‘® redhat.

JBoss Operations Network
3.0

Running JBoss ON Command-Line
Scripts

using the JBoss ON CLI and remote API
Edition 3.0.1

Ella Deon Lackey

JBoss Operations Network 3.0 Running JBoss ON Command-Line Scripts

using the JBoss ON CLI and remote API
Edition 3.0.1

Ella Deon Lackey
dlackey@redhat.com

Legal Notice

Copyright © 2011 Red Hat, Inc..

This document is licensed by Red Hat under the Creative Commons Attribution-ShareAlike 3.0
Unported License. If you distribute this document, or a modified version of it, you must provide
attribution to Red Hat, Inc. and provide a link to the original. If the document is modified, all Red Hat
trademarks must be removed.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.
Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other countries
and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or
sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

JBoss Operations Network provides its own command shell that can interact directly with the JBoss
ON server. This CLI uses the JBoss ON remote API to perform most of the tasks available in the
JBoss ON GUI, as well as additional operations like importing and exporting server configuration
and exporting historic metric data. The CLI allows administrators to script and automate their JBoss
ON deployment, which makes it easier to manage their infrastructure. This guide covers the basics
of installing and using the JBoss ON CLI and provides examples of scripts for common tasks. It is
intended primarily for administrators who will be using the default JBoss ON CLI to manage JBoss
ON. This manual has a secondary audience for plug-in writers and developers who intend to write
custom applications which leverage the remote API.

http://creativecommons.org/licenses/by-sa/3.0/

Table of Contents

Table of Contents

1. Document INfOrmMationt iiit it it et st a st e e 2
1.1. Document History 2
2. Using the JBoSS ON CLItO SCHPt TaSKSvutiiiii it it et sttt it ia e a s na s a e nnnnnns 2
2.1. About the JBoss ON CLI 2
2.2. More Java Resources 3
3. Installing the JBoss ON Command-Line TOOlciiiiiiiiiii ittt et iiasannannannns, 4
4. RUNNiNg the JBOSS ON CLI ittt ittt et st aa et a e a e a s asan s, 4
4.1. JBoss ON CLI Options 6
4.2. JBoss ON CLI Commands 6
4.3. Available Implicit Variables in the JBoss ON API 8
4.4, Passing Script Arguments in the JBoss ON CLI 11
4.5. Configuring Criteria-Based Searching 13
4.6. Displaying Output 16
4.7. Simple CLI Examples 18
4.8. Using Resource Proxies 19
5. Simple Example: Scriptsto Manage INVeNntoryietiiirinnernnnrrnnrrnnnsrnnrsnnnnns 25
5.1. Automatically Import New Resources: autoimport.js 25
5.2. Simple Inventory Count: inventoryCount.js 26
5.3. Uninventory a Resource After an Alert: uninventory.js 27
5.4. INDI Lookups for a JBoss AS 5 Server After an Alert: jndi.js 27
6. Example: Scripting Resource Deploymentsiiiitiinrinnernnnrrnnrrnnnsrnnnsnnnens 27
6.1. Scripting JBoss AS 4 Deployments 28
6.2. Scripting JBoss AS 5 Deployments 32
7. Example: Managing Grouped SerVerseiuerntrnrrarnacnnranrnsrnrrarsnsnnsnnsnnns 37
7.1. The Plan for the Scripts 37
7.2. Creating the Wrapper Script and .conf File 38
7.3. Defining Arguments and Other Parameters for the CLI Scripts 40
7.4. Creating a Group: group.js 41
7.5. Adding Resources to a Group: addMember.js 41
7.6. Getting Inventory and Status Information: status.js 43
7.7. Starting, Stopping, and Restarting the Server: restart.js 44
7.8. Deploying Applications to the Group Members: deploy.js 45
7.9. Scheduling an Operation: ops.js 45
7.10. Gathering Metric Data of Managed Servers: metrics.js 46
8. Example: Writing a Custom Java Clientottt iitni it et iara e ennranenns 47
8.1. Getting the API 48
8.2. Example Custom Java Client 48
9. Reference: Methods Specifictothe JBosSSONCLIttt iii i tnnarnanrnnnens 56
9.1. Methods Available to the CLI and Server Scripts 56
9.2. Methods Available to Proxy Resources 62

Running JBoss ON Command-Line Scripts

1. Document Information

This guide is part of the overall set of guides for users and administrators of JBoss ON. Our goal is clarity,
completeness, and ease of use.

1.1. Document History

Revision 3.0.1-5 2013-10-31 Riudiger Landmann
Rebuild with publican 4.0.0

Revision 3.0.1-0 March 18, 2012 Ella Deon Lackey
Fixing example scripts and rewriting examples for JBoss Operations Network 3.0.1.

Revision 3.0-1 January 26, 2012 Ella Deon Lackey
Fixing a typo in the echo_args.js example script, per Bugzilla 784887.
Fixing a typo in the CLI login example, per Bugzilla 784703.
Updating API call for createPackageBackedResource method to include timeout parameter, per Bugzilla
770011,
Breaking out separate JBoss AS 4 and JBoss AS 5 examples for scripting an EAR deployment to a JBoss
group, per Bugzilla 772366.

Revision 3.0-0 December 5, 2011 Ella Deon Lackey
Initial release of JBoss ON 3.0.

2. Using the JBoss ON CLI to Script Tasks

A large subset of JBoss Operations Network functionality is exposed through its remote APIs. These APls
allow clients to access the server functionality — alerting, monitoring, managing inventory and resources,
even agents. JBoss ON has several different ways that clients can leverage the remote API. Two of them are
supplied with JBoss ON automatically: the JBoss ON web Ul and the JBoss ON Java CLI. Custom clients
can be written using the remote API for customers to create their own management interfaces, like desktop
clients, provisioning automation, or alert reporting integration.

Building custom user interfaces is outside the scope of this guide. For reference, there is an example JEE

2.1. About the JBoss ON CLI

The backend logic that defines the JBoss Operations Network subsystems, functionality, and interactions is
contained in the Enterprise JavaBeans for the server. These EJBs expose the relevant JBoss ON APIs to
different interfaces. JBoss ON supports two kinds of interfaces:

Web services, like the JBoss ON Ul, using SOAP and leveraging the JBoss Remoting framework for
communication

Java clients using (obviously) Java and calling the remote JBoss ON APIs

JBoss ON already includes a client of each type. The JBoss ON server GUI uses the web services and
remoting framework to connect to the server. The additional JBoss ON CLI which can be downloaded and
installed locally uses Java and the remote API to support scripting and command line services.

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Operations_Network/3.1/html/API/ch01.html

1. Document Information

Custom services can be built for web Uls using SOAP or for Java Enterprise (JEE) clients written in any
JVM-compatible language, including Java, Scala, and Groovy.

The default JBoss ON CLI is a Java-based scripting interface. This contrasts with the JBoss ON web Ul,
which provides a simple, visual way to manage JBoss ON.

ON into a network environment because administrators can interact with JBoss ON programmatically.

The JBoss ON CLI has a JavaScript-style scripting environment by using the Rhino engine in Java 6. By
using the Remoting services in the JBoss ON communications system, the CLI can be used for remote
scripting services, not just local operations.

the CLI.

The JBoss Operations Network CLI itself is a Java shell the allows administrators to connect to the JBoss ON
server over the command line. Essentially, the CLI is a script execution engine. It treats the JBoss ON API as
if it was written in a scripting language, which makes it more convenient to manage the JBoss ON server.

The JBoss ON CLI is opened through a script, rhq-cli. sh|bat. This script emulates a shell, accepting
basic commands and allowing administrators to navigate the server with shell tools like autocomplete.

The JBoss ON CLI uses the remote API. This can be used to create both Java and web-based clients by

The remote API cannot be run from a client inside an application server. For example, the remote
API cannot be run from a client inside an EAP instance; it fails with errors like the following:

Caused by: java.lang.IllegalArgumentException: interface
org.rhqg.enterprise.server.auth.SubjectManagerRemote is not visible from
class

loader

at java.lang.reflect.Proxy.getProxyClass(Proxy. java:353)

at java.lang.reflect.Proxy.newProxyInstance(Proxy.java:581)

at
org.rhqg.enterprise.client.RemoteClientProxy.getProcessor(RemoteClientPr
oxy.java:69)

2.2. More Java Resources

For additional information on using a Java client like the JBoss ON CLI, check out these resources:

http://java.sun.com/javase/6/docs/api/javax/script/package-summary.html
http://www.mozilla.org/rhino/
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Operations_Network/3.1/html/API/files/remote-api/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Operations_Network/3.1/html/API/index.html
http://java.sun.com/javase/6/docs/technotes/guides/scripting/programmer_guide/index.html
https://developer.mozilla.org/en/Rhino

Running JBoss ON Command-Line Scripts

3. Installing the JBoss ON Command-Line Tool

The JBoss ON server contains packages called the Remote Client, which contain the JBoss ON CLI
packages, rhq-client-3.0.zip.

Only the corresponding version of the CLI can be used to manage the JBoss ON server. Other
versions are not compatible.
To install the CLI:

1. Open the JBoss ON GUI.

http://server.example.com: 7080

2. Click the Administration link in the main menu.
3. Select the Downloads menu item.

4. Scroll to the Command Line Client Download section, and click Download Client
Installer.

5. Save the . zip file into the directory where the CLI should be installed.

6. Unzip the packages.

unzip rhq-client-version.zip

4. Running the JBoss ON CLI

The JBoss ON CLlI is a shell and interpreter so that commands and statements can be executed interactively
against the JBoss ON server. Scripts stored in files can also be executed, so it is possible to automate
operations for the JBoss ON server.

The CLI script, rhq-cli. sh|bat, is run directly from its cli-install-dirbin directory and used to log into the
server. There are two files associated with launching the JBoss ON CLI:

A script

A file of environment variables

Table 1. JBoss ON CLI Files

‘ Operating System CLI Script Environment Variables File
Red Hat Enterprise Linux rhg-cli.sh rhg-cli-env.sh
Microsoft Windows rhg-cli.bat rhg-cli-env.bat

http://java.sun.com/javaee/5/docs/tutorial/backup/update3/doc/QueryLanguage.html

3. Installing the JBoss ON Command-Line Tool

The environment variables in the rhq-cli-env.sh|bat file use defaults that are reasonable for most
deployments, so this file usually does not need to be edited. It is possible to reset variables to point a server
that doesn't follow the default installation, such as a virtual machine or a JVM that isn't the default. If any
variables need to be edited, always set them in this file. The comments at the top of the rhq-cli-env. |bat
file contain a detailed list of available environment variables.

Do not edit the rhq-cli.sh|bat file. Only set environment variables through the terminal or in the
rhq-cli-env.sh|bat file, not the script itself.

Be sure to set the correct path to the Java 6 installation in the RHQ_CLI_JAVA_HOME or the
RHQ _CLI_JAVA_EXE_FILE_PATH variable.

The rhq-cli.sh|bat script has the following general syntax:
rhg-cli.sh|bat options commands

It is possible to launch the CLI script without any arguments. This opens the CLI client without connecting to
the server.

cliRoot/rhqg-remoting-cli-3.0.0.GA1/bin/rhq-cli.sh
RHQ - RHQ Enterprise Remote CLI
unconnected$

While scripts can be executed without logging in, most of the functionality of the CLI is unavailable. To truly
use the JBoss ON CLlI, log into the server as a JBoss ON user.

rhg-cli -u rhgadmin -p rhgadmin

The CLI provides two modes of operation: interactive and non-interactive. Interactive mode executes an
individual statement. In non-interactive mode, multiple commands can be executed in sequence, in the form
of a script. Non-interactive mode provides the capability to automate tasks such as collecting metrics on
managed resources or executing a scheduled operation. (Interactive mode provides a simple environment for
prototyping, testing, learning and discovering features of the CLI, and these examples are given in interactive
mode, though they are also available in non-interactive mode.)

These native commands, like quit, are available only in interactive mode. They cannot be used in a
script when the CLI is used in non-interactive mode, such as when running a script from file. In these
instances, you must use the Java method.

For more information about integration with the underlying Java platform, look at the Rhino
documentation at http://www.mozilla.org/rhino/doc.html.

http://www.mozilla.org/rhino/doc.html

Running JBoss ON Command-Line Scripts

server.

4.1. JBoss ON CLI Options

Description

Long Option

-h --help

-u --user

-p --password

-P

-s --host

-t --port

-C --command

f --file

-V --version
--transport
--args-style

4.2. JBoss ON CLI Commands

Displays the help text of the
command line options of the CLI.
The username used to log into the
JBoss ON server.

The password used to log into the
JBoss ON server.

Displays a password prompt
where input is not echoed backed
to the screen.

The JBoss ON server against
which the CLI executes
commands. Defaults to localhost.
The port on which the JBoss ON
server is accepting HTTP
requests. The default is 7080.

A command to be executed. The
command must be encased in
double quotes. The CLI will exit
after the command has finished
executing.

The full path and filename of a
script to execute.

Displays CLI and JBoss ON
server version information once
connected to the the CLI.

Determines whether or not SSL
will be used for the
communication layer protocol
between the CLI and the JBoss
ON server. If not specified the
value is determined from the {port}
option. If you use a port that ends
in 443, SSL will be used. You only
need to explicitly specify the
transport when your JBoss ON
server is listening over SSL on a
port that does not end with 443.
Indicates the style or format of
arguments passed to the script.
See the Executing Scripts below
for additional information.

3. Installing the JBoss ON Command-Line Tool

Some native commands are included in the org.rhq.enterprise.client.commands inside the CLI JAR itself.
These commands are part of the CLI itself. Other input in the JBoss ON CLI is passed through the JavaScript
interpreter to the server; these commands are passed to the CLI module.

These native commands are available only in interactive mode. They cannot be used in a script when
the CLI is used in non-interactive mode, such as when running a script from file. In these instances,
you must use the Java method.

4.2.1. login

Logs into a JBoss ON server with the specified username and password. The host name (or IP address) and
port can be specified. The host name defaults to localhost and the port defaults to 7080. The transport
argument is optional. It determines whether or not SSL will be used for the communication layer protocol
between the CLI and the JBoss ON server. If not specified, the value is determined from the port argument. If

you use a port that ends in 443, SSL will be used. You only need to explicitly specify the transport when your
JBoss ON server is listening over SSL on a port that does not end in 443.

login username password [host] [port]

4.2.2. logout

Logs off of the JBoss ON server but does not exit from the CLI.

logout

4.2.3. quit

Exits the CLI.
quit
This only works when the CLlI is running interactively. In a script, you must use java.lang.System.exit.

4.2.4. exec

Executes a statement or a script with the specified file name. A statement wraps onto multiple lines using
backslashes.

exec statement | [-s indexed|named] -f /path/to/file [args]

‘ Option Description

-f, --file The full path filename of the script to execute. The
full path must be given, or the CLI cannot locate the
script.

-s, --style Indicates the style or format of arguments passed to
the script. It must have a value of either indexed or
named.

Running JBoss ON Command-Line Scripts

Example 1. Executing a Single Statement

localhost:7080> exec var x = 1

Example 2. Executing a Multi-Line Statement
localhost:7080(rhgadmin)> exec for (i = 1; i < 3; ++i) { \
localhost:7080(rhgadmin)> println(i); \
localhost:7080(rhgadmin)> }

1
2

localhost:7080(rhgadmin)>

Example 3. Executing a Named Script without Arguments

localhost:7080(rhgadmin)> exec -f myscript.js

Example 4. Executing a Named Script with Arguments

localhost:7080(rhgadmin)> exec -f myscript.js 1 2 3

Example 5. Executing a Named Script with Named Arguments

localhost:7080(rhgadmin)> exec --style=named -f myscript.js x=1 y=2 y=3

4.2.5. record

Records user input commands to a file.

record [-b | -e] [-a] -f

‘ Option Description

-b, --start Specify this option to start recording.

-e, --end Specify this option to stop recording.

-a, --append Appends output to the end of a file. If not specified,
output will be written starting at the beginning of the
file.

-f, --file The file where output will be written.

4.3. Available Implicit Variables in the JBoss ON API

The JBoss ON API makes a number of variables available to interfaces. These variables are bound to the
CLI script context.

3. Installing the JBoss ON Command-Line Tool

In the Java programming language, classes in the java.lang package do not have to be imported; they are
automatically made available. Classes in other packages, however, have to be explicitly imported.

In the JBoss ON CLI, there are a number of classes from various packages that likely to be used on a routine
basis. To simplify using the JBoss ON CLI and remote clients, certain classes are also imported. Everything
under the org.rhq.core.domain class is automatically imported, which makes it easier to use the CLI for
managing resources, alerts, and other aspects of JBoss ON.

For example, the class org.rhq.core.domain.criteria.ResourceCriteria is commonly used to
query resources. The entire class path can be given when calling that class:

var criteria new org.rhg.core.domain.criteria.ResourceCriteria();
var resource = new org.rhqg.core.domain.resource.Resource();

Because the domain class is already imported, this can be more succinctly written as:

var criteria = new ResourceCriteria();
var resource = new Resource();

Table 3. Variables Available by Default to the JBoss ON CLI

‘ Variable Type Description Access Requires Login
rhq org.rhg.enterprise.client. Provides built-in YES
Controller commands to the

interactive CLI: login,
logout, quit, exec, and
version. Two of these
methods, login and
logout, can be called in
server script files, such
as
rhq.login('rhgadmi
n', 'rhgadmin').
subject org.rhg.core.domain.auth Represents the current, YES

.Subject logged in user. For
security purposes, all
remote service
invocations require the
subject to be passed,;
however, the CLI will
implicitly pass the
subject for you.

Assert org.rhqg.bindings.util.Scrip Provides assertion NO
tAssert utilities for CLI scripts.

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Operations_Network/3.1/html/API/index.html

Running JBoss ON Command-Line Scripts

‘ Variable
pretty

unlimitedPC

pageControl

exporter

ProxyFactory

scriptUtil

AlertManager
AlertDefinitionManager

AvailabilityManager

CallTimeDataManager

RepoManager

ConfigurationManager
DataAccessManager

EventManager

10

Type
org.rhg.enterprise.client.
TabularWriter

org.rhqg.core.domain.util.
PageControl
org.rhqg.core.domain.util.
PageControl

org.rhqg.enterprise.client.
Exporter

org.rhg.enterprise.client.
utility.ResourceClientPro
xy.Factory
org.rhg.enterprise.client.
utility. ScriptUtil

org.rhg.enterprise.server
.alert.AlertManagerRemo
te
org.rhqg.enterprise.server
.alert.AlertDefinitionMana
gerRemote
org.rhg.enterprise.server
.measurement.Availabilit
yManagerRemote

org.rhg.enterprise.server
.measurement.CallTime
DataManagerRemote

org.rhqg.enterprise.server
.content.RepoManagerR
emote

org.rhg.enterprise.server
.configuration.Configurati
onManagerRemote
org.rhqg.enterprise.server
.report.DataAccessRem
ote
org.rhg.enterprise.server
.event.EventManagerRe
mote

Description

Provides for tabular-
formatted printed and
handles converting
objects, particularly
domain objects in the
packages under
org.rhg.core.domain, into
a format suitable for
display in the console.

Used to specify paging
and sorting on data
retrieval operations
Used to export output to
a file. Supported formats
are plain text in tabular
format and CSV.

Provides methods that
can be useful when
writing scripts.
Provides an interface
into the alerts
subsystem.

Provides an interface
into the alerts definition
subsystem.

Provides an interface
into the measurement
subsystem that can be
used to determine
resources' availability.
Provides an interface
into the measurement
subsystem for retrieving
call-time metric data.

Provides an interface
into the content
subsystem for working
with repositories.
Provides an interface
into the configuration
subsystem.

Provides an interface for
executing user-defined
queries.

Provides an interface
into the events
subsystem.

Access Requires Login
NO

NO

NO

NO

NO

NO

YES

YES

YES

YES

YES

YES

YES

YES

3. Installing the JBoss ON Command-Line Tool

‘ Variable Type Description Access Requires Login
MeasurementBaselineM org.rhg.enterprise.server Provides an interface YES
anager .measurement.Measure into the measurement

mentBaselineManagerRe subsystem for working
mote with measurement
baselines.
MeasurementDataMana org.rhg.enterprise.server Provides an interface YES
ger .measurement.Measure into the measurement
mentDataManagerRemot subsystem for working
e with measurement data.
MeasurementDefinitionM org.rhg.enterprise.server Provides an interface YES
anager .measurement.Measure into the measurement
mentDefinitionManagerR subsystem for working
emote with measurement
definitions.
MeasurementScheduleM org.rhg.enterprise.server Provides an interface YES
anager .measurement.Measure into the measurement
mentScheduleManagerR subsystem for working
emote with measurement
schedules.
OperationManager org.rhg.enterprise.server Provides an interface YES
.operation.OperationMan into the operation
agerRemote subsystem.
ResourceManager org.rhg.enterprise.server Provides an interface YES
.resource.ResourceMan into the resource
agerRemote subsystem.
ResourceGroupManager org.rhg.enterprise.server Provides an interface YES

.resource.group.Resourc into the resource group
eGroupManagerRemote subsystem.

ResourceTypeManager org.rhg.enterprise.server Provides an interface YES
.resource.ResourceType into the resource
ManagerRemote subsystem for working
with resource types.
RoleManager org.rhg.enterprise.server Provides an interface YES
.authz.RoleManagerRem into the security
ote subsystem for working
with security rules and
roles.
SubjectManager org.rhg.enterprise.server Provides an interface YES
.auth.SubjectManagerRe into the security
mote subsystem for working
with users.
SupportManager org.rhg.enterprise.server Provides an interface YES
.support.SupportManage into the reporting
rRemote subsystem for getting
reports of managed
resources.

4.4. Passing Script Arguments in the JBoss ON CLI

A feature common to most programming languages is the ability to pass arguments to the program to be
executed. In Java, the entry point into a program is a class's main method, and it takes a String array as an
argument. That array holds any arguments passed to the program. Similarly, arguments can be passed to CL
scripts. Arguments passed to a script can be accessed in the implicit args array:

11

Running JBoss ON Command-Line Scripts

Example 6. Handling Script Arguments

if (args.length > 2) {
throw "Not enough arguments!";

}

for (i in args) {
println('args[' + i + '] = ' + args[i]);

}

The args variable is only available when executing a script in non-interactive mode or withexec -f.

In addition to the traditional style of indexed-based arguments, named arguments can also be passed to a
script:

rhgadmin@localhost:7080$% exec -f echo_args.js --args-style=named x=1, y=2

Example 7. echo_args.js

for (i in args) {
println('args[' + i + '] = ' + args[i]);
b
println('named args..."');
println('x = ' + x);
println('y = ' + vy);

This produces the following output:

Example 8. echo_args.js

args[0] =1
args[1] = 2
named args...

X =1
y =2

Be aware of the following:

= You have to explicitly specify that you are using named arguments via the - -args-style option

12

3. Installing the JBoss ON Command-Line Tool

The values of the named arguments are still accessible via the implicit args array
The named arguments, x and y, are bound into the script context as variables

The CLlI is built using the Java Scripting API that was introduced in Java 6. The majority of commands and
scripts used with the JBoss ON CLI are executed by the underlying script engine. Built-in commands,
however, are native Java code and are not executed by the underlying script engine. This is similar to other
interpreters like Python where some modules are implemented in C and built into the interpreter. This
distinction is important because built-in commands cannot be processed by the script engine. Obijects,
however, that provide hooks into the built-in commands, are exposed to the scripting environment.

4.5. Configuring Criteria-Based Searching

All of the managers define operations for retrieving data. Most of the managers define criteria-based
operations for data retrieval. The criteria API provides a flexible framework for fine-tuned query operations.

The criteria classes reside in the org.rhqg.core.domain.criteria package. Criteria-based searches can be
implemented in several different ways.

4.5.1. Setting Basic Search Criteria

The simplest criteria is to define results based on what they are, such as resource type.

rhgadmin@localhost:7080% var criteria = new ResourceCriteria()
rhgadmin@localhost:7080% var resources =
ResourceManager.findResourcesByCriteria(criteria)

It isn't necessary to import the ResourceCriteria class because the
org.rhqg.core.domain.criteria package is automatically imported.

The method, findResourcesByCriteria follows the naming format of all criteria-based query operations,
findXXXByCriteria. This basic criteria search is translated into the following JPA-QL query:

SELECT r
FROM Resource r
WHERE (r.inventoryStatus = InvetoryStatus.COMMITTED

This fetches all committed resources in the inventory.

4.5.2. Using Sorting

The basic search criteria can be refined so that the resource results are sorted by plug-in.
rhgadmin@localhost:7080% criteria.addSortPluginName(PageOrdering.ASC)

rhgadmin@localhost:7080$% resources =
ResourceManager.findResourcesByCriteria(criteria)

This criteria is translated into the following JPA-QL query:

SELECT r

FROM Resource r

WHERE (r.inventoryStatus = InventoryStatus.COMMITTED)
ORDER BY r.resourceType.plugin ASC

13

Running JBoss ON Command-Line Scripts

To add sorting, call criteria.addSortPluginName (). Sorting criteria have methods in the form
addSortXXX(PageOrdering order).

4.5.3. Using Filtering

Adding additional matching criteria, like resource name in this example, further narrows the search results.

rhgadmin@localhost:7080% criteria.addFilterResourceTypeName('JB0OSSAS
Server')

rhgadmin@localhost:7080$% resources =
ResourceManager.findResourcesByCriteria(criteria)

To add filtering to any criteria, use methods of the form addFilterXXX(). The resulting JPA-QL query will
appear as follows:

SELECT r

FROM Resource r

WHERE (r.inventoryStatus = InventoryStatus.COMMITTED

AND LOWER(r.resourceType.name) like 'JBossAS Server' ESCAPE '\\')

This code is all that is required to retrieve all JBoss servers in your inventory. You can further refine your
criteria to find JBoss servers that have been registered by a particular agent:

rhgadmin@localhost:7080% criteria.addFilterResourceTypeName('JB0OSSAS
Server')

rhgadmin@localhost:7080%

criteria.addFilterAgentName('localhost.localdomain')
rhgadmin@localhost:7080$% resources =
ResourceManager.findResourcesByCriteria(criteria)

This generates the following JPA-QL query:

SELECT r

FROM Resource r

WHERE (r.inventoryStatus = InventoryStatus.COMMITTED

AND LOWER(r.agent.name) like 'localhost.localdomain' ESCAPE '\\')

4.5.4. Fetching Associations

After retrieving the resources, it is possible to view child resources. For example:

rhqgadmin@localhost:7080% criteria.addFilterResourceTypeName('JB0OSSAS
Server')

rhgadmin@localhost:7080$% resources =
ResourceManager.findResourcesByCriteria(criteria)
rhgadmin@localhost:7080% resource = resources.get(0)
rhgadmin@localhost:7080% if (resource.childResources == null) print('no
child resources')

This code will print the string no child resources, even if the JBoss server has child resources. The reason for
this is that lazy loading is used throughout the domain layer for one-to-many and many-to-many associations.
Since child resources are lazily loaded, specify the criteria for the fetch order.

14

3. Installing the JBoss ON Command-Line Tool

rhgadmin@localhost:7080% criteria.addFilterResourceTypeName('JB0SSAS
Server')

rhgadmin@localhost:7080% criteria.fetchChildResources(true)
rhgadmin@localhost:7080% resources =
ResourceManager.findResourcesByCriteria(criteria)
rhgadmin@localhost:7080% resource = resources.get(0)
rhgadmin@localhost:7080% if (resource.childResources == null) print('no
child resources'); else pretty.print(resource.childResources)

As with the call criteria.fetchChildResources(true), all criteria methods that specify that a
particular lazy association should be fetched are of the form, fetchXXX().

rhgadmin@localhost:7080% if (resource.childResources == null) print('no
child resources'); else pretty.print(resource.childResources)

id name versio
resourceType

222 AlertManagerBean EJB3
Session Bean

222 SchedulerBean EJB3
Session Bean

222 AlertDefinitionManagerBean EJB3
Session Bean

222 AlertConditionConsumerBean EJB3
Session Bean

222 PartitionEventManagerBean EJB3
Session Bean

222 AlertTemplateManagerBean EJB3
Session Bean

223 RHQ Server Group Definition / DynaGroups Subsystem RHQ Server
Group Definition / DynaGrou

222 DiscoveryTestBean EJB3
Session Bean

222 PerspectiveManagerBean EJB3
Session Bean

222 ResourceAvailabilityManagerBean EJB3
Session Bean

222 AlertDampeningManagerBean EJB3

Session Bean
218 localhost.localdomain Embedded JBossWeb Server 2.0. 2.0.1. Embedded
Tomcat Server

222 ResourceGroupManagerBean EJB3
Session Bean

222 FailoverListManagerBean EJB3
Session Bean

222 ResourceFactoryManagerBean EJB3
Session Bean

222 AccessBean EJB3
Session Bean

222 MeasurementTestBean EJB3
Session Bean

223 wstools.sh Script
222 EventManagerBean EJB3

Session Bean

15

Running JBoss ON Command-Line Scripts

222 ContentSourceManagerBean EJB3
Session Bean

223 RHQ Server Alerts Engine Subsystem RHQ Server
Alerts Engine Subsystem

222 AlertConditionManagerBean EJB3
Session Bean

222 ResourceMetadataManagerBean EJB3
Session Bean

222 ResourceManagerBean EJB3
Session Bean

222 GroupDefinitionExpressionBuilderManagerBean EJB3
Session Bean

222 MeasurementViewManagerBean EJB3

Session Bean
218 JmsXA Connection Factory

ConnectionFactory

222 ResourceTypeManagerBean EJB3
Session Bean

223 JBoss Cache subsystem 1.0
JBossCacheSubsystem

218 NOTxRHQDS Datasource Datasource
222 DataAccessBean EJB3
Session Bean

222 AlertConditionCacheManagerBean EJB3
Session Bean

222 MeasurementProblemManagerBean EJB3
Session Bean

222 ServerManagerBean EJB3
Session Bean

222 OperationHistorySubsystemManagerBean EJB3
Session Bean

222 ClusterManagerBean EJB3
Session Bean

222 run.sh Script

The output will vary depending on what you have inventoried. These are the child resources of the JBoss ON

server we have used in these examples. The JPA-QL query that is generated appears as follows:

SELECT r

FROM Resource r

LEFT JOIN FETCH r.childResources

WHERE (r.inventoryStatus = InventoryStatus.COMMITTED

AND LOWER(r.resourceType.name) like 'JBossAS Server' ESCAPE '\\')

4.6. Displaying Output

4.6.1. TabularWriter

TabularWriter provides for tabular-formatted output. In addition to formatting, it handles converting
objects, particularly domain objects in the packages under org.rhq.core.domain, into a format suitable for
display in the interactive console. Let's look at an example to illustrate the utility of TabularWriter:

rhgadmin@localhost:7080% criteria = ResourceCriteria()

16

rhgadmin@localhost:7080% criteria.addFilterResourceTypeName('service-alpha')
rhgadmin@localhost:7080% criteria.addFilterParentResourceName('server-omega-
0')

rhgadmin@localhost:7080% resources =
ResourceManager.findResourcesByCriteria(criteria)

id name version resourceType

11373 service-alpha-8
11374 service-alpha-1
11375 service-alpha-0
11376 service-alpha-4
11377 service-alpha-2
11378 service-alpha-3
11379 service-alpha-5
11380 service-alpha-9
11381 service-alpha-6
11382 service-alpha-7
10 rows

service-alpha
service-alpha
service-alpha
service-alpha
service-alpha
service-alpha
service-alpha
service-alpha
service-alpha
service-alpha

g T g Y
ool oo RoRoRoRoReRe)

The TabularWriter instance that is bound in the script context under the name pretty is implicitly invoked
to display the results of ResourceManager . findResourcesByCriteria. The returned resources are
displayed in very readable, tabular format. Now let's look at the output if we do not use TabularWriter.

rhgadmin@localhost:7080% println(resources)

PagelList[Resource[id=11373, type=service-alpha, key=service-alpha-8,
name=service-alpha-8, version=1.0],

Resource[id=11374, type=service-alpha, key=service-alpha-1, name=service-
alpha-1, version=1.0],

Resource[id=11375, type=service-alpha, key=service-alpha-0, name=service-
alpha-0, version=1.0],

Resource[id=11376, type=service-alpha, key=service-alpha-4, name=service-
alpha-4, version=1.0],

Resource[id=11377, type=service-alpha, key=service-alpha-2, name=service-
alpha-2, version=1.0],

Resource[id=11378, type=service-alpha, key=service-alpha-3, name=service-
alpha-3, version=1.0],

Resource[id=11379, type=service-alpha, key=service-alpha-5, name=service-
alpha-5, version=1.0],

Resource[id=11380, type=service-alpha, key=service-alpha-9, name=service-
alpha-9, version=1.0],

Resource[id=11381, type=service-alpha, key=service-alpha-6, name=service-
alpha-6, version=1.0],

Resource[id=11382, type=service-alpha, key=service-alpha-7, name=service-
alpha-7, version=1.0]]

For display purposes, this output is not very usable. Let's look at one more example in which we display a
single entity.

rhgadmin@localhost:7080% pretty.print(resources.get(0))
Resource:
id: 11373
name: service-alpha-8
version: 1.0
resourceType: service-alpha

Running JBoss ON Command-Line Scripts

The formatting is different when displaying a single object.

Only a subset of the properties in the Resource class are displayed. TabularWriter determines the
properties to display through the Summary annotation. If a field of an entity has the @Summary annotation,
TabularWriter will include it in the output.

4.6.2. Exporter

An implicit script variable that can assist with writing output to a file is exporter. It uses TabularWriter;
however, in addition to writing plain text in a tabular format, it also supports CSV-formatting. First, we will look
at an example of exporting to a file as plain text:

rhgadmin@localhost:7080% exporter.setTarget('raw', 'output.txt')
rhgadmin@localhost:7080% exporter.write(resources)

File 10 operations like opening or closing the file are not a problem because exporter handles the 10
operations.

Next, export the results to a CSV file:

rhqgadmin@localhost:7080% exporter.setTarget('csv', 'output.csv')
rhgadmin@localhost:7080% exporter.write(resources)

4.7. Simple CLI Examples

Example 9. Logging in to a Specified Server

You will be connected to the CLI and logged in with the specified credentials on the JBoss ON server
running on localhost.

rhg-cli -u rhgadmin -p rhgadmin -s 192.168.1.100 -t 70443

You will be connected to the CLI and logged into the JBoss ON server on 192.168.1.100 that is listening
on port 70443. Because the port number ends with 443, the CLI will attempt to communicate with the
JBoss ON server over SSL using the sslservlet transport strategy.

Example 10. Prompting for a Password
rhg-cli -u rhgadmin -P

You will be connected to the CLI and prompted for a password.

Example 11. Passing Variables to the Server
rhg-cli -u rhqgadmin -p rhqgadmin -c

"pretty.print(ResourceTypeManager.findResourceTypesByCriteria(new
ResourceTypeCriteria()))" > resource_types.txt

This connects you to the CLI, logs you into the JBoss ON server running on localhost, executes the
command in quotes, and redirects the output to the file resource_types. txt.

18

3. Installing the JBoss ON Command-Line Tool

The ResourceTypeManager . findResourceTypesByCriteria(new ResourceTypeCriteria())
class invokes the findResourceTypesByCriteria operation on ResourceTypeManager. A new
ResourceTypeCriteria objectis passed as the argument.

Nothing has been specified on the criteria object so all resource types will be returned. The next portion is
pretty.print(...). Animplicit object made available to commands and scripts by the CLI,pretty is
useful for outputting objects in a readable, tabular format, designed with enhanced capabilities for domain
objects. This single command provides a nicely formatted, text-based report of the resource types in the
inventory.

Example 12. Running a Script in the JBoss ON CLI

cliRoot/rhqg-remoting-cli-3.0.0.GA1/bin/rhq-cli.sh -f my_script.js

This connects you to the CLI and executes the script file, my_script. js. The CLI will terminate
immediately after the script has finished executing.

4.8. Using Resource Proxies

The JBoss ON CLI interacts directly with the JBoss ON server through remote APIs for handling resource
objects and through the domain APIs for tasks like searches.

The JBoss ON CLI itself provides another API layer that can make it easier to perform common operations.
The CLI can create a resource proxy object in the CLI, and then that object uses the classes available in the
ProxyFactory to interact with the remote and domain API.

One thing to remember is that proxy resources still use the remote and domain API. The proxy API just
provides a simpler and clearer API on top of the remote and domain APIs that can make it easier to script
many operations.

The ProxyFactory is available to the JBoss ON CLI in interactive mode or when using a script file. It
is also available to server scripts, such as scripts used for alerting.

The ProxyFactory gets information about a resource, which is identified in the getResource() method
with the resource's ID number.

At its simplest, ProxyFactory can return a complete summary of information about the specified resource,
such as its current monitoring data and traits, resource name, available metrics, available operations, content
information, and child inventory, all dependent on the resource type. For example:

rhgadmin@localhost:7080% ProxyFactory.getResource(10001)
ResourceClientProxy_$$ javassist 0:
OSName: Linux
OSVersion: 2.6.32-220.4.1.e16.x86_64
architecture: x86_64
children:
contentTypes: {rpm=RPM File}
createdDate: Mon Feb 06 11:24:50 EST 2012
description: Linux Operating System

19

Running JBoss ON Command-Line Scripts

distributionName: Red Hat Enterprise Linux Server
distributionVersion: release 6.2 (Santiago)
freeMemory: 16.7GB
freeSwapSpace: 25.6GB

handler:
hostname: sun-x8420-01.rhts.eng.bos.redhat.com
id: 10001

idle: 70.8%
measurements: [Wait Load, Used Memory, System
Load, Distribution Version, Total Memory, 0S Name, Free Memory, Hostname,
Architecture, Distribution Name, Idle, Total Swap Space, Used Swap Space,
User Load, 0S Version, Free Swap Space]
modifiedDate: Mon Feb 06 11:24:50 EST 2012
name: sun-x8420-
01.rhts.eng.bos.redhat.com
operations: [viewProcesslList,
cleanYumMetadataCache, manualAutodiscovery]
pluginConfiguration:
pluginConfigurationDefinition: ConfigurationDefinition[id=10009,
name=Linux]
resourceType: Linux
systemLoad: 0.0%
totalMemory: 23.5GB
totalSwapSpace: 25.6GB
usedMemory: 6.8GB
usedSwapSpace: 0.0B
userLoad: 15.8%
version: Linux 2.6.32-220.4.1.e16.x86_64
waitLoad: 0.0%

To truly manage resources, the ProxyFactory creates a resource proxy object.

Example 13. Creating a Platform Proxy Resource

var rhelServerOne = ProxyFactory.getResource(10001)

The methods that are available to a resource proxy depend on the resource type and the resource's own
configuration. There are five major types of operations that can be performed on resource proxies:

Viewing basic information about the resource, such as its children
Getting measurement information

Running operations

Changing resource and plug-in configuration

Updating and retrieving content

For each resource type, methods are exposed which allow you to find and use specific information about the
resource. Additionally, the proxy APl includes "shortcuts" which provide one-word methods, without requiring
any parameters, to perform common remoteAPI tasks, like getting monitoring information.

20

3. Installing the JBoss ON Command-Line Tool

Use tab-complete in the interactive CLI to find the specific methods available for a resource type or to
get the method signatures for individual methods.

Example 14. Viewing a Resource's Children

ProxyFactory has a method for all proxy objects, children, which lists all of the children for the proxy

resource.

var rhelServerOne = ProxyFactory.getResource(10001)

rhgadmin@localhost:7080% platform.children
Array of org.rhg.bindings.client.ResourceClientProxy

[10027]
[10026]
[10025]
[10024]
[10023]
[10022]
[10021]
[10020]
[10019]
[10018]
[160017]
[10016]
[160015]
[10014]
[160013]
[10012]
[160011]
[10004]
[10003]
Server:
[10002]

Bundle Handler - Ant (Ant Bundle Handler::AntBundlePlugin)
CPU 6 (CPU::Platforms)

CPU 0 (CPU::Platforms)
CPU 5 (CPU::Platforms)
CPU 1 (CPU::Platforms)
CPU 4 (CPU::Platforms)
CPU 2 (CPU::Platforms)
CPU 3 (CPU::Platforms)
CPU 7 (CPU::Platforms)

/boot (File System::Platforms)

/ (File System::Platforms)

/dev/shm (File System::Platforms)

/home (File System::Platforms)

ethl (Network Adapter::Platforms)

eth2 (Network Adapter::Platforms)

eth® (Network Adapter::Platforms)

lo (Network Adapter::Platforms)

postgres (Postgres Server::Postgres)

AS tyan-gt24-04.rhts.eng.bos.redhat.com RHQ Server (JBOSSAS

:JBos SAS)

RHQ Agent (RHQ Agent::RHQAgent)

Example 15. Viewing Resource Metrics

ProxyFactory provides a set of shortcut metrics for each individual measurement for a resource type.
This corresponds to the findLiveData() method in the remote API, but it is much easier to get
monitoring information quickly and it is simpler to identify what metrics are available.

To get a single measurement value, use the method for that resource type. (Get a list of all methods for a
proxy object using tab-complete.)

var jbossas = ProxyFactory.getResource(14832)

rhgadmin@localhost:7080% jbossas.JVMTotalMemory
Measurement:

21

name: JVM Total Memory
displayvValue: 995.3MB
description: The total amount of memory currently available in the app
server JVM for current and fut...

Alternatively, simply get a list of metrics with their current values using the measurements method:

var rhelServerOne = ProxyFactory.getResource(10001)

rhgadmin@localhost:7080$% rhelServerOne.measurements
Array of org.rhg.bindings.client.ResourceClientProxy$Measurement

name displayValue description
Wait Load 0.0% Percentage of
all CPUs waiting on I/0

Used Memory 6.3GB The total used
system memory

System Load 0.0% Percentage of
all CPUs running in system mode

Distribution Version release 6.2 (Santiago) version of the
Linux distribution

Total Memory 31.4GB The total
system memory

0S Name Linux Name that the
operating system is known as

Free Memory 25.2GB The total free
system memory

Hostname tyan-gt24-04.rhts.eng.bos.redhat.com Name that this
platform is known as

Architecture x86_64 Hardware
architecture of the platform

Distribution Name Red Hat Enterprise Linux Server name of the
Linux distribution

Idle 92.6% Idle
percentage of all CPUs

Total Swap Space 33.6GB The total
system swap

Used Swap Space 0.0B The total used
system swap

User Load 16.7% Percentage of
all CPUs running in user mode

0S Version 2.6.32-220.4.2.e16.x86_64 Version of the
operating system

Free Swap Space 33.6GB The total free
system swap

16 rows

Example 16. Running Operations on a Proxy
ProxyFactory has a shortcut method for every operation available for a resource.

First, get the list of operations available for the resource type using the operations method:

var rhelServerOne = ProxyFactory.getResource(10001)

rhgadmin@localhost:7080% rhelServerOne.operations
Array of org.rhg.bindings.client.ResourceClientProxy$0Operation
name description

viewProcessList View running processes on this system
cleanYumMetadataCache Deletes all cached package metadata
manualAutodiscovery Run an immediate discovery to search for resources
3 rows

Then, run the given operation method.

rhgadmin@localhost:7080% rhelServerOne.viewProcessList();
Invoking operation viewProcessList
Configuration [11951] - null

processList [305] {

pid name size userTime
kernelTime

1 init 19865600 150
10050

26285 httpd 214618112 90

80

26286 httpd 214618112 90

80

26288 httpd 214618112 110 70
26289 httpd 214618112 90

80

27357 java 4734758912 1289650
373890

30458 postgres 218861568 1820
27440

30460 postgres 180985856 1210
5330

30462 postgres 218984448 13080
42200

30463 postgres 218861568 3970
26940

30464 postgres 219328512 10600
15320

30465 postgres 181407744 18680
78760

30482 httpd 185905152 1660
7520

32410 bash 108699648 0O

10

32420 java 6024855552 3890240
669810

305 rows

}

Running JBoss ON Command-Line Scripts

Example 17. Changing Configuration Properties

If the resource type supports resource configuration editing or if the resource type has plug-in connection
properties, then the resource proxy has methods — editResourceConfiguration() and
editPluginConfiguration(), respectively — to edit those properties.

The current configuration can be printed using the get*Configuration). For example, for the plug-in
configuration;

var rhelServerOne = ProxyFactory.getResource(10001)

rhgadmin@localhost:7080% rhelServerOne.getPluginConfiguration()
Configuration [10793] - null

metadataCacheTimeout = 1800

enableContentDiscovery = false

yumPort = 9080

enableInternalYumServer = false

logs [0] {

}

The edit*Configuration() method brings up a configuration wizard that goes through all of the
properties individually and prompts to keep or change each value. The properties are even grouped
according to the same organization that the JBoss ON web Ul uses. For example:

rhgadmin@localhost:7080% rhelServerOne.editPluginConfiguration();
Non-Grouped Properties:

Group: Content

enableContentDiscovery[false]:

enableInternalYumServer[false]:

yumPort[9080]:

metadataCacheTimeout[1800]:

Group: Event Logs

[R]eview, [E]dit, Re[V]ert [S]ave or [C]ancel:

After each group, you have the option to revert or save the changes. Once the changes are saved, they
are immediately updated on the JBoss ON server.

‘ Keys Action

return Selects the default or existing value for a property.

ctrl-d The same as selecting the unset checkbox in the
configuration Ul.

ctrl-k Exits the configuration wizard.

ctrl-e Displays the help description for the current
property.

Example 18. Managing Content on Resources

Some types of resources have content associated with them. These are typically EAR or WAR resources
within an application server. The content file actually associated with that EAR/WAR resource is called
backing content. These are usually JARs.

This content can be updated or downloaded from the resource.

24

5. Simple Example: Scripts to Manage Inventory

To retrieve backing content (meaning, to download the JAR/EAR/WAR file), specify the filename and file
path on the application server. For example:

var contentResource = ProxyFactory.getResource(14932)
contentResource.retrieveBackingContent("/resources/backup/original.war")

To update the content for the resource, use the updateBackingContent method and specify the
filename with the path on the application server to put the content and the version number of the content.
For example:

contentResource.updateBackingContent("/resources/current/new.war", "2.0")

5. Simple Example: Scripts to Manage Inventory

A lot of enterprise servers have a concept of managed servers. A managed server means that there is a
central instance that deploys content or sends configuration to all registered application servers. Using
managed servers helps administrators ensure that all active application servers have the same version of the
deployed packages and configuration.

Similar behavior can be emulated in JBoss ON by creating a management script that can be invoked to
perform actions simultaneously on all members of a JBoss ON group. All of the EAP instances are
functionally managed servers, while JBoss ON itself acts as the domain controller.

5.1. Automatically Import New Resources: autoimport.js

As soon as a resource is discovered it is, technically, already in the JBoss ON inventory. It is included with a
status of NEW. That's an in-between state, because JBoss ON is aware that the resource exists, but the
resource has not been committed so JBoss ON can't manage it.

A script can be created and run regularly so that any newly-discovered resources can be automatically added
to the inventory. This script bases its identification on new resources on the inventory state, so ignored or
already imported resources aren't included.

The CLI script runs through three steps:
It identifies new resources using the findUncommittedResources() method.
It gets those new resources' IDs.

It then imports those resources by invoking the discovery system's import operation.

//Usage: autoImport.js

//Description: Imports all auto-discovered inventory into JON
// autoImport.js

rhg.login('rhgadmin', 'rhgadmin');

println("Running autoImport.js");

var resources = findUncommittedResources();
var resourcelds = getIds(resources);

DiscoveryBoss.importResources(resourcelds);

rhq.logout();

Only one of the operations is already defined in the remote APl — importResources. The other two

25

Running JBoss ON Command-Line Scripts

functions — findUncommittedResources and getIds — have to be defined in the script.

Uncommited (new) resources can be identified through a ResourceCriteria search by adding a search
parameter based on the inventory status.

// returns a java.util.List of Resource objects
// that have not yet been committed into inventory
function findUncommittedResources() {
var criteria = ResourceCriteria();
criteria.addFilterInventoryStatus(InventoryStatus.NEW);

return ResourceManager.findResourcesByCriteria(criteria);

The second function checks that the inventory search actually returned resources and, if so, gets the ID for
each resource in the array.

// returns an array of ids for a given 1list
// of Resource objects. Note the resources argument
// can actually be any Collection that contains
// elements having an id property.
function getIds(resources) {
var ids = [];

if (resources.size() > 0) {

println("Found resources to import: ");

for (1 = ©0; 1 < resources.size(); i++) {

resource = resources.get(i);

ids[i] = resource.id;

println(" " + resource.name);

}
} else {

println("No resources found awaiting import...");

}

return ids;

5.2. Simple Inventory Count: inventoryCount.js

Searches are performed using *Criteria classes; for resources, this is ResourceCriteria. A search
can be very specific, passing criteria so that it returns only one resource or a small subset of resource. It is
also possible to return everything in inventory.

This script runs a search with no specific criteria (ResourceCriteria()), so that every resource matches
the search. It then takes the size of the results to produce a simple inventory count.

// inventory.js

rhg.login('rhgadmin', 'rhgadmin');

var resources = ResourceManager.findResourcesByCriteria(ResourceCriteria());
println('There are ' + resources.size() + ' resources in inventory');

// end script

26

6. Example: Scripting Resource Deployments

5.3. Uninventory a Resource After an Alert: uninventory.js

Removing a resource from the inventory simply removes it from JBoss ON; the server or application itself
remains intact on the local system. (This allows the resource to be re-discovered and re-imported later.)

This can be a pretty simple little script. To uninventory the resource, simply use the resource ID which was
included in the alert and the uninventoryResource method:

List<Integer> uninventoryResources(Subject subject, int[] resourcelds);

It is possible to combine the uninventory operation with another task. For example, uninventory one resource
and automatically create and import another resource to take its place.

5.4. JNDI Lookups for a JBoss AS 5 Server After an Alert: jndi.js

This script is intended to be run directly on the server, such as using the -f parameter or through a
server-side alert script. This cannot be run using the interactive CLI.

The alert system can run a script in response to a fired alert. One possible response for a JBoss AS 5 server
is to check the JNDI directory and look up the JMX information.

This script first connects to the JNDI directory over JNP, then uses the assertNotNull method to get the
JMX object. The script then prints the JMX information.

//This test requires a remote JBoss AS 5 server running with JNDI directory
remotely accessible using JNP (without authz)

//This script assumes that there is a bound object called "jmx" in the
directory (which it should be)

var jbossHost = 'localhost';

var jbossJnpPort = 1299;

var env = new java.util.Hashtable();
env.put('java.naming.factory.initial',
'org.jboss.naming.NamingContextFactory');
env.put('java.naming.provider.url', "jnp://" + jbossHost + ":" +
jbossdnpPort);

var ctx = new javax.naming.InitialContext(env);

var jmx = ctx.lookup('jmx"');

assertNotNull(jmx);

pretty.print(jmx);

6. Example: Scripting Resource Deployments

27

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Operations_Network/3.0/html-single/Setting_up_Monitoring_Alerts_and_Operations/index.html#init-cli-script-alerts
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Operations_Network/3.0/html-single/Setting_up_Monitoring_Alerts_and_Operations/index.html#init-cli-script-alerts

Running JBoss ON Command-Line Scripts

A common use case for management tools is to automate deployments of new or existing applications. This

example

creates an easy script for basic management tasks:

1. Find all JBoss EAP instances for a specified JBoss ON group.

2. Shut down each EAP instance.

3. Update binaries for existing deployed applications or create new deployments.

4. Restart the EAP instance.

5. End the loop.

Different resource types have configuration properties and operations available, which can impact CLI
scripts written to manage those resources. This can be true even for different versions of the same
application — which is the case with JBoss AS 4 and JBoss AS 5 resources.

JBoss AS 4 and JBoss AS 5 have different APIs for operations like shutting down instances. In this
example, separate scripts are shown for the two resource types. It is also possible to create a CLI
script which identifies the resource type and then calls the appropriate API.

6.1. Scripting JBoss AS 4 Deployments

Declaring Custom Functions

This script will use two custom functions to deploy the packages to create new resources.

funct
prin

ion usage() {
tln("Usage: deployToGroup <fileName> <groupName>");

throw "Illegal arguments";

}

funct
var

var
var
var
var
var
var

this
this
this
this

ion PackageParser (fullPathName) {
file = new java.io.File(fullPathName);

fileName = file.getName();

packageType = fileName.substring(fileName.lastIndexOf ('
tmp = fileName.substring(®, fileName.lastIndexOf('.'));
realName = tmp.substring(0®, tmp.lastIndexOf('-'));
version = tmp.substring(tmp.lastIndex0f('-"') + 1);

packageName = realName + "." + packageType;
.packageType = packageType.tolLowerCase();
.packageName = packageName;

.version = version;

.realName = realName;

Checking the JBoss ON Groups and Inventory

)L

The script should have two command-line parameters. The first should be the path of the new application that
is installed in the group. The second is the name of the group itself. These parameters are parsed in the

28

6. Example: Scripting Resource Deployments

For example:
if(args.length < 2) usage();

var fileName = args[0];
var groupName = args[1];

Next, check if the path is valid and if the current user can read it. This is done by using Java classes as
shown here:

// check that the file exists and that we can read it
var file = new java.io.File(fileName);

if(!file.exists()) {
println(fileName + " does not exist!");
usage();

if(!'file.canRead()) {
println(fileName + " can't be read!");
usage();

Verify that the group really exists on the JBoss ON server:

// find resource group

var rgc = new ResourceGroupCriteria();

rgc.addFilterName(groupName);

rgc.fetchExplicitResources(true);

var grouplList = ResourceGroupManager.findResourceGroupsByCriteria(rgc);

The important part here is the call the resources.
rgc.fetchExplicitResources(true);

Check if there is a group found:
if(groupList == null || groupList.size() !'=1) {

println("Can't find a resource group named " + groupName);
usage();

var group = grouplList.get(0);

println(" Found group: " + group.name);
println(" Group ID "+ group.id);
println(" Description: " + group.description);

After validating that there is a group with the specified name, check if the group contains explicit resources:

if(group.explicitResources == null || group.explicitResources.size() == 0)

{

29

Running JBoss ON Command-Line Scripts

println(" Group does not contain explicit resources --> exiting!");
usage();

}

var resourcesArray = group.explicitResources.toArray();

resourceArray now contains all resources which are part of the group. Next, check if there are JBoss AS 4
Server instances which need to be restarted before the application is deployed.

for(1 in resourcesArray) {

var res = resourcesArray[i];

var resType = res.resourceType.name;

println(" Found resource " + res.name + " of type " + resType + " and
ID " + res.id);

if(resType != "JBossAS Server") {
println(" ---> Resource not of required type. Exiting!");
usage();

}

// get server resource to start/stop it and to redeploy application
var server = ProxyFactory.getResource(res.id);

This requires a group with only JBossAS Server resource types as top level resources. Now server
contains the JBossAS instance. This requires re-reading the server because it needs to be fully populated.
Internally, the CLlI is using simple JPA persistence, and it is necessary to not always fetch all dependent
objects.

Next, traverse all the children of the server instance and find the resource name of the application:

var children = server.children;
for(¢ in children) {
var child = children[c];

if(child.name == packageName) {

}

packageName is the name of the application without version information and path as shown in the JBoss ON
GUI as deployed applications.

Create a backup of the original version of the application:

println(" download old app to /tmp");
child.retrieveBackingContent("/tmp/" + packageName + "_" + server.name +
"_Old");

A copy of the old application with the server name decoded in path is available in the /tmp/ directory.

Shut down the server and upload the new application content to the server.

println(" stopping " + server.name + "....");

try {
server.shutdown()
}

30

6. Example: Scripting Resource Deployments

catch(ex) {
println(" --> Caught " + ex);

}

println(" uploading new application code");
child.updateBackingContent(fileName);

println(" restarting " + server.name + "..... "),
try {
server.start();
}
catch(ex) {
println(" --> Caught " + ex);
¥

Deploying the New Resource

At this point, existing application can be updated. The next step is to create the resource through the CLI and
then deploy it to the JBoss server.

First, get the resource type for the application. This depends on several parameters:
1. The type of the application (e.g., WAR or EAR)

2. The type of the container the app needs to be deployed on (such as Tomcat or JBoss AS 4)

All of the information about the resource type, such as the appType and appTypeName, is defined in
the resource agent plug-in, in the rhq-plugin.xml descriptor. The attributes, configuration
parameters, operations, and metrics for each default resource type are listed in the Resource
Monitoring and Operations Reference.

For example:

var appType = ResourceTypeManager .getResourceTypeByNameAndPlugin(
appTypeName, '"JBossAS");
if(appType == null) {

println(" Could not find application type. Exit.");

usage();

Then get the package type of the application.

var realPackageType = ContentManager.findPackageTypes(appTypeName,
"JBOSSAS");

if(realPackageType == null) {

println(" Could not find JBoss ON's packageType. Exit.");
usage();

31

Running JBoss ON Command-Line Scripts

Each resource in JBoss ON has some configuration parameters, including the WARs or EARs deployed on a
JBoss AS 4 resource. As with the descriptive information, this is defined in the resource type's agent plug-in,
in the rhq-plugin.xml descriptor. To be able to create a hew resource, these parameters need to be filled
in.

// create deployConfig

var deployConfig = new Configuration();

deployConfig.put(new PropertySimple("deployDirectory", "deploy"));
deployConfig.put(new PropertySimple("deployZipped", "true"));
deployConfig.put(new PropertySimple("createBackup", "false"));

The property names can be retrieved by calling a list of supported properties by the package type by calling
this method:

var deployConfigDef =
ConfigurationManager .getPackageTypeConfigurationDefinition(realPackageType.g
etId());

Provide the package bits as a byte array:

var inputStream = new java.io.FileInputStream(file);
var fileLength = file.length();
var fileBytes = java.lang.reflect.Array.newInstance(java.lang.Byte.TYPE,
fileLength);
for (numRead=0, offset=0; ((numRead >= 0) && (offset < fileBytes.length));
offset += numRead) {

numRead = inputStream.read(fileBytes, offset, fileBytes.length -
offset);

}

Then, create the resource. The information is defined in the resource type's agent plug-in, in the rhq-
plugin.xml descriptor. For example:

ResourceFactoryManager.createPackageBackedResource(
server.id,
appType.id,
packageName,
null, // pluginConfiguration
packageName,
packageVersion,
null, // architectureId
deployConfig,
fileBytes,
null // timeout
)

Make sure that the given JBoss AS 4 server instance is still running and that JBoss ON knows that it is
running, or it will throw an exception saying that the JBoss ON agent is not able to upload the binary content
to the server.

6.2. Scripting JBoss AS 5 Deployments

Declaring Custom Functions

32

6. Example: Scripting Resource Deployments

This script will use two custom functions to deploy the packages to create new resources.

function usage() {
println("Usage: deployToGroup <fileName> <groupName>");
throw "Illegal arguments";

}

function PackageParser(fullPathName) {
var file = new java.io.File(fullPathName);

var fileName = file.getName();

var packageType = fileName.substring(fileName.lastIndexOf('."')+1);
var tmp = fileName.substring(@, fileName.lastIndexOf('.'));

var realName = tmp.substring(®, tmp.lastIndexOf('-"'));

var version = tmp.substring(tmp.lastIndexOf('-') + 1);

var packageName = realName + "." + packageType;

this.packageType = packageType.toLowerCase();

this.packageName = packageName;
this.version = version;
this.realName = realName;

3

Checking the JBoss ON Groups and Inventory

The script should have two command-line parameters. The first should be the path of the new application that
is installed in the group. The second is the name of the group itself. These parameters are parsed in the

For example:
if(args.length < 2) usage();

var fileName = args[0];
var groupName = args[1];

Next, check if the path is valid and if the current user can read it. This is done by using Java classes as
shown here:

// check that the file exists and that we can read it
var file = new java.io.File(fileName);

if(!'file.exists()) {

println(fileName + " does not exist!");
usage();

if(!'file.canRead()) {
println(fileName + " can't be read!");
usage();

Verify that the group really exists on the JBoss ON server:

// find resource group

33

Running JBoss ON Command-Line Scripts

var rgc = new ResourceGroupCriteria();

rgc.addFilterName(groupName);

rgc.fetchExplicitResources(true);

var grouplList = ResourceGroupManager.findResourceGroupsByCriteria(rgc);

The important part here is the call the resources.
rgc.fetchExplicitResources(true);
Check if there is a group found:
if(groupList == null || groupList.size() '=1) {
println("Can't find a resource group named " + groupName);

usage();

}

var group = grouplList.get(0);

println(" Found group: " + group.name);
println(" Group ID "+ group.id);
println(" Description: " + group.description);

After validating that there is a group with the specified name, check if the group contains explicit resources:

if(group.explicitResources == null || group.explicitResources.size() == 0)
{
println(" Group does not contain explicit resources --> exiting!");
usage();
3

var resourcesArray = group.explicitResources.toArray();

resourceArray now contains all resources which are part of the group. Next, check if there are JBoss AS 5
Server instances which need to be restarted before the application is deployed.

for(1 in resourcesArray) {

var res = resourcesArray[i];

var resType = res.resourceType.name;

println(" Found resource " + res.name + " of type " + resType + " and
ID " + res.id);

if(resType != "JBossAS5 Server") {
println(" ---> Resource not of required type. Exiting!");
usage();

}

// get server resource to start/stop it and to redeploy application
var server = ProxyFactory.getResource(res.id);

This requires a group with only JBoss AS 5 Server resource types as top level resources. Now server
contains the JBoss AS 5 instance. This requires re-reading the server because it needs to be fully populated.
Internally, the CLlI is using simple JPA persistence, and it is necessary to not always fetch all dependent
objects.

Next, traverse all the children of the server instance and find the resource name of the application:

34

6. Example: Scripting Resource Deployments

var children = server.children;
for(¢ in children) {
var child = children[c];

if(child.name == packageName) {

}

packageName is the name of the application without version information and path as shown in the JBoss ON
GUI as deployed applications.

Create a backup of the original version of the application:

println(" download old app to /tmp");
child.retrieveBackingContent("/tmp/" + packageName + "_" + server.name +
"_Old");

A copy of the old application with the server name decoded in path is available in the /tmp/ directory.

Shut down the server and upload the new application content to the server. \

println(" stopping " + server.name + "....");
try {
server.shutDown();
}
catch(ex) {
println(" --> Caught " + ex);
}
println(" uploading new application code");

child.updateBackingContent(fileName);

println(" restarting " + server.name + "..... "),
try {
server.start();
}
catch(ex) {
println(" --> Caught " + ex);
}

Deploying the New Resource

At this point, existing application can be updated. The next step is to create the resource through the CLI and
then deploy it to the JBoss server.

First, get the resource type for the application. This depends on several parameters:
1. The type of the application (e.g., WAR or EAR)

2. The type of the container the app needs to be deployed on (such as Tomcat or JBoss AS 5)

35

Running JBoss ON Command-Line Scripts

All of the information about the resource type, such as the appType and appTypeName, is defined in
the resource agent plug-in, in the rhq-plugin.xml descriptor. The attributes, configuration
parameters, operations, and metrics for each default resource type are listed in the Resource
Monitoring and Operations Reference.

For example:

var appType = ResourceTypeManager.getResourceTypeByNameAndPlugin(
appTypeName, "JBossAS5");
if(appType == null) {

println(" Could not find application type. Exit.");

usage();

Then get the package type of the application.

var realPackageType = ContentManager.findPackageTypes(appTypeName,
"JBOoSSAS5");

if(realPackageType == null) {
println(" Could not find JBoss ON's packageType. Exit.");
usage();

Each resource in JBoss ON has some configuration parameters, including the WARs or EARs deployed on a
JBoss AS 5 resource. As with the descriptive information, this is defined in the resource type's agent plug-in,
in the rhq-plugin.xml descriptor. To be able to create a hew resource, these parameters need to be filled
in.

// create deployConfig

var deployConfig = new Configuration();

deployConfig.put(new PropertySimple("deployExploded", "false"));
deployConfig.put(new PropertySimple("deployFarmed", "false"));

The property names can be retrieved by calling a list of supported properties by the package type by calling
this method:

var deployConfigDef =
ConfigurationManager .getPackageTypeConfigurationDefinition(realPackageType.g
etId());

Provide the package bits as a byte array:

var inputStream = new java.io.FileInputStream(file);

var fileLength = file.length();

var fileBytes = java.lang.reflect.Array.newInstance(java.lang.Byte.TYPE,
fileLength);

for (numRead=0, offset=0; ((numRead >= 0) && (offset < fileBytes.length));

36

7. Example: Managing Grouped Servers

offset += numRead) {
numRead = inputStream.read(fileBytes, offset, fileBytes.length -
offset);

}

Then, create the resource. The information is defined in the resource type's agent plug-in, in the rhq-
plugin.xml descriptor. For example:

ResourceFactoryManager.createPackageBackedResource(
server.id,
appType.id,
packageName,
null, // pluginConfiguration
packageName,
packageVersion,
null, // architectureId
deployConfig,
fileBytes,
null // timeout

)

Make sure that the given JBoss AS 5 server instance is still running and that JBoss ON knows that it is
running, or it will throw an exception saying that the JBoss ON agent is not able to upload the binary content
to the server.

7. Example: Managing Grouped Servers

A lot of enterprise servers have a concept of managed servers. A managed server means that there is a
central instance that deploys content or sends configuration to all registered application servers. Using
managed servers helps administrators ensure that all active application servers have the same version of the
deployed packages and configuration.

Similar behavior can be emulated in JBoss ON by creating a management script that can be invoked to
perform actions simultaneously on all members of a JBoss ON group. All of the EAP instances are
functionally managed servers, while JBoss ON itself acts as the domain controller.

7.1. The Plan for the Scripts

The JBoss ON CLI can run defined JavaScripts using the -f parameter. The idea here is to create a series
of small management scripts that perform specific tasks on a group of JBoss EAP servers. This example has
seven scripts for:

Creating a group

Adding EAP instances to the group
Checking EAP status

Starting the EAP instance
Scheduling an operation

Deploying new content to the group

Checking metrics

37

Running JBoss ON Command-Line Scripts

A wrapper script and configuration file will be set up so that only one command needs to be run; the wrapper
invokes the appropriate JBoss ON CLI script depending on the command passed to the wrapper.

7.2. Creating the Wrapper Script and .conf File

The wrapper script takes command-line arguments and calls the JBoss ON CLI with one of the scripts as
argument. The command-line arguments themselves are defined in the JBoss ON JavaScript files.

This wrapper script makes a few assumptions:

The wrapper script is run as a regular user, which means that any JavaScript files must be acessible to a
regular user.

The scripts are located in a scripts/ directory that is in the same directory as the wrapper script.
A separate configuration file defines connection information for the JBoss ON server.
Each JavaScript file is invoked by a separate CLI command invocation, defined in the wrapper.

Any options or information required by the JBoss ON CLI command is defined in the JavaScript file and
can, potentially, be passed with the wrapper script as an option.

#!/bin/bash
#
groupcontrol

This 1is a simple wrapper script for all the java script scripts in this
folder.

Start this script with some parameters to automate group handling from
within the

command line.

#

With groupcontrol you can do the following:

create : Create a new group

addMember: Add a new EAP instance to the specified group

status : Print the status of all resources of a group

start : start all EAP instances specified by group name

deploy : Deploys an application to all AS instances specified by group
name

ops : Runs an operation on all AS instances specified by group name
metrics : Gets the specified metric value for all AS instances
specified by group name

#

#

Should not be run as root.
if ["$EUID" = "@"]; then

echo " Please use a normal user account and not the root account"
exit 1

fi

Figure out script home
MY_HOME=$(cd “dirname $0° && pwd)
SCRIPT_HOME=$MY_HOME/scripts

Source some defaults
. $MY_HOME/groupcontrol.conf

38

7. Example: Managing Grouped Servers

Check to see if we have a valid CLI home

if [! -d ${JON_CLI_HOME}]; then
echo "JON_CLI_HOME not correctly set. Please do so in the file"
echo $MY_HOME/groupcontrol.conf
exit 1

fi

RHQ_OPTS="-s $JON_HOST -u $JON_USER -t $JON_PORT"
If JBoss ON_PWD is given then use it as argument. Else let the user enter
the password
if ["x$JION_PWD" == "x"]; then
RHQ_OPTS="$RHQ_OPTS -P"
else
RHQ_OPTS="$RHQ_OPTS -p $JON_PWD"
fi

#echo "Calling groupcontrol with $RHQ_OPTS"

usage() {
echo " Usage $0:"
echo " Use this tool to control most group related tasks with a simple
script."”
eChO M e
<,....>
3

Each command that the wrapper should define has a doCommand (') section which defines the JBoss ON
CLI command to run and the JavaScript file to use. For example, for the deploy command to deploy content
to the EAP instances:

doDeploy() {

$JON_CLI_HOME/bin/rhg-cli.sh $RHQ_OPTS -f $SCRIPT_HOME/deployToGroup.js
$2 $3
3

case "$1" in
'deploy')
doDeploy $*
*3’
usage $*

esac

This script uses a configuration file, groupcontrol. conf, which defines the connection information to
connect to the JBoss ON server (which is required by the JBoss ON CLI).

e

This file contains some defaults for the groupcontrol script
e

ON_CLI_HOME=cliRoot/rhqg-remoting-cli-3.0.0.GA1l
JON_HOST=localhost

39

Running JBoss ON Command-Line Scripts

JON_PORT=7080

The user you want to connect with
JON_USER=rhgadmin

1f you omit the password here, you'll be prompted for it.
JON_PWD=rhgadmin

7.3. Defining Arguments and Other Parameters for the CLI Scripts

There may be multiple groups or some tasks (like searching for resources or running an operation) may have
multiple options.

Each JavaScript file can define its own script options in args methods. At a minimum, each script should
accept the name of the group on which to perform the task.

It is a really good idea to also define a usage function, so that each command can print what options are
expected. For example:

function usage() {
println("Usage: deploy groupName");
throw "Illegal arguments";

}

if(args.length < 1) usage();
var groupName = args[0];

When adding arguments for a script, be sure to set the proper number of tokens in the wrapper script
for the CLI invocation. For example, for groupName and fileName, add $2 $3.

doDeploy () {

$JON_CLI_HOME/bin/rhg-cli.sh $RHQ_OPTS -f $SCRIPT_HOME/deploy.js
$2 $3
¥

Aside from the script for creating a group, every script must also include a search for the group to perform the
operations on. For example:

groupcriteria = new ResourceGroupCriteria();
groupcriteria.addFilterName(groupName);

var groups =
ResourceGroupManager .findResourceGroupsByCriteria(groupcriteria);
if(groups != null) {
if(groups.size() > 1) {
println("Found more than one group.");

b

40

7. Example: Managing Grouped Servers

else if(groups.size() == 1) {
group = groups.get(0);
}
3

7.4. Creating a Group: group.js

Set up the script. This script only uses a single argument, for the name of the new group (groupName). The
resource type in the example is hard-coded to JBossASS5, which is a JBoss AS 5 server; optionally, it is
possible to also add arguments to set the plug-in name and type so that other JBoss versions could be
specified.

function usage() {
println("Usage: deploy groupName");
throw "Illegal arguments";

}

if(args.length < 1) usage();
var groupName = args[0];

Create the group:

var rg = new ResourceGroup(resType);

rg.setRecursive(false);

rg.setDescription("Created via groupcontrol scripts on " + new
java.util.Date().toString());

rg.setName(groupName);

rg = ResourceGroupManager.createResourceGroup(rg);

var resType = ResourceTypeManager.getResourceTypeByNameAndPlugin("JBossAS 5
Server", "JBossAS5");

7.5. Adding Resources to a Group: addMember.js

Set up the script. This identifies three required arguments for the script:
groupName for the group to add the resources to
resourceName for the name of the resource to add; this is one of the search criteria
resourceTypeName for the type of resource to add; this is one of the search criteria

This also includes a search to find the group specified in the argument.

function usage() {
println("Usage: addMember groupName resourceName resourceTypeName");
throw "Illegal arguments";

if(args.length < 3) usage();
var groupName = args[0];

var resourceName = args[1];

var resourceTypeName = args[2];

41

Running JBoss ON Command-Line Scripts

groupcriteria = new ResourceGroupCriteria();
groupcriteria.addFilterName(groupName);

var groups =
ResourceGroupManager .findResourceGroupsByCriteria(groupcriteria);
if(groups !'= null) {

if(groups.size() > 1) {

println("Found more than one group.");
}
else if(groups.size() == 1) {
group = groups.get(0);

}

3

Search for the resources to add to the group. The script is designed to add only a single resource to the
group, so the given search criteria, resourceName and resource TypeName, must be specific enough to
match only a single resource.

criteria = new ResourceCriteria();
criteria.addFilterName(resourceName);
criteria.addFilterResourceTypeName(resourceTypeName);

var resources = ResourceManager.findResourcesByCriteria(criteria);
if(resources != null) {
if(resources.size() > 1) {
println("Found more than one JB0ossAS Server instance. Try to
specialize.");
for(1 =0; 1 < resources.size(); ++1i) {
var resource = resources.get(i);
println(" found " + resource.name);

3
}
else if(resources.size() == 1) {
resource = resources.get(0);
println("Found one JBossAS Server instance. Trying to add it.");
println(" " + resource.name);
ResourceGroupManager .addResourcesToGroup(group.id, [resource.id]);
println(" Added to " + group.name + "!");
}
else {

println("Did not find any JBossAS Server instance matching your
pattern. Try again.");
}
}

When this script is run, it prints the name of the found JBoss instance and that it was added to the group.

[jsmith@server cli]$./wrapper.sh addMember myGroup "JBossAS App 1" "JBosSAS
Server"
Remote server version is: 3.0.1.GA (b2cb23b:859b914)
Login successful
Found one JB0osSsSAS Server instance. Trying to add it.
AS server.example.com JBossSAS App 1
Added to myGroup!

42

7. Example: Managing Grouped Servers

7.6. Getting Inventory and Status Information: status.js

This is a simple little script, just to print the current status of all the JBoss instances in the group.

As with the other scripts, set up the group information.

function usage() {
println("Usage: status groupName");
throw "Illegal arguments";

}

if(args.length < 1) usage();
var groupName = args[0];

groupcriteria = new ResourceGroupCriteria();
groupcriteria.addFilterName(groupName);

var groups =
ResourceGroupManager .findResourceGroupsByCriteria(groupcriteria);
if(groups !'= null) {
if(groups.size() > 1) {
println("Found more than one group.");

}

else if(groups.size() == 1) {
group = groups.get(0);

}

}

Also include information to search for the resources, based on the group:

criteria = new ResourceCriteria();
criteria.addFilterExplicitGroupIds(group.id);

var resources = ResourceManager.findResourcesByCriteria(criteria);
for(1 =0; 1 < resources.size(); ++i) {

var resource = resources.get(i);

println(" found " + resource.name);

Then, run through the resources and print their availability.

var server = ProxyFactory.getResource(resource.id);
var avail =
AvailabilityManager.getCurrentAvailabilityForResource(server.id);

println(" " + server.name);
println(" - Availability: " + avail.availabilityType.getName());
println(" - Started : " + avail.startTime.toGMTString());

println("");

var avail =
AvailabilityManager.getCurrentAvailabilityForResource(server.id);

if(avail.availabilityType.toString() == "DOWN") {

43

Running JBoss ON Command-Line Scripts

println(" Server is DOWN. Please first start the server and run
this script again!");

println("");
}

When the script is run, it prints the availability and last start time for the servers.

[jsmith@server cli]$./wrapper.sh status myGroup
Remote server version is: 3.0.1.GA (b2cb23b:859b914)
Login successful
found AS server.example.com JB0SSAS App 1
AS server.example.com JBossSAS App 1
- Availability: UP
- Started : 11 Feb 2012 04:07:37 GMT

7.7. Starting, Stopping, and Restarting the Server: restart.js

This example only performs one operation, restarting a JBoss server. It iterates through all the resources in
the group.

It is possible to write similar scripts for starting and stopping the server.
shutdown () for AS4 servers and shutDown () for AS5 servers

start()

criteria = new ResourceCriteria();
criteria.addFilterExplicitGroupIds(group.id);

var resources = ResourceManager.findResourcesByCriteria(criteria);
for(1 =0; 1 < resources.size(); ++1i) {

var resource = resources.get(i);

var resType = resource.resourceType.name;

println(" found " + resource.name);

if(resType != "JBossAS Server") {
println(" ---> Resource not of required type. Exiting!");
usage();
}
var server = ProxyFactory.getResource(resource.id);
println(" stopping " + server.name + "....");
try {
server.shutdown()
}
catch(ex) {
println(" --> Caught " + ex);
}
println(" restarting " + server.name + "..... "),
try {
server.start();
}

44

7. Example: Managing Grouped Servers

catch(ex) {
println(" --> Caught " + ex);

}

7.8. Deploying Applications to the Group Members: deploy.js

Set up the usage information and the group search as in the other scripts, then use the deployment script

server, uploads the content, and restarts it. Instead, simply check that the server is running first, and then
upload the content:

// we need check to see if the given server is up and running
var avail =
AvailabilityManager.getCurrentAvailabilityForResource(server.id);

// unfortunately, we can only proceed with deployment if the server 1is
running. Why?
if(avail.availabilityType.toString() == "DOWN") {

println(" Server is DOWN. Please first start the server and run this
script again!");

println("");

continue;

7.9. Scheduling an Operation: ops.js

Unlike the other tasks in this script set, the operation task is run on the agent, so it is not necessary to search

for the group or JBoss resource. This runs an availability scan on the agent; it is also possible to run a
specific command on the agent using the Execute prompt command operation

First, get a list of all agent resources:

println("Scanning all RHQ Agent instances");

var rc = ResourceCriteria();

var resType = ResourceTypeManager.getResourceTypeByNameAndPlugin('"RHQ
Agent", "RHQAgent");

rc.addFilterPluginName ("RHQAgent");

rc.addFilterResourceTypeName("RHQ Agent");
rc.addFilterParentResourceTypeId("10001");

var resources = ResourceManager.findResourcesByCriteria(rc).toArray();

var 1idx=0;
for(i1 in resources) {
if(resources[i].resourceType.id == resType.id) {
resources[idx] = resources[i];
idx = idx + 1;

45

Running JBoss ON Command-Line Scripts

Then, traverse the agents array and schedule the operation:

for(a in resources) {
var agent = resources[a]

var resType = agent.resourceType.name;
println(" Found resource " + agent.name + " of type " + resType + "
and ID " + agent.id);

println(" executing availability scan on agent");
println(" -> " + agent.name + " / " + agent.id);
var config = new Configuration();
config.put(new PropertySimple("changesOnly", "true"));
var ros = OperationManager.scheduleResourceOperation(
agent.id,
"executeAvailabilityScan",

10000000,
config,
"test from cli"

0

println(ros);
println("");

7.10. Gathering Metric Data of Managed Servers: metrics.js

JBoss ON collects a number of metrics for each resource type. This information can be retrieved by using the
findLiveData method, which returns the current active value for the resource.

This script takes two arguments, the groupName and the metricName. As with the other scripts, this searches
for the group and then the resource by the group ID.

function usage() {
println("Usage: metrics groupName metricName");
throw "Illegal arguments";

}

if(args.length < 2) usage();
var groupName = args[0];
var metricName = args[1];

groupcriteria = new ResourceGroupCriteria();
groupcriteria.addFilterName(groupName);

var groups =
ResourceGroupManager .findResourceGroupsByCriteria(groupcriteria);
if(groups !'= null) {
if(groups.size() > 1) {
println("Found more than one group.");

}

else if(groups.size() == 1) {

46

8. Example: Writing a Custom Java Client

group = groups.get(0);
}
3

criteria = new ResourceCriteria();
criteria.addFilterExplicitGroupIds(group.id);

The actual metric search looks for the metrics available to the resource type (hard-coded to JBoss AS 5 in
this example). The metric itself is identified solely by the metricName argument.

var rt = ResourceTypeManager.getResourceTypeByNameAndPlugin("JBossAS 5
Server", "JBossAS5");

var mdc = MeasurementDefinitionCriteria();
mdc.addFilterDisplayName(metricName);
mdc.addFilterResourceTypeld(rt.id);

var mdefs =

MeasurementDefinitionManager .findMeasurementDefinitionsByCriteria(mdc);
var resources = ResourceManager.findResourcesByCriteria(criteria);

var metrics = MeasurementDataManager.findLiveData(resources.get(0).id,
[mdefs.get(0).id]);

if(metrics !=null) {
println(" Metric value for " + resources.get(0).id + " is " +
metrics);

}

When the script is run, it prints the resource ID and the current value for the metric.

[jsmith@server cli]$./wrapper.sh metrics myGroup "Active Thread Count"
Remote server version is: 3.0.1.GA (b2cb23b:859b914)

Login successful

Metric value for 10003 is [MeasurementDataNumeric[value=[64.0],
MeasurementData [MeasurementDataPK: timestamp=[Wed Feb 15 22:14:38 EST 2012],
scheduleId=[1]]]]

8. Example: Writing a Custom Java Client

JBoss Remoting framework or the JBoss ON remote APIs to access server functionality. The JBoss ON CLI
is essentially a Java skin over the remote API. Any application written in Java or a JVM-compatible language
can access the JBoss ON remote API.

47

Running JBoss ON Command-Line Scripts

The remote API cannot be run from a client inside an application server. For example, the remote
API cannot be run from a client inside an EAP instance; it fails with errors like the following:

Caused by: java.lang.IllegalArgumentException: interface
org.rhqg.enterprise.server.auth.SubjectManagerRemote is not visible from
class

loader

at java.lang.reflect.Proxy.getProxyClass(Proxy. java:353)

at java.lang.reflect.Proxy.newProxyInstance(Proxy.java:581)

at
org.rhg.enterprise.client.RemoteClientProxy.getProcessor(RemoteClientPr
oxy.java:69)

The power of the JBoss ON Java interface is the programmatic way that it handles remote clients. The Java
interface creates a client object and works with it as if that client object were in the command line:

{
Client joprClient = new Client(...)

jopClient.getResourceManager().findResources(...)

This is the recommended approach for a programmatic remote client.

8.1. Getting the API

The JBoss ON remote API is downloaded and installed with the JBoss ON CLI package, as described in

8.2. Example Custom Java Client

This example creates an LDAP integration for LDAP group-based authorization for JBoss ON. The sample
Java class pulls in the authorization and search classes from the JBoss ON API, and then the script starts a
simple synchronization service that maps the LDAP groups and users to the JBoss ON roles and users.

LDAP-based group authorization is already configured in JBoss ON. This client is simply used as an
example to show how a remote Java client can interact with the JBoss ON server.

8.2.1. Sample Java Class Using the JBoss ON API

48

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Operations_Network/3.1/html/API/ch01.html

8. Example: Writing a Custom Java Client

This Java class uses the JBoss ON API for users, permissions, roles, and searching and sorting resource
entries. The class then sets up a mapping between the LDAP database and the JBoss ON database, so that
the user and role information in each is synchronized.

package org.rhqg.sample.client.java.ldap;

import java.util.ArrayList;
import java.util.HashSet;
import java.util.List;
import java.util.Set;

import org.rhqg.core.domain.auth.Subject;

import org.rhqg.core.domain.authz.Permission;

import org.rhg.core.domain.authz.Role;

import org.rhqg.core.domain.criteria.ResourceCriteria;

import org.rhq.core.domain.criteria.ResourceGroupCriteria;
import org.rhq.core.domain.criteria.RoleCriteria;

import org.rhqg.core.domain.resource.Resource;

import org.rhq.core.domain.resource.group.ResourceGroup;

import org.rhqg.core.domain.util.PagelList;

import org.rhg.enterprise.client.RemoteClient;

import org.rhq.enterprise.server.auth.SubjectManagerRemote;
import org.rhq.enterprise.server.authz.RoleManagerRemote;

import org.rhq.enterprise.server.resource.ResourceManagerRemote;
import org.rhq.enterprise.server.resource.group.ResourceGroupManagerRemote;

/**
* This sample program utilizes the RHQ Remote API via a Java Client.
*
* The RHQ CLI is the preferred remote client approach for script-based
clients. Programmatic Java clients
* can utilize the Remote API via the same mechanism used by the CLI, making
use of ClientMain object, as
* done in this sample. This is the recommended mechanism although a remote
Java client could als use the
* remote API exposed as WebServices.
*
* @author Jay Shaughnessy
*/
public class SampleLdapClientMain {
// A remote session always starts with a login, define default
user/password/server/port
private static String username "rhgadmin";
private static String password "rhgadmin";
private static String host = "localhost";
private static int port = 7080;

/**

* This is a standalone remote client but calls to the remote API could

be embedded into another application.

*/

public static void main(String[] args) {
if (args.length > 0) {
if ((args.length '= 2) && (args.length !'= 4)) {
System.out
.println("\nUsage: SamplelLdapClientMain [[username

49

Running JBoss ON Command-Line Scripts

password] | [username password host port]]1");

System.out.println("\n\nDefault credentials:
rhgadmin/rhgadmin");

System.out.println("\n\nDefault host: determined from
wsconsume of WSDL");

return;

} else {
username = args[0];
password = args[1];

if (args.length == 4) {
host args[2];
port Integer.valueOf(args[3]);

}

LdapClient ldapClient = null;

try {
ldapClient = new LdapClient();

ldapClient.synchLdapJbasManagers();

} catch (Throwable t) {
System.out.println("Error: " + t);
t.printStackTrace();
} finally {
if (null != ldapClient) {
// clean up the session by logging out from the RHQ server
ldapClient.logout();

}

/**
* The LdapClient interacts with the RHQ Server to help synchronize a
(fake) LDAP server with RHQ.
*/
public static class LdapClient {
// group containing all jbas resources
private static final String JBAS_GROUP = "jbas-resource-group";

// role for jbas managers
private static final String JBAS_MANAGER_ROLE = "jbas-manager-role";

// the users that should be assigned the JBAS_MANAGER_ROLE
private static final List<String> JBAS_MANAGERS = new
ArrayList<String>();

// the prmissions that should be assigned the JBAS_MANAGER_ROLE
private static final Set<Permission> JBAS_MANAGER_PERMISSIONS = new
HashSet<Permission>();

// jbas AS Server resource type (note, this picks up AS4 and AS5

resources as they share the same type name)
private static final String JBAS_SERVER_NAME = "JB0OSSAS Server";

50

8. Example: Writing a Custom Java Client

/* The Remote API offers different remote "managers'" roughly broken
down by subsystem/function
* Below are the managers needed by this client, there are several
others that offer
* interfaces into areas such as operations, alerting, content, etc.
See the API.
*/
private ResourceGroupManagerRemote resourceGroupManager;
private ResourceManagerRemote resourceManager;
private RoleManagerRemote roleManager;
private SubjectManagerRemote subjectManager;

/* This represents the RHQ user that is logged in and making the
remote calls. This user must
* already exist. For the work being done here the user must also
have SECURITY_MANAGER permissions.
*/
private Subject subject;

/* This is the object through which we access the remote API */
private RemoteClient remoteClient;

static {
// add some fake users since we're not actually hooked into an
ldap server
JBAS_MANAGERS.add("mgr-1");
JBAS_MANAGERS.add("mgr-2");

// add some permissions since we're not actually hooked into an
ldap server
JBAS_MANAGER_PERMISSIONS.addAll(Permission.RESOURCE_ALL);
3

public LdapClient() throws Exception {
this.remoteClient = new RemoteClient(null, host, port);
this.subject = remoteClient.login(username, password);

this.resourceGroupManager =
this.remoteClient.getResourceGroupManagerRemote();

this.resourceManager =
this.remoteClient.getResourceManagerRemote();

this.roleManager = this.remoteClient.getRoleManagerRemote();

this.subjectManager =
this.remoteClient.getSubjectManagerRemote();

}

/*
* This method simulates a sync between an Ldap server that has
defined a group of JBAS managers

* and wants to associate them with a role allowing jbas management.
Meaning, a role that

* has the proper permissions and is associated with the jbas
resources.

*/
private void synchLdapJbasManagers() throws Exception {

51

Running JBoss ON Command-Line Scripts

// create the jbas manager role if necessary
// use a criteria search with a name filter to look for the role
RoleCriteria roleCriteria = new RoleCriteria();
roleCriteria.setFilterName (JBAS_MANAGER_ROLE);
PagelList<Role> jbasManagerRoles =
roleManager.findRolesByCriteria(subject, roleCriteria);
Role jbasManagerRole;
if (1 == jbasManagerRoles.size()) {
jbasManagerRole = jbasManagerRoles.get(0);
} else {
// 1f 1t doesn't exist, create 1it
jbasManagerRole = new Role(JBAS_MANAGER_ROLE);
jbasManagerRole = roleManager.createRole(subject,
jbasManagerRole);
}
// ensure the proper permissions are granted to the role by
using an update
jbasManagerRole.setPermissions(JBAS_MANAGER_PERMISSIONS);
roleManager .updateRole(subject, jbasManagerRole);

// create, populate and associate the jbas group if necessary
ResourceGroupCriteria resourceGroupCriteria = new
ResourceGroupCriteria();
resourceGroupCriteria.addFilterName(JBAS_GROUP);
PagelList<ResourceGroup> jbasGroups =
resourceGroupManager .findResourceGroupsByCriteria(subject,
resourceGroupCriteria);

ResourceGroup jbasGroup;

if (1 == jbasGroups.size()) {
jbasGroup = jbasGroups.get(0);

} else {
jbasGroup
jbasGroup

resourceGroupManager.createResourceGroup(subject, jbasGroup);
// Ensure the group is recursive to make all the children

new ResourceGroup(JBAS_GROUP);

available.
// In this case a specific method is available, so a
general update call is not needed.
resourceGroupManager.setRecursive(subject,
jbasGroup.getId(), true);

}

// Now find all of the JBAS server resources by adding a
criteria filter on resource type name
ResourceCriteria resourceCriteria = new ResourceCriteria();
resourceCriteria.addFilterResourceTypeName (JBAS_SERVER_NAME);
PagelList<Resource> jbasServers =
resourceManager .findResourcesByCriteria(subject, resourceCriteria);
if (!jbasServers.isEmpty()) {
int[] jbasServerIds = new int[jbasServers.size()];
int i = 0;
for (Resource jbasServer : jbasServers) {
jbasServerIds[i++] = jbasServer.getId();

}

52

8. Example: Writing a Custom Java Client

// ..and add them to the group which will be associated
with the manager role

resourceGroupManager .addResourcesToGroup(subject,
jbasGroup.getId(), jbasServerIds);

}

// Now, associate the mixed group of Jbas servers to the manager
role

roleManager .addResourceGroupsToRole(subject,
jbasManagerRole.getId(), new int[] { jbasGroup.getId() });

// sync managers with the role
// 1. remove obsolete managers
roleCriteria = new RoleCriteria();
roleCriteria.setFilterId(jbasManagerRole.getId());
// add a fetch criteria to the criteria object to get the
optionally returned subjects for the role.
roleCriteria.setFetchSubjects(true);
jbasManagerRole = roleManager.findRolesByCriteria(subject,
roleCriteria).get(0Q);
Set<Subject> subjects = jbasManagerRole.getSubjects();
if ((null '= subjects) && !subjects.isEmpty()) {
for (Subject subject : subjects) {
if (!'JBAS_MANAGERS.contains(subject.getName())) {
roleManager.removeSubjectsFromRole(subject,
jbasManagerRole.getId(), new int[] { subject
.getId() });
}

}

// 2. add new managers, create subjects for the managers, if
necessary
Subject jbasManagerSubject;
for (String jbasManager : JBAS_MANAGERS) {
jbasManagerSubject =
subjectManager.getSubjectByName(jbasManager);
// add the required fields for a subject, note that we skip
credentials since this 1is
// simulating ldap
if (null == jbasManagerSubject) {
jbasManagerSubject = new Subject();
jbasManagerSubject.setName(jbasManager);

jbasManagerSubject.setEmailAddress("jbas.manager@sample.com");
jbasManagerSubject.setFactive(true);
jbasManagerSubject.setFsystem(false);
jbasManagerSubject =

subjectManager.createSubject(subject, jbasManagerSubject);

}

// Finally, make sure my current set of jbas managers 1is
associated with the manager role.
roleManager .addSubjectsToRole(subject,
jbasManagerRole.getId(),
new int[] { jbasManagerSubject.getId() });

53

Running JBoss ON Command-Line Scripts

}

public void logout() {
if ((null '= subjectManager) && (null != subject)) {

try {
subjectManager.logout(subject);

} catch (Exception e) {
// just suppress the exception, nothing else we can do

}

8.2.2. Sample LDAP Script

The sample . bat script invokes the custom Java class.

@echo off

rem RHQ Remote Client LDAP Example Startup Script
rem The following variables must be set

rem RHQ_CLIENT_HOME The home directory of the RHQ Client Installation.

rem RHQ Client can be downloaded from the RHQ GUI under
rem the Administration->Downloads menu.

rem

=] I e R R

rem Prepare the classpath
rem Add all jar files supplied by the RHQ remote client install

set CLASSPATH=.

call :append_classpath "%RHQ_CLIENT_HOME%\conf"

for /R "%RHQ_CLIENT_HOME%\1lib" %%G in ("*.jar") do (
call :append_classpath "%%G"

)

54

8. Example: Writing a Custom Java Client

rem Prepare the VM command line options to be passed in
(] L T T T

if not defined RHQ_CLIENT_JAVA_OPTS (
set RHQ_CLIENT_JAVA_OPTS=-Xms64m -Xmx128m -Djava.net.preferIPv4Stack=true

rem Uncomment For debugging on port 9999
=) T L

rem set RHQ_CLIENT_ADDITIONAL_JAVA_OPTS=-
agentlib: jdwp=transport=dt_socket, address=9999, server=y, suspend=y

rem Execute the VM which starts the CLIENT
] e 0 o P o P S S P S e

set CMD="%JAVA_HOME%\bin\java.exe" %RHQ_CLIENT_JAVA_OPTS%
%RHQ_CLIENT_ADDITIONAL_JAVA_OPTS% -cp "%CLASSPATH%"
org.rhg.sample.client.java.ldap.SampleLdapClientMain
%RHQ_CLIENT_CMDLINE_OPTS% %*

cmd.exe /S /C "%CMD%"

goto :done

rem CALL subroutine that appends the first argument to CLASSPATH
=) e T

:append_classpath
set _entry=%1
if not defined CLASSPATH (
set CLASSPATH=%_entry:"=%
) else (
set CLASSPATH=%CLASSPATH%;%_entry:"=%
)

goto :eof

rem CALL subroutine that exits this script normally
=] I e

55

Running JBoss ON Command-Line Scripts

:done
endlocal

exit /B ©

9. Reference: Methods Specific to the JBoss ON CLI

Some classes and methods are available to the JBoss ON CLI and JBoss ON server scripts which are not
part of the regular API.

9.1. Methods Available to the CLI and Server Scripts

9.1.1. Assert

‘ Method Signature

56

http://docs.oracle.com/javase/1.4.2/docs/guide/lang/assert.html

9. Reference: Methods Specific to the JBoss ON CLI

‘ Method Signature

Assert.assertEquals

Assert.assertEqualsNoOrder

Assert.assertExists

assertEquals(float, float, float,
String)

assertEquals(short, short, String)
assertEquals(double, double,
double)

assertEquals(long, long, String)
assertEquals(byte, byte, String)
assertEquals(Object, Object)
assertEquals(char, char, String)
assertEquals(Object, Object,
String)

assertEquals(double, double,
double, String)
assertEquals(byte[], byte[])
assertEquals(boolean, boolean)
assertEquals(Object[], Object[],
String)

assertEquals(Collection,
Collection)
assertEquals(Object[], Object[])
assertEquals(byte, byte)
assertEquals(float, float, float)
assertEquals(char, char)
assertEquals(int, int)
assertEquals(long, long)
assertEquals(Collection,
Collection, String)
assertEquals(short, short)
assertEquals(String, String,

String)

assertEquals(byte[], byte[],
String)

assertEquals(boolean, boolean,
String)

assertEquals(String, String)
assertEquals(int, int, String)

assertEqualsNoOrder (Object[],
Object[], String)
assertEqualsNoOrder (Object[],
Object[])

assertExists(String)

57

Running JBoss ON Command-Line Scripts

‘ Method Signature

Assert.assertFalse

assertFalse(boolean)
assertFalse(boolean, String)

Assert.assertNotNull

assertNotNull(Object)
assertNotNull(Object, String)

Assert.assertNotSame

assertNotSame(Object, Object,
String)
assertNotSame(Object, Object)

Assert.assertNull

assertNull(Object)
assertNull(Object, String)

Assert.assertNumberEqualsJS

assertNumberEqualsJS(double,
double, String)

Assert.assertSame

assertSame(Object, Object, String)
assertSame(Object, Object)

Assert.assertTrue

assertTrue(boolean, String)
assertTrue(boolean)

Assert.fall
fail()
fail(String, Throwable)
fail(String)

9.1.2. Subject

Represents the current logged-in JBoss ON user. smsAddress toString userConfiguration

‘ Method Signature

subject.addLdapRole
addLdapRole(Role)

subject.addRole

addRole(Role)
addRole(Role, boolean)

58

9. Reference: Methods Specific to the JBoss ON CLI

‘ Method Signature

subject.department

subject.emailAddress
subject.factive
subject.firstName
subject.fsystem
subject.id

subject.lastName
subject.ldapRoles

subject.name
subject.ownedGroups
subject.phoneNumber

subject.removelLdapRole

subject.removeRole

subject.roles

subject.sessionld
subject.smsAddress
subject.toString

subject.userConfiguration

9.1.3. pretty

Prints the department value (if any) for the current
user.

Prints the email address for the current user.
Prints whether the user account is active.
Prints whether the first name of the user.

Prints the ID number for the user account within
JBoss ON.

Prints the surname for the user.

Lists any roles associated with LDAP groups to
which the current user is a member.

Prints the JBoss ON user ID of the current user.

Prints thephone number, if any exists, for the current
user.

removelLdapRole(Role)

removeRole(Role)

Prints the role name, permissions, associated LDAP
users and groups, associated resource groups, and
other information about every role to which the
current user belongs.

Prints the current session ID number.

Returns the pager number, if it exists, for the user.

String toString()

Returns all of the dashboard information, based on
the configured portlets, dashboards, and settings
that are specific to the logged-in user.

Converts CLI objects (particularly search results and other domain objects) into a pretty-print format in the

output.

‘ Method Signature

pretty.exportMode

Prints the current export setting for the server.

59

Running JBoss ON Command-Line Scripts

‘ Method Signature

pretty.print
print(String[][])
print(PropertySimple, int)
print(Configuration)
print(PropertyMap, int)
print(PropertyList, int)
print(Collection)
print(Map)
print(Object[])
print(Object)

pretty.width Prints the current width settings for the console
display.

9.1.4. unlimitedPC and pageControl

Sets paging and sorting settings for returned data.

‘ Method Signature

unlimitedPC.addDefaultOrderingField

addDefaultOrderingField(String,
PageOrdering)
addDefaultOrderingField(String)

unlimitedPC.clone

clone()
unlimitedPC.firstRecord Returns the first record in the results page.
unlimitedPC.getExplicitPageControl

PageControl

getExplicitPageControl(int, int)

unlimitedPC.getSingleRowInstance
PageControl getSingleRowInstance()

unlimitedPC.getUnlimitedInstance
PageControl getUnlimitedInstance()

unlimitedPC.initDefaultOrderingField

initDefaultOrderingField(String)
initDefaultOrderingField(String,

PageOrdering)
unlimitedPC.orderingFields
unlimitedPC.orderingFieldsAsArray
unlimitedPC.pageNumber Returns the current page number for paged results.
unlimitedPC.pageSize Returns the current configured page size (humber of

returned entries per page).
unlimitedPC.primarySortColumn

60

9. Reference: Methods Specific to the JBoss ON CLI

‘ Method Signature

unlimitedPC.primarySortOrder
unlimitedPC.removeOrderingField

unlimitedPC.reset

unlimitedPC.setPrimarySort

unlimitedPC.setPrimarySortOrder

unlimitedPC.sortBy

unlimitedPC.startRow
unlimitedPC.toString

unlimitedPC.truncateOrderingFields

9.1.5. exporter

Writes the CLI output to a specified file.

removeOrderingField(String)

reset()

setPrimarySort(String,
PageOrdering)

setPrimarySortOrder (PageOrdering)

sortBy(String)

Returns the current starting row number.

String toString()

truncateOrderingFields(int)

‘ Method Signature

exporter.close

exporter.file
exporter.format
exporter.pageWidth

exporter.setFormat

exporter.setFile

exporter.setPageWidth

close()

Shows the current configured output format.

Shows the configured line length ofor content in the
output file.

setFormat(String)

setFile(String)

setPagewWidth(int)

61

Running JBoss ON Command-Line Scripts

‘ Method Signature

exporter.setTarget
setTarget(String, String)

exporter.write
write(Object)

9.1.6. ProxyFactory

Provides specialized methods to make it easier and simpler to manage resource objects.

‘ Method Signature

ProxyFactory.getResource

ResourceClientProxy
getResource(int)

ProxyFactory.outputWriter

ProxyFactory.remoteClient Returns information about the managers and
configuration used by the remote client. In the
interactive CLlI, this prints information about the
manager beans used by the interactive CLI.

ProxyFactory.resource

9.1.7. scriptUtil

Provides utilities to use for writing CLI scripts.

‘ Method Signature

scriptUtil.findResources

PagelList<Resource>
findResources(String)

scriptUtil.getFileBytes
byte[] getFileBytes(String)

scriptUtil.isDefined
boolean isDefined(String)

scriptUtil.saveBytesToFile
saveBytesToFile(byte[], String)

scriptUtil.sleep
sleep(long)

62

9. Reference: Methods Specific to the JBoss ON CLI

‘ Method Signature

scriptUtil.waitForScheduledOperationToComplete

ResourceOperationHistory
waitForScheduledOperationToComplete
(ResourceOperationSchedule, long,
int)

ResourceOperationHistory
waitForScheduledOperationToComplete
(ResourceOperationSchedule)

9.2. Methods Available to Proxy Resources

The ProxyFactory classes provide shortcuts for a lot of common resource management tasks, such as
viewing monitoring data, running operations, or changing the resource or plug-in configuration. These
methods are not in the regular API, but they can be used both by the JBoss ON CLI and by JBoss ON server-
side scripts.

The shortcuts and methods available through ProxyFactory are different, depending on the resource type.
Methods are only available if the resource type supports that functional area.

This section lists the three most common resource types:

Use tab-complete in the interactive CLI to find the specific methods available for a resource type or to
get the method signatures for individual methods.

Table 4. Proxy Methods for Platforms

‘ Information Methods

measurements Displays a pretty-print list of the available metrics,
current values, and description of all measurements
for the platform resource.

operations Lists the available operations for the resource type.
Shortcut Metric Methods

OSName OSVersion architecture createdDate
description distributionName distributionVersion freeMemory
freeSwapSpace hostname idle totalMemory
systemLoad totalSwapSpace usedSwapSpace usedMemory
userLoad modifiedDate waitLoad version

63

Running JBoss ON Command-Line Scripts

‘ Shortcut Resource Entry Methods

id (inventory ID number) resourceType name (inventory name)
[Shorcutoperationwethoss
manualAutodiscovery cleanYumMetadataCache viewProcessList
[Storcut Confguraion ethods
editPluginConfiguration() pluginConfiguration

pluginConfigurationDefinition

‘ Shortcut Content Methods

contentTypes

‘ Shortcut Inventory Methods

children

‘ Method Signature

platform.getChild

ResourceClientProxy
getChild(String)

platform.getMeasurement
Measurement getMeasurement(String)

platform.updatePluginConfiguration

PluginConfigurationUpdate
updatePluginConfiguration(Configura
tion)

platform.toString
String toString()

Table 5. Proxy Methods for JBoss AS/EAP Servers

‘ Information Methods

measurements Displays a pretty-print list of the available metrics,
current values, and description of all measurements
for the JBoss resource.

operations Lists the available operations for the resource type.
‘ Shortcut Metric Methods
JVMFreeMemory JVMMaxMemory JVMTotalMemory activeThreadCount
activeThreadGroupCoun buildDate createdDate description
t
modifiedDate startDate totalTransactions totalTransactionsperMinu
te
transactionsCommitted transactionsCommittedp transactionsRolledback transactionsRolledbackp
erMinute erMinute
partitionName versionName version
‘ Shortcut Resource Entry Methods
id (inventory ID number) resourceType name (inventory name)

64

9. Reference: Methods Specific to the JBoss ON CLI

‘ Shortcut Operation Methods

restart shutdown start
‘ Shortcut Configuration Methods
editPluginConfiguration() pluginConfiguration

pluginConfigurationDefinition

‘ Shortcut Content Methods

contentTypes

‘ Shortcut Inventory Methods

children

‘ Method Signature

jbossas.getChild

ResourceClientProxy
getChild(String)

jbossas.getMeasurement
Measurement getMeasurement(String)

jbossas.updatePluginConfiguration

PluginConfigurationUpdate
updatePluginConfiguration(Configura
tion)

jbossas.toString
String toString()

Table 6. Proxy Methods for Content Sources (EARs, WARs, JARS)

‘ Information Methods

measurements Displays a pretty-print list of the available metrics,
current values, and description of all measurements
for the content resource.

operations Lists the available operations for the resource type.
[Storcuvicvonods
createdDate modifiedDate description
path version exploded
[Shorcut Resource EnyMethots
id (inventory ID number) resourceType name (inventory name)
[Storcutoperationwethoss
revert
[StorutConfguraion etnods
editPluginConfiguration() pluginConfiguration

pluginConfigurationDefinition

‘ Shortcut Content Methods

contentTypes backingContent

65

Running JBoss ON Command-Line Scripts

Shortcut Inventory Methods

children

Method Signature

content.getChild

ResourceClientProxy
getChild(String)

content.getMeasurement
Measurement getMeasurement(String)

content.updatePluginConfiguration

PluginConfigurationUpdate
updatePluginConfiguration(Configura
tion)

content.toString
String toString()

content.retrieveBackingContent

retrieveBackingContent (String
fileName)

content.updateBackingContent

updateBackingContent (String
filename, String displayVersion)

	Table of Contents
	1. Document Information
	1.1. Document History

	2. Using the JBoss ON CLI to Script Tasks
	2.1. About the JBoss ON CLI
	2.2. More Java Resources

	3. Installing the JBoss ON Command-Line Tool
	4. Running the JBoss ON CLI
	4.1. JBoss ON CLI Options
	4.2. JBoss ON CLI Commands
	4.2.1. login
	4.2.2. logout
	4.2.3. quit
	4.2.4. exec
	4.2.5. record

	4.3. Available Implicit Variables in the JBoss ON API
	4.4. Passing Script Arguments in the JBoss ON CLI
	4.5. Configuring Criteria-Based Searching
	4.5.1. Setting Basic Search Criteria
	4.5.2. Using Sorting
	4.5.3. Using Filtering
	4.5.4. Fetching Associations

	4.6. Displaying Output
	4.6.1. TabularWriter
	4.6.2. Exporter

	4.7. Simple CLI Examples
	4.8. Using Resource Proxies

	5. Simple Example: Scripts to Manage Inventory
	5.1. Automatically Import New Resources: autoimport.js
	5.2. Simple Inventory Count: inventoryCount.js
	5.3. Uninventory a Resource After an Alert: uninventory.js
	5.4. JNDI Lookups for a JBoss AS 5 Server After an Alert: jndi.js

	6. Example: Scripting Resource Deployments
	6.1. Scripting JBoss AS 4 Deployments
	6.2. Scripting JBoss AS 5 Deployments

	7. Example: Managing Grouped Servers
	7.1. The Plan for the Scripts
	7.2. Creating the Wrapper Script and .conf File
	7.3. Defining Arguments and Other Parameters for the CLI Scripts
	7.4. Creating a Group: group.js
	7.5. Adding Resources to a Group: addMember.js
	7.6. Getting Inventory and Status Information: status.js
	7.7. Starting, Stopping, and Restarting the Server: restart.js
	7.8. Deploying Applications to the Group Members: deploy.js
	7.9. Scheduling an Operation: ops.js
	7.10. Gathering Metric Data of Managed Servers: metrics.js

	8. Example: Writing a Custom Java Client
	8.1. Getting the API
	8.2. Example Custom Java Client
	8.2.1. Sample Java Class Using the JBoss ON API
	8.2.2. Sample LDAP Script

	9. Reference: Methods Specific to the JBoss ON CLI
	9.1. Methods Available to the CLI and Server Scripts
	9.1.1. Assert
	9.1.2. Subject
	9.1.3. pretty
	9.1.4. unlimitedPC and pageControl
	9.1.5. exporter
	9.1.6. ProxyFactory
	9.1.7. scriptUtil

	9.2. Methods Available to Proxy Resources

