& RedHat

Red Hat OpenStack Platform 16.0

Auto Scaling for Instances

Configuring Auto Scaling in Red Hat OpenStack Platform

Last Updated: 2021-02-16

Red Hat OpenStack Platform 16.0 Auto Scaling for Instances

Configuring Auto Scaling in Red Hat OpenStack Platform

OpenStack Team
rhos-docs@redhat.com

Legal Notice

Copyright © 2021 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Automatically scale out your Compute instances in response to system usage.

Table of Contents

Table of Contents

CHAPTER 1. ABOUT THIS GUIDE ... ittt ettt e eaeeeeseanneeeaaannnneenennnns 3
CHAPTER 2. CONFIGURING AUTO SCALING FORCOMPUTEINSTANCESiiiiiiiiiiiii i, 4
2.1. OVERVIEW OF AUTO SCALING ARCHITECTURE 4
2.1.1. Orchestration 4
2.1.2. Telemetry 4
2.1.3.Key terms 4

2.2. EXAMPLE: AUTO SCALING BASED ON CPU USE 4
2.2.1. Testing auto scaling up instances 9
2.2.2. Automatically scaling down instances 10
2.2.3. Troubleshooting the setup 10

Red Hat OpenStack Platform 16.0 Auto Scaling for Instances

CHAPTER 1. ABOUT THIS GUIDE

CHAPTER 1. ABOUT THIS GUIDE

WARNING

Red Hat is currently reviewing the information and procedures provided in this guide
for this release.

This document is based on the Red Hat OpenStack Platform 12 document, available
at https://access.redhat.com/documentation/en-
us/red_hat_openstack_platform/?version=12.

If you require assistance for the current Red Hat OpenStack Platform release,
please contact Red Hat support.

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/?version=12

Red Hat OpenStack Platform 16.0 Auto Scaling for Instances

CHAPTER 2. CONFIGURING AUTO SCALING FOR COMPUTE
INSTANCES

Automatically scale out your Compute instances in response to heavy system use. You can add pre-
defined rules that consider factors such as CPU or memory use and you can configure Orchestration
(heat) to add and remove additional instances automatically, when they are needed.

2.1. OVERVIEW OF AUTO SCALING ARCHITECTURE

2.1.1. Orchestration

The core component providing auto scaling is Orchestration (heat). Use Orchestration to define rules
using human-readable YAML templates. These rules are applied to evaluate system load based on
Telemetry data to find out whether you need to add more instances into the stack. When the load drops,
Orchestration can automatically remove the unused instances again.

2.1.2. Telemetry

Telemetry monitors the performance of your Red Hat OpenStack Platform environment, collecting data
on CPU, storage, and memory utilization for instances and physical hosts. Orchestration templates
examine Telemetry data to assess whether any pre-defined action should start.

2.1.3. Key terms

Stack

A collection of resources that are necessary to operate an application. A stack can be as simple as a
single instance and its resources, or as complex as multiple instances with all the resource
dependencies that comprise a multi-tier application.

Templates
YAML scripts that define a series of tasks for heat to execute. For example, it is preferable to use
separate templates for certain functions:

® Template file: Define thresholds that Telemetry should respond to, and define the auto
scaling group.

® Environment file: Defines the build information for your environment: which flavor and image
to use, how to configure the virtual network, and what software to install.

2.2. EXAMPLE: AUTO SCALING BASED ON CPU USE

In this example, Orchestration examines Telemetry data, and automatically increases the number of
instances in response to high CPU use. Create a stack template and environment template to define the
rules and subsequent configuration. This example uses existing resources, such as networks), and uses
names that might be different to those in your own environment.

NOTE

P The cpu_util metric was deprecated and removed from Red Hat OpenStack Platform.

Procedure

CHAPTER 2. CONFIGURING AUTO SCALING FOR COMPUTE INSTANCES

1. Create the environment template, describing the instance flavor, networking configuration, and
image type. Save the template in the /home/<users>/stacks/examplei/cirros.yaml file. Replace
the <users variable with a real user name.

heat_template_version: 2016-10-14
description: Template to spawn an cirros instance.

parameters:

metadata:
type: json

image:
type: string
description: image used to create instance
default: cirros

flavor:
type: string
description: instance flavor to be used
default: m1.tiny

key_name:
type: string
description: keypair to be used
default: mykeypair

network:
type: string
description: project network to attach instance to
default: internald

external_network:
type: string
description: network used for floating IPs
default: external_network

resources:
server:
type: OS::Nova::Server
properties:
block_device_mapping:

- device_name: vda
delete_on_termination: true
volume_id: { get_resource: volume }

flavor: {get_param: flavor}
key_name: {get_param: key_name}
metadata: {get_param: metadata}
networks:

- port: { get_resource: port }

port:
type: OS::Neutron::Port
properties:
network: {get_param: network}
security_groups:
- default

floating_ip:
type: OS::Neutron::FloatingIP
properties:
floating_network: {get_param: external_network}

Red Hat OpenStack Platform 16.0 Auto Scaling for Instances

floating_ip_assoc:
type: OS::Neutron::FloatingIPAssociation
properties:
floatingip_id: { get_resource: floating_ip }
port_id: { get_resource: port }

volume:
type: OS::Cinder::Volume
properties:
image: {get_param: image}
size: 1

2. Register the Orchestration resource in ~/stacks/example1/environment.yamil:

resource_registry:

"OS::Nova::Server::Cirros": ~/stacks/examplei/cirros.yaml

3. Create the stack template. Describe the CPU thresholds to watch for and how many instances
to add. An instance group is also created that defines the minimum and maximum number of
instances that can participate in this template.

NOTE

The cpu_util metric was deprecated and removed from Red Hat OpenStack
Platform. To obtain the equivalent functionality, use the cumulative cpu metric
and an archive policy that includes the rate:mean aggregation method. For
example, ceilometer-high-rate and ceilometer-low-rate. You must convert the
threshold value from % to ns to use the cpu metric for the CPU utilisation alarm.
The formula is: time_ns =1,000,000,000 x {granularity} x
{percentage_in_decimal}. For example, for a threshold of 80% with a granularity
of 1s, the threshold is 1,000,000,000 x 1x 0.8 = 800,000,000.0

4. Save the following values in ~/stacks/example1/template.yaml:

heat_template_version: 2016-10-14
description: Example auto scale group, policy and alarm
resources:
scaleup_group:
type: OS::Heat::AutoScalingGroup
properties:
cooldown: 300
desired_capacity: 1
max_size: 3
min_size: 1
resource:
type: OS::Nova::Server::Cirros
properties:
metadata: {"metering.server_group": {get_param: "OS::stack_id"}}

scaleup_policy:
type: OS::Heat::ScalingPolicy
properties:
adjustment_type: change_in_capacity

CHAPTER 2. CONFIGURING AUTO SCALING FOR COMPUTE INSTANCES

auto_scaling_group_id: { get_resource: scaleup_group }
cooldown: 300
scaling_adjustment: 1

scaledown_policy:
type: OS::Heat::ScalingPolicy
properties:
adjustment_type: change_in_capacity
auto_scaling_group_id: { get_resource: scaleup_group }
cooldown: 300
scaling_adjustment: -1

cpu_alarm_high:
type: OS::Aodh::GnocchiAggregationByResourcesAlarm
properties:
description: Scale up if CPU > 80%
metric: cpu
aggregation_method: rate:mean
granularity: 1
evaluation_periods: 3
threshold: 800000000.0
resource_type: instance
comparison_operator: gt
alarm_actions:
- str_replace:
template: trust+url
params:
url: {get_attr: [scaleup_policy, signal_url]}
query:
str_replace:
template: '{"=": {"server_group": "stack_id"}}'
params:
stack_id: {get_param: "OS::stack_id"}

cpu_alarm_low:
type: OS::Aodh::GnocchiAggregationByResourcesAlarm
properties:
metric: cpu
aggregation_method: rate:mean
granularity: 1
evaluation_periods: 3
threshold: 200000000.0
resource_type: instance
comparison_operator: It
alarm_actions:
- str_replace:
template: trust+url
params:
url: {get_attr: [scaledown_policy, signal_url]}
query:
str_replace:
template: '{"=": {"server_group": "stack_id"}}'
params:
stack_id: {get_param: "OS::stack_id"}

outputs:

Red Hat OpenStack Platform 16.0 Auto Scaling for Instances

scaleup_policy_signal_url:
value: {get_attr: [scaleup_policy, signal_url]}

scaledown_policy_signal_url:
value: {get_attr: [scaledown_policy, signal_url]}

5. Enter the following command to build the environment and deploy the instance:

$ openstack stack create -t template.yaml -e environment.yaml example

+ + +

| Field | Value |

+ + +

|id | 248298bb-f56e-4934-2281-fffde62d78d8 |

| stack_name | example |

| description | Example auto scale group, policy and alarm |
| creation_time | 2017-03-06T15:00:29Z |

| updated_time | None |

| stack_status | CREATE_IN_PROGRESS |
| stack_status_reason | Stack CREATE started |
+ + +

6. Orchestration creates the stack and launches a defined minimum number of cirros instances, as
defined in the min_size parameter of the scaleup_group definition. Verify that the instances
were created successfully:

$ openstack server list

+ + + +
+ + +
| ID | Name | Status | Task State | Power
State | Networks |
+ + + +
+ + +
| e1524165-5be6-49e4-8501-e5e5d812¢c612 | ex-3gax-5f3ad4og5cwn2-png47w3u2vjd-server-
vaajhuv4mj3j | ACTIVE | - | Running | internal1=10.10.10.9, 192.168.122.8 |
+ + + +
+ + +

7. Orchestration also creates two cpu alarms which are used to trigger scale-up or scale-down
events, as defined in cpu_alarm_high and cpu_alarm_low. Verify that the triggers exist:

$ openstack alarm list

+ + +
+ + + +
| alarm_id | type | name | state
| severity | enabled |
+ + +
+

| 022f707d-46cc-4d39-a0b2-afd2fc7ab86a | gnocchi_aggregation_by_resources_threshold |
example-cpu_alarm_high-odj77qpbld7j | insufficient data | low | True |

| 46ed2c50-e05a-44d8-b6f6-f1ebd83af913 | gnocchi_aggregation_by_resources_threshold |
example-cpu_alarm_low-m37jvnm56x2t | insufficient data | low | True |

+ + +

+ + + +

CHAPTER 2. CONFIGURING AUTO SCALING FOR COMPUTE INSTANCES

2.2.1. Testing auto scaling up instances

Orchestration can scale instances automatically based on the cpu_alarm_high threshold definition.
When the CPU use reaches a value defined in the threshold parameter, another instance starts up to
balance the load. The threshold value in the above template.yaml file is set to 80%.

Procedure

1. Log on to the instance and run several dd commands to generate the load:

$ ssh -i ~/mykey.pem cirros@192.168.122.8
$ sudo dd if=/dev/zero of=/dev/null &
$ sudo dd if=/dev/zero of=/dev/null &
$ sudo dd if=/dev/zero of=/dev/null &

2. You can expect to have 100% CPU use in the cirros instance. Verify that the alarm has
triggered:

$ openstack alarm list

+ + +
+ + + +
| alarm_id | type | name | state |
severity | enabled |
+ + +
+ + + +

| 022f707d-46cc-4d39-a0b2-afd2fc7ab86a | gnocchi_aggregation_by_resources_threshold |
example-cpu_alarm_high-odj77qpbld7j | alarm | low | True |
| 46ed2c50-e05a-44d8-b6f6-f1ebd83af913 | gnocchi_aggregation_by_resources_threshold |
example-cpu_alarm_low-m37jvnm56x2t |ok |low | True |

+ + +

+ + + +

3. After approximately 60 seconds, Orchestration starts another instance and adds it into the
group. To verify this, enter the following command:

$ openstack server list

+ + + +

+ + +
| ID | Name | Status | Task State | Power
State | Networks |
+ + + +

+ + +
| 477ee1af-096¢c-477c-9a3f-b95b0e2d4ab5 | ex-3gax-4urpiklSkoff-yrxk3zxzfmpf-server-
2hde4tp4trnk | ACTIVE | - | Running | internal1=10.10.10.13, 192.168.122.17 |
| e1524165-5be6-49e4-8501-e5e5d812¢612 | ex-3gax-5f3ad4og5cwn2-png47w3u2vjd-server-
vaajhuv4mj3j | ACTIVE | - | Running | internal1=10.10.10.9, 192.168.122.8 |
+ + + +

+ + +

4. After another short period of time, observe that Orchestration has auto scaled again to three
instances. The configuration is set to a maximum of three instances, so it cannot scale any
higher. Use the following command to verify that Orchestration has auto-scaled again to three
instances:

I $ openstack server list

Red Hat OpenStack Platform 16.0 Auto Scaling for Instances

+ + + +

+ + +
| ID | Name | Status | Task State | Power
State | Networks |
+ + + +

+ + +
| 477ee1af-096¢c-477c-9a3f-b95b0e2d4ab5 | ex-3gax-4urpiklSkoff-yrxk3zxzfmpf-server-
2hde4tp4trnk | ACTIVE | - | Running | internal1=10.10.10.13, 192.168.122.17 |
| €1524f65-5be6-49e4-8501-e5e5d812c612 | ex-3gax-5f3a4og5cwn2-png47w3u2vjd-server-
vaajhuv4mj3j | ACTIVE | - | Running | internal1=10.10.10.9, 192.168.122.8 |
| 6¢88179e-c368-453d-a01a-555eae8cd77a | ex-3gax-fvxz3tr63j40-36fhftuja3bw-server-
rhl4sgkjuy5p | ACTIVE | - | Running | internal1=10.10.10.5, 192.168.122.5 |
+ + + +

+ + +

2.2.2. Automatically scaling down instances

Orchestration can automatically scale down instances based on the cpu_alarm_low threshold. In this
example, the instances scale down when CPU use is below 5%.

Procedure

1. Terminate the running dd processes and observe Orchestration begin to scale the instances
down:

$ killall dd

2. When you stop the dd processes, the cpu_alarm_low event triggers. As a result, Orchestration
begins to automatically scale down and remove the instances. Verify that the corresponding
alarm has triggered:

$ openstack alarm list

+ + +
+ + + +
| alarm_id | type | name | state |
severity | enabled |
+ + +
+ + + +

| 022f707d-46cc-4d39-a0b2-afd2fc7ab86a | gnocchi_aggregation_by_resources_threshold |
example-cpu_alarm_high-odj77qpbld7j| ok |low | True |

| 46ed2c50-e05a-44d8-b6f6-f1ebd83af913 | gnocchi_aggregation_by_resources_threshold |
example-cpu_alarm_low-m37jvnm56x2t | alarm |low | True |

+ + +

+ + + +

After several minutes, Orchestration continually reduces the number of instances to the
minimum value defined in the min_size parameter of the scaleup_group definition. In this
scenario, the min_size parameter is set to 1.

2.2.3. Troubleshooting the setup

If your environment is not working properly, you can look for errors in the log files and history records.

1. To view information on state transitions, you can list the stack event records:

10

CHAPTER 2. CONFIGURING AUTO SCALING FOR COMPUTE INSTANCES

$ openstack stack event list example

2017-03-06 11:12:43Z [example]: CREATE_IN_PROGRESS Stack CREATE started
2017-03-06 11:12:43Z [example.scaleup_group]: CREATE_IN_PROGRESS state changed
2017-03-06 11:13:04Z [example.scaleup_group]: CREATE_COMPLETE state changed
2017-03-06 11:13:04Z [example.scaledown_policy]: CREATE_IN_PROGRESS state
changed

2017-03-06 11:13:05Z [example.scaleup_policy]: CREATE_IN_PROGRESS state changed
2017-03-06 11:13:05Z [example.scaledown_policy]: CREATE_COMPLETE state changed
2017-03-06 11:13:05Z [example.scaleup_policy]: CREATE_COMPLETE state changed
2017-03-06 11:13:05Z [example.cpu_alarm_low]: CREATE_IN_PROGRESS state changed
2017-03-06 11:13:05Z [example.cpu_alarm_high]: CREATE_IN_PROGRESS state changed
2017-03-06 11:13:06Z [example.cpu_alarm_low]: CREATE_COMPLETE state changed
2017-03-06 11:13:07Z [example.cpu_alarm_high]: CREATE_COMPLETE state changed
2017-03-06 11:13:07Z [example]: CREATE_COMPLETE Stack CREATE completed
successfully

2017-03-06 11:19:34Z [example.scaleup_policy]: SIGNAL_COMPLETE alarm state
changed from alarm to alarm (Remaining as alarm due to 1 samples outside threshold, most
recent: 95.4080102993)

2017-03-06 11:25:43Z [example.scaleup_policy]: SIGNAL_COMPLETE alarm state
changed from alarm to alarm (Remaining as alarm due to 1 samples outside threshold, most
recent: 95.8869217299)

2017-03-06 11:33:25Z [example.scaledown_policy]: SIGNAL_COMPLETE alarm state
changed from ok to alarm (Transition to alarm due to 1 samples outside threshold, most
recent: 2.73931707966)

2017-03-06 11:39:15Z [example.scaledown_policy]: SIGNAL_COMPLETE alarm state
changed from alarm to alarm (Remaining as alarm due to 1 samples outside threshold, most
recent: 2.78110858552)

2. Toread the alarm history log:

$ openstack alarm-history show 022f707d-46cc-4d39-a0b2-afd2fc7ab86a

+- -+ +---- --
+ -+
| timestamp | type | detail
| event_id |
+- -+ +---- --
+ -+
| 2017-03-06T11:32:35.510000 | state transition | {"transition_reason": "Transition to ok due
to 1 samples inside threshold, most recent: | 25e0e70b-3eda-466e-abac-
42d9cf67e704 |

| | | 2.73931707966", "state": "ok"}

| |

| 2017-03-06T11:17:35.403000 | state transition | {"transition_reason": "Transition to alarm
due to 1 samples outside threshold, most recent: | 8322f62c-0d0a-4dc0-9279-
435510f81039 |

| | | 95.0964497325", "state": "alarm"}

| |

| 2017-03-06T11:15:35.723000 | state transition | {"transition_reason": "Transition to ok due
to 1 samples inside threshold, most recent: | 1503bd81-7eba-474e-b74e-
ded8a7b630a1l |

| | | 3.59330523447", "state": "ok"}

| |

| 2017-03-06T11:13:06.413000 | creation | {"alarm_actions":
["trust+http://fcabe27e3d524ed68abdc0fd576aa848:delete@192.168.122.126:8004/v1/fd |
224f15¢0-b6f1-4690-9a22-0c1d236e65f6 |

1

Red Hat OpenStack Platform 16.0 Auto Scaling for Instances

| | |
1c345135be4ee587fef424c241719d/stacks/example/d9ef59ed-b8f8-4€90-bd9b-

| |

| | | ae87e73ef6e2/resources/scaleup_policy/signal"], "user_id":
"a85f83b7f7784025b6acdc06ef0a8fd8", | |

| | | "name": "example-cpu_alarm_high-odj77qpbld7j", "state":
"insufficient data", "timestamp™: | |

| | | "2017-03-06T11:13:06.413455", "description": "Scale up if
CPU > 80%", "enabled": true, | |

| | | "state_timestamp": "2017-03-06T11:13:06.413455", "rule":
{"evaluation_periods": 1, "metric": | |

| | | "cpu_util", "aggregation_method": "mean", "granularity": 300,
"threshold": 80.0, "query": "(\"=\": | |

| | | {\"server_group\": \"d9ef59ed-b8f8-4€90-bd9b-
ae87e73ef6e2\"}}", "comparison_operator": "gt", | |

| | | "resource_type": "instance"}, "alarm_id": "022f707d-46cc-
4d39-a0b2-afd2fc7ab86a", | |

| | | "time_constraints": [], "insufficient_data_actions": null,
"repeat_actions": true, "ok_actions": | |

| | | null, "project_id": "fd1c345135bedee587fef424c241719d",
"type™: | |

| | | "gnocchi_aggregation_by_resources_threshold", "severity":
"low"} | |

+- -+ +---- --

3. To see the records of scale-out or scale-down operations that heat collects for the existing
stack, use the awk command to parse the heat-engine.log:

$ awk '/Stack UPDATE started/,/Stack CREATE completed successfully/ {print $0}'
/var/log/containers/heat/heat-engine.log

4. To view aodh-related information, examine the evaluator.log:

I $ grep -i alarm /var/log/containers/aodh/evaluator.log | grep -i transition

12

	Table of Contents
	CHAPTER 1. ABOUT THIS GUIDE
	CHAPTER 2. CONFIGURING AUTO SCALING FOR COMPUTE INSTANCES
	2.1. OVERVIEW OF AUTO SCALING ARCHITECTURE
	2.1.1. Orchestration
	2.1.2. Telemetry
	2.1.3. Key terms

	2.2. EXAMPLE: AUTO SCALING BASED ON CPU USE
	2.2.1. Testing auto scaling up instances
	2.2.2. Automatically scaling down instances
	2.2.3. Troubleshooting the setup

