& RedHat

Red Hat OpenStack Platform 16.0

Deploying Distributed Compute Nodes with
Separate Heat Stacks

Using separate heat stacks to manage your Red Hat Openstack Platform

Last Updated: 2021-08-19

Red Hat OpenStack Platform 16.0 Deploying Distributed Compute Nodes
with Separate Heat Stacks

Using separate heat stacks to manage your Red Hat Openstack Platform

OpenStack Team
rhos-docs@redhat.com

Legal Notice

Copyright © 2021 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

You can deploy Red Hat OpenStack Platform with separate heat stacks to isolate the management
operations that director performs. You can use this technique to scale Compute nodes without
updating the Controller nodes, to deploy multiple Red Hat Ceph Storage clusters, or in distributed
compute node (DCN) sites to reduce network and management dependency on the central data
center. This guide describes how to configure separate heat stacks to manage different node types
in a Red Hat OpenStack Platform deployment.

Table of Contents

Table of Contents

CHAPTER 1. CREATING A DEPLOYMENT WITH SEPARATE HEATSTACKS 3
1.1. USING SEPARATE HEAT STACKS 3
1.2. PREREQUISITES FOR USING SEPARATE HEAT STACKS 3
1.3. LIMITATIONS OF THE EXAMPLE SEPARATE HEAT STACKS DEPLOYMENT 4

CHAPTER 2. DESIGNING YOUR SEPARATE HEAT STACKS DEPLOYMENT ..., 5
2.1. REUSING NETWORK RESOURCES IN MULTIPLE STACKS 5

2.1.1. Using ManageNetworks to reuse network resources 5
2.1.2. Using UUIDs to reuse network resources 6
2.2. SERVICE PLACEMENT 7
2.3. MANAGING SEPARATE HEAT STACKS 7

CHAPTER 3. RETRIEVING THE CONTAINER IMAGES it ittt eiieieeeannns 9

CHAPTER 4. DEPLOYING THE CENTRAL CONTROLLERS ... it eeeieee e 10

CHAPTERGS. DEPLOYING THE HCINODESttt ittt eeiieeereennneeennannnneesennns 12
5.1. CONFIGURING THE DISTRIBUTED COMPUTE NODE ENVIRONMENT FILES 12
5.2. DEPLOYING HCINODES TO THE DISTRIBUTED COMPUTE NODE SITE 13

CHAPTER 6. POST-DEPLOYMENT CONFIGURATION ... ittt eenneieeeannns 16
6.1. CHECKING CONTAINER HEALTH 16

CHAPTER 7. CREATING ADDITIONAL DISTRIBUTED COMPUTENODESITESciiiiiiiiiiiinnnnn.. 17

Red Hat OpenStack Platform 16.0 Deploying Distributed Compute Nodes with Separate Heat Stacks

CHAPTER 1. CREATING A DEPLOYMENT WITH SEPARATE HEAT STACKS

CHAPTER 1. CREATING ADEPLOYMENT WITH SEPARATE

HEAT STACKS

When you use separate heat stacks in your Red Hat OpenStack Platform environment, you can isolate
the management operations that director performs. For example, you can scale Compute nodes without
updating the Controller nodes that the control plane stack manages. You can also use this technique to
deploy multiple Red Hat Ceph Storage clusters.

1.1. USING SEPARATE HEAT STACKS

In a typical Red Hat OpenStack Platform deployment, a single heat stack manages all nodes, including
the control plane (Controllers). You can now use separate heat stacks to address previous architectural
constraints.

Use separate heat stacks for different node types. For example, the control plane, Compute
nodes, and HCI nodes can each be managed by their own stack. This allows you to change or
scale the compute stack without affecting the control plane.

You can use separate heat stacks at the same site to deploy multiple Ceph clusters.

You can use separate heat stacks for disparate availability zones (AZs) within the same data
center.

Separate heat stacks are required for deploying Red Hat OpenStack Platform using a
distributed compute node (DCN) architecture. This reduces network and management
dependencies on the central data center. Each edge site in this architecture must also have its
own AZ from both Compute and Storage nodes.

This feature is available in this release as a Technology Preview, and therefore is not fully
supported by Red Hat. It should only be used for testing, and should not be deployed in a
production environment. For more information about Technology Preview features, see Scope
of Coverage Details.

1.2. PREREQUISITES FOR USING SEPARATE HEAT STACKS

Your environment must meet the following prerequisites before you create a deployment using separate
heat stacks:

A working Red Hat OpenStack Platform 16 undercloud.

For Ceph Storage users: access to Red Hat Ceph Storage 4.

For the central location: three nodes that are capable of serving as central Controller nodes. All
three Controller nodes must be in the same heat stack. You cannot split Controller nodes, or

any of the control plane services, across separate heat stacks.

For the distributed compute node (DCN) site: three nodes that are capable of serving as hyper-
converged infrastructure (HCl) Compute nodes or standard compute nodes.

For each additional DCN site: three HCI compute or Ceph nodes.

All nodes must be pre-provisioned or able to PXE boot from the central deployment network.
You can use a DHCP relay to enable this connectivity for DCNs.

All nodes have been introspected by ironic.

https://access.redhat.com/support/offerings/production/scope_moredetail

Red Hat OpenStack Platform 16.0 Deploying Distributed Compute Nodes with Separate Heat Stacks

1.3. LIMITATIONS OF THE EXAMPLE SEPARATE HEAT STACKS
DEPLOYMENT

This document provides an example deployment that uses separate heat stacks on Red Hat OpenStack
Platform. This example environment has the following limitations:

® |mage service (glance) multi store is not currently available, but it is expected to be available in a
future release. In the example in this guide, Block Storage (cinder) is the only service that uses
Ceph Storage.

® Spine/Leaf networking - The example in this guide does not demonstrate any routing
requirements. Routing requirements are found in most distributed compute node (DCN)
deployments.

® |ronic DHCP Relay - This guide does not include how to configure ironic with a DHCP relay.

® Block Storage (cinder) active/active without Pacemaker is available as technical preview only.

® DCN HCI nodes are available as technical preview only.

CHAPTER 2. DESIGNING YOUR SEPARATE HEAT STACKS DEPLOYMENT

CHAPTER 2. DESIGNING YOUR SEPARATE HEAT STACKS
DEPLOYMENT

To segment your deployment within separate heat stacks, you must first deploy a single overcloud with
the control plane. You can then create separate stacks for the distributed compute node (DCN) sites.
The following example shows separate stacks for different node types:

e Controller nodes: A separate heat stack named central, for example, deploys the controllers.
When you create new heat stacks for the DCN sites, you must create them with data from the
central stack. The Controller nodes must be available for any instance management tasks.

® DCNssites: You can have a separate, uniquely named heat stacks, such as den0, den1, and so on.
Use a DHCP relay to extend the provisioning network to the remote site.

NOTE

To make management simpler, create a separate availability zone (AZ) for each stack.

NOTE

If you use spine/leaf networking, you must use a specific format to define the Storage
and StorageMgmt networks. Define the Storage and StorageMgmt networks as override
values and enclose the values in single quotes. In the following example the storage
network (referred to as the public_network) spans two subnets, is separated by a
comma, and is enclosed in single quotes:

public_network: '172.23.1.0/24,172.23.2.0/24'

I CephAnsibleExtraConfig:

2.1. REUSING NETWORK RESOURCES IN MULTIPLE STACKS

You can configure multiple stacks to use the same network resources, such as VIPs and subnets. You
can duplicate network resources between stacks by using either the ManageNetworks setting or the
external_resource_* fields.

NOTE

Do not use the ManageNetworks setting if you are using the external_resource_* fields.

If you are not reusing networks between stacks, each network that is defined in network_data.yaml
must have a unique name across all deployed stacks. For example, the network name internal_api
cannot be reused between stacks, unless you intend to share the network between the stacks. Give the
network a different name and name_lower property, such as InternalApiCompute0 and
internal_api_compute_0.

2.1.1. Using ManageNetworks to reuse network resources

With the ManageNetworks setting, multiple stacks can use the same network_data.yaml file and the
setting is applied globally to all network resources. The network_data.yaml file defines the network
resources that the stack uses:

I - name: StorageBackup

Red Hat OpenStack Platform 16.0 Deploying Distributed Compute Nodes with Separate Heat Stacks

vip: true

name_lower: storage_backup

ip_subnet: '172.21.1.0/24'

allocation_pools: [{'start’: '171.21.1.4", 'end": '172.21.1.250']
gateway_ip: '172.21.1.1'

Use the following sequence so that the new stack does not manage the existing network resources.

Procedure

1. Deploy the central stack with ManageNetworks: true or [eave unset.
2. Deploy the additional stack.

When you add new network resources, for example when you add new leaves in a spine/leaf deployment,
you must update the central stack with the new network_data.yaml. This is because the central stack
still owns and manages the network resources. After the network resources are available in the central
stack, you can deploy the additional stack to use them.

2.1.2. Using UUIDs to reuse network resources

If you need more control over which networks are reused between stacks, you can use the
external_resource_* field for resources in the network_data.yaml file, including networks, subnets,
segments, or VIPs. These resources are marked as being externally managed, and heat does not perform
any create, update, or delete operations on them.

Add an entry for each required network definition in the network_data.yaml file. The resource is then
available for deployment on the separate stack:

external_resource_network_id: Existing Network UUID
external_resource_subnet_id: Existing Subnet UUID
external_resource_segment_id: Existing Segment UUID
external_resource_vip_id: Existing VIP UUID

This example reuses the internal_api network from the control plane stack in a separate stack.

Procedure

1. ldentify the UUIDs of the related network resources:

$ openstack network show internal_api -c id -f value
$ openstack subnet show internal_api_subnet -c id -f value
$ openstack port show internal_api_virtual_ip -c id -f value

2. Save the values that are shown in the output of the above commands and add them to the
network definition for the internal_api network in the network_data.yaml file for the separate
stack:

- name: InternalApi
external_resource_network_id: 93861871-7814-4dbc-9e6¢c-7f51496b43af
external_resource_subnet_id: c85¢8670-51c1-4b17-a580-1cfb4344de27
external_resource_vip_id: 8bb9d96f-72bf-4964-a05¢c-5d3fed203eb7
name_lower: internal_api
vip: true

CHAPTER 2. DESIGNING YOUR SEPARATE HEAT STACKS DEPLOYMENT

ip_subnet: '172.16.2.0/24'

allocation_pools: [{'start’: '172.16.2.4", 'end": '172.16.2.250'}]

ipv6_subnet: 'fd00:fd00:fd00:2000::/64"'

ipv6_allocation_pools: [{'start": 'fd00:fd00:fd00:2000::10', 'end":
'fd00:fd00:fd00:2000:ffff:ffff:ffff:fffe'}]

mtu: 1400

2.2. SERVICE PLACEMENT

In this configuration, each distributed compute node (DCN) site is deployed within its own availability
zone (AZ) for Compute and Block Storage (cinder):

® Cinder: Each DCN site uses a Block Storage AZ to run the cinder-volume service. The cinder-
volume service is expected to support active/active configuration in a future update.

® Glance: The Image service (glance) uses the Object Storage (swift) back end at the central site.
Any Compute instances that are created in a DCN site AZ use HTTP GET to retrieve the image
from the central site. In a future release, the Image service will use the Ceph RBD back end at
the central site and at DCN sites. Images can then be transported from the central site to the
DCN sites, which means that they can be COW-booted at the DCN location.

® Ceph:In this architecture, Ceph does not run at the central site. Instead, each DCN site runs its
own Ceph cluster that is colocated with the Compute nodes using HCI. The Ceph back end is
only used for Block Storage volumes.

2.3. MANAGING SEPARATE HEAT STACKS

The procedures in this guide show how to deploy three heat stacks: central, dcn0, and dcn1. Red Hat
recommends that you store the templates for each heat stack in a separate directory to keep the
information about each deployment isolated.

Procedure

1. Define the central heat stack:

$ mkdir central
$ touch central/overrides.yaml

2. Extract data from the central heat stack into a common directory for all DCN sites:

$ mkdir decn-common
$ touch decn-common/overrides.yaml
$ touch dcn-common/control-plane-export.yami

The control-plane-export.yaml file is created later by the openstack overcloud export
command. It is in the den-common directory because all DCN deployments in this guide must
use this file.

3. Define the denO site.

$ mkdir den0
$ touch dcn0O/overrides.yaml

Red Hat OpenStack Platform 16.0 Deploying Distributed Compute Nodes with Separate Heat Stacks

NOTE

To deploy more DCN sites, create additional den directories by number.

CHAPTER 3. RETRIEVING THE CONTAINER IMAGES

CHAPTER 3. RETRIEVING THE CONTAINER IMAGES

Use the following procedure, and its example file contents, to retrieve the container images you need
for deployments with separate heat stacks. For more information, see Preparing container images.

Procedure

1. Add your Registry Service Account credentials to containers.yaml.

parameter_defaults:
NeutronMechanismDrivers: ovn
ContainerlmagePrepare:
- push_destination: 192.168.24.1:8787
set:
ceph_namespace: registry.redhat.io/rhceph
ceph_image: rhceph-4-rhel8
ceph_tag: latest
name_prefix: openstack-
namespace: registry.redhat.io/rhosp16-rhel8
tag: latest
ContainerlmageRegistryCredentials:
https://access.redhat.com/RegistryAuthentication
registry.redhat.io:
registry-service-account-username: registry-service-account-password

2. Generate the environment file as ~/containers-env-file.yaml:

$ openstack tripleo container image prepare -e containers.yaml --output-env-file
~/containers-env-file.yaml

In Deploying the central controllers and Deploying HCI nodes to the distributed compute node
(DCN) site, the resulting ~/containers-env-file.yaml file is included as part of the overcloud
deployment procedure.

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.0/html/transitioning_to_containerized_services/obtaining-container-images#preparing-container-images

Red Hat OpenStack Platform 16.0 Deploying Distributed Compute Nodes with Separate Heat Stacks

CHAPTER 4. DEPLOYING THE CENTRAL CONTROLLERS

Deploy the central controller cluster in a similar way to a typical overcloud deployment. This cluster does
not require any Compute nodes, so you can set the Compute count to 0 to override the default of 1.
The central controller has particular storage and Oslo configuration requirements. Use the following
procedure to address these requirements.

Procedure

10

1. Create a file called central/overrides.yaml with settings similar to the following:

parameter_defaults:

NtpServer:
- 0.pool.ntp.org
- 1.pool.ntp.org
ControllerCount: 3
ComputeCount: 0
OvercloudControlFlavor: baremetal
OvercloudComputeFlavor: baremetal
ControllerSchedulerHints:
'capabilities:node': '0-controller-%index%'
GlanceBackend: swift

ComputeCount: 0 is an optional parameter to prevent Compute nodes from being
deployed with the central Controller nodes.

GlanceBackend: swift uses Object Storage (swift) as the Image Service (glance) back
end. Red Hat recommends that the Image service does not use Ceph in this configuration
until multi-backend glance support is available.

The resulting configuration interacts with the distributed compute nodes (DCNs) in the
following ways:

The Image service on the DCN creates a cached copy of the image it receives from the
central Object Storage back end. The Image service uses HTTP to copy the image from
Object Storage to the local disk cache.

Each DCN has its own Object Storage volume service. This means that users can schedule
Object Storage volumes from the central node into different availability zones, because the
Ceph volume service on the DCN uses the local Ceph cluster.

NOTE

The central Controller node must be able to connect to the distributed
compute node (DCN) site. The central Controller node can use a routed
layer 3 connection.

2. Deploy the central Controller node. For example, you can use a deploy.sh file with the following
contents:

#!/bin/bash

STACK=central
source ~/stackrc
time openstack overcloud deploy \

CHAPTER 4. DEPLOYING THE CENTRAL CONTROLLERS

--stack $STACK\

--templates /usr/share/openstack-tripleo-heat-templates/ \

-e /usr/share/openstack-tripleo-heat-templates/environments/podman.yaml \
-e ~/containers-env-file.yaml \

-e ~/central/overrides.yaml

1

Red Hat OpenStack Platform 16.0 Deploying Distributed Compute Nodes with Separate Heat Stacks

CHAPTER 5. DEPLOYING THE HCI NODES

For DCN sites, you can deploy a hyper-converged infrastructure (HCI) stack that uses Compute and
Ceph Storage on a single node. For example, the following diagram shows two DCN stacks named den0
and dcn1, each in their own availability zone (AZ). Each DCN stack has its own Ceph cluster and
Compute services:

Control plane stack: central

Controller nodes

Stack: dcn0 Stack:dcn1l
HCI nodes HCl nodes
Compute Compute
Ceph cluster name: dcn0 Ceph cluster name: dcnl
Availability zone: dcn0 Availability zone: dcnl

The procedures in Configuring the distributed compute node (DCN) environment files and Deploying
HCI nodes to the distributed compute node (DCN) site describe this deployment method. These
procedures demonstrate how to add a new DCN stack to your deployment and reuse the configuration
from the existing heat stack to create new environment files. In the example procedures, the first heat
stack deploys an overcloud within a centralized data center. Another heat stack is then created to
deploy a batch of Compute nodes to a remote physical location.

5.1. CONFIGURING THE DISTRIBUTED COMPUTE NODE
ENVIRONMENT FILES

This procedure retrieves the metadata of your central site and then generates the configuration files
that the distributed compute node (DCN) sites require:

Procedure

1. Export stack information from the central stack. You must deploy the control-plane stack
before running this command:

openstack overcloud export \
--config-download-dir /var/lib/mistral/central \

12

CHAPTER 5. DEPLOYING THE HCI NODES

--stack central \
--output-file ~/dcn-common/control-plane-export.yaml \

IMPORTANT

This procedure creates a new control-plane-export.yaml environment file and uses the
passwords in the plan-environment.yaml from the overcloud. The control-plane-
export.yaml file contains sensitive security data. You can remove the file when you no
longer require it to improve security.

5.2. DEPLOYING HCI NODES TO THE DISTRIBUTED COMPUTE NODE
SITE

This procedure uses the DistributedComputeHCI role to deploy HCI nodes to an availability zone (AZ)
named den0. This role is used specifically for distributed compute HCI nodes.

NOTE

CephMon runs on the HCI nodes and cannot run on the central Controller node.
Additionally, the central Controller node is deployed without Ceph.

Procedure

1. Review the overrides for the distributed compute node (DCN) site in den0/overrides.yamil:

parameter_defaults:
DistributedComputeHCICount: 3
DistributedComputeHCIFlavor: baremetal
DistributedComputeHCISchedulerHints:
'capabilities:node'": '0-ceph-%index%'
CinderStorageAvailabilityZone: dcn0
NovaAZAttach: false

2. Review the proposed Ceph configuration in den0/ceph.yaml.

parameter_defaults:
CephClusterName: dcn0
NovaEnableRbdBackend: false
CephAnsiblePlaybookVerbosity: 3
CephPoolDefaultPgNum: 256
CephPoolDefaultSize: 3
CephAnsibleDisksConfig:
osd_scenario: lvm
osd_objectstore: bluestore
devices:
- /dev/sda
- /dev/sdb
- /dev/sdc
- /dev/sdd
- /dev/sde
- /dev/sdf
- /dev/sdg
- /dev/sdh

13

Red Hat OpenStack Platform 16.0 Deploying Distributed Compute Nodes with Separate Heat Stacks

- /dev/sdi
- /dev/sdj
- /dev/sdk
- /dev/sdl

Everything below this line is for HCI Tuning
CephAnsibleExtraConfig:
ceph_osd_docker_cpu_limit: 1
is_hci: true
CephConfigOverrides:
osd_recovery_op_priority: 3
osd_recovery_max_active: 3
osd _max_backfills: 1
Set relative to your hardware:
DistributedComputeHCIParameters:
NovaReservedHostMemory: 181000
DistributedComputeHCIExtraConfig:
nova::.cpu_allocation_ratio: 8.2

Replace the values for the following parameters with values that suit your environment. For
more information, see the Deploying an overcloud with containerized Red Hat Ceph and
Hyperconverged Infrastructure guides.

o CephAnsibleExtraConfig

e DistributedComputeHCIParameters
o CephPoolDefaultPgNum

o CephPoolDefaultSize

e DistributedComputeHCIExtraConfig

3. Create a new file called nova-az.yaml with the following contents:

resource_registry:

OS::TripleO::Services::NovaAZConfig: /usr/share/openstack-tripleo-heat-
templates/deployment/nova/nova-az-config.yaml
parameter_defaults:

NovaComputeAvailabilityZone: dcn0

RootStackName: central

Provided that the overcloud can access the endpoints that are listed in the centralrc file
created by the central deployment, this command creates an AZ called den0, with the new HCI
Compute nodes added to that AZ during deployment.

4. Run the deploy.sh deployment script for den0:

#!/bin/bash
STACK=dcn0
source ~/stackrc
if [! -e distributed_compute_hci.yaml]]; then
openstack overcloud roles generate DistributedComputeHCI -0
distributed_compute_hci.yaml
fi
time openstack overcloud deploy \

14

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.0/html/deploying_an_overcloud_with_containerized_red_hat_ceph/
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.0/html/hyperconverged_infrastructure_guide/

CHAPTER 5. DEPLOYING THE HCI NODES

--stack $STACK\

--templates /usr/share/openstack-tripleo-heat-templates/ \

-r distributed_compute_hci.yaml \

-e /usr/share/openstack-tripleo-heat-templates/environments/disable-telemetry.yaml \

-e /usr/share/openstack-tripleo-heat-templates/environments/podman.yami \

-e /usr/share/openstack-tripleo-heat-templates/environments/ceph-ansible/ceph-
ansible.yaml \

-e /usr/share/openstack-tripleo-heat-templates/environments/cinder-volume-active-
active.yaml \

-e ~/dcn-common/control-plane-export.yaml \

-e ~/containers-env-file.yaml \

-e ceph.yaml\

-e nova-az.yaml \

-e overrides.yaml|

When the overcloud deployment finishes, see the post-deployment configuration steps and
checks in Chapter 6, Post-deployment configuration.

15

Red Hat OpenStack Platform 16.0 Deploying Distributed Compute Nodes with Separate Heat Stacks

CHAPTER 6. POST-DEPLOYMENT CONFIGURATION

After the overcloud deployment finishes, complete the following steps to validate the functionality.

Procedure

1. Create a test instance in the availability zones. In this example, the new instance runs on the
distributed compute node (DCN). The specific AZ is targeted using the --availability-zone
parameter:

$ openstack server create --flavor m1.tiny --image cirros --network private --security-group
basic dcn-instance --availability-zone dcn0

2. Create a volume on the first availability zone. This volume uses the cinder active/active service
running on the den0 nodes.

I $ openstack volume create --size 1 --availability-zone dcn0 myvol

NOTE

This step depends on the cinder availability zone configuration, which is defined
by CinderStorageAvailabilityZone. For more information, see Deploying
availability zones in the Storage Guide.

You now have two separate HClI stacks, with a Ceph cluster deployed by each one. For more information
on HCI, see Hyperconverged Infrastructure Guide.

6.1. CHECKING CONTAINER HEALTH

Verify that the container is functioning correctly.

Procedure
1. Login to the node that is running the Ceph MON service by using SSH.

2. Run the following command to view container health:
I $ podman exec ceph-mon-$HOSTNAME ceph -s --cluster CLUSTERNAME

Replace CLUSTERNAME with the name of the cluster, for example, den0. The default value is
ceph.

3. Confirm that the health status of the cluster is HEALTH_OK and that all of the OSDs are up.

16

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.0/html-single/storage_guide/index#section-volumes-deploying-azs
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.0/html/hyperconverged_infrastructure_guide/index

CHAPTER 7. CREATING ADDITIONAL DISTRIBUTED COMPUTE NODE SITES

CHAPTER 7. CREATING ADDITIONAL DISTRIBUTED
COMPUTE NODE SITES

A new distributed compute node (DCN) site has its own directory of YAML files on the undercloud. For
more information, see Section 2.3, “Managing separate heat stacks"”. This procedure contains example
commands.

Procedure

1. As the stack user on the undercloud, create a new directory for den1:

$cd~
$ mkdir deni
2. Copy the existing den0 templates to the new directory and replace the den0 strings with den1:
$ cp den0/ceph.yaml deni/ceph.yaml
$ sed s/dcn0/dcn1/g -i deni/ceph.yaml
$ cp dcn0/overrides.yaml dent/overrides.yaml
$ sed s/dcn0/dcni/g -i deni/overrides.yaml
$ sed s/"0-ceph-%index%"/"1-ceph-%index%"/g -i dcn1/overrides.yaml

$ cp dcn0/deploy.sh deni/deploy.sh
$ sed s/dcn0/dcni/g -i deni/deploy.sh

3. Review the files in the den1 directory to confirm that they suit your requirements.

4. Verify that your nodes are available and in Provisioning state:

I $ openstack baremetal node list

5. When your nodes are available, run the deploy.sh for the den1 site:

I $ bash dcn1/deploy.sh

17

	Table of Contents
	CHAPTER 1. CREATING A DEPLOYMENT WITH SEPARATE HEAT STACKS
	1.1. USING SEPARATE HEAT STACKS
	1.2. PREREQUISITES FOR USING SEPARATE HEAT STACKS
	1.3. LIMITATIONS OF THE EXAMPLE SEPARATE HEAT STACKS DEPLOYMENT

	CHAPTER 2. DESIGNING YOUR SEPARATE HEAT STACKS DEPLOYMENT
	2.1. REUSING NETWORK RESOURCES IN MULTIPLE STACKS
	2.1.1. Using ManageNetworks to reuse network resources
	2.1.2. Using UUIDs to reuse network resources

	2.2. SERVICE PLACEMENT
	2.3. MANAGING SEPARATE HEAT STACKS

	CHAPTER 3. RETRIEVING THE CONTAINER IMAGES
	CHAPTER 4. DEPLOYING THE CENTRAL CONTROLLERS
	CHAPTER 5. DEPLOYING THE HCI NODES
	5.1. CONFIGURING THE DISTRIBUTED COMPUTE NODE ENVIRONMENT FILES
	5.2. DEPLOYING HCI NODES TO THE DISTRIBUTED COMPUTE NODE SITE

	CHAPTER 6. POST-DEPLOYMENT CONFIGURATION
	6.1. CHECKING CONTAINER HEALTH

	CHAPTER 7. CREATING ADDITIONAL DISTRIBUTED COMPUTE NODE SITES

