification file:

$ cat spec.yml | sudo cephadm shell -- ceph orch apply -i -
Inferring fsid 4cf401f9-dd4c-5cda-9f0a-fa47fbf12b31
Using recent ceph image undercloud-0.ctlplane.redhat.local:8787/rh-
osbs/rhceph@sha256:3075e8708792ebd527ca14849b6af4a11256a3f881ab09b837d7af0f8b2
102ea
Scheduled crash update...
Scheduled mgr update...
Scheduled mon update...
Scheduled osd.default_drive_group update...
Scheduled rgw.rgw update...

3. Verify the visibility of the new monitor:

$ sudo cephadm --ceph status

.

20.8. CLEANING UP AFTER CONTROLLER NODE REPLACEMENT

After you complete the node replacement, you can finalize the Controller cluster.

Procedure

1. Log into a Controller node.

2. Enable Pacemaker management of the Galera cluster and start Galera on the new node:

[tripleo-admin@overcloud-controller-0 ~]$ sudo pcs resource refresh galera-bundle
[tripleo-admin@overcloud-controller-0 ~]$ sudo pcs resource manage galera-bundle

3. Enable fencing:

[tripleo-admin@overcloud-controller-0 ~]$ sudo pcs property set stonith-enabled=true

4. Perform a final status check to ensure that the services are running correctly:

CHAPTER 20. REPLACING CONTROLLER NODES

299

[tripleo-admin@overcloud-controller-0 ~]$ sudo pcs status

NOTE

If any services have failed, use the pcs resource refresh command to resolve
and restart the failed services.

5. Exit to director:

[tripleo-admin@overcloud-controller-0 ~]$ exit

6. Source the overcloudrc file so that you can interact with the overcloud:

$ source ~/overcloudrc

7. Check the network agents in your overcloud environment:

(overcloud) $ openstack network agent list

8. If any agents appear for the old node, remove them:

(overcloud) $ for AGENT in $(openstack network agent list --host overcloud-controller-
1.localdomain -c ID -f value) ; do openstack network agent delete $AGENT ; done

9. If necessary, add your router to the L3 agent host on the new node. Use the following example
command to add a router named r1 to the L3 agent using the UUID 2d1c1dc1-d9d4-4fa9-b2c8-
f29cd1a649d4:

(overcloud) $ openstack network agent add router --l3 2d1c1dc1-d9d4-4fa9-b2c8-
f29cd1a649d4 r1

10. Clean the cinder services.

a. List the cinder services:

(overcloud) $ openstack volume service list

b. Log in to a controller node, connect to the cinder-api container and use the cinder-
manage service remove command to remove leftover services:

[tripleo-admin@overcloud-controller-0 ~]$ sudo podman exec -it cinder_api cinder-
manage service remove cinder-backup <host>
[tripleo-admin@overcloud-controller-0 ~]$ sudo podman exec -it cinder_api cinder-
manage service remove cinder-scheduler <host>

11. Clean the RabbitMQ cluster.

a. Log into a Controller node.

b. Use the podman exec command to launch bash, and verify the status of the RabbitMQ
cluster:

Red Hat OpenStack Platform 17.0 Director Installation and Usage

300

[tripleo-admin@overcloud-controller-0 ~]$ podman exec -it rabbitmq-bundle-podman-0
bash
[tripleo-admin@overcloud-controller-0 ~]$ rabbitmqctl cluster_status

c. Use the rabbitmqctl command to forget the replaced controller node:

[tripleo-admin@overcloud-controller-0 ~]$ rabbitmqctl forget_cluster_node
<node_name>

12. If you replaced a bootstrap Controller node, you must remove the environment file
~/templates/bootstrap-controller.yaml after the replacement process, or delete the
pacemaker_short_bootstrap_node_name and mysql_short_bootstrap_node_name
parameters from your existing environment file. This step prevents director from attempting to
override the Controller node name in subsequent replacements. For more information, see
Replacing a bootstrap Controller node .

13. If you are using the Object Storage service (swift) on the overcloud, you must synchronize the
swift rings after updating the overcloud nodes. Use a script, similar to the following example, to
distribute ring files from a previously existing Controller node (Controller node 0 in this
example) to all Controller nodes and restart the Object Storage service containers on those
nodes:

#!/bin/sh
set -xe

SRC="tripleo-admin@overcloud-controller-0.ctlplane"
ALL="tripleo-admin@overcloud-controller-0.ctlplane tripleo-admin@overcloud-controller-
1.ctlplane tripleo-admin@overcloud-controller-2.ctlplane"

Fetch the current set of ring files:

ssh "${SRC}" 'sudo tar -czvf - /var/lib/config-data/puppet-
generated/swift_ringbuilder/etc/swift/{*.builder,*.ring.gz,backups/*.builder}' > swift-
rings.tar.gz

Upload rings to all nodes, put them into the correct place, and restart swift services:

for DST in ${ALL}; do
 cat swift-rings.tar.gz | ssh "${DST}" 'sudo tar -C / -xvzf -'
 ssh "${DST}" 'sudo podman restart swift_copy_rings'
 ssh "${DST}" 'sudo systemctl restart tripleo_swift*'
done

CHAPTER 20. REPLACING CONTROLLER NODES

301

CHAPTER 21. REBOOTING NODES
You might need to reboot the nodes in the undercloud and overcloud. Use the following procedures to
understand how to reboot different node types.

If you reboot all nodes in one role, it is advisable to reboot each node individually. If you reboot
all nodes in a role simultaneously, service downtime can occur during the reboot operation.

If you reboot all nodes in your OpenStack Platform environment, reboot the nodes in the
following sequential order:

Recommended node reboot order

1. Reboot the undercloud node.

2. Reboot Controller and other composable nodes.

3. Reboot standalone Ceph MON nodes.

4. Reboot Ceph Storage nodes.

5. Reboot Object Storage service (swift) nodes.

6. Reboot Compute nodes.

21.1. REBOOTING THE UNDERCLOUD NODE

Complete the following steps to reboot the undercloud node.

Procedure

1. Log in to the undercloud as the stack user.

2. Reboot the undercloud:

$ sudo reboot

3. Wait until the node boots.

21.2. REBOOTING CONTROLLER AND COMPOSABLE NODES

Reboot Controller nodes and standalone nodes based on composable roles, and exclude Compute
nodes and Ceph Storage nodes.

Procedure

1. Log in to the node that you want to reboot.

2. Optional: If the node uses Pacemaker resources, stop the cluster:

[tripleo-admin@overcloud-controller-0 ~]$ sudo pcs cluster stop

3. Reboot the node:

Red Hat OpenStack Platform 17.0 Director Installation and Usage

302

[tripleo-admin@overcloud-controller-0 ~]$ sudo reboot

4. Wait until the node boots.

Verification

1. Verify that the services are enabled.

a. If the node uses Pacemaker services, check that the node has rejoined the cluster:

[tripleo-admin@overcloud-controller-0 ~]$ sudo pcs status

b. If the node uses Systemd services, check that all services are enabled:

[tripleo-admin@overcloud-controller-0 ~]$ sudo systemctl status

c. If the node uses containerized services, check that all containers on the node are active:

[tripleo-admin@overcloud-controller-0 ~]$ sudo podman ps

21.3. REBOOTING STANDALONE CEPH MON NODES

Complete the following steps to reboot standalone Ceph MON nodes.

Procedure

1. Log in to a Ceph MON node.

2. Reboot the node:

$ sudo reboot

3. Wait until the node boots and rejoins the MON cluster.

Repeat these steps for each MON node in the cluster.

21.4. REBOOTING A CEPH STORAGE (OSD) CLUSTER

Complete the following steps to reboot a cluster of Ceph Storage (OSD) nodes.

Prerequisites

On a Ceph Monitor or Controller node that is running the ceph-mon service, check that the Red
Hat Ceph Storage cluster status is healthy and the pg status is active+clean:

$ sudo cephadm -- shell ceph status

If the Ceph cluster is healthy, it returns a status of HEALTH_OK.

If the Ceph cluster status is unhealthy, it returns a status of HEALTH_WARN or HEALTH_ERR.
For troubleshooting guidance, see the Red Hat Ceph Storage 5 Troubleshooting Guide .

Procedure

CHAPTER 21. REBOOTING NODES

303

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/5/html-single/troubleshooting_guide/index

Procedure

1. Log in to a Ceph Monitor or Controller node that is running the ceph-mon service, and disable
Ceph Storage cluster rebalancing temporarily:

$ sudo cephadm shell -- ceph osd set noout
$ sudo cephadm shell -- ceph osd set norebalance

NOTE

If you have a multistack or distributed compute node (DCN) architecture, you
must specify the Ceph cluster name when you set the noout and norebalance
flags. For example: sudo cephadm shell -c /etc/ceph/<cluster>.conf -k
/etc/ceph/<cluster>.client.keyring.

2. Select the first Ceph Storage node that you want to reboot and log in to the node.

3. Reboot the node:

$ sudo reboot

4. Wait until the node boots.

5. Log in to the node and check the Ceph cluster status:

$ sudo cephadm -- shell ceph status

Check that the pgmap reports all pgs as normal (active+clean).

6. Log out of the node, reboot the next node, and check its status. Repeat this process until you
have rebooted all Ceph Storage nodes.

7. When complete, log in to a Ceph Monitor or Controller node that is running the ceph-mon
service and enable Ceph cluster rebalancing:

$ sudo cephadm shell -- ceph osd unset noout
$ sudo cephadm shell -- ceph osd unset norebalance

NOTE

If you have a multistack or distributed compute node (DCN) architecture, you
must specify the Ceph cluster name when you unset the noout and norebalance
flags. For example: sudo cephadm shell -c /etc/ceph/<cluster>.conf -k
/etc/ceph/<cluster>.client.keyring

8. Perform a final status check to verify that the cluster reports HEALTH_OK:

$ sudo cephadm shell ceph status

21.5. REBOOTING OBJECT STORAGE SERVICE (SWIFT) NODES

The following procedure reboots Object Storage service (swift) nodes. Complete the following steps for
every Object Storage node in your cluster.

Red Hat OpenStack Platform 17.0 Director Installation and Usage

304

Procedure

1. Log in to an Object Storage node.

2. Reboot the node:

$ sudo reboot

3. Wait until the node boots.

4. Repeat the reboot for each Object Storage node in the cluster.

21.6. REBOOTING COMPUTE NODES

To ensure minimal downtime of instances in your Red Hat OpenStack Platform environment, the
Migrating instances workflow outlines the steps you must complete to migrate instances from the
Compute node that you want to reboot.

Migrating instances workflow

1. Decide whether to migrate instances to another Compute node before rebooting the node.

2. Select and disable the Compute node that you want to reboot so that it does not provision new
instances.

3. Migrate the instances to another Compute node.

4. Reboot the empty Compute node.

5. Enable the empty Compute node.

Prerequisites

Before you reboot the Compute node, you must decide whether to migrate instances to
another Compute node while the node is rebooting.
Review the list of migration constraints that you might encounter when you migrate virtual
machine instances between Compute nodes. For more information, see Migration constraints in
Configuring the Compute Service for Instance Creation .

If you cannot migrate the instances, you can set the following core template parameters to
control the state of the instances after the Compute node reboots:

NovaResumeGuestsStateOnHostBoot

Determines whether to return instances to the same state on the Compute node after
reboot. When set to False, the instances remain down and you must start them manually.
The default value is False.

NovaResumeGuestsShutdownTimeout

Number of seconds to wait for an instance to shut down before rebooting. It is not
recommended to set this value to 0. The default value is 300.
For more information about overcloud parameters and their usage, see Overcloud
Parameters.

Procedure

CHAPTER 21. REBOOTING NODES

305

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.0/html/configuring_the_compute_service_for_instance_creation/assembly_managing-instances_managing-instances#con_migration-constraints_migrating-instances
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.0/html-single/overcloud_parameters/index#compute-nova-parameters

1. Log in to the undercloud as the stack user.

2. List all Compute nodes and their UUIDs:

$ source ~/stackrc
(undercloud) $ metalsmith list | grep compute

Identify the UUID of the Compute node that you want to reboot.

3. From the overcloud, select a Compute node and disable it:

$ source ~/overcloudrc
(overcloud)$ openstack compute service list
(overcloud)$ openstack compute service set <hostname> nova-compute --disable

Replace <hostname> with the hostname of your Compute node.

4. List all instances on the Compute node:

(overcloud)$ openstack server list --host <hostname> --all-projects

5. Optional: To migrate the instances to another Compute node, complete the following steps:

a. If you decide to migrate the instances to another Compute node, use one of the following
commands:

To migrate the instance to a different host, run the following command:

(overcloud) $ openstack server migrate <instance_id> --live <target_host> --wait

Replace <instance_id> with your instance ID.

Replace <target_host> with the host that you are migrating the instance to.

Let nova-scheduler automatically select the target host:

(overcloud) $ nova live-migration <instance_id>

Live migrate all instances at once:

$ nova host-evacuate-live <hostname>

NOTE

The nova command might cause some deprecation warnings, which are
safe to ignore.

b. Wait until migration completes.

c. Confirm that the migration was successful:

(overcloud) $ openstack server list --host <hostname> --all-projects

d. Continue to migrate instances until none remain on the Compute node.

Red Hat OpenStack Platform 17.0 Director Installation and Usage

306

6. Log in to the Compute node and reboot the node:

[tripleo-admin@overcloud-compute-0 ~]$ sudo reboot

7. Wait until the node boots.

8. Re-enable the Compute node:

$ source ~/overcloudrc
(overcloud) $ openstack compute service set <hostname> nova-compute --enable

9. Check that the Compute node is enabled:

(overcloud) $ openstack compute service list

CHAPTER 21. REBOOTING NODES

307

CHAPTER 22. SHUTTING DOWN AND STARTING UP THE
UNDERCLOUD AND OVERCLOUD

If you must perform maintenance on the undercloud and overcloud, you must shut down and start up
the undercloud and overcloud nodes in a specific order to ensure minimal issues when your start your
overcloud.

Prerequisites

A running undercloud and overcloud

22.1. UNDERCLOUD AND OVERCLOUD SHUTDOWN ORDER

To shut down the Red Hat OpenStack Platform environment, you must shut down the overcloud and
undercloud in the following order:

1. Shut down instances on overcloud Compute nodes

2. Shut down Compute nodes

3. Stop all high availability and OpenStack Platform services on Controller nodes

4. Shut down Ceph Storage nodes

5. Shut down Controller nodes

6. Shut down the undercloud

22.2. SHUTTING DOWN INSTANCES ON OVERCLOUD COMPUTE
NODES

As a part of shutting down the Red Hat OpenStack Platform environment, shut down all instances on
Compute nodes before shutting down the Compute nodes.

Prerequisites

An overcloud with active Compute services

Procedure

1. Log in to the undercloud as the stack user.

2. Source the credentials file for your overcloud:

$ source ~/overcloudrc

3. View running instances in the overcloud:

$ openstack server list --all-projects

4. Stop each instance in the overcloud:

$ openstack server stop <INSTANCE>

Red Hat OpenStack Platform 17.0 Director Installation and Usage

308

Repeat this step for each instance until you stop all instances in the overcloud.

22.3. SHUTTING DOWN COMPUTE NODES

As a part of shutting down the Red Hat OpenStack Platform environment, log in to and shut down each
Compute node.

Prerequisites

Shut down all instances on the Compute nodes

Procedure

1. Log in as the root user to a Compute node.

2. Shut down the node:

shutdown -h now

3. Perform these steps for each Compute node until you shut down all Compute nodes.

22.4. STOPPING SERVICES ON CONTROLLER NODES

As a part of shutting down the Red Hat OpenStack Platform environment, stop services on the
Controller nodes before shutting down the nodes. This includes Pacemaker and systemd services.

Prerequisites

An overcloud with active Pacemaker services

Procedure

1. Log in as the root user to a Controller node.

2. Stop the Pacemaker cluster.

pcs cluster stop --all

This command stops the cluster on all nodes.

3. Wait until the Pacemaker services stop and check that the services stopped.

a. Check the Pacemaker status:

pcs status

b. Check that no Pacemaker services are running in Podman:

podman ps --filter "name=.*-bundle.*"

4. Stop the Red Hat OpenStack Platform services:

CHAPTER 22. SHUTTING DOWN AND STARTING UP THE UNDERCLOUD AND OVERCLOUD

309

systemctl stop 'tripleo_*'

5. Wait until the services stop and check that services are no longer running in Podman:

podman ps

22.5. SHUTTING DOWN CEPH STORAGE NODES

As a part of shutting down the Red Hat OpenStack Platform environment, disable Ceph Storage
services then log in to and shut down each Ceph Storage node.

Prerequisites

A healthy Ceph Storage cluster

Ceph MON services are running on standalone Ceph MON nodes or on Controller nodes

Procedure

1. Log in as the root user to a node that runs Ceph MON services, such as a Controller node or a
standalone Ceph MON node.

2. Check the health of the cluster. In the following example, the podman command runs a status
check within a Ceph MON container on a Controller node:

sudo podman exec -it ceph-mon-controller-0 ceph status

Ensure that the status is HEALTH_OK.

3. Set the noout, norecover, norebalance, nobackfill, nodown, and pause flags for the cluster.
In the following example, the podman commands set these flags through a Ceph MON
container on a Controller node:

sudo podman exec -it ceph-mon-controller-0 ceph osd set noout
sudo podman exec -it ceph-mon-controller-0 ceph osd set norecover
sudo podman exec -it ceph-mon-controller-0 ceph osd set norebalance
sudo podman exec -it ceph-mon-controller-0 ceph osd set nobackfill
sudo podman exec -it ceph-mon-controller-0 ceph osd set nodown
sudo podman exec -it ceph-mon-controller-0 ceph osd set pause

4. Shut down each Ceph Storage node:

a. Log in as the root user to a Ceph Storage node.

b. Shut down the node:

shutdown -h now

c. Perform these steps for each Ceph Storage node until you shut down all Ceph Storage
nodes.

5. Shut down any standalone Ceph MON nodes:

a. Log in as the root user to a standalone Ceph MON node.

Red Hat OpenStack Platform 17.0 Director Installation and Usage

310

b. Shut down the node:

shutdown -h now

c. Perform these steps for each standalone Ceph MON node until you shut down all
standalone Ceph MON nodes.

Additional resources

"What is the procedure to shutdown and bring up the entire ceph cluster?"

22.6. SHUTTING DOWN CONTROLLER NODES

As a part of shutting down the Red Hat OpenStack Platform environment, log in to and shut down each
Controller node.

Prerequisites

Stop the Pacemaker cluster

Stop all Red Hat OpenStack Platform services on the Controller nodes

Procedure

1. Log in as the root user to a Controller node.

2. Shut down the node:

shutdown -h now

3. Perform these steps for each Controller node until you shut down all Controller nodes.

22.7. SHUTTING DOWN THE UNDERCLOUD

As a part of shutting down the Red Hat OpenStack Platform environment, log in to the undercloud node
and shut down the undercloud.

Prerequisites

A running undercloud

Procedure

1. Log in to the undercloud as the stack user.

2. Shut down the undercloud:

$ sudo shutdown -h now

22.8. PERFORMING SYSTEM MAINTENANCE

After you completely shut down the undercloud and overcloud, perform any maintenance to the

CHAPTER 22. SHUTTING DOWN AND STARTING UP THE UNDERCLOUD AND OVERCLOUD

311

https://access.redhat.com/solutions/2139301

After you completely shut down the undercloud and overcloud, perform any maintenance to the
systems in your environment and then start up the undercloud and overcloud.

22.9. UNDERCLOUD AND OVERCLOUD STARTUP ORDER

To start the Red Hat OpenStack Platform environment, you must start the undercloud and overcloud in
the following order:

1. Start the undercloud.

2. Start Controller nodes.

3. Start Ceph Storage nodes.

4. Start Compute nodes.

5. Start instances on overcloud Compute nodes.

22.10. STARTING THE UNDERCLOUD

As a part of starting the Red Hat OpenStack Platform environment, power on the undercloud node, log
in to the undercloud, and check the undercloud services.

Prerequisites

The undercloud is powered down.

Procedure

Power on the undercloud and wait until the undercloud boots.

Verification

1. Log in to the undercloud host as the stack user.

2. Source the stackrc undercloud credentials file:

$ source ~/stackrc

3. Check the services on the undercloud:

$ systemctl list-units 'tripleo_*'

4. Validate the static inventory file named tripleo-ansible-inventory.yaml:

$ validation run --group pre-introspection -i <inventory_file>

Replace <inventory_file> with the name and location of the Ansible inventory file, for
example, ~/tripleo-deploy/undercloud/tripleo-ansible-inventory.yaml.

NOTE

Red Hat OpenStack Platform 17.0 Director Installation and Usage

312

NOTE

When you run a validation, the Reasons column in the output is limited to 79
characters. To view the validation result in full, view the validation log files.

5. Check that all services and containers are active and healthy:

$ validation run --validation service-status --limit undercloud -i <inventory_file>

Additional resources

Using the validation framework

22.11. STARTING CONTROLLER NODES

As a part of starting the Red Hat OpenStack Platform environment, power on each Controller node and
check the non-Pacemaker services on the node.

Prerequisites

The Controller nodes are powered down.

Procedure

Power on each Controller node.

Verification

1. Log in to each Controller node as the root user.

2. Check the services on the Controller node:

$ systemctl -t service

Only non-Pacemaker based services are running.

3. Wait until the Pacemaker services start and check that the services started:

$ pcs status

NOTE

If your environment uses Instance HA, the Pacemaker resources do not start until
you start the Compute nodes or perform a manual unfence operation with the
pcs stonith confirm <compute_node> command. You must run this command
on each Compute node that uses Instance HA.

22.12. STARTING CEPH STORAGE NODES

As a part of starting the Red Hat OpenStack Platform environment, power on the Ceph MON and Ceph
Storage nodes and enable Ceph Storage services.

CHAPTER 22. SHUTTING DOWN AND STARTING UP THE UNDERCLOUD AND OVERCLOUD

313

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.0/html-single/director_installation_and_usage/index#using-the-validation-framework

Prerequisites

A powered down Ceph Storage cluster

Ceph MON services are enabled on powered down standalone Ceph MON nodes or on
powered on Controller nodes

Procedure

1. If your environment has standalone Ceph MON nodes, power on each Ceph MON node.

2. Power on each Ceph Storage node.

3. Log in as the root user to a node that runs Ceph MON services, such as a Controller node or a
standalone Ceph MON node.

4. Check the status of the cluster nodes. In the following example, the podman command runs a
status check within a Ceph MON container on a Controller node:

sudo podman exec -it ceph-mon-controller-0 ceph status

Ensure that each node is powered on and connected.

5. Unset the noout, norecover, norebalance, nobackfill, nodown and pause flags for the cluster.
In the following example, the podman commands unset these flags through a Ceph MON
container on a Controller node:

sudo podman exec -it ceph-mon-controller-0 ceph osd unset noout
sudo podman exec -it ceph-mon-controller-0 ceph osd unset norecover
sudo podman exec -it ceph-mon-controller-0 ceph osd unset norebalance
sudo podman exec -it ceph-mon-controller-0 ceph osd unset nobackfill
sudo podman exec -it ceph-mon-controller-0 ceph osd unset nodown
sudo podman exec -it ceph-mon-controller-0 ceph osd unset pause

Verification

1. Check the health of the cluster. In the following example, the podman command runs a status
check within a Ceph MON container on a Controller node:

sudo podman exec -it ceph-mon-controller-0 ceph status

Ensure the status is HEALTH_OK.

Additional resources

"What is the procedure to shutdown and bring up the entire ceph cluster?"

22.13. STARTING COMPUTE NODES

As a part of starting the Red Hat OpenStack Platform environment, power on each Compute node and
check the services on the node.

Prerequisites

Red Hat OpenStack Platform 17.0 Director Installation and Usage

314

https://access.redhat.com/solutions/2139301

Powered down Compute nodes

Procedure

1. Power on each Compute node.

Verification

1. Log in to each Compute as the root user.

2. Check the services on the Compute node:

$ systemctl -t service

22.14. STARTING INSTANCES ON OVERCLOUD COMPUTE NODES

As a part of starting the Red Hat OpenStack Platform environment, start the instances on on Compute
nodes.

Prerequisites

An active overcloud with active nodes

Procedure

1. Log in to the undercloud as the stack user.

2. Source the credentials file for your overcloud:

$ source ~/overcloudrc

3. View running instances in the overcloud:

$ openstack server list --all-projects

4. Start an instance in the overcloud:

$ openstack server start <INSTANCE>

CHAPTER 22. SHUTTING DOWN AND STARTING UP THE UNDERCLOUD AND OVERCLOUD

315

CHAPTER 23. ADDITIONAL INTROSPECTION OPERATIONS
In some situations, you might want to perform introspection outside of the standard overcloud
deployment workflow. For example, you might want to introspect new nodes or refresh introspection
data after replacing hardware on existing unused nodes.

23.1. PERFORMING INDIVIDUAL NODE INTROSPECTION

To perform a single introspection on an available node, set the node to management mode and perform
the introspection.

Procedure

1. Set all nodes to a manageable state:

(undercloud) $ openstack baremetal node manage [NODE UUID]

2. Perform the introspection:

(undercloud) $ openstack overcloud node introspect [NODE UUID] --provide

After the introspection completes, the node changes to an available state.

23.2. PERFORMING NODE INTROSPECTION AFTER INITIAL
INTROSPECTION

After an initial introspection, all nodes enter an available state due to the --provide option. To perform
introspection on all nodes after the initial introspection, set the node to management mode and
perform the introspection.

Procedure

1. Set all nodes to a manageable state

(undercloud) $ for node in $(openstack baremetal node list --fields uuid -f value) ; do
openstack baremetal node manage $node ; done

2. Run the bulk introspection command:

(undercloud) $ openstack overcloud node introspect --all-manageable --provide

After the introspection completes, all nodes change to an available state.

23.3. PERFORMING NETWORK INTROSPECTION FOR INTERFACE
INFORMATION

Network introspection retrieves link layer discovery protocol (LLDP) data from network switches. The
following commands show a subset of LLDP information for all interfaces on a node, or full information
for a particular node and interface. This can be useful for troubleshooting. Director enables LLDP data
collection by default.

Red Hat OpenStack Platform 17.0 Director Installation and Usage

316

Procedure

1. To get a list of interfaces on a node, run the following command:

(undercloud) $ openstack baremetal introspection interface list [NODE UUID]

For example:

(undercloud) $ openstack baremetal introspection interface list c89397b7-a326-41a0-907d-
79f8b86c7cd9
+-----------+-------------------+------------------------+-------------------+----------------+
| Interface | MAC Address | Switch Port VLAN IDs | Switch Chassis ID | Switch Port ID |
+-----------+-------------------+------------------------+-------------------+----------------+
p2p2	00:0a:f7:79:93:19	[103, 102, 18, 20, 42]	64:64:9b:31:12:00	510
p2p1	00:0a:f7:79:93:18	[101]	64:64:9b:31:12:00	507
em1	c8:1f:66:c7:e8:2f	[162]	08:81:f4:a6:b3:80	515
em2	c8:1f:66:c7:e8:30	[182, 183]	08:81:f4:a6:b3:80	559
+-----------+-------------------+------------------------+-------------------+----------------+

2. To view interface data and switch port information, run the following command:

(undercloud) $ openstack baremetal introspection interface show [NODE UUID]
[INTERFACE]

For example:

(undercloud) $ openstack baremetal introspection interface show c89397b7-a326-41a0-
907d-79f8b86c7cd9 p2p1
+--------------------------------------+--
--+
| Field | Value
|
+--------------------------------------+--
--+
| interface | p2p1
|
| mac | 00:0a:f7:79:93:18
|
| node_ident | c89397b7-a326-41a0-907d-79f8b86c7cd9
|
| switch_capabilities_enabled | [u'Bridge', u'Router']
|
| switch_capabilities_support | [u'Bridge', u'Router']
|
| switch_chassis_id | 64:64:9b:31:12:00
|
| switch_port_autonegotiation_enabled | True
|
| switch_port_autonegotiation_support | True
|
| switch_port_description | ge-0/0/2.0
|
| switch_port_id | 507
|
| switch_port_link_aggregation_enabled | False

CHAPTER 23. ADDITIONAL INTROSPECTION OPERATIONS

317

|
| switch_port_link_aggregation_id | 0
|
| switch_port_link_aggregation_support | True
|
| switch_port_management_vlan_id | None
|
| switch_port_mau_type | Unknown
|
| switch_port_mtu | 1514
|
| switch_port_physical_capabilities | [u'1000BASE-T fdx', u'100BASE-TX fdx', u'100BASE-
TX hdx', u'10BASE-T fdx', u'10BASE-T hdx', u'Asym and Sym PAUSE fdx'] |
| switch_port_protocol_vlan_enabled | None
|
| switch_port_protocol_vlan_ids | None
|
| switch_port_protocol_vlan_support | None
|
| switch_port_untagged_vlan_id | 101
|
| switch_port_vlan_ids | [101]
|
| switch_port_vlans | [{u'name': u'RHOS13-PXE', u'id': 101}]
|
| switch_protocol_identities | None
|
| switch_system_name | rhos-compute-node-sw1
|
+--------------------------------------+--
--+

23.4. RETRIEVING HARDWARE INTROSPECTION DETAILS

The Bare Metal service hardware-inspection-extras feature is enabled by default, and you can use it to
retrieve hardware details for overcloud configuration. For more information about the
inspection_extras parameter in the undercloud.conf file, see Director configuration parameters.

For example, the numa_topology collector is part of the hardware-inspection extras and includes the
following information for each NUMA node:

RAM (in kilobytes)

Physical CPU cores and their sibling threads

NICs associated with the NUMA node

Procedure

To retrieve the information listed above, substitute <UUID> with the UUID of the bare-metal
node to complete the following command:

openstack baremetal introspection data save <UUID> | jq .numa_topology

The following example shows the retrieved NUMA information for a bare-metal node:

Red Hat OpenStack Platform 17.0 Director Installation and Usage

318

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.0/html/director_installation_and_usage/index#ref_director-configuration-parameters_installing-director-on-the-undercloud

{
 "cpus": [
 {
 "cpu": 1,
 "thread_siblings": [
 1,
 17
],
 "numa_node": 0
 },
 {
 "cpu": 2,
 "thread_siblings": [
 10,
 26
],
 "numa_node": 1
 },
 {
 "cpu": 0,
 "thread_siblings": [
 0,
 16
],
 "numa_node": 0
 },
 {
 "cpu": 5,
 "thread_siblings": [
 13,
 29
],
 "numa_node": 1
 },
 {
 "cpu": 7,
 "thread_siblings": [
 15,
 31
],
 "numa_node": 1
 },
 {
 "cpu": 7,
 "thread_siblings": [
 7,
 23
],
 "numa_node": 0
 },
 {
 "cpu": 1,
 "thread_siblings": [
 9,
 25
],

CHAPTER 23. ADDITIONAL INTROSPECTION OPERATIONS

319

 "numa_node": 1
 },
 {
 "cpu": 6,
 "thread_siblings": [
 6,
 22
],
 "numa_node": 0
 },
 {
 "cpu": 3,
 "thread_siblings": [
 11,
 27
],
 "numa_node": 1
 },
 {
 "cpu": 5,
 "thread_siblings": [
 5,
 21
],
 "numa_node": 0
 },
 {
 "cpu": 4,
 "thread_siblings": [
 12,
 28
],
 "numa_node": 1
 },
 {
 "cpu": 4,
 "thread_siblings": [
 4,
 20
],
 "numa_node": 0
 },
 {
 "cpu": 0,
 "thread_siblings": [
 8,
 24
],
 "numa_node": 1
 },
 {
 "cpu": 6,
 "thread_siblings": [
 14,
 30
],

Red Hat OpenStack Platform 17.0 Director Installation and Usage

320

 "numa_node": 1
 },
 {
 "cpu": 3,
 "thread_siblings": [
 3,
 19
],
 "numa_node": 0
 },
 {
 "cpu": 2,
 "thread_siblings": [
 2,
 18
],
 "numa_node": 0
 }
],
 "ram": [
 {
 "size_kb": 66980172,
 "numa_node": 0
 },
 {
 "size_kb": 67108864,
 "numa_node": 1
 }
],
 "nics": [
 {
 "name": "ens3f1",
 "numa_node": 1
 },
 {
 "name": "ens3f0",
 "numa_node": 1
 },
 {
 "name": "ens2f0",
 "numa_node": 0
 },
 {
 "name": "ens2f1",
 "numa_node": 0
 },
 {
 "name": "ens1f1",
 "numa_node": 0
 },
 {
 "name": "ens1f0",
 "numa_node": 0
 },
 {
 "name": "eno4",

CHAPTER 23. ADDITIONAL INTROSPECTION OPERATIONS

321

 "numa_node": 0
 },
 {
 "name": "eno1",
 "numa_node": 0
 },
 {
 "name": "eno3",
 "numa_node": 0
 },
 {
 "name": "eno2",
 "numa_node": 0
 }
]
}

Red Hat OpenStack Platform 17.0 Director Installation and Usage

322

CHAPTER 24. AUTOMATICALLY DISCOVERING BARE METAL
NODES

You can use auto-discovery to register overcloud nodes and generate their metadata, without the need
to create an instackenv.json file. This improvement can help to reduce the time it takes to collect
information about a node. For example, if you use auto-discovery, you do not to collate the IPMI IP
addresses and subsequently create the instackenv.json.

24.1. ENABLING AUTO-DISCOVERY

Enable and configure Bare Metal auto-discovery to automatically discover and import nodes that join
your provisioning network when booting with PXE.

Procedure

1. Enable Bare Metal auto-discovery in the undercloud.conf file:

enable_node_discovery = True
discovery_default_driver = ipmi

enable_node_discovery - When enabled, any node that boots the introspection ramdisk
using PXE is enrolled in the Bare Metal service (ironic) automatically.

discovery_default_driver - Sets the driver to use for discovered nodes. For example, ipmi.

2. Add your IPMI credentials to ironic:

a. Add your IPMI credentials to a file named ipmi-credentials.json. Replace the
SampleUsername, RedactedSecurePassword, and bmc_address values in this example
to suit your environment:

[
 {
 "description": "Set default IPMI credentials",
 "conditions": [
 {"op": "eq", "field": "data://auto_discovered", "value": true}
],
 "actions": [
 {"action": "set-attribute", "path": "driver_info/ipmi_username",
 "value": "SampleUsername"},
 {"action": "set-attribute", "path": "driver_info/ipmi_password",
 "value": "RedactedSecurePassword"},
 {"action": "set-attribute", "path": "driver_info/ipmi_address",
 "value": "{data[inventory][bmc_address]}"}
]
 }
]

3. Import the IPMI credentials file into ironic:

$ openstack baremetal introspection rule import ipmi-credentials.json

24.2. TESTING AUTO-DISCOVERY

CHAPTER 24. AUTOMATICALLY DISCOVERING BARE METAL NODES

323

PXE boot a node that is connected to your provisioning network to test the Bare Metal auto-discovery
feature.

Procedure

1. Power on the required nodes.

2. Run the openstack baremetal node list command. You should see the new nodes listed in an
enrolled state:

$ openstack baremetal node list
+--------------------------------------+------+---------------+-------------+--------------------+------------
-+
| UUID | Name | Instance UUID | Power State | Provisioning State |
Maintenance |
+--------------------------------------+------+---------------+-------------+--------------------+------------
-+
| c6e63aec-e5ba-4d63-8d37-bd57628258e8 | None | None | power off | enroll |
False |
| 0362b7b2-5b9c-4113-92e1-0b34a2535d9b | None | None | power off | enroll |
False |
+--------------------------------------+------+---------------+-------------+--------------------+------------
-+

3. Set the resource class for each node:

$ for NODE in `openstack baremetal node list -c UUID -f value` ; do openstack baremetal
node set $NODE --resource-class baremetal ; done

4. Configure the kernel and ramdisk for each node:

$ for NODE in `openstack baremetal node list -c UUID -f value` ; do openstack baremetal
node manage $NODE ; done
$ openstack overcloud node configure --all-manageable

5. Set all nodes to available:

$ for NODE in `openstack baremetal node list -c UUID -f value` ; do openstack baremetal
node provide $NODE ; done

24.3. USING RULES TO DISCOVER DIFFERENT VENDOR HARDWARE

If you have a heterogeneous hardware environment, you can use introspection rules to assign
credentials and remote management credentials. For example, you might want a separate discovery rule
to handle your Dell nodes that use DRAC.

Procedure

1. Create a file named dell-drac-rules.json with the following contents:

[
 {
 "description": "Set default IPMI credentials",

Red Hat OpenStack Platform 17.0 Director Installation and Usage

324

 "conditions": [
 {"op": "eq", "field": "data://auto_discovered", "value": true},
 {"op": "ne", "field": "data://inventory.system_vendor.manufacturer",
 "value": "Dell Inc."}
],
 "actions": [
 {"action": "set-attribute", "path": "driver_info/ipmi_username",
 "value": "SampleUsername"},
 {"action": "set-attribute", "path": "driver_info/ipmi_password",
 "value": "RedactedSecurePassword"},
 {"action": "set-attribute", "path": "driver_info/ipmi_address",
 "value": "{data[inventory][bmc_address]}"}
]
 },
 {
 "description": "Set the vendor driver for Dell hardware",
 "conditions": [
 {"op": "eq", "field": "data://auto_discovered", "value": true},
 {"op": "eq", "field": "data://inventory.system_vendor.manufacturer",
 "value": "Dell Inc."}
],
 "actions": [
 {"action": "set-attribute", "path": "driver", "value": "idrac"},
 {"action": "set-attribute", "path": "driver_info/drac_username",
 "value": "SampleUsername"},
 {"action": "set-attribute", "path": "driver_info/drac_password",
 "value": "RedactedSecurePassword"},
 {"action": "set-attribute", "path": "driver_info/drac_address",
 "value": "{data[inventory][bmc_address]}"}
]
 }
]

Replace the user name and password values in this example to suit your environment:

2. Import the rule into ironic:

$ openstack baremetal introspection rule import dell-drac-rules.json

CHAPTER 24. AUTOMATICALLY DISCOVERING BARE METAL NODES

325

CHAPTER 25. CONFIGURING AUTOMATIC PROFILE TAGGING
The introspection process performs a series of benchmark tests. Director saves the data from these
tests. You can create a set of policies that use this data in various ways:

The policies can identify under-performing or unstable nodes and isolate these nodes from use
in the overcloud.

The policies can define whether to tag nodes into specific profiles automatically.

25.1. POLICY FILE SYNTAX

Policy files use a JSON format that contains a set of rules. Each rule defines a description, a condition,
and an action. A description is a plain text description of the rule, a condition defines an evaluation using
a key-value pattern, and an action is the performance of the condition.

Description

A description is a plain text description of the rule.

Example:

"description": "A new rule for my node tagging policy"

Conditions

A condition defines an evaluation using the following key-value pattern:

field

Defines the field to evaluate:

memory_mb - The amount of memory for the node in MB.

cpus - The total number of threads for the node CPU.

cpu_arch - The architecture of the node CPU.

local_gb - The total storage space of the node root disk.

op

Defines the operation to use for the evaluation. This includes the following attributes:

eq - Equal to

ne - Not equal to

lt - Less than

gt - Greater than

le - Less than or equal to

ge - Greater than or equal to

in-net - Checks that an IP address is in a given network

Red Hat OpenStack Platform 17.0 Director Installation and Usage

326

matches - Requires a full match against a given regular expression

contains - Requires a value to contain a given regular expression

is-empty - Checks that field is empty

invert

Boolean value to define whether to invert the result of the evaluation.

multiple

Defines the evaluation to use if multiple results exist. This parameter includes the following
attributes:

any - Requires any result to match

all - Requires all results to match

first - Requires the first result to match

value

Defines the value in the evaluation. If the field and operation result in the value, the condition return a
true result. Otherwise, the condition returns a false result.

Example:

"conditions": [
 {
 "field": "local_gb",
 "op": "ge",
 "value": 1024
 }
],

Actions

If a condition is true, the policy performs an action. The action uses the action key and additional keys
depending on the value of action:

fail - Fails the introspection. Requires a message parameter for the failure message.

set-attribute - Sets an attribute on an ironic node. Requires a path field, which is the path to an
ironic attribute (for example, /driver_info/ipmi_address), and a value to set.

set-capability - Sets a capability on an ironic node. Requires name and value fields, which are
the name and the value for a new capability. This replaces the existing value for this capability.
For example, use this to define node profiles.

extend-attribute - The same as set-attribute but treats the existing value as a list and appends
value to it. If the optional unique parameter is set to True, nothing is added if the given value is
already in a list.

Example:

"actions": [
 {
 "action": "set-capability",

CHAPTER 25. CONFIGURING AUTOMATIC PROFILE TAGGING

327

 "name": "profile",
 "value": "swift-storage"
 }
]

25.2. POLICY FILE EXAMPLE

The following is an example JSON file (rules.json) that contains introspection rules:

[
 {
 "description": "Fail introspection for unexpected nodes",
 "conditions": [
 {
 "op": "lt",
 "field": "memory_mb",
 "value": 4096
 }
],
 "actions": [
 {
 "action": "fail",
 "message": "Memory too low, expected at least 4 GiB"
 }
]
 },
 {
 "description": "Assign profile for object storage",
 "conditions": [
 {
 "op": "ge",
 "field": "local_gb",
 "value": 1024
 }
],
 "actions": [
 {
 "action": "set-capability",
 "name": "profile",
 "value": "swift-storage"
 }
]
 },
 {
 "description": "Assign possible profiles for compute and controller",
 "conditions": [
 {
 "op": "lt",
 "field": "local_gb",
 "value": 1024
 },
 {
 "op": "ge",
 "field": "local_gb",
 "value": 40

Red Hat OpenStack Platform 17.0 Director Installation and Usage

328

 }
],
 "actions": [
 {
 "action": "set-capability",
 "name": "compute_profile",
 "value": "1"
 },
 {
 "action": "set-capability",
 "name": "control_profile",
 "value": "1"
 },
 {
 "action": "set-capability",
 "name": "profile",
 "value": null
 }
]
 }
]

This example consists of three rules:

Fail introspection if memory is lower than 4096 MiB. You can apply these types of rules if you
want to exclude certain nodes from your cloud.

Nodes with a hard drive size 1 TiB and bigger are assigned the swift-storage profile
unconditionally.

Nodes with a hard drive less than 1 TiB but more than 40 GiB can be either Compute or
Controller nodes. You can assign two capabilities (compute_profile and control_profile) so
that the openstack overcloud profiles match command can later make the final choice. For
this process to succeed, you must remove the existing profile capability, otherwise the existing
profile capability has priority.

The profile matching rules do not change any other nodes.

NOTE

Using introspection rules to assign the profile capability always overrides the existing
value. However, [PROFILE]_profile capabilities are ignored for nodes that already have a
profile capability.

25.3. IMPORTING POLICY FILES INTO DIRECTOR

To apply the policy rules you defined in your policy JSON file, you must import the policy file into
director.

Procedure

1. Import the policy file into director:

$ openstack baremetal introspection rule import <policy_file>

CHAPTER 25. CONFIGURING AUTOMATIC PROFILE TAGGING

329

Replace <policy_file> with the name of your policy rule file, for example, rules.json.

2. Run the introspection process:

$ openstack overcloud node introspect --all-manageable

3. Retrieve the UUIDs of the nodes that the policy rules are applied to:

$ openstack baremetal node list

4. Confirm that the nodes have been assigned the profiles defined in your policy rule file:

$ openstack baremetal node show <node_uuid>

5. If you made a mistake in introspection rules, then delete all rules:

$ openstack baremetal introspection rule purge

Red Hat OpenStack Platform 17.0 Director Installation and Usage

330

CHAPTER 26. CREATING VIRTUALIZED CONTROL PLANES
A virtualized control plane is a control plane located on virtual machines (VMs) rather than on bare metal.
Use a virtualized control plane reduce the number of bare metal machines that you require for the
control plane.

This chapter explains how to virtualize your Red Hat OpenStack Platform (RHOSP) control plane for the
overcloud using RHOSP and Red Hat Virtualization.

26.1. VIRTUALIZED CONTROL PLANE ARCHITECTURE

Use director to provision an overcloud using Controller nodes that are deployed in a Red Hat
Virtualization cluster. You can then deploy these virtualized controllers as the virtualized control plane
nodes.

NOTE

Virtualized Controller nodes are supported only on Red Hat Virtualization.

The following architecture diagram illustrates how to deploy a virtualized control plane. Distribute the
overcloud with the Controller nodes running on VMs on Red Hat Virtualization and run the Compute and
Storage nodes on bare metal.

NOTE

Run the OpenStack virtualized undercloud on Red Hat Virtualization.

Virtualized control plane architecture

The OpenStack Bare Metal Provisioning service (ironic) includes a driver for Red Hat Virtualization VMs,
staging-ovirt. You can use this driver to manage virtual nodes within a Red Hat Virtualization
environment. You can also use it to deploy overcloud controllers as virtual machines within a Red Hat
Virtualization environment.

Benefits and limitations of virtualizing your RHOSP overcloud control plane

Although there are a number of benefits to virtualizing your RHOSP overcloud control plane, this is not
an option in every configuration.

CHAPTER 26. CREATING VIRTUALIZED CONTROL PLANES

331

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.0/html-single/director_installation_and_usage/index#sect-Red_Hat_Virtualization

Benefits

Virtualizing the overcloud control plane has a number of benefits that prevent downtime and improve
performance.

You can allocate resources to the virtualized controllers dynamically, using hot add and hot
remove to scale CPU and memory as required. This prevents downtime and facilitates increased
capacity as the platform grows.

You can deploy additional infrastructure VMs on the same Red Hat Virtualization cluster. This
minimizes the server footprint in the data center and maximizes the efficiency of the physical
nodes.

You can use composable roles to define more complex RHOSP control planes and allocate
resources to specific components of the control plane.

You can maintain systems without service interruption with the VM live migration feature.

You can integrate third-party or custom tools that Red Hat Virtualization supports.

Limitations

Virtualized control planes limit the types of configurations that you can use.

Virtualized Ceph Storage nodes and Compute nodes are not supported.

Block Storage (cinder) image-to-volume is not supported for back ends that use Fiber Channel.
Red Hat Virtualization does not support N_Port ID Virtualization (NPIV). Therefore, Block
Storage (cinder) drivers that need to map LUNs from a storage back end to the controllers,
where cinder-volume runs by default, do not work. You must create a dedicated role for cinder-
volume and use the role to create physical nodes instead of including it on the virtualized
controllers. For more information, see Composable services and custom roles .

26.2. PROVISIONING VIRTUALIZED CONTROLLERS USING THE RED
HAT VIRTUALIZATION DRIVER

Complete the following steps to provision a virtualized RHOSP control plane for the overcloud using
RHOSP and Red Hat Virtualization.

Prerequisites

You must have a 64-bit x86 processor with support for the Intel 64 or AMD64 CPU extensions.

You must have the following software already installed and configured:

Red Hat Virtualization. For more information, see Red Hat Virtualization Documentation
Suite.

Red Hat OpenStack Platform (RHOSP). For more information, see Director Installation and
Usage.

You must have the virtualized Controller nodes prepared in advance. These requirements are
the same as for bare metal Controller nodes. For more information, see Controller Node
Requirements.

You must have the bare metal nodes being used as overcloud Compute nodes, and the storage

Red Hat OpenStack Platform 17.0 Director Installation and Usage

332

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.0/html/director_installation_and_usage/assembly_composable-services-and-custom-roles
https://access.redhat.com/documentation/en-us/red_hat_virtualization/4.3/
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.0/html-single/director_installation_and_usage/index
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.0/html-single/director_installation_and_usage/index#controller-node-requirements

You must have the bare metal nodes being used as overcloud Compute nodes, and the storage
nodes, prepared in advance. For hardware specifications, see the Compute Node Requirements
and Ceph Storage Node Requirements .

You must have the logical networks created, and your cluster of host networks ready to use
network isolation with multiple networks. For more information, see Logical Networks.

You must have the internal BIOS clock of each node set to UTC to prevent issues with future-
dated file timestamps when hwclock synchronizes the BIOS clock before applying the timezone
offset.

TIP

To avoid performance bottlenecks, use composable roles and keep the data plane services on the bare
metal Controller nodes.

Procedure

1. To enable the staging-ovirt driver in director, add the driver to the enabled_hardware_types
parameter in the undercloud.conf configuration file:

enabled_hardware_types = ipmi,redfish,ilo,idrac,staging-ovirt

2. Verify that the undercloud contains the staging-ovirt driver:

(undercloud) [stack@undercloud ~]$ openstack baremetal driver list

If you have configured the undercloud correctly, this command returns the following result:

 +---------------------+-----------------------+
 | Supported driver(s) | Active host(s) |
 +---------------------+-----------------------+
idrac	localhost.localdomain
ilo	localhost.localdomain
ipmi	localhost.localdomain
pxe_drac	localhost.localdomain
pxe_ilo	localhost.localdomain
pxe_ipmitool	localhost.localdomain
redfish	localhost.localdomain
staging-ovirt	localhost.localdomain

3. Update the overcloud node definition template, for example, nodes.json, to register the VMs
hosted on Red Hat Virtualization with director. For more information, see Registering Nodes for
the Overcloud. Use the following key:value pairs to define aspects of the VMs that you want to
deploy with your overcloud:

Table 26.1. Configuring the VMs for the overcloud

Key Set to this value

pm_type OpenStack Bare Metal Provisioning (ironic)
service driver for oVirt/RHV VMs, staging-
ovirt.

CHAPTER 26. CREATING VIRTUALIZED CONTROL PLANES

333

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.0/html-single/director_installation_and_usage/index#compute-node-requirements
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.0/html-single/director_installation_and_usage/index#ceph-storage-node-requirements
https://access.redhat.com/documentation/en-us/red_hat_virtualization/4.3/html/administration_guide/chap-logical_networks
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.0/html-single/director_installation_and_usage/index#sect-Registering_Nodes_for_the_Overcloud

pm_user Red Hat Virtualization Manager username.

pm_password Red Hat Virtualization Manager password.

pm_addr Hostname or IP of the Red Hat Virtualization
Manager server.

pm_vm_name Name of the virtual machine in Red Hat
Virtualization Manager where the controller is
created.

Key Set to this value

For example:

{
 "nodes": [
 {
 "name":"osp13-controller-0",
 "pm_type":"staging-ovirt",
 "mac":[
 "00:1a:4a:16:01:56"
],
 "cpu":"2",
 "memory":"4096",
 "disk":"40",
 "arch":"x86_64",
 "pm_user":"admin@internal",
 "pm_password":"password",
 "pm_addr":"rhvm.example.com",
 "pm_vm_name":"{osp_curr_ver}-controller-0",
 "capabilities": "profile:control,boot_option:local"
 },
 ...
 }

Configure one Controller on each Red Hat Virtualization Host

4. Configure an affinity group in Red Hat Virtualization with "soft negative affinity" to ensure high
availability is implemented for your controller VMs. For more information, see Affinity Groups.

5. Open the Red Hat Virtualization Manager interface, and use it to map each VLAN to a separate
logical vNIC in the controller VMs. For more information, see Logical Networks.

6. Set no_filter in the vNIC of the director and controller VMs, and restart the VMs, to disable the
MAC spoofing filter on the networks attached to the controller VMs. For more information, see
Virtual Network Interface Cards .

7. Deploy the overcloud to include the new virtualized controller nodes in your environment:

(undercloud) [stack@undercloud ~]$ openstack overcloud deploy --templates

Red Hat OpenStack Platform 17.0 Director Installation and Usage

334

https://access.redhat.com/documentation/en-us/red_hat_virtualization/4.3/html-single/virtual_machine_management_guide/index#sect-Affinity_Groups
https://access.redhat.com/documentation/en-us/red_hat_virtualization/4.3/html/administration_guide/chap-logical_networks
https://access.redhat.com/documentation/en-us/red_hat_virtualization/4.3/html-single/administration_guide/index#sect-Virtual_Network_Interface_Cards

CHAPTER 27. PERFORMING ADVANCED CONTAINER IMAGE
MANAGEMENT

The default container image configuration suits most environments. In some situations, your container
image configuration might require some customization, such as version pinning.

27.1. PINNING CONTAINER IMAGES FOR THE UNDERCLOUD

In certain circumstances, you might require a set of specific container image versions for your
undercloud. In this situation, you must pin the images to a specific version. To pin your images, you must
generate and modify a container configuration file, and then combine the undercloud roles data with the
container configuration file to generate an environment file that contains a mapping of services to
container images. Then include this environment file in the custom_env_files parameter in the
undercloud.conf file.

Procedure

1. Log in to the undercloud host as the stack user.

2. Run the openstack tripleo container image prepare default command with the --output-env-
file option to generate a file that contains the default image configuration:

$ sudo openstack tripleo container image prepare default \
--output-env-file undercloud-container-image-prepare.yaml

3. Modify the undercloud-container-image-prepare.yaml file according to the requirements of
your environment.

a. Remove the tag: parameter so that director can use the tag_from_label: parameter.
Director uses this parameter to identify the latest version of each container image, pull each
image, and tag each image on the container registry in director.

b. Remove the Ceph labels for the undercloud.

c. Ensure that the neutron_driver: parameter is empty. Do not set this parameter to OVN
because OVN is not supported on the undercloud.

d. Include your container image registry credentials:

ContainerImageRegistryCredentials:
 registry.redhat.io:
 myser: 'p@55w0rd!'

NOTE

You cannot push container images to the undercloud registry on new
underclouds because the image-serve registry is not installed yet. You must
set the push_destination value to false, or use a custom value, to pull
images directly from source. For more information, see Container image
preparation parameters.

4. Generate a new container image configuration file that uses the undercloud roles file combined
with your custom undercloud-container-image-prepare.yaml file:

CHAPTER 27. PERFORMING ADVANCED CONTAINER IMAGE MANAGEMENT

335

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.0/html-single/director_installation_and_usage/index#container-image-preparation-parameters

$ sudo openstack tripleo container image prepare \
-r /usr/share/openstack-tripleo-heat-templates/roles_data_undercloud.yaml \
-e undercloud-container-image-prepare.yaml \
--output-env-file undercloud-container-images.yaml

The undercloud-container-images.yaml file is an environment file that contains a mapping of
service parameters to container images. For example, OpenStack Identity (keystone) uses the
ContainerKeystoneImage parameter to define its container image:

ContainerKeystoneImage: undercloud.ctlplane.localdomain:8787/rhosp-rhel9/openstack-
keystone:17.0

Note that the container image tag matches the {version}-{release} format.

5. Include the undercloud-container-images.yaml file in the custom_env_files parameter in the
undercloud.conf file. When you run the undercloud installation, the undercloud services use the
pinned container image mapping from this file.

27.2. PINNING CONTAINER IMAGES FOR THE OVERCLOUD

In certain circumstances, you might require a set of specific container image versions for your overcloud.
In this situation, you must pin the images to a specific version. To pin your images, you must create the
containers-prepare-parameter.yaml file, use this file to pull your container images to the undercloud
registry, and generate an environment file that contains a pinned image list.

For example, your containers-prepare-parameter.yaml file might contain the following content:

parameter_defaults:
 ContainerImagePrepare:
 - push_destination: true
 set:
 name_prefix: openstack-
 name_suffix: ''
 namespace: registry.redhat.io/rhosp-rhel9
 neutron_driver: ovn
 tag_from_label: '{version}-{release}'

 ContainerImageRegistryCredentials:
 registry.redhat.io:
 myuser: 'p@55w0rd!'

The ContainerImagePrepare parameter contains a single rule set. This rule set must not include the
tag parameter and must rely on the tag_from_label parameter to identify the latest version and release
of each container image. Director uses this rule set to identify the latest version of each container
image, pull each image, and tag each image on the container registry in director.

Procedure

1. Run the openstack tripleo container image prepare command, which pulls all images from the
source defined in the containers-prepare-parameter.yaml file. Include the --output-env-file to
specify the output file that will contain the list of pinned container images:

$ sudo openstack tripleo container image prepare -e /home/stack/templates/containers-
prepare-parameter.yaml --output-env-file overcloud-images.yaml

Red Hat OpenStack Platform 17.0 Director Installation and Usage

336

The overcloud-images.yaml file is an environment file that contains a mapping of service
parameters to container images. For example, OpenStack Identity (keystone) uses the
ContainerKeystoneImage parameter to define its container image:

ContainerKeystoneImage: undercloud.ctlplane.localdomain:8787/rhosp-rhel9/openstack-
keystone:17.0

Note that the container image tag matches the {version}-{release} format.

2. Include the containers-prepare-parameter.yaml and overcloud-images.yaml files in that
specific order with your environment file collection when you run the openstack overcloud
deploy command:

$ openstack overcloud deploy --templates \
 ...
 -e /home/stack/containers-prepare-parameter.yaml \
 -e /home/stack/overcloud-images.yaml \
 ...

The overcloud services use the pinned images listed in the overcloud-images.yaml file.

CHAPTER 27. PERFORMING ADVANCED CONTAINER IMAGE MANAGEMENT

337

CHAPTER 28. TROUBLESHOOTING DIRECTOR ERRORS
Errors can occur at certain stages of the director processes. This section contains some information
about diagnosing common problems.

28.1. TROUBLESHOOTING NODE REGISTRATION

Issues with node registration usually occur due to issues with incorrect node details. In these situations,
validate the template file containing your node details and correct the imported node details.

Procedure

1. Source the stackrc file:

$ source ~/stackrc

2. Run the node import command with the --validate-only option. This option validates your node
template without performing an import:

(undercloud) $ openstack overcloud node import --validate-only ~/nodes.json
Waiting for messages on queue 'tripleo' with no timeout.

Successfully validated environment file

3. To fix incorrect details with imported nodes, run the openstack baremetal commands to
update node details. The following example shows how to change networking details:

a. Identify the assigned port UUID for the imported node:

$ source ~/stackrc
(undercloud) $ openstack baremetal port list --node [NODE UUID]

b. Update the MAC address:

(undercloud) $ openstack baremetal port set --address=[NEW MAC] [PORT UUID]

c. Configure a new IPMI address on the node:

(undercloud) $ openstack baremetal node set --driver-info ipmi_address=[NEW IPMI
ADDRESS] [NODE UUID]

28.2. TROUBLESHOOTING HARDWARE INTROSPECTION

The Bare Metal Provisioning inspector service, ironic-inspector, times out after a default one-hour
period if the inspection RAM disk does not respond. The timeout might indicate a bug in the inspection
RAM disk, but usually the timeout occurs due to an environment misconfiguration.

You can diagnose and resolve common environment misconfiguration issues to ensure the
introspection process runs to completion.

Procedure

Red Hat OpenStack Platform 17.0 Director Installation and Usage

338

1. Source the stackrc undercloud credentials file:

$ source ~/stackrc

2. Ensure that your nodes are in a manageable state. The introspection does not inspect nodes in
an available state, which is meant for deployment. If you want to inspect nodes that are in an
available state, change the node status to manageable state before introspection:

(undercloud)$ openstack baremetal node manage <node_uuid>

3. To configure temporary access to the introspection RAM disk during introspection debugging,
use the sshkey parameter to append your public SSH key to the kernel configuration in the
/httpboot/inspector.ipxe file:

kernel http://192.2.0.1:8088/agent.kernel ipa-inspection-callback-
url=http://192.168.0.1:5050/v1/continue ipa-inspection-collectors=default,extra-hardware,logs
systemd.journald.forward_to_console=yes BOOTIF=${mac} ipa-debug=1 ipa-inspection-
benchmarks=cpu,mem,disk selinux=0 sshkey="<public_ssh_key>"

4. Run the introspection on the node:

(undercloud)$ openstack overcloud node introspect <node_uuid> --provide

Use the --provide option to change the node state to available after the introspection
completes.

5. Identify the IP address of the node from the dnsmasq logs:

(undercloud)$ sudo tail -f /var/log/containers/ironic-inspector/dnsmasq.log

6. If an error occurs, access the node using the root user and temporary access details:

$ ssh root@192.168.24.105

Access the node during introspection to run diagnostic commands and troubleshoot the
introspection failure.

7. To stop the introspection process, run the following command:

(undercloud)$ openstack baremetal introspection abort <node_uuid>

You can also wait until the process times out.

NOTE

Red Hat OpenStack Platform director retries introspection three times after the
initial abort. Run the openstack baremetal introspection abort command at
each attempt to abort the introspection completely.

28.3. TROUBLESHOOTING OVERCLOUD CREATION AND
DEPLOYMENT

CHAPTER 28. TROUBLESHOOTING DIRECTOR ERRORS

339

The initial creation of the overcloud occurs with the OpenStack Orchestration (heat) service. If an
overcloud deployment fails, use the OpenStack clients and service log files to diagnose the failed
deployment.

Procedure

1. Source the stackrc file:

$ source ~/stackrc

2. Run the deployment failures command:

$ openstack overcloud failures

3. Run the following command to display the details of the failure:

(undercloud) $ openstack stack failures list <OVERCLOUD_NAME> --long

Replace <OVERCLOUD_NAME> with the name of your overcloud.

4. Run the following command to identify the stacks that failed:

(undercloud) $ openstack stack list --nested --property status=FAILED

28.4. TROUBLESHOOTING NODE PROVISIONING

The OpenStack Orchestration (heat) service controls the provisioning process. If node provisioning fails,
use the OpenStack clients and service log files to diagnose the issues.

Procedure

1. Source the stackrc file:

$ source ~/stackrc

2. Check the bare metal service to see all registered nodes and their current status:

(undercloud) $ openstack baremetal node list

+----------+------+---------------+-------------+-----------------+-------------+
| UUID | Name | Instance UUID | Power State | Provision State | Maintenance |
+----------+------+---------------+-------------+-----------------+-------------+
| f1e261...| None | None | power off | available | False |
| f0b8c1...| None | None | power off | available | False |
+----------+------+---------------+-------------+-----------------+-------------+

All nodes available for provisioning should have the following states set:

Maintenance set to False.

Provision State set to available before provisioning.

3. If a node does not have Maintenance set to False or Provision State set to available, then use

Red Hat OpenStack Platform 17.0 Director Installation and Usage

340

3. If a node does not have Maintenance set to False or Provision State set to available, then use
the following table to identify the problem and the solution:

Problem Cause Solution

Maintenance
sets itself to
True
automatically.

The director cannot access the power
management for the nodes.

Check the credentials for node power
management.

Provision State
is set to
available but
nodes do not
provision.

The problem occurred before bare
metal deployment started.

Check the node details including the
profile and flavor mapping. Check
that the node hardware details are
within the requirements for the flavor.

Provision State
is set to wait
call-back for a
node.

The node provisioning process has not
yet finished for this node.

Wait until this status changes.
Otherwise, connect to the virtual
console of the node and check the
output.

Provision State
is active and
Power State is
power on but
the nodes do not
respond.

The node provisioning has finished
successfully and there is a problem
during the post-deployment
configuration step.

Diagnose the node configuration
process. Connect to the virtual
console of the node and check the
output.

Provision State
is error or
deploy failed.

Node provisioning has failed. View the bare metal node details with
the openstack baremetal node
show command and check the
last_error field, which contains error
description.

Additional resources

Bare-metal node provisioning states

28.5. TROUBLESHOOTING IP ADDRESS CONFLICTS DURING
PROVISIONING

Introspection and deployment tasks fail if the destination hosts are allocated an IP address that is
already in use. To prevent these failures, you can perform a port scan of the Provisioning network to
determine whether the discovery IP range and host IP range are free.

Procedure

1. Install nmap:

$ sudo dnf install nmap

2. Use nmap to scan the IP address range for active addresses. This example scans the

CHAPTER 28. TROUBLESHOOTING DIRECTOR ERRORS

341

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.0/html/bare_metal_provisioning/index#ref_bare-metal-node-provisioning-states_bare-metal-post-deployment

2. Use nmap to scan the IP address range for active addresses. This example scans the
192.168.24.0/24 range, replace this with the IP subnet of the Provisioning network (using CIDR
bitmask notation):

$ sudo nmap -sn 192.168.24.0/24

3. Review the output of the nmap scan. For example, you should see the IP address of the
undercloud, and any other hosts that are present on the subnet:

$ sudo nmap -sn 192.168.24.0/24

Starting Nmap 6.40 (http://nmap.org) at 2015-10-02 15:14 EDT
Nmap scan report for 192.168.24.1
Host is up (0.00057s latency).
Nmap scan report for 192.168.24.2
Host is up (0.00048s latency).
Nmap scan report for 192.168.24.3
Host is up (0.00045s latency).
Nmap scan report for 192.168.24.5
Host is up (0.00040s latency).
Nmap scan report for 192.168.24.9
Host is up (0.00019s latency).
Nmap done: 256 IP addresses (5 hosts up) scanned in 2.45 seconds

If any of the active IP addresses conflict with the IP ranges in undercloud.conf, you must either
change the IP address ranges or release the IP addresses before you introspect or deploy the
overcloud nodes.

28.6. TROUBLESHOOTING "NO VALID HOST FOUND" ERRORS

Sometimes the /var/log/nova/nova-conductor.log contains the following error:

NoValidHost: No valid host was found. There are not enough hosts available.

This error occurs when the Compute Scheduler cannot find a bare metal node that is suitable for
booting the new instance. This usually means that there is a mismatch between resources that the
Compute service expects to find and resources that the Bare Metal service advertised to Compute. To
check that there is a mismatch error, complete the following steps:

Procedure

1. Source the stackrc file:

$ source ~/stackrc

2. Check that the introspection succeeded on the node. If the introspection fails, check that each
node contains the required ironic node properties:

(undercloud) $ openstack baremetal node show [NODE UUID]

Check that the properties JSON field has valid values for keys cpus, cpu_arch, memory_mb
and local_gb.

3. Ensure that the Compute flavor that is mapped to the node does not exceed the node

Red Hat OpenStack Platform 17.0 Director Installation and Usage

342

3. Ensure that the Compute flavor that is mapped to the node does not exceed the node
properties for the required number of nodes:

(undercloud) $ openstack flavor show [FLAVOR NAME]

4. Run the openstack baremetal node list command to ensure that there are sufficient nodes in
the available state. Nodes in manageable state usually signify a failed introspection.

5. Run the openstack baremetal node list command and ensure that the nodes are not in
maintenance mode. If a node changes to maintenance mode automatically, the likely cause is an
issue with incorrect power management credentials. Check the power management credentials
and then remove maintenance mode:

(undercloud) $ openstack baremetal node maintenance unset [NODE UUID]

6. If you are using automatic profile tagging, check that you have enough nodes that correspond
to each flavor and profile. Run the openstack baremetal node show command on a node and
check the capabilities key in the properties field. For example, a node tagged for the Compute
role contains the profile:compute value.

7. You must wait for node information to propagate from Bare Metal to Compute after
introspection. However, if you performed some steps manually, there might be a short period of
time when nodes are not available to the Compute service (nova). Use the following command
to check the total resources in your system:

(undercloud) $ openstack hypervisor stats show

28.7. TROUBLESHOOTING CONTAINER CONFIGURATION

Red Hat OpenStack Platform director uses podman to manage containers and puppet to create
container configuration. This procedure shows how to diagnose a container when errors occur.

Accessing the host

1. Source the stackrc file:

$ source ~/stackrc

2. Get the IP address of the node with the container failure.

(undercloud) $ metalsmith list

3. Log in to the node:

(undercloud) $ ssh tripleo-admin@192.168.24.60

Identifying failed containers

1. View all containers:

$ sudo podman ps --all

CHAPTER 28. TROUBLESHOOTING DIRECTOR ERRORS

343

Identify the failed container. The failed container usually exits with a non-zero status.

Checking container logs

1. Each container retains standard output from its main process. Use this output as a log to help
determine what actually occurs during a container run. For example, to view the log for the
keystone container, run the following command:

$ sudo podman logs keystone

In most cases, this log contains information about the cause of a container failure.

2. The host also retains the stdout log for the failed service. You can find the stdout logs in
/var/log/containers/stdouts/. For example, to view the log for a failed keystone container, run
the following command:

$ cat /var/log/containers/stdouts/keystone.log

Inspecting containers

In some situations, you might need to verify information about a container. For example, use the
following command to view keystone container data:

$ sudo podman inspect keystone

This command returns a JSON object containing low-level configuration data. You can pipe the output
to the jq command to parse specific data. For example, to view the container mounts for the keystone
container, run the following command:

$ sudo podman inspect keystone | jq .[0].Mounts

You can also use the --format option to parse data to a single line, which is useful for running commands
against sets of container data. For example, to recreate the options used to run the keystone container,
use the following inspect command with the --format option:

$ sudo podman inspect --format='{{range .Config.Env}} -e "{{.}}" {{end}} {{range .Mounts}} -v
{{.Source}}:{{.Destination}}:{{ join .Options "," }}{{end}} -ti {{.Config.Image}}' keystone

NOTE

The --format option uses Go syntax to create queries.

Use these options in conjunction with the podman run command to recreate the container for
troubleshooting purposes:

$ OPTIONS=$(sudo podman inspect --format='{{range .Config.Env}} -e "{{.}}" {{end}} {{range
.Mounts}} -v {{.Source}}:{{.Destination}}{{if .Mode}}:{{.Mode}}{{end}}{{end}} -ti {{.Config.Image}}'
keystone)
$ sudo podman run --rm $OPTIONS /bin/bash

Running commands in a container

In some cases, you might need to obtain information from within a container through a specific Bash

Red Hat OpenStack Platform 17.0 Director Installation and Usage

344

command. In this situation, use the following podman command to execute commands within a running
container. For example, run the podman exec command to run a command inside the keystone
container:

$ sudo podman exec -ti keystone <COMMAND>

NOTE

The -ti options run the command through an interactive pseudoterminal.

Replace <COMMAND> with the command you want to run. For example, each container has a
health check script to verify the service connection. You can run the health check script for
keystone with the following command:

$ sudo podman exec -ti keystone /openstack/healthcheck

To access the container shell, run podman exec using /bin/bash as the command you want to run inside
the container:

$ sudo podman exec -ti keystone /bin/bash

Viewing a container filesystem

1. To view the file system for the failed container, run the podman mount command. For
example, to view the file system for a failed keystone container, run the following command:

$ sudo podman mount keystone

This provides a mounted location to view the filesystem contents:

/var/lib/containers/storage/overlay/78946a109085aeb8b3a350fc20bd8049a08918d74f573396d
7358270e711c610/merged

This is useful for viewing the Puppet reports within the container. You can find these reports in
the var/lib/puppet/ directory within the container mount.

Exporting a container

When a container fails, you might need to investigate the full contents of the file. In this case, you can
export the full file system of a container as a tar archive. For example, to export the keystone container
file system, run the following command:

$ sudo podman export keystone -o keystone.tar

This command creates the keystone.tar archive, which you can extract and explore.

28.8. TROUBLESHOOTING COMPUTE NODE FAILURES

Compute nodes use the Compute service to perform hypervisor-based operations. This means the
main diagnosis for Compute nodes revolves around this service.

Procedure

CHAPTER 28. TROUBLESHOOTING DIRECTOR ERRORS

345

1. Source the stackrc file:

$ source ~/stackrc

2. Get the IP address of the Compute node that contains the failure:

(undercloud) $ openstack server list

3. Log in to the node:

(undercloud) $ ssh tripleo-admin@192.168.24.60

4. Change to the root user:

$ sudo -i

5. View the status of the container:

$ sudo podman ps -f name=nova_compute

6. The primary log file for Compute nodes is /var/log/containers/nova/nova-compute.log. If
issues occur with Compute node communication, use this file to begin the diagnosis.

7. If you perform maintenance on the Compute node, migrate the existing instances from the host
to an operational Compute node, then disable the node.

28.9. CREATING AN SOSREPORT

If you need to contact Red Hat for support with Red Hat OpenStack Platform, you might need to
generate an sosreport. For more information about creating an sosreport, see:

"How to collect all required logs for Red Hat Support to investigate an OpenStack issue"

28.10. LOG LOCATIONS

Use the following logs to gather information about the undercloud and overcloud when you troubleshoot
issues.

Table 28.1. Logs on both the undercloud and overcloud nodes

Information Log location

Containerized service logs /var/log/containers/

Standard output from containerized services /var/log/containers/stdouts

Ansible configuration logs ~/ansible.log

Table 28.2. Additional logs on the undercloud node

Red Hat OpenStack Platform 17.0 Director Installation and Usage

346

https://access.redhat.com/solutions/2055933

Information Log location

Command history for openstack overcloud
deploy

/home/stack/.tripleo/history

Undercloud installation log /home/stack/install-undercloud.log

Table 28.3. Additional logs on the overcloud nodes

Information Log location

Cloud-Init Log /var/log/cloud-init.log

High availability log /var/log/pacemaker.log

CHAPTER 28. TROUBLESHOOTING DIRECTOR ERRORS

347

CHAPTER 29. TIPS FOR UNDERCLOUD AND OVERCLOUD
SERVICES

This section provides advice on tuning and managing specific OpenStack services on the undercloud.

29.1. TUNING DEPLOYMENT PERFORMANCE

Red Hat OpenStack Platform director uses OpenStack Orchestration (heat) to conduct the main
deployment and provisioning functions. Heat uses a series of workers to execute deployment tasks. To
calculate the default number of workers, the director heat configuration halves the total CPU thread
count of the undercloud. In this instance, thread count refers to the number of CPU cores multiplied by
the hyper-threading value. For example, if your undercloud has a CPU with 16 threads, heat spawns 8
workers by default. The director configuration also uses a minimum and maximum cap by default:

Service Minimum Maximum

OpenStack Orchestration (heat) 4 24

However, you can set the number of workers manually with the HeatWorkers parameter in an
environment file:

heat-workers.yaml

parameter_defaults:
 HeatWorkers: 16

undercloud.conf

custom_env_files: heat-workers.yaml

29.2. CHANGING THE SSL/TLS CIPHER RULES FOR HAPROXY

If you enabled SSL/TLS in the undercloud (see Section 7.2, “Director configuration parameters”), you
might want to harden the SSL/TLS ciphers and rules that are used with the HAProxy configuration. This
hardening helps to avoid SSL/TLS vulnerabilities, such as the POODLE vulnerability.

Set the following hieradata using the hieradata_override undercloud configuration option:

tripleo::haproxy::ssl_cipher_suite

The cipher suite to use in HAProxy.

tripleo::haproxy::ssl_options

The SSL/TLS rules to use in HAProxy.

For example, you might want to use the following cipher and rules:

Cipher: ECDHE-ECDSA-CHACHA20-POLY1305:ECDHE-RSA-CHACHA20-
POLY1305:ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-RSA-AES128-GCM-
SHA256:ECDHE-ECDSA-AES256-GCM-SHA384:ECDHE-RSA-AES256-GCM-SHA384:DHE-
RSA-AES128-GCM-SHA256:DHE-RSA-AES256-GCM-SHA384:ECDHE-ECDSA-AES128-
SHA256:ECDHE-RSA-AES128-SHA256:ECDHE-ECDSA-AES128-SHA:ECDHE-RSA-

Red Hat OpenStack Platform 17.0 Director Installation and Usage

348

https://access.redhat.com/solutions/1291123

AES256-SHA384:ECDHE-RSA-AES128-SHA:ECDHE-ECDSA-AES256-SHA384:ECDHE-
ECDSA-AES256-SHA:ECDHE-RSA-AES256-SHA:DHE-RSA-AES128-SHA256:DHE-RSA-
AES128-SHA:DHE-RSA-AES256-SHA256:DHE-RSA-AES256-SHA:ECDHE-ECDSA-DES-
CBC3-SHA:ECDHE-RSA-DES-CBC3-SHA:EDH-RSA-DES-CBC3-SHA:AES128-GCM-
SHA256:AES256-GCM-SHA384:AES128-SHA256:AES256-SHA256:AES128-SHA:AES256-
SHA:DES-CBC3-SHA:!DSS

Rules: no-sslv3 no-tls-tickets

Create a hieradata override file (haproxy-hiera-overrides.yaml) with the following content:

tripleo::haproxy::ssl_cipher_suite: ECDHE-ECDSA-CHACHA20-POLY1305:ECDHE-RSA-
CHACHA20-POLY1305:ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-RSA-AES128-GCM-
SHA256:ECDHE-ECDSA-AES256-GCM-SHA384:ECDHE-RSA-AES256-GCM-SHA384:DHE-RSA-
AES128-GCM-SHA256:DHE-RSA-AES256-GCM-SHA384:ECDHE-ECDSA-AES128-
SHA256:ECDHE-RSA-AES128-SHA256:ECDHE-ECDSA-AES128-SHA:ECDHE-RSA-AES256-
SHA384:ECDHE-RSA-AES128-SHA:ECDHE-ECDSA-AES256-SHA384:ECDHE-ECDSA-AES256-
SHA:ECDHE-RSA-AES256-SHA:DHE-RSA-AES128-SHA256:DHE-RSA-AES128-SHA:DHE-RSA-
AES256-SHA256:DHE-RSA-AES256-SHA:ECDHE-ECDSA-DES-CBC3-SHA:ECDHE-RSA-DES-
CBC3-SHA:EDH-RSA-DES-CBC3-SHA:AES128-GCM-SHA256:AES256-GCM-SHA384:AES128-
SHA256:AES256-SHA256:AES128-SHA:AES256-SHA:DES-CBC3-SHA:!DSS
tripleo::haproxy::ssl_options: no-sslv3 no-tls-tickets

NOTE

The cipher collection is one continuous line.

Set the hieradata_override parameter in the undercloud.conf file to use the hieradata override file
you created before you ran openstack undercloud install:

[DEFAULT]
...
hieradata_override = haproxy-hiera-overrides.yaml
...

CHAPTER 29. TIPS FOR UNDERCLOUD AND OVERCLOUD SERVICES

349

CHAPTER 30. POWER MANAGEMENT DRIVERS
Although IPMI is the main method that director uses for power management control, director also
supports other power management types. This appendix contains a list of the power management
features that director supports. Use these power management settings when you register nodes for the
overcloud. For more information, see Registering nodes for the overcloud .

30.1. INTELLIGENT PLATFORM MANAGEMENT INTERFACE (IPMI)

The standard power management method when you use a baseboard management controller (BMC).

pm_type

Set this option to ipmi.

pm_user; pm_password

The IPMI username and password.

pm_addr

The IP address of the IPMI controller.

pm_port (Optional)

The port to connect to the IPMI controller.

30.2. REDFISH

A standard RESTful API for IT infrastructure developed by the Distributed Management Task Force
(DMTF)

pm_type

Set this option to redfish.

pm_user; pm_password

The Redfish username and password.

pm_addr

The IP address of the Redfish controller.

pm_system_id

The canonical path to the system resource. This path must include the root service, version, and the
path/unique ID for the system. For example: /redfish/v1/Systems/CX34R87.

redfish_verify_ca

If the Redfish service in your baseboard management controller (BMC) is not configured to use a
valid TLS certificate signed by a recognized certificate authority (CA), the Redfish client in ironic fails
to connect to the BMC. Set the redfish_verify_ca option to false to mute the error. However, be
aware that disabling BMC authentication compromises the access security of your BMC.

30.3. DELL REMOTE ACCESS CONTROLLER (DRAC)

DRAC is an interface that provides out-of-band remote management features including power
management and server monitoring.

pm_type

Set this option to idrac.

pm_user; pm_password

Red Hat OpenStack Platform 17.0 Director Installation and Usage

350

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.0/html-single/director_installation_and_usage/index#sect-Registering_Nodes_for_the_Overcloud

The DRAC username and password.

pm_addr

The IP address of the DRAC host.

30.4. INTEGRATED LIGHTS-OUT (ILO)

iLO from Hewlett-Packard is an interface that provides out-of-band remote management features
including power management and server monitoring.

pm_type

Set this option to ilo.

pm_user; pm_password

The iLO username and password.

pm_addr

The IP address of the iLO interface.

To enable this driver, add ilo to the enabled_hardware_types option in your
undercloud.conf and rerun openstack undercloud install.

HP nodes must have a minimum ILO firmware version of 1.85 (May 13 2015) for successful
introspection. Director has been successfully tested with nodes using this ILO firmware
version.

Using a shared iLO port is not supported.

30.5. FUJITSU INTEGRATED REMOTE MANAGEMENT CONTROLLER
(IRMC)

Fujitsu iRMC is a Baseboard Management Controller (BMC) with integrated LAN connection and
extended functionality. This driver focuses on the power management for bare metal systems
connected to the iRMC.

IMPORTANT

iRMC S4 or higher is required.

pm_type

Set this option to irmc.

pm_user; pm_password

The username and password for the iRMC interface.

IMPORTANT

The iRMC user must have the ADMINISTRATOR privilege.

pm_addr

The IP address of the iRMC interface.

pm_port (Optional)

CHAPTER 30. POWER MANAGEMENT DRIVERS

351

The port to use for iRMC operations. The default is 443.

pm_auth_method (Optional)

The authentication method for iRMC operations. Use either basic or digest. The default is basic.

pm_client_timeout (Optional)

Timeout, in seconds, for iRMC operations. The default is 60 seconds.

pm_sensor_method (Optional)

Sensor data retrieval method. Use either ipmitool or scci. The default is ipmitool.

To enable this driver, add irmc to the enabled_hardware_types option in your
undercloud.conf and rerun the openstack undercloud install command.

30.6. RED HAT VIRTUALIZATION

This driver provides control over virtual machines in Red Hat Virtualization (RHV) through its RESTful
API.

pm_type

Set this option to staging-ovirt.

pm_user; pm_password

The username and password for your RHV environment. The username also includes the
authentication provider. For example: admin@internal.

pm_addr

The IP address of the RHV REST API.

pm_vm_name

The name of the virtual machine to control.

mac

A list of MAC addresses for the network interfaces on the node. Use only the MAC address for the
Provisioning NIC of each system.

To enable this driver, add staging-ovirt to the enabled_hardware_types option in your
undercloud.conf and rerun the openstack undercloud install command.

30.7. MANUAL-MANAGEMENT DRIVER

Use the manual-management driver to control bare metal devices that do not have power
management. Director does not control the registered bare metal devices, and you must perform
manual power operations at certain points in the introspection and deployment processes.

IMPORTANT

This option is available only for testing and evaluation purposes. It is not recommended
for Red Hat OpenStack Platform enterprise environments.

pm_type

Set this option to manual-management.

This driver does not use any authentication details because it does not control power

Red Hat OpenStack Platform 17.0 Director Installation and Usage

352

This driver does not use any authentication details because it does not control power
management.

To enable this driver, add manual-management to the enabled_hardware_types option in
your undercloud.conf and rerun the openstack undercloud install command.

In your instackenv.json node inventory file, set the pm_type to manual-management for
the nodes that you want to manage manually.

Introspection

When performing introspection on nodes, manually start the nodes after running the openstack
overcloud node introspect command. Ensure the nodes boot through PXE.

If you have enabled node cleaning, manually reboot the nodes after the Introspection
completed message appears and the node status is clean wait for each node when you run the
openstack baremetal node list command. Ensure the nodes boot through PXE.

After the introspection and cleaning process completes, shut down the nodes.

Deployment

When performing overcloud deployment, check the node status with the openstack baremetal
node list command. Wait until the node status changes from deploying to wait call-back and
then manually start the nodes. Ensure the nodes boot through PXE.

After the overcloud provisioning process completes, the nodes will shut down. You must boot
the nodes from disk to start the configuration process. To check the completion of provisioning,
check the node status with the openstack baremetal node list command, and wait until the
node status changes to active for each node. When the node status is active, manually boot
the provisioned overcloud nodes.

CHAPTER 30. POWER MANAGEMENT DRIVERS

353

	Table of Contents
	MAKING OPEN SOURCE MORE INCLUSIVE
	CHAPTER 1. INTRODUCTION TO DIRECTOR
	1.1. UNDERSTANDING THE UNDERCLOUD
	1.2. UNDERSTANDING THE OVERCLOUD
	1.3. UNDERSTANDING HIGH AVAILABILITY IN RED HAT OPENSTACK PLATFORM
	1.4. UNDERSTANDING CONTAINERIZATION IN RED HAT OPENSTACK PLATFORM
	1.5. WORKING WITH CEPH STORAGE IN RED HAT OPENSTACK PLATFORM
	1.6. DEFAULT FILE LOCATIONS
	1.6.1. Description of the contents of the undercloud directory
	1.6.2. Description of the contents of the overcloud directory

	CHAPTER 2. PLANNING YOUR UNDERCLOUD
	2.1. CONTAINERIZED UNDERCLOUD
	2.2. PREPARING YOUR UNDERCLOUD NETWORKING
	2.3. DETERMINING ENVIRONMENT SCALE
	2.4. UNDERCLOUD DISK SIZING
	2.5. VIRTUALIZATION SUPPORT
	2.6. CHARACTER ENCODING CONFIGURATION
	2.7. CONSIDERATIONS WHEN RUNNING THE UNDERCLOUD WITH A PROXY
	2.8. UNDERCLOUD REPOSITORIES

	CHAPTER 3. UNDERSTANDING HEAT TEMPLATES
	3.1. HEAT TEMPLATES
	3.2. ENVIRONMENT FILES
	3.3. CORE OVERCLOUD HEAT TEMPLATES
	3.4. PLAN ENVIRONMENT METADATA
	3.5. INCLUDING ENVIRONMENT FILES IN OVERCLOUD CREATION
	3.6. USING CUSTOMIZED CORE HEAT TEMPLATES
	3.7. JINJA2 RENDERING

	CHAPTER 4. HEAT PARAMETERS
	4.1. EXAMPLE 1: CONFIGURING THE TIME ZONE
	4.2. EXAMPLE 2: CONFIGURING RABBITMQ FILE DESCRIPTOR LIMIT
	4.3. EXAMPLE 3: ENABLING AND DISABLING PARAMETERS
	4.4. EXAMPLE 4: ROLE-BASED PARAMETERS
	4.5. IDENTIFYING PARAMETERS THAT YOU WANT TO MODIFY

	CHAPTER 5. CONFIGURATION HOOKS
	5.1. PRE-CONFIGURATION: CUSTOMIZING SPECIFIC OVERCLOUD ROLES
	5.2. PRE-CONFIGURATION: CUSTOMIZING ALL OVERCLOUD ROLES
	5.3. POST-CONFIGURATION: CUSTOMIZING ALL OVERCLOUD ROLES
	5.4. PUPPET: CUSTOMIZING HIERADATA FOR ROLES
	5.5. PUPPET: CUSTOMIZING HIERADATA FOR INDIVIDUAL NODES
	5.6. PUPPET: APPLYING CUSTOM MANIFESTS

	CHAPTER 6. PREPARING FOR DIRECTOR INSTALLATION
	6.1. PREPARING THE UNDERCLOUD
	6.2. REGISTERING THE UNDERCLOUD AND ATTACHING SUBSCRIPTIONS
	6.3. ENABLING REPOSITORIES FOR THE UNDERCLOUD
	6.4. INSTALLING DIRECTOR PACKAGES
	6.5. PREPARING CONTAINER IMAGES
	6.6. CONTAINER IMAGE PREPARATION PARAMETERS
	6.7. GUIDELINES FOR CONTAINER IMAGE TAGGING
	6.8. OBTAINING CONTAINER IMAGES FROM PRIVATE REGISTRIES
	6.9. LAYERING IMAGE PREPARATION ENTRIES
	6.10. DEPLOYING A VENDOR PLUGIN
	6.11. EXCLUDING CEPH STORAGE CONTAINER IMAGES
	6.12. MODIFYING IMAGES DURING PREPARATION
	6.13. UPDATING EXISTING PACKAGES ON CONTAINER IMAGES
	6.14. INSTALLING ADDITIONAL RPM FILES TO CONTAINER IMAGES
	6.15. MODIFYING CONTAINER IMAGES WITH A CUSTOM DOCKERFILE
	6.16. PREPARING A SATELLITE SERVER FOR CONTAINER IMAGES

	CHAPTER 7. INSTALLING DIRECTOR ON THE UNDERCLOUD
	7.1. CONFIGURING DIRECTOR
	7.2. DIRECTOR CONFIGURATION PARAMETERS
	7.3. CONFIGURING THE UNDERCLOUD WITH ENVIRONMENT FILES
	7.4. COMMON HEAT PARAMETERS FOR UNDERCLOUD CONFIGURATION
	7.5. CONFIGURING HIERADATA ON THE UNDERCLOUD
	7.6. CONFIGURING THE UNDERCLOUD FOR BARE METAL PROVISIONING OVER IPV6
	7.7. CONFIGURING UNDERCLOUD NETWORK INTERFACES
	7.8. INSTALLING DIRECTOR
	7.9. OBTAINING IMAGES FOR OVERCLOUD NODES
	7.9.1. Installing the overcloud images
	7.9.2. Minimal overcloud image

	7.10. UPDATING THE UNDERCLOUD CONFIGURATION
	7.11. UNDERCLOUD CONTAINER REGISTRY

	CHAPTER 8. PLANNING YOUR OVERCLOUD
	8.1. NODE ROLES
	8.2. OVERCLOUD NETWORKS
	8.3. OVERCLOUD STORAGE
	8.3.1. Configuration considerations for overcloud storage nodes

	8.4. OVERCLOUD SECURITY
	8.5. OVERCLOUD HIGH AVAILABILITY
	8.6. CONTROLLER NODE REQUIREMENTS
	8.7. COMPUTE NODE REQUIREMENTS
	8.8. RED HAT CEPH STORAGE NODE REQUIREMENTS
	8.9. CEPH STORAGE NODES AND RHEL COMPATIBILITY
	8.10. OBJECT STORAGE NODE REQUIREMENTS
	8.11. OVERCLOUD REPOSITORIES
	8.12. NODE PROVISIONING AND CONFIGURATION

	CHAPTER 9. COMPOSABLE SERVICES AND CUSTOM ROLES
	9.1. SUPPORTED ROLE ARCHITECTURE
	9.2. EXAMINING THE ROLES_DATA FILE
	9.3. CREATING A ROLES_DATA FILE
	9.4. SUPPORTED CUSTOM ROLES
	9.5. EXAMINING ROLE PARAMETERS
	9.6. CREATING A NEW ROLE
	9.7. GUIDELINES AND LIMITATIONS
	9.8. EXAMINING COMPOSABLE SERVICE ARCHITECTURE
	9.9. ADDING AND REMOVING SERVICES FROM ROLES
	9.10. ENABLING DISABLED SERVICES
	9.11. CREATING A GENERIC NODE WITH NO SERVICES

	CHAPTER 10. CONFIGURING OVERCLOUD NETWORKING
	10.1. EXAMPLE NETWORK CONFIGURATION FILES
	10.1.1. Example network data schema for IPv4
	10.1.2. Example network data schema for IPv6

	10.2. NETWORK ISOLATION
	10.2.1. Networks required for each role
	10.2.2. Network definition file configuration options
	10.2.3. Configuring network isolation

	10.3. COMPOSABLE NETWORKS
	10.3.1. Adding a composable network
	10.3.2. Including a composable network in a role
	10.3.3. Assigning OpenStack services to composable networks
	10.3.4. Enabling custom composable networks
	10.3.5. Renaming the default networks

	10.4. CUSTOM NETWORK INTERFACE TEMPLATES
	10.4.1. Custom network architecture
	10.4.2. Network interface reference
	10.4.3. Example network interface layout

	10.5. ADDITIONAL OVERCLOUD NETWORK CONFIGURATION
	10.5.1. Configuring custom interfaces
	10.5.2. Configuring routes and default routes
	10.5.3. Configuring policy-based routing
	10.5.4. Configuring jumbo frames
	10.5.5. Configuring ML2/OVN northbound path MTU discovery for jumbo frame fragmentation
	10.5.6. Configuring the native VLAN on a trunked interface
	10.5.7. Increasing the maximum number of connections that netfilter tracks

	10.6. NETWORK INTERFACE BONDING
	10.6.1. Network interface bonding for overcloud nodes
	10.6.2. Creating Open vSwitch (OVS) bonds
	10.6.3. Open vSwitch (OVS) bonding options
	10.6.4. Using Link Aggregation Control Protocol (LACP) with Open vSwitch (OVS) bonding modes
	10.6.5. Creating Linux bonds

	10.7. UPDATING THE FORMAT OF YOUR NETWORK CONFIGURATION FILES
	10.7.1. Updating the format of your network configuration file
	10.7.2. Automatically converting NIC templates to Jinja2 Ansible format
	10.7.3. Manually converting NIC templates to Jinja2 Ansible format
	10.7.4. Heat parameter to Ansible variable mappings
	10.7.5. Heat parameter to provisioning definition file mappings
	10.7.6. Changes to the network data schema

	CHAPTER 11. PROVISIONING AND DEPLOYING YOUR OVERCLOUD
	11.1. PROVISIONING THE OVERCLOUD NETWORKS
	11.1.1. Configuring and provisioning overcloud network definitions
	11.1.2. Configuring and provisioning network VIPs for the overcloud

	11.2. PROVISIONING BARE METAL OVERCLOUD NODES
	11.2.1. Registering nodes for the overcloud
	11.2.2. Creating an inventory of the bare-metal node hardware
	11.2.2.1. Using director introspection to collect bare metal node hardware information
	11.2.2.2. Manually configuring bare-metal node hardware information

	11.2.3. Provisioning bare metal nodes for the overcloud
	11.2.4. Bare-metal node provisioning attributes
	11.2.5. Removing failed bare-metal nodes from the node definition file
	11.2.6. Designating overcloud nodes for roles by matching resource classes
	11.2.7. Designating overcloud nodes for roles by matching profiles
	11.2.8. Configuring whole disk partitions for the Object Storage service
	11.2.9. Example node definition file
	11.2.10. Enabling virtual media boot
	11.2.11. Defining the root disk for multi-disk Ceph clusters
	11.2.12. Properties that identify the root disk
	11.2.13. Using the overcloud-minimal image to avoid using a Red Hat subscription entitlement

	11.3. CONFIGURING AND DEPLOYING THE OVERCLOUD
	11.3.1. Prerequisites
	11.3.2. Configuring your overcloud by using environment files
	11.3.3. Creating an environment file for undercloud CA trust
	11.3.4. Disabling TSX on new deployments
	11.3.5. Validating your overcloud configuration
	11.3.6. Creating your overcloud
	11.3.7. Deployment command options
	11.3.8. Validating your overcloud deployment
	11.3.9. Accessing the overcloud

	11.4. CONFIGURING A BASIC OVERCLOUD WITH PRE-PROVISIONED NODES
	11.4.1. Pre-provisioned node requirements
	11.4.2. Creating a user on pre-provisioned nodes
	11.4.3. Registering the operating system for pre-provisioned nodes
	11.4.4. Configuring SSL/TLS access to director
	11.4.5. Configuring networking for the control plane
	11.4.6. Using a separate network for pre-provisioned nodes
	11.4.7. Mapping pre-provisioned node hostnames
	11.4.8. Configuring Ceph Storage for pre-provisioned nodes
	11.4.9. Creating the overcloud with pre-provisioned nodes
	11.4.10. Accessing the overcloud
	11.4.11. Scaling pre-provisioned nodes

	CHAPTER 12. ANSIBLE-BASED OVERCLOUD REGISTRATION
	12.1. RED HAT SUBSCRIPTION MANAGER (RHSM) COMPOSABLE SERVICE
	12.2. RHSMVARS SUB-PARAMETERS
	12.3. REGISTERING THE OVERCLOUD WITH THE RHSM COMPOSABLE SERVICE
	12.4. APPLYING THE RHSM COMPOSABLE SERVICE TO DIFFERENT ROLES
	12.5. REGISTERING THE OVERCLOUD TO RED HAT SATELLITE SERVER
	12.6. SWITCHING TO THE RHSM COMPOSABLE SERVICE
	12.7. RHEL-REGISTRATION TO RHSM MAPPINGS
	12.8. DEPLOYING THE OVERCLOUD WITH THE RHSM COMPOSABLE SERVICE
	12.9. RUNNING ANSIBLE-BASED REGISTRATION MANUALLY

	CHAPTER 13. CONFIGURING NFS STORAGE
	13.1. SUPPORTED CONFIGURATIONS AND LIMITATIONS
	13.2. CONFIGURING NFS STORAGE
	13.3. CONFIGURING AN EXTERNAL NFS SHARE FOR CONVERSION

	CHAPTER 14. PERFORMING OVERCLOUD POST-INSTALLATION TASKS
	14.1. CHECKING OVERCLOUD DEPLOYMENT STATUS
	14.2. CREATING BASIC OVERCLOUD FLAVORS
	14.3. CREATING A DEFAULT TENANT NETWORK
	14.4. CREATING A DEFAULT FLOATING IP NETWORK
	14.5. CREATING A DEFAULT PROVIDER NETWORK
	14.6. CREATING ADDITIONAL BRIDGE MAPPINGS
	14.7. VALIDATING THE OVERCLOUD
	14.8. PROTECTING THE OVERCLOUD FROM REMOVAL

	CHAPTER 15. PERFORMING BASIC OVERCLOUD ADMINISTRATION TASKS
	15.1. ACCESSING OVERCLOUD NODES THROUGH SSH
	15.2. MANAGING CONTAINERIZED SERVICES
	15.3. MODIFYING THE OVERCLOUD ENVIRONMENT
	15.4. IMPORTING VIRTUAL MACHINES INTO THE OVERCLOUD
	15.5. LAUNCHING THE EPHEMERAL HEAT PROCESS
	15.6. RUNNING THE DYNAMIC INVENTORY SCRIPT
	15.7. REMOVING AN OVERCLOUD STACK

	CHAPTER 16. CONFIGURING THE OVERCLOUD WITH ANSIBLE
	16.1. ANSIBLE-BASED OVERCLOUD CONFIGURATION (CONFIG-DOWNLOAD)
	16.2. CONFIG-DOWNLOAD WORKING DIRECTORY
	16.3. CHECKING CONFIG-DOWNLOAD LOG
	16.4. PERFORMING GIT OPERATIONS ON THE WORKING DIRECTORY
	16.5. DEPLOYMENT METHODS THAT USE CONFIG-DOWNLOAD
	16.6. RUNNING CONFIG-DOWNLOAD ON A STANDARD DEPLOYMENT
	16.7. RUNNING CONFIG-DOWNLOAD WITH SEPARATE PROVISIONING AND CONFIGURATION
	16.8. RUNNING CONFIG-DOWNLOAD WITH THE ANSIBLE-PLAYBOOK-COMMAND.SH SCRIPT
	16.9. RUNNING CONFIG-DOWNLOAD WITH MANUALLY CREATED PLAYBOOKS
	16.10. LIMITATIONS OF CONFIG-DOWNLOAD
	16.11. CONFIG-DOWNLOAD TOP LEVEL FILES
	16.12. CONFIG-DOWNLOAD TAGS
	16.13. CONFIG-DOWNLOAD DEPLOYMENT STEPS

	CHAPTER 17. MANAGING CONTAINERS WITH ANSIBLE
	17.1. TRIPLEO-CONTAINER-MANAGE ROLE DEFAULTS AND VARIABLES
	17.2. TRIPLEO-CONTAINER-MANAGE MOLECULE SCENARIOS
	17.3. TRIPLEO_CONTAINER_MANAGE ROLE VARIABLES
	17.4. TRIPLEO-CONTAINER-MANAGE HEALTHCHECKS
	17.5. TRIPLEO-CONTAINER-MANAGE DEBUG

	CHAPTER 18. USING THE VALIDATION FRAMEWORK
	18.1. ANSIBLE-BASED VALIDATIONS
	18.2. CHANGING THE VALIDATION CONFIGURATION FILE
	18.3. LISTING VALIDATIONS
	18.4. RUNNING VALIDATIONS
	18.5. CREATING A VALIDATION
	18.6. VIEWING VALIDATION HISTORY
	18.7. VALIDATION FRAMEWORK LOG FORMAT
	18.8. VALIDATION FRAMEWORK LOG OUTPUT FORMATS
	18.9. IN-FLIGHT VALIDATIONS

	CHAPTER 19. SCALING OVERCLOUD NODES
	19.1. ADDING NODES TO THE OVERCLOUD
	19.2. SCALING UP BARE-METAL NODES
	19.3. SCALING DOWN BARE-METAL NODES
	19.4. REMOVING OR REPLACING A COMPUTE NODE
	19.4.1. Removing a Compute node manually
	19.4.2. Replacing a removed Compute node

	19.5. REPLACING CEPH STORAGE NODES
	19.6. USING SKIP DEPLOY IDENTIFIER
	19.7. BLACKLISTING NODES

	CHAPTER 20. REPLACING CONTROLLER NODES
	20.1. PREPARING FOR CONTROLLER REPLACEMENT
	20.2. REMOVING A CEPH MONITOR DAEMON
	20.3. PREPARING THE CLUSTER FOR CONTROLLER NODE REPLACEMENT
	20.4. REPLACING A BOOTSTRAP CONTROLLER NODE
	20.5. UNPROVISION AND REMOVE CONTROLLER NODES
	20.6. DEPLOYING A NEW CONTROLLER NODE TO THE OVERCLOUD
	20.7. DEPLOYING CEPH SERVICES ON THE NEW CONTROLLER NODE
	20.8. CLEANING UP AFTER CONTROLLER NODE REPLACEMENT

	CHAPTER 21. REBOOTING NODES
	21.1. REBOOTING THE UNDERCLOUD NODE
	21.2. REBOOTING CONTROLLER AND COMPOSABLE NODES
	21.3. REBOOTING STANDALONE CEPH MON NODES
	21.4. REBOOTING A CEPH STORAGE (OSD) CLUSTER
	21.5. REBOOTING OBJECT STORAGE SERVICE (SWIFT) NODES
	21.6. REBOOTING COMPUTE NODES

	CHAPTER 22. SHUTTING DOWN AND STARTING UP THE UNDERCLOUD AND OVERCLOUD
	22.1. UNDERCLOUD AND OVERCLOUD SHUTDOWN ORDER
	22.2. SHUTTING DOWN INSTANCES ON OVERCLOUD COMPUTE NODES
	22.3. SHUTTING DOWN COMPUTE NODES
	22.4. STOPPING SERVICES ON CONTROLLER NODES
	22.5. SHUTTING DOWN CEPH STORAGE NODES
	22.6. SHUTTING DOWN CONTROLLER NODES
	22.7. SHUTTING DOWN THE UNDERCLOUD
	22.8. PERFORMING SYSTEM MAINTENANCE
	22.9. UNDERCLOUD AND OVERCLOUD STARTUP ORDER
	22.10. STARTING THE UNDERCLOUD
	22.11. STARTING CONTROLLER NODES
	22.12. STARTING CEPH STORAGE NODES
	22.13. STARTING COMPUTE NODES
	22.14. STARTING INSTANCES ON OVERCLOUD COMPUTE NODES

	CHAPTER 23. ADDITIONAL INTROSPECTION OPERATIONS
	23.1. PERFORMING INDIVIDUAL NODE INTROSPECTION
	23.2. PERFORMING NODE INTROSPECTION AFTER INITIAL INTROSPECTION
	23.3. PERFORMING NETWORK INTROSPECTION FOR INTERFACE INFORMATION
	23.4. RETRIEVING HARDWARE INTROSPECTION DETAILS

	CHAPTER 24. AUTOMATICALLY DISCOVERING BARE METAL NODES
	24.1. ENABLING AUTO-DISCOVERY
	24.2. TESTING AUTO-DISCOVERY
	24.3. USING RULES TO DISCOVER DIFFERENT VENDOR HARDWARE

	CHAPTER 25. CONFIGURING AUTOMATIC PROFILE TAGGING
	25.1. POLICY FILE SYNTAX
	25.2. POLICY FILE EXAMPLE
	25.3. IMPORTING POLICY FILES INTO DIRECTOR

	CHAPTER 26. CREATING VIRTUALIZED CONTROL PLANES
	26.1. VIRTUALIZED CONTROL PLANE ARCHITECTURE
	26.2. PROVISIONING VIRTUALIZED CONTROLLERS USING THE RED HAT VIRTUALIZATION DRIVER

	CHAPTER 27. PERFORMING ADVANCED CONTAINER IMAGE MANAGEMENT
	27.1. PINNING CONTAINER IMAGES FOR THE UNDERCLOUD
	27.2. PINNING CONTAINER IMAGES FOR THE OVERCLOUD

	CHAPTER 28. TROUBLESHOOTING DIRECTOR ERRORS
	28.1. TROUBLESHOOTING NODE REGISTRATION
	28.2. TROUBLESHOOTING HARDWARE INTROSPECTION
	28.3. TROUBLESHOOTING OVERCLOUD CREATION AND DEPLOYMENT
	28.4. TROUBLESHOOTING NODE PROVISIONING
	28.5. TROUBLESHOOTING IP ADDRESS CONFLICTS DURING PROVISIONING
	28.6. TROUBLESHOOTING "NO VALID HOST FOUND" ERRORS
	28.7. TROUBLESHOOTING CONTAINER CONFIGURATION
	28.8. TROUBLESHOOTING COMPUTE NODE FAILURES
	28.9. CREATING AN SOSREPORT
	28.10. LOG LOCATIONS

	CHAPTER 29. TIPS FOR UNDERCLOUD AND OVERCLOUD SERVICES
	29.1. TUNING DEPLOYMENT PERFORMANCE
	29.2. CHANGING THE SSL/TLS CIPHER RULES FOR HAPROXY

	CHAPTER 30. POWER MANAGEMENT DRIVERS
	30.1. INTELLIGENT PLATFORM MANAGEMENT INTERFACE (IPMI)
	30.2. REDFISH
	30.3. DELL REMOTE ACCESS CONTROLLER (DRAC)
	30.4. INTEGRATED LIGHTS-OUT (ILO)
	30.5. FUJITSU INTEGRATED REMOTE MANAGEMENT CONTROLLER (IRMC)
	30.6. RED HAT VIRTUALIZATION
	30.7. MANUAL-MANAGEMENT DRIVER

