
Red Hat OpenStack Platform 16.0

Federate with Identity Service

Federate with Identity Service using Red Hat Single Sign-On

Last Updated: 2020-10-23

Red Hat OpenStack Platform 16.0 Federate with Identity Service

Federate with Identity Service using Red Hat Single Sign-On

OpenStack Team
rhos-docs@redhat.com

Legal Notice

Copyright © 2020 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Federate with Identity Service using Red Hat Single Sign-On

. .

. .

. .

. .

Table of Contents

CHAPTER 1. OVERVIEW
1.1. OPERATIONAL GOALS
1.2. ASSUMPTIONS
1.3. PREREQUISITES
1.4. ACCESSING THE OPENSTACK NODES
1.5. UNDERSTANDING HIGH AVAILABILITY

1.5.1. HAProxy Overview
1.5.2. Managing Pacemaker Services
1.5.3. Using the Configuration Script
1.5.4. Site-specific Values

1.6. USING A PROXY OR SSL TERMINATOR
1.6.1. Hostname and Port Considerations

CHAPTER 2. CONFIGURE RED HAT IDENTITY MANAGEMENT
2.1. CREATE THE IDM SERVICE ACCOUNT FOR RH-SSO
2.2. CREATE A TEST USER
2.3. CREATE AN IDM GROUP FOR OPENSTACK USERS

CHAPTER 3. CONFIGURE RH-SSO
3.1. CONFIGURE THE RH-SSO REALM
3.2. ADD USER ATTRIBUTES FOR SAML ASSERTION
3.3. ADD GROUP INFORMATION TO THE ASSERTION

CHAPTER 4. CONFIGURE OPENSTACK FOR FEDERATION
4.1. DETERMINE THE IP ADDRESS AND FQDN SETTINGS

4.1.1. Retrieve the IP address
4.1.2. Set the Host Variables and Name the Host

4.2. INSTALL HELPER FILES ON UNDERCLOUD-0
4.3. SET YOUR DEPLOYMENT VARIABLES
4.4. COPY THE HELPER FILES FROM UNDERCLOUD-0 TO CONTROLLER-0
4.5. INITIALIZE THE WORKING ENVIRONMENT ON THE UNDERCLOUD
4.6. INITIALIZE THE WORKING ENVIRONMENT ON CONTROLLER-0
4.7. INSTALL MOD_AUTH_MELLON ON EACH CONTROLLER NODE
4.8. USE THE KEYSTONE VERSION 3 API
4.9. ADD THE RH-SSO FQDN TO EACH CONTROLLER
4.10. INSTALL AND CONFIGURE MELLON ON THE CONTROLLER NODE
4.11. EDIT THE MELLON CONFIGURATION
4.12. CREATE AN ARCHIVE OF THE GENERATED CONFIGURATION FILES
4.13. RETRIEVE THE MELLON CONFIGURATION ARCHIVE
4.14. PREVENT PUPPET FROM DELETING UNMANAGED HTTPD FILES
4.15. CONFIGURE KEYSTONE FOR FEDERATION
4.16. DEPLOY THE MELLON CONFIGURATION ARCHIVE
4.17. REDEPLOY THE OVERCLOUD
4.18. USE PROXY PERSISTENCE FOR KEYSTONE ON EACH CONTROLLER
4.19. CREATE FEDERATED RESOURCES
4.20. CREATE THE IDENTITY PROVIDER IN OPENSTACK
4.21. CREATE THE MAPPING FILE AND UPLOAD TO KEYSTONE

4.21.1. Create the mapping
4.22. CREATE A KEYSTONE FEDERATION PROTOCOL
4.23. FULLY-QUALIFY THE KEYSTONE SETTINGS
4.24. CONFIGURE HORIZON TO USE FEDERATION
4.25. CONFIGURE HORIZON TO USE THE X-FORWARDED-PROTO HTTP HEADER

4
4
4
5
6
6
7
7
7
7
8
8

11
11
11
11

13
13
14
15

16
16
16
18
19
19
19
19

20
20
20
21
21
22
23
23
24
24
26
26
26
27
27
28
29
29
29
30
30

Table of Contents

1

. .

. .

. .

CHAPTER 5. TROUBLESHOOTING
5.1. TEST THE KEYSTONE MAPPING RULES
5.2. DETERMINE THE ACTUAL ASSERTION VALUES RECEIVED BY KEYSTONE
5.3. REVIEW THE SAML MESSAGES EXCHANGED BETWEEN THE SP AND IDP

CHAPTER 6. THE CONFIGURE-FEDERATION FILE

CHAPTER 7. THE FED_VARIABLES FILE

31
31
32
32

34

49

Red Hat OpenStack Platform 16.0 Federate with Identity Service

2

Table of Contents

3

CHAPTER 1. OVERVIEW
This guide describes how to setup federation in a high availability Red Hat OpenStack Platform director
environment, using a Red Hat Single Sign-On (RH-SSO) server for authentication services.

1.1. OPERATIONAL GOALS

By following this guide, your OpenStack deployment’s authentication service will be federated with RH-
SSO, and will include the following characteristics:

Federation will be based on Security Assertion Markup Language (SAML).

The Identity Provider (IdP) is RH-SSO, and will be situated externally to the Red Hat OpenStack
Platform deployment.

The RH-SSO IdP uses Red Hat Identity Management (IdM) as the federated user backing store.
As a result, users and groups are managed in IdM, and RH-SSO will reference the user and
group information that is stored in IdM.

Your IdM users will be authorized to access OpenStack when they are added to the IdM group:
openstack-users.

OpenStack Keystone will have a group named federated_users. Members of the
federated_users group will have the Member role, which grants them permission to access the
project.

During the federated authentication process, members of the IdM group openstack-users are
mapped into the OpenStack group federated_users. As a result, an IdM user will need to be a
member of the openstack-users group in order to access OpenStack; if the user is not a
member of the IdM group openstack-users, then authentication will fail.

1.2. ASSUMPTIONS

This guide makes the following assumptions about your deployment:

A RH-SSO server is present, and you either have administrative privileges on the server, or the
RH-SSO administrator has created a realm for you and given you administrative privileges on
that realm. Since federated IdPs are external by definition, the RH-SSO server is assumed to be
external to the Red Hat OpenStack Platform director overcloud.

An IdM server is present, and also external to the Red Hat OpenStack Platform director
overcloud where users and groups are managed. RH-SSO will use IdM as its User Federation
backing store.

The OpenStack deployment is based on Red Hat OpenStack Platform director.

The Red Hat OpenStack Platform director overcloud installation uses high availability (HA)
features.

Only the Red Hat OpenStack Platform director overcloud will have federation enabled; the
undercloud is not federated.

TLS encryption is used for all external communication.

All nodes have a Fully Qualified Domain Name (FQDN).

Red Hat OpenStack Platform 16.0 Federate with Identity Service

4

HAProxy terminates TLS front-end connections, and servers running behind HAProxy do not
use TLS.

Pacemaker is used to manage some of the overcloud services, including HAProxy.

Red Hat OpenStack Platform director has an overcloud deployed.

You are able to SSH into the undercloud and overcloud nodes.

The examples described in the Keystone Federation Configuration Guide will be followed.

On the undercloud-0 node, you will install the helper files into the home directory of the stack
user, and work in the stack user home directory.

On the controller-0 node, you will install the helper files into the home directory of the heat-
admin user, and work in the heat-admin user home directory.

1.3. PREREQUISITES

The RH-SSO server has been configured and is external to the Red Hat OpenStack Platform
director overcloud.

The IdM deployment is external to the Red Hat OpenStack Platform director overcloud.

Red Hat OpenStack Platform director has an overcloud deployed.

REINSTALL MOD_AUTH_MELLON

If mod_auth_mellon was previously installed on your controller nodes (perhaps because
it was included in a base image used to instantiate the controller nodes) you might need
to reinstall it again. This is a consequence of the way in which Puppet manages Apache
modules, where the Puppet Apache class will remove any Apache configuration files not
under Puppet’s control. Note that Apache will not start if these files have been removed,
and it will raise errors about unknown Mellon files. At the time of this writing,
mod_auth_mellon remains outside of Puppet’s control. See Section 4.14, “Prevent
Puppet From Deleting Unmanaged HTTPD Files” for information on how to prevent
Puppet from removing Apache configuration files.

To check if Puppet removed any of the files belonging to the mod_auth_mellon RPM,
you can perform a query to validate the`mod_auth_mellon` packages, for example:

$ rpm -qV mod_auth_mellon
missing c /var/lib/config-data/puppet-
generated/keystone/etc/httpd/conf.d/auth_mellon.conf
missing c /var/lib/config-data/puppet-
generated/keystone/etc/httpd/conf.modules.d/10-auth_mellon.conf

If RPM indicates these configuration files are absent, then Puppet has removed then. You
can then restore the files:

$ sudo dnf reinstall mod_auth_mellon

For more information, see BZ#1434875 and BZ#1497718

CHAPTER 1. OVERVIEW

5

http://docs.openstack.org/developer/keystone/federation/federated_identity.html
https://bugzilla.redhat.com/show_bug.cgi?id=1434875
https://bugzilla.redhat.com/show_bug.cgi?id=1497718

1.4. ACCESSING THE OPENSTACK NODES

1. As the root user, SSH into the node hosting the OpenStack deployment. For example:

$ ssh root@xxx

2. SSH into the undercloud node:

$ ssh undercloud-0

3. Become the stack user:

$ su - stack

4. Source the overcloud configuration to enable the required OpenStack environment variables:

$ source overcloudrc

NOTE

Currently, Red Hat OpenStack Platform director sets up Keystone to use the
Keystone v2 API but you will be using the Keystone v3 API. Later on in the guide
you will create an overcloudrc.v3 file. From that point on you should use the v3
version of the overcloudrc file. See Section 4.8, “Use the Keystone Version 3
API” for more information.

Afer sourcing overcloudrc, you can issue commands using the openstack command line tool, which will
operate against the overcloud (even though you’re currently still logged into an undercloud node). If you
need to directly access one of the overcloud nodes, you can SSH to it as the heat-admin user. For
example:

$ ssh heat-admin@controller-0

1.5. UNDERSTANDING HIGH AVAILABILITY

Detailed information on high availability can be found in the High Availability Deployment and Usage
guide.

Red Hat OpenStack Platform director distributes redundant copies of various OpenStack
services across the overcloud deployment. These redundant services are deployed on the
overcloud controller nodes, with director naming these nodes controller-0, controller-1,
controller-2, and so on, depending on how many controller nodes Red Hat OpenStack Platform
director has configured.

The IP address of the controller nodes are private to the overcloud and are not externally visible.
This is because the services running on the controller nodes are HAProxy back-end servers.
There is one publically visible IP address for the set of controller nodes; this is HAProxy’s front
end. When a request arrives for a service on the public IP address, then HAProxy will select a
back-end server to service the request.

The overcloud is organized as a high availability cluster. Pacemaker manages the cluster,

Red Hat OpenStack Platform 16.0 Federate with Identity Service

6

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.0/html-single/high_availability_deployment_and_usage/

The overcloud is organized as a high availability cluster. Pacemaker manages the cluster,
performs health checks, and can fail over to another cluster resource if the resource stops
functioning. Pacemaker is also aware of how to correctly start and stop resources.

1.5.1. HAProxy Overview

HAProxy serves a similar role to Pacemaker, as it also performs health checks on the back-end servers
and only forwards requests to functioning back-end servers. There is a copy of HAProxy running on all
controller nodes.

Although there are N copies of HAProxy running, only one is actually fielding requests at any given time;
this active HAProxy instance is managed by Pacemaker. This approach helps prevent conflicts from
occurring, and allows multiple copies of HAProxy to coordinate the distribution of requests across
multiple back-ends. If Pacemaker detects HAProxy has failed, it reassigns the front-end IP address to a
different HAProxy instance which then becomes the controlling HAProxy instance. You might think of it
as high availability for high availability. The instances of HAProxy that are kept in reserve by Pacemaker
are running, but they never see an incoming connection because Pacemaker has configured the
networking so that connections only route to the active HAProxy instance.

1.5.2. Managing Pacemaker Services

Services that are managed by Pacemaker must not be managed by systemctl on a controller node. Use
the Pacemaker pcs command instead, for example: sudo pcs resource restart haproxy-clone. You
can determine the resource name using the Pacemaker status command: sudo pcs status. This will
print a result similar to this:

Clone Set: haproxy-clone [haproxy]
Started: [controller-1]
Stopped: [controller-0]

1.5.3. Using the Configuration Script

Many of the steps in this guide require the execution of complicated commands, so to make that task
easier (and to allow for repeatability) all the commands have been gathered into a master shell script
called configure-federation. Each individual step can be executed by passing the name of the step to
configure-federation. The list of possible commands can be seen by using the help option (-h or --
help).

NOTE

You can find the script here: Chapter 6, The configure-federation file

It can be useful to know exactly what the command will be after variable substitution occurs, when the
configure-federation script executes:

-n is dry-run mode: nothing will be modified, the exact operation will instead be written to
stdout.

-v is verbose mode: the exact operation will be written to stdout just prior to executing it. This is
useful for logging.

1.5.4. Site-specific Values

Certain values used in this guide are site-specific; it may otherwise have been confusing to include these

CHAPTER 1. OVERVIEW

7

http://clusterlabs.org/

site-specific values directly into this guide, and may have been a source of errors for someone
attempting to replicate these steps. To address this, any site-specific values referenced in this guide are
in the form of a variable. The variable name starts with a dollar-sign ($) and is all-caps with a prefix of
FED_. For example, the URL used to access the RH-SSO server would be: $FED_RHSSO_URL

NOTE

You can find the variables file here: Chapter 7, The fed_variables file

Site-specific values can always be identified by searching for $FED_ Site-specific values used by the
configure-federation script are gathered into the file fed_variables. You will need to edit this file to suit
your deployment.

1.6. USING A PROXY OR SSL TERMINATOR

When a server is behind a proxy, the environment it sees is different to what the client sees as the public
identity of the server. A back-end server may have a different hostname, listen on a different port, or
use a different protocol than what a client sees on the front side of the proxy. For many web apps this is
not a major problem. Typically most of the problems occur when a server has to generate a self-
referential URL (perhaps because it will redirect the client to a different URL on the same server). The
URL the server generates must match the public address and port as seen by the client.

Authentication protocols are especially sensitive to the host, port and protocol (for example,
HTTP/HTTPS) because they often need to assure a request was targeted at a specific server, on a
specific port and on a secure transport. Proxies can interfere with this vital information, because by
definition a proxy transforms a request received on its public front-end before dispatching it to a non-
public server in the back-end. Similarly, responses from the non-public back-end server sometimes need
adjustment so that it appears as if the response came from the public front-end of the proxy.

There are various approaches to solving this problem. Because SAML is sensitive to host, port, and
protocol information, and because you are configuring SAML behind a high availability proxy (HAProxy),
you must deal with these issues or your configuration will likely fail (often in cryptic ways).

1.6.1. Hostname and Port Considerations

The host and port details are used in multiple contexts:

The host and port in the URL used by the client.

The host HTTP header inserted into the HTTP request (as derived from the client URL host).

The host name of the front-facing proxy the client connects to. This is actually the FQDN of the
IP address that the proxy is listening on.

The host and port of the back-end server which actually handled the client request.

The virtual host and port of the server that actually handled the client request.

It is important to understand how each of these values are used, otherwise there is a risk that the wrong
host and port are used, with the result that the authentication protocols may fail because they cannot
validate the parties involved in the transaction.

You can begin by considering the back-end server handling the request, because this is where the host
and port are evaluated, and where most of the problems can occur:

Red Hat OpenStack Platform 16.0 Federate with Identity Service

8

The back-end server needs to know:

The URL of the request (including host and port).

Its own host and port.

Apache supports virtual name hosting, which allows a single server to host multiple domains. For
example, a server running on example.com might service requests for both example.com and example-
2.com, with these being virtual host names. Virtual hosts in Apache are configured inside a server
configuration block, for example:

<VirtualHost>
 ServerName example.com
</VirtualHost>

When Apache receives a request, it gathers the host information from the HOST HTTP header, and then
tries to match the host to the ServerName in its collection of virtual hosts.

The ServerName directive defines the request scheme, hostname, and port that the server uses to
identify itself. The behavior of the ServerName directive is modified by the UseCanonicalName
directive. When UseCanonicalName is enabled, Apache will use the hostname and port specified in the
ServerName directive to construct the canonical name for the server. This name is used in all self-
referential URLs, and for the values of SERVER_NAME and SERVER_PORT in CGIs. If
UseCanonicalName is Off, Apache will form self-referential URLs using the hostname and port supplied
by the client, if any are supplied.

If no port is specified in the ServerName, then the server will use the port from the incoming request.
For optimal reliability and predictability, you should specify an explicit hostname and port using the
ServerName directive. If no ServerName is specified, the server attempts to deduce the host by first
asking the operating system for the system host name, and if that fails, performing a reverse lookup for
an IP address present on the system. Consequently, this will produce the wrong host information when
the server is behind a proxy, therefore the use of the ServerName directive is essential.

The Apache ServerName documentation is clear concerning the need to fully specify the scheme, host,
and port in the Server name directive when the server is behind a proxy, where it states:

Sometimes, the server runs behind a device that processes SSL, such as a reverse
proxy, load balancer or SSL offload appliance. When this is the case, specify the
https:// scheme and the port number to which the clients connect in the ServerName
directive to make sure that the server generates the correct self-referential URLs.

When proxies are in effect, they use X-Forwarded-* HTTP headers to allow the entity processing the
request to recognize that the request was forwarded, and what the original values were before they
were forwarded. The Red Hat OpenStack Platform director HAProxy configuration sets the X-
Forwarded-Proto HTTP header based on whether the front connection used SSL/TLS or not, using this
configuration:

http-request set-header X-Forwarded-Proto https if { ssl_fc }
http-request set-header X-Forwarded-Proto http if !{ ssl_fc }

In addition, Apache does not interpret this header, so responsibility falls to another component to
process it properly. In the situation where HAProxy terminates SSL prior to the back-end server
processing the request, it is irrelevant that the X-Forwarded-Proto HTTP header is set to HTTPS,
because Apache does not use the header when an extension module (such as mellon) asks for the

CHAPTER 1. OVERVIEW

9

https://httpd.apache.org/docs/current/mod/core.html#servername

protocol scheme of the request. This is why it is essential to have the ServerName directive include the
scheme:://host:port and that UseCanonicalName is enabled, otherwise Apache extension modules
such as mod_auth_mellon will not function properly behind a proxy.

With regard to web apps hosted by Apache behind a proxy, it is the web app’s (or rather the web app
framework) responsibility to process the forwarded header. Consequently, apps handle the protocol
scheme of a forwarded request differently than Apache extension modules will. Since Dashboard
(horizon) is a Django web app, it is Django’s responsibility to process the X-Forwarded-Proto header.
This issue arises with the origin query parameter used by horizon during authentication. Horizon adds a
origin query parameter to the keystone URL it invokes to perform authentication. The origin parameter
is used by horizon to redirect back to original resource.

The origin parameter generated by horizon may incorrectly specify HTTP as the scheme instead of
https despite the fact horizon is running with HTTPS enabled. This occurs because Horizon calls the
function build_absolute_uri() to form the origin parameter. It is entirely up to the Django to identify
the scheme because build_absolute_url() is ultimately implemented by Django. You can force Django
to process the X-Forwarded-Proto using a special configuration directive. This is covered in the Django
secure-proxy-ssl-header documentation.

You can enable this setting by uncommenting this line in /var/lib/config-data/puppet-
generated/horizon/etc/openstack-dashboard/local_settings:

#SECURE_PROXY_SSL_HEADER = ('HTTP_X_FORWARDED_PROTO', 'https')

NOTE

Note that Django prefixes the header with "HTTP_", and converts hyphens to
underscores.

After uncommenting, the Origin parameter will correctly use the HTTPS scheme. However, even when
the ServerName directive includes the HTTPS scheme, the Django call build_absolute_url() will not
use the HTTPS scheme. So for Django you must use the SECURE_PROXY_SSL_HEADER override,
simply specifying the scheme in ServerName directive will not work. It is important to note that the
Apache extension modules and web apps process the request scheme of a forwarded request
differently, requiring that both the ServerName and X-Forwarded-Proto HTTP header techniques be
used.

Red Hat OpenStack Platform 16.0 Federate with Identity Service

10

https://docs.djangoproject.com/en/1.10/ref/settings/#secure-proxy-ssl-header

CHAPTER 2. CONFIGURE RED HAT IDENTITY MANAGEMENT
In this example, IdM is situated externally to the OpenStack Red Hat OpenStack Platform director
deployment and is the source of all user and group information. RH-SSO will be configured to use IdM
as its User Federation, and will then perform LDAP searches against IdM to obtain user and group
information.

2.1. CREATE THE IDM SERVICE ACCOUNT FOR RH-SSO

Although IdM allows anonymous binds, some information is withheld for security reasons. Some of this
information withheld during anonymous binds is essential for RH-SSO user federation; consequently,
RH-SSO will need to bind to the IdM LDAP server with enough privileges to successfully query the
required information. As a result, you will need to create a dedicated service account for RH-SSO in IdM.
IdM does not natively provide a command to do this, but you can use the ldapmodify command. For
example:

ldap_url="ldaps://$FED_IPA_HOST"
dir_mgr_dn="cn=Directory Manager"
service_name="rhsso"
service_dn="uid=$service_name,cn=sysaccounts,cn=etc,$FED_IPA_BASE_DN"

$ ldapmodify -H "$ldap_url" -x -D "$dir_mgr_dn" -w "$FED_IPA_ADMIN_PASSWD" <<EOF
dn: $service_dn
changetype: add
objectclass: account
objectclass: simplesecurityobject
uid: $service_name
userPassword: $FED_IPA_RHSSO_SERVICE_PASSWD
passwordExpirationTime: 20380119031407Z
nsIdleTimeout: 0

EOF

NOTE

You can use the configure-federation script to perform the above step:

$./configure-federation create-ipa-service-account

2.2. CREATE A TEST USER

You will also need a test user account in IdM. You can either use an existing user or create a new one; the
examples in this guide use "John Doe" with a uid of jdoe. You can create the jdoe user in IdM:

$ ipa user-add --first John --last Doe --email jdoe@example.com jdoe

Assign a password to the user:

$ ipa passwd jdoe

2.3. CREATE AN IDM GROUP FOR OPENSTACK USERS

CHAPTER 2. CONFIGURE RED HAT IDENTITY MANAGEMENT

11

Create the openstack-users group in IdM.

1. Make sure the openstack-users group does not already exist:

$ ipa group-show openstack-users
ipa: ERROR: openstack-users: group not found

2. Add the openstack-users group to IdM:

$ ipa group-add openstack-users

3. Add the test user to the openstack-users group:

$ ipa group-add-member --users jdoe openstack-users

4. Verify that the openstack-users group exists and has the test user as a member:

$ ipa group-show openstack-users
 Group name: openstack-users
 GID: 331400001
 Member users: jdoe

Red Hat OpenStack Platform 16.0 Federate with Identity Service

12

CHAPTER 3. CONFIGURE RH-SSO
The RH-SSO installation process is outside the scope of this guide. It is assumed you have already
installed RH-SSO on a node that is situated independently from the Red Hat OpenStack Platform
director deployment.

The RH-SSO URL will be identified by the $FED_RHSSO_URL variable.

RH-SSO supports multi-tenancy, and uses realms to allow for separation between projects. As a
result, RH-SSO operations always occur within the context of a realm. This guide uses the site-
specific variable $FED_RHSSO_REALM to identify the RH-SSO realm being used.

The RH-SSO realm can either be created ahead of time (as would be typical when RH-SSO is
administered by an IT group), or the keycloak-httpd-client-install tool can create it for you if
you have administrator privileges on the RH-SSO server.

3.1. CONFIGURE THE RH-SSO REALM

Once the RH-SSO realm is available, use the RH-SSO web console to configure that realm for user
federation against IdM:

1. Select $FED_RHSSO_REALM from the drop-down list in the upper left corner.

2. Select User Federation from the left side Configure panel.

3. From the Add provider ... drop down list in the upper right corner of the User Federation
panel, select ldap.

4. Fill in the following fields with these values, be sure to substitute any $FED_ site-specific
variable:

Property Value

Console Display Name Red Hat IDM

Edit Mode READ_ONLY

Sync Registrations Off

Vendor Red Hat Directory Server

Username LDAP attribute uid

RDN LDAP attribute uid

UUID LDAP attribute ipaUniqueID

User Object Classes inetOrgPerson, organizationalPerson

Connection URL LDAPS://$FED_IPA_HOST

Users DN cn=users,cn=accounts,$FED_IPA_BASE_DN

CHAPTER 3. CONFIGURE RH-SSO

13

Authentication Type simple

Bind DN uid=rhsso,cn=sysaccounts,cn=etc,$FED_IPA_BASE_DN

Bind Credential $FED_IPA_RHSSO_SERVICE_PASSWD

Property Value

5. Use the Test connection and Test authentication buttons to check that user federation is
working.

6. Click Save at the bottom of the User Federation panel to save the new user federation
provider.

7. Click on the Mappers tab at the top of the Red Hat IDM user federation page you just created.

8. Create a mapper to retrieve the user’s group information; this means that a user’s group
memberships will be returned in the SAML assertion. You will be using group membership later
to provide authorization in OpenStack.

9. Click on the Create button in the upper right hand corner of the Mappers page.

10. On the Add user federation mapper page, select group-ldap-mapper from the Mapper Type
drop down list, and give it the name Group Mapper. Fill in the following fields with these values,
and be sure to substitute any $FED_ site-specific variable.

Property Value

LDAP Groups DN cn=groups,cn=accounts„$FED_IPA_BASE_DN

Group Name LDAP Attribute cn

Group Object Classes groupOfNames

Membership LDAP Attribute member

Membership Attribute Type DN

Mode READ_ONLY

User Groups Retrieve Strategy GET_GROUPS_FROM_USER_MEMBEROF_ATTRIBUTE

11. Click Save.

3.2. ADD USER ATTRIBUTES FOR SAML ASSERTION

The SAML assertion can send to keystone the properties that are bound to the user (for example, user
metadata); these are called attributes in SAML. You will need to configure RH-SSO to return the
required attributes in the assertion. Then, when keystone receives the SAML assertion, it will map those

Red Hat OpenStack Platform 16.0 Federate with Identity Service

14

attributes into user metadata in a manner which keystone can then process. The process of mapping IdP
attributes into keystone data is called Federated Mapping and will be covered later in this guide (see
Section 4.21, “Create the Mapping File and Upload to Keystone”).

RH-SSO calls the process of adding returned attributes Protocol Mapping . Protocol mapping is a
property of the RH-SSO client (for example, the service provider (SP) added to the RH-SSO realm).
The process for adding a given attribute to SAML follows a similar process.

In the RH-SSO administration web console:

1. Select $FED_RHSSO_REALM from the drop-down list in the upper left corner.

2. Select Clients from the left side Configure panel.

3. Select the SP client that was setup by keycloak-httpd-client-install. It will be identified by its
SAML EntityId.

4. Select the Mappers tab from the horizontal list of tabs appearing at the top of the client panel.

5. In the Mappers panel in the upper right are two buttons: Create and Add Builtin. Use one of
these buttons to add a protocol mapper to the client.

You can add any required attributes, but for this exercise you will only need the list of groups the user is
a member of (because group membership is how you will authorize the user).

3.3. ADD GROUP INFORMATION TO THE ASSERTION

1. Click on the Create button in the Mappers panel.

2. In the Create Protocol Mapper panel select Group list from the Mapper type drop-down list.

3. Enter Group List as a name in the Name field.

4. Enter groups as the name of the SAML attribute in the Group attribute name field.

NOTE

This is the name of the attribute as it will appear in the SAML assertion. When the
keystone mapper searches for names in the Remote section of the mapping
declaration, it is the SAML attribute names it is looking for. Whenever you add an
attribute in RH-SSO to be passed in the assertion you will need to specify the
SAML attribute name; it is the RH-SSO protocol mapper where that name is
defined.

5. In the SAML Attribute NameFormat field select Basic.

6. In the Single Group Attribute toggle box select On.

7. Click Save at the bottom of the panel.

NOTE

keycloak-httpd-client-install adds a group mapper when it runs.

CHAPTER 3. CONFIGURE RH-SSO

15

CHAPTER 4. CONFIGURE OPENSTACK FOR FEDERATION

4.1. DETERMINE THE IP ADDRESS AND FQDN SETTINGS

The following nodes require an assigned Fully-Qualified Domain Name (FQDN):

The host running the Dashboard (horizon).

The host running the Identity Service (keystone), referenced in this guide as
$FED_KEYSTONE_HOST. Note that more than one host will run a service in a high-availability
environment, so the IP address is not a host address but rather the IP address bound to the
service.

The host running RH-SSO.

The host running IdM.

The Red Hat OpenStack Platform director deployment does not configure DNS or assign FQDNs to the
nodes, however, the authentication protocols (and TLS) require the use of FQDNs. As a result, you must
determine the external public IP address of the overcloud. Note that you need the IP address of the
overcloud, which is not the same as the IP address allocated to an individual node in the overcloud, such
as controller-0, controller-1.

You will need the external public IP address of the overcloud because IP addresses are assigned to a
high availability cluster, instead of an individual node. Pacemaker and HAProxy work together to provide
the appearance of a single IP address; this IP address is entirely distinct from the individual IP address of
any given node in the cluster. As a result, the correct way to think about the IP address of an OpenStack
service is not in terms of which node that service is running on, but rather to consider the effective IP
address that the cluster is advertising for that service (for example, the VIP).

4.1.1. Retrieve the IP address

In order to determine the correct IP address, you will need to assign a name to it, instead of using DNS.
There are two ways to do this:

1. Red Hat OpenStack Platform director uses one common public IP address for all OpenStack
services, and separates those services on the single public IP address by port number; if you the
know public IP address of one service in the OpenStack cluster then you know all of them
(however that does not also tell you the port number of a service). You can examine the
Keystone URL in the overcloudrc file located in the ~stack home directory on the undercloud.
For example:

export OS_AUTH_URL=https://10.0.0.101:13000/v2.0

This tells you that the public keystone IP address is 10.0.0.101 and that keystone is available on
port 13000. By extension, all other OpenStack services are also available on the 10.0.0.101 IP
address with their own unique port number.

2. However, the more accurate way of determining the IP addresses and port number information
is to examine the HAProxy configuration file (/var/lib/config-data/puppet-
generated/haproxy/etc/haproxy/haproxy.cfg), which is located on each of the overcloud
nodes. The haproxy.cfg file is an identical copy on each of the overcloud controller nodes; this
is essential because Pacemaker will assign one controller node the responsibility of running

Red Hat OpenStack Platform 16.0 Federate with Identity Service

16

HAProxy for the cluster, in the event of an HAProxy failure Pacemaker will reassign a different
overcloud controller to run HAProxy. No matter which controller node is currently running
HAProxy, it must act identically; therefore the haproxy.cfg files must be identical.

a. To examine the haproxy.cfg file, SSH into one of the cluster’s controller nodes and review
/var/lib/config-data/puppet-generated/haproxy/etc/haproxy/haproxy.cfg. As noted
above it does not matter which controller node you select.

b. The haproxy.cfg file is divided into sections, with each beginning with a listen statement
followed by the name of the service. Immediately inside the service section is a bind
statement; these are the front IP addresses, some of which are public, and others are
internal to the cluster. The server lines are the back IP addresses where the service is
actually running, there should be one server line for each controller node in the cluster.

c. To determine the public IP address and port of the service from the multiple bind entries in
the section:
Red Hat OpenStack Platform director puts the public IP address as the first bind entry. In
addition, the public IP address should support TLS, so the bind entry will have the ssl
keyword. The IP address should also match the IP address set in the OS_AUTH_URL
located in the overstackrc file. For example, here is a sample keystone_public section
from a haproxy.cfg:

listen keystone_public
 bind 10.0.0.101:13000 transparent ssl crt /etc/pki/tls/private/overcloud_endpoint.pem
 bind 172.17.1.19:5000 transparent
 mode http
 http-request set-header X-Forwarded-Proto https if { ssl_fc }
 http-request set-header X-Forwarded-Proto http if !{ ssl_fc }
 option forwardfor
 redirect scheme https code 301 if { hdr(host) -i 10.0.0.101 } !{ ssl_fc }
 rsprep ^Location:\ http://(.*) Location:\ https://\1
 server controller-0.internalapi.localdomain 172.17.1.13:5000 check fall 5 inter 2000 rise
2 cookie controller-0.internalapi.localdomain
 server controller-1.internalapi.localdomain 172.17.1.22:5000 check fall 5 inter 2000 rise
2 cookie controller-1.internalapi.localdomain

d. The first bind line has the ssl keyword, and the IP address matches that of the
OS_AUTH_URL located in the overstackrc file. As a result, you can be confident that
keystone is publicly accessed at the IP address of 10.0.0.101 on port 13000.

e. The second bind line is internal to the cluster, and is used by other OpenStack services
running in the cluster (note that it does not use TLS because it is not public).

f. The mode http setting indicates that the protocol in use is HTTP, this allows HAProxy to
examine HTTP headers, among other tasks.

g. The X-Forwarded-Proto lines:

http-request set-header X-Forwarded-Proto https if { ssl_fc }
http-request set-header X-Forwarded-Proto http if !{ ssl_fc }

These settings require particular attention and will be covered in more detail in
Section 4.1.2, “Set the Host Variables and Name the Host” . They guarantee that the HTTP
header X-Forwarded-Proto will be set and seen by the back-end server. The back-end
server in many cases needs to know if the client was using HTTPS. However, HAProxy
terminates TLS so the back-end server will see the connection as non-TLS. The X-

CHAPTER 4. CONFIGURE OPENSTACK FOR FEDERATION

17

Forwarded-Proto HTTP header is a mechanism that allows the back-end server identify
which protocol the client was actually using, instead of which protocol the request arrived
on. It is essential that a client can not be able to send a X-Forwarded-Proto HTTP header,
because that would allow the client to maliciously spoof that the protocol was HTTPS. The
X-Forwarded-Proto HTTP header can either be deleted by the proxy when it is received
from the client, or the proxy can forcefully set it and so mitigate any malicious use by the
client. This is why X-Forwarded-Proto will always be set to one of https or http.

The X-Forwarded-For HTTP header is used to track the client, which allows the back-end
server to identify who the requesting client was instead of it appearing to be the proxy. This
option causes the X-Forwarded-For HTTP header to be inserted into the request:

option forwardfor

See Section 4.1.2, “Set the Host Variables and Name the Host” for more information on
forwarded proto, redirects, ServerName, among others.

h. The following line will confirm that only HTTPS is used on the public IP address:

redirect scheme https code 301 if { hdr(host) -i 10.0.0.101 } !{ ssl_fc }

This setting identifies if the request was received on the public IP address (for example
10.0.0.101) and it was not HTTPS, then performs a 301 redirect and sets the scheme to
HTTPS.

i. HTTP servers (such as Apache) often generate self-referential URLs for redirect purposes.
This redirect location must indicate the correct protocol, but if the server is behind a TLS
terminator it will think its redirection URL should be HTTP and not HTTPS. This line
identifies if a Location header appears in the response that uses the HTTP scheme, then
rewrites it to use the HTTPS scheme:

rsprep ^Location:\ http://(.*) Location:\ https://\1

4.1.2. Set the Host Variables and Name the Host

You will need to determine the IP address and port to use. In this example the IP address is 10.0.0.101
and the port is 13000.

1. This value can be confirmed in overcloudrc:

export OS_AUTH_URL=https://10.0.0.101:13000/v2.0

2. And in the keystone_public section of the haproxy.cfg file:

bind 10.0.0.101:13000 transparent ssl crt /etc/pki/tls/private/overcloud_endpoint.pem

3. You must also give the IP address a FQDN. This example uses overcloud.localdomain. Note
that the IP address should be put in the /etc/hosts file since DNS is not being used:

10.0.0.101 overcloud.localdomain # FQDN of the external VIP

NOTE

Red Hat OpenStack Platform 16.0 Federate with Identity Service

18

NOTE

Red Hat OpenStack Platform director is expected to have already configured the
hosts files on the overcloud nodes, but you may need to add the host entry on
any external hosts that participate.

4. The $FED_KEYSTONE_HOST and $FED_KEYSTONE_HTTPS_PORT must be set in the
fed_variables file. Using the above example values:

FED_KEYSTONE_HOST="overcloud.localdomain"
FED_KEYSTONE_HTTPS_PORT=13000

Because Mellon is running on the Apache server that hosts keystone, the Mellon host:port and keystone
host:port values will match.

NOTE

If you run hostname on one of the controller nodes it will likely be similar to this:
controller-0.localdomain, but note that this is its internal cluster name, not its public
name. You will instead need to use the public IP address .

4.2. INSTALL HELPER FILES ON UNDERCLOUD-0

1. Copy the configure-federation and fed_variables files into the ~stack home directory on
undercloud-0. You will have created these files as part of Section 1.5.3, “Using the
Configuration Script”.

4.3. SET YOUR DEPLOYMENT VARIABLES

1. The file fed_variables contains variables specific to your federation deployment. These
variables are referenced in this guide as well as in the configure-federation helper script. Each
site-specific federation variable is prefixed with FED_ and (when used as a variable) will use the
$ variable syntax, such as $FED_. Make sure every FED_ variable in fed_variables is provided a
value.

4.4. COPY THE HELPER FILES FROM UNDERCLOUD-0 TO
CONTROLLER-0

1. Copy the configure-federation and the edited fed_variables from the ~stack home directory
on undercloud-0 to the ~heat-admin home directory on controller-0. For example:

$ scp configure-federation fed_variables heat-admin@controller-0:/home/heat-admin

NOTE

You can use the configure-federation script to perform the above step: $./configure-
federation copy-helper-to-controller

4.5. INITIALIZE THE WORKING ENVIRONMENT ON THE UNDERCLOUD

1. On the undercloud node, as the stack user, create the fed_deployment directory. This location
will be the file stash. For example:

CHAPTER 4. CONFIGURE OPENSTACK FOR FEDERATION

19

$ su - stack
$ mkdir fed_deployment

NOTE

You can use the configure-federation script to perform the above step: $./configure-
federation initialize

4.6. INITIALIZE THE WORKING ENVIRONMENT ON CONTROLLER-0

1. From the undercloud node, SSH into the controller-0 node as the heat-admin user and create
the fed_deployment directory. This location will be the file stash. For example:

$ ssh heat-admin@controller-0
$ mkdir fed_deployment

NOTE

You can use the configure-federation script to perform the above step. From the
controller-0 node: $./configure-federation initialize

4.7. INSTALL MOD_AUTH_MELLON ON EACH CONTROLLER NODE

1. From the undercloud node, SSH into the controller-n node as the heat-admin user and install
the mod_auth_mellon. For example:

$ ssh heat-admin@controller-n # replace n with controller number
$ sudo dnf reinstall mod_auth_mellon

NOTE

If mod_auth_mellon is already installed on the controller nodes, you may need to
reinstall it again. See the Reinstall mod_auth_mellon note for more details.

NOTE

You can use the configure-federation script to perform the above step: $./configure-
federation install-mod-auth-mellon

4.8. USE THE KEYSTONE VERSION 3 API

Before you can use the openstack command line client to administer the overcloud, you will need to
configure certain parameters. Normally this is done by sourcing an rc file within your shell session, which
sets the required environment variables. Red Hat OpenStack Platform director will have created an
overcloudrc file for this purpose in the home directory of the stack user, in the undercloud-0 node. By
default, the overcloudrc file is set to use the v2 version of the keystone API, however, federation
requires the use of the v3 keystone API. As a result, you need to create a new rc file that uses the v3
keystone API.

1. For example:

Red Hat OpenStack Platform 16.0 Federate with Identity Service

20

$ source overcloudrc
$ NEW_OS_AUTH_URL=`echo $OS_AUTH_URL | sed 's!v2.0!v3!'`

2. Write the following contents to overcloudrc.v3:

 for key in \$(set | sed 's!=.*!!g' | grep -E '^OS_') ; do unset $key ; done
 export OS_AUTH_URL=$NEW_OS_AUTH_URL
 export OS_USERNAME=$OS_USERNAME
 export OS_PASSWORD=$OS_PASSWORD
 export OS_USER_DOMAIN_NAME=Default
 export OS_PROJECT_DOMAIN_NAME=Default
 export OS_PROJECT_NAME=$OS_TENANT_NAME
 export OS_IDENTITY_API_VERSION=3

NOTE

You can use the configure-federation script to perform the above step: $
./configure-federation create-v3-rcfile

3. From this point forward, to work with the overcloud you will use the overcloudrc.v3 file:

$ ssh undercloud-0
$ su - stack
$ source overcloudrc.v3

4.9. ADD THE RH-SSO FQDN TO EACH CONTROLLER

The mellon service will be running on each controller node and configured to connect to the RH-SSO
IdP.

1. If the FQDN of the RH-SSO IdP is not resolvable through DNS then you will have to manually
add the FQDN to the /etc/hosts file on all controller nodes (after the Heat Hosts section):

$ ssh heat-admin@controller-n
$ sudo vi /etc/hosts

Add this line (substituting the variables) before this line:
HEAT_HOSTS_START - Do not edit manually within this section!
...
HEAT_HOSTS_END
$FED_RHSSO_IP_ADDR $FED_RHSSO_FQDN

4.10. INSTALL AND CONFIGURE MELLON ON THE CONTROLLER
NODE

The keycloak-httpd-client-install tool performs many of the steps needed to configure
mod_auth_mellon and have it authenticate against the RH-SSO IdP. The keycloak-httpd-client-install
tool should be run on the node where mellon will run. In our case this means mellon will be running on the
overcloud controllers protecting Keystone.

Note that this is a high availability deployment, and as such there will be multiple overcloud controller
nodes, each running identical copies. As a result, the mellon setup will need to be replicated across each

CHAPTER 4. CONFIGURE OPENSTACK FOR FEDERATION

21

controller node. You will approach this by installing and configuring mellon on controller-0, and then
gathering up all the configuration files that the keycloak-httpd-client-install tool created into an
archive (for example, a tar file) and then let swift copy the archive over to each controller and unarchive
the files there.

1. Run the RH-SSO client installation:

 $ ssh heat-admin@controller-0
 $ dnf -y install keycloak-httpd-client-install
 $ sudo keycloak-httpd-client-install \
 --client-originate-method registration \
 --mellon-https-port $FED_KEYSTONE_HTTPS_PORT \
 --mellon-hostname $FED_KEYSTONE_HOST \
 --mellon-root /v3 \
 --keycloak-server-url $FED_RHSSO_URL \
 --keycloak-admin-password $FED_RHSSO_ADMIN_PASSWORD \
 --app-name v3 \
 --keycloak-realm $FED_RHSSO_REALM \
 -l "/v3/auth/OS-FEDERATION/websso/mapped" \
 -l "/v3/auth/OS-FEDERATION/identity_providers/rhsso/protocols/mapped/websso" \
 -l "/v3/OS-FEDERATION/identity_providers/rhsso/protocols/mapped/auth"

NOTE

You can use configure-federation script to perform the above step: $
./configure-federation client-install

2. After the client RPM installation, you should see output similar to this:

 [Step 1] Connect to Keycloak Server
 [Step 2] Create Directories
 [Step 3] Set up template environment
 [Step 4] Set up Service Provider X509 Certificiates
 [Step 5] Build Mellon httpd config file
 [Step 6] Build Mellon SP metadata file
 [Step 7] Query realms from Keycloak server
 [Step 8] Create realm on Keycloak server
 [Step 9] Query realm clients from Keycloak server
 [Step 10] Get new initial access token
 [Step 11] Creating new client using registration service
 [Step 12] Enable saml.force.post.binding
 [Step 13] Add group attribute mapper to client
 [Step 14] Add Redirect URIs to client
 [Step 15] Retrieve IdP metadata from Keycloak server
 [Step 16] Completed Successfully

4.11. EDIT THE MELLON CONFIGURATION

Additional mellon configuration is required for your deployment: As you will be using a list of groups
during the IdP-assertion-to-Keystone mapping phase, the keystone mapping engine expects lists to be
in a certain format (one value with items separated by a semicolon (;)). As a result, you must configure
mellon so that when it receives multiple values for an attribute, it must know to combine the multiple
attributes into a single value with items separated by a semicolon. This mellon directive will address that:

Red Hat OpenStack Platform 16.0 Federate with Identity Service

22

MellonMergeEnvVars On ";"

1. To configure this setting in your deployment:

$ vi /var/lib/config-data/puppet-
generated/keystone/etc/httpd/conf.d/v3_mellon_keycloak_openstack.conf

2. Locate the <Location /v3> block and add a line to it. For example:

 <Location /v3>
 ...
 MellonMergeEnvVars On ";"
 </Location>

4.12. CREATE AN ARCHIVE OF THE GENERATED CONFIGURATION
FILES

The mellon configuration needs to be replicated across all controller nodes, so you will create an archive
of the files that allows you to install the exact same file contents on each controller node. The archive
will be stored in the ~heat-admin/fed_deployment subdirectory.

1. Create the compressed tar archive:

$ mkdir fed_deployment
$ tar -cvzf rhsso_config.tar.gz \
 --exclude '*.orig' \
 --exclude '*~' \
 /var/lib/config-data/puppet-generated/keystone/etc/httpd/saml2 \
 /var/lib/config-data/puppet-
generated/keystone/etc/httpd/conf.d/v3_mellon_keycloak_openstack.conf

NOTE

You can use the configure-federation script to perform the above step: $./configure-
federation create-sp-archive

4.13. RETRIEVE THE MELLON CONFIGURATION ARCHIVE

1. On the undercloud-0 node, fetch the archive you just created and extract the files, as you will
need access some of the data in subsequent steps (for example the entityID of the RH-SSO
IdP).

$ scp heat-admin@controller-0:/home/heat-admin/fed_deployment/rhsso_config.tar.gz
~/fed_deployment
$ tar -C fed_deployment -xvf fed_deployment/rhsso_config.tar.gz

NOTE

You can use the configure-federation script to perform the above step: $./configure-
federation fetch-sp-archive

CHAPTER 4. CONFIGURE OPENSTACK FOR FEDERATION

23

4.14. PREVENT PUPPET FROM DELETING UNMANAGED HTTPD FILES

By default, the Puppet Apache module will purge any files in the Apache configuration directories it is
not managing. This is considered a reasonable precaution, as it prevents Apache from operating in any
manner other than the configuration enforced by Puppet. However, this conflicts with the manual
configuration of mellon in the HTTPD configuration directories. When the Apache Puppet
apache::purge_configs flag is enabled (which it is by default), Puppet will delete files belonging to the
mod_auth_mellon RPM when the mod_auth_mellon RPM is installed. It will also delete the
configuration files generated by keycloak-httpd-client-install when it is run. Until the mellon files are
under Puppet control, you will have to disable the apache::purge_configs flag.

You may also want to check if the mod_auth_mellon configuration files have already been removed in a
previous run of overcloud_deploy, see Reinstall mod_auth_mellon for more information.

NOTE

Disabling the apache::purge_configs flag opens the controller nodes to vulnerabilities.
Do not forget to re-enable it when Puppet adds support for managing mellon.

To override the apache::purge_configs flag, create a Puppet file containing the override and add the
override file to the list of Puppet files used when overcloud_deploy.sh is run.

1. Create the file fed_deployment/puppet_override_apache.yaml and add this content:

 parameter_defaults:
 ControllerExtraConfig:
 apache::purge_configs: false

2. Add the file near the end of the overcloud_deploy.sh script. It should be the last -e argument.
For example:

 -e /home/stack/fed_deployment/puppet_override_apache.yaml \
 --log-file overcloud_deployment_14.log &> overcloud_install.log

NOTE

You can use the configure-federation script to perform the above step: $./configure-
federation puppet-override-apache

4.15. CONFIGURE KEYSTONE FOR FEDERATION

This guide uses keystone domains, which require some extra configuration. If enabled, the keystone
Puppet module can perform this extra configuration step.

1. In one of the Puppet YAML files, add the following:

keystone::using_domain_config: true

Some additional values must be set in /etc/keystone/keystone.conf to enable federation:

auth:methods

federation:trusted_dashboard

Red Hat OpenStack Platform 16.0 Federate with Identity Service

24

federation:sso_callback_template

federation:remote_id_attribute

An explanation of these configuration settings and their suggested values:

auth:methods - A list of allowed authentication methods. By default the list is: ['external',
'password', 'token', 'oauth1']. You will need to enable SAML using the mapped method, so this
value should be: external,password,token,oauth1,mapped.

federation:trusted_dashboard - A list of trusted dashboard hosts. Before accepting a Single
Sign-On request to return a token, the origin host must be a member of this list. This
configuration option may be repeated for multiple values. You must set this in order to use web-
based SSO flows. For this deployment the value would be:
https://$FED_KEYSTONE_HOST/dashboard/auth/websso/ Note that the host is
$FED_KEYSTONE_HOST only because Red Hat OpenStack Platform director co-locates both
keystone and horizon on the same host. If horizon is running on a different host to keystone,
then you will need to adjust accordingly.

federation:sso_callback_template - The absolute path to a HTML file used as a Single Sign-
On callback handler. This page is expected to redirect the user from keystone back to a trusted
dashboard host, by form encoding a token in a POST request. Keystone’s default value should
be sufficient for most deployments: /etc/keystone/sso_callback_template.html

federation:remote_id_attribute - The value used to obtain the entity ID of the Identity
Provider. For mod_auth_mellon you will use MELLON_IDP. Note that this is set in the mellon
configuration file using the MellonIdP IDP directive.

1. Create the fed_deployment/puppet_override_keystone.yaml file with this content:

parameter_defaults:
 controllerExtraConfig:
 keystone::using_domain_config: true
 keystone::config::keystone_config:
 identity/domain_configurations_from_database:
 value: true
 auth/methods:
 value: external,password,token,oauth1,mapped
 federation/trusted_dashboard:
 value: https://$FED_KEYSTONE_HOST/dashboard/auth/websso/
 federation/sso_callback_template:
 value: /etc/keystone/sso_callback_template.html
 federation/remote_id_attribute:
 value: MELLON_IDP

2. Towards the end of the overcloud_deploy.sh script, add the file you just created. It should
be the last -e argument. For example:

-e /home/stack/fed_deployment/puppet_override_keystone.yaml \
--log-file overcloud_deployment_14.log &> overcloud_install.log

NOTE

You can use the configure-federation script to perform the above step: $./configure-
federation puppet-override-keystone

CHAPTER 4. CONFIGURE OPENSTACK FOR FEDERATION

25

4.16. DEPLOY THE MELLON CONFIGURATION ARCHIVE

You will use swift artifacts to install the mellon configuration files on each controller node. For example:

$ source ~/stackrc
$ upload-swift-artifacts -f fed_deployment/rhsso_config.tar.gz

NOTE

You can use the configure-federation script to perform the above step: $./configure-
federation deploy-mellon-configuration

4.17. REDEPLOY THE OVERCLOUD

In earlier steps you made changes to the Puppet YAML configuration files and swift artifacts. These
changes can now be applied using this command:

$./overcloud_deploy.sh

NOTE

In later steps, other configuration changes will be made to the overcloud controller
nodes. Re-running Puppet using the overcloud_deploy.sh script may overwrite some of
these changes. You should avoid applying the Puppet configuration from this point
forward to avoid losing any manual edits that were made to the configuration files on the
overcloud controller nodes.

4.18. USE PROXY PERSISTENCE FOR KEYSTONE ON EACH
CONTROLLER

With high availability, any one of the multiple back-end servers can be expected to field a request.
Because of the number of redirections used by SAML, and the fact each of those redirections involves
state information, it is vital that the same server processes all the transactions. In addition, a session will
be established by mod_auth_mellon. Currently mod_auth_mellon is not capable of sharing its state
information across multiple servers, so you must configure HAProxy to always direct requests from a
client to the same server each time.

HAProxy can bind a client to the same server using either affinity or persistence. This article on HAProxy
Sticky Sessions provides valuable background material.

The difference between persistence and affinity is that affinity is used when information from a layer
below the application layer is used to pin a client request to a single server. Persistence is used when the
application layer information binds a client to a single server sticky session. The main advantage of
persistence over affinity is that it is much more accurate.

Persistence is implemented through the use of cookies. The HAProxy cookie directive names the
cookie that will be used for persistence, along with parameters controlling its use. The HAProxy server
directive has a cookie option that sets the value of the cookie, which should be set to the name of the
server. If an incoming request does not have a cookie identifying the back-end server, then HAProxy
selects a server based on its configured balancing algorithm. HAProxy ensures that the cookie is set to
the name of the selected server in the response. If the incoming request has a cookie identifying a back-
end server then HAProxy automatically selects that server to handle the request.

Red Hat OpenStack Platform 16.0 Federate with Identity Service

26

http://blog.haproxy.com/2012/03/29/load-balancing-affinity-persistence-sticky-sessions-what-you-need-to-know/

1. To enable persistence in the keystone_public block of the /var/lib/config-data/puppet-
generated/haproxy/etc/haproxy/haproxy.cfg configuration file, add this line:

cookie SERVERID insert indirect nocache

This setting states that SERVERID will be the name of the persistence cookie.

2. Next, you must edit each server line and add cookie <server-name> as an additional option.
For example:

server controller-0 cookie controller-0
server controller-1 cookie controller-1

Note that the other parts of the server directive have been omitted for clarity.

4.19. CREATE FEDERATED RESOURCES

You might recall from the introduction that you are going to follow the federation example in the Create
keystone groups and assign roles section of the keystone federation documentation.

1. Perform the following steps on the undercloud node as the stack user (after sourcing the
overcloudrc.v3 file):

$ openstack domain create federated_domain
$ openstack project create --domain federated_domain federated_project
$ openstack group create federated_users --domain federated_domain
$ openstack role add --group federated_users --group-domain federated_domain --domain
federated_domain _member_
$ openstack role add --group federated_users --group-domain federated_domain --project
federated_project _member_

NOTE

You can use the configure-federation script to perform the above step: $./configure-
federation create-federated-resources

4.20. CREATE THE IDENTITY PROVIDER IN OPENSTACK

The IdP needs to be registered in keystone, which creates a binding between the entityID in the SAML
assertion and the name of the IdP in keystone.

You will need to locate the entityID of the RH-SSO IdP. This value is located in the IdP metadata which
was obtained when keycloak-httpd-client-install was run. The IdP metadata is stored in the
/var/lib/config-data/puppet-
generated/keystone/etc/httpd/saml2/v3_keycloak_$FED_RHSSO_REALM_idp_metadata.xml file. In
an earlier step you retrieved the mellon configuration archive and extracted it to the fed_deployment
work area. As a result, you can find the IdP metadata in fed_deployment/var/lib/config-data/puppet-
generated/keystone/etc/httpd/saml2/v3_keycloak_$FED_RHSSO_REALM_idp_metadata.xml. In
the IdP metadata file, you will find a <EntityDescriptor> element with a entityID attribute. You need the
value of the entityID attribute, and for example purposes this guide will assume it has been stored in the
$FED_IDP_ENTITY_ID variable. You can name your IdP rhsso, which is assigned to the variable
$FED_OPENSTACK_IDP_NAME. For example:

CHAPTER 4. CONFIGURE OPENSTACK FOR FEDERATION

27

http://docs.openstack.org/developer/keystone/federation/federated_identity.html#create-keystone-groups-and-assign-roles

$ openstack identity provider create --remote-id $FED_IDP_ENTITY_ID
$FED_OPENSTACK_IDP_NAME

NOTE

You can use the configure-federation script to perform the above step: $./configure-
federation openstack-create-idp

4.21. CREATE THE MAPPING FILE AND UPLOAD TO KEYSTONE

Keystone performs a mapping to match the IdP’s SAML assertion into a format that keystone can
understand. The mapping is performed by keystone’s mapping engine and is based on a set of mapping
rules that are bound to the IdP.

1. These are the mapping rules used in this example (as described in the introduction):

[
 {
 "local": [
 {
 "user": {
 "name": "{0}"
 },
 "group": {
 "domain": {
 "name": "federated_domain"
 },
 "name": "federated_users"
 }
 }
],
 "remote": [
 {
 "type": "MELLON_NAME_ID"
 },
 {
 "type": "MELLON_groups",
 "any_one_of": ["openstack-users"]
 }
]
 }
]

This mapping file contains only one rule. Rules are divided into two parts: local and remote. The
mapping engine works by iterating over the list of rules until one matches, and then executing it. A rule is
considered a match only if all the conditions in the remote part of the rule match. In this example the
remote conditions specify:

1. The assertion must contain a value called MELLON_NAME_ID.

2. The assertion must contain a values called MELLON_groups and at least one of the groups in
the group list must be openstack-users.

If the rule matches, then:

Red Hat OpenStack Platform 16.0 Federate with Identity Service

28

1. The keystone user name will be assigned the value from MELLON_NAME_ID.

2. The user will be assigned to the keystone group federated_users in the Default domain.

In summary, if the IdP successfully authenticates the user, and the IdP asserts that user belongs to the
group openstack-users, then keystone will allow that user to access OpenStack with the privileges
bound to the federated_users group in keystone.

4.21.1. Create the mapping

1. To create the mapping in keystone, create a file containing the mapping rules and then upload it
into keystone, giving it a reference name. Create the mapping file in the fed_deployment
directory (for example, in
fed_deployment/mapping_${FED_OPENSTACK_IDP_NAME}_saml2.json), and assign the
name $FED_OPENSTACK_MAPPING_NAME to the mapping rules. For example:

$ openstack mapping create --rules fed_deployment/mapping_rhsso_saml2.json
$FED_OPENSTACK_MAPPING_NAME

NOTE

You can use the configure-federation script to perform the above procedure as two
steps:

$./configure-federation create-mapping
$./configure-federation openstack-create-mapping

create-mapping - creates the mapping file.

openstack-create-mapping - performs the upload of the file.

4.22. CREATE A KEYSTONE FEDERATION PROTOCOL

1. Keystone uses the Mapped protocol to bind an IdP to a mapping. To establish this binding:

$ openstack federation protocol create \
--identity-provider $FED_OPENSTACK_IDP_NAME \
--mapping $FED_OPENSTACK_MAPPING_NAME \
mapped"

NOTE

You can use the configure-federation script to perform the above step: $./configure-
federation openstack-create-protocol

4.23. FULLY-QUALIFY THE KEYSTONE SETTINGS

1. On each controller node, edit /var/lib/config-data/puppet-
generated/keystone/etc/httpd/conf.d/10-keystone_wsgi_main.conf to confirm that the
ServerName directive inside the VirtualHost block includes the HTTPS scheme, the public
hostname, and the public port. You must also enable the UseCanonicalName directive. For
example:

CHAPTER 4. CONFIGURE OPENSTACK FOR FEDERATION

29

<VirtualHost>
 ServerName https:$FED_KEYSTONE_HOST:$FED_KEYSTONE_HTTPS_PORT
 UseCanonicalName On
 ...
</VirtualHost>

NOTE

Be sure to substitute the $FED_ variables with the values specific to your deployment.

4.24. CONFIGURE HORIZON TO USE FEDERATION

1. On each controller node, edit /var/lib/config-data/puppet-generated/horizon/etc/openstack-
dashboard/local_settings and make sure the following configuration values are set:

OPENSTACK_KEYSTONE_URL =
"https://$FED_KEYSTONE_HOST:$FED_KEYSTONE_HTTPS_PORT/v3"
OPENSTACK_KEYSTONE_DEFAULT_ROLE = "_member_"
WEBSSO_ENABLED = True
WEBSSO_INITIAL_CHOICE = "mapped"
WEBSSO_CHOICES = (
 ("mapped", _("RH-SSO")),
 ("credentials", _("Keystone Credentials")),
)

NOTE

Be sure to substitute the $FED_ variables with the values specific to your deployment.

4.25. CONFIGURE HORIZON TO USE THE X-FORWARDED-PROTO
HTTP HEADER

1. On each controller node, edit /var/lib/config-data/puppet-generated/horizon/etc/openstack-
dashboard/local_settings and uncomment the line:

#SECURE_PROXY_SSL_HEADER = ('HTTP_X_FORWARDED_PROTO', 'https')

NOTE

You must restart a container for configuration changes to take effect.

Red Hat OpenStack Platform 16.0 Federate with Identity Service

30

CHAPTER 5. TROUBLESHOOTING

5.1. TEST THE KEYSTONE MAPPING RULES

It is recommended you verify that your mapping rules work as expected. The keystone-manage
command line tool allows you to exercise a set of mapping rules (read from a file) against assertion data
which is also read from a file. For example:

1. The file mapping_rules.json has this content:

[
 {
 "local": [
 {
 "user": {
 "name": "{0}"
 },
 "group": {
 "domain": {
 "name": "Default"
 },
 "name": "federated_users"
 }
 }
],
 "remote": [
 {
 "type": "MELLON_NAME_ID"
 },
 {
 "type": "MELLON_groups",
 "any_one_of": ["openstack-users"]
 }
]
 }
]

2. The file assertion_data.txt has this content:

MELLON_NAME_ID: 'G-90eb44bc-06dc-4a90-aa6e-fb2aa5d5b0de
MELLON_groups: openstack-users;ipausers

3. If you then run this command:

$ keystone-manage mapping_engine --rules mapping_rules.json --input assertion_data.txt

4. You should get this mapped result:

{
 "group_ids": [],
 "user": {
 "domain": {
 "id": "Federated"
 },

CHAPTER 5. TROUBLESHOOTING

31

 "type": "ephemeral",
 "name": "'G-90eb44bc-06dc-4a90-aa6e-fb2aa5d5b0de"
 },
 "group_names": [
 {
 "domain": {
 "name": "Default"
 },
 "name": "federated_users"
 }
]
}

NOTE

You can also include the --engine-debug command line argument, which will output
diagnostic information describing how the mapping rules are being evaluated.

5.2. DETERMINE THE ACTUAL ASSERTION VALUES RECEIVED BY
KEYSTONE

The mapped assertion values that keystone will use are passed as CGI environment variables. To
retrieve a dump of those environment variables:

1. Create the following test script in /var/www/cgi-bin/keystone/test with the following content:

import pprint
import webob
import webob.dec

@webob.dec.wsgify
def application(req):
 return webob.Response(pprint.pformat(req.environ),
 content_type='application/json')

2. Edit the /var/lib/config-data/puppet-generated/keystone/etc/httpd/conf.d/10-
keystone_wsgi_main.conf file setting it to run the test script by temporarily modifying the
WSGIScriptAlias directive:

WSGIScriptAlias "/v3/auth/OS-FEDERATION/websso/mapped" "/var/www/cgi-
bin/keystone/test"

3. Restart httpd:

systemctl restart httpd

4. Attempt to login, and review the information that the script dumps out. When finished,
remember to restore the WSGIScriptAlias directive, and restart the HTTPD service again.

5.3. REVIEW THE SAML MESSAGES EXCHANGED BETWEEN THE SP
AND IDP

Red Hat OpenStack Platform 16.0 Federate with Identity Service

32

The SAMLTracer Firefox add-on is a useful tool for capturing and displaying the SAML messages
exchanged between the SP and the IdP.

1. Install SAMLTracer from this URL: https://addons.mozilla.org/en-US/firefox/addon/saml-
tracer/

2. Enable SAMLTracer from the Firefox menu. A SAMLTracer pop-up window will appear in which
all browser requests are displayed. If a request is detected as a SAML message a special SAML
icon is added to the request.

3. Initiate a SSO login from the Firefox browser.

4. In the SAMLTracer window find the first SAML message and click on it. Use the SAML tab in
the window to see the decoded SAML message (note, the tool is not capable of decrypting
encrypted content in the body of the message, if you need to see encrypted content you must
disable encryption in the metadata). The first SAML message should be an AuthnRequest sent
by the SP to the IdP. The second SAML message should be the assertion response sent by the
IdP. Since the SAML HTTP-Redirect profile is being used the Assertion response will be
wrapped in a POST. Click on the SAML tab to see the contents of the assertion.

CHAPTER 5. TROUBLESHOOTING

33

https://addons.mozilla.org/en-US/firefox/addon/saml-tracer/

CHAPTER 6. THE CONFIGURE-FEDERATION FILE

#!/bin/sh

prog_name=`basename $0`
action=
dry_run=0
verbose=0

base_dir=$(pwd)
stage_dir="${base_dir}/fed_deployment"

mellon_root="/v3"
mellon_endpoint="mellon"
mellon_app_name="v3"

overcloud_deploy_script="overcloud_deploy.sh"
overcloudrc_file="./overcloudrc"

function cmd_template {
 local status=0
 local cmd="$1"
 if [$verbose -ne 0 -o $dry_run -ne 0]; then
 echo $cmd
 fi
 if [$dry_run -ne 0]; then
 return $status
 fi

 $cmd
 status=$?
 if [$status -ne 0]; then
 (>&2 echo -e "ERROR cmd \"$cmd\" failed\nstatus = $status")
 fi
 return $status
}

function cmds_template {
 local return_status=0
 declare -a cmds=(
 "date"
 "ls xxx"
 "head $0"
)

 if [$dry_run -ne 0]; then
 for cmd in "${cmds[@]}"; do
 echo $cmd
 done
 else
 for cmd in "${cmds[@]}"; do
 if [$verbose -ne 0]; then
 echo $cmd
 fi

Red Hat OpenStack Platform 16.0 Federate with Identity Service

34

 $cmd
 status=$?
 if [$status -ne 0]; then
 (>&2 echo -e "ERROR cmd \"$cmd\" failed\nstatus = $status")
 return_status=$status
 fi
 done
 fi
 return $return_status
}

function show_variables {
 echo "base_dir: $base_dir"
 echo "stage_dir: $stage_dir"
 echo "config_tar_filename: $config_tar_filename"
 echo "config_tar_pathname: $config_tar_pathname"
 echo "overcloud_deploy_script: $overcloud_deploy_script"
 echo "overcloudrc_file: $overcloudrc_file"

 echo "puppet_override_apache_pathname: $puppet_override_apache_pathname"
 echo "puppet_override_keystone_pathname: $puppet_override_keystone_pathname"

 echo

 echo "FED_RHSSO_URL: $FED_RHSSO_URL"
 echo "FED_RHSSO_ADMIN_PASSWORD: $FED_RHSSO_ADMIN_PASSWORD"
 echo "FED_RHSSO_REALM: $FED_RHSSO_REALM"

 echo

 echo "FED_KEYSTONE_HOST: $FED_KEYSTONE_HOST"
 echo "FED_KEYSTONE_HTTPS_PORT: $FED_KEYSTONE_HTTPS_PORT"
 echo "mellon_http_url: $mellon_http_url"
 echo "mellon_root: $mellon_root"
 echo "mellon_endpoint: $mellon_endpoint"
 echo "mellon_app_name: $mellon_app_name"
 echo "mellon_endpoint_path: $mellon_endpoint_path"
 echo "mellon_entity_id: $mellon_entity_id"

 echo

 echo "FED_OPENSTACK_IDP_NAME: $FED_OPENSTACK_IDP_NAME"
 echo "openstack_mapping_pathname: $openstack_mapping_pathname"
 echo "FED_OPENSTACK_MAPPING_NAME: $FED_OPENSTACK_MAPPING_NAME"

 echo

 echo "idp_metadata_filename: $idp_metadata_filename"
 echo "mellon_httpd_config_filename: $mellon_httpd_config_filename"
}

function initialize {
 local return_status=0
 declare -a cmds=(
 "mkdir -p $stage_dir"
)

CHAPTER 6. THE CONFIGURE-FEDERATION FILE

35

 if [$dry_run -ne 0]; then
 for cmd in "${cmds[@]}"; do
 echo $cmd
 done
 else
 for cmd in "${cmds[@]}"; do
 if [$verbose -ne 0]; then
 echo $cmd
 fi
 $cmd
 status=$?
 if [$status -ne 0]; then
 (>&2 echo -e "ERROR cmd \"$cmd\" failed\nstatus = $status")
 return_status=$status
 fi
 done
 fi
 return $return_status
}

function copy_helper_to_controller {
 local status=0
 local controller=${1:-"controller-0"}
 local cmd="scp configure-federation fed_variables heat-admin@${controller}:/home/heat-admin"
 if [$verbose -ne 0 -o $dry_run -ne 0]; then
 echo $cmd
 fi
 if [$dry_run -ne 0]; then
 return $status
 fi

 $cmd
 status=$?
 if [$status -ne 0]; then
 (>&2 echo -e "ERROR cmd \"$cmd\" failed\nstatus = $status")
 fi
 return $status
}

function install_mod_auth_mellon {
 local status=0
 local cmd="sudo dnf -y install mod_auth_mellon"

 if [$verbose -ne 0 -o $dry_run -ne 0]; then
 echo $cmd
 fi
 if [$dry_run -ne 0]; then
 return $status
 fi

 $cmd
 status=$?
 if [$status -ne 0]; then
 (>&2 echo -e "ERROR cmd \"$cmd\" failed\nstatus = $status")
 fi

Red Hat OpenStack Platform 16.0 Federate with Identity Service

36

 return $status
}

function create_ipa_service_account {
 # Note, after setting up the service account it can be tested
 # by performing a user search like this:
 # ldapsearch -H $ldap_url -x -D "$service_dn" -w "$FED_IPA_RHSSO_SERVICE_PASSWD" -b
"cn=users,cn=accounts,$FED_IPA_BASE_DN"

 local status=0
 local ldap_url="ldaps://$FED_IPA_HOST"
 local dir_mgr_dn="cn=Directory Manager"
 local service_name="rhsso"
 local service_dn="uid=$service_name,cn=sysaccounts,cn=etc,$FED_IPA_BASE_DN"
 local cmd="ldapmodify -H \"$ldap_url\" -x -D \"$dir_mgr_dn\" -w \"$FED_IPA_ADMIN_PASSWD\""

 read -r -d '' contents <<EOF
dn: $service_dn
changetype: add
objectclass: account
objectclass: simplesecurityobject
uid: $service_name
userPassword: $FED_IPA_RHSSO_SERVICE_PASSWD
passwordExpirationTime: 20380119031407Z
nsIdleTimeout: 0

EOF

 if [$verbose -ne 0 -o $dry_run -ne 0]; then
 echo $cmd
 echo -e "$contents"
 fi
 if [$dry_run -ne 0]; then
 return $status
 fi

 sh <<< "$cmd <<< \"$contents\""
 status=$?
 if [$status -ne 0]; then
 (>&2 echo -e "ERROR cmd \"$cmd\" failed\nstatus = $status")
 fi

 return $status
}

function client_install {
 local status=0
 local cmd_client_install="sudo dnf -y install keycloak-httpd-client-install"
 local cmd="sudo keycloak-httpd-client-install \
 --client-originate-method registration \
 --mellon-https-port $FED_KEYSTONE_HTTPS_PORT \
 --mellon-hostname $FED_KEYSTONE_HOST \
 --mellon-root $mellon_root \
 --keycloak-server-url $FED_RHSSO_URL \

CHAPTER 6. THE CONFIGURE-FEDERATION FILE

37

 --keycloak-admin-password $FED_RHSSO_ADMIN_PASSWORD \
 --app-name $mellon_app_name \
 --keycloak-realm $FED_RHSSO_REALM \
 -l "/v3/auth/OS-FEDERATION/websso/mapped" \
 -l "/v3/auth/OS-FEDERATION/identity_providers/rhsso/protocols/mapped/websso" \
 -l "/v3/OS-FEDERATION/identity_providers/rhsso/protocols/mapped/auth"
"
 if [$verbose -ne 0 -o $dry_run -ne 0]; then
 echo $cmd_client_install
 echo $cmd
 fi
 if [$dry_run -ne 0]; then
 return $status
 fi

 $cmd_client_install
 status=$?
 if [$status -ne 0]; then
 (>&2 echo -e "ERROR cmd \"$cmd_client_install\" failed\nstatus = $status")
 else
 $cmd
 status=$?
 if [$status -ne 0]; then
 (>&2 echo -e "ERROR cmd \"$cmd\" failed\nstatus = $status")
 fi
 fi
 return $status
}

function create_sp_archive {
 # Note, we put the exclude patterns in a file because it is
 # insanely difficult to put --exclude patttern in the $cmd shell
 # variable and get the final quoting correct.

 local status=0
 local cmd="tar -cvzf $config_tar_pathname --exclude-from $stage_dir/tar_excludes /var/lib/config-
data/puppet-generated/keystone/etc/httpd/saml2 /var/lib/config-data/puppet-
generated/keystone/etc/httpd/conf.d/$mellon_httpd_config_filename"
 if [$verbose -ne 0 -o $dry_run -ne 0]; then
 echo $cmd
 fi
 if [$dry_run -ne 0]; then
 return $status
 fi

 cat <<'EOF' > $stage_dir/tar_excludes
*.orig
*~
EOF

 $cmd
 status=$?
 if [$status -ne 0]; then
 (>&2 echo -e "ERROR cmd \"$cmd\" failed\nstatus = $status")
 fi
 return $status

Red Hat OpenStack Platform 16.0 Federate with Identity Service

38

}

function fetch_sp_archive {
 local return_status=0
 declare -a cmds=(
 "scp heat-admin@controller-0:/home/heat-admin/fed_deployment/$config_tar_filename
$stage_dir"
 "tar -C $stage_dir -xvf $config_tar_pathname"
)

 if [$dry_run -ne 0]; then
 for cmd in "${cmds[@]}"; do
 echo $cmd
 done
 else
 for cmd in "${cmds[@]}"; do
 if [$verbose -ne 0]; then
 echo $cmd
 fi
 $cmd
 status=$?
 if [$status -ne 0]; then
 (>&2 echo -e "ERROR cmd \"$cmd\" failed\nstatus = $status")
 return_status=$status
 fi
 done
 fi
 return $return_status
}

function deploy_mellon_configuration {
 local status=0
 local cmd="upload-swift-artifacts -f $config_tar_pathname"
 if [$verbose -ne 0 -o $dry_run -ne 0]; then
 echo $cmd
 fi
 if [$dry_run -ne 0]; then
 return $status
 fi

 $cmd
 status=$?
 if [$status -ne 0]; then
 (>&2 echo -e "ERROR cmd \"$cmd\" failed\nstatus = $status")
 fi
 return $status
}

function idp_entity_id {
 local metadata_file=${1:-$idp_metadata_filename}

 # Extract the entitID from the metadata file, should really be parsed
 # with an XML xpath but a simple string match is probably OK

 entity_id=`sed -rne 's/^.*entityID="([^"]*)".*$/\1/p' ${metadata_file}`
 status=$?

CHAPTER 6. THE CONFIGURE-FEDERATION FILE

39

 if [$status -ne 0 -o "$entity_id"x = "x"]; then
 (>&2 echo -e "ERROR search for entityID in ${metadata_file} failed\nstatus = $status")
 return 1
 fi
 echo $entity_id
 return 0
}

function append_deploy_script {
 local status=0
 local deploy_script=$1
 local extra_line=$2
 local count

 count=$(grep -c -e "$extra_line" $deploy_script)
 if [$count -eq 1]; then
 echo -e "SKIP appending:\n$extra_line"
 echo "already present in $deploy_script"
 return $status
 elif [$count -gt 1]; then
 status=1
 (>&2 echo -e "ERROR multiple copies of line in ${deploy_script}\nstatus =
$status\nline=$extra_line")
 return $status
 fi

 if [$verbose -ne 0 -o $dry_run -ne 0]; then
 echo "appending $deploy_script with:"
 echo -e $extra_line
 fi
 if [$dry_run -ne 0]; then
 return $status
 fi

 # insert line after last -e line already in script
 #
 # This is not easy with sed, we'll use tac and awk instead. Here
 # is how this works: The logic is easier if you insert before the
 # first line rather than trying to find the last line and insert
 # after it. We use tac to reverse the lines in the file. Then the
 # awk script looks for the candidate line. If found it outputs the
 # line we're adding, sets a flag (p) to indicate it's already been
 # printed. The "; 1" pattern always output the input line. Then we
 # run the output through tac again to set things back in the
 # original order.

 local tmp_file=$(mktemp)

 tac $deploy_script | awk "!p && /^-e/{print \"${extra_line} \\\\\"; p=1}; 1" | tac > $tmp_file

 count=$(grep -c -e "${extra_line}" $tmp_file)
 if [$count -ne 1]; then
 status=1
 fi
 if [$status -ne 0]; then
 rm $tmp_file

Red Hat OpenStack Platform 16.0 Federate with Identity Service

40

 (>&2 echo -e "ERROR failed to append ${deploy_script}\nstatus = $status\nline=$extra_line")
 else
 mv $tmp_file $deploy_script
 fi

 return $status
}

function puppet_override_apache {
 local status=0
 local pathname=${1:-$puppet_override_apache_pathname}
 local deploy_cmd="-e $pathname"

 read -r -d '' contents <<'EOF'
parameter_defaults:
 ControllerExtraConfig:
 apache::purge_configs: false
EOF

 if [$verbose -ne 0 -o $dry_run -ne 0]; then
 echo "writing pathname = $pathname with contents"
 echo -e "$contents"
 fi
 if [$dry_run -ne 0]; then
 return $status
 fi

 echo -e "$contents" > $pathname
 status=$?
 if [$status -ne 0]; then
 (>&2 echo -e "ERROR failed to write ${pathname}\nstatus = $status")
 fi

 append_deploy_script $overcloud_deploy_script "$deploy_cmd"
 status=$?

 return $status
}

function puppet_override_keystone {
 local status=0
 local pathname=${1:-$puppet_override_keystone_pathname}
 local deploy_cmd="-e $pathname"

 read -r -d '' contents <<EOF
parameter_defaults:
 controllerExtraConfig:
 keystone::using_domain_config: true
 keystone::config::keystone_config:
 identity/domain_configurations_from_database:
 value: true
 auth/methods:
 value: external,password,token,oauth1,mapped
 federation/trusted_dashboard:
 value: https://$FED_KEYSTONE_HOST/dashboard/auth/websso/

CHAPTER 6. THE CONFIGURE-FEDERATION FILE

41

 federation/sso_callback_template:
 value: /etc/keystone/sso_callback_template.html
 federation/remote_id_attribute:
 value: MELLON_IDP

EOF

 if [$verbose -ne 0 -o $dry_run -ne 0]; then
 echo "writing pathname = $pathname with contents"
 echo -e "$contents"
 fi
 if [$dry_run -ne 0]; then
 return $status
 fi

 echo -e "$contents" > $pathname
 status=$?
 if [$status -ne 0]; then
 (>&2 echo -e "ERROR failed to write ${pathname}\nstatus = $status")
 fi

 append_deploy_script $overcloud_deploy_script "$deploy_cmd"
 status=$?

 return $status
}

function create_federated_resources {
 # follow example in Keystone federation documentation
 # http://docs.openstack.org/developer/keystone/federation/federated_identity.html#create-
keystone-groups-and-assign-roles
 local return_status=0
 declare -a cmds=(
 "openstack domain create federated_domain"
 "openstack project create --domain federated_domain federated_project"
 "openstack group create federated_users --domain federated_domain"
 "openstack role add --group federated_users --group-domain federated_domain --domain
federated_domain _member_"
 "openstack role add --group federated_users --project federated_project Member"
)

 if [$dry_run -ne 0]; then
 for cmd in "${cmds[@]}"; do
 echo $cmd
 done
 else
 for cmd in "${cmds[@]}"; do
 if [$verbose -ne 0]; then
 echo $cmd
 fi
 $cmd
 status=$?
 if [$status -ne 0]; then
 (>&2 echo -e "ERROR cmd \"$cmd\" failed\nstatus = $status")
 return_status=$status
 fi

Red Hat OpenStack Platform 16.0 Federate with Identity Service

42

 done
 fi
 return $return_status
}

function create_mapping {
 # Matches documentation
 # http://docs.openstack.org/developer/keystone/federation/federated_identity.html#create-
keystone-groups-and-assign-roles
 local status=0
 local pathname=${1:-$openstack_mapping_pathname}

 read -r -d '' contents <<'EOF'
[
 {
 "local": [
 {
 "user": {
 "name": "{0}"
 },
 "group": {
 "domain": {
 "name": "federated_domain"
 },
 "name": "federated_users"
 }
 }
],
 "remote": [
 {
 "type": "MELLON_NAME_ID"
 },
 {
 "type": "MELLON_groups",
 "any_one_of": ["openstack-users"]
 }
]
 }
]
EOF

 if [$verbose -ne 0 -o $dry_run -ne 0]; then
 echo "writing pathname = $pathname with contents"
 echo -e "$contents"
 fi
 if [$dry_run -ne 0]; then
 return $status
 fi

 echo -e "$contents" > $pathname
 status=$?
 if [$status -ne 0]; then
 (>&2 echo -e "ERROR failed to write ${pathname}\nstatus = $status")
 fi

CHAPTER 6. THE CONFIGURE-FEDERATION FILE

43

 return $status
}

function create_v3_rcfile {
 local status=0
 local input_file=${1:-$overcloudrc_file}
 local output_file="${input_file}.v3"

 source $input_file
 #clear the old environment
 NEW_OS_AUTH_URL=`echo $OS_AUTH_URL | sed 's!v2.0!v3!'`

 read -r -d '' contents <<EOF
for key in \$(set | sed 's!=.*!!g' | grep -E '^OS_') ; do unset $key ; done
export OS_AUTH_URL=$NEW_OS_AUTH_URL
export OS_USERNAME=$OS_USERNAME
export OS_PASSWORD=$OS_PASSWORD
export OS_USER_DOMAIN_NAME=Default
export OS_PROJECT_DOMAIN_NAME=Default
export OS_PROJECT_NAME=$OS_TENANT_NAME
export OS_IDENTITY_API_VERSION=3
EOF

 if [$verbose -ne 0 -o $dry_run -ne 0]; then
 echo "writeing output_file = $output_file with contents:"
 echo -e "$contents"
 fi
 if [$dry_run -ne 0]; then
 return $status
 fi

 echo -e "$contents" > $output_file
 status=$?
 if [$status -ne 0]; then
 (>&2 echo -e "ERROR failed to write ${output_file}\nstatus = $status")
 fi

 return $status
}

function openstack_create_idp {
 local status=0
 local metadata_file="$stage_dir/var/lib/config-data/puppet-
generated/keystone/etc/httpd/saml2/$idp_metadata_filename"
 local entity_id
 entity_id=$(idp_entity_id $metadata_file)
 status=$?
 if [$status -ne 0]; then
 return $status
 fi

 local cmd="openstack identity provider create --remote-id $entity_id
$FED_OPENSTACK_IDP_NAME"

 if [$verbose -ne 0 -o $dry_run -ne 0]; then
 echo $cmd

Red Hat OpenStack Platform 16.0 Federate with Identity Service

44

 fi
 if [$dry_run -ne 0]; then
 return $status
 fi

 $cmd
 status=$?
 if [$status -ne 0]; then
 (>&2 echo -e "ERROR cmd \"$cmd\" failed\nstatus = $status")
 fi
 return $status
}

function openstack_create_mapping {
 local status=0
 local mapping_file=${1:-$openstack_mapping_pathname}
 local mapping_name=${2:-$FED_OPENSTACK_MAPPING_NAME}
 cmd="openstack mapping create --rules $mapping_file $mapping_name"

 if [$verbose -ne 0 -o $dry_run -ne 0]; then
 echo $cmd
 fi
 if [$dry_run -ne 0]; then
 return $status
 fi

 $cmd
 status=$?
 if [$status -ne 0]; then
 (>&2 echo -e "ERROR cmd \"$cmd\" failed\nstatus = $status")
 fi
 return $status
}

function openstack_create_protocol {
 local status=0
 local idp_name=${1:-$FED_OPENSTACK_IDP_NAME}
 local mapping_name=${2:-$FED_OPENSTACK_MAPPING_NAME}
 cmd="openstack federation protocol create --identity-provider $idp_name --mapping
$mapping_name mapped"

 if [$verbose -ne 0 -o $dry_run -ne 0]; then
 echo $cmd
 fi
 if [$dry_run -ne 0]; then
 return $status
 fi

 $cmd
 status=$?
 if [$status -ne 0]; then
 (>&2 echo -e "ERROR cmd \"$cmd\" failed\nstatus = $status")
 fi
 return $status
}

CHAPTER 6. THE CONFIGURE-FEDERATION FILE

45

function usage {
cat <<EOF
$prog_name action

-h --help print usage
-n --dry-run dry run, just print computed command
-v --verbose be chatty

action may be one of:

show-variables
initialize
copy-helper-to-controller
install-mod-auth-mellon
create-ipa-service-account
client-install
create-sp-archive
fetch-sp-archive
deploy-mellon-configuration
puppet-override-apache
puppet-override-keystone
create-federated-resources
create-mapping
create-v3-rcfile
openstack-create-idp
openstack-create-mapping
openstack-create-protocol

EOF
}

#---
options may be followed by one colon to indicate they have a required argument
if ! options=$(getopt -o hnv -l help,dry-run,verbose -- "$@")
then
 # something went wrong, getopt will put out an error message for us
 exit 1
fi

eval set -- "$options"

while [$# -gt 0]
do
 case $1 in
 -h|--help) usage; exit 1 ;;
 -n|--dry-run) dry_run=1 ;;
 -v|--verbose) verbose=1 ;;
 # for options with required arguments, an additional shift is required
 (--) shift; break;;
 (-*) echo "$0: error - unrecognized option $1" 1>&2; exit 1;;
 (*) break;;
 esac
 shift
done
#---
source ./fed_variables

Red Hat OpenStack Platform 16.0 Federate with Identity Service

46

Strip leading and trailing space and slash from these variables
mellon_root=`echo ${mellon_root} | perl -pe 's!^[/]*(.*?)[/]*$!\1!'`
mellon_endpoint=`echo ${mellon_endpoint} | perl -pe 's!^[/]*(.*?)[/]*$!\1!'`

mellon_root="/${mellon_root}"

mellon_endpoint_path="${mellon_root}/${mellon_endpoint}"
mellon_http_url="https://${FED_KEYSTONE_HOST}:${FED_KEYSTONE_HTTPS_PORT}"
mellon_entity_id="${mellon_http_url}${mellon_endpoint_path}/metadata"

openstack_mapping_pathname="${stage_dir}/mapping_${FED_OPENSTACK_IDP_NAME}_saml2.json
"
idp_metadata_filename="${mellon_app_name}_keycloak_${FED_RHSSO_REALM}_idp_metadata.xml"

mellon_httpd_config_filename="${mellon_app_name}_mellon_keycloak_${FED_RHSSO_REALM}.conf"

config_tar_filename="rhsso_config.tar.gz"
config_tar_pathname="${stage_dir}/${config_tar_filename}"
puppet_override_apache_pathname="${stage_dir}/puppet_override_apache.yaml"
puppet_override_keystone_pathname="${stage_dir}/puppet_override_keystone.yaml"

#---

if [$# -lt 1]; then
 echo "ERROR: no action specified"
 exit 1
fi
action="$1"; shift

if [$dry_run -ne 0]; then
 echo "Dry Run Enabled!"
fi

case $action in
 show-var*)
 show_variables ;;
 initialize)
 initialize ;;
 copy-helper-to-controller)
 copy_helper_to_controller "$1" ;;
 install-mod-auth-mellon)
 install_mod_auth_mellon ;;
 create-ipa-service-account)
 create_ipa_service_account ;;
 client-install)
 client_install ;;
 create-sp-archive)
 create_sp_archive ;;
 fetch-sp-archive)
 fetch_sp_archive ;;
 deploy-mellon-configuration)
 deploy_mellon_configuration ;;
 create-v3-rcfile)
 create_v3_rcfile "$1" ;;

CHAPTER 6. THE CONFIGURE-FEDERATION FILE

47

 puppet-override-apache)
 puppet_override_apache "$1" ;;
 puppet-override-keystone)
 puppet_override_keystone "$1" ;;
 create-federated-resources)
 create_federated_resources ;;
 create-mapping)
 create_mapping "$1" ;;
 openstack-create-idp)
 openstack_create_idp "$1" ;;
 openstack-create-mapping)
 openstack_create_mapping "$1" "$2" ;;
 openstack-create-protocol)
 openstack_create_protocol "$1" "$2" ;;
 *)
 echo "unknown action: $action"
 usage
 exit 1
 ;;
esac

Red Hat OpenStack Platform 16.0 Federate with Identity Service

48

CHAPTER 7. THE FED_VARIABLES FILE

FQDN of IPA server
FED_IPA_HOST="jdennis-ipa.example.com"

Base DN of IPA server
FED_IPA_BASE_DN="dc=example,dc=com"

IPA administrator password
FED_IPA_ADMIN_PASSWD="FreeIPA4All"

Password used by RH-SSO service to authenticate to IPA
when RH-SSO obtains user/group information from IPA as part of
RH-SSO's User Federation.
FED_IPA_RHSSO_SERVICE_PASSWD="rhsso-passwd"

RH-SSO server IP address
FED_RHSSO_IP_ADDR="10.0.0.12"

RH-SSO server FQDN
FED_RHSSO_FQDN="jdennis-rhsso-7"

URL used to access the RH-SSO server
FED_RHSSO_URL="https://$FED_RHSSO_FQDN"

Administrator password for RH-SSO server
FED_RHSSO_ADMIN_PASSWORD=FreeIPA4All

Name of the RH-SSO realm
FED_RHSSO_REALM="openstack"

Host name of the mellon server
Note, this is identical to the Keystone server since Keystone is
being front by Apache which is protecting it's resources with mellon.
FED_KEYSTONE_HOST="overcloud.localdomain"

Port number mellon is running on the FED_KEYSTONE_HOST
Note, this is identical to the Keystone server port
FED_KEYSTONE_HTTPS_PORT=13000

Name assigned in OpenStack to our IdP
FED_OPENSTACK_IDP_NAME="rhsso"

Name of our Keystone mapping rules
FED_OPENSTACK_MAPPING_NAME="${FED_OPENSTACK_IDP_NAME}_mapping"

CHAPTER 7. THE FED_VARIABLES FILE

49

	Table of Contents
	CHAPTER 1. OVERVIEW
	1.1. OPERATIONAL GOALS
	1.2. ASSUMPTIONS
	1.3. PREREQUISITES
	1.4. ACCESSING THE OPENSTACK NODES
	1.5. UNDERSTANDING HIGH AVAILABILITY
	1.5.1. HAProxy Overview
	1.5.2. Managing Pacemaker Services
	1.5.3. Using the Configuration Script
	1.5.4. Site-specific Values

	1.6. USING A PROXY OR SSL TERMINATOR
	1.6.1. Hostname and Port Considerations

	CHAPTER 2. CONFIGURE RED HAT IDENTITY MANAGEMENT
	2.1. CREATE THE IDM SERVICE ACCOUNT FOR RH-SSO
	2.2. CREATE A TEST USER
	2.3. CREATE AN IDM GROUP FOR OPENSTACK USERS

	CHAPTER 3. CONFIGURE RH-SSO
	3.1. CONFIGURE THE RH-SSO REALM
	3.2. ADD USER ATTRIBUTES FOR SAML ASSERTION
	3.3. ADD GROUP INFORMATION TO THE ASSERTION

	CHAPTER 4. CONFIGURE OPENSTACK FOR FEDERATION
	4.1. DETERMINE THE IP ADDRESS AND FQDN SETTINGS
	4.1.1. Retrieve the IP address
	4.1.2. Set the Host Variables and Name the Host

	4.2. INSTALL HELPER FILES ON UNDERCLOUD-0
	4.3. SET YOUR DEPLOYMENT VARIABLES
	4.4. COPY THE HELPER FILES FROM UNDERCLOUD-0 TO CONTROLLER-0
	4.5. INITIALIZE THE WORKING ENVIRONMENT ON THE UNDERCLOUD
	4.6. INITIALIZE THE WORKING ENVIRONMENT ON CONTROLLER-0
	4.7. INSTALL MOD_AUTH_MELLON ON EACH CONTROLLER NODE
	4.8. USE THE KEYSTONE VERSION 3 API
	4.9. ADD THE RH-SSO FQDN TO EACH CONTROLLER
	4.10. INSTALL AND CONFIGURE MELLON ON THE CONTROLLER NODE
	4.11. EDIT THE MELLON CONFIGURATION
	4.12. CREATE AN ARCHIVE OF THE GENERATED CONFIGURATION FILES
	4.13. RETRIEVE THE MELLON CONFIGURATION ARCHIVE
	4.14. PREVENT PUPPET FROM DELETING UNMANAGED HTTPD FILES
	4.15. CONFIGURE KEYSTONE FOR FEDERATION
	4.16. DEPLOY THE MELLON CONFIGURATION ARCHIVE
	4.17. REDEPLOY THE OVERCLOUD
	4.18. USE PROXY PERSISTENCE FOR KEYSTONE ON EACH CONTROLLER
	4.19. CREATE FEDERATED RESOURCES
	4.20. CREATE THE IDENTITY PROVIDER IN OPENSTACK
	4.21. CREATE THE MAPPING FILE AND UPLOAD TO KEYSTONE
	4.21.1. Create the mapping

	4.22. CREATE A KEYSTONE FEDERATION PROTOCOL
	4.23. FULLY-QUALIFY THE KEYSTONE SETTINGS
	4.24. CONFIGURE HORIZON TO USE FEDERATION
	4.25. CONFIGURE HORIZON TO USE THE X-FORWARDED-PROTO HTTP HEADER

	CHAPTER 5. TROUBLESHOOTING
	5.1. TEST THE KEYSTONE MAPPING RULES
	5.2. DETERMINE THE ACTUAL ASSERTION VALUES RECEIVED BY KEYSTONE
	5.3. REVIEW THE SAML MESSAGES EXCHANGED BETWEEN THE SP AND IDP

	CHAPTER 6. THE CONFIGURE-FEDERATION FILE
	CHAPTER 7. THE FED_VARIABLES FILE

