
Ella Deon Lackey

JBoss Operations Network 3.0
Managing Resource
Configuration

for editing resource settings and configuration through the JBoss
ON UI
Edition 3.0.1

JBoss Operations Network 3.0 Managing Resource Configuration

for editing resource settings and configuration through the JBoss
ON UI
Edition 3.0.1

Ella Deon Lackey
dlackey@redhat.com

Legal Notice
Copyright © 2011 Red Hat, Inc..

This document is licensed by Red Hat under the Creative Commons Attribution-
ShareAlike 3.0 Unported License. If you distribute this document, or a modified version
of it, you must provide attribution to Red Hat, Inc. and provide a link to the original. If
the document is modified, all Red Hat trademarks must be removed.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to
assert, Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the
Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other
countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the
United States and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European
Union and other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally
related to or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered
trademarks/service marks or trademarks/service marks of the OpenStack Foundation, in
the United States and other countries and are used with the OpenStack Foundation's
permission. We are not affiliated with, endorsed or sponsored by the OpenStack
Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract
JBoss Operations Network can view and edit configuration files and settings for many
types of managed resources. This allows administrators to review, audit, and initiate
changes across multiple platforms and resources consistently. This guide provides GUI-
based procedures to manage resource configuration.

http://creativecommons.org/licenses/by-sa/3.0/

. .

. .

. .

. .

. .

. .

Table of Contents
1. Summary: Using JBoss ON to Make Changes in Resource Configuration

1.1. Easy, Structured Configuration
1.2. Identifying What Configuration Properties Can Be Changed
1.3. Auditing and Reverting Resource Configuration Changes
1.4. Tracking Configuration Drift

2. Changing the Configuration for a Resource
2.1. Changing the Configuration on a Single Resource
2.2. Changing the Configuration for a Compatible Group
2.3. Editing Script Environment Variables
2.4. Configuring Apache for Configuration Management

3. Tracking Resource Configuration Changes
3.1. Tracking and Comparing Configuration Changes
3.2. Reverting Configuration Changes

4. Managing Configuration Drift
4.1. Understanding Drift
4.2. Adding a Drift Definition for a Resource
4.3. Creating a Drift Definition Template
4.4. Editing Drift Definitions
4.5. Viewing Snapshots and Changes
4.6. Pinning Snapshots and Managing Compliance
4.7. Extended Example: Defining Required EAP Configuration
4.8. Defining Drift Alerts
4.9. Extended Example: Reverting a JBoss Server to Its Original Configuration Using Bundles and
Server Scripts
4.10. Running Drift Detection Manually
4.11. Setting Planned Changes or Disabling Drift Definitions
4.12. Understanding Drift and JBoss ON Agents and Servers
4.13. Managing Drift Definitions through the JBoss ON CLI

5. Document Information
5.1. Document History

Index

2
2
4
4
4

6
6
7
9

10

11
11
13

14
14
20
26
31
31
38
43
44

48
58
58
59
60

60
60

61

Table of Contents

1

1. Summary: Using JBoss ON to Make Changes in Resource
Configuration

One of the most basic parts of managing your applications, servers, and services is the simple
ability to change their configuration.

JBoss Operations Network allows you to view the current configuration for many resource types
directly in the JBoss ON UI, without having to access the platform's filesystem directly. Even
more, JBoss ON allows you to edit the configuration directly for a single resource or for an
entire group of compatible resources.

JBoss ON has three key ways that administrators can manage resource configuration:

Directly edit resource configuration. JBoss ON can edit the configuration files of a variety of
different managed resources through the JBoss ON UI.

Audit and revert resource configuration changes. For the specific configuration files that
JBoss ON manages for supported resources, you can view individual changes to the
configuration properties and revert them to any previous version.

Define and monitor configuration drift. System configuration is a much more holistic entity
than specific configuration properties in specific configuration files. Multiple files for an
application or even an entire platform work together to create an optimum configuration.
Drift is the (natural and inevitable) deviation from that optimal configuration. Drift
management allows you to define what the baseline, desired configuration is and then
tracks all changes from that baseline.

This section has a very general overview of these three ways of managing resource
configuration. More detailed descriptions and procedures are in the subsequent sections.

1.1. Easy, Structured Configuration

Basic configuration files use simple key-value pairs to define information.

key1 = value1
key2 value2

These are simple properties, representing strings, numbers, or booleans — any type of
information where there is one value per key.

JBoss ON also supports resource configuration using complex properties, which may be a list of
values or a map of values (essentially a table of lists).

<default-configuration>
 <ci:list-property name="my-list">
 <c:simple-property name="element" type="string"/>
 <ci:values>
 <ci:simple-value value="a"/>
 <ci:simple-value value="b"/>
 <ci:simple-value value="c"/>
 </ci:values>
 </ci:list-property>
</default-configuration>

Managing Resource Configuration

2

JBoss ON parses the configuration files — both simple properties and complex properties — and
then renders a structured, easy-to-follow form in the JBoss ON GUI. Simple properties are
displayed with fields or radio buttons as appropriate, while complex properties are displayed
with menus or other selection options.

Figure 1. Configuration Form for a Samba Server

The structured configuration form makes it easy for you to view the current configuration
quickly.

The structured form also makes it possible for JBoss ON to validate that the configuration
properties have valid formats before saving changes.

Note

JBoss ON only validates that the given value matches the required format for that
property. It does not validate that the value given is reasonable or allowed for that
resource property.

Performing configuration changes in JBoss ON has major benefits for IT administrators:

There is instant validation on the format of properties that are set through the UI.

Audit trails for all configuration changes can be viewed in the resource history for both
external and JBoss ON-initiated configuration changes.

Configuration changes can be reverted to a previous stable state if an error occurs.

1. Summary: Using JBoss ON to Make Changes in Resource Configuration

3

Configuration changes can be made to groups of resource of the same type, so multiple
resources (even on different machines) can be changed simultaneously.

Alerts can be used in conjunction with configuration changes, either simply to send
automatic announcements of any configuration changes or to initiate operations or scripts
on related resources as configuration changes are made.

Access control rules are in effect for configuration changes, so JBoss ON users can be
prevented from viewing or initiating changes on certain resources.

1.2. Identifying What Configuration Properties Can Be Changed

JBoss ON supports configuration change for an extensive array of resources — including hosts
and sudoers files, Samba servers, Postfix servers, databases, web app contexts, cron tabs, web
servers, and scripts.

Any resource which supports configuration changes through JBoss ON has a Configuration tab
on its resource page.

Figure 2. Configuration Tab

For a complete reference of the configuration properties for each resource, see the Resource
Reference: Monitoring, Operation, and Configuration Options.

1.3. Auditing and Reverting Resource Configuration Changes

Tracking for configuration changes is a crucial part of systems administration. It's important for
maintenance, for performance, and for incident recovery — particularly when it is possible to
revert change or correlate changes to incidents.

Every time a change is made to the resource configuration, whether through JBoss ON GUI or
on the resource itself, the change is detected by JBoss ON and logged with a revision number.
When a change is made outside of JBoss ON, the change is simply noted. When the change is
made through the JBoss ON UI, the timestamp and the name of the user who made the change
are both recorded.

Every change is recorded in a history, and the different changesets can be viewed and
compared to one another. One change can be selected and the resource configuration can be
rolled back to that selected change.

Tracking the configuration history and reverting changes is covered more in Section 3.1,
“Tracking and Comparing Configuration Changes” and Section 3.2, “Reverting Configuration
Changes”.

1.4. Tracking Configuration Drift

Managing Resource Configuration

4

Much of the JBoss ON configuration management is designed around implementing changes for
resources by editing configuration files or updating files and packages. But another aspect of
managing configuration is detecting changes.

IT administrators must invest a significant amount of time planning the optimum configuration
for systems in every type of environment, from production systems to internal resources. This
ideal configuration includes file settings, software versions, and system settings. Resource
configuration is going to change naturally over time, but administrators need to be able to
track those changes to make sure that no unplanned or undesirable changes impact the
resource. Defining a baseline configuration and tracking changes helps systems remain
resilient during both maintenance and failures.

The unplanned changes that occur to a resource's configuration is called drift, as the
configuration moves away from the designed baseline. Drift is common because of frequent
software and hardware updates, particularly in a colocation facility or using virtual machines.

Production, staging, development, and recovery configurations are designed to have identical
or near-identical configuration to maintain consistency. As the configurations within the
different environments change, there emerges a configuration gap. Ultimately, this
configuration gap can lead to disaster recovery failures or high availability failures because the
configuration of the production system and the backup system are too different.

Drift monitoring provides a very general, freewheeling content monitoring. Rather than
structured configuration management, drift monitoring tracks changes, any changes, in files —
even binary files.

Note

The configuration history for a resource applies only to the supported configuration
properties for that specific resource instance.

Drift management has a much more external view of configuration changes. Drift is
associated with a resource — like a platform or a JBoss server — but it is not restricted to
that resource or to set properties for that resource:

Drift looks at whole files within a directory, including added and deleted files and
binary files.
Drift supports user-defined templates which can be applied to any resource which
supports drift monitoring.
Drift can keep a running history of changes where each changeset (snapshot) is
compared against the previous set of changes. Alternatively, JBoss ON can compare
each change against a defined baseline snapshot.

The drift definition that is essentially a profile that identifies a directory and files that should be
monitored. Any time there is any change in that drift base directory or any of its subdirectories
— file modifications, new files, or deleted files — the drift detection scan notices the change
and records it.

Drift detection can be used by administrators to track scheduled changes, maintenance and
updates, and server changes. There are a lot of common scenarios where administrators need
to be aware that change has occurred (and even be able to identify the specific changes made),
but that occur in areas outside normal JBoss ON configuration tracking:

System password changes

1. Summary: Using JBoss ON to Make Changes in Resource Configuration

5

System ACL changes

Database and server URL changes

JBoss settings changes

Changed JAR, WAR, and other binary files used by applications

Script changes

Note

Drift is not bound or restricted to a resource managed by JBoss ON. You can create a drift
definition for a platform and set it to monitor any file or directory on that platform, even if
it is outside the JBoss ON inventory, as long as that directory is accessible to the system
user that the JBoss ON agent runs as.

Managing configuration drift is described more in Section 4, “Managing Configuration Drift”.

2. Changing the Configuration for a Resource

2.1. Changing the Configuration on a Single Resource

1. Click the Inventory tab in the top menu.

2. Select the resource type in the Resources menu table on the left, and then browse or
search for the resource.

3. Open the Configuration tab for the resource.

4. Click the Current subtab.

5. To edit a field, make sure the Unset checkbox is not selected. The Unset checkbox
means that JBoss ON won't submit any values for that resource and any values are
taken from the resource itself.

Managing Resource Configuration

6

Then, make any changes to the configuration.

The list of available configuration properties, and their descriptions, are listed for each
resource type in the Resource Reference: Monitoring, Operation, and Configuration
Options.

6. Click the Save button at the top of the properties list.

2.2. Changing the Configuration for a Compatible Group

Similar to other templating functions in JBoss ON, like alert templates, configuration changes
can be made on a compatible or autogroup, so that all of the members of that group can be up
updated simultaneously with the same settings.

Note

To change the current configuration for a group, a few conditions must be true so that
the current group configuration can be reliably calculated for the individual resource
configurations:

The group members must all be the same resource type.
All group member resources must be available (UP).
No other configuration update requests can be in progress for the group or any of its
member resources.
The current member configurations must be successfully retrieved from the agents.

The process for setting the configuration for a group is the same as setting it for an individual
resource:

1. Click the Inventory tab in the top menu.

2. In the Groups box in the left menu, select the Compatible Group link.

2. Changing the Configuration for a Resource

7

3. Select the group to edit.

4. Open the Configuration tab.

5. Click the Current subtab.

6. To edit a field, make sure the Unset checkbox is not selected. The Unset checkbox
means that JBoss ON won't submit any values for that resource and any values are
taken from the resource itself.

Then, make any changes to the configuration.

The list of available configuration properties, and their descriptions, are listed for each
resource type in the Resource Reference: Monitoring, Operation, and Configuration
Options.

Note

It is possible to change the configuration for all members by editing the form
directly, but it is also possible to change the configuration for a subset of the
group members. Click the green pencil icon, and then change the configuration
settings for the members individually.

7. Click the Save button at the top of the form.

Managing Resource Configuration

8

2.3. Editing Script Environment Variables

Scripts are autodetected on a server, as are other applications and services on the machine.
Scripts can be configured and managed like any other resource, which means that JBoss ON
allows you to both define configuration settings for and set up operations to run the scripts in
inventory.

Whether a script is added or detected, there are only two configuration areas for the inventory
entry: the path to the script, which places the script within the hierarchy, and any environment
variables that should be set with the script.

These environment variables can be added and edited even after the script is imported:

Important

Before setting environment variables in the JBoss ON configuration, make sure that the
environment on the resource is already configured properly.

1. Click the Inventory tab in the top menu.

2. Search for the script resource.

3. Open the Configuration tab for the script resource.

4. Click the green plus sign (+) to add an environment variable.

5. Enter the environment variable. Each new environment variable has the format
name=value; and is added on a new line.

If the variable's value contains properties with the syntax %propertyName%, then JBoss

2. Changing the Configuration for a Resource

9

ON interprets the value as the current values of the corresponding properties from the
script's parent resource's connection properties.

6. After resetting an environment variable, restart the JBoss ON agent to propagate the
changes. If the agent isn't restarted, new variables will not be propagated to the
resource and will not resolve when the script is next executed, even if the configuration
is correct.

Note

Add the line @echo off in Windows scripts to prevent echoing the executed commands
along with the execution results.

2.4. Configuring Apache for Configuration Management

JBoss ON manages configuration on Apache resources using an Augeas lens. A special version of
Augeas is included with the JBoss ON agent which enables Apache configuration management.
However, Augeas must also be enabled on the Apache server.

Note

Apache configuration is only supported for Apache instances installed on Linux.

1. Click the Inventory tab in the top menu.

2. Select the resource type in the Resources menu table on the left, and then search for
the Apache resource.

3. Click the IP address of the Apache instance.

4. Open the Inventory tab, then click the Connections subtab.

Managing Resource Configuration

10

5. Jump to the Augeas Configuration section.

6. Select the Yes radio button to enable the Augeas lens.

3. Tracking Resource Configuration Changes

The revision numbers are global number across the JBoss ON server. For example, if Resource A
is edited, then it gets revision #1. Then, when Resource B is edited, it gets revision #2, and the
next edit gets #3.

Note

A user may have the right to edit or revert configuration, but that does not mean that
the user has the right to delete an item from the configuration history.

Deleting elements in the history requires the manage inventory permission.

3.1. Tracking and Comparing Configuration Changes

1. Click the Inventory tab in the top menu.

2. Select the resource type in the Resources menu table on the left, and then browse or
search for the resource.

3. Tracking Resource Configuration Changes

11

3. Open the Configuration tab for the resource.

4. Click the History subtab.

5. Select the line of the configuration version to view or compare. Use the Ctrl key to
select multiple versions. The current (most recent successful) configuration state is
marked by a green check mark.

6. Click the Compare button.

7. The pop-up window shows all of the changes in a directory-style layout, with each of the
configuration areas as a high-level directory. Any changes are marked in red, and the
values are shown for each selected version.

Managing Resource Configuration

12

3.2. Reverting Configuration Changes

1. Click the Inventory tab in the top menu.

2. Select the resource type in the Resources menu table on the left, and then browse or
search for the resource.

3. Open the Configuration tab for the resource.

4. Click the History subtab.

5. Select the line of the configuration version to roll back to. The current (most recent
successful) configuration state is marked by a green check mark.

3. Tracking Resource Configuration Changes

13

6. Click the Rollback button.

4. Managing Configuration Drift

Much of the JBoss ON configuration management is designed around implementing changes for
resources by editing configuration files or updating files and packages. But another aspect of
managing configuration is detecting changes.

IT administrators must invest a significant amount of time planning the optimum configuration
for systems in every type of environment, from production systems to internal resources. This
ideal configuration includes file settings, software versions, and system settings. Resource
configuration is going to change naturally over time, but administrators need to be able to
track those changes to make sure that no unplanned or undesirable changes impact the
resource. Defining a baseline configuration and tracking changes helps systems remain
resilient during both maintenance and failures.

The unplanned changes that occur to a resource's configuration is called drift, as the
configuration moves away from the designed baseline. Drift is common because of frequent
software and hardware updates, particularly in a colocation facility or using virtual machines.

Production, staging, development, and recovery configurations are designed to have identical
or near-identical configuration to maintain consistency. As the configurations within the
different environments change, there emerges a configuration gap. Ultimately, this
configuration gap can lead to disaster recovery failures or high availability failures because the
configuration of the production system and the backup system are too different.

Drift monitoring provides a very general, freewheeling content-based monitoring. Rather than
structured configuration management, drift monitoring tracks changes to content on the local
filesystem. This means any changes in any files — even binary files .

4.1. Understanding Drift

Of course, drift monitoring isn't as simple as checking for changes. One of the core questions is
what changes matter? There are two conceptual parts to that question:

[1]

Managing Resource Configuration

14

What directories (and files within those directories) matter for drift monitoring? Even though
a drift definition is defined for a resource, the actual drift detection is performed at the
directory level. Drift monitoring, then, can hit anywhere on a platform — even outside
resources managed by JBoss ON.

How do you identify a change? Do you compare it to the version immediately before it or to
an established baseline?

Once you identify what changes you want to monitor for drift, then you can use JBoss ON to set
up monitoring and alerting effectively.

4.1.1. Drift Definitions and Detection

The first part of drift detection is identifying what you are monitoring.

JBoss ON defines a drift definition that sets the target location for drift monitoring. The target
can be identified from some configuration element for the resource — it can be a directory or
file on the filesystem, a resource configuration property, a resource plug-in parameter, or a
monitoring trait. This target is the base directory. The trait type is the value context, while the
actual value is the value name. For example, for a base directory of /etc/ that only includes
changes to *.conf files, the elements in the drift definition are:

Value context: fileSystem
Value name: /etc
Includes: **/*.conf

Note

Drift detection is performed at the filesystem level. This means that drift detection is not
bound or restricted to a resource managed by JBoss ON. You can create a drift definition
for a platform and set it to monitor any file or directory on that platform, even if it is
outside the JBoss ON inventory, as long as that directory is accessible to the system user
that the JBoss ON agent runs as.

By default, every subdirectory and file underneath the base directory is monitored for drift. The
includes/excludes options define subdirectories or files that are explicitly included or explicitly
excluded from drift monitoring. If includes is used, then only the specified directories or files
are monitored and everything else is implicitly excluded, and vice versa for excludes.
Included/excluded directories and files are identified by a path and a pattern. The path is the
starting point beneath the base directory, and the pattern matches the file to monitor.

Table 1. Combinations to Include Specific Files

Files to Monitor for Drift 'Includes' Path 'Includes' Pattern
/etc and all its subdirectories Blank Blank
For *.conf files in /etc and all
subdirectories

. **/*.conf

For *.conf files only in the
/etc directory, with no
subdirectories (/etc/*.conf)

. *.conf

For *.conf files only in a
subdirectory one level below
/etc (/etc/*/*.conf)

Not possible Not possible

[a]

4. Managing Configuration Drift

15

For any file in a specific
subdirectory (yum.repos.d/)
below /etc

yum.repos.d (subdirectory
name)

Blank
Files to Monitor for Drift 'Includes' Path 'Includes' Pattern

The drift definition also sets an interval, or frequency, for how often the agent checks for drift.
This is a very important setting for performance, both for JBoss ON and for data management.
Setting a frequency that is too high risks missing changes or lumping changes together into
large (and therefore difficult to manage) snapshots. However, setting the interval too low can
impact JBoss ON agent and server performance.

The key thing about the drift definition is that it sets what to look at and how often
to look.

Note

All drift detection runs are performed outside the agent plug-in and independent of the
resource state. A drift detection scan can be run even if the resource is not running.

4.1.2. Snapshots, Deltas, and Baseline Images

The second part of drift detection is identifying how you want to define a change. Change is
comparative. It takes the current version of a file and compares it to some previous version.
The question for drift management is what previous version to compare to.

When a drift definition is first created, the agent collects all of the files in that base directory
and subdirectories and sends information about them to the server. This collection is the initial
file set.

From that point onward, the agent only sends change information about the files. Each set of
changes is a snapshot. For text files, the change information includes the content of the file and
diffs (both constructed on the JBoss ON server based on patches sent by the agent). For binary
files, drift only records that the file change and displays a SHA and timestamp. A snapshot is
always based on real files from a real resource.

Note

The agent does not send the actual files to the JBoss ON server. The agent sends
information about file changes back to the server. These updates only contain the deltas
between versions; they're not full files. This minimizes the network I/O.

The actual diffs are generated on the server from the content that the server stores.

The way that a snapshot is created is by comparing the current files against the agent's
version. There are two ways that this comparison can be made:

It can compare against the next-most recent version of the files.

It can compare against a defined, stable baseline.

[a] This must have a double asterisk for the directory part. It will not work with a single asterisk.

Managing Resource Configuration

16

The first option is a rolling snapshot. This is the simplest setting, because it just keeps a running
tally of changes.

Figure 3. Rolling Snapshots

The second option is a pinned snapshot, and this is the method that gives administrators the
most insight and control over drift. A pinned snapshot means that some image of the base
directory has the optimal, approved configuration and this snapshot is selected as the baseline.
It is in essence pinned in place, and every subsequent change is compared against that pinned
snapshot, rather than being compared against each other.

4. Managing Configuration Drift

17

Figure 4. Pinned Snapshots

Snapshots exist at the resource-level, because they are based on the real files that exist on a
system. When a snapshot is pinned to a resource-level definition, then any changes made on
that system are compared to that snapshot. When the current file version matches the pinned
snapshot, the resource is compliant.

A snapshot for a resource can also be pinned to a drift template — then, it is applied to every
definition attached to that template. This is really powerful for administrators. For example, you
can use a staging or development server to create the best system configuration for EAP
performance, and then apply that EAP baseline snapshot to every EAP server in the production
environment by pinning it to a drift template. You can see immediately all the EAP configuration
relative to your defined ideal.

4.1.3. Destination Directories with Special File Types

Drift looks at both files and directories on the local system to generate snapshots and identify
changes. The majority of these files and directories are going to be real files, but Unix does
have some special file types, and the drift operation may encounter those files as part of
processing the destination directory. There are some behavior implications, particularly with

Managing Resource Configuration

18

symbolic links and named pipes.

With symbolic links, drift detection follows any links back to the original file or directory, and
includes those files in the snapshot. For example, if a symlink is set up for some library:

ln -ls /home/dev/libs /usr/share/jbossas/server/libs

If drift is configured on the libs/ directory in the JBoss AS home directory, it will follow the
symlink back to /home/dev/libs, and include all of those files in the drift snapshot.

Important

Be careful when configuring drift against a directory which contains symlinks. All of the
linked files will be included as part of the drift target.

If the linked directory has a large number of files, then drift detection runs may take
longer than expected. Additionally, changes in that symlinked directory may have an
unexpected impact on drift detection by recording many changes as drift when they
weren't intended to be.

If you do not want to include the symlinked directory in the drift definition, use the
excludes parameter in the drift definition to exclude the symlink.

The other special file type that is common on Unix systems is a pipe. As with a symlink, drift
detection runs can detect a fifo file within the target directory. However, unlike symlinks, drift
cannot process the fifo file, which causes drift detection to hang.

Note

Use the excludes parameter in the drift definition to exclude any named pipes in the
target directory.

Table 2. Drift Definitions and Unix File Types

File Type Supported by Drift?
File Yes
Directory Yes
Symbolic link Yes
Pipe No
Socket No
Device No

4.1.4. Drift and Resource Types

Whether drift is supported is defined in the resource type (which is discussed in Section 4.3.1,
“About Resources and Drift Definition Templates”). If a drift template is defined in the resource
type's rhq-plugin.xml descriptor, then that resource type supports drift. The template is a
starting point (not an enforced configuration, like alert or metric collection templates).

Three JBoss ON standard resource types support drift:

4. Managing Configuration Drift

19

All platforms

JBoss AS/EAP 4

JBoss AS/EAP 5, and all resources which use the JBoss AS 5 plug-in

Because drift support is defined in the plug-in descriptor, custom plug-ins can be created that
add drift support for those resource types. For examples of writing agent plug-ins with drift
support, see "Writing Custom JBoss ON Plug-ins."

Note

Drift is not supported on embedded web applications, such as an embedded WAR under
an EAR application.

Drift detection is performed at the directory level. It is not tied to a specific resource. This
means that drift detection can be run even when a resource is not running. It also means that
drift detection can occur for an application, service, or file that is not managed by JBoss ON or
for a resource type that does not otherwise support drift.

To monitor an entity outside the three supported resources, just configure drift detection on the
platform resource and define the base directory as whatever directory path is used by the
application or service you want to monitor.

4.1.5. Back to Drift Monitoring

The goal of setting up drift detection is to provide clarity into how systems and application
servers are being modified. JBoss ON provides two ways to manage drift.

Drift Monitoring

Drift monitoring is the ability to track changes to target locations. The JBoss ON GUI allows you
to view snapshots all together, compare changes for individual files between snapshots, view
the current configuration, and view change details. It also provides inventory and drift reports
and indicates, at a glance, whether a resource is compliant with an associated pinned
snapshot.

Drift Alerting

A specific alert condition exists that will trigger an alert whenever there is drift. For rolling
snapshots, this will send an alert once (and only once) for each drift snapshot. For pinned
snapshots, the drift alert is fired for every detection run for as long as the resource is out of
compliance, even if there are no subsequent changes.

Note

There is no direct way to remedy drift through the JBoss ON GUI. However, it is possible
to launch a JBoss ON CLI script in response to a drift alert. For example, you can create a
patch of your ideal EAP configuration. If an EAP server drifts from that configuration, then
you can use a JBoss ON CLI script to deploy that EAP patch bundle to the drifting EAP
server.

4.2. Adding a Drift Definition for a Resource

Managing Resource Configuration

20

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Operations_Network/3.0/html/Writing_Custom_Plug-ins/agent-plugins.html#drift-example

4.2. Adding a Drift Definition for a Resource

Important

The directories where drift detection is being run cannot be changed after the definition is
created. Be careful to get the base directory and the included and excluded files properly
configured before saving.

1. Click the Inventory tab in the top menu.

2. Select the resource type in the Resources menu table on the left, and then browse or
search for the resource.

3. Open the Drift tab for the resource.

4. Click the New at the bottom to add a new definition.

5. Select the template to use to as the basis for the new definition.

Plug-in defined templates are defined in the platform and JBoss server resources, as well
as any other resource which supports drift monitoring. Additional, user-defined
templates can be also be created and applied.

4. Managing Configuration Drift

21

6. Give a unique name to the definition. The name and the base directory are combined to
identify the definition within JBoss ON.

Managing Resource Configuration

22

7. Define the settings for the definition, like the interval and whether it is associated with
the template. The properties are listed in Table 3, “Drift Definition Properties”.

8. Set the base directory. This is the top-most directory where drift detection is run for the
definition, and the scan recurses down.

The template itself defines an initial directory, but it may be useful to set a more specific
directory to use.

4. Managing Configuration Drift

23

9. Click the button with the green plus (+) sign to add a subdirectory to include or exclude.
The directory can be the base directory by specifying a period (.) as the directory. The
pattern identifies which files within the directory to recognize by the service, either to
explicitly include or explicitly exclude.

The filters support Ant-like FilePatterns, using a path and pattern. The patterns support
asterisks (*) as wildcards for any number of characters and question marks (?) for single
character wild cards. For example, **/*.conf can be used to include only .conf files in
any subdirectory.

There can be multiple include/exclude filters. Each directory and pattern can be added
separately.

Note

If a pattern is used, then a path must be specified, even if the path is the base
directory. For example, to include only .conf files in the base directory, the
pattern is *.conf and the path is a period (.) to indicate the local directory.

Table 3. Drift Definition Properties

Property Description

Managing Resource Configuration

24

Name A name for the drift detection definition. The
name and the base directory, together,
uniquely identify the definition.

Base Directory: Value Context The type of configuration property which is
used to identify the base directory. This
identifies what type of element in the
resource supplies the value. There are four
options:

File system, which is simply an absolute
directory path on the resource. This
directory must exist for drift to work.
Resource configuration, which is a
configuration property defined for the
resource.
Trait, which is one of the monitored traits
for that resource.
Plug-in configuration property, which is a
property defined in the resource plug-in.

Base Directory: Value Name The actual value for the drift detection
definition to use for the base directory
context. For example, if this is a file system
context, then the value name is the directory
path.

Includes Explicitly includes directories, files, or files
and directories matching a pattern, relative
to the base directory, in the drift detection.
The filters support Ant-like FilePatterns, using
a path and pattern. The patterns support
asterisks (*) as wildcards for any number of
characters and question marks (?) for single
character wild cards.

If a pattern is used, then a path must be
specified, even if the path is the base
directory. For example, to include only .conf
files in the base directory, the pattern is
*.conf and the path is a period (.) to indicate
the local directory.

Property Description

4. Managing Configuration Drift

25

Excludes Explicitly excludes directories, files, or files
and directories matching a pattern, relative
to the base directory, from the drift detection.
The filters support Ant-like FilePatterns, using
a path and pattern. The patterns support
asterisks (*) as wildcards for any number of
characters and question marks (?) for single
character wild cards.

If a pattern is used, then a path must be
specified, even if the path is the base
directory. For example, to include only .conf
files in the base directory, the pattern is
*.conf and the path is a period (.) to indicate
the local directory.

Enabled Enables or disables the definition. Disabling a
definition means that no detection scans are
run.

Interval Sets the frequency, in seconds, where the
definition is eligible for a detection run. This is
not a hard setting. Because load or other
scheduled operations for the agent, the
detection run is not guaranteed to run at the
specified interval.

Pinned Sets whether drift is determined in a rolling
way or if it is associated (pinned) with a
baseline snapshot. If this is set when the
definition is created, then the initial snapshot
is used as the baseline. Definitions attached
to a pinned template cannot be unpinned.
Definitions which are attached to an
unpinned template or which are not attached
to a template can be pinned or unpinned
freely.

Drift Handling Mode Sets whether drift changes are treated as
events which trigger an alert (the default) or
as expected, so that no alerts are triggered.

Attached to Template Sets whether the resource-level definition is
subordinate to a template. If it is attached to
a template, then any changes to the
template are reflected in the resource
definition, including if the template is deleted.
By default, definitions are attached to the
template from which they are created.

Description A simple text description of the definition.

Property Description

4.3. Creating a Drift Definition Template

Every time a new drift definition is created, it is based on an existing template for the resource
type. At least one template is defined for resource types (by default, platforms and JBoss
application servers) in their resource plug-in. Additional templates can be created by users.

Managing Resource Configuration

26

4.3.1. About Resources and Drift Definition Templates

Resources of the same type frequently need to have the same, or similar, configuration
settings. Particularly for an area like configuration drift, consistency is crucial for accurate and
timely IT maintenance. JBoss ON allows this consistency using drift definition templates. Much
like alert and monitoring templates, drift definition templates are defined for a resource type
(regardless of whether any resources of that type actually exist) and can then be applied to
specific resources in the inventory.

Drift templates are a little different than other template types in JBoss ON. First, a drift
definition template is exactly that — it is an outline of default settings and values to use when
creating a resource-level drift definition. It is not automatically applied to resources.

Additionally, there are two types of drift templates: plug-in defined templates and user-defined
templates.

At least one drift definition template is actually defined as part of the plug-in for a resource
type. Defining a template in the plug-in descriptor is what indicates that a resource type
supports drift monitoring. These are plug-in defined templates; these are the default templates.

Having a plug-in defined template is the way that the JBoss ON agent recognizes that a
particular resource type supports drift monitoring. So, the plug-in defined template has a dual
purpose. It lets JBoss ON know what resource types support drift, and it gives basic input to
help administrators start making their own drift definitions.

Example 1. A JBoss Server Drift Definition Template

<drift-definition name="Template-Base Files"
 description="Monitor base application server files for
drift. It defines monitoring for some standard sub-directories of the HOME
directory. Note, it is not recommeded to monitor all files for an
application server. There are many files, and many temp files.">
 <basedir>
 <value-context>pluginConfiguration</value-context>
 <value-name>homeDir</value-name>
 </basedir>
 <includes>
 <include path="bin" />
 <include path="lib" />
 <include path="client" />
 </includes>
</drift-definition>

New drift definition templates can be added by administrators, in addition to the plug-in defined
template; these are user-defined templates. These templates can reflect the unique
infrastructure and application environment.

A resource-level drift definition is always based on a drift template, which provides some
default values to the definition during creation. That template can be plug-in defined or user-
defined. Resource-level drift definitions do not have to be attached to a template, so they do
not have to be changed every time the template changes, but they are always based on an
existing template.

There are some things to remember about drift definition templates:

Drift templates are not automatically applied to a resource, unlike other template types in

4. Managing Configuration Drift

27

JBoss ON. Drift templates are used as the basis for creating resource-level definitions.

Default drift templates are defined for resources as part of their plug-in descriptor. Custom,
user-defined templates can be added along with those defaults.

Every drift definition is based on a template initially, even if that definition is not attached to
that template post-creation.

Snapshots (the file sets associated with drift definitions) always originate on a resource with
a drift definition first. For any content to be associate with a template, the resource-level
snapshot has to be promoted up to the template. Drift templates do not generate snapshots
or files and then push that down to the resource.

4.3.2. Creating a Drift Definition Template

A drift template creation form is almost identical to a resource-level drift definition, with two
exceptions: it cannot be pinned to a snapshot at the time it is created and it cannot be
associated with another template. Obviously, a template is not dependent on another template
(even though it is created from another template.) Being unable to pin a template to a snapshot
is also logical; when a template is created, it is not associated with any resources. So, it is not
possible to generate snapshots, which means that there is nothing to pin the template to.

1. Click the Administration tab in the top menu.

2. Select the Drift Definition Templates menu table on the left.

3. Click the pencil icon for the resource type to add the template to. Not all resources
support drift, so they cannot be selected.

Managing Resource Configuration

28

4. Click the New at the bottom to add a new template.

5. Select the template to use to as the basis for the new template.

Plug-in defined templates are defined in the platform and JBoss server resources, as well
as any other resource which supports drift monitoring. Additional, user-defined
templates can be also be created and applied.

6. Give a unique name to the template. The name and the base directory are combined to
identify the definition within JBoss ON.

4. Managing Configuration Drift

29

7. Define the settings for the definition, like the interval and whether it is enabled by
default. The properties are listed in Table 3, “Drift Definition Properties”.

8. Set the base directory. This is the top-most directory where drift detection is run for the
definition, and the scan recurses down.

9. Click the button with the green plus (+) sign to add a subdirectory to include or exclude.
The directory can be the base directory by specifying a period (.) as the directory. The
pattern identifies which files within the directory to recognize by the service, either to
explicitly include or explicitly exclude.

The filters support Ant-like FilePatterns, using a path and pattern. The patterns support
asterisks (*) as wildcards for any number of characters and question marks (?) for single
character wild cards. For example, **/*.conf can be used to include only .conf files in
any subdirectory.

Managing Resource Configuration

30

Note

If a pattern is used, then a path must be specified, even if the path is the base
directory. For example, to include only .conf files in the base directory, the
pattern is *.conf and the path is a period (.) to indicate the local directory.

4.4. Editing Drift Definitions

Most entries in JBoss ON are edited by clicking their name or double-clicking their row in a list.
However, for drift definitions, clicking the name or double-clicking the row opens up the list of
snapshots for that definition — not the definition entry itself.

To edit a drift detection definition, click the pencil icon.

4.5. Viewing Snapshots and Changes

Note

The initial snapshot is snapshot 0. The snapshots in the carousel begin at version 1 —
meaning it begins at the first change, not the initial file set.

If a snapshot is pinned, so that it is set as a baseline, then it is not displayed in the
carousel because it is snapshot 0. However, it can be viewed by clicking the pinned icon
in the definition list.

4.5.1. Viewing the Snapshot Carousel

4. Managing Configuration Drift

31

Snapshots for a drift definition are displayed in a horizontal stream of windows, starting with
the most recent change. This is colloquially called a carousel, because it is a rotating view of
snapshots.

Figure 5. Viewing Snapshots

To open the carousel:

1. Click the Inventory tab in the top menu.

2. Search for the resource.

3. Click the Drift tab for the resource.

4. Click the name of the drift definition.

5. The snapshot carousel shows, by default, the four most recent snapshots.

6. Optionally, filter the snapshots to view. There are two elements that can be used to
search for snapshots:

The change type within the snapshot, whether a file was added, deleted, or modified.

The path of a change within the snapshot. This path filter is a substring filter based
on the paths and files in the drift entries.

There can be slight differences in the way that changes are recorded in snapshots if the
definition is pinned. The most obvious is that if a new file is added, it will show up as a new file
in every subsequent snapshot because it is always compared against the pinned snapshot,
where the file does not exist. Likewise, if a file is deleted, it is listed in every snapshot as
deleted.

4.5.2. Comparing Drift Changes

Managing Resource Configuration

32

Changes are diffed at the file level, not the full snapshot level. Administrators can view the
specific changes made between versions on the selected files.

Note

Only changes for text files can be compared. Drift detection will identify binary files that
have changed and show a timestamp and SHA, but it does not display the binary file
contents or diff changes between versions of a binary file.

1. Click the Inventory tab in the top menu.

2. Search for the resource.

3. Click the Drift tab for the resource.

4. Click the name of the drift definition.

5. Click the names of the files to compare.

6. Click Compare.

The diff uses standard text formatting for displaying file diffs.

4. Managing Configuration Drift

33

Figure 6. Change Set Diffs

4.5.3. Viewing Snapshot Details

1. Click the Inventory tab in the top menu.

2. Search for the resource.

3. Click the Drift tab for the resource.

4. Click the name of the drift definition.

5. In the snapshot carousel, click the magnifying glass by the name of the snapshot to
view.

Managing Resource Configuration

34

6. Expand the directory to show the list of changes for that snapshot.

7. To see the details of a specific change, click the (view) link.

8. The details for that file shows links to display the immediate previous version of the file,
the changed version of the file, and a diff between the two.

4. Managing Configuration Drift

35

When clicking the view link, the page title has the version number along with the file
name. For example, when viewing version 6 of myfile.txt, the title is myfile.txt:6.

4.5.4. Seeing Drift Events in the Timeline

Managing Resource Configuration

36

Whenever drift is detected, it shows up as an event in the events timeline for the resource.

1. Click the Inventory tab in the top menu.

2. Search for the resource.

3. In the Summary tab, click the Timeline subtab.

4. The detection runs where drift was detected show up in the timeline as Drift Detected.
To see only drift events in the timeline, clear all but the Drift checkbox.

The time interval can be reset to adjust the span of the timeline.

4.5.5. Checking Drift Snapshot Reports

The snapshot carousel (Section 4.5.1, “Viewing the Snapshot Carousel”) shows all of the
snapshots for a single drift definition on a single resource. To view a list of all snapshots, for all
definitions across all resources, check the Recent Drift Report.

1. Click the Reports tab in the top navigation menu.

4. Managing Configuration Drift

37

2. Select the Recent Drift report from the Subsystems report list.

3. Every drift instance is listed, sorted by the snapshot creation time.

4. Optionally, filter the list of drift changes. There are four filter options:

The definition name

The snapshot number (which crosses drift definitions)

The change type within the snapshot, whether a file was added, deleted, or modified.

The path of a change within the snapshot. This path can be a directory, a specific file
name, or a search expression.

4.6. Pinning Snapshots and Managing Compliance

As discussed in Section 4.1.2, “Snapshots, Deltas, and Baseline Images”, a specific snapshot,
with its complete current fileset, can be associated or pinned to a drift definition. Pinning a
snapshot creates an entirely new style of drift definition. Rather than simply tracking changes, a
pinned snapshot allows an administrator to establish a clear, blessed configuration for a system
or application. It sets a standard with which the system configuration should comply.

4.6.1. More About Pinning Snapshots

A snapshot is a picture of the actual, current files that are on a specific resource. A snapshot is
a real-world view. In normal drift conditions, each snapshot is compared to the one immediately
before it to show changes. However, it is possible to select a specific snapshot as a fixed
baseline to compare changes against. This is a pinned snapshot.

A drift definition sets the rules for running drift detection, but it does not add or define or
overwrite any files on a resource. A drift definition does not define content or contain a file set.
Content has to be added to a definition (or a definition template). A file set (a snapshot) has to
be manually added to the drift definition, after the snapshot exists. This is pinning. Pinning
takes a real, existing set of files from a snapshot and links it to a drift definition on a resource
or a drift definition template.

Pinning is one method that administrators can use to standardize resource configuration. An
administrator can use a single resource as a test box to get a resource's configuration tuned to
its ideal settings. Then, that file set can be pinned to a template and re-applied to other
resources of the same type. Because the pinned snapshot is based on a real resource,
administrators can be confident that the configuration is realistic and functional.

Pinning a snapshot alters some fundamental behaviors with drift management in JBoss ON:

Managing Resource Configuration

38

It removes any snapshots that were created before that snapshot. For example, if an
administrator decides to pin Snapshot 7, Snapshot 0 (the initial image) through Snapshot 6
are all deleted, and Snapshot 7 becomes the new Snapshot 0.

It creates a baseline image that every change is compared against rather than keeping a
moving tally of changes.

It changes the behavior of drift alerts (Section 4.8, “Defining Drift Alerts”) so that alerts are
sent continually until the system configuration is back in compliance with the pinned
snapshot.

The definition it is pinned to cannot be deleted until the snapshot is unpinned.

If a snapshot is pinned to a template, then all of the resource-level definitions attached to
that template automatically use the pinned snapshot as their baseline.

Any new file added after a snapshot is pinned (or any file deleted) is going to be reported as
a new file in every subsequent snapshot. This is because the new snapshot is always
compared against the baseline snapshot, so the file is always new to the baseline.

There is some logic to prevent drift from reporting the same change incessantly. If
file1.txt is added, the agent creates snapshot 1. When the agent does its next detection
run, it recognizes that file1.txt is not in the baseline, but as long as the SHA for
file1.txt has not changed, the agent does not report it as new drift and does not take a
new snapshot. If file1.txt is modified, however, the agent notices the new SHA and sends
a new snapshot — with the modified file1.txt still listed as a new file, because it is
compared against the baseline, not the previous version.

4.6.2. When to Pin to a Resource and When to Pin to a Template

When a snapshot perfectly matches the configuration that an administrator desires, it can be
associated with a drift definition. That snapshot can be pinned to a resource-level definition or a
definition template, and there are slightly different reasons to do one or the other.

Pinning a snapshot to a resource-level definition establishes a baseline for that resource
alone. This makes sense while you are still developing an ideal baseline image or for unique
environments that may not transition over to other resources.

Pinning to a resource definition allows a lot of flexibility. It is easy to pin and unpin and
select a new snapshot as the baseline, to let administrators develop an ideal configuration
with a minimal impact on drift events, alerting, and monitoring because the changes are
contained.

Pinning a snapshot to a template means that baseline can be applied to every resource that
uses that template; it allows that one single snapshot to be used across multiple resources.
This is makes sense for any kind of repeatable configuration areas and for production or
critical systems which must have consistent configuration.

Pinning to a template is very powerful for maintaining consistency across an entire
infrastructure once an ideal configuration has been developed.

Pinning always takes a snapshot that was created on a specific resource and then promotes it
to be the baseline for that definition. So the question is — why does a resource-level snapshot
need to be pinned to a template? Why can't a template create and use its own snapshot?

The key is to remember that a drift definition template is associated with a resource type. The
template is not defined as part of a specific resource.

4. Managing Configuration Drift

39

For a resource-level drift definition, the very first drift detection run creates an initial snapshot
based on real and existing files. That initial snapshot can be automatically applied as the
baseline, pinned snapshot or any snapshot after the initial can be used as the baseline.

However, a drift definition template (Section 4.3.1, “About Resources and Drift Definition
Templates”) is not associated with a resource. Therefore, templates do not have a real set of
files to work with and it never has its own snapshots to use. The only way that a drift template
can be associated with a snapshot is if a resource-level snapshot is pinned to the template.

In a sense, pinning a snapshot has a backward workflow from defining a drift definition. A
definition starts with a template, then moves to a resource-level definition, which generates a
snapshot of that resource. Pinning always begins with a snapshot on a resource, and then
moves up to a definition or a definition template.

Note

A drift definition sets a very clear and limited set of criteria to use for drift detection.
When a snapshot is associated with a drift definition template, the template must use the
same settings as the original resource-level drift definition which generated the
snapshot. If a matching template does not exist, then a new template can be created,
using those criteria.

4.6.3. Pinning to a Resource-Level Definition

1. Click the Inventory tab in the top menu.

2. Search for the resource.

3. Click the Drift tab.

4. Click the name of the drift definition.

5. In the snapshot carousel, click the magnifying glass by the name of the snapshot to pin.

Managing Resource Configuration

40

Note

The initial snapshot is not displayed in the carousel. To pin the initial snapshot,
click the thumbtack icon in the Pinned column of the drift definition list. That
opens the initial snapshot.

If a snapshot has already been pinned, then clicking the thumbtack icon opens
the pinned snapshot.

6. At the bottom of the change list, click the Pin to Definition button.

4.6.4. Pinning to a Template

1. Click the Inventory tab in the top menu.

2. Search for the resource.

3. Click the Drift tab.

4. Click the name of the drift definition.

5. In the snapshot carousel, click the magnifying glass by the name of the snapshot to pin.

4. Managing Configuration Drift

41

Note

The initial snapshot is not displayed in the carousel. To pin the initial snapshot,
click the thumbtack icon in the Pinned column of the drift definition list. That
opens the initial snapshot.

If a snapshot has already been pinned, then clicking the thumbtack icon opens
the pinned snapshot.

6. At the bottom of the change list, click the Pin to Template button.

7. If the resource-level template is based on or attached to an existing template, then you
can associate the snapshot with that existing template. If the base directory for the
resource-level snapshot does not match any existing drift template, then you must
create a new template.

8. Create the drift template, as in Section 4.3, “Creating a Drift Definition Template”.

4.6.5. Checking Drift Compliance Reports

The compliance report is a variant of an inventory report. It lists all resources which currently
have a drift definition configured and then shows whether they are compliant. Compliance is
cumulative; if a resource has multiple drift definitions and is noncompliant on a single one, it
will show as non-compliant in the report.

1. Click the Reports tab in the top navigation menu.

2. Select the Drift Compliance report from the Inventory report list.

3. Every resource with a drift definition is listed by type and with an icon to indicate
whether it is compliant () or non-compliant ().

Managing Resource Configuration

42

4. To get information about the specific resources, click the resource type name; this
opens a second inventory report under the main report. All of the resources of that type
are listed with their compliance state.

4.6.6. Unpinning a Snapshot

A snapshot can be unpinned — or disassociated — from either a resource-level definition or a
drift template. Unpinning a snapshot moves the definition back to a rolling drift detection
mode, and any resources that were out of compliance are no longer marked as non-compliant.

1. Click the Inventory tab in the top menu.

2. Search for the resource.

3. Click the Drift tab.

4. Click the pin icon for the drift definition.

4.7. Extended Example: Defining Required EAP Configuration

The Setup

Tim the IT Guy at Example Corp. has one EAP server running in his production environment.
Because of the production load, the EAP server was routinely running out of memory, which
was degrading its performance and causing downtime for Example Corp.'s website.

To resolve his immediate memory problem, all Tim has to do is change the heap size setting for
his EAP instance. However, Tim needs another strategy for managing the configuration long-
term. If he adds another production EAP instance or deploys a new one to replace his current
one, it is going to hit the same memory-related performance problems without the new heap
size setting.

What to Do

There are three things that Tim wants to accomplish to maintain his EAP performance:

Find a way to consistently apply configuration to EAP instances.

He defines a template for JBoss EAP instances (Section 4.3, “Creating a Drift Definition
Template”). To maintain consistency, the template sets the Attach to template value to
true, and each resource-level drift definition will preserve that settings. This ensures that
any changes to the template are automatically applied to the JBoss resource drift
definitions.

4. Managing Configuration Drift

43

Use his current production settings as a basis for future EAP instances.

He pins his latest snapshot, with the higher heap settings, to the template definition
(Section 4.6.4, “Pinning to a Template”). Every EAP instance is going to be compared
against that baseline, so any with the wrong heap setting will immediately be marked out of
compliance.

Be made aware of specific differences between his current EAP settings and his preferred
settings.

He creates an alert definition (Section 4.8, “Defining Drift Alerts”) which specifically targets
the bin/run.conf file. This way, he knows precisely whether the heap settings and other
JVM settings are wrong for his new instance. He can even use alerts to gather more
information about how his EAP instance configuration is different, like using a CLI script to
compare the current EAP configuration against the pinned snapshot and then send him the
diff.

Expected Results

Tim brings a new server online, with a new EAP instance for the production environment. He
applies the drift template to the new resource and, within a few minutes, receives a notification
that his run.conf file is not compliant with his preferred configuration. He changes the heap
settings on the new EAP instance without having to wait for performance degradation to
remember the change.

4.8. Defining Drift Alerts

Drift changes have their own alert condition.

Note

Recovery alerts are not supported for drift.

1. Click the Inventory tab in the top menu.

2. Select the resource type in the Resources menu table on the left, and then browse or
search for the resource.

Managing Resource Configuration

44

3. Click the resource name in the list.

4. Click the Alerts tab for the resource.

5. In the Definitions subtab, click the New button to create the new alert.

6. In the General Properties tab, give the basic information about the alert.

4. Managing Configuration Drift

45

It may be useful to set a Priority if the drift definition contains critical configuration files.

7. In the Conditions tab, select the Drift Detection option from the conditions list. To
use the alert for all drift changes, leave the fields blank. Otherwise, enter the specific
drift definition name and (optionally) the directories or files that must be modified for
the alert to be triggered.

Managing Resource Configuration

46

Note

There can be more than one condition set to trigger an alert, meaning that you
can use the same alert for multiple drift definitions or files.

8. In the Notifications tab, click Add to set a notification for the alert.

Select the method to use to send the alert notification in the Sender option, and fill in
the required information.

The Sender option first sets the specific type of alert method (such as email or SNMP)
and then opens the appropriate form to fill in the details for that specific method.

9. Optionally, in the Dampening tab, give the dampening (or frequency) rule on how often
to send notifications for drift.

4. Managing Configuration Drift

47

Note

For pinned snapshots, it can be useful to use dampening rules to keep from
getting a flood of alerts before a drift problem is remediated.

Dampening only makes sense for a definition with a pinned snapshot. A pinned
definition will fire alerts with every alert scan (every 10 minutes) for as long as it
is out of compliance, even if there are no further changes. A rolling definition only
fires an alert once, when drift is detected.

Any of the dampening rules can be used. The ultimate goal is to limit the number of
times that the same alert is set for a resource that is out of compliance with a pinned
definition. For example, Time period sets a limit on the number of times in a given time
period that an alert is issued if the alert condition occurs. Setting the occurrence to 1
and the time period to 4 hours means that when drift is detected once, the server sends
an alert and then waits another 4 hours before sending the next alert.

10. Click OK to save the alert definition.

4.9. Extended Example: Reverting a JBoss Server to Its Original
Configuration Using Bundles and Server Scripts

The Setup

In Section 4.7, “Extended Example: Defining Required EAP Configuration”, Tim the IT Guy at
Example Corp. set up drift templates and alerts to help manage the configuration on his
production EAP servers. However, his resolution was done manually. When the drift alert
notified him that his EAP server was out of compliance, he edited the run.conf directly to
adjust the heap size.

Manual updates are fine for small infrastructures or infrequent changes. A better management
tool, though, is to automate any remediation required for drift.

What to Do

The goal is to have JBoss ON respond intelligently to drift without requiring any action from Tim
the IT Guy. There are two features that allow automated responses:

Managing Resource Configuration

48

Using bundles to provision updated files or applications. A bundle is a ZIP file that contains
an Ant recipe and any required content (such as configuration files or JARs) for an
application. JBoss ON can provision this content on a platform or a JBoss server in a specified
directory.

More information about provisioning bundles is covered in Deploying Applications and
Content.

Launching JBoss ON CLI scripts in response to an alert. One of the possible alert notifications
is a server-side alert sender. A JBoss ON CLI script is loaded as content and stored in the
JBoss ON server; when the alert fires, it initiates the specified, stored CLI script.

More information about writing CLI scripts is covered in Running JBoss ON Command-Line
Scripts, and general alert information is covered in Setting up Monitoring, Alerts, and
Operations.

There are a few steps to remediation using bundles and CLI scripts:

1. Create a bundle file based on the pinned snapshot configuration. The content of the
bundle depends on the needs of the deployment. It can be specific configuration files,
like bin/run.conf, or it can be a full EAP server.

Note

If the bundle contains the full EAP server, then it can be used to create the initial
EAP server.

2. Set up the bundle, the destination, and the compatible group to use with the bundle.
(The full procedure is described in Deploying Applications and Content.

3. Deploy the bundle with the full EAP server to create the new EAP instance. (Or, if the
bundle only has configuration files, create the EAP instances.)

4. Set up the drift definitions, based on the previously configured template (Section 4.7,
“Extended Example: Defining Required EAP Configuration”), for the new EAP instance.

5. Create a JBoss ON CLI script (in JavaScript) that will automatically deploy the specified
bundle to the appropriate destination. An example is in Example 2, “fix-eap.js Script”; in
that script, replace the destinationId and bundleVersionId with the real ID numbers
for the destination entry and bundle version entry in JBoss ON.

6. Create an alert definition that triggers on the drift detection condition and uses the CLI
script notification type, pointing to the JavaScript file that you created.

Expected Results

Any time drift is detected on the EAP server, it triggers an alert, same as in Section 4.7,
“Extended Example: Defining Required EAP Configuration”. This time, the alert launches the
CLI script in response and automatically deploys the bundle — which already has the approved
EAP configuration — to the resource. This means that the EAP server is never more than a few
minutes out of compliance, roughly the length of one alert scan. All without requiring
intervention from Tim the IT Guy.

Example 2. fix-eap.js Script

4. Managing Configuration Drift

49

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Operations_Network/3.0/html/Deploying_Applications_and_Content/provisioning-apps.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_JBoss_Operations_Network/3.0/html/Writing_Custom_Plug-ins/index.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_JBoss_Operations_Network/3.0/html/Setting_up_Monitoring_Alerts_and_Operations/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Operations_Network/3.0/html/Deploying_Applications_and_Content/provisioning-apps.html

/**
 * If obj is a JS array or a java.util.Collection, each element is passed
to
 * the callback function. If obj is a java.util.Map, each map entry is
passed
 * to the callback function as a key/value pair. If obj is none of the
 * aforementioned types, it is treated as a generic object and each of its
 * properties is passed to the callback function as a name/value pair.
 */
function foreach(obj, fn) {
 if (obj instanceof Array) {
 for (i in obj) {
 fn(obj[i]);
 }
 }
 else if (obj instanceof java.util.Collection) {
 var iterator = obj.iterator();
 while (iterator.hasNext()) {
 fn(iterator.next());
 }
 }
 else if (obj instanceof java.util.Map) {
 var iterator = obj.entrySet().iterator()
 while (iterator.hasNext()) {
 var entry = iterator.next();
 fn(entry.key, entry.value);
 }
 }
 else { // assume we have a generic object
 for (i in obj) {
 fn(i, obj[i]);
 }
 }
}

/**
 * Iterates over obj similar to foreach. fn should be a predicate that
evaluates
 * to true or false. The first match that is found is returned.
 */
function find(obj, fn) {
 if (obj instanceof Array) {
 for (i in obj) {
 if (fn(obj[i])) {
 return obj[i]
 }
 }
 }
 else if (obj instanceof java.util.Collection) {
 var iterator = obj.iterator();
 while (iterator.hasNext()) {
 var next = iterator.next();
 if (fn(next)) {
 return next;
 }
 }

Managing Resource Configuration

50

 }
 else if (obj instanceof java.util.Map) {
 var iterator = obj.entrySet().iterator();
 while (iterator.hasNext()) {
 var entry = iterator.next();
 if (fn(entry.key, entry.value)) {
 return {key: entry.key, value: entry.value};
 }
 }
 }
 else {
 for (i in obj) {
 if (fn(i, obj[i])) {
 return {key: i, value: obj[i]};
 }
 }
 }
 return null;
}

/**
 * Iterates over obj similar to foreach. fn should be a predicate that
evaluates
 * to true or false. All of the matches are returned in a java.util.List.
 */
function findAll(obj, fn) {
 var matches = java.util.ArrayList();
 if ((obj instanceof Array) || (obj instanceof java.util.Collection)) {
 foreach(obj, function(element) {
 if (fn(element)) {
 matches.add(element);
 }
 });
 }
 else {
 foreach(obj, function(key, value) {
 if (fn(theKey, theValue)) {
 matches.add({key: theKey, value: theValue});
 }
 });
 }
 return matches;
}

/**
 * A convenience function to convert javascript hashes into RHQ's
configuration
 * objects.
 * <p>
 * The conversion of individual keys in the hash follows these rules:
 *
 * if a value of a key is a javascript array, it is interpreted as
PropertyList
 * if a value is a hash, it is interpreted as a PropertyMap
 * otherwise it is interpreted as a PropertySimple
 * a null or undefined value is ignored

4. Managing Configuration Drift

51

 *
 * <p>
 * Note that the conversion isn't perfect, because the hash does not
contain enough
 * information to restore the names of the list members.
 * <p>
 * Example:

 * <pre><code>
 * {
 * simple : "value",
 * list : ["value1", "value2"],
 * listOfMaps : [{ k1 : "value", k2 : "value" }, { k1 : "value2", k2 :
"value2" }]
 * }
 * </code></pre>
 * gets converted to a configuration object:
 * Configuration:
 *
 * PropertySimple(name = "simple", value = "value")
 * PropertyList(name = "list")
 *
 * PropertySimple(name = "list", value = "value1")
 * PropertySimple(name = "list", value = "value2")
 *
 * PropertyList(name = "listOfMaps")
 *
 * PropertyMap(name = "listOfMaps")
 *
 * PropertySimple(name = "k1", value = "value")
 * PropertySimple(name = "k2", value = "value")
 *
 * PropertyMap(name = "listOfMaps")
 *
 * PropertySimple(name = "k1", value = "value2")
 * PropertySimple(name = "k2", value = "value2")
 *
 *
 *
 * Notice that the members of the list have the same name as the list
itself
 * which generally is not the case.
 */
function asConfiguration(hash) {

 config = new Configuration;

 for(key in hash) {
 value = hash[key];

 if (value == null) {
 continue;
 }

 (function(parent, key, value) {
 function isArray(obj) {
 return typeof(obj) == 'object' && (obj instanceof Array);

Managing Resource Configuration

52

 }

 function isHash(obj) {
 return typeof(obj) == 'object' && !(obj instanceof Array);
 }

 function isPrimitive(obj) {
 return typeof(obj) != 'object';
 }

 //this is an anonymous function, so the only way it can call itself
 //is by getting its reference via argument.callee. Let's just assign
 //a shorter name for it.
 var me = arguments.callee;

 var prop = null;

 if (isPrimitive(value)) {
 prop = new PropertySimple(key, new java.lang.String(value));
 } else if (isArray(value)) {
 prop = new PropertyList(key);
 for(var i = 0; i < value.length; ++i) {
 var v = value[i];
 if (v != null) {
 me(prop, key, v);
 }
 }
 } else if (isHash(value)) {
 prop = new PropertyMap(key);
 for(var i in value) {
 var v = value[i];
 if (value != null) {
 me(prop, i, v);
 }
 }
 }

 if (parent instanceof PropertyList) {
 parent.add(prop);
 } else {
 parent.put(prop);
 }
 })(config, key, value);
 }

 return config;
}

/**
 * Opposite of <code>asConfiguration</code>. Converts an RHQ's
configuration object
 * into a javascript hash.
 *
 * @param configuration
 */
function asHash(configuration) {

4. Managing Configuration Drift

53

 ret = {}

 iterator = configuration.getMap().values().iterator();
 while(iterator.hasNext()) {
 prop = iterator.next();

 (function(parent, prop) {
 function isArray(obj) {
 return typeof(obj) == 'object' && (obj instanceof Array);
 }

 function isHash(obj) {
 return typeof(obj) == 'object' && !(obj instanceof Array);
 }

 var me = arguments.callee;

 var representation = null;

 if (prop instanceof PropertySimple) {
 representation = prop.stringValue;
 } else if (prop instanceof PropertyList) {
 representation = [];

 for(var i = 0; i < prop.list.size(); ++i) {
 var child = prop.list.get(i);
 me(representation, child);
 }
 } else if (prop instanceof PropertyMap) {
 representation = {};

 var childIterator = prop.getMap().values().iterator();
 while(childIterator.hasNext()) {
 var child = childIterator.next();

 me(representation, child);
 }
 }

 if (isArray(parent)) {
 parent.push(representation);
 } else if (isHash(parent)) {
 parent[prop.name] = representation;
 }
 })(ret, prop);
 }
 (function(parent) {

 })(configuration);

 return ret;
}

/**
 * A simple function to create a new bundle version from a zip file
containing

Managing Resource Configuration

54

 * the bundle.
 *
 * @param pathToBundleZipFile the path to the bundle on the local file
system
 *
 * @return an instance of BundleVersion class describing what's been
created on
 * the RHQ server.
 */
function createBundleVersion(pathToBundleZipFile) {
 var bytes = getFileBytes(pathToBundleZipFile)
 return BundleManager.createBundleVersionViaByteArray(bytes)
}

/**
 * This is a helper function that one can use to find out what base
directories
 * given resource type defines.
 * <p>
 * These base directories then can be used when specifying bundle
destinations.
 *
 * @param resourceTypeId
 * @returns a java.util.Set of ResourceTypeBundleConfiguration objects
 */
function getAllBaseDirectories(resourceTypeId) {
 var crit = new ResourceTypeCriteria;
 crit.addFilterId(resourceTypeId);
 crit.fetchBundleConfiguration(true);

 var types = ResourceTypeManager.findResourceTypesByCriteria(crit);

 if (types.size() == 0) {
 throw "Could not find a resource type with id " + resourceTypeId;
 } else if (types.size() > 1) {
 throw "More than one resource type found with id " + resourceTypeId + "!
How did that happen!";
 }

 var type = types.get(0);

 return
type.getResourceTypeBundleConfiguration().getBundleDestinationBaseDirector
ies();
}

/**
 * Creates a new destination for given bundle. Once a destination exists,
 * actual bundle versions can be deployed to it.
 * <p>
 * Note that this only differs from the
<code>BundleManager.createBundleDestination</code>
 * method in the fact that one can provide bundle and resource group names
instead of their
 * ids.
 *

4. Managing Configuration Drift

55

 * @param destinationName the name of the destination to be created
 * @param description the description for the destination
 * @param bundleName the name of the bundle to create the destination for
 * @param groupName name of a group of resources that the destination will
handle
 * @param baseDirName the name of the basedir definition that represents
where inside the
 * deployment of the individual resources the bundle
will get deployed
 * @param deployDir the specific sub directory of the base dir where the
bundles will get deployed
 *
 * @return BundleDestination object
 */
function createBundleDestination(destinationName, description, bundleName,
groupName, baseDirName, deployDir) {
 var groupCrit = new ResourceGroupCriteria;
 groupCrit.addFilterName(groupName);
 var groups =
ResourceGroupManager.findResourceGroupsByCriteria(groupCrit);

 if (groups.empty) {
 throw "No group called '" + groupName + "' found.";
 }

 var group = groups.get(0);

 var bundleCrit = new BundleCriteria;
 bundleCrit.addFilterName(bundleName);
 var bundles = BundleManager.findBundlesByCriteria(bundleCrit);

 if (bundles.empty) {
 throw "No bundle called '" + bundleName + "' found.";
 }

 var bundle = bundles.get(0);

 return BundleManager.createBundleDestination(bundle.id, destinationName,
description, baseDirName, deployDir, group.id);
}

/**
 * Tries to deploy given bundle version to provided destination using
given configuration.
 * <p>
 * This method blocks while waiting for the deployment to complete or
fail.
 *
 * @param destination the bundle destination (or id thereof)
 * @param bundleVersion the bundle version to deploy (or id thereof)
 * @param deploymentConfiguration the deployment configuration. This can
be an ordinary
 * javascript object (hash) or an instance of RHQ's Configuration. If it
is the former,
 * it is converted to a Configuration instance using the
<code>asConfiguration</code>

Managing Resource Configuration

56

 * function from <code>util.js</code>. Please consult the documentation of
that method
 * to understand the limitations of that approach.
 * @param description the deployment description
 * @param isCleanDeployment if true, perform a wipe of the deploy
directory prior to the deployment; if false,
 * perform as an upgrade to the existing deployment, if any
 *
 * @return the BundleDeployment instance describing the deployment
 */
function deployBundle(destination, bundleVersion, deploymentConfiguration,
description, isCleanDeployment) {
 var destinationId = destination;
 if (typeof(destination) == 'object') {
 destinationId = destination.id;
 }

 var bundleVersionId = bundleVersion;
 if (typeof(bundleVersion) == 'object') {
 bundleVersionId = bundleVersion.id;
 }

 var deploymentConfig = deploymentConfiguration;
 if (!(deploymentConfiguration instanceof Configuration)) {
 deploymentConfig = asConfiguration(deploymentConfiguration);
 }

 var deployment = BundleManager.createBundleDeployment(bundleVersionId,
destinationId, description, deploymentConfig);

 deployment = BundleManager.scheduleBundleDeployment(deployment.id,
isCleanDeployment);

 var crit = new BundleDeploymentCriteria;
 crit.addFilterId(deployment.id);

 while (deployment.status == BundleDeploymentStatus.PENDING ||
deployment.status == BundleDeploymentStatus.IN_PROGRESS) {
 java.lang.Thread.currentThread().sleep(1000);
 var dps = BundleManager.findBundleDeploymentsByCriteria(crit);
 if (dps.empty) {
 throw "The deployment disappeared while we were waiting for it to
complete.";
 }

 deployment = dps.get(0);
 }

 return deployment;
}

var destinationId = 10002;
var bundleVersionId = 10002;
var deploymentConfig = null;
var description = "redeploy due to drift";

4. Managing Configuration Drift

57

// NOTE: It's essential that isCleanDeployment=true, otherwise files that
have drifted will not be replaced with their
// original versions from the bundle.
var isCleanDeployment = true;
deployBundle(10002, 10002, deploymentConfig, description, true);

4.10. Running Drift Detection Manually

The drift detection scan runs periodically, according to the interval set in the definition. (The
default is 1800 seconds, or 30 minutes.) There can be times when you know that files in the
directory have changed and you need a snapshot to be created immediately, but you do not
want to change the interval permanently. Simply run a detection scan manually.

1. Click the Inventory tab in the top menu.

2. Search for the resource.

3. Click the Drift tab.

4. Select the drift definition to run the scan for.

5. Click the Detect Now button.

4.11. Setting Planned Changes or Disabling Drift Definitions

The assumption behind drift monitoring is that there is an identified and specific configuration
for a platform or application and that that configuration should be preserved. Changes,
therefore, are undesirable and need to be monitored.

However, there can be times when changes are expected, such as scheduled maintenance and
upgrade periods. In that situation, it's beneficial to suspend drift monitoring to keep from
creating unnecessary static with drift alerts.

There are two ways to suspend drift monitoring:

Set the drift handling mode to planned changes. This keeps running drift detection scans
and records changes. Since the changes are expected, though, it doesn't trigger a drift
detection event, so it does not issue a drift alert.

Actually disable the drift definition. This suspends the drift detection runs for the definition,
not just drift events.

Managing Resource Configuration

58

The drift handling mode and the enable option for the drift definition can be edited in the
definition entry, as in Section 4.4, “Editing Drift Definitions”.

Figure 7. Drift Handling Mode and Enable Options

4.12. Understanding Drift and JBoss ON Agents and Servers

4.12.1. Drift Inventory

4. Managing Configuration Drift

59

4.12.1. Drift Inventory

Both the JBoss ON agent and the JBoss ON server maintain their own inventories of the
resources, directories, and files monitored for drift. When the agent starts up, it compares its
inventory with the server inventory.

The drift information is stored, with the other agent data, in the agentRoot/rhq-agent/data/
directory. The information in this directory is deleted if the agent is started with new
configuration (--cleanconfig) or it can be intentionally purged (--purgedata). If the drift
information is lost, then the agent requests the last snapshot from the JBoss ON server.

The agent always sends the latest changeset to the server as a snapshot. If the server is offline
for some period and misses updates, then the agent sends the most current snapshot, which
effectively rolls all changes into one snapshot, even if the changes accumulated over several
drift detection runs.

4.12.2. The Drift Server Plug-in

The server processes drift changes through a server-side plug-in. This plug-in must be enabled
for the server to recognize and process drift data sent from the agent.

As with other server-side plug-ins, the drift plug-in can be disabled. However, this effectively
and entirely disables drift monitoring on that server, and no drift information is processed or
stored. That is slightly different than the behavior of other server subsystems. For example, an
individual alert sender can be disabled, but alert detections are still run and alert information is
still processed, stored, and displayed by the JBoss ON server.

Warning

If the drift server-side plug-in is disabled, then the server ignores any incoming drift
reports. Even if the drift server-side plug-in is re-enabled, any information sent while the
plug-in was disabled is lost.

4.13. Managing Drift Definitions through the JBoss ON CLI

Drift management tasks can also be performed through the JBoss ON CLI. Examples of some
common tasks are in the Running JBoss ON Command-Line Scripts, and example scripts are
included with the JBoss ON CLI in the installDir/rhq-remoting-cli-version#/samples/
directory.

The drift API is in the Javadocs at https://access.redhat.com/documentation/en-
US/Red_Hat_JBoss_Operations_Network/3.1/html/API/ch01.html.

5. Document Information

This guide is part of the overall set of guides for users and administrators of JBoss ON. Our goal
is clarity, completeness, and ease of use.

5.1. Document History

Revision 3.0.1-5 2013-10-31 Rüdiger Landmann
Rebuild with publican 4.0.0

Managing Resource Configuration

60

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Operations_Network/3.1/html/API/ch01.html

Revision 3.0.1-0 March 18, 2012 Ella Deon Lackey
Updates for JBoss Operations Network 3.0.1.

Revision 3.0-0 December 7, 2011 Ella Deon Lackey
Initial release of JBoss Operations Network 3.0.

Index

A
Apache

- configuring for configuration management, Configuring Apache for Configuration
Management

auditing
- viewing configuration changes, Tracking and Comparing Configuration Changes

C
CLI, Managing Drift Definitions through the JBoss ON CLI
configuration

- Apache for configuration management, Configuring Apache for Configuration
Management
- changing a single resource, Changing the Configuration on a Single Resource
- drift management, Managing Configuration Drift
- for groups, Changing the Configuration for a Compatible Group
- overview, Summary: Using JBoss ON to Make Changes in Resource Configuration
- reverting changes, Reverting Configuration Changes
- viewing and comparing changes, Tracking and Comparing Configuration
Changes

configuration drift, Managing Configuration Drift

D
drift

- and the CLI, Managing Drift Definitions through the JBoss ON CLI
- named pipes, Destination Directories with Special File Types
- symlinks, Destination Directories with Special File Types

G
groups

- changing resource configuration, Changing the Configuration for a Compatible
Group

P
pipes, Destination Directories with Special File Types

R
resources

- changing configuration for single resources, Changing the Configuration on a
Single Resource
- changing group configuration, Changing the Configuration for a Compatible
Group

Index

61

- reverting configuration changes, Reverting Configuration Changes
- scripts as resources, Editing Script Environment Variables
- viewing configuration changes, Tracking and Comparing Configuration Changes

S
scripts

- as resources, Editing Script Environment Variables

symlinks, Destination Directories with Special File Types

[1] JBoss ON detects that changes have been made to a binary file. It does not display binary files or
compare or diff changes between versions for binary files, only text files.

Managing Resource Configuration

62

	Table of Contents
	1. Summary: Using JBoss ON to Make Changes in Resource Configuration
	1.1. Easy, Structured Configuration
	1.2. Identifying What Configuration Properties Can Be Changed
	1.3. Auditing and Reverting Resource Configuration Changes
	1.4. Tracking Configuration Drift

	2. Changing the Configuration for a Resource
	2.1. Changing the Configuration on a Single Resource
	2.2. Changing the Configuration for a Compatible Group
	2.3. Editing Script Environment Variables
	2.4. Configuring Apache for Configuration Management

	3. Tracking Resource Configuration Changes
	3.1. Tracking and Comparing Configuration Changes
	3.2. Reverting Configuration Changes

	4. Managing Configuration Drift
	4.1. Understanding Drift
	4.1.1. Drift Definitions and Detection
	4.1.2. Snapshots, Deltas, and Baseline Images
	4.1.3. Destination Directories with Special File Types
	4.1.4. Drift and Resource Types
	4.1.5. Back to Drift Monitoring

	4.2. Adding a Drift Definition for a Resource
	4.3. Creating a Drift Definition Template
	4.3.1. About Resources and Drift Definition Templates
	4.3.2. Creating a Drift Definition Template

	4.4. Editing Drift Definitions
	4.5. Viewing Snapshots and Changes
	4.5.1. Viewing the Snapshot Carousel
	4.5.2. Comparing Drift Changes
	4.5.3. Viewing Snapshot Details
	4.5.4. Seeing Drift Events in the Timeline
	4.5.5. Checking Drift Snapshot Reports

	4.6. Pinning Snapshots and Managing Compliance
	4.6.1. More About Pinning Snapshots
	4.6.2. When to Pin to a Resource and When to Pin to a Template
	4.6.3. Pinning to a Resource-Level Definition
	4.6.4. Pinning to a Template
	4.6.5. Checking Drift Compliance Reports
	4.6.6. Unpinning a Snapshot

	4.7. Extended Example: Defining Required EAP Configuration
	4.8. Defining Drift Alerts
	4.9. Extended Example: Reverting a JBoss Server to Its Original Configuration Using Bundles and Server Scripts
	4.10. Running Drift Detection Manually
	4.11. Setting Planned Changes or Disabling Drift Definitions
	4.12. Understanding Drift and JBoss ON Agents and Servers
	4.12.1. Drift Inventory
	4.12.2. The Drift Server Plug-in

	4.13. Managing Drift Definitions through the JBoss ON CLI

	5. Document Information
	5.1. Document History

	Index

