& RedHat

Red Hat OpenShift Dev Spaces 3.0

User guide

Using Red Hat OpenShift Dev Spaces 3.0

Last Updated: 2022-09-28

Red Hat OpenShift Dev Spaces 3.0 User guide

Using Red Hat OpenShift Dev Spaces 3.0

Robert Kratky
rkratky@redhat.com

Fabrice Flore-Thébault
ffloreth@redhat.com

Jana Vrbkova
jvrbkova@redhat.com

Max Leonov
mleonov@redhat.com

Legal Notice

Copyright © 2022 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Information for users using Red Hat OpenShift Dev Spaces.

Table of Contents

Table of Contents

CHAPTER 1. ADOPTING OPENSHIFT DEV SPACES ..o ittt ittt tttnneeeeeennaeaeeennnnns 5
1.1. DEVELOPER WORKSPACES 5
1.2. USING A BADGE WITH A LINK TO ENABLE A FIRST-TIME CONTRIBUTOR TO START A WORKSPACE 5
1.3. BENEFITS OF REVIEWING PULL AND MERGE REQUESTS IN RED HAT OPENSHIFT DEV SPACES 6
1.4. SUPPORTED LANGUAGES 7

CHAPTER 2. USER ONBOARDING ... ttittttittteittt et etaeeeneeeaeeeaneeeaneeanneeaneesaneesnneenns 9
2.1. STARTING A NEW WORKSPACE WITH A CLONE OF A GIT REPOSITORY 9
2.2. OPTIONAL PARAMETERS FOR THE URLS FOR STARTING A NEW WORKSPACE 1

2.2.1. URL parameter concatenation n
2.2.2. URL parameter for the workspace IDE 12
2.2.3. URL parameter for starting duplicate workspaces 12
2.2.4. URL parameter for the devfile file name 13
2.2.5. URL parameter for the devfile file path 13
2.3. BASIC ACTIONS YOU CAN PERFORM ON A WORKSPACE 13
2.4. AUTHENTICATING YOURSELF TO A GIT SERVER FROM A WORKSPACE 14

CHAPTER 3. CUSTOMIZING WORKSPACE COMPONENTS ...ttt ittt eeiinneenaennnns 15

CHAPTER 4. SELECTING AWORKSP ACE IDE ...ttt ittt e tttteeeetanaeaeeennnaeeeanenns 16
4.1. SELECTING AN IN-BROWSER IDE FOR A NEW WORKSPACE BY USING A URL PARAMETER 16
4.2. SPECIFYING AN IN-BROWSER IDE FOR A GIT REPOSITORY BY USING CHE-EDITOR.YAML 16

4.2.1. Using the OpenShift Dev Spaces editor file to select an IDE 16
4.2.2. Customizing IDE selection with the che-editor.yaml file 17
4.2.3. Using a custom plug-in registry for your IDE 17
4.2.4. Using a web reference for your IDE 17
4.2.5. Using an embedded editor definition for your IDE 17

CHAPTER 5. USING CREDENTIALS AND CONFIGURATIONS IN WORKSPACESciiiiiiivnnnnnn. 19
51. USING A GIT CREDENTIALS STORE 19
5.2. ENABLING ARTIFACT REPOSITORIES IN A RESTRICTED ENVIRONMENT 21

5.2.1. Enabling Maven artifact repositories 21
5.2.2. Enabling Gradle artifact repositories 23
5.2.3. Enabling npm artifact repositories 24
5.2.4. Enabling Python artifact repositories 25
5.2.5. Enabling Go artifact repositories 26
5.2.6. Enabling NuGet artifact repositories 28
5.3. CREATING IMAGE PULL SECRETS 29
5.3.1. Creating an image pull Secret with oc 29
5.3.2. Creating an image pull Secret from a .dockercfg file 30
5.3.3. Creating an image pull Secret from a config.json file 30
5.4. MOUNTING SECRETS 31
5.5. MOUNTING CONFIGMAPS 32

CHAPTER 6. REQUESTING PERSISTENT STORAGE FORWORKSPACESttt 35
6.1. REQUESTING PERSISTENT STORAGE IN A DEVFILE 35
6.2. REQUESTING PERSISTENT STORAGE IN A PVC 36

CHAPTER 7. INTEGRATING WITH OPENSHIF T .. ittt ittt itee e etnneeeeeennnneeaennnn, 38
7.1. AUTOMATIC OPENSHIFT TOKEN INJECTION 38
7.2. NAVIGATING OPENSHIFT DEV SPACES FROM OPENSHIFT DEVELOPER PERSPECTIVE 38

7.2.1. OpenShift Developer Perspective integration with OpenShift Dev Spaces 39

7.2.2. Editing the code of applications running in OpenShift Container Platform using OpenShift Dev Spaces

Red Hat OpenShift Dev Spaces 3.0 User guide

7.2.3. Accessing OpenShift Dev Spaces from Red Hat Applications menu
7.3. NAVIGATING OPENSHIFT WEB CONSOLE FROM OPENSHIFT DEV SPACES

CHAPTER 8. TROUBLESHOOTING OPENSHIFT DEV SPACES ... ittt i tieiiee e,
8.1. VIEWING OPENSHIFT DEV SPACES WORKSPACES LOGS
8.1.1. Viewing logs from language servers and debug adapters
8.1.1.1. Checking important logs
8.1.1.2. Detecting memory problems
8.1.1.3. Logging the client-server traffic for debug adapters
8.1.1.4. Viewing logs for Python
8.1.1.5. Viewing logs for Go
8.1.1.5.1. Finding the Go path
8.1.1.5.2. Viewing the Debug Console log for Go
8.1.1.5.3. Viewing the Go logs output in the Output panel
8.1.1.6. Viewing logs for the NodeDebug NodeDebug?2 adapter
8.1.1.7. Viewing logs for Typescript
8.1.1.7.1. Enabling the label switched protocol (LSP) tracing
8.1.1.7.2. Viewing the Typescript language server log
8.1.1.7.3. Viewing the Typescript logs output in the Output panel
8.1.1.8. Viewing logs for Java
8.1.1.8.1. Verifying the state of the Eclipse JDT Language Server
8.1.1.8.2. Verifying the Eclipse JDT Language Server features
8.1.1.8.3. Viewing the Java language server log
8.1.1.8.4. Logging the Java language server protocol (LSP) messages
8.1.1.9. Viewing logs for Intelephense
8.1.1.9.1. Logging the Intelephense client-server communication
8.1.1.9.2. Viewing Intelephense events in the Output panel
8.1.1.10. Viewing logs for PHP-Debug
8.1.1.11. Viewing logs for XML
8.1.1.11.1. Verifying the state of the XML language server
8.1.1.11.2. Checking XML language server feature flags
8.1.1.11.3. Enabling XML Language Server Protocol (LSP) tracing
8.1.1.11.4. Viewing the XML language server log
8.1.1.12. Viewing logs for YAML
8.1.1.12.1. Verifying the state of the YAML language server
8.1.1.12.2. Checking the YAML language server feature flags
8.1.1.12.3. Enabling YAML Language Server Protocol (LSP) tracing
8.1.1.13. Viewing logs for NET with OmniSharp-Theia plug-in
8.1.1.13.1. OmniSharp-Theia plug-in
8.1.1.13.2. Verifying the state of the OmniSharp-Theia plug-in language server
8.1.1.13.3. Checking OmniSharp Che-Theia plug-in language server features
8.1.1.13.4. Viewing OmniSharp-Theia plug-in logs in the Output panel
8.1.1.14. Viewing logs for .NET with NetcoredebugOutput plug-in
8.1.1.14.1. NetcoredebugOutput plug-in
8.1.1.14.2. Verifying the state of the NetcoredebugOutput plug-in
8.1.1.14.3. Viewing NetcoredebugOutput plug-in logs in the Output panel
8.1.1.15. Viewing logs for Camel
8.1.1.15.1. Verifying the state of the Camel language server
8.1.1.15.2. Viewing Camel logs in the Output panel
8.1.2. Viewing Che-Theia IDE logs
8.1.2.1. Viewing Che-Theia editor logs using the OpenShift CLI
8.2. INVESTIGATING FAILURES AT A WORKSPACE START USING THE VERBOSE MODE

39
40
41

42
42
42
42
42
43
43
43
43
44
45
45
45
45
45
46
46
46
46
47
47
47
47
47
48
48
48
48
49
49
49
49
50
50

51

51

51

51

51

51

51
52
52
52
52
53
53
53
55

Table of Contents

8.2.1. Restarting a OpenShift Dev Spaces workspace in Verbose mode after start failure 55
8.2.2. Starting a OpenShift Dev Spaces workspace in Verbose mode 55
8.3. TROUBLESHOOTING SLOW WORKSPACES 55
8.3.1. Improving workspace start time 56
8.3.2. Improving workspace runtime performance 57
8.4. TROUBLESHOOTING NETWORK PROBLEMS 58
CHAPTER 9. ADDING A VISUAL STUDIO CODE EXTENSIONTOAWORKSPACEcccvviiiivnnnnn, 59
9.1. OPENSHIFT DEV SPACES PLUG-IN REGISTRIES OVERVIEW 59
9.2. ADDING AN EXTENSION TO .VSCODE/EXTENSIONS.JSON 59
9.3. ADDING PLUG-IN PARAMETERS TO .CHE/CHE-THEIA-PLUGINS.YAML 59
9.3.1. Defining the plug-ins for workspace installation 60
9.3.2. Changing the default memory limit 60
9.3.3. Overriding default preferences 60
9.4. DEFINING VISUAL STUDIO CODE EXTENSION ATTRIBUTES IN THE DEVFILE 61
9.4.1. Inlining .vscode/extensions.json file 61
9.4.2. Inlining .che/che-theia-plugins.yaml file 62

Red Hat OpenShift Dev Spaces 3.0 User guide

CHAPTER 1. ADOPTING OPENSHIFT DEV SPACES

CHAPTER 1. ADOPTING OPENSHIFT DEV SPACES

To get started with adopting OpenShift Dev Spaces for your organization, you can read the following:
® Section 1.1, "Developer workspaces”
® Section 1.2, “"Using a badge with a link to enable a first-time contributor to start a workspace”
® Section 1.3, “Benefits of reviewing pull and merge requests in Red Hat OpenShift Dev Spaces”

® Section 1.4, “Supported languages”

1.1. DEVELOPER WORKSPACES

Red Hat OpenShift Dev Spaces provides developer workspaces with everything you need to code, build,
test, run, and debug applications:

® Project source code

® Web-based integrated development environment (IDE)

® Tool dependencies needed by developers to work on a project

® Application runtime: a replica of the environment where the application runs in production
Pods manage each component of a OpenShift Dev Spaces workspace. Therefore, everything running in
a OpenShift Dev Spaces workspace is running inside containers. This makes a OpenShift Dev Spaces

workspace highly portable.

The embedded browser-based IDE is the point of access for everything running in a OpenShift Dev
Spaces workspace. This makes a OpenShift Dev Spaces workspace easy to share.

1.2. USING A BADGE WITH ALINK TO ENABLE A FIRST-TIME
CONTRIBUTOR TO START A WORKSPACE

To enable a first-time contributor to start a workspace with a project, add a badge with a link to your
OpenShift Dev Spaces instance.

Figure 1.1. Factory badge

c Developer Workspace

Procedure

Red Hat OpenShift Dev Spaces 3.0 User guide

1. Substitute your OpenShift Dev Spaces URL
(https://devspaces-<openshift_deployment_names.<domain_names) and repository URL
(<your-repository-url>), and add the link to your repository in the project README.md file.

['[Contribute](https://www.eclipse.org/che/contribute.svg)]
(https://devspaces-<openshift_deployment_name>.<domain_name>/#https://<your-
repository-url>)

2. The README.md file in your Git provider web interface displays the

c Developer Workspace

factory badge. Click the badge to
open a workspace with your project in your OpenShift Dev Spaces instance.

1.3. BENEFITS OF REVIEWING PULL AND MERGE REQUESTS IN RED
HAT OPENSHIFT DEV SPACES

Red Hat OpenShift Dev Spaces workspace contains all tools you need to review pull and merge requests
from start to finish. By clicking a OpenShift Dev Spaces link, you get access to Red Hat OpenShift Dev
Spaces-supported web IDE with a ready-to-use workspace where you can run a linter, unit tests, the
build and more.

Prerequisites
® You have access to the repository hosted by your Git provider.

® You use a Red Hat OpenShift Dev Spaces-supported browser: Google Chrome or Mozilla
Firefox.

® You have access to a OpenShift Dev Spaces instance.

Procedure

1. Open the feature branch to review in OpenShift Dev Spaces. A clone of the branch opensin a
workspace with tools for debugging and testing.

2. Check the pull or merge request changes.

3. Run your desired debugging and testing tools:

® Run alinter.
® Run unit tests.
® Run the build.

® Run the application to check for problems.

https://www.eclipse.org/che/contribute.svg

CHAPTER 1. ADOPTING OPENSHIFT DEV SPACES

4. Navigate to Ul of your Git provider to leave comment and pull or merge your assigned request.

Verification

® (optional) Open a second workspace using the main branch of the repository to reproduce a
problem.

1.4. SUPPORTED LANGUAGES

Java 11 with JBoss EAP 7.4

Java stack with OpenJDK 11, Maven 3.6 and JBoss EAP 7.4
Java 11 with JBoss EAP XP 3.0 Bootable Jar

Java stack with OpenJdDK 11, Maven 3.6 and JBoss EAP XP 3.0 Bootable Jar
Java 11 with JBoss EAP XP 3.0 Microprofile

Java stack with OpenJDK 11, Maven 3.6 and JBoss EAP XP 3.0
Red Hat Fuse

Red Hat Fuse stack with OpenJDK 11 and Maven 3.6.3
Tooling for Apache Camel K

Tooling to develop Integration projects with Apache Camel K
Java 11 with Gradle

Java stack with OpenJDK 11, Maven 3.6.3, and Gradle 6.1
Java 11 with Lombok

Java stack with OpenJDK 11, Maven 3.6.3 and Lombok 1.18.18
Java 11 with Quarkus

Java stack with OpenJDK 11, Maven 3.6.3, Gradle 6.1 and Quarkus Tools
Java 11 with Vert.x

Java stack with OpenJDK 11, Maven 3.6.3 and Vert.x booster
Java 11 with Maven

Java stack with OpenJDK 11, Maven 3.6.3 and Vert.x demo
Java 8 with Spring Boot

Java stack with OpenJdDK 8, Maven 3.6.3 and Spring Boot Petclinic demo application
NodedJS ConfigMap Express

NodeJS stack with NPM 8, NodeJS 16 and ConfigMap Web Application
NodeJS MongoDB

NodeJS stack with NPM 8, NodeJS 16 and MongoDB 3.6
NodeJS Express

NodeJS stack with NPM 8, NodeJS 16 and Express Web Application
Python

Python Stack with Python 3.8 and pip 19.3
C/C++

C and C++ Developer Tools stack with GCC, cmake and make (Technology Preview)
.NET

Red Hat OpenShift Dev Spaces 3.0 User guide

NET stack with .NET Core SDK 6 and 3.1, Runtime, C# Language Support and Debugger
(Technology Preview)

Go
Stack with Go (Technology Preview)
PHP CakePHP

PHP Stack with PHP, Apache Web Server, Composer and a quickstart CakePHP application for
OpenShift (Technology Preview)

PHP-DI
PHP Stack with PHP, Apache Web Server and Composer (Technology Preview)

CHAPTER 2. USER ONBOARDING

CHAPTER 2. USER ONBOARDING

If your organization is already running a OpenShift Dev Spaces instance, you can get started as a new
user by learning how to start a new workspace, manage your workspaces, and authenticate yourself to a
Git server from a workspace:

1.

Section 2.1, “Starting a new workspace with a clone of a Git repository”

2. Section 2.2, "Optional parameters for the URLs for starting a new workspace”

3. Section 2.3, "Basic actions you can perform on a workspace”

4. Section 2.4, "Authenticating yourself to a Git server from a workspace”

2.1.STARTING A NEW WORKSPACE WITH A CLONE OF AGIT
REPOSITORY

Working with OpenShift Dev Spaces in your browser involves multiple URLs:

The URL of your organization’s OpenShift Dev Spaces instance, used as part of all the following
URLs

The URL of the Workspaces page of your OpenShift Dev Spaces dashboard with the
workspace control panel

The URLs for starting a new workspace

The URLs of your workspaces in use

With OpenShift Dev Spaces, you can visit a URL in your browser to start a new workspace that contains a
clone of a Git repository. This way, you can clone a Git repository that is hosted on GitHub, a GitLab
instance, or a Bitbucket server.

TIP

You can also use the Git Repo URL *field on the Create Workspace page of your OpenShift Dev
Spaces dashboard to enter the URL of a Git repository to start a new workspace.

Prerequisites

Your organization has a running instance of OpenShift Dev Spaces.

You know the FQDN URL of your organization’s OpenShift Dev Spaces instance:
https://devspaces-<openshift_deployment_names.<domain_names>.

Your Git repository maintainer keeps the devfile.yaml or .devfile.yaml file in the root directory
of the Git repository. (For alternative file names and file paths, see Section 2.2, “Optional
parameters for the URLs for starting a new workspace”.)

TIP

You can also start a new workspace by supplying the URL of a Git repository that contains no
devfile. Doing so results in a workspace with the Che-Theia IDE and the Universal Developer
Image.

Red Hat OpenShift Dev Spaces 3.0 User guide

Procedure

To start a new workspace with a clone of a Git repository:

1. Optional: Visit your OpenShift Dev Spaces dashboard pages to authenticate to your
organization’s instance of OpenShift Dev Spaces.

2. Visit the URL to start a new workspace using the basic syntax:

I https://devspaces-<openshift_deployment_name>.<domain_name>#<git_repository url>

TIP

You can extend this URL with optional parameters:

https://devspaces-<openshift_deployment_name>.<domain_name>#<git_repository _url>?<o
ptional_parameters>

ﬂ See Section 2.2, “Optional parameters for the URLs for starting a new workspace” .

Example 2.1. A URL for starting a new workspace

https://devspaces-<openshift_deployment_names.<domain_names#https://github.com
/che-samples/cpp-hello-world

Example 2.2. The URL syntax for starting a new workspace with a clone of a GitHub-
hosted repository

With GitHub and GitLab, you can even use the URL of a specific branch of the repository to
be cloned:

e https:/devspaces-<openshift_deployment_names.<domain_namesithttps://github.
com/<user_or_orgs>/<repositorys starts a new workspace with a clone of the default
branch.

e https:/devspaces-<openshift_deployment_names.<domain_namesithttps://github.
com/<user_or_orgs/<repositorys/tree/<branch_names starts a new workspace with a
clone of the specified branch.

e https:/devspaces-<openshift_deployment_names.<domain_namesithttps://github.

com/<user_or_orgs/<repositorys/pull/ <pull_request_id> starts a new workspace with
a clone of the branch of the pull request.

After you enter the URL to start a new workspace in a browser tab, it renders the workspace-
starting page.

When the new workspace is ready, the workspace IDE loads in the browser tab.

A clone of the Git repository is present in the filesystem of the new workspace.

10

CHAPTER 2. USER ONBOARDING

The workspace has a unique URL:
https://devspaces-<openshift_deployment_names.<domain_names#workspace<unique_u
r>.

TIP

Although this is not possible in the address bar, you can add a URL for starting a new workspace as a
bookmark by using the browser bookmark manager:

® |n Mozilla Firefox, go to = > Bookmarks > Manage bookmarks Ctrl+Shift+O > Bookmarks
Toolbar > Organize > Add bookmark.

® |n Google Chrome, goto ¢ >Bookmarks > Bookmark manager > Bookmarks bar > ¢ > Add
new bookmark.

Additional resources

® Section 2.2, "Optional parameters for the URLs for starting a new workspace”

® Section 2.3, "Basic actions you can perform on a workspace”

2.2. OPTIONAL PARAMETERS FOR THE URLS FOR STARTING A NEW
WORKSPACE

When you start a new workspace, OpenShift Dev Spaces configures the workspace according to the
instructions in the devfile. When you use a URL to start a new workspace, you can append optional
parameters to the URL that further configure the workspace. You can use these parameters to specify a
workspace IDE, start duplicate workspaces, and specify a devfile file name or path.

® Section 2.2.1, "URL parameter concatenation”

® Section 2.2.2, "URL parameter for the workspace IDE”"

® Section 2.2.3, "URL parameter for starting duplicate workspaces”
® Section 2.2.4, "URL parameter for the devfile file name”

® Section 2.2.5, "URL parameter for the devfile file path”

2.2.1. URL parameter concatenation

The URL for starting a new workspace supports concatenation of multiple optional URL parameters by
using & with the following URL syntax:

https://devspaces-<openshift_deployment_names.<domain_names#<git_repository_url>? <url_pa
rameter_1>&<url_parameter_2>&<url_parameter_3>

Example 2.3. A URL for starting a new workspace with the URL of a Git repository and optional
URL parameters

The complete URL for the browser:
https://devspaces-<openshift_deployment_names.<domain_names#https://github.com/che-

samples/cpp-hello-world?new&che-editor=che-incubator/intellij-
community/latest&devfilePath=tests/testdevfile.yaml

1

Red Hat OpenShift Dev Spaces 3.0 User guide

Explanation of the parts of the URL:

https://devspaces-<openshift_deployment name>.<domain_name>ﬂ
#https://github.com/che-samples/cpp-hello-world g
?newé&che-editor=che-incubator/intellij-community/latest&devfilePath=tests/testdevfile.yaml 6

ﬂ OpenShift Dev Spaces URL.
9 The URL of the Git repository to be cloned into the new workspace.

9 The concatenated optional URL parameters.

2.2.2. URL parameter for the workspace IDE

If the URL for starting a new workspace doesn’t contain a URL parameter specifying the integrated
development environment (IDE), the workspace loads with the default IDE: Che Theia.

The URL parameter for specifying another supported IDE is che-editor=<editor_keys:

https://devspaces-<openshift_deployment_name>.<domain_name>#<git_repository _url>?che-
editor=<editor_key>

Table 2.1. The URL parameter <editor_key> values for supported IDEs

IDE <editor_key> value Note

Che-Theia eclipse/che-theia/latest This is the default IDE that loads
in a new workspace without the
URL parameter.

IntelliJ IDEA che-incubator/che- Community Edition - stable
idea/latest version

2.2.3. URL parameter for starting duplicate workspaces

Visiting a URL for starting a new workspace results in a new workspace according to the devfile and with
a clone of the linked Git repository.

In some situations, you may need to have multiple workspaces that are duplicates in terms of the devfile
and the linked Git repository. You can do this by visiting the same URL for starting a new workspace with

a URL parameter.

The URL parameter for starting a duplicate workspace is new:

I https://devspaces-<openshift_deployment_name>.<domain_names#<git_repository _url>?new

NOTE

If you currently have a workspace that you started using a URL, then visiting the URL
again without the new URL parameter results in an error message.

12

https://github.com/eclipse-che/che-theia
https://www.jetbrains.com/help/idea/discover-intellij-idea.html

CHAPTER 2. USER ONBOARDING

2.2.4. URL parameter for the devfile file name

When you visit a URL for starting a new workspace, OpenShift Dev Spaces searches the linked Git
repository for a devfile with the file name .devfile.yaml or devfile.yaml. The devfile in the linked Git
repository must follow this file-naming convention.

In some situations, you may need to specify a different, unconventional file name for the devfile.

The URL parameter for specifying an unconventional file name of the devfile is df=<filenames.yamil:

https://devspaces-<openshift_deployment_name>.<domain_names#<git_repository _url>?
df=<filename>.yaml

ﬂ <filenames.yaml is an unconventional file name of the devfile in the linked Git repository.

TIP

The df=<filenames.yaml parameter also has a long version: devfilePath=<filenames.yaml.

2.2.5. URL parameter for the devfile file path

When you visit a URL for starting a new workspace, OpenShift Dev Spaces searches the root directory of
the linked Git repository for a devfile with the file name .devfile.yaml or devfile.yaml. The file path of
the devfile in the linked Git repository must follow this path convention.

In some situations, you may need to specify a different, unconventional file path for the devfile in the
linked Git repository.

The URL parameter for specifying an unconventional file path of the devfile is
devfilePath=<relative_file_paths:

https://devspaces-<openshift_deployment_name>.<domain_names#<git_repository url>?
devfilePath=<relative_file_path>

ﬂ <relative_file_path> is an unconventional file path of the devfile in the linked Git repository.

2.3. BASIC ACTIONS YOU CAN PERFORM ON A WORKSPACE

You manage your workspaces and verify their current states in the Workspaces page
(https://devspaces-<openshift_deployment_names.<domain_names/dashboard/#/workspaces) of
your OpenShift Dev Spaces dashboard.

After you start a new workspace, you can perform the following actions on it in the Workspaces page:

Table 2.2. Basic actions you can perform on a workspace

Action GUI steps in the Workspaces page
Reopen a running workspace Click Open.
Restart a running workspace Go to i >Restart Workspace.

13

Red Hat OpenShift Dev Spaces 3.0 User guide

Action GUI steps in the Workspaces page
Stop a running workspace Goto i >Stop Workspace.

Start a stopped workspace Click Open.

Delete a workspace Goto i >Delete Workspace.

2.4. AUTHENTICATING YOURSELF TO A GIT SERVER FROM A
WORKSPACE

In a workspace, you can run Git commands that require user authentication like cloning a remote private
Git repository or pushing to a remote public or private Git repository.

To configure user authentication to a Git server from a workspace, OpenShift Dev Spaces provides two
options:

® Your administrator sets up an OAuth application on GitHub, GitLab, or Bitbucket for your
organization’s Red Hat OpenShift Dev Spaces instance.

® You create your own, user Kubernetes Secret for a Git credentials store .

Additional resources

® Administration Guide: OAuth for GitHub, GitLab, or Bitbucket

® User Guide: Using a Git credentials store

14

https://access.redhat.com/documentation/en-us/red_hat_openshift_dev_spaces/3.0/html-single/administration_guide/index#oauth-for-github-gitlab-or-bitbucket
https://access.redhat.com/documentation/en-us/red_hat_openshift_dev_spaces/3.0/html-single/administration_guide/index#oauth-for-github-gitlab-or-bitbucket

CHAPTER 3. CUSTOMIZING WORKSPACE COMPONENTS

CHAPTER 3. CUSTOMIZING WORKSPACE COMPONENTS

To customize workspace components:
® Choose a Git repository for your workspace .
® Use a devfile that meets the latest devfile 2 specification. See Devfile User Guide.
® Select and customize your in-browser IDE .

® Add OpenShift Dev Spaces specific attributes in addition to the generic devfile specification.

15

https://devfile.io/docs/2.1.0/overview

Red Hat OpenShift Dev Spaces 3.0 User guide

CHAPTER 4. SELECTING A WORKSPACE IDE

The default in-browser IDE in a new workspace is Che Theia.
You can select another supported in-browser IDE by either method:

e When you start a new workspace by visiting a URL, you can choose an IDE for that workspace by
adding the che-editor parameter to the URL. See Section 4.1, “Selecting an in-browser IDE for a
new workspace by using a URL parameter”.

® You can specify an IDE in the .che/che-editor.yaml file of the Git repository for all new
workspaces that will feature a clone of that repository. See Section 4.2, “Specifying an in-

browser IDE for a Git repository by using che-editor.yaml”.

Table 4.1. Supported in-browser IDEs

IDE id Note

Che-Theia eclipse/che-theia/latest This is the default IDE that loads
in a new workspace without the
URL parameter.

IntelliJ IDEA che-incubator/che- Community Edition - stable
idea/latest version

4.1. SELECTING AN IN-BROWSER IDE FOR A NEW WORKSPACE BY
USING A URL PARAMETER

You can select your preferred in-browser IDE when starting a new workspace. This is the easiest way and
it doesn’t affect your other workspaces or other users.

Procedure

1. Include the URL parameter for the workspace IDE in the URL for starting a new workspace. See
Section 2.2.2, "URL parameter for the workspace IDE".

2. Visit the URL in the browser. See Section 2.1, “Starting a new workspace with a clone of a Git
repository”.

4.2. SPECIFYING AN IN-BROWSER IDE FOR A GIT REPOSITORY BY
USING CHE-EDITOR.YAML

4.2.1. Using the OpenShift Dev Spaces editor file to select an IDE

Use the che-editor.yaml file to define a default IDE for the project users. For a list of supported IDs,
see Optional parameters for the URLs for starting a new workspace .

Procedure
1. Place the che-editor.yaml file in the .che folder in the root directory of your project.

2. In the che-editor.yaml file, specify the ID of the IDE you are selecting. For example:

16

https://theia-ide.org/docs/
https://github.com/eclipse-che/che-theia
https://www.jetbrains.com/help/idea/discover-intellij-idea.html

CHAPTER 4. SELECTING A WORKSPACE IDE

I id: che-incubator/che-idea/latest

Additional resources

® Check the sample file sample here.

® | oad experimental new IDEs from the default plug-in registry by using the IDs shown in che-
editors.yaml.

4.2.2. Customizing IDE selection with the che-editor.yaml file

You can further customize your IDE selection to suit the specific needs of the project by adding various
directives to the che-editor.yaml file. These customization options include following directives:

® Custom plug-in registry
o Web reference

® Embedded editor definition

4.2.3. Using a custom plug-in registry for your IDE

To include different IDEs than the default list in the OpenShift Dev Spaces plug-in registry, use an
optional registryUrl directive.

Procedure

® Set an optional registryUrl directive in your che-editor.yaml file. For example:

id: eclipse/che-theia/next # mandatory
registryUrl: https://my-registry.com # optional
override: # optional
containers:
- name: theia-ide
memoryLimit: 1280Mi

4.2.4. Using a web reference for your IDE

Use a web reference for your IDE by pointing at a YAML file with the reference directive.

Procedure

e Set areference directive in your che-editor.yaml file. For example:

reference: https://gist.github.com/.../che-editor.yaml # mandatory
override: # optional
containers:
- name: theia-ide
memoryLimit: 1280Mi

4.2.5. Using an embedded editor definition for your IDE

17

https://github.com/che-samples/gradle-demo-project/blob/devfilev2/.che/che-editor.yaml
https://github.com/eclipse-che/che-plugin-registry/blob/main/che-editors.yaml

Red Hat OpenShift Dev Spaces 3.0 User guide

If you have specific requirements for your project that aren't addressed by standard IDE behaviour, you
can customize the project IDE by using the inline directive to put a complete IDE definition in the che-
editor.yaml file.

Procedure

® Setaninline directive in your che-editor.yaml file. For example:

inline:
endpoints:
- name: "theia"
public: true
targetPort: 3100
attributes:
protocol: http
type: ide
secure: true
cookiesAuthEnabled: true
discoverable: false
(...)
containers:
- name: theia-ide
image: "quay.io/eclipse/che-theia:next"
env:
- name: THEIA_PLUGINS
value: local-dir:///plugins
volumeMounts:
- name: plugins
path: "/plugins”
- name: theia-local
path: "/home/theia/.theia"
mountSources: true
ports:
- exposedPort: 3100
memoryLimit: "512M"
cpuLimit: 1000m
cpuRequest: 100m
initContainers:
- name: remote-runtime-injector
image: "quay.io/eclipse/che-theia-endpoint-runtime-binary:next
volumeMounts:
- name: remote-endpoint
path: "/remote-endpoint"
ephemeral: true
env:
- name: PLUGIN_REMOTE_ENDPOINT_EXECUTABLE
value: /remote-endpoint/plugin-remote-endpoint
- name: REMOTE_ENDPOINT_VOLUME_NAME
value: remote-endpoint

18

CHAPTER 5. USING CREDENTIALS AND CONFIGURATIONS IN WORKSPACES

CHAPTER 5. USING CREDENTIALS AND CONFIGURATIONS IN
WORKSPACES

You can use your credentials and configurations in your workspaces.

To do so, mount your credentials and configurations to the DevWorkspace containers in the OpenShift
cluster of your organization’s OpenShift Dev Spaces instance:

® Mount your credentials and sensitive configurations as Kubernetes Secrets. One example is a
Git credentials store.

® Mount your non-sensitve configurations as Kubernetes ConfigMaps.

If you need to allow the DevWorkspace Pods in the cluster to access container registries that require
authentication, create an image pull Secret for the DevWorkspace Pods.

The mounting process uses the standard Kubernetes mounting mechanism and requires applying
additional labels and annotations to your existing resources. Resources are mounted when starting a new
workspace or restarting an existing one.
You can create permanent mount points for various components:

® Maven configuration, such as the settings.xml file

® SSH key pairs

® AWS authorization tokens

e Configuration files

® Persistent storage

® Git credentials store files

Additional resources

® Kubernetes Documentation: Secrets

® Kubernetes Documentation: ConfigMaps

5.1. USING A GIT CREDENTIALS STORE
As an alternative to the OAuth for GitHub, GitLab, or Bitbucket that is configured by the administrator
of your organization's OpenShift Dev Spaces instance, you can apply your Git credentials store as a

Kubernetes Secret.

Apply the Kubernetes Secret in your user project of the OpenShift cluster of your organization’s
OpenShift Dev Spaces instance.

When you apply the Secret, a Git configuration file with the path to the mounted Git credentials store is
automatically configured and mounted to the DevWorkspace containers in the cluster at
/etc/gitconfig. This makes your Git credentials store available in your workspaces.

Prerequisites

19

https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/configmap/
https://access.redhat.com/documentation/en-us/red_hat_openshift_dev_spaces/3.0/html-single/administration_guide/index#oauth-for-github-gitlab-or-bitbucket

Red Hat OpenShift Dev Spaces 3.0 User guide

® An active oc session with administrative permissions to the destination OpenShift cluster. See
Getting started with the CLI.

® base64 command line tools are installed in the operating system you are using.

Procedure

1. In your home directory, locate and open your .git-credentials file if you already have it.
Alternatively, if you do not have this file, save a new .git-credentials file, using the Git
credentials storage format. Each credential is stored on its own line in the file:

I https://<username>:<token>@<git_server_hostname>

Example 5.1. A line in a.git-credentials file

I https://trailblazer:ghp_WitiOi5SKRNLSOHJifOMzy09mqlbd9X4BrF7y@github.com

2. Select credentials from your .git-credentials file for the Secret. Encode the selected
credentials to Base64 for the next step.

TIP

® To encode all lines in the file:
$ cat .git-credentials | base64 | tr -d "\n'

® To encode a selected line:
$ echo -n '<copied_and_pasted_line_from_.git-credentials>' | base64

3. Create a new OpenShift Secret in your user project.

apiVersion: vi
kind: Secret
metadata:
name: git-credentials-secret
labels:
controller.devfile.io/git-credential: 'true’ ﬂ
controller.devfile.io/watch-secret: 'true’
annotations:
controller.devfile.io/mount-path: /etc/secret 9
data:
credentials: <Base64 content of .git-credentials>6

Q The controller.devfile.io/git-credential label marks the Secret as containing Git
credentials.

9 A custom absolute path in the DevWorkspace containers. The Secret is mounted as the
credentials file at this path. The default pathis /.

9 The selected content from .git-credentials that you encoded to Base64 in the previous
step.

20

https://docs.openshift.com/container-platform/4.10/cli_reference/openshift_cli/getting-started-cli.html
https://www.gnu.org/software/coreutils/base64
https://git-scm.com/docs/git-credential-store#_storage_format

CHAPTER 5. USING CREDENTIALS AND CONFIGURATIONS IN WORKSPACES

TIP

You can create and apply multiple Git credentials Secrets in your user project. All of them will be
copied into one Secret that will be mounted to the DevWorkspace containers. For example, if
you set the mount path to /etc/secret, then the one Secret with all of your Git credentials will be
mounted at /etc/secret/credentials. You must set all Git credentials Secrets in your user project
to the same mount path. You can set the mount path to an arbitrary path because the mount
path will be automatically set in the Git configuration file configured at /etc/gitconfig.

4. Apply the Secret:

$ oc apply -f - <<EOF
<Secret _prepared_in_the previous step>
EOF

5.2. ENABLING ARTIFACT REPOSITORIES IN A RESTRICTED
ENVIRONMENT

By configuring technology stacks, you can work with artifacts from in-house repositories using self-
signed certificates:

Maven
Gradle
npm
Python
Go

NuGet

5.2.1. Enabling Maven artifact repositories

You can enable a Maven artifact repository in Maven workspaces that run in a restricted environment.

Prerequisites

® You are not running any Maven workspace.

Procedure

1. Apply the Secret for the TLS certificate:

kind: Secret
apiVersion: vi
metadata:
name: tls-cer
annotations:
controller.devfile.io/mount-path: /home/user/certs
controller.devfile.io/mount-as: file
labels:
controller.devfile.io/mount-to-devworkspace: 'true'

21

Red Hat OpenShift Dev Spaces 3.0 User guide

controller.devfile.io/watch-secret: 'true’
data:
tls.cer: >-
<Base64 _encoded content of public_cert>ﬂ

ﬂ Base64 encoding with disabled line wrapping.

2. Apply the ConfigMap to create the settings.xml file:

kind: ConfigMap
apiVersion: vi
metadata:
name: settings-xml
annotations:
controller.devfile.io/mount-as: subpath
controller.devfile.io/mount-path: /home/user/.m2
labels:
controller.devfile.io/mount-to-devworkspace: 'true'
controller.devfile.io/watch-configmap: 'true’
data:
settings.xml: |
<settings xmIns="http://maven.apache.org/SETTINGS/1.0.0"
xmlins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://maven.apache.org/SETTINGS/1.0.0
https://maven.apache.org/xsd/settings-1.0.0.xsd">
<localRepository/>
<interactiveMode/>
<offline/>
<pluginGroups/>
<servers/>
<mirrors>
<mirror>
<id>redhat-ga-mirror</id>
<name>Red Hat GA</name>
<url>https://<maven_artifact_repository_route>/repository/redhat-ga/</url>
<mirrorOf>redhat-ga</mirrorOf>
</mirror>
<mirror>
<id>maven-central-mirror</id>
<name>Maven Central</name>
<url>https://<maven_artifact_repository route>/repository/maven-central/</url>
<mirrorOf>maven-central</mirrorOf>
</mirror>
<mirror>
<id>jboss-public-repository-mirror</id>
<name>JBoss Public Maven Repository</name>
<url>https://<maven_artifact_repository route>/repository/jboss-public/</url>
<mirrorOf>jboss-public-repository</mirrorOf>
</mirror>
</mirrors>
<proxies/>
<profiles/>
<activeProfiles/>
</settings>

22

CHAPTER 5. USING CREDENTIALS AND CONFIGURATIONS IN WORKSPACES

3. Apply the ConfigMap for the TrustStore initialization script:

kind: ConfigMap
apiVersion: vi
metadata:
name: init-truststore
annotations:
controller.devfile.io/mount-as: subpath
controller.devfile.io/mount-path: /home/user/
labels:
controller.devfile.io/mount-to-devworkspace: 'true'
controller.devfile.io/watch-configmap: 'true’
data:
init-truststore.sh: |
#!/usr/bin/env bash

keytool -importcert -noprompt -file /nome/user/certs/tls.cer -cacerts -storepass changeit

4. Start a Maven workspace.
5. Open a new terminal in the tools container.

6. Run ~/init-truststore.sh.

5.2.2. Enabling Gradle artifact repositories

You can enable a Gradle artifact repository in Gradle workspaces that run in a restricted environment.

Prerequisites

® You are not running any Gradle workspace.

Procedure

1. Apply the Secret for the TLS certificate:

kind: Secret
apiVersion: vi
metadata:
name: tls-cer
annotations:
controller.devfile.io/mount-path: /home/user/certs
controller.devfile.io/mount-as: file
labels:
controller.devfile.io/mount-to-devworkspace: 'true'
controller.devfile.io/watch-secret: 'true’
data:
tls.cer: >-
<Base64 _encoded content of public_cert>ﬂ

ﬂ Base64 encoding with disabled line wrapping.

2. Apply the ConfigMap for the TrustStore initialization script:

23

Red Hat OpenShift Dev Spaces 3.0 User guide

kind: ConfigMap
apiVersion: vi
metadata:
name: init-truststore
annotations:
controller.devfile.io/mount-as: subpath
controller.devfile.io/mount-path: /home/user/
labels:
controller.devfile.io/mount-to-devworkspace: 'true'
controller.devfile.io/watch-configmap: 'true’
data:
init-truststore.sh: |
#!/usr/bin/env bash

keytool -importcert -noprompt -file /nome/user/certs/tls.cer -cacerts -storepass changeit

3. Apply the ConfigMap for the Gradle init script:

kind: ConfigMap
apiVersion: vi
metadata:
name: init-gradle
annotations:
controller.devfile.io/mount-as: subpath
controller.devfile.io/mount-path: /home/user/.gradle
labels:
controller.devfile.io/mount-to-devworkspace: 'true'
controller.devfile.io/watch-configmap: 'true’
data:
init.gradle: |
allprojects {
repositories {
mavenLocal ()
maven {
url "https://<gradle_artifact_repository route>/repository/maven-public/"
credentials {
username "admin"
password "passwd"

}
}
}
}

4. Start a Gradle workspace.
5. Open a new terminal in the tools container.

6. Run ~/init-truststore.sh.

5.2.3. Enabling npm artifact repositories

You can enable an npm artifact repository in npm workspaces that run in a restricted environment.

Prerequisites

24

CHAPTER 5. USING CREDENTIALS AND CONFIGURATIONS IN WORKSPACES

® You are not running any npm workspace.

' WARNING
A Applying a ConfigMap that sets environment variables might cause a workspace

boot loop.

If you encounter this behavior, remove the ConfigMap and edit the devfile directly.

Procedure

1. Apply the Secret for the TLS certificate:

kind: Secret
apiVersion: vi
metadata:
name: tls-cer
annotations:
controller.devfile.io/mount-path: /home/user/certs
controller.devfile.io/mount-as: file
labels:
controller.devfile.io/mount-to-devworkspace: 'true'
controller.devfile.io/watch-secret: 'true’
data:
tls.cer: >-
<Base64 _encoded content of public_cert>ﬂ

ﬂ Base64 encoding with disabled line wrapping.

2. Apply the ConfigMap to set the following environment variables in the tools container:

kind: ConfigMap
apiVersion: vi
metadata:
name: disconnected-env
annotations:
controller.devfile.io/mount-as: env
labels:
controller.devfile.io/mount-to-devworkspace: 'true'
controller.devfile.io/watch-configmap: 'true’
data:
NODE_EXTRA_CA_CERTS: /home/user/certs/tls.cer
NPM_CONFIG_REGISTRY: >-
https://<npm_artifact_repository route>/repository/npm-all/

5.2.4. Enabling Python artifact repositories

You can enable a Python artifact repository in Python workspaces that run in a restricted environment.

25

Red Hat OpenShift Dev Spaces 3.0 User guide

Prerequisites

® You are not running any Python workspace.

' WARNING
A Applying a ConfigMap that sets environment variables might cause a workspace

boot loop.

If you encounter this behavior, remove the ConfigMap and edit the devfile directly.

Procedure

1. Apply the Secret for the TLS certificate:

kind: Secret
apiVersion: vi
metadata:
name: tls-cer
annotations:
controller.devfile.io/mount-path: /home/user/certs
controller.devfile.io/mount-as: file
labels:
controller.devfile.io/mount-to-devworkspace: 'true'
controller.devfile.io/watch-secret: 'true’
data:
tls.cer: >-
<Base64 _encoded content of public_cert>ﬂ

ﬂ Base64 encoding with disabled line wrapping.

2. Apply the ConfigMap to set the following environment variables in the tools container:

kind: ConfigMap
apiVersion: vi
metadata:
name: disconnected-env
annotations:
controller.devfile.io/mount-as: env
labels:
controller.devfile.io/mount-to-devworkspace: 'true'
controller.devfile.io/watch-configmap: 'true’
data:
PIP_INDEX_URL: >-
https://<python_artifact_repository route>/repository/pypi-all/
PIP_CERT: /home/user/certs/tls.cer

5.2.5. Enabling Go artifact repositories

26

CHAPTER 5. USING CREDENTIALS AND CONFIGURATIONS IN WORKSPACES

You can enable a Go artifact repository in Go workspaces that run in a restricted environment.

Prerequisites

® You are not running any Go workspace.

' WARNING
A Applying a ConfigMap that sets environment variables might cause a workspace

boot loop.

If you encounter this behavior, remove the ConfigMap and edit the devfile directly.

Procedure

1. Apply the Secret for the TLS certificate:

kind: Secret
apiVersion: vi
metadata:
name: tls-cer
annotations:
controller.devfile.io/mount-path: /home/user/certs
controller.devfile.io/mount-as: file
labels:
controller.devfile.io/mount-to-devworkspace: 'true'
controller.devfile.io/watch-secret: 'true’
data:
tls.cer: >-
<Base64 _encoded content of public_cert>ﬂ

ﬂ Base64 encoding with disabled line wrapping.

2. Apply the ConfigMap to set the following environment variables in the tools container:

kind: ConfigMap
apiVersion: vi
metadata:
name: disconnected-env
annotations:
controller.devfile.io/mount-as: env
labels:
controller.devfile.io/mount-to-devworkspace: 'true'
controller.devfile.io/watch-configmap: 'true’
data:
GOPROXY: >-
http://<athens_proxy_route>
SSL_CERT_FILE: /home/user/certs/tls.cer

27

Red Hat OpenShift Dev Spaces 3.0 User guide

5.2.6. Enabling NuGet artifact repositories

You can enable a NuGet artifact repository in NuGet workspaces that run in a restricted environment.

Prerequisites

® You are not running any NuGet workspace.

' WARNING
A Applying a ConfigMap that sets environment variables might cause a workspace

boot loop.

If you encounter this behavior, remove the ConfigMap and edit the devfile directly.

Procedure

1. Apply the Secret for the TLS certificate:

kind: Secret
apiVersion: vi
metadata:
name: tls-cer
annotations:
controller.devfile.io/mount-path: /home/user/certs
controller.devfile.io/mount-as: file
labels:
controller.devfile.io/mount-to-devworkspace: 'true'
controller.devfile.io/watch-secret: 'true’
data:
tls.cer: >-
<Base64 _encoded content of public_cert>ﬂ

ﬂ Base64 encoding with disabled line wrapping.

2. Apply the ConfigMap to set the environment variable for the path of the TLS certificate file in
the tools container:

kind: ConfigMap
apiVersion: vi
metadata:
name: disconnected-env
annotations:
controller.devfile.io/mount-as: env
labels:
controller.devfile.io/mount-to-devworkspace: 'true'
controller.devfile.io/watch-configmap: 'true’
data:
SSL_CERT_FILE: /home/user/certs/tls.cer

28

CHAPTER 5. USING CREDENTIALS AND CONFIGURATIONS IN WORKSPACES

3. Apply the ConfigMap to create the nuget.config file:

kind: ConfigMap
apiVersion: vi
metadata:
name: init-nuget
annotations:
controller.devfile.io/mount-as: subpath
controller.devfile.io/mount-path: /projects
labels:
controller.devfile.io/mount-to-devworkspace: 'true'
controller.devfile.io/watch-configmap: 'true’
data:
nuget.config: |
<?xml version="1.0" encoding="UTF-8"7?>
<configuration>
<packageSources>
<add key="nexus2" value="https://<nuget_artifact _repository route>/repository/nuget-
group/"/>
</packageSources>
<packageSourceCredentials>
<nexus2>
<add key="Username" value="admin" />
<add key="Password" value="passwd" />
</nexus2>
</packageSourceCredentials>
</configuration>

5.3. CREATING IMAGE PULL SECRETS

To allow the DevWorkspace Pods in the OpenShift cluster of your organization’s OpenShift Dev
Spaces instance to access container registries that require authentication, create an image pull Secret.

You can create image pull Secrets by using oc or a .dockercfg file or a config.json file.
5.3.1. Creating an image pull Secret with oc

Prerequisites
® An active oc session with administrative permissions to the destination OpenShift cluster. See
Getting started with the CLI.
Procedure

1. In your user project, create an image pull Secret with your private container registry details and
credentials:

$ oc create secret docker-registry <Secret_name>\
--docker-server=<registry_server>\
--docker-username=<username>\
--docker-password=<password> \
--docker-email=<email_address>

2. Add the following label to the image pull Secret:

29

https://docs.openshift.com/container-platform/4.10/cli_reference/openshift_cli/getting-started-cli.html

Red Hat OpenShift Dev Spaces 3.0 User guide

$ oc label secret <Secret_name> controller.devfile.io/devworkspace_pullsecret=true
controller.devfile.io/watch-secret=true

5.3.2. Creating an image pull Secret from a .dockercfg file

If you already store the credentials for the private container registry in a .dockercfg file, you can use
that file to create an image pull Secret.

Prerequisites

® An active oc session with administrative permissions to the destination OpenShift cluster. See
Getting started with the CLI.

® base64 command line tools are installed in the operating system you are using.

Procedure

1. Encode the .dockercfg file to Base64:

I $ cat .dockercfg | base64 | tr -d "\n'

2. Create a new OpenShift Secret in your user project:

apiVersion: vi
kind: Secret
metadata:
name: <Secret_name>
labels:
controller.devfile.io/devworkspace_pullsecret: 'true’
controller.devfile.io/watch-secret: 'true’
data:
.dockercfg: <Base64 content_of_.dockercfg>
type: kubernetes.io/dockercfg

3. Apply the Secret:

$ oc apply -f - <<EOF
<Secret _prepared_in_the previous step>
EOF

5.3.3. Creating an image pull Secret from a config.json file

If you already store the credentials for the private container registry in a $HOME/.docker/config.json
file, you can use that file to create an image pull Secret.

Prerequisites

® An active oc session with administrative permissions to the destination OpenShift cluster. See
Getting started with the CLI.

® base64 command line tools are installed in the operating system you are using.

30

https://docs.openshift.com/container-platform/4.10/cli_reference/openshift_cli/getting-started-cli.html
https://www.gnu.org/software/coreutils/base64
https://docs.openshift.com/container-platform/4.10/cli_reference/openshift_cli/getting-started-cli.html
https://www.gnu.org/software/coreutils/base64

CHAPTER 5. USING CREDENTIALS AND CONFIGURATIONS IN WORKSPACES

Procedure

1. Encode the $HOME/.docker/config.json file to Base64.
I $ cat config.json | base64 | tr -d "\n'
2. Create a new OpenShift Secret in your user project:

apiVersion: vi
kind: Secret
metadata:
name: <Secret_name>
labels:
controller.devfile.io/devworkspace_pullsecret: 'true’
controller.devfile.io/watch-secret: 'true'
data:
.dockerconfigjson: <Base64 content _of config.json>
type: kubernetes.io/dockerconfigjson

3. Apply the Secret:

$ oc apply -f - <<EOF
<Secret _prepared_in_the previous step>
EOF

5.4. MOUNTING SECRETS
To mount confidential data into your workspaces, use Kubernetes Secrets.

Using Kubernetes Secrets, you can mount usernames, passwords, SSH key pairs, authentication tokens
(for example, for AWS), and sensitive configurations.

Mount Kubernetes Secrets to the DevWorkspace containers in the OpenShift cluster of your
organization’'s OpenShift Dev Spaces instance.

Prerequisites

® An active oc session with administrative permissions to the destination OpenShift cluster. See
Getting started with the CLI.

® You have created a new Secret or determined an existing one in your user project to mount to
all DevWorkspace containers.

Procedure

1. Determine an existing ConfigMap or Secret in your user project to mount to all workspace
containers.

2. Set the required labels for mounting.

$ oc label secret <Secret_name>\
controller.devfile.io/mount-to-devworkspace=true \
controller.devfile.io/watch-secret=true

31

https://docs.openshift.com/container-platform/4.10/cli_reference/openshift_cli/getting-started-cli.html

Red Hat OpenShift Dev Spaces 3.0 User guide

3. Optional: Use the annotations to configure how the Secret is mounted.

Table 5.1. Optional annotations

Annotation Description

controller.devfile.io/mount-path: Specifies the mount path.

Defaults to /etc/secret/<Secret_names.

controller.devfile.io/mount-as: Specifies how the resource should be mounted:
file, subpath, orenv.

Defaults to file.

mount-as: file mounts the keys and values as
files within the mount path.

mount-as: subpath mounts the keys and
values within the mount path using subpath
volume mounts.

mount-as: env mounts the keys and values as
environment variables in all DevWorkspace
containers.

Example 5.2. Mounting a Secret as a file

apiVersion: v1i
kind: Secret
metadata:
name: mvn-settings-secret
labels:
controller.devfile.io/mount-to-devworkspace: 'true'
controller.devfile.io/watch-secret: 'true’
annotations:
controller.devfile.io/mount-path: '/home/user/.m2'
data:
settings.xml: <Base64 encoded content>

When you start a workspace, the /home/user/.m2/settings.xml file will be available in the
DevWorkspace containers.

With Maven, you can set a custom path for the settings.xml file. For example:

I $ mvn --settings /home/user/.m2/settings.xml clean install

5.5. MOUNTING CONFIGMAPS

To mount non-confidential configuration data into your workspaces, use Kubernetes ConfigMaps.

32

CHAPTER 5. USING CREDENTIALS AND CONFIGURATIONS IN WORKSPACES

Using Kubernetes ConfigMaps, you can mount non-sensitive data such as configuration values for an
application.

Mount Kubernetes ConfigMaps to the DevWorkspace containers in the OpenShift cluster of your
organization’s OpenShift Dev Spaces instance.

Prerequisites

® An active oc session with administrative permissions to the destination OpenShift cluster. See
Getting started with the CLI.

® You have created a new ConfigMap or determined an existing one in your user project to mount
to all DevWorkspace containers.

Procedure

1. Determine an existing ConfigMap in your user project to mount to all workspace containers.

2. Set the required labels for mounting.

$ oc label configmap <ConfigMap_name> \
controller.devfile.io/mount-to-devworkspace=true \
controller.devfile.io/watch-configmap=true

3. Optional: Use the annotations to configure how the ConfigMap is mounted.

Table 5.2. Optional annotations

Annotation Description

controller.devfile.io/mount-path: Specifies the mount path.

Defaults to /etc/config/<ConfigMap_names.

controller.devfile.io/mount-as: Specifies how the resource should be mounted:
file, subpath, orenv.

Defaults to file.

mount-as:file mounts the keys and values as
files within the mount path.

mount-as:subpath mounts the keys and
values within the mount path using subpath
volume mounts.

mount-as:env mounts the keys and values as

environment variables in all DevWorkspace
containers.

Example 5.3. Mounting a ConfigMap as environment variables
apiVersion: vi

I kind: ConfigMap

33

https://docs.openshift.com/container-platform/4.10/cli_reference/openshift_cli/getting-started-cli.html

Red Hat OpenShift Dev Spaces 3.0 User guide
controller.devfile.io/watch-configmap: 'true’
annotations:
data:
<env_var_1>: <value 1>

metadata:
name: my-settings
labels:
controller.devfile.io/mount-to-devworkspace: 'true'
controller.devfile.io/mount-as: env
<env_var 2>: <value 2>

When you start a workspace, the <env_var_1s> and <env_var_2> environment variables will be
available in the DevWorkspace containers.

34

CHAPTER 6. REQUESTING PERSISTENT STORAGE FOR WORKSPACES

CHAPTER 6. REQUESTING PERSISTENT STORAGE FOR
WORKSPACES

OpenShift Dev Spaces workspaces and workspace data are ephemeral and are lost when the workspace
stops.

To preserve the workspace state in persistent storage while the workspace is stopped, request a
Kubernetes PersistentVolume (PV) for the DevWorkspace containers in the OpenShift cluster of your
organization’'s OpenShift Dev Spaces instance.

You can request a PV by using the devfile or a Kubernetes PersistentVolumeClaim (PVC).

An example of a PV is the /projects/ directory of a workspace, which is mounted by default for non-
ephemeral workspaces.

Persistent Volumes come at a cost: attaching a persistent volume slows workspace startup.

' WARNING
A Starting another, concurrently running workspace with a ReadWriteOnce PV may

fail.

Additional resources
® Red Hat OpenShift Documentation: Understanding persistent storage

® Kubernetes Documentation: Persistent Volumes

6.1. REQUESTING PERSISTENT STORAGE IN A DEVFILE

When a workspace requires its own persistent storage, request a PersistentVolume (PV) in the devfile,
and OpenShift Dev Spaces will automatically manage the necessary PersistentVolumeClaims.

Prerequisites

® You have not started the workspace.

Procedure

1. Add a volume component in the devfile:

components:
- name: <chosen_volume_name>

volume:
size: <requested_volume_size>G

35

https://kubernetes.io/docs/concepts/storage/persistent-volumes/#access-modes
https://docs.openshift.com/container-platform/latest/storage/understanding-persistent-storage.html
https://kubernetes.io/docs/concepts/storage/persistent-volumes/

Red Hat OpenShift Dev Spaces 3.0 User guide

2. Add a volumeMount for the relevant container in the devfile:

components:
- name: ...
container:

volumeMounts:
- name: <chosen_volume_name_from_previous _step>
path: <path_where _to_mount _the PV>

When a workspace is started with the following devfile, the cache PV is provisioned to the golang
container in the ./cache container path:

schemaVersion: 2.1.0
metadata:
name: mydevfile

components:
- name: golang
container:
image: golang
memoryLimit: 512Mi
mountSources: true
command: ['sleep’, "infinity']
volumeMounts:
- name: cache
path: /.cache
- name: cache
volume:

Example 6.1. A devfile that provisions a PV for a workspace to a container
size: 2Gi

6.2. REQUESTING PERSISTENT STORAGE IN A PVC

You may opt to apply a PersistentVolumeClaim (PVC) to request a PersistentVolume (PV) for your
workspaces in the following cases:

e Not all developers of the project need the PV.
® The PV lifecycle goes beyond the lifecycle of a single workspace.

® The dataincluded in the PV are shared across workspaces.

TIP

You can apply a PVC to the DevWorkspace containers even if the workspace is ephemeral and its
devfile contains the controller.devfile.io/storage-type: ephemeral attribute.

Prerequisites

® You have not started the workspace.

36

CHAPTER 6. REQUESTING PERSISTENT STORAGE FOR WORKSPACES

® An active oc session with administrative permissions to the destination OpenShift cluster. See
Getting started with the CLI.

® APVCis created in your user project to mount to all DevWorkspace containers.

Procedure

1. Add the controller.devfile.io/mount-to-devworkspace: true label to the PVC.

$ oc label persistentvolumeclaim <PVC_name> \ controller.devfile.io/mount-to-
devworkspace=true

2. Optional: Use the annotations to configure how the PVC is mounted:

Table 6.1. Optional annotations

Annotation Description

controller.devfile.io/mount-path: The mount path for the PVC.

Defaults to /tmp/<PVC_name>.

controller.devfile.io/read-only: Set to 'true’ or'false’ to specify whether the
PVC is to be mounted as read-only.

Defaults to 'false’, resulting in the PVC
mounted as read-write.

Example 6.2. Mounting a read-only PVC

apiVersion: vi
kind: PersistentVolumeClaim
metadata:
name: <pvc_name>
labels:
controller.devfile.io/mount-to-devworkspace: 'true'
annotations:
controller.devfile.io/mount-path: </example/directory> ﬂ
spec:
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 3Gi g
volumeName: <pv_name>
storageClassName: manual
volumeMode: Filesystem

ﬂ The mounted PV is available at </fexample/directorys in the workspace.

9 Example size value of the requested storage.

37

https://docs.openshift.com/container-platform/4.10/cli_reference/openshift_cli/getting-started-cli.html

Red Hat OpenShift Dev Spaces 3.0 User guide

CHAPTER 7. INTEGRATING WITH OPENSHIFT

® Section 7.1, "Automatic OpenShift token injection”
® Section 7.2, "Navigating OpenShift Dev Spaces from OpenShift Developer Perspective”

® Section 7.3, “Navigating OpenShift web console from OpenShift Dev Spaces”

7.1. AUTOMATIC OPENSHIFT TOKEN INJECTION

This section describes how to use the OpenShift user token that is automatically injected into
workspace containers which allows running OpenShift Dev Spaces CLI commands against OpenShift
cluster.

Procedure

1. Open the OpenShift Dev Spaces dashboard and start a workspace.

2. Once the workspace is started, open a terminal in the container that contains the OpenShift
Dev Spaces CLI.

3. Execute OpenShift Dev Spaces CLI commands which allow you to run commands against
OpenShift cluster. CLI can be used for deploying applications, inspecting and managing cluster
resources, and viewing logs. OpenShift user token will be used during the execution of the
commands.

Go Run Terminal Help

gotypes > implements main.go >

main

READY

c-p59fm 5/5

' WARNING
A The automatic token injection currently works only on the OpenShift infrastructure.

7.2. NAVIGATING OPENSHIFT DEV SPACES FROM OPENSHIFT
DEVELOPER PERSPECTIVE

The OpenShift Container Platform web console provides two perspectives; the Administrator
perspective and the Developer perspective.

38

CHAPTER 7. INTEGRATING WITH OPENSHIFT

The Developer perspective provides workflows specific to developer use cases, such as the ability to:

® Create and deploy applications on the OpenShift Container Platform by importing existing
codebases, images, and Dockerfiles.

® Visually interact with applications, components, and services associated with them within a
project and monitor their deployment and build status.

® Group components within an application and connect the components within and across
applications.

® Integrate serverless capabilities (Technology Preview).

Create workspaces to edit your application code using OpenShift Dev Spaces.

7.2.1. OpenShift Developer Perspective integration with OpenShift Dev Spaces

This section provides information about OpenShift Developer Perspective support for OpenShift Dev
Spaces.

When the OpenShift Dev Spaces Operator is deployed into OpenShift Container Platform 4.2 and later,
it creates a ConsoleLink Custom Resource (CR). This adds an interactive link to the Red Hat
Applications menu for accessing the OpenShift Dev Spaces installation using the OpenShift Developer
Perspective console.

To access the Red Hat Applications menu, click the three-by-three matrix icon on the main screen of
the OpenShift web console. The OpenShift Dev Spaces Console Link, displayed in the drop-down
menu, creates a new workspace or redirects the user to an existing one.

/, NOTE

OpenShift Container Platform console links are not created when OpenShift
Dev Spaces is used with HTTP resources

When installing OpenShift Dev Spaces with the From Git option, the OpenShift
Developer Perspective console link is only created if OpenShift Dev Spaces is deployed
with HTTPS. The console link will not be created if an HTTP resource is used.

7.2.2. Editing the code of applications running in OpenShift Container Platform
using OpenShift Dev Spaces

This section describes how to start editing the source code of applications running on OpenShift using
OpenShift Dev Spaces.

Prerequisites

® OpenShift Dev Spaces is deployed on the same OpenShift 4 cluster.

Procedure
1. Open the Topology view to list all projects.
2. In the Select an Application search field, type workspace to list all workspaces.

3. Click the workspace to edit.

39

Red Hat OpenShift Dev Spaces 3.0 User guide

The deployments are displayed as graphical circles surrounded by circular buttons. One of these
buttons is Edit Source Code.

Project: test-che-integration ~ Application: all applications =
«/> Developer

+Add

Topology

Edit Source Code

4. To edit the code of an application using OpenShift Dev Spaces, click the Edit Source Code
button. This redirects to a workspace with the cloned source code of the application
component.

7.2.3. Accessing OpenShift Dev Spaces from Red Hat Applications menu

This section describes how to access OpenShift Dev Spaces workspaces from the Red Hat Applications
menu on the OpenShift Container Platform.

Prerequisites

® The OpenShift Dev Spaces Operator is available in OpenShift 4.

Procedure

1. Open the Red Hat Applications menu by using the three-by-three matrix icon in the upper right
corner of the main screen.

The drop-down menu displays the available applications.

E kube:admin «
OpenShifi orm ube:admin

You are logged in as a temporary administrative user. Update the cluster OAuth configuratio SRR A

«» Developer €5 Openshitt Cluster Manager

+Add Che Workspace

Topology

Builds

Advanced

2. Click the OpenShift Dev Spaceslink to open the Dev Spaces Dashboard.

40

CHAPTER 7. INTEGRATING WITH OPENSHIFT

7.3. NAVIGATING OPENSHIFT WEB CONSOLE FROM OPENSHIFT DEV
SPACES

This section describes how to access OpenShift web console from OpenShift Dev Spaces.

Prerequisites

® The OpenShift Dev Spaces Operator is available in OpenShift 4.

Procedure

1. Open the OpenShift Dev Spaces dashboard and click the three-by-three matrix icon in the
upper right corner of the main screen.
The drop-down menu displays the available applications.

© lyaBuik ~ gy

Applications

Workspaces » & OpenShiftconsole @

A workspace is where your projects live and run. Create workspaces from stacks that define projects, runtimes, and commands. Learn more [

© Add Workspace

a Search Q Delete

Name Last Modified Project(s)
O apache-camel-springboot Jan 26,514 pm fuse-rest-http-booster Open
O bash Mar 09, 3:28 pm. bash Open
[a} cpp Mar 14, 1122 am cpp-hello-world Open
O cpp-spux Mar 10, 1:05 p.m. cpp-hello-world Open

2. Click the OpenShift console link to open the OpenShift web console.

41

Red Hat OpenShift Dev Spaces 3.0 User guide

CHAPTER 8. TROUBLESHOOTING OPENSHIFT DEV SPACES

This section provides troubleshooting procedures for the most frequent issues a user can come in
conflict with.

Additional resources

® Section 8.1, "Viewing OpenShift Dev Spaces workspaces logs”
® Section 8.2, “Investigating failures at a workspace start using the Verbose mode”
® Section 8.3, “Troubleshooting slow workspaces”

® Section 8.4, "Troubleshooting network problems”

8.1. VIEWING OPENSHIFT DEV SPACES WORKSPACES LOGS

This section describes how to view OpenShift Dev Spaces workspaces logs.
8.1.1. Viewing logs from language servers and debug adapters

8.1.1.1. Checking important logs

This section describes how to check important logs.

Procedure

1. In the OpenShift web console, click Applications - Pods to see a list of all the active
workspaces.

2. Click on the name of the running Pod where the workspace is running. The Pod screen contains
the list of all containers with additional information.

3. Choose a container and click the container name.

NOTE

The most important logs are the theia-ide container and the plug-ins container
logs.

4. On the container screen, navigate to the Logs section.

8.1.1.2. Detecting memory problems

This section describes how to detect memory problems related to a plug-in running out of memory. The
following are the two most common problems related to a plug-in running out of memory:

The plug-in container runs out of memory

This can happen during plug-in initialization when the container does not have enough RAM to
execute the entrypoint of the image. The user can detect this in the logs of the plug-in container. In
this case, the logs contain OOMKilled, which implies that the processes in the container requested
more memory than is available in the container.

A process inside the container runs out of memory without the container noticing this

42

CHAPTER 8. TROUBLESHOOTING OPENSHIFT DEV SPACES

For example, the Java language server (Eclipse JDT Language Server, started by the vscode-java
extension) throws an OutOfMemoryException. This can happen any time after the container is
initialized, for example, when a plug-in starts a language server or when a process runs out of memory
because of the size of the project it has to handle.

To detect this problem, check the logs of the primary process running in the container. For example,
to check the log file of Eclipse JDT Language Server for details, see the relevant plug-in-specific
sections.

8.1.1.3. Logging the client-server traffic for debug adapters

This section describes how to log the exchange between Che-Theia and a debug adapter into the
Output view.

Prerequisites

® A debug session must be started for the Debug adapters option to appear in the list.

Procedure
1. Click File - Settings and then open Preferences.
2. Expand the Debug section in the Preferences view.

3. Set the trace preference value to true (default is false).
All the communication events are logged.

4. To watch these events, click View = Output and select Debug adapters from the drop-down
list at the upper right corner of the Output view.

8.1.1.4. Viewing logs for Python

This section describes how to view logs for the Python language server.

Procedure

® Navigate to the Output view and select Python in the drop-down list.

Python v E

©.2.96.nUpKQ. . . #EHEHEEEFLINTING O

8.1.1.5. Viewing logs for Go

This section describes how to view logs for the Go language server.

8.1.1.5.1. Finding the Go path

This section describes how to find where the GOPATH variable points to.

Procedure

® [Execute the Go: Current GOPATH command.

43

Red Hat OpenShift Dev Spaces 3.0 User guide

Cirl + Shift + D

fgo:/projects is the current GOPATH.

8.1.1.5.2. Viewing the Debug Console log for Go

This section describes how to view the log output from the Go debugger.

Procedure

1. Set the showLog attribute to true in the debug configuration.

{

"version": "0.2.0",
"configurations™: [
{
"type": "go”,
"showLog": true

2. To enable debugging output for a component, add the package to the comma-separated list
value of the logOutput attribute:

{

"version": "0.2.0",
"configurations™: [
{
"type": "go”,
"showLog": true,
"logOutput": "debugger,rpc,gdbwire,lldbout,debuglineerr”

3. The debug console prints the additional information in the debug console.

44

CHAPTER 8. TROUBLESHOOTING OPENSHIFT DEV SPACES

EJ Debug Console %

APL server listeni

ReturnInfolLoadConfig":null})

8.1.1.5.3. Viewing the Go logs output in the Output panel

This section describes how to view the Go logs output in the Output panel.

Procedure

1. Navigate to the Output view.

2. Select Goin the drop-down list.

™ Output x

y using cwd: /projects and Go workspace:

running L: PALTE /go vet ./...
running tool: /fusr, a /go build -i -o /tmp/vsc

NOTE

No specific diagnostics exist other than the general ones.

8.1.1.7. Viewing logs for Typescript
8.1.1.7.1. Enabling the label switched protocol (LSP) tracing

Procedure

1. To enable the tracing of messages sent to the Typescript (TS) server, in the Preferences view,
set the typescript.tsserver.trace attribute to verbose. Use this to diagnose the TS server
issues.

2. To enable logging of the TS server to a file, set the typescript.tsserver.log attribute to
verbose. Use this log to diagnose the TS server issues. The log contains the file paths.

8.1.1.7.2. Viewing the Typescript language server log

This section describes how to view the Typescript language server log.

45

Red Hat OpenShift Dev Spaces 3.0 User guide

Procedure

1. To get the path to the log file, see the Typescript Output console:

>Types|

cript: Open

8.1.1.7.3. Viewing the Typescript logs output in the Output panel

This section describes how to view the Typescript logs output in the Output panel.

Procedure

1. Navigate to the Output view

2. Select TypeScript in the drop-down list.

™ Qutput x ypeScript

[Info - M from: /tmp/vscode-unpacked/che-incubator.typescript.1.30.2.ayxluimfrn.che-typescript-language.v
[Info - r

[Info - 8:

8.1.1.8. Viewing logs for Java

Other than the general diagnostics, there are Language Support for Java (Eclipse JDT Language
Server) plug-in actions that the user can perform.

8.1.1.8.1. Verifying the state of the Eclipse JDT Language Server

Procedure

Check if the container that is running the Eclipse JDT Language Server plug-in is running the Eclipse
JDT Language Server main process.

1. Open a terminal in the container that is running the Eclipse JDT Language Server plug-in (an
example name for the container: vscode-javaxxx).

2. Inside the terminal, run the ps aux | grep jdt command to check if the Eclipse JDT Language
Server process is running in the container. If the process is running, the output is:

I usr/lib/jym/default-jvm/bin/java --add-modules=ALL-SYSTEM --add-opens java.base/java.util

This message also shows the Visual Studio Code Java extension used. If it is not running, the
language server has not been started inside the container.

3. Check all logs described in Section 8.1, “Viewing OpenShift Dev Spaces workspaces logs” .

8.1.1.8.2. Verifying the Eclipse JDT Language Server features

46

https://github.com/redhat-developer/vscode-java

CHAPTER 8. TROUBLESHOOTING OPENSHIFT DEV SPACES

Procedure

If the Eclipse JDT Language Server process is running, check if the language server features are
working:

1. Open a Java file and use the hover or autocomplete functionality. In case of an erroneous file,
the user sees Java in the Outline view or in the Problems view.

8.1.1.8.3. Viewing the Java language server log

Procedure

The Eclipse JDT Language Server has its own workspace where it logs errors, information about
executed commands, and events.

1. To open this log file, open a terminal in the container that is running the Eclipse JDT Language
Server plug-in. You can also view the log file by running the Java: Open Java Language Server
log file command.

2. Run cat <PATH_TO_LOG_FILE> where PATH_TO_LOG_FILE is

/home/theia/.theia/workspace-
storage/<workspace_names/redhat.java/jdt_ws/.metadata/.log.

8.1.1.8.4. Logging the Java language server protocol (LSP) messages

Procedure

To log the LSP messages to the Visual Studio Code Output view, enable tracing by setting the
java.trace.server attribute to verbose.

Additional resources
For troubleshooting instructions, see the Visual Studio Code Java GitHub repository .

8.1.1.9. Viewing logs for Intelephense

8.1.1.9.1. Logging the Intelephense client-server communication

Procedure

To configure the PHP Intelephense language support to log the client-server communication in the
Output view:

1. Click File = Settings.
2. Open the Preferences view.

3. Expand the Intelephense section and set the trace.server.verbose preference value to
verbose to see all the communication events (the default value is off).

8.1.1.9.2. Viewing Intelephense events in the Output panel

This procedure describes how to view Intelephense events in the Output panel.

Procedure

47

https://github.com/redhat-developer/vscode-java

Red Hat OpenShift Dev Spaces 3.0 User guide

1. Click View = Output

2. Select Intelephense in the drop-down list for the Output view.

8.1.1.10. Viewing logs for PHP-Debug

This procedure describes how to configure the PHP Debug plug-in to log the PHP Debug plug-in
diagnostic messages into the Debug Console view. Configure this before the start of the debug
session.

Procedure
1. In the launch.json file, add the "log": true attribute to the php configuration.
2. Start the debug session.

3. The diagnostic messages are printed into the Debug Console view along with the application
output.

8.1.1.11. Viewing logs for XML

Other than the general diagnostics, there are XML plug-in specific actions that the user can perform.
8.1.1.11.1. Verifying the state of the XML language server

Procedure

1. Open a terminal in the container named vscode-xml-<xxx>.

2. Run ps aux | grep java to verify that the XML language server has started. If the process is
running, the output is:

I java ***/org.eclipse.ls4xml-uber.jar

If is not, see the Section 8.1, “Viewing OpenShift Dev Spaces workspaces logs” chapter.
8.1.1.11.2. Checking XML language server feature flags

Procedure

1. Check if the features are enabled. The XML plug-in provides multiple settings that can enable
and disable features:

e xml.format.enabled: Enable the formatter
e xml.validation.enabled: Enable the validation
e xml.documentSymbols.enabled: Enable the document symbols

2. To diagnose whether the XML language server is working, create a simple XML element, such as
<hello></hello>, and confirm that it appears in the Outline panel on the right.

3. If the document symbols do not show, ensure that the xml.documentSymbols.enabled

attribute is set to true. If it is true, and there are no symbols, the language server may not be
hooked to the editor. If there are document symbols, then the language server is connected to

48

CHAPTER 8. TROUBLESHOOTING OPENSHIFT DEV SPACES

the editor.
4. Ensure that the features that the user needs, are set to true in the settings (they are set to true

by default). If any of the features are not working, or not working as expected, file an issue
against the Language Server.

8.1.1.11.3. Enabling XML Language Server Protocol (LSP) tracing

Procedure

To log LSP messages to the Visual Studio Code Output view, enable tracing by setting the
xml.trace.server attribute to verbose.

8.1.1.11.4. Viewing the XML language server log

Procedure

The log from the language server can be found in the plug-in sidecar at /home/theia/.theia/workspace-
storage/<workspace_name>/redhat.vscode-xml/Isp4xml.log.

8.1.1.12. Viewing logs for YAML

This section describes the YAML plug-in specific actions that the user can perform, in addition to the
general diagnostics ones.

8.1.1.12.1. Verifying the state of the YAML language server

This section describes how to verify the state of the YAML language server.

Procedure

Check if the container running the YAML plug-in is running the YAML language server.

1. In the editor, open a terminal in the container that is running the YAML plug-in (an example
name of the container: vscode-yaml-<xxx>).

2. In the terminal, run the ps aux | grep node command. This command searches all the node
processes running in the current container.

3. Verify that a command node **/server.js is running.

49

https://github.com/angelozerr/lsp4xml

Red Hat OpenShift Dev Spaces 3.0 User guide

Bl Fie cdit
D
Jo

Selection View Go Debug

@ Problems >_ vscode-yamlem?2 terminal 0 X

/ $ ps aux | grep node

19 root 0:01 node /home/the
ia/lib/node/plugin-remote.js

32 root 0:00 /usr/local/bin
/node /tmp/vscode-unpacked/redhat.v
scode-yaml. latest.gkgcvtgwdw. redhat
.vscode-yaml-0.4.0.vsix/extension/n
ode modules/vscode-languageclient/1
ib/utils/electronForkStart /tmp/vsc
ode-unpacked/redhat.vscode-yaml. lat
est.gkgcvtgwdw. redhat.vscode-yaml-0
.4.0.vsix/extension/node modules/ya
ml-language-server/out/server/src/s
erver.js --node-ipc --clientProcess
Id=19

89 root
/ $

0:00 grep node

Terminal Help

MY WORKSPACE

4 \WORKSPACE
4 User Runtimes
4 @ python
>_ New terminal
£ run
4 Plugins
4 @ vscode-yamlem2
>_ New terminal
4 @ theia-idemne
>_ New terminal
theia-dev
theia
theia-redirect-3

theia-redirect-2

The node **/server.js running in the container indicates that the language server is running. If it is
not running, the language server has not started inside the container. In this case, see Section 8.1,
“Viewing OpenShift Dev Spaces workspaces logs”.

8.1.1.12.2. Checking the YAML language server feature flags

Procedure

To check the feature flags:

1. Check if the features are enabled. The YAML plug-in provides multiple settings that can
enable and disable features, such as:

e yaml.format.enable: Enables the formatter

e yaml.validate: Enables validation

e yaml.hover: Enables the hover function

e yaml.completion: Enables the completion function

2. To check if the plug-in is working, type the simplest YAML, such as hello: world, and then
open the Outline panel on the right side of the editor.

3. Verify if there are any document symbols. If yes, the language server is connected to the
editor.

4. If any feature is not working, verify that the settings listed above are set to true (they are
set to true by default). If a feature is not working, file an issue against thd.anguage Server.

8.1.1.12.3. Enabling YAML Language Server Protocol (LSP) tracing

Procedure

To log LSP messages to the Visual Studio Code Output view, enable tracing by setting the
yaml.trace.server attribute toverbose.

50

https://github.com/redhat-developer/yaml-language-server

CHAPTER 8. TROUBLESHOOTING OPENSHIFT DEV SPACES

8.1.1.13. Viewing logs for .NET with OmniSharp-Theia plug-in

8.1.1.13.1. OmniSharp-Theia plug-in

OpenShift Dev Spaces uses the OmniSharp-Theia plug-in as a remote plug-in. It is located at
github.com/redhat-developer/omnisharp-theia-plugin. In case of an issue, report it, or contribute
your fix in the repository.

This plug-in registers omnisharp-roslyn as a language server and provides project dependencies
and language syntax for C# applications.

The language server runs on .NET SDK 2.2.105.

8.1.1.13.2. Verifying the state of the OmniSharp-Theia plug-in language server

Procedure

To check if the container running the OmniSharp-Theia plug-in is running OmniSharp, execute the
ps aux | grep OmniSharp.exe command. If the process is running, the following is an example
output:

/tmp/theia-unpacked/redhat-developer.che-omnisharp-
plugin.0.0.1.zcpagpczwb.omnisharp_theia_plugin.theia/server/bin/mono
/tmp/theia-unpacked/redhat-developer.che-omnisharp-
plugin.0.0.1.zcpagpczwb.omnisharp_theia_plugin.theia/server/omnisharp/OmniSharp.exe

If the output is different, the language server has not started inside the container. Check the logs
described in Section 8.1, “Viewing OpenShift Dev Spaces workspaces logs”

8.1.1.13.3. Checking OmniSharp Che-Theia plug-in language server features

Procedure

e If the OmniSharp.exe process is running, check if the language server features are working
by opening a .cs file and trying the hover or completion features, or opening theProblems
or Outline view.

8.1.1.13.4. Viewing OmniSharp-Theia plug-in logs in the Output panel

Procedure

If OmniSharp.exe is running, it logs all information in theDutput panel. To view the logs, open the
Output view and selectC# from the drop-down list.

8.1.1.14. Viewing logs for .NET with NetcoredebugOutput plug-in

8.1.1.14.1. NetcoredebugOutput plug-in

The NetcoredebugOutput plug-in provides the netcoredbg tool. This tool implements the Visual
Studio Code Debug Adapter protocol and allows users to debug .NET applications under the .NET
Core runtime.

The container where the NetcoredebugOutput plug-in is running contains .NET SDK v.2.2.105.

51

https://github.com/redhat-developer/omnisharp-theia-plugin
https://github.com/OmniSharp/omnisharp-roslyn
https://github.com/Samsung/netcoredbg

Red Hat OpenShift Dev Spaces 3.0 User guide

8.1.1.14.2. Verifying the state of the NetcoredebugOutput plug-in

Procedure

1. Search for a netcoredbg debug configuration in thelaunch.json file.

Example 8.1. Sample debug configuration
{
"type": "netcoredbg”,
"request": "launch”,

"program: "${workspaceFolder}/bin/Debug/<target-frameworks/<project-
name.dll>",

"args":],

"name": ".NET Core Launch (console)",

"stopAtEntry": false,

"console": "internalConsole"

}

2. Test the autocompletion feature within the braces of the configuration section of the
launch.json file. If you can findnetcoredbg, the Che-Theia plug-in is correctly initialized. If
not, see Section 8.1, “Viewing OpenShift Dev Spaces workspaces logs”

8.1.1.14.3. Viewing NetcoredebugOutput plug-in logs in the Output panel

This section describes how to view NetcoredebugOutput plug-in logs in theOutput panel.

Procedure

® Open the Debug console.
File Edit Selecton View Go Debug Terminal Help

DEBUG Program.cs X € launch.json X

System;
b NETCY # & g ! {

I N myapp
"version":
4 THREADS " A
Program configurat
PAUSED ON BREAKPOINT

{
PAUSED ON BREAKPOINT
PAUSED ON BREAKPOINT

4 CALL STACK
myapp.... Program.cs (¥

4 VARIABLES
4 Locals

ES

4 BREAKPOINTS ¢ a

Program.cs myapp

Main([1 args)

{

Console.WriteLine("Hello World!"

¥
}

>_ 4pv terminal 4 & Debug Console

8.1.1.15. Viewing logs for Camel

8.1.1.15.1. Verifying the state of the Camel language server

Procedure

52

tcoredbg",
unch",
paceFolder}/m

“ore Launch (console)",

'
"console": 1iternalConsole”

CHAPTER 8. TROUBLESHOOTING OPENSHIFT DEV SPACES

The user can inspect the log output of the sidecar container using the Camel language tools that
are stored in the vscode-apache-camel<xxx> Camel container.

To verify the state of the language server:
1. Open a terminal inside the vscode-apache-camel<xxx> container.

2. Run the ps aux | grep java command. The following is an example language server process:

java -jar /tmp/vscode-unpacked/camel-tooling.vscode-apache-
camel.latest.eughbmepxd.camel-tooling.vscode-apache-camel-
0.0.14.vsix/extension/jars/language-server.jar

3. If you cannot find it, see Section 8.1, “Viewing OpenShift Dev Spaces workspaces logs”

8.1.1.15.2. Viewing Camel logs in the Output panel

The Camel language server is a SpringBoot application that writes its log to the $\
{java.io.tmpdir}/log-camel-Isp.out file. Typically,$\{java.io.tmpdir} points to the/tmp directory, so
the filename is /tmp/log-camel-Isp.out.

Procedure

The Camel language server logs are printed in the Output channel namedLanguage Support for
Apache Camel.

ARR NOTE
N

The output channel is created only at the first created log entry on the client side. It
may be absent when everything is going well.

File Edit Selecton View Go Debug Terminal Help

SEARCH camelxml @

Language Support for Apache Camel v 2

8.1.2. Viewing Che-Theia IDE logs

This section describes how to view Che-Theia IDE logs.

8.1.2.1. Viewing Che-Theia editor logs using the OpenShift CLI

Observing Che-Theia editor logs helps to get a better understanding and insight over the plug-ins
loaded by the editor. This section describes how to access the Che-Theia editor logs using the
OpenShift CLI (command-line interface).

33

Red Hat OpenShift Dev Spaces 3.0 User guide

Prerequisites

Procedure

54

® OpenShift Dev Spaces is deployed in an OpenShift cluster.
® A workspace is created.

® User is located in a OpenShift Dev Spaces installation project.

1. Obtain the list of the available Pods:

I $ oc get pods

Example
$ oc get pods
NAME READY STATUS RESTARTS AGE
devspaces-9-xz69g8 1/1 Running 1 15h

workspace0zgb2ew3py4srthh.go-cli-549cdcf69-9n4w2 4/4 Running 0 1h

2. Obtain the list of the available containers in the particular Pod:

I $ oc get pods <name-of-pod> --output jsonpath="\{.spec.containers[*].name}'

Example:

$ oc get pods workspace0zqgb2ew3py4srthh.go-cli-549cdcf69-9n4w2 -o
jsonpath="\{.spec.containers[*].name}'
> go-cli che-machine-exechr7 theia-idexzb vscode-gox3r

3. Getlogs from the theia/ide container:

I $ oc logs --follow <name-of-pod> --container <name-of-container>

Example:

$ oc logs --follow workspace0zgb2ew3py4srthh.go-cli-549cdcf69-9n4w2 -container
theia-idexzb

>root INFO unzipping the plug-in 'task_plugin.theia' to directory: /tmp/theia-
unpacked/task_plugin.theia

root INFO unzipping the plug-in 'theia_yeoman_plugin.theia' to directory: /tmp/theia-
unpacked/theia_yeoman_plugin.theia

root WARN A handler with prefix term is already registered.

root INFO [nsfw-watcher: 75] Started watching: /home/theia/.theia

root WARN e.onStart is slow, took: 367.4600000013015 ms

root INFO [nsfw-watcher: 75] Started watching: /projects

root INFO [nsfw-watcher: 75] Started watching: /projects/.theia/tasks.json

root INFO [4f9590c5-e1¢5-40d1-b9f8-ec31ec3bdac5] Sync of 9 plugins took:
62.26000000242493 ms

root INFO [nsfw-watcher: 75] Started watching: /projects

root INFO [hosted-plugin: 88] PLUGIN_HOST(88) starting instance

CHAPTER 8. TROUBLESHOOTING OPENSHIFT DEV SPACES

8.2. INVESTIGATING FAILURES AT A WORKSPACE START USING THE
VERBOSE MODE

Verbose mode allows users to reach an enlarged log output, investigating failures at a workspace
start.

In addition to usual log entries, the Verbose mode also lists the container logs of each workspace.

8.2.1. Restarting a OpenShift Dev Spaces workspace in Verbose mode after start
failure

This section describes how to restart a OpenShift Dev Spaces workspace in the Verbose mode
after a failure during the workspace start. Dashboard proposes the restart of a workspace in the
Verbose mode once the workspace fails at its start.

Prerequisites

® Arunning instance of OpenShift Dev Spaces.

® An existing workspace that fails to start.

Procedure

1. Using Dashboard, try to start a workspace.
2. When it fails to start, click on the displayed Open in Verbose modelink.

3. Check the Logs tab to find a reason for the workspace failure.

8.2.2. Starting a OpenShift Dev Spaces workspace in Verbose mode

This section describes how to start the Red Hat OpenShift Dev Spaces workspace in Verbose
mode.

Prerequisites

® Arunning instance of Red Hat OpenShift Dev Spaces.

® An existing workspace defined on this instance of OpenShift Dev Spaces.

Procedure

1. Open the Workspaces tab.

2. On the left side of a row dedicated to the workspace, access the drop-down menu
displayed as three horizontal dots and select the Open in Verbose modeoption.
Alternatively, this option is also available in the workspace details, under the Actions drop-

down menu.

3. Check the Logs tab to find a reason for the workspace failure.

8.3. TROUBLESHOOTING SLOW WORKSPACES

55

Red Hat OpenShift Dev Spaces 3.0 User guide

Sometimes, workspaces can take a long time to start. Tuning can reduce this start time. Depending
on the options, administrators or users can do the tuning.

This section includes several tuning options for starting workspaces faster or improving workspace
runtime performance.

8.3.1. Improving workspace start time

Caching images with Image Puller

Role: Administrator

When starting a workspace, OpenShift pulls the images from the registry. A workspace can
include many containers meaning that OpenShift pulls Pod's images (one per container).
Depending on the size of the image and the bandwidth, it can take a long time.

Image Puller is a tool that can cache images on each of OpenShift nodes. As such, pre-pulling
images can improve start times. See https://access.redhat.com/documentation/en-
us/red_hat_openshift_dev_spaces/3.0/html-single/administration_guide/index#caching-
images-for-faster-workspace-start.

Choosing better storage type

Role: Administrator and user

Every workspace has a shared volume attached. This volume stores the project files, so that
when restarting a workspace, changes are still available. Depending on the storage, attach time
can take up to a few minutes, and I/O can be slow.

Installing offline

Role: Administrator

Components of OpenShift Dev Spaces are OCl images. Set up Red Hat OpenShift Dev Spaces in
offline mode (air-gap scenario) to reduce any extra download at runtime because everything
needs to be available from the beginning. See https://access.redhat.com/documentation/en-
us/red_hat_openshift_dev_spaces/3.0/html-single/administration_guide/index#installing-
devspaces-in-a-restricted-environment-on-openshift.

Optimizing workspace plug-ins

Role: User

When selecting various plug-ins, each plug-in can bring its own sidecar container, which is an
OCl image. OpenShift pulls the images of these sidecar containers.

Reduce the number of plug-ins, or disable them to see if start time is faster. See also
https://access.redhat.com/documentation/en-us/red_hat_openshift_dev_spaces/3.0/html-
single/administration_guide/index#caching-images-for-faster-workspace-start.

Reducing the number of public endpoints

56

Role: Administrator

For each endpoint, OpenShift is creating OpenShift Route objects. Depending on the underlying
configuration, this creation can be slow.

To avoid this problem, reduce the exposure. For example, to automatically detect a new port
listening inside containers and redirect traffic for the processes using a local IP address
(127.0.0.1), the Che-Theia IDE plug-in has three optional routes.

By reducing the number of endpoints and checking endpoints of all plug-ins, workspace start
can be faster.

https://access.redhat.com/documentation/en-us/red_hat_openshift_dev_spaces/3.0/html-single/administration_guide/index#caching-images-for-faster-workspace-start
https://access.redhat.com/documentation/en-us/red_hat_openshift_dev_spaces/3.0/html-single/administration_guide/index#installing-devspaces-in-a-restricted-environment-on-openshift
https://access.redhat.com/documentation/en-us/red_hat_openshift_dev_spaces/3.0/html-single/administration_guide/index#caching-images-for-faster-workspace-start

CHAPTER 8. TROUBLESHOOTING OPENSHIFT DEV SPACES

CDN configuration

The IDE editor uses a CDN (Content Delivery Network) to serve content. Check that the
content uses a CDN to the client (or a local route for offline setup).

To check that, open Developer Tools in the browser and check for vendors in theNetwork tab.
vendors.<random-id>.js or editor.main.* should come from CDN URLs.

8.3.2. Improving workspace runtime performance

Providing enough CPU resources

Plug-ins consume CPU resources. For example, when a plug-in provides IntelliSense features,
adding more CPU resources may lead to better performance.
Ensure the CPU settings in the devfile definition, devfile.yaml, are correct:

apiVersion: 1.0.0

components:

type: chePlugin

id: id/of/plug-in
cpuLimit: 1360Mi @)
cpuRequest: 100m 9

@ Specifies the CPU limit for the plug-in.

9 Specifies the CPU request for the plug-in.

Providing enough memory

Plug-ins consume CPU and memory resources. For example, when a plug-in provides
IntelliSense features, collecting data can consume all the memory allocated to the container.
Providing more memory to the plug-in can increase performance. Ensure about the correctness
of memory settings:

® in the plug-in definition - meta.yaml file
® in the devfile definition - devfile.yaml file
apiVersion: v2
spec:
containers:
- image: "quay.io/my-image"
name: "vscode-plugin"
memoryLimit: "512Mi"

extensions:
- https:/link.to/vsix

ﬂ Specifies the memory limit for the plug-in.

In the devfile definition (devfile.yaml):

I apiVersion: 1.0.0

57

Red Hat OpenShift Dev Spaces 3.0 User guide

components:

type: chePlugin

id: id/of/plug-in
memoryLimit: 1048M 0
memoryRequest: 256M

ﬂ Specifies the memory limit for this plug-in.

8.4. TROUBLESHOOTING NETWORK PROBLEMS

This section describes how to prevent or resolve issues related to network policies. OpenShift Dev
Spaces requires the availability of the WebSocket Secure (WSS) connections. Secure WebSocket
connections improve confidentiality and also reliability because they reduce the risk of
interference by bad proxies.

Prerequisites

® The WebSocket Secure (WSS) connections on port 443 must be available on the network.
Firewall and proxy may need additional configuration.

® Use asupported web browser:

o Google Chrome

o Mozilla Firefox

Procedure

1. Verify the browser supports the WebSocket protocol. See: Searching a websocket test.

2. Verify firewalls settings: WebSocket Secure (WSS) connections on port 443 must be
available.

3. Verify proxy servers settings: The proxy transmits and intercepts WebSocket Secure (WSS)
connections on port 443.

58

https://www.google.com/search?q=websocket+test

CHAPTER 9. ADDING A VISUAL STUDIO CODE EXTENSION TO A WORKSPACE

CHAPTER 9. ADDING A VISUAL STUDIO CODE EXTENSION TO
A WORKSPACE

Previously, with the devfiles vl format, you used the devfile to specify IDE-specific plug-ins and
Visual Studio Code extensions. Now, with devfiles v2, you use a specific meta-folder rather than the
devfile to specify the plug-ins and extensions.

9.1. OPENSHIFT DEV SPACES PLUG-IN REGISTRIES OVERVIEW

Every OpenShift Dev Spaces instance has a registry of default plug-ins and extensions. The Che-
Theia IDE gets information about these plug-ins and extensions from the registry and installs them.

Check this OpenShift Dev Spaces registry project for an overview of the default plug-ins,
extensions, and source code. An online instance that refreshes after every commit to the main
branch, is located here. You can use a different plug-in or extension registry for Che-Theia if you
don’t work in air-gapped environment: only the default registry is available there.

The plug-in and extension overview for Che-Code Visual Studio Code editor is located in the
OpenVSX instance. Air gap is not yet supported for this editor.

9.2. ADDING AN EXTENSION TO .VSCODE/EXTENSIONS.JSON

The easiest way to add a Visual Studio Code extension to a workspace is to add it to the
.vscode/extensions.json file. The main advantage of this method is that it works with all supported
OpenShift Dev Spaces IDEs.

If you use the Che-Theia IDE, the extension is installed and configured automatically. If you use a
different supported IDE with the Che-Code Visual Studio Code fork, the IDE displays a pop-up with
arecommendation to install the extension.

Prerequisites

1. You have the .vscode/extensions.json file in the root of the GitHub repository.

Procedure

1. Add the extension ID to the .vscode/extensions.json file. Use a. sign to separate the
publisher and extension. The following example uses the IDs of Red Hat Visual Studio Code
Java extension:

{

"recommendations’: [
"redhat.java"

]
}

NOTE

If the specified set of extension IDs isn't available in the OpenShift Dev Spaces
registry, the workspace starts without the extension.

9.3. ADDING PLUG-IN PARAMETERS TO .CHE/CHE-THEIA-PLUGINS.YAML

59

https://github.com/eclipse-che/che-plugin-registry
https://eclipse-che.github.io/che-plugin-registry/main/v3/plugins/
https://www.open-vsx.org/

Red Hat OpenShift Dev Spaces 3.0 User guide

You can add extra parameters to a plug-in by modifying the .che/che-theia-plugins.yaml file. These
modifications include:

® Defining the plug-ins for workspace installation.
® Changing the default memory limit.

® Overriding default preferences.

9.3.1. Defining the plug-ins for workspace installation

Define the plug-ins to be installed in the workspace.

Prerequisites

1. You have the .che/che-theia-plugins.yaml file in the root of the GitHub repository.

Procedure

1. Add the ID of the plug-in to the .che/che-theia-plugins.yaml file. Use the/ sign to separate
the publisher and plug-in name. The following example uses the IDs of Red Hat Visual
Studio Code Java extension:

I - id: redhat/java/latest

9.3.2. Changing the default memory limit

Override container settings such as the memory limit.

Prerequisites

1. You have the .che/che-theia-plugins.yaml file in the root of the GitHub repository.

Procedure
1. Add an override section to the.che/che-theia-plugins.yaml file under theid of the plug-in.

2. Specify the memory limit for the extension. In the following example, OpenShift Dev
Spaces automatically installs the Red Hat Visual Studio Code Java extension in the
OpenShift Dev Spaces workspace and increases the memory of the workspace by two
gigabytes:

- id: redhat/java/latest
override:
sidecar:

memoryLimit: 2Gi

9.3.3. Overriding default preferences

Override the default preferences of the Visual Studio Code extension for the workspace.

Prerequisites

60

CHAPTER 9. ADDING A VISUAL STUDIO CODE EXTENSION TO A WORKSPACE

1. You have the .che/che-theia-plugins.yaml file in the root of the GitHub repository.

Procedure

1. Add an override section to the.che/che-theia-plugins.yaml file under theid of the
extension.

2. Specify the preferences in the Preferences section. In the following example, OpenShift
Dev Spaces automatically installs Red Hat Visual Studio Code Java extension in the
OpenShift Dev Spaces workspace and sets the java.server.launchMode preference to
LightWeight:

- id: redhat/java/latest
override:
preferences:
java.server.launchMode: LightWeight

NOTE

You can also define the preferences in the .vscode/settings.json file, either by
changing the preferences in the Ul of your IDE or by adding them to the
.vscode/settings.json file:

{

"my.preferences": "my-value”

}

9.4. DEFINING VISUAL STUDIO CODE EXTENSION ATTRIBUTES IN
THE DEVFILE

If it's not possible to add extra files in the GitHub repository, you can define some of the plug-in or
extension attributes by inlining them in the devfile. You can use this procedure with both
.vscode/extensions.json and.che/che-theia-plugins.yaml file contents.

9.4.1. Inlining .vscode/extensions.json file

Use .vscode/extensions.json file contents to inline the extension attributes in the devfile.

Procedure

1. Add an attributes section to yourdevfile.yaml file.

2. Add .vscode/extensions.json to theatributes section. Add a| sign after the colon
separator.

3. Paste the contents of the .vscode/extensions.json file after the| sign. The following
example uses Red Hat Visual Studio Code Java extension attributes:

schemaVersion: 2.2.0
metadata:
name: my-example
attributes:
.vscode/extensions.json: |

61

Red Hat OpenShift Dev Spaces 3.0 User guide

{

"recommendations": [
"redhat.java"

]
}

9.4.2. Inlining .che/che-theia-plugins.yaml file

Use .che/che-theia-plugins.yaml file contents to inline the plug-in attributes in the devfile.

Procedure

1. Add an attributes section to yourdevfile.yaml file.

2. Add .vscode/extensions.json to theatributes section. Add a| sign after the colon
separator.

3. Paste the content of the .che/che-theia-plugins.yaml file after the| sign. The following
example uses Red Hat Visual Studio Code Java extension attributes:

schemaVersion: 2.2.0
metadata:
name: my-example
attributes:
.che/che-theia-plugins.yaml: |
- id: redhat/java/latest

62

	Table of Contents
	CHAPTER 1. ADOPTING OPENSHIFT DEV SPACES
	1.1. DEVELOPER WORKSPACES
	1.2. USING A BADGE WITH A LINK TO ENABLE A FIRST-TIME CONTRIBUTOR TO START A WORKSPACE
	1.3. BENEFITS OF REVIEWING PULL AND MERGE REQUESTS IN RED HAT OPENSHIFT DEV SPACES
	1.4. SUPPORTED LANGUAGES

	CHAPTER 2. USER ONBOARDING
	2.1. STARTING A NEW WORKSPACE WITH A CLONE OF A GIT REPOSITORY
	2.2. OPTIONAL PARAMETERS FOR THE URLS FOR STARTING A NEW WORKSPACE
	2.2.1. URL parameter concatenation
	2.2.2. URL parameter for the workspace IDE
	2.2.3. URL parameter for starting duplicate workspaces
	2.2.4. URL parameter for the devfile file name
	2.2.5. URL parameter for the devfile file path

	2.3. BASIC ACTIONS YOU CAN PERFORM ON A WORKSPACE
	2.4. AUTHENTICATING YOURSELF TO A GIT SERVER FROM A WORKSPACE

	CHAPTER 3. CUSTOMIZING WORKSPACE COMPONENTS
	CHAPTER 4. SELECTING A WORKSPACE IDE
	4.1. SELECTING AN IN-BROWSER IDE FOR A NEW WORKSPACE BY USING A URL PARAMETER
	4.2. SPECIFYING AN IN-BROWSER IDE FOR A GIT REPOSITORY BY USING CHE-EDITOR.YAML
	4.2.1. Using the OpenShift Dev Spaces editor file to select an IDE
	4.2.2. Customizing IDE selection with the che-editor.yaml file
	4.2.3. Using a custom plug-in registry for your IDE
	4.2.4. Using a web reference for your IDE
	4.2.5. Using an embedded editor definition for your IDE

	CHAPTER 5. USING CREDENTIALS AND CONFIGURATIONS IN WORKSPACES
	5.1. USING A GIT CREDENTIALS STORE
	5.2. ENABLING ARTIFACT REPOSITORIES IN A RESTRICTED ENVIRONMENT
	5.2.1. Enabling Maven artifact repositories
	5.2.2. Enabling Gradle artifact repositories
	5.2.3. Enabling npm artifact repositories
	5.2.4. Enabling Python artifact repositories
	5.2.5. Enabling Go artifact repositories
	5.2.6. Enabling NuGet artifact repositories

	5.3. CREATING IMAGE PULL SECRETS
	5.3.1. Creating an image pull Secret with oc
	5.3.2. Creating an image pull Secret from a .dockercfg file
	5.3.3. Creating an image pull Secret from a config.json file

	5.4. MOUNTING SECRETS
	5.5. MOUNTING CONFIGMAPS

	CHAPTER 6. REQUESTING PERSISTENT STORAGE FOR WORKSPACES
	6.1. REQUESTING PERSISTENT STORAGE IN A DEVFILE
	6.2. REQUESTING PERSISTENT STORAGE IN A PVC

	CHAPTER 7. INTEGRATING WITH OPENSHIFT
	7.1. AUTOMATIC OPENSHIFT TOKEN INJECTION
	7.2. NAVIGATING OPENSHIFT DEV SPACES FROM OPENSHIFT DEVELOPER PERSPECTIVE
	7.2.1. OpenShift Developer Perspective integration with OpenShift Dev Spaces
	7.2.2. Editing the code of applications running in OpenShift Container Platform using OpenShift Dev Spaces
	7.2.3. Accessing OpenShift Dev Spaces from Red Hat Applications menu

	7.3. NAVIGATING OPENSHIFT WEB CONSOLE FROM OPENSHIFT DEV SPACES

	CHAPTER 8. TROUBLESHOOTING OPENSHIFT DEV SPACES
	8.1. VIEWING OPENSHIFT DEV SPACES WORKSPACES LOGS
	8.1.1. Viewing logs from language servers and debug adapters
	8.1.1.1. Checking important logs
	8.1.1.2. Detecting memory problems
	8.1.1.3. Logging the client-server traffic for debug adapters
	8.1.1.4. Viewing logs for Python
	8.1.1.5. Viewing logs for Go
	8.1.1.6. Viewing logs for the NodeDebug NodeDebug2 adapter
	8.1.1.7. Viewing logs for Typescript
	8.1.1.8. Viewing logs for Java
	8.1.1.9. Viewing logs for Intelephense
	8.1.1.10. Viewing logs for PHP-Debug
	8.1.1.11. Viewing logs for XML
	8.1.1.12. Viewing logs for YAML
	8.1.1.13. Viewing logs for .NET with OmniSharp-Theia plug-in
	8.1.1.14. Viewing logs for .NET with NetcoredebugOutput plug-in
	8.1.1.15. Viewing logs for Camel

	8.1.2. Viewing Che-Theia IDE logs
	8.1.2.1. Viewing Che-Theia editor logs using the OpenShift CLI

	8.2. INVESTIGATING FAILURES AT A WORKSPACE START USING THE VERBOSE MODE
	8.2.1. Restarting a OpenShift Dev Spaces workspace in Verbose mode after start failure
	8.2.2. Starting a OpenShift Dev Spaces workspace in Verbose mode

	8.3. TROUBLESHOOTING SLOW WORKSPACES
	8.3.1. Improving workspace start time
	8.3.2. Improving workspace runtime performance

	8.4. TROUBLESHOOTING NETWORK PROBLEMS

	CHAPTER 9. ADDING A VISUAL STUDIO CODE EXTENSION TO A WORKSPACE
	9.1. OPENSHIFT DEV SPACES PLUG-IN REGISTRIES OVERVIEW
	9.2. ADDING AN EXTENSION TO .VSCODE/EXTENSIONS.JSON
	9.3. ADDING PLUG-IN PARAMETERS TO .CHE/CHE-THEIA-PLUGINS.YAML
	9.3.1. Defining the plug-ins for workspace installation
	9.3.2. Changing the default memory limit
	9.3.3. Overriding default preferences

	9.4. DEFINING VISUAL STUDIO CODE EXTENSION ATTRIBUTES IN THE DEVFILE
	9.4.1. Inlining .vscode/extensions.json file
	9.4.2. Inlining .che/che-theia-plugins.yaml file

