
Red Hat JBoss Fuse 6.0

Implementing Enterprise Integration Patterns

Using Apache Camel's to connect applications

Last Updated: 2017-11-08

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

Using Apache Camel's to connect applications

JBoss A-MQ Docs Team
Content Services
fuse-docs-support@redhat.com

Legal Notice

Copyright © 2013 Red Hat.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other countries
and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or
sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide describes how to build routes using Apache Camel. It covers the basic building blocks
and EIP components.

. .

. .

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. BUILDING BLOCKS FOR ROUTE DEFINITIONS
1.1. IMPLEMENTING A ROUTEBUILDER CLASS
1.2. BASIC JAVA DSL SYNTAX
1.3. ROUTER SCHEMA IN A SPRING XML FILE
1.4. ENDPOINTS
1.5. PROCESSORS

CHAPTER 2. BASIC PRINCIPLES OF ROUTE BUILDING
2.1. PIPELINE PROCESSING
2.2. MULTIPLE INPUTS
2.3. EXCEPTION HANDLING
2.4. BEAN INTEGRATION
2.5. ASPECT ORIENTED PROGRAMMING
2.6. TRANSFORMING MESSAGE CONTENT
2.7. PROPERTY PLACEHOLDERS
2.8. THREADING MODEL
2.9. CONTROLLING START-UP AND SHUTDOWN OF ROUTES
2.10. SCHEDULED ROUTE POLICY
2.11. JMX NAMING

CHAPTER 3. INTRODUCING ENTERPRISE INTEGRATION PATTERNS
3.1. OVERVIEW OF THE PATTERNS

CHAPTER 4. MESSAGING SYSTEMS
4.1. MESSAGE
4.2. MESSAGE CHANNEL
4.3. MESSAGE ENDPOINT
4.4. PIPES AND FILTERS
4.5. MESSAGE ROUTER
4.6. MESSAGE TRANSLATOR

CHAPTER 5. MESSAGING CHANNELS
5.1. POINT-TO-POINT CHANNEL
5.2. PUBLISH-SUBSCRIBE CHANNEL
5.3. DEAD LETTER CHANNEL
5.4. GUARANTEED DELIVERY
5.5. MESSAGE BUS

CHAPTER 6. MESSAGE CONSTRUCTION
6.1. CORRELATION IDENTIFIER
6.2. EVENT MESSAGE
6.3. RETURN ADDRESS

CHAPTER 7. MESSAGE ROUTING
7.1. CONTENT-BASED ROUTER
7.2. MESSAGE FILTER
7.3. RECIPIENT LIST
7.4. SPLITTER
7.5. AGGREGATOR
7.6. RESEQUENCER
7.7. ROUTING SLIP
7.8. THROTTLER
7.9. DELAYER

4
4
5
8

10
14

23
23
26
29
44
54
56
63
72
79
83
92

95
95

102
102
103
105
106
108
110

112
112
113
115
123
125

127
127
127
129

131
131
132
134
142
151
168
171
173
175

Table of Contents

1

. .

. .

. .

. .

. .

7.10. LOAD BALANCER
7.11. MULTICAST
7.12. COMPOSED MESSAGE PROCESSOR
7.13. SCATTER-GATHER
7.14. LOOP
7.15. SAMPLING
7.16. DYNAMIC ROUTER

CHAPTER 8. MESSAGE TRANSFORMATION
8.1. CONTENT ENRICHER
8.2. CONTENT FILTER
8.3. NORMALIZER
8.4. CLAIM CHECK
8.5. SORT
8.6. VALIDATE

CHAPTER 9. MESSAGING ENDPOINTS
9.1. MESSAGING MAPPER
9.2. EVENT DRIVEN CONSUMER
9.3. POLLING CONSUMER
9.4. COMPETING CONSUMERS
9.5. MESSAGE DISPATCHER
9.6. SELECTIVE CONSUMER
9.7. DURABLE SUBSCRIBER
9.8. IDEMPOTENT CONSUMER
9.9. TRANSACTIONAL CLIENT
9.10. MESSAGING GATEWAY
9.11. SERVICE ACTIVATOR

CHAPTER 10. SYSTEM MANAGEMENT
10.1. DETOUR
10.2. LOGEIP
10.3. WIRE TAP

APPENDIX A. MIGRATING FROM SERVICEMIX EIP
A.1. MIGRATING ENDPOINTS
A.2. COMMON ELEMENTS
A.3. SERVICEMIX EIP PATTERNS
A.4. CONTENT-BASED ROUTER
A.5. CONTENT ENRICHER
A.6. MESSAGE FILTER
A.7. PIPELINE
A.8. RESEQUENCER
A.9. STATIC RECIPIENT LIST
A.10. STATIC ROUTING SLIP
A.11. WIRE TAP
A.12. XPATH SPLITTER

INDEX

178
185
192
194
198
200
202

205
205
209
210
212
214
215

217
217
218
218
219
221
223
225
228
233
234
235

238
238
239
240

246
246
248
249
250
252
253
255
256
258
259
260
261

263

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

2

Table of Contents

3

CHAPTER 1. BUILDING BLOCKS FOR ROUTE DEFINITIONS

Abstract

Apache Camel supports two alternative Domain Specific Languages (DSL) for defining routes: a Java
DSL and a Spring XML DSL. The basic building blocks for defining routes are endpoints and processors,
where the behavior of a processor is typically modified by expressions or logical predicates. Apache
Camel enables you to define expressions and predicates using a variety of different languages.

1.1. IMPLEMENTING A ROUTEBUILDER CLASS

Overview

To use the Domain Specific Language (DSL), you extend the RouteBuilder class and override its
configure() method (where you define your routing rules).

You can define as many RouteBuilder classes as necessary. Each class is instantiated once and is
registered with the CamelContext object. Normally, the lifecycle of each RouteBuilder object is
managed automatically by the container in which you deploy the router.

RouteBuilder classes

As a router developer, your core task is to implement one or more RouteBuilder classes. There are
two alternative RouteBuilder classes that you can inherit from:

org.apache.camel.builder.RouteBuilder—this is the generic RouteBuilder base
class that is suitable for deploying into any container type. It is provided in the camel-core
artifact.

org.apache.camel.spring.SpringRouteBuilder—this base class is specially adapted
to the Spring container. In particular, it provides extra support for the following Spring specific
features: looking up beans in the Spring registry (using the beanRef() Java DSL command)
and transactions (see the Transactions Guide for details). It is provided in the camel-spring
artifact.

The RouteBuilder class defines methods used to initiate your routing rules (for example, from(),
intercept(), and exception()).

Implementing a RouteBuilder

Example 1.1, “Implementation of a RouteBuilder Class” shows a minimal RouteBuilder
implementation. The configure() method body contains a routing rule; each rule is a single Java
statement.

Example 1.1. Implementation of a RouteBuilder Class

import org.apache.camel.builder.RouteBuilder;

public class MyRouteBuilder extends RouteBuilder {

public void configure() {
 // Define routing rules here:

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

4

The form of the rule from(URL1).to(URL2) instructs the router to read files from the directory
src/data and send them to the directory target/messages. The option ?noop=true instructs the
router to retain (not delete) the source files in the src/data directory.

1.2. BASIC JAVA DSL SYNTAX

What is a DSL?

A Domain Specific Language (DSL) is a mini-language designed for a special purpose. A DSL does not
have to be logically complete but needs enough expressive power to describe problems adequately in
the chosen domain. Typically, a DSL does not require a dedicated parser, interpreter, or compiler. A DSL
can piggyback on top of an existing object-oriented host language, provided DSL constructs map cleanly
to constructs in the host language API.

Consider the following sequence of commands in a hypothetical DSL:

You can map these commands to Java method invocations, as follows:

You can even map blocks to Java method invocations. For example:

The DSL syntax is implicitly defined by the data types of the host language API. For example, the return
type of a Java method determines which methods you can legally invoke next (equivalent to the next
command in the DSL).

Router rule syntax

Apache Camel defines a router DSL for defining routing rules. You can use this DSL to define rules in
the body of a RouteBuilder.configure() implementation. Figure 1.1, “Local Routing Rules” shows
an overview of the basic syntax for defining local routing rules.

 from("file:src/data?noop=true").to("file:target/messages");

 // More rules can be included, in you like.
 // ...
}
}

command01;
command02;
command03;

command01().command02().command03()

command01().startBlock().command02().command03().endBlock()

CHAPTER 1. BUILDING BLOCKS FOR ROUTE DEFINITIONS

5

Figure 1.1. Local Routing Rules

A local rule always starts with a from("EndpointURL") method, which specifies the source of
messages (consumer endpoint) for the routing rule. You can then add an arbitrarily long chain of
processors to the rule (for example, filter()). You typically finish off the rule with a
to("EndpointURL") method, which specifies the target (producer endpoint) for the messages that
pass through the rule. However, it is not always necessary to end a rule with to(). There are alternative
ways of specifying the message target in a rule.

NOTE

You can also define a global routing rule, by starting the rule with a special processor type
(such as intercept(), exception(), or errorHandler()). Global rules are outside
the scope of this guide.

Consumers and producers

A local rule always starts by defining a consumer endpoint, using from("EndpointURL"), and
typically (but not always) ends by defining a producer endpoint, using to("EndpointURL"). The
endpoint URLs, EndpointURL, can use any of the components configured at deploy time. For example,
you could use a file endpoint, file:MyMessageDirectory, an Apache CXF endpoint,
cxf:MyServiceName, or an Apache ActiveMQ endpoint, activemq:queue:MyQName. For a
complete list of component types, see "EIP Component Reference".

Exchanges

An exchange object consists of a message, augmented by metadata. Exchanges are of central
importance in Apache Camel, because the exchange is the standard form in which messages are
propagated through routing rules. The main constituents of an exchange are, as follows:

In message—is the current message encapsulated by the exchange. As the exchange
progresses through a route, this message may be modified. So the In message at the start of a
route is typically not the same as the In message at the end of the route. The
org.apache.camel.Message type provides a generic model of a message, with the following
parts:

Body.

Headers.

Attachments.

It is important to realize that this is a generic model of a message. Apache Camel supports a

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

6

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.0/html/EIP_Component_Reference/

large variety of protocols and endpoint types. Hence, it is not possible to standardize the format
of the message body or the message headers. For example, the body of a JMS message would
have a completely different format to the body of a HTTP message or a Web services message.
For this reason, the body and the headers are declared to be of Object type. The original
content of the body and the headers is then determined by the endpoint that created the
exchange instance (that is, the endpoint appearing in the from() command).

Out message—is a temporary holding area for a reply message or for a transformed message.
Certain processing nodes (in particular, the to() command) can modify the current message by
treating the In message as a request, sending it to a producer endpoint, and then receiving a
reply from that endpoint. The reply message is then inserted into the Out message slot in the
exchange.

Normally, if an Out message has been set by the current node, Apache Camel modifies the
exchange as follows before passing it to the next node in the route: the old In message is
discarded and the Out message is moved to the In message slot. Thus, the reply becomes the
new current message. For a more detailed discussion of how Apache Camel connects nodes
together in a route, see Section 2.1, “Pipeline Processing”.

There is one special case where an Out message is treated differently, however. If the consumer
endpoint at the start of a route is expecting a reply message, the Out message at the very end of
the route is taken to be the consumer endpoint's reply message (and, what is more, in this case
the final node must create an Out message or the consumer endpoint would hang) .

Message exchange pattern (MEP)—affects the interaction between the exchange and endpoints
in the route, as follows:

Consumer endpoint—the consumer endpoint that creates the original exchange sets the
initial value of the MEP. The initial value indicates whether the consumer endpoint expects to
receive a reply (for example, the InOut MEP) or not (for example, the InOnly MEP).

Producer endpoints—the MEP affects the producer endpoints that the exchange encounters
along the route (for example, when an exchange passes through a to() node). For
example, if the current MEP is InOnly, a to() node would not expect to receive a reply from
the endpoint. Sometimes you need to change the current MEP in order to customize the
exchange's interaction with a producer endpoint. For more details, see Section 1.4,
“Endpoints”.

Exchange properties—a list of named properties containing metadata for the current message.

Message exchange patterns

Using an Exchange object makes it easy to generalize message processing to different message
exchange patterns. For example, an asynchronous protocol might define an MEP that consists of a
single message that flows from the consumer endpoint to the producer endpoint (an InOnly MEP). An
RPC protocol, on the other hand, might define an MEP that consists of a request message and a reply
message (an InOut MEP). Currently, Apache Camel supports the following MEPs:

InOnly

RobustInOnly

InOut

InOptionalOut

CHAPTER 1. BUILDING BLOCKS FOR ROUTE DEFINITIONS

7

OutOnly

RobustOutOnly

OutIn

OutOptionalIn

Where these message exchange patterns are represented by constants in the enumeration type,
org.apache.camel.ExchangePattern.

Grouped exchanges

Sometimes it is useful to have a single exchange that encapsulates multiple exchange instances. For
this purpose, you can use a grouped exchange. A grouped exchange is essentially an exchange
instance that contains a java.util.List of Exchange objects stored in the
Exchange.GROUPED_EXCHANGE exchange property. For an example of how to use grouped
exchanges, see Section 7.5, “Aggregator”.

Processors

A processor is a node in a route that can access and modify the stream of exchanges passing through
the route. Processors can take expression or predicate arguments, that modify their behavior. For
example, the rule shown in Figure 1.1, “Local Routing Rules” includes a filter() processor that takes
an xpath() predicate as its argument.

Expressions and predicates

Expressions (evaluating to strings or other data types) and predicates (evaluating to true or false) occur
frequently as arguments to the built-in processor types. For example, the following filter rule propagates
In messages, only if the foo header is equal to the value bar:

Where the filter is qualified by the predicate, header("foo").isEqualTo("bar"). To construct more
sophisticated predicates and expressions, based on the message content, you can use one of the
expression and predicate languages (see Expression and Predicate Languages).

1.3. ROUTER SCHEMA IN A SPRING XML FILE

Namespace

The router schema—which defines the XML DSL—belongs to the following XML schema namespace:

Specifying the schema location

The location of the router schema is normally specified to be
http://camel.apache.org/schema/spring/camel-spring.xsd, which references the latest
version of the schema on the Apache Web site. For example, the root beans element of an Apache

from("seda:a").filter(header("foo").isEqualTo("bar")).to("seda:b");

http://camel.apache.org/schema/spring

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

8

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.0/html/Routing_Expression_and_Predicate_Languages/

Camel Spring file is normally configured as shown in Example 1.2, “ Specifying the Router Schema
Location”.

Example 1.2. Specifying the Router Schema Location

Runtime schema location

At run time, Apache Camel does not download the router schema from schema location specified in the
Spring file. Instead, Apache Camel automatically picks up a copy of the schema from the root directory of
the camel-spring JAR file. This ensures that the version of the schema used to parse the Spring file
always matches the current runtime version. This is important, because the latest version of the schema
posted up on the Apache Web site might not match the version of the runtime you are currently using.

Using an XML editor

Generally, it is recommended that you edit your Spring files using a full-feature XML editor. An XML
editor's auto-completion features make it much easier to author XML that complies with the router
schema and the editor can warn you instantly, if the XML is badly-formed.

XML editors generally do rely on downloading the schema from the location that you specify in the
xsi:schemaLocation attribute. In order to be sure you are using the correct schema version whilst
editing, it is usually a good idea to select a specific version of the camel-spring.xsd file. For
example, to edit a Spring file for the 2.3 version of Apache Camel, you could modify the beans element
as follows:

Change back to the default, camel-spring.xsd, when you are finished editing. To see which schema
versions are currently available for download, navigate to the Web page,
http://camel.apache.org/schema/spring.

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:camel="http://camel.apache.org/schema/spring"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.0.xsd
 http://camel.apache.org/schema/spring
http://camel.apache.org/schema/spring/camel-spring.xsd">

 <camelContext id="camel"
xmlns="http://camel.apache.org/schema/spring">
 <!-- Define your routing rules here -->
 </camelContext>
</beans>

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:camel="http://camel.apache.org/schema/spring"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.0.xsd
 http://camel.apache.org/schema/spring
http://camel.apache.org/schema/spring/camel-spring-2.3.0.xsd">
...

CHAPTER 1. BUILDING BLOCKS FOR ROUTE DEFINITIONS

9

http://camel.apache.org/schema/spring

1.4. ENDPOINTS

Overview

Apache Camel endpoints are the sources and sinks of messages in a route. An endpoint is a very
general sort of building block: the only requirement it must satisfy is that it acts either as a source of
messages (a consumer endpoint) or as a sink of messages (a producer endpoint). Hence, there are a
great variety of different endpoint types supported in Apache Camel, ranging from protocol supporting
endpoints, such as HTTP, to simple timer endpoints, such as Quartz, that generate dummy messages at
regular time intervals. One of the major strengths of Apache Camel is that it is relatively easy to add a
custom component that implements a new endpoint type.

Endpoint URIs

Endpoints are identified by endpoint URIs, which have the following general form:

The URI scheme identifies a protocol, such as http, and the contextPath provides URI details that are
interpreted by the protocol. In addition, most schemes allow you to define query options, queryOptions,
which are specified in the following format:

For example, the following HTTP URI can be used to connect to the Google search engine page:

The following File URI can be used to read all of the files appearing under the C:\temp\src\data
directory:

Not every scheme represents a protocol. Sometimes a scheme just provides access to a useful utility,
such as a timer. For example, the following Timer endpoint URI generates an exchange every second
(=1000 milliseconds). You could use this to schedule activity in a route.

Apache Camel components

Each URI scheme maps to a Apache Camel component, where a Apache Camel component is
essentially an endpoint factory. In other words, to use a particular type of endpoint, you must deploy the
corresponding Apache Camel component in your runtime container. For example, to use JMS endpoints,
you would deploy the JMS component in your container.

Apache Camel provides a large variety of different components that enable you to integrate your
application with various transport protocols and third-party products. For example, some of the more
commonly used components are: File, JMS, CXF (Web services), HTTP, Jetty, Direct, and Mock. For the
full list of supported components, see the Apache Camel component documentation.

Most of the Apache Camel components are packaged separately to the Camel core. If you use Maven to

scheme:contextPath[?queryOptions]

?option01=value01&option02=value02&...

http://www.google.com

file://C:/temp/src/data

timer://tickTock?period=1000

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

10

http://camel.apache.org/components.html

build your application, you can easily add a component (and its third-party dependencies) to your
application simply by adding a dependency on the relevant component artifact. For example, to include
the HTTP component, you would add the following Maven dependency to your project POM file:

The following components are built-in to the Camel core (in the camel-core artifact), so they are
always available:

Bean

Browse

Dataset

Direct

File

Log

Mock

Properties

Ref

SEDA

Timer

VM

Consumer endpoints

A consumer endpoint is an endpoint that appears at the start of a route (that is, in a from() DSL
command). In other words, the consumer endpoint is responsible for initiating processing in a route: it
creates a new exchange instance (typically, based on some message that it has received or obtained),
and provides a thread to process the exchange in the rest of the route.

For example, the following JMS consumer endpoint pulls messages off the payments queue and
processes them in the route:

<!-- Maven POM File -->
 <properties>
 <camel-version>2.10.0.redhat-60024</camel-version>
 ...
 </properties>

 <dependencies>
 ...
 <dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-http</artifactId>
 <version>${camel-version}</version>
 </dependency>
 ...
 </dependencies>

CHAPTER 1. BUILDING BLOCKS FOR ROUTE DEFINITIONS

11

Or equivalently, in Spring XML:

Some components are consumer only—that is, they can only be used to define consumer endpoints. For
example, the Quartz component is used exclusively to define consumer endpoints. The following Quartz
endpoint generates an event every second (1000 milliseconds):

If you like, you can specify the endpoint URI as a formatted string, using the fromF() Java DSL
command. For example, to substitute the username and password into the URI for an FTP endpoint, you
could write the route in Java, as follows:

Where the first occurrence of %s is replaced by the value of the username string and the second
occurrence of %s is replaced by the password string. This string formatting mechanism is implemented
by String.format() and is similar to the formatting provided by the C printf() function. For
details, see java.util.Formatter.

Producer endpoints

A producer endpoint is an endpoint that appears in the middle or at the end of a route (for example, in a
to() DSL command). In other words, the producer endpoint receives an existing exchange object and
sends the contents of the exchange to the specified endpoint.

For example, the following JMS producer endpoint pushes the contents of the current exchange onto the
specified JMS queue:

Or equivalently in Spring XML:

from("jms:queue:payments")
 .process(SomeProcessor)
 .to("TargetURI");

<camelContext id="CamelContextID"
 xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from uri="jms:queue:payments"/>
 <process ref="someProcessorId"/>
 <to uri="TargetURI"/>
 </route>
</camelContext>

from("quartz://secondTimer?trigger.repeatInterval=1000")
 .process(SomeProcessor)
 .to("TargetURI");

fromF("ftp:%s@fusesource.com?password=%s", username, password)
 .process(SomeProcessor)
 .to("TargetURI");

from("SourceURI")
 .process(SomeProcessor)
 .to("jms:queue:orderForms");

<camelContext id="CamelContextID"
xmlns="http://camel.apache.org/schema/spring">

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

12

http://java.sun.com/j2se/1.5.0/docs/api/java/util/Formatter.html

Some components are producer only—that is, they can only be used to define producer endpoints. For
example, the HTTP endpoint is used exclusively to define producer endpoints.

If you like, you can specify the endpoint URI as a formatted string, using the toF() Java DSL command.
For example, to substitute a custom Google query into the HTTP URI, you could write the route in Java,
as follows:

Where the occurrence of %s is replaced by your custom query string, myGoogleQuery. For details, see
java.util.Formatter.

Specifying time periods in a URI

Many of the Apache Camel components have options whose value is a time period (for example, for
specifying timeout values and so on). By default, such time period options are normally specified as a
pure number, which is interpreted as a millisecond time period. But Apache Camel also supports a more
readable syntax for time periods, which enables you to express the period in hours, minutes, and
seconds. Formally, the human-readable time period is a string that conforms to the following syntax:

Where each term in square brackets, [], is optional and the notation, (A|B), indicates that A and B are
alternatives.

For example, you can configure timer endpoint with a 45 minute period as follows:

You can also use arbitrary combinations of the hour, minute, and second units, as follows:

 <route>
 <from uri="SourceURI"/>
 <process ref="someProcessorId"/>
 <to uri="jms:queue:orderForms"/>
 </route>
</camelContext>

from("SourceURI")
 .process(SomeProcessor)
 .to("http://www.google.com/search?hl=en&q=camel+router");

from("SourceURI")
 .process(SomeProcessor)
 .toF("http://www.google.com/search?hl=en&q=%s", myGoogleQuery);

[NHour(h|hour)][NMin(m|minute)][NSec(s|second)]

from("timer:foo?period=45m")
 .to("log:foo");

from("timer:foo?period=1h15m")
 .to("log:foo");
from("timer:bar?period=2h30s")
 .to("log:bar");
from("timer:bar?period=3h45m58s")
 .to("log:bar");

CHAPTER 1. BUILDING BLOCKS FOR ROUTE DEFINITIONS

13

http://java.sun.com/j2se/1.5.0/docs/api/java/util/Formatter.html

1.5. PROCESSORS

Overview

To enable the router to do something more interesting than simply connecting a consumer endpoint to a
producer endpoint, you can add processors to your route. A processor is a command you can insert into
a routing rule to perform arbitrary processing of messages that flow through the rule. Apache Camel
provides a wide variety of different processors, as shown in Table 1.1, “Apache Camel Processors”.

Table 1.1. Apache Camel Processors

Java DSL XML DSL Description

aggregate() aggregate Aggregator EIP: Creates an
aggregator, which combines
multiple incoming exchanges into
a single exchange.

aop() aop Use Aspect Oriented
Programming (AOP) to do work
before and after a specified sub-
route. See Section 2.5, “Aspect
Oriented Programming”.

bean(), beanRef() bean Process the current exchange by
invoking a method on a Java
object (or bean). See Section 2.4,
“Bean Integration”.

choice() choice Content Based Router EIP:
Selects a particular sub-route
based on the exchange content,
using when and otherwise
clauses.

convertBodyTo() convertBodyTo Converts the In message body to
the specified type.

delay() delay Delayer EIP: Delays the
propagation of the exchange to
the latter part of the route.

doTry() doTry Creates a try/catch block for
handling exceptions, using
doCatch, doFinally, and
end clauses.

end() N/A Ends the current command block.

enrich(),enrichRef() enrich Content Enricher EIP: Combines
the current exchange with data
requested from a specified
producer endpoint URI.

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

14

filter() filter Message Filter EIP: Uses a
predicate expression to filter
incoming exchanges.

idempotentConsumer() idempotentConsumer Idempotent Consumer EIP:
Implements a strategy to suppress
duplicate messages.

inheritErrorHandler() @inheritErrorHandler Boolean option that can be used
to disable the inherited error
handler on a particular route node
(defined as a sub-clause in the
Java DSL and as an attribute in
the XML DSL).

inOnly() inOnly Either sets the current exchange's
MEP to InOnly (if no arguments)
or sends the exchange as an
InOnly to the specified
endpoint(s).

inOut() inOut Either sets the current exchange's
MEP to InOut (if no arguments) or
sends the exchange as an InOut
to the specified endpoint(s).

loadBalance() loadBalance Load Balancer EIP: Implements
load balancing over a collection of
endpoints.

log() log Logs a message to the console.

loop() loop Loop EIP: Repeatedly resends
each exchange to the latter part of
the route.

markRollbackOnly() @markRollbackOnly (Transactions) Marks the current
transaction for rollback only (no
exception is raised). In the XML
DSL, this option is set as a
boolean attribute on the
rollback element. See "EIP
Transaction Guide".

Java DSL XML DSL Description

CHAPTER 1. BUILDING BLOCKS FOR ROUTE DEFINITIONS

15

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.0/html/EIP_Transaction_Guide/

markRollbackOnlyLast() @markRollbackOnlyLast (Transactions) If one or more
transactions have previously been
associated with this thread and
then suspended, this command
marks the latest transaction for
rollback only (no exception is
raised). In the XML DSL, this
option is set as a boolean attribute
on the rollback element. See
"EIP Transaction Guide".

marshal() marshal Transforms into a low-level or
binary format using the specified
data format, in preparation for
sending over a particular transport
protocol. See the section called
“Marshalling and unmarshalling”.

multicast() multicast Multicast EIP: Multicasts the
current exchange to multiple
destinations, where each
destination gets its own copy of
the exchange.

onCompletion() onCompletion Defines a sub-route (terminated by
end() in the Java DSL) that gets
executed after the main route has
completed. For conditional
execution, use the onWhen sub-
clause. Can also be defined on its
own line (not in a route).

onException() onException Defines a sub-route (terminated by
end() in the Java DSL) that gets
executed whenever the specified
exception occurs. Usually defined
on its own line (not in a route).

pipeline() pipeline Pipes and Filters EIP: Sends the
exchange to a series of endpoints,
where the output of one endpoint
becomes the input of the next
endpoint. See also Section 2.1,
“Pipeline Processing”.

policy() policy Apply a policy to the current route
(currently only used for
transactional policies—see "EIP
Transaction Guide").

pollEnrich(),pollEnrich
Ref()

pollEnrich Content Enricher EIP: Combines
the current exchange with data
polled from a specified consumer
endpoint URI.

Java DSL XML DSL Description

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

16

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.0/html/EIP_Transaction_Guide/
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.0/html/EIP_Transaction_Guide/

process(),processRef process Execute a custom processor on
the current exchange. See the
section called “Custom processor”
and "Programming EIP
Components".

recipientList() recipientList Recipient List EIP : Sends the
exchange to a list of recipients that
is calculated at runtime (for
example, based on the contents of
a header).

removeHeader() removeHeader Removes the specified header
from the exchange's In message.

removeHeaders() removeHeaders Removes the headers matching
the specified pattern from the
exchange's In message. The
pattern can have the form,
prefix*—in which case it
matches every name starting with
prefix—otherwise, it is interpreted
as a regular expression.

removeProperty() removeProperty Removes the specified exchange
property from the exchange.

resequence() resequence Resequencer EIP: Re-orders
incoming exchanges on the basis
of a specified comparotor
operation. Supports a batch mode
and a stream mode.

rollback() rollback (Transactions) Marks the current
transaction for rollback only (also
raising an exception, by default).
See "EIP Transaction Guide".

routingSlip() routingSlip Routing Slip EIP: Routes the
exchange through a pipeline that
is constructed dynamically, based
on the list of endpoint URIs
extracted from a slip header.

sample() sample Creates a sampling throttler,
allowing you to extract a sample of
exchanges from the traffic on a
route.

setBody() setBody Sets the message body of the
exchange's In message.

Java DSL XML DSL Description

CHAPTER 1. BUILDING BLOCKS FOR ROUTE DEFINITIONS

17

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.0/html/Programming_EIP_Components/
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.0/html/EIP_Transaction_Guide/

setExchangePattern() setExchangePattern Sets the current exchange's MEP
to the specified value. See the
section called “Message
exchange patterns”.

setHeader() setHeader Sets the specified header in the
exchange's In message.

setOutHeader() setOutHeader Sets the specified header in the
exchange's Out message.

setProperty() setProperty() Sets the specified exchange
property.

sort() sort Sorts the contents of the In
message body (where a custom
comparator can optionally be
specified).

split() split Splitter EIP: Splits the current
exchange into a sequence of
exchanges, where each split
exchange contains a fragment of
the original message body.

stop() stop Stops routing the current
exchange and marks it as
completed.

threads() threads Creates a thread pool for
concurrent processing of the latter
part of the route.

throttle() throttle Throttler EIP: Limit the flow rate to
the specified level (exchanges per
second).

throwException() throwException Throw the specified Java
exception.

to() to Send the exchange to one or
more endpoints. See Section 2.1,
“Pipeline Processing”.

toF() N/A Send the exchange to an
endpoint, using string formatting.
That is, the endpoint URI string
can embed substitutions in the
style of the C printf()
function.

Java DSL XML DSL Description

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

18

transacted() transacted Create a Spring transaction scope
that encloses the latter part of the
route. See "EIP Transaction
Guide".

transform() transform Message Translator EIP: Copy
the In message headers to the
Out message headers and set the
Out message body to the specified
value.

unmarshal() unmarshal Transforms the In message body
from a low-level or binary format
to a high-level format, using the
specified data format. See the
section called “Marshalling and
unmarshalling”.

validate() validate Takes a predicate expression to
test whether the current message
is valid. If the predicate returns
false, throws a
PredicateValidationExce
ption exception.

wireTap() wireTap Wire Tap EIP: Sends a copy of
the current exchange to the
specified wire tap URI, using the
ExchangePattern.InOnly
MEP.

Java DSL XML DSL Description

Some sample processors

To get some idea of how to use processors in a route, see the following examples:

the section called “Choice”.

the section called “Filter”.

the section called “Throttler”.

the section called “Custom processor”.

Choice

The choice() processor is a conditional statement that is used to route incoming messages to
alternative producer endpoints. Each alternative producer endpoint is preceded by a when() method,
which takes a predicate argument. If the predicate is true, the following target is selected, otherwise
processing proceeds to the next when() method in the rule. For example, the following choice()
processor directs incoming messages to either Target1, Target2, or Target3, depending on the values of
Predicate1 and Predicate2:

from("SourceURL")

CHAPTER 1. BUILDING BLOCKS FOR ROUTE DEFINITIONS

19

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.0/html/EIP_Transaction_Guide/

Or equivalently in Spring XML:

In the Java DSL, there is a special case where you might need to use the endChoice() command.
Some of the standard Apache Camel processors enable you to specify extra parameters using special
sub-clauses, effectively opening an extra level of nesting which is usually terminated by the end()
command. For example, you could specify a load balancer clause as
loadBalance().roundRobin().to("mock:foo").to("mock:bar").end(), which load
balances messages between the mock:foo and mock:bar endpoints. If the load balancer clause is
embedded in a choice condition, however, it is necessary to terminate the clause using the
endChoice() command, as follows:

Filter

The filter() processor can be used to prevent uninteresting messages from reaching the producer
endpoint. It takes a single predicate argument: if the predicate is true, the message exchange is allowed
through to the producer; if the predicate is false, the message exchange is blocked. For example, the
following filter blocks a message exchange, unless the incoming message contains a header, foo, with
value equal to bar:

 .choice()
 .when(Predicate1).to("Target1")
 .when(Predicate2).to("Target2")
 .otherwise().to("Target3");

<camelContext id="buildSimpleRouteWithChoice"
xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from uri="SourceURL"/>
 <choice>
 <when>
 <!-- First predicate -->
 <simple>header.foo = 'bar'</simple>
 <to uri="Target1"/>
 </when>
 <when>
 <!-- Second predicate -->
 <simple>header.foo = 'manchu'</simple>
 <to uri="Target2"/>
 </when>
 <otherwise>
 <to uri="Target3"/>
 </otherwise>
 </choice>
 </route>
</camelContext>

from("direct:start")
 .choice()
 .when(body().contains("Camel"))

.loadBalance().roundRobin().to("mock:foo").to("mock:bar").endChoice()
 .otherwise()
 .to("mock:result");

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

20

Or equivalently in Spring XML:

Throttler

The throttle() processor ensures that a producer endpoint does not get overloaded. The throttler
works by limiting the number of messages that can pass through per second. If the incoming messages
exceed the specified rate, the throttler accumulates excess messages in a buffer and transmits them
more slowly to the producer endpoint. For example, to limit the rate of throughput to 100 messages per
second, you can define the following rule:

Or equivalently in Spring XML:

Custom processor

If none of the standard processors described here provide the functionality you need, you can always
define your own custom processor. To create a custom processor, define a class that implements the
org.apache.camel.Processor interface and overrides the process() method. The following
custom processor, MyProcessor, removes the header named foo from incoming messages:

Example 1.3. Implementing a Custom Processor Class

from("SourceURL").filter(header("foo").isEqualTo("bar")).to("TargetURL");

<camelContext id="filterRoute"
xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from uri="SourceURL"/>
 <filter>
 <simple>header.foo = 'bar'</simple>
 <to uri="TargetURL"/>
 </filter>
 </route>
</camelContext>

from("SourceURL").throttle(100).to("TargetURL");

<camelContext id="throttleRoute"
xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from uri="SourceURL"/>
 <throttle maximumRequestsPerPeriod="100" timePeriodMillis="1000">
 <to uri="TargetURL"/>
 </throttle>
 </route>
</camelContext>

public class MyProcessor implements org.apache.camel.Processor {
public void process(org.apache.camel.Exchange exchange) {
 inMessage = exchange.getIn();
 if (inMessage != null) {
 inMessage.removeHeader("foo");

CHAPTER 1. BUILDING BLOCKS FOR ROUTE DEFINITIONS

21

To insert the custom processor into a router rule, invoke the process() method, which provides a
generic mechanism for inserting processors into rules. For example, the following rule invokes the
processor defined in Example 1.3, “Implementing a Custom Processor Class”:

 }
}
};

org.apache.camel.Processor myProc = new MyProcessor();

from("SourceURL").process(myProc).to("TargetURL");

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

22

CHAPTER 2. BASIC PRINCIPLES OF ROUTE BUILDING

Abstract

Apache Camel provides several processors and components that you can link together in a route. This
chapter provides a basic orientation by explaining the principles of building a route using the provided
building blocks.

2.1. PIPELINE PROCESSING

Overview

In Apache Camel, pipelining is the dominant paradigm for connecting nodes in a route definition. The
pipeline concept is probably most familiar to users of the UNIX operating system, where it is used to join
operating system commands. For example, ls | more is an example of a command that pipes a
directory listing, ls, to the page-scrolling utility, more. The basic idea of a pipeline is that the output of
one command is fed into the input of the next. The natural analogy in the case of a route is for the Out
message from one processor to be copied to the In message of the next processor.

Processor nodes

Every node in a route, except for the initial endpoint, is a processor, in the sense that they inherit from the
org.apache.camel.Processor interface. In other words, processors make up the basic building
blocks of a DSL route. For example, DSL commands such as filter(), delayer(), setBody(),
setHeader(), and to() all represent processors. When considering how processors connect together
to build up a route, it is important to distinguish two different processing approaches.

The first approach is where the processor simply modifies the exchange's In message, as shown in
Figure 2.1, “Processor Modifying an In Message”. The exchange's Out message remains null in this
case.

Figure 2.1. Processor Modifying an In Message

The following route shows a setHeader() command that modifies the current In message by adding
(or modifying) the BillingSystem heading:

The second approach is where the processor creates an Out message to represent the result of the
processing, as shown in Figure 2.2, “Processor Creating an Out Message”.

from("activemq:orderQueue")
 .setHeader("BillingSystem", xpath("/order/billingSystem"))
 .to("activemq:billingQueue");

CHAPTER 2. BASIC PRINCIPLES OF ROUTE BUILDING

23

Figure 2.2. Processor Creating an Out Message

The following route shows a transform() command that creates an Out message with a message
body containing the string, DummyBody:

where constant("DummyBody") represents a constant expression. You cannot pass the string,
DummyBody, directly, because the argument to transform() must be an expression type.

Pipeline for InOnly exchanges

Figure 2.3, “Sample Pipeline for InOnly Exchanges” shows an example of a processor pipeline for InOnly
exchanges. Processor A acts by modifying the In message, while processors B and C create an Out
message. The route builder links the processors together as shown. In particular, processors B and C
are linked together in the form of a pipeline: that is, processor B's Out message is moved to the In
message before feeding the exchange into processor C, and processor C's Out message is moved to
the In message before feeding the exchange into the producer endpoint. Thus the processors' outputs
and inputs are joined into a continuous pipeline, as shown in Figure 2.3, “Sample Pipeline for InOnly
Exchanges”.

Figure 2.3. Sample Pipeline for InOnly Exchanges

Apache Camel employs the pipeline pattern by default, so you do not need to use any special syntax to
create a pipeline in your routes. For example, the following route pulls messages from a
userdataQueue queue, pipes the message through a Velocity template (to produce a customer
address in text format), and then sends the resulting text address to the queue,
envelopeAddressQueue:

Where the Velocity endpoint, velocity:file:AdressTemplate.vm, specifies the location of a
Velocity template file, file:AdressTemplate.vm, in the file system. The to() command changes the
exchange pattern to InOut before sending the exchange to the Velocity endpoint and then changes it

from("activemq:orderQueue")
 .transform(constant("DummyBody"))
 .to("activemq:billingQueue");

from("activemq:userdataQueue")
 .to(ExchangePattern.InOut, "velocity:file:AdressTemplate.vm")
 .to("activemq:envelopeAddresses");

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

24

back to InOnly afterwards. For more details of the Velocity endpoint, see chapter "Velocity" in "EIP
Component Reference".

Pipeline for InOut exchanges

Figure 2.4, “Sample Pipeline for InOut Exchanges” shows an example of a processor pipeline for InOut
exchanges, which you typically use to support remote procedure call (RPC) semantics. Processors A, B,
and C are linked together in the form of a pipeline, with the output of each processor being fed into the
input of the next. The final Out message produced by the producer endpoint is sent all the way back to
the consumer endpoint, where it provides the reply to the original request.

Figure 2.4. Sample Pipeline for InOut Exchanges

Note that in order to support the InOut exchange pattern, it is essential that the last node in the route
(whether it is a producer endpoint or some other kind of processor) creates an Out message. Otherwise,
any client that connects to the consumer endpoint would hang and wait indefinitely for a reply message.
You should be aware that not all producer endpoints create Out messages.

Consider the following route that processes payment requests, by processing incoming HTTP requests:

Where the incoming payment request is processed by passing it through a pipeline of Web services,
cxf:bean:addAccountDetails, cxf:bean:getCreditRating, and
cxf:bean:processTransaction. The final Web service, processTransaction, generates a
response (Out message) that is sent back through the JETTY endpoint.

When the pipeline consists of just a sequence of endpoints, it is also possible to use the following
alternative syntax:

Pipeline for InOptionalOut exchanges

The pipeline for InOptionalOut exchanges is essentially the same as the pipeline in Figure 2.4, “Sample
Pipeline for InOut Exchanges”. The difference between InOut and InOptionalOut is that an exchange
with the InOptionalOut exchange pattern is allowed to have a null Out message as a reply. That is, in the
case of an InOptionalOut exchange, a null Out message is copied to the In message of the next node
in the pipeline. By contrast, in the case of an InOut exchange, a null Out message is discarded and the
original In message from the current node would be copied to the In message of the next node instead.

from("jetty:http://localhost:8080/foo")
 .to("cxf:bean:addAccountDetails")
 .to("cxf:bean:getCreditRating")
 .to("cxf:bean:processTransaction");

from("jetty:http://localhost:8080/foo")
 .pipeline("cxf:bean:addAccountDetails", "cxf:bean:getCreditRating",
"cxf:bean:processTransaction");

CHAPTER 2. BASIC PRINCIPLES OF ROUTE BUILDING

25

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.0/html/EIP_Component_Reference/_IDU_Velocity.html

2.2. MULTIPLE INPUTS

Overview

A standard route takes its input from just a single endpoint, using the from(EndpointURL) syntax in
the Java DSL. But what if you need to define multiple inputs for your route? Apache Camel provides
several alternatives for specifying multiple inputs to a route. The approach to take depends on whether
you want the exchanges to be processed independently of each other or whether you want the
exchanges from different inputes to be combined in some way (in which case, you should use the the
section called “Content enricher pattern”).

Multiple independent inputs

The simplest way to specify multiple inputs is using the multi-argument form of the from() DSL
command, for example:

Or you can use the following equivalent syntax:

In both of these examples, exchanges from each of the input endpoints, URI1, URI2, and URI3, are
processed independently of each other and in separate threads. In fact, you can think of the preceding
route as being equivalent to the following three separate routes:

Segmented routes

For example, you might want to merge incoming messages from two different messaging systems and
process them using the same route. In most cases, you can deal with multiple inputs by dividing your
route into segments, as shown in Figure 2.5, “Processing Multiple Inputs with Segmented Routes”.

Figure 2.5. Processing Multiple Inputs with Segmented Routes

The initial segments of the route take their inputs from some external queues—for example,
activemq:Nyse and activemq:Nasdaq—and send the incoming exchanges to an internal endpoint,
InternalUrl. The second route segment merges the incoming exchanges, taking them from the internal
endpoint and sending them to the destination queue, activemq:USTxn. The InternalUrl is the URL for
an endpoint that is intended only for use within a router application. The following types of endpoints are
suitable for internal use:

the section called “Direct endpoints”.

from("URI1", "URI2", "URI3").to("DestinationUri");

from("URI1").from("URI2").from("URI3").to("DestinationUri");

from("URI1").to("DestinationUri");
from("URI2").to("DestinationUri");
from("URI3").to("DestinationUri");

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

26

the section called “SEDA endpoints”.

the section called “VM endpoints”.

The main purpose of these endpoints is to enable you to glue together different segments of a route.
They all provide an effective way of merging multiple inputs into a single route.

Direct endpoints

The direct component provides the simplest mechanism for linking together routes. The event model for
the direct component is synchronous, so that subsequent segments of the route run in the same thread
as the first segment. The general format of a direct URL is direct:EndpointID, where the endpoint
ID, EndpointID, is simply a unique alphanumeric string that identifies the endpoint instance.

For example, if you want to take the input from two message queues, activemq:Nyse and
activemq:Nasdaq, and merge them into a single message queue, activemq:USTxn, you can do this
by defining the following set of routes:

Where the first two routes take the input from the message queues, Nyse and Nasdaq, and send them
to the endpoint, direct:mergeTxns. The last queue combines the inputs from the previous two
queues and sends the combined message stream to the activemq:USTxn queue.

The implementation of the direct endpoint behaves as follows: whenever an exchange arrives at a
producer endpoint (for example, to("direct:mergeTxns")), the direct endpoint passes the
exchange directly to all of the consumers endpoints that have the same endpoint ID (for example,
from("direct:mergeTxns")). Direct endpoints can only be used to communicate between routes
that belong to the same CamelContext in the same Java virtual machine (JVM) instance.

SEDA endpoints

The SEDA component provides an alternative mechanism for linking together routes. You can use it in a
similar way to the direct component, but it has a different underlying event and threading model, as
follows:

Processing of a SEDA endpoint is not synchronous. That is, when you send an exchange to a
SEDA producer endpoint, control immediately returns to the preceding processor in the route.

SEDA endpoints contain a queue buffer (of java.util.concurrent.BlockingQueue type),
which stores all of the incoming exchanges prior to processing by the next route segment.

Each SEDA consumer endpoint creates a thread pool (the default size is 5) to process exchange
objects from the blocking queue.

The SEDA component supports the competing consumers pattern, which guarantees that each
incoming exchange is processed only once, even if there are multiple consumers attached to a
specific endpoint.

One of the main advantages of using a SEDA endpoint is that the routes can be more responsive, owing
to the built-in consumer thread pool. The stock transactions example can be re-written to use SEDA
endpoints instead of direct endpoints, as follows:

from("activemq:Nyse").to("direct:mergeTxns");
from("activemq:Nasdaq").to("direct:mergeTxns");

from("direct:mergeTxns").to("activemq:USTxn");

CHAPTER 2. BASIC PRINCIPLES OF ROUTE BUILDING

27

The main difference between this example and the direct example is that when using SEDA, the second
route segment (from seda:mergeTxns to activemq:USTxn) is processed by a pool of five threads.

NOTE

There is more to SEDA than simply pasting together route segments. The staged event-
driven architecture (SEDA) encompasses a design philosophy for building more
manageable multi-threaded applications. The purpose of the SEDA component in Apache
Camel is simply to enable you to apply this design philosophy to your applications. For
more details about SEDA, see http://www.eecs.harvard.edu/~mdw/proj/seda/.

VM endpoints

The VM component is very similar to the SEDA endpoint. The only difference is that, whereas the SEDA
component is limited to linking together route segments from within the same CamelContext, the VM
component enables you to link together routes from distinct Apache Camel applications, as long as they
are running within the same Java virtual machine.

The stock transactions example can be re-written to use VM endpoints instead of SEDA endpoints, as
follows:

And in a separate router application (running in the same Java VM), you can define the second segment
of the route as follows:

Content enricher pattern

The content enricher pattern defines a fundamentally different way of dealing with multiple inputs to a
route. When an exchange enters the enricher processor, the enricher contacts an external resource to
retrieve information, which is then added to the original message. In this pattern, the external resource
effectively represents a second input to the message.

For example, suppose you are writing an application that processes credit requests. Before processing a
credit request, you need to augment it with the data that assigns a credit rating to the customer, where
the ratings data is stored in a file in the directory, src/data/ratings. You can combine the incoming
credit request with data from the ratings file using the pollEnrich() pattern and a
GroupedExchangeAggregationStrategy aggregation strategy, as follows:

from("activemq:Nyse").to("seda:mergeTxns");
from("activemq:Nasdaq").to("seda:mergeTxns");

from("seda:mergeTxns").to("activemq:USTxn");

from("activemq:Nyse").to("vm:mergeTxns");
from("activemq:Nasdaq").to("vm:mergeTxns");

from("vm:mergeTxns").to("activemq:USTxn");

from("jms:queue:creditRequests")
 .pollEnrich("file:src/data/ratings?noop=true", new
GroupedExchangeAggregationStrategy())
 .bean(new MergeCreditRequestAndRatings(), "merge")
 .to("jms:queue:reformattedRequests");

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

28

http://www.eecs.harvard.edu/~mdw/proj/seda/

Where the GroupedExchangeAggregationStrategy class is a standard aggregation strategy from
the org.apache.camel.processor.aggregate package that adds each new exchange to a
java.util.List instance and stores the resulting list in the Exchange.GROUPED_EXCHANGE
exchange property. In this case, the list contains two elements: the original exchange (from the
creditRequests JMS queue); and the enricher exchange (from the file endpoint).

To access the grouped exchange, you can use code like the following:

An alternative approach to this application would be to put the merge code directly into the
implementation of the custom aggregation strategy class.

For more details about the content enricher pattern, see Section 8.1, “Content Enricher”.

2.3. EXCEPTION HANDLING

Abstract

Apache Camel provides several different mechanisms, which let you handle exceptions at different
levels of granularity: you can handle exceptions within a route using doTry, doCatch, and doFinally;
or you can specify what action to take for each exception type and apply this rule to all routes in a
RouteBuilder using onException; or you can specify what action to take for all exception types and
apply this rule to all routes in a RouteBuilder using errorHandler.

For more details about exception handling, see Section 5.3, “Dead Letter Channel”.

2.3.1. onException Clause

Overview

The onException clause is a powerful mechanism for trapping exceptions that occur in one or more
routes: it is type-specific, enabling you to define distinct actions to handle different exception types; it
allows you to define actions using essentially the same (actually, slightly extended) syntax as a route,
giving you considerable flexibility in the way you handle exceptions; and it is based on a trapping model,
which enables a single onException clause to deal with exceptions occurring at any node in any route.

Trapping exceptions using onException

public class MergeCreditRequestAndRatings {
 public void merge(Exchange ex) {
 // Obtain the grouped exchange
 List<Exchange> list = ex.getProperty(Exchange.GROUPED_EXCHANGE,
List.class);

 // Get the exchanges from the grouped exchange
 Exchange originalEx = list.get(0);
 Exchange ratingsEx = list.get(1);

 // Merge the exchanges
 ...
 }
}

CHAPTER 2. BASIC PRINCIPLES OF ROUTE BUILDING

29

The onException clause is a mechanism for trapping, rather than catching exceptions. That is, once
you define an onException clause, it traps exceptions that occur at any point in a route. This contrasts
with the Java try/catch mechanism, where an exception is caught, only if a particular code fragment is
explicitly enclosed in a try block.

What really happens when you define an onException clause is that the Apache Camel runtime
implicitly encloses each route node in a try block. This is why the onException clause is able to trap
exceptions at any point in the route. But this wrapping is done for you automatically; it is not visible in the
route definitions.

Java DSL example

In the following Java DSL example, the onException clause applies to all of the routes defined in the
RouteBuilder class. If a ValidationException exception occurs while processing either of the
routes (from("seda:inputA") or from("seda:inputB")), the onException clause traps the
exception and redirects the current exchange to the validationFailed JMS queue (which serves as
a deadletter queue).

XML DSL example

The preceding example can also be expressed in the XML DSL, using the onException element to
define the exception clause, as follows:

// Java
public class MyRouteBuilder extends RouteBuilder {

 public void configure() {
 onException(ValidationException.class)
 .to("activemq:validationFailed");

 from("seda:inputA")
 .to("validation:foo/bar.xsd", "activemq:someQueue");

 from("seda:inputB").to("direct:foo")
 .to("rnc:mySchema.rnc", "activemq:anotherQueue");
 }
}

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:camel="http://camel.apache.org/schema/spring"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.0.xsd
 http://camel.apache.org/schema/spring
http://camel.apache.org/schema/spring/camel-spring.xsd">

 <camelContext xmlns="http://camel.apache.org/schema/spring">
 <onException>
 <exception>com.mycompany.ValidationException</exception>
 <to uri="activemq:validationFailed"/>
 </onException>
 <route>
 <from uri="seda:inputA"/>

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

30

Trapping multiple exceptions

You can define multiple onException clauses to trap exceptions in a RouteBuilder scope. This
enables you to take different actions in response to different exceptions. For example, the following
series of onException clauses defined in the Java DSL define different deadletter destinations for
ValidationException, ValidationException, and Exception:

You can define the same series of onException clauses in the XML DSL as follows:

You can also group multiple exceptions together to be trapped by the same onException clause. In the
Java DSL, you can group multiple exceptions as follows:

In the XML DSL, you can group multiple exceptions together by defining more than one exception
element inside the onException element, as follows:

 <to uri="validation:foo/bar.xsd"/>
 <to uri="activemq:someQueue"/>
 </route>
 <route>
 <from uri="seda:inputB"/>
 <to uri="rnc:mySchema.rnc"/>
 <to uri="activemq:anotherQueue"/>
 </route>
 </camelContext>

</beans>

onException(ValidationException.class).to("activemq:validationFailed");
onException(java.io.IOException.class).to("activemq:ioExceptions");
onException(Exception.class).to("activemq:exceptions");

<onException>
 <exception>com.mycompany.ValidationException</exception>
 <to uri="activemq:validationFailed"/>
</onException>
<onException>
 <exception>java.io.IOException</exception>
 <to uri="activemq:ioExceptions"/>
</onException>
<onException>
 <exception>java.lang.Exception</exception>
 <to uri="activemq:exceptions"/>
</onException>

onException(ValidationException.class, BuesinessException.class)
 .to("activemq:validationFailed");

<onException>
 <exception>com.mycompany.ValidationException</exception>
 <exception>com.mycompany.BuesinessException</exception>
 <to uri="activemq:validationFailed"/>
</onException>

CHAPTER 2. BASIC PRINCIPLES OF ROUTE BUILDING

31

When trapping multiple exceptions, the order of the onException clauses is significant. Apache Camel
initially attempts to match the thrown exception against the first clause. If the first clause fails to match,
the next onException clause is tried, and so on until a match is found. Each matching attempt is
governed by the following algorithm:

1. If the thrown exception is a chained exception (that is, where an exception has been caught and
rethrown as a different exception), the most nested exception type serves initially as the basis
for matching. This exception is tested as follows:

a. If the exception-to-test has exactly the type specified in the onException clause (tested
using instanceof), a match is triggered.

b. If the exception-to-test is a sub-type of the type specified in the onException clause, a
match is triggered.

2. If the most nested exception fails to yield a match, the next exception in the chain (the wrapping
exception) is tested instead. The testing continues up the chain until either a match is triggered
or the chain is exhausted.

Deadletter channel

The basic examples of onException usage have so far all exploited the deadletter channel pattern.
That is, when an onException clause traps an exception, the current exchange is routed to a special
destination (the deadletter channel). The deadletter channel serves as a holding area for failed
messages that have not been processed. An administrator can inspect the messages at a later time and
decide what action needs to be taken.

For more details about the deadletter channel pattern, see Section 5.3, “Dead Letter Channel”.

Use original message

By the time an exception is raised in the middle of a route, the message in the exchange could have
been modified considerably (and might not even by readable by a human). Often, it is easier for an
administrator to decide what corrective actions to take, if the messages visible in the deadletter queue
are the original messages, as received at the start of the route.

In the Java DSL, you can replace the message in the exchange by the original message, using the
useOriginalMessage() DSL command, as follows:

In the XML DSL, you can retrieve the original message by setting the useOriginalMessage attribute
on the onException element, as follows:

Redelivery policy

Instead of interrupting the processing of a message and giving up as soon as an exception is raised,

onException(ValidationException.class)
 .useOriginalMessage()
 .to("activemq:validationFailed");

<onException useOriginalMessage="true">
 <exception>com.mycompany.ValidationException</exception>
 <to uri="activemq:validationFailed"/>
</onException>

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

32

http://java.sun.com/j2se/1.4.2/docs/guide/lang/chained-exceptions.html

Apache Camel gives you the option of attempting to redeliver the message at the point where the
exception occurred. In networked systems, where timeouts can occur and temporary faults arise, it is
often possible for failed messages to be processed successfully, if they are redelivered shortly after the
original exception was raised.

The Apache Camel redelivery supports various strategies for redelivering messages after an exception
occurs. Some of the most important options for configuring redelivery are as follows:

maximumRedeliveries()

Specifies the maximum number of times redelivery can be attempted (default is 0). A negative value
means redelivery is always attempted (equivalent to an infinite value).

retryWhile()

Specifies a predicate (of Predicate type), which determines whether Apache Camel ought to
continue redelivering. If the predicate evaluates to true on the current exchange, redelivery is
attempted; otherwise, redelivery is stopped and no further redelivery attempts are made.

This option takes precedence over the maximumRedeliveries() option.

In the Java DSL, redelivery policy options are specified using DSL commands in the onException
clause. For example, you can specify a maximum of six redeliveries, after which the exchange is sent to
the validationFailed deadletter queue, as follows:

In the XML DSL, redelivery policy options are specified by setting attributes on the redeliveryPolicy
element. For example, the preceding route can be expressed in XML DSL as follows:

The latter part of the route—after the redelivery options are set—is not processed until after the last
redelivery attempt has failed. For detailed descriptions of all the redelivery options, see Section 5.3,
“Dead Letter Channel”.

Alternatively, you can specify redelivery policy options in a redeliveryPolicyProfile instance. You
can then reference the redeliveryPolicyProfile instance using the onException element's
redeliverPolicyRef attribute. For example, the preceding route can be expressed as follows:

onException(ValidationException.class)
 .maximumRedeliveries(6)
 .retryAttemptedLogLevel(org.apache.camel.LogginLevel.WARN)
 .to("activemq:validationFailed");

<onException useOriginalMessage="true">
 <exception>com.mycompany.ValidationException</exception>
 <redeliveryPolicy maximumRedeliveries="6"/>
 <to uri="activemq:validationFailed"/>
</onException>

<redeliveryPolicyProfile id="redelivPolicy" maximumRedeliveries="6"
retryAttemptedLogLevel="WARN"/>

<onException useOriginalMessage="true"
redeliveryPolicyRef="redelivPolicy">
 <exception>com.mycompany.ValidationException</exception>
 <to uri="activemq:validationFailed"/>
</onException>

CHAPTER 2. BASIC PRINCIPLES OF ROUTE BUILDING

33

NOTE

The approach using redeliveryPolicyProfile is useful, if you want to re-use the
same redelivery policy in multiple onException clauses.

Conditional trapping

Exception trapping with onException can be made conditional by specifying the onWhen option. If you
specify the onWhen option in an onException clause, a match is triggered only when the thrown
exception matches the clause and the onWhen predicate evaluates to true on the current exchange.

For example, in the following Java DSL fragment,the first onException clause triggers, only if the
thrown exception matches MyUserException and the user header is non-null in the current exchange:

The preceding onException clauses can be expressed in the XML DSL as follows:

Handling exceptions

By default, when an exception is raised in the middle of a route, processing of the current exchange is

// Java

// Here we define onException() to catch MyUserException when
// there is a header[user] on the exchange that is not null
onException(MyUserException.class)
 .onWhen(header("user").isNotNull())
 .maximumRedeliveries(2)
 .to(ERROR_USER_QUEUE);

// Here we define onException to catch MyUserException as a kind
// of fallback when the above did not match.
// Noitce: The order how we have defined these onException is
// important as Camel will resolve in the same order as they
// have been defined
onException(MyUserException.class)
 .maximumRedeliveries(2)
 .to(ERROR_QUEUE);

<redeliveryPolicyProfile id="twoRedeliveries" maximumRedeliveries="2"/>

<onException redeliveryPolicyRef="twoRedeliveries">
 <exception>com.mycompany.MyUserException</exception>
 <onWhen>
 <simple>${header.user} != null</simple>
 </onWhen>
 <to uri="activemq:error_user_queue"/>
</onException>

<onException redeliveryPolicyRef="twoRedeliveries">
 <exception>com.mycompany.MyUserException</exception>
 <to uri="activemq:error_queue"/>
</onException>

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

34

interrupted and the thrown exception is propagated back to the consumer endpoint at the start of the
route. When an onException clause is triggered, the behavior is essentially the same, except that the
onException clause performs some processing before the thrown exception is propagated back.

But this default behavior is not the only way to handle an exception. The onException provides various
options to modify the exception handling behavior, as follows:

the section called “Suppressing exception rethrow”—you have the option of suppressing the
rethrown exception after the onException clause has completed. In other words, in this case
the exception does not propagate back to the consumer endpoint at the start of the route.

the section called “Continuing processing”—you have the option of resuming normal processing
of the exchange from the point where the exception originally occurred. Implicitly, this approach
also suppresses the rethrown exception.

the section called “Sending a response”—in the special case where the consumer endpoint at
the start of the route expects a reply (that is, having an InOut MEP), you might prefer to
construct a custom fault reply message, rather than propagating the exception back to the
consumer endpoint.

Suppressing exception rethrow

To prevent the current exception from being rethrown and propagated back to the consumer endpoint,
you can set the handled() option to true in the Java DSL, as follows:

In the Java DSL, the argument to the handled() option can be of boolean type, of Predicate type, or
of Expression type (where any non-boolean expression is interpreted as true, if it evaluates to a non-
null value).

The same route can be configured to suppress the rethrown exception in the XML DSL, using the
handled element, as follows:

Continuing processing

To continue processing the current message from the point in the route where the exception was
originally thrown, you can set the continued option to true in the Java DSL, as follows:

onException(ValidationException.class)
 .handled(true)
 .to("activemq:validationFailed");

<onException>
 <exception>com.mycompany.ValidationException</exception>
 <handled>
 <constant>true</constant>
 </handled>
 <to uri="activemq:validationFailed"/>
</onException>

onException(ValidationException.class)
 .continued(true);

CHAPTER 2. BASIC PRINCIPLES OF ROUTE BUILDING

35

In the Java DSL, the argument to the continued() option can be of boolean type, of Predicate type,
or of Expression type (where any non-boolean expression is interpreted as true, if it evaluates to a
non-null value).

The same route can be configured in the XML DSL, using the continued element, as follows:

Sending a response

When the consumer endpoint that starts a route expects a reply, you might prefer to construct a custom
fault reply message, instead of simply letting the thrown exception propagate back to the consumer.
There are two essential steps you need to follow in this case: suppress the rethrown exception using the
handled option; and populate the exchange's Out message slot with a custom fault message.

For example, the following Java DSL fragment shows how to send a reply message containing the text
string, Sorry, whenever the MyFunctionalException exception occurs:

If you are sending a fault response to the client, you will often want to incorporate the text of the
exception message in the response. You can access the text of the current exception message using the
exceptionMessage() builder method. For example, you can send a reply containing just the text of
the exception message whenever the MyFunctionalException exception occurs, as follows:

The exception message text is also accessible from the Simple language, through the
exception.message variable. For example, you could embed the current exception text in a reply
message, as follows:

<onException>
 <exception>com.mycompany.ValidationException</exception>
 <continued>
 <constant>true</constant>
 </continued>
</onException>

// we catch MyFunctionalException and want to mark it as handled (= no
failure returned to client)
// but we want to return a fixed text response, so we transform OUT body
as Sorry.
onException(MyFunctionalException.class)
 .handled(true)
 .transform().constant("Sorry");

// we catch MyFunctionalException and want to mark it as handled (= no
failure returned to client)
// but we want to return a fixed text response, so we transform OUT body
and return the exception message
onException(MyFunctionalException.class)
 .handled(true)
 .transform(exceptionMessage());

// we catch MyFunctionalException and want to mark it as handled (= no
failure returned to client)
// but we want to return a fixed text response, so we transform OUT body
and return a nice message
// using the simple language where we want insert the exception message
onException(MyFunctionalException.class)

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

36

The preceding onException clause can be expressed in XML DSL as follows:

Exception thrown while handling an exception

An exception that gets thrown while handling an existing exception (in other words, one that gets thrown
in the middle of processing an onException clause) is handled in a special way. Such an exception is
handled by the special fallback exception handler, which handles the exception as follows:

All existing exception handlers are ignored and processing fails immediately.

The new exception is logged.

The new exception is set on the exchange object.

The simple strategy avoids complex failure scenarios which could otherwise end up with an
onException clause getting locked into an infinite loop.

Scopes

The onException clauses can be effective in either of the following scopes:

RouteBuilder scope—onException clauses defined as standalone statements inside a
RouteBuilder.configure() method affect all of the routes defined in that RouteBuilder
instance. On the other hand, these onException clauses have no effect whatsoever on routes
defined inside any other RouteBuilder instance. The onException clauses must appear
before the route definitions.

All of the examples up to this point are defined using the RouteBuilder scope.

Route scope—onException clauses can also be embedded directly within a route. These
onException clauses affect only the route in which they are defined.

Route scope

You can embed an onException clause anywhere inside a route definition, but you must terminate the
embedded onException clause using the end() DSL command.

For example, you can define an embedded onException clause in the Java DSL, as follows:

 .handled(true)
 .transform().simple("Error reported: ${exception.message} - cannot
process this message.");

<onException>
 <exception>com.mycompany.MyFunctionalException</exception>
 <handled>
 <constant>true</constant>
 </handled>
 <transform>
 <simple>Error reported: ${exception.message} - cannot process this
message.</simple>
 </transform>
</onException>

CHAPTER 2. BASIC PRINCIPLES OF ROUTE BUILDING

37

You can define an embedded onException clause in the XML DSL, as follows:

2.3.2. Error Handler

Overview

The errorHandler() clause provides similar features to the onException clause, except that this
mechanism is not able to discriminate between different exception types. The errorHandler() clause
is the original exception handling mechanism provided by Apache Camel and was available before the
onException clause was implemented.

Java DSL example

The errorHandler() clause is defined in a RouteBuilder class and applies to all of the routes in
that RouteBuilder class. It is triggered whenever an exception of any kind occurs in one of the
applicable routes. For example, to define an error handler that routes all failed exchanges to the
ActiveMQ deadLetter queue, you can define a RouteBuilder as follows:

// Java
from("direct:start")
 .onException(OrderFailedException.class)
 .maximumRedeliveries(1)
 .handled(true)
 .beanRef("orderService", "orderFailed")
 .to("mock:error")
 .end()
 .beanRef("orderService", "handleOrder")
 .to("mock:result");

<route errorHandlerRef="deadLetter">
 <from uri="direct:start"/>
 <onException>
 <exception>com.mycompany.OrderFailedException</exception>
 <redeliveryPolicy maximumRedeliveries="1"/>
 <handled>
 <constant>true</constant>
 </handled>
 <bean ref="orderService" method="orderFailed"/>
 <to uri="mock:error"/>
 </onException>
 <bean ref="orderService" method="handleOrder"/>
 <to uri="mock:result"/>
</route>

public class MyRouteBuilder extends RouteBuilder {

 public void configure() {
 errorHandler(deadLetterChannel("activemq:deadLetter"));

 // The preceding error handler applies
 // to all of the following routes:
 from("activemq:orderQueue")
 .to("pop3://fulfillment@acme.com");

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

38

Redirection to the dead letter channel will not occur, however, until all attempts at redelivery have been
exhausted.

XML DSL example

In the XML DSL, you define an error handler within a camelContext scope using the errorHandler
element. For example, to define an error handler that routes all failed exchanges to the ActiveMQ
deadLetter queue, you can define an errorHandler element as follows:

Types of error handler

Table 2.1, “Error Handler Types” provides an overview of the different types of error handler you can
define.

Table 2.1. Error Handler Types

Java DSL Builder XML DSL Type Attribute Description

defaultErrorHandler() DefaultErrorHandler Propagates exceptions back to the
caller and supports the redelivery
policy, but it does not support a
dead letter queue.

 from("file:src/data?noop=true")
 .to("file:target/messages");
 // ...
 }
}

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:camel="http://camel.apache.org/schema/spring"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.0.xsd
 http://camel.apache.org/schema/spring
http://camel.apache.org/schema/spring/camel-spring.xsd">

 <camelContext xmlns="http://camel.apache.org/schema/spring">
 <errorHandler type="DeadLetterChannel"
 deadLetterUri="activemq:deadLetter"/>
 <route>
 <from uri="activemq:orderQueue"/>
 <to uri="pop3://fulfillment@acme.com"/>
 </route>
 <route>
 <from uri="file:src/data?noop=true"/>
 <to uri="file:target/messages"/>
 </route>
 </camelContext>

</beans>

CHAPTER 2. BASIC PRINCIPLES OF ROUTE BUILDING

39

deadLetterChannel() DeadLetterChannel Supports the same features as the
default error handler and, in
addition, supports a dead letter
queue.

loggingErrorChannel() LoggingErrorChannel Logs the exception text whenever
an exception occurs.

noErrorHandler() NoErrorHandler Dummy handler implementation
that can be used to disable the
error handler.

 TransactionErrorHandler An error handler for transacted
routes. A default transaction error
handler instance is automatically
used for a route that is marked as
transacted.

Java DSL Builder XML DSL Type Attribute Description

2.3.3. doTry, doCatch, and doFinally

Overview

To handle exceptions within a route, you can use a combination of the doTry, doCatch, and
doFinally clauses, which handle exceptions in a similar way to Java's try, catch, and finally
blocks.

Similarities between doCatch and Java catch

In general, the doCatch() clause in a route definition behaves in an analogous way to the catch()
statement in Java code. In particular, the following features are supported by the doCatch() clause:

Multiple doCatch clauses—you can have multiple doCatch clauses within a single doTry block.
The doCatch clauses are tested in the order they appear, just like Java catch() statements.
Apache Camel executes the first doCatch clause that matches the thrown exception.

NOTE

This algorithm is different from the exception matching algorithm used by the
onException clause—see Section 2.3.1, “onException Clause” for details.

Rethrowing exceptions—you can rethrow the current exception from within a doCatch clause
using the handled sub-clause (see the section called “Rethrowing exceptions in doCatch”).

Special features of doCatch

There are some special features of the doCatch() clause, however, that have no analogue in the Java
catch() statement. The following features are specific to doCatch():

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

40

Catching multiple exceptions—the doCatch clause allows you to specify a list of exceptions to
catch, in contrast to the Java catch() statement, which catches only one exception (see the
section called “Example”).

Conditional catching—you can catch an exception conditionally, by appending an onWhen sub-
clause to the doCatch clause (see the section called “Conditional exception catching using
onWhen”).

Example

The following example shows how to write a doTry block in the Java DSL, where the doCatch()
clause will be executed, if either the IOException exception or the IllegalStateException
exception are raised, and the doFinally() clause is always executed, irrespective of whether an
exception is raised or not.

Or equivalently, in Spring XML:

Rethrowing exceptions in doCatch

It is possible to rethrow an exception in a doCatch() clause by calling the handled() sub-clause with
its argument set to false, as follows:

from("direct:start")
 .doTry()
 .process(new ProcessorFail())
 .to("mock:result")
 .doCatch(IOException.class, IllegalStateException.class)
 .to("mock:catch")
 .doFinally()
 .to("mock:finally")
 .end();

<route>
 <from uri="direct:start"/>
 <!-- here the try starts. its a try .. catch .. finally just as
regular java code -->
 <doTry>
 <process ref="processorFail"/>
 <to uri="mock:result"/>
 <doCatch>
 <!-- catch multiple exceptions -->
 <exception>java.io.IOException</exception>
 <exception>java.lang.IllegalStateException</exception>
 <to uri="mock:catch"/>
 </doCatch>
 <doFinally>
 <to uri="mock:finally"/>
 </doFinally>
 </doTry>
</route>

from("direct:start")
 .doTry()
 .process(new ProcessorFail())

CHAPTER 2. BASIC PRINCIPLES OF ROUTE BUILDING

41

In the preceding example, if the IOException is caught by doCatch(), the current exchange is sent to
the mock:io endpoint, and then the IOException is rethrown. This gives the consumer endpoint at the
start of the route (in the from() command) an opportunity to handle the exception as well.

The following example shows how to define the same route in Spring XML:

Conditional exception catching using onWhen

A special feature of the Apache Camel doCatch() clause is that you can conditionalize the catching of
exceptions based on an expression that is evaluated at run time. In other words, if you catch an
exception using a clause of the form, doCatch(ExceptionList).doWhen(Expression), an
exception will only be caught, if the predicate expression, Expression, evaluates to true at run time.

For example, the following doTry block will catch the exceptions, IOException and
IllegalStateException, only if the exception message contains the word, Severe:

 .to("mock:result")
 .doCatch(IOException.class)
 // mark this as NOT handled, eg the caller will also get the
exception
 .handled(false)
 .to("mock:io")
 .doCatch(Exception.class)
 // and catch all other exceptions
 .to("mock:error")
 .end();

<route>
 <from uri="direct:start"/>
 <doTry>
 <process ref="processorFail"/>
 <to uri="mock:result"/>
 <doCatch>
 <exception>java.io.IOException</exception>
 <!-- mark this as NOT handled, eg the caller will also get the
exception -->
 <handled>
 <constant>false</constant>
 </handled>
 <to uri="mock:io"/>
 </doCatch>
 <doCatch>
 <!-- and catch all other exceptions they are handled by
default (ie handled = true) -->
 <exception>java.lang.Exception</exception>
 <to uri="mock:error"/>
 </doCatch>
 </doTry>
</route>

from("direct:start")
 .doTry()
 .process(new ProcessorFail())
 .to("mock:result")
 .doCatch(IOException.class, IllegalStateException.class)

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

42

Or equivalently, in Spring XML:

2.3.4. Propagating SOAP Exceptions

Overview

The Camel CXF component provides an integration with Apache CXF, enabling you to send and receive
SOAP messages from Apache Camel endpoints. You can easily define Apache Camel endpoints in
XML, which can then be referenced in a route using the endpoint's bean ID. For more details, see CXF.

How to propagate stack trace information

It is possible to configure a CXF endpoint so that, when a Java exception is thrown on the server side,
the stack trace for the exception is marshalled into a fault message and returned to the client. To enable
this feaure, set the dataFormat to PAYLOAD and set the faultStackTraceEnabled property to true
in the cxfEndpoint element, as follows:

 .onWhen(exceptionMessage().contains("Severe"))
 .to("mock:catch")
 .doCatch(CamelExchangeException.class)
 .to("mock:catchCamel")
 .doFinally()
 .to("mock:finally")
 .end();

<route>
 <from uri="direct:start"/>
 <doTry>
 <process ref="processorFail"/>
 <to uri="mock:result"/>
 <doCatch>
 <exception>java.io.IOException</exception>
 <exception>java.lang.IllegalStateException</exception>
 <onWhen>
 <simple>${exception.message} contains 'Severe'</simple>
 </onWhen>
 <to uri="mock:catch"/>
 </doCatch>
 <doCatch>
 <exception>org.apache.camel.CamelExchangeException</exception>
 <to uri="mock:catchCamel"/>
 </doCatch>
 <doFinally>
 <to uri="mock:finally"/>
 </doFinally>
 </doTry>
</route>

<cxf:cxfEndpoint id="router" address="http://localhost:9002/TestMessage"
 wsdlURL="ship.wsdl"
 endpointName="s:TestSoapEndpoint"
 serviceName="s:TestService"
 xmlns:s="http://test">
 <cxf:properties>

CHAPTER 2. BASIC PRINCIPLES OF ROUTE BUILDING

43

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.0/html/EIP_Component_Reference/_IDU_CXF.html

For security reasons, the stack trace does not include the causing exception (that is, the part of a stack
trace that follows Caused by). If you want to include the causing exception in the stack trace, set the
exceptionMessageCauseEnabled property to true in the cxfEndpoint element, as follows:

WARNING

You should only enable the exceptionMessageCauseEnabled flag for testing
and diagnostic purposes. It is normal practice for servers to conceal the original
cause of an exception to make it harder for hostile users to probe the server.

2.4. BEAN INTEGRATION

Overview

Bean integration provides a general purpose mechanism for processing messages using arbitrary Java
objects. By inserting a bean reference into a route, you can call an arbitrary method on a Java object,
which can then access and modify the incoming exchange. The mechanism that maps an exchange's
contents to the parameters and return values of a bean method is known as parameter binding.
Parameter binding can use any combination of the following approaches in order to initialize a method's
parameters:

Conventional method signatures — If the method signature conforms to certain conventions, the
parameter binding can use Java reflection to determine what parameters to pass.

Annotations and dependency injection — For a more flexible binding mechanism, employ Java
annotations to specify what to inject into the method's arguments. This dependency injection

 <!-- enable sending the stack trace back to client; the default value
is false-->
 <entry key="faultStackTraceEnabled" value="true" />
 <entry key="dataFormat" value="PAYLOAD" />
 </cxf:properties>
</cxf:cxfEndpoint>

<cxf:cxfEndpoint id="router" address="http://localhost:9002/TestMessage"
 wsdlURL="ship.wsdl"
 endpointName="s:TestSoapEndpoint"
 serviceName="s:TestService"
 xmlns:s="http://test">
 <cxf:properties>
 <!-- enable to show the cause exception message and the default value
is false -->
 <entry key="exceptionMessageCauseEnabled" value="true" />
 <!-- enable to send the stack trace back to client, the default value
is false-->
 <entry key="faultStackTraceEnabled" value="true" />
 <entry key="dataFormat" value="PAYLOAD" />
 </cxf:properties>
</cxf:cxfEndpoint>

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

44

mechanism relies on Spring 2.5 component scanning. Normally, if you are deploying your
Apache Camel application into a Spring container, the dependency injection mechanism will
work automatically.

Explicitly specified parameters — You can specify parameters explicitly (either as constants or
using the Simple language), at the point where the bean is invoked.

Bean registry

Beans are made accessible through a bean registry, which is a service that enables you to look up beans
using either the class name or the bean ID as a key. The way that you create an entry in the bean
registry depends on the underlying framework—for example, plain Java, Spring, Guice, or Blueprint.
Registry entries are usually created implicitly (for example, when you instantiate a Spring bean in a
Spring XML file).

Registry plug-in strategy

Apache Camel implements a plug-in strategy for the bean registry, defining an integration layer for
accessing beans which makes the underlying registry implementation transparent. Hence, it is possible
to integrate Apache Camel applications with a variety of different bean registries, as shown in Table 2.2,
“Registry Plug-Ins”.

Table 2.2. Registry Plug-Ins

Registry Implementation Camel Component with Registry Plug-In

Spring bean registry camel-spring

Guice bean registry camel-guice

Blueprint bean registry camel-blueprint

OSGi service registry deployed in OSGi container

Normally, you do not have to worry about configuring bean registries, because the relevant bean registry
is automatically installed for you. For example, if you are using the Spring framework to define your
routes, the Spring ApplicationContextRegistry plug-in is automatically installed in the current
CamelContext instance.

Deployment in an OSGi container is a special case. When an Apache Camel route is deployed into the
OSGi container, the CamelContext automatically sets up a registry chain for resolving bean instances:
the registry chain consists of the OSGi registry, followed by the Blueprint (or Spring) registry.

Accessing a bean created in Java

To process exchange objects using a Java bean (which is a plain old Java object or POJO), use the
bean() processor, which binds the inbound exchange to a method on the Java object. For example, to
process inbound exchanges using the class, MyBeanProcessor, define a route like the following:

from("file:data/inbound")
 .bean(MyBeanProcessor.class, "processBody")
 .to("file:data/outbound");

CHAPTER 2. BASIC PRINCIPLES OF ROUTE BUILDING

45

Where the bean() processor creates an instance of MyBeanProcessor type and invokes the
processBody() method to process inbound exchanges. This approach is adequate if you only want to
access the MyBeanProcessor instance from a single route. However, if you want to access the same
MyBeanProcessor instance from multiple routes, use the variant of bean() that takes the Object
type as its first argument. For example:

Accessing overloaded bean methods

If a bean defines overloaded methods, you can choose which of the overloaded methods to invoke by
specifying the method name along with its parameter types. For example, if the MyBeanBrocessor
class has two overloaded methods, processBody(String) and processBody(String,String),
you can invoke the latter overloaded method as follows:

Alternatively, if you want to identify a method by the number of parameters it takes, rather than
specifying the type of each parameter explicitly, you can use the wildcard character, *. For example, to
invoke a method named processBody that takes two parameters, irrespective of the exact type of the
parameters, invoke the bean() processor as follows:

When specifying the method, you can use either a simple unqualified type name—for example,
processBody(Exchange)—or a fully qualified type name—for example,
processBody(org.apache.camel.Exchange).

NOTE

In the current implementation, the specified type name must be an exact match of the
parameter type. Type inheritance is not taken into account.

Specify parameters explicitly

You can specify parameter values explicitly, when you call the bean method. The following simple type
values can be passed:

Boolean: true or false.

Numeric: 123, 7, and so on.

MyBeanProcessor myBean = new MyBeanProcessor();

from("file:data/inbound")
 .bean(myBean, "processBody")
 .to("file:data/outbound");
from("activemq:inboundData")
 .bean(myBean, "processBody")
 .to("activemq:outboundData");

from("file:data/inbound")
 .bean(MyBeanProcessor.class, "processBody(String,String)")
 .to("file:data/outbound");

from("file:data/inbound")
.bean(MyBeanProcessor.class, "processBody(*,*)")
.to("file:data/outbound");

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

46

String: 'In single quotes' or "In double quotes".

Null object: null.

The following example shows how you can mix explicit parameter values with type specifiers in the
same method invocation:

In the preceding example, the value of the first parameter would presumably be determined by a
parameter binding annotation (see the section called “Basic annotations”).

In addition to the simple type values, you can also specify parameter values using the Simple language
(chapter "The Simple Language" in "Routing Expression and Predicate Languages"). This means that
the full power of the Simple language is available when specifying parameter values. For example, to
pass the message body and the value of the title header to a bean method:

You can also pass the entire header hash map as a parameter. For example, in the following example,
the second method parameter must be declared to be of type java.util.Map:

Basic method signatures

To bind exchanges to a bean method, you can define a method signature that conforms to certain
conventions. In particular, there are two basic conventions for method signatures:

the section called “Method signature for processing message bodies”.

the section called “Method signature for processing exchanges”.

Method signature for processing message bodies

If you want to implement a bean method that accesses or modifies the incoming message body, you
must define a method signature that takes a single String argument and returns a String value. For
example:

from("file:data/inbound")
 .bean(MyBeanProcessor.class, "processBody(String, 'Sample string value',
true, 7)")
 .to("file:data/outbound");

from("file:data/inbound")
 .bean(MyBeanProcessor.class,
"processBodyAndHeader(${body},${header.title})")
 .to("file:data/outbound");

from("file:data/inbound")
 .bean(MyBeanProcessor.class,
"processBodyAndAllHeaders(${body},${header})")
 .to("file:data/outbound");

// Java
package com.acme;

public class MyBeanProcessor {
 public String processBody(String body) {
 // Do whatever you like to 'body'...

CHAPTER 2. BASIC PRINCIPLES OF ROUTE BUILDING

47

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.0/html/Routing_Expression_and_Predicate_Languages/Simple.html

Method signature for processing exchanges

For greater flexibility, you can implement a bean method that accesses the incoming exchange. This
enables you to access or modify all headers, bodies, and exchange properties. For processing
exchanges, the method signature takes a single org.apache.camel.Exchange parameter and
returns void. For example:

Accessing a bean created in Spring XML

Instead of creating a bean instance in Java, you can create an instance using Spring XML. In fact, this is
the only feasible approach if you are defining your routes in XML. To define a bean in XML, use the
standard Spring bean element. The following example shows how to create an instance of
MyBeanProcessor:

It is also possible to pass data to the bean's constructor arguments using Spring syntax. For full details of
how to use the Spring bean element, see The IoC Container from the Spring reference guide.

When you create an object instance using the bean element, you can reference it later using the bean's
ID (the value of the bean element's id attribute). For example, given the bean element with ID equal to
myBeanId, you can reference the bean in a Java DSL route using the beanRef() processor, as follows:

Where the beanRef() processor invokes the MyBeanProcessor.processBody() method on the
specified bean instance. You can also invoke the bean from within a Spring XML route, using the Camel
schema's bean element. For example:

 return newBody;
 }
}

// Java
package com.acme;

public class MyBeanProcessor {
 public void processExchange(Exchange exchange) {
 // Do whatever you like to 'exchange'...
 exchange.getIn().setBody("Here is a new message body!");
 }
}

<beans ...>
 ...
 <bean id="myBeanId" class="com.acme.MyBeanProcessor"/>
</beans>

from("file:data/inbound").beanRef("myBeanId",
"processBody").to("file:data/outbound");

<camelContext id="CamelContextID"
xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from uri="file:data/inbound"/>
 <bean ref="myBeanId" method="processBody"/>

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

48

http://static.springframework.org/spring/docs/2.5.x/reference/beans.html

Parameter binding annotations

The basic parameter bindings described in the section called “Basic method signatures” might not
always be convenient to use. For example, if you have a legacy Java class that performs some data
manipulation, you might want to extract data from an inbound exchange and map it to the arguments of
an existing method signature. For this kind of parameter binding, Apache Camel provides the following
kinds of Java annotation:

the section called “Basic annotations”.

the section called “Expression language annotations”.

the section called “Inherited annotations”.

Basic annotations

Table 2.3, “Basic Bean Annotations” shows the annotations from the org.apache.camel Java
package that you can use to inject message data into the arguments of a bean method.

Table 2.3. Basic Bean Annotations

Annotation Meaning Parameter?

@Attachments Binds to a list of attachments.

@Body Binds to an inbound message
body.

@Header Binds to an inbound message
header.

String name of the header.

@Headers Binds to a java.util.Map of
the inbound message headers.

@OutHeaders Binds to a java.util.Map of
the outbound message headers.

@Property Binds to a named exchange
property.

String name of the property.

@Properties Binds to a java.util.Map of
the exchange properties.

For example, the following class shows you how to use basic annotations to inject message data into the
processExchange() method arguments.

 <to uri="file:data/outbound"/>
 </route>
</camelContext>

// Java
import org.apache.camel.*;

CHAPTER 2. BASIC PRINCIPLES OF ROUTE BUILDING

49

Notice how you are able to mix the annotations with the default conventions. As well as injecting the
annotated arguments, the parameter binding also automatically injects the exchange object into the
org.apache.camel.Exchange argument.

Expression language annotations

The expression language annotations provide a powerful mechanism for injecting message data into a
bean method's arguments. Using these annotations, you can invoke an arbitrary script, written in the
scripting language of your choice, to extract data from an inbound exchange and inject the data into a
method argument. Table 2.4, “Expression Language Annotations” shows the annotations from the
org.apache.camel.language package (and sub-packages, for the non-core annotations) that you
can use to inject message data into the arguments of a bean method.

Table 2.4. Expression Language Annotations

Annotation Description

@Bean Injects a Bean expression.

@Constant Injects a Constant expression

@EL Injects an EL expression.

@Groovy Injects a Groovy expression.

@Header Injects a Header expression.

@JavaScript Injects a JavaScript expression.

@OGNL Injects an OGNL expression.

@PHP Injects a PHP expression.

@Python Injects a Python expression.

@Ruby Injects a Ruby expression.

@Simple Injects a Simple expression.

public class MyBeanProcessor {
 public void processExchange(
 @Header(name="user") String user,
 @Body String body,
 Exchange exchange
) {
 // Do whatever you like to 'exchange'...
 exchange.getIn().setBody(body + "UserName = " + user);
 }
}

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

50

@XPath Injects an XPath expression.

@XQuery Injects an XQuery expression.

Annotation Description

For example, the following class shows you how to use the @XPath annotation to extract a username
and a password from the body of an incoming message in XML format:

The @Bean annotation is a special case, because it enables you to inject the result of invoking a
registered bean. For example, to inject a correlation ID into a method argument, you can use the @Bean
annotation to invoke an ID generator class, as follows:

Where the string, myCorrIdGenerator, is the bean ID of the ID generator instance. The ID generator
class can be instantiated using the spring bean element, as follows:

Where the MySimpleIdGenerator class could be defined as follows:

// Java
import org.apache.camel.language.*;

public class MyBeanProcessor {
 public void checkCredentials(
 @XPath("/credentials/username/text()") String user,
 @XPath("/credentials/password/text()") String pass
) {
 // Check the user/pass credentials...
 ...
 }
}

// Java
import org.apache.camel.language.*;

public class MyBeanProcessor {
 public void processCorrelatedMsg(
 @Bean("myCorrIdGenerator") String corrId,
 @Body String body
) {
 // Check the user/pass credentials...
 ...
 }
}

<beans ...>
 ...
 <bean id="myCorrIdGenerator" class="com.acme.MyIdGenerator"/>
</beans>

// Java
package com.acme;

CHAPTER 2. BASIC PRINCIPLES OF ROUTE BUILDING

51

Notice that you can also use annotations in the referenced bean class, MyIdGenerator. The only
restriction on the generate() method signature is that it must return the correct type to inject into the
argument annotated by @Bean. Because the @Bean annotation does not let you specify a method name,
the injection mechanism simply invokes the first method in the referenced bean that has the matching
return type.

NOTE

Some of the language annotations are available in the core component (@Bean,
@Constant, @Simple, and @XPath). For non-core components, however, you will have
to make sure that you load the relevant component. For example, to use the OGNL script,
you must load the camel-ognl component.

Inherited annotations

Parameter binding annotations can be inherited from an interface or from a superclass. For example, if
you define a Java interface with a Header annotation and a Body annotation, as follows:

The overloaded methods defined in the implementation class, MyBeanProcessor, now inherit the
annotations defined in the base interface, as follows:

public class MyIdGenerator {

 private UserManager userManager;

 public String generate(
 @Header(name = "user") String user,
 @Body String payload
) throws Exception {
 User user = userManager.lookupUser(user);
 String userId = user.getPrimaryId();
 String id = userId + generateHashCodeForPayload(payload);
 return id;
 }
}

// Java
import org.apache.camel.*;

public interface MyBeanProcessorIntf {
 void processExchange(
 @Header(name="user") String user,
 @Body String body,
 Exchange exchange
);
}

// Java
import org.apache.camel.*;

public class MyBeanProcessor implements MyBeanProcessorIntf {
 public void processExchange(
 String user, // Inherits Header annotation
 String body, // Inherits Body annotation

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

52

Interface implementations

The class that implements a Java interface is often protected, private or in package-only scope.
If you try to invoke a method on an implementation class that is restricted in this way, the bean binding
falls back to invoking the corresponding interface method, which is publicly accessible.

For example, consider the following public BeanIntf interface:

Where the BeanIntf interface is implemented by the following protected BeanIntfImpl class:

The following bean invocation would fall back to invoking the public
BeanIntf.processBodyAndHeader method:

Invoking static methods

Bean integration has the capability to invoke static methods without creating an instance of the
associated class. For example, consider the following Java class that defines the static method,
changeSomething():

 Exchange exchange
) {
 ...
 }
}

// Java
public interface BeanIntf {
 void processBodyAndHeader(String body, String title);
}

// Java
protected class BeanIntfImpl implements BeanIntf {
 void processBodyAndHeader(String body, String title) {
 ...
 }
}

from("file:data/inbound")
 .bean(BeanIntfImpl.class, "processBodyAndHeader(${body},
${header.title})")
 .to("file:data/outbound");

// Java
...
public final class MyStaticClass {
 private MyStaticClass() {
 }

 public static String changeSomething(String s) {
 if ("Hello World".equals(s)) {
 return "Bye World";
 }
 return null;

CHAPTER 2. BASIC PRINCIPLES OF ROUTE BUILDING

53

You can use bean integration to invoke the static changeSomething method, as follows:

Note that, although this syntax looks identical to the invocation of an ordinary function, bean integration
exploits Java reflection to identify the method as static and proceeds to invoke the method without
instantiating MyStaticClass.

Invoking an OSGi service

In the special case where a route is deployed into a Red Hat JBoss Fuse container, it is possible to
invoke an OSGi service directly using bean integration. For example, assuming that one of the bundles
in the OSGi container has exported the service,
org.fusesource.example.HelloWorldOsgiService, you could invoke the sayHello method
using the following bean integration code:

You could also invoke the OSGi service from within a Spring or blueprint XML file, using the bean
component, as follows:

The way this works is that Apache Camel sets up a chain of registries when it is deployed in the OSGi
container. First of all, it looks up the specified class name in the OSGi service registry; if this lookup fails,
it then falls back to the local Spring DM or blueprint registry.

2.5. ASPECT ORIENTED PROGRAMMING

Overview

The aspect oriented programming (AOP) feature in Apache Camel enables you to apply before and after
processing to a specified portion of a route. As a matter of fact, AOP does not provide anything that you
could not do with the regular route syntax. The advantage of the AOP syntax, however, is that it enables
you to specify before and after processing at a single point in the route. In some cases, this gives a more
readable syntax. The typical use case for AOP is the application of a symmetrical pair of operations
before and after a route fragment is processed. For example, typical pairs of operations that you might
want to apply using AOP are: encrypt and decrypt; begin transaction and commit transaction; allocate
resources and deallocate resources; and so on.

Java DSL example

 }

 public void doSomething() {
 // noop
 }
}

from("direct:a")
 .bean(MyStaticClass.class, "changeSomething")
 .to("mock:a");

from("file:data/inbound")
 .bean(org.fusesource.example.HelloWorldOsgiService.class, "sayHello")
 .to("file:data/outbound");

<to uri="bean:org.fusesource.example.HelloWorldOsgiService?
method=sayHello"/>

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

54

In Java DSL, the route fragment to which you apply before and after processing is bracketed between
aop() and end(). For example, the following route performs AOP processing around the route
fragment that calls the bean methods:

Where the around() subclause specifies an endpoint, log:before, where the exchange is routed
before processing the route fragment and an endpoint, log:after, where the exchange is routed after
processing the route fragment.

AOP options in the Java DSL

Starting an AOP block with aop().around() is probably the most common use case, but the AOP
block supports other subclauses, as follows:

around()—specifies before and after endpoints.

begin()—specifies before endpoint only.

after()—specifies after endpoint only.

aroundFinally()—specifies a before endpoint, and an after endpoint that is always called,
even when an exception occurs in the enclosed route fragment.

afterFinally()—specifies an after endpoint that is always called, even when an exception
occurs in the enclosed route fragment.

Spring XML example

In the XML DSL, the route fragment to which you apply before and after processing is enclosed in the
aop element. For example, the following Spring XML route performs AOP processing around the route
fragment that calls the bean methods:

Where the beforeUri attribute specifies the endpoint where the exchange is routed before processing
the route fragment, and the afterUri attribute specifies the endpoint where the exchange is routed
after processing the route fragment.

AOP options in the Spring XML

The aop element supports the following optional attributes:

from("jms:queue:inbox")
 .aop().around("log:before", "log:after")
 .to("bean:order?method=validate")
 .to("bean:order?method=handle")
 .end()
 .to("jms:queue:order");

<route>
 <from uri="jms:queue:inbox"/>
 <aop beforeUri="log:before" afterUri="log:after">
 <to uri="bean:order?method=validate"/>
 <to uri="bean:order?method=handle"/>
 </aop>
 <to uri="jms:queue:order"/>
</route>

CHAPTER 2. BASIC PRINCIPLES OF ROUTE BUILDING

55

beforeUri

afterUri

afterFinallyUri

The various use cases described for the Java DSL can be obtained in Spring XML using the appropriate
combinations of these attributes. For example, the aroundFinally() Java DSL subclause is
equivalent to the combination of beforeUri and afterFinallyUri in Spring XML.

2.6. TRANSFORMING MESSAGE CONTENT

Overview

Apache Camel supports a variety of approaches to transforming message content. In addition to a simple
native API for modifying message content, Apache Camel supports integration with several different
third-party libraries and transformation standards. The following kinds of transformations are discussed in
this section:

the section called “Simple transformations”.

the section called “Marshalling and unmarshalling”.

Simple transformations

The Java DSL has a built-in API that enables you to perform simple transformations on incoming and
outgoing messages. For example, the rule shown in Example 2.1, “Simple Transformation of Incoming
Messages” appends the text, World!, to the end of the incoming message body.

Example 2.1. Simple Transformation of Incoming Messages

Where the setBody() command replaces the content of the incoming message's body. You can use
the following API classes to perform simple transformations of the message content in a router rule:

org.apache.camel.model.ProcessorDefinition

org.apache.camel.builder.Builder

org.apache.camel.builder.ValueBuilder

ProcessorDefinition class

The org.apache.camel.model.ProcessorDefinition class defines the DSL commands you can
insert directly into a router rule—for example, the setBody() command in Example 2.1, “Simple
Transformation of Incoming Messages”. Table 2.5, “Transformation Methods from the
ProcessorDefinition Class” shows the ProcessorDefinition methods that are relevant to
transforming message content:

Table 2.5. Transformation Methods from the ProcessorDefinition Class

from("SourceURL").setBody(body().append(" World!")).to("TargetURL");

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

56

Method Description

Type convertBodyTo(Class type) Converts the IN message body to the specified type.

Type removeFaultHeader(String name) Adds a processor which removes the header on the
FAULT message.

Type removeHeader(String name) Adds a processor which removes the header on the
IN message.

Type removeProperty(String name) Adds a processor which removes the exchange
property.

ExpressionClause<ProcessorDefinition
<Type>> setBody()

Adds a processor which sets the body on the IN
message.

Type setFaultBody(Expression
expression)

Adds a processor which sets the body on the FAULT
message.

Type setFaultHeader(String name,
Expression expression)

Adds a processor which sets the header on the
FAULT message.

ExpressionClause<ProcessorDefinition
<Type>> setHeader(String name)

Adds a processor which sets the header on the IN
message.

Type setHeader(String name,
Expression expression)

Adds a processor which sets the header on the IN
message.

ExpressionClause<ProcessorDefinition
<Type>> setOutHeader(String name)

Adds a processor which sets the header on the OUT
message.

Type setOutHeader(String name,
Expression expression)

Adds a processor which sets the header on the OUT
message.

ExpressionClause<ProcessorDefinition
<Type>> setProperty(String name)

Adds a processor which sets the exchange property.

Type setProperty(String name,
Expression expression)

Adds a processor which sets the exchange property.

ExpressionClause<ProcessorDefinition
<Type>> transform()

Adds a processor which sets the body on the OUT
message.

Type transform(Expression
expression)

Adds a processor which sets the body on the OUT
message.

Builder class

The org.apache.camel.builder.Builder class provides access to message content in contexts

CHAPTER 2. BASIC PRINCIPLES OF ROUTE BUILDING

57

where expressions or predicates are expected. In other words, Builder methods are typically invoked
in the arguments of DSL commands—for example, the body() command in Example 2.1, “Simple
Transformation of Incoming Messages”. Table 2.6, “Methods from the Builder Class” summarizes the
static methods available in the Builder class.

Table 2.6. Methods from the Builder Class

Method Description

static <E extends Exchange>
ValueBuilder<E> body()

Returns a predicate and value builder for the inbound
body on an exchange.

static <E extends Exchange,T>
ValueBuilder<E> bodyAs(Class<T>
type)

Returns a predicate and value builder for the inbound
message body as a specific type.

static <E extends Exchange>
ValueBuilder<E> constant(Object
value)

Returns a constant expression.

static <E extends Exchange>
ValueBuilder<E> faultBody()

Returns a predicate and value builder for the fault
body on an exchange.

static <E extends Exchange,T>
ValueBuilder<E> faultBodyAs(Class<T>
type)

Returns a predicate and value builder for the fault
message body as a specific type.

static <E extends Exchange>
ValueBuilder<E> header(String name)

Returns a predicate and value builder for headers on
an exchange.

static <E extends Exchange>
ValueBuilder<E> outBody()

Returns a predicate and value builder for the
outbound body on an exchange.

static <E extends Exchange>
ValueBuilder<E> outBodyAs(Class<T>
type)

Returns a predicate and value builder for the
outbound message body as a specific type.

static ValueBuilder property(String
name)

Returns a predicate and value builder for properties
on an exchange.

static ValueBuilder
regexReplaceAll(Expression content,
String regex, Expression
replacement)

Returns an expression that replaces all occurrences
of the regular expression with the given replacement.

static ValueBuilder
regexReplaceAll(Expression content,
String regex, String replacement)

Returns an expression that replaces all occurrences
of the regular expression with the given replacement.

static ValueBuilder sendTo(String
uri)

Returns an expression processing the exchange to
the given endpoint uri.

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

58

static <E extends Exchange>
ValueBuilder<E>
systemProperty(String name)

Returns an expression for the given system property.

static <E extends Exchange>
ValueBuilder<E>
systemProperty(String name, String
defaultValue)

Returns an expression for the given system property.

Method Description

ValueBuilder class

The org.apache.camel.builder.ValueBuilder class enables you to modify values returned by
the Builder methods. In other words, the methods in ValueBuilder provide a simple way of
modifying message content. Table 2.7, “Modifier Methods from the ValueBuilder Class” summarizes the
methods available in the ValueBuilder class. That is, the table shows only the methods that are used
to modify the value they are invoked on (for full details, see the API Reference documentation).

Table 2.7. Modifier Methods from the ValueBuilder Class

Method Description

ValueBuilder<E> append(Object value) Appends the string evaluation of this expression with
the given value.

Predicate contains(Object value) Create a predicate that the left hand expression
contains the value of the right hand expression.

ValueBuilder<E> convertTo(Class
type)

Converts the current value to the given type using
the registered type converters.

ValueBuilder<E> convertToString() Converts the current value a String using the
registered type converters.

Predicate endsWith(Object value)

<T> T evaluate(Exchange exchange,
Class<T> type)

Predicate in(Object... values)

Predicate in(Predicate...
predicates)

Predicate isEqualTo(Object value) Returns true, if the current value is equal to the given
value argument.

CHAPTER 2. BASIC PRINCIPLES OF ROUTE BUILDING

59

Predicate isGreaterThan(Object
value)

Returns true, if the current value is greater than the
given value argument.

Predicate
isGreaterThanOrEqualTo(Object value)

Returns true, if the current value is greater than or
equal to the given value argument.

Predicate isInstanceOf(Class type) Returns true, if the current value is an instance of the
given type.

Predicate isLessThan(Object value) Returns true, if the current value is less than the
given value argument.

Predicate isLessThanOrEqualTo(Object
value)

Returns true, if the current value is less than or equal
to the given value argument.

Predicate isNotEqualTo(Object value) Returns true, if the current value is not equal to the
given value argument.

Predicate isNotNull() Returns true, if the current value is not null.

Predicate isNull() Returns true, if the current value is null.

Predicate matches(Expression
expression)

Predicate not(Predicate predicate) Negates the predicate argument.

ValueBuilder prepend(Object value) Prepends the string evaluation of this expression to
the given value.

Predicate regex(String regex)

ValueBuilder<E>
regexReplaceAll(String regex,
Expression<E> replacement)

Replaces all occurrencies of the regular expression
with the given replacement.

ValueBuilder<E>
regexReplaceAll(String regex, String
replacement)

Replaces all occurrencies of the regular expression
with the given replacement.

ValueBuilder<E> regexTokenize(String
regex)

Tokenizes the string conversion of this expression
using the given regular expression.

ValueBuilder sort(Comparator
comparator)

Sorts the current value using the given comparator.

Method Description

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

60

Predicate startsWith(Object value) Returns true, if the current value matches the string
value of the value argument.

ValueBuilder<E> tokenize() Tokenizes the string conversion of this expression
using the comma token separator.

ValueBuilder<E> tokenize(String
token)

Tokenizes the string conversion of this expression
using the given token separator.

Method Description

Marshalling and unmarshalling

You can convert between low-level and high-level message formats using the following commands:

marshal()— Converts a high-level data format to a low-level data format.

unmarshal() — Converts a low-level data format to a high-level data format.

Apache Camel supports marshalling and unmarshalling of the following data formats:

Java serialization — Enables you to convert a Java object to a blob of binary data. For this data
format, unmarshalling converts a binary blob to a Java object, and marshalling converts a Java
object to a binary blob. For example, to read a serialized Java object from an endpoint,
SourceURL, and convert it to a Java object, you use a rule like the following:

Or alternatively, in Spring XML:

JAXB — Provides a mapping between XML schema types and Java types (see
https://jaxb.dev.java.net/). For JAXB, unmarshalling converts an XML data type to a Java object,
and marshalling converts a Java object to an XML data type. Before you can use JAXB data
formats, you must compile your XML schema using a JAXB compiler to generate the Java
classes that represent the XML data types in the schema. This is called binding the schema.
After the schema is bound, you define a rule to unmarshal XML data to a Java object, using code
like the following:

from("SourceURL").unmarshal().serialization()
.<FurtherProcessing>.to("TargetURL");

<camelContext id="serialization"
xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from uri="SourceURL"/>
 <unmarshal>
 <serialization/>
 </unmarshal>
 <to uri="TargetURL"/>
 </route>
</camelContext>

org.apache.camel.spi.DataFormat jaxb = new
org.apache.camel.model.dataformat.JaxbDataFormat("GeneratedPackageNa

CHAPTER 2. BASIC PRINCIPLES OF ROUTE BUILDING

61

https://jaxb.dev.java.net/

where GeneratedPackagename is the name of the Java package generated by the JAXB
compiler, which contains the Java classes representing your XML schema.

Or alternatively, in Spring XML:

XMLBeans — Provides an alternative mapping between XML schema types and Java types
(see http://xmlbeans.apache.org/). For XMLBeans, unmarshalling converts an XML data type to
a Java object and marshalling converts a Java object to an XML data type. For example, to
unmarshal XML data to a Java object using XMLBeans, you use code like the following:

Or alternatively, in Spring XML:

XStream — Provides another mapping between XML types and Java types (see
http://xstream.codehaus.org/). XStream is a serialization library (like Java serialization), enabling
you to convert any Java object to XML. For XStream, unmarshalling converts an XML data type
to a Java object, and marshalling converts a Java object to an XML data type. For example, to
unmarshal XML data to a Java object using XStream, you use code like the following:

NOTE

The XStream data format is currently not supported in Spring XML.

me");

from("SourceURL").unmarshal(jaxb)
.<FurtherProcessing>.to("TargetURL");

<camelContext id="jaxb"
xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from uri="SourceURL"/>
 <unmarshal>
 <jaxb prettyPrint="true" contextPath="GeneratedPackageName"/>
 </unmarshal>
 <to uri="TargetURL"/>
 </route>
</camelContext>

from("SourceURL").unmarshal().xmlBeans()
.<FurtherProcessing>.to("TargetURL");

<camelContext id="xmlBeans"
xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from uri="SourceURL"/>
 <unmarshal>
 <xmlBeans prettyPrint="true"/>
 </unmarshal>
 <to uri="TargetURL"/>
 </route>
</camelContext>

from("SourceURL").unmarshal().xstream()
.<FurtherProcessing>.to("TargetURL");

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

62

http://xmlbeans.apache.org/
http://xstream.codehaus.org/

2.7. PROPERTY PLACEHOLDERS

Overview

The property placeholders feature can be used to substitute strings into various contexts (such as
endpoint URIs and attributes in XML DSL elements), where the placeholder settings are stored in Java
properties files. This feature can be useful, if you want to share settings between different Apache
Camel applications or if you want to centralize certain configuration settings.

For example, the following route sends requests to a Web server, whose host and port are substituted by
the placehoders, {{remote.host}} and {{remote.port}}:

The placeholder values are defined in a Java properties file, as follows:

Property files

Property settings are stored in one or more Java properties files and must conform to the standard Java
properties file format. Each property setting appears on its own line, in the format Key=Value. Lines with
or ! as the first non-blank character are treated as comments.

For example, a property file could have content as shown in Example 2.2, “Sample Property File”.

Example 2.2. Sample Property File

Resolving properties

The properties component must be configured with the locations of one or more property files before you
can start using it in route definitions. You must provide the property values using one of the following
resolvers:

classpath:PathName,PathName,...

from("direct:start").to("http://{{remote.host}}:{{remote.port}}");

Java properties file
remote.host=myserver.com
remote.port=8080

Property placeholder settings
(in Java properties file format)
cool.end=mock:result
cool.result=result
cool.concat=mock:{{cool.result}}
cool.start=direct:cool
cool.showid=true

cheese.end=mock:cheese
cheese.quote=Camel rocks
cheese.type=Gouda

bean.foo=foo
bean.bar=bar

CHAPTER 2. BASIC PRINCIPLES OF ROUTE BUILDING

63

(Default) Specifies locations on the classpath, where PathName is a file pathname delimited using
forward slashes.

file:PathName,PathName,...

Specifies locations on the file system, where PathName is a file pathname delimited using forward
slashes.

ref:BeanID

Specifies the ID of a java.util.Properties object in the registry.

blueprint:BeanID

Specifies the ID of a cm:property-placeholder bean, which is used in the context of an OSGi
blueprint file to access properties defined in the OSGi Configuration Admin service. For details, see
the section called “Integration with OSGi blueprint property placeholders”.

For example, to specify the com/fusesource/cheese.properties property file and the
com/fusesource/bar.properties property file, both located on the classpath, you would use the
following location string:

NOTE

You can omit the classpath: prefix in this example, because the classpath resolver is
used by default.

Specifying locations using system properties and environment variables

You can embed Java system properties and O/S environment variables in a location PathName.

Java system properties can be embedded in a location resolver using the syntax, ${PropertyName}.
For example, if the root directory of Red Hat JBoss Fuse is stored in the Java system property,
karaf.home, you could embed that directory value in a file location, as follows:

O/S environment variables can be embedded in a location resolver using the syntax, ${env:VarName}.
For example, if the root directory of JBoss Fuse is stored in the environment variable, SMX_HOME, you
could embed that directory value in a file location, as follows:

Configuring the properties component

Before you can start using property placeholders, you must configure the properties component,
specifying the locations of one or more property files.

In the Java DSL, you can configure the properties component with the property file locations, as follows:

com/fusesource/cheese.properties,com/fusesource/bar.properties

file:${karaf.home}/etc/foo.properties

file:${env:SMX_HOME}/etc/foo.properties

// Java

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

64

As shown in the addComponent() call, the name of the properties component must be set to
properties.

In the XML DSL, you can configure the properties component using the dedicated
propertyPlacholder element, as follows:

If you want the properties component to ignore any missing .properties files when it is being
initialized, you can set the ignoreMissingLocation option to true (normally, a missing
.properties file would result in an error being raised).

Placeholder syntax

After it is configured, the property component automatically substitutes placeholders (in the appropriate
contexts). The syntax of a placeholder depends on the context, as follows:

In endpoint URIs and in Spring XML files—the placeholder is specified as {{Key}}.

When setting XML DSL attributes—xs:string attributes are set using the following syntax:

Other attribute types (for example, xs:int or xs:boolean) must be set using the following
syntax:

Where prop is associated with the http://camel.apache.org/schema/placeholder
namespace.

When setting Java DSL EIP options—to set an option on an Enterprise Integration Pattern (EIP)
command in the Java DSL, add a placeholder() clause like the following to the fluent DSL:

In Simple language expressions—the placeholder is specified as ${properties:Key}.

Substitution in endpoint URIs

import org.apache.camel.component.properties.PropertiesComponent;
...
PropertiesComponent pc = new PropertiesComponent();
pc.setLocation("com/fusesource/cheese.properties,com/fusesource/bar.proper
ties");
context.addComponent("properties", pc);

<camelContext ...>
 <propertyPlaceholder
 id="properties"

location="com/fusesource/cheese.properties,com/fusesource/bar.properties"
 />
</camelContext>

AttributeName="{{Key}}"

prop:AttributeName="Key"

.placeholder("OptionName", "Key")

CHAPTER 2. BASIC PRINCIPLES OF ROUTE BUILDING

65

Wherever an endpoint URI string appears in a route, the first step in parsing the endpoint URI is to apply
the property placeholder parser. The placeholder parser automatically substitutes any property names
appearing between double braces, {{Key}}. For example, given the property settings shown in
Example 2.2, “Sample Property File”, you could define a route as follows:

By default, the placeholder parser looks up the properties bean ID in the registry to find the property
component. If you prefer, you can explicitly specify the scheme in the endpoint URIs. For example, by
prefixing properties: to each of the endpoint URIs, you can define the following equivalent route:

When specifying the scheme explicitly, you also have the option of specifying options to the properties
component. For example, to override the property file location, you could set the location option as
follows:

Substitution in Spring XML files

You can also use property placeholders in the XML DSL, for setting various attributes of the DSL
elements. In this context, the placholder syntax also uses double braces, {{Key}}. For example, you
could define a jmxAgent element using property placeholders, as follows:

Substitution of XML DSL attribute values

You can use the regular placeholder syntax for specifying attribute values of xs:string type—for
example, <jmxAgent registryPort="{{myjmx.port}}" ...>. But for attributes of any other

from("{{cool.start}}")
 .to("log:{{cool.start}}?showBodyType=false&showExchangeId=
{{cool.showid}}")
 .to("mock:{{cool.result}}");

from("properties:{{cool.start}}")
 .to("properties:log:{{cool.start}}?showBodyType=false&showExchangeId=
{{cool.showid}}")
 .to("properties:mock:{{cool.result}}");

from("direct:start").to("properties:{{bar.end}}?
location=com/mycompany/bar.properties");

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
 <propertyPlaceholder id="properties"
location="org/apache/camel/spring/jmx.properties"/>

 <!-- we can use property placeholders when we define the JMX agent -->
 <jmxAgent id="agent" registryPort="{{myjmx.port}}"
 usePlatformMBeanServer="{{myjmx.usePlatform}}"
 createConnector="true"
 statisticsLevel="RoutesOnly"
 />

 <route>
 <from uri="seda:start"/>
 <to uri="mock:result"/>
 </route>
</camelContext>

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

66

type (for example, xs:int or xs:boolean), you must use the special syntax,
prop:AttributeName="Key".

For example, given that a property file defines the stop.flag property to have the value, true, you can
use this property to set the stopOnException boolean attribute, as follows:

IMPORTANT

The prop prefix must be explicitly assigned to the
http://camel.apache.org/schema/placeholder namespace in your Spring file,
as shown in the beans element of the preceding example.

Substitution of Java DSL EIP options

When invoking an EIP command in the Java DSL, you can set any EIP option using the value of a
property placeholder, by adding a sub-clause of the form, placeholder("OptionName", "Key").

For example, given that a property file defines the stop.flag property to have the value, true, you can
use this property to set the stopOnException option of the multicast EIP, as follows:

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:prop="http://camel.apache.org/schema/placeholder"
 ... >

 <bean id="illegal" class="java.lang.IllegalArgumentException">
 <constructor-arg index="0" value="Good grief!"/>
 </bean>

 <camelContext xmlns="http://camel.apache.org/schema/spring">

 <propertyPlaceholder id="properties"

location="classpath:org/apache/camel/component/properties/myprop.propertie
s"

xmlns="http://camel.apache.org/schema/spring"/>

 <route>
 <from uri="direct:start"/>
 <multicast prop:stopOnException="stop.flag">
 <to uri="mock:a"/>
 <throwException ref="damn"/>
 <to uri="mock:b"/>
 </multicast>
 </route>

 </camelContext>

</beans>

from("direct:start")
 .multicast().placeholder("stopOnException", "stop.flag")
 .to("mock:a").throwException(new

CHAPTER 2. BASIC PRINCIPLES OF ROUTE BUILDING

67

Substitution in Simple language expressions

You can also substitute property placeholders in Simple language expressions, but in this case the
syntax of the placeholder is ${properties:Key}. For example, you can substitute the
cheese.quote placehoder inside a Simple expression, as follows:

It is also possible to override the location of the property file using the syntax,
${properties:Location:Key}. For example, to substitute the bar.quote placeholder using the
settings from the com/mycompany/bar.properties property file, you can define a Simple expression
as follows:

Integration with OSGi blueprint property placeholders

If you deploy your route into the Red Hat JBoss Fuse OSGi container, you can integrate the Apache
Camel property placeholder mechanism with JBoss Fuse's blueprint property placeholder mechanism (in
fact, the integration is enabled by default). There are two basic approaches to setting up the integration,
as follows:

the section called “Implicit blueprint integration”.

the section called “Explicit blueprint integration”.

Implicit blueprint integration

If you define a camelContext element inside an OSGi blueprint file, the Apache Camel property
placeholder mechanism automatically integrates with the blueprint property placeholder mechanism.
That is, placeholders obeying the Apache Camel syntax (for example, {{cool.end}}) that appear
within the scope of camelContext are implicitly resolved by looking up the blueprint property
placeholder mechanism.

For example, consider the following route defined in an OSGi blueprint file, where the last endpoint in the
route is defined by the property placeholder, {{result}}:

IllegalAccessException("Damn")).to("mock:b");

from("direct:start")
 .transform().simple("Hi ${body} do you think
${properties:cheese.quote}?");

from("direct:start")
 .transform().simple("Hi ${body}.
${properties:com/mycompany/bar.properties:bar.quote}.");

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:cm="http://aries.apache.org/blueprint/xmlns/blueprint-
cm/v1.0.0"
 xsi:schemaLocation="
 http://www.osgi.org/xmlns/blueprint/v1.0.0
http://www.osgi.org/xmlns/blueprint/v1.0.0/blueprint.xsd">

 <!-- OSGI blueprint property placeholder -->
 <cm:property-placeholder id="myblueprint.placeholder" persistent-

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

68

The blueprint property placeholder mechanism is initialized by creating a cm:property-placeholder
bean. In the preceding example, the cm:property-placeholder bean is associated with the
camel.blueprint persistent ID, where a persistent ID is the standard way of referencing a group of
related properties from the OSGi Configuration Adminn service. In other words, the cm:property-
placeholder bean provides access to all of the properties defined under the camel.blueprint
persistent ID. It is also possible to specify default values for some of the properties (using the nested
cm:property elements).

In the context of blueprint, the Apache Camel placeholder mechanism searches for an instance of
cm:property-placeholder in the bean registry. If it finds such an instance, it automatically
integrates the Apache Camel placeholder mechanism, so that placeholders like, {{result}}, are
resolved by looking up the key in the blueprint property placeholder mechanism (in this example, through
the myblueprint.placeholder bean).

NOTE

The default blueprint placeholder syntax (accessing the blueprint properties directly) is
${Key}. Hence, outside the scope of a camelContext element, the placeholder syntax
you must use is ${Key}. Whereas, inside the scope of a camelContext element, the
placeholder syntax you must use is {{Key}}.

Explicit blueprint integration

If you want to have more control over where the Apache Camel property placeholder mechanism finds its
properties, you can define a propertyPlaceholder element and specify the resolver locations
explicitly.

For example, consider the following blueprint configuration, which differs from the previous example in
that it creates an explicit propertyPlaceholder instance:

id="camel.blueprint">
 <!-- list some properties for this test -->
 <cm:default-properties>
 <cm:property name="result" value="mock:result"/>
 </cm:default-properties>
 </cm:property-placeholder>

 <camelContext xmlns="http://camel.apache.org/schema/blueprint">
 <!-- in the route we can use {{ }} placeholders which will look up
in blueprint,
 as Camel will auto detect the OSGi blueprint property
placeholder and use it -->
 <route>
 <from uri="direct:start"/>
 <to uri="mock:foo"/>
 <to uri="{{result}}"/>
 </route>
 </camelContext>

</blueprint>

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:cm="http://aries.apache.org/blueprint/xmlns/blueprint-

CHAPTER 2. BASIC PRINCIPLES OF ROUTE BUILDING

69

In the preceding example, the propertyPlaceholder element specifies explicitly which
cm:property-placeholder bean to use by setting the location to
blueprint:myblueprint.placeholder. That is, the blueprint: resolver explicitly references the
ID, myblueprint.placeholder, of the cm:property-placeholder bean.

This style of configuration is useful, if there is more than one cm:property-placeholder bean
defined in the blueprint file and you need to specify which one to use. It also makes it possible to source
properties from multiple locations, by specifying a comma-separated list of locations. For example, if you
wanted to look up properties both from the cm:property-placeholder bean and from the properties
file, myproperties.properties, on the classpath, you could define the propertyPlaceholder
element as follows:

Integration with Spring property placeholders

If you define your Apache Camel application using XML DSL in a Spring XML file, you can integrate the
Apache Camel property placeholder mechanism with Spring property placeholder mechanism by
declaring a Spring bean of type,

cm/v1.0.0"
 xsi:schemaLocation="
 http://www.osgi.org/xmlns/blueprint/v1.0.0
http://www.osgi.org/xmlns/blueprint/v1.0.0/blueprint.xsd">

 <!-- OSGI blueprint property placeholder -->
 <cm:property-placeholder id="myblueprint.placeholder" persistent-
id="camel.blueprint">
 <!-- list some properties for this test -->
 <cm:default-properties>
 <cm:property name="result" value="mock:result"/>
 </cm:default-properties>
 </cm:property-placeholder>

 <camelContext xmlns="http://camel.apache.org/schema/blueprint">

 <!-- using Camel properties component and refer to the blueprint
property placeholder by its id -->
 <propertyPlaceholder id="properties"
location="blueprint:myblueprint.placeholder"/>

 <!-- in the route we can use {{ }} placeholders which will lookup
in blueprint -->
 <route>
 <from uri="direct:start"/>
 <to uri="mock:foo"/>
 <to uri="{{result}}"/>
 </route>

 </camelContext>

</blueprint>

<propertyPlaceholder id="properties"

location="blueprint:myblueprint.placeholder,classpath:myproperties.propert
ies"/>

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

70

org.apache.camel.spring.spi.BridgePropertyPlaceholderConfigurer.

Define a BridgePropertyPlaceholderConfigurer, which replaces both Apache Camel's
propertyPlaceholder element and Spring's ctx:property-placeholder element in the Spring
XML file. You can then refer to the configured properties using either the Spring ${PropName} syntax
or the Apache Camel {{PropName}} syntax.

For example, defining a bridge property placeholder that reads its property settings from the
cheese.properties file:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:osgix="http://www.springframework.org/schema/osgi-compendium"
 xmlns:ctx="http://www.springframework.org/schema/context"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/osgi
http://www.springframework.org/schema/osgi/spring-osgi.xsd
 http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context.xsd
 http://www.springframework.org/schema/osgi-compendium
http://www.springframework.org/schema/osgi-compendium/spring-osgi-
compendium.xsd
">

 <!-- Bridge Spring property placeholder with Camel -->
 <!-- Do not use <ctx:property-placeholder ... > at the same time -->
 <bean id="bridgePropertyPlaceholder"

class="org.apache.camel.spring.spi.BridgePropertyPlaceholderConfigurer">
 <property name="location"

value="classpath:org/apache/camel/component/properties/cheese.properties"/
>
 </bean>

 <!-- A bean that uses Spring property placeholder -->
 <!-- The ${hi} is a spring property placeholder -->
 <bean id="hello"
class="org.apache.camel.component.properties.HelloBean">
 <property name="greeting" value="${hi}"/>
 </bean>

 <camelContext xmlns="http://camel.apache.org/schema/spring">
 <!-- Use Camel's property placeholder {{ }} style -->
 <route>
 <from uri="direct:{{cool.bar}}"/>
 <bean ref="hello"/>
 <to uri="{{cool.end}}"/>
 </route>
 </camelContext>

</beans>

CHAPTER 2. BASIC PRINCIPLES OF ROUTE BUILDING

71

2.8. THREADING MODEL

Java thread pool API

The Apache Camel threading model is based on the powerful Java concurrency API, java.util.concurrent,
that first became available in Sun's JDK 1.5. The key interface in this API is the ExecutorService
interface, which represents a thread pool. Using the concurrency API, you can create many different
kinds of thread pool, covering a wide range of scenarios.

Apache Camel thread pool API

The Apache Camel thread pool API builds on the Java concurrency API by providing a central factory (of
org.apache.camel.spi.ExecutorServiceManager type) for all of the thread pools in your
Apache Camel application. Centralising the createion of thread pools in this way provides several
advantages, including:

Simplified creation of thread pools, using utility classes.

Integrating thread pools with graceful shutdown.

Threads automatically given informative names, which is beneficial for logging and management.

Component threading model

Some Apache Camel components—such as SEDA, JMS, and Jetty—are inherently multi-threaded.
These components have all been implemented using the Apache Camel threading model and thread
pool API.

If you are planning to implement your own Apache Camel component, it is recommended that you
integrate your threading code with the Apache Camel threading model. For example, if your component
needs a thread pool, it is recommended that you create it using the CamelContext's
ExecutorServiceManager object.

Processor threading model

Some of the standard processors in Apache Camel create their own thread pool by default. These
threading-aware processors are also integrated with the Apache Camel threading model and they
provide various options that enable you to customize customize the thread pools that they use.

Table 2.8, “Processor Threading Options” shows the various options for controlling and setting thread
pools on the threading-aware processors built-in to Apache Camel.

Table 2.8. Processor Threading Options

Processor Java DSL XML DSL

aggregate

parallelProcessing()
executorService()
executorServiceRef()

@parallelProcessing
@executorServiceRef

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

72

http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/package-summary.html

multicast

recipientList

split

threads

wireTap

Processor Java DSL XML DSL

Creating a default thread pool

To create a default thread pool for one of the threading-aware processors, enable the
parallelProcessing option, using the parallelProcessing() sub-clause, in the Java DSL, or
the parallelProcessing attribute, in the XML DSL.

For example, in the Java DSL, you can invoke the multicast processor with a default thread pool (where
the thread pool is used to process the multicast destinations concurrently) as follows:

parallelProcessing()
executorService()
executorServiceRef()

@parallelProcessing
@executorServiceRef

parallelProcessing()
executorService()
executorServiceRef()

@parallelProcessing
@executorServiceRef

parallelProcessing()
executorService()
executorServiceRef()

@parallelProcessing
@executorServiceRef

executorService()
executorServiceRef()
poolSize()
maxPoolSize()
keepAliveTime()
timeUnit()
maxQueueSize()
rejectedPolicy()

@executorServiceRef
@poolSize
@maxPoolSize
@keepAliveTime
@timeUnit
@maxQueueSize
@rejectedPolicy

wireTap(String uri,
ExecutorService
executorService)
wireTap(String uri,
String
executorServiceRef)

@executorServiceRef

from("direct:start")
 .multicast().parallelProcessing()
 .to("mock:first")
 .to("mock:second")
 .to("mock:third");

CHAPTER 2. BASIC PRINCIPLES OF ROUTE BUILDING

73

You can define the same route in XML DSL as follows

Default thread pool profile settings

The default thread pools are automatically created by a thread factory that takes its settings from the
default thread pool profile. The default thread pool profile has the settings shown in Table 2.9, “Default
Thread Pool Profile Settings” (assuming that these settings have not been modified by the application
code).

Table 2.9. Default Thread Pool Profile Settings

Thread Option Default Value

maxQueueSize 1000

poolSize 10

maxPoolSize 20

keepAliveTime 60 (seconds)

rejectedPolicy CallerRuns

Changing the default thread pool profile

It is possible to change the default thread pool profile settings, so that all subsequent default thread pools
will be created with the custom settings. You can change the profile either in Java or in Spring XML.

For example, in the Java DSL, you can customize the poolSize option and the maxQueueSize option
in the default thread pool profile, as follows:

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from uri="direct:start"/>
 <multicast parallelProcessing="true">
 <to uri="mock:first"/>
 <to uri="mock:second"/>
 <to uri="mock:third"/>
 </multicast>
 </route>
</camelContext>

// Java
import org.apache.camel.spi.ExecutorServiceManager;
import org.apache.camel.spi.ThreadPoolProfile;
...
ExecutorServiceManager manager = context.getExecutorServiceManager();
ThreadPoolProfile defaultProfile = manager.getDefaultThreadPoolProfile();

// Now, customize the profile settings.

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

74

In the XML DSL, you can customize the default thread pool profile, as follows:

Note that it is essential to set the defaultProfile attribute to true in the preceding XML DSL
example, otherwise the thread pool profile would be treated like a custom thread pool profile (see the
section called “Creating a custom thread pool profile”), instead of replacing the default thread pool
profile.

Customizing a processor's thread pool

It is also possible to specify the thread pool for a threading-aware processor more directly, using either
the executorService or executorServiceRef options (where these options are used instead of the
parallelProcessing option). There are two approaches you can use to customize a processor's
thread pool, as follows:

Specify a custom thread pool—explicitly create an ExecutorService (thread pool) instance
and pass it to the executorService option.

Specify a custom thread pool profile—create and register a custom thread pool factory. When
you reference this factory using the executorServiceRef option, the processor automatically
uses the factory to create a custom thread pool instance.

When you pass a bean ID to the executorServiceRef option, the threading-aware processor first
tries to find a custom thread pool with that ID in the registry. If no thread pool is registered with that ID,
the processor then attempts to look up a custom thread pool profile in the registry and uses the custom
thread pool profile to instantiate a custom thread pool.

Creating a custom thread pool

A custom thread pool can be any thread pool of java.util.concurrent.ExecutorService type. The following
approaches to creating a thread pool instance are recommended in Apache Camel:

Use the org.apache.camel.builder.ThreadPoolBuilder utility to build the thread pool
class.

Use the org.apache.camel.spi.ExecutorServiceManager instance from the current
CamelContext to create the thread pool class.

Ultimately, there is not much difference between the two approaches, because the
ThreadPoolBuilder is actually defined using the ExecutorServiceManager instance. Normally,
the ThreadPoolBuilder is preferred, because it offers a simpler approach. But there is at least one

defaultProfile.setPoolSize(3);
defaultProfile.setMaxQueueSize(100);
...

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
 <threadPoolProfile
 id="changedProfile"
 defaultProfile="true"
 poolSize="3"
 maxQueueSize="100"/>
 ...
</camelContext>

CHAPTER 2. BASIC PRINCIPLES OF ROUTE BUILDING

75

http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/ExecutorService.html

kind of thread (the ScheduledExecutorService) that can only be created by accessing the
ExecutorServiceManager instance directory.

Table 2.10, “Thread Pool Builder Options” shows the options supported by the ThreadPoolBuilder
class, which you can set when defining a new custom thread pool.

Table 2.10. Thread Pool Builder Options

Builder Option Description

maxQueueSize() Sets the maximum number of pending tasks that this
thread pool can store in its incoming task queue. A
value of -1 specifies an unbounded queue. Default
value is taken from default thread pool profile.

poolSize() Sets the minimum number of threads in the pool (this
is also the initial pool size). Default value is taken
from default thread pool profile.

maxPoolSize() Sets the maximum number of threads that can be in
the pool. Default value is taken from default thread
pool profile.

keepAliveTime() If any threads are idle for longer than this period of
time (specified in seconds), they are terminated. This
allows the thread pool to shrink when the load is
light. Default value is taken from default thread pool
profile.

rejectedPolicy() Specifies what course of action to take, if the
incoming task queue is full. You can specify four
possible values:

CallerRuns

(Default value) Gets the caller thread to run the
latest incoming task. As a side effect, this option
prevents the caller thread from receiving any
more tasks until it has finished processing the
latest incoming task.

Abort

Aborts the latest incoming task by throwing an
exception.

Discard

Quietly discards the latest incoming task.

DiscardOldest

Discards the oldest unhandled task and then
attempts to enqueue the latest incoming task in
the task queue.

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

76

build() Finishes building the custom thread pool and
registers the new thread pool under the ID specified
as the argument to build().

Builder Option Description

In Java DSL, you can define a custom thread pool using the ThreadPoolBuilder, as follows:

Instead of passing the object reference, customPool, directly to the executorService() option, you
can look up the thread pool in the registry, by passing its bean ID to the executorServiceRef()
option, as follows:

In XML DSL, you access the ThreadPoolBuilder using the threadPool element. You can then
reference the custom thread pool using the executorServiceRef attribute to look up the thread pool
by ID in the Spring registry, as follows:

// Java
import org.apache.camel.builder.ThreadPoolBuilder;
import java.util.concurrent.ExecutorService;
...
ThreadPoolBuilder poolBuilder = new ThreadPoolBuilder(context);
ExecutorService customPool =
poolBuilder.poolSize(5).maxPoolSize(5).maxQueueSize(100).build("customPool
");
...

from("direct:start")
 .multicast().executorService(customPool)
 .to("mock:first")
 .to("mock:second")
 .to("mock:third");

// Java
from("direct:start")
 .multicast().executorServiceRef("customPool")
 .to("mock:first")
 .to("mock:second")
 .to("mock:third");

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
 <threadPool id="customPool"
 poolSize="5"
 maxPoolSize="5"
 maxQueueSize="100" />

 <route>
 <from uri="direct:start"/>
 <multicast executorServiceRef="customPool">
 <to uri="mock:first"/>
 <to uri="mock:second"/>
 <to uri="mock:third"/>

CHAPTER 2. BASIC PRINCIPLES OF ROUTE BUILDING

77

Creating a custom thread pool profile

If you have many custom thread pool instances to create, you might find it more convenient to define a
custom thread pool profile, which acts as a factory for thread pools. Whenever you reference a thread
pool profile from a threading-aware processor, the processor automatically uses the profile to create a
new thread pool instance. You can define a custom thread pool profile either in Java DSL or in XML
DSL.

For example, in Java DSL you can create a custom thread pool profile with the bean ID,
customProfile, and reference it from within a route, as follows:

In XML DSL, use the threadPoolProfile element to create a custom pool profile (where you let the
defaultProfile option default to false, because this is not a default thread pool profile). You can
create a custom thread pool profile with the bean ID, customProfile, and reference it from within a
route, as follows:

 </multicast>
 </route>
</camelContext>

// Java
import org.apache.camel.spi.ThreadPoolProfile;
import org.apache.camel.impl.ThreadPoolProfileSupport;
...
// Create the custom thread pool profile
ThreadPoolProfile customProfile = new
ThreadPoolProfileSupport("customProfile");
customProfile.setPoolSize(5);
customProfile.setMaxPoolSize(5);
customProfile.setMaxQueueSize(100);
context.getExecutorServiceManager().registerThreadPoolProfile(customProfil
e);
...
// Reference the custom thread pool profile in a route
from("direct:start")
 .multicast().executorServiceRef("customProfile")
 .to("mock:first")
 .to("mock:second")
 .to("mock:third");

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
 <threadPoolProfile
 id="customProfile"
 poolSize="5"
 maxPoolSize="5"
 maxQueueSize="100" />

 <route>
 <from uri="direct:start"/>
 <multicast executorServiceRef="customProfile">
 <to uri="mock:first"/>
 <to uri="mock:second"/>
 <to uri="mock:third"/>

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

78

Sharing a thread pool between components

Some of the standard poll-based components—such as File and FTP—allow you to specify the thread
pool to use. This makes it possible for different components to share the same thread pool, reducing the
overall number of threads in the JVM.

For example, the File component and the FTP component both expose the
scheduledExecutorService property, which you can use to specify the component's
ExecutorService object.

2.9. CONTROLLING START-UP AND SHUTDOWN OF ROUTES

Overview

By default, routes are automatically started when your Apache Camel application (as represented by the
CamelContext instance) starts up and routes are automatically shut down when your Apache Camel
application shuts down. For non-critical deployments, the details of the shutdown sequence are usually
not very important. But in a production environment, it is often crucial that existing tasks should run to
completion during shutdown, in order to avoid data loss. You typically also want to control the order in
which routes shut down, so that dependencies are not violated (which would prevent existing tasks from
running to completion).

For this reason, Apache Camel provides a set of features to support graceful shutdown of applications.
Graceful shutdown gives you full control over the stopping and starting of routes, enabling you to control
the shutdown order of routes and enabling current tasks to run to completion.

Setting the route ID

It is good practice to assign a route ID to each of your routes. As well as making logging messages and
management features more informative, the use of route IDs enables you to apply greater control over
the stopping and starting of routes.

For example, in the Java DSL, you can assign the route ID, myCustomerRouteId, to a route by
invoking the routeId() command as follows:

In the XML DSL, set the route element's id attribute, as follows:

 </multicast>
 </route>
</camelContext>

from("SourceURI").routeId("myCustomRouteId").process(...).to(TargetURI);

<camelContext id="CamelContextID"
xmlns="http://camel.apache.org/schema/spring">
 <route id="myCustomRouteId" >
 <from uri="SourceURI"/>
 <process ref="someProcessorId"/>
 <to uri="TargetURI"/>
 </route>
</camelContext>

CHAPTER 2. BASIC PRINCIPLES OF ROUTE BUILDING

79

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.0/html/EIP_Component_Reference/_IDU_File2.html
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.0/html/EIP_Component_Reference/_IDU_FTP2.html

Disabling automatic start-up of routes

By default, all of the routes that the CamelContext knows about at start time will be started automatically.
If you want to control the start-up of a particular route manually, however, you might prefer to disable
automatic start-up for that route.

To control whether a Java DSL route starts up automatically, invoke the autoStartup command, either
with a boolean argument (true or false) or a String argument (true or false). For example, you
can disable automatic start-up of a route in the Java DSL, as follows:

You can disable automatic start-up of a route in the XML DSL by setting the autoStartup attribute to
false on the route element, as follows:

Manually starting and stopping routes

You can manually start or stop a route at any time in Java by invoking the startRoute() and
stopRoute() methods on the CamelContext instance. For example, to start the route having the
route ID, nonAuto, invoke the startRoute() method on the CamelContext instance, context, as
follows:

To stop the route having the route ID, nonAuto, invoke the stopRoute() method on the
CamelContext instance, context, as follows:

Startup order of routes

By default, Apache Camel starts up routes in a non-deterministic order. In some applications, however, it
can be important to control the startup order. To control the startup order in the Java DSL, use the
startupOrder() command, which takes a positive integer value as its argument. The route with the
lowest integer value starts first, followed by the routes with successively higher startup order values.

For example, the first two routes in the following example are linked together through the seda:buffer
endpoint. You can ensure that the first route segment starts after the second route segment by assigning
startup orders (2 and 1 respectively), as follows:

from("SourceURI")
 .routeId("nonAuto")
 .autoStartup(false)
 .to(TargetURI);

<camelContext id="CamelContextID"
xmlns="http://camel.apache.org/schema/spring">
 <route id="nonAuto" autoStartup="false">
 <from uri="SourceURI"/>
 <to uri="TargetURI"/>
 </route>
</camelContext>

// Java
context.startRoute("nonAuto");

// Java
context.stopRoute("nonAuto");

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

80

Example 2.3. Startup Order in Java DSL

Or in Spring XML, you can achieve the same effect by setting the route element's startupOrder
attribute, as follows:

Example 2.4. Startup Order in XML DSL

Each route must be assigned a unique startup order value. You can choose any positive integer value
that is less than 1000. Values of 1000 and over are reserved for Apache Camel, which automatically
assigns these values to routes without an explicit startup value. For example, the last route in the
preceding example would automatically be assigned the startup value, 1000 (so it starts up after the first
two routes).

Shutdown sequence

When a CamelContext instance is shutting down, Apache Camel controls the shutdown sequence
using a pluggable shutdown strategy. The default shutdown strategy implements the following shutdown
sequence:

1. Routes are shut down in the reverse of the start-up order.

2. Normally, the shutdown strategy waits until the currently active exchanges have finshed
processing. The treatment of running tasks is configurable, however.

from("jetty:http://fooserver:8080")
 .routeId("first")
 .startupOrder(2)
 .to("seda:buffer");

from("seda:buffer")
 .routeId("second")
 .startupOrder(1)
 .to("mock:result");

// This route's startup order is unspecified
from("jms:queue:foo").to("jms:queue:bar");

<route id="first" startupOrder="2">
 <from uri="jetty:http://fooserver:8080"/>
 <to uri="seda:buffer"/>
</route>

<route id="second" startupOrder="1">
 <from uri="seda:buffer"/>
 <to uri="mock:result"/>
</route>

<!-- This route's startup order is unspecified -->
<route>
 <from uri="jms:queue:foo"/>
 <to uri="jms:queue:bar"/>
</route>

CHAPTER 2. BASIC PRINCIPLES OF ROUTE BUILDING

81

3. Overall, the shutdown sequence is bound by a timeout (default, 300 seconds). If the shutdown
sequence exceeds this timeout, the shutdown strategy will force shutdown to occur, even if
some tasks are still running.

Shutdown order of routes

Routes are shut down in the reverse of the start-up order. That is, when a start-up order is defined using
the startupOrder() command (in Java DSL) or startupOrder attribute (in XML DSL), the first route
to shut down is the route with the highest integer value assigned by the start-up order and the last route
to shut down is the route with the lowest integer value assigned by the start-up order.

For example, in Example 2.3, “Startup Order in Java DSL”, the first route segment to be shut down is the
route with the ID, first, and the second route segment to be shut down is the route with the ID,
second. This example illustrates a general rule, which you should observe when shutting down routes:
the routes that expose externally-accessible consumer endpoints should be shut down first, because this
helps to throttle the flow of messages through the rest of the route graph.

NOTE

Apache Camel also provides the option shutdownRoute(Defer), which enables you to
specify that a route must be amongst the last routes to shut down (overriding the start-up
order value). But you should rarely ever need this option. This option was mainly needed
as a workaround for earlier versions of Apache Camel (prior to 2.3), for which routes
would shut down in the same order as the start-up order.

Shutting down running tasks in a route

If a route is still processing messages when the shutdown starts, the shutdown strategy normally waits
until the currently active exchange has finished processing before shutting down the route. This behavior
can be configured on each route using the shutdownRunningTask option, which can take either of the
following values:

ShutdownRunningTask.CompleteCurrentTaskOnly

(Default) Usually, a route operates on just a single message at a time, so you can safely shut down
the route after the current task has completed.

ShutdownRunningTask.CompleteAllTasks

Specify this option in order to shut down batch consumers gracefully. Some consumer endpoints (for
example, File, FTP, Mail, iBATIS, and JPA) operate on a batch of messages at a time. For these
endpoints, it is more appropriate to wait until all of the messages in the current batch have
completed.

For example, to shut down a File consumer endpoint gracefully, you should specify the
CompleteAllTasks option, as shown in the following Java DSL fragment:

// Java
public void configure() throws Exception {
 from("file:target/pending")
 .routeId("first").startupOrder(2)
 .shutdownRunningTask(ShutdownRunningTask.CompleteAllTasks)
 .delay(1000).to("seda:foo");

 from("seda:foo")

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

82

The same route can be defined in the XML DSL as follows:

Shutdown timeout

The shutdown timeout has a default value of 300 seconds. You can change the value of the timeout by
invoking the setTimeout() method on the shutdown strategy. For example, you can change the
timeout value to 600 seconds, as follows:

Integration with custom components

If you are implementing a custom Apache Camel component (which also inherits from the
org.apache.camel.Service interface), you can ensure that your custom code receives a shutdown
notification by implementing the org.apache.camel.spi.ShutdownPrepared interface. This gives
the component an opportunity execute custom code in preparation for shutdown.

2.10. SCHEDULED ROUTE POLICY

2.10.1. Overview of Scheduled Route Policies

Overview

A scheduled route policy can be used to trigger events that affect a route at runtime. In particular, the
implementations that are currently available enable you to start, stop, suspend, or resume a route at any
time (or times) specified by the policy.

Scheduling tasks

 .routeId("second").startupOrder(1)
 .to("mock:bar");
}

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
 <!-- let this route complete all its pending messages when asked to
shut down -->
 <route id="first"
 startupOrder="2"
 shutdownRunningTask="CompleteAllTasks">
 <from uri="file:target/pending"/>
 <delay><constant>1000</constant></delay>
 <to uri="seda:foo"/>
 </route>

 <route id="second" startupOrder="1">
 <from uri="seda:foo"/>
 <to uri="mock:bar"/>
 </route>
</camelContext>

// Java
// context = CamelContext instance
context.getShutdownStrategy().setTimeout(600);

CHAPTER 2. BASIC PRINCIPLES OF ROUTE BUILDING

83

The scheduled route policies are capable of triggering the following kinds of event:

Start a route—start the route at the time (or times) specified. This event only has an effect, if the
route is currently in a stopped state, awaiting activation.

Stop a route—stop the route at the time (or times) specified. This event only has an effect, if the
route is currently active.

Suspend a route—temporarily de-activate the consumer endpoint at the start of the route (as
specified in from()). The rest of the route is still active, but clients will not be able to send new
messages into the route.

Resume a route—re-activate the consumer endpoint at the start of the route, returning the route
to a fully active state.

Quartz component

The Quartz component is a timer component based on Terracotta's Quartz, which is an open source
implementation of a job scheduler. The Quartz component provides the underlying implementation for
both the simple scheduled route policy and the cron scheduled route policy.

2.10.2. Simple Scheduled Route Policy

Overview

The simple scheduled route policy is a route policy that enables you to start, stop, suspend, and resume
routes, where the timing of these events is defined by providing the time and date of an initial event and
(optionally) by specifying a certain number of subsequent repititions. To define a simple scheduled route
policy, create an instance of the following class:

Dependency

The simple scheduled route policy depends on the Quartz component, camel-quartz. For example, if
you are using Maven as your build system, you would need to add a dependency on the camel-quartz
artifact.

Java DSL example

Example 2.5, “Java DSL Example of Simple Scheduled Route” shows how to schedule a route to start up
using the Java DSL. The initial start time, startTime, is defined to be 3 seconds after the current time.
The policy is also configured to start the route a second time, 3 seconds after the initial start time, which
is configured by setting routeStartRepeatCount to 1 and routeStartRepeatInterval to 3000
milliseconds.

In Java DSL, you attach the route policy to the route by calling the routePolicy() DSL command in
the route.

Example 2.5. Java DSL Example of Simple Scheduled Route

org.apache.camel.routepolicy.quartz.SimpleScheduledRoutePolicy

// Java
SimpleScheduledRoutePolicy policy = new SimpleScheduledRoutePolicy();

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

84

http://www.quartz-scheduler.org/

NOTE

You can specify multiple policies on the route by calling routePolicy() with multiple
arguments.

XML DSL example

Example 2.6, “XML DSL Example of Simple Scheduled Route” shows how to schedule a route to start up
using the XML DSL.

In XML DSL, you attach the route policy to the route by setting the routePolicyRef attribute on the
route element.

Example 2.6. XML DSL Example of Simple Scheduled Route

NOTE

You can specify multiple policies on the route by setting the value of routePolicyRef
as a comma-separated list of bean IDs.

Defining dates and times

The initial times of the triggers used in the simple scheduled route policy are specified using the
java.util.Date type.The most flexible way to define a Date instance is through the
java.util.GregorianCalendar class. Use the convenient constructors and methods of the

long startTime = System.currentTimeMillis() + 3000L;
policy.setRouteStartDate(new Date(startTime));
policy.setRouteStartRepeatCount(1);
policy.setRouteStartRepeatInterval(3000);

from("direct:start")
 .routeId("test")
 .routePolicy(policy)
 .to("mock:success");

<bean id="date" class="java.util.Data"/>

<bean id="startPolicy"
class="org.apache.camel.routepolicy.quartz.SimpleScheduledRoutePolicy">
 <property name="routeStartDate" ref="date"/>
 <property name="routeStartRepeatCount" value="1"/>
 <property name="routeStartRepeatInterval" value="3000"/>
</bean>

<camelContext xmlns="http://camel.apache.org/schema/spring">
 <route id="myroute" routePolicyRef="startPolicy">
 <from uri="direct:start"/>
 <to uri="mock:success"/>
 </route>
</camelContext>

CHAPTER 2. BASIC PRINCIPLES OF ROUTE BUILDING

85

http://download-llnw.oracle.com/javase/1.5.0/docs/api/java/util/GregorianCalendar.html

GregorianCalendar class to define a date and then obtain a Date instance by calling
GregorianCalendar.getTime().

For example, to define the time and date for January 1, 2011 at noon, call a GregorianCalendar
constructor as follows:

The GregorianCalendar class also supports the definition of times in different time zones. By default,
it uses the local time zone on your computer.

Graceful shutdown

When you configure a simple scheduled route policy to stop a route, the route stopping algorithm is
automatically integrated with the graceful shutdown procedure (see Section 2.9, “Controlling Start-Up
and Shutdown of Routes”). This means that the task waits until the current exchange has finished
processing before shutting down the route. You can set a timeout, however, that forces the route to stop
after the specified time, irrespective of whether or not the route has finished processing the exchange.

Scheduling tasks

You can use a simple scheduled route policy to define one or more of the following scheduling tasks:

the section called “Starting a route”.

the section called “Stopping a route”.

the section called “Suspending a route”.

the section called “Resuming a route”.

Starting a route

The following table lists the parameters for scheduling one or more route starts.

Parameter Type Default Description

routeStartDate java.util.Date None Specifies the date and
time when the route is
started for the first time.

// Java
import java.util.GregorianCalendar;
import java.util.Calendar;
...
GregorianCalendar gc = new GregorianCalendar(
 2011,
 Calendar.JANUARY,
 1,
 12, // hourOfDay
 0, // minutes
 0 // seconds
);

java.util.Date triggerDate = gc.getTime();

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

86

routeStartRepeat
Count

int 0 When set to a non-zero
value, specifies how
many times the route
should be started.

routeStartRepeat
Interval

long 0 Specifies the time
interval between starts,
in units of milliseconds.

Parameter Type Default Description

Stopping a route

The following table lists the parameters for scheduling one or more route stops.

Parameter Type Default Description

routeStopDate java.util.Date None Specifies the date and
time when the route is
stopped for the first time.

routeStopRepeatC
ount

int 0 When set to a non-zero
value, specifies how
many times the route
should be stopped.

routeStopRepeatI
nterval

long 0 Specifies the time
interval between stops,
in units of milliseconds.

routeStopGracePe
riod

int 10000 Specifies how long to
wait for the current
exchange to finish
processing (grace
period) before forcibly
stopping the route. Set
to 0 for an infinite grace
period.

routeStopTimeUni
t

long TimeUnit.MILLISE
CONDS

Specifies the time unit of
the grace period.

Suspending a route

The following table lists the parameters for scheduling the suspension of a route one or more times.

Parameter Type Default Description

CHAPTER 2. BASIC PRINCIPLES OF ROUTE BUILDING

87

routeSuspendDate java.util.Date None Specifies the date and
time when the route is
suspended for the first
time.

routeSuspendRepe
atCount

int 0 When set to a non-zero
value, specifies how
many times the route
should be suspended.

routeSuspendRepe
atInterval

long 0 Specifies the time
interval between
suspends, in units of
milliseconds.

Parameter Type Default Description

Resuming a route

The following table lists the parameters for scheduling the resumption of a route one or more times.

Parameter Type Default Description

routeResumeDate java.util.Date None Specifies the date and
time when the route is
resumed for the first
time.

routeResumeRepea
tCount

int 0 When set to a non-zero
value, specifies how
many times the route
should be resumed.

routeResumeRepea
tInterval

long 0 Specifies the time
interval between
resumes, in units of
milliseconds.

2.10.3. Cron Scheduled Route Policy

Overview

The cron scheduled route policy is a route policy that enables you to start, stop, suspend, and resume
routes, where the timing of these events is specified using cron expressions. To define a cron scheduled
route policy, create an instance of the following class:

Dependency

org.apache.camel.routepolicy.quartz.CronScheduledRoutePolicy

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

88

The simple scheduled route policy depends on the Quartz component, camel-quartz. For example, if
you are using Maven as your build system, you would need to add a dependency on the camel-quartz
artifact.

Java DSL example

Example 2.7, “Java DSL Example of a Cron Scheduled Route” shows how to schedule a route to start up
using the Java DSL. The policy is configured with the cron expression, */3 * * * * ?, which triggers
a start event every 3 seconds.

In Java DSL, you attach the route policy to the route by calling the routePolicy() DSL command in
the route.

Example 2.7. Java DSL Example of a Cron Scheduled Route

NOTE

You can specify multiple policies on the route by calling routePolicy() with multiple
arguments.

XML DSL example

Example 2.8, “XML DSL Example of a Cron Scheduled Route”shows how to schedule a route to start up
using the XML DSL.

In XML DSL, you attach the route policy to the route by setting the routePolicyRef attribute on the
route element.

Example 2.8. XML DSL Example of a Cron Scheduled Route

// Java
CronScheduledRoutePolicy policy = new CronScheduledRoutePolicy();
policy.setRouteStartTime("*/3 * * * * ?");

from("direct:start")
 .routeId("test")
 .routePolicy(policy)
 .to("mock:success");;

<bean id="date" class="org.apache.camel.routepolicy.quartz.SimpleDate"/>

<bean id="startPolicy"
class="org.apache.camel.routepolicy.quartz.CronScheduledRoutePolicy">
 <property name="routeStartTime" value="*/3 * * * * ?"/>
</bean>

<camelContext xmlns="http://camel.apache.org/schema/spring">
 <route id="testRoute" routePolicyRef="startPolicy">
 <from uri="direct:start"/>
 <to uri="mock:success"/>
 </route>
</camelContext>

CHAPTER 2. BASIC PRINCIPLES OF ROUTE BUILDING

89

NOTE

You can specify multiple policies on the route by setting the value of routePolicyRef
as a comma-separated list of bean IDs.

Defining cron expressions

The cron expression syntax has its origins in the UNIX cron utility, which schedules jobs to run in the
background on a UNIX system. A cron expression is effectively a syntax for wildcarding dates and times
that enables you to specify either a single event or multiple events that recur periodically.

A cron expression consists of 6 or 7 fields in the following order:

The Year field is optional and usually omitted, unless you want to define an event that occurs once and
once only. Each field consists of a mixture of literals and special characters. For example, the following
cron expression specifies an event that fires once every day at midnight:

The * character is a wildcard that matches every value of a field. Hence, the preceding expression
matches every day of every month. The ? character is a dummy placeholder that means ignore this field.
It always appears either in the DayOfMonth field or in the DayOfWeek field, because it is not logically
consistent to specify both of these fields at the same time. For example, if you want to schedule an event
that fires once a day, but only from Monday to Friday, use the following cron expression:

Where the hyphen character specifies a range, MON-FRI. You can also use the forward slash character,
/, to specify increments. For example, to specify that an event fires every 5 minutes, use the following
cron expression:

For a full explanation of the cron expression syntax, see the Wikipedia article on CRON expressions.

Scheduling tasks

You can use a cron scheduled route policy to define one or more of the following scheduling tasks:

the section called “Starting a route”.

the section called “Stopping a route”.

the section called “Suspending a route”.

the section called “Resuming a route”.

Starting a route

Seconds Minutes Hours DayOfMonth Month DayOfWeek [Year]

0 0 24 * * ?

0 0 24 ? * MON-FRI

0 0/5 * * * ?

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

90

http://en.wikipedia.org/wiki/CRON_expression

The following table lists the parameters for scheduling one or more route starts.

Parameter Type Default Description

routeStartString String None Specifies a cron
expression that triggers
one or more route start
events.

Stopping a route

The following table lists the parameters for scheduling one or more route stops.

Parameter Type Default Description

routeStopTime String None Specifies a cron
expression that triggers
one or more route stop
events.

routeStopGracePe
riod

int 10000 Specifies how long to
wait for the current
exchange to finish
processing (grace
period) before forcibly
stopping the route. Set
to 0 for an infinite grace
period.

routeStopTimeUni
t

long TimeUnit.MILLISE
CONDS

Specifies the time unit of
the grace period.

Suspending a route

The following table lists the parameters for scheduling the suspension of a route one or more times.

Parameter Type Default Description

routeSuspendTime String None Specifies a cron
expression that triggers
one or more route
suspend events.

Resuming a route

The following table lists the parameters for scheduling the resumption of a route one or more times.

CHAPTER 2. BASIC PRINCIPLES OF ROUTE BUILDING

91

Parameter Type Default Description

routeResumeTime String None Specifies a cron
expression that triggers
one or more route
resume events.

2.11. JMX NAMING

Overview

Apache Camel allows you to customise the name of a CamelContext bean as it appears in JMX, by
defining a management name pattern for it. For example, you can customise the name pattern of an
XML CamelContext instance, as follows:

If you do not explicitly set a name pattern for the CamelContext bean, Apache Camel reverts to a
default naming strategy.

Default naming strategy

By default, the JMX name of a CamelContext bean is equal to the value of the bean's id attribute,
prefixed by the current bundle ID. For example, if the id attribute on a camelContext element is
myCamel and the current bundle ID is 250, the JMX name would be 250-myCamel. In cases where
there is more than one CamelContext instance with the same id in the bundle, the JMX name is
disambiguated by adding a counter value as a suffix. For example, if there are multiple instances of
myCamel in the bundle, the corresponding JMX MBeans are named as follows:

Customising the JMX naming strategy

One drawback of the default naming strategy is that you cannot guarantee that a given CamelContext
bean will have the same JMX name between runs. If you want to have greater consistency between
runs, you can control the JMX name more precisely by defining a JMX name pattern for the
CamelContext instances.

Specifying a name pattern in Java

To specify a name pattern on a CamelContext in Java, call the setNamePattern method, as follows:

<camelContext id="myCamel" managementNamePattern="#name#">
 ...
</camelContext>

250-myCamel-1
250-myCamel-2
250-myCamel-3
...

// Java
context.getManagementNameStrategy().setNamePattern("#name#");

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

92

Specifying a name pattern in XML

To specify a name pattern on a CamelContext in XML, set the managementNamePattern attribute on
the camelContext element, as follows:

Name pattern tokens

You can construct a JMX name pattern by mixing literal text with any of the following tokens:

Table 2.11. JMX Name Pattern Tokens

Token Description

#camelId# Value of the id attribute on the CamelContext bean.

#name# Same as #camelId#.

#counter# An incrementing counter (starting at 1).

#bundleId# The OSGi bundle ID of the deployed bundle (OSGi only) .

#symbolicName# The OSGi symbolic name (OSGi only) .

#version# The OSGi bundle version (OSGi only) .

Examples

Here are some examples of JMX name patterns you could define using the supported tokens:

Ambiguous names

Because the customised naming pattern overrides the default naming strategy, it is possible to define
ambiguous JMX MBean names using this approach. For example:

<camelContext id="myCamel" managementNamePattern="#name#">

<camelContext id="fooContext" managementNamePattern="FooApplication-
#name#">
 ...
</camelContext>
<camelContext id="myCamel" managementNamePattern="#bundleID#-
#symbolicName#-#name#">
 ...
</camelContext>

<camelContext id="foo" managementNamePattern="SameOldSameOld"> ...
</camelContext>
...
<camelContext id="bar" managementNamePattern="SameOldSameOld"> ...
</camelContext>

CHAPTER 2. BASIC PRINCIPLES OF ROUTE BUILDING

93

In this case, Apache Camel would fail on start-up and report an MBean already exists exception. You
should, therefore, take extra care to ensure that you do not define ambiguous name patterns.

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

94

CHAPTER 3. INTRODUCING ENTERPRISE INTEGRATION
PATTERNS

Abstract

The Apache Camel's Enterprise Integration Patterns are inspired by a book of the same name written by
Gregor Hohpe and Bobby Woolf. The patterns described by these authors provide an excellent toolbox
for developing enterprise integration projects. In addition to providing a common language for discussing
integration architectures, many of the patterns can be implemented directly using Apache Camel's
programming interfaces and XML configuration.

3.1. OVERVIEW OF THE PATTERNS

Enterprise Integration Patterns book

Apache Camel supports most of the patterns from the book, Enterprise Integration Patterns by Gregor
Hohpe and Bobby Woolf.

Messaging systems

The messaging systems patterns, shown in Table 3.1, “Messaging Systems”, introduce the fundamental
concepts and components that make up a messaging system.

Table 3.1. Messaging Systems

Icon Name Use Case

Message How can two applications
connected by a message channel
exchange a piece of information?

Message Channel How does one application
communicate with another
application using messaging?

Message Endpoint How does an application connect
to a messaging channel to send
and receive messages?

Pipes and Filters How can we perform complex
processing on a message while
still maintaining independence and
flexibility?

CHAPTER 3. INTRODUCING ENTERPRISE INTEGRATION PATTERNS

95

http://www.enterpriseintegrationpatterns.com/toc.html

Message Router How can you decouple individual
processing steps so that
messages can be passed to
different filters depending on a set
of defined conditions?

Message Translator How do systems using different
data formats communicate with
each other using messaging?

Icon Name Use Case

Messaging channels

A messaging channel is the basic component used for connecting the participants in a messaging
system. The patterns in Table 3.2, “Messaging Channels” describe the different kinds of messaging
channels available.

Table 3.2. Messaging Channels

Icon Name Use Case

Point to Point Channel How can the caller be sure that
exactly one receiver will receive
the document or will perform the
call?

Publish Subscribe Channel How can the sender broadcast an
event to all interested receivers?

Dead Letter Channel What will the messaging system
do with a message it cannot
deliver?

Guaranteed Delivery How does the sender make sure
that a message will be delivered,
even if the messaging system
fails?

Message Bus What is an architecture that
enables separate, decoupled
applications to work together,
such that one or more of the
applications can be added or
removed without affecting the
others?

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

96

Message construction

The message construction patterns, shown in Table 3.3, “Message Construction”, describe the various
forms and functions of the messages that pass through the system.

Table 3.3. Message Construction

Icon Name Use Case

Correlation Identifier How does a requestor identify the
request that generated the
received reply?

Return Address How does a replier know where to
send the reply?

Message routing

The message routing patterns, shown in Table 3.4, “Message Routing”, describe various ways of linking
message channels together, including various algorithms that can be applied to the message stream
(without modifying the body of the message).

Table 3.4. Message Routing

Icon Name Use Case

Content Based Router How do we handle a situation
where the implementation of a
single logical function (e.g.,
inventory check) is spread across
multiple physical systems?

Message Filter How does a component avoid
receiving uninteresting
messages?

Recipient List How do we route a message to a
list of dynamically specified
recipients?

Splitter How can we process a message if
it contains multiple elements, each
of which might have to be
processed in a different way?

CHAPTER 3. INTRODUCING ENTERPRISE INTEGRATION PATTERNS

97

Aggregator How do we combine the results of
individual, but related messages
so that they can be processed as
a whole?

Resequencer How can we get a stream of
related, but out-of-sequence,
messages back into the correct
order?

Composed Message Processor How can you maintain the overall
message flow when processing a
message consisting of multiple
elements, each of which may
require different processing?

Scatter-Gather How do you maintain the overall
message flow when a message
needs to be sent to multiple
recipients, each of which may
send a reply?

Routing Slip How do we route a message
consecutively through a series of
processing steps when the
sequence of steps is not known at
design-time, and might vary for
each message?

 Throttler How can I throttle messages to
ensure that a specific endpoint
does not get overloaded, or that
we don't exceed an agreed SLA
with some external service?

 Delayer How can I delay the sending of a
message?

 Load Balancer How can I balance load across a
number of endpoints?

 Multicast How can I route a message to a
number of endpoints at the same
time?

Loop How can I repeat processing a
message in a loop?

Icon Name Use Case

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

98

 Sampling How can I sample one message
out of many in a given period to
avoid downstream route does not
get overloaded?

Icon Name Use Case

Message transformation

The message transformation patterns, shown in Table 3.5, “Message Transformation”, describe how to
modify the contents of messages for various purposes.

Table 3.5. Message Transformation

Icon Name Use Case

Content Enricher How do we communicate with
another system if the message
originator does not have all the
required data items available?

Content Filter How do you simplify dealing with a
large message, when you are
interested in only a few data
items?

Claim Check How can we reduce the data
volume of message sent across
the system without sacrificing
information content?

Normalizer How do you process messages
that are semantically equivalent,
but arrive in a different format?

Sort How can I sort the body of a
message?

Messaging endpoints

A messaging endpoint denotes the point of contact between a messaging channel and an application.
The messaging endpoint patterns, shown in Table 3.6, “Messaging Endpoints”, describe various
features and qualities of service that can be configured on an endpoint.

Table 3.6. Messaging Endpoints

CHAPTER 3. INTRODUCING ENTERPRISE INTEGRATION PATTERNS

99

Icon Name Use Case

 Messaging Mapper How do you move data between
domain objects and the
messaging infrastructure while
keeping the two independent of
each other?

Event Driven Consumer How can an application
automatically consume messages
as they become available?

Polling Consumer How can an application consume
a message when the application is
ready?

Competing Consumers How can a messaging client
process multiple messages
concurrently?

Message Dispatcher How can multiple consumers on a
single channel coordinate their
message processing?

Selective Consumer How can a message consumer
select which messages it wants to
receive?

Durable Subscriber How can a subscriber avoid
missing messages when it's not
listening for them?

 Idempotent Consumer How can a message receiver deal
with duplicate messages?

Transactional Client How can a client control its
transactions with the messaging
system?

Messaging Gateway How do you encapsulate access
to the messaging system from the
rest of the application?

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

100

Service Activator How can an application design a
service to be invoked both via
various messaging technologies
and via non-messaging
techniques?

Icon Name Use Case

System management

The system management patterns, shown in Table 3.7, “System Management”, describe how to monitor,
test, and administer a messaging system.

Table 3.7. System Management

Icon Name Use Case

Wire Tap How do you inspect messages
that travel on a point-to-point
channel?

CHAPTER 3. INTRODUCING ENTERPRISE INTEGRATION PATTERNS

101

CHAPTER 4. MESSAGING SYSTEMS

Abstract

This chapter introduces the fundamental building blocks of a messaging system, such as endpoints,
messaging channels, and message routers.

4.1. MESSAGE

Overview

A message is the smallest unit for transmitting data in a messaging system (represented by the grey dot
in the figure below). The message itself might have some internal structure—for example, a message
containing multiple parts—which is represented by geometrical figures attached to the grey dot in
Figure 4.1, “Message Pattern”.

Figure 4.1. Message Pattern

Types of message

Apache Camel defines the following distinct message types:

In message — A message that travels through a route from a consumer endpoint to a producer
endpoint (typically, initiating a message exchange).

Out message — A message that travels through a route from a producer endpoint back to a
consumer endpoint (usually, in response to an In message).

All of these message types are represented internally by the org.apache.camel.Message interface.

Message structure

By default, Apache Camel applies the following structure to all message types:

Headers — Contains metadata or header data extracted from the message.

Body — Usually contains the entire message in its original form.

Attachments — Message attachments (required for integrating with certain messaging systems,
such as JBI).

It is important to remember that this division into headers, body, and attachments is an abstract model of
the message. Apache Camel supports many different components, that generate a wide variety of
message formats. Ultimately, it is the underlying component implementation that decides what gets
placed into the headers and body of a message.

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

102

http://java.sun.com/integration/

Correlating messages

Internally, Apache Camel remembers the message IDs, which are used to correlate individual
messages. In practice, however, the most important way that Apache Camel correlates messages is
through exchange objects.

Exchange objects

An exchange object is an entity that encapsulates related messages, where the collection of related
messages is referred to as a message exchange and the rules governing the sequence of messages are
referred to as an exchange pattern. For example, two common exchange patterns are: one-way event
messages (consisting of an In message), and request-reply exchanges (consisting of an In message,
followed by an Out message).

Accessing messages

When defining a routing rule in the Java DSL, you can access the headers and body of a message using
the following DSL builder methods:

header(String name), body() — Returns the named header and the body of the current In
message.

outBody() — Returns the body of the current Out message.

For example, to populate the In message's username header, you can use the following Java DSL
route:

4.2. MESSAGE CHANNEL

Overview

A message channel is a logical channel in a messaging system. That is, sending messages to different
message channels provides an elementary way of sorting messages into different message types.
Message queues and message topics are examples of message channels. You should remember that a
logical channel is not the same as a physical channel. There can be several different ways of physically
realizing a logical channel.

In Apache Camel, a message channel is represented by an endpoint URI of a message-oriented
component as shown in Figure 4.2, “Message Channel Pattern”.

from(SourceURL).setHeader("username", "John.Doe").to(TargetURL);

CHAPTER 4. MESSAGING SYSTEMS

103

Figure 4.2. Message Channel Pattern

Message-oriented components

The following message-oriented components in Apache Camel support the notion of a message
channel:

ActiveMQ

JMS

AMQP

ActiveMQ

In ActiveMQ, message channels are represented by queues or topics. The endpoint URI for a specific
queue, QueueName, has the following format:

The endpoint URI for a specific topic, TopicName, has the following format:

For example, to send messages to the queue, Foo.Bar, use the following endpoint URI:

See chapter "ActiveMQ" in "EIP Component Reference" for more details and instructions on setting up
the ActiveMQ component.

JMS

The Java Messaging Service (JMS) is a generic wrapper layer that is used to access many different
kinds of message systems (for example, you can use it to wrap ActiveMQ, MQSeries, Tibco, BEA,
Sonic, and others). In JMS, message channels are represented by queues, or topics. The endpoint URI
for a specific queue, QueueName, has the following format:

activemq:QueueName

activemq:topic:TopicName

activemq:Foo.Bar

jms:QueueName

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

104

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.0/html/EIP_Component_Reference/_IDU_ActiveMQ.html

The endpoint URI for a specific topic, TopicName, has the following format:

See chapter "JMS" in "EIP Component Reference" for more details and instructions on setting up the
JMS component.

AMQP

In AMQP, message channels are represented by queues, or topics. The endpoint URI for a specific
queue, QueueName, has the following format:

The endpoint URI for a specific topic, TopicName, has the following format:

See chapter "AMQP" in "EIP Component Reference" for more details and instructions on setting up the
AMQP component.

4.3. MESSAGE ENDPOINT

Overview

A message endpoint is the interface between an application and a messaging system. As shown in
Figure 4.3, “Message Endpoint Pattern”, you can have a sender endpoint, sometimes called a proxy or a
service consumer, which is responsible for sending In messages, and a receiver endpoint, sometimes
called an endpoint or a service, which is responsible for receiving In messages.

Figure 4.3. Message Endpoint Pattern

Types of endpoint

Apache Camel defines two basic types of endpoint:

Consumer endpoint — Appears at the start of a Apache Camel route and reads In messages
from an incoming channel (equivalent to a receiver endpoint).

Producer endpoint — Appears at the end of a Apache Camel route and writes In messages to an
outgoing channel (equivalent to a sender endpoint). It is possible to define a route with multiple
producer endpoints.

jms:topic:TopicName

amqp:QueueName

amqp:topic:TopicName

CHAPTER 4. MESSAGING SYSTEMS

105

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.0/html/EIP_Component_Reference/_IDU_JMS.html
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.0/html/EIP_Component_Reference/_IDU_AMQP.html

Endpoint URIs

In Apache Camel, an endpoint is represented by an endpoint URI, which typically encapsulates the
following kinds of data:

Endpoint URI for a consumer endpoint — Advertises a specific location (for example, to expose
a service to which senders can connect). Alternatively, the URI can specify a message source,
such as a message queue. The endpoint URI can include settings to configure the endpoint.

Endpoint URI for a producer endpoint — Contains details of where to send messages and
includes the settings to configure the endpoint. In some cases, the URI specifies the location of a
remote receiver endpoint; in other cases, the destination can have an abstract form, such as a
queue name.

An endpoint URI in Apache Camel has the following general form:

Where ComponentPrefix is a URI prefix that identifies a particular Apache Camel component (see "EIP
Component Reference" for details of all the supported components). The remaining part of the URI,
ComponentSpecificURI, has a syntax defined by the particular component. For example, to connect to
the JMS queue, Foo.Bar, you can define an endpoint URI like the following:

To define a route that connects the consumer endpoint, file://local/router/messages/foo,
directly to the producer endpoint, jms:Foo.Bar, you can use the following Java DSL fragment:

Alternatively, you can define the same route in XML, as follows:

4.4. PIPES AND FILTERS

Overview

The pipes and filters pattern, shown in Figure 4.4, “Pipes and Filters Pattern”, describes a way of
constructing a route by creating a chain of filters, where the output of one filter is fed into the input of the
next filter in the pipeline (analogous to the UNIX pipe command). The advantage of the pipeline
approach is that it enables you to compose services (some of which can be external to the Apache
Camel application) to create more complex forms of message processing.

ComponentPrefix:ComponentSpecificURI

jms:Foo.Bar

from("file://local/router/messages/foo").to("jms:Foo.Bar");

<camelContext id="CamelContextID"
xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from uri="file://local/router/messages/foo"/>
 <to uri="jms:Foo.Bar"/>
 </route>
</camelContext>

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

106

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.0/html/EIP_Component_Reference/

Figure 4.4. Pipes and Filters Pattern

Pipeline for the InOut exchange pattern

Normally, all of the endpoints in a pipeline have an input (In message) and an output (Out message),
which implies that they are compatible with the InOut message exchange pattern. A typical message
flow through an InOut pipeline is shown in Figure 4.5, “Pipeline for InOut Exchanges”.

Figure 4.5. Pipeline for InOut Exchanges

Where the pipeline connects the output of each endpoint to the input of the next one. The Out message
from the final endpoint gets sent back to the original caller. You can define a route for this pipeline, as
follows:

The same route can be configured in XML, as follows:

There is no dedicated pipeline element in XML. The preceding combination of from and to elements is
semantically equivalent to a pipeline. See the section called “Comparison of pipeline() and to() DSL
commands”.

Pipeline for the InOnly and RobustInOnly exchange patterns

When there are no Out messages available from the endpoints in the pipeline (as is the case for the
InOnly and RobustInOnly exchange patterns), a pipeline cannot be connected in the normal way. In
this special case, the pipeline is constructed by passing a copy of the original In message to each of the

from("jms:RawOrders").pipeline("cxf:bean:decrypt",
"cxf:bean:authenticate", "cxf:bean:dedup", "jms:CleanOrders");

<camelContext id="buildPipeline"
xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from uri="jms:RawOrders"/>
 <to uri="cxf:bean:decrypt"/>
 <to uri="cxf:bean:authenticate"/>
 <to uri="cxf:bean:dedup"/>
 <to uri="jms:CleanOrders"/>
 </route>
</camelContext>

CHAPTER 4. MESSAGING SYSTEMS

107

endpoints in the pipeline, as shown in Figure 4.6, “Pipeline for InOnly Exchanges”. This type of pipeline
is equivalent to a recipient list with fixed destinations(see Section 7.3, “Recipient List”).

Figure 4.6. Pipeline for InOnly Exchanges

The route for this pipeline is defined using the same syntax as an InOut pipeline (either in Java DSL or in
XML).

Comparison of pipeline() and to() DSL commands

In the Java DSL, you can define a pipeline route using either of the following syntaxes:

Using the pipeline() processor command — Use the pipeline processor to construct a pipeline
route as follows:

Using the to() command — Use the to() command to construct a pipeline route as follows:

Alternatively, you can use the equivalent syntax:

Exercise caution when using the to() command syntax, because it is not always equivalent to a pipeline
processor. In Java DSL, the meaning of to() can be modified by the preceding command in the route.
For example, when the multicast() command precedes the to() command, it binds the listed
endpoints into a multicast pattern, instead of a pipeline pattern(see Section 7.11, “Multicast”).

4.5. MESSAGE ROUTER

Overview

A message router, shown in Figure 4.7, “Message Router Pattern”, is a type of filter that consumes
messages from a single consumer endpoint and redirects them to the appropriate target endpoint, based
on a particular decision criterion. A message router is concerned only with redirecting messages; it does
not modify the message content.

from(SourceURI).pipeline(FilterA, FilterB, TargetURI);

from(SourceURI).to(FilterA, FilterB, TargetURI);

from(SourceURI).to(FilterA).to(FilterB).to(TargetURI);

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

108

Figure 4.7. Message Router Pattern

A message router can easily be implemented in Apache Camel using the choice() processor, where
each of the alternative target endpoints can be selected using a when() subclause (for details of the
choice processor, see Section 1.5, “Processors”).

Java DSL example

The following Java DSL example shows how to route messages to three alternative destinations (either
seda:a, seda:b, or seda:c) depending on the contents of the foo header:

XML configuration example

The following example shows how to configure the same route in XML:

Choice without otherwise

from("seda:a").choice()
 .when(header("foo").isEqualTo("bar")).to("seda:b")
 .when(header("foo").isEqualTo("cheese")).to("seda:c")
 .otherwise().to("seda:d");

<camelContext id="buildSimpleRouteWithChoice"
xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from uri="seda:a"/>
 <choice>
 <when>
 <xpath>$foo = 'bar'</xpath>
 <to uri="seda:b"/>
 </when>
 <when>
 <xpath>$foo = 'cheese'</xpath>
 <to uri="seda:c"/>
 </when>
 <otherwise>
 <to uri="seda:d"/>
 </otherwise>
 </choice>
 </route>
</camelContext>

CHAPTER 4. MESSAGING SYSTEMS

109

If you use choice() without an otherwise() clause, any unmatched exchanges are dropped by
default.

4.6. MESSAGE TRANSLATOR

Overview

The message translator pattern, shown in Figure 4.8, “Message Translator Pattern” describes a
component that modifies the contents of a message, translating it to a different format. You can use
Apache Camel's bean integration feature to perform the message translation.

Figure 4.8. Message Translator Pattern

Bean integration

You can transform a message using bean integration, which enables you to call a method on any
registered bean. For example, to call the method, myMethodName(), on the bean with ID,
myTransformerBean:

Where the myTransformerBean bean is defined in either a Spring XML file or in JNDI. If, you omit the
method name parameter from beanRef(), the bean integration will try to deduce the method name to
invoke by examining the message exchange.

You can also add your own explicit Processor instance to perform the transformation, as follows:

Or, you can use the DSL to explicitly configure the transformation, as follows:

You can also use templating to consume a message from one destination, transform it with something
like Velocity or XQuery and then send it on to another destination. For example, using the InOnly
exchange pattern (one-way messaging) :

from("activemq:SomeQueue")
 .beanRef("myTransformerBean", "myMethodName")
 .to("mqseries:AnotherQueue");

from("direct:start").process(new Processor() {
 public void process(Exchange exchange) {
 Message in = exchange.getIn();
 in.setBody(in.getBody(String.class) + " World!");
 }
}).to("mock:result");

from("direct:start").setBody(body().append(" World!")).to("mock:result");

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

110

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.0/html/EIP_Component_Reference/_IDU_Velocity.html

If you want to use InOut (request-reply) semantics to process requests on the My.Queue queue on
ActiveMQ with a template generated response, then you could use a route like the following to send
responses back to the JMSReplyTo destination:

from("activemq:My.Queue").
 to("velocity:com/acme/MyResponse.vm").
 to("activemq:Another.Queue");

from("activemq:My.Queue").
 to("velocity:com/acme/MyResponse.vm");

CHAPTER 4. MESSAGING SYSTEMS

111

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.0/html/EIP_Component_Reference/_IDU_ActiveMQ.html

CHAPTER 5. MESSAGING CHANNELS

Abstract

Messaging channels provide the plumbing for a messaging application. This chapter describes the
different kinds of messaging channels available in a messaging system, and the roles that they play.

5.1. POINT-TO-POINT CHANNEL

Overview

A point-to-point channel, shown in Figure 5.1, “Point to Point Channel Pattern” is a message channel
that guarantees that only one receiver consumes any given message. This is in contrast with a publish-
subscribe channel, which allows multiple receivers to consume the same message. In particular, with a
point-to-point channel, it is possible for multiple receivers to subscribe to the same channel. If more than
one receiver competes to consume a message, it is up to the message channel to ensure that only one
receiver actually consumes the message.

Figure 5.1. Point to Point Channel Pattern

Components that support point-to-point channel

The following Apache Camel components support the point-to-point channel pattern:

JMS

ActiveMQ

SEDA

JPA

XMPP

JMS

In JMS, a point-to-point channel is represented by a queue. For example, you can specify the endpoint
URI for a JMS queue called Foo.Bar as follows:

The qualifier, queue:, is optional, because the JMS component creates a queue endpoint by default.
Therefore, you can also specify the following equivalent endpoint URI:

jms:queue:Foo.Bar

jms:Foo.Bar

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

112

See chapter "JMS" in "EIP Component Reference" for more details.

ActiveMQ

In ActiveMQ, a point-to-point channel is represented by a queue. For example, you can specify the
endpoint URI for an ActiveMQ queue called Foo.Bar as follows:

See chapter "ActiveMQ" in "EIP Component Reference" for more details.

SEDA

The Apache Camel Staged Event-Driven Architecture (SEDA) component is implemented using a
blocking queue. Use the SEDA component if you want to create a lightweight point-to-point channel that
is internal to the Apache Camel application. For example, you can specify an endpoint URI for a SEDA
queue called SedaQueue as follows:

JPA

The Java Persistence API (JPA) component is an EJB 3 persistence standard that is used to write entity
beans out to a database. See chapter "JPA" in "EIP Component Reference" for more details.

XMPP

The XMPP (Jabber) component supports the point-to-point channel pattern when it is used in the
person-to-person mode of communication. See chapter "XMPP" in "EIP Component Reference" for
more details.

5.2. PUBLISH-SUBSCRIBE CHANNEL

Overview

A publish-subscribe channel, shown in Figure 5.2, “Publish Subscribe Channel Pattern”, is a message
channel that enables multiple subscribers to consume any given message. This is in contrast with a
point-to-point channel. Publish-subscribe channels are frequently used as a means of broadcasting
events or notifications to multiple subscribers.

activemq:queue:Foo.Bar

seda:SedaQueue

CHAPTER 5. MESSAGING CHANNELS

113

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.0/html/EIP_Component_Reference/_IDU_JMS.html
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.0/html/EIP_Component_Reference/_IDU_ActiveMQ.html
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.0/html/EIP_Component_Reference/_IDU_JPA.html
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.0/html/EIP_Component_Reference/_IDU_XMPP.html

Figure 5.2. Publish Subscribe Channel Pattern

Components that support publish-subscribe channel

The following Apache Camel components support the publish-subscribe channel pattern:

JMS

ActiveMQ

XMPP

SEDA for working with SEDA in the same CamelContext which can work in pub-sub, but
allowing multiple consumers.

VM as SEDA, but for use within the same JVM.

JMS

In JMS, a publish-subscribe channel is represented by a topic. For example, you can specify the
endpoint URI for a JMS topic called StockQuotes as follows:

See chapter "JMS" in "EIP Component Reference" for more details.

ActiveMQ

In ActiveMQ, a publish-subscribe channel is represented by a topic. For example, you can specify the
endpoint URI for an ActiveMQ topic called StockQuotes, as follows:

jms:topic:StockQuotes

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

114

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.0/html/EIP_Component_Reference/_IDU_SEDA.html
CamelContext
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.0/html/EIP_Component_Reference/_IDU_VM.html
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.0/html/EIP_Component_Reference/_IDU_JMS.html

See chapter "ActiveMQ" in "EIP Component Reference" for more details.

XMPP

The XMPP (Jabber) component supports the publish-subscribe channel pattern when it is used in the
group communication mode. See chapter "XMPP" in "EIP Component Reference" for more details.

Static subscription lists

If you prefer, you can also implement publish-subscribe logic within the Apache Camel application itself.
A simple approach is to define a static subscription list, where the target endpoints are all explicitly listed
at the end of the route. However, this approach is not as flexible as a JMS or ActiveMQ topic.

Java DSL example

The following Java DSL example shows how to simulate a publish-subscribe channel with a single
publisher, seda:a, and three subscribers, seda:b, seda:c, and seda:d:

NOTE

This only works for the InOnly message exchange pattern.

XML configuration example

The following example shows how to configure the same route in XML:

5.3. DEAD LETTER CHANNEL

Overview

The dead letter channel pattern, shown in Figure 5.3, “Dead Letter Channel Pattern”, describes the
actions to take when the messaging system fails to deliver a message to the intended recipient. This
includes such features as retrying delivery and, if delivery ultimately fails, sending the message to a
dead letter channel, which archives the undelivered messages.

activemq:topic:StockQuotes

from("seda:a").to("seda:b", "seda:c", "seda:d");

<camelContext id="buildStaticRecipientList"
xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from uri="seda:a"/>
 <to uri="seda:b"/>
 <to uri="seda:c"/>
 <to uri="seda:d"/>
 </route>
</camelContext>

CHAPTER 5. MESSAGING CHANNELS

115

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.0/html/EIP_Component_Reference/_IDU_ActiveMQ.html
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.0/html/EIP_Component_Reference/_IDU_XMPP.html

Figure 5.3. Dead Letter Channel Pattern

Creating a dead letter channel in Java DSL

The following example shows how to create a dead letter channel using Java DSL:

Where the errorHandler() method is a Java DSL interceptor, which implies that all of the routes
defined in the current route builder are affected by this setting. The deadLetterChannel() method is
a Java DSL command that creates a new dead letter channel with the specified destination endpoint,
seda:errors.

The errorHandler() interceptor provides a catch-all mechanism for handling all error types. If you
want to apply a more fine-grained approach to exception handling, you can use the onException
clauses instead(see the section called “onException clause”).

XML DSL example

You can define a dead letter channel in the XML DSL, as follows:

errorHandler(deadLetterChannel("seda:errors"));
from("seda:a").to("seda:b");

 <route errorHandlerRef="myDeadLetterErrorHandler">
 ...
 </route>

 <bean id="myDeadLetterErrorHandler"
class="org.apache.camel.builder.DeadLetterChannelBuilder">
 <property name="deadLetterUri" value="jms:queue:dead"/>
 <property name="redeliveryPolicy" ref="myRedeliveryPolicyConfig"/>
 </bean>

 <bean id="myRedeliveryPolicyConfig"
class="org.apache.camel.processor.RedeliveryPolicy">

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

116

Redelivery policy

Normally, you do not send a message straight to the dead letter channel, if a delivery attempt fails.
Instead, you re-attempt delivery up to some maximum limit, and after all redelivery attempts fail you
would send the message to the dead letter channel. To customize message redelivery, you can
configure the dead letter channel to have a redelivery policy. For example, to specify a maximum of two
redelivery attempts, and to apply an exponential backoff algorithm to the time delay between delivery
attempts, you can configure the dead letter channel as follows:

Where you set the redelivery options on the dead letter channel by invoking the relevant methods in a
chain (each method in the chain returns a reference to the current RedeliveryPolicy object).
Table 5.1, “Redelivery Policy Settings” summarizes the methods that you can use to set redelivery
policies.

Table 5.1. Redelivery Policy Settings

Method Signature Default Description

backOffMultiplier(doubl
e multiplier)

2 If exponential backoff is enabled,
let m be the backoff multiplier and
let d be the initial delay. The
sequence of redelivery attempts
are then timed as follows:

collisionAvoidancePerce
nt(double
collisionAvoidancePerce
nt)

15 If collision avoidance is enabled,
let p be the collision avoidance
percent. The collision avoidance
policy then tweaks the next delay
by a random amount, up to
plus/minus p% of its current value.

delayPattern(String
delayPattern)

None Apache Camel 2.0:

disableRedelivery() true Apache Camel 2.0: Disables the
redelivery feature. To enable
redelivery, set
maximumRedeliveries() to
a positive integer value.

 <property name="maximumRedeliveries" value="3"/>
 <property name="redeliveryDelay" value="5000"/>
 </bean>

errorHandler(deadLetterChannel("seda:errors").maximumRedeliveries(2).useEx
ponentialBackOff());
from("seda:a").to("seda:b");

d, m*d, m*m*d,
m*m*m*d, ...

CHAPTER 5. MESSAGING CHANNELS

117

handled(boolean
handled)

true Apache Camel 2.0: If true, the
current exception is cleared when
the message is moved to the dead
letter channel; if false, the
exception is propagated back to
the client.

initialRedeliveryDelay(
long
initialRedeliveryDelay)

1000 Specifies the delay (in
milliseconds) before attempting
the first redelivery.

logStackTrace(boolean
logStackTrace)

false Apache Camel 2.0: If true, the
JVM stack trace is included in the
error logs.

maximumRedeliveries(int
maximumRedeliveries)

0 Apache Camel 2.0: Maximum
number of delivery attempts.

maximumRedeliveryDelay(
long maxDelay)

60000 Apache Camel 2.0: When using
an exponential backoff strategy
(see
useExponentialBackOff()
), it is theoretically possible for the
redelivery delay to increase
without limit. This property
imposes an upper limit on the
redelivery delay (in milliseconds)

onRedelivery(Processor
processor)

None Apache Camel 2.0: Configures a
processor that gets called before
every redelivery attempt.

redeliveryDelay(long
int)

0 Apache Camel 2.0: Specifies the
delay (in milliseconds) between
redelivery attempts.

retriesExhaustedLogLeve
l(LoggingLevel
logLevel)

LoggingLevel.ERROR Apache Camel 2.0: Specifies the
logging level at which to log
delivery failure (specified as an
org.apache.camel.Loggin
gLevel constant).

retryAttemptedLogLevel(
LoggingLevel logLevel)

LoggingLevel.DEBUG Apache Camel 2.0: Specifies the
logging level at which to redelivery
attempts (specified as an
org.apache.camel.Loggin
gLevel constant).

Method Signature Default Description

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

118

useCollisionAvoidance() false Enables collision avoidence, which
adds some randomization to the
backoff timings to reduce
contention probability.

useOriginalMessage() false Apache Camel 2.0: If this feature
is enabled, the message sent to
the dead letter channel is a copy
of the original message exchange,
as it existed at the beginning of
the route (in the from() node).

useExponentialBackOff() false Enables exponential backoff.

Method Signature Default Description

Redelivery headers

If Apache Camel attempts to redeliver a message, it automatically sets the headers described in
Table 5.2, “Dead Letter Redelivery Headers” on the In message.

Table 5.2. Dead Letter Redelivery Headers

Header Name Type Description

CamelRedeliveryCounter Integer Apache Camel 2.0: Counts the
number of unsuccessful delivery
attempts. This value is also set in
Exchange.REDELIVERY_COU
NTER.

CamelRedelivered Boolean Apache Camel 2.0: True, if one or
more redelivery attempts have
been made. This value is also set
in Exchange.REDELIVERED.

CamelRedeliveryMaxCount
er

Integer Apache Camel 2.6: Holds the
maximum redelivery setting (also
set in the
Exchange.REDELIVERY_MAX
_COUNTER exchange property).
This header is absent if you use
retryWhile or have unlimited
maximum redelivery configured.

Using the original message

Available as of Apache Camel 2.0 Because an exchange object is subject to modification as it passes
through the route, the exchange that is current when an exception is raised is not necessarily the copy
that you would want to store in the dead letter channel. In many cases, it is preferable to log the

CHAPTER 5. MESSAGING CHANNELS

119

message that arrived at the start of the route, before it was subject to any kind of transformation by the
route. For example, consider the following route:

The preceding route listen for incoming JMS messages and then processes the messages using the
sequence of beans: validateOrder, transformOrder, and handleOrder. But when an error
occurs, we do not know in which state the message is in. Did the error happen before the
transformOrder bean or after? We can ensure that the original message from
jms:queue:order:input is logged to the dead letter channel by enabling the
useOriginalMessage option as follows:

Redeliver delay pattern

Available as of Apache Camel 2.0 The delayPattern option is used to specify delays for particular
ranges of the redelivery count. The delay pattern has the following syntax:
limit1:delay1;limit2:delay2;limit3:delay3;..., where each delayN is applied to
redeliveries in the range limitN <= redeliveryCount < limitN+1

For example, consider the pattern, 5:1000;10:5000;20:20000, which defines three groups and
results in the following redelivery delays:

Attempt number 1–4 = 0 milliseconds (as the first group starts with 5).

Attempt number 5–9 = 1000 milliseconds (the first group).

Attempt number 10–19 = 5000 milliseconds (the second group).

Attempt number 20– = 20000 milliseconds (the last group).

You can start a group with limit 1 to define a starting delay. For example, 1:1000;5:5000 results in the
following redelivery delays:

Attempt number 1–4 = 1000 millis (the first group)

Attempt number 5– = 5000 millis (the last group)

There is no requirement that the next delay should be higher than the previous and you can use any
delay value you like. For example, the delay pattern, 1:5000;3:1000, starts with a 5 second delay and
then reduces the delay to 1 second.

Which endpoint failed?

When Apache Camel routes messages, it updates an Exchange property that contains the last endpoint
the Exchange was sent to. Hence, you can obtain the URI for the current exchange's most recent
destination using the following code:

from("jms:queue:order:input")
 .to("bean:validateOrder");
 .to("bean:transformOrder")
 .to("bean:handleOrder");

// will use original body
errorHandler(deadLetterChannel("jms:queue:dead")
 .useOriginalMessage().maximumRedeliveries(5).redeliveryDelay(5000);

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

120

Exchange
Exchange

Where Exchange.TO_ENDPOINT is a string constant equal to CamelToEndpoint. This property is
updated whenever Camel sends a message to any endpoint.

If an error occurs during routing and the exchange is moved into the dead letter queue, Apache Camel
will additionally set a property named CamelFailureEndpoint, which identifies the last destination the
exchange was sent to before the error occcured. Hence, you can access the failure endpoint from within
a dead letter queue using the following code:

Where Exchange.FAILURE_ENDPOINT is a string constant equal to CamelFailureEndpoint.

NOTE

These properties remain set in the current exchange, even if the failure occurs after the
given destination endpoint has finished processing. For example, consider the following
route:

Now suppose that a failure happens in the foo bean. In this case the
Exchange.TO_ENDPOINT property and the Exchange.FAILURE_ENDPOINT property
still contain the value, http://someserver/somepath.

onRedelivery processor

When a dead letter channel is performing redeliveries, it is possible to configure a Processor that is
executed just before every redelivery attempt. This can be used for situations where you need to alter
the message before it is redelivered.

For example, the following dead letter channel is configured to call the MyRedeliverProcessor before
redelivering exchanges:

Where the MyRedeliveryProcessor process is implemented as follows:

// Java
String lastEndpointUri = exchange.getProperty(Exchange.TO_ENDPOINT,
String.class);

// Java
String failedEndpointUri = exchange.getProperty(Exchange.FAILURE_ENDPOINT,
String.class);

 from("activemq:queue:foo")
 .to("http://someserver/somepath")
 .beanRef("foo");

// we configure our Dead Letter Channel to invoke
// MyRedeliveryProcessor before a redelivery is
// attempted. This allows us to alter the message before
errorHandler(deadLetterChannel("mock:error").maximumRedeliveries(5)
 .onRedelivery(new MyRedeliverProcessor())
 // setting delay to zero is just to make unit teting faster
 .redeliveryDelay(0L));

// This is our processor that is executed before every redelivery attempt
// here we can do what we want in the java code, such as altering the

CHAPTER 5. MESSAGING CHANNELS

121

http://someserver/somepath

onException clause

Instead of using the errorHandler() interceptor in your route builder, you can define a series of
onException() clauses that define different redelivery policies and different dead letter channels for
various exception types. For example, to define distinct behavior for each of the
NullPointerException, IOException, and Exception types, you can define the following rules in
your route builder using Java DSL:

Where the redelivery options are specified by chaining the redelivery policy methods (as listed in
Table 5.1, “Redelivery Policy Settings”), and you specify the dead letter channel's endpoint using the
to() DSL command. You can also call other Java DSL commands in the onException() clauses. For

message
public class MyRedeliverProcessor implements Processor {

 public void process(Exchange exchange) throws Exception {
 // the message is being redelivered so we can alter it

 // we just append the redelivery counter to the body
 // you can of course do all kind of stuff instead
 String body = exchange.getIn().getBody(String.class);
 int count =
exchange.getIn().getHeader(Exchange.REDELIVERY_COUNTER, Integer.class);

 exchange.getIn().setBody(body + count);

 // the maximum redelivery was set to 5
 int max =
exchange.getIn().getHeader(Exchange.REDELIVERY_MAX_COUNTER,
Integer.class);
 assertEquals(5, max);
 }
}

onException(NullPointerException.class)
 .maximumRedeliveries(1)
 .setHeader("messageInfo", "Oh dear! An NPE.")
 .to("mock:npe_error");

onException(IOException.class)
 .initialRedeliveryDelay(5000L)
 .maximumRedeliveries(3)
 .backOffMultiplier(1.0)
 .useExponentialBackOff()
 .setHeader("messageInfo", "Oh dear! Some kind of I/O exception.")
 .to("mock:io_error");

onException(Exception.class)
 .initialRedeliveryDelay(1000L)
 .maximumRedeliveries(2)
 .setHeader("messageInfo", "Oh dear! An exception.")
 .to("mock:error");

from("seda:a").to("seda:b");

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

122

example, the preceding example calls setHeader() to record some error details in a message header
named, messageInfo.

In this example, the NullPointerException and the IOException exception types are configured
specially. All other exception types are handled by the generic Exception exception interceptor. By
default, Apache Camel applies the exception interceptor that most closely matches the thrown exception.
If it fails to find an exact match, it tries to match the closest base type, and so on. Finally, if no other
interceptor matches, the interceptor for the Exception type matches all remaining exceptions.

5.4. GUARANTEED DELIVERY

Overview

Guaranteed delivery means that once a message is placed into a message channel, the messaging
system guarantees that the message will reach its destination, even if parts of the application should fail.
In general, messaging systems implement the guaranteed delivery pattern, shown in Figure 5.4,
“Guaranteed Delivery Pattern”, by writing messages to persistent storage before attempting to deliver
them to their destination.

Figure 5.4. Guaranteed Delivery Pattern

Components that support guaranteed delivery

The following Apache Camel components support the guaranteed delivery pattern:

JMS

ActiveMQ

ActiveMQ Journal

File Component

JMS

In JMS, the deliveryPersistent query option indicates whether or not persistent storage of
messages is enabled. Usually it is unnecessary to set this option, because the default behavior is to
enable persistent delivery. To configure all the details of guaranteed delivery, it is necessary to set
configuration options on the JMS provider. These details vary, depending on what JMS provider you are
using. For example, MQSeries, TibCo, BEA, Sonic, and others, all provide various qualities of service to
support guaranteed delivery.

CHAPTER 5. MESSAGING CHANNELS

123

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.0/html/EIP_Component_Reference/_IDU_File2.html

See chapter "JMS" in "EIP Component Reference" for more details.

ActiveMQ

In ActiveMQ, message persistence is enabled by default. From version 5 onwards, ActiveMQ uses the
AMQ message store as the default persistence mechanism. There are several different approaches you
can use to enabe message persistence in ActiveMQ.

The simplest option (different from Figure 5.4, “Guaranteed Delivery Pattern”) is to enable persistence in
a central broker and then connect to that broker using a reliable protocol. After a message is been sent to
the central broker, delivery to consumers is guaranteed. For example, in the Apache Camel
configuration file, META-INF/spring/camel-context.xml, you can configure the ActiveMQ
component to connect to the central broker using the OpenWire/TCP protocol as follows:

If you prefer to implement an architecture where messages are stored locally before being sent to a
remote endpoint (similar to Figure 5.4, “Guaranteed Delivery Pattern”), you do this by instantiating an
embedded broker in your Apache Camel application. A simple way to achieve this is to use the
ActiveMQ Peer-to-Peer protocol, which implicitly creates an embedded broker to communicate with other
peer endpoints. For example, in the camel-context.xml configuration file, you can configure the
ActiveMQ component to connect to all of the peers in group, GroupA, as follows:

Where broker1 is the broker name of the embedded broker (other peers in the group should use
different broker names). One limiting feature of the Peer-to-Peer protocol is that it relies on IP multicast to
locate the other peers in its group. This makes it unsuitable for use in wide area networks (and in some
local area networks that do not have IP multicast enabled).

A more flexible way to create an embedded broker in the ActiveMQ component is to exploit ActiveMQ's
VM protocol, which connects to an embedded broker instance. If a broker of the required name does not
already exist, the VM protocol automatically creates one. You can use this mechanism to create an
embedded broker with custom configuration. For example:

<beans ... >
 ...
 <bean id="activemq"
class="org.apache.activemq.camel.component.ActiveMQComponent">
 <property name="brokerURL" value="tcp://somehost:61616"/>
 </bean>
 ...
</beans>

<beans ... >
 ...
 <bean id="activemq"
class="org.apache.activemq.camel.component.ActiveMQComponent">
 <property name="brokerURL" value="peer://GroupA/broker1"/>
 </bean>
 ...
</beans>

<beans ... >
 ...
 <bean id="activemq"
class="org.apache.activemq.camel.component.ActiveMQComponent">
 <property name="brokerURL" value="vm://broker1?
brokerConfig=xbean:activemq.xml"/>

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

124

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.0/html/EIP_Component_Reference/_IDU_JMS.html

Where activemq.xml is an ActiveMQ file which configures the embedded broker instance. Within the
ActiveMQ configuration file, you can choose to enable one of the following persistence mechanisms:

AMQ persistence(the default) — A fast and reliable message store that is native to ActiveMQ.
For details, see amqPersistenceAdapter and AMQ Message Store.

JDBC persistence — Uses JDBC to store messages in any JDBC-compatible database. For
details, see jdbcPersistenceAdapter and ActiveMQ Persistence.

Journal persistence — A fast persistence mechanism that stores messages in a rolling log file.
For details, see journalPersistenceAdapter and ActiveMQ Persistence.

Kaha persistence — A persistence mechanism developed specifically for ActiveMQ. For details,
see kahaPersistenceAdapter and ActiveMQ Persistence.

See chapter "ActiveMQ" in "EIP Component Reference" for more details.

ActiveMQ Journal

The ActiveMQ Journal component is optimized for a special use case where multiple, concurrent
producers write messages to queues, but there is only one active consumer. Messages are stored in
rolling log files and concurrent writes are aggregated to boost efficiency.

See for more details.

5.5. MESSAGE BUS

Overview

Message bus refers to a messaging architecture, shown in Figure 5.5, “Message Bus Pattern”, that
enables you to connect diverse applications running on diverse computing platforms. In effect, the
Apache Camel and its components constitute a message bus.

Figure 5.5. Message Bus Pattern

The following features of the message bus pattern are reflected in Apache Camel:

 </bean>
 ...
</beans>

CHAPTER 5. MESSAGING CHANNELS

125

http://tinyurl.com/activemq-amqPersistenceAdapter
http://activemq.apache.org/amq-message-store.html
http://tinyurl.com/activemq-jdbPersistenceAdapter
http://activemq.apache.org/persistence.html
http://tinyurl.com/activemq-journalPA
http://activemq.apache.org/persistence.html
http://tinyurl.com/activemq-kahaPA
http://activemq.apache.org/persistence.html
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.0/html/EIP_Component_Reference/_IDU_ActiveMQ.html

Common communication infrastructure — The router itself provides the core of the common
communication infrastructure in Apache Camel. However, in contrast to some message bus
architectures, Apache Camel provides a heterogeneous infrastructure: messages can be sent
into the bus using a wide variety of different transports and using a wide variety of different
message formats.

Adapters — Where necessary, Apache Camel can translate message formats and propagate
messages using different transports. In effect, Apache Camel is capable of behaving like an
adapter, so that external applications can hook into the message bus without refactoring their
messaging protocols.

In some cases, it is also possible to integrate an adapter directly into an external application. For
example, if you develop an application using Apache CXF, where the service is implemented
using JAX-WS and JAXB mappings, it is possible to bind a variety of different transports to the
service. These transport bindings function as adapters.

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

126

CHAPTER 6. MESSAGE CONSTRUCTION

Abstract

The message construction patterns describe the various forms and functions of the messages that pass
through the system.

6.1. CORRELATION IDENTIFIER

Overview

The correlation identifier pattern, shown in Figure 6.1, “Correlation Identifier Pattern”, describes how to
match reply messages with request messages, given that an asynchronous messaging system is used to
implement a request-reply protocol. The essence of this idea is that request messages should be
generated with a unique token, the request ID, that identifies the request message and reply messages
should include a token, the correlation ID, that contains the matching request ID.

Apache Camel supports the Correlation Identifier from the EIP patterns by getting or setting a header on
a Message.

When working with the ActiveMQ or JMS components, the correlation identifier header is called
JMSCorrelationID. You can add your own correlation identifier to any message exchange to help
correlate messages together in a single conversation (or business process). A correlation identifier is
usually stored in a Apache Camel message header.

Some EIP patterns spin off a sub message and, in those cases, Apache Camel adds a correlation ID to
the Exchange as a property with they key, Exchange.CORRELATION_ID, which links back to the
source Exchange. For example, the Splitter, Multicast, Recipient List, and Wire Tap EIPs do this.

Figure 6.1. Correlation Identifier Pattern

6.2. EVENT MESSAGE

Event Message

CHAPTER 6. MESSAGE CONSTRUCTION

127

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.0/html/EIP_Component_Reference/_IDU_JMS.html
EIP
Exchange
Exchange

Camel supports the Event Message from the Introducing Enterprise Integration Patterns by supporting
the Exchange Pattern on a Message which can be set to InOnly to indicate a oneway event message.
Camel Components then implement this pattern using the underlying transport or protocols.

The default behaviour of many Components is InOnly such as for JMS, File or SEDA

Explicitly specifying InOnly

If you are using a component which defaults to InOut you can override the Exchange Pattern for an
endpoint using the pattern property.

From 2.0 onwards on Camel you can specify the Exchange Pattern using the dsl.

Using the Fluent Builders

or you can invoke an endpoint with an explicit pattern

Using the Spring XML Extensions

foo:bar?exchangePattern=InOnly

from("mq:someQueue").
 inOnly().
 bean(Foo.class);

from("mq:someQueue").
 inOnly("mq:anotherQueue");

<route>
 <from uri="mq:someQueue"/>
 <inOnly uri="bean:foo"/>
</route>

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

128

http://www.enterpriseintegrationpatterns.com/EventMessage.html
Exchange Pattern
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.0/html/EIP_Component_Reference/
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.0/html/EIP_Component_Reference/
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.0/html/EIP_Component_Reference/_IDU_JMS.html
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.0/html/EIP_Component_Reference/_IDU_File2.html
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.0/html/EIP_Component_Reference/_IDU_SEDA.html
Exchange Pattern
Exchange Pattern
Fluent Builders
Spring XML Extensions

6.3. RETURN ADDRESS

Return Address

Apache Camel supports the Return Address from the Introducing Enterprise Integration Patterns using
the JMSReplyTo header.

For example when using JMS with InOut, the component will by default be returned to the address given
in JMSReplyTo.

Example

Requestor Code

Route Using the Fluent Builders

Route Using the Spring XML Extensions

<route>
 <from uri="mq:someQueue"/>
 <inOnly uri="mq:anotherQueue"/>
</route>

 getMockEndpoint("mock:bar").expectedBodiesReceived("Bye World");
 template.sendBodyAndHeader("direct:start", "World", "JMSReplyTo",
"queue:bar");

 from("direct:start").to("activemq:queue:foo?preserveMessageQos=true");
 from("activemq:queue:foo").transform(body().prepend("Bye "));
 from("activemq:queue:bar?disableReplyTo=true").to("mock:bar");

 <route>

CHAPTER 6. MESSAGE CONSTRUCTION

129

http://www.enterpriseintegrationpatterns.com/ReturnAddress.html
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.0/html/EIP_Component_Reference/_IDU_JMS.html
Fluent Builders
Spring XML Extensions

For a complete example of this pattern, see this junit test case

 <from uri="direct:start"/>
 <to uri="activemq:queue:foo?preserveMessageQos=true"/>
 </route>

 <route>
 <from uri="activemq:queue:foo"/>
 <transform>
 <simple>Bye ${in.body}</simple>
 </transform>
 </route>

 <route>
 <from uri="activemq:queue:bar?disableReplyTo=true"/>
 <to uri="mock:bar"/>
 </route>

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

130

http://svn.apache.org/viewvc/camel/trunk/components/camel-jms/src/test/java/org/apache/camel/component/jms/JmsInOnlyWithReplyToAsHeaderTest.java?view=markup

CHAPTER 7. MESSAGE ROUTING

Abstract

The message routing patterns describe various ways of linking message channels together. This
includes various algorithms that can be applied to the message stream (without modifying the body of the
message).

7.1. CONTENT-BASED ROUTER

Overview

A content-based router, shown in Figure 7.1, “Content-Based Router Pattern”, enables you to route
messages to the appropriate destination based on the message contents.

Figure 7.1. Content-Based Router Pattern

Java DSL example

The following example shows how to route a request from an input, seda:a, endpoint to either seda:b,
queue:c, or seda:d depending on the evaluation of various predicate expressions:

XML configuration example

The following example shows how to configure the same route in XML:

RouteBuilder builder = new RouteBuilder() {
 public void configure() {
 from("seda:a").choice()
 .when(header("foo").isEqualTo("bar")).to("seda:b")
 .when(header("foo").isEqualTo("cheese")).to("seda:c")
 .otherwise().to("seda:d");
 }
};

<camelContext id="buildSimpleRouteWithChoice"
xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from uri="seda:a"/>
 <choice>
 <when>
 <xpath>$foo = 'bar'</xpath>
 <to uri="seda:b"/>

CHAPTER 7. MESSAGE ROUTING

131

7.2. MESSAGE FILTER

Overview

A message filter is a processor that eliminates undesired messages based on specific criteria. In Apache
Camel, the message filter pattern, shown in Figure 7.2, “Message Filter Pattern”, is implemented by the
filter() Java DSL command. The filter() command takes a single predicate argument, which
controls the filter. When the predicate is true, the incoming message is allowed to proceed, and when
the predicate is false, the incoming message is blocked.

Figure 7.2. Message Filter Pattern

Java DSL example

The following example shows how to create a route from endpoint, seda:a, to endpoint, seda:b, that
blocks all messages except for those messages whose foo header have the value, bar:

To evaluate more complex filter predicates, you can invoke one of the supported scripting languages,
such as XPath, XQuery, or SQL (see Expression and Predicate Languages). The following example
defines a route that blocks all messages except for those containing a person element whose name
attribute is equal to James:

 </when>
 <when>
 <xpath>$foo = 'cheese'</xpath>
 <to uri="seda:c"/>
 </when>
 <otherwise>
 <to uri="seda:d"/>
 </otherwise>
 </choice>
 </route>
</camelContext>

RouteBuilder builder = new RouteBuilder() {
 public void configure() {

from("seda:a").filter(header("foo").isEqualTo("bar")).to("seda:b");
 }
};

from("direct:start").
 filter().xpath("/person[@name='James']").
 to("mock:result");

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

132

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.0/html/Routing_Expression_and_Predicate_Languages/

XML configuration example

The following example shows how to configure the route with an XPath predicate in XML (see
Expression and Predicate Languages):

FILTERED ENDPOINT REQUIRED INSIDE </FILTER> TAG

Make sure you put the endpoint you want to filter (for example, <to uri="seda:b"/>)
before the closing </filter> tag or the filter will not be applied (in 2.8+, omitting this will
result in an error).

Filtering with beans

Here is an example of using a bean to define the filter behavior:

Using stop()

Available as of Camel 2.0

Stop is a special type of filter that filters out all messages. Stop is convenient to use in a Content-Based
Routerwhen you need to stop further processing in one of the predicates.

In the following example, we do not want messages with the word Bye in the message body to
propagate any further in the route. We prevent this in the when() predicate using .stop().

<camelContext id="simpleFilterRoute"
xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from uri="seda:a"/>
 <filter>
 <xpath>$foo = 'bar'</xpath>
 <to uri="seda:b"/>
 </filter>
 </route>
 </camelContext>

from("direct:start")
 .filter().method(MyBean.class,
"isGoldCustomer").to("mock:result").end()
 .to("mock:end");

public static class MyBean {
 public boolean isGoldCustomer(@Header("level") String level) {
 return level.equals("gold");
 }
}

from("direct:start")
 .choice()
 .when(body().contains("Hello")).to("mock:hello")
 .when(body().contains("Bye")).to("mock:bye").stop()
 .otherwise().to("mock:other")
 .end()
 .to("mock:result");

CHAPTER 7. MESSAGE ROUTING

133

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.0/html/Routing_Expression_and_Predicate_Languages/

Knowing if Exchange was filtered or not

Available as of Camel 2.5

The Message Filter EIP will add a property on the Exchange which states if it was filtered or not.

The property has the key Exchannge.FILTER_MATCHED which has the String value of
CamelFilterMatched. Its value is a boolean indicating true or false. If the value is true then the
Exchange was routed in the filter block.

7.3. RECIPIENT LIST

Overview

A recipient list, shown in Figure 7.3, “Recipient List Pattern”, is a type of router that sends each incoming
message to multiple different destinations. In addition, a recipient list typically requires that the list of
recipients be calculated at run time.

Figure 7.3. Recipient List Pattern

Recipient list with fixed destinations

The simplest kind of recipient list is where the list of destinations is fixed and known in advance, and the
exchange pattern is InOnly. In this case, you can hardwire the list of destinations into the to() Java DSL
command.

NOTE

The examples given here, for the recipient list with fixed destinations, work only with the
InOnly exchange pattern (similar to a pipeline). If you want to create a recipient list for
exchange patterns with Out messages, use the multicast pattern instead.

Java DSL example

The following example shows how to route an InOnly exchange from a consumer endpoint, queue:a, to
a fixed list of destinations:

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

134

Exchange
Exchange
Exchange

XML configuration example

The following example shows how to configure the same route in XML:

Recipient list calculated at run time

In most cases, when you use the recipient list pattern, the list of recipients should be calculated at
runtime. To do this use the recipientList() processor, which takes a list of destinations as its sole
argument. Because Apache Camel applies a type converter to the list argument, it should be possible to
use most standard Java list types (for example, a collection, a list, or an array). For more details about
type converters, see section "Built-In Type Converters" in "Programming EIP Components".

The recipients receive a copy of the same exchange instance and Apache Camel executes them
sequentially.

Java DSL example

The following example shows how to extract the list of destinations from a message header called
recipientListHeader, where the header value is a comma-separated list of endpoint URIs:

In some cases, if the header value is a list type, you might be able to use it directly as the argument to
recipientList(). For example:

However, this example is entirely dependent on how the underlying component parses this particular
header. If the component parses the header as a simple string, this example will not work. The header
must be parsed into some type of Java list.

XML configuration example

The following example shows how to configure the preceding route in XML, where the header value is a
comma-separated list of endpoint URIs:

from("seda:a").to("seda:b", "seda:c", "seda:d");

<camelContext id="buildStaticRecipientList"
xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from uri="seda:a"/>
 <to uri="seda:b"/>
 <to uri="seda:c"/>
 <to uri="seda:d"/>
 </route>
</camelContext>

from("direct:a").recipientList(header("recipientListHeader").tokenize(",")
);

from("seda:a").recipientList(header("recipientListHeader"));

<camelContext id="buildDynamicRecipientList"
xmlns="http://camel.apache.org/schema/spring">
 <route>

CHAPTER 7. MESSAGE ROUTING

135

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.0/html/Programming_EIP_Components/MsgFormats-Converters.html

Sending to multiple recipients in parallel

Available as of Camel 2.2

The Recipient List supports parallelProcessing, which is similar to the corresponding feature in
Splitter. Use the parallel processing feature to send the exchange to multiple recipients concurrently—for
example:

In Spring XML, the parallel processing feature is implemented as an attribute on the recipientList
tag—for example:

Stop on exception

Available as of Camel 2.2

The Recipient List supports the stopOnException feature, which you can use to stop sending to any
further recipients, if any recipient fails.

And in Spring XML its an attribute on the recipient list tag.

In Spring XML, the stop on exception feature is implemented as an attribute on the recipientList tag
—for example:

NOTE

You can combine parallelProcessing and stopOnException in the same route.

 <from uri="seda:a"/>
 <recipientList delimiter=",">
 <header>recipientListHeader</header>
 </recipientList>
 </route>
</camelContext>

from("direct:a").recipientList(header("myHeader")).parallelProcessing();

<route>
 <from uri="direct:a"/>
 <recipientList parallelProcessing="true">
 <header>myHeader</header>
 </recipientList>
</route>

from("direct:a").recipientList(header("myHeader")).stopOnException();

<route>
 <from uri="direct:a"/>
 <recipientList stopOnException="true">
 <header>myHeader</header>
 </recipientList>
</route>

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

136

Ignore invalid endpoints

Available as of Camel 2.3

The Recipient List supports the ignoreInvalidEndpoints option, which enables the recipient list to
skip invalid endpoints (Routing Slip also supports this option). For example:

And in Spring XML, you can enable this option by setting the ignoreInvalidEndpoints attribute on
the recipientList tag, as follows

Consider the case where myHeader contains the two endpoints, direct:foo,xxx:bar. The first
endpoint is valid and works. The second is invalid and, therefore, ignored. Apache Camel logs at INFO
level whenever an invalid endpoint is encountered.

Using custom AggregationStrategy

Available as of Camel 2.2

You can use a custom AggregationStrategy with the Recipient List, which is useful for aggregating
replies from the recipients in the list. By default, Apache Camel uses the
UseLatestAggregationStrategy aggregation strategy, which keeps just the last received reply. For
a more sophisticated aggregation strategy, you can define your own implementation of the
AggregationStrategy interface—see Aggregator EIP for details. For example, to apply the custom
aggregation strategy, MyOwnAggregationStrategy, to the reply messages, you can define a Java
DSL route as follows:

In Spring XML, you can specify the custom aggregation strategy as an attribute on the recipientList
tag, as follows:

from("direct:a").recipientList(header("myHeader")).ignoreInvalidEndpoints(
);

<route>
 <from uri="direct:a"/>
 <recipientList ignoreInvalidEndpoints="true">
 <header>myHeader</header>
 </recipientList>
</route>

from("direct:a")
 .recipientList(header("myHeader")).aggregationStrategy(new
MyOwnAggregationStrategy())
 .to("direct:b");

<route>
 <from uri="direct:a"/>
 <recipientList strategyRef="myStrategy">
 <header>myHeader</header>
 </recipientList>
 <to uri="direct:b"/>
</route>

<bean id="myStrategy" class="com.mycompany.MyOwnAggregationStrategy"/>

CHAPTER 7. MESSAGE ROUTING

137

Using custom thread pool

Available as of Camel 2.2

This is only needed when you use parallelProcessing. By default Camel uses a thread pool with 10
threads. Notice this is subject to change when we overhaul thread pool management and configuration
later (hopefully in Camel 2.2).

You configure this just as you would with the custom aggregation strategy.

Using method call as recipient list

You can use a Bean to provide the recipients, for example:

Where the MessageRouter bean is defined as follows:

Bean as recipient list

You can make a bean behave as a recipient list by adding the @RecipientList annotation to a
methods that returns a list of recipients. For example:

In this case, do not include the recipientList DSL command in the route. Define the route as follows:

Using timeout

Available as of Camel 2.5

If you use parallelProcessing, you can configure a total timeout value in milliseconds. Camel will
then process the messages in parallel until the timeout is hit. This allows you to continue processing if
one message is slow.

from("activemq:queue:test").recipientList().method(MessageRouter.class,
"routeTo");

public class MessageRouter {

 public String routeTo() {
 String queueName = "activemq:queue:test2";
 return queueName;
 }
}

public class MessageRouter {

 @RecipientList
 public String routeTo() {
 String queueList = "activemq:queue:test1,activemq:queue:test2";
 return queueList;
 }
}

from("activemq:queue:test").bean(MessageRouter.class, "routeTo");

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

138

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.0/html/EIP_Component_Reference/_IDU_Bean.html

In the example below, the recipientlist header has the value, direct:a,direct:b,direct:c,
so that the message is sent to three recipients. We have a timeout of 250 milliseconds, which means
only the last two messages can be completed within the timeframe. The aggregation therefore yields the
string result, BC.

NOTE

This timeout feature is also supported by splitter and both multicast and
recipientList.

By default if a timeout occurs the AggregationStrategy is not invoked. However you can implement
a specialized version

from("direct:start")
 .recipientList(header("recipients"), ",")
 .aggregationStrategy(new AggregationStrategy() {
 public Exchange aggregate(Exchange oldExchange, Exchange
newExchange) {
 if (oldExchange == null) {
 return newExchange;
 }

 String body = oldExchange.getIn().getBody(String.class);
 oldExchange.getIn().setBody(body +
newExchange.getIn().getBody(String.class));
 return oldExchange;
 }
 })
 .parallelProcessing().timeout(250)
 // use end to indicate end of recipientList clause
 .end()
 .to("mock:result");

from("direct:a").delay(500).to("mock:A").setBody(constant("A"));

from("direct:b").to("mock:B").setBody(constant("B"));

from("direct:c").to("mock:C").setBody(constant("C"));

// Java
public interface TimeoutAwareAggregationStrategy extends
AggregationStrategy {

 /**
 * A timeout occurred
 *
 * @param oldExchange the oldest exchange (is <tt>null</tt> on
first aggregation as we only have the new exchange)
 * @param index the index
 * @param total the total
 * @param timeout the timeout value in millis
 */
 void timeout(Exchange oldExchange, int index, int total, long
timeout);

CHAPTER 7. MESSAGE ROUTING

139

This allows you to deal with the timeout in the AggregationStrategy if you really need to.

TIMEOUT IS TOTAL

The timeout is total, which means that after X time, Camel will aggregate the messages
which has completed within the timeframe. The remainders will be cancelled. Camel will
also only invoke the timeout method in the TimeoutAwareAggregationStrategy
once, for the first index which caused the timeout.

Apply custom processing to the outgoing messages

Before recipientList sends a message to one of the recipient endpoints, it creates a message
replica, which is a shallow copy of the original message. If you want to perform some custom processing
on each message replica before the replica is sent to its endpoint, you can invoke the onPrepare DSL
command in the recipientList clause. The onPrepare command inserts a custom processor just
after the message has been shallow-copied and just before the message is dispatched to its endpoint.
For example, in the following route, the CustomProc processor is invoked on the message replica for
each recipient endpoint:

A common use case for the onPrepare DSL command is to perform a deep copy of some or all
elements of a message. This allows each message replica to be modified independently of the others.
For example, the following CustomProc processor class performs a deep copy of the message body,
where the message body is presumed to be of type, BodyType, and the deep copy is performed by the
method, BodyType.deepCopy().

Options

The recipientList DSL command supports the following options:

Name Default Value Description

from("direct:start")
 .recipientList().onPrepare(new CustomProc());

// Java
import org.apache.camel.*;
...
public class CustomProc implements Processor {

 public void process(Exchange exchange) throws Exception {
 BodyType body = exchange.getIn().getBody(BodyType.class);

 // Make a _deep_ copy of of the body object
 BodyType clone = BodyType.deepCopy();
 exchange.getIn().setBody(clone);

 // Headers and attachments have already been
 // shallow-copied. If you need deep copies,
 // add some more code here.
 }
}

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

140

delimiter , Delimiter used if the Expression
returned multiple endpoints.

strategyRef Refers to an AggregationStrategy
to be used to assemble the replies
from the recipients, into a single
outgoing message from the
Recipient List . By default Camel
will use the last reply as the
outgoing message.

parallelProcessing false Camel 2.2: If enables then
sending messages to the
recipients occurs concurrently.
Note the caller thread will still wait
until all messages has been fully
processed, before it continues. Its
only the sending and processing
the replies from the recipients
which happens concurrently.

executorServiceRef Camel 2.2: Refers to a custom
Thread Pool to be used for parallel
processing. Notice if you set this
option, then parallel processing is
automatic implied, and you do not
have to enable that option as well.

stopOnException false Camel 2.2: Whether or not to stop
continue processing immediately
when an exception occurred. If
disable, then Camel will send the
message to all recipients
regardless if one of them failed.
You can deal with exceptions in
the AggregationStrategy class
where you have full control how to
handle that.

ignoreInvalidEndpoints false Camel 2.3: If an endpoint uri
could not be resolved, should it be
ignored. Otherwise Camel will
thrown an exception stating the
endpoint uri is not valid.

streaming false Camel 2.5: If enabled then Camel
will process replies out-of-order,
eg in the order they come back. If
disabled, Camel will process
replies in the same order as the
Expression specified.

CHAPTER 7. MESSAGE ROUTING

141

Expression
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/aggregate/AggregationStrategy.html
Threading Model
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/aggregate/AggregationStrategy.html
Expression

timeout Camel 2.5: Sets a total timeout
specified in millis. If the Recipient
List hasn't been able to send and
process all replies within the given
timeframe, then the timeout
triggers and the Recipient List
breaks out and continues. Notice if
you provide a
TimeoutAwareAggregationStrateg
y then the timeout method is
invoked before breaking out.

onPrepareRef Camel 2.8: Refers to a custom
Processor to prepare the copy of
the Exchange each recipient will
receive. This allows you to do any
custom logic, such as deep-
cloning the message payload if
that's needed etc.

shareUnitOfWork false Camel 2.8: Whether the unit of
work should be shared. See the
same option on Splitter for more
details.

7.4. SPLITTER

Overview

A splitter is a type of router that splits an incoming message into a series of outgoing messages. Each of
the outgoing messages contains a piece of the original message. In Apache Camel, the splitter pattern,
shown in Figure 7.4, “Splitter Pattern”, is implemented by the split() Java DSL command.

Figure 7.4. Splitter Pattern

The Apache Camel splitter actually supports two patterns, as follows:

Simple splitter—implements the splitter pattern on its own.

Splitter/aggregator—combines the splitter pattern with the aggregator pattern, such that the
pieces of the message are recombined after they have been processed.

Java DSL example

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

142

http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/aggregate/TimeoutAwareAggregationStrategy.html
Processor
Exchange

The following example defines a route from seda:a to seda:b that splits messages by converting each
line of an incoming message into a separate outgoing message:

The splitter can use any expression language, so you can split messages using any of the supported
scripting languages, such as XPath, XQuery, or SQL (see "Routing Expression and Predicate
Languages"). The following example extracts bar elements from an incoming message and insert them
into separate outgoing messages:

XML configuration example

The following example shows how to configure a splitter route in XML, using the XPath scripting
language:

You can use the tokenize expression in the XML DSL to split bodies or headers using a token, where the
tokenize expression is defined using the tokenize element. In the following example, the message
body is tokenized using the \n separator character. To use a regular expression pattern, set
regex=true in the tokenize element.

Splitting into groups of lines

RouteBuilder builder = new RouteBuilder() {
 public void configure() {
 from("seda:a")
 .split(bodyAs(String.class).tokenize("\n"))
 .to("seda:b");
 }
};

from("activemq:my.queue")
 .split(xpath("//foo/bar"))
 .to("file://some/directory")

<camelContext id="buildSplitter"
xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from uri="seda:a"/>
 <split>
 <xpath>//foo/bar</xpath>
 <to uri="seda:b"/>
 </split>
 </route>
</camelContext>

<camelContext xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from uri="direct:start"/>
 <split>
 <tokenize token="\n"/>
 <to uri="mock:result"/>
 </split>
 </route>
 </camelContext>

CHAPTER 7. MESSAGE ROUTING

143

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.0/html/Routing_Expression_and_Predicate_Languages/

To split a big file into chunks of 1000 lines, you can define a splitter route as follows in the Java DSL:

The second argument to tokenize specifies the number of lines that should be grouped into a single
chunk. The streaming() clause directs the splitter not to read the whole file at once (resulting in much
better performance if the file is large).

The same route can be defined in XML DSL as follows:

The output when using the group option is always of java.lang.String type.

Splitter reply

If the exchange that enters the splitter has the InOut message-exchange pattern (that is, a reply is
expected), the splitter returns a copy of the original input message as the reply message in the Out
message slot. You can override this default behavior by implementing your own aggregation strategy.

Parallel execution

If you want to execute the resulting pieces of the message in parallel, you can enable the parallel
processing option, which instantiates a thread pool to process the message pieces. For example:

You can customize the underlying ThreadPoolExecutor used in the parallel splitter. For example, you
can specify a custom executor in the Java DSL as follows:

You can specify a custom executor in the XML DSL as follows:

from("file:inbox")
 .split().tokenize("\n", 1000).streaming()
 .to("activemq:queue:order");

<route>
 <from uri="file:inbox"/>
 <split streaming="true">
 <tokenize token="\n" group="1000"/>
 <to uri="activemq:queue:order"/>
 </split>
</route>

XPathBuilder xPathBuilder = new XPathBuilder("//foo/bar");
from("activemq:my.queue").split(xPathBuilder).parallelProcessing().to("act
ivemq:my.parts");

XPathBuilder xPathBuilder = new XPathBuilder("//foo/bar");
ThreadPoolExecutor threadPoolExecutor = new ThreadPoolExecutor(8, 16, 0L,
TimeUnit.MILLISECONDS, new LinkedBlockingQueue());
from("activemq:my.queue")
 .split(xPathBuilder)
 .parallelProcessing()
 .executorService(threadPoolExecutor)
 .to("activemq:my.parts");

<camelContext xmlns="http://camel.apache.org/schema/spring">
 <route>

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

144

Using a bean to perform splitting

As the splitter can use any expression to do the splitting, we can use a bean to perform splitting, by
invoking the method() expression. The bean should return an iterable value such as:
java.util.Collection, java.util.Iterator, or an array.

The following route defines a method() expression that calls a method on the mySplitterBean bean
instance:

Where mySplitterBean is an instance of the MySplitterBean class, which is defined as follows:

 <from uri="direct:parallel-custom-pool"/>
 <split executorServiceRef="threadPoolExecutor">
 <xpath>/invoice/lineItems</xpath>
 <to uri="mock:result"/>
 </split>
 </route>
</camelContext>

<bean id="threadPoolExecutor"
class="java.util.concurrent.ThreadPoolExecutor">
 <constructor-arg index="0" value="8"/>
 <constructor-arg index="1" value="16"/>
 <constructor-arg index="2" value="0"/>
 <constructor-arg index="3" value="MILLISECONDS"/>
 <constructor-arg index="4"><bean
class="java.util.concurrent.LinkedBlockingQueue"/></constructor-arg>
</bean>

from("direct:body")
 // here we use a POJO bean mySplitterBean to do the split of the
payload
 .split()
 .method("mySplitterBean", "splitBody")
 .to("mock:result");
from("direct:message")
 // here we use a POJO bean mySplitterBean to do the split of the
message
 // with a certain header value
 .split()
 .method("mySplitterBean", "splitMessage")
 .to("mock:result");

public class MySplitterBean {

 /**
 * The split body method returns something that is iteratable such as
a java.util.List.
 *
 * @param body the payload of the incoming message
 * @return a list containing each part split
 */
 public List<String> splitBody(String body) {
 // since this is based on an unit test you can of couse
 // use different logic for splitting as Apache Camel have out

CHAPTER 7. MESSAGE ROUTING

145

Exchange properties

The following properties are set on each split exchange:

header type description

CamelSplitIndex int Apache Camel 2.0: A split counter
that increases for each Exchange
being split. The counter starts from
0.

CamelSplitSize int Apache Camel 2.0: The total
number of Exchanges that was
split. This header is not applied for
stream based splitting.

 // of the box support for splitting a String based on comma
 // but this is for show and tell, since this is java code
 // you have the full power how you like to split your messages
 List<String> answer = new ArrayList<String>();
 String[] parts = body.split(",");
 for (String part : parts) {
 answer.add(part);
 }
 return answer;
 }

 /**
 * The split message method returns something that is iteratable such
as a java.util.List.
 *
 * @param header the header of the incoming message with the name user
 * @param body the payload of the incoming message
 * @return a list containing each part split
 */
 public List<Message> splitMessage(@Header(value = "user") String
header, @Body String body) {
 // we can leverage the Parameter Binding Annotations
 // http://camel.apache.org/parameter-binding-annotations.html
 // to access the message header and body at same time,
 // then create the message that we want, splitter will
 // take care rest of them.
 // *NOTE* this feature requires Apache Camel version >= 1.6.1
 List<Message> answer = new ArrayList<Message>();
 String[] parts = header.split(",");
 for (String part : parts) {
 DefaultMessage message = new DefaultMessage();
 message.setHeader("user", part);
 message.setBody(body);
 answer.add(message);
 }
 return answer;
 }
}

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

146

CamelSplitComplete boolean Apache Camel 2.4: Whether or
not this Exchange is the last.

header type description

Splitter/aggregator pattern

It is a common pattern for the message pieces to be aggregated back into a single exchange, after
processing of the individual pieces has completed. To support this pattern, the split() DSL command
lets you provide an AggregationStrategy object as the second argument.

Java DSL example

The following example shows how to use a custom aggregation strategy to recombine a split message
after all of the message pieces have been processed:

AggregationStrategy implementation

The custom aggregation strategy, MyOrderStrategy, used in the preceding route is implemented as
follows:

from("direct:start")
 .split(body().tokenize("@"), new MyOrderStrategy())
 // each split message is then send to this bean where we can
process it
 .to("bean:MyOrderService?method=handleOrder")
 // this is important to end the splitter route as we do not want
to do more routing
 // on each split message
 .end()
 // after we have split and handled each message we want to send a
single combined
 // response back to the original caller, so we let this bean build it
for us
 // this bean will receive the result of the aggregate strategy:
MyOrderStrategy
 .to("bean:MyOrderService?method=buildCombinedResponse")

/**
 * This is our own order aggregation strategy where we can control
 * how each split message should be combined. As we do not want to
 * lose any message, we copy from the new to the old to preserve the
 * order lines as long we process them
 */
public static class MyOrderStrategy implements AggregationStrategy {

 public Exchange aggregate(Exchange oldExchange, Exchange newExchange)
{
 // put order together in old exchange by adding the order from new
exchange

 if (oldExchange == null) {

CHAPTER 7. MESSAGE ROUTING

147

Stream based processing

When parallel processing is enabled, it is theoretically possible for a later message piece to be ready for
aggregation before an earlier piece. In other words, the message pieces might arrive at the aggregator
out of order. By default, this does not happen, because the splitter implementation rearranges the
message pieces back into their original order before passing them into the aggregator.

If you would prefer to aggregate the message pieces as soon as they are ready (and possibly out of
order), you can enable the streaming option, as follows:

You can also supply a custom iterator to use with streaming, as follows:

STREAMING AND XPATH

You cannot use streaming mode in conjunction with XPath. XPath requires the complete
DOM XML document in memory.

 // the first time we aggregate we only have the new exchange,
 // so we just return it
 return newExchange;
 }

 String orders = oldExchange.getIn().getBody(String.class);
 String newLine = newExchange.getIn().getBody(String.class);

 LOG.debug("Aggregate old orders: " + orders);
 LOG.debug("Aggregate new order: " + newLine);

 // put orders together separating by semi colon
 orders = orders + ";" + newLine;
 // put combined order back on old to preserve it
 oldExchange.getIn().setBody(orders);

 // return old as this is the one that has all the orders gathered
until now
 return oldExchange;
 }
}

from("direct:streaming")
 .split(body().tokenize(","), new MyOrderStrategy())
 .parallelProcessing()
 .streaming()
 .to("activemq:my.parts")
 .end()
 .to("activemq:all.parts");

// Java
import static org.apache.camel.builder.ExpressionBuilder.beanExpression;
...
from("direct:streaming")
 .split(beanExpression(new MyCustomIteratorFactory(), "iterator"))
 .streaming().to("activemq:my.parts")

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

148

Stream based processing with XML

If an incoming messages is a very large XML file, you can process the message most efficiently using
the tokenizeXML sub-command in streaming mode.

For example, given a large XML file that contains a sequence of order elements, you can split the file
into order elements using a route like the following:

You can do the same thing in XML, by defining a route like the following:

It is often the case that you need access to namespaces that are defined in one of the enclosing
(ancestor) elements of the token elements. You can copy namespace definitions from one of the
ancestor elements into the token element, by specifing which element you want to inherit namespace
definitions from.

In the Java DSL, you specify the ancestor element as the second argument of tokenizeXML. For
example, to inherit namespace definitions from the enclosing orders element:

In the XML DSL, you specify the ancestor element using the inheritNamespaceTagName attribute.
For example:

Options

The split DSL command supports the following options:

Name Default Value Description

from("file:inbox")
 .split().tokenizeXML("order").streaming()
 .to("activemq:queue:order");

<route>
 <from uri="file:inbox"/>
 <split streaming="true">
 <tokenize token="order" xml="true"/>
 <to uri="activemq:queue:order"/>
 </split>
</route>

from("file:inbox")
 .split().tokenizeXML("order", "orders").streaming()
 .to("activemq:queue:order");

<route>
 <from uri="file:inbox"/>
 <split streaming="true">
 <tokenize token="order"
 xml="true"
 inheritNamespaceTagName="orders"/>
 <to uri="activemq:queue:order"/>
 </split>
</route>

CHAPTER 7. MESSAGE ROUTING

149

strategyRef Refers to an AggregationStrategy
to be used to assemble the replies
from the sub-messages, into a
single outgoing message from the
Splitter. See the section titled
What does the splitter return
below for whats used by default.

parallelProcessing false If enables then processing the
sub-messages occurs
concurrently. Note the caller
thread will still wait until all sub-
messages has been fully
processed, before it continues.

executorServiceRef Refers to a custom Thread Pool to
be used for parallel processing.
Notice if you set this option, then
parallel processing is automatic
implied, and you do not have to
enable that option as well.

stopOnException false Camel 2.2: Whether or not to stop
continue processing immediately
when an exception occurred. If
disable, then Camel continue
splitting and process the sub-
messages regardless if one of
them failed. You can deal with
exceptions in the
AggregationStrategy class where
you have full control how to
handle that.

streaming false If enabled then Camel will split in
a streaming fashion, which means
it will split the input message in
chunks. This reduces the memory
overhead. For example if you split
big messages its recommended to
enable streaming. If streaming is
enabled then the sub-message
replies will be aggregated out-of-
order, eg in the order they come
back. If disabled, Camel will
process sub-message replies in
the same order as they where
splitted.

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

150

http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/aggregate/AggregationStrategy.html
Threading Model
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/aggregate/AggregationStrategy.html

timeout Camel 2.5: Sets a total timeout
specified in millis. If the Recipient
List hasn't been able to split and
process all replies within the given
timeframe, then the timeout
triggers and the Splitter breaks out
and continues. Notice if you
provide a
TimeoutAwareAggregationStrateg
y then the timeout method is
invoked before breaking out.

onPrepareRef Camel 2.8: Refers to a custom
Processor to prepare the sub-
message of the Exchange, before
its processed. This allows you to
do any custom logic, such as
deep-cloning the message
payload if that's needed etc.

shareUnitOfWork false Camel 2.8: Whether the unit of
work should be shared. See
further below for more details.

7.5. AGGREGATOR

Overview

The aggregator pattern, shown in Figure 7.5, “Aggregator Pattern”, enables you to combine a batch of
related messages into a single message.

Figure 7.5. Aggregator Pattern

To control the aggregator's behavior, Apache Camel allows you to specify the properties described in
Enterprise Integration Patterns, as follows:

Correlation expression — Determines which messages should be aggregated together. The
correlation expression is evaluated on each incoming message to produce a correlation key.
Incoming messages with the same correlation key are then grouped into the same batch. For
example, if you want to aggregate all incoming messages into a single message, you can use a
constant expression.

CHAPTER 7. MESSAGE ROUTING

151

http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/aggregate/TimeoutAwareAggregationStrategy.html
Processor
Exchange

Completeness condition — Determines when a batch of messages is complete. You can specify
this either as a simple size limit or, more generally, you can specify a predicate condition that
flags when the batch is complete.

Aggregation algorithm — Combines the message exchanges for a single correlation key into a
single message exchange.

For example, consider a stock market data system that receives 30,000 messages per second. You
might want to throttle down the message flow if your GUI tool cannot cope with such a massive update
rate. The incoming stock quotes can be aggregated together simply by choosing the latest quote and
discarding the older prices. (You can apply a delta processing algorithm, if you prefer to capture some of
the history.)

How the aggregator works

Figure 7.6, “Aggregator Implementation” shows an overview of how the aggregator works, assuming it is
fed with a stream of exchanges that have correlation keys such as A, B, C, or D.

Figure 7.6. Aggregator Implementation

The incoming stream of exchanges shown in Figure 7.6, “Aggregator Implementation” is processed as
follows:

1. The correlator is responsible for sorting exchanges based on the correlation key. For each
incoming exchange, the correlation expression is evaluated, yielding the correlation key. For
example, for the exchange shown in Figure 7.6, “Aggregator Implementation”, the correlation
key evaluates to A.

2. The aggregation strategy is responsible for merging exchanges with the same correlation key.
When a new exchange, A, comes in, the aggregator looks up the corresponding aggregate
exchange, A', in the aggregation repository and combines it with the new exchange.

Until a particular aggregation cycle is completed, incoming exchanges are continuously
aggregated with the corresponding aggregate exchange. An aggregation cycle lasts until
terminated by one of the completion mechanisms.

3. If a completion predicate is specified on the aggregator, the aggregate exchange is tested to
determine whether it is ready to be sent to the next processor in the route. Processing continues
as follows:

If complete, the aggregate exchange is processed by the latter part of the route. There are

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

152

two alternative models for this: synchronous (the default), which causes the calling thread to
block, or asynchronous (if parallel processing is enabled), where the aggregate exchange is
submitted to an executor thread pool (as shown in Figure 7.6, “Aggregator Implementation”).

If not complete, the aggregate exchange is saved back to the aggregation repository.

4. In parallel with the synchronous completion tests, it is possible to enable an asynchronous
completion test by enabling either the completionTimeout option or the
completionInterval option. These completion tests run in a separate thread and, whenever
the completion test is satisfied, the corresponding exchange is marked as complete and starts to
be processed by the latter part of the route (either synchronously or asynchronously, depending
on whether parallel processing is enabled or not).

5. If parallel processing is enabled, a thread pool is responsible for processing exchanges in the
latter part of the route. By default, this thread pool contains ten threads, but you have the option
of customizing the pool (the section called “Threading options”).

Java DSL example

The following example aggregates exchanges with the same StockSymbol header value, using the
UseLatestAggregationStrategy aggregation strategy. For a given StockSymbol value, if more
than three seconds elapse since the last exchange with that correlation key was received, the
aggregated exchange is deemed to be complete and is sent to the mock endpoint.

XML DSL example

The following example shows how to configure the same route in XML:

Specifying the correlation expression

In the Java DSL, the correlation expression is always passed as the first argument to the aggregate()

from("direct:start")
 .aggregate(header("id"), new UseLatestAggregationStrategy())
 .completionTimeout(3000)
 .to("mock:aggregated");

<camelContext xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from uri="direct:start"/>
 <aggregate strategyRef="aggregatorStrategy"
 completionTimeout="3000">
 <correlationExpression>
 <simple>header.StockSymbol</simple>
 </correlationExpression>
 <to uri="mock:aggregated"/>
 </aggregate>
 </route>
</camelContext>

<bean id="aggregatorStrategy"

class="org.apache.camel.processor.aggregate.UseLatestAggregationStrategy"/
>

CHAPTER 7. MESSAGE ROUTING

153

DSL command. You are not limited to using the Simple expression language here. You can specify a
correlation expression using any of the expression languages or scripting languages, such as XPath,
XQuery, SQL, and so on.

For exampe, to correlate exchanges using an XPath expression, you could use the following Java DSL
route:

If the correlation expression cannot be evaluated on a particular incoming exchange, the aggregator
throws a CamelExchangeException by default. You can suppress this exception by setting the
ignoreInvalidCorrelationKeys option. For example, in the Java DSL:

In the XML DSL, you can set the ignoreInvalidCorrelationKeys option is set as an attribute, as
follows:

Specifying the aggregation strategy

In Java DSL, you can either pass the aggregation strategy as the second argument to the aggregate()
DSL command or specify it using the aggregationStrategy() clause. For example, you can use the
aggregationStrategy() clause as follows:

Apache Camel provides the following basic aggregation strategies (where the classes belong to the
org.apache.camel.processor.aggregate Java package):

UseLatestAggregationStrategy

Return the last exchange for a given correlation key, discarding all earlier exchanges with this key.
For example, this strategy could be useful for throttling the feed from a stock exchange, where you
just want to know the latest price of a particular stock symbol.

UseOriginalAggregationStrategy

Return the first exchange for a given correlation key, discarding all later exchanges with this key. You
must set the first exchange by calling UseOriginalAggregationStrategy.setOriginal()
before you can use this strategy.

from("direct:start")
 .aggregate(xpath("/stockQuote/@symbol"), new
UseLatestAggregationStrategy())
 .completionTimeout(3000)
 .to("mock:aggregated");

from(...).aggregate(...).ignoreInvalidCorrelationKeys()

<aggregate strategyRef="aggregatorStrategy"
 ignoreInvalidCorrelationKeys="true"
 ...>
 ...
</aggregate>

from("direct:start")
 .aggregate(header("id"))
 .aggregationStrategy(new UseLatestAggregationStrategy())
 .completionTimeout(3000)
 .to("mock:aggregated");

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

154

GroupedExchangeAggregationStrategy

Concatenates all of the exchanges for a given correlation key into a list, which is stored in the
Exchange.GROUPED_EXCHANGE exchange property. See the section called “Grouped exchanges”.

Implementing a custom aggregation strategy

If you want to apply a different aggregation strategy, you can implement one of the following aggregation
strategy base interfaces:

org.apache.camel.processor.aggregate.AggregationStrategy

The basic aggregation strategy interface.

org.apache.camel.processor.aggregate.TimeoutAwareAggregationStrategy

Implement this interface, if you want your implementation to receive a notification when an
aggregation cycle times out. The timeout notification method has the following signature:

org.apache.camel.processor.aggregate.CompletionAwareAggregationStrategy

Implement this interface, if you want your implementation to receive a notification when an
aggregation cycle completes normally. The notification method has the following signature:

For example, the following code shows two different custom aggregation strategies,
StringAggregationStrategy and ArrayListAggregationStrategy::

void timeout(Exchange oldExchange, int index, int total, long timeout)

void onCompletion(Exchange exchange)

 //simply combines Exchange String body values using '+' as a delimiter
 class StringAggregationStrategy implements AggregationStrategy {

 public Exchange aggregate(Exchange oldExchange, Exchange newExchange)
{
 if (oldExchange == null) {
 return newExchange;
 }

 String oldBody = oldExchange.getIn().getBody(String.class);
 String newBody = newExchange.getIn().getBody(String.class);
 oldExchange.getIn().setBody(oldBody + "+" + newBody);
 return oldExchange;
 }
 }

 //simply combines Exchange body values into an ArrayList<Object>
 class ArrayListAggregationStrategy implements AggregationStrategy {

 public Exchange aggregate(Exchange oldExchange, Exchange newExchange)
{
 Object newBody = newExchange.getIn().getBody();
 ArrayList<Object> list = null;

CHAPTER 7. MESSAGE ROUTING

155

NOTE

Since Apache Camel 2.0, the AggregationStrategy.aggregate() callback method
is also invoked for the very first exchange. On the first invocation of the aggregate
method, the oldExchange parameter is null and the newExchange parameter
contains the first incoming exchange.

To aggregate messages using the custom strategy class, ArrayListAggregationStrategy, define
a route like the following:

You can also configure a route with a custom aggregation strategy in XML, as follows:

Exchange properties

The following properties are set on each aggregated exchange:

Table 7.1. Aggregated Exchange Properties

 if (oldExchange == null) {
 list = new ArrayList<Object>();
 list.add(newBody);
 newExchange.getIn().setBody(list);
 return newExchange;
 } else {
 list = oldExchange.getIn().getBody(ArrayList.class);
 list.add(newBody);
 return oldExchange;
 }
 }
 }

from("direct:start")
 .aggregate(header("StockSymbol"), new ArrayListAggregationStrategy())
 .completionTimeout(3000)
 .to("mock:result");

<camelContext xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from uri="direct:start"/>
 <aggregate strategyRef="aggregatorStrategy"
 completionTimeout="3000">
 <correlationExpression>
 <simple>header.StockSymbol</simple>
 </correlationExpression>
 <to uri="mock:aggregated"/>
 </aggregate>
 </route>
</camelContext>

<bean id="aggregatorStrategy"
class="com.my_package_name.ArrayListAggregationStrategy"/>

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

156

Header Type Description

Exchange.AGGREGATED_SIZ
E

int The total number of exchanges
aggregated into this exchange.

Exchange.AGGREGATED_COM
PLETED_BY

String Indicates the mechanism
responsible for completing the
aggregate exchange. Possible
values are: predicate, size,
timeout, interval, or
consumer.

The following properties are set on exchanges redelivered by the HawtDB aggregation repository (see
the section called “Persistent aggregation repository”):

Table 7.2. Redelivered Exchange Properties

Header Type Description

Exchange.REDELIVERY_COU
NTER

int Sequence number of the current
redelivery attempt (starting at 1).

Specifying a completion condition

It is mandatory to specify at least one completion condition, which determines when an aggregate
exchange leaves the aggregator and proceeds to the next node on the route. The following completion
conditions can be specified:

completionPredicate

Evaluates a predicate after each exchange is aggregated in order to determine completeness. A
value of true indicates that the aggregate exchange is complete.

completionSize

Completes the aggregate exchange after the specified number of incoming exchanges are
aggregated.

completionTimeout

(Incompatible with completionInterval) Completes the aggregate exchange, if no incoming
exchanges are aggregated within the specified timeout.

In other words, the timeout mechanism keeps track of a timeout for each correlation key value. The
clock starts ticking after the latest exchange with a particular key value is received. If another
exchange with the same key value is not received within the specified timeout, the corresponding
aggregate exchange is marked complete and sent to the next node on the route.

completionInterval

(Incompatible with completionTimeout) Completes all outstanding aggregate exchanges, after
each time interval (of specified length) has elapsed.

CHAPTER 7. MESSAGE ROUTING

157

The time interval is not tailored to each aggregate exchange. This mechanism forces simultaneous
completion of all outstanding aggregate exchanges. Hence, in some cases, this mechanism could
complete an aggregate exchange immediately after it started aggregating.

completionFromBatchConsumer

When used in combination with a consumer endpoint that supports the batch consumer mechanism,
this completion option automatically figures out when the current batch of exchanges is complete,
based on information it receives from the consumer endpoint. See the section called “Batch
consumer”.

forceCompletionOnStop

When this option is enabled, it forces completion of all outstanding aggregate exchanges when the
current route context is stopped.

The preceding completion conditions can be combined arbitrarily, except for the completionTimeout
and completionInterval conditions, which cannot be simultaneously enabled. When conditions are
used in combination, the general rule is that the first completion condition to trigger is the effective
completion condition.

Specifying the completion predicate

You can specify an arbitrary predicate expression that determines when an aggregated exchange is
complete. There are two possible ways of evaluating the predicate expression:

On the latest aggregate exchange—this is the default behavior.

On the latest incoming exchange—this behavior is selected when you enable the
eagerCheckCompletion option.

For example, if you want to terminate a stream of stock quotes every time you receive an ALERT
message (as indicated by the value of a MsgType header in the latest incoming exchange), you can
define a route like the following:

The following example shows how to configure the same route using XML:

from("direct:start")
 .aggregate(
 header("id"),
 new UseLatestAggregationStrategy()
)
 .completionPredicate(
 header("MsgType").isEqualTo("ALERT")
)
 .eagerCheckCompletion()
 .to("mock:result");

<camelContext xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from uri="direct:start"/>
 <aggregate strategyRef="aggregatorStrategy"
 eagerCheckCompletion="true">
 <correlationExpression>
 <simple>header.StockSymbol</simple>

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

158

Specifying a dynamic completion timeout

It is possible to specify a dynamic completion timeout, where the timeout value is recalculated for every
incoming exchange. For example, to set the timeout value from the timeout header in each incoming
exchange, you could define a route as follows:

You can configure the same route in the XML DSL, as follows:

NOTE

You can also add a fixed timeout value and Apache Camel will fall back to use this value,
if the dynamic value is null or 0.

Specifying a dynamic completion size

 </correlationExpression>
 <completionPredicate>
 <simple>$MsgType = 'ALERT'</simple>
 </completionPredicate>
 <to uri="mock:result"/>
 </aggregate>
 </route>
</camelContext>

<bean id="aggregatorStrategy"

class="org.apache.camel.processor.aggregate.UseLatestAggregationStrategy"/
>

from("direct:start")
 .aggregate(header("StockSymbol"), new UseLatestAggregationStrategy())
 .completionTimeout(header("timeout"))
 .to("mock:aggregated");

<camelContext xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from uri="direct:start"/>
 <aggregate strategyRef="aggregatorStrategy">
 <correlationExpression>
 <simple>header.StockSymbol</simple>
 </correlationExpression>
 <completionTimeout>
 <header>timeout</header>
 </completionTimeout>
 <to uri="mock:aggregated"/>
 </aggregate>
 </route>
</camelContext>

<bean id="aggregatorStrategy"
 class="org.apache.camel.processor.UseLatestAggregationStrategy"/>

CHAPTER 7. MESSAGE ROUTING

159

It is possible to specify a dynamic completion size, where the completion size is recalculated for every
incoming exchange. For example, to set the completion size from the mySize header in each incoming
exchange, you could define a route as follows:

And the same example using Spring XML:

NOTE

You can also add a fixed size value and Apache Camel will fall back to use this value, if
the dynamic value is null or 0.

Forcing completion with a special message

It is possible to force completion of all outstanding aggregate message by sending a special message to
the route, with the Exchange.AGGREGATION_COMPLETE_ALL_GROUPS header set to true. This
message acts like a signal to the aggregator: the remaining content of the message is ignored and the
message is not processed any further.

Enforcing unique correlation keys

In some aggregation scenarios, you might want to enforce the condition that the correlation key is unique
for each batch of exchanges. In other words, when the aggregate exchange for a particular correlation
key completes, you want to make sure that no further aggregate exchanges with that correlation key are
allowed to proceed. For example, you might want to enforce this condition, if the latter part of the route
expects to process exchanges with unique correlation key values.

Depending on how the completion conditions are configured, there might be a risk of more than one
aggregate exchange being generated with a particular correlation key. For example, although you might
define a completion predicate that is designed to wait until all the exchanges with a particular correlation

from("direct:start")
 .aggregate(header("StockSymbol"), new UseLatestAggregationStrategy())
 .completionSize(header("mySize"))
 .to("mock:aggregated");

<camelContext xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from uri="direct:start"/>
 <aggregate strategyRef="aggregatorStrategy">
 <correlationExpression>
 <simple>header.StockSymbol</simple>
 </correlationExpression>
 <completionSize>
 <header>mySize</header>
 </completionSize>
 <to uri="mock:aggregated"/>
 </aggregate>
 </route>
</camelContext>

<bean id="aggregatorStrategy"
 class="org.apache.camel.processor.UseLatestAggregationStrategy"/>

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

160

key are received, you might also define a completion timeout, which could fire before all of the
exchanges with that key have arrived. In this case, the late-arriving exchanges could give rise to a
second aggregate exchange with the same correlation key value.

For such scenarios, you can configure the aggregator to suppress aggregate exchanges that duplicate
previous correlation key values, by setting the closeCorrelationKeyOnCompletion option. In order
to suppress duplicate correlation key values, it is necessary for the aggregator to record previous
correlation key values in a cache. The size of this cache (the number of cached correlation keys) is
specified as an argument to the closeCorrelationKeyOnCompletion() DSL command. To specify
a cache of unlimited size, you can pass a value of zero or a negative integer. For example, to specify a
cache size of 10000 key values:

If an aggregate exchange completes with a duplicate correlation key value, the aggregator throws a
ClosedCorrelationKeyException exception.

Grouped exchanges

You can combine all of the aggregated exchanges in an outgoing batch into a single
org.apache.camel.impl.GroupedExchange holder class. To enable grouped exchanges, specify
the groupExchanges() option, as shown in the following Java DSL route:

The grouped exchange that is sent to mock:result contains the list of aggregated exchanges stored in
the exchange property, Exchange.GROUPED_EXCHANGE. The following line of code shows how a
subsequent processor can access the contents of the grouped exchange in the form of a list:

NOTE

When you enable the grouped exchanges feature, you must not configure an aggregation
strategy (the grouped exchanges feature is itself an aggregation strategy).

Batch consumer

The aggregator can work together with the batch consumer pattern to aggregate the total number of
messages reported by the batch consumer (a batch consumer endpoint sets the CamelBatchSize,
CamelBatchIndex , and CamelBatchComplete properties on the incoming exchange). For example,
to aggregate all of the files found by a File consumer endpoint, you could use a route like the following:

from("direct:start")
 .aggregate(header("UniqueBatchID"), new MyConcatenateStrategy())
 .completionSize(header("mySize"))
 .closeCorrelationKeyOnCompletion(10000)
 .to("mock:aggregated");

from("direct:start")
 .aggregate(header("StockSymbol"))
 .completionTimeout(3000)
 .groupExchanges()
 .to("mock:result");

// Java
List<Exchange> grouped = ex.getProperty(Exchange.GROUPED_EXCHANGE,
List.class);

CHAPTER 7. MESSAGE ROUTING

161

Currently, the following endpoints support the batch consumer mechanism: File, FTP, Mail, iBatis, and
JPA.

Persistent aggregation repository

If you want pending aggregated exchanges to be stored persistently, you can use either the HawtDB
component or the SQL Component for persistence support as a persistent aggregation repository. For
example, if using HawtDB, you need to include a dependency on the camel-hawtdb component in your
Maven POM. You can then configure a route to use the HawtDB aggregation repository as follows:

The HawtDB aggregation repository has a feature that enables it to recover and retry any failed
exchanges (that is, any exchange that raised an exception while it was being processed by the latter part
of the route). Figure 7.7, “Recoverable Aggregation Repository” shows an overview of the recovery
mechanism.

Figure 7.7. Recoverable Aggregation Repository

The recovery mechanism works as follows:

1. The aggregator creates a dedicated recovery thread, which runs in the background, scanning the
aggregation repository to find any failed exchanges.

2. Each failed exchange is checked to see whether its current redelivery count exceeds the
maximum redelivery limit. If it is under the limit, the recovery task resubmits the exchange for
processing in the latter part of the route.

3. If the current redelivery count is over the limit, the failed exchange is passed to the dead letter
queue.

from("file://inbox")
 .aggregate(xpath("//order/@customerId"), new
AggregateCustomerOrderStrategy())
 .completionFromBatchConsumer()
 .to("bean:processOrder");

public void configure() throws Exception {
 HawtDBAggregationRepository repo = new AggregationRepository("repo1",
"target/data/hawtdb.dat");

 from("direct:start")
 .aggregate(header("id"), new UseLatestAggregationStrategy())
 .completionTimeout(3000)
 .aggregationRepository(repo)
 .to("mock:aggregated");
}

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

162

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.0/html/EIP_Component_Reference/_IDU_HawtDB.html
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.0/html/EIP_Component_Reference/_IDU_SQLComponent.html

For more details about the HawtDB component, see chapter "HawtDB" in "EIP Component Reference" .

Threading options

As shown in Figure 7.6, “Aggregator Implementation”, the aggregator is dsecoupled from the latter part
of the route, where the exchanges sent to the latter part of the route are processed by a dedicated thread
pool. By default, this pool contains just a single thread. If you want to specify a pool with multiple
threads, enable the parallelProcessing option, as follows:

By default, this creates a pool with 10 worker threads.

If you want to exercise more control over the created thread pool, specify a custom
java.util.concurrent.ExecutorService instance using the executorService option (in which
case it is unnecessary to enable the parallelProcessing option).

Aggregator options

The aggregator supports the following options:

Table 7.3. Aggregator Options

Option Default Description

correlationExpression Mandatory Expression which
evaluates the correlation key to
use for aggregation. The
Exchange which has the same
correlation key is aggregated
together. If the correlation key
could not be evaluated an
Exception is thrown. You can
disable this by using the
ignoreBadCorrelationKey
s option.

from("direct:start")
 .aggregate(header("id"), new UseLatestAggregationStrategy())
 .completionTimeout(3000)
 .parallelProcessing()
 .to("mock:aggregated");

CHAPTER 7. MESSAGE ROUTING

163

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.0/html/EIP_Component_Reference/_IDU_HawtDB.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/ExecutorService.html
Expression
Exchange

aggregationStrategy Mandatory
AggregationStrategy
which is used to merge the
incoming Exchange with the
existing already merged
exchanges. At first call the
oldExchange parameter is
null. On subsequent invocations
the oldExchange contains the
merged exchanges and
newExchange is of course the
new incoming Exchange. From
Camel 2.9.2 onwards, the strategy
can optionally be a
TimeoutAwareAggregation
Strategy implementation,
which supports a timeout callback

strategyRef A reference to lookup the
AggregationStrategy in
the Registry.

completionSize Number of messages aggregated
before the aggregation is
complete. This option can be set
as either a fixed value or using an
Expression which allows you to
evaluate a size dynamically - will
use Integer as result. If both
are set Camel will fallback to use
the fixed value if the Expression
result was null or 0.

completionTimeout Time in millis that an aggregated
exchange should be inactive
before its complete. This option
can be set as either a fixed value
or using an Expression which
allows you to evaluate a timeout
dynamically - will use Long as
result. If both are set Camel will
fallback to use the fixed value if
the Expression result was null
or 0. You cannot use this option
together with completionInterval,
only one of the two can be used.

Option Default Description

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

164

Exchange
Registry
Expression
Expression
Expression
Expression

completionInterval A repeating period in millis by
which the aggregator will
complete all current aggregated
exchanges. Camel has a
background task which is
triggered every period. You
cannot use this option together
with completionTimeout, only one
of them can be used.

completionPredicate A Predicate to indicate when an
aggregated exchange is complete.

completionFromBatchCons
umer

false This option is if the exchanges are
coming from a Batch Consumer.
Then when enabled the
Aggregator will use the batch size
determined by the Batch
Consumer in the message header
CamelBatchSize. See more
details at Batch Consumer. This
can be used to aggregate all files
consumed from a File endpoint in
that given poll.

eagerCheckCompletion false Whether or not to eager check for
completion when a new incoming
Exchange has been received.
This option influences the
behavior of the
completionPredicate
option as the Exchange being
passed in changes accordingly.
When false the Exchange
passed in the Predicate is the
aggregated Exchange which
means any information you may
store on the aggregated
Exchange from the
AggregationStrategy is
available for the Predicate. When
true the Exchange passed in
the Predicate is the incoming
Exchange, which means you can
access data from the incoming
Exchange.

forceCompletionOnStop false If true, complete all aggregated
exchanges when the current route
context is stopped.

Option Default Description

CHAPTER 7. MESSAGE ROUTING

165

Predicate
Batch Consumer
Batch Consumer
Batch Consumer
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.0/html/EIP_Component_Reference/_IDU_File2.html
Exchange
Exchange
Exchange
Predicate
Predicate
Exchange
Predicate
Exchange

groupExchanges false If enabled then Camel will group
all aggregated Exchanges into a
single combined
org.apache.camel.impl.G
roupedExchange holder class
that holds all the aggregated
Exchanges. And as a result only
one Exchange is being sent out
from the aggregator. Can be used
to combine many incoming
Exchanges into a single output
Exchange without coding a
custom
AggregationStrategy
yourself.

ignoreInvalidCorrelatio
nKeys

false Whether or not to ignore
correlation keys which could not
be evaluated to a value. By default
Camel will throw an Exception,
but you can enable this option and
ignore the situation instead.

closeCorrelationKeyOnCo
mpletion

 Whether or not late Exchanges
should be accepted or not. You
can enable this to indicate that if a
correlation key has already been
completed, then any new
exchanges with the same
correlation key be denied. Camel
will then throw a
closedCorrelationKeyExc
eption exception. When using
this option you pass in a
integer which is a number for a
LRUCache which keeps that last X
number of closed correlation keys.
You can pass in 0 or a negative
value to indicate a unbounded
cache. By passing in a number
you are ensured that cache wont
grown too big if you use a log of
different correlation keys.

discardOnCompletionTime
out

false Camel 2.5: Whether or not
exchanges which complete due to
a timeout should be discarded. If
enabled, then when a timeout
occurs the aggregated message
will not be sent out but dropped
(discarded).

Option Default Description

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

166

aggregationRepository Allows you to plug in you own
implementation of
org.apache.camel.spi.Ag
gregationRepository
which keeps track of the current
inflight aggregated exchanges.
Camel uses by default a memory
based implementation.

aggregationRepositoryRe
f

 Reference to lookup a
aggregationRepository in
the Registry.

parallelProcessing false When aggregated are completed
they are being send out of the
aggregator. This option indicates
whether or not Camel should use
a thread pool with multiple
threads for concurrency. If no
custom thread pool has been
specified then Camel creates a
default pool with 10 concurrent
threads.

executorService If using
parallelProcessing you
can specify a custom thread pool
to be used. In fact also if you are
not using
parallelProcessing this
custom thread pool is used to
send out aggregated exchanges
as well.

executorServiceRef Reference to lookup a
executorService in the
Registry

timeoutCheckerExecutorS
ervice

 If using one of the
completionTimeout,
completionTimeoutExpres
sion, or
completionInterval
options, a background thread is
created to check for the
completion for every aggregator.
Set this option to provide a
custom thread pool to be used
rather than creating a new thread
for every aggregator.

Option Default Description

CHAPTER 7. MESSAGE ROUTING

167

Registry
Registry

timeoutCheckerExecutorS
erviceRef

 Reference to look up a
timeoutCheckerExecutorS
ervice in the registry.

Option Default Description

7.6. RESEQUENCER

Overview

The resequencer pattern, shown in Figure 7.8, “Resequencer Pattern”, enables you to resequence
messages according to a sequencing expression. Messages that generate a low value for the
sequencing expression are moved to the front of the batch and messages that generate a high value are
moved to the back.

Figure 7.8. Resequencer Pattern

Apache Camel supports two resequencing algorithms:

Batch resequencing — Collects messages into a batch, sorts the messages and sends them to
their output.

Stream resequencing — Re-orders (continuous) message streams based on the detection of
gaps between messages.

By default the resequencer does not support duplicate messages and will only keep the last message, in
cases where a message arrives with the same message expression. However, in batch mode you can
enable the resequencer to allow duplicates.

Batch resequencing

The batch resequencing algorithm is enabled by default. For example, to resequence a batch of
incoming messages based on the value of a timestamp contained in the TimeStamp header, you can
define the following route in Java DSL:

By default, the batch is obtained by collecting all of the incoming messages that arrive in a time interval
of 1000 milliseconds (default batch timeout), up to a maximum of 100 messages (default batch size).
You can customize the values of the batch timeout and the batch size by appending a batch() DSL
command, which takes a BatchResequencerConfig instance as its sole argument. For example, to
modify the preceding route so that the batch consists of messages collected in a 4000 millisecond time
window, up to a maximum of 300 messages, you can define the Java DSL route as follows:

from("direct:start").resequence(header("TimeStamp")).to("mock:result");

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

168

You can also specify a batch resequencer pattern using XML configuration. The following example
defines a batch resequencer with a batch size of 300 and a batch timeout of 4000 milliseconds:

Batch options

Table 7.4, “Batch Resequencer Options” shows the options that are available in batch mode only.

Table 7.4. Batch Resequencer Options

Java DSL XML DSL Default Description

allowDuplicates(
)

batch-
config/@allowDup
licates

false If true, do not discard
duplicate messages
from the batch (where
duplicate means that the
message expression
evaluates to the same
value).

reverse() batch-
config/@reverse

false If true, put the
messages in reverse
order (where the default
ordering applied to a
message expression is
based on Java's string
lexical ordering, as
defined by
String.compareTo()).

import org.apache.camel.model.config.BatchResequencerConfig;

RouteBuilder builder = new RouteBuilder() {
 public void configure() {
 from("direct:start").resequence(header("TimeStamp")).batch(new
BatchResequencerConfig(300,4000L)).to("mock:result");
 }
};

<camelContext id="resequencerBatch"
xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from uri="direct:start" />
 <resequence>
 <!--
 batch-config can be omitted for default (batch) resequencer
settings
 -->
 <batch-config batchSize="300" batchTimeout="4000" />
 <simple>header.TimeStamp</simple>
 <to uri="mock:result" />
 </resequence>
 </route>
</camelContext>

CHAPTER 7. MESSAGE ROUTING

169

http://download-llnw.oracle.com/docs/cd/E17476_01/javase/1.5.0/docs/api/java/lang/String.html#compareTo%28java.lang.String%29

For example, if you want to resequence messages from JMS queues based on JMSPriority, you
would need to combine the options, allowDuplicates and reverse, as follows:

Stream resequencing

To enable the stream resequencing algorithm, you must append stream() to the resequence() DSL
command. For example, to resequence incoming messages based on the value of a sequence number
in the seqnum header, you define a DSL route as follows:

The stream-processing resequencer algorithm is based on the detection of gaps in a message stream,
rather than on a fixed batch size. Gap detection, in combination with timeouts, removes the constraint of
needing to know the number of messages of a sequence (that is, the batch size) in advance. Messages
must contain a unique sequence number for which a predecessor and a successor is known. For
example a message with the sequence number 3 has a predecessor message with the sequence
number 2 and a successor message with the sequence number 4. The message sequence 2,3,5 has a
gap because the successor of 3 is missing. The resequencer therefore must retain message 5 until
message 4 arrives (or a timeout occurs).

By default, the stream resequencer is configured with a timeout of 1000 milliseconds, and a maximum
message capacity of 100. To customize the stream's timeout and message capacity, you can pass a
StreamResequencerConfig object as an argument to stream(). For example, to configure a stream
resequencer with a message capacity of 5000 and a timeout of 4000 milliseconds, you define a route as
follows:

If the maximum time delay between successive messages (that is, messages with adjacent sequence
numbers) in a message stream is known, the resequencer's timeout parameter should be set to this
value. In this case, you can guarantee that all messages in the stream are delivered in the correct order
to the next processor. The lower the timeout value that is compared to the out-of-sequence time

from("jms:queue:foo")
 // sort by JMSPriority by allowing duplicates (message can have
same JMSPriority)
 // and use reverse ordering so 9 is first output (most important),
and 0 is last
 // use batch mode and fire every 3th second

.resequence(header("JMSPriority")).batch().timeout(3000).allowDuplicates()
.reverse()
 .to("mock:result");

from("direct:start").resequence(header("seqnum")).stream().to("mock:result
");

// Java
import org.apache.camel.model.config.StreamResequencerConfig;

RouteBuilder builder = new RouteBuilder() {
 public void configure() {
 from("direct:start").resequence(header("seqnum")).
 stream(new StreamResequencerConfig(5000, 4000L)).
 to("mock:result");
 }
};

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

170

difference, the more likely it is that the resequencer will deliver messages out of sequence. Large timeout
values should be supported by sufficiently high capacity values, where the capacity parameter is used to
prevent the resequencer from running out of memory.

If you want to use sequence numbers of some type other than long, you would must define a custom
comparator, as follows:

You can also specify a stream resequencer pattern using XML configuration. The following example
defines a stream resequencer with a message capacity of 5000 and a timeout of 4000 milliseconds:

Ignore invalid exchanges

The resequencer EIP throws a CamelExchangeException exception, if the incoming exchange is not
valid—that is, if the sequencing expression cannot be evaluated for some reason (for example, due to a
missing header). You can use the ignoreInvalidExchanges option to ignore these exceptions,
which means the resequencer will skip any invalid exchanges.

7.7. ROUTING SLIP

Overview

The routing slip pattern, shown in Figure 7.9, “Routing Slip Pattern”, enables you to route a message
consecutively through a series of processing steps, where the sequence of steps is not known at design
time and can vary for each message. The list of endpoints through which the message should pass is
stored in a header field (the slip), which Apache Camel reads at run time to construct a pipeline on the
fly.

// Java
ExpressionResultComparator<Exchange> comparator = new MyComparator();
StreamResequencerConfig config = new StreamResequencerConfig(5000, 4000L,
comparator);
from("direct:start").resequence(header("seqnum")).stream(config).to("mock:
result");

<camelContext id="resequencerStream"
xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from uri="direct:start"/>
 <resequence>
 <stream-config capacity="5000" timeout="4000"/>
 <simple>header.seqnum</simple>
 <to uri="mock:result" />
 </resequence>
 </route>
</camelContext>

from("direct:start")
 .resequence(header("seqno")).batch().timeout(1000)
 // ignore invalid exchanges (they are discarded)
 .ignoreInvalidExchanges()
 .to("mock:result");

CHAPTER 7. MESSAGE ROUTING

171

Figure 7.9. Routing Slip Pattern

The slip header

The routing slip appears in a user-defined header, where the header value is a comma-separated list of
endpoint URIs. For example, a routing slip that specifies a sequence of security tasks—decrypting,
authenticating, and de-duplicating a message—might look like the following:

The current endpoint property

From Camel 2.5 the Routing Slip will set a property (Exchange.SLIP_ENDPOINT) on the exchange
which contains the current endpoint as it advanced though the slip. This enables you to find out how far
the exchange has progressed through the slip.

The Routing Slip will compute the slip beforehand which means, the slip is only computed once. If you
need to compute the slip on-the-fly then use the Dynamic Router pattern instead.

Java DSL example

The following route takes messages from the direct:a endpoint and reads a routing slip from the
aRoutingSlipHeader header:

You can specify the header name either as a string literal or as an expression.

You can also customize the URI delimiter using the two-argument form of routingSlip(). The
following example defines a route that uses the aRoutingSlipHeader header key for the routing slip
and uses the # character as the URI delimiter:

XML configuration example

The following example shows how to configure the same route in XML:

cxf:bean:decrypt,cxf:bean:authenticate,cxf:bean:dedup

from("direct:b").routingSlip("aRoutingSlipHeader");

from("direct:c").routingSlip("aRoutingSlipHeader", "#");

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

172

Ignore invalid endpoints

The Routing Slip now supports ignoreInvalidEndpoints, which the Recipient List pattern also
supports. You can use it to skip endpoints that are invalid. For example:

In Spring XML, this feature is enabled by setting the ignoreInvalidEndpoints attribute on the
<routingSlip> tag:

Consider the case where myHeader contains the two endpoints, direct:foo,xxx:bar. The first
endpoint is valid and works. The second is invalid and, therefore, ignored. Apache Camel logs at INFO
level whenever an invalid endpoint is encountered.

Options

The routingSlip DSL command supports the following options:

Name Default Value Description

uriDelimiter , Delimiter used if the Expression
returned multiple endpoints.

ignoreInvalidEndpoints false If an endpoint uri could not be
resolved, should it be ignored.
Otherwise Camel will thrown an
exception stating the endpoint uri
is not valid.

7.8. THROTTLER

Overview

<camelContext id="buildRoutingSlip"
xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from uri="direct:c"/>
 <routingSlip uriDelimiter="#">
 <headerName>aRoutingSlipHeader</headerName>
 </routingSlip>
 </route>
</camelContext>

 from("direct:a").routingSlip("myHeader").ignoreInvalidEndpoints();

 <route>
 <from uri="direct:a"/>
 <routingSlip ignoreInvalidEndpoints="true">
 <headerName>myHeader</headerName>
 </routingSlip>
 </route>

CHAPTER 7. MESSAGE ROUTING

173

Expression

A throttler is a processor that limits the flow rate of incoming messages. You can use this pattern to
protect a target endpoint from getting overloaded. In Apache Camel, you can implement the throttler
pattern using the throttle() Java DSL command.

Java DSL example

To limit the flow rate to 100 messages per second, define a route as follows:

If necessary, you can customize the time period that governs the flow rate using the
timePeriodMillis() DSL command. For example, to limit the flow rate to 3 messages per 30000
milliseconds, define a route as follows:

XML configuration example

The following example shows how to configure the preceding route in XML:

Dynamically changing maximum requests per period

Available os of Camel 2.8 Since we use an Expression, you can adjust this value at runtime, for
example you can provide a header with the value. At runtime Camel evaluates the expression and
converts the result to a java.lang.Long type. In the example below we use a header from the
message to determine the maximum requests per period. If the header is absent, then the Throttler uses
the old value. So that allows you to only provide a header if the value is to be changed:

from("seda:a").throttle(100).to("seda:b");

from("seda:a").throttle(3).timePeriodMillis(30000).to("mock:result");

<camelContext id="throttleRoute"
xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from uri="seda:a"/>
 <!-- throttle 3 messages per 30 sec -->
 <throttle timePeriodMillis="30000">
 <constant>3</constant>
 <to uri="mock:result"/>
 </throttle>
 </route>
</camelContext>

<camelContext id="throttleRoute"
xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from uri="direct:expressionHeader"/>
 <throttle timePeriodMillis="500">
 <!-- use a header to determine how many messages to throttle per 0.5
sec -->
 <header>throttleValue</header>
 <to uri="mock:result"/>
 </throttle>
 </route>
</camelContext>

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

174

Expression

Asynchronous delaying

The throttler can enable non-blocking asynchronous delaying, which means that Apache Camel
schedules a task to be executed in the future. The task is responsible for processing the latter part of the
route (after the throttler). This allows the caller thread to unblock and service further incoming messages.
For example:

Options

The throttle DSL command supports the following options:

Name Default Value Description

maximumRequestsPerPerio
d

Maximum number of requests per
period to throttle. This option must
be provided and a positive
number. Notice, in the XML DSL,
from Camel 2.8 onwards this
option is configured using an
Expression instead of an attribute.

timePeriodMillis 1000 The time period in millis, in which
the throttler will allow at most
maximumRequestsPerPerio
d number of messages.

asyncDelayed false Camel 2.4: If enabled then any
messages which is delayed
happens asynchronously using a
scheduled thread pool.

executorServiceRef Camel 2.4: Refers to a custom
Thread Pool to be used if
asyncDelay has been enabled.

callerRunsWhenRejected true Camel 2.4: Is used if
asyncDelayed was enabled.
This controls if the caller thread
should execute the task if the
thread pool rejected the task.

7.9. DELAYER

Overview

A delayer is a processor that enables you to apply a relative time delay to incoming messages.

Java DSL example

from("seda:a").throttle(100).asyncDelayed().to("seda:b");

CHAPTER 7. MESSAGE ROUTING

175

Expression
Threading Model

You can use the delay() command to add a relative time delay, in units of milliseconds, to incoming
messages. For example, the following route delays all incoming messages by 2 seconds:

Alternatively, you can specify the time delay using an expression:

The DSL commands that follow delay() are interpreted as sub-clauses of delay(). Hence, in some
contexts it is necessary to terminate the sub-clauses of delay() by inserting the end() command. For
example, when delay() appears inside an onException() clause, you would terminate it as follows:

XML configuration example

The following example demonstrates the delay in XML DSL:

Creating a custom delay

You can use an expression combined with a bean to determine the delay as follows:

from("seda:a").delay(2000).to("mock:result");

from("seda:a").delay(header("MyDelay")).to("mock:result");

from("direct:start")
 .onException(Exception.class)
 .maximumRedeliveries(2)
 .backOffMultiplier(1.5)
 .handled(true)
 .delay(1000)
 .log("Halting for some time")
 .to("mock:halt")
 .end()
 .end()
 .to("mock:result");

<camelContext xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from uri="seda:a"/>
 <delay>
 <header>MyDelay</header>
 </delay>
 <to uri="mock:result"/>
 </route>
 <route>
 <from uri="seda:b"/>
 <delay>
 <constant>1000</constant>
 </delay>
 <to uri="mock:result"/>
 </route>
</camelContext>

from("activemq:foo").
 delay().expression().method("someBean", "computeDelay").
 to("activemq:bar");

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

176

Where the bean class could be defined as follows:

Asynchronous delaying

You can let the delayer use non-blocking asynchronous delaying, which means that Apache Camel
schedules a task to be executed in the future. The task is responsible for processing the latter part of the
route (after the delayer). This allows the caller thread to unblock and service further incoming messages.
For example:

The same route can be written in the XML DSL, as follows:

Options

The delayer pattern supports the following options:

Name Default Value Description

asyncDelayed false Camel 2.4: If enabled then
delayed messages happens
asynchronously using a scheduled
thread pool.

executorServiceRef Camel 2.4: Refers to a custom
Thread Pool to be used if
asyncDelay has been enabled.

public class SomeBean {
 public long computeDelay() {
 long delay = 0;
 // use java code to compute a delay value in millis
 return delay;
 }
}

from("activemq:queue:foo")
 .delay(1000)
 .asyncDelayed()
 .to("activemq:aDelayedQueue");

<route>
 <from uri="activemq:queue:foo"/>
 <delay asyncDelayed="true">
 <constant>1000</constant>
 </delay>
 <to uri="activemq:aDealyedQueue"/>
 </route>

CHAPTER 7. MESSAGE ROUTING

177

Threading Model

callerRunsWhenRejected true Camel 2.4: Is used if
asyncDelayed was enabled.
This controls if the caller thread
should execute the task if the
thread pool rejected the task.

7.10. LOAD BALANCER

Overview

The load balancer pattern allows you to delegate message processing to one of several endpoints, using
a variety of different load-balancing policies.

Java DSL example

The following route distributes incoming messages between the target endpoints, mock:x, mock:y,
mock:z, using a round robin load-balancing policy:

XML configuration example

The following example shows how to configure the same route in XML:

Load-balancing policies

The Apache Camel load balancer supports the following load-balancing policies:

Round robin

Random

Sticky

Topic

the section called “Failover”

the section called “Weighted round robin and weighted random”

from("direct:start").loadBalance().roundRobin().to("mock:x", "mock:y",
"mock:z");

<camelContext xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from uri="direct:start"/>
 <loadBalance>
 <roundRobin/>
 <to uri="mock:x"/>
 <to uri="mock:y"/>
 <to uri="mock:z"/>
 </loadBalance>
 </route>
</camelContext>

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

178

the section called “Custom Load Balancer”

Round robin

The round robin load-balancing policy cycles through all of the target endpoints, sending each incoming
message to the next endpoint in the cycle. For example, if the list of target endpoints is, mock:x,
mock:y, mock:z, then the incoming messages are sent to the following sequence of endpoints:
mock:x, mock:y, mock:z, mock:x, mock:y, mock:z, and so on.

You can specify the round robin load-balancing policy in Java DSL, as follows:

Alternatively, you can configure the same route in XML, as follows:

Random

The random load-balancing policy chooses the target endpoint randomly from the specified list.

You can specify the random load-balancing policy in Java DSL, as follows:

Alternatively, you can configure the same route in XML, as follows:

Sticky

from("direct:start").loadBalance().roundRobin().to("mock:x", "mock:y",
"mock:z");

<camelContext xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from uri="direct:start"/>
 <loadBalance>
 <roundRobin/>
 <to uri="mock:x"/>
 <to uri="mock:y"/>
 <to uri="mock:z"/>
 </loadBalance>
 </route>
</camelContext>

from("direct:start").loadBalance().random().to("mock:x", "mock:y",
"mock:z");

<camelContext xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from uri="direct:start"/>
 <loadBalance>
 <random/>
 <to uri="mock:x"/>
 <to uri="mock:y"/>
 <to uri="mock:z"/>
 </loadBalance>
 </route>
</camelContext>

CHAPTER 7. MESSAGE ROUTING

179

The sticky load-balancing policy directs the In message to an endpoint that is chosen by calculating a
hash value from a specified expression. The advantage of this load-balancing policy is that expressions
of the same value are always sent to the same server. For example, by calculating the hash value from a
header that contains a username, you ensure that messages from a particular user are always sent to
the same target endpoint. Another useful approach is to specify an expression that extracts the session
ID from an incoming message. This ensures that all messages belonging to the same session are sent to
the same target endpoint.

You can specify the sticky load-balancing policy in Java DSL, as follows:

Alternatively, you can configure the same route in XML, as follows:

Topic

The topic load-balancing policy sends a copy of each In message to all of the listed destination endpoints
(effectively broadcasting the message to all of the destinations, like a JMS topic).

You can use the Java DSL to specify the topic load-balancing policy, as follows:

Alternatively, you can configure the same route in XML, as follows:

from("direct:start").loadBalance().sticky(header("username")).to("mock:x",
"mock:y", "mock:z");

<camelContext xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from uri="direct:start"/>
 <loadBalance>
 <sticky>
 <expression>
 <simple>header.username</simple>
 </expression>
 </sticky>
 <to uri="mock:x"/>
 <to uri="mock:y"/>
 <to uri="mock:z"/>
 </loadBalance>
 </route>
</camelContext>

from("direct:start").loadBalance().topic().to("mock:x", "mock:y",
"mock:z");

<camelContext xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from uri="direct:start"/>
 <loadBalance>
 <topic/>
 <to uri="mock:x"/>
 <to uri="mock:y"/>
 <to uri="mock:z"/>
 </loadBalance>
 </route>
</camelContext>

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

180

Failover

Available as of Apache Camel 2.0 The failover load balancer is capable of trying the next processor
in case an Exchange failed with an exception during processing. You can configure the failover
with a list of specific exceptions that trigger failover. If you do not specify any exceptions, failover is
triggered by any exception. The failover load balancer uses the same strategy for matching exceptions
as the onException exception clause.

ENABLE STREAM CACHING IF USING STREAMS

If you use streaming, you should enable Stream Caching when using the failover load
balancer. This is needed so the stream can be re-read when failing over.

The failover load balancer supports the following options:

Option Type Default Description

inheritErrorHand
ler

boolean true Camel 2.3: Specifies
whether to use the
errorHandler
configured on the route.
If you want to fail over
immediately to the next
endpoint, you should
disable this option (value
of false). If you enable
this option, Apache
Camel will first attempt
to process the message
using the
errorHandler.

For example, the
errorHandler might
be configured to
redeliver messages and
use delays between
attempts. Apache Camel
will initially try to
redeliver to the original
endpoint, and only fail
over to the next endpoint
when the
errorHandler is
exhausted.

maximumFailoverA
ttempts

int -1 Camel 2.3: Specifies the
maximum number of
attempts to fail over to a
new endpoint. The
value, 0, implies that no
failover attempts are
made and the value, -1,
implies an infinite
number of failover
attempts.

CHAPTER 7. MESSAGE ROUTING

181

Exchange
http://camel.apache.org/stream-caching.html

roundRobin boolean false Camel 2.3: Specifies
whether the failover
load balancer should
operate in round robin
mode or not. If not, it will
always start from the
first endpoint when a
new message is to be
processed. In other
words it restarts from
the top for every
message. If round robin
is enabled, it keeps state
and continues with the
next endpoint in a round
robin fashion. When
using round robin it will
not stick to last known
good endpoint, it will
always pick the next
endpoint to use.

The following example is configured to fail over, only if an IOException exception is thrown:

You can optionally specify multiple exceptions to fail over, as follows:

You can configure the same route in XML, as follows:

from("direct:start")
 // here we will load balance if IOException was thrown
 // any other kind of exception will result in the Exchange as failed
 // to failover over any kind of exception we can just omit the
exception
 // in the failOver DSL
 .loadBalance().failover(IOException.class)
 .to("direct:x", "direct:y", "direct:z");

// enable redelivery so failover can react
errorHandler(defaultErrorHandler().maximumRedeliveries(5));

from("direct:foo")
 .loadBalance()
 .failover(IOException.class, MyOtherException.class)
 .to("direct:a", "direct:b");

<route errorHandlerRef="myErrorHandler">
 <from uri="direct:foo"/>
 <loadBalance>
 <failover>
 <exception>java.io.IOException</exception>
 <exception>com.mycompany.MyOtherException</exception>
 </failover>
 <to uri="direct:a"/>
 <to uri="direct:b"/>
 </loadBalance>

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

182

The following example shows how to fail over in round robin mode:

You can configure the same route in XML, as follows:

Weighted round robin and weighted random

In many enterprise environments, where server nodes of unequal processing power are hosting services,
it is usually preferable to distribute the load in accordance with the individual server processing
capacities. A weighted round robin algorithm or a weighted random algorithm can be used to address this
problem.

The weighted load balancing policy allows you to specify a processing load distribution ratio for each
server with respect to the others. You can specify this value as a positive processing weight for each
server. A larger number indicates that the server can handle a larger load. The processing weight is used
to determine the payload distribution ratio of each processing endpoint with respect to the others.

The parameters that can be used are

Table 7.5. Weighted Options

Option Type Default Description

roundRobin boolean false The default value for
round-robin is false.
In the absence of this
setting or parameter, the
load-balancing algorithm
used is random.

</route>

from("direct:start")
 // Use failover load balancer in stateful round robin mode,
 // which means it will fail over immediately in case of an exception
 // as it does NOT inherit error handler. It will also keep retrying,
as
 // it is configured to retry indefinitely.
 .loadBalance().failover(-1, false, true)
 .to("direct:bad", "direct:bad2", "direct:good", "direct:good2");

<route>
 <from uri="direct:start"/>
 <loadBalance>
 <!-- failover using stateful round robin,
 which will keep retrying the 4 endpoints indefinitely.
 You can set the maximumFailoverAttempt to break out after X
attempts -->
 <failover roundRobin="true"/>
 <to uri="direct:bad"/>
 <to uri="direct:bad2"/>
 <to uri="direct:good"/>
 <to uri="direct:good2"/>
 </loadBalance>
</route>

CHAPTER 7. MESSAGE ROUTING

183

distributionRati
oDelimiter

String , The
distributionRati
oDelimiter is the
delimiter used to specify
the
distributionRati
o. If this attribute is not
specified, comma , is
the default delimiter.

The following Java DSL examples show how to define a weighted round-robin route and a weighted
random route:

You can configure the round-robin route in XML, as follows:

Custom Load Balancer

You can use a custom load balancer (eg your own implementation) also.

An example using Java DSL:

And the same example using XML DSL:

// Java
// round-robin
from("direct:start")
 .loadBalance().weighted(true, "4:2:1" distributionRatioDelimiter=":")
 .to("mock:x", "mock:y", "mock:z");

//random
from("direct:start")
 .loadBalance().weighted(false, "4,2,1")
 .to("mock:x", "mock:y", "mock:z");

<!-- round-robin -->
<route>
 <from uri="direct:start"/>
 <loadBalance>
 <weighted roundRobin="true" distributionRatio="4:2:1"
distributionRatioDelimiter=":" />
 <to uri="mock:x"/>
 <to uri="mock:y"/>
 <to uri="mock:z"/>
 </loadBalance>
</route>

from("direct:start")
 // using our custom load balancer
 .loadBalance(new MyLoadBalancer())
 .to("mock:x", "mock:y", "mock:z");

<!-- this is the implementation of our custom load balancer -->
 <bean id="myBalancer"

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

184

Notice in the XML DSL above we use <custom> which is only available in Camel 2.8 onwards. In older
releases you would have to do as follows instead:

To implement a custom load balancer you can extend some support classes such as
LoadBalancerSupport and SimpleLoadBalancerSupport. The former supports the asynchronous
routing engine, and the latter does not. Here is an example:

7.11. MULTICAST

Overview

class="org.apache.camel.processor.CustomLoadBalanceTest$MyLoadBalancer"/>

 <camelContext xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from uri="direct:start"/>
 <loadBalance>
 <!-- refer to my custom load balancer -->
 <custom ref="myBalancer"/>
 <!-- these are the endpoints to balancer -->
 <to uri="mock:x"/>
 <to uri="mock:y"/>
 <to uri="mock:z"/>
 </loadBalance>
 </route>
 </camelContext>

 <loadBalance ref="myBalancer">
 <!-- these are the endpoints to balancer -->
 <to uri="mock:x"/>
 <to uri="mock:y"/>
 <to uri="mock:z"/>
 </loadBalance>

public static class MyLoadBalancer extends LoadBalancerSupport {

 public boolean process(Exchange exchange, AsyncCallback callback) {
 String body = exchange.getIn().getBody(String.class);
 try {
 if ("x".equals(body)) {
 getProcessors().get(0).process(exchange);
 } else if ("y".equals(body)) {
 getProcessors().get(1).process(exchange);
 } else {
 getProcessors().get(2).process(exchange);
 }
 } catch (Throwable e) {
 exchange.setException(e);
 }
 callback.done(true);
 return true;
 }
 }

CHAPTER 7. MESSAGE ROUTING

185

The multicast pattern, shown in Figure 7.10, “Multicast Pattern”, is a variation of the recipient list with a
fixed destination pattern, which is compatible with the InOut message exchange pattern. This is in
contrast to recipient list, which is only compatible with the InOnly exchange pattern.

Figure 7.10. Multicast Pattern

Multicast with a custom aggregation strategy

Whereas the multicast processor receives multiple Out messages in response to the original request
(one from each of the recipients), the original caller is only expecting to receive a single reply. Thus,
there is an inherent mismatch on the reply leg of the message exchange, and to overcome this
mismatch, you must provide a custom aggregation strategy to the multicast processor. The aggregation
strategy class is responsible for aggregating all of the Out messages into a single reply message.

Consider the example of an electronic auction service, where a seller offers an item for sale to a list of
buyers. The buyers each put in a bid for the item, and the seller automatically selects the bid with the
highest price. You can implement the logic for distributing an offer to a fixed list of buyers using the
multicast() DSL command, as follows:

Where the seller is represented by the endpoint, cxf:bean:offer, and the buyers are represented by
the endpoints, cxf:bean:Buyer1, cxf:bean:Buyer2, cxf:bean:Buyer3. To consolidate the bids
received from the various buyers, the multicast processor uses the aggregation strategy,
HighestBidAggregationStrategy. You can implement the HighestBidAggregationStrategy
in Java, as follows:

from("cxf:bean:offer").multicast(new HighestBidAggregationStrategy()).
 to("cxf:bean:Buyer1", "cxf:bean:Buyer2", "cxf:bean:Buyer3");

// Java
import org.apache.camel.processor.aggregate.AggregationStrategy;
import org.apache.camel.Exchange;

public class HighestBidAggregationStrategy implements AggregationStrategy
{
 public Exchange aggregate(Exchange oldExchange, Exchange newExchange)
{
 float oldBid = oldExchange.getOut().getHeader("Bid", Float.class);
 float newBid = newExchange.getOut().getHeader("Bid", Float.class);

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

186

Where it is assumed that the buyers insert the bid price into a header named, Bid. For more details
about custom aggregation strategies, see Section 7.5, “Aggregator”.

Parallel processing

By default, the multicast processor invokes each of the recipient endpoints one after another (in the order
listed in the to() command). In some cases, this might cause unacceptably long latency. To avoid
these long latency times, you have the option of enabling parallel processing by adding the
parallelProcessing() clause. For example, to enable parallel processing in the electronic auction
example, define the route as follows:

Where the multicast processor now invokes the buyer endpoints, using a thread pool that has one thread
for each of the endpoints.

If you want to customize the size of the thread pool that invokes the buyer endpoints, you can invoke the
executorService() method to specify your own custom executor service. For example:

Where MyExecutor is an instance of java.util.concurrent.ExecutorService type.

When the exchange has an InOut pattern, an aggregation strategy is used to aggregate reply messages.
The default aggregation strategy takes the latest reply message and discards earlier replies. For
example, in the following route, the custom strategy, MyAggregationStrategy, is used to aggregate
the replies from the endpoints, direct:a, direct:b, and direct:c:

XML configuration example

The following example shows how to configure a similar route in XML, where the route uses a custom
aggregation strategy and a custom thread executor:

 return (newBid > oldBid) ? newExchange : oldExchange;
 }
}

from("cxf:bean:offer")
 .multicast(new HighestBidAggregationStrategy())
 .parallelProcessing()
 .to("cxf:bean:Buyer1", "cxf:bean:Buyer2", "cxf:bean:Buyer3");

from("cxf:bean:offer")
 .multicast(new HighestBidAggregationStrategy())
 .executorService(MyExecutor)
 .to("cxf:bean:Buyer1", "cxf:bean:Buyer2", "cxf:bean:Buyer3");

from("direct:start")
 .multicast(new MyAggregationStrategy())
 .parallelProcessing()
 .timeout(500)
 .to("direct:a", "direct:b", "direct:c")
 .end()
 .to("mock:result");

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

CHAPTER 7. MESSAGE ROUTING

187

http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/ExecutorService.html

Where both the parallelProcessing attribute and the threadPoolRef attribute are optional. It is
only necessary to set them if you want to customize the threading behavior of the multicast processor.

Apply custom processing to the outgoing messages

Before multicast sends a message to one of the recipient endpoints, it creates a message replica, which
is a shallow copy of the original message. If you want to perform some custom processing on each
message replica before the replica is sent to its endpoint, you can invoke the onPrepare DSL command
in the multicast clause. The onPrepare command inserts a custom processor just after the message
has been shallow-copied and just before the message is dispatched to its endpoint. For example, in the
following route, the CustomProc processor is invoked on the message sent to direct:a and the
CustomProc processor is also invoked on the message sent to direct:b.

A common use case for the onPrepare DSL command is to perform a deep copy of some or all
elements of a message. For example, the following CustomProc processor class performs a deep copy
of the message body, where the message body is presumed to be of type, BodyType, and the deep
copy is performed by the method, BodyType.deepCopy().

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
 http://camel.apache.org/schema/spring
http://camel.apache.org/schema/spring/camel-spring.xsd
 ">

 <camelContext xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from uri="cxf:bean:offer"/>
 <multicast strategyRef="highestBidAggregationStrategy"
 parallelProcessing="true"
 threadPoolRef="myThreadExcutor">
 <to uri="cxf:bean:Buyer1"/>
 <to uri="cxf:bean:Buyer2"/>
 <to uri="cxf:bean:Buyer3"/>
 </multicast>
 </route>
 </camelContext>

 <bean id="highestBidAggregationStrategy"
class="com.acme.example.HighestBidAggregationStrategy"/>
 <bean id="myThreadExcutor" class="com.acme.example.MyThreadExcutor"/>

</beans>

from("direct:start")
 .multicast().onPrepare(new CustomProc())
 .to("direct:a").to("direct:b");

// Java
import org.apache.camel.*;
...
public class CustomProc implements Processor {

 public void process(Exchange exchange) throws Exception {

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

188

NOTE

Although the multicast syntax allows you to invoke the process DSL command in the
multicast clause, this does not make sense semantically and it does not have the same
effect as onPrepare (in fact, in this context, the process DSL command has no effect).

Using onPrepare to execute custom logic when preparing messages

The Multicast will copy the source Exchange and multicast each copy. However the copy is a shallow
copy, so in case you have mutateable message bodies, then any changes will be visible by the other
copied messages. If you want to use a deep clone copy then you need to use a custom onPrepare
which allows you to do this using the Processor interface.

Notice the onPrepare can be used for any kind of custom logic which you would like to execute before
the Exchange is being multicasted.

NOTE

Its best practice to design for immutable objects.

For example if you have a mutable message body as this Animal class:

 BodyType body = exchange.getIn().getBody(BodyType.class);

 // Make a _deep_ copy of of the body object
 BodyType clone = BodyType.deepCopy();
 exchange.getIn().setBody(clone);

 // Headers and attachments have already been
 // shallow-copied. If you need deep copies,
 // add some more code here.
 }
}

public class Animal implements Serializable {

 private int id;
 private String name;

 public Animal() {
 }

 public Animal(int id, String name) {
 this.id = id;
 this.name = name;
 }

 public Animal deepClone() {
 Animal clone = new Animal();
 clone.setId(getId());
 clone.setName(getName());
 return clone;
 }

CHAPTER 7. MESSAGE ROUTING

189

Exchange
Processor

Then we can create a deep clone processor which clones the message body:

Then we can use the AnimalDeepClonePrepare class in the Multicast route using the onPrepare option
as shown:

And the same example in XML DSL

 public int getId() {
 return id;
 }

 public void setId(int id) {
 this.id = id;
 }

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

 @Override
 public String toString() {
 return id + " " + name;
 }
 }

public class AnimalDeepClonePrepare implements Processor {

 public void process(Exchange exchange) throws Exception {
 Animal body = exchange.getIn().getBody(Animal.class);

 // do a deep clone of the body which wont affect when doing
multicasting
 Animal clone = body.deepClone();
 exchange.getIn().setBody(clone);
 }
 }

from("direct:start")
 .multicast().onPrepare(new
AnimalDeepClonePrepare()).to("direct:a").to("direct:b");

<camelContext xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from uri="direct:start"/>
 <!-- use on prepare with multicast -->
 <multicast onPrepareRef="animalDeepClonePrepare">
 <to uri="direct:a"/>
 <to uri="direct:b"/>
 </multicast>
 </route>

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

190

Options

The multicast DSL command supports the following options:

Name Default Value Description

strategyRef Refers to an AggregationStrategy
to be used to assemble the replies
from the multicasts, into a single
outgoing message from the
Multicast. By default Camel will
use the last reply as the outgoing
message.

parallelProcessing false If enables then sending messages
to the multicasts occurs
concurrently. Note the caller
thread will still wait until all
messages has been fully
processed, before it continues. Its
only the sending and processing
the replies from the multicasts
which happens concurrently.

executorServiceRef Refers to a custom Thread Pool to
be used for parallel processing.
Notice if you set this option, then
parallel processing is automatic
implied, and you do not have to
enable that option as well.

 <route>
 <from uri="direct:a"/>
 <process ref="processorA"/>
 <to uri="mock:a"/>
 </route>
 <route>
 <from uri="direct:b"/>
 <process ref="processorB"/>
 <to uri="mock:b"/>
 </route>
 </camelContext>

 <!-- the on prepare Processor which performs the deep cloning -->
 <bean id="animalDeepClonePrepare"
class="org.apache.camel.processor.AnimalDeepClonePrepare"/>

 <!-- processors used for the last two routes, as part of unit test -->
 <bean id="processorA"
class="org.apache.camel.processor.MulticastOnPrepareTest$ProcessorA"/>
 <bean id="processorB"
class="org.apache.camel.processor.MulticastOnPrepareTest$ProcessorB"/>

CHAPTER 7. MESSAGE ROUTING

191

http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/aggregate/AggregationStrategy.html
Threading Model

stopOnException false Camel 2.2: Whether or not to stop
continue processing immediately
when an exception occurred. If
disable, then Camel will send the
message to all multicasts
regardless if one of them failed.
You can deal with exceptions in
the AggregationStrategy class
where you have full control how to
handle that.

streaming false If enabled then Camel will process
replies out-of-order, eg in the
order they come back. If disabled,
Camel will process replies in the
same order as multicasted.

timeout Camel 2.5: Sets a total timeout
specified in millis. If the Multicast
hasn't been able to send and
process all replies within the given
timeframe, then the timeout
triggers and the Multicast breaks
out and continues. Notice if you
provide a
TimeoutAwareAggregationStrateg
y then the timeout method is
invoked before breaking out.

onPrepareRef Camel 2.8: Refers to a custom
Processor to prepare the copy of
the Exchange each multicast will
receive. This allows you to do any
custom logic, such as deep-
cloning the message payload if
that's needed etc.

shareUnitOfWork false Camel 2.8: Whether the unit of
work should be shared. See the
same option on Splitter for more
details.

7.12. COMPOSED MESSAGE PROCESSOR

Composed Message Processor

The composed message processor pattern, as shown in Figure 7.11, “Composed Message Processor
Pattern”, allows you to process a composite message by splitting it up, routing the sub-messages to
appropriate destinations, and then re-aggregating the responses back into a single message.

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

192

http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/aggregate/AggregationStrategy.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/aggregate/TimeoutAwareAggregationStrategy.html
Processor
Exchange

Figure 7.11. Composed Message Processor Pattern

Java DSL example

The following example checks that a multipart order can be filled, where each part of the order requires a
check to be made at a different inventory:

XML DSL example

The preceding route can also be written in XML DSL, as follows:

// split up the order so individual OrderItems can be validated by the
appropriate bean
from("direct:start")
 .split().body()
 .choice()
 .when().method("orderItemHelper", "isWidget")
 .to("bean:widgetInventory")
 .otherwise()
 .to("bean:gadgetInventory")
 .end()
 .to("seda:aggregate");

// collect and re-assemble the validated OrderItems into an order again
from("seda:aggregate")
 .aggregate(new MyOrderAggregationStrategy())
 .header("orderId")
 .completionTimeout(1000L)
 .to("mock:result");

 <route>
 <from uri="direct:start"/>
 <split>
 <simple>body</simple>
 <choice>
 <when>
 <method bean="orderItemHelper" method="isWidget"/>
 <to uri="bean:widgetInventory"/>
 </when>
 <otherwise>
 <to uri="bean:gadgetInventory"/>

CHAPTER 7. MESSAGE ROUTING

193

Processing steps

Processing starts by splitting the order, using a Splitter. The Splitter then sends individual OrderItems
to a Content Based Router, which routes messages based on the item type. Widget items get sent for
checking in the widgetInventory bean and gadget items get sent to the gadgetInventory bean.
Once these OrderItems have been validated by the appropriate bean, they are sent on to the
Aggregator which collects and re-assembles the validated OrderItems into an order again.

Each received order has a header containing an order ID. We make use of the order ID during the
aggregation step: the .header("orderId") qualifier on the aggregate() DSL command instructs
the aggregator to use the header with the key, orderId, as the correlation expression.

For full details, check the example source here:

7.13. SCATTER-GATHER

Scatter-Gather

The scatter-gather pattern, as shown in Figure 7.12, “Scatter-Gather Pattern”, enables you to route
messages to a number of dynamically specified recipients and re-aggregate the responses back into a
single message.

 </otherwise>
 </choice>
 <to uri="seda:aggregate"/>
 </split>
 </route>

 <route>
 <from uri="seda:aggregate"/>
 <aggregate strategyRef="myOrderAggregatorStrategy"
completionTimeout="1000">
 <correlationExpression>
 <simple>header.orderId</simple>
 </correlationExpression>
 <to uri="mock:result"/>
 </aggregate>
 </route>

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

194

Figure 7.12. Scatter-Gather Pattern

Dynamic scatter-gather example

The following example outlines an application that gets the best quote for beer from several different
vendors. The examples uses a dynamic Recipient List to request a quote from all vendors and an
Aggregator to pick the best quote out of all the responses. The routes for this application are defined as
follows:

In the first route, the Recipient List looks at the listOfVendors header to obtain the list of recipients.
Hence, the client that sends messages to this application needs to add a listOfVendors header to the
message. Example 7.1, “Messaging Client Sample” shows some sample code from a messaging client
that adds the relevant header data to outgoing messages.

Example 7.1. Messaging Client Sample

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from uri="direct:start"/>
 <recipientList>
 <header>listOfVendors</header>
 </recipientList>
 </route>
 <route>
 <from uri="seda:quoteAggregator"/>
 <aggregate strategyRef="aggregatorStrategy" completionTimeout="1000">
 <correlationExpression>
 <header>quoteRequestId</header>
 </correlationExpression>
 <to uri="mock:result"/>
 </aggregate>
 </route>
</camelContext>

Map<String, Object> headers = new HashMap<String, Object>();
headers.put("listOfVendors", "bean:vendor1, bean:vendor2,
bean:vendor3");

CHAPTER 7. MESSAGE ROUTING

195

The message would be distributed to the following endpoints: bean:vendor1, bean:vendor2, and
bean:vendor3. These beans are all implemented by the following class:

The bean instances, vendor1, vendor2, and vendor3, are instantiated using Spring XML syntax, as
follows:

headers.put("quoteRequestId", "quoteRequest-1");
template.sendBodyAndHeaders("direct:start", "<quote_request
item=\"beer\"/>", headers);

public class MyVendor {
 private int beerPrice;

 @Produce(uri = "seda:quoteAggregator")
 private ProducerTemplate quoteAggregator;

 public MyVendor(int beerPrice) {
 this.beerPrice = beerPrice;
 }

 public void getQuote(@XPath("/quote_request/@item") String item,
Exchange exchange) throws Exception {
 if ("beer".equals(item)) {
 exchange.getIn().setBody(beerPrice);
 quoteAggregator.send(exchange);
 } else {
 throw new Exception("No quote available for " + item);
 }
 }
}

<bean id="aggregatorStrategy"
class="org.apache.camel.spring.processor.scattergather.LowestQuoteAggregat
ionStrategy"/>

<bean id="vendor1"
class="org.apache.camel.spring.processor.scattergather.MyVendor">
 <constructor-arg>
 <value>1</value>
 </constructor-arg>
</bean>

<bean id="vendor2"
class="org.apache.camel.spring.processor.scattergather.MyVendor">
 <constructor-arg>
 <value>2</value>
 </constructor-arg>
</bean>

<bean id="vendor3"
class="org.apache.camel.spring.processor.scattergather.MyVendor">
 <constructor-arg>

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

196

Each bean is initialized with a different price for beer (passed to the constructor argument). When a
message is sent to each bean endpoint, it arrives at the MyVendor.getQuote method. This method
does a simple check to see whether this quote request is for beer and then sets the price of beer on the
exchange for retrieval at a later step. The message is forwarded to the next step using POJO Producing
(see the @Produce annotation).

At the next step, we want to take the beer quotes from all vendors and find out which one was the best
(that is, the lowest). For this, we use an Aggregator with a custom aggregation strategy. The Aggregator
needs to identify which messages are relevant to the current quote, which is done by correlating
messages based on the value of the quoteRequestId header (passed to the
correlationExpression). As shown in Example 7.1, “Messaging Client Sample”, the correlation ID
is set to quoteRequest-1 (the correlation ID should be unique). To pick the lowest quote out of the set,
you can use a custom aggregation strategy like the following:

Static scatter-gather example

You can specify the recipients explicitly in the scatter-gather application by employing a static Recipient
List. The following example shows the routes you would use to implement a static scatter-gather
scenario:

 <value>3</value>
 </constructor-arg>
</bean>

public class LowestQuoteAggregationStrategy implements AggregationStrategy
{
 public Exchange aggregate(Exchange oldExchange, Exchange newExchange)
{
 // the first time we only have the new exchange
 if (oldExchange == null) {
 return newExchange;
 }

 if (oldExchange.getIn().getBody(int.class) <
newExchange.getIn().getBody(int.class)) {
 return oldExchange;
 } else {
 return newExchange;
 }
 }
}

from("direct:start").multicast().to("seda:vendor1", "seda:vendor2",
"seda:vendor3");

from("seda:vendor1").to("bean:vendor1").to("seda:quoteAggregator");
from("seda:vendor2").to("bean:vendor2").to("seda:quoteAggregator");
from("seda:vendor3").to("bean:vendor3").to("seda:quoteAggregator");

from("seda:quoteAggregator")
 .aggregate(header("quoteRequestId"), new
LowestQuoteAggregationStrategy()).to("mock:result")

CHAPTER 7. MESSAGE ROUTING

197

POJO Producing

7.14. LOOP

Loop

The loop pattern enables you to process a message multiple times. It is used mainly for testing.

DEFAULT MODE

Notice by default the loop uses the same exchange throughout the looping. So the result
from the previous iteration is used for the next (eg Pipes and Filters). From Camel 2.8
onwards you can enable copy mode instead. See the options table for more details.

Exchange properties

On each loop iteration, two exchange properties are set, which can optionally be read by any processors
included in the loop.

Property Description

CamelLoopSize Apache Camel 2.0: Total number of loops

CamelLoopIndex Apache Camel 2.0: Index of the current iteration (0
based)

Java DSL examples

The following examples show how to take a request from the direct:x endpoint and then send the
message repeatedly to mock:result. The number of loop iterations is specified either as an argument
to loop() or by evaluating an expression at run time, where the expression must evaluate to an int (or
else a RuntimeCamelException is thrown).

The following example passes the loop count as a constant:

The following example evaluates a simple expression to determine the loop count:

The following example evaluates an XPath expression to determine the loop count:

XML configuration example

You can configure the same routes in Spring XML.

The following example passes the loop count as a constant:

from("direct:a").loop(8).to("mock:result");

from("direct:b").loop(header("loop")).to("mock:result");

from("direct:c").loop().xpath("/hello/@times").to("mock:result");

<route>

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

198

The following example evaluates a simple expression to determine the loop count:

Using copy mode

Now suppose we send a message to direct:start endpoint containing the letter A. The output of
processing this route will be that, each mock:loop endpoint will receive AB as message.

However if we do not enable copy mode then mock:loop will receive AB, ABB, ABBB messages.

The equivalent example in XML DSL in copy mode is as follows:

 <from uri="direct:a"/>
 <loop>
 <constant>8</constant>
 <to uri="mock:result"/>
 </loop>
</route>

<route>
 <from uri="direct:b"/>
 <loop>
 <header>loop</header>
 <to uri="mock:result"/>
 </loop>
</route>

from("direct:start")
 // instruct loop to use copy mode, which mean it will use a copy of
the input exchange
 // for each loop iteration, instead of keep using the same exchange
all over
 .loop(3).copy()
 .transform(body().append("B"))
 .to("mock:loop")
 .end()
 .to("mock:result");

from("direct:start")
 // by default loop will keep using the same exchange so on the 2nd
and 3rd iteration its
 // the same exchange that was previous used that are being looped all
over
 .loop(3)
 .transform(body().append("B"))
 .to("mock:loop")
 .end()
 .to("mock:result");

<route>
 <from uri="direct:start"/>
 <!-- enable copy mode for loop eip -->
 <loop copy="true">
 <constant>3</constant>
 <transform>

CHAPTER 7. MESSAGE ROUTING

199

Options

The loop DSL command supports the following options:

Name Default Value Description

copy false Camel 2.8: Whether or not copy
mode is used. If false then the
same Exchange is being used
throughout the looping. So the
result from the previous iteration
will be visible for the next iteration.
Instead you can enable copy
mode, and then each iteration is
restarting with a fresh copy of the
input Exchange.

7.15. SAMPLING

Sampling Throttler

A sampling throttler allows you to extract a sample of exchanges from the traffic through a route. It is
configured with a sampling period during which only a single exchange is allowed to pass through. All
other exchanges will be stopped.

By default, the sample period is 1 second.

Java DSL example

Use the sample() DSL command to invoke the sampler as follows:

 <simple>${body}B</simple>
 </transform>
 <to uri="mock:loop"/>
 </loop>
 <to uri="mock:result"/>
 </route>

// Sample with default sampling period (1 second)
from("direct:sample")
 .sample()
 .to("mock:result");

// Sample with explicitly specified sample period
from("direct:sample-configured")
 .sample(1, TimeUnit.SECONDS)
 .to("mock:result");

// Alternative syntax for specifying sampling period
from("direct:sample-configured-via-dsl")
 .sample().samplePeriod(1).timeUnits(TimeUnit.SECONDS)
 .to("mock:result");

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

200

Exchange

Spring XML example

In Spring XML, use the sample element to invoke the sampler, where you have the option of specifying
the sampling period using the samplePeriod and units attributes:

Options

The sample DSL command supports the following options:

Name Default Value Description

messageFrequency Samples the message every N'th
message. You can only use either
frequency or period.

samplePeriod 1 Samples the message every N'th
period. You can only use either
frequency or period.

units SECOND Time unit as an enum of
java.util.concurrent.Ti
meUnit from the JDK.

from("direct:sample-messageFrequency")
 .sample(10)
 .to("mock:result");

from("direct:sample-messageFrequency-via-dsl")
 .sample().sampleMessageFrequency(5)
 .to("mock:result");

<route>
 <from uri="direct:sample"/>
 <sample samplePeriod="1" units="seconds">
 <to uri="mock:result"/>
 </sample>
</route>
<route>
 <from uri="direct:sample-messageFrequency"/>
 <sample messageFrequency="10">
 <to uri="mock:result"/>
 </sample>
</route>
<route>
 <from uri="direct:sample-messageFrequency-via-dsl"/>
 <sample messageFrequency="5">
 <to uri="mock:result"/>
 </sample>
</route>

CHAPTER 7. MESSAGE ROUTING

201

7.16. DYNAMIC ROUTER

Dynamic Router

The Dynamic Router pattern, as shown in Figure 7.13, “Dynamic Router Pattern”, enables you to route a
message consecutively through a series of processing steps, where the sequence of steps is not known
at design time. The list of endpoints through which the message should pass is calculated dynamically at
run time. Each time the message returns from an endpoint, the dynamic router calls back on a bean to
discover the next endpoint in the route.

Figure 7.13. Dynamic Router Pattern

In Camel 2.5 we introduced a dynamicRouter in the DSL, which is like a dynamic Routing Slip that
evaluates the slip on-the-fly.

BEWARE

You must ensure the expression used for the dynamicRouter (such as a bean),
returns null to indicate the end. Otherwise, the dynamicRouter will continue in
an endless loop.

Dynamic Router in Camel 2.5 onwards

From Camel 2.5, the Dynamic Router updates the exchange property, Exchange.SLIP_ENDPOINT,
with the current endpoint as it advances through the slip. This enables you to find out how far the
exchange has progressed through the slip. (It's a slip because the Dynamic Router implementation is
based on Routing Slip).

Java DSL

In Java DSL you can use the dynamicRouter as follows:

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

202

http://www.enterpriseintegrationpatterns.com/DynamicRouter.html

Which will leverage a Bean to compute the slip on-the-fly, which could be implemented as follows:

NOTE

The preceding example is not thread safe. You would have to store the state on the
Exchange to ensure thread safety.

Spring XML

The same example in Spring XML would be:

from("direct:start")
 // use a bean as the dynamic router
 .dynamicRouter(bean(DynamicRouterTest.class, "slip"));

// Java
/**
 * Use this method to compute dynamic where we should route next.
 *
 * @param body the message body
 * @return endpoints to go, or <tt>null</tt> to indicate the end
 */
public String slip(String body) {
 bodies.add(body);
 invoked++;

 if (invoked == 1) {
 return "mock:a";
 } else if (invoked == 2) {
 return "mock:b,mock:c";
 } else if (invoked == 3) {
 return "direct:foo";
 } else if (invoked == 4) {
 return "mock:result";
 }

 // no more so return null
 return null;
 }

<bean id="mySlip" class="org.apache.camel.processor.DynamicRouterTest"/>

<camelContext xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from uri="direct:start"/>
 <dynamicRouter>
 <!-- use a method call on a bean as dynamic router -->
 <method ref="mySlip" method="slip"/>
 </dynamicRouter>
 </route>

 <route>
 <from uri="direct:foo"/>
 <transform><constant>Bye World</constant></transform>

CHAPTER 7. MESSAGE ROUTING

203

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.0/html/EIP_Component_Reference/_IDU_Bean.html

Options

The dynamicRouter DSL command supports the following options:

Name Default Value Description

uriDelimiter , Delimiter used if the Expression
returned multiple endpoints.

ignoreInvalidEndpoints false If an endpoint uri could not be
resolved, should it be ignored.
Otherwise Camel will thrown an
exception stating the endpoint uri
is not valid.

@DynamicRouter annotation

You can also use the @DynamicRouter annotation. For example:

The route method is invoked repeatedly as the message progresses through the slip. The idea is to
return the endpoint URI of the next destination. Return null to indicate the end. You can return multiple
endpoints if you like, just as the Routing Slip, where each endpoint is separated by a delimiter.

 <to uri="mock:foo"/>
 </route>

</camelContext>

// Java
public class MyDynamicRouter {

 @Consume(uri = "activemq:foo")
 @DynamicRouter
 public String route(@XPath("/customer/id") String customerId,
@Header("Location") String location, Document body) {
 // query a database to find the best match of the endpoint based
on the input parameteres
 // return the next endpoint uri, where to go. Return null to
indicate the end.
 }
}

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

204

Expression

CHAPTER 8. MESSAGE TRANSFORMATION

Abstract

The message transformation patterns describe how to modify the contents of messages for various
purposes.

8.1. CONTENT ENRICHER

Overview

The content enricher pattern describes a scenario where the message destination requires more data
than is present in the original message. In this case, you would use a content enricher to pull in the extra
data from an external resource.

Figure 8.1. Content Enricher Pattern

Models of content enrichment

Apache Camel supports two kinds of content enricher, as follows:

enrich()—obtains additional data from the resource by sending a copy of the current
exchange to a producer endpoint and then using the data from the resulting reply (the exchange
created by the enricher is always an InOut exchange).

pollEnrich()—obtains the additional data by polling a consumer endpoint for data.
Effectively, the consumer endpoint from the main route and the consumer endpoint in
pollEnrich() are coupled, such that exchanges incoming on the main route trigger a poll of
the pollEnrich() endpoint.

Content enrichment using enrich()

AggregationStrategy aggregationStrategy = ...

from("direct:start")
 .enrich("direct:resource", aggregationStrategy)
 .to("direct:result");

CHAPTER 8. MESSAGE TRANSFORMATION

205

The content enricher (enrich) retrieves additional data from a resource endpoint in order to enrich an
incoming message (contained in the orginal exchange). An aggregation strategy combines the original
exchange and the resource exchange. The first parameter of the
AggregationStrategy.aggregate(Exchange, Exchange) method corresponds to the the
original exchange, and the second parameter corresponds to the resource exchange. The results from
the resource endpoint are stored in the resource exchange's Out message. Here is a sample template
for implementing your own aggregation strategy class:

Using this template, the original exchange can have any exchange pattern. The resource exchange
created by the enricher is always an InOut exchange.

Spring XML enrich example

The preceding example can also be implemented in Spring XML:

Default aggregation strategy

The aggregation strategy is optional. If you do not provide it, Apache Camel will use the body obtained
from the resource by default. For example:

from("direct:resource")
...

public class ExampleAggregationStrategy implements AggregationStrategy {

 public Exchange aggregate(Exchange original, Exchange resource) {
 Object originalBody = original.getIn().getBody();
 Object resourceResponse = resource.getOut().getBody();
 Object mergeResult = ... // combine original body and resource
response
 if (original.getPattern().isOutCapable()) {
 original.getOut().setBody(mergeResult);
 } else {
 original.getIn().setBody(mergeResult);
 }
 return original;
 }

}

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from uri="direct:start"/>
 <enrich uri="direct:resource" strategyRef="aggregationStrategy"/>
 <to uri="direct:result"/>
 </route>
 <route>
 <from uri="direct:resource"/>
 ...
 </route>
</camelContext>

<bean id="aggregationStrategy" class="..." />

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

206

In the preceding route, the message sent to the direct:result endpoint contains the output from the
direct:resource, because this example does not use any custom aggregation.

In XML DSL, just omit the strategyRef attribute, as follows:

Enrich Options

The enrich DSL command supports the following options:

Name Default Value Description

uri The endpoint uri for the external
servie to enrich from. You must
use either uri or ref.

ref Refers to the endpoint for the
external servie to enrich from. You
must use either uri or ref.

strategyRef Refers to an AggregationStrategy
to be used to merge the reply from
the external service, into a single
outgoing message. By default
Camel will use the reply from the
external service as outgoing
message.

Content enrich using pollEnrich

The pollEnrich command treats the resource endpoint as a consumer. Instead of sending an
exchange to the resource endpoint, it polls the endpoint. By default, the poll returns immediately, if there
is no exchange available from the resource endpoint. For example, the following route reads a file whose
name is extracted from the header of an incoming JMS message:

And if you want to wait at most 20 seconds for the file to be ready, you can use a timeout as follows:

from("direct:start")
 .enrich("direct:resource")
 .to("direct:result");

 <route>
 <from uri="direct:start"/>
 <enrich uri="direct:resource"/>
 <to uri="direct:result"/>
 </route>

from("activemq:queue:order")
 .pollEnrich("file://order/data/additional?fileName=orderId")
 .to("bean:processOrder");

from("activemq:queue:order")

CHAPTER 8. MESSAGE TRANSFORMATION

207

http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/aggregate/AggregationStrategy.html

You can also specify an aggregation strategy for pollEnrich, as follows:

NOTE

The resource exchange passed to the aggregation strategy's aggregate() method
might be null, if the poll times out before an exchange is received.

DATA FROM CURRENT EXCHANGE NOT USED

pollEnrich does not access any data from the current Exchange, so that, when
polling, it cannot use any of the existing headers you may have set on the
Exchange. For example, you cannot set a filename in the Exchange.FILE_NAME
header and use pollEnrich to consume only that file. For that, you must set the
filename in the endpoint URI.

Polling methods used by pollEnrich()

In general, the pollEnrich() enricher polls the consumer endpoint using one of the following polling
methods:

receiveNoWait() (used by default)

receive()

receive(long timeout)

The pollEnrich() command's timeout argument (specified in milliseconds) determines which method
gets called, as follows:

Timeout is 0 or not specified, receiveNoWait is called.

Timeout is negative, receive is called.

Otherwise, receive(timeout) is called.

pollEnrich example

In this example we enrich the message by loading the content from the file named inbox/data.txt.

 .pollEnrich("file://order/data/additional?fileName=orderId", 20000) //
timeout is in milliseconds
 .to("bean:processOrder");

 .pollEnrich("file://order/data/additional?fileName=orderId", 20000,
aggregationStrategy)

 from("direct:start")
 .pollEnrich("file:inbox?fileName=data.txt")
 .to("direct:result");

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

208

And in XML DSL you do:

If there is no file then the message is empty. We can use a timeout to either wait (potential forever) until
a file exists, or use a timeout to wait a period. For example to wait up til 5 seconds you can do:

PollEnrich Options

The pollEnrich DSL command supports the following options:

Name Default Value Description

uri The endpoint uri for the external
servie to enrich from. You must
use either uri or ref.

ref Refers to the endpoint for the
external servie to enrich from. You
must use either uri or ref.

strategyRef Refers to an AggregationStrategy
to be used to merge the reply from
the external service, into a single
outgoing message. By default
Camel will use the reply from the
external service as outgoing
message.

timeout 0 Timeout in millis to use when
polling from the external service.
See below for important details
about the timeout.

8.2. CONTENT FILTER

Overview

 <route>
 <from uri="direct:start"/>
 <pollEnrich uri="file:inbox?fileName=data.txt"/>
 <to uri="direct:result"/>
 </route>

 <route>
 <from uri="direct:start"/>
 <pollEnrich uri="file:inbox?fileName=data.txt" timeout="5000"/>
 <to uri="direct:result"/>
 </route>

CHAPTER 8. MESSAGE TRANSFORMATION

209

http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/aggregate/AggregationStrategy.html

The content filter pattern describes a scenario where you need to filter out extraneous content from a
message before delivering it to its intended recipient. For example, you might employ a content filter to
strip out confidential information from a message.

Figure 8.2. Content Filter Pattern

A common way to filter messages is to use an expression in the DSL, written in one of the supported
scripting languages (for example, XSLT, XQuery or JoSQL).

Implementing a content filter

A content filter is essentially an application of a message processing technique for a particular purpose.
To implement a content filter, you can employ any of the following message processing techniques:

Message translator—see message translators.

Processors—see chapter "Implementing a Processor" in "Programming EIP Components".

Bean integration.

XML configuration example

The following example shows how to configure the same route in XML:

Using an XPath filter

You can also use XPath to filter out part of the message you are interested in:

8.3. NORMALIZER

<camelContext xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from uri="activemq:My.Queue"/>
 <to uri="xslt:classpath:com/acme/content_filter.xsl"/>
 <to uri="activemq:Another.Queue"/>
 </route>
</camelContext>

<route>
 <from uri="activemq:Input"/>
 <setBody><xpath resultType="org.w3c.dom.Document">//foo:bar</xpath>
</setBody>
 <to uri="activemq:Output"/>
</route>

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

210

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.0/html/Programming_EIP_Components/Processors.html
http://activemq.apache.org/camel/bean-integration.html

Overview

The normalizer pattern is used to process messages that are semantically equivalent, but arrive in
different formats. The normalizer transforms the incoming messages into a common format.

In Apache Camel, you can implement the normalizer pattern by combining a content-based router, which
detects the incoming message's format, with a collection of different message translators, which
transform the different incoming formats into a common format.

Figure 8.3. Normalizer Pattern

Java DSL example

This example shows a Message Normalizer that converts two types of XML messages into a common
format. Messages in this common format are then filtered.

Using the Fluent Builders

In this case we're using a Java bean as the normalizer. The class looks like this

// we need to normalize two types of incoming messages
from("direct:start")
 .choice()
 .when().xpath("/employee").to("bean:normalizer?
method=employeeToPerson")
 .when().xpath("/customer").to("bean:normalizer?
method=customerToPerson")
 .end()
 .to("mock:result");

// Java
public class MyNormalizer {
 public void employeeToPerson(Exchange exchange,
@XPath("/employee/name/text()") String name) {
 exchange.getOut().setBody(createPerson(name));
 }

 public void customerToPerson(Exchange exchange,
@XPath("/customer/@name") String name) {
 exchange.getOut().setBody(createPerson(name));
 }

CHAPTER 8. MESSAGE TRANSFORMATION

211

Fluent Builders

XML configuration example

The same example in the XML DSL

8.4. CLAIM CHECK

Claim Check

The claim check pattern, shown in Figure 8.4, “Claim Check Pattern”, allows you to replace message
content with a claim check (a unique key), which can be used to retrieve the message content at a later
time. The message content is stored temporarily in a persistent store like a database or file system. This
pattern is very useful when message content is very large (thus it would be expensive to send around)
and not all components require all information.

It can also be useful in situations where you cannot trust the information with an outside party; in this
case, you can use the Claim Check to hide the sensitive portions of data.

 private String createPerson(String name) {
 return "<person name=\"" + name + "\"/>";
 }
}

<camelContext xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from uri="direct:start"/>
 <choice>
 <when>
 <xpath>/employee</xpath>
 <to uri="bean:normalizer?method=employeeToPerson"/>
 </when>
 <when>
 <xpath>/customer</xpath>
 <to uri="bean:normalizer?method=customerToPerson"/>
 </when>
 </choice>
 <to uri="mock:result"/>
 </route>
</camelContext>

<bean id="normalizer" class="org.apache.camel.processor.MyNormalizer"/>

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

212

Figure 8.4. Claim Check Pattern

Java DSL example

The following example shows how to replace a message body with a claim check and restore the body
at a later step.

The next step in the pipeline is the mock:testCheckpoint endpoint, which checks that the message
body has been removed, the claim check added, and so on.

XML DSL example

The preceding example can also be written in XML, as follows:

checkLuggage bean

The message is first sent to the checkLuggage bean which is implemented as follows:

from("direct:start").to("bean:checkLuggage", "mock:testCheckpoint",
"bean:dataEnricher", "mock:result");

 <route>
 <from uri="direct:start"/>
 <pipeline>
 <to uri="bean:checkLuggage"/>
 <to uri="mock:testCheckpoint"/>
 <to uri="bean:dataEnricher"/>
 <to uri="mock:result"/>
 </pipeline>
 </route>

public static final class CheckLuggageBean {
 public void checkLuggage(Exchange exchange, @Body String body,
@XPath("/order/@custId") String custId) {
 // store the message body into the data store, using the custId as
the claim check
 dataStore.put(custId, body);
 // add the claim check as a header
 exchange.getIn().setHeader("claimCheck", custId);

CHAPTER 8. MESSAGE TRANSFORMATION

213

This bean stores the message body into the data store, using the custId as the claim check. In this
example, we are using a HashMap to store the message body; in a real application you would use a
database or the file system. The claim check is added as a message header for later use and, finally, we
remove the body from the message and pass it down the pipeline.

testCheckpoint endpoint

The example route is just a Pipeline. In a real application, you would substitute some other steps for the
mock:testCheckpoint endpoint.

dataEnricher bean

To add the message body back into the message, we use the dataEnricher bean, which is
implemented as follows:

This bean queries the data store, using the claim check as the key, and then adds the recovered data
back into the message body. The bean then deletes the message data from the data store and removes
the claimCheck header from the message.

8.5. SORT

Sort

The sort pattern is used to sort the contents of a message body, assuming that the message body
contains a list of items that can be sorted.

By default, the contents of the message are sorted using a default comparator that handles numeric
values or strings. You can provide your own comparator and you can specify an expression that returns
the list to be sorted (the expression must be convertible to java.util.List).

Java DSL example

The following example generates the list of items to sort by tokenizing on the line break character:

 // remove the body from the message
 exchange.getIn().setBody(null);
 }
}

public static final class DataEnricherBean {
 public void addDataBackIn(Exchange exchange, @Header("claimCheck")
String claimCheck) {
 // query the data store using the claim check as the key and add
the data
 // back into the message body
 exchange.getIn().setBody(dataStore.get(claimCheck));
 // remove the message data from the data store
 dataStore.remove(claimCheck);
 // remove the claim check header
 exchange.getIn().removeHeader("claimCheck");
 }
}

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

214

You can pass in your own comparator as the second argument to sort():

XML configuration example

You can configure the same routes in Spring XML.

The following example generates the list of items to sort by tokenizing on the line break character:

And to use a custom comparator, you can reference it as a Spring bean:

Besides <simple>, you can supply an expression using any language you like, so long as it returns a
list.

Options

The sort DSL command supports the following options:

Name Default Value Description

comparatorRef Refers to a custom
java.util.Comparator to
use for sorting the message body.
Camel will by default use a
comparator which does a A..Z
sorting.

8.6. VALIDATE

from("file://inbox").sort(body().tokenize("\n")).to("bean:MyServiceBean.pr
ocessLine");

from("file://inbox").sort(body().tokenize("\n"), new
MyReverseComparator()).to("bean:MyServiceBean.processLine");

<route>
 <from uri="file://inbox"/>
 <sort>
 <simple>body</simple>
 </sort>
 <beanRef ref="myServiceBean" method="processLine"/>
</route>

<route>
 <from uri="file://inbox"/>
 <sort comparatorRef="myReverseComparator">
 <simple>body</simple>
 </sort>
 <beanRef ref="MyServiceBean" method="processLine"/>
</route>

<bean id="myReverseComparator" class="com.mycompany.MyReverseComparator"/>

CHAPTER 8. MESSAGE TRANSFORMATION

215

Overview

The validate pattern provides a convenient syntax to check whether the content of a message is valid.
The validate DSL command takes a predicate expression as its sole argument: if the predicate evaluates
to true, the route continues processing normally; if the predicate evaluates to false, a
PredicateValidationException is thrown.

Java DSL example

The following route validates the body of the current message using a regular expression:

You can also validate a message header—for example:

And you can use validate with the simple expression language:

XML DSL example

To use validate in the XML DSL, the recommended approach is to use the simple expression language:

You can also validate a message header—for example:

from("jms:queue:incoming")
 .validate(body(String.class).regex("^\\w{10}\\,\\d{2}\\,\\w{24}$"))
 .to("bean:MyServiceBean.processLine");

from("jms:queue:incoming")
 .validate(header("bar").isGreaterThan(100))
 .to("bean:MyServiceBean.processLine");

from("jms:queue:incoming")
 .validate(simple("${in.header.bar} == 100"))
 .to("bean:MyServiceBean.processLine");

<route>
 <from uri="jms:queue:incoming"/>
 <validate>
 <simple>${body} regex ^\\w{10}\\,\\d{2}\\,\\w{24}$</simple>
 </validate>
 <beanRef ref="myServiceBean" method="processLine"/>
</route>

<bean id="myServiceBean" class="com.mycompany.MyServiceBean"/>

<route>
 <from uri="jms:queue:incoming"/>
 <validate>
 <simple>${in.header.bar} == 100</simple>
 </validate>
 <beanRef ref="myServiceBean" method="processLine"/>
</route>

<bean id="myServiceBean" class="com.mycompany.MyServiceBean"/>

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

216

http://camel.apache.org/simple.html
http://camel.apache.org/simple.html

CHAPTER 9. MESSAGING ENDPOINTS

Abstract

The messaging endpoint patterns describe various features and qualities of service that can be
configured on an endpoint.

9.1. MESSAGING MAPPER

Overview

The messaging mapper pattern describes how to map domain objects to and from a canonical message
format, where the message format is chosen to be as platform neutral as possible. The chosen message
format should be suitable for transmission through a message bus, where the message bus is the
backbone for integrating a variety of different systems, some of which might not be object-oriented.

Many different approaches are possible, but not all of them fulfill the requirements of a messaging
mapper. For example, an obvious way to transmit an object is to use object serialization, which enables
you to write an object to a data stream using an unambiguous encoding (supported natively in Java).
However, this is not a suitable approach to use for the messaging mapper pattern, however, because the
serialization format is understood only by Java applications. Java object serialization creates an
impedance mismatch between the original application and the other applications in the messaging
system.

The requirements for a messaging mapper can be summarized as follows:

The canonical message format used to transmit domain objects should be suitable for
consumption by non-object oriented applications.

The mapper code should be implemented separately from both the domain object code and the
messaging infrastructure. Apache Camel helps fulfill this requirement by providing hooks that
can be used to insert mapper code into a route.

The mapper might need to find an effective way of dealing with certain object-oriented concepts
such as inheritance, object references, and object trees. The complexity of these issues varies
from application to application, but the aim of the mapper implementation must always be to
create messages that can be processed effectively by non-object-oriented applications.

Finding objects to map

You can use one of the following mechanisms to find the objects to map:

Find a registered bean. — For singleton objects and small numbers of objects, you could use
the CamelContext registry to store references to beans. For example, if a bean instance is
instantiated using Spring XML, it is automatically entered into the registry, where the bean is
identified by the value of its id attribute.

Select objects using the JoSQL language. — If all of the objects you want to access are already
instantiated at runtime, you could use the JoSQL language to locate a specific object (or
objects). For example, if you have a class, org.apache.camel.builder.sql.Person, with
a name bean property and the incoming message has a UserName header, you could select the
object whose name property equals the value of the UserName header using the following code:

CHAPTER 9. MESSAGING ENDPOINTS

217

Where the syntax, :HeaderName, is used to substitute the value of a header in a JoSQL
expression.

Dynamic — For a more scalable solution, it might be necessary to read object data from a
database. In some cases, the existing object-oriented application might already provide a finder
object that can load objects from the database. In other cases, you might have to write some
custom code to extract objects from a database, and in these cases the JDBC component and
the SQL component might be useful.

9.2. EVENT DRIVEN CONSUMER

Overview

The event-driven consumer pattern, shown in Figure 9.1, “Event Driven Consumer Pattern” , is a pattern
for implementing the consumer endpoint in a Apache Camel component, and is only relevant to
programmers who need to develop a custom component in Apache Camel. Existing components already
have a consumer implementation pattern hard-wired into them.

Figure 9.1. Event Driven Consumer Pattern

Consumers that conform to this pattern provide an event method that is automatically called by the
messaging channel or transport layer whenever an incoming message is received. One of the
characteristics of the event-driven consumer pattern is that the consumer endpoint itself does not provide
any threads to process the incoming messages. Instead, the underlying transport or messaging channel
implicitly provides a processor thread when it invokes the exposed event method (which blocks for the
duration of the message processing).

For more details about this implementation pattern, see section "Consumer Patterns and Threading" in
"Programming EIP Components" and chapter "Consumer Interface" in "Programming EIP Components" .

9.3. POLLING CONSUMER

Overview

The polling consumer pattern, shown in Figure 9.2, “Polling Consumer Pattern”, is a pattern for
implementing the consumer endpoint in a Apache Camel component, so it is only relevant to
programmers who need to develop a custom component in Apache Camel. Existing components already

import static org.apache.camel.builder.sql.SqlBuilder.sql;
import org.apache.camel.Expression;
...
Expression expression = sql("SELECT * FROM
org.apache.camel.builder.sql.Person where name = :UserName");
Object value = expression.evaluate(exchange);

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

218

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.0/html/Programming_EIP_Components/Component.html#Component-Architecture-ConsumerPatterns
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.0/html/Programming_EIP_Components/ConsumerIntf.html

have a consumer implementation pattern hard-wired into them.

Consumers that conform to this pattern expose polling methods, receive(), receive(long
timeout), and receiveNoWait() that return a new exchange object, if one is available from the
monitored resource. A polling consumer implementation must provide its own thread pool to perform the
polling.

For more details about this implementation pattern, see section "Consumer Patterns and Threading" in
"Programming EIP Components", chapter "Consumer Interface" in "Programming EIP Components" ,
and section "Using the Consumer Template" in "Programming EIP Components".

Figure 9.2. Polling Consumer Pattern

Scheduled poll consumer

Many of the Apache Camel consumer endpoints employ a scheduled poll pattern to receive messages at
the start of a route. That is, the endpoint appears to implement an event-driven consumer interface, but
internally a scheduled poll is used to monitor a resource that provides the incoming messages for the
endpoint.

See section "Implementing the Consumer Interface" in "Programming EIP Components" for details of
how to implement this pattern.

Quartz component

You can use the quartz component to provide scheduled delivery of messages using the Quartz
enterprise scheduler. See chapter "Quartz" in "EIP Component Reference" and Quartz Component for
details.

9.4. COMPETING CONSUMERS

Overview

The competing consumers pattern, shown in Figure 9.3, “Competing Consumers Pattern”, enables
multiple consumers to pull messages from the same queue, with the guarantee that each message is
consumed once only. This pattern can be used to replace serial message processing with concurrent
message processing (bringing a corresponding reduction in response latency).

CHAPTER 9. MESSAGING ENDPOINTS

219

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.0/html/Programming_EIP_Components/Component.html#Component-Architecture-ConsumerPatterns
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.0/html/Programming_EIP_Components/ConsumerIntf.html
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.0/html/Programming_EIP_Components/Templates-Consumer.html
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.0/html/Programming_EIP_Components/Component-Impl-Consumer.html
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.0/html/EIP_Component_Reference/_IDU_Quartz.html
http://activemq.apache.org/camel/quartz.html

Figure 9.3. Competing Consumers Pattern

The following components demonstrate the competing consumers pattern:

the section called “JMS based competing consumers”

the section called “SEDA based competing consumers”

JMS based competing consumers

A regular JMS queue implicitly guarantees that each message can only be consumed at once. Hence, a
JMS queue automatically supports the competing consumers pattern. For example, you could define
three competing consumers that pull messages from the JMS queue, HighVolumeQ, as follows:

Where the CXF (Web services) endpoints, replica01, replica02, and replica03, process
messages from the HighVolumeQ queue in parallel.

Alternatively, you can set the JMS query option, concurrentConsumers, to create a thread pool of
competing consumers. For example, the following route creates a pool of three competing threads that
pick messages from the specified queue:

And the concurrentConsumers option can also be specified in XML DSL, as follows:

from("jms:HighVolumeQ").to("cxf:bean:replica01");
from("jms:HighVolumeQ").to("cxf:bean:replica02");
from("jms:HighVolumeQ").to("cxf:bean:replica03");

from("jms:HighVolumeQ?concurrentConsumers=3").to("cxf:bean:replica01");

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

220

NOTE

JMS topics cannot support the competing consumers pattern. By definition, a JMS topic is
intended to send multiple copies of the same message to different consumers. Therefore,
it is not compatible with the competing consumers pattern.

SEDA based competing consumers

The purpose of the SEDA component is to simplify concurrent processing by breaking the computation
into stages. A SEDA endpoint essentially encapsulates an in-memory blocking queue (implemented by
java.util.concurrent.BlockingQueue). Therefore, you can use a SEDA endpoint to break a
route into stages, where each stage might use multiple threads. For example, you can define a SEDA
route consisting of two stages, as follows:

Where the first stage contains a single thread that consumes message from a file endpoint,
file://var/messages, and routes them to a SEDA endpoint, seda:fanout. The second stage
contains three threads: a thread that routes exchanges to cxf:bean:replica01, a thread that routes
exchanges to cxf:bean:replica02, and a thread that routes exchanges to cxf:bean:replica03.
These three threads compete to take exchange instances from the SEDA endpoint, which is
implemented using a blocking queue. Because the blocking queue uses locking to prevent more than
one thread from accessing the queue at a time, you are guaranteed that each exchange instance can
only be consumed once.

For a discussion of the differences between a SEDA endpoint and a thread pool created by thread(),
see chapter "SEDA" in "EIP Component Reference" .

9.5. MESSAGE DISPATCHER

Overview

The message dispatcher pattern, shown in Figure 9.4, “Message Dispatcher Pattern”, is used to
consume messages from a channel and then distribute them locally to performers, which are responsible
for processing the messages. In a Apache Camel application, performers are usually represented by in-
process endpoints, which are used to transfer messages to another section of the route.

 <route>
 <from uri="jms:HighVolumeQ?concurrentConsumers=3"/>
 <to uri="cxf:bean:replica01"/>
 </route>

// Stage 1: Read messages from file system.
from("file://var/messages").to("seda:fanout");

// Stage 2: Perform concurrent processing (3 threads).
from("seda:fanout").to("cxf:bean:replica01");
from("seda:fanout").to("cxf:bean:replica02");
from("seda:fanout").to("cxf:bean:replica03");

CHAPTER 9. MESSAGING ENDPOINTS

221

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.0/html/EIP_Component_Reference/_IDU_SEDA.html

Figure 9.4. Message Dispatcher Pattern

You can implement the message dispatcher pattern in Apache Camel using one of the following
approaches:

the section called “JMS selectors”

the section called “JMS selectors in ActiveMQ”

the section called “Content-based router”

JMS selectors

If your application consumes messages from a JMS queue, you can implement the message dispatcher
pattern using JMS selectors. A JMS selector is a predicate expression involving JMS headers and JMS
properties. If the selector evaluates to true, the JMS message is allowed to reach the consumer, and if
the selector evaluates to false, the JMS message is blocked. In many respects, a JMS selector is like a
filter processor, but it has the additional advantage that the filtering is implemented inside the JMS
provider. This means that a JMS selector can block messages before they are transmitted to the Apache
Camel application. This provides a significant efficiency advantage.

In Apache Camel, you can define a JMS selector on a consumer endpoint by setting the selector
query option on a JMS endpoint URI. For example:

Where the predicates that appear in a selector string are based on a subset of the SQL92 conditional
expression syntax (for full details, see the JMS specification). The identifiers appearing in a selector
string can refer either to JMS headers or to JMS properties. For example, in the preceding routes, the

from("jms:dispatcher?selector=CountryCode='US'").to("cxf:bean:replica01");
from("jms:dispatcher?selector=CountryCode='IE'").to("cxf:bean:replica02");
from("jms:dispatcher?selector=CountryCode='DE'").to("cxf:bean:replica03");

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

222

http://java.sun.com/products/jms/docs.html

sender sets a JMS property called CountryCode.

If you want to add a JMS property to a message from within your Apache Camel application, you can do
so by setting a message header (either on In message or on Out messages). When reading or writing to
JMS endpoints, Apache Camel maps JMS headers and JMS properties to, and from, its native message
headers.

Technically, the selector strings must be URL encoded according to the application/x-www-form-
urlencoded MIME format (see the HTML specification). In practice, the &(ampersand) character might
cause difficulties because it is used to delimit each query option in the URI. For more complex selector
strings that might need to embed the & character, you can encode the strings using the
java.net.URLEncoder utility class. For example:

Where the UTF-8 encoding must be used.

JMS selectors in ActiveMQ

You can also define JMS selectors on ActiveMQ endpoints. For example:

For more details, see ActiveMQ: JMS Selectors and ActiveMQ Message Properties.

Content-based router

The essential difference between the content-based router pattern and the message dispatcher pattern
is that a content-based router dispatches messages to physically separate destinations (remote
endpoints), and a message dispatcher dispatches messages locally, within the same process space. In
Apache Camel, the distinction between these two patterns is determined by the target endpoint. The
same router logic is used to implement both a content-based router and a message dispatcher. When
the target endpoint is remote, the route defines a content-based router. When the target endpoint is in-
process, the route defines a message dispatcher.

For details and examples of how to use the content-based router pattern see Section 7.1, “Content-
Based Router”.

9.6. SELECTIVE CONSUMER

Overview

The selective consumer pattern, shown in Figure 9.5, “Selective Consumer Pattern”, describes a
consumer that applies a filter to incoming messages, so that only messages meeting specific selection
criteria are processed.

from("jms:dispatcher?selector=" +
java.net.URLEncoder.encode("CountryCode='US'","UTF-8")).
 to("cxf:bean:replica01");

from("activemq:dispatcher?
selector=CountryCode='US'").to("cxf:bean:replica01");
from("activemq:dispatcher?
selector=CountryCode='IE'").to("cxf:bean:replica02");
from("activemq:dispatcher?
selector=CountryCode='DE'").to("cxf:bean:replica03");

CHAPTER 9. MESSAGING ENDPOINTS

223

http://www.w3.org/TR/html4/
http://activemq.apache.org/selectors.html
http://activemq.apache.org/activemq-message-properties.html

Figure 9.5. Selective Consumer Pattern

You can implement the selective consumer pattern in Apache Camel using one of the following
approaches:

the section called “JMS selector”

the section called “JMS selector in ActiveMQ”

the section called “Message filter”

JMS selector

A JMS selector is a predicate expression involving JMS headers and JMS properties. If the selector
evaluates to true, the JMS message is allowed to reach the consumer, and if the selector evaluates to
false, the JMS message is blocked. For example, to consume messages from the queue, selective,
and select only those messages whose country code property is equal to US, you can use the following
Java DSL route:

Where the selector string, CountryCode='US', must be URL encoded (using UTF-8 characters) to
avoid trouble with parsing the query options. This example presumes that the JMS property,
CountryCode, is set by the sender. For more details about JMS selectors, see the section called “JMS
selectors”.

NOTE

If a selector is applied to a JMS queue, messages that are not selected remain on the
queue and are potentially available to other consumers attached to the same queue.

JMS selector in ActiveMQ

You can also define JMS selectors on ActiveMQ endpoints. For example:

For more details, see ActiveMQ: JMS Selectors and ActiveMQ Message Properties.

Message filter

from("jms:selective?selector=" +
java.net.URLEncoder.encode("CountryCode='US'","UTF-8")).
 to("cxf:bean:replica01");

from("acivemq:selective?selector=" +
java.net.URLEncoder.encode("CountryCode='US'","UTF-8")).
 to("cxf:bean:replica01");

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

224

http://activemq.apache.org/selectors.html
http://activemq.apache.org/activemq-message-properties.html

If it is not possible to set a selector on the consumer endpoint, you can insert a filter processor into your
route instead. For example, you can define a selective consumer that processes only messages with a
US country code using Java DSL, as follows:

The same route can be defined using XML configuration, as follows:

For more information about the Apache Camel filter processor, see Message Filter.

WARNING

Be careful about using a message filter to select messages from a JMS queue.
When using a filter processor, blocked messages are simply discarded. Hence, if
the messages are consumed from a queue (which allows each message to be
consumed only once—see Section 9.4, “Competing Consumers”), then blocked
messages are not processed at all. This might not be the behavior you want.

9.7. DURABLE SUBSCRIBER

Overview

A durable subscriber, as shown in Figure 9.6, “Durable Subscriber Pattern”, is a consumer that wants to
receive all of the messages sent over a particular publish-subscribe channel, including messages sent
while the consumer is disconnected from the messaging system. This requires the messaging system to
store messages for later replay to the disconnected consumer. There also has to be a mechanism for a
consumer to indicate that it wants to establish a durable subscription. Generally, a publish-subscribe
channel (or topic) can have both durable and non-durable subscribers, which behave as follows:

non-durable subscriber—Can have two states: connected and disconnected. While a non-
durable subscriber is connected to a topic, it receives all of the topic's messages in real time.
However, a non-durable subscriber never receives messages sent to the topic while the
subscriber is disconnected.

durable subscriber—Can have two states: connected and inactive. The inactive state means
that the durable subscriber is disconnected from the topic, but wants to receive the messages
that arrive in the interim. When the durable subscriber reconnects to the topic, it receives a

from("seda:a").filter(header("CountryCode").isEqualTo("US")).process(myPro
cessor);

<camelContext id="buildCustomProcessorWithFilter"
xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from uri="seda:a"/>
 <filter>
 <xpath>$CountryCode = 'US'</xpath>
 <process ref="#myProcessor"/>
 </filter>
 </route>
</camelContext>

CHAPTER 9. MESSAGING ENDPOINTS

225

replay of all the messages sent while it was inactive.

Figure 9.6. Durable Subscriber Pattern

JMS durable subscriber

The JMS component implements the durable subscriber pattern. In order to set up a durable subscription
on a JMS endpoint, you must specify a client ID, which identifies this particular connection, and a durable
subscription name, which identifies the durable subscriber. For example, the following route sets up a
durable subscription to the JMS topic, news, with a client ID of conn01 and a durable subscription name
of John.Doe:

You can also set up a durable subscription using the ActiveMQ endpoint:

If you want to process the incoming messages concurrently, you can use a SEDA endpoint to fan out the
route into multiple, parallel segments, as follows:

Where each message is processed only once, because the SEDA component supports the competing
consumers pattern.

Alternative example

from("jms:topic:news?clientId=conn01&durableSubscriptionName=John.Doe").
 to("cxf:bean:newsprocessor");

from("activemq:topic:news?
clientId=conn01&durableSubscriptionName=John.Doe").
 to("cxf:bean:newsprocessor");

from("jms:topic:news?clientId=conn01&durableSubscriptionName=John.Doe").
 to("seda:fanout");

from("seda:fanout").to("cxf:bean:newsproc01");
from("seda:fanout").to("cxf:bean:newsproc02");
from("seda:fanout").to("cxf:bean:newsproc03");

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

226

Another alternative is to combine the Message Dispatcher or Content-Based Router with File component
or JPA component components for durable subscribers then something like SEDA component for non-
durable.

Here is a simple example of creating durable subscribers to a chapter "JMS" in "EIP Component
Reference" topic

Using the Fluent Builders

Using the Spring XML Extensions

Here is another example of JMS durable subscribers, but this time using virtual topics (recommended by
AMQ over durable subscriptions)

Using the Fluent Builders

Using the Spring XML Extensions

 from("direct:start").to("activemq:topic:foo");

 from("activemq:topic:foo?
clientId=1&durableSubscriptionName=bar1").to("mock:result1");

 from("activemq:topic:foo?
clientId=2&durableSubscriptionName=bar2").to("mock:result2");

 <route>
 <from uri="direct:start"/>
 <to uri="activemq:topic:foo"/>
 </route>

 <route>
 <from uri="activemq:topic:foo?
clientId=1&durableSubscriptionName=bar1"/>
 <to uri="mock:result1"/>
 </route>

 <route>
 <from uri="activemq:topic:foo?
clientId=2&durableSubscriptionName=bar2"/>
 <to uri="mock:result2"/>
 </route>

 from("direct:start").to("activemq:topic:VirtualTopic.foo");

 from("activemq:queue:Consumer.1.VirtualTopic.foo").to("mock:result1");

 from("activemq:queue:Consumer.2.VirtualTopic.foo").to("mock:result2");

 <route>
 <from uri="direct:start"/>
 <to uri="activemq:topic:VirtualTopic.foo"/>
 </route>

 <route>

CHAPTER 9. MESSAGING ENDPOINTS

227

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.0/html/EIP_Component_Reference/_IDU_File2.html
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.0/html/EIP_Component_Reference/_IDU_JPA.html
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.0/html/EIP_Component_Reference/_IDU_SEDA.html
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.0/html/EIP_Component_Reference/_IDU_JMS.html
Fluent Builders
Spring XML Extensions
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.0/html/EIP_Component_Reference/_IDU_JMS.html
http://activemq.apache.org/virtual-destinations.html
Fluent Builders
Spring XML Extensions

9.8. IDEMPOTENT CONSUMER

Overview

The idempotent consumer pattern is used to filter out duplicate messages. For example, consider a
scenario where the connection between a messaging system and a consumer endpoint is abruptly lost
due to some fault in the system. If the messaging system was in the middle of transmitting a message, it
might be unclear whether or not the consumer received the last message. To improve delivery reliability,
the messaging system might decide to redeliver such messages as soon as the connection is re-
established. Unfortunately, this entails the risk that the consumer might receive duplicate messages and,
in some cases, the effect of duplicating a message may have undesirable consequences (such as
debiting a sum of money twice from your account). In this scenario, an idempotent consumer could be
used to weed out undesired duplicates from the message stream.

Camel provides the following Idempotent Consumer implementations:

MemoryIdempotentRepository

File

HazelcastIdempotentRepository

JdbcMessageIdRepository

JpaMessageIdRepository

Idempotent consumer with in-memory cache

In Apache Camel, the idempotent consumer pattern is implemented by the idempotentConsumer()
processor, which takes two arguments:

messageIdExpression — An expression that returns a message ID string for the current
message.

messageIdRepository — A reference to a message ID repository, which stores the IDs of all
the messages received.

As each message comes in, the idempotent consumer processor looks up the current message ID in the
repository to see if this message has been seen before. If yes, the message is discarded; if no, the
message is allowed to pass and its ID is added to the repository.

The code shown in Example 9.1, “Filtering Duplicate Messages with an In-memory Cache” uses the
TransactionID header to filter out duplicates.

Example 9.1. Filtering Duplicate Messages with an In-memory Cache

 <from uri="activemq:queue:Consumer.1.VirtualTopic.foo"/>
 <to uri="mock:result1"/>
 </route>

 <route>
 <from uri="activemq:queue:Consumer.2.VirtualTopic.foo"/>
 <to uri="mock:result2"/>
 </route>

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

228

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.0/html/EIP_Component_Reference/_IDU_File2.html
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.0/html/EIP_Component_Reference/_IDU_HazelcastComponent.html
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.0/html/EIP_Component_Reference/_IDU_SQLComponent.html
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.0/html/EIP_Component_Reference/_IDU_JPA.html

Where the call to memoryMessageIdRepository(200) creates an in-memory cache that can hold up
to 200 message IDs.

You can also define an idempotent consumer using XML configuration. For example, you can define the
preceding route in XML, as follows:

Idempotent consumer with JPA repository

The in-memory cache suffers from the disadvantages of easily running out of memory and not working in
a clustered environment. To overcome these disadvantages, you can use a Java Persistent API (JPA)
based repository instead. The JPA message ID repository uses an object-oriented database to store the
message IDs. For example, you can define a route that uses a JPA repository for the idempotent
consumer, as follows:

import static
org.apache.camel.processor.idempotent.MemoryMessageIdRepository.memoryMe
ssageIdRepository;
...
RouteBuilder builder = new RouteBuilder() {
 public void configure() {
 from("seda:a")
 .idempotentConsumer(
 header("TransactionID"),
 memoryMessageIdRepository(200)
).to("seda:b");
 }
};

<camelContext id="buildIdempotentConsumer"
xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from uri="seda:a"/>
 <idempotentConsumer messageIdRepositoryRef="MsgIDRepos">
 <simple>header.TransactionID</simple>
 <to uri="seda:b"/>
 </idempotentConsumer>
 </route>
</camelContext>

<bean id="MsgIDRepos"
class="org.apache.camel.processor.idempotent.MemoryMessageIdRepository">
 <!-- Specify the in-memory cache size. -->
 <constructor-arg type="int" value="200"/>
</bean>

import org.springframework.orm.jpa.JpaTemplate;

import org.apache.camel.spring.SpringRouteBuilder;
import static
org.apache.camel.processor.idempotent.jpa.JpaMessageIdRepository.jpaMessag
eIdRepository;
...
RouteBuilder builder = new SpringRouteBuilder() {

CHAPTER 9. MESSAGING ENDPOINTS

229

The JPA message ID repository is initialized with two arguments:

JpaTemplate instance—Provides the handle for the JPA database.

processor name—Identifies the current idempotent consumer processor.

The SpringRouteBuilder.bean() method is a shortcut that references a bean defined in the Spring
XML file. The JpaTemplate bean provides a handle to the underlying JPA database. See the JPA
documentation for details of how to configure this bean.

For more details about setting up a JPA repository, see JPA Component documentation, the Spring JPA
documentation, and the sample code in the Camel JPA unit test.

Spring XML example

The following example uses the myMessageId header to filter out duplicates:

Idempotent consumer with JDBC repository

A JDBC repository is also supported for storing message IDs in the idempotent consumer pattern. The
implementation of the JDBC repository is provided by the SQL component, so if you are using the Maven
build system, add a dependency on the camel-sql artifact.

You can use the SingleConnectionDataSource JDBC wrapper class from the Spring persistence
API in order to instantiate the connection to a SQL database. For example, to instantiate a JDBC
connection to a HyperSQL database instance, you could define the following JDBC data source:

 public void configure() {
 from("seda:a").idempotentConsumer(
 header("TransactionID"),
 jpaMessageIdRepository(bean(JpaTemplate.class),
"myProcessorName")
).to("seda:b");
 }
};

<!-- repository for the idempotent consumer -->
<bean id="myRepo"
class="org.apache.camel.processor.idempotent.MemoryIdempotentRepository"/>

<camelContext xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from uri="direct:start"/>
 <idempotentConsumer messageIdRepositoryRef="myRepo">
 <!-- use the messageId header as key for identifying duplicate
messages -->
 <header>messageId</header>
 <!-- if not a duplicate send it to this mock endpoint -->
 <to uri="mock:result"/>
 </idempotentConsumer>
 </route>
</camelContext>

<bean id="dataSource"

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

230

http://activemq.apache.org/camel/jpa.html
http://static.springframework.org/spring/docs/2.5.x/reference/orm.html#orm-jpa
https://svn.apache.org/repos/asf/activemq/camel/trunk/components/camel-jpa/src/test
http://hsqldb.org/

NOTE

The preceding JDBC data source uses the HyperSQL mem protocol, which creates a
memory-only database instance. This is a toy implementation of the HyperSQL database
which is not actually persistent.

Using the preceding data source, you can define an idempotent consumer pattern that uses the JDBC
message ID repository, as follows:

How to handle duplicate messages in the route

Available as of Camel 2.8

You can now set the skipDuplicate option to false which instructs the idempotent consumer to
route duplicate messages as well. However the duplicate message has been marked as duplicate by
having a property on the Exchange set to true. We can leverage this fact by using a Content-Based
Router or Message Filter to detect this and handle duplicate messages.

For example in the following example we use the Message Filter to send the message to a duplicate
endpoint, and then stop continue routing that message.

class="org.springframework.jdbc.datasource.SingleConnectionDataSource">
 <property name="driverClassName" value="org.hsqldb.jdbcDriver"/>
 <property name="url" value="jdbc:hsqldb:mem:camel_jdbc"/>
 <property name="username" value="sa"/>
 <property name="password" value=""/>
</bean>

<bean id="messageIdRepository"
class="org.apache.camel.processor.idempotent.jdbc.JdbcMessageIdRepository"
>
 <constructor-arg ref="dataSource" />
 <constructor-arg value="myProcessorName" />
</bean>

<camel:camelContext>
 <camel:errorHandler id="deadLetterChannel" type="DeadLetterChannel"
deadLetterUri="mock:error">
 <camel:redeliveryPolicy maximumRedeliveries="0"
maximumRedeliveryDelay="0" logStackTrace="false" />
 </camel:errorHandler>

 <camel:route id="JdbcMessageIdRepositoryTest"
errorHandlerRef="deadLetterChannel">
 <camel:from uri="direct:start" />
 <camel:idempotentConsumer messageIdRepositoryRef="messageIdRepository">
 <camel:header>messageId</camel:header>
 <camel:to uri="mock:result" />
 </camel:idempotentConsumer>
 </camel:route>
 </camel:camelContext>

from("direct:start")
 // instruct idempotent consumer to not skip duplicates as we will

CHAPTER 9. MESSAGING ENDPOINTS

231

Exchange

The sample example in XML DSL would be:

How to handle duplicate message in a clustered environment with a data grid

If you have running Camel in a clustered environment, a in memory idempotent repository doesn't work
(see above). You can setup either a central database or use the idempotent consumer implementation
based on the Hazelcast data grid. Hazelcast finds the nodes over multicast (which is default - configure
Hazelcast for tcp-ip) and creates automatically a map based repository:

filter then our self

.idempotentConsumer(header("messageId")).messageIdRepository(repo).skipDup
licate(false)
 .filter(property(Exchange.DUPLICATE_MESSAGE).isEqualTo(true))
 // filter out duplicate messages by sending them to someplace
else and then stop
 .to("mock:duplicate")
 .stop()
 .end()
 // and here we process only new messages (no duplicates)
 .to("mock:result");

 <!-- idempotent repository, just use a memory based for testing -->
 <bean id="myRepo"
class="org.apache.camel.processor.idempotent.MemoryIdempotentRepository"/>

 <camelContext xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from uri="direct:start"/>
 <!-- we do not want to skip any duplicate messages -->
 <idempotentConsumer messageIdRepositoryRef="myRepo"
skipDuplicate="false">
 <!-- use the messageId header as key for identifying
duplicate messages -->
 <header>messageId</header>
 <!-- we will to handle duplicate messages using a filter -->
 <filter>
 <!-- the filter will only react on duplicate messages,
if this property is set on the Exchange -->
 <property>CamelDuplicateMessage</property>
 <!-- and send the message to this mock, due its part of
an unit test -->
 <!-- but you can of course do anything as its part of the
route -->
 <to uri="mock:duplicate"/>
 <!-- and then stop -->
 <stop/>
 </filter>
 <!-- here we route only new messages -->
 <to uri="mock:result"/>
 </idempotentConsumer>
 </route>
 </camelContext>

HazelcastIdempotentRepository idempotentRepo = new

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

232

http://www.hazelcast.com/

You have to define how long the repository should hold each message id (default is to delete it never).
To avoid that you run out of memory you should create an eviction strategy based on the Hazelcast
configuration. For additional information see camel-hazelcast.

See this little tutorial, how setup such an idempotent repository on two cluster nodes using Apache Karaf.

Options

The Idempotent Consumer has the following options:

Option Default Description

eager true Camel 2.0: Eager controls
whether Camel adds the message
to the repository before or after
the exchange has been
processed. If enabled before then
Camel will be able to detect
duplicate messages even when
messages are currently in
progress. By disabling Camel will
only detect duplicates when a
message has successfully been
processed.

messageIdRepositoryRef null A reference to a
IdempotentRepository to
lookup in the registry. This option
is mandatory when using XML
DSL.

skipDuplicate true Camel 2.8: Sets whether to skip
duplicate messages. If set to
false then the message will be
continued. However the Exchange
has been marked as a duplicate
by having the
Exchange.DUPLICATE_MESS
AG exchange property set to a
Boolean.TRUE value.

9.9. TRANSACTIONAL CLIENT

Overview

HazelcastIdempotentRepository("myrepo");

from("direct:in").idempotentConsumer(header("messageId"),
idempotentRepo).to("mock:out");

CHAPTER 9. MESSAGING ENDPOINTS

233

http://www.hazelcast.com/documentation.jsp#MapEviction
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.0/html/EIP_Component_Reference/_IDU_HazelcastComponent.html
Hazelcast Idempotent Repository Tutorial
Exchange

The transactional client pattern, shown in Figure 9.7, “Transactional Client Pattern”, refers to messaging
endpoints that can participate in a transaction. Apache Camel supports transactions using Spring
transaction management.

Figure 9.7. Transactional Client Pattern

Transaction oriented endpoints

Not all Apache Camel endpoints support transactions. Those that do are called transaction oriented
endpoints (or TOEs). For example, both the JMS component and the ActiveMQ component support
transactions.

To enable transactions on a component, you must perform the appropriate initialization before adding the
component to the CamelContext. This entails writing code to initialize your transactional components
explicitly.

References

The details of configuring transactions in Apache Camel are beyond the scope of this guide. For full
details of how to use transactions, see the Apache Camel Transaction Guide.

9.10. MESSAGING GATEWAY

Overview

The messaging gateway pattern, shown in Figure 9.8, “Messaging Gateway Pattern”, describes an
approach to integrating with a messaging system, where the messaging system's API remains hidden
from the programmer at the application level. One of the more common example is when you want to
translate synchronous method calls into request/reply message exchanges, without the programmer
being aware of this.

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

234

http://static.springframework.org/spring/docs/2.5.x/reference/transaction.html

Figure 9.8. Messaging Gateway Pattern

The following Apache Camel components provide this kind of integration with the messaging system:

chapter "CXF" in "EIP Component Reference"

chapter "Bean" in "EIP Component Reference"

9.11. SERVICE ACTIVATOR

Overview

The service activator pattern, shown in Figure 9.9, “Service Activator Pattern”, describes the scenario
where a service's operations are invoked in response to an incoming request message. The service
activator identifies which operation to call and extracts the data to use as the operation's parameters.
Finally, the service activator invokes an operation using the data extracted from the message. The
operation invocation can be either oneway (request only) or two-way (request/reply).

Figure 9.9. Service Activator Pattern

In many respects, a service activator resembles a conventional remote procedure call (RPC), where
operation invocations are encoded as messages. The main difference is that a service activator needs to
be more flexible. An RPC framework standardizes the request and reply message encodings (for
example, Web service operations are encoded as SOAP messages), whereas a service activator
typically needs to improvise the mapping between the messaging system and the service's operations.

Bean integration

CHAPTER 9. MESSAGING ENDPOINTS

235

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.0/html/EIP_Component_Reference/_IDU_CXF.html
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.0/html/EIP_Component_Reference/_IDU_Bean.html

The main mechanism that Apache Camel provides to support the service activator pattern is bean
integration. Bean integration provides a general framework for mapping incoming messages to method
invocations on Java objects. For example, the Java fluent DSL provides the processors bean() and
beanRef() that you can insert into a route to invoke methods on a registered Java bean. The detailed
mapping of message data to Java method parameters is determined by the bean binding, which can be
implemented by adding annotations to the bean class.

For example, consider the following route which calls the Java method,
BankBean.getUserAccBalance(), to service requests incoming on a JMS/ActiveMQ queue:

The messages pulled from the ActiveMQ endpoint, activemq:BalanceQueries, have a simple XML
format that provides the user ID of a bank account. For example:

The first processor in the route, setProperty(), extracts the user ID from the In message and stores it
in the userid exchange property. This is preferable to storing it in a header, because the In headers
are not available after invoking the bean.

The service activation step is performed by the beanRef() processor, which binds the incoming
message to the getUserAccBalance() method on the Java object identified by the bankBean bean
ID. The following code shows a sample implementation of the BankBean class:

Where the binding of message data to method parameter is enabled by the @XPath annotation, which
injects the content of the UserID XML element into the user method parameter. On completion of the
call, the return value is inserted into the body of the Out message which is then copied into the In

from("activemq:BalanceQueries")
 .setProperty("userid",
xpath("/Account/BalanceQuery/UserID").stringResult())
 .beanRef("bankBean", "getUserAccBalance")
 .to("velocity:file:src/scripts/acc_balance.vm")
 .to("activemq:BalanceResults");

<?xml version='1.0' encoding='UTF-8'?>
<Account>
 <BalanceQuery>
 <UserID>James.Strachan</UserID>
 </BalanceQuery>
</Account>

package tutorial;

import org.apache.camel.language.XPath;

public class BankBean {
 public int getUserAccBalance(@XPath("/Account/BalanceQuery/UserID")
String user) {
 if (user.equals("James.Strachan")) {
 return 1200;
 }
 else {
 return 0;
 }
 }
}

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

236

http://activemq.apache.org/camel/bean-integration.html

message for the next step in the route. In order for the bean to be accessible to the beanRef()
processor, you must instantiate an instance in Spring XML. For example, you can add the following lines
to the META-INF/spring/camel-context.xml configuration file to instantiate the bean:

Where the bean ID, bankBean, identifes this bean instance in the registry.

The output of the bean invocation is injected into a Velocity template, to produce a properly formatted
result message. The Velocity endpoint, velocity:file:src/scripts/acc_balance.vm, specifies
the location of a velocity script with the following contents:

The exchange instance is available as the Velocity variable, exchange, which enables you to retrieve
the userid exchange property, using ${exchange.getProperty("userid")}. The body of the
current In message, ${body}, contains the result of the getUserAccBalance() method invocation.

<?xml version="1.0" encoding="UTF-8"?>
<beans ... >
 ...
 <bean id="bankBean" class="tutorial.BankBean"/>
</beans>

<?xml version='1.0' encoding='UTF-8'?>
<Account>
 <BalanceResult>
 <UserID>${exchange.getProperty("userid")}</UserID>
 <Balance>${body}</Balance>
 </BalanceResult>
</Account>

CHAPTER 9. MESSAGING ENDPOINTS

237

CHAPTER 10. SYSTEM MANAGEMENT

Abstract

The system management patterns describe how to monitor, test, and administer a messaging system.

10.1. DETOUR

Detour

The Detour from the Introducing Enterprise Integration Patterns allows you to send messages through
additional steps if a control condition is met. It can be useful for turning on extra validation, testing,
debugging code when needed.

Example

In this example we essentially have a route like from("direct:start").to("mock:result") with
a conditional detour to the mock:detour endpoint in the middle of the route..

Using the Spring XML Extensions

from("direct:start").choice()
 .when().method("controlBean", "isDetour").to("mock:detour").end()
 .to("mock:result");

<route>
 <from uri="direct:start"/>
 <choice>
 <when>
 <method bean="controlBean" method="isDetour"/>
 <to uri="mock:detour"/>
 </when>
 </choice>
 <to uri="mock:result"/>
 </split>
</route>

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

238

http://www.enterpriseintegrationpatterns.com/Detour.html
Spring XML Extensions

whether the detour is turned on or off is decided by the ControlBean. So, when the detour is on the
message is routed to mock:detour and then mock:result. When the detour is off, the message is
routed to mock:result.

For full details, check the example source here:

camel-core/src/test/java/org/apache/camel/processor/DetourTest.java

10.2. LOGEIP

Overview

Apache Camel provides several ways to perform logging in a route:

Using the log DSL command.

Using the Log component, which can log the message content.

Using the Tracer, which traces message flow.

Using a Processor or a Bean endpoint to perform logging in Java.

DIFFERENCE BETWEEN THE LOG DSL COMMAND AND THE LOG
COMPONENT

The log DSL is much lighter and meant for logging human logs such as Starting to
do It can only log a message based on the Simple language. In contrast, the Log
component is a fully featured logging component. The Log component is capable of
logging the message itself and you have many URI options to control the logging.

Java DSL example

Since Apache Camel 2.2, you can use the log DSL command to construct a log message at run time
using the Simple expression language. For example, you can create a log message within a route, as
follows:

This route constructs a String format message at run time. The log message will by logged at INFO
level, using the route ID as the log name. By default, routes are named consecutively, route-1,
route-2 and so on. But you can use the DSL command, routeId("myCoolRoute"), to specify a
custom route ID.

The log DSL also provides variants that enable you to set the logging level and the log name explicitly.
For example, to set the logging level explicitly to LoggingLevel.DEBUG, you can invoke the log DSL
as follows:

has overloaded methods to set the logging level and/or name as well.

To set the log name to fileRoute, you can invoke the log DSL as follows:

from("direct:start").log("Processing ${id}").to("bean:foo");

from("direct:start").log(LoggingLevel.DEBUG, "Processing
${id}").to("bean:foo");

CHAPTER 10. SYSTEM MANAGEMENT

239

http://svn.apache.org/repos/asf/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/DetourTest.java
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.0/html/EIP_Component_Reference/_IDU_Log.html
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.0/html/EIP_Component_Reference/_IDU_Bean.html
Simple
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.0/html/EIP_Component_Reference/_IDU_Log.html
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.0/html/EIP_Component_Reference/_IDU_Log.html

XML DSL example

In XML DSL, the log DSL is represented by the log element and the log message is specified by setting
the message attribute to a Simple expression, as follows:

The log element supports the message, loggingLevel and logName attributes. For example:

10.3. WIRE TAP

Wire Tap

The wire tap pattern, as shown in Figure 10.1, “Wire Tap Pattern”, enables you to route a copy of the
message to a separate tap location, while the original message is forwarded to the ultimate destination.

Figure 10.1. Wire Tap Pattern

STREAMS

If you Wire Tap a stream message body, you should consider enabling Stream Caching
to ensure the message body can be re-read. See more details at Stream Caching

WireTap node

from("file://target/files").log(LoggingLevel.DEBUG, "fileRoute",
"Processing file ${file:name}").to("bean:foo");

<route id="foo">
 <from uri="direct:foo"/>
 <log message="Got ${body}"/>
 <to uri="mock:foo"/>
</route>

<route id="baz">
 <from uri="direct:baz"/>
 <log message="Me Got ${body}" loggingLevel="FATAL" logName="cool"/>
 <to uri="mock:baz"/>
</route>

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

240

Stream Caching
Stream Caching

Apache Camel 2.0 introduces the wireTap node for doing wire taps. The wireTap node copies the
original exchange to a tapped exchange, whose exchange pattern is set to InOnly, because the tapped
exchange should be propagated in a oneway style. The tapped exchange is processed in a separate
thread, so that it can run concurrently with the main route.

The wireTap supports two different approaches to tapping an exchange:

Tap a copy of the original exchange.

Tap a new exchange instance, enabling you to customize the tapped exchange.

Tap a copy of the original exchange

Using the Java DSL:

Using Spring XML extensions:

Tap and modify a copy of the original exchange

Using the Java DSL, Apache Camel supports using either a processor or an expression to modify a copy
of the original exchange. Using a processor gives you full power over how the exchange is populated,
because you can set properties, headers and so on. The expression approach can only be used to
modify the In message body.

For example, to modify a copy of the original exchange using the processor approach:

And to modify a copy of the original exchange using the expression approach:

from("direct:start")
 .to("log:foo")
 .wireTap("direct:tap")
 .to("mock:result");

<route>
 <from uri="direct:start"/>
 <to uri="log:foo"/>
 <wireTap uri="direct:tap"/>
 <to uri="mock:result"/>
</route>

from("direct:start")
 .wireTap("direct:foo", new Processor() {
 public void process(Exchange exchange) throws Exception {
 exchange.getIn().setHeader("foo", "bar");
 }
 }).to("mock:result");

from("direct:foo").to("mock:foo");

from("direct:start")
 .wireTap("direct:foo", constant("Bye World"))
 .to("mock:result");

CHAPTER 10. SYSTEM MANAGEMENT

241

Using the Spring XML extensions, you can modify a copy of the original exchange using the processor
approach, where the processorRef attribute references a spring bean with the myProcessor ID:

And to modify a copy of the original exchange using the expression approach:

Tap a new exchange instance

You can define a wiretap with a new exchange instance by setting the copy flag to false (the default is
true). In this case, an initially empty exchange is created for the wiretap.

For example, to create a new exchange instance using the processor approach:

Where the second wireTap argument sets the copy flag to false, indicating that the original exchange
is not copied and an empty exchange is created instead.

To create a new exchange instance using the expression approach:

Using the Spring XML extensions, you can indicate that a new exchange is to be created by setting the
wireTap element's copy attribute to false.

from("direct:foo").to("mock:foo");

<route>
 <from uri="direct:start2"/>
 <wireTap uri="direct:foo" processorRef="myProcessor"/>
 <to uri="mock:result"/>
</route>

<route>
 <from uri="direct:start"/>
 <wireTap uri="direct:foo">
 <body><constant>Bye World</constant></body>
 </wireTap>
 <to uri="mock:result"/>
</route>

from("direct:start")
 .wireTap("direct:foo", false, new Processor() {
 public void process(Exchange exchange) throws Exception {
 exchange.getIn().setBody("Bye World");
 exchange.getIn().setHeader("foo", "bar");
 }
 }).to("mock:result");

from("direct:foo").to("mock:foo");

from("direct:start")
 .wireTap("direct:foo", false, constant("Bye World"))
 .to("mock:result");

from("direct:foo").to("mock:foo");

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

242

To create a new exchange instance using the processor approach, where the processorRef attribute
references a spring bean with the myProcessor ID, as follows:

And to create a new exchange instance using the expression approach:

Sending a new Exchange and set headers in DSL

Available as of Camel 2.8

If you send a new messages using the Wire Tap then you could only set the message body using an
Expression from the DSL. If you also need to set new headers you would have to use a Processor for
that. So in Camel 2.8 onwards we have improved this situation so you can now set headers as well in
the DSL.

The following example sends a new message which has

"Bye World" as message body

a header with key "id" with the value 123

a header with key "date" which has current date as value

Java DSL

<route>
 <from uri="direct:start2"/>
 <wireTap uri="direct:foo" processorRef="myProcessor" copy="false"/>
 <to uri="mock:result"/>
</route>

<route>
 <from uri="direct:start"/>
 <wireTap uri="direct:foo" copy="false">
 <body><constant>Bye World</constant></body>
 </wireTap>
 <to uri="mock:result"/>
</route>

from("direct:start")
 // tap a new message and send it to direct:tap
 // the new message should be Bye World with 2 headers
 .wireTap("direct:tap")
 // create the new tap message body and headers
 .newExchangeBody(constant("Bye World"))
 .newExchangeHeader("id", constant(123))
 .newExchangeHeader("date", simple("${date:now:yyyyMMdd}"))
 .end()
 // here we continue routing the original messages
 .to("mock:result");

 // this is the tapped route
 from("direct:tap")
 .to("mock:tap");

CHAPTER 10. SYSTEM MANAGEMENT

243

Exchange
Expression
Processor

XML DSL

The XML DSL is slightly different than Java DSL as how you configure the message body and headers.
In XML you use <body> and <setHeader> as shown:

Using onPrepare to execute custom logic when preparing messages

Available as of Camel 2.8

For details, see Multicast.

Options

The wireTap DSL command supports the following options:

Name Default Value Description

uri The endpoint uri where to send
the wire tapped message. You
should use either uri or ref.

ref Refers to the endpoint where to
send the wire tapped message.
You should use either uri or
ref.

executorServiceRef Refers to a custom Thread Pool to
be used when processing the wire
tapped messages. If not set then
Camel uses a default thread pool.

processorRef Refers to a custom Processor to
be used for creating a new
message (eg the send a new
message mode). See below.

<route>
 <from uri="direct:start"/>
 <!-- tap a new message and send it to direct:tap -->
 <!-- the new message should be Bye World with 2 headers -->
 <wireTap uri="direct:tap">
 <!-- create the new tap message body and headers -->
 <body><constant>Bye World</constant></body>
 <setHeader headerName="id"><constant>123</constant></setHeader>
 <setHeader headerName="date"><simple>${date:now:yyyyMMdd}
</simple></setHeader>
 </wireTap>
 <!-- here we continue routing the original message -->
 <to uri="mock:result"/>
 </route>

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

244

Threading Model
Processor

copy true Camel 2.3: Should a copy of the
Exchange to used when wire
tapping the message.

onPrepareRef Camel 2.8: Refers to a custom
Processor to prepare the copy of
the Exchange to be wire tapped.
This allows you to do any custom
logic, such as deep-cloning the
message payload if that's needed
etc.

CHAPTER 10. SYSTEM MANAGEMENT

245

Exchange
Processor
Exchange

APPENDIX A. MIGRATING FROM SERVICEMIX EIP

Abstract

If you are currently an Apache ServiceMix 3.x user, you might already have implemented some
Enterprise Integration Patterns using the ServiceMix EIP module. It is recommended that you migrate
these legacy patterns to Apache Camel, which has more extensive support for Enterprise Integration
Patterns. After migrating, you can deploy your patterns into a Red Hat JBoss Fuse container.

A.1. MIGRATING ENDPOINTS

Overview

A typical ServiceMix EIP route exposes a service that consumes exchanges from the NMR. The route
also defines one or more target destinations, to which exchanges are sent. In the Apache Camel
environment, the exposed ServiceMix service maps to a consumer endpoint and the ServiceMix target
destinations map to producer endpoints. The Apache Camel consumer endpoints and producer
endpoints are both defined using endpoint URIs.

When migrating endpoints from ServiceMix EIP to Apache Camel, you must express the ServiceMix
services/endpoints as Apache Camel endpoint URIs. You can adopt one of the following approaches:

Connect to an existing ServiceMix service/endpoint through the ServiceMix Camel module
(which integrates Apache Camel with the NMR).

If the existing ServiceMix service/endpoint represents a ServiceMix binding component, you can
replace the ServiceMix binding component with an equivalent Apache Camel component (thus
bypassing the NMR).

The ServiceMix Camel module

The integration between Apache Camel and ServiceMix is provided by the servicemix-camel
module. This module is provided with ServiceMix, but actually implements a plug-in for the Apache
Camel product: the JBI component (see chapter "JBI" in "EIP Component Reference" and JBI
Component).

To access the JBI component from Apache Camel, make sure that the servicemix-camel JAR file is
included on your Classpath or, if you are using Maven, include a dependency on the servicemix-
camel artifact in your project POM. You can then access the JBI component by defining Apache Camel
endpoint URIs with the jbi: component prefix.

Translating ServiceMix URIs into Apache Camel endpoint URIs

ServiceMix defines a flexible format for defining URIs, which is described in detail in ServiceMix URIs.
To translate a ServiceMix URI into a Apache Camel endpoint URI, perform the following steps:

1. If the ServiceMix URI contains a namespace prefix, replace the prefix by its corresponding
namespace.

For example, after modifying the ServiceMix URI, service:test:messageFilter, where
test corresponds to the namespace, http://progress.com/demos/test, you get
service:http://progress.com/demos/test:messageFilter.

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

246

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.0/html/EIP_Component_Reference/_IDU_JBI.html
http://activemq.apache.org/camel/jbi.html
http://servicemix.apache.org/uris.html

2. Modify the separator character, depending on what kind of namespace appears in the URI:

If the namespace starts with http://, use the / character as the separator between
namespace, service name, and endpoint name (if present).

For example, the URI,
service:http://progress.com/demos/test:messageFilter, would be modified
to service:http://progress.com/demos/test/messageFilter.

If the namespace starts with urn:, use the : character as the separator between
namespace, service name, and endpoint name (if present).

For example, service:urn:progress:com:demos:test:messageFilter.

3. Create a JBI endpoint URI by adding the jbi: prefix.

For example, jbi:service:http://progress.com/demos/test/messageFilter.

Example of mapping ServiceMix URIs

For example, consider the following configuration of the static recipient list pattern in ServiceMix EIP.
The eip:exchange-target elements define some targets using the ServiceMix URI format.

When the preceding ServiceMix configuration is mapped to an equivalent Apache Camel configuration,
you get the following route:

Replacing ServiceMix bindings with Apache Camel components

Instead of using the Apache Camel JBI component to route all your messages through the ServiceMix
NMR, you can use one of the many supported Apache Camel components to connect directly to a
consumer or a producer endpoint. In particular, when sending messages to an external endpoint, it is
more efficient to send the messages directly through a Apache Camel component than sending them
through the NMR and a ServiceMix binding.

<beans xmlns:sm="http://servicemix.apache.org/config/1.0"
 xmlns:eip="http://servicemix.apache.org/eip/1.0"
 xmlns:test="http://progress.com/demos/test" >
 ...
 <eip:static-recipient-list service="test:recipients"
endpoint="endpoint">
 <eip:recipients>
 <eip:exchange-target uri="service:test:messageFilter" />
 <eip:exchange-target uri="service:test:trace4" />
 </eip:recipients>
 </eip:static-recipient-list>
 ...
</beans>

<route>
 <from
uri="jbi:endpoint:http://progress.com/demos/test/recipients/endpoint"/>
 <to uri="jbi:service:http://progress.com/demos/test/messageFilter"/>
 <to uri="jbi:service:http://progress.com/demos/test/trace4"/>
</route>

APPENDIX A. MIGRATING FROM SERVICEMIX EIP

247

For details of all the Apache Camel components that are available, see "EIP Component Reference" and
Apache Camel Components.

A.2. COMMON ELEMENTS

Overview

When configuring ServiceMix EIP patterns in a ServiceMix configuration file, there are some common
elements that occur in many of the pattern schemas. This section provides a brief overview of these
common elements and explains how they can be mapped to equivalent constructs in Apache Camel.

Exchange target

All of the patterns supported by ServiceMix EIP use the eip:exchange-target element to specify JBI
target endpoints. Table A.1, “Mapping the Exchange Target Element” shows examples of how to map
sample eip:exchange-target elements to Apache Camel endpoint URIs, where it is assumed that
the test prefix maps to the http://progress.com/demos/test namespace.

Table A.1. Mapping the Exchange Target Element

ServiceMix EIP Target Apache Camel Endpoint URI

<eip:exchange-target
interface="HelloWorld" />

jbi:interface:HelloWorld

<eip:exchange-target
service="test:HelloWorldService" />

jbi:service:http://progress.com/demo
s/test/HelloWorldService

<eip:exchange-target
service="test:HelloWorldService"
endpoint="secure" />

jbi:service:http://progress.com/demo
s/test/HelloWorldService/secure

<eip:exchange-target
uri="service:test:HelloWorldService"
/>

jbi:service:http://progress.com/demo
s/test/HelloWorldService

Predicates

The ServiceMix EIP component allows you to define predicate expressions in the XPath language. For
example, XPath predicates can appear in eip:xpath-predicate elements or in eip:xpath-
splitter elements, where the XPath predicate is specified using an xpath attribute.

ServiceMix XPath predicates can easily be migrated to equivalent constructs in Apache Camel: that is,
either the xpath element (in XML configuration) or the xpath() command (in Java DSL). For example,
the message filter pattern in Apache Camel can incorporate an XPath predicate as follows:

<route>
 <from
uri="jbi:endpoint:http://progress.com/demos/test/messageFilter/endpoint">
 <filter>
 <xpath>count(/test:world) = 1</xpath>
 <to uri="jbi:service:http://progress.com/demos/test/trace3"/>

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

248

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.0/html/EIP_Component_Reference/
http://activemq.apache.org/camel/components.html

Where the xpath element specifies that only messages containing the test:world element will pass
through the filter.

NOTE

Apache Camel also supports a wide range of other scripting languages including XQuery,
PHP, Python, and Ruby, which can be used to define predicates. For details of all the
supported predicate languages, see Expression and Predicate Languages.

Namespace contexts

When using XPath predicates in the ServiceMix EIP configuration, it is necessary to define a namespace
context using the eip:namespace-context element. The namespace is then referenced using a
namespaceContext attribute.

When ServiceMix EIP configuration is migrated to Apache Camel, there is no need to define namespace
contexts, because Apache Camel allows you to define XPath predicates without referencing a
namespace context. You can simply drop the eip:namespace-context elements when you migrate
to Apache Camel.

A.3. SERVICEMIX EIP PATTERNS

The patterns supported by ServiceMix EIP are shown in Table A.2, “ServiceMix EIP Patterns”.

Table A.2. ServiceMix EIP Patterns

Content-Based Router How we handle a situation where
the implementation of a single
logical function (e.g., inventory
check) is spread across multiple
physical systems.

Content Enricher How we communicate with
another system if the message
originator does not have all the
required data items available.

Message Filter How a component avoids
receiving uninteresting messages.

Pipeline How we perform complex
processing on a message while
maintaining independence and
flexibility.

 </filter>
</route>

APPENDIX A. MIGRATING FROM SERVICEMIX EIP

249

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.0/html/Routing_Expression_and_Predicate_Languages/

Resequencer How we get a stream of related
but out-of-sequence messages
back into the correct order.

Static Recipient List How we route a message to a list
of specified recipients.

 Static Routing Slip How we route a message
consecutively through a series of
processing steps.

Wire Tap How you inspect messages that
travel on a point-to-point channel.

XPath Splitter How we process a message if it
contains multiple elements, each
of which may have to be
processed in a different way.

A.4. CONTENT-BASED ROUTER

Overview

A content-based router enables you to route messages to the appropriate destination, where the routing
decision is based on the message contents. This pattern maps to the corresponding content-based
router pattern in Apache Camel.

Figure A.1. Content-based Router Pattern

Example ServiceMix EIP route

Example A.1, “ServiceMix EIP Content-based Route” shows how to define a content-based router using
the ServicMix EIP component. If a test:echo element is present in the message body, the message is
routed to the http://test/pipeline/endpoint endpoint. Otherwise, the message is routed to the
test:recipients endpoint.

Example A.1. ServiceMix EIP Content-based Route

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

250

Equivalent Apache Camel XML route

Example A.2, “Apache Camel Content-based Router Using XML Configuration” shows how to define an
equivalent route using Apache Camel XML configuration.

Example A.2. Apache Camel Content-based Router Using XML Configuration

Equivalent Apache Camel Java DSL route

Example A.3, “Apache Camel Content-based Router Using Java DSL” shows how to define an
equivalent route using the Apache Camel Java DSL.

Example A.3. Apache Camel Content-based Router Using Java DSL

<eip:content-based-router service="test:router" endpoint="endpoint">
 <eip:rules>
 <eip:routing-rule>
 <eip:predicate>
 <eip:xpath-predicate xpath="count(/test:echo) = 1"
namespaceContext="#nsContext" />
 </eip:predicate>
 <eip:target>
 <eip:exchange-target uri="endpoint:test:pipeline:endpoint" />
 </eip:target>
 </eip:routing-rule>
 <eip:routing-rule>
 <!-- There is no predicate, so this is the default destination --
>
 <eip:target>
 <eip:exchange-target service="test:recipients" />
 </eip:target>
 </eip:routing-rule>
 </eip:rules>
</eip:content-based-router>

<route>
 <from
uri="jbi:endpoint:http://progress.com/demos/test/router/endpoint"/>
 <choice>
 <when>
 <xpath>count(/test:echo) = 1</xpath>
 <to
uri="jbi:endpoint:http://progress.com/demos/test/pipeline/endpoint"/>
 </when>
 <otherwise>
 <!-- This is the default destination -->
 <to uri="jbi:service:http://progress.com/demos/test/recipients"/>
 </otherwise>
 </choice>
</route>

APPENDIX A. MIGRATING FROM SERVICEMIX EIP

251

A.5. CONTENT ENRICHER

Overview

A content enricher, shown in Figure A.2, “Content Enricher Pattern”, is a pattern for augmenting a
message with missing information. The ServiceMix EIP content enricher is roughly equivalent to a
pipeline that adds missing data as the message passes through an enricher target. Consequently, when
migrating to Apache Camel, you can re-implement the ServiceMix content enricher as a Apache Camel
pipeline.

Figure A.2. Content Enricher Pattern

Example ServiceMix EIP route

Example A.4, “ServiceMix EIP Content Enricher” shows how to define a content enricher using the
ServiceMix EIP component. Incoming messages pass through the enricher target,
test:additionalInformationExtracter, which adds missing data to the message. The message
is then sent on to its ultimate destination, test:myTarget.

Example A.4. ServiceMix EIP Content Enricher

from("jbi:endpoint:http://progress.com/demos/test/router/endpoint").
 choice().when(xpath("count(/test:echo) =
1")).to("jbi:endpoint:http://progress.com/demos/test/pipeline/endpoint")
.

otherwise().to("jbi:service:http://progress.com/demos/test/recipients");

<eip:content-enricher service="test:contentEnricher"
endpoint="endpoint">
 <eip:enricherTarget>
 <eip:exchange-target service="test:additionalInformationExtracter"
/>
 </eip:enricherTarget>
 <eip:target>

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

252

Equivalent Apache Camel XML route

Example A.5, “Apache Camel Content Enricher using XML Configuration” shows how to define an
equivalent route using Apache Camel XML configuration.

Example A.5. Apache Camel Content Enricher using XML Configuration

Equivalent Apache Camel Java DSL route

Example A.6, “Apache Camel Content Enricher using Java DSL” shows how to define an equivalent
route using the Apache Camel Java DSL:

Example A.6. Apache Camel Content Enricher using Java DSL

A.6. MESSAGE FILTER

Overview

A message filter, shown in Figure A.3, “Message Filter Pattern”, is a processor that eliminates undesired
messages based on specific criteria. Filtering is controlled by specifying a predicate in the filter: when the
predicate is true, the incoming message is allowed to pass; otherwise, it is blocked. This pattern maps
to the corresponding message filter pattern in Apache Camel.

 <eip:exchange-target service="test:myTarget" />
 </eip:target>
</eip:content-enricher>

<route>
 <from
uri="jbi:endpoint:http://progress.com/demos/test/contentEnricher/endpoin
t"/>
 <to
uri="jbi:service:http://progress.com/demos/test/additionalInformationExt
racter"/>
 <to uri="jbi:service:http://progress.com/demos/test/myTarget"/>
</route>

from("jbi:endpoint:http://progress.com/demos/test/contentEnricher/endpoi
nt").

to("jbi:service:http://progress.com/demos/test/additionalInformationExtr
acter").
 to("jbi:service:http://progress.com/demos/test/myTarget");

APPENDIX A. MIGRATING FROM SERVICEMIX EIP

253

Figure A.3. Message Filter Pattern

Example ServiceMix EIP route

Example A.7, “ServiceMix EIP Message Filter” shows how to define a message filter using the
ServiceMix EIP component. Incoming messages are passed through a filter mechanism that blocks
messages that lack a test:world element.

Example A.7. ServiceMix EIP Message Filter

Equivalent Apache Camel XML route

Example A.8, “Apache Camel Message Filter Using XML” shows how to define an equivalent route using
Apache Camel XML configuration.

Example A.8. Apache Camel Message Filter Using XML

Equivalent Apache Camel Java DSL route

Example A.9, “Apache Camel Message Filter Using Java DSL” shows how to define an equivalent route
using the Apache Camel Java DSL.

Example A.9. Apache Camel Message Filter Using Java DSL

<eip:message-filter service="test:messageFilter" endpoint="endpoint">
 <eip:target>
 <eip:exchange-target service="test:trace3" />
 </eip:target>
 <eip:filter>
 <eip:xpath-predicate xpath="count(/test:world) = 1"
namespaceContext="#nsContext"/>
 </eip:filter>
</eip:message-filter>

<route>
 <from
uri="jbi:endpoint:http://progress.com/demos/test/messageFilter/endpoint"
>
 <filter>
 <xpath>count(/test:world) = 1</xpath>
 <to uri="jbi:service:http://progress.com/demos/test/trace3"/>
 </filter>
</route>

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

254

A.7. PIPELINE

Overview

The ServiceMix EIP pipeline pattern, shown in Figure A.4, “Pipes and Filters Pattern”, is used to pass
messages through a single transformer endpoint, where the transformer's input is taken from the source
endpoint and the transformer's output is routed to the target endpoint. This pattern is thus a special case
of the more general Apache Camel pipes and filters pattern, which enables you to pass an In message
through multiple transformer endpoints.

Figure A.4. Pipes and Filters Pattern

Example ServiceMix EIP route

Example A.10, “ServiceMix EIP Pipeline” shows how to define a pipeline using the ServiceMix EIP
component. Incoming messages are passed into the transformer endpoint, test:decrypt, and the
output from the transformer endpoint is then passed into the target endpoint, test:plaintextOrder.

Example A.10. ServiceMix EIP Pipeline

Equivalent Apache Camel XML route

Example A.11, “Apache Camel Pipeline Using XML” shows how to define an equivalent route using
Apache Camel XML configuration.

Example A.11. Apache Camel Pipeline Using XML

from("jbi:endpoint:http://progress.com/demos/test/messageFilter/endpoint
").
 filter(xpath("count(/test:world) = 1")).
 to("jbi:service:http://progress.com/demos/test/trace3");

<eip:pipeline service="test:pipeline" endpoint="endpoint">
 <eip:transformer>
 <eip:exchange-target service="test:decrypt" />
 </eip:transformer>
 <eip:target>
 <eip:exchange-target service="test:plaintextOrder" />
 </eip:target>
</eip:pipeline>

<route>
 <from

APPENDIX A. MIGRATING FROM SERVICEMIX EIP

255

Equivalent Apache Camel Java DSL route

Example A.12, “Apache Camel Pipeline Using Java DSL” shows how to define an equivalent route using
the Apache Camel Java DSL.

Example A.12. Apache Camel Pipeline Using Java DSL

A.8. RESEQUENCER

Overview

The resequencer pattern, shown in Figure A.5, “Resequencer Pattern”, enables you to resequence
messages according to the sequence number stored in an NMR property. The ServiceMix EIP
resequencer pattern maps to the Apache Camel resequencer configured with the stream resequencing
algorithm.

Figure A.5. Resequencer Pattern

Sequence number property

The sequence of messages emitted from the resequencer is determined by the value of the sequence
number property: messages with a low sequence number are emitted first and messages with a higher
number are emitted later. By default, the sequence number is read from the
org.apache.servicemix.eip.sequence.number property in ServiceMix, but you can customize
the name of this property using the eip:default-comparator element in ServiceMix.

The equivalent concept in Apache Camel is a sequencing expression, which can be any message-
dependent expression. When migrating from ServiceMix EIP, you normally define an expression that
extracts the sequence number from a header (a Apache Camel header is equivalent to an NMR
message property). For example, to extract a sequence number from a seqnum header, you can use the
simple expression, header.seqnum.

Example ServiceMix EIP route

uri="jbi:endpoint:http://progress.com/demos/test/pipeline/endpoint"/>
 <to uri="jbi:service:http://progress.com/demos/test/decrypt"/>
 <to uri="jbi:service:http://progress.com/demos/test/plaintextOrder"/>
</route>

from("jbi:endpoint:http://progress.com/demos/test/pipeline/endpoint").
 pipeline("jbi:service:http://progress.com/demos/test/decrypt",
"jbi:service:http://progress.com/demos/test/plaintextOrder");

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

256

Example A.13, “ServiceMix EIP Resequncer” shows how to define a resequencer using the ServiceMix
EIP component.

Example A.13. ServiceMix EIP Resequncer

Equivalent Apache Camel XML route

Example A.14, “Apache Camel Resequencer Using XML” shows how to define an equivalent route using
Apache Camel XML configuration.

Example A.14. Apache Camel Resequencer Using XML

Equivalent Apache Camel Java DSL route

Example A.15, “Apache Camel Resequencer Using Java DSL” shows how to define an equivalent route
using the Apache Camel Java DSL.

Example A.15. Apache Camel Resequencer Using Java DSL

<eip:resequencer
 service="sample:Resequencer"
 endpoint="ResequencerEndpoint"
 comparator="#comparator"
 capacity="100"
 timeout="2000">
 <eip:target>
 <eip:exchange-target service="sample:SampleTarget" />
 </eip:target>
</eip:resequencer>

<!-- Configure default comparator with custom sequence number property -
->
<eip:default-comparator xml:id="comparator"
 sequenceNumberKey="seqnum"/>

<route>
 <from uri="jbi:endpoint:sample:Resequencer:ResequencerEndpoint"/>
 <resequencer>
 <simple>header.seqnum</simple>
 <to uri="jbi:service:sample:SampleTarget" />
 <stream-config capacity="100" timeout="2000"/>
 </resequencer>
</route>

from("jbi:endpoint:sample:Resequencer:ResequencerEndpoint").
 resequencer(header("seqnum")).
 stream(new StreamResequencerConfig(100, 2000L)).
 to("jbi:service:sample:SampleTarget");

APPENDIX A. MIGRATING FROM SERVICEMIX EIP

257

A.9. STATIC RECIPIENT LIST

Overview

A recipient list, shown in Figure A.6, “Static Recipient List Pattern”, is a type of router that sends each
incoming message to multiple different destinations. The ServiceMix EIP recipient list is restricted to
processing InOnly and RobustInOnly exchange patterns. Moreover, the list of recipients must be static.
This pattern maps to the recipient list with fixed destination pattern in Apache Camel.

Figure A.6. Static Recipient List Pattern

Example ServiceMix EIP route

Example A.16, “ServiceMix EIP Static Recipient List” shows how to define a static recipient list using the
ServiceMix EIP component. Incoming messages are copied to the test:messageFilter endpoint and
to the test:trace4 endpoint.

Example A.16. ServiceMix EIP Static Recipient List

Equivalent Apache Camel XML route

Example A.17, “Apache Camel Static Recipient List Using XML” shows how to define an equivalent route
using Apache Camel XML configuration.

Example A.17. Apache Camel Static Recipient List Using XML

<eip:static-recipient-list service="test:recipients"
 endpoint="endpoint">
 <eip:recipients>
 <eip:exchange-target service="test:messageFilter" />
 <eip:exchange-target service="test:trace4" />
 </eip:recipients>
</eip:static-recipient-list>

<route>
 <from
uri="jbi:endpoint:http://progress.com/demos/test/recipients/endpoint"/>
 <to uri="jbi:service:http://progress.com/demos/test/messageFilter"/>

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

258

NOTE

The preceding route configuration appears to have the same syntax as a Apache Camel
pipeline pattern. The key difference is that the preceding route is intended for processing
InOnly message exchanges, which are processed in a different way. See Section 4.4,
“Pipes and Filters” for more details.

Equivalent Apache Camel Java DSL route

Example A.18, “Apache Camel Static Recipient List Using Java DSL” shows how to define an equivalent
route using the Apache Camel Java DSL.

Example A.18. Apache Camel Static Recipient List Using Java DSL

A.10. STATIC ROUTING SLIP

Overview

The static routing slip pattern in the ServiceMix EIP component is used to route an InOut message
exchange through a series of endpoints. Semantically, it is equivalent to the pipeline pattern in Apache
Camel.

Example ServiceMix EIP route

Example A.19, “ServiceMix EIP Static Routing Slip” shows how to define a static routing slip using the
ServiceMix EIP component. Incoming messages pass through each of the endpoints, test:procA,
test:procB, and test:procC, where the output of each endpoint is connected to the input of the next
endpoint in the chain. The final endpoint, test:procC, sends its output (Out message) back to the
caller.

Example A.19. ServiceMix EIP Static Routing Slip

 <to uri="jbi:service:http://progress.com/demos/test/trace4"/>
</route>

from("jbi:endpoint:http://progress.com/demos/test/recipients/endpoint").
 to("jbi:service:http://progress.com/demos/test/messageFilter",
"jbi:service:http://progress.com/demos/test/trace4");

<eip:static-routing-slip service="test:routingSlip"
 endpoint="endpoint">
 <eip:targets>
 <eip:exchange-target service="test:procA" />
 <eip:exchange-target service="test:procB" />
 <eip:exchange-target service="test:procC" />
 </eip:targets>
</eip:static-routing-slip>

APPENDIX A. MIGRATING FROM SERVICEMIX EIP

259

Equivalent Apache Camel XML route

Example A.20, “Apache Camel Static Routing Slip Using XML” shows how to define an equivalent route
using Apache Camel XML configuration.

Example A.20. Apache Camel Static Routing Slip Using XML

Equivalent Apache Camel Java DSL route

Example A.21, “Apache Camel Static Routing Slip Using Java DSL” shows how to define an equivalent
route using the Apache Camel Java DSL.

Example A.21. Apache Camel Static Routing Slip Using Java DSL

A.11. WIRE TAP

Overview

The wire tap pattern, shown in Figure A.7, “Wire Tap Pattern”, allows you to route messages to a
separate tap location before it is forwarded to the ultimate destination. The ServiceMix EIP wire tap
pattern maps to the wire tap pattern in Apache Camel.

Figure A.7. Wire Tap Pattern

<route>
 <from
uri="jbi:endpoint:http://progress.com/demos/test/routingSlip/endpoint"/>
 <to uri="jbi:service:http://progress.com/demos/test/procA"/>
 <to uri="jbi:service:http://progress.com/demos/test/procB"/>
 <to uri="jbi:service:http://progress.com/demos/test/procC"/>
</route>

from("jbi:endpoint:http://progress.com/demos/test/routingSlip/endpoint")
.
 pipeline("jbi:service:http://progress.com/demos/test/procA",
 "jbi:service:http://progress.com/demos/test/procB",
 "jbi:service:http://progress.com/demos/test/procC");

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

260

Example ServiceMix EIP route

Example A.22, “ServiceMix EIP Wire Tap” shows how to define a wire tap using the ServiceMix EIP
component. The In message from the source endpoint is copied to the In-listener endpoint, before being
forwarded on to the target endpoint. If you want to monitor any returned Out messages or Fault
messages from the target endpoint, you also must define an Out listener (using the eip:outListner
element) and a Fault listener (using the eip:faultListener element).

Example A.22. ServiceMix EIP Wire Tap

Equivalent Apache Camel XML route

Example A.23, “Apache Camel Wire Tap Using XML” shows how to define an equivalent route using
Apache Camel XML configuration.

Example A.23. Apache Camel Wire Tap Using XML

Equivalent Apache Camel Java DSL route

Example A.24, “Apache Camel Wire Tap Using Java DSL” shows how to define an equivalent route
using the Apache Camel Java DSL.

Example A.24. Apache Camel Wire Tap Using Java DSL

A.12. XPATH SPLITTER

Overview

<eip:wire-tap service="test:wireTap" endpoint="endpoint">
 <eip:target>
 <eip:exchange-target service="test:target" />
 </eip:target>
 <eip:inListener>
 <eip:exchange-target service="test:trace1" />
 </eip:inListener>
</eip:wire-tap>

<route>
 <from
uri="jbi:endpoint:http://progress.com/demos/test/wireTap/endpoint"/>
 <to uri="jbi:service:http://progress.com/demos/test/trace1"/>
 <to uri="jbi:service:http://progress.com/demos/test/target"/>
</route>

from("jbi:endpoint:http://progress.com/demos/test/wireTap/endpoint")
 .to("jbi:service:http://progress.com/demos/test/trace1",
 "jbi:service:http://progress.com/demos/test/target");

APPENDIX A. MIGRATING FROM SERVICEMIX EIP

261

A splitter, shown in Figure A.8, “XPath Splitter Pattern”, is a type of router that splits an incoming
message into a series of outgoing messages, where each of the messages contains a piece of the
original message. The ServiceMix EIP XPath splitter pattern is restricted to using the InOnly and
RobustInOnly exchange patterns. The expression that defines how to split up the original message is
defined in the XPath language. The XPath splitter pattern maps to the splitter pattern in Apache Camel.

Figure A.8. XPath Splitter Pattern

Forwarding NMR attachments and properties

The eip:xpath-splitter element supports a forwardAttachments attribute and a
forwardProperties attribute, either of which can be set to true, if you want the splitter to copy the
incoming message's attachments or properties to the outgoing messages. The corresponding splitter
pattern in Apache Camel does not support any such attributes. By default, the incoming message's
headers are copied to each of the outgoing messages by the Apache Camel splitter.

Example ServiceMix EIP route

Example A.25, “ServiceMix EIP XPath Splitter” shows how to define a splitter using the ServiceMix EIP
component. The specified XPath expression, /*/*, causes an incoming message to split at every
occurrence of a nested XML element (for example, the /foo/bar and /foo/car elements are split into
distinct messages).

Example A.25. ServiceMix EIP XPath Splitter

Equivalent Apache Camel XML route

Example A.26, “Apache Camel XPath Splitter Using XML” shows how to define an equivalent route using
Apache Camel XML configuration.

Example A.26. Apache Camel XPath Splitter Using XML

<eip:xpath-splitter service="test:xpathSplitter"
 endpoint="endpoint"
 xpath="/*/*"
 namespaceContext="#nsContext">
 <eip:target>
 <eip:exchange-target uri="service:http://test/router" />
 </eip:target>
</eip:xpath-splitter>

<route>
 <from

Red Hat JBoss Fuse 6.0 Implementing Enterprise Integration Patterns

262

Equivalent Apache Camel Java DSL route

Example A.27, “Apache Camel XPath Splitter Using Java DSL” shows how to define an equivalent route
using the Apache Camel Java DSL.

Example A.27. Apache Camel XPath Splitter Using Java DSL

INDEX
P

performer, Overview

W

wire tap pattern, System Management

uri="jbi:endpoint:http://progress.com/demos/test/xpathSplitter/endpoint"
/>
 <splitter>
 <xpath>/*/*</xpath>
 <to uri="jbi:service:http://test/router"/>
 </splitter>
</route>

from("jbi:endpoint:http://progress.com/demos/test/xpathSplitter/endpoint
").
 splitter(xpath("/*/*")).to("jbi:service:http://test/router");

INDEX

263

	Table of Contents
	CHAPTER 1. BUILDING BLOCKS FOR ROUTE DEFINITIONS
	1.1. IMPLEMENTING A ROUTEBUILDER CLASS
	Overview
	RouteBuilder classes
	Implementing a RouteBuilder

	1.2. BASIC JAVA DSL SYNTAX
	What is a DSL?
	Router rule syntax
	Consumers and producers
	Exchanges
	Message exchange patterns
	Grouped exchanges
	Processors
	Expressions and predicates

	1.3. ROUTER SCHEMA IN A SPRING XML FILE
	Namespace
	Specifying the schema location
	Runtime schema location
	Using an XML editor

	1.4. ENDPOINTS
	Overview
	Endpoint URIs
	Apache Camel components
	Consumer endpoints
	Producer endpoints
	Specifying time periods in a URI

	1.5. PROCESSORS
	Overview
	Some sample processors
	Choice
	Filter
	Throttler
	Custom processor

	CHAPTER 2. BASIC PRINCIPLES OF ROUTE BUILDING
	2.1. PIPELINE PROCESSING
	Overview
	Processor nodes
	Pipeline for InOnly exchanges
	Pipeline for InOut exchanges
	Pipeline for InOptionalOut exchanges

	2.2. MULTIPLE INPUTS
	Overview
	Multiple independent inputs
	Segmented routes
	Direct endpoints
	SEDA endpoints
	VM endpoints
	Content enricher pattern

	2.3. EXCEPTION HANDLING
	2.3.1. onException Clause
	Overview
	Trapping exceptions using onException
	Java DSL example
	XML DSL example
	Trapping multiple exceptions
	Deadletter channel
	Use original message
	Redelivery policy
	Conditional trapping
	Handling exceptions
	Suppressing exception rethrow
	Continuing processing
	Sending a response
	Exception thrown while handling an exception
	Scopes
	Route scope

	2.3.2. Error Handler
	Overview
	Java DSL example
	XML DSL example
	Types of error handler

	2.3.3. doTry, doCatch, and doFinally
	Overview
	Similarities between doCatch and Java catch
	Special features of doCatch
	Example
	Rethrowing exceptions in doCatch
	Conditional exception catching using onWhen

	2.3.4. Propagating SOAP Exceptions
	Overview
	How to propagate stack trace information

	2.4. BEAN INTEGRATION
	Overview
	Bean registry
	Registry plug-in strategy
	Accessing a bean created in Java
	Accessing overloaded bean methods
	Specify parameters explicitly
	Basic method signatures
	Method signature for processing message bodies
	Method signature for processing exchanges
	Accessing a bean created in Spring XML
	Parameter binding annotations
	Basic annotations
	Expression language annotations
	Inherited annotations
	Interface implementations
	Invoking static methods
	Invoking an OSGi service

	2.5. ASPECT ORIENTED PROGRAMMING
	Overview
	Java DSL example
	AOP options in the Java DSL
	Spring XML example
	AOP options in the Spring XML

	2.6. TRANSFORMING MESSAGE CONTENT
	Overview
	Simple transformations
	ProcessorDefinition class
	Builder class
	ValueBuilder class
	Marshalling and unmarshalling

	2.7. PROPERTY PLACEHOLDERS
	Overview
	Property files
	Resolving properties
	Specifying locations using system properties and environment variables
	Configuring the properties component
	Placeholder syntax
	Substitution in endpoint URIs
	Substitution in Spring XML files
	Substitution of XML DSL attribute values
	Substitution of Java DSL EIP options
	Substitution in Simple language expressions
	Integration with OSGi blueprint property placeholders
	Implicit blueprint integration
	Explicit blueprint integration
	Integration with Spring property placeholders

	2.8. THREADING MODEL
	Java thread pool API
	Apache Camel thread pool API
	Component threading model
	Processor threading model
	Creating a default thread pool
	Default thread pool profile settings
	Changing the default thread pool profile
	Customizing a processor's thread pool
	Creating a custom thread pool
	Creating a custom thread pool profile
	Sharing a thread pool between components

	2.9. CONTROLLING START-UP AND SHUTDOWN OF ROUTES
	Overview
	Setting the route ID
	Disabling automatic start-up of routes
	Manually starting and stopping routes
	Startup order of routes
	Shutdown sequence
	Shutdown order of routes
	Shutting down running tasks in a route
	Shutdown timeout
	Integration with custom components

	2.10. SCHEDULED ROUTE POLICY
	2.10.1. Overview of Scheduled Route Policies
	Overview
	Scheduling tasks
	Quartz component

	2.10.2. Simple Scheduled Route Policy
	Overview
	Dependency
	Java DSL example
	XML DSL example
	Defining dates and times
	Graceful shutdown
	Scheduling tasks
	Starting a route
	Stopping a route
	Suspending a route
	Resuming a route

	2.10.3. Cron Scheduled Route Policy
	Overview
	Dependency
	Java DSL example
	XML DSL example
	Defining cron expressions
	Scheduling tasks
	Starting a route
	Stopping a route
	Suspending a route
	Resuming a route

	2.11. JMX NAMING
	Overview
	Default naming strategy
	Customising the JMX naming strategy
	Specifying a name pattern in Java
	Specifying a name pattern in XML
	Name pattern tokens
	Examples
	Ambiguous names

	CHAPTER 3. INTRODUCING ENTERPRISE INTEGRATION PATTERNS
	3.1. OVERVIEW OF THE PATTERNS
	Enterprise Integration Patterns book
	Messaging systems
	Messaging channels
	Message construction
	Message routing
	Message transformation
	Messaging endpoints
	System management

	CHAPTER 4. MESSAGING SYSTEMS
	4.1. MESSAGE
	Overview
	Types of message
	Message structure
	Correlating messages
	Exchange objects
	Accessing messages

	4.2. MESSAGE CHANNEL
	Overview
	Message-oriented components
	ActiveMQ
	JMS
	AMQP

	4.3. MESSAGE ENDPOINT
	Overview
	Types of endpoint
	Endpoint URIs

	4.4. PIPES AND FILTERS
	Overview
	Pipeline for the InOut exchange pattern
	Pipeline for the InOnly and RobustInOnly exchange patterns
	Comparison of pipeline() and to() DSL commands

	4.5. MESSAGE ROUTER
	Overview
	Java DSL example
	XML configuration example
	Choice without otherwise

	4.6. MESSAGE TRANSLATOR
	Overview
	Bean integration

	CHAPTER 5. MESSAGING CHANNELS
	5.1. POINT-TO-POINT CHANNEL
	Overview
	Components that support point-to-point channel
	JMS
	ActiveMQ
	SEDA
	JPA
	XMPP

	5.2. PUBLISH-SUBSCRIBE CHANNEL
	Overview
	Components that support publish-subscribe channel
	JMS
	ActiveMQ
	XMPP
	Static subscription lists
	Java DSL example
	XML configuration example

	5.3. DEAD LETTER CHANNEL
	Overview
	Creating a dead letter channel in Java DSL
	XML DSL example
	Redelivery policy
	Redelivery headers
	Using the original message
	Redeliver delay pattern
	Which endpoint failed?
	onRedelivery processor
	onException clause

	5.4. GUARANTEED DELIVERY
	Overview
	Components that support guaranteed delivery
	JMS
	ActiveMQ
	ActiveMQ Journal

	5.5. MESSAGE BUS
	Overview

	CHAPTER 6. MESSAGE CONSTRUCTION
	6.1. CORRELATION IDENTIFIER
	Overview

	6.2. EVENT MESSAGE
	Event Message
	Explicitly specifying InOnly

	6.3. RETURN ADDRESS
	Return Address
	Example

	CHAPTER 7. MESSAGE ROUTING
	7.1. CONTENT-BASED ROUTER
	Overview
	Java DSL example
	XML configuration example

	7.2. MESSAGE FILTER
	Overview
	Java DSL example
	XML configuration example
	Filtering with beans
	Using stop()
	Knowing if Exchange was filtered or not

	7.3. RECIPIENT LIST
	Overview
	Recipient list with fixed destinations
	Java DSL example
	XML configuration example
	Recipient list calculated at run time
	Java DSL example
	XML configuration example
	Sending to multiple recipients in parallel
	Stop on exception
	Ignore invalid endpoints
	Using custom AggregationStrategy
	Using custom thread pool
	Using method call as recipient list
	Bean as recipient list
	Using timeout
	Apply custom processing to the outgoing messages
	Options

	7.4. SPLITTER
	Overview
	Java DSL example
	XML configuration example
	Splitting into groups of lines
	Splitter reply
	Parallel execution
	Using a bean to perform splitting
	Exchange properties
	Splitter/aggregator pattern
	Java DSL example
	AggregationStrategy implementation
	Stream based processing
	Stream based processing with XML
	Options

	7.5. AGGREGATOR
	Overview
	How the aggregator works
	Java DSL example
	XML DSL example
	Specifying the correlation expression
	Specifying the aggregation strategy
	Implementing a custom aggregation strategy
	Exchange properties
	Specifying a completion condition
	Specifying the completion predicate
	Specifying a dynamic completion timeout
	Specifying a dynamic completion size
	Forcing completion with a special message
	Enforcing unique correlation keys
	Grouped exchanges
	Batch consumer
	Persistent aggregation repository
	Threading options
	Aggregator options

	7.6. RESEQUENCER
	Overview
	Batch resequencing
	Batch options
	Stream resequencing
	Ignore invalid exchanges

	7.7. ROUTING SLIP
	Overview
	The slip header
	The current endpoint property
	Java DSL example
	XML configuration example
	Ignore invalid endpoints
	Options

	7.8. THROTTLER
	Overview
	Java DSL example
	XML configuration example
	Dynamically changing maximum requests per period
	Asynchronous delaying
	Options

	7.9. DELAYER
	Overview
	Java DSL example
	XML configuration example
	Creating a custom delay
	Asynchronous delaying
	Options

	7.10. LOAD BALANCER
	Overview
	Java DSL example
	XML configuration example
	Load-balancing policies
	Round robin
	Random
	Sticky
	Topic
	Failover
	Weighted round robin and weighted random
	Custom Load Balancer

	7.11. MULTICAST
	Overview
	Multicast with a custom aggregation strategy
	Parallel processing
	XML configuration example
	Apply custom processing to the outgoing messages
	Using onPrepare to execute custom logic when preparing messages
	Options

	7.12. COMPOSED MESSAGE PROCESSOR
	Composed Message Processor
	Java DSL example
	XML DSL example
	Processing steps

	7.13. SCATTER-GATHER
	Scatter-Gather
	Dynamic scatter-gather example
	Static scatter-gather example

	7.14. LOOP
	Loop
	Exchange properties
	Java DSL examples
	XML configuration example
	Using copy mode
	Options

	7.15. SAMPLING
	Sampling Throttler
	Java DSL example
	Spring XML example
	Options

	7.16. DYNAMIC ROUTER
	Dynamic Router
	Dynamic Router in Camel 2.5 onwards
	Java DSL
	Spring XML
	Options
	@DynamicRouter annotation

	CHAPTER 8. MESSAGE TRANSFORMATION
	8.1. CONTENT ENRICHER
	Overview
	Models of content enrichment
	Content enrichment using enrich()
	Spring XML enrich example
	Default aggregation strategy
	Enrich Options
	Content enrich using pollEnrich
	Polling methods used by pollEnrich()
	pollEnrich example
	PollEnrich Options

	8.2. CONTENT FILTER
	Overview
	Implementing a content filter
	XML configuration example
	Using an XPath filter

	8.3. NORMALIZER
	Overview
	Java DSL example
	XML configuration example

	8.4. CLAIM CHECK
	Claim Check
	Java DSL example
	XML DSL example
	checkLuggage bean
	testCheckpoint endpoint
	dataEnricher bean

	8.5. SORT
	Sort
	Java DSL example
	XML configuration example
	Options

	8.6. VALIDATE
	Overview
	Java DSL example
	XML DSL example

	CHAPTER 9. MESSAGING ENDPOINTS
	9.1. MESSAGING MAPPER
	Overview
	Finding objects to map

	9.2. EVENT DRIVEN CONSUMER
	Overview

	9.3. POLLING CONSUMER
	Overview
	Scheduled poll consumer
	Quartz component

	9.4. COMPETING CONSUMERS
	Overview
	JMS based competing consumers
	SEDA based competing consumers

	9.5. MESSAGE DISPATCHER
	Overview
	JMS selectors
	JMS selectors in ActiveMQ
	Content-based router

	9.6. SELECTIVE CONSUMER
	Overview
	JMS selector
	JMS selector in ActiveMQ
	Message filter

	9.7. DURABLE SUBSCRIBER
	Overview
	JMS durable subscriber
	Alternative example

	9.8. IDEMPOTENT CONSUMER
	Overview
	Idempotent consumer with in-memory cache
	Idempotent consumer with JPA repository
	Spring XML example
	Idempotent consumer with JDBC repository
	How to handle duplicate messages in the route
	How to handle duplicate message in a clustered environment with a data grid
	Options

	9.9. TRANSACTIONAL CLIENT
	Overview
	Transaction oriented endpoints
	References

	9.10. MESSAGING GATEWAY
	Overview

	9.11. SERVICE ACTIVATOR
	Overview
	Bean integration

	CHAPTER 10. SYSTEM MANAGEMENT
	10.1. DETOUR
	Detour
	Example

	10.2. LOGEIP
	Overview
	Java DSL example
	XML DSL example

	10.3. WIRE TAP
	Wire Tap
	WireTap node
	Tap a copy of the original exchange
	Tap and modify a copy of the original exchange
	Tap a new exchange instance
	Sending a new Exchange and set headers in DSL
	Java DSL
	XML DSL
	Using onPrepare to execute custom logic when preparing messages
	Options

	APPENDIX A. MIGRATING FROM SERVICEMIX EIP
	A.1. MIGRATING ENDPOINTS
	Overview
	The ServiceMix Camel module
	Translating ServiceMix URIs into Apache Camel endpoint URIs
	Example of mapping ServiceMix URIs
	Replacing ServiceMix bindings with Apache Camel components

	A.2. COMMON ELEMENTS
	Overview
	Exchange target
	Predicates
	Namespace contexts

	A.3. SERVICEMIX EIP PATTERNS
	A.4. CONTENT-BASED ROUTER
	Overview
	Example ServiceMix EIP route
	Equivalent Apache Camel XML route
	Equivalent Apache Camel Java DSL route

	A.5. CONTENT ENRICHER
	Overview
	Example ServiceMix EIP route
	Equivalent Apache Camel XML route
	Equivalent Apache Camel Java DSL route

	A.6. MESSAGE FILTER
	Overview
	Example ServiceMix EIP route
	Equivalent Apache Camel XML route
	Equivalent Apache Camel Java DSL route

	A.7. PIPELINE
	Overview
	Example ServiceMix EIP route
	Equivalent Apache Camel XML route
	Equivalent Apache Camel Java DSL route

	A.8. RESEQUENCER
	Overview
	Sequence number property
	Example ServiceMix EIP route
	Equivalent Apache Camel XML route
	Equivalent Apache Camel Java DSL route

	A.9. STATIC RECIPIENT LIST
	Overview
	Example ServiceMix EIP route
	Equivalent Apache Camel XML route
	Equivalent Apache Camel Java DSL route

	A.10. STATIC ROUTING SLIP
	Overview
	Example ServiceMix EIP route
	Equivalent Apache Camel XML route
	Equivalent Apache Camel Java DSL route

	A.11. WIRE TAP
	Overview
	Example ServiceMix EIP route
	Equivalent Apache Camel XML route
	Equivalent Apache Camel Java DSL route

	A.12. XPATH SPLITTER
	Overview
	Forwarding NMR attachments and properties
	Example ServiceMix EIP route
	Equivalent Apache Camel XML route
	Equivalent Apache Camel Java DSL route

	INDEX

