& RedHat

Red Hat JBoss Enterprise Application
Platform 7.4

Using JBoss EAP XP 4.0.0

For Use with JBoss EAP XP 4.0.0

Last Updated: 2024-02-08

Red Hat JBoss Enterprise Application Platform 7.4 Using JBoss EAP XP
4.0.0

For Use with JBoss EAP XP 4.0.0

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document provides general information about using MicroProfile in JBoss EAP XP 4.0.0.

Table of Contents

Table of Contents

MAKING OPEN SOURCE MORE INCLUSIVE ... ittt et ie e e eniieeenannnneennns 7
PROVIDING FEEDBACK ON JBOSS EAP DOCUMENTATION ... it eeiiieeans 8
CHAPTER 1. JBOSS EAP XP FOR THE LATEST MICROPROFILE CAPABILITIEScciiiiiiiieiinnnn. 9
11. ABOUT JBOSS EAP XP 9
1.2. JBOSS EAP XP INSTALLATION 9
1.3. JBOSS EAP XP MANAGER 10
1.4. JBOSS EAP XP MANAGER 4.0 COMMANDS 10
1.5. INSTALLING JBOSS EAP XP 4.0.0 ON JBOSS EAP 7.4.X 13
1.6. UNINSTALLING JBOSS EAP XP 14
1.7. VIEWING THE STATUS OF JBOSS EAP XP 14
1.8. ROLLING BACK JBOSS EAP XP AND JBOSS EAP 7.4 X BASE PATCHES 15
CHAPTER 2. UNDERSTAND MICROPROFILE ... ittt ettt ettt eeenneenannns 16
2.1. MICROPROFILE CONFIG 16
2.1.1. MicroProfile Config in JBoss EAP 16
2.1.2. MicroProfile Config sources supported in MicroProfile Config 16

2.2. MICROPROFILE FAULT TOLERANCE 17
2.2.1. About MicroProfile Fault Tolerance specification 17
2.2.2. MicroProfile Fault Tolerance in JBoss EAP 17

2.3. MICROPROFILE HEALTH 18
2.3.1. MicroProfile Health in JBoss EAP 18

2.4. MICROPROFILE UWT 19
2.4.1. MicroProfile JWT integration in JBoss EAP 19
2.4.2. Differences between a traditional deployment and an MicroProfile JWT deployment 20
2.4.3. MicroProfile JWT activation in JBoss EAP 20
2.4.4. Limitations of MicroProfile JWT in JBoss EAP 20

2.5. MICROPROFILE METRICS 20
2.5.1. MicroProfile Metrics in JBoss EAP 21

2.6. MICROPROFILE OPENAPI 21
2.6.1. MicroProfile OpenAPl in JBoss EAP 21

2.7. MICROPROFILE OPENTRACING 21
2.7.1. MicroProfile OpenTracing 21
2.7.2. MicroProfile OpenTracing in JBoss EAP 22

2.8. MICROPROFILE REST CLIENT 23
2.8.1. MicroProfile REST client 23
2.8.2. The resteasy.original.webapplicationexception.behavior MicroProfile Config property 23
Defining the resteasy.original.webapplicationexception.behavior MicroProfile Config property 24

2.9. MICROPROFILE REACTIVE MESSAGING 24
2.9.1. MicroProfile reactive messaging 24
2.9.2. MicroProfile reactive messaging connectors 25
The Apache Kafka connector and incorporated layers 25

2.9.3. The Apache Kafka event streaming platform 25
CHAPTER 3. ADMINISTER MICROPROFILEIN JBOSS EAP ..ttt ittt eeennieeennnn, 27
3.1. MICROPROFILE OPENTRACING ADMINISTRATION 27
3.1.1. Enabling MicroProfile Open Tracing 27
3.1.2. Removing the microprofile-opentracing-smallrye subsystem 27
3.1.3. Installing Jaeger 27

3.2. MICROPROFILE CONFIG CONFIGURATION 28
3.2.1. Adding properties in a ConfigSource management resource 28

CHAPTER 4. DEVELOP MICROPROFILE APPLICATIONS FOR JBOSS EAP

Red Hat JBoss Enterprise Application Platform 7.4 Using JBoss EAP XP 4.0.0

3.2.2. Configuring directories as ConfigSources
3.2.3. Obtaining ConfigSource from a ConfigSource class
3.2.4. Obtaining ConfigSource configuration from a ConfigSourceProvider class
3.3. MICROPROFILE FAULT TOLERANCE CONFIGURATION
3.3.1. Adding the MicroProfile Fault Tolerance extension
3.4. MICROPROFILE HEALTH CONFIGURATION
3.4.1. Examining health using the management CLI
3.4.2. Examining health using the management console
3.4.3. Examining health using the HTTP endpoint
3.4.4. Enabling authentication for MicroProfile Health
3.4.5. Readiness probes that determine server health and readiness
3.4.6. Global status when probes are not defined
3.5. MICROPROFILE JWT CONFIGURATION
3.5.1. Enabling microprofile-jwt-smallrye subsystem
3.6. MICROPROFILE METRICS ADMINISTRATION
3.6.1. Metrics available on the management interface
3.6.2. Examining metrics using the HTTP endpoint
3.6.3. Enabling Authentication for the MicroProfile Metrics HTTP Endpoint
3.6.4. Obtaining the request count for a web service
3.7. MICROPROFILE OPENAPI ADMINISTRATION
3.7.1. Enabling MicroProfile OpenAPI
3.7.2. Requesting an MicroProfile OpenAPI document using Accept HTTP header
3.7.3. Requesting an MicroProfile OpenAPI document using an HTTP parameter
3.7.4. Configuring JBoss EAP to serve a static OpenAPI document
3.7.5. Disabling microprofile-openapi-smallrye
3.8. MICROPROFILE REACTIVE MESSAGING ADMINISTRATION

3.8.1. Configuring the required MicroProfile reactive messaging extension and subsystem for JBoss EAP

3.9. STANDALONE SERVER CONFIGURATION
3.9.1. Standalone server configuration files

3.9.2. Updating standalone configurations with MicroProfile subsystems and extensions

4.1. MAVEN AND THE JBOSS EAP MICROPROFILE MAVEN REPOSITORY

4.1.1. Downloading the JBoss EAP MicroProfile Maven repository patch as an archive file
4.1.2. Applying the JBoss EAP MicroProfile Maven repository patch on your local system

4.1.3. Supported JBoss EAP MicroProfile BOM
4.1.4. Using the JBoss EAP MicroProfile Maven repository
4.2. MICROPROFILE CONFIG DEVELOPMENT
4.2.1. Creating a Maven project for MicroProfile Config
4.2.2. Using MicroProfile Config property in an application
4.3. MICROPROFILE FAULT TOLERANCE APPLICATION DEVELOPMENT
4.3.1. Adding the MicroProfile Fault Tolerance extension
4.3.2. Configuring Maven project for MicroProfile Fault Tolerance
4.3.3. Creating a fault tolerant application
4.4, MICROPROFILE HEALTH DEVELOPMENT
4.4.1. The custom health check example
4.4.2. The @Liveness annotation example
4.4.3. The @Readiness annotation example
4.4.4. The @Startup annotation example
4.5. MICROPROFILE JWT APPLICATION DEVELOPMENT
4.5.1. Enabling microprofile-jwt-smallrye subsystem
4.5.2. Configuring Maven project for developing JWT applications
4.5.3. Creating an application with MicroProfile JWT

28
29
29
30
30
30

31

31

31

31
32
33
34
34
34
34
35
35
35
36
36
37
37
38
38
39
39
40
40

41

43
43
43
43
44
45
46
46
47
49
49
50

51
54
54
55
56
57
57
57
57
58

Table of Contents

4.6. MICROPROFILE METRICS DEVELOPMENT 63
4.6.1. Creating an MicroProfile Metrics application 63
4.7. DEVELOPING AN MICROPROFILE OPENAPI APPLICATION 64
4.7.1. Enabling MicroProfile OpenAPI 64
4.7.2. Configuring Maven project for MicroProfile OpenAPI 65
4.7.3. Creating an MicroProfile OpenAPI application 67
4.7.4. Configuring JBoss EAP to serve a static OpenAPIl document 71
4.8. MICROPROFILE REST CLIENT DEVELOPMENT 71
4.8.1. A comparison of MicroProfile REST client and Jakarta RESTful Web Services syntaxes 72
4.8.2. Programmatic registration of providers in MicroProfile REST client 73
4.8.3. Declarative registration of providers in MicroProfile REST client 73
4.8.4. Declarative specification of headers in MicroProfile REST client 73
4.8.5. ResponseExceptionMapper in MicroProfile REST client 74
4.8.6. Context dependency injection with MicroProfile REST client 74

CHAPTER 5. BUILD AND RUN MICROSERVICES APPLICATIONS ON THE OPENSHIFT IMAGE FOR JBOSS

[AP 76
5.1. PREPARING OPENSHIFT FOR APPLICATION DEPLOYMENT 76
5.2. CONFIGURING AUTHENTICATION TO THE RED HAT CONTAINER REGISTRY 77
5.3. IMPORTING THE LATEST OPENSHIFT IMAGESTREAMS AND TEMPLATES FOR JBOSS EAP XP 77
5.4. DEPLOYING A JBOSS EAP XP SOURCE-TO-IMAGE (S2I) APPLICATION ON OPENSHIFT 78
5.5. COMPLETING POST-DEPLOYMENT TASKS FOR JBOSS EAP XP SOURCE-TO-IMAGE (S2I)
APPLICATION 80

CHAPTER 6. CAPABILITY TRIMMING ...ttt ittt et et e et eaeeenneennnenaneenn, 82
6.1. AVAILABLE JBOSS EAP LAYERS 82

6.1.1. Base layers 82
datasources-web-server 82
jaxrs-server 83
cloud-server 83

6.1.2. Decorator layers 83
ejb—lite 84
Jakarta Enterprise Beans 84
ejb-local-cache 84
ejb-dist-cache 84
jdr 84
Jakarta Persistence 85
jpa-distributed 85
Jakarta Server Faces 85
microprofile-platform 85
observability 86
remote-activemq 86
Sso 86
web-console 86
web-clustering 86
web-passivation 86
webservices 87

CHAPTER 7. ENABLE MICROPROFILE APPLICATION DEVELOPMENT FOR JBOSS EAP ON RED HAT

CODEREADY STUDIO .o i i i i e i ettt iai e 88
7.1. CONFIGURING CODEREADY STUDIO TO USE MICROPROFILE CAPABILITIES 88
7.2. USING MICROPROFILE QUICKSTARTS FOR CODEREADY STUDIO 89

CHAPTER 8. THE BOOTABLE JAR ... i i i e e i it et 91

Red Hat JBoss Enterprise Application Platform 7.4 Using JBoss EAP XP 4.0.0

8.1. ABOUT THE BOOTABLE JAR 91
8.2. JBOSS EAP MAVEN PLUG-IN 91
8.3.BOOTABLE JAR ARGUMENTS 92
8.4. SPECIFYING GALLEON LAYERS FOR YOUR BOOTABLE JAR SERVER 94
8.5. USING A BOOTABLE JAR ON A JBOSS EAP BARE-METAL PLATFORM 96
8.6. CREATING A HOLLOW BOOTABLE JAR ON A JBOSS EAP BARE-METAL PLATFORM 99
8.7. CLISCRIPTS EXECUTED AT BUILD TIME 101
8.8. EXECUTING CLI SCRIPT AT RUNTIME 102
8.9. USING A BOOTABLE JAR ON A JBOSS EAP OPENSHIFT PLATFORM 103
8.10. CONFIGURE THE BOOTABLE JAR FOR OPENSHIFT 106
8.11. USING A CONFIGMAP IN YOUR APPLICATION ON OPENSHIFT 107
8.12. CREATING A BOOTABLE JAR MAVEN PROJECT 109
8.13. ENABLING JSON LOGGING FOR YOUR BOOTABLE JAR m
8.14. ENABLING WEB SESSION DATA STORAGE FOR MULTIPLE BOOTABLE JAR INSTANCES 116
8.15. ENABLING HTTP AUTHENTICATION FOR BOOTABLE JAR WITH A CLI SCRIPT 122
8.16. SECURING YOUR JBOSS EAP BOOTABLE JAR APPLICATION WITH RED HAT SINGLE SIGN-ON 126
8.17. PACKAGING A BOOTABLE JAR IN DEV MODE 132
8.18. UPGRADING SERVER ARTIFACTS 133
8.19. UPDATING EAP 7.4.GA DEPENDENCY 134
8.20. APPLYING THE JBOSS EAP PATCH TO YOUR BOOTABLE JAR 135
CHAPTER 9. OPENID CONNECT IN JUBOSS EAP ...ttt ittt eit et eeienneeaneeeaneennneenn 137
9.1. OPENID CONNECT CONFIGURATION IN JBOSS EAP 137
Deployment configuration 137
Subsystem configuration 138
9.2. ENABLING THE ELYTRON-OIDC-CLIENT SUBSYSTEM 139
9.3. SECURING APPLICATIONS USING OPENID CONNECT WITH RED HAT SINGLE SIGN-ON 140
9.3.1. Configuring Red Hat Single Sign-On as an OpenlD provider 140
9.3.2. Configuring a Maven project for creating a secure application 142
9.3.3. Creating a secure application that uses OpenlID Connect 144
9.3.4. Restricting access to applications based on user roles 147
9.3.5. Creating and assigning user roles in Red Hat Single Sign-On 148
9.4. DEVELOPING JBOSS EAP BOOTABLE JAR APPLICATION WITH OPENID CONNECT 149
9.4.1. Configuring Red Hat Single Sign-On as an OpenlD provider 150
9.4.2. Configuring a Maven project for a bootable jar OIDC application 151
9.4.3. Creating a bootable jar application that uses OpenID Connect 154
9.4.4. Restricting access based on user roles in bootable jar OIDC applications 158
9.4.5. Creating and assigning user roles in Red Hat Single Sign-On 159
CHAPTER 10. OBSERVABILITY INJBOSS EAP ..ttt it ittt et eaeeaneeeaneennneenn 161
10.1. OPENTELEMETRY IN JBOSS EAP 161
10.2. OPENTELEMETRY CONFIGURATION IN JBOSS EAP 161
10.3. OPENTELEMETRY TRACING IN JBOSS EAP 162
10.4. ENABLING OPENTELEMETRY TRACING IN JBOSS EAP 163
10.5. CONFIGURING THE OPENTELEMETRY SUBSYSTEM 163
10.6. USING JAEGER TO OBSERVE THE OPENTELEMETRY TRACES FOR AN APPLICATION 164
10.7. OPENTELEMETRY TRACING APPLICATION DEVELOPMENT 165
10.7.1. Configuring a Maven project for OpenTelemetry tracing 165
10.7.2. Creating applications that create custom spans 168
CHAPTER 1T REFERENCE ...ttt ittt ettt ettt ettt et eeaneeaneeeaneenneeeaneesaneennneenn 172
11.1. MICROPROFILE CONFIG REFERENCE 172
11.1.1. Default MicroProfile Config attributes 172
11.1.2. MicroProfile Config SmallRye ConfigSources 172

Table of Contents

11.2. MICROPROFILE FAULT TOLERANCE REFERENCE 172
11.2.1. MicroProfile Fault Tolerance configuration properties 172
11.3. MICROPROFILE JWT REFERENCE 173
11.3.1. MicroProfile Config JWT standard properties 173
11.4. MICROPROFILE OPENAPI REFERENCE 173
11.4.1. MicroProfile OpenAPI configuration properties 173
11.5. MICROPROFILE REACTIVE MESSAGING REFERENCE 175
11.5.1. MicroProfile reactive messaging connectors for integrating with external messaging systems 175
11.5.2. Example of the data exchange between reactive messaging streams and user-initialized code 176
11.5.3. The Apache Kafka user API 177
Example of how to write and read a message key 178
Example of Kafka mapping in a microprofile-config.properties file 178
11.5.4. Example MicroProfile Config properties file for the Kafka connector 179
Mandatory MicroProfile Reactive Messaging prefixes 180

11.6. OPENID CONNECT REFERENCE 181
11.6.1. elytron-oidc-client subsystem attributes 181
11.7. OPENTELEMETRY REFERENCE 193
11.7.1. OpenTelemetry subsystem attributes 193

Red Hat JBoss Enterprise Application Platform 7.4 Using JBoss EAP XP 4.0.0

MAKING OPEN SOURCE MORE INCLUSIVE

MAKING OPEN SOURCE MORE INCLUSIVE

Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright's message.

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

Red Hat JBoss Enterprise Application Platform 7.4 Using JBoss EAP XP 4.0.0

PROVIDING FEEDBACK ON JBOSS EAP DOCUMENTATION

To report an error or to improve our documentation, log in to your Red Hat Jira account and submit an
issue. If you do not have a Red Hat Jira account, then you will be prompted to create an account.

Procedure

1.

2.

3.

Click the following link to create a ticket.
Please include the Document URL, the section number and describe the issue.
Enter a brief description of the issue in the Summary.

Provide a detailed description of the issue or enhancement in the Description. Include a URL to
where the issue occurs in the documentation.

Clicking Submit creates and routes the issue to the appropriate documentation team.

https://issues.redhat.com/secure/CreateIssueDetails!init.jspa?pid=12316621&summary=(userfeedback)&issuetype=13&description=[Please+include+the+Document+URL,+the+section+number+and +describe+the+issue]&priority=3&labels=[ddf]&components=12391723&customfield_10010

CHAPTER 1. JBOSS EAP XP FOR THE LATEST MICROPROFILE CAPABILITIES

CHAPTER 1. JBOSS EAP XP FOR THE LATEST MICROPROFILE

CAPABILITIES

1.1. ABOUT JBOSS EAP XP

The MicroProfile Expansion Pack (JBoss EAP XP) is available as a patch stream, which is provided using
JBoss EAP XP manager.

NOTE

JBoss EAP XP is subject to a separate support and life cycle policy. For more details, see
the JBoss Enterprise Application Platform expansion pack Support and Life Cycle
Policies page.

The JBoss EAP XP patch provides the following MicroProfile 4.1 components:

MicroProfile Config
MicroProfile Fault Tolerance
MicroProfile Health
MicroProfile JWT
MicroProfile Metrics
MicroProfile OpenAPI
MicroProfile OpenTracing
MicroProfile REST Client

MicroProfile Reactive Messaging

NOTE

The MicroProfile Reactive Messaging subsystem supports Red Hat AMQ Streams. This
feature implements the MicroProfile Reactive Messaging 2.0.1 APl and Red Hat provides
the feature as a technology preview for JBoss EAP XP 4.0.0.

Red Hat tested Red Hat AMQ Streams 2021.Q4 on JBoss EAP. However, check the Red
Hat JBoss Enterprise Application Platform supported configurations page for information
about the latest Red Hat AMQ Streams version that has been tested on JBoss EAP

XP 4.0.0.

Technology Preview features are not supported with Red Hat production service level
agreements (SLAs) and might not be functionally complete. Red Hat does not
recommend using them in production. These features provide early access to upcoming
product features, enabling customers to test functionality and provide feedback during
the development process. For more information about the support scope of Red Hat
Technology Preview features, see Technology Preview Features Support Scope.

1.2. JBOSS EAP XP INSTALLATION

https://access.redhat.com/support/policy/updates/jboss_eap_xp_notes
https://access.redhat.com/support/offerings/techpreview

Red Hat JBoss Enterprise Application Platform 7.4 Using JBoss EAP XP 4.0.0

When you install JBoss EAP XP, make sure that the JBoss EAP XP patch is compatible with your version
of JBoss EAP. The JBoss EAP XP 4.0.x patch is compatible with the JBoss EAP 7.4 release.

NOTE

You can install JBoss EAP XP either through the XP manager and EAP archive or using
the JBoss EAP XP OpenShift Container images. You cannot install JBoss EAP XP on top
of EAP RPMs.

Additional Resources

® For more information about installing the latest JBoss EAP XP patch on the latest JBoss EAP
release, see Installing JBoss EAP XP 4.0.0 on JBoss EAP 7.4.x.

1.3. JBOSS EAP XP MANAGER

JBoss EAP XP manager is an executable jar file that you can download from the Product Downloads
page. Use JBoss EAP XP manager to apply the JBoss EAP XP patches from the JBoss EAP XP patch
stream. The patches contain the MicroProfile 4.1implementations and the bug fixes for these
MicroProfile 4.1implementations.

NOTE

You can not manage the JBoss EAP XP patches using the management console.

If you run JBoss EAP XP manager without any arguments, or with the help command, you get a list of all
the available commands with a description of what they do.

Run the manager with the help command to get more information about the arguments available.

NOTE

Most of the JBoss EAP XP manager commands take a --jposs-home argument to point
to the JBoss EAP XP server to manage the JBoss EAP XP patch stream. Specify the
path to the server in the JBOSS_HOME environment variable if you want to omit this. --
jboss-home takes precedence over the environment variable.

1.4. JBOSS EAP XP MANAGER 4.0 COMMANDS
JBoss EAP XP manager 4.0 provides different commands for managing JBoss EAP XP patch streams.

The following commands are provided:

patch-apply
Use this command to apply patches to your JBoss EAP installation.
The patch-apply command is similar to the patch apply management CLI command. The patch-
apply command accepts only those arguments that are required for applying patches using the tool.
It uses the default values for other patch apply management CLI command arguments.

You can use the patch-apply command to apply patches to any patch stream that is enabled on the

server. You can also use the command to apply both the base server patches as well as the XP
patches.

10

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html/using_jboss_eap_xp_4.0.0/jboss_eap_xp_for_the_latest_microprofile_capabilities#installing-jboss-eap-xp-on-eap_default

CHAPTER 1. JBOSS EAP XP FOR THE LATEST MICROPROFILE CAPABILITIES
Example of using the patch-apply command:

$ java -jar jposs-eap-xp-manager.jar patch-apply --jboss-home=/PATH/TO/EAP --
patch=/PATH/TO/PATCH/boss-eap-7.3.4-patch.zip

When you apply an XP patch, JBoss EAP XP manager 4.0 performs validation to prevent patch and
patch stream mismatch. The following example illustrates incorrect combinations:

® Trying to install JBoss EAP XP 3.0 patch on a server with XP 4.0 patch stream set up causes
the following error:

java.lang.lllegalStateException: The JBoss EAP XP patch stream in the patch 'jboss-eap-

xp-3.0" does not match the currently enabled JBoss EAP XP patch stream [jboss-eap-xp-
4.0]

at

org.jboss.eap.util.xp.patch.stream.manager.ManagerPatchApplyAction.doExecute(Manager
PatchApplyAction.java:33)
at

org.jboss.eap.util.xp.patch.stream.manager.ManagerAction.execute(ManagerAction.java:40)

at org.jboss.eap.util.xp.patch.stream.manager.ManagerMain.main(ManagerMain.java:50)

® Trying to install JBoss EAP XP 4.0.0 patch on a server that is not set up for JBoss EAP XP
4.0.0 patch stream causes the following error:

java.lang.lllegalStateException: You are attempting to install a patch for the 'jboss-eap-xp-
4.0' JBoss EAP XP Patch Stream. However this patch stream is not yet set up in the

JBoss EAP server. Run the 'setup’' command to enable the patch stream.
at

org.jboss.eap.util.xp.patch.stream.manager.ManagerPatchApplyAction.doExecute(Manager
PatchApplyAction.java:29)
at

org.jboss.eap.util.xp.patch.stream.manager.ManagerAction.execute(ManagerAction.java:40)
at org.jboss.eap.util.xp.patch.stream.manager.ManagerMain.main(ManagerMain.java:50)
In both the cases, no changes are made to the server.

remove

Use this command to remove the JBoss EAP XP patch stream setup from the JBoss EAP server.

Example of using the remove command
I $ java -jar jposs-eap-xp-manager.jar remove --jposs-home=/PATH/TO/EAP

setup

Use this command to set up a clean JBoss EAP server for the JBoss EAP XP patch stream.
When you use the setup command, JBoss EAP XP manager performs the following actions:

® FEnables the JBoss EAP XP 4.0.0 patch stream.

® Applies patches specified using --base-patch and --xp-patch attributes.

1

Red Hat JBoss Enterprise Application Platform 7.4 Using JBoss EAP XP 4.0.0

Copies the standalone-microprofile.xml and standalone-microprofile-ha.xml
configuration files into the server configuration directory.

If older configuration files are already installed, the new files are saved as timestamped
copies in the target configuration directory, such as standalone-microprofile-yyyyMMdd-
HHmmss.xml.

You can set the target directory using the --jboss-config-directory argument.

Example of using the setup command

I $ java -jar jposs-eap-xp-manager.jar setup --jposs-home=/PATH/TO/EAP

status

Use this command to find the current status of your JBoss EAP XP server. The status command
returns the following information:

The status of the JBoss EAP XP stream.

Any support policy changes due to being in the current state.
The major version of JBoss EAP XP.

Enabled patch streams and their cumulative patch IDs.

The available JBoss EAP XP manager commands to change the state.

Example of using the status command

I $ java -jar jposs-eap-xp-manager.jar status --jposs-home=/PATH/TO/EAP

upgrade

12

Use this command to upgrade an old JBoss EAP XP patch stream to the latest patch stream in the
JBoss EAP server.
When you use the upgrade command, JBoss EAP XP manager performs the following actions:

Creates a backup of the files enabling the old patch stream in the server.
Enables the JBoss EAP XP 4.0 patch stream.
Applies patches specified using --base-patch and --xp-patch attributes.

Copies the standalone-microprofile.xml and standalone-microprofile-ha.xml
configuration files into the server configuration directory. If older configuration files are
already installed, the new files are saved as timestamped copies in the target configuration
directory, such as standalone-microprofile-yyyyMMdd-HHmmss.xml.

If something goes wrong, JBoss EAP XP manager attempts to restore the previous patch
stream from the backup it created.
You can set the target directory using the --jboss-config-directory argument

Example of using the upgrade command:

I $ java -jar jposs-eap-xp-manager.jar upgrade --jooss-home=/PATH/TO/EAP

CHAPTER 1. JBOSS EAP XP FOR THE LATEST MICROPROFILE CAPABILITI

1.5. INSTALLING JBOSS EAP XP 4.0.0 ON JBOSS EAP 7.4.X
Install JBoss EAP XP 4.0.0 on the JBoss EAP 7.4 base server.

Use JBoss EAP XP manager 4.0.0 to manage JBoss EAP XP 4.0.0 patch streams.

NOTE

JBoss EAP XP 4.0.0 is certified with JBoss EAP 7.4 .x.

Prerequisites
® You have downloaded the following files from the Product Downloads page:
o The jboss-eap-xp-4.0.0-manager.jar file (JBoss EAP XP manager 4.0)
o JBoss EAP 7.4 server archive file

o JBoss EAP XP 4.0.0 patch

Procedure

1. Extract the downloaded JBoss EAP 7.4 server archive file to the path of your JBoss EAP
installation.

2. Setup JBoss EAP XP manager 4.0.0 to manage the JBoss EAP XP 4.0 patch stream by using
the following command:

I $ java -jar jposs-eap-xp-manager.jar setup --jposs-home=<path_to_eap>

NOTE

You can apply the JBoss EAP XP 4.0.0 patch at the same time. Include the path
to the JBoss EAP XP 4.0.0 patch by using the --xp-patch argument.

Example:

$ java -jar jposs-eap-xp-manager.jar setup --jposs-home=<path_to_eap> --xp-
patch=<path_to_patch>jboss-eap-xp-4.0.0-patch.zip

The server is now ready to manage the JBoss EAP XP 4.0.0 patch stream.

3. Optional: If you have not applied the JBoss EAP XP 4.0.0 patch to your JBoss EAP server by
using the --xp-patch argument, apply the JBoss EAP XP 4.0.0 patch by using the JBoss EAP
XP manager 4.0.0 patch-apply command:

$ java -jar jposs-eap-xp-manager.jar patch-apply --jboss-home=<path to_eap> --
patch=<path_to_patch>jboss-eap-xp-4.0.0-patch.zip

The patch-apply command is similar to the patch apply management CLI command. You can
also use the patch apply management CLI command to apply the patch.

The JBoss EAP server is now ready to manage the JBoss EAP XP 4.0.0 patch stream as you patched
the JBoss EAP server with the JBoss EAP XP 4.0.0 patch.

ES

13

Red Hat JBoss Enterprise Application Platform 7.4 Using JBoss EAP XP 4.0.0

Additional Resources

® JBoss EAP XP manager 4.0 commands

1.6. UNINSTALLING JBOSS EAP XP

Uninstalling JBoss EAP XP removes all the files related to enabling the JBoss EAP XP 4.0.0 patch
stream and the MicroProfile 4.1 functionality. The uninstallation process does not affect anything in the
base server patch stream or functionality.

NOTE

The uninstallation process does not remove any configuration files, including the ones you
added to the JBoss EAP XP patches when you enabled the JBoss EAP XP patch stream.

Procedure

e Uninstall JBoss EAP XP 4.0.0 by issuing the following command:
I $ java -jar jposs-eap-xp-manager.jar remove --jposs-home=/PATH/TO/EAP

To install MicroProfile 4.1 functionality again, run the setup command again to enable the patch stream,
and then apply JBoss EAP XP patches to add the MicroProfile 4.1 modules.

1.7. VIEWING THE STATUS OF JBOSS EAP XP
You can view the following information with the status command:

® The status of the JBoss EAP XP stream.

® Any support policy changes due to being in the current state.

® The major version of JBoss EAP XP.

® Enabled patch streams and their cumulative patch ids.

® The available JBoss EAP XP manager commands to change the state.
JBoss EAP XP can be in one of the following states:

Not set up
JBoss EAP is clean and does not have JBoss EAP XP set up.
Set up

JBoss EAP has JBoss EAP XP set up. The version of the XP patch stream is not displays as the user
can use CLI to determine it.

Inconsistent

The files relating to the JBoss EAP XP are in an inconsistent state. This is an error condition and
should not happen normally. If you encounter this error, remove the JBoss EAP XP manager as
described in the Uninstalling JBoss EAP XP topic and install JBoss EAP XP again using the setup
command.

Procedure

14

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html/using_jboss_eap_xp_4.0.0/jboss_eap_xp_for_the_latest_microprofile_capabilities#jboss-eap-xp-manager-commands_default

CHAPTER 1. JBOSS EAP XP FOR THE LATEST MICROPROFILE CAPABILITIES

® View the status of JBoss EAP XP by issuing the following command:

I $ java -jar jposs-eap-xp-manager.jar status --jposs-home=<path_to_eap>

Additional Resources

® Uninstalling JBoss EAP XP

® |nstalling JBoss EAP XP 4.0.0 on JBoss EAP 7.4.x

1.8. ROLLING BACK JBOSS EAP XP AND JBOSS EAP 7.4.X BASE
PATCHES

You can roll back a previously applied JBoss EAP XP patch or JBoss EAP 7.4.x base patch using the
management CLI.

Additional resources

® For more information about rolling back a JBoss EAP XP patch or a JBoss EAP 7.4.x base
patch, see Rolling back a patch using the management CLI.

15

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/index#uninstalling-jboss-eap-xp_default
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/index#installing-jboss-eap-xp-on-eap_default
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html/patching_and_upgrading_guide/assembly-patching-jboss-eap_default#proc_archive-rollback-management-cli_default

Red Hat JBoss Enterprise Application Platform 7.4 Using JBoss EAP XP 4.0.0

CHAPTER 2. UNDERSTAND MICROPROFILE

2.1. MICROPROFILE CONFIG

2.1.1. MicroProfile Config in JBoss EAP

Configuration data can change dynamically and applications need to be able to access the latest
configuration information without restarting the server.

MicroProfile Config provides portable externalization of configuration data. This means, you can
configure applications and microservices to run in multiple environments without modification or

repackaging.

MicroProfile Config functionality is implemented in JBoss EAP using the SmallRye Config component
and is provided by the microprofile-config-smallrye subsystem.

NOTE

MicroProfile Config is only supported in JBoss EAP XP. It is not supported in JBoss EAP.

IMPORTANT

If you are adding your own Config implementations, you need to use the methods in the
latest version of the Config interface.

Additional Resources

® MicroProfile Config
® SmallRye Config

® Configimplementations

2.1.2. MicroProfile Config sources supported in MicroProfile Config

MicroProfile Config configuration properties can come from different locations and can be in different
formats. These properties are provided by ConfigSources. ConfigSources are implementations of the
org.eclipse.microprofile.config.spi.ConfigSource interface.

The MicroProfile Config specification provides the following default ConfigSource implementations for
retrieving configuration values:

o System.getProperties().

e System.getenv().

e All META-INF/microprofile-config.properties files on the class path.
The microprofile-config-smallrye subsystem supports additional types of ConfigSource resources for
retrieving configuration values. You can also retrieve the configuration values from the following

resources:

® Properties in a microprofile-config-smallrye/config-source management resource

16

https://microprofile.io/project/eclipse/microprofile-config
http://github.com/smallrye/smallrye-config/
https://github.com/eclipse/microprofile-config/blob/2.0/api/src/main/java/org/eclipse/microprofile/config/Config.java

CHAPTER 2. UNDERSTAND MICROPROFILE

® Filesin adirectory
® ConfigSource class

® ConfigSourceProvider class

Additional Resources

® org.jboss.resteasy.microprofile.config.BaseServletConfigSource

2.2. MICROPROFILE FAULT TOLERANCE

2.2.1. About MicroProfile Fault Tolerance specification

The MicroProfile Fault Tolerance specification defines strategies to deal with errors inherent in
distributed microservices.

The MicroProfile Fault Tolerance specification defines the following strategies to handle errors:

Timeout

Define the amount of time within which an execution must finish. Defining a timeout prevents waiting
for an execution indefinitely.

Retry

Define the criteria for retrying a failed execution.
Fallback

Provide an alternative in the case of a failed execution.
CircuitBreaker

Define the number of failed execution attempts before temporarily stopping. You can define the
length of the delay before resuming execution.

Bulkhead
Isolate failures in part of the system so that the rest of the system can still function.
Asynchronous

Execute client request in a separate thread.

Additional Resources

® MicroProfile Fault Tolerance specification

2.2.2. MicroProfile Fault Tolerance in JBoss EAP

The microprofile-fault-tolerance-smallrye subsystem provides support for MicroProfile Fault
Tolerance in JBoss EAP. The subsystem is available only in the JBoss EAP XP stream.

The microprofile-fault-tolerance-smallrye subsystem provides the following annotations for
interceptor bindings:

e @Timeout
e @Retry

e @Fallback

17

https://access.redhat.com/webassets/avalon/d/red_hat_jboss_enterprise_application_platform/7.4/javadocs/org/jboss/resteasy/microprofile/config/BaseServletConfigSource.html
https://download.eclipse.org/microprofile/microprofile-fault-tolerance-3.0/microprofile-fault-tolerance-spec-3.0.html

Red Hat JBoss Enterprise Application Platform 7.4 Using JBoss EAP XP 4.0.0

e @CircuitBreaker
e @Bulkhead
e @Asynchronous

You can bind these annotations at the class level or at the method level. An annotation bound to a class
applies to all of the business methods of that class.

The following rules apply to binding interceptors:

e |f a component class declares or inherits a class-level interceptor binding, the following
restrictions apply:

o The class must not be declared final.
o The class must not contain any static, private, or final methods.

e |f a non-static, non-private method of a component class declares a method level interceptor
binding, neither the method nor the component class may be declared final.

Fault tolerance operations have the following restrictions:
® Fault tolerance interceptor bindings must be applied to a bean class or bean class method.

® When invoked, the invocation must be the business method invocation as defined in the Jakarta
Contexts and Dependency Injection specification.

® An operation is not considered fault tolerant if both of the following conditions are true:
o The method itself is not bound to any fault tolerance interceptor.
o The class containing the method is not bound to any fault tolerance interceptor.

The microprofile-fault-tolerance-smallrye subsystem provides the following configuration options, in
addition to the configuration options provided by MicroProfile Fault Tolerance:

e jo.smallrye.faulttolerance.mainThreadPoolSize

e jo.smallrye.faulttolerance.mainThreadPoolQueueSize

Additional Resources

® MicroProfile Fault Tolerance Specification

® SmallRye Fault Tolerance project

2.3. MICROPROFILE HEALTH

2.3.1. MicroProfile Health in JBoss EAP

JBoss EAP includes the SmallRye Health component, which you can use to determine whether the
JBoss EAP instance is responding as expected. This capability is enabled by default.

MicroProfile Health is only available when running JBoss EAP as a standalone server.

18

https://download.eclipse.org/microprofile/microprofile-fault-tolerance-3.0/microprofile-fault-tolerance-spec-3.0.html
https://github.com/smallrye/smallrye-fault-tolerance

CHAPTER 2. UNDERSTAND MICROPROFILE

The MicroProfile Health specification defines the following health checks:

Readiness

Determines whether an application is ready to process requests. The annotation @Readiness
provides this health check.

Liveness
Determines whether an application is running. The annotation @Liveness provides this health check.
Startup

Determines whether an application has already started. The annotation @Startup provides this
health check.

The @Health annotation was removed in MicroProfile Health 3.0.
MicroProfile Health 3.1Tincludes a new Startup health check probe.

For more information about the changes in MicroProfile Health 3.1, see Release Notes for MicroProfile
Health 3.1.

IMPORTANT

The :empty-readiness-checks-status, :empty-liveness-checks-status, and :empty-
startup-checks-status management attributes specify the global status when no
readiness, liveness, or startup probes are defined.

Additional Resources

® Global status when probes are not defined
® SmallRye Health
® MicroProfile Health

® Custom health check example

2.4. MICROPROFILE JWT

2.4.1. MicroProfile JWT integration in JBoss EAP

The subsystem microprofile-jwt-smallrye provides MicroProfile JWT integration in JBoss EAP.
The following functionalities are provided by the microprofile-jwt-smallrye subsystem:

® Detecting deployments that use MicroProfile JWT security.

® Activating support for MicroProfile JWT.
The subsystem contains no configurable attributes or resources.

In addition to the microprofile-jwt-smallrye subsystem, the org.eclipse.microprofile.jwt.auth.api
module provides MicroProfile JWT integration in JBoss EAP.

Additional Resources

19

https://download.eclipse.org/microprofile/microprofile-health-3.1/microprofile-health-spec-3.1.html#release_notes_3_1
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/#con_global-status-when-probes-are-not-defined_default
https://github.com/smallrye/smallrye-health
https://github.com/eclipse/microprofile-health/
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/#ref_custom-health-check-example_default

Red Hat JBoss Enterprise Application Platform 7.4 Using JBoss EAP XP 4.0.0
® SmallRye JWT

2.4.2. Differences between a traditional deployment and an MicroProfile JWT
deployment

MicroProfile JWT deployments do not depend on managed SecurityDomain resources like traditional
JBoss EAP deployments. Instead, a virtual SecurityDomain is created and used across the MicroProfile
JWT deployment.

As the MicroProfile JWT deployment is configured entirely within the MicroProfile Config properties and

the microprofile-jwt-smallrye subsystem, the virtual SecurityDomain does not need any other managed
configuration for the deployment.

2.4.3. MicroProfile JWT activation in JBoss EAP

MicroProfile JWT is activated for applications based on the presence of an auth-method in the
application.

The MicroProfile JWT integration is activated for an application in the following way:

® As part of the deployment process, JBoss EAP scans the application archive for the presence of
an auth-method.

e |f an auth-method is present and defined as MP-JWT, the MicroProfile JWT integration is
activated.

The auth-method can be specified in either or both of the following files:

® the file containing the class that extends javax.ws.rs.core.Application, annotated with the
@LoginConfig

e the web.xml configuration file

If auth-method is defined both in a class, using annotation, and in the web.xml configuration file, the
definition in web.xml configuration file is used.

2.4.4. Limitations of MicroProfile JWT in JBoss EAP

The MicroProfile JWT implementation in JBoss EAP has certain limitations.
The following limitations of MicroProfile JWT implementation exist in JBoss EAP:
® The MicroProfile JWT implementation parses only the first key from the JSSON Web Key Set
(JWKS) supplied in the mp.jwt.verify.publickey property. Therefore, if a token claims to be
signed by the second key or any key after the second key, the token fails verification and the
request containing the token is not authorized.

® Base64 encoding of JWKS is not supported.

In both cases, a clear text JWKS can be referenced instead of using the
mp.jwt.verify.publickey.location config property.

2.5. MICROPROFILE METRICS

20

https://github.com/smallrye/smallrye-jwt

CHAPTER 2. UNDERSTAND MICROPROFILE

2.5.1. MicroProfile Metrics in JBoss EAP

JBoss EAP includes the SmallRye Metrics component. The SmallRye Metrics component provides the
MicroProfile Metrics functionality using the microprofile-metrics-smallrye subsystem.

The microprofile-metrics-smallrye subsystem provides monitoring data for the JBoss EAP instance.
The subsystem is enabled by default.

IMPORTANT

The microprofile-metrics-smallrye subsystem is only enabled in standalone
configurations.

Additional Resources

® SmallRye Metrics

® MicroProfile Metrics

2.6. MICROPROFILE OPENAPI

2.6.1. MicroProfile OpenAPI in JBoss EAP

MicroProfile OpenAPl is integrated in JBoss EAP using the microprofile-openapi-smallrye subsystem.

The MicroProfile OpenAPI specification defines an HTTP endpoint that serves an OpenAPI 3.0
document. The OpenAPI 3.0 document describes the REST services for the host. The OpenAPI
endpoint is registered using the configured path, for example http://localhost:8080/openapi, local to
the root of the host associated with a deployment.

NOTE

Currently, the OpenAPI endpoint for a virtual host can only document a single
deployment. To use OpenAPI with multiple deployments registered with different context
paths on the same virtual host, each deployment must use a distinct endpoint path.

The OpenAPI endpoint returns a YAML document by default. You can also request a JSON document
using an Accept HTTP header, or a format query parameter.

If the Undertow server or host of a given application defines an HTTPS listener then the OpenAPI
document is also available using HTTPS. For example, an endpoint for HTTPS is
https://localhost:8443/openapi.

2.7. MICROPROFILE OPENTRACING

2.7.1. MicroProfile OpenTracing

The ability to trace requests across service boundaries is important, especially in a microservices
environment where a request can flow through multiple services during its life cycle.

The MicroProfile OpenTracing specification defines behaviors and an API for accessing an OpenTracing

compliant Tracer interface within a CDI-bean application. The Tracer interface automatically traces
JAX-RS applications.

21

http://github.com/smallrye/smallrye-metrics/
https://github.com/eclipse/microprofile-metrics/

Red Hat JBoss Enterprise Application Platform 7.4 Using JBoss EAP XP 4.0.0

The behaviors specify how OpenTracing Spans are created automatically for incoming and outgoing
requests. The API defines how to explicitly disable or enable tracing for given endpoints.

Additional Resources

® For more information about MicroProfile OpenTracing specification, see MicroProfile
OpenTracing documentation.

® For more information about the Tracer interface, see Tracer javadoc.

2.7.2. MicroProfile OpenTracing in JBoss EAP

You can use the microprofile-opentracing-smallrye subsystem to configure the distributed tracing of
Jakarta EE applications. This subsystem uses the SmallRye OpenTracing component to provide the
MicroProfile OpenTracing functionality for JBoss EAP.

MicroProfile OpenTracing 2.0 supports tracing requests for applications. You can configure the default
Jaeger Java Client tracer, plus a set of instrumentation libraries for components commonly used in
Jakarta EE, using JBoss EAP management APl with the management CLI or the management console.

NOTE

Each individual WAR deployed to the JBoss EAP server automatically has its own Tracer
instance. Each WAR within an EAR is treated as an individual WAR, and each has its own
Tracer instance. By default, the service name used with the Jaeger Client is derived from
the deployment’s name, which is usually the WAR file name.

Within the microprofile-opentracing-smallrye subsystem, you can configure the Jaeger Java Client by
setting system properties or environment variables.

IMPORTANT

Configuring the Jaeger Client tracer using system properties and environment variables
is provided as a Technology Preview. The system properties and environment variables
affiliated with the Jaeger Client tracer might change and become incompatible with each
other in future releases.

Technology Preview features are not supported with Red Hat production service level
agreements (SLAs) and might not be functionally complete. Red Hat does not
recommend using them in production. These features provide early access to upcoming
product features, enabling customers to test functionality and provide feedback during
the development process. For more information about the support scope of Red Hat
Technology Preview features, see Technology Preview Features Support Scope.

NOTE

By default, the probabilistic sampling strategy of the Jaeger Client for Java is set to
0.001, meaning that only approximately one in one thousand traces are sampled. To
sample every request, set the system properties JAEGER_SAMPLER_TYPE to const
and JAEGER_SAMPLER_PARAMto 1.

Additional Resources

22

https://github.com/eclipse/microprofile-opentracing/blob/2.0/spec/src/main/asciidoc/microprofile-opentracing.asciidoc
https://www.javadoc.io/doc/io.opentracing/opentracing-api/0.33.0/index.html
https://access.redhat.com/support/offerings/techpreview

CHAPTER 2. UNDERSTAND MICROPROFILE

® For more information about SmallRye OpenTracing functionality, see the SmallRye
OpenTracing component.

® For more information about the default tracer, see the Jaeger Java Client.

e For more information about the Tracer interface, see Tracer javadoc.

® For more information about overriding the default tracer and tracing Jakarta Contexts and
Dependency Injection beans, see Using Eclipse MicroProfile OpenTracing to Trace Requests in
the Development Guide.

® For more information about configuring the Jaeger Client, see the Jaeger documentation.

® For more information about valid system properties, see Configuration via Environment in the
Jaeger documentation.

2.8. MICROPROFILE REST CLIENT

2.8.1. MicroProfile REST client

JBoss EAP XP 4.0.0 supports the MicroProfile REST client 2.0 that builds on Jakarta RESTful Web
Services 2.1.6 client APIs to provide a type-safe approach to invoke RESTful services over HTTP. The
MicroProfile Type Safe REST clients are defined as Java interfaces. With the MicroProfile REST clients,
you can write client applications with executable code.
Use the MicroProfile REST client to avail the following capabilities:

® Anintuitive syntax

® Programmatic registration of providers

® Declarative registration of providers

® Declarative specification of headers

® ResponseExceptionMapper

® Jakarta Contexts and Dependency Injection integration

® Access to server-sent events (SSE)

Additional resources

® A comparison between MicroProfile REST client and Jakarta RESTful Web Services syntaxes
® Programmatic registration of providers in MicroProfile REST client

® Declarative registration of providers in MicroProfile REST client

® Declarative specification of headers in MicroProfile REST client

® ResponseExceptionMapper in MicroProfile REST client

® Context dependency injection with MicroProfile REST client
2.8.2. The resteasy.original.webapplicationexception.behavior MicroProfile Config

23

https://github.com/smallrye/smallrye-opentracing
https://github.com/jaegertracing/jaeger-client-java
https://www.javadoc.io/doc/io.opentracing/opentracing-api/0.32.0-RC1/index.html
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.3/html/development_guide/eclipse_microprofile#using_microprofile_opentracing_smallrye_tracer
https://github.com/jaegertracing/jaeger-client-java
https://github.com/jaegertracing/jaeger-client-java/tree/master/jaeger-core#configuration-via-environment
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/index#intuitive-syntax_default
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/index#programmatic-registration-of-providers_default
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/index#declarative-registration-of-providers_default
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/index#declarative-specification-of-headers_default
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/index#responseexceptionmapper_default
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/index#context-dependency-injection-with-microprofile-rest-client_default

Red Hat JBoss Enterprise Application Platform 7.4 Using JBoss EAP XP 4.0.0

property

MicroProfile Config is the name of a specification that developers can use to configure applications and
microservices to run in multiple environments without having to modify or repackage those apps.
Previously, MicroProfile Config was available for JBoss EAP as a technology preview, but it has since
been removed. MicroProfile Config is now available only on JBoss EAP XP.

Defining theresteasy.original.webapplicationexception.behavior MicroProfile Config property
You can set the resteasy.original.webapplicationexception.behavior parameter as either a web.xml
servlet property or a system property. Here's an example of one such servlet property in web.xmil:

<context-param>
<param-name>resteasy.original.webapplicationexception.behavior</param-name>
<param-value>true</param-value>

</context-param>

You can also use MicroProfile Config to configure any other RESTEasy property.

Additional resources
® For more information about MicroProfile Config on JBoss EAP XP, see Understand MicroProfile.
® For more information about the MicroProfile REST Client, see MicroProfile REST Client.

® For more information about RESTEasy, see Jakarta RESTful Web Services Request Processing.

2.9. MICROPROFILE REACTIVE MESSAGING

2.9.1. MicroProfile reactive messaging

When you upgrade to JBoss EAP XP 4.0.0, you can enable the newest version of MicroProfile Reactive
Messaging, which includes reactive messaging extensions and subsystems.

A "reactive stream" is a succession of event data, along with processing protocols and standards, that is
pushed across an asynchronous boundary (like a scheduler) without any buffering. An "event" might be a
scheduled and repeating temperature check in a weather app, for example. The primary benefit of
reactive streams is the seamless interoperability of your various applications and implementations.

Reactive messaging provides a framework for building event-driven, data-streaming, and event-
sourcing applications. Reactive messaging results in the constant and smooth exchange of event data,
the reactive stream, from one app to another. You can use MicroProfile Reactive Messaging for
asynchronous messaging through reactive streams so that your application can interact with others, like
Apache Kafka, for example.

After you upgrade your instance of MicroProfile Reactive Messaging to the latest version, you can do the
following:

® Provision a server with MicroProfile Reactive Messaging for the Apache Kafka data-streaming
platform.

® |nteract with reactive messaging in-memory and backed by Apache Kafka topics through the
latest reactive messaging APls.

® Use MicroProfile Metrics to find out how many messages are streamed on a given channel.

24

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html/developing_web_services_applications/developing_jakarta_restful_web_services_web_services#jakarta_restful_web_services_request_processing

CHAPTER 2. UNDERSTAND MICROPROFILE

Additional resources

® For more information about Apache Kafka, see What is Apache Kafka?

2.9.2. MicroProfile reactive messaging connectors

You can use connectors to integrate MicroProfile Reactive Messaging with a number of external
messaging systems. MicroProfile for JBoss EAP comes with the Apache Kafka connector. Use the
Eclipse MicroProfile Config specification to configure your connectors.

The Apache Kafka connector and incorporated layers

MicroProfile Reactive Messaging includes the Kafka connector, which you can configure with
MicroProfile Config. The Kafka connector incorporates microprofile-reactive-messaging-kafka and
microprofile-reactive-messaging Galleon layers. The microprofile-reactive-messaging layer provides
the core MicroProfile Reactive Messaging functionality.

Table 2.1. Reactive messaging and Apache Kafka connector Galleon layers

Layer Definition

microprofile-reactive-streams-operators

® Provides MicroProfile Reactive Streams
Operators APIs and supporting
implementing modules.

e Contains MicroProfile Reactive Streams
Operators with SmallRye extension and
subsystem.

e Depends on cdi layer.

o cdi stands for Jakarta Contexts and
Dependency Injection; provides
subsystems that add @Inject
functionality.

microprofile-reactive-messagin
P ging ® Provides MicroProfile Reactive Messaging

APIs and supporting implementing modules.

® Contains MicroProfile with SmallRye
extension and subsystem.

e Depends on microprofile-config and
microprofile-reactive-streams-
operators layers.

microprofile-reactive-messaging-kafka .
® Provides Kafka connector modules that

enable MicroProfile Reactive Messaging to
interact with Kafka.

e Depends on microprofile-reactive-
messaging layer.

2.9.3. The Apache Kafka event streaming platform

25

https://www.redhat.com/en/topics/integration/what-is-apache-kafka#what-is-apache-kafka

Red Hat JBoss Enterprise Application Platform 7.4 Using JBoss EAP XP 4.0.0

Apache Kafka is an open source distributed event (data) streaming platform that can publish, subscribe
to, store, and process streams of records in real time. It handles event streams from multiple sources
and delivers them to multiple consumers, moving large amounts of data from points A to Z and
everywhere else, all at the same time. MicroProfile Reactive Messaging uses Apache Kafka to deliver
these event records in as few as two microseconds, store them safely in distributed, fault-tolerant
clusters, all while making them available across any team-defined zones or geographic regions.

Additional resources

® What is Apache Kafka?
® Red Hat OpenShift Streams for Apache Kafka

® RedHat AMQ

26

https://www.redhat.com/en/topics/integration/what-is-apache-kafka#what-is-apache-kafka
https://developers.redhat.com/products/red-hat-openshift-streams-for-apache-kafka/overview
https://developers.redhat.com/products/amq/overview

CHAPTER 3. ADMINISTER MICROPROFILE IN JBOSS EAF

CHAPTER 3. ADMINISTER MICROPROFILE IN JBOSS EAP

3.1. MICROPROFILE OPENTRACING ADMINISTRATION

IMPORTANT

If you see duplicate traces exported for REST calls, disable the microprofile-
opentracing-smallrye subsystem. For information about disabling the microprofile-
opentracing-smallrye, see Removing the microprofile-opentracing-smallrye subsystem.

3.1.1. Enabling MicroProfile Open Tracing

Use the following management CLI commands to enable the MicroProfile Open Tracing feature globally
for the server instance by adding the subsystem to the server configuration.

Procedure

1. Enable the microprofile-opentracing-smallrye subsystem using the following management
command:

I /subsystem=microprofile-opentracing-smallrye:add()

2. Reload the server for the changes to take effect.

I reload

3.1.2. Removing the microprofile-opentracing-smalirye subsystem

The microprofile-opentracing-smallrye subsystem is included in the default JBoss EAP 7.4
configuration. This subsystem provides MicroProfile OpenTracing functionality for JBoss EAP 7.4. If you
experience system memory or performance degradation with MicroProfile OpenTracing enabled, you
might want to disable the microprofile-opentracing-smallrye subsystem.

You can use the remove operation in the management CLI to disable the MicroProfile OpenTracing
feature globally for a given server.

Procedure

1. Remove the microprofile-opentracing-smallrye subsystem.

I /subsystem=microprofile-opentracing-smallrye:remove()

2. Reload the server for the changes to take effect.

I reload

3.1.3. Installing Jaeger

Install Jaeger using docker.
Prerequisites

27

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0#removing-microprofile-opentracing-smallrye-subsystem_default

Red Hat JBoss Enterprise Application Platform 7.4 Using JBoss EAP XP 4.0.0

o docker is installed.

Procedure

1. Install Jaeger using docker by issuing the following command in CLI:

$ docker run -d --name jaeger -p 6831:6831/udp -p 5778:5778 -p 14268:14268 -p
16686:16686 jaegertracing/all-in-one:1.16

3.2. MICROPROFILE CONFIG CONFIGURATION

3.2.1. Adding properties in a ConfigSource management resource

You can store properties directly in a config-source subsystem as a management resource.

Procedure

® Create a ConfigSource and add a property:

I /subsystem=microprofile-config-smallrye/config-source=props:add(properties={"name" =
lljimll})

3.2.2. Configuring directories as ConfigSources

When a property is stored in a directory as a file, the file-name is the name of a property and the file
content is the value of the property.

Procedure

1. Create a directory where you want to store the files:
I $ mkdir -p ~/config/prop-files/

2. Navigate to the directory:
I $ cd ~/config/prop-files/

3. Create a file name to store the value for the property name:
I $ touch name

4. Add the value of the property to the file:

I $ echo "jim" > name

5. Create a ConfigSource in which the file name is the property and the file contents the value of
the property:

/subsystem=microprofile-config-smallrye/config-source=file-props:add(dir=
{path=~/config/prop-files})

28

CHAPTER 3. ADMINISTER MICROPROFILE IN JBOSS EAF

This results in the following XML configuration:

<subsystem xmlns="urn:wildfly:microprofile-config-smallrye:1.0">
<config-source name="file-props">
<dir path="/etc/config/prop-files"/>
</config-source>
</subsystem>

3.2.3. Obtaining ConfigSource from a ConfigSource class

You can create and configure a custom org.eclipse.microprofile.config.spi.ConfigSource
implementation class to provide a source for the configuration values.

Procedure

® The following management CLI command creates a ConfigSource for the implementation class
named org.example.MyConfigSource that is provided by a JBoss module named
org.example.
If you want to use a ConfigSource from the org.example module, add the <module
name="org.eclipse.microprofile.config.api'/> dependency to the
path/to/org/example/main/module.xml file.

/subsystem=microprofile-config-smallrye/config-source=my-config-source:add(class=
{name=org.example.MyConfigSource, module=org.example})

This command results in the following XML configuration for the microprofile-config-smalirye
subsystem.

<subsystem xmlns="urn:wildfly:microprofile-config-smallrye:1.0">
<config-source name="my-config-source">
<class name="org.example.MyConfigSource" module="org.example"/>
</config-source>
</subsystem>

Properties provided by the custom org.eclipse.microprofile.config.spi.ConfigSource implementation
class are available to any JBoss EAP deployment.

3.2.4. Obtaining ConfigSource configuration from a ConfigSourceProvider class

You can create and configure a custom org.eclipse.microprofile.config.spi.ConfigSourceProvider
implementation class that registers implementations for multiple ConfigSource instances.

Procedure

® Create a config-source-provider:

/subsystem=microprofile-config-smallrye/config-source-provider=my-config-source-
provider:add(class={name=org.example.MyConfigSourceProvider, module=org.example})

The command creates a config-source-provider for the implementation class named
org.example.MyConfigSourceProvider that is provided by a JBoss Module named
org.example.

29

Red Hat JBoss Enterprise Application Platform 7.4 Using JBoss EAP XP 4.0.0

If you want to use a config-source-provider from the org.example module, add the <module
name="org.eclipse.microprofile.config.api'/> dependency to the
path/to/org/example/main/module.xml file.

This command results in the following XML configuration for the microprofile-config-smalirye
subsystem:

<subsystem xmlns="urn:wildfly:microprofile-config-smallrye:1.0">
<config-source-provider name="my-config-source-provider">
<class name="org.example.MyConfigSourceProvider" module="org.example"/>
</config-source-provider>
</subsystem>

Properties provided by the ConfigSourceProvider implementation are available to any JBoss EAP
deployment.

Additional resources

e Forinformation about how to add a global module to the JBoss EAP server, see Define Global
Modules in the Configuration Guide for JBoss EAP.

3.3. MICROPROFILE FAULT TOLERANCE CONFIGURATION

3.3.1. Adding the MicroProfile Fault Tolerance extension

The MicroProfile Fault Tolerance extension is included in standalone-microprofile.xml and
standalone-microprofile-ha.xml configurations that are provided as part of JBoss EAP XP.

The extension is not included in the standard standalone.xml configuration. To use the extension, you
must manually enable it.

Prerequisites

® EAP XP packis installed.

Procedure

1. Add the MicroProfile Fault Tolerance extension using the following management CLI command:

I /extension=org.wildfly.extension.microprofile.fault-tolerance-smallrye:add

2. Enable the microprofile-fault-tolerance-smallrye subsystem using the following managenent
command:

I /subsystem=microprofile-fault-tolerance-smallrye:add

3. Reload the server with the following management command:

I reload

3.4. MICROPROFILE HEALTH CONFIGURATION

30

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/configuration_guide/#add_a_global_module

CHAPTER 3. ADMINISTER MICROPROFILE IN JBOSS EAF

3.4.1. Examining health using the management CLI

You can check system health using the management CLI.

Procedure

® [Examine health:

/subsystem=microprofile-health-smallrye:check

{

"outcome" => "success",

"result" => {
"status" => "UP",
"checks" => []

}

}

3.4.2. Examining health using the management console

You can check system health using the management console.

A check runtime operation shows the health checks and the global outcome as boolean value.

Procedure

1. Navigate to the Runtime tab and select the server.

2. In the Monitor column, click MicroProfile Health - View.

3.4.3. Examining health using the HTTP endpoint

Health check is automatically deployed to the health context on JBoss EAP, so you can obtain the
current health using the HTTP endpoint.

The default address for the /health endpoint, accessible from the management interface, is
http://127.0.0.1:9990/health.

Procedure
® To obtain the current health of the server using the HTTP endpoint, use the following URL..

I http://<host>:<port>/health

Accessing this context displays the health check in JSON format, indicating if the server is
healthy.

3.4.4. Enabling authentication for MicroProfile Health

You can configure the health context to require authentication for access.

Procedure

1. Set the security-enabled attribute to true on the microprofile-health-smallrye subsystem.

31

http://127.0.0.1:9990/health

Red Hat JBoss Enterprise Application Platform 7.4 Using JBoss EAP XP 4.0.0

I /subsystem=microprofile-health-smallrye:write-attribute(name=security-enabled,value=true)

2. Reload the server for the changes to take effect.

I reload

Any subsequent attempt to access the /health endpoint triggers an authentication prompt.

3.4.5. Readiness probes that determine server health and readiness

JBoss EAP XP 4.0.0 supports three readiness probes to determine server health and readiness.
® server-status - returns UP when the server-state is running.
® boot-errors - returns UP when the probe detects no boot errors.
e deployment-status - returns UP when the status for all deploymentsis OK.

These readiness probes are enabled by default. You can disable the probes using the MicroProfile
Config property mp.health.disable-default-procedures.

The following example illustrates the use of the three probes with the check operation:

[standalone@localhost:9990 /] /subsystem=microprofile-health-smallrye:check

{

"outcome" => "success",

"result" => {
"status" => "UP",
"checks" => [

{

"name" => "boot-errors",
"status" => "UP"

{
"name" => "server-state",
"status" => "UP",
"data" => {"value" => "running"}

b

{
"name" => "empty-readiness-checks",
"status" => "UP"

b

{
"name" => "deployments-status”,
"status" => "UP"

b

{
"name" => "empty-liveness-checks",
"status" => "UP"

b

{

"name" => "empty-startup-checks",
"status" => "UP"

32

CHAPTER 3. ADMINISTER MICROPROFILE IN JBOSS EAF

Additional resources

® MicroProfile Health in JBoss EAP

® Global status when probes are not defined

3.4.6. Global status when probes are not defined

The :empty-readiness-checks-status, :empty-liveness-checks-status, and :empty-startup-checks-
status management attributes specify the global status when no readiness, liveness, or startup
probes are defined.

These attributes allow applications to report ‘'DOWN' until their probes verify that the application is
ready, live, or started up. By default, applications report ‘UP".

® The :empty-readiness-checks-status attribute specifies the global status for readiness
probes if no readiness probes have been defined:

/subsystem=microprofile-health-smallrye:read-attribute(hame=empty-readiness-checks-
status)

{

"outcome" => "success",
"result" => expression
"${env.MP_HEALTH_EMPTY_READINESS_CHECKS_STATUS:UP}"

}

e The :empty-liveness-checks-status attribute specifies the global status for liveness probes if
no liveness probes have been defined:

/subsystem=microprofile-health-smallrye:read-attribute(name=empty-liveness-checks-status)

{

"outcome" => "success",
"result" => expression "${env.MP_HEALTH_EMPTY_LIVENESS_CHECKS_STATUS:UP}"
!

e The :empty-startup-checks-status attribute specifies the global status for startup probes if
no startup probes have been defined:

/subsystem=microprofile-health-smallrye:read-attribute(name=empty-startup-checks-status)

{

"outcome" => "success",
"result" => expression "${env.MP_HEALTH_EMPTY_STARTUP_CHECKS_STATUS:UP}"
1

The /health HTTP endpoint and the :check operation that check readiness, liveness, and
startup probes also take into account these attributes.

You can also modify these attributes as shown in the following example:

I /subsystem=microprofile-health-smallrye:write-attribute(name=empty-readiness-checks-

33

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/#microprofile-health-in-eap_default
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/#con_global-status-when-probes-are-not-defined_default

Red Hat JBoss Enterprise Application Platform 7.4 Using JBoss EAP XP 4.0.0

status,value=DOWN)
{

"outcome" => "success",

"response-headers" => {
"operation-requires-reload" => true,
"process-state" => "reload-required"

}
}

3.5. MICROPROFILE JWT CONFIGURATION

3.5.1. Enabling microprofile-jwt-smallrye subsystem
The MicroProfile JWT integration is provided by the microprofile-jwt-smallrye subsystem and is

included in the default configuration. If the subsystem is not present in the default configuration, you
can add it as follows.

Prerequisites

® EAP XPisinstalled.
Procedure
1. Enable the MicroProfile JWT smallrye extension in JBoss EAP:
I /extension=org.wildfly.extension.microprofile.jwt-smallrye:add
2. Enable the microprofile-jwt-smallrye subsystem:
I /subsystem=microprofile-jwt-smallrye:add
3. Reload the server:

I reload

The microprofile-jwt-smallrye subsystem is enabled.
3.6. MICROPROFILE METRICS ADMINISTRATION

3.6.1. Metrics available on the management interface

The JBoss EAP subsystem metrics are exposed in Prometheus format.

Metrics are automatically available on the JBoss EAP management interface, with the following
contexts:

® /metrics/ - Contains metrics specified in the MicroProfile 3.0 specification.
e /metrics/vendor - Contains vendor-specific metrics, such as memory pools.

e /metrics/application - Contains metrics from deployed applications and subsystems that use
the MicroProfile Metrics API.

34

CHAPTER 3. ADMINISTER MICROPROFILE IN JBOSS EAF

The metric names are based on subsystem and attribute names. For example, the subsystem undertow
exposes a metric attribute request-count for every servlet in an application deployment. The name of
this metric is jboss_undertow_request_count. The prefix jboss identifies JBoss EAP as the source of
the metrics.

3.6.2. Examining metrics using the HTTP endpoint

Examine the metrics that are available on the JBoss EAP management interface using the HTTP
endpoint.

Procedure
® Use the curl command:

I $ curl -v http://localhost:9990/metrics | grep -i type

3.6.3. Enabling Authentication for the MicroProfile Metrics HTTP Endpoint

Configure the metrics context to require users to be authorized to access the context. This
configuration extends to all the subcontexts of the metrics context.

Procedure

1. Set the security-enabled attribute to true on the microprofile-metrics-smallrye subsystem.
I /subsystem=microprofile-metrics-smallrye:write-attribute(name=security-enabled,value=true)

2. Reload the server for the changes to take effect.

I reload

Any subsequent attempt to access the metrics endpoint results in an authentication prompt.

3.6.4. Obtaining the request count for a web service

Obtain the request count for a web service that exposes its request count metric.

The following procedure uses helloworld-rs quickstart as the web service for obtaining request count.
The quickstart is available at Download the quickstart from: jboss-eap-quickstarts.

Prerequsites

® The web service exposes request count.

Procedure
1. Enable statistics for the undertow subsystem:

® Start the standalone server with statistics enabled:

I $./standalone.sh -Dwildfly.statistics-enabled=true

® Foran already running server, enable the statistics for the undertow subsystem:

35

https://github.com/jboss-developer/jboss-eap-quickstarts

Red Hat JBoss Enterprise Application Platform 7.4 Using JBoss EAP XP 4.0.0

I /subsystem=undertow:write-attribute(name=statistics-enabled,value=true)

2. Deploy the helloworld-rs quickstart:

® |nthe root directory of the quickstart, deploy the web application using Maven:
I $ mvn clean install wildfly:deploy

3. Query the HTTP endpoint in the CLI using the curl command and filter for request_count:
I $ curl -v http://localhost:9990/metrics | grep request_count

Expected output:

I jooss_undertow_request_count_total{server="default-server",http_listener="default",} 0.0

The attribute value returned is 0.0.

4. Access the quickstart, located at http://localhost:8080/helloworld-rs/, in a web browser and
click any of the links.

5. Query the HTTP endpoint from the CLI again:
I $ curl -v http://localhost:9990/metrics | grep request_count

Expected output:

I jooss_undertow_request_count_total{server="default-server",http_listener="default",} 1.0

The value is updated to 1.0.

Repeat the last two steps to verify that the request count is updated.

3.7. MICROPROFILE OPENAPI ADMINISTRATION

3.7.1. Enabling MicroProfile OpenAPI

The microprofile-openapi-smallrye subsystem is provided in the standalone-microprofile.xml
configuration. However, JBoss EAP XP uses the standalone.xml by default. You must include the
subsystem in standalone.xml to use it.

Alternatively, you can follow the procedure Updating standalone configurations with MicroProfile
subsystems and extensions to update the standalone.xml configuration file.

Procedure
1. Enable the MicroProfile OpenAPI smallrye extension in JBoss EAP:

I /extension=org.wildfly.extension.microprofile.openapi-smallrye:add()

2. Enable the microprofile-openapi-smallrye subsystem using the following management
command:

36

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/#updating-standalone-server-configuration_default

CHAPTER 3. ADMINISTER MICROPROFILE IN JBOSS EAF

I /subsystem=microprofile-openapi-smallrye:add()
3. Reload the server.

I reload

The microprofile-openapi-smallrye subsystem is enabled.

3.7.2. Requesting an MicroProfile OpenAPIl document using Accept HTTP header

Request an MicroProfile OpenAPI document, in the JSON format, from a deployment using an Accept
HTTP header.

By default, the OpenAPI endpoint returns a YAML document.

Prerequisites

® The deployment being queried is configured to return an MicroProfile OpenAPI document.

Procedure

® |ssue the following curl command to query the /openapi endpoint of the deployment:

$ curl -v -H'Accept: application/json' http.//localhost:8080/openapi
< HTTP/1.1 200 OK

{"openapi": "3.0.1" ... }

Replace http://localhost:8080 with the URL and port of the deployment.

The Accept header indicates that the JSON document is to be returned using the
application/json string.

3.7.3. Requesting an MicroProfile OpenAPI document using an HTTP parameter

Request an MicroProfile OpenAPI document, in the JSON format, from a deployment using a query
parameterin an HTTP request.

By default, the OpenAPI endpoint returns a YAML document.

Prerequisites

® The deployment being queried is configured to return an MicroProfile OpenAPI document.

Procedure

® |ssue the following curl command to query the /openapi endpoint of the deployment:

$ curl -v http.://localhost:8080/openapi?format=JSON
< HTTP/1.1 200 OK

Replace http://localhost:8080 with the URL and port of the deployment.

37

Red Hat JBoss Enterprise Application Platform 7.4 Using JBoss EAP XP 4.0.0

The HTTP parameter format=JSON indicates that JSON document is to be returned.

3.7.4. Configuring JBoss EAP to serve a static OpenAPl document

Configure JBoss EAP to serve a static OpenAPI document that describes the REST services for the
host.

When JBoss EAP is configured to serve a static OpenAPIl document, the static OpenAPIl document is
processed before any Jakarta RESTful Web Services and MicroProfile OpenAPI annotations.

In a production environment, disable annotation processing when serving a static document. Disabling
annotation processing ensures that an immutable and versioned API contract is available for clients.

Procedure
1. Create a directory in the application source tree:

I $ mkdir APPLICATION_ROOT/src/main/webapp/META-INF

APPLICATION_ROOT is the directory containing the pom.xml configuration file for the
application.

2. Query the OpenAPI endpoint, redirecting the output to a file:

$ curl http://localhost:8080/openapi?format=JSON > src/main/webapp/META-
INF/openapi.json

By default, the endpoint serves a YAML document, format=JSON specifies that a JSSON
document is returned.

3. Configure the application to skip annotation scanning when processing the OpenAP| document
model:

$ echo "mp.openapi.scan.disable=true" > APPLICATION_ROOT/src/main/webapp/META-
INF/microprofile-config.properties

4. Rebuild the application:

I $ mvn clean install

5. Deploy the application again using the following management CLI commands:

a. Undeploy the application:
I undeploy microprofile-openapi.war
b. Deploy the application:

I deploy APPLICATION_ROOT/target/microprofile-openapi.war

JBoss EAP now serves a static OpenAP| document at the OpenAPI endpoint.

3.7.5. Disabling microprofile-openapi-smallrye

38

CHAPTER 3. ADMINISTER MICROPROFILE IN JBOSS EAF

You can disable the microprofile-openapi-smallrye subsystem in JBoss EAP XP using the
management CLI.

Procedure

® Disable the microprofile-openapi-smallrye subsystem:

I /subsystem=microprofile-openapi-smallrye:remove()

3.8. MICROPROFILE REACTIVE MESSAGING ADMINISTRATION

3.8.1. Configuring the required MicroProfile reactive messaging extension and
subsystem for JBoss EAP

If you want to enable asynchronous reactive messaging to your instance of JBoss EAP, you must add its
extension through the JBoss EAP management CLI.

Prerequisites

® You added the Reactive Streams Operators with SmallRye extension and subsystem. For more
information, see MicroProfile Reactive Streams Operators Subsystem Configuration: Required
Extension.

® You added the Reactive Messaging with SmallRye extension and subsystem.

Procedure

1. Open the JBoss EAP management CLI.

2. Enter the following code:

[standalone@localhost:9990 /] /extension=org.wildfly.extension.microprofile.reactive-messaging-
smallrye:add
{"outcome" => "success"}

[standalone@localhost:9990 /] /subsystem=microprofile-reactive-messaging-smallrye:add
{
"outcome" => "success",
"response-headers" => {
"operation-requires-reload" => true,
"process-state" => "reload-required"

}
}

NOTE

If you provision a server using Galleon, either on OpenShift or not, make sure you include
the microprofile-reactive-messaging Galleon layer to get the core MicroProfile 2.0.1
and reactive messaging functionality, and to enable the required subsystems and
extensions. Note that this configuration does not contain the JBoss EAP modules you
need to enable Kafka connector functionality. To do this, use the microprofile-reactive-
messaging-kafka layer.

39

https://docs.wildfly.org/26/Admin_Guide.html#MicroProfile_Reactive_Streams_Operators_SmallRye

Red Hat JBoss Enterprise Application Platform 7.4 Using JBoss EAP XP 4.0.0

Verification

You have successfully added the required MicroProfile Reactive Messaging extension and subsystem
for JBoss EAP if you see success in two places in the resulting code in the management CLI.

TIP

If the resulting code says reload-required, you have to reload your server configuration to completely
apply all of your changes. To reload, in a standalone server CLI, enter reload.

3.9. STANDALONE SERVER CONFIGURATION

3.9.1. Standalone server configuration files

The JBoss EAP XP includes additional standalone server configuration files, standalone-
microprofile.xml and standalone-microprofile-ha.xml.

Standard configuration files that are included with JBoss EAP remain unchanged. Note that JBoss EAP
XP 4.0.0 does not support the use of domain.xml files or domain mode.

Table 3.1. Standalone configuration files available in JBoss EAP XP

Configuration File Purpose Included capabilities Excluded capabilities

standalone.xml This is the default Includes information Excludes subsystems
configuration that is about the server, necessary for messaging
used when you start including subsystems, or high availability.
your standalone server. networking,

deployments, socket
bindings, and other
configurable details.

standalone- This configuration file Includes information Excludes the following
microprofile.xml supports applications about the server, capabilities:
that use MicroProfile. including subsystems,
networking, e Jakarta
deployments, socket Enterprise
- Beans

bindings, and other
configurable details. e Messaging

e Jakarta EE
Batch

o Jakarta Server
Faces

e Jakarta

Enterprise
Beans timers

40

Configuration File

Purpose

Included capabilities

CHAPTER 3. ADMINISTER MICROPROFILE IN JBOSS EAF

Excluded capabilities

standalone-ha.xml

standalone-
microprofile-ha.xml

standalone-full.xml

standalone-full-
ha.xml

standalone-load-
balancer.xml

This standalone file
supports applications
that use MicroProfile.

Support for every
possible subsystem.

Support for the
minimum subsystems
necessary to use the
built-in mod_cluster

front-end load balancer

to load balance other
JBoss EAP instances.

Includes default
subsystems and adds
the modcluster and
jgroups subsystems for
high availability.

Includes the
modcluster and
jgroups subsystems for
high availability in
addition to default
subsystems.

Includes the
messaging-activemq
and iiop-openjdk
subsystems in addition
to default subsystems.

Includes subsystems for
messaging and high
availability in addition to
default subsystems.

Excludes subsystems
necessary for
messaging.

Excludes subsystems
necessary for
messaging.

By default, starting JBoss EAP as a standalone server uses the standalone.xml file. To start JBoss EAP
with a standalone MicroProfile configuration, use the -¢ argument. For example,

I $ EAP_HOME/bin/standalone.sh -c=standalone-microprofile.xmi

Additional Resources

® Starting and Stopping JBoss EAP

® Configuration Data
3.9.2. Updating standalone configurations with MicroProfile subsystems and
extensions

You can update standard standalone server configuration files with MicroProfile subsystems and
extensions using the docs/examples/enable-microprofile.cli script. The enable-microprofile.cli script
is intended as an example script for updating standard standalone server configuration files, not custom

41

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/configuration_guide/#starting_and_stopping_jboss_eap
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/configuration_guide/#configuration_data

Red Hat JBoss Enterprise Application Platform 7.4 Using JBoss EAP XP 4.0.0

configurations.
The enable-microprofile.cli script modifies the existing standalone server configuration and adds the
following MicroProfile subsystems and extensions if they do not exist in the standalone configuration
file:

e microprofile-config-smallrye

e microprofile-fault-tolerance-smalirye

e microprofile-health-smalirye

® microprofile-jwt-smalirye

® microprofile-metrics-smallrye

® microprofile-openapi-smalirye

® microprofile-opentracing-smallrye
The enable-microprofile.cli script outputs a high-level description of the modifications. The

configuration is secured using the elytron subsystem. The security subsystem, if present, is removed
from the configuration.

Prerequisites

o JBoss EAP XP is installed.

Procedure

1. Run the following CLI script to update the default standalone.xml server configuration file:

I $ EAP_HOME/bin/jboss-cli.sh --file=docs/examples/enable-microprofile.cli

2. Select a standalone server configuration other than the default standalone.xml server
configuration file using the following command:

$ EAP_HOME/bin/jboss-cli.sh --file=docs/examples/enable-microprofile.cli -Dconfig=
<standalone-full.xml|standalone-ha.xml|standalone-full-ha.xml>

3. The specified configuration file now includes MicroProfile subsystems and extensions.

42

CHAPTER 4. DEVELOP MICROPROFILE APPLICATIONS FOR JBOSS EAFP

CHAPTER 4. DEVELOP MICROPROFILE APPLICATIONS FOR
JBOSS EAP

4.1. MAVEN AND THE JBOSS EAP MICROPROFILE MAVEN
REPOSITORY

4.1.1. Downloading the JBoss EAP MicroProfile Maven repository patch as an archive
file

Whenever an MicroProfile Expansion Pack is released for JBoss EAP, a corresponding patch is provided
for the JBoss EAP MicroProfile Maven repository. This patch is provided as an incremental archive file
that is extracted into the existing Red Hat JBoss Enterprise Application Platform 7.4.0.GA Maven

repository. The incremental archive file does not overwrite or remove any existing files, so there is no
rollback requirement.

Prerequisites

® You have set up an account on the Red Hat Customer Portal.

Procedure

1. Open a browser and log in to the Red Hat Customer Portal.
2. Select Downloads from the menu at the top of the page.
3. Find the Red Hat JBoss Enterprise Application Platformentry in the list and select it.
4. From the Product drop-down list, select JBoss EAP XP.
5. From the Version drop-down list, select 4.0.0.
6. Click the Releases tab.
7. Find JBoss EAP XP 4.0.0 Incremental Maven Repositoryin the list, and then click Download.

8. Save the archive file to your local directory.

Additional Resources

® To learn more about the JBoss EAP Maven repository, see About the Maven Repository in the
JBoss EAP Development Guide.

4.1.2. Applying the JBoss EAP MicroProfile Maven repository patch on your local
system

You can install the JBoss EAP MicroProfile Maven repository patch on your local file system.

When you apply a patch in the form of an incremental archive file to the repository, new files are added
to this repository. The incremental archive file does not overwrite or remove any existing files on the
repository, so there is no rollback requirement.

Prerequisites

43

https://access.redhat.com
https://access.redhat.com
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/development_guide/#using_maven_with_eap

Red Hat JBoss Enterprise Application Platform 7.4 Using JBoss EAP XP 4.0.0

You have downloaded and installed the Red Hat JBoss Enterprise Application Platform
7.4.0.GA Maven repository on your local system.

o Check that you have this minor version of the Red Hat JBoss Enterprise Application
Platform 7.4 Maven repository installed on your local system.

You have downloaded the JBoss EAP XP 4.0.0 Incremental Maven Repository on your local
system.

Procedure

1. Locate the path to your Red Hat JBoss Enterprise Application Platform 7.4.0.GA Maven

repository. For example, /path/to/repo/jboss-eap-7.4.0.GA-maven-repository/maven-
repository/.

. Extract the downloaded JBoss EAP XP 4.0.0 Incremental Maven Repository directly into the

directory of the Red Hat JBoss Enterprise Application Platform 7.4.0.GA Maven repository. For
example, open a terminal and issue the following command, replacing the value for your Red
Hat JBoss Enterprise Application Platform 7.4.0.GA Maven repository path:

$ unzip -o jboss-eap-xp-4.0.0-incremental-maven-repository.zip -d
EAP_MAVEN_REPOSITORY_PATH

NOTE

The EAP_MAVEN_REPOSITORY_PATH points to the jboss-eap-7.4.0.GA-maven-
repository. For example, this procedure demonstrated the use of the path
/path/to/repo/jboss-eap-7.4.0.GA-maven-repository/.

After you extract the JBoss EAP XP Incremental Maven repository into the Red Hat
JBoss Enterprise Application Platform 7.4.0.GA Maven repository, the repository name
becomes JBoss EAP MicroProfile Maven repository.

Additional Resources

® To determine the URL of the JBoss EAP Maven repository, see Determining the URL for the

JBoss EAP Maven repository in the JBoss EAP Development Guide.

4.1.3. Supported JBoss EAP MicroProfile BOM

JBoss EAP XP 4.0.0 includes the JBoss EAP MicroProfile BOM. This BOM is named jboss-eap-xp-
microprofile, and its use case supports JBoss EAP MicroProfile APlIs.

Table 4.1. JBoss EAP MicroProfile BOM

BOM Artifact ID Use Case

44

jboss-eap-xp-microprofile This BOM, whose groupld is org.jboss.bom, packages many JBoss

EAP MicroProfile supported APl dependencies, such as microprofile-
openapi-api and microprofile-config-api. If you use this BOM, you
need not specify a version for a supported APl dependency, because
the jboss-eap-xp-microprofile BOM specifies this value for the
dependency.

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/development_guide/#download_jboss_eap_maven_repository
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/development_guide/#determine_the_url_of_repository

CHAPTER 4. DEVELOP MICROPROFILE APPLICATIONS FOR JBOSS EAFP

4.1.4. Using the JBoss EAP MicroProfile Maven repository

You can access the jboss-eap-xp-microprofile BOM after you install the Red Hat JBoss Enterprise
Application Platform 7.4.0.GA Maven repository and apply the JBoss EAP XP Incremental Maven
repository to it. The repository name then becomes JBoss EAP MicroProfile Maven repository. The
BOM is shipped inside the JBoss EAP XP Incremental Maven repository.

You must configure one of the following to use the JBoss EAP MicroProfile Maven repository:
® The Maven global or user settings
® The project's POM files

Maven settings used with a repository manager or repository on a shared server provide better control
and manageability of projects.

You can use an alternative mirror to redirect all lookup requests for a specific repository to your
repository manager without changing the project files.

' WARNING
A Configuring the JBoss EAP MicroProfile Maven repository by modifying the POM

file overrides the global and user Maven settings for the configured project.

Prerequisites

® You have installed the Red Hat JBoss Enterprise Application Platform 7.4 Maven repository on
your local system, and you have applied the JBoss EAP XP Incremental Maven repository to it.

Procedure

1. Choose a configuration method and configure the JBoss EAP MicroProfile Maven repository.

2. After you have configured the JBoss EAP MicroProfile Maven repository, add the jboss-eap-
xp-microprofile BOM to the project POM file. The following example shows how to configure
the BOM in the <dependencyManagement> section of the pom.xml file:

<dependencyManagement>
<dependencies>

<dependency>
<groupld>org.jboss.bom</groupld>
<artifactld>jboss-eap-xp-microprofile</artifactld>
<version>4.0.0.GA</version>
<type>pom</type>
<scope>import</scope>
</dependency>

</dependencies>
</dependencyManagement>

45

Red Hat JBoss Enterprise Application Platform 7.4 Using JBoss EAP XP 4.0.0

NOTE

If you do not specify a value for the type element in the pom.xml file, Maven
specifies a jar value for the element.

Additional Resources

® For more information about selecting methods to configure the JBoss EAP Maven repository,
see Use the Maven Repository in the JBoss EAP Development Guide.

® For more information about managing dependencies, see Dependency Management.

4.2. MICROPROFILE CONFIG DEVELOPMENT

4.2.1. Creating a Maven project for MicroProfile Config

Create a Maven project with the required dependencies and the directory structure for creating an
MicroProfile Config application.

Prerequisites

® Maven is installed.

Procedure

1. Set up the Maven project.

$ mvn archetype:generate \
-Dgroupld=com.example \
-Dartifactld=microprofile-config \
-DinteractiveMode=false \
-DarchetypeGroupld=org.apache.maven.archetypes \
-DarchetypeAtrtifactld=maven-archetype-webapp

cd microprofile-config

This creates the directory structure for the project and pom.xml configuration file.

2. Tolet the POM file automatically manage the versions for the MicroProfile Config artifact and
the MicroProfile REST Client artifact in the jboss-eap-xp-microprofile BOM, import the BOM
to the <dependencyManagements> section of the project POM file.

<dependencyManagement>
<dependencies>
<!I-- importing the microprofile BOM adds MicroProfile specs -->
<dependency>
<groupld>org.jboss.bom</groupld>
<artifactld>jboss-eap-xp-microprofile</artifactld>
<version>4.0.0.GA</version>
<type>pom</type>
<scope>import</scope>
</dependency>
</dependencies>
</dependencyManagement>

46

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/development_guide/#use_the_maven_repository
https://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html#dependency-management

CHAPTER 4. DEVELOP MICROPROFILE APPLICATIONS FOR JBOSS EAFP

3. Add the MicroProfile Config artifact and the MicroProfile REST Client artifact and other
dependencies, managed by the BOM, to the <dependency> section of the project POM file.
The following example demonstrates adding the MicroProfile Config and the MicroProfile REST
Client dependencies to the file:

<I-- Add the MicroProfile REST Client API. Set provided for the <scope> tag, as the APl is
included in the server. -->
<dependency>
<groupld>org.eclipse.microprofile.rest.client</groupld>
<artifactld>microprofile-rest-client-api</artifactld>
<scope>provided</scope>
</dependency>
<!-- Add the MicroProfile Config API. Set provided for the <scopes tag, as the APl is
included in the server. -->
<dependency>
<groupld>org.eclipse.microprofile.config</groupld>
<artifactld>microprofile-config-api</artifactld>
<scope>provided</scope>
</dependency>
<I-- Add the {JAX-RS} API. Set provided for the <scopes tag, as the APl is included in the
server. -->
<dependency>
<groupld>org.jboss.spec.javax.ws.rs</groupld>
<artifactld>jboss-jaxrs-api_2.1_spec</artifactld>
<scope>provided</scope>
</dependency>
<!-- Add the CDI API. Set provided for the <scope> tag, as the APl is included in the server.
-=>
<dependency>
<groupld>jakarta.enterprise</groupld>
<artifactld>jakarta.enterprise.cdi-api</artifactid>
<scope>provided</scope>
</dependency>

4.2.2. Using MicroProfile Config property in an application

Create an application that uses a configured ConfigSource.

Prerequisites

® MicroProfile Config is enabled in JBoss EAP.
® The latest POM is installed.

® The Maven project is configured for creating an MicroProfile Config application.

Procedure
1. Create the directory to store class files:

I $ mkdir -p APPLICATION_ROOT/src/main/java/com/example/microprofile/config/

Where APPLICATION_ROOT is the directory containing the pom.xml configuration file for the
application.

47

Red Hat JBoss Enterprise Application Platform 7.4 Using JBoss EAP XP 4.0.0

2. Navigate to the new directory:
I $ cd APPLICATION_ROOT/src/main/java/com/example/microprofile/config/

Create all class files described in this procedure in this directory.

3. Create a class file named HelloApplication.java with the following content:

package com.example.microprofile.config;

import javax.ws.rs.ApplicationPath;
import javax.ws.rs.core.Application;

@ApplicationPath("/")
public class HelloApplication extends Application {

}

This class defines the application as a Jakarta RESTful Web Services application.

4. Create a class file named HelloService.java with the following content:

package com.example.microprofile.config;

public class HelloService {
String createHelloMessage(String name){
return "Hello " + name;

}
}

5. Create a class file named HelloWorld.java with the following content:

package com.example.microprofile.config;

import javax.inject.Inject;

import javax.ws.rs.GET;

import javax.ws.rs.Path;

import javax.ws.rs.Produces;

import org.eclipse.microprofile.config.inject. ConfigProperty;

@Path("/config")
public class HelloWorld {

@Inject
@ConfigProperty(name="name", defaultValue="jim") ﬂ
String name;

@Inject
HelloService helloService;

@GET
@Path("/json")
@Produces({ "application/json" })
public String getHelloWorldJSON() {
String message = helloService.createHelloMessage(name);

48

CHAPTER 4. DEVELOP MICROPROFILE APPLICATIONS FOR JBOSS EAFP

return "{\"result\"\"" + message + "\"}";

A MicroProfile Config property is injected into the class with the annotation
@ConfigProperty(name="name", defaultValue="jim"). If no ConfigSource is
configured, the value jim is returned.

6. Create an empty file named beans.xml in the src/main/webapp/WEB-INF/ directory:
I $ touch APPLICATION_ROOQOT/src/main/webapp/WEB-INF/beans.xml

Where APPLICATION_ROOT is the directory containing the pom.xml configuration file for the
application.

7. Navigate to the root directory of the application:
I $ cd APPLICATION_ROOT

Where APPLICATION_ROOT is the directory containing the pom.xml configuration file for the
application.

8. Build the project:
I $ mvn clean install wildfly:deploy
9. Test the output:
I $ curl http://localhost:8080/microprofile-config/config/json

The following is the expected output:

I {"result":"Hello jim"}

4.3. MICROPROFILE FAULT TOLERANCE APPLICATION
DEVELOPMENT

4.3.1. Adding the MicroProfile Fault Tolerance extension

The MicroProfile Fault Tolerance extension is included in standalone-microprofile.xml and
standalone-microprofile-ha.xml configurations that are provided as part of JBoss EAP XP.

The extension is not included in the standard standalone.xml configuration. To use the extension, you
must manually enable it.

Prerequisites

® EAP XP packis installed.

Procedure

1. Add the MicroProfile Fault Tolerance extension using the following management CLI command:

49

Red Hat JBoss Enterprise Application Platform 7.4 Using JBoss EAP XP 4.0.0

I /extension=org.wildfly.extension.microprofile.fault-tolerance-smallrye:add

2. Enable the microprofile-fault-tolerance-smallrye subsystem using the following managenent
command:

I /subsystem=microprofile-fault-tolerance-smallrye:add

3. Reload the server with the following management command:

I reload

4.3.2. Configuring Maven project for MicroProfile Fault Tolerance

Create a Maven project with the required dependencies and the directory structure for creating an
MicroProfile Fault Tolerance application.

Prerequisites

® Maven is installed.

Procedure

1. Set up the Maven project:

mvn archetype:generate \
-Dgroupld=com.example.microprofile.faulttolerance \
-Dartifactld=microprofile-fault-tolerance \
-DarchetypeGroupld=org.apache.maven.archetypes \
-DarchetypeArtifactld=maven-archetype-webapp \
-DinteractiveMode=false

cd microprofile-fault-tolerance

The command creates the directory structure for the project and the pom.xml configuration
file.

2. Tolet the POM file automatically manage the versions for the MicroProfile Fault Tolerance
artifact in the jboss-eap-xp-microprofile BOM, import the BOM to the
<dependencyManagements section of the project POM file.

<dependencyManagement>
<dependencies>
<!I-- importing the microprofile BOM adds MicroProfile specs -->
<dependency>
<groupld>org.jboss.bom</groupld>
<artifactld>jboss-eap-xp-microprofile</artifactld>
<version>${version.microprofile.bom}</version>
<type>pom</type>
<scope>import</scope>
</dependency>
</dependencies>
</dependencyManagement>

Replace ${version.microprofile.bom} with the installed version of BOM.

50

CHAPTER 4. DEVELOP MICROPROFILE APPLICATIONS FOR JBOSS EAFP

3. Add the MicroProfile Fault Tolerance artifact, managed by the BOM, to the <dependency>
section of the project POM file. The following example demonstrates adding the MicroProfile
Fault Tolerance dependency to the file:

<I-- Add the MicroProfile Fault Tolerance API. Set provided for the <scopes tag, as the API
is included in the server. -->
<dependency>
<groupld>org.eclipse.microprofile.fault.tolerance</groupld>
<artifactld>microprofile-fault-tolerance-api</artifactld>
<scope>provided</scope>
</dependency>

4.3.3. Creating a fault tolerant application

Create a fault-tolerant application that implements retry, timeout, and fallback patterns for fault
tolerance.

Prerequisites

® Maven dependencies have been configured.

Procedure

1. Create the directory to store class files:
I $ mkdir -p APPLICATION_ROOT/src/main/java/com/example/microprofile/faulttolerance

APPLICATION_ROOT is the directory containing the pom.xml configuration file for the
application.

2. Navigate to the new directory:
I $ cd APPLICATION_ROOT/src/main/java/com/example/microprofile/faulttolerance

For the following steps, create all class files in the new directory.

3. Create a simple entity representing a coffee sample as Coffee.java with the following content:

package com.example.microprofile.faulttolerance;
public class Coffee {

public Integer id;

public String name;

public String countryOfOrigin;
public Integer price;

public Coffee() {
}

public Coffee(Integer id, String name, String countryOfOrigin, Integer price) {
this.id = id;
this.name = name;
this.countryOfOrigin = countryOfOrigin;

51

Red Hat JBoss Enterprise Application Platform 7.4 Using JBoss EAP XP 4.0.0

this.price = price;
}
}

4. Create a class file CoffeeApplication.java with the following content:

package com.example.microprofile.faulttolerance;

import javax.ws.rs.ApplicationPath;
import javax.ws.rs.core.Application;

@ApplicationPath("/")
public class CoffeeApplication extends Application {

}

5. Create a Jakarta Contexts and Dependency Injection Bean as CoffeeRepositoryService.java
with the following content:

package com.example.microprofile.faulttolerance;

import java.util. ArrayList;

import java.util.Collections;

import java.util.HashMap;

import java.util.List;

import java.util.Map;

import java.util.stream.Collectors;

import javax.enterprise.context.ApplicationScoped;

@ApplicationScoped
public class CoffeeRepositoryService {

private Map<lInteger, Coffee> coffeeList = new HashMap<>();

public CoffeeRepositoryService() {
coffeeList.put(1, new Coffee(1, "Fernandez Espresso”, "Colombia", 23));
coffeeList.put(2, new Coffee(2, "La Scala Whole Beans", "Bolivia", 18));
coffeeList.put(3, new Coffee(3, "Dak Lak Filter", "Vietnam", 25));

}

public List<Coffee> getAllCoffees() {
return new ArrayList<>(coffeeList.values());

}

public Coffee getCoffeeByld(Integer id) {
return coffeelList.get(id);

}

public List<Coffee> getRecommendations(Integer id) {
if (id == null) {
return Collections.emptyList();
}
return coffeeList.values().stream()
filter(coffee -> lid.equals(coffee.id))
Jimit(2)

52

CHAPTER 4. DEVELOP MICROPROFILE APPLICATIONS FOR JBOSS EAFP

.collect(Collectors.toList());

6. Create a class file CoffeeResource.java with the following content:

package com.example.microprofile.faulttolerance;

import java.util.List;

import java.util. Random;

import java.util.concurrent.atomic.AtomicLong;

import javax.inject.Inject;

import javax.ws.rs.GET;

import javax.ws.rs.Path;

import javax.ws.rs.Produces;

import javax.ws.rs.core.MediaType;

import java.util.Collections;

import javax.ws.rs.PathParam;

import org.eclipse.microprofile.faulttolerance.Fallback;
import org.eclipse.microprofile.faulttolerance.Timeout;
import org.eclipse.microprofile.faulttolerance.Retry;

@Path("/coffee")
@Produces(MediaType.APPLICATION_JSON)
public class CoffeeResource {

@Inject
private CoffeeRepositoryService coffeeRepository;

private AtomicLong counter = new AtomicLong(0);

@GET

@Retry(maxRetries = 4) 0

public List<Coffee> coffees() {
final Long invocationNumber = counter.getAndIncrement();
return coffeeRepository.getAllCoffees();

}

@GET

@Path("/{id}/recommendations")

@Timeout(250) @

public List<Coffee> recommendations(@PathParam("id") int id) {
return coffeeRepository.getRecommendations(id);

}

@GET

@Path("fallback/{id}/recommendations")

@Fallback(fallbackMethod = "fallbackRecommendations") 6

public List<Coffee> recommendations2(@PathParam("id") int id) {
return coffeeRepository.getRecommendations(id);

}

public List<Coffee> fallbackRecommendations(int id) {
//always return a default coffee

53

Red Hat JBoss Enterprise Application Platform 7.4 Using JBoss EAP XP 4.0.0

return Collections.singletonList(coffeeRepository.getCoffeeByld(1));

}
}

ﬂ Define number of re-tries to 4.
9 Define the timeout interval in milliseconds.

9 Define a fallback method to call when invocation fails.

7. Navigate to the root directory of the application:

I $ cd APPLICATION_ROOT

8. Build the application using the following Maven command:
I $ mvn clean install wildfly:deploy

Access the application at http://localhost:8080/microprofile-fault-tolerance/coffee.

Additional Resources

® For adetailed example of fault tolerant application, which includes artificial failures to test the
fault tolerance of the application, see the microprofile-fault-tolerance quickstart.

4.4. MICROPROFILE HEALTH DEVELOPMENT

4.4.1. The custom health check example

The default implementation provided by the microprofile-health-smallrye subsystem performs a basic
health check. For more detailed information, on either the server or application status, custom health
checks might be included. Any Jakarta Contexts and Dependency Injection beans that include the
org.eclipse.microprofile.health.Liveness, org.eclipse.microprofile.health.Readiness, or
org.eclipse.microprofile.health.Startup annotations at the class level are automatically discovered and
invoked at runtime.

The following example demonstrates how to create a new implementation of a health check that returns
an UP state.

import org.eclipse.microprofile.health.HealthCheck;
import org.eclipse.microprofile.health.HealthCheckResponse;
import org.eclipse.microprofile.health.Liveness;

import javax.enterprise.context.ApplicationScoped;
@Liveness
@ApplicationScoped

public class HealthTest implements HealthCheck {

@Override
public HealthCheckResponse call() {

54

CHAPTER 4. DEVELOP MICROPROFILE APPLICATIONS FOR JBOSS EAFP

return HealthCheckResponse.named("health-test").up().build();

}
}

After you deploy a health check, any subsequent health check queries include the custom checks, as
demonstrated in the following example.

[standalone@localhost:9990 /] /subsystem=microprofile-health-smallrye:check

{

"outcome" => "success",

"result" => {
"status" => "UP",
"checks" => [

{

"name" => "deployments-status”,
"status" => "UP",
"data" => {"<deployment_name>.war" => "OK"}

{
"name" => "server-state",
"status" => "UP",
"data" => {"value" => "running"}

b

{
"name" => "boot-errors",
"status" => "UP"

2

{
"name" => "health-test",
"status" => "UP"

b

{
"name" => "ready-deployment.<deployment_name>.war,
"status" => "UP"

2

{

"name" => "started-deployment.<deployment_name>.war",
"status" => "UP"

NOTE

You can use the following commands for liveness, readiness, and startup checks:
e /subsystem=microprofile-health-smallrye:check-live
e /subsystem=microprofile-health-smallrye:check-ready

e /subsystem=microprofile-health-smalirye:check-started

4.4.2. The @Liveness annotation example

55

Red Hat JBoss Enterprise Application Platform 7.4 Using JBoss EAP XP 4.0.0

The following example demonstrates how to use the @Liveness annotation in an application.

@Liveness
@ApplicationScoped
public class DataHealthCheck implements HealthCheck {

@Override
public HealthCheckResponse call() {
return HealthCheckResponse.named("Health check with data")
-up()
.withData("foo", "fooValue")
.withData("bar", "barValue")
.build();

4.4.3. The @Readiness annotation example

The following example demonstrates how to check the connection to a database. If the database is
down, the readiness check reports an error.

@Readiness
@ApplicationScoped
public class DatabaseConnectionHealthCheck implements HealthCheck {

@Inject
@ConfigProperty(name = "database.up", defaultValue = "false")
private boolean databaseUp;

@Override
public HealthCheckResponse call() {

HealthCheckResponseBuilder responseBuilder = HealthCheckResponse.named("Database
connection health check");

try {
simulateDatabaseConnectionVerification();
responseBuilder.up();
} catch (lllegalStateException e) {
// cannot access the database
responseBuilder.down()
.withData("error", e.getMessage()); // pass the exception message

}

return responseBuilder.build();

}

private void simulateDatabaseConnectionVerification() {
if (IdatabaseUp) {
throw new lllegalStateException("Cannot contact database");
}
}
}

56

CHAPTER 4. DEVELOP MICROPROFILE APPLICATIONS FOR JBOSS EAFP

4.4.4. The @Startup annotation example

The following is an example of using the @Startup annotation in an application.

@Startup

@ApplicationScoped

public class StartupHealthCheck implements HealthCheck {
@Override

public HealthCheckResponse call() {
return HealthCheckResponse.up("Application started");

}
}

4.5. MICROPROFILE JWT APPLICATION DEVELOPMENT

4.5.1. Enabling microprofile-jwt-smallrye subsystem

The MicroProfile JWT integration is provided by the microprofile-jwt-smallrye subsystem and is
included in the default configuration. If the subsystem is not present in the default configuration, you
can add it as follows.

Prerequisites

e EAP XP isinstalled.

Procedure

1. Enable the MicroProfile JWT smallrye extension in JBoss EAP:

I /extension=org.wildfly.extension.microprofile.jwt-smallrye:add
2. Enable the microprofile-jwt-smallrye subsystem:

I /subsystem=microprofile-jwt-smallrye:add
3. Reload the server:

I reload

The microprofile-jwt-smallrye subsystem is enabled.

4.5.2. Configuring Maven project for developing JWT applications

Create a Maven project with the required dependencies and the directory structure for developing a
JWT application.

Prerequisites

® Maven is installed.

e microprofile-jwt-smallrye subsystem is enabled.

57

Red Hat JBoss Enterprise Application Platform 7.4 Using JBoss EAP XP 4.0.0

Procedure

1. Set up the maven project:

$ mvn archetype:generate -DinteractiveMode=false \
-DarchetypeGroupld=org.apache.maven.archetypes \
-DarchetypeAtrtifactld=maven-archetype-webapp \
-Dgroupld=com.example -Dartifactld=microprofile-jwt \
-Dversion=1.0.0.Alpha1-SNAPSHOT
cd microprofile-jwt

The command creates the directory structure for the project and the pom.xml configuration
file.

. To let the POM file automatically manage the versions for the MicroProfile JWT artifact in the

jboss-eap-xp-microprofile BOM, import the BOM to the <dependencyManagements section
of the project POM file.

<dependencyManagement>
<dependencies>
<!I-- importing the microprofile BOM adds MicroProfile specs -->
<dependency>
<groupld>org.jboss.bom</groupld>
<artifactld>jboss-eap-xp-microprofile</artifactld>
<version>${version.microprofile.boom}</version>
<type>pom</type>
<scope>import</scope>
</dependency>
</dependencies>
</dependencyManagement>

Replace ${version.microprofile.bom} with the installed version of BOM.

. Add the MicroProfile JWT artifact, managed by the BOM, to the <dependency> section of the

project POM file. The following example demonstrates adding the MicroProfile JWT
dependency to the file:

<!-- Add the MicroProfile JWT API. Set provided for the <scopes tag, as the APl is included
in the server. -->
<dependency>
<groupld>org.eclipse.microprofile.jwt</groupld>
<artifactld>microprofile-jwt-auth-api</artifactid>
<scope>provided</scope>
</dependency>

4.5.3. Creating an application with MicroProfile JWT

Create an application that authenticates requests based on JWT tokens and implements authorization
based on the identity of the token bearer.

58

NOTE

The following procedure provides example code for generating tokens. For a production
environment, use an identity provider such as Red Hat single sign-on (SSO).

CHAPTER 4. DEVELOP MICROPROFILE APPLICATIONS FOR JBOSS EAFP

Prerequisites

® Maven project is configured with the correct dependencies.

Procedure

1. Create a token generator.

This step serves as a reference. For a production environment, use an identity provider such as
Red Hat SSO.

a. Create a directory src/test/java for token the generator utility and navigate to it:

$ mkdir -p src/test/java
$ cd src/test/java

b. Create a class file TokenUtil.java with the following content:

package com.example.mpjwt;

import java.io.FilelnputStream;

import java.io.lnputStream;

import java.nio.charset.StandardCharsets;

import java.security.KeyFactory;

import java.security.PrivateKey;

import java.security.spec.PKCS8EncodedKeySpec;
import java.util.Base64;

import java.util.UUID;

import javax.json.Json;
import javax.json.JsonArrayBuilder;
import javax.json.JsonObjectBuilder;

import com.nimbusds.jose.JOSEQObjectType;
import com.nimbusds.jose.JWSAIgorithm;

import com.nimbusds.jose.JWSHeader;

import com.nimbusds.jose.JWSObject;

import com.nimbusds.jose.JWSSigner;

import com.nimbusds.jose.Payload;

import com.nimbusds.jose.crypto.RSASSASigner;

public class TokenUTMil {

private static PrivateKey loadPrivateKey(final String fileName) throws Exception {
try (InputStream is = new FilelnputStream(fileName)) {

byte[] contents = new byte[4096];

int length = is.read(contents);

String rawKey = new String(contents, 0, length, StandardCharsets.UTF_8)
.replaceAll("-----BEGIN (.*)-----", ")
.replaceAll("-----END (.*)----", ™)
replaceAll("\r\n", "").replaceAll("\n", "").trim();

PKCS8EncodedKeySpec keySpec = new
PKCS8EncodedKeySpec(Baseb4.getDecoder().decode(rawKey));
KeyFactory keyFactory = KeyFactory.getinstance("RSA");

return keyFactory.generatePrivate(keySpec);

59

Red Hat JBoss Enterprise Application Platform 7.4 Using JBoss EAP XP 4.0.0

}
}

public static String generateJWT (final String principal, final String birthdate, final
String...groups) throws Exception {
PrivateKey privateKey = loadPrivateKey("private.pem");

JWSSigner signer = new RSASSASigner(privateKey);
JsonArrayBuilder groupsBuilder = Json.createArrayBuilder();
for (String group : groups) { groupsBuilder.add(group); }

long currentTime = System.currentTimeMillis() / 1000;
JsonObijectBuilder claimsBuilder = Json.createObjectBuilder()
.add("sub", principal)
.add("upn", principal)
.add("
.add("aud", "jwt-audience")
.add("groups", groupsBuilder.build())
.add("birthdate", birthdate)
(
(
(

iss", "quickstart-jwt-issuer")

.add("jti", UUID.randomUUID().toString())
.add("iat", currentTime)
.add("exp", currentTime + 14400);
JWSObject jwsObject = new JWSObject(new
JWSHeader.Builder(JWSAIgorithm.RS256)
type(new JOSEODbjectType("jwt"))
keyID("Test Key").build(),
new Payload(claimsBuilder.build().toString()));

jwsObiject.sign(signer);

return jwsObject.serialize();

}

public static void main(String[] args) throws Exception {
if (args.length < 2) throw new lllegalArgumentException("Usage TokenUTtil {principal}
{birthdate} {groups}");
String principal = args[0];
String birthdate = args[1];
String[] groups = new String[args.length - 2];
System.arraycopy(args, 2, groups, 0, groups.length);

String token = generateJWT (principal, birthdate, groups);

String[] parts = token.split("\\.");

System.out.printin(String.format("\ndWT Header - %s", new
String(Base64.getDecoder().decode(parts[0]), StandardCharsets.UTF_8)));

System.out.printin(String.format("\nJWT Claims - %s", new
String(Base64.getDecoder().decode(parts[1]), StandardCharsets.UTF_8)));

System.out.printin(String.format("\nGenerated JWT Token \n%s\n", token));

}
}

2. Create the web.xml file in the src/main/webapp/WEB-INF directory with the following content:

<context-param>
<param-names>resteasy.role.based.security</param-name>

60

CHAPTER 4. DEVELOP MICROPROFILE APPLICATIONS FOR JBOSS EAFP

<param-value>true</param-value>
</context-param>

<security-role>
<role-name>Subscriber</role-name>
</security-role>

3. Create a class file SampleEndPoint.java with the following content:

package com.example.mpjwt;

import javax.ws.rs.GET;
import javax.ws.rs.Path;

import java.security.Principal;
import javax.ws.rs.core.Context;
import javax.ws.rs.core.SecurityContext;

import javax.annotation.security.RolesAllowed;
import javax.inject.Inject;

import java.time.LocalDate;
import java.time.Period;
import java.util.Optional;

import org.eclipse.microprofile.jwt.Claims;
import org.eclipse.microprofile.jwt.Claim;

import org.eclipse.microprofile.jwt.JsonWebToken;

@Path("/Sample")
public class SampleEndPoint {

@GET

@Path("/helloworld")

public String helloworld(@Context SecurityContext securityContext) {
Principal principal = securityContext.getUserPrincipal();
String caller = principal == null ? "anonymous" : principal.getName();

return "Hello " + caller;

}

@Inject
JsonWebToken jwt;

@GET()
@Path("/subscription")
@RolesAllowed({"Subscriber"})
public String helloRolesAllowed(@Context SecurityContext ctx) {
Principal caller = ctx.getUserPrincipal();
String name = caller == null ? "anonymous" : caller.getName();
boolean hasdJWT = jwt.getClaimNames() != null;
String helloReply = String.format("hello + %s, hasJWT: %s", name, hasJWT);

return helloReply;

61

Red Hat JBoss Enterprise Application Platform 7.4 Using JBoss EAP XP 4.0.0

@Inject
@Claim(standard = Claims.birthdate)
Optional<String> birthdate;

@GET()
@Path("/birthday")
@RolesAllowed({ "Subscriber" })
public String birthday() {
if (birthdate.isPresent()) {
LocalDate birthdate = LocalDate.parse(this.birthdate.get().toString());
LocalDate today = LocalDate.now();
LocalDate next = birthdate.withYear(today.getYear());
if (today.equals(next)) {
return "Happy Birthday";

}
if (next.isBefore(today)) {

next = next.withYear(next.getYear() + 1);

}

Period wait = today.until(next);

return String.format("%d months and %d days until your next birthday.",
wait.getMonths(), wait.getDays());

}
return "Sorry, we don't know your birthdate.";
}
}
The methods annotated with @Path are the Jakarta RESTful Web Services endpoints.
The annotation @Claim defines a JWT claim.
4. Create a class file App.java to enable Jakarta RESTful Web Services:
package com.example.mpjwt;

import javax.ws.rs.ApplicationPath;
import javax.ws.rs.core.Application;

import org.eclipse.microprofile.auth.LoginConfig;
@ApplicationPath("/rest")

@LoginConfig(authMethod="MP-JWT", realmName="MP JWT Realm")
public class App extends Application {}

The annotation @LoginConfig(authMethod="MP-JWT", realmName="MP JWT Realm")
enables JWT RBAC during deployment.

5. Compile the application with the following Maven command:

I $ mvn package

62

CHAPTER 4. DEVELOP MICROPROFILE APPLICATIONS FOR JBOSS EAFP

6. Generate JWT token using the token generator utility:

$ mvn exec:java -Dexec.mainClass=org.wildfly.quickstarts.mpjwt. TokenUtil -
Dexec.classpathScope=test -Dexec.args="testUser 2017-09-15 Echoer Subscriber"

7. Build and deploy the application using the following Maven command:
I $ mvn package wildfly:deploy

8. Test the application.

® Call the Sample/subscription endpoint using the bearer token:

$ curl -H "Authorization: Bearer ey..rg" http://localhost:8080/microprofile-
jwt/rest/Sample/subscription

® Call the Sample/birthday endpoint:

$ curl -H "Authorization: Bearer ey..rg" http://localhost:8080/microprofile-
jwt/rest/Sample/birthday

4.6. MICROPROFILE METRICS DEVELOPMENT

4.6.1. Creating an MicroProfile Metrics application

Create an application that returns the number of requests made to the application.

Procedure

1. Create a class file HelloService.java with the following content:

package com.example.microprofile.metrics;

public class HelloService {
String createHelloMessage(String name){
return "Hello" + name;

}
}

2. Create a class file HelloWorld.java with the following content:

package com.example.microprofile.metrics;

import javax.inject.Inject;

import javax.ws.rs.GET;

import javax.ws.rs.Path;

import javax.ws.rs.Produces;

import org.eclipse.microprofile.metrics.annotation.Counted;

@Path("/")
public class HelloWorld {
@Inject

HelloService helloService;

63

Red Hat JBoss Enterprise Application Platform 7.4 Using JBoss EAP XP 4.0.0

@GET
@Path("/json")
@Produces({ "application/json"})
@Counted(name = "requestCount",
absolute = true,
description = "Number of times the getHelloWorldJSON was requested")
public String getHelloWorldJSON() {
return "{\"result\":\"" + helloService.createHelloMessage("World") + "\"}";

}
}

3. Update the pom.xml file to include the following dependency:
<dependency>
<groupld>org.eclipse.microprofile.metrics</groupld>
<artifactld>microprofile-metrics-api</artifactid>

<scope>provided</scope>
</dependency>

4. Build the application using the following Maven command:
I $ mvn clean install wildfly:deploy

5. Test the metrics:

a. Issue the following command in the CLI:
I $ curl -v http://localhost:9990/metrics | grep request_count | grep helloworld-rs-metrics

Expected output:

jooss_undertow_request_count_total{deployment="helloworld-rs-
metrics.war",servlet="org.jboss.as.quickstarts.rshelloworld.JAXActivator",subdeployment="r
elloworld-rs-metrics.war",microprofile_scope="vendor"} 0.0

b. In a browser, navigate to the URL http://localhost:8080/helloworld-rs/rest/json.

c. Re-lssue the following command in the CLI:

I $ curl -v http://localhost:9990/metrics | grep request_count | grep helloworld-rs-metrics

Expected output:

jooss_undertow_request_count_total{deployment="helloworld-rs-
metrics.war",servlet="org.jboss.as.quickstarts.rshelloworld.JAXActivator",subdeployment="r
elloworld-rs-metrics.war",microprofile_scope="vendor"} 1.0

4.7. DEVELOPING AN MICROPROFILE OPENAPI APPLICATION

4.7.1. Enabling MicroProfile OpenAPI

64

CHAPTER 4. DEVELOP MICROPROFILE APPLICATIONS FOR JBOSS EAFP

The microprofile-openapi-smallrye subsystem is provided in the standalone-microprofile.xml
configuration. However, JBoss EAP XP uses the standalone.xml by default. You must include the
subsystem in standalone.xml to use it.

Alternatively, you can follow the procedure Updating standalone configurations with MicroProfile
subsystems and extensions to update the standalone.xml configuration file.

Procedure
1. Enable the MicroProfile OpenAPI smallrye extension in JBoss EAP:

I /extension=org.wildfly.extension.microprofile.openapi-smallrye:add()

2. Enable the microprofile-openapi-smallrye subsystem using the following management
command:

I /subsystem=microprofile-openapi-smallrye:add()

3. Reload the server.

I reload

The microprofile-openapi-smallrye subsystem is enabled.

4.7.2. Configuring Maven project for MicroProfile OpenAPI

Create a Maven project to set up the dependencies for creating an MicroProfile OpenAPI application.

Prerequisites

® Maven is installed.

® JBoss EAP Maven repository is configured.

Procedure

1. Initialize the project:

mvn archetype:generate \
-Dgroupld=com.example.microprofile.openapi \
-Dartifactld=microprofile-openapi\
-DarchetypeGroupld=org.apache.maven.archetypes \
-DarchetypeArtifactld=maven-archetype-webapp \
-DinteractiveMode=false

cd microprofile-openapi

The command creates the directory structure for the project and the pom.xml configuration
file.

2. Edit the pom.xml configuration file to contain:
<?xml version="1.0" encoding="UTF-8"7>

<project xmlns="http://maven.apache.org/POM/4.0.0"

65

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/#updating-standalone-server-configuration_default

Red Hat JBoss Enterprise Application Platform 7.4 Using JBoss EAP XP 4.0.0

xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>

<groupld>com.example.microprofile.openapi</groupld>
<artifactld>microprofile-openapi</artifactld>
<version>1.0-SNAPSHOT</ersion>
<packaging>war</packaging>

<name>microprofile-openapi Maven Webapp</name>
<I-- Update the value with the URL of the project -->
<url>http://www.example.com</url>

<properties>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
<maven.compiler.source>1.8</maven.compiler.source>
<maven.compiler.target>1.8</maven.compiler.target>
<version.server.oom>4.0.0.GA</version.server.oom>

</properties>

<dependencyManagement>
<dependencies>
<dependency>
<groupld>org.jboss.bom</groupld>
<artifactld>jboss-eap-xp-microprofile</artifactld>
<version>${version.server.oom}</version>
<type>pom</type>
<scope>import</scope>
</dependency>
</dependencies>
</dependencyManagement>

<dependencies>
<dependency>
<groupld>org.jboss.spec.javax.ws.rs</groupld>
<artifactld>jboss-jaxrs-api_2.1_spec</artifactld>
<scope>provided</scope>
</dependency>
</dependencies>

<build>
<!I-- Set the name of the archive -->
<finalName>${project.artifactld}</finalName>
<plugins>
<plugin>
<artifactld>maven-clean-plugin</artifactld>
<version>3.1.0</version>
</plugin>
<!I-- see htip://maven.apache.org/ref/current/maven-core/default-
bindings.html#Plugin_bindings_for_war_packaging -->
<plugin>
<artifactld>maven-resources-plugin</artifactid>
<version>3.0.2</version>
</plugin>
<plugin>

66

CHAPTER 4. DEVELOP MICROPROFILE APPLICATIONS FOR JBOSS EAFP

<artifactld>maven-compiler-plugin</artifactid>
<version>3.8.0</version>

</plugin>

<plugin>
<artifactld>maven-surefire-plugin</artifactid>
<version>2.22.1</version>

</plugin>

<plugin>
<artifactld>maven-war-plugin</artifactld>
<version>3.2.2</version>

</plugin>

<plugin>
<artifactld>maven-install-plugin</artifactld>
<version>2.5.2</version>

</plugin>

<plugin>
<artifactld>maven-deploy-plugin</artifactld>
<version>2.8.2</version>

</plugin>

<!I-- Allows to use mvn wildfly:deploy -->

<plugin>
<groupld>org.wildfly.plugins</groupld>
<artifactld>wildfly-maven-plugin</artifactld>

</plugin>

</plugins>
</build>
</project>

Use the pom.xml configuration file and directory structure to create an application.

Additional resources

e Forinformation about configuring the JBoss EAP Maven repository, see Configuring the JBoss
EAP Maven repository with the POM file.

4.7.3. Creating an MicroProfile OpenAPI application

Create an application that returns an OpenAPI v3 document.

Prerequisites

® Maven project is configured for creating an MicroProfile OpenAPI application.
Procedure
1. Create the directory to store class files:
I $ mkdir -p APPLICATION_ROOT/src/main/java/com/example/microprofile/openapi/

APPLICATION_ROOT is the directory containing the pom.xml configuration file for the
application.

2. Navigate to the new directory:

I $ cd APPLICATION_ROOT/src/main/java/com/example/microprofile/openapi/

67

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html/using_jboss_eap_xp_4.0.0/develop_microprofile_applications_for_jboss_eap#configuring-the-jboss-eap-maven-repository-with-the-pom-file_default

Red Hat JBoss Enterprise Application Platform 7.4 Using JBoss EAP XP 4.0.0

All the class files in the following steps must be created in this directory.

3. Create the class file InventoryApplication.java with the following content:

package com.example.microprofile.openapi;

import javax.ws.rs.ApplicationPath;
import javax.ws.rs.core.Application;

@ApplicationPath("/inventory™)
public class InventoryApplication extends Application {

}

This class serves as the REST endpoint for the application.

4. Create a class file Fruit.java with the following content:

package com.example.microprofile.openapi;
public class Fruit {

private final String name;
private final String description;

public Fruit(String name, String description) {
this.name = name;
this.description = description;

}

public String getName() {
return this.name;

}

public String getDescription() {
return this.description;
}
}

5. Create a class file FruitResource.java with the following content:

package com.example.microprofile.openapi;

import java.util.Collections;
import java.util.LinkedHashMap;
import java.util.Set;

import javax.ws.rs.Consumes;
import javax.ws.rs.DELETE;

import javax.ws.rs.GET;

import javax.ws.rs.POST;

import javax.ws.rs.Path;

import javax.ws.rs.Produces;
import javax.ws.rs.core.MediaType;

@Path("/fruit")

68

CHAPTER 4. DEVELOP MICROPROFILE APPLICATIONS FOR JBOSS EAFP

@Produces(MediaType.APPLICATION_JSON)
@Consumes(MediaType.APPLICATION_JSON)
public class FruitResource {

private final Set<Fruit> fruits =
Collections.newSetFromMap(Collections.synchronizedMap(new LinkedHashMap<>()));

public FruitResource() {
this.fruits.add(new Fruit("Apple", "Winter fruit"));
this.fruits.add(new Fruit("Pineapple", "Tropical fruit"));

}

@GET
public Set<Fruit> all() {
return this.fruits;

}

@POST

public Set<Fruit> add(Fruit fruit) {
this.fruits.add(fruit);
return this.fruits;

}

@DELETE
public Set<Fruit> remove(Fruit fruit) {
this.fruits.removelf(existingFruit ->
existingFruit.getName().contentEquals(fruit.getName()));
return this.fruits;

}
}

6. Navigate to the root directory of the application:
I $ cd APPLICATION_ROOT

7. Build and deploy the application using the following Maven command:
I $ mvn wildfly:deploy

8. Test the application.

® Access the OpenAPl documentation of the sample application using curl:

I $ curl http://localhost:8080/openapi

® The following output is returned:

openapi: 3.0.1

info:
title: Archetype Created Web Application
version: "1.0"

servers:

- url: /microprofile-openapi

paths:

/inventory/fruit:

69

Red Hat JBoss Enterprise Application Platform 7.4 Using JBoss EAP XP 4.0.0

get:
responses:
"200":
description: OK
content:
application/json:
schema:
type: array
items:
$ref: '#/components/schemas/Fruit'
post:
requestBody:
content:
application/json:
schema:
$ref: '#/components/schemas/Fruit'
responses:
"200":
description: OK
content:
application/json:
schema:
type: array
items:
$ref: '#/components/schemas/Fruit'
delete:
requestBody:
content:
application/json:
schema:
$ref: '#/components/schemas/Fruit'
responses:
"200":
description: OK
content:
application/json:
schema:
type: array
items:
$ref: '‘#/components/schemas/Fruit'
components:
schemas:
Fruit:
type: object
properties:
description:
type: string
name:
type: string

Additional Resources

® For alist of annotations defined in MicroProfile SmallRye OpenAPI, see MicroProfile OpenAPI
annotations.

70

https://github.com/eclipse/microprofile-open-api/tree/master/api/src/main/java/org/eclipse/microprofile/openapi/annotations

CHAPTER 4. DEVELOP MICROPROFILE APPLICATIONS FOR JBOSS EAFP

4.7.4. Configuring JBoss EAP to serve a static OpenAPI document

Configure JBoss EAP to serve a static OpenAPI document that describes the REST services for the
host.

When JBoss EAP is configured to serve a static OpenAPl document, the static OpenAPIl document is
processed before any Jakarta RESTful Web Services and MicroProfile OpenAPI annotations.

In a production environment, disable annotation processing when serving a static document. Disabling
annotation processing ensures that an immutable and versioned API contract is available for clients.

Procedure
1. Create a directory in the application source tree:
I $ mkdir APPLICATION_ROQOT/src/main/webapp/META-INF

APPLICATION_ROOT is the directory containing the pom.xml configuration file for the
application.

2. Query the OpenAPI endpoint, redirecting the output to a file:

$ curl http://localhost:8080/openapi?format=JSON > src/main/webapp/META-
INF/openapi.json

By default, the endpoint serves a YAML document, format=JSON specifies that a JSSON
document is returned.

3. Configure the application to skip annotation scanning when processing the OpenAP| document
model:

$ echo "mp.openapi.scan.disable=true" > APPLICATION_ROOT/src/main/webapp/META-
INF/microprofile-config.properties

4. Rebuild the application:

I $ mvn clean install

5. Deploy the application again using the following management CLI commands:

a. Undeploy the application:
I undeploy microprofile-openapi.war
b. Deploy the application:

I deploy APPLICATION_ROOT/target/microprofile-openapi.war

JBoss EAP now serves a static OpenAP| document at the OpenAPI endpoint.

4.8. MICROPROFILE REST CLIENT DEVELOPMENT

71

Red Hat JBoss Enterprise Application Platform 7.4 Using JBoss EAP XP 4.0.0

4.8.1. A comparison of MicroProfile REST client and Jakarta RESTful Web Services
syntaxes

The MicroProfile REST client enables a version of distributed object communication, which is also
implemented in CORBA, Java Remote Method Invocation (RMI), the JBoss Remoting Project, and
RESTEasy. For example, consider the resource:

@Path("resource")
public class TestResource {
@Path("test")
@GET
String test() {
return "test";
}
}

The following example demonstrates the use of the Jakarta RESTful Web Services-native way to access
the TestResource class:

Client client = ClientBuilder.newClient();

String response = client.target("http://localhost:8081/test").request().get(String.class);
However, Microprofile REST client supports a more intuitive syntax by directly calling the test() method,
as the following example demonstrates:

@Path("resource")

public interface TestResourcelntf {
@Path("test")
@GET
public String test();

}

TestResourcelntf service = RestClientBuilder.newBuilder()
.baseUrl(http:/localhost:8081/))
.build(TestResourcelntf.class);

String s = service.test();

In the preceding example, making calls on the TestResource class becomes much easier with the
TestResourcelntf class, as illustrated by the call service.test().

The following example is a more elaborate version of the TestResourcelntf class:

@Path("resource")
public interface TestResourcelntf2 {
@Path("test/{path}")
@Consumes("text/plain”)
@Produces("text/html")
@POST
public String test(@PathParam("path") String path, @QueryParam("query") String query, String
entity);
}

Calling the service.test("p", "q", "e") method results in an HTTP message as shown in the following
example:

72

CHAPTER 4. DEVELOP MICROPROFILE APPLICATIONS FOR JBOSS EAFP

POST /resource/test/p/?query=q HTTP/1.1
Accept: text/html

Content-Type: text/plain

Content-Length: 1

e

4.8.2. Programmatic registration of providers in MicroProfile REST client

With the MicroProfile REST client, you can configure the client environment by registering providers.
For example:

TestResourcelntf service = RestClientBuilder.newBuilder()
.baseUrl(http:/localhost:8081/))
.register(MyClientResponseFilter.class)
.register(MyMessageBodyReader.class)
.build(TestResourcelntf.class);

4.8.3. Declarative registration of providers in MicroProfile REST client

Use the MicroProfile REST client to register providers declaratively by adding the
org.eclipse.microprofile.rest.client.annotation.RegisterProvider annotation to the target interface,
as shown in the following example:

@Path("resource")
@ReqgisterProvider(MyClientResponseFilter.class)
@RegisterProvider(MyMessageBodyReader.class)
public interface TestResourcelntf2 {
@Path("test/{path}")
@Consumes("text/plain”)
@Produces("text/html")
@POST
public String test(@PathParam("path") String path, @QueryParam("query") String query, String
entity);
}

Declaring the MyClientResponseFilter class and the MyMessageBodyReader class with annotations
eliminates the need to call the RestClientBuilder.register() method.

4.8.4. Declarative specification of headers in MicroProfile REST client

You can specify a header for an HTTP request in the following ways:
® By annotating one of the resource method parameters.

® By declaratively using the
org.eclipse.microprofile.rest.client.annotation.ClientHeaderParam annotation.

The following example illustrates setting a header by annotating one of the resource method
parameters with the annotation @HeaderParam:

@POST
@Produces(MediaType. TEXT_PLAIN)

73

Red Hat JBoss Enterprise Application Platform 7.4 Using JBoss EAP XP 4.0.0

@Consumes(MediaType. TEXT_PLAIN)
String contentLang(@HeaderParam(HttpHeaders. CONTENT_LANGUAGE) String contentLanguage,
String subject);

The following example illustrates setting a header using the
org.eclipse.microprofile.rest.client.annotation.ClientHeaderParam annotation:

@POST

@Produces(MediaType. TEXT_PLAIN)

@Consumes(MediaType. TEXT_PLAIN)

@ClientHeaderParam(name=HttpHeaders. CONTENT_LANGUAGE, value="{getLanguage}")
String contentLang(String subject);

default String getLanguage() {
return ...;

}

4.8.5. ResponseExceptionMapper in MicroProfile REST client

The org.eclipse.microprofile.rest.client.ext.ResponseExceptionMapper class is the client-side
inverse of the javax.ws.rs.ext.ExceptionMapper class, which is defined in Jakarta RESTful Web
Services. The ExceptionMapper.toResponse() method turns an Exception class thrown during the
server-side processing into a Response class. The ResponseExceptionMapper.toThrowable()

method turns a Response class received on the client-side with an HTTP error status into an Exception
class.

You can register the ResponseExceptionMapper class either programmatically or declaratively. In the
absence of a registered ResponseExceptionMapper class, a default ResponseExceptionMapper
class maps any response with status >= 400 to a WebApplicationException class.

4.8.6. Context dependency injection with MicroProfile REST client

With the MicroProfile REST client, you must annotate any interface that is managed as a Jakarta
contexts and dependency injection (Jakarta Contexts and Dependency Injection) bean with the
@RegisterRestClient class. For example:

@Path("resource")
@ReqgisterProvider(MyClientResponseFilter.class)
public static class TestResourcelmpl {

@Inject TestDataBase db;

@Path("test/{path}")
@Consumes("text/plain”)
@Produces("text/html")
@POST
public String test(@PathParam("path") String path, @QueryParam("query")
String query, String entity) {
return db.getByName(query);
}

}
@Path("database")

@ReqgisterRestClient
public interface TestDataBase {

74

CHAPTER 4. DEVELOP MICROPROFILE APPLICATIONS FOR JBOSS EAFP

@Path(")
@POST
public String getByName(String name);

}

Here, the MicroProfile REST client implementation creates a client for a TestDataBase class service,
allowing easy access by the TestResourcelmpl class. However, it does not include the information
about the path to the TestDataBase class implementation. This information can be supplied by the
optional @RegisterProvider parameter baseUri:

@Path("database")
@RegisterRestClient(baseUri="https://localhost:8080/webapp")
public interface TestDataBase {

@Path(™)
@POST
public String getByName(String name);

}

This indicates that you can access the implementation of TestDataBase at
https://localhost:8080/webapp. You can also use MicroProfile configuration to supply the information
externally:

I <fully qualified name of TestDataBase>/mp-rest/url=<URL>

For example, the following property indicates that you can access an implementation of the
com.bluemonkeydiamond.TestDatabase class at https://localhost:8080/webapp:

I com.bluemonkeydiamond.TestDatabase/mp-rest/url=https:/localhost:8080/webapp

You can supply a number of other properties to Jakarta Contexts and Dependency Injection clients. For
example, com.mycompany.remoteServices.MyServiceClient/mp-rest/providers, comma-separated
list of fully-qualified provider class names to include in the client.

Additional resources

® For more information about the MicroProfile REST Client specification, see Rest Client for
MicroProfile.

® For more information about MicroProfile REST Client 2.0 features, see MicroProfile REST Client
2.0.

75

https://download.eclipse.org/microprofile/microprofile-rest-client-2.0/microprofile-rest-client-spec-2.0.html
https://docs.jboss.org/resteasy/docs/3.15.1.Final/userguide/html/MicroProfile_Rest_Client.html#d4e3758

Red Hat JBoss Enterprise Application Platform 7.4 Using JBoss EAP XP 4.0.0

CHAPTER 5. BUILD AND RUN MICROSERVICES
APPLICATIONS ON THE OPENSHIFT IMAGE FOR JBOSS EAP
XP

You can build and run your microservices applications on the OpenShift image for JBoss EAP XP.

' NOTE
A JBoss EAP XP is supported only on OpenShift 4 and later versions.

Use the following workflow to build and run a microservices application on the OpenShift image for
JBoss EAP XP by using the source-to-image (S2I) process.

/, NOTE

The OpenShiftimages for JBoss EAP XP 4.0.0 provide a default standalone
configuration file, which is based on the standalone-microprofile-ha.xml file. For more
information about the server configuration files included in JBoss EAP XP, see the
Standalone server configuration files section.

This workflow uses the microprofile-config quickstart as an example. The quickstart provides a small,
specific working example that can be used as a reference for your own project. See the microprofile-
config quickstart that ships with JBoss EAP XP 4.0.0 for more information.

Additional resources

® For more information about the server configuration files included in JBoss EAP XP, see
Standalone server configuration files.

5.1. PREPARING OPENSHIFT FOR APPLICATION DEPLOYMENT

Prepare OpenShift for application deployment.

Prerequisites

You have installed an operational OpenShift instance. For more information, see the Installing and
Configuring OpenShift Container Platform Clusters book on Red Hat Customer Portal.

Procedure
1. Log in to your OpenShift instance using the oc login command.
2. Create a new project in OpenShift.

A project allows a group of users to organize and manage content separately from other groups.
You can create a project in OpenShift using the following command.

I $ oc new-project PROJECT_NAME

For example, for the microprofile-config quickstart, create a new project named eap-demo
using the following command.

I $ oc new-project eap-demo

76

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/#standalone-server-configuration_default
https://access.redhat.com/products/red-hat-openshift-container-platform/

CHAPTER 5. BUILD AND RUN MICROSERVICES APPLICATIONS ON THE OPENSHIFT IMAGE FOR JBOSS EAP XF

5.2. CONFIGURING AUTHENTICATION TO THE RED HAT CONTAINER
REGISTRY

Before you can import and use the OpenShift image for JBoss EAP XP, you must configure
authentication to the Red Hat Container Registry.

Create an authentication token using a registry service account to configure access to the Red Hat
Container Registry. You need not use or store your Red Hat account’s username and password in your
OpenShift configuration when you use an authentication token.

Procedure

1. Follow the instructions on Red Hat Customer Portal to create an authentication token using a
Registry Service Account management application.

2. Download the YAML file containing the OpenShift secret for the token.
You can download the YAML file from the OpenShift Secret tab on your token’s Token
Information page.

3. Create the authentication token secret for your OpenShift project using the YAML file that you
downloaded:

I oc create -f 1234567 _myserviceaccount-secret.yaml

4. Configure the secret for your OpenShift project using the following commands, replacing the
secret name below with the name of your secret created in the previous step.

oc secrets link default 1234567-myserviceaccount-pull-secret --for=pull
oc secrets link builder 1234567-myserviceaccount-pull-secret --for=pull

Additional resources

® Configuring authentication to the Red Hat Container Registry
® Registry Service Account management application

® Configuring access to secured registries

5.3.IMPORTING THE LATEST OPENSHIFT IMAGESTREAMS AND
TEMPLATES FOR JBOSS EAP XP

Import the latest OpenShift imagestreams and templates for JBoss EAP XP.

IMPORTANT
OpendJDK 8 images and imagestreams on OpenShift are deprecated.

The images and imagestreams are still supported on OpenShift. However, no
enhancements are made to these images and imagestreams and they might be removed
in the future. Red Hat continues to provide full support and bug fixes OpenJDK 8 images
and imagestreams under its standard support terms and conditions.

77

https://access.redhat.com/terms-based-registry/
https://access.redhat.com/RegistryAuthentication
https://access.redhat.com/terms-based-registry/
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html/developer_guide/dev-guide-managing-images#allowing-pods-to-reference-images-from-other-secured-registries

Red Hat JBoss Enterprise Application Platform 7.4 Using JBoss EAP XP 4.0.0

Procedure

1. Toimport the latest imagestreams and templates for the OpenShift image for JBoss EAP XP
into your OpenShift project’'s namespace, use the following commands:

a. Import JDK 11imagestream:

oc replace --force -f https://raw.githubusercontent.com/jboss-container-images/jboss-
eap-openshift-templates/eap-xp4/eap-xp4-openjdk11-image-stream.json
This command imports the following imagestreams and templates:
® The JDK 11 builder imagestream: jboss-eap-xp4-openjdklil-openshift

® The JDK 11 runtime imagestream: jposs-eap-xp4-openjdkll-runtime-openshift

b. Import the OpenShift templates:

oc replace --force -f https://raw.githubusercontent.com/jboss-container-images/jboss-
eap-openshift-templates/eap-xp4/templates/eap-xp4-basic-s2i.json

NOTE

The JBoss EAP XP imagestreams and templates imported using the above
command are only available within that OpenShift project.

2. If you have administrative access to the general openshift namespace and want the
imagestreams and templates to be accessible by all projects, add -n openshift to the oc
replace line of the command. For example:

oc replace -n openshift --force -f \

3. If you want to import the imagestreams and templates into a different project, add the -n
PROJECT_NAME to the oc replace line of the command. For example:

oc replace -n PROJECT_NAME --force -f

If you use the cluster-samples-operator, see the OpenShift documentation on configuring the
cluster samples operator. See Configuring the Cluster Samples Operator for details about
configuring the cluster samples operator.

5.4. DEPLOYING A JBOSS EAP XP SOURCE-TO-IMAGE (S2I)
APPLICATION ON OPENSHIFT

Deploy a JBoss EAP XP source-to-image (S2l) application on OpenShift.

Prerequisites

e Optional: A template can specify default values for many template parameters, and you might

78

https://docs.openshift.com/container-platform/latest/openshift_images/configuring-samples-operator.html

CHAPTER 5. BUILD AND RUN MICROSERVICES APPLICATIONS ON THE OPENSHIFT IMAGE FOR JBOSS EAP XF

have to override some, or all, of the defaults. To see template information, including a list of
parameters and any default values, use the command oc describe template
TEMPLATE_NAME.

Procedure

1. Create a new OpenShift application using the JBoss EAP XP image and your Java application’s
source code. Use one of the provided JBoss EAP XP templates for S2I builds.

$ oc new-app --template=eap-xp4-basic-s2i \ ﬂ

-p EAP_IMAGE_NAME-=jboss-eap-xp4-openjdk11-openshift:latest \

-p EAP_RUNTIME_IMAGE_NAME-=jboss-eap-xp4-openjdk11-runtime-openshift:latest \

-p IMAGE_STREAM_NAMESPACE=eap-demo \g

-p SOURCE_REPOSITORY_URL=https://github.com/jboss-developer/jboss-eap-quickstarts
\©

-p SOURCE_REPOSITORY_REF=xp-4.0.x \ ﬂ

-p CONTEXT_DIR=microprofile-config 6

The template to use. The application image is tagged with the latest tag.

The latest images streams and templates were imported into the project’s namespace, so
you must specify the namespace of where to find the imagestream. This is usually the
project’s name.

URL to the repository containing the application source code.

The Git repository reference to use for the source code. This can be a Git branch or tag
reference.

The directory within the source repository to build.

® 0060 o090

NOTE

A template can specify default values for many template parameters, and you
might have to override some, or all, of the defaults. To see template information,
including a list of parameters and any default values, use the command oc
describe template TEMPLATE_NAME.

You might also want to configure environment variables when creating your new OpenShift
application.

2. Retrieve the name of the build configurations.

I $ oc get bc -0 name

3. Use the name of the build configurations from the previous step to view the Maven progress of
the builds.
$ oc logs -f buildconfig/${APPLICATION_NAME}-build-artifacts

Push successful

79

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/#importing-the-latest-openshift-image-streams-and-templates-for-jboss-eap-xp_default
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/getting_started_with_jboss_eap_for_openshift_container_platform/#configuring_eap_env_vars

Red Hat JBoss Enterprise Application Platform 7.4 Using JBoss EAP XP 4.0.0

$ oc logs -f buildconfig/${APPLICATION_NAME}

Push successful

For example, for the microprofile-config, the following command shows the progress of the
Maven builds.

$ oc logs -f buildconfig/eap-xp4-basic-app-build-artifacts
Push successful
$ oc logs -f buildconfig/eap-xp4-basic-app

Push successful

Additional resources
® |mporting the latest OpenShift imagestreams and templates for JBoss EAP XP .

® Preparing OpenShift for application deployment.

5.5. COMPLETING POST-DEPLOYMENT TASKS FOR JBOSS EAP XP
SOURCE-TO-IMAGE (S21) APPLICATION

Depending on your application, you might need to complete some tasks after your OpenShift
application has been built and deployed.

Examples of post-deployment tasks include the following:

® Exposing a service so that the application is viewable from outside of OpenShift.

® Scaling your application to a specific number of replicas.

Procedure

80

1. Get the service name of your application using the following command.

I $ oc get service

2. Optional: Expose the main service as a route so you can access your application from outside of

OpenShift. For example, for the microprofile-config quickstart, use the following command to
expose the required service and port.

NOTE

If you used a template to create the application, the route might already exist. If it
does, continue on to the next step.

I $ oc expose service/eap-xp4-basic-app --port=8080

3. Get the URL of the route.

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html/using_jboss_eap_xp_4.0.0/using-the-openshift-image-for-jboss-eap-xp_default#importing-the-latest-openshift-image-streams-and-templates-for-jboss-eap-xp_default
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html/using_jboss_eap_xp_4.0.0/using-the-openshift-image-for-jboss-eap-xp_default#preparing-openshift-for-application-deployment_default

CHAPTER 5. BUILD AND RUN MICROSERVICES APPLICATIONS ON THE OPENSHIFT IMAGE FOR JBOSS EAP XF

I $ oc get route

4. Access the application in your web browser using the URL. The URL is the value of the
HOST/PORT field from previous command’s output.

NOTE

For JBoss EAP XP 4.0.0 GA distribution, the Microprofile Config quickstart does
not reply to HTTPS GET requests to the application’s root context. This
enhancement is only available in the {JBossXPShortNamel101} GA distribution.

For example, to interact with the Microprofile Config application, the URL might
be http://HOST_PORT_Value/config/value in your browser.

If your application does not use the JBoss EAP root context, append the context of the
application to the URL. For example, for the microprofile-config quickstart, the URL might be
http://HOST_PORT_VALUE/microprofile-config/.

5. Optionally, you can scale up the application instance by running the following command. This
command increases the number of replicas to 3.

I $ oc scale deploymentconfig DEPLOYMENTCONFIG_NAME --replicas=3

For example, for the microprofile-config quickstart, use the following command to scale up the
application.

I $ oc scale deploymentconfig/eap-xp4-basic-app --replicas=3

Additional Resources

For more information about JBoss EAP XP Quickstarts, see the JBoss EAP XP quickstart.

81

https://github.com/jboss-developer/jboss-eap-quickstarts/tree/xp-4.0.x

Red Hat JBoss Enterprise Application Platform 7.4 Using JBoss EAP XP 4.0.0

CHAPTER 6. CAPABILITY TRIMMING

When building a bootable JAR, you can decide which JBoss EAP features and subsystems to include.

NOTE

Capability trimming is supported only on OpenShift or when building a bootable JAR.

Additional resources

® About the bootable JAR

6.1. AVAILABLE JBOSS EAP LAYERS

Red Hat makes available a number of layers to customize provisioning of the JBoss EAP server in
OpenShift or a bootable JAR.

Three layers are base layers that provide core functionality. The other layers are decorator layers that
enhance the base layers with additional capabilities.

Most decorator layers can be used to build S2I images in JBoss EAP for OpenShift or to build a bootable
JAR. A few layers do not support S2l images; the description of the layer notes this limitation.

NOTE

Only the listed layers are supported. Layers not listed here are not supported.

6.1.1. Base layers

Each base layer includes core functionality for a typical server user case.

datasources-web-server
This layer includes a servlet container and the ability to configure a datasource.

This layer does not include MicroProfile capabilities.
The following Jakarta EE specifications are supported in this layer:
® Jakarta JSON Processing 1.1
® Jakarta JSON Binding 1.0
® Jakarta Servlet 4.0
® Jakarta Expression Language 3.0
® Jakarta Server Pages 2.3
® Jakarta Standard Tag Library 1.2
® Jakarta Concurrency 1.1
® Jakarta Annotations 1.3

® Jakarta XML Binding 2.3

82

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/#about-bootable-jar_default

CHAPTER 6. CAPABILITY TRIMMING

e Jakarta Debugging Support for Other Languages 1.0
® Jakarta Transaction 1.3
® Jakarta Connector API 1.7

jaxrs-server
This layer enhances the datasources-web-server layer with the following JBoss EAP subsystems:

® jaxrs

e weld

® jpa
This layer also adds Infinispan-based second-level entity caching locally in the container.
The following MicroProfile capability is included in this layer:

® MicroProfile REST Client

The following Jakarta EE specifications are supported in this layer in addition to those supported in the
datasources-web-server layer:

® Jakarta Contexts and Dependency Injection 2.0
® Jakarta Bean Validation 2.0

® Jakarta Interceptors 1.2

e Jakarta RESTful Web Services 2.1

® Jakarta Persistence 2.2

cloud-server
This layer enhances the jaxrs-server layer with the following JBoss EAP subsystems:

e resource-adapters

® messaging-activemq (remote broker messaging, not embedded messaging)
This layer also adds the following observability features to the jaxrs-server layer:

® MicroProfile Health

® MicroProfile Metrics

® MicroProfile Config

® MicroProfile OpenTracing

The following Jakarta EE specification is supported in this layer in addition to those supported in the
jaxrs-server layer:

® Jakarta Security 1.0

6.1.2. Decorator layers

83

Red Hat JBoss Enterprise Application Platform 7.4 Using JBoss EAP XP 4.0.0

Decorator layers are not used alone. You can configure one or more decorator layers with a base layer to
deliver additional functionality.

ejb-lite
This decorator layer adds a minimal Jakarta Enterprise Beans implementation to the provisioned server.
The following support is not included in this layer:

® ||OP integration

® MDB instance pool

® Remote connector resource
This layer is only supported when building a bootable JAR. This layer is not supported when using S2I.
Jakarta Enterprise Beans
This decorator layer extends the ejb-lite layer. This layer adds the following support to the provisioned
server, in addition to the base functionality included in the ejb-lite layer:

® MDB instance pool

® Remote connector resource

Use this layer if you want to use message-driven beans (MDBs) or Jakarta Enterprise Beans remoting
capabilities, or both. If you do not need these capabilities, use the ejb-lite layer.

This layer is only supported when building a bootable JAR. This layer is not supported when using S2I.

ejb-local-cache
This decorator layer adds local caching support for Jakarta Enterprise Beans to the provisioned server.

Dependencies: You can only include this layer if you have included the ejb-lite layer or the ejb layer.

NOTE
This layer is not compatible with the ejb-dist-cache layer. If you include the ejb-dist-

cache layer, you cannot include the ejb-local-cache layer. If you include both layers, the
resulting build might include an unexpected Jakarta Enterprise Beans configuration.

This layer is only supported when building a bootable JAR. This layer is not supported when using S2I.
ejb-dist-cache
This decorator layer adds distributed caching support for Jakarta Enterprise Beans to the provisioned

server.

Dependencies: You can only include this layer if you have included the ejb-lite layer or the ejb layer.

NOTE

This layer is not compatible with the ejb-local-cache layer. If you include the ejb-dist-
cache layer, you cannot include the ejb-local-cache layer. If you include both layers, the
resulting build might result in an unexpected configuration.

This layer is only supported when building a bootable JAR. This layer is not supported when using S2I.
jdr

84

CHAPTER 6. CAPABILITY TRIMMING

This decorator layer adds the JBoss Diagnostic Reporting (jdr) subsystem to gather diagnostic data
when requesting support from Red Hat.

This layer is only supported when building a bootable JAR. This layer is not supported when using S2I.
Jakarta Persistence
This decorator layer adds persistence capabilities for a single-node server. Note that distributed caching
only works if the servers are able to form a cluster.
The layer adds Hibernate libraries to the provisioned server, with the following support:

e Configurations of the jpa subsystem

e Configurations of the infinispan subsystem

® A local Hibernate cache container

NOTE

This layer is not compatible with the jpa-distributed layer. If you include the jpa layer,
you cannot include the jpa-distributed layer.

This layer is only supported when building a bootable JAR. This layer is not supported when using S2I.
jpa-distributed
This decorator layer adds persistence capabilities for servers operating in a cluster. The layer adds

Hibernate libraries to the provisioned server, with the following support:

e Configurations of the jpa subsystem

Configurations of the infinispan subsystem

A local Hibernate cache container

Invalidation and replication Hibernate cache containers

Configuration of the jgroups subsystem

NOTE

This layer is not compatible with the jpa layer. If you include the jpa layer, you cannot
include the jpa-distributed layer.

This layer is only supported when building a bootable JAR. This layer is not supported when using S2I.

Jakarta Server Faces
This decorator layer adds the jsf subsystem to the provisioned server.

This layer is only supported when building a bootable JAR. This layer is not supported when using S2I.

microprofile-platform
This decorator layer adds the following MicroProfile capabilities to the provisioned server:

® MicroProfile Config

® MicroProfile Fault Tolerance

85

Red Hat JBoss Enterprise Application Platform 7.4 Using JBoss EAP XP 4.0.0

® MicroProfile Health

® MicroProfile JWT

® MicroProfile Metrics
® MicroProfile OpenAPI

® MicroProfile OpenTracing

NOTE

This layer includes MicroProfile capabilities that are also included in the observability
layer. If you include this layer, you do not need to include the observability layer.

observability
This decorator layer adds the following observability features to the provisioned server:

® MicroProfile Health
® MicroProfile Metrics
® MicroProfile Config

® MicroProfile OpenTracing

NOTE

This layer is built in to the cloud-server layer. You do not need to add this layer to the
cloud-server layer.

remote-activemq
This decorator layer adds the ability to communicate with a remote ActiveMQ broker to the provisioned
server, integrating messaging support.

The pooled connection factory configuration specifies guest as the value for the user and password
attributes. You can use a CLI script to change these values at runtime.

This layer is only supported when building a bootable JAR. This layer is not supported when using S2I.

sso
This decorator layer adds Red Hat Single Sign-On integration to the provisioned server.

This layer should only be used when provisioning a server using S2I.

web-console
This decorator layer adds the management console to the provisioned server.

This layer is only supported when building a bootable JAR. This layer is not supported when using S2I.
web-clustering
This decorator layer adds support for distributable web applications by configuring a non-local

Infinispan-based container web cache for data session handling suitable to clustering environments.

web-passivation

86

CHAPTER 6. CAPABILITY TRIMMING

This decorator layer adds support for distributable web applications by configuring a local Infinispan-
based container web cache for data session handling suitable to single node environments.

This layer is only supported when building a bootable JAR. This layer is not supported when using S2I.

webservices
This layer adds web services functionality to the provisioned server, supporting Jakarta web services
deployments.

This layer is only supported when building a bootable JAR. This layer is not supported when using S2I.

Additional resources

® Pooled Connection Factory Attributes

87

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/configuring_messaging/#pooled_connection_factory_attributes

Red Hat JBoss Enterprise Application Platform 7.4 Using JBoss EAP XP 4.0.0

CHAPTER 7. ENABLE MICROPROFILE APPLICATION
DEVELOPMENT FOR JBOSS EAP ON RED HAT CODEREADY
STUDIO

If you want to incorporate MicroProfile capabilities in applications that you develop on CodeReady
Studio, you must enable MicroProfile support for JBoss EAP in CodeReady Studio.

JBoss EAP expansion packs provide support for MicroProfile.
JBoss EAP expansion packs are not supported on JBoss EAP 7.2 and earlier.

Each version of the JBoss EAP expansion pack supports specific patches of JBoss EAP. For details, see
the JBoss EAP expansion pack Support and Life Cycle Policies page.

IMPORTANT

The JBoss EAP XP Quickstarts for Openshift are provided as Technology Preview only.
Technology Preview features are not supported with Red Hat production service level
agreements (SLAs), might not be functionally complete, and Red Hat does not
recommend to use them for production. These features provide early access to
upcoming product features, enabling customers to test functionality and provide
feedback during the development process.

See Technology Preview Features Support Scope on the Red Hat Customer Portal for
information about the support scope for Technology Preview features.

7.1. CONFIGURING CODEREADY STUDIO TO USE MICROPROFILE
CAPABILITIES

To enable MicroProfile support on JBoss EAP, register a new runtime server for JBoss EAP XP, and
then create the new JBoss EAP 7.4 server.

Give the server an appropriate name that helps you recognize that it supports MicroProfile capabilities.

This server uses a newly created JBoss EAP XP runtime that points to the runtime installed previously
and uses the standalone-microprofile.xml configuration file.

NOTE

If you set the Target runtime to 7.4 or a later runtime version in Red Hat CodeReady
Studio, your project is compatible with the Jakarta EE 8 specification.

Prerequisites

® JBoss EAP XP 4.0.0 has been installed .

Procedure
1. Set up the new server on the New Server dialog box.

a. Inthe Select server typelist, select Red Hat JBoss Enterprise Application Platform 7.4 .

b. In the Server’s host name field, enter localhost.

88

https://access.redhat.com/support/offerings/techpreview
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/#installing-jboss-eap-xp-on-eap_default

7. ENABLE MICROPROFILE APPLICATION DEVELOPMENT FOR JBOSS EAP ON RED HAT CODEREADY STUDIC

c. Inthe Server name field, enter JBoss EAP 7.4 XP.
d. Click Next.

2. Configure the new server.

a. Inthe Home directory field, if you do not want to use the default setting, specify a new
directory; for example: home/myname/dev/microprofile/runtimes/jboss-eap-7.4.

b. Make sure the Execution Environment is set to JavaSE-1.8.
c. Optional: Change the values in the Server base directoryand Configuration file fields.
d. Click Finish.

Result

You are now ready to begin developing applications using MicroProfile capabilities, or to begin using the
MicroProfile quickstarts for JBoss EAP.

7.2. USING MICROPROFILE QUICKSTARTS FOR CODEREADY STUDIO

Enabling the MicroProfile quickstarts makes the simple examples available to run and test on your
installed server.

These examples illustrate the following MicroProfile capabilities.
® MicroProfile Config
® MicroProfile Fault Tolerance
® MicroProfile Health
® MicroProfile JWT
® MicroProfile Metrics
® MicroProfile OpenAPI
® MicroProfile OpenTracing

® MicroProfile REST Client

Procedure

1. Import the pom.xml file from the Quickstart Parent Artifact.

2. If the quickstart you are using requires environment variables, configure the environment
variables.
Define environment variables on the launch configuration on the server Overview dialog box.

For example, the microprofile-opentracing quickstart uses the following environment
variables:

e JAEGER_REPORTER_LOG_SPANS set to true

e JAEGER_SAMPLER_PARAMset to 1

89

Red Hat JBoss Enterprise Application Platform 7.4 Using JBoss EAP XP 4.0.0

e JAEGER_SAMPLER_TYPE set to const

Additional resources

About Microprofile
About JBoss Enterprise Application Platform expansion pack

Red Hat JBoss Enterprise Application Platform expansion pack Support and Life Cycle Policies

90

https://projects.eclipse.org/proposals/eclipse-microprofile
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/#about-jboss-eap-xp_default
https://access.redhat.com/support/policy/updates/jboss_eap_xp_notes

CHAPTER 8. THE BOOTABLE JAR

CHAPTER 8. THE BOOTABLE JAR

You can build and package a microservices application as a bootable JAR with the JBoss EAP JAR
Maven plug-in. You can then run the application on a JBoss EAP bare-metal platform or a JBoss EAP
OpenShift platform.

8.1. ABOUT THE BOOTABLE JAR

You can build and package a microservices application as a bootable JAR with the JBoss EAP JAR
Maven plug-in.

A bootable JAR contains a server, a packaged application, and the runtime required to launch the server.
The JBoss EAP JAR Maven plug-in uses Galleon trimming capability to reduce the size and memory
footprint of the server. Thus, you can configure the server according to your requirements, including only

the Galleon layers that provide the capabilities that you need.

The JBoss EAP JAR Maven plug-in supports the execution of JBoss EAP CLI script files to customize
your server configuration. A CLI script includes a list of CLI commands for configuring the server.

A bootable JAR is like a standard JBoss EAP server in the following ways:
® [tsupports JBoss EAP common management CLI commands.
® |t can be managed using the JBoss EAP management console.
The following limitations exist when packaging a server in a bootable JAR:
® CLImanagement operations that require a server restart are not supported.

® The server cannot be restarted in admin-only mode, which is a mode that starts services related
to server administration.

e |f you shut down the server, updates that you applied to the server are lost.

Additionally, you can provision a hollow bootable JAR. This JAR contains only the server, so you can
reuse the server to run a different application.

Additional resources

For information about capability trimming, see Capability Trimming.

8.2. JBOSS EAP MAVEN PLUG-IN
You can use the JBoss EAP JAR Maven plug-in to build an application as a bootable JAR.

You can retrieve the latest Maven plug-in version from the Maven repository, which is available at Index
of /ga/org/wildfly/plugins/wildfly-jar-maven-plugin.

In a Maven project, the sre directory contains all the source files required to build your application. After
the JBoss EAP JAR Maven plug-in builds the bootable JAR, the generated JAR is located in
target/<application>-bootable.jar.

The JBoss EAP JAR Maven plug-in also provides the following functionality:

o1

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/#capability-trimming_default
https://maven.repository.redhat.com/ga/org/wildfly/plugins/wildfly-jar-maven-plugin/

Red Hat JBoss Enterprise Application Platform 7.4 Using JBoss EAP XP 4.0.0

® Applies CLI script commands to the server.

e Uses the org.jboss.eap:wildfly-galleon-pack Galleon feature pack and some of its layers for
customizing the server configuration file.

® Supports the addition of extra files into the packaged bootable JAR, such as a keystore file.

® |ncludes the capability to create a hollow bootable JAR; that is, a bootable JAR that does not
contain an application.

After you use the JBoss EAP JAR Maven plug-in to create the bootable JAR, you can start the

application by issuing the following command. Replace target/myapp-bootable.jar with the path to your
bootable JAR. For example:

I $ java -jar target/myapp-bootable.jar

NOTE

To get a list of supported bootable JAR startup commands, append --help to the end of
the startup command. For example, java -jar target/myapp-bootable.jar --help.

Additional resources

® Forinformation about supported JBoss EAP Galleon layers, see Available JBoss EAP layers.

e Forinformation about supported Galleon plug-ins to build feature packs for your project, see
the WildFly Galleon Maven Plugin Documentation .

e Forinformation about selecting methods to configure the JBoss EAP Maven repository, see
Use the Maven Repository.

e Forinformation about Maven project directories, see Introduction to the Standard Directory
Layout in the Apache Maven documentation.

8.3.BOOTABLE JAR ARGUMENTS

View the arguments in the following table to learn about supported arguments for use with the bootable
JAR.

Table 8.1. Supported bootable JAR executable arguments

Argument Description

--help Displays the help message for the
specified command and exit.

92

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/#available-jboss-eap-layers_default
https://docs.wildfly.org/galleon-plugins/
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/development_guide/#use_the_maven_repository
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html

--cli-script=<path>

--deployment=<path>

--display-galleon-config

--install-dir=<path>

-secmgr

-b<interface>=<value>

-b=<value>

-D<name>[=<value>]

CHAPTER 8. THE BOOTABLE JAR

Argument Description

Specifies the path to a JBoss CLI
script that executes when
starting the bootable JAR. If the
path specified is relative, the path
is resolved against the working
directory of the Java VM
instance used to launch the
bootable JAR.

Argument specific to the hollow
bootable JAR. Specifies the path
to the WAR, JAR, EAR file or
exploded directory that contains
the application you want to
deploy on a server.

Print the content of the
generated Galleon configuration
file.

By default, the JVM settings are
used to create a TEMP directory
after the bootable JAR is started.
You can use the --install-dir
argument to specify a directory
to install the server.

Runs the server with a security
manager installed.

Set system property
jboss.bind.address.
<interfaces> to the given value.
For example,
bmanagement=IP_ADDRES
S.

Set system property
jboss.bind.address, which is
used in configuring the bind
address for the public interface.
This defaults to 127.0.0.1if no
value is specified.

Specifies system properties that
are set by the server at server
runtime. The bootable JAR JVM
does not set these system
properties.

93

Red Hat JBoss Enterprise Application Platform 7.4 Using JBoss EAP XP 4.0.0

Argument Description

--properties=<url> Loads system properties from a
specified URL.

-S<name>[=value] Set a security property.

-u=<value> Set system property
jboss.default.multicast.addr
ess, which is used in configuring
the multicast address in the
socket-binding elements in the
configuration files. This defaults
t0 230.0.0.4 if no value is
specified.

--version Display the application server
version and exit.

8.4. SPECIFYING GALLEON LAYERS FOR YOUR BOOTABLE JAR
SERVER

You can specify Galleon layers to build a custom configuration for your server. Additionally, you can
specify Galleon layers that you want excluded from the server.

To reference a single feature pack, use the <feature-pack-location> element to specify its location.
The following example specifies org.jboss.eap:wildfly-galleon-pack:4.0.0.GA-redhat-00002 in the
<feature-pack-location> element of the Maven plug-in configuration file.

<configuration>
<feature-pack-location>org.jboss.eap:wildfly-galleon-pack:4.0.0.GA-redhat-00002</feature-pack-

location>

</configuration>

If you need to reference more than one feature pack, list them in the <feature-packs> element. The
following example shows the addition of the Red Hat Single Sign-On feature pack to the <feature-
packs> element:

<configuration>
<feature-packs>
<feature-pack>
<location>org.jboss.eap:wildfly-galleon-pack:4.0.0.GA-redhat-00002</location>
</feature-pack>
<feature-pack>
<location>org.keycloak:keycloak-adapter-galleon-pack:15.0.4.redhat-00001</location>
</feature-pack>
</feature-packs>
</configuration>

94

CHAPTER 8. THE BOOTABLE JAR

You can combine Galleon layers from multiple feature packs to configure the bootable JAR server to
include only the supported Galleon layers that provide the capabilities that you need.

NOTE

On a bare-metal platform, if you do not specify Galleon layers in your configuration file
then the provisioned server contains a configuration identical to that of a default
standalone-microprofile.xml configuration.

On an OpenShift platform, after you have added the <cloud/> configuration element in
the plug-in configuration and you choose not to specify Galleon layers in your
configuration file, the provisioned server contains a configuration that is adjusted for the
cloud environment and is similar to a default standalone-microprofile-ha.xml.

Prerequisites

® Maven is installed.

® You have checked the latest Maven plug-in version, such as
MAVEN_PLUGIN_VERSION.X.GA Final-redhat-00001, where MAVEN_PLUGIN_VERSION is
the major version and X'is the microversion. See Index of /ga/org/wildfly/plugins/wildfly-jar-
maven-plugin.

® You have checked the latest Galleon feature pack version, such as 4.0.X.GA-
redhat-BUILD_NUMBER, where X is the microversion of JBoss EAP XP and BUILD NUMBER is
the build number of the Galleon feature pack. Both X and BUILD_NUMBER can evolve during
the JBoss EAP XP 4.0.0 product life cycle. See Index of /ga/org/jboss/eap/wildfly-galleon-
pack.

NOTE
The examples shown in the procedure specify the following properties:
e ${bootable.jar.maven.plugin.version} for the Maven plug-in version.
o ${jboss.xp.galleon.feature.pack.version} for the Galleon feature pack version.

You must set these properties in your project. For example:

<properties>
<bootable.jar.maven.plugin.version>6.1.2.Final-redhat-
00001 </bootable.jar.maven.plugin.version>
<jboss.xp.galleon.feature.pack.version>4.0.0.GA-redhat-
00002</jboss.xp.galleon.feature.pack.version>
</properties>

Procedure

1. Identify the supported JBoss EAP Galleon layers that provide the capabilities that you need to
run your application.

2. Reference a JBoss EAP feature pack location in the <plugin> element of the Maven project
pom.xml file. You must specify the latest version of any Maven plug-in and the latest version of
the org.jboss.eap:wildfly-galleon-pack Galleon feature pack, as demonstrated in the following

95

https://maven.repository.redhat.com/ga/org/wildfly/plugins/wildfly-jar-maven-plugin/
https://maven.repository.redhat.com/ga/org/jboss/eap/wildfly-galleon-pack/

Red Hat JBoss Enterprise Application Platform 7.4 Using JBoss EAP XP 4.0.0

example. The following example also displays the inclusion of a single feature-pack, which
includes the jaxrs-server base layer and the jpa-distributed layer . The jaxrs-server base layer
provides additional support for the server.

<plugins>
<plugin>
<groupld>org.wildfly.plugins</groupld>
<artifactld>wildfly-jar-maven-plugin</artifactld>
<version>${bootable.jar.maven.plugin.version}</version>
<configuration>
<feature-pack-location>org.jboss.eap:wildfly-galleon-
pack:${jboss.xp.galleon.feature.pack.version}</feature-pack-location>
<layers>
<layer>jaxrs-server</layer>
<layer>jpa-distributed</layer>
</layers>
<excluded-layers>
<layer>jpa</layer>
</excluded-layers>

</plugins>

This example also shows the exclusion of the jpa layer from the project.

NOTE

If you include the jpa-distributed layer in your project, you must exclude the jpa
layer from the jaxrs-server layer. The jpa layer configures a local infinispan
hibernate cache, while the jpa-distributed layer configures a remote infinispan
hibernate cache.

Additional resources

e Forinformation about available base layers, see Base layers.

e Forinformation about supported Galleon plug-ins to build feature packs for your project, see
the WildFly Galleon Maven Plugin Documentation .

e Forinformation about selecting methods to configure the JBoss EAP Maven repository, see
Maven and the JBoss EAP MicroProfile Maven repository .

e Forinformation about managing your Maven dependencies, see Dependency Management in
the Apache Maven Project documentation.

8.5. USING ABOOTABLE JAR ON A JBOSS EAP BARE-METAL
PLATFORM

You can package an application as a bootable JAR on a JBoss EAP bare-metal platform.

96

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/#base-provisioning-layers_default
https://docs.wildfly.org/galleon-plugins/
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/#maven_and_the_jboss_eap_microprofile_maven_repository
https://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html#dependency-management

CHAPTER 8. THE BOOTABLE JAR

NOTE

® To use the custom Galleon feature-pack and layers when building a bootable
JAR on a JBoss EAP bare-metal platform, see Building and using custom
Galleon layers for JBoss EAP.

® When building the application image by using the oc new-build command,
ensure to use this S2I builder image jboss-eap-xp4-openjdk11-openshift:latest,
instead of jboss-eap74-openjdk11-openshift:latest.

A bootable JAR contains a server, a packaged application, and the runtime required to launch the server.

This procedure demonstrates packaging the MicroProfile Config microservices application as a bootable
JAR with the JBoss EAP JAR Maven plug-in. See MicroProfile Config development.

You can use CLlI scripts to configure the server during the packaging of the bootable JAR.

IMPORTANT

On building a web application that must be packaged inside a bootable JAR, you must
specify war in the <packaging> element of your pom.xml file. For example:

I <packaging>war</packaging>

This value is required to package the build application as a WAR file and not as the default
JAR file.

In a Maven project that is used solely to build a hollow bootable JAR, set the packaging
value to pom. For example:

I <packaging>pom</packaging>

You are not limited to using pom packaging when you build a hollow bootable JAR for a
Maven project. You can create one by specifying true in the <hollow-jar> element for
any type of packaging, such as war. See Creating a hollow bootable JAR on a JBoss EAP
bare-metal platform.

Prerequisites

® You have checked the latest Maven plug-in version, such as
MAVEN_PLUGIN_VERSION.X.GA. Final-redhat-00001, where MAVEN_PLUGIN_VERSION is
the major version and X'is the microversion. See Index of /ga/org/wildfly/plugins/wildfly-jar-
maven-plugin.

® You have checked the latest Galleon feature pack version, such as 4.0.X.GA-
redhat-BUILD_NUMBER, where X is the microversion of JBoss EAP XP and BUILD NUMBER is
the build number of the Galleon feature pack. Both X and BUILD_NUMBER can evolve during
the JBoss EAP XP 4.0.0 product life cycle. See Index of /ga/org/jboss/eap/wildfly-galleon-
pack.

® You have created a Maven project, set up a parent dependency, and added dependencies for
creating an MicroProfile application. See MicroProfile Config development.

97

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/getting_started_with_jboss_eap_for_openshift_online/#building-and-using-custom-Galleon-layers-for-EAP_default
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/#microprofile_config_development
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/#creating-hollow-bootable-jar-jboss-eap-bare-metal-platform_default
https://maven.repository.redhat.com/ga/org/wildfly/plugins/wildfly-jar-maven-plugin/
https://maven.repository.redhat.com/ga/org/jboss/eap/wildfly-galleon-pack/
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/#microprofile_config_development

Red Hat JBoss Enterprise Application Platform 7.4 Using JBoss EAP XP 4.0.0

NOTE
The examples shown in the procedure specify the following properties:
e ${bootable.jar.maven.plugin.version} for the Maven plug-in version.
o ${jboss.xp.galleon.feature.pack.version} for the Galleon feature pack version.

You must set these properties in your project. For example:

<properties>
<bootable.jar.maven.plugin.version>6.1.2.Final-redhat-
00001 </bootable.jar.maven.plugin.version>
<jboss.xp.galleon.feature.pack.version>4.0.0.GA-redhat-
00002</jboss.xp.galleon.feature.pack.version>
</properties>

Procedure

1. Add the following content to the <build> element of the pom.xml file. You must specify the
latest version of any Maven plug-in and the latest version of the org.jboss.eap:wildfly-
galleon-pack Galleon feature pack. For example:

<plugins>
<plugin>
<groupld>org.wildfly.plugins</groupld>
<artifactld>wildfly-jar-maven-plugin</artifactld>
<version>${bootable.jar.maven.plugin.version}</version>
<configuration>
<feature-pack-location>org.jboss.eap:wildfly-galleon-
pack:${jboss.xp.galleon.feature.pack.version}</feature-pack-location>
<layers>
<layer>jaxrs-server</layer>
<layer>microprofile-platform</layer>
</layers>
</configuration>
<executions>
<execution>
<goals>
<goal>package</goal>
</goals>
</execution>
</executions>
</plugin>
</plugins>

NOTE

If you do not specify Galleon layers in your pom.xml file then the bootable JAR
server contains a configuration that is identical to a standalone-
microprofile.xml configuration.

2. Package the application as a bootable JAR:

98

CHAPTER 8. THE BOOTABLE JAR

I $ mvn package
3. Start the application:

I $ NAME="foo" java -jar target/microprofile-config-bootable.jar

NOTE

The example uses NAME as the environment variable, but you can choose to use
jim, which is the default value.

NOTE

To view a list of supported bootable JAR arguments, append --help to the end of
the java -jar target/microprofile-config-bootable.jar command.

4. Specify the following URL in your web browser to access the MicroProfile Config application:

I http:/localhost:8080/config/json

5. Verification: Test the application behaves properly by issuing the following command in your
terminal:

I curl http://localhost:8080/config/json

The following is the expected output:

I {"result":"Hello foo"}

Additional resources

e Forinformation about available MicroProfile Config functionality, see MicroProfile Config.

e Forinformation about ConfigSources, see MicroProfile Config reference.

8.6. CREATING A HOLLOW BOOTABLE JAR ON A JBOSS EAP BARE-
METAL PLATFORM

You can package an application as a hollow bootable JAR on a JBoss EAP bare-metal platform.

A hollow bootable JAR contains only the JBoss EAP server. The hollow bootable JAR is packaged by
the JBoss EAP JAR Maven plug-in. The application is provided at server runtime. The hollow bootable
JAR is useful if you need to re-use the server configuration for a different application.

Prerequisites

® You have created a Maven project, set up a parent dependency, and added dependencies for
creating an application. See MicroProfile Config development.

® You have completed the pom.xml file configuration steps outlined in Using a bootable JAR on
a JBoss EAP bare-metal platform.

99

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/#microprofile_config
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/#microprofile_config_reference
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/#microprofile_config_development
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/#using-bootable-jar-jboss-eap-bare-metal-platform_default

Red Hat JBoss Enterprise Application Platform 7.4 Using JBoss EAP XP 4.0.0

® You have checked the latest Maven plug-in version, such as
MAVEN_PLUGIN_VERSION.X.GA. Final-redhat-00001, where MAVEN_PLUGIN_VERSION is
the major version and X is the microversion. See Index of /ga/org/wildfly/plugins/wildfly-jar-
maven-plugin.

® You have checked the latest Galleon feature pack version, such as 4.0.X.GA-
redhat-BUILD_NUMBER, where X is the microversion of JBoss EAP XP and BUILD NUMBER is
the build number of the Galleon feature pack. Both X and BUILD_NUMBER can evolve during
the JBoss EAP XP 4.0.0 product life cycle. See Index of /ga/org/jboss/eap/wildfly-galleon-
pack.

NOTE

The example shown in the procedure specifies
${jboss.xp.galleon.feature.pack.version} for the Galleon feature pack version, but you
must set the property in your project. For example:

<properties>

<jboss.xp.galleon.feature.pack.version>4.0.0.GA-redhat-
00002</jboss.xp.galleon.feature.pack.version>
</properties>

Procedure

1. To build a hollow bootable JAR, you must set the <hollow-jar> plug-in configuration element to
true in the project pom.xml file. For example:

<plugins>
<plugin>

<configuration>
<I-- This example configuration does not show a complete plug-in configuration -->
<feature-pack-location>org.jboss.eap:wildfly-galleon-
pack:${jboss.xp.galleon.feature.pack.version}</feature-pack-location>
<hollow-jar>true</hollow-jar>
</configuration>
</plugin>
</plugins>

NOTE

By specifying true in the <hollow-jar> element, the JBoss EAP JAR Maven plug-in does
not include an application in the JAR.

1. Build the hollow bootable JAR:
I $ mvn clean package
2. Run the hollow bootable JAR:

I $ java -jar target/microprofile-config-bootable.jar --deployment=target/microprofile-config.war

100

https://maven.repository.redhat.com/ga/org/wildfly/plugins/wildfly-jar-maven-plugin/
https://maven.repository.redhat.com/ga/org/jboss/eap/wildfly-galleon-pack/

CHAPTER 8. THE BOOTABLE JAR

IMPORTANT

To specify the path to the WAR file that you want to deploy on the server, use
the following argument, where <PATH_NAMES> is the path to your deployment.

I --deployment=<PATH_NAME>

3. Access the application:

I $ curl http://localhost:8080/microprofile-config/config/json

NOTE

To register your web application in the root directory, name the application
ROOT.war.

Additional resources

e Forinformation about available MicroProfile functionality, see MicroProfile Config.

® For more information about the JBoss EAP JAR Maven plug-in supported in JBoss EAP
XP 4.0.0, see JBoss EAP Maven plug-in.

8.7. CLISCRIPTS EXECUTED AT BUILD TIME
You can create CLI scripts to configure the server during the packaging of the bootable JAR.

A CLlI script is a text file that contains a sequence of CLI commands that you can use to apply additional
server configurations. For example, you can create a script to add a new logger to the logging
subsystem.

You can also specify more complex operations in a CLI script. For example, you can group security
management operations into a single command to enable HTTP authentication for the management
HTTP endpoint.

NOTE

You must define CLI scripts in the <cli-session> element of the plug-in configuration
before you package an application as a bootable JAR. This ensures the server
configuration settings persist after packaging the bootable JAR.

Although you can combine predefined Galleon layers to configure a server that deploys your
application, limitations do exist. For example, you cannot enable the HTTPS undertow listener using
Galleon layers when packaging the bootable JAR. Instead, you must use a CLI script.

You must define the CLI scripts in the <cli-session> element of the pom.xml file. The following table
shows types of CLI session attributes:

Table 8.2. CLI script attributes

101

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/#microprofile_config
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/#jboss-eap-maven-plug-in_default

Red Hat JBoss Enterprise Application Platform 7.4 Using JBoss EAP XP 4.0.0

Argument Description

script-files List of paths to script files.

properties-file Optional attribute that specifies
a path to a properties file. This
file lists Java properties that
scripts can reference by using the
${my.prop} syntax. The
following example sets public
inet-address to the value of
all.addresses:
/interface=public:write-
attribute(name=inet-
address,value=${all.address
es})

resolve-expressions Optional attribute that contains a
boolean value. Indicates if system
properties or expressions are
resolved before sending the
operation requests to the server.
Value is true by default.

NOTE

® CLlscripts are started in the order that they are defined in the <cli-session>
element of the pom.xml file.

® The JBoss EAP JAR Maven plug-in starts the embedded server for each CLI
session. Thus, your CLI script does not have to start or stop the embedded server.

8.8. EXECUTING CLISCRIPT AT RUNTIME

You can apply changes to the server configuration during runtime; this gives you the flexibility to adjust
the server with respect to the execution context. However, the preferred way to apply changes to the
server is during build time.

Procedure

® | aunch the bootable JAR, and the --cli-script argument.
For Example:

I java -jar myapp-bootable.jar --cli-scipt=my-scli-scipt.cli

102

NOTE

CHAPTER 8. THE BOOTABLE JAR

The CLI script must be a text file (UTF-8), the file extension if present is
meaningless although .cli extension is advised.

Operations that require your server to restart will terminate your bootable JAR
instance.

CLI commands such as connect, reload, shutdown, and any command related to
embedded server and patch are not operational.

CLI commands such as jdbe-driver-info that cannot be executed in admin-mode
are not supported.

IMPORTANT

If you restart the server without executing the CLI script, your new server instance will not
contain the changes from your previous server instance.

8.9. USING ABOOTABLE JAR ON A JBOSS EAP OPENSHIFT

PLATFORM

After you packaged an application as a bootable JAR, you can run the application on a JBoss EAP

OpenShift platform.

NOTE

Prerequisites

To use the custom Galleon feature-pack and layers when building a bootable
JAR on a JBoss EAP OpenShift platform, see Building and using custom Galleon
layers for JBoss EAP.

When building the application image by using the oc new-build command,
ensure to use this S2I builder image jboss-eap-xp4-openjdk11-openshift:latest,
instead of jboss-eap74-openjdk11-openshift:latest.

IMPORTANT

On OpenShift, you cannot use the EAP Operator automated transaction recovery
feature with your bootable JAR. A fix for this technical limitation is planned for a future
JBoss EAP XP 4.0.0 patch release.

® You have created a Maven project for MicroProfile Config development.

® You have checked the latest Maven plug-in version, such as
MAVEN_PLUGIN_VERSION.X.GA.Final-redhat-00001, where MAVEN_PLUGIN_VERSION is
the major version and X'is the microversion. See Index of /ga/org/wildfly/plugins/wildfly-jar-

maven-plugin.

® You have checked the latest Galleon feature pack version, such as 4.0.X.GA-
redhat-BUILD_NUMBER, where X is the microversion of JBoss EAP XP 4 and BUILD NUMBER
is the build number of the Galleon feature pack. Both X and BUILD_NUMBER can evolve during

103

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/getting_started_with_jboss_eap_for_openshift_online/#building-and-using-custom-Galleon-layers-for-EAP_default
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/#microprofile_config_development
https://maven.repository.redhat.com/ga/org/wildfly/plugins/wildfly-jar-maven-plugin/

Red Hat JBoss Enterprise Application Platform 7.4 Using JBoss EAP XP 4.0.0

the JBoss EAP XP 4.0.0 product life cycle. See Index of /ga/org/jboss/eap/wildfly-galleon-
pack.

NOTE
The examples shown in the procedure specify the following properties:
e ${bootable.jar.maven.plugin.version} for the Maven plug-in version.
e ${jboss.xp.galleon.feature.pack.version} for the Galleon feature pack version.

You must set these properties in your project. For example:

<properties>
<bootable.jar.maven.plugin.version>6.1.2.Final-redhat-
00001 </bootable.jar.maven.plugin.version>
<jboss.xp.galleon.feature.pack.version>4.0.0.GA-redhat-
00002</jboss.xp.galleon.feature.pack.version>
</properties>

Procedure

1. Add the following content to the <build> element of the pom.xml file. You must specify the
latest version of any Maven plug-in and the latest version of the org.jboss.eap:wildfly-
galleon-pack Galleon feature pack. For example:

<plugins>
<plugin>
<groupld>org.wildfly.plugins</groupld>
<artifactld>wildfly-jar-maven-plugin</artifactld>
<version>${bootable.jar.maven.plugin.version}</version>
<configuration>
<feature-pack-location>org.jboss.eap:wildfly-galleon-
pack:${jboss.xp.galleon.feature.pack.version}</feature-pack-location>
<layers>
<layer>jaxrs-server</layer>
<layer>microprofile-platform</layer>
</layers>
<cloud/>
</configuration>
<executions>
<execution>
<goals>
<goal>package</goal>
</goals>
</execution>
</executions>
</plugin>
</plugins>

104

https://maven.repository.redhat.com/ga/org/jboss/eap/wildfly-galleon-pack/

CHAPTER 8. THE BOOTABLE JAR

NOTE

You must include the <cloud/> element in the <configuration> element of the
plug-in configuration, so the JBoss EAP Maven JAR plug-in can identify that you
choose the OpenShift platform.

2. Package the application:
I $ mvn package
3. Login to your OpenShift instance using the oc login command.
4. Create a new project in OpenShift. For example:
I $ oc new-project bootable-jar-project
5. Enter the following oc commands to create an application image:
$ mkdir target/openshift && cp target/microprofile-config-bootable.jar target/openshift ﬂ
$ oc import-image ubi8/openjdk-11 --from=registry.redhat.io/ubi8/openjdk-11 --confirm g

$ oc new-build --strategy source --binary --image-stream openjdk-11 --name microprofile-
config-app

$ oc start-build microprofile-config-app --from-dir target/openshift ﬂ

Creates an openshift sub-directory in the target directory. The packaged application is
copied into the created sub-directory.

Imports the latest OpenJDK 11 imagestream tag and image information into the OpenShift
project.

Creates a build configuration based on the microprofile-config-app directory and the
OpenJDK 11 imagestream.

Uses the target/openshift sub-directory as the binary input to build the application.

O ® & o

NOTE
OpenShift applies a set of CLI script commands to the bootable JAR
configuration file to adjust it to the cloud environment. You can access this script

by opening the bootable-jar-build-artifacts/generated-cli-script.txt file in the
Maven project /target directory.

6. Verification:
View a list of OpenShift pods available and check the pods build statuses by issuing the
following command:

I $ oc get pods

Verify the built application image:

105

Red Hat JBoss Enterprise Application Platform 7.4 Using JBoss EAP XP 4.0.0

I $ oc get is microprofile-config-app
The output shows the built application image details, such as name and image repository, tag,
and so on. For the example in this procedure, the imagestream name and tag output displays
microprofile-config-app:latest.

7. Deploy the application:

$ oc new-app microprofile-config-app

$ oc expose svc/microprofile-config-app

IMPORTANT

To provide system properties to the bootable JAR, you must use the
JAVA_OPTS_APPEND environment variable. The following example
demonstrates usage of the JAVA_OPTS_APPEND environment variable:

Xlog:gc*:file=/tmp/gc.log:time -Dwildfly.statistics-enabled=true"

I $ oc new-app <_IMAGESTREAM_> -e JAVA_OPTS_APPEND="-

A new application is created and started. The application configuration is exposed as a new
service.

8. Verification: Test the application behaves properly by issuing the following command in your
terminal:

I $ curl http://$(oc get route microprofile-config-app --template="{{ .spec.host }}')/config/json

Expected output:

I {"result":"Hello jim"}

Additional resources

e Forinformation about MicroProfile, see MicroProfile Config.

® Forinformation about ConfigSources, see Default MicroProfile Config attributes.

8.10. CONFIGURE THE BOOTABLE JAR FOR OPENSHIFT

Before using your bootable JAR, you can configure JVM settings to ensure that your standalone server
operates correctly on JBoss EAP for OpenShift.

Use the JAVA_OPTS_APPEND environment variable to configure JVM settings. Use the JAVA_ARGS
command to provide arguments to the bootable JAR.

You can use environment variables to set values for properties. For example, you can use the
JAVA_OPTS_APPEND environment variable to set the -Dwildfly.statistics-enabled property to true:

I JAVA_OPTS_APPEND="-Xlog:gc*:file=/tmp/gc.log:time -Dwildfly.statistics-enabled=true"

106

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/#microprofile_config
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/#microprofile-default-config-attributes_default

CHAPTER 8. THE BOOTABLE JAR

Statistics are now enabled for your server.

NOTE

Use the JAVA_ARGS environment variable, if you need to provide arguments to the
bootable JAR.

JBoss EAP for OpenShift provides a JDK 11image. To run the application associated with your bootable
JAR, you must first import the latest OpenJDK 11imagestream tag and image information into your
OpenShift project. You can then use environment variables to configure the JVM in the imported
image.

You can apply the same configuration options for configuring the JVM used for JBoss EAP for
OpenShift S2l image, but with the following differences:

® Optional: The -Xlog capability is not available, but you can set garbage collection logging by
enabling -Xlog:gc. For example: JAVA_OPTS_APPEND="-Xlog:gc*:file=/tmp/gc.log:time".

® Toincrease initial metaspace size, you can set the GC_METASPACE_SIZE environment
variable. For best metadata capacity performance, set the value to 96.

® For better random file generation, use the JAVA_OPTS_APPEND environment variable to set
java.security.egd property as -Djava.security.egd=file:/dev/urandom.

These configurations improve the memory settings and garbage collection capability of JVM when
running on your imported OpenJDK 11image.

8.11. USING A CONFIGMAP IN YOUR APPLICATION ON OPENSHIFT

For OpenShift, you can use a deployment controller (dc) to mount the configmap into the pods used to
run the application.

A ConfigMap is an OpenShift resource that is used to store non-confidential data in key-value pairs.
After you specify the microprofile-platform Galleon layer to add microprofile-config-smalirye
subsystem and any extensions to the server configuration file, you can use a CLI script to add a new
ConfigSource to the server configuration. You can save CLI scripts in an accessible directory, such as
the /scripts directory, in the root directory of your Maven project.

MicroProfile Config functionality is implemented in JBoss EAP using the SmallRye Config component

and is provided by the microprofile-config-smallrye subsystem. This subsystem is included in the
microprofile-platform Galleon layer.

Prerequisites

® You have installed Maven.
® You have configured the JBoss EAP Maven repository.
® You have packaged an application as a bootable JAR and you can run the application on a JBoss

EAP OpenShift platform. For information about building an application as a bootable JAR on an
OpenShift platform, see Using a bootable JAR on a JBoss EAP OpenShift platform .

Procedure

107

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/#using-bootable-jar-jboss-eap-openshift-platform_default

Red Hat JBoss Enterprise Application Platform 7.4 Using JBoss EAP XP 4.0.0

108

Create a directory named scripts at the root directory of your project. For example:
I $ mkdir scripts

Create a cli.properties file and save the file in the /scripts directory. Define the config.path
and the config.ordinal system properties in this file. For example:

config.path=/etc/config
config.ordinal=200

Create a CLlI script, such as mp-config.cli, and save it in an accessible directory in the bootable
JAR, such as the /scripts directory. The following example shows the contents of the mp-
config.cli script:

config map

/subsystem=microprofile-config-smallrye/config-source=0s-map:add(dir=
{path=${config.path}}, ordinal=${config.ordinal})

The mp-config.cli CLI script creates a new ConfigSource, to which ordinal and path values are
retrieved from a properties file.

Save the script in the /scripts directory, which is located at the root directory of the project.

Add the following configuration extract to the existing plug-in <configuration> element:

<cli-sessions>
<cli-session>
<properties-file>
scripts/cli.properties
</properties-file>
<script-files>
<script>scripts/mp-config.cli</script>
</script-files>
</cli-session>
</cli-sessions>

Package the application:
I $ mvn package

Log in to your OpenShift instance using the oc¢ login command.

Optional: If you have not previously created a target/openshift subdirectory, you must create
the suddirectory by issuing the following command:

I $ mkdir target/openshift
Copy the packaged application into the created subdirectory.

I $ cp target/microprofile-config-bootable.jar target/openshift

. Use the target/openshift subdirectory as the binary input to build the application:

CHAPTER 8. THE BOOTABLE JAR

I $ oc start-build microprofile-config-app --from-dir target/openshift

NOTE
OpenShift applies a set of CLI script commands to the bootable JAR
configuration file to enable it for the cloud environment. You can access this

script by opening the bootable-jar-build-artifacts/generated-cli-script.txt file in
the Maven project /target directory.

1. Create a ConfigMap. For example:

$ oc create configmap microprofile-config-map --from-literal=name="Name comes from
Openshift ConfigMap"

12. Mount the ConfigMap into the application with the dc. For example:

$ oc set volume deployments/microprofile-config-app --add --name=config-volume \
--mount-path=/etc/config \

--type=configmap \

--configmap-name=microprofile-config-map

After executing the oc set volume command, the application is re-deployed with the new
configuration settings.

13. Test the output:
I $ curl http://$(oc get route microprofile-config-app --template="{{ .spec.host }}')/config/json

The following is the expected output:

I {"result":"Hello Name comes from Openshift ConfigMap"}

Additional resources

e Forinformation about MicroProfile Config ConfigSources attributes, see Default MicroProfile
Config attributes.

e Forinformation about bootable JAR arguments, see Supported bootable JAR arguments.

8.12. CREATING A BOOTABLE JAR MAVEN PROJECT

Follow the steps in the procedure to create an example Maven project. You must create a Maven project
before you can perform the following procedures:

e Enabling JSON logging for your bootable JAR
® Enabling web session data storage for multiple bootable JAR instances
® Enabling HTTP authentication for bootable JAR with a CLI script

® Securing your JBoss EAP bootable JAR application with Red Hat Single Sign-On

109

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/#microprofile-default-config-attributes_default
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/#bootable-jar-arguments_default

Red Hat JBoss Enterprise Application Platform 7.4 Using JBoss EAP XP 4.0.0

In the project pom.xml file, you can configure Maven to retrieve the project artifacts required to build
your bootable JAR.

Procedure

1. Set up the Maven project:

$ mvn archetype:generate \

-Dgroupld=GROUP_ID \

-Dartifactld=ARTIFACT_ID \
-DarchetypeGroupld=org.apache.maven.archetypes \
-DarchetypeArtifactld=maven-archetype-webapp \
-DinteractiveMode=false

Where GROUP_ID is the groupld of your project and ARTIFACT_ID is the artifactld of your
project.

2. In the pom.xml file, configure Maven to retrieve the JBoss EAP BOM file from a remote
repository.

<repositories>
<repository>
<id>jboss</id>
<url>https://maven.repository.redhat.com/ga</url>
<snapshots>
<enabled>false</enabled>
</snapshots>
</repository>
</repositories>
<pluginRepositories>
<pluginRepository>
<id>jboss</id>
<url>https://maven.repository.redhat.com/ga</url>
<snapshots>
<enabled>false</enabled>
</snapshots>
</pluginRepository>
</pluginRepositories>

3. To configure Maven to automatically manage versions for the Jakarta EE artifacts in the jboss-
eap-jakartaee8 BOM, add the BOM to the <dependencyManagements section of the project
pom.xml file. For example:

<dependencyManagement>
<dependencies>
<dependency>
<groupld>org.jboss.bom</groupld>
<artifactld>jboss-eap-jakartaee8</artifactld>
<version>7.3.4.GA</version>
<type>pom</type>
<scope>import</scope>
</dependency>
</dependencies>
</dependencyManagement>

110

CHAPTER 8. THE BOOTABLE JAR

4. Add the servlet API artifact, which is managed by the BOM, to the <dependency> section of

the project pom.xml file, as shown in the following example:

<dependency>
<groupld>org.jboss.spec.javax.servlet</groupld>
<artifactld>jboss-servlet-api_4.0_spec</artifactld>
<scope>provided</scope>

</dependency>

Additional resources

For information about the JBoss EAP Maven plug-in, see JBoss EAP Maven plug-in.

For information about the Galleon layers, see Specifying Galleon layers for your bootable JAR
server.

For information about including the Red Hat Single Sign-On Galleon feature pack in your
project, see Securing your JBoss EAP bootable JAR application with Red Hat Single Sign-On .

8.13. ENABLING JSON LOGGING FOR YOUR BOOTABLE JAR

You can enable JSON logging for your bootable JAR by configuring the server logging configuration
with a CLI script. When you enable JSON logging, you can use the JSON formatter to view log messages
in JSON format.

The example in this procedure shows you how to enable JSON logging for your bootable JAR on a bare-
metal platform and an OpenShift platform.

Prerequisites

You have checked the latest Maven plug-in version, such as
MAVEN_PLUGIN_VERSION.X.GA.Final-redhat-00001, where MAVEN_PLUGIN_VERSION is
the major version and X'is the microversion. See Index of /ga/org/wildfly/plugins/wildfly-jar-
maven-plugin.

You have checked the latest Galleon feature pack version, such as 4.0.X.GA-

redhat-BUILD _NUMBER, where X is the minor version of JBoss EAP XP and BUILD NUMBER
is the build number of the Galleon feature pack. Both X and BUILD_NUMBER can evolve during
the JBoss EAP XP 4.0.0 product life cycle. See Index of /ga/org/jboss/eap/wildfly-galleon-
pack.

You have created a Maven project, set up a parent dependency, and added dependencies for
creating an application. See Creating a bootable JAR Maven project .

m

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/#jboss-eap-maven-plug-in_default
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/#specifying-galleon-layers-bootable-jar-server_default
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/#securing-web-application-rh-sso_default
https://maven.repository.redhat.com/ga/org/wildfly/plugins/wildfly-jar-maven-plugin/
https://maven.repository.redhat.com/ga/org/jboss/eap/wildfly-galleon-pack/
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/#creating-bootable-jar-maven-project_default

Red Hat JBoss Enterprise Application Platform 7.4 Using JBoss EAP XP 4.0.0

IMPORTANT

In the Maven archetype of your Maven project, you must specify the groupID and
artifactID that are specific to your project. For example:

$ mvn archetype:generate \
-Dgroupld=com.example.logging \
-Dartifactld=logging \
-DarchetypeGroupld=org.apache.maven.archetypes \
-DarchetypeArtifactld=maven-archetype-webapp \
-DinteractiveMode=false

cd logging

NOTE
The examples shown in the procedure specify the following properties:

o ${bootable.jar.maven.plugin.version} for the Maven plug-in version.

o ${jboss.xp.galleon.feature.pack.version} for the Galleon feature pack
version.

You must set these properties in your project. For example:

<properties>
<bootable.jar.maven.plugin.version>6.1.2.Final-redhat-
00001 </bootable.jar.maven.plugin.version>
<jboss.xp.galleon.feature.pack.version>4.0.0.GA-redhat-
00002</jboss.xp.galleon.feature.pack.version>
</properties>

Procedure

1. Add the JBoss Logging and Jakarta RESTful Web Services dependencies, which are managed
by the BOM, to the <dependencies> section of the project pom.xml file. For example:

<dependencies>
<dependency>
<groupld>org.jboss.logging</groupld>
<artifactld>jboss-logging</artifactid>
<scope>provided</scope>
</dependency>
<dependency>
<groupld>org.jboss.spec.javax.ws.rs</groupld>
<artifactld>jboss-jaxrs-api_2.1_spec</artifactld>
<scope>provided</scope>
</dependency>
</dependencies>

2. Add the following content to the <build> element of the pom.xml file. You must specify the
latest version of any Maven plug-in and the latest version of the org.jboss.eap:wildfly-
galleon-pack Galleon feature pack. For example:

I <plugins>

12

CHAPTER 8. THE BOOTABLE JAR

<plugin>
<groupld>org.wildfly.plugins</groupld>
<artifactld>wildfly-jar-maven-plugin</artifactld>
<version>${bootable.jar.maven.plugin.version}</version>
<configuration>
<feature-packs>
<feature-pack>
<location>org.jboss.eap:wildfly-galleon-
pack:${jboss.xp.galleon.feature.pack.version}</location>
</feature-pack>
</feature-packs>
<layers>
<layer>jaxrs-server</layer>
</layers>
</configuration>
<executions>
<execution>
<goals>
<goal>package</goal>
</goals>
</execution>
</executions>
</plugin>
</plugins>

3. Create the directory to store Java files:
I $ mkdir -p APPLICATION_ROOT/src/main/java/com/example/logging/

Where APPLICATION_ROOT is the directory containing the pom.xml configuration file for the
application.

4. Create a Java file RestApplication.java with the following content and save the file in the
APPLICATION_ROOT/src/main/java/com/example/logging/ directory:

package com.example.logging;
import javax.ws.rs.ApplicationPath;
import javax.ws.rs.core.Application;

@ApplicationPath("/")
public class RestApplication extends Application {

}

5. Create a Java file HelloWorldEndpoint.java with the following content and save the file in the
APPLICATION_ROOT/src/main/java/com/example/logging/ directory:

package com.example.logging;

import javax.ws.rs.Path;

import javax.ws.rs.core.Response;
import javax.ws.rs.GET;

import javax.ws.rs.Produces;

import org.jboss.logging.Logger;
@Path("/hello")

13

Red Hat JBoss Enterprise Application Platform 7.4 Using JBoss EAP XP 4.0.0

public class HelloWorldEndpoint {

private static Logger log = Logger.getLogger(HelloWorldEndpoint.class.getName());
@GET
@Produces("text/plain”)
public Response doGet() {
log.debug("HelloWorldEndpoint.doGet called");
return Response.ok("Hello from XP bootable jar!").build();
}
}

6. Create a CLl script, such as logging.cli, and save it in an accessible directory in the bootable
JAR, such as the APPLICATION_ROOT]scripts directory, where APPLICATION_ROOT is the
root directory of your Maven project. The script must contain the following commands:

/subsystem=logging/logger=com.example.logging:add(level=ALL)
/subsystem=Ilogging/json-formatter=json-formatter:add(exception-output-type=formatted,
pretty-print=false, meta-data={version="1"}, key-overrides={timestamp="@timestamp"})
/subsystem=Ilogging/console-handler=CONSOLE:write-attribute(name=level,value=ALL)
/subsystem=Ilogging/console-handler=CONSOLE:write-attribute(name=named-formatter,
value=json-formatter)

7. Add the following configuration extract to the plug-in <configuration> element:

<cli-sessions>
<cli-session>
<script-files>
<script>scripts/logging.cli</script>
</script-files>
</cli-session>
</cli-sessions>

This example shows the logging.cli CLI script, which modifies the server logging configuration
file to enable JSON logging for your application.

8. Package the application as a bootable JAR.
I $ mvn package

9. Optional: To run the application on a JBoss EAP bare-metal platform, follow the steps outlined
in Using a bootable JAR on a JBoss EAP bare-metal platform , but with the following difference:

a. Start the application:

I mvn wildfly-jar:run

b. Verification: You can access the application by specifying the following URL in your browser:
http://127.0.0.1:8080/hello.

Expected output: You can view the JSSON-formatted logs, including the
com.example.logging.HelloWorldEndpoint debug trace, in the application console.

10. Optional: To run the application on a JBoss EAP OpenShift platform, complete the following
steps:

14

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/#using-bootable-jar-jboss-eap-bare-metal-platform_default

CHAPTER 8. THE BOOTABLE JAR
a. Add the <cloud/> element to the plug-in configuration. For example:

<plugins>
<plugin>
.. <I-- You must evolve the existing configuration with the <cloud/> element -->
<configuration >

<cloud/>
</configuration>

</plugin>
</plugins>

b. Rebuild the application:

I $ mvn clean package

(@]

. Login to your OpenShift instance using the oc login command.

d. Create a new project in OpenShift. For example:

I $ oc new-project bootable-jar-project
e. Enter the following oc commands to create an application image:

$ mkdir target/openshift && cp target/logging-bootable.jar target/openshift ﬂ

$ oc import-image ubi8/openjdk-11 --from=registry.redhat.io/ubi8/openjdk-11 --confirm

$ oc new-build --strategy source --binary --image-stream openjdk-11 --name logging 6
$ oc start-build logging --from-dir target/openshift ﬂ

ﬂ Creates the target/openshift subdirectory. The packaged application is copied into
the openshift subdirectory.

9 Imports the latest OpenJDK 11imagestream tag and image information into the
OpenShift project.

9 Creates a build configuration based on the logging directory and the OpenJDK 11
imagestream.

Q Uses the target/openshift subdirectory as the binary input to build the application.

f. Deploy the application:

$ oc new-app logging

$ oc expose svc/logging
g. Get the URL of the route.

I $ oc get route logging --template="{{ .spec.host }}'

115

Red Hat JBoss Enterprise Application Platform 7.4 Using JBoss EAP XP 4.0.0

h. Access the application in your web browser using the URL returned from the previous
command. For example:

I http://ROUTE_NAME/hello

i. Verification: Issue the following command to view a list of OpenShift pods available, and to
check the pods build statuses:

I $ oc get pods

Access a running pod log of your application. Where APP_POD_NAME is the name of the
running pod logging application.

I $ oc logs APP_POD_NAME

Expected outcome: The pod log is in JSON format and includes the
com.example.logging.HelloWorldEndpoint debug trace.

Additional resources

e Forinformation about logging functionality for JBoss EAP, see Logging with JBoss EAP in the
Configuration Guide.

e Forinformation about using a bootable JAR on OpenShift, see Using a bootable JAR on a
JBoss EAP OpenShift platform.

e Forinformation about specifying the JBoss EAP JAR Maven for your project, see Specifying
Galleon layers for your bootable JAR server.

e Forinformation about creating CLI scripts, see CLI scripts.

8.14. ENABLING WEB SESSION DATA STORAGE FOR MULTIPLE
BOOTABLE JARINSTANCES

You can build and package a web-clustering application as a bootable JAR.

Prerequisites

® You have checked the latest Maven plug-in version, such as
MAVEN_PLUGIN_VERSION.X.GA.Final-redhat-00001, where MAVEN_PLUGIN_VERSION is
the major version and X'is the microversion. See Index of /ga/org/wildfly/plugins/wildfly-jar-
maven-plugin.

® You have checked the latest Galleon feature pack version, such as 4.0.X.GA-
redhat-BUILD_NUMBER, where X is the microversion of JBoss EAP XP and BUILD NUMBER is
the build number of the Galleon feature pack. Both X and BUILD_NUMBER can evolve during
the JBoss EAP XP 4.0.0 product life cycle. See Index of /ga/org/jboss/eap/wildfly-galleon-
pack.

® You have created a Maven project, set up a parent dependency, and added dependencies for
creating a web-clustering application. See Creating a bootable JAR Maven project.

16

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/configuration_guide/#logging_with_jboss_eap
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/#using-bootable-jar-jboss-eap-openshift-platform_default
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/#specifying-galleon-layers-bootable-jar-server_default
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/#cli-scripts_default
https://maven.repository.redhat.com/ga/org/wildfly/plugins/wildfly-jar-maven-plugin/
https://maven.repository.redhat.com/ga/org/jboss/eap/wildfly-galleon-pack/
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/#creating-bootable-jar-maven-project_default

CHAPTER 8. THE BOOTABLE JAR

IMPORTANT

When setting up the Maven project, you must specify values in the Maven
archetype configuration. For example:

$ mvn archetype:generate \
-Dgroupld=com.example.webclustering \
-Dartifactld=web-clustering \
-DarchetypeGroupld=org.apache.maven.archetypes \
-DarchetypeArtifactld=maven-archetype-webapp \
-DinteractiveMode=false

cd web-clustering

NOTE
The examples shown in the procedure specify the following properties:

o ${bootable.jar.maven.plugin.version} for the Maven plug-in version.

o ${jboss.xp.galleon.feature.pack.version} for the Galleon feature pack
version.

You must set these properties in your project. For example:

<properties>
<bootable.jar.maven.plugin.version>6.1.2.Final-redhat-
00001 </bootable.jar.maven.plugin.version>
<jboss.xp.galleon.feature.pack.version>4.0.0.GA-redhat-
00002</jboss.xp.galleon.feature.pack.version>
</properties>

Procedure

1. Add the following content to the <build> element of the pom.xml file. You must specify the
latest version of any Maven plug-in and the latest version of the org.jboss.eap:wildfly-
galleon-pack Galleon feature pack. For example:

<plugins>
<plugin>
<groupld>org.wildfly.plugins</groupld>
<artifactld>wildfly-jar-maven-plugin</artifactld>
<version>${bootable.jar.maven.plugin.version}</version>
<configuration>
<feature-pack-location>org.jboss.eap:wildfly-galleon-
pack:${jboss.xp.galleon.feature.pack.version}</feature-pack-location>
<layers>
<layer>datasources-web-server</layer>
<layer>web-clustering</layer>
</layers>
</configuration>
<executions>
<execution>
<goals>
<goal>package</goal>

17

Red Hat JBoss Enterprise Application Platform 7.4 Using JBoss EAP XP 4.0.0

</goals>
</execution>
</executions>
</plugin>
</plugins>

NOTE

This example makes use of the web-clustering Galleon layer to enable web
session sharing.

2. Update the web.xml file in the src/main/webapp/WEB-INF directory with the following
configuration:

<?xml version="1.0" encoding="UTF-8"7>

<web-app version="4.0"
xmlns="http://xmins.jcp.org/xml/ns/javaee"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://xmIns.jcp.org/xml/ns/javaee
http://xmins.jcp.org/xml/ns/javaee/web-app_4_0.xsd">
<distributable/>
</web-app>

The <distributable/> tag indicates that this servlet can be distributed across multiple servers.

3. Create the directory to store Java files:

$ mkdir -p APPLICATION_ROOT

/src/main/java/com/example/webclustering/
Where APPLICATION_ROOT is the directory containing the pom.xml configuration file for the
application.

4. Create a Java file MyServlet.java with the following content and save the file in the
APPLICATION_ROOT/src/main/java/com/example/webclustering/ directory.

package com.example.webclustering;

import java.io.lOException;

import java.io.PrintWriter;

import javax.servlet.ServletException;

import javax.servlet.annotation.WebServlet;
import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

@WebServlet(urlPatterns = {"/clustering"})
public class MyServlet extends HttpServlet {
@Override
protected void doGet(HttpServletRequest request, HitpServletResponse response)
throws IOException {
response.setContentType("text/html;charset=UTF-8");
long t;

18

CHAPTER 8. THE BOOTABLE JAR

User user = (User) request.getSession().getAttribute("user");
if (user == null) {
t = System.currentTimeMillis();
user = new User(1);
request.getSession().setAttribute("user", user);
}
try (PrintWriter out = response.getWriter()) {
out.printin("<!DOCTYPE html>");
out.printin("<htmlI>");
out.printin("<head>");
out.printin("<title>Web clustering demo</title>");
out.printin("</head>");
out.printin("<body>");
out.printin("<h1>Session id " + request.getSession().getld() + "</h1>");
out.printin("<h1>User Created " + user.getCreated() + "</h1>");
out.printin("<h1>Host Name " + System.getenv("HOSTNAME") + "</h1>");
out.printin("</body>");
out.printin("</html>");

}
}
}

Py

The content in MyServlet.java defines the endpoint to which a client sends an HTTP request.

5. Create a Java file User.java with the following content and save the file in the
APPLICATION_ROOT/src/main/java/com/example/webclustering/ directory.

package com.example.webclustering;
import java.io.Serializable;

public class User implements Serializable {
private final long created;

User(long created) {
this.created = created;

}
public long getCreated() {

return created;

}
}

6. Package the application:
I $ mvn package

7. Optional: To run the application on a JBoss EAP bare-metal platform, follow the steps outlined
in Using a bootable JAR on a JBoss EAP bare-metal platform , but with the following difference:

a. OnaJBoss EAP bare-metal platform, you can use the java -jar command to run multiple
bootable JAR instances, as demonstrated in the following examples:

$ java -jar target/web-clustering-bootable.jar -Djboss.node.name=node1

$ java -jar target/web-clustering-bootable.jar -Djboss.node.name=node2 -

19

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/#using-bootable-jar-jboss-eap-bare-metal-platform_default

Red Hat JBoss Enterprise Application Platform 7.4 Using JBoss EAP XP 4.0.0

I Djboss.socket.binding.port-offset=10

b. Verification: You can access the application on the node 1instance:
http://127.0.0.1:8080/clustering. Note the user session ID and the user-creation time.
After you kill this instance, you can access the node 2 instance:
http://127.0.0.1:8090/clustering. The user must match the session ID and the user-creation
time of the node Tinstance.

8. Optional: To run the application on a JBoss EAP OpenShift platform, follow the steps outlined in
Using a bootable JAR on a JBoss EAP OpenShift platform , but complete the following steps:

a. Add the <cloud/> element to the plug-in configuration. For example:
<plugins>
<plugin>
... <l-- You must evolve the existing configuration with the <cloud/> element -->
<configuration >
<cloud/>
</configuration>
</plugin>
</plugins>
b. Rebuild the application:
I $ mvn clean package
c. Login to your OpenShift instance using the oc login command.
d. Create a new project in OpenShift. For example:

I $ oc new-project bootable-jar-project

e. Torunaweb-clustering application on a JBoss EAP OpenShift platform, authorization
access must be granted for the service account that the pod is running in. The service
account can then access the Kubernetes REST API. The following example shows
authorization access being granted to a service account:

I $ oc policy add-role-to-user view system:serviceaccount:$(oc project -q):default
f. Enter the following oc commands to create an application image:

$ mkdir target/openshift && cp target/web-clustering-bootable.jar target/openshift ﬂ
$ oc import-image ubi8/openjdk-11 --from=registry.redhat.io/ubi8/openjdk-11 --confirm
$ oc new-build --strategy source --binary --image-stream openjdk-11 --name web-
clustering

$ oc start-build web-clustering --from-dir target/openshift ﬂ

Creates the target/openshift sub-directory. The packaged application is copied into
the openshift sub-directory.

120

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/#using-bootable-jar-jboss-eap-openshift-platform_default

CHAPTER 8. THE BOOTABLE JAR

9 Imports the latest OpenJDK 11imagestream tag and image information into the
OpenShift project.

9 Creates a build configuration based on the web-clustering directory and the OpenJDK
1imagestream.

Q Uses the target/openshift sub-directory as the binary input to build the application.

g. Deploy the application:
$ oc new-app web-clustering -e KUBERNETES_NAMESPACE=$(oc project -q)

$ oc expose svc/web-clustering

IMPORTANT

You must use the KUBERNETES_NAMESPACE environment variable to
view other pods in the current OpenShift namespace; otherwise, the server
attempts to retrieve the pods from the default namespace.

. Get the URL of the route.

I $ oc get route web-clustering --template="{{ .spec.host }}'

i. Access the application in your web browser using the URL returned from the previous
command. For example:

I http://ROUTE_NAME/clustering

Note the user session ID and user creation time.

j. Scale the application to two pods:

I $ oc scale --replicas=2 deployments web-clustering

. Issue the following command to view a list of OpenShift pods available, and to check the
pods build statuses:

I $ oc get pods

. Kill the oldest pod using the oc delete pod web-clustering-POD_NAME command, where
POD_NAME is the name of your oldest pod.

. Access the application again:
I http://ROUTE_NAME/clustering

Expected outcome: The session ID and the creation time generated by the new pod match
those of the of the terminated pod. This indicates that web session data storage is enabled.

Additional resources

121

Red Hat JBoss Enterprise Application Platform 7.4 Using JBoss EAP XP 4.0.0

e Forinformation about distributable web session management profiles, see The distributable-
web subsystem for Distributable Web Session Configurations in the Development Guide.

e Forinformation about configuring the JGroups protocol stack, see Configuring a JGroups
Discovery Mechanism in the Getting Started with JBoss EAP for OpenShift Container Platform
guide.

8.15. ENABLING HTTP AUTHENTICATION FOR BOOTABLE JARWITH A
CLISCRIPT

You can enable HTTP authentication for the bootable JAR with a CLI script. This script adds a security
realm and a security domain to your server.

Prerequisites

® You have checked the latest Maven plug-in version, such as
MAVEN_PLUGIN_VERSION.X.GA. Final-redhat-00001, where MAVEN_PLUGIN_VERSION is
the major version and X'is the microversion. See Index of /ga/org/wildfly/plugins/wildfly-jar-
maven-plugin.

® You have checked the latest Galleon feature pack version, such as 4.0.X.GA-
redhat-BUILD_NUMBER, where X is the microversion of JBoss EAP XP and BUILD NUMBER is
the build number of the Galleon feature pack. Both X and BUILD_NUMBER can evolve during
the JBoss EAP XP 4.0.0 product life cycle. See Index of /ga/org/jboss/eap/wildfly-galleon-
pack.

® You have created a Maven project, set up a parent dependency, and added dependencies for
creating an application that requires HTTP authentication. See Creating a bootable JAR Maven
project.

IMPORTANT

When setting up the Maven project, you must specify HTTP authentication
values in the Maven archetype configuration. For example:

$ mvn archetype:generate \
-Dgroupld=com.example.auth \
-Dartifactld=authentication \
-DarchetypeGroupld=org.apache.maven.archetypes \
-DarchetypeArtifactld=maven-archetype-webapp \
-DinteractiveMode=false

cd authentication

122

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/development_guide/#distributable_web_subsystem
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/getting_started_with_jboss_eap_for_openshift_container_platform/#configuring_a_jgroups_discovery_mechanism
https://maven.repository.redhat.com/ga/org/wildfly/plugins/wildfly-jar-maven-plugin/
https://maven.repository.redhat.com/ga/org/jboss/eap/wildfly-galleon-pack/
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/#creating-bootable-jar-maven-project_default

CHAPTER 8. THE BOOTABLE JAR

NOTE
The examples shown in the procedure specify the following properties:
o ${bootable.jar.maven.plugin.version} for the Maven plug-in version.

o ${jboss.xp.galleon.feature.pack.version} for the Galleon feature pack
version.

You must set these properties in your project. For example:

<properties>
<bootable.jar.maven.plugin.version>6.1.2.Final-redhat-
00001 </bootable.jar.maven.plugin.version>
<jboss.xp.galleon.feature.pack.version>4.0.0.GA-redhat-
00002</jboss.xp.galleon.feature.pack.version>
</properties>

Procedure

1. Add the following content to the <build> element of the pom.xml file. You must specify the
latest version of any Maven plug-in and the latest version of the org.jboss.eap:wildfly-
galleon-pack Galleon feature pack. For example:

<plugins>
<plugin>
<groupld>org.wildfly.plugins</groupld>
<artifactld>wildfly-jar-maven-plugin</artifactld>
<version>${bootable.jar.maven.plugin.version}</version>
<configuration>
<feature-pack-location>org.jboss.eap:wildfly-galleon-
pack:${jboss.xp.galleon.feature.pack.version}</feature-pack-location>
<layers>
<layer>datasources-web-server</layer>
</layers>
</configuration>
<executions>
<execution>
<goals>
<goal>package</goal>
</goals>
</execution>
</executions>
</plugin>
</plugins>

The example shows the inclusion of the datasources-web-server Galleon layer that contains
the elytron subsystem.

2. Update the web.xml file in the src/main/webapp/WEB-INF directory. For example:
<?xml version="1.0" encoding="UTF-8"7>
<web-app version="4.0"

xmlns="http://xmIns.jcp.org/xml/ns/javaee"

123

Red Hat JBoss Enterprise Application Platform 7.4 Using JBoss EAP XP 4.0.0

xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://xmlIns.jcp.org/xml/ns/javaee
http://xmIns.jcp.org/xml/ns/javaee/web-app_4_0.xsd">

<login-config>
<auth-method>BASIC</auth-method>
<realm-name>Example Realm</realm-name>
</login-config>

</web-app>

3. Create the directory to store Java files:
I $ mkdir -p APPLICATION_ROOT/src/main/java/com/example/authentication/

Where APPLICATION_ROOT is the root directory of your Maven project.

4. Create a Java file TestServlet.java with the following content and save the file in the
APPLICATION_ROOT/src/main/java/com/example/authentication/ directory.

package com.example.authentication;

import javax.servlet.annotation.HttpMethodConstraint;
import javax.servlet.annotation.ServletSecurity;
import javax.servlet.annotation.WebServlet;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

import java.io.lOException;
import java.io.PrintWriter;

@WebServlet(urlPatterns = "/hello")

@ServletSecurity(httpMethodConstraints = { @HttpMethodConstraint(value = "GET",
rolesAllowed = { "Users"}) })

public class TestServlet extends HitpServlet {

@Override
protected void doGet(HttpServietRequest req, HitpServletResponse resp) throws
IOException {
PrintWriter writer = resp.getWriter();
writer.printin("Hello " + req.getUserPrincipal().getName());
writer.close();

}

5. Create a CLlI script, such as authentication.cli, and save it in an accessible directory in the
bootable JAR, such as the APPLICATION_ROOT/scripts directory. The script must contain the
following commands:

/subsystem=elytron/properties-realm=bootable-realm:add(users-properties={relative-
to=jboss.server.config.dir, path=bootable-users.properties, plain-text=true}, groups-
properties={relative-to=jboss.server.config.dir, path=bootable-groups.properties})
/subsystem=elytron/security-domain=BootableDomain:add(default-realm=bootable-realm,

124

CHAPTER 8. THE BOOTABLE JAR

permission-mapper=default-permission-mapper, realms=[{realm=bootable-realm, role-
decoder=groups-to-roles}])

/subsystem=undertow/application-security-domain=other:write-attribute(name=security-
domain, value=BootableDomain)

6. Add the following configuration extract to the plug-in <configuration> element:

<cli-sessions>
<cli-session>
<script-files>
<script>scripts/authentication.cli</script>
</script-files>
</cli-session>
</cli-sessions>

This example shows the authentication.cli CLI script, which configures the default undertow
security domain to the security domain defined for your server.

NOTE

You have the option to execute the CLI script at runtime instead of packaging
time. To do so, skip this step and proceed to step 10.

7. In the root directory of your Maven project create a directory to store the properties files that
the JBoss EAP JAR Maven plug-in adds to the bootable JAR:

I $ mkdir -p APPLICATION_ROOT/extra-content/standalone/configuration/

Where APPLICATION_ROOT is the directory containing the pom.xml configuration file for the
application.

This directory stores files such as bootable-users.properties and bootable-groups.properties
files.

The bootable-users.properties file contains the following content:
I testuser=bootable_password

The bootable-groups.properties file contains the following content:
I testuser=Users

8. Add the following extra-content-content-dirs element to the existing <configuration>
element:

<extra-server-content-dirs>
<extra-content>extra-content</extra-content>
</extra-server-content-dirs>

The extra-content directory contains the properties files.

9. Package the application as a bootable JAR.

125

Red Hat JBoss Enterprise Application Platform 7.4 Using JBoss EAP XP 4.0.0

I $ mvn package
10. Start the application:
I mvn wildfly-jar:run

If you have chosen to skip step 6 and not execute the CLI script during build, launch the
application with the following command:

I mvn wildfly-jar:run -Dwildfly.bootable.arguments=--cli-script=scripts/authentication.cli

11. Call the servlet, but do not specify credentials:
I curl -v http://localhost:8080/hello
Expected output:
HTTP/1.1 401 Unauthorized
WWW-Authenticate: Basic realm="Example Realm"
12. Call the server and specify your credentials. For example:
I $ curl -v -u testuser:bootable_password http://localhost:8080/hello

AHTTP 200 status is returned that indicates HTTP authentication is enabled for your bootable
JAR. For example:

HTTP/1.1 200 OK

Hello testuser

Additional resources

® Forinformation about enabling HTTP authentication for the undertow security domain, see
Enable HTTP Authentication for Applications Using the CLI Security Command in the How to
Configure Server Security.

8.16. SECURING YOUR JBOSS EAP BOOTABLE JAR APPLICATION
WITH RED HAT SINGLE SIGN-ON

You can use the Galleon keycloak-client-oidc layer to install a version of a server that is provisioned
with Red Hat Single Sign-On 7.5 OpenlD Connect client adapters.

NOTE

The use of keycloak-client-oidc layer has been deprecated in JBoss EAP XP 4. Use the
elytron-oidc-client layer, which provides a native OpenID Connect (OIDC) client,
instead. For more information, see Developing JBoss EAP bootable jar application with
OpenlD Connect.

126

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/how_to_configure_server_security/#elytron_http_auth_http
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/#assembly-developing-jboss-eap-bootable-jar-application-with-openid-connect_openid-connect-in-jboss-eap

CHAPTER 8. THE BOOTABLE JAR

The keycloak-client-oidc layer provides Red Hat Single Sign-On OpenlD Connect client adapters to
your Maven project. This layer is included with the keycloak-adapter-galleon-pack Red Hat Single
Sign-On feature pack.

You can add the keycloak-adapter-galleon-pack feature pack to your JBoss EAP Maven plug-in
configuration and then add the keycloak-client-oidc. You can view Red Hat Single Sign-On client
adapters that are compatible with JBoss EAP by visiting the Supported Configurations: Red Hat Single
Sign-On 7.4 web page.

The example in this procedure shows you how to secure a JBoss EAP bootable JAR by using JBoss EAP
features provided by the keycloak-client-oidc layer.

Prerequisites

You have checked the latest Maven plug-in version, such as
MAVEN_PLUGIN_VERSION.X.GA.Final-redhat-00001, where MAVEN_PLUGIN_VERSION is
the major version and X'is the microversion. See Index of /ga/org/wildfly/plugins/wildfly-jar-
maven-plugin.

You have checked the latest Galleon feature pack version, such as 4.0.X.GA-
redhat-BUILD_NUMBER, where X is the microversion of JBoss EAP XP and BUILD NUMBER is
the build number of the Galleon feature pack. Both X and BUILD_NUMBER can evolve during
the JBoss EAP XP 4.0.0 product life cycle. See Index of /ga/org/jboss/eap/wildfly-galleon-
pack.

You have checked the latest Red Hat Single Sign-On Galleon feature pack version, such as
org.keycloak:keycloak-adapter-galleon-pack:15.0.X.redhat-BUILD_NUMBER, where Xiis the
microversion of Red Hat Single Sign-On that depends on the Red Hat Single Sign-On server
release used to secure the application, and BUILD_NUMBER is the build number of the Red Hat
Single Sign-On Galleon feature pack. Both X and BUILD_NUMBER can evolve during the JBoss
EAP XP 4.0.0 product life cycle. See Index of /ga/org/keycloak/keycloak-adapter-galleon-
pack.

You have created a Maven project, set up a parent dependency, and added dependencies for
creating an application that you want secured with Red Hat Single Sign-On. See Creating a

bootable JAR Maven project.

You have a Red Hat Single Sign-On server that is running on port 8090. See Starting the Red
Hat Single Sign-On server.

You have logged in to the Red Hat Single Sign-On Admin Console and created the following
metadata:

o Arealm named demo.

o Arole named Users.

o Auser and password. You must assign a Users role to the user.

o A public-client web application with a Root URL. The example in the procedure, defines

simple-webapp as the web application and http://localhost:8080/simple-webapp/secured
as the Root URL.

127

https://access.redhat.com/articles/2342861#Comp_7_4
https://maven.repository.redhat.com/ga/org/wildfly/plugins/wildfly-jar-maven-plugin/
https://maven.repository.redhat.com/ga/org/jboss/eap/wildfly-galleon-pack/
https://maven.repository.redhat.com/ga/org/keycloak/keycloak-adapter-galleon-pack/
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/#creating-bootable-jar-maven-project_default
https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.4/html/getting_started_guide/installing-standalone_#starting-server_

Red Hat JBoss Enterprise Application Platform 7.4 Using JBoss EAP XP 4.0.0

IMPORTANT

When setting up the Maven project, you must specify values for the
application that you want to secure with Red Hat Single Sign-On in the
Maven archetype. For example:

$ mvn archetype:generate \
-Dgroupld=com.example.keycloak \
-Dartifactld=simple-webapp \
-DarchetypeGroupld=org.apache.maven.archetypes \
-DarchetypeArtifactld=maven-archetype-webapp \
-DinteractiveMode=false

cd simple-webapp

N NOTE
A
% . The examples shown in the procedure specify the following properties:
¢
' 20 m ${bootable.jar.maven.plugin.version} for the Maven plug-in version.
*
% o m ${jboss.xp.galleon.feature.pack.version} for the Galleon feature pack
» version.
S
2585 5
W m ${keycloak.feature.pack.version} for the Red Hat Single Sign-On
-~ o feature pack version.
oY
" You must set these properties in your project. For example:
A
& > <properties>
M,

e <bootable.jar.maven.plugin.version>6.1.2.Final-redhat-

¢. & 00001 </bootable.jar.maven.plugin.version>

b ' <jboss.xp.galleon.feature.pack.version>4.0.0.GA-redhat-
& 00002</jboss.xp.galleon.feature.pack.version>

¢v © <keycloak.feature.pack.version>15.0.4.redhat-

% ' 00001 </keycloak.feature.pack.version>

xﬁ </properties>

Procedure

1. Add the following content to the <build> element of the pom.xml file. You must specify the
latest version of any Maven plug-in and the latest version of the org.jboss.eap:wildfly-
galleon-pack Galleon feature pack. For example:

<plugins>
<plugin>
<groupld>org.wildfly.plugins</groupld>
<artifactld>wildfly-jar-maven-plugin</artifactld>
<version>${bootable.jar.maven.plugin.version}</version>
<configuration>
<feature-packs>
<feature-pack>
<location>org.jboss.eap:wildfly-galleon-
pack:${jboss.xp.galleon.feature.pack.version}</location>
</feature-pack>
<feature-pack>

128

CHAPTER 8. THE BOOTABLE JAR

<location>org.keycloak:keycloak-adapter-galleon-
pack:${keycloak.feature.pack.version}</location>
</feature-pack>
</feature-packs>
<layers>
<layer>datasources-web-server</layer>
<layer>keycloak-client-oidc</layer>
</layers>
</configuration>
<executions>
<execution>
<goals>
<goal>package</goal>
</goals>
</execution>
</executions>
</plugin>
</plugins>

The Maven plug-in provisions subsystems and modules that are required for deploying the web
application.

The keycloak-client-oidc layer provides Red Hat Single Sign-On OpenlD Connect client
adapters to your project by using the keycloak subsystem and its dependencies to activate
support for Red Hat Single Sign-On authentication. Red Hat Single Sign-On client adapters are
libraries that secure applications and services with Red Hat Single Sign-On.

. In the project pom.xml file, set the <context-root> to false in your plug-in configuration. This
registers the application in the simple-webapp resource path. By default, the WAR file is
registered under the root-context path.

<configuration>
<context-root>false</context-root>

</configuration>

. Create a CLI script, such as configure-oidc.cli and save it in an accessible directory in the
bootable JAR, such as the APPLICATION_ROOT]scripts directory, where
APPLICATION_ROOT is the root directory of your Maven project. The script must contain
commands similar to the following example:

/subsystem=keycloak/secure-deployment=simple-webapp.war:add(\
realm=demo, \
resource=simple-webapp, \
public-client=true, \
auth-server-url=http://localhost:8090/auth/, \
ssl-required=EXTERNAL)

This script example defines the secure-deployment=simple-webapp.war resource in the
keycloak subsystem. The simple-webapp.war resource is the name of the WAR file that is
deployed in the bootable JAR.

. In the project pom.xml file, add the following configuration extract to the existing plug-in
<configuration> element:

129

Red Hat JBoss Enterprise Application Platform 7.4 Using JBoss EAP XP 4.0.0

<cli-sessions>
<cli-session>
<script-files>
<script>scripts/configure-oidc.cli</script>
</script-files>
</cli-session>
</cli-sessions>

5. Update the web.xml file in the src/main/webapp/WEB-INF directory. For example:

<?xml version="1.0" encoding="UTF-8"7>

<web-app version="4.0" xmIns="http://java.sun.com/xml/ns/javaee"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/javaee

http://java.sun.com/xml/ns/javaee/web-app_4_0.xsd"
metadata-complete="false">

<login-config>
<auth-method>BASIC</auth-method>
<realm-name>Simple Realm</realm-name>
</login-config>

</web-app>

6. Optional: Alternatively to steps 7 through 9, you can embed the server configuration in the web
application by adding the keycloak.json descriptor to the WEB-INF directory of the web
application. For example:

{

"realm" : "demo",

"resource" : "simple-webapp",

"public-client" : "true",

"auth-server-url" : "http://localhost:8090/auth/",
"ssl-required" : "EXTERNAL"

}

You must then set the <auth-method> of the web application to KEYCLOAK. The following
example code illustrates how to set the <auth-method>:

<login-config>
<auth-method>KEYCLOAK</auth-method>
<realm-name>Simple Realm</realm-name>
</login-config>

7. Create a Java file named SecuredServlet.java with the following content and save the file in
the APPLICATION_ROOT/src/main/java/com/example/securedserviet/ directory.

package com.example.securedservlet;
import java.io.lOException;

import java.io.PrintWriter;
import java.security.Principal;

130

1.

12.

CHAPTER 8. THE BOOTABLE JAR

import javax.servlet.ServletException;

import javax.servlet.annotation.HttpMethodConstraint;
import javax.servlet.annotation.ServletSecurity;
import javax.servlet.annotation.WebServlet;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

@WebServlet("/secured")

@ServletSecurity(httpMethodConstraints = { @HttpMethodConstraint(value = "GET",
rolesAllowed = { "Users"}) })

public class SecuredServlet extends HttpServlet {

@Override
protected void doGet(HttpServietRequest req, HitpServletResponse resp) throws
ServletException, IOException {
try (PrintWriter writer = resp.getWriter()) {
writer.printin("<html>");
writer.printin("<head><title>Secured Servlet</title></head>");
writer.printin("<body>");
writer.printin("<h1>Secured Servlet</h1>");
writer.printin("<p>");
writer.print(" Current Principal ™);
Principal user = req.getUserPrincipal();
writer.print(user != null ? user.getName() : "NO AUTHENTICATED USER");
writer.print("");
writer.printin(" </p>");
writer.println(" </body>");
writer.printin("</html>");

Package the application as a bootable JAR.
I $ mvn package

Start the application. The following example starts the simple-webapp web application from its
specified bootable JAR path:

I $ java -jar target/simple-webapp-bootable.jar

. Specify the following URL in your web browser to access the webpage secured with Red Hat

Single Sign-On. The following example shows the URL for the secured simple-webapp web
application:

I http://localhost:8080/simple-webapp/secured

Login as a user from your Red Hat Single Sign-On realm.

Verification: Check that the webpage displays the following output:

I Current Principal '<principal id>'

131

Red Hat JBoss Enterprise Application Platform 7.4 Using JBoss EAP XP 4.0.0

Additional resources

For information about configuring the Red Hat Single Sign-On adapter subsystem, see JBoss
EAP Adapter in the Securing Applications and Services Guide.

For information about specifying the JBoss EAP JAR Maven for your project, see Specifying
Galleon layers for your bootable JAR server.

8.17. PACKAGING A BOOTABLE JAR INbEv MODE

The JBoss EAP JAR Maven plug-in dev goal provides dev mode, Development Mode, which you can
use to enhance your application development process.

In dev mode, you do not need to rebuild the bootable JAR after you make changes to your application.

The workflow in this procedure demonstrates using dev mode to configure a bootable JAR.

Prerequisites

Maven is installed.

You have created a Maven project, set up a parent dependency, and added dependencies for
creating an MicroProfile application. See MicroProfile Config development.

You have specified the JBoss EAP JAR Maven plug-in in your Maven project pom.xml file.

Procedure

1. Build and start the bootable JAR in Development Mode:

132

I $ mvn wildfly-jar:dev

In dev mode, the server deployment scanner is configured to monitor the target/deployments
directory.

Prompt the JBoss EAP Maven Plug-in to build and copy your application to the
target/deployments directory with the following command:

I $ mvn package -Ddev

The server packaged inside the bootable JAR deploys the application stored in the
target/deployments directory.

Modify the code in your application code.

Use the mvn package -Ddev to prompt the JBoss EAP Maven Plug-in to re-build your
application and re-deploy it.

Stop the server. For example:
I $ mvn wildfly-jar:shutdown
After you complete your application changes, package your application as a bootable JAR:

I $ mvn package

https://access.redhat.com/documentation/en-us/red-hat-single-sign-on/7.5/html/securing_applications_and_services_guide/openid_connect_3#jboss_adapter
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/#specifying-galleon-layers-bootable-jar-server_default
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/#microprofile_config_development
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/#using-bootable-jar-jboss-eap-bare-metal-platform_default

CHAPTER 8. THE BOOTABLE JAR

8.18. UPGRADING SERVER ARTIFACTS

A server artifact is jar file located inside the JBoss Modules module, you can reference it using the
Maven coordinate in your project pom.xml file.

NOTE

Be aware that upgrading a server artifact can lead to an unsupported configuration.

Prerequisites

® Ensure that the Maven artifact is accessible from either your local Maven repository or remote
Maven repository.

Procedure

1. Use the version of the artifact present in your dependencies during the build to successfully
upgrade your server artifact. For example:

<dependencies>

<dependency>
<groupld>io.undertow</groupld>
<artifactld>undertow-core</groupld>
<version>2.2.5.Final-redhat-00001</version>
<scope>provided</scope>
<!-- In order to avoid bringing transitive dependencies to the project, exclude all
dependencies -->
<exclusions>
<exclusion>
<groupld>*</groupld>
<artifactld>*</artifactld>
</exclusion>
</exclusions>
</dependency>

</dependencies>

2. Open the plugin <configuration> section and update the artifact groupld and artifactld inside
the <overridden-server-artifacts> list, for example:

<configuration>

<overridden-server-artifacts>
<artifact>
<groupld>io.undertow</groupld>
<artifactld>undertow-core</groupld>
</artifact>
</overridden-server-artifacts>
</configuration>

133

Red Hat JBoss Enterprise Application Platform 7.4 Using JBoss EAP XP 4.0.0

NOTE

e |f the artifact added to <overridden-server-artifacts> is not found in the project
dependencies, a failure will occur.

e |f the artifact added to <overridden-server-artifacts>" is not among the
provisioned server artifacts, a failure will occur since the target artifact for
upgrade cannot be located.

8.19. UPDATING EAP 7.4.GA DEPENDENCY

When building a bootable JAR for JBoss EAP XP 4.0.0, you can update the dependency JBoss EAP XP
4.0.0 has on JBoss EAP 7.4. The JBoss EAP XP 4.0.0 galleon feature-pack org.jboss.eap:wildfly-
galleon-pack:4.0.0.GA-redhat-00001 has a dependency on the org.jboss.eap:wildfly-ee-galleon-
pack:7.4.0.GA-redhat-00001 that you can upgrade when building a Bootable JAR.

—

NOTE

Upgrade to the latest JBoss EAP XP version. This ensures that you get the latest updates
in your JBoss EAP XP 4.0.0 bootable JAR.

Prerequisites

® You have the latest version of JBoss EAP XP.

Procedure

1. Ensure that the JBoss EAP Galleon feature-pack Maven artifact is accessible from either your
local or remote Maven repositories.

2. Add the Galleon feature-pack artifact in the project dependencies:

a. Set the scope to provided.
b. Set the type to zip.

c. Set the artifact version. For example:

<dependencies>

<dependency>
<groupld>org.jboss.eap</groupld>
<artifactld>wildfly-ee-galleon-pack</groupld>

<version>7.4.1.GA-redhat-00001</version>
<scope>provided</scope>
<type>zip</type>

</dependency>

</dependencies>

3. Open the plugin <configuration> section and update the artifact groupld and artifactld inside
the <overridden-server-artifacts> list, for example:

I <configuration>

134

CHAPTER 8. THE BOOTABLE JAR

<overridden-server-artifacts>
<artifact>
<groupld>org.jboss.eap</groupld>
<artifactld>wildfly-ee-galleon-pack</groupld>
</artifact>

</overridden-server-artifacts>

</configuration>

4. Use the latest version of JBoss EAP XP Galleon feature-pack during the build to successfully
the dependency.

8.20. APPLYING THE JBOSS EAP PATCH TO YOUR BOOTABLE JAR

NOTE

In JBoss EAP XP 4.0.0, the legacy patching feature for bootable jar is deprecated.

On a JBoss EAP bare-metal platform, you can install the patch to your bootable JAR by using a CLI
script.

The CLI script issues the patch apply command to apply the patch during the bootable JAR build.

IMPORTANT

After you apply a patch to your bootable JAR, you cannot roll back from the applied
patch. You must rebuild a bootable JAR without the patch.

Additionally, you can apply a legacy patch to your bootable JAR with the JBoss EAP JAR Maven plug-in.
This plug-in provides a <legacy-patch-cli-script> configuration option to reference the CLI script that
is used to patch the server.

NOTE

The prefix legacy-* in <legacy-patch-cli-scripts> is related to applying archive patches to
a bootable JAR. This method is similar to applying patches to regular JBoss EAP
distributions.

You can use the legacy-patch-cleanup option in the JBoss EAP JAR Maven plug-in configuration to
reduce the memory footprint of the bootable JAR by removing unused patch content. The option
removes unused module dependencies. This option is set as false by default in the patch configuration
file.
The legacy-patch-cleanup option removes the following patch content:

® The <JBOSS_HOMESs>/.installation/patches directory.

® Original locations of patch modules in the base layer.

e Unused modules that were added by the patch and are not referenced in the that existing
module graph or patched modules graph.

® Overlays directories that are not listed in the .overlays file.

135

Red Hat JBoss Enterprise Application Platform 7.4 Using JBoss EAP XP 4.0.0

IMPORTANT

The legacy-patch-clean-up option variable is provided as a Technology Preview.
Technology Preview features are not supported with Red Hat production service level
agreements (SLAs), might not be functionally complete, and Red Hat does not
recommend to use them for production. These features provide early access to
upcoming product features, enabling customers to test functionality and provide
feedback during the development process.

NOTE

The information outlined in this procedure also pertains to the hollow bootable JAR.

-

Prerequisites

® You have set up an account on the Red Hat Customer Portal.

® You have downloaded the following files from the Product Downloads page:

o The JBoss EAP JBoss EAP 7.4.4 GA patch

o The JBoss EAP XP 4.0.0 patch

Procedure

1. Create a CLI script that defines the legacy patches you want to apply to your bootable JAR. The
script must contain one or more patch apply commands. The --override-all command is
required when patching a server that was trimmed with Galleon layers, for example:

patch apply patch-oneoff1.zip --override-all
patch apply patch-oneoff2.zip --override-all

patch info --json-output

2. Reference your CLI script in the <legacy-patch-cli-script> element of your pom.xml file.

3. Rebuild the bootable JAR.

Additional resources

e Forinformation about downloading the JBoss EAP MicroProfile Maven repository, see
Downloading the JBoss EAP MicroProfile Maven repository patch as an archive file .

e Forinformation about creating CLI scripts, see CLI Scripts.

e Forinformation about Technology Preview features, see Technology Preview Features Support
Scope on the Red Hat Customer Portal.

136

https://access.redhat.com/
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/#downloading-the-jboss-eap-maven-repository-patch-as-archive_default
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/#cli-scripts_default
https://access.redhat.com/support/offerings/techpreview

CHAPTER 9. OPENID CONNECT IN JBOSS EAF

CHAPTER 9. OPENID CONNECT IN JBOSS EAP

Use the JBoss EAP native OpenlD Connect (OIDC) client to secure your applications through an
external OpenlD provider. OIDC is an identity layer that enables clients, such as JBoss EAP, to verify a
user’s identity based on OpenlD provider authentication. For example, you can secure your JBoss EAP
applications using Red Hat Single Sign-On as the OpenlD provider.

9.1. OPENID CONNECT CONFIGURATION IN JBOSS EAP

When you secure your applications using an OpenlD provider, you do not need to configure any security
domain resources locally. The elytron-oidc-client subsystem provides a native OpenlD Connect (OIDC)
client in JBoss EAP to connect with OpenlD providers. JBoss EAP automatically creates a virtual
security domain for your application, based on your OpenlD provider configurations.

IMPORTANT

It is recommended to use the OIDC client with Red Hat Single Sign-On. You can use
other OpenlD providers if they can be configured to use access tokens that are JSON
Web Tokens (JWTs) and can be configured to use the RS256, RS384, RS512, ES256,
ES384, or ES512 signature algorithm.

To enable the use of OIDC, you can configure either the elytron-oidc-client subsystem or an
application itself. JBoss EAP activates the OIDC authentication as follows:

® When you deploy an application to JBoss EAP, the elytron-oidc-client subsystem scans the
deployment to detect if the OIDC authentication mechanism is required.

® |f the subsystem detects OIDC configuration for the deployment in either the elytron-oidc-
client subsystem or the application deployment descriptor, JBoss EAP enables the OIDC
authentication mechanism for the application.

e |f the subsystem detects OIDC configuration in both places, the configuration in the elytron-
oidc-client subsystem secure-deployment attribute takes precedence over the configuration
in the application deployment descriptor.

NOTE

The keycloak-client-oidc layer to secure your applications with Red Hat Single Sign-On
is deprecated in JBoss EAP XP 4.0.0. Use the native OIDC client provided by the elytron-
oidc-client subsystem instead.

Deployment configuration
To secure an application with OIDC by using a deployment descriptor, update the application’s
deployment configuration as follows:

® Create a file called oide.json in the WEB-INF directory with the OIDC configuration
information.

Example oidc.json contents

{

"client-id" : "customer-portal”, 0
"provider-url" : "http://localhost:8180/auth/realms/demo”, 9

137

Red Hat JBoss Enterprise Application Platform 7.4 Using JBoss EAP XP 4.0.0

"ssl-required" : "external”, 6
"credentials” : {
"secret" : "234234-234234-234234" @)

}
}

The name to identify the OIDC client with the OpenlID provider.
The OpenlID provider URL.

Require HTTPS for external requests.

0009

The client secret that was registered with the OpenlID provider.

e Set the auth-method property to OIDC in the application deployment descriptor web.xml file.

Example deployment descriptor update

<login-config>
<auth-method>0OIDC</auth-method>
</login-config>

Subsystem configuration
You can secure applications with OIDC by configuring the elytron-oidc-client subsystem in the
following ways:

® Create asingle configuration for multiple deployments if you use the same OpenlD provider for
each application.

e Create a different configuration for each deployment if you use different OpenlD providers for
different applications.

Example XML configuration for a single deployment:

<subsystem xmlns="urn:wildfly:elytron-oidc-client:1.0">
<secure-deployment name="DEPLOYMENT_RUNTIME_NAME.war"> ﬂ
<client-id>customer-portal</client-id> 9
<provider-url>http://localhost:8180/auth/realms/demo</provider-url> 6
<ssl-required>external</ssl-required> ﬂ
<credential name="secret" secret="0aa31d98-e0aa-404c-b6e0-e771dbale798" /> 6

</secure-deployment
</subsystem>

The deployment runtime name.
The name to identify the OIDC client with the OpenlID provider.
The OpenlID provider URL.

Require HTTPS for external requests.

0009

The client secret that was registered with the OpenlD provider.

138

CHAPTER 9. OPENID CONNECT IN JBOSS EAF

To secure multiple applications using the same OpenlD provider, configure the provider separately, as
shown in the example:

<subsystem xmIns="urn:wildfly:elytron-oidc-client:1.0">
<provider name="${OpenlD_provider_name}">
<provider-url>http://localhost:8080/auth/realms/demo</provider-url>
<ssl-required>external</ssl-required>
</provider>
<secure-deployment name="customer-portal.war"> ﬂ
<provider>${OpenlD_provider_namej</provider>
<client-id>customer-portal</client-id>
<credential name="secret" secret="0aa31d98-e0aa-404c-b6e0-e771dbale798" />
</secure-deployment>
<secure-deployment name="product-portal.war"> 9
<provider>${OpenlD_provider_namej</provider>
<client-id>product-portal</client-id>
<credential name="secret" secret="0aa31d98-e0aa-404c-b6e0-e771dbale798" />
</secure-deployment>
</subsystem>

Q A deployment: customer-portal.war

Q Another deployment: product-portal.war

Additional resources

® OpenlD Connect specification

e elytron-oidc-client subsystem attributes

® OpenlD Connect Libraries

® Securing applications using OpenlD Connect with Red Hat Single Sign-On

® MicroProfile JWT

9.2. ENABLING THE ELYTRON-0OIDC-CLIENT SUBSYSTEM
The elytron-oidc-client subsystem is provided in the standalone-microprofile.xml configuration file.
To use it, you must start your server with the bin/standalone.sh -c standalone-microprofile.xml

command. You can include the elytron-oidc-client subsystem in the standalone.xml configuration by
enabling it using the management CLI.

Prerequisites

® You have installed JBoss EAP XP.

Procedure

1. Add the elytron-oidc-client extension using the management CLI.

I /extension=org.wildfly.extension.elytron-oidc-client:add

139

https://openid.net/connect/
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/#ref-elytron-oidc-client-subsystem-attributes_default
https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.5/html-single/securing_applications_and_services_guide/#other_openid_connect_libraries
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/#assembly-securing-applications-using-openid-connect-with-red-hat-single-sign-on_openid-connect-in-jboss-eap
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/#microprofile_jwt

Red Hat JBoss Enterprise Application Platform 7.4 Using JBoss EAP XP 4.0.0

2. Enable the elytron-oidc-client subsystem using the management CLI.

I /subsystem=elytron-oidc-client:add

3. Reload JBoss EAP.

I reload

You can now use the elytron-oidc-client subsystem by starting the server normally, with the command
bin/standalone.sh

Additional resources

e elytron-oidc-client subsystem attributes

9.3. SECURING APPLICATIONS USING OPENID CONNECT WITH RED
HAT SINGLE SIGN-ON

You can use OpenlD Connect (OIDC) to delegate authentication to an external OpenlD provider. The
elytron-oidc-client subsystem provides a native OIDC client in JBoss EAP to connect with external

OpenlD providers.

To create an application secured with OpenID Connect using Red Hat Single Sign-On, follow these
procedures:

® Configure Red Hat Single Sign-On as the OpenlD provider
® Create a Maven project for your application

® Create an application that uses OpenlID Connect

® Restrict access to your application based on user roles

® Create and assign user roles in Red Hat Single Sign-On

9.3.1. Configuring Red Hat Single Sign-On as an OpenlD provider

Red Hat Single Sign-On is an identity and access management provider for securing web applications
with single sign-on (SSO). It supports OpenlID Connect (an extension to OAuth 2.0).

Prerequisites

® You have installed the Red Hat Single Sign-On server. For more information, see Installing the
Red Hat Single Sign-On server in the Red Hat Single Sign-On Getting Started Guide.

® You have created a user in your Red Hat Single Sign-On server instance. For more information,
see Creating a user in the Red Hat Single Sign-On Getting Started Guide.

Procedure

1. Start the Red Hat Single Sign-On server at a port other than 8080 because JBoss EAP default
portis 8080.

Syntax

140

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0#ref-elytron-oidc-client-subsystem-attributes_default
https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.5/html-single/getting_started_guide/#installing-server-product_
https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.5/html-single/getting_started_guide/#create-user_

1.

12.

13.

CHAPTER 9. OPENID CONNECT IN JBOSS EAF

I $ RH_SSO_HOME/bin/standalone.sh -Djboss.socket.binding.port-offset=<offset-number>
Example
I $ /home/servers/rh-sso-7.4/bin/standalone.sh -Djboss.socket.binding.port-offset=100

Login to the Admin Console at http:/localhost:<port>/auth/. For example,
http://localhost:8180/auth/.

To create a realm, in the Admin Console, hover over Master, and click Add realm.

Enter a name for the realm. For example, example_realm. Ensure that Enabled is ON and click
Create.

Click Users, then click Add user to add a user to the realm.
Enter a user name. For example, jane_doe. Ensure that User Enabled is ON and click Save.
Click Credentials to add a password to the user.

Set a password for the user. For example, janedoep@$$. Toggle Temporary to OFF and click
Set Password. In the confirmation prompt, click Set password.

Click Clients, then click Create to configure a client connection.

. Enter aclientID. For example, my_jbeap. Ensure that Client Protocol is set to openid-

connect, and click Save.

Click Installation, then select Keycloak OIDC JSON as the Format Option to see the
connection parameters.

"realm": "example_realm",

"auth-server-url": "http://localhost:8180/auth/",
"ssl-required": "external”,

"resource": "my_jbeap",

"public-client": true,

"confidential-port": 0

}

When configuring your JBoss EAP application to use Red Hat Single Sign-On as the identity
provider, you use the parameters as follows:

"provider-url" : "http://localhost:8180/auth/realms/example_realm",
"ssl-required": "external”,

"client-id": "my_jbeap",

"public-client": true,

"confidential-port": 0

Click Clients, click Edit next to my_jbeap to edit the client settings.

In Valid Redirect URIs, enter the URL where the page should redirect after authentication is
successful.
For this example, set this value to http://localhost:8080/simple-oidc-example/secured/*

141

Red Hat JBoss Enterprise Application Platform 7.4 Using JBoss EAP XP 4.0.0

Additional resources
® Configuring a Maven project for creating a secure application

® Creating arealm and a user

9.3.2. Configuring a Maven project for creating a secure application

Create a Maven project with the required dependencies and the directory structure for creating a
secure application.

Prerequisites

® You have installed Maven. For more information, see Downloading Apache Maven.

® You have configured your Maven repository for the latest release. For more information, see
Maven and the JBoss EAP microprofile maven repository .

Procedure

1. Set up a Maven project using the mvn command. The command creates the directory structure
for the project and the pom.xml configuration file.

Syntax

$ mvn archetype:generate \
-Dgroupld=${group-to-which-your-application-belongs} \
-Dartifactld=${name-of-your-application} \
-DarchetypeGroupld=org.apache.maven.archetypes \
-DarchetypeArtifactld=maven-archetype-webapp \
-DinteractiveMode=false

Example

$ mvn archetype:generate \
-Dgroupld=com.example.oidc \
-Dartifactld=simple-oidc-example \
-DarchetypeGroupld=org.apache.maven.archetypes \
-DarchetypeArtifactld=maven-archetype-webapp \
-DinteractiveMode=false

2. Navigate to the application root directory:

Syntax

I $ cd <name-of-your-application>
Example

I $ cd simple-oidc-example

3. Update the generated pom.xml file as follows:

142

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0#proc-configuring-maven-project-for-creating-a-secure-application_securing-applications-using-openid-connect-with-red-hat-single-sign-on
https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.5/html-single/getting_started_guide/#creating-first-realm_
https://maven.apache.org/download.cgi
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0#maven_and_the_jboss_eap_microprofile_maven_repository

CHAPTER 9. OPENID CONNECT IN JBOSS EAF

a. Set the following properties:

<properties>
<maven.compiler.source>1.8</maven.compiler.source>
<maven.compiler.target>1.8</maven.compiler.target>
<failOnMissingWebXmi>false</failOnMissingWebXml>
<version.server.oom>4.0.0.GA</version.server.oom>
<version.server.bootable-jar>4.0.0.GA</version.server.bootable-jar>
<version.wildfly-jar.maven.plugin>4.0.0.GA</version.wildfly-jar.maven.plugin>

</properties>

b. Set the following dependencies:

<dependencies>
<dependency>
<groupld>javax.servlet</groupld>
<artifactld>javax.servlet-api</artifactld>
<version>3.1.0.redhat-1</version>
<scope>provided</scope>
</dependency>
</dependencies>

c. Set the following build configuration to use mvn widlfy:deploy to deploy the application:

<build>
<finalName>${project.artifactld}</finalName>
<plugins>
<plugin>
<groupld>org.wildfly.plugins</groupld>
<artifactld>wildfly-maven-plugin</artifactld>
<version>2.1.0.Final</version>
</plugin>
</plugins>
</build>

Verification

® |n the application root directory, enter the following command:
I $ mvn install

You get an output similar to the following:

[INFO] --
[INFO] BUILD SUCCESS

[INFO] --
[INFO] Total time: 1.440 s

[INFO] Finished at: 2021-12-27T14:45:12+05:30

[INFO] --

You can now create your secure application.

Additional resources

143

Red Hat JBoss Enterprise Application Platform 7.4 Using JBoss EAP XP 4.0.0
® Creating a secure application that uses OpenlD Connect

9.3.3. Creating a secure application that uses OpenlID Connect

You can secure an application by either updating its deployment configuration or by configuring the
elytron-oidc-client subsystem. The following example demonstrates creating a servlet that prints a
logged-in user’s Principal. For an existing application, only those steps that are related to updating the
deployment configuration or the elytron-oidc-client subsystem are required.
In this example, the value of the Principal comes from the ID token from the OpenlD provider. By
default, the Principal is the value of the "sub™ claim from the token. You can specify which claim value
from the ID token to use as the Principal in one of the following:

® The elytron-oidc-client subsystem attribute principal-attribute.

® The oidc.json file.

<application_root>in the procedure denotes the pom.xml file directory. The pom.xml file contains your
application’s Maven configuration.

Prerequisites

® You have created a Maven project. For more information, see Configuring Maven project for
creating a secure application.

® You have configured Red Hat Single Sign-On as the OpenlD provider. For more information,
see Configuring Red Hat Single Sign-On as an OpenlD provider .

® You have enabled the elytron-oidc-client subsystem. For more information, see Enabling the
elytron-oidc-client subsystem

Procedure

1. Create a directory to store the Java files.

Syntax

I $ mkdir -p <application_root>/src/main/java/com/example/oidc
Example

I $ mkdir -p simple-oidc-example/src/main/java/com/example/oidc

2. Navigate to the new directory.

Syntax

I $ cd <application _root>/src/main/java/com/example/oidc

Example

I $ cd simple-oidc-example/src/main/java/com/example/oidc

144

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0#proc-creating-a-secure-application-that-uses-openid-connect_securing-applications-using-openid-connect-with-red-hat-single-sign-on
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0#proc-configuring-maven-project-for-creating-a-secure-application_securing-applications-using-openid-connect-with-red-hat-single-sign-on
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0#proc-configuring-red-hat-single-sign-on-as-an-openid-provider_securing-applications-using-openid-connect-with-red-hat-single-sign-on
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0#proc-enabling-the-elytron-oidc-client-subsystem_openid-connect-in-jboss-eap

CHAPTER 9. OPENID CONNECT IN JBOSS EAF

3. Create a servlet "SecuredServlet.java" with the following content:

package com.example.oidc;

import java.io.lOException;
import java.io.PrintWriter;
import java.security.Principal;

import javax.servlet.ServletException;

import javax.servlet.annotation.WebServlet;
import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

/**
* A simple secured HTTP servlet.

Y/
@WebServlet("/secured")
public class SecuredServlet extends HttpServlet {

@Override

protected void doGet(HttpServietRequest req, HitpServletResponse resp) throws

ServletException, IOException {
try (PrintWriter writer = resp.getWriter()) {
writer.printin("<html>");

writer.printin(" <head><title>Secured Servlet</title></head>");

writer.printin(" <body>");

writer.printin(" <h1>Secured Servlet</h1>");
writer.printin(" <p>");

writer.print(" Current Principal ™);

Principal user = req.getUserPrincipal();

writer.print(user != null ? user.getName() : "NO AUTHENTICATED USER");

writer.print("");
writer.printin(" </p>");
writer.println(" </body>");
writer.printin("</html>");

4. Add security rules for access to your application in the deployment descriptor web.xml file

located in the WEB-INF directory of the application.

<?xml version="1.0" encoding="UTF-8"?>

<web-app version="2.5" xmlns="http://java.sun.com/xml/ns/javaee"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/javaee

http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"
metadata-complete="false">

<security-constraint>
<web-resource-collection>
<web-resource-name>secured</web-resource-name>

Red Hat JBoss Enterprise Application Platform 7.4 Using JBoss EAP XP 4.0.0

<url-pattern>/secured</url-pattern>
</web-resource-collection>
<auth-constraint>
<role-name>*</role-name>
</auth-constraint>
</security-constraint>

<security-role>
<role-name>*</role-name>
</security-role>
</web-app>

5. To secure the application with OpenID Connect, either update the deployment configuration or
configure the elytron-oidc-client subsystem.

NOTE

If you configure OpenlD Connect in both the deployment configuration and the
elytron-oidc-client subsystem, the configuration in the elytron-oidc-client
subsystem secure-deployment attribute takes precedence over the
configuration in the application deployment descriptor.

e Updating the deployment configuration:

i. Create a file oidc.json in the WEB-INF directory, like this:

"provider-url" : "http://localhost:8180/auth/realms/example_realm",
"ssl-required": "external”,

"client-id": "my_jbeap",

"public-client": true,

"confidential-port": 0

ii. Update the deployment descriptor web.xml file with the following text to declare that
this application uses OIDC:
<login-config>
<auth-method>0IDC</auth-method>
</login-config>
e Configuring the elytron-oidc-client subsystem:

o To secure your application, use the following management CLI command:
/subsystem=elytron-oidc-client/secure-deployment=simple-oidc-
example.war/:add(client-id=my_jbeap,provider-

url=http://localhost:8180/auth/realms/example_realm,public-client=true,ssl-
required=external)

6. In the application root directory, compile your application with the following command:

I $ mvn package

146

CHAPTER 9. OPENID CONNECT IN JBOSS EAF

7. Deploy the application.

I $ mvn wildfly:deploy

Verification
1. In a browser, navigate to http://localhost:8080/simple-oidc-example/secured.

2. Login with your credentials. For example:

username: jane_doe
password: janedoep@$$

You get the following output:

Secured Servlet
Current Principal '5¢cb0c4ca-0477-44c3-bdef-04db04d7e39d'

You can now log in to the application using the credentials you configured in the Red Hat Single
Sign-On as the OpenlD provider.

Additional resources

® OpenlD Connect configuration in JBoss EAP

® Restricting access to applications based on user roles

9.3.4. Restricting access to applications based on user roles

You can restrict access to all, or parts, of your application based on user roles. For example, you can let
users with the "public” role have access to the parts of your application that aren't sensitive, and give
users with the "admin” role access to those parts that are.

Prerequisites

® You have secured your application using OpenlD Connect. For more information, see Creating a
secure application that uses OpenlID Connect.

Procedure

1. Update the deployment descriptor web.xml file with the following text:

Syntax

<security-constraint>
<auth-constraint>
<role-name><allowed role></role-name>

</auth-constraint>
</security-constraint>

Example

147

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0#con-openid-connect-configuration-in-jboss-eap_openid-connect-in-jboss-eap
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0#proc-restricting-access-to-applications-based-on-user-roles_securing-applications-using-openid-connect-with-red-hat-single-sign-on
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0#proc-creating-a-secure-application-that-uses-openid-connect_securing-applications-using-openid-connect-with-red-hat-single-sign-on

Red Hat JBoss Enterprise Application Platform 7.4 Using JBoss EAP XP 4.0.0

<security-constraint>

<auth-constraint>
<role-name>example_role</role-name> 0
</auth-constraint>
</security-constraint>

ﬂ Allow only those users with the role example_role to access your application.

2. In the application root directory, recompile your application with the following command:
I $ mvn package
3. Deploy the application.

I $ mvn wildfly:deploy

Verification

1. In a browser, navigate to http://localhost:8080/simple-oidc-example/secured.

2. Login with your credentials. For example:

username: jane_doe
password: janedoep@$$
You get the following output:

I Forbidden

Because you have not assigned the required role to the user "jane_doe," jane_doe can't login to
your application. Only the users with the required role can log in.

To assign users the required roles, see Creating and assigning roles to users in Red Hat Single Sign-On .

9.3.5. Creating and assigning user roles in Red Hat Single Sign-On

Red Hat Single Sign-On is an identity and access management provider for securing your web
applications with single sign-on (SSO). You can define users and assign roles in Red Hat Single Sign-On.

Prerequisites

® You have configured Red Hat Single Sign-On. For more information, see Configuring Red Hat

Single Sign-On as an OpenlD provider.

Procedure

148

1. Login to the admin console at http:/localhost:<port>/auth/. For example,
http://localhost:8180/auth/.

2. Click the realm you use to connect with JBoss EAP. For example, example_realm.

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0#proc-creating-and-assigning-roles-to-users-in-red-hat-single-sign-on_securing-applications-using-openid-connect-with-red-hat-single-sign-on
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0#proc-configuring-red-hat-single-sign-on-as-an-openid-provider_securing-applications-using-openid-connect-with-red-hat-single-sign-on
http://localhost:8180/auth/

CHAPTER 9. OPENID CONNECT IN JBOSS EAF

Click Clients, then click the client-name you configured for JBoss EAP. For example, my_jbeap.
Click Roles, then Add Role.

Enter a role name, such as example_role, then click Save. This is the role name you configure in
JBoss EAP for authorization.

Click Users, then View all users.
Click an ID to assign the role you created. For example, click the ID for jane_doe.

Click Role Mappings. In the Client Roles field, select the client-name you configured for JBoss
EAP. For example, my_jbeap.

In Available Roles, select a role to assign. For example, example_role. Click Add selected.

Verification

1. In a browser, navigate to the application URL.

2. Login with your credentials. For example:

username: jane_doe
password: janedoep@$$
You get the following output:

Secured Servlet
Current Principal '5¢cb0c4ca-0477-44c3-bdef-04db04d7e39d'

Users with the required role can log in to your application.

Additional resources

Assigning permissions and access using roles and groups in Red Hat Single Sign-On

9.4. DEVELOPING JBOSS EAP BOOTABLE JAR APPLICATION WITH
OPENID CONNECT

You can use OpenlD Connect (OIDC) to delegate authentication to an external OpenlD provider. The
elytron-oidc-client galleon layer provides a native OIDC client in JBoss EAP bootable jar applications to
connect with external OpenlD providers.

To create an application secured with OpenID Connect using Red Hat Single Sign-On, follow these
procedures:

Configure Red Hat Single Sign-On as the OpenlD provider
Create a Maven project for your application

Create a bootable jar application that uses OpenID Connect
Restrict access to your application based on user roles

Create and assign user roles in Red Hat Single Sign-On

149

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.5/html-single/server_administration_guide/#assigning_permissions_and_access_using_roles_and_groups

Red Hat JBoss Enterprise Application Platform 7.4 Using JBoss EAP XP 4.0.0

9.4.1. Configuring Red Hat Single Sign-On as an OpenlID provider

Red Hat Single Sign-On is an identity and access management provider for securing web applications
with single sign-on (SSO). It supports OpenlID Connect (an extension to OAuth 2.0).

Prerequisites

You have installed the Red Hat Single Sign-On server. For more information, see Installing the
Red Hat Single Sign-On server in the Red Hat Single Sign-On Getting Started Guide.

You have created a user in your Red Hat Single Sign-On server instance. For more information,
see Creating a user in the Red Hat Single Sign-On Getting Started Guide.

Procedure

150

1.

1.

Start the Red Hat Single Sign-On server at a port other than 8080 because JBoss EAP default
port is 8080.

Syntax

I $ RH_SSO_HOME/bin/standalone.sh -Djboss.socket.binding.port-offset=<offset-number>
Example

I $ /home/servers/rh-sso-7.4/bin/standalone.sh -Djboss.socket.binding.port-offset=100

Login to the Admin Console at http://localhost:<port>/auth/. For example,
http://localhost:8180/auth/.

To create a realm, in the Admin Console, hover over Master, and click Add realm.

Enter a name for the realm. For example, example_realm. Ensure that Enabled is ON and click
Create.

Click Users, then click Add user to add a user to the realm.
Enter a user name. For example, jane_doe. Ensure that User Enabled is ON and click Save.
Click Credentials to add a password to the user.

Set a password for the user. For example, janedoep@$$. Toggle Temporary to OFF and click
Set Password. In the confirmation prompt, click Set password.

Click Clients, then click Create to configure a client connection.

. Enter aclientID. For example, my_jbeap. Ensure that Client Protocol is set to openid-

connect, and click Save.

Click Installation, then select Keycloak OIDC JSON as the Format Option to see the
connection parameters.

{

"realm": "example_realm",
"auth-server-url": "http://localhost:8180/auth/",
"ssl-required": "external”,

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.5/html-single/getting_started_guide/#installing-server-product_
https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.5/html-single/getting_started_guide/#create-user_

CHAPTER 9. OPENID CONNECT IN JBOSS EAF

"resource": "my_jbeap",
"public-client": true,
"confidential-port": 0

}

When configuring your JBoss EAP application to use Red Hat Single Sign-On as the identity
provider, you use the parameters as follows:

"provider-url" : "http://localhost:8180/auth/realms/example_realm",
"ssl-required": "external”,

"client-id": "my_jbeap",

"public-client": true,

"confidential-port": 0

12. Click Clients, click Edit next to my_jbeap to edit the client settings.

13. InValid Redirect URIs, enter the URL where the page should redirect after authentication is
successful.

For this example, set this value to http://localhost:8080/simple-oidc-layer-example/secured/*

Additional resources

® Configuring a Maven project for creating a secure application

® Creating arealm and a user

9.4.2. Configuring a Maven project for a bootable jar OIDC application

Create a Maven project with the required dependencies and the directory structure for creating a
bootable jar application that uses OpenID Connect. The elytron-oidc-client galleon layer provides a
native OpenlD Connect (OIDC) client to connect with OpenlD providers.

Prerequisites

® You have installed Maven. For more information, see Downloading Apache Maven.

® You have configured your Maven repository for the latest release. For more information, see
Maven and the JBoss EAP microprofile Maven repository.

Procedure

1. Set up a Maven project using the mvn command. The command creates the directory structure
for the project and the pom.xml configuration file.

Syntax

$ mvn archetype:generate \
-Dgroupld=${group-to-which-your-application-belongs} \
-Dartifactld=${name-of-your-application} \
-DarchetypeGroupld=org.apache.maven.archetypes \
-DarchetypeArtifactld=maven-archetype-webapp \
-DinteractiveMode=false

Example

151

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0#proc-configuring-maven-project-for-creating-a-secure-application_securing-applications-using-openid-connect-with-red-hat-single-sign-on
https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.5/html-single/getting_started_guide/#creating-first-realm_
https://maven.apache.org/download.cgi
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0#maven_and_the_jboss_eap_microprofile_maven_repository

Red Hat JBoss Enterprise Application Platform 7.4 Using JBoss EAP XP 4.0.0

$ mvn archetype:generate \
-Dgroupld=com.example.oidc \
-Dartifactld=simple-oidc-layer-example \
-DarchetypeGroupld=org.apache.maven.archetypes \
-DarchetypeArtifactld=maven-archetype-webapp \
-DinteractiveMode=false

2. Navigate to the application root directory.

Syntax

I $ cd <name-of-your-application>
Example

I $ cd simple-oidc-layer-example

3. Update the generated pom.xml file as follows:

a. Set the following repositories:

<repositories>
<repository>
<id>jboss</id>
<url>https://maven.repository.redhat.com/ga</url>
<snapshots>
<enabled>false</enabled>
</snapshots>
</repository>
</repositories>

b. Set the following plugin repositories:

<pluginRepositories>
<pluginRepository>
<id>jboss</id>
<url>https://maven.repository.redhat.com/ga</url>
<snapshots>
<enabled>false</enabled>
</snapshots>
</pluginRepository>
</pluginRepositories>

c. Set the following properties:

<properties>
<maven.compiler.source>1.8</maven.compiler.source>
<maven.compiler.target>1.8</maven.compiler.target>
<bootable.jar.maven.plugin.version>6.1.2.Final-redhat-
00001 </bootable.jar.maven.plugin.version>
<jboss.xp.galleon.feature.pack.version>4.0.0.GA-redhat-
00002</jboss.xp.galleon.feature.pack.version>
</properties>

152

CHAPTER 9. OPENID CONNECT IN JBOSS EAF

d. Set the following dependencies:

<dependencies>
<dependency>
<groupld>javax.servlet</groupld>
<artifactld>javax.servlet-api</artifactld>
<version>3.1.0.redhat-1</version>
<scope>provided</scope>
</dependency>
</dependencies>

<dependencyManagement>
<dependencies>
<dependency>
<groupld>org.jboss.bom</groupld>
<artifactld>jboss-eap-jakartaee8</artifactld>
<version>7.3.4.GA</version>
<type>pom</type>
<scope>import</scope>
</dependency>
<dependency>
<groupld>org.jboss.spec.javax.servlet</groupld>
<artifactld>jboss-servlet-api_4.0_spec</artifactld>
<scope>provided</scope>
</dependency>
</dependencies>
</dependencyManagement>

e. Set the following build configuration in the <build> element of the pom.xml file:

<finalName>${project.artifactld}</finalName>
<plugins>
<plugin>
<groupld>org.wildfly.plugins</groupld>
<artifactld>wildfly-jar-maven-plugin</artifactld> 0
<version>${bootable.jar.maven.plugin.version}</version>
<configuration>
<feature-pack-location>org.jboss.eap:wildfly-galleon-
pack:${jboss.xp.galleon.feature.pack.version}</feature-pack-location>
<layers>
<layer>jaxrs-server</layer>
<layer>elytron-oidc-client</layer> 9
</layers>
<context-root>false</context-root> G
</configuration>
<executions>
<execution>
<goals>
<goal>package</goal>
</goals>
</execution>
</executions>
</plugin>
</plugins>

153

Red Hat JBoss Enterprise Application Platform 7.4 Using JBoss EAP XP 4.0.0

ﬂ JBoss EAP Maven plug-in to build the application as a bootable JAR

9 The elytron-oidc-client layer provides a native OpenID Connect (OIDC) client to
connect with external OpenlD providers.

9 Register the application in the simple-oidc-layer-example resource path. The servlet
is then available at the URL http:// server-url/application_name/servlet_path, for
example: http://localhost:8080/simple-oidc-layer-example/secured. By default, the

application WAR file is registered under the root-context path, like http://server-
urlservlet_path, for example: http://localhost:8080/secured.

f. Set the application name, for example "simple-oidc-layer-example” in the <build> element
of the pom.xml file.

I <finaIName>simple-oidc-layer-example</finalName>

Verification

® |n the application root directory, enter the following command:
I $ mvn install

You get an output similar to the following:

[INFO] -
[INFO] BUILD SUCCESS

[INFO] -
[INFO] Total time: 19.157 s

[INFO] Finished at: 2022-03-10T09:38:21+05:30

[INFO] -

You can now create a bootable jar application that uses OpenlID Connect

9.4.3. Creating a bootable jar application that uses OpenID Connect

The following example demonstrates creating a servlet that prints a logged-in user’s Principal. For an
existing application, only those steps that are related to updating the deployment configuration are
required.
In this example, the value of the Principal comes from the ID token from the OpenlD provider. By
default, the Principal is the value of the "sub™ claim from the token. You can specify which claim value
from the ID token to use as the Principal in one of the following:

® The elytron-oidc-client subsystem attribute principal-attribute.

® The oidc.json file.

<application_root>in the procedure denotes the pom.xml file directory. The pom.xml file contains your
application’s Maven configuration.

Prerequisites

154

CHAPTER 9. OPENID CONNECT IN JBOSS EAF

® You have created a Maven project. For more information, see Configuring Maven project for
creating a secure application.

® You have configured Red Hat Single Sign-On as the OpenlD provider. For more information,
see Configuring Red Hat Single Sign-On as an OpenlD provider .

Procedure

1. Create a directory to store the Java files.

Syntax

I $ mkdir -p <application_root>/src/main/java/com/example/oidc
Example

I $ mkdir -p simple-oidc-layer-example/src/main/java/com/example/oidc

2. Navigate to the new directory.

Syntax

I $ cd <application _root>/src/main/java/com/example/oidc
Example

I $ cd simple-oidc-layer-example/src/main/java/com/example/oidc

3. Create a servlet "SecuredServlet.java" with the following content:

package com.example.oidc;

import java.io.lOException;
import java.io.PrintWriter;
import java.security.Principal;

import javax.servlet.ServletException;

import javax.servlet.annotation.WebServlet;
import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

/**
* A simple secured HTTP servlet.
Y/
@WebServlet("/secured")
public class SecuredServlet extends HttpServlet {

@Override
protected void doGet(HttpServietRequest req, HitpServletResponse resp) throws
ServletException, IOException {
try (PrintWriter writer = resp.getWriter()) {
writer.printin("<html>");

155

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0#proc-configuring-maven-project-for-creating-a-secure-application_developing-jboss-eap-bootable-jar-application-with-openid-connect
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0#proc-configuring-red-hat-single-sign-on-as-an-openid-provider_developing-jboss-eap-bootable-jar-application-with-openid-connect

Red Hat JBoss Enterprise Application Platform 7.4 Using JBoss EAP XP 4.0.0

writer.printin(

writer.printin(" <body>");

writer.printin(" <h1>Secured Servlet</h1>");
writer.printin(" <p>");

writer.print(" Current Principal ™);

Principal user = req.getUserPrincipal();
writer.print(user != null ? user.getName() : "NO AUTHENTICATED USER");
writer.print("");

writer.printin(" </p>");

writer.printin(" </body>");
writer.printin("</html>");

<head><title>Secured Servlet</title></head>");

4. Add security rules for access to your application in the deployment descriptor web.xml file
located in the WEB-INF directory of the application.

<?xml version="1.0" encoding="UTF-8"7>

<web-app version="2.5" xmlns="http://java.sun.com/xml/ns/javaee"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/javaee

http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"
metadata-complete="false">

<security-constraint>
<web-resource-collection>
<web-resource-name>secured</web-resource-name>
<url-pattern>/secured</url-pattern>
</web-resource-collection>
<auth-constraint>
<role-name>*</role-name>
</auth-constraint>
</security-constraint>

<security-role>
<role-name>*</role-name>
</security-role>
</web-app>

5. To secure the application with OpenID Connect, either update the deployment configuration or
configure the elytron-oidc-client subsystem.

NOTE

If you configure OpenlD Connect in both the deployment configuration and the
elytron-oidc-client subsystem, the configuration in the elytron-oidc-client
subsystem secure-deployment attribute takes precedence over the
configuration in the application deployment descriptor.

e Updating the deployment configuration:

i. Create a file oidc.json in the WEB-INF directory, like this:

156

CHAPTER 9. OPENID CONNECT IN JBOSS EAF

"provider-url" : "http://localhost:8180/auth/realms/example_realm",
"ssl-required": "external”,

"client-id": "my_jbeap",

"public-client": true,

"confidential-port": 0

ii. Update the deployment descriptor web.xml file with the following text to declare that
this application uses OIDC:

<login-config>
<auth-method>0OIDC</auth-method>
</login-config>

e Configuring the elytron-oidc-client subsystem:
i. Create adirectory to store a CLI script in the application root directory:

Syntax

I $ mkdir <application _root>/<cli_script_directory>
Example

I $ mkdir simple-oidc-layer-example/scripts/

You can create the directory at any place that Maven can access, inside the application
root directory.

ii. Create a CLlscript, such as configure-oidc.cli, with the following content:

/subsystem=elytron-oidc-client/secure-deployment=simple-oidc-layer-
example.war:add(client-id=my_jbeap,provider-
url=http://localhost:8180/auth/realms/example_realm,public-client=true,ssl-
required=external)

The subsystem command defines the simple-oidc-layer-example.war resource as the
deployment to secure in elytron-oidc-client subsystem.

iii. Inthe project pom.xml file, add the following configuration extract to the existing plug-
in <configuration> element:

<cli-sessions>
<cli-session>
<script-files>
<script>scripts/configure-oidc.cli</script>
</script-files>
</cli-session>
</cli-sessions>

6. In the application root directory, compile your application with the following command:

157

Red Hat JBoss Enterprise Application Platform 7.4 Using JBoss EAP XP 4.0.0

I $ mvn package

7. Deploy the bootable jar application using the following command:
Syntax
I $ java -jar <application _root>/target/simple-oidc-layer-example-bootable.jar
Example
I $ java -jar simple-oidc-layer-example/target/simple-oidc-layer-example-bootable.jar
This starts JBoss EAP and deploys the application.

Verification

1. In a browser, navigate to http://localhost:8080/simple-oidc-layer-example/secured.

2. Login with your credentials. For example:

username: jane_doe
password: janedoep@$$

You get the following output:

Secured Servlet
Current Principal '5¢cb0c4ca-0477-44c3-bdef-04db04d7e39d'

You can now log in to the application using the credentials you configured in the Red Hat Single
Sign-On as the OpenlD provider.

Additional resources

® OpenlD Connect configuration in JBoss EAP

® Restricting access to applications based on user roles

9.4.4. Restricting access based on user roles in bootable jar OIDC applications

You can restrict access to all, or parts, of your application based on user roles. For example, you can let
users with the "public” role have access to the parts of your application that aren't sensitive, and give
users with the "admin” role access to those parts that are.

Prerequisites

® You have secured your application using OpenlD Connect. For more information, see Creating a
bootable jar application that uses OpenlID Connect.

Procedure

1. Update the deployment descriptor web.xml file with the following text:

Syntax

158

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0#con-openid-connect-configuration-in-jboss-eap_openid-connect-in-jboss-eap
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0#proc-restricting-access-to-applications-based-on-user-roles_securing-applications-using-openid-connect-with-red-hat-single-sign-on
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0#proc-creating-a-bootable-jar-application-that-uses-openid-connect_developing-jboss-eap-bootable-jar-application-with-openid-connect

CHAPTER 9. OPENID CONNECT IN JBOSS EAF

<security-constraint>
<auth-constraint>
<role-name><allowed role></role-name>

</auth-constraint>
</security-constraint>

Example

<security-constraint>

<auth-constraint>
<role-name>example_role</role-name> 0
</auth-constraint>
</security-constraint>

ﬂ Allow only those users with the role example_role to access your application.

2. Inthe application root directory, recompile your application with the following command:
I $ mvn package

3. Deploy the application.
I $ java -jar simple-oidc-layer-example/target/simple-oidc-layer-example-bootable.jar
This starts JBoss EAP and deploys the application.

Verification
1. In a browser, navigate to \localhost:8080/simple-oidc-layer-example/secured.

2. Login with your credentials. For example:

username: jane_doe
password: janedoep@$$

You get the following output:
I Forbidden

Because you have not assigned the required role to the user "jane_doe," jane_doe can't login to
your application. Only the users with the required role can log in.

To assign users the required roles, see Creating and assigning roles to users in Red Hat Single Sign-On .

9.4.5. Creating and assigning user roles in Red Hat Single Sign-On

Red Hat Single Sign-On is an identity and access management provider for securing your web
applications with single sign-on (SSO). You can define users and assign roles in Red Hat Single Sign-On.

Prerequisites

159

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0#proc-creating-and-assigning-roles-to-users-in-red-hat-single-sign-on_securing-applications-using-openid-connect-with-red-hat-single-sign-on

Red Hat JBoss Enterprise Application Platform 7.4 Using JBoss EAP XP 4.0.0

You have configured Red Hat Single Sign-On. For more information, see Configuring Red Hat
Single Sign-On as an OpenlD provider.

Procedure

1.

Log in to the admin console at http:/localhost:<port>/auth/. For example,
http://localhost:8180/auth/.

Click the realm you use to connect with JBoss EAP. For example, example_realm.
Click Clients, then click the client-name you configured for JBoss EAP. For example, my_jbeap.
Click Roles, then Add Role.

Enter a role name, such as example_role, then click Save. This is the role name you configure in
JBoss EAP for authorization.

Click Users, then View all users.
Click an ID to assign the role you created. For example, click the ID for jane_doe.

Click Role Mappings. In the Client Roles field, select the client-name you configured for JBoss
EAP. For example, my_jbeap.

In Available Roles, select a role to assign. For example, example_role. Click Add selected.

Verification

1.

2.

In a browser, navigate to the application URL.

Log in with your credentials. For example:

username: jane_doe
password: janedoep@$$

You get the following output:

Secured Servlet
Current Principal '5¢cb0c4ca-0477-44c3-bdef-04db04d7e39d'

Users with the required role can log in to your application.

Additional resources

160

Assigning permissions and access using roles and groups in Red Hat Single Sign-On

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0#proc-configuring-red-hat-single-sign-on-as-an-openid-provider_securing-applications-using-openid-connect-with-red-hat-single-sign-on
http://localhost:8180/auth/
https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.5/html-single/server_administration_guide/#assigning_permissions_and_access_using_roles_and_groups

CHAPTER 10. OBSERVABILITY IN JBOSS EAF

CHAPTER 10. OBSERVABILITY IN JBOSS EAP

If you're a developer or system administrator, observability is a set of practices and technologies you can
use to determine, based on certain signals from your application, the location and source of a problem in
your application. The most common signals are metrics, events, and tracing. JBoss EAP uses
OpenTelemetry for observability.

10.1. OPENTELEMETRY IN JBOSS EAP

OpenTelemetry is a set of tools, application programming interfaces (APIs), and software development
kits (SDKs) you can use to instrument, generate, collect, and export telemetry data for your
applications. Telemetry data includes metrics, logs, and traces. Analyzing an application’s telemetry data
helps you to improve your application’s performance. JBoss EAP provides OpenTelemetry capability
through the opentelemetry subsystem.

NOTE

Red Hat JBoss Enterprise Application Platform 7.4 provides only OpenTelemetry tracing
capabilities.

IMPORTANT

OpenTelemetry is a Technology Preview feature only. Technology Preview features are
not supported with Red Hat production service level agreements (SLAs) and might not
be functionally complete. Red Hat does not recommend using them in production. These
features provide early access to upcoming product features, enabling customers to test
functionality and provide feedback during the development process. For more
information about the support scope of Red Hat Technology Preview features, see
https://access.redhat.com/support/offerings/techpreview .

Additional resources

® OpenTelemetry Documentation

10.2. OPENTELEMETRY CONFIGURATION IN JBOSS EAP

You configure a number of aspects of OpenTelemetry in JBoss EAP using the opentelemetry
subsystem. These include exporter, span processor, and sampler.

exporter

To analyze and visualize traces and metrics, you export them to a collector such as Jaeger. You can
configure JBoss EAP to use either Jaeger or any collector that supports the OpenTelemetry
protocol (OTLP).

Span processor

You can configure the span processor to export spans either as they are produced or in batches. You
can also configure the number of traces to export.

sampler

You can configure the number of traces to record by configuring the sampler.

Example configuration

161

https://access.redhat.com/support/offerings/techpreview
https://opentelemetry.io/docs/

Red Hat JBoss Enterprise Application Platform 7.4 Using JBoss EAP XP 4.0.0

The following XML is an example of the full OpenTelemetry configuration, including default values.
JBoss EAP does not persist the default values when you make changes, so your configuration might look
different.

<subsystem xmIns="urn:wildfly:opentelemetry:1.0"
service-name="example">
<exporter
type="jaeger"
endpoint="http://localhost:14250"/>
<span-processor
type="batch"
batch-delay="4500"
max-queue-size="128"
max-export-batch-size="512"
export-timeout="45"/>
<sampler
type="on"/>
</subsystem>

NOTE

You cannot use an OpenShift route object to connect with a Jaeger endpoint. Instead,
use http://<ip_address>:<ports> or hitp://<service_names:<port>.

Additional resources

® OpenTelemetry subsystem attributes

10.3. OPENTELEMETRY TRACING IN JBOSS EAP

JBoss EAP provides OpenTelemetry tracing to help you track the progress of user requests as they pass
through different parts of your application. By analyzing traces, you can improve your application’s
performance and debug availability issues.

OpenTelemetry tracing consists of the following components:

Trace
A collection of operations that a request goes through in an application.
Span

A single operation within a trace. It provides request, error, and duration (RED) metrics and contains a
span context.

Span context

A set of unique identifiers that represents a request that the containing span is a part of.
JBoss EAP automatically traces REST calls to your Jakarta RESTful Web Services applications and
container-managed Jakarta RESTful Web Services client invocations. JBoss EAP traces REST calls

implicitly as follows:

® Foreachincoming request:

o JBoss EAP extracts the span context from the request.

o JBoss EAP starts a new span, then closes it when the request is completed.

162

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0#ref-opentelemetry-subsystem-attributes_default

CHAPTER 10. OBSERVABILITY IN JBOSS EAF

® For each outgoing request:
o JBoss EAP injects span context into the request.
o JBoss EAP starts a new span, then closes it when the request is completed.

In addition to implicit tracing, you can create custom spans by injecting a Tracer instance into your
application for granular tracing.

IMPORTANT

If you see duplicate traces exported for REST calls, disable the microprofile-
opentracing-smallrye subsystem. For information about disabling the microprofile-
opentracing-smallrye, see Removing the microprofile-opentracing-smallrye subsystem.

Additional resources

® Using Jaeger to observe the OpenTelemetry traces for an application

® OpenTelemetry application development in JBoss EAP

10.4. ENABLING OPENTELEMETRY TRACING IN JBOSS EAP

To use OpenTelemetry tracing in JBoss EAP you must first enable the opentelemetry subsystem.

Prerequisites

® You have installed JBoss EAP XP.

Procedure

1. Add the OpenTelemetry extension using the management CLI.
I /extension=org.wildfly.extension.opentelemetry:add

2. Enable the opentelemetry subsystem using the management CLI.
I /subsystem=opentelemetry:add

3. Reload JBoss EAP.

I reload

Additional resources

® Configuring the opentelemetry subsystem

10.5. CONFIGURING THE oPENTELEMETRY SUBSYSTEM

You can configure the opentelemetry subsystem to set different aspects of tracing. Configure these
based on the collector you use for observing the traces.

163

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0#removing-microprofile-opentracing-smallrye-subsystem_default
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0#proc-using-jaeger-to-observe-the-opentelemetry-traces-for-an-application_observability-in-jboss-eap
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0#assembly-opentelemetry-tracing-application-development_observability-in-jboss-eap
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0#proc-configuring-the-opentelemetry-subsystem_observability-in-jboss-eap

Red Hat JBoss Enterprise Application Platform 7.4 Using JBoss EAP XP 4.0.0

Prerequisites

® You have enabled the opentelemetry subsystem. For more information, see Enabling
OpenTelemetry tracing in JBoss EAP.

Procedure

1. Set the exporter type for the traces.

Syntax

I /subsystem=opentelemetry:write-attribute(name=exporter-type, value=<exporter_type>)
Example

I /subsystem=opentelemetry:write-attribute(name=exporter-type, value=jaeger)

2. Set the endpoint at which to export the traces.

Syntax

I /subsystem=opentelemetry:write-attribute(name=endpoint, value=<URL:port>)
Example

I /subsystem=opentelemetry:write-attribute(name=endpoint, value=http:localhost:14250)

3. Set the service name under which the traces are exported.

Syntax
I /subsystem=opentelemetry:write-attribute(name=service-name, value=<service_namex)
Example

/subsystem=opentelemetry:write-attribute(name=service-name,
value=exampleOpenTelemetryService)

Additional resources

® Using Jaeger to observe the OpenTelemetry traces for an application

10.6. USING JAEGER TO OBSERVE THE OPENTELEMETRY TRACES
FOR AN APPLICATION

JBoss EAP automatically and implicitly traces REST calls to Jakarta RESTful Web Services applications.
You do not need to add any configuration to your Jakarta RESTful Web Services application or
configure the opentelemetry subsystem. The following procedure demonstrates how to observe traces
for the helloworld-rs quickstart in the Jaeger console.

Prerequisites

164

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/#proc-enabling-opentelemetry-tracing-in-jboss-eap_observability-in-jboss-eap
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/#proc-using-jaegar-to-observe-the-opentelemetry-traces-for-an-application_observability-in-jboss-eap

CHAPTER 10. OBSERVABILITY IN JBOSS EAF

® You have installed Docker. For more information, see Get Docker.
® You have downloaded the helloworld-rs quickstart. The quickstart is available at helloworld-rs.

® You have configured the the opentelemetry subsystem. For more information, see Configuring
the opentelemetry subsystem.

Procedure

1. Start the Jaeger console using its Docker image.

$ docker run -d --name jaeger \
-e COLLECTOR_ZIPKIN_HOST_PORT=:9411\
-p 5775:5775/udp \
-p 6831:6831/udp \
-p 6832:6832/udp \
-p 5778:5778 \
-p 16686:16686 \
-p 14268:14268 \
-p 14250:14250 \
-p 9411:9411\
jaegertracing/all-in-one:1.29

2. Use Maven to deploy the helloworld-rs quickstart from its root directory.

I $ mvn clean install wildfly:deploy

3. Inaweb browser, access the quickstart at http:/localhost:8080/helloworld-rs/, then click any
link.

4. In a web browser, open the Jaeger console at http://localhost:16686/search. hello-world.rs is
listed under Service.

5. Select hello-world.rs and click Find Traces. The details of the trace for hello-world.rs are
listed.

Additional resources

® OpenTelemetry application development in JBoss EAP

10.7. OPENTELEMETRY TRACING APPLICATION DEVELOPMENT

Although JBoss EAP automatically and implicitly traces REST calls to Jakarta RESTful Web Services
applications, you can create custom spans from your application for granular tracing. A span is a single
operation within a trace. You can create a span when, for example, a resource is defined, a method is
called, and so on, in your application. You create custom traces in your application by injecting a Tracer
instance.

10.7.1. Configuring a Maven project for OpenTelemetry tracing

For creating an OpenTelemetry tracing application, create a Maven project with the required
dependencies and directory structure.

Prerequisites

165

https://docs.docker.com/get-docker/
https://github.com/jboss-developer/jboss-eap-quickstarts/tree/7.4.x/helloworld-rs
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0#proc-configuring-the-opentelemetry-subsystem_observability-in-jboss-eap
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0#assembly-opentelemetry-tracing-application-development_observability-in-jboss-eap

Red Hat JBoss Enterprise Application Platform 7.4 Using JBoss EAP XP 4.0.0

® You have installed Maven. For more information, see Downloading Apache Maven.

® You have configured your Maven repository for the latest release. For information about
installing the latest Maven repository patch, see Maven and the JBoss EAP microprofile maven
repository.

Procedure

1. In the CLI, use the mvn command to set up a Maven project. This command creates the
directory structure for the project and the pom.xml configuration file.

Syntax

$ mvn archetype:generate \
-Dgroupld=<group-to-which-your-application-belongs> \
-Dartifactld=<name-of-your-application>\
-DarchetypeGroupld=org.apache.maven.archetypes \
-DarchetypeArtifactld=maven-archetype-webapp \
-DinteractiveMode=false

Example

$ mvn archetype:generate \
-Dgroupld=com.example.opentelemetry \
-Dartifactld=simple-tracing-example \
-DarchetypeGroupld=org.apache.maven.archetypes \
-DarchetypeArtifactld=maven-archetype-webapp \
-DinteractiveMode=false

2. Navigate to the application root directory.

Syntax

I $ cd <name-of-your-application>

Example

I $ cd simple-tracing-example

3. Update the generated pom.xml file.
a. Set the following properties:
<properties>

<maven.compiler.source>1.8</maven.compiler.source>
<maven.compiler.target>1.8</maven.compiler.target>
<failOnMissingWebXmi>false</failOnMissingWebXml>
<version.server.oom>4.0.0.GA</version.server.oom>

<version.wildfly-jar.maven.plugin>6.1.1.Final</version.wildfly-jar.maven.plugin>
</properties>

b. Set the following dependencies:

166

https://maven.apache.org/download.cgi
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0#maven_and_the_jboss_eap_microprofile_maven_repository

CHAPTER 10. OBSERVABILITY IN JBOSS EAF

<dependencies>
<dependency>
<groupld>jakarta.enterprise</groupld>
<artifactld>jakarta.enterprise.cdi-api</artifactld>
<version>2.0.2</version>
<scope>provided</scope>
</dependency>

<dependency>
<groupld>org.jboss.spec.javax.ws.rs</groupld>
<artifactld>jboss-jaxrs-api_2.1_spec</artifactld>
<version>2.0.2.Final</version>
<scope>provided</scope>

</dependency>

<dependency>
<groupld>io.opentelemetry</groupld>
<artifactld>opentelemetry-api</artifactid>
<version>1.5.0</version>
<scope>provided</scope>
</dependency>
</dependencies>

c. Set the following build configuration to use mvn widlfy:deploy to deploy the application:

<build>
<!I-- Set the name of the archive -->
<finalName>${project.artifactld}</finalName>
<plugins>
<!I-- Allows to use mvn wildfly:deploy -->
<plugin>
<groupld>org.wildfly.plugins</groupld>
<artifactld>wildfly-maven-plugin</artifactld>
</plugin>
</plugins>
</build>

Verification

® |n the application root directory, enter the following command:
I $ mvn install

You get an output similar to the following:

[INFQO] -
[INFO] BUILD SUCCESS

[INFQO] -
[INFO] Total time: 1.440 s

[INFQO] Finished at: 2021-12-27T14:45:12+05:30

[INFQO] -

You can now create an OpenTelemetry tracing application.

167

Red Hat JBoss Enterprise Application Platform 7.4 Using JBoss EAP XP 4.0.0

Additional resources

® Creating applications that create custom spans

10.7.2. Creating applications that create custom spans

The following procedure demonstrates how to create an application that can create two custom spans
like these:

e prepare-hello - When the method getHello() in the application is called.
® process-hello - When the value hello is assigned to a new String object hello.
This procedure also demonstrates how to view these spans in a Jaeger console. <application_root> in

the procedure denotes the directory that contains the pom.xml file, which contains the Maven
configuration for your application.

Prerequisites

® You have installed Docker. For more information, see Get Docker.

® You have created a Maven project. For more information, see Configuring Maven project for
OpenTelemetry tracing.

® You have configured the the opentelemetry subsystem. For more information, see Configuring
the opentelemetry subsystem.

Procedure

1. In the <application_root>, create a directory to store the Java files.

Syntax

I $ mkdir -p src/main/java/com/example/opentelemetry
Example

I $ mkdir -p src/main/java/com/example/opentelemetry

2. Navigate to the new directory.

Syntax

I $ cd src/main/java/com/example/opentelemetry
Example

I $ cd src/main/java/com/example/opentelemetry

3. Create a JakartaRestApplication.java file with the following content. This
JakartaRestApplication class declares the application as a Jakarta RESTful Web Services
application.

168

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0#proc-creating-applications-that-create-custom-spans_opentelemetry-tracing-application-development
https://docs.docker.com/get-docker/
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0#proc-configuring-maven-project-for-opentelemetry-tracing_opentelemetry-tracing-application-development
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0#proc-configuring-the-opentelemetry-subsystem_observability-in-jboss-eap

CHAPTER 10. OBSERVABILITY IN JBOSS EAF

package com.example.opentelemetry;

import javax.ws.rs.ApplicationPath;
import javax.ws.rs.core.Application;

@ApplicationPath("/")
public class JakartaRestApplication extends Application {

}

4. Create an ExplicitlyTracedBean.java file with the following content for the class
ExplicitlyTracedBean. This class creates custom spans by injecting a Tracer class.

package com.example.opentelemetry;

import javax.enterprise.context.RequestScoped;
import javax.inject.Inject;

import io.opentelemetry.api.trace.Span;

import io.opentelemetry.api.trace.Tracer;

@RequestScoped
public class ExplicitlyTracedBean {

@Inject
private Tracer tracer; ﬂ

public String getHello() {
Span prepareHelloSpan = tracer.spanBuilder("prepare-hello”).startSpan(); 9
prepareHelloSpan.makeCurrent();

String hello = "hello";

Span processHelloSpan = tracer.spanBuilder("process-hello").startSpan(); 6
processHelloSpan.makeCurrent();

hello = hello.toUpperCase();

processHelloSpan.end();
prepareHelloSpan.end();

return hello;

ﬂ Inject a Tracer class to create custom spans.
9 Create a span called prepare-hello to indicate that the method getHello() was called.

9 Create a span called process-hello to indicate that the value hello was assigned to a new
String object called hello.

5. Create a TracedResource.java file with the following content for TracedResource class. This
file injects the ExplicitlyTracedBean class and declares two endpoints: traced and cdi-trace.

I package com.example.opentelemetry;

169

Red Hat JBoss Enterprise Application Platform 7.4 Using JBoss EAP XP 4.0.0

import javax.enterprise.context.RequestScoped;
import javax.inject.Inject;

import javax.ws.rs.GET;

import javax.ws.rs.Path;

import javax.ws.rs.Produces;

import javax.ws.rs.core.MediaType;

@Path("/hello")
@RequestScoped
public class TracedResource {
@Inject
private ExplicitlyTracedBean tracedBean,;

@GET
@Path("/traced")
@Produces(MediaType. TEXT_PLAIN)
public String hello() {

return "hello";

}

@GET
@Path("/cdi-trace")
@Produces(MediaType. TEXT_PLAIN)
public String cdiHello() {
return tracedBean.getHello();
}
}

6. Navigate to the application root directory.

Syntax
I $ cd <path_to_application_root>/<application_root>
Example
I $ cd ~/applications/simple-tracing-example
7. Compile and deploy the application with the following command:

I $ mvn clean package wildfly:deploy

8. Start the Jaeger console.

$ docker run -d --name jaeger \
-e COLLECTOR_ZIPKIN_HOST_PORT=:9411\
-p 5775:5775/udp \
-p 6831:6831/udp \
-p 6832:6832/udp \
-p 5778:5778 \
-p 16686:16686 \
-p 14268:14268 \

170

1.

12.

13.

CHAPTER 10. OBSERVABILITY IN JBOSS EAF

-p 14250:14250 \
-p 9411:9411 \
jaegertracing/all-in-one:1.29

In a browser, navigate to \localhost:8080/simple-tracing-example/hello/cdi-trace.
In a browser, open the Jaeger console at http://localhost:16686/search.

In the Jaeger console, select JBoss EAP XP and click Find Traces.

Click 3 Spans.

The Jaeger console displays the following traces:

|GET /hello/cdi-trace ﬂ

| prepare-hello g

| process-hello 6

ﬂ This is the span for the automatic implicit trace.

9 The custom span prepare-hello indicates that the method getHello() was called. It is the

child of span for the automatic implicit trace.

9 The custom span process-hello indicates that the value hello was assigned to a new

String object hello. It is the child of the prepare-hello span.

Whenever you access the application endpoint at http:/localhost:16686/search, a new trace is created
with all the child spans.

Additional resources

® OpenTelemetry tracing in JBoss EAP

171

http://localhost:16686/search
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0#con-opentelemetry-tracing-in-jboss-eap_observability-in-jboss-eap

Red Hat JBoss Enterprise Application Platform 7.4 Using JBoss EAP XP 4.0.0

CHAPTER 1. REFERENCE

11.1. MICROPROFILE CONFIG REFERENCE

11.1.1. Default MicroProfile Config attributes

The MicroProfile Config specification defines three ConfigSources by default.

ConfigSources are sorted according to their ordinal number. If a configuration must be overwritten for a
later deployment, the lower ordinal ConfigSource is overwritten before a higher ordinal ConfigSource.

Table 11.1. Default MicroProfile Config attributes

ConfigSource Ordinal

System properties 400
Environment variables 300
Property files META-INF/microprofile-config.properties found on the 100
classpath

11.1.2. MicroProfile Config SmallRye ConfigSources

The microprofile-config-smallrye project defines more ConfigSources you can use in addition to the
default MicroProfile Config ConfigSources.

Table 11.2. Additional MicroProfile Config attributes

ConfigSource Ordinal

config-source in the Subsystem 100
ConfigSource from the Directory 100
ConfigSource from Class 100

An explicit ordinal is not specified for these ConfigSources. They inherit the default ordinal value found
in the MicroProfile Config specification.

11.2. MICROPROFILE FAULT TOLERANCE REFERENCE

11.2.1. MicroProfile Fault Tolerance configuration properties

SmallRye Fault Tolerance specification defines the following properties in addition to the properties
defined in the MicroProfile Fault Tolerance specification.

Table 11.3. MicroProfile Fault Tolerance configuration properties

172

CHAPTER 1. REFERENCE

Property Default Description

value

io.smallrye.faulttoleranc 100 Maximum number of threads in the thread pool.
e.mainThreadPoolSize

io.smallrye.faulttoleranc 1 Size of the queue that the thread pool should use.
e.mainThreadPoolQueue (unbound
Size ed)

11.3. MICROPROFILE JWT REFERENCE

11.3.1. MicroProfile Config JWT standard properties

The microprofile-jwt-smallrye subsystem supports the following MicroProfile Config standard
properties.

Table 11.4. MicroProfile Config JWT standard properties

Property Default Description

mp.jwt.verify.publickey NONE String representation of the public key encoded using one of the
supported formats. Do not set if you have set
mp.jwt.verify.publickey.location.

mp.jwt.verify.publickey.lo ~ NONE The location of the public key, may be a relative path or URL. Do

cation not be set if you have set mp.jwt.verify.publickey.

mp.jwt.verify.issuer NONE The expected value of any iss claim of any JWT token being
validated.

Example microprofile-config.properties configuration:

mp.jwt.verify.publickey.location=META-INF/public.pem
mp.jwt.verify.issuer=jwt-issuer

11.4. MICROPROFILE OPENAPI REFERENCE

11.4.1. MicroProfile OpenAPI configuration properties

In addition to the standard MicroProfile OpenAPI configuration properties, JBoss EAP supports the
following additional MicroProfile OpenAPI properties. These properties can be applied in both the global
and the application scope.

Table 11.5. MicroProfile OpenAPI properties in JBoss EAP

173

Red Hat JBoss Enterprise Application Platform 7.4 Using JBoss EAP XP 4.0.0

Property Default value Description
mp.openapi.extensions.enab true Enables or disables registration of
led an OpenAPI endpoint.

When set to false, disables
generation of OpenAPI
documentation. You can set the
value globally using the config
subsystem, or for each application
in a configuration file such as
/META-INF/microprofile-
config.properties.

You can parameterize this
property to selectively enable or
disable microprofile-openapi-
smallrye in different
environments, such as production
or development.

You can use this property to
control which application
associated with a given virtual
host should generate a
MicroProfile OpenAPI model.

mp.openapi.extensions.path /openapi You can use this property for
generating OpenAPI
documentation for multiple
applications associated with a
virtual host.

Set a distinct
mp.openapi.extensions.path
on each application associated
with the same virtual host.

174

CHAPTER 1. REFERENCE

Property Default value Description
mp.openapi.extensions.serv true Indicates whether auto-generated
ers.relative server records are absolute or

relative to the location of the
OpenAPI endpoint.

Server records are necessary to
ensure, in the presence of a non-
root context path, that
consumers of an OpenAPI|
document can construct valid
URLs to REST services relative to
the host of the OpenAPI
endpoint.

The value true indicates that the
server records are relative to the
location of the OpenAPI
endpoint. The generated record
contains the context path of the
deployment.

When set to false, JBoss EAP XP
generates server records
including all the protocols, hosts,
and ports at which the
deployment is accessible.

11.5. MICROPROFILE REACTIVE MESSAGING REFERENCE
11.5.1. MicroProfile reactive messaging connectors for integrating with external

messaging systems

The following is a list of reactive messaging property key prefixes required by the MicroProfile Config
specification:

® mp.messaging.incoming.[channel-name].[attribute]=[value]
® mp.messaging.outgoing.[channel-name].[attribute]=[value]
® mp.messaging.connector.[connector-name].[attribute]=[value]

Note that channel-name is either the @Incoming.value() or the @Outgoing.value(). For clarification,
look at this example of a pair of connector methods:

@Outgoing("to")

public int send() {
int i = // Randomly generated...
return i;

}

175

Red Hat JBoss Enterprise Application Platform 7.4 Using JBoss EAP XP 4.0.0

@Incoming("from")
public void receive(int i) {
/I Process payload

}

In this example, the required property prefixes are as follows:
® mp.messaging.incoming.from. This defines the receive() method.
® mp.messaging.outgoing.to. This defines the send() method.

Remember that this is an example. Because different connectors recognize different properties, the
prefixes you indicate depend on the connector you want to configure.

11.5.2. Example of the data exchange between reactive messaging streams and
user-initialized code

The following is an example of data exchange between reactive messaging streams and code that a user
triggered through the @Channel and Emitter constructs:

@Path("/")

@ApplicationScoped

class MyBean {
@Inject @Channel("my-stream")
Emitter<String> emitter;

Publisher<String> dest;

public MyBean() {9
}

@Inject
public MyBean(@Channel("my-stream") Publisher<String> dest) {
this.dest = subscribeAndAllowMultipleSubscriptions(dest);

}

private Publisher subscribeAndAllowMultipleSubscriptions(Publisher delegate) {

1000

@POST
public PublisherBuilder<String> publish(@FormParam("value") String value) {
return emitter.send(value);

}
@GET

public Publisher poll() {
return dest;

}

@PreDestroy
public void close() { ()

}

176

CHAPTER 1. REFERENCE

In-line details:

Wraps the constructor-injected publisher.

You need this empty constructor to satisfy the Contexts and Dependency Injection (CDI) for Java
specification.

Subscribe to the delegate.
Wrap the delegate in a publisher that can handle multiple subscriptions.
The wrapping publisher forwards data from the delegate.

Unsubscribe from the reactive messaging-provided publisher.

QD00 09O

In this example, MicroProfile Reactive Messaging is listening to the my-stream memory stream, so
messages sent through the Emitter are received on this injected publisher. Note, though, that the
following conditions must be true for this data exchange to succeed:

1. There must be an active subscription on the channel before you call Emitter.send(). In this
example, notice that the subscribe AndAllowMultipleSubscriptions() method called by the
constructor ensures that there’s an active subscription by the time the bean is available for user
code calls.

2. You can have only one Subscription on the injected Publisher. If you want to expose the
receiving publisher with a REST call, where each call to the poll() method results in a new

subscription to the dest publisher, you have to implement your own publisher to broadcast data
from the injected to each client.

11.5.3. The Apache Kafka user API

You can use the Apache Kafka user API to get more information about messages Kafka received, and to
influence how Kafka handles messages. This APl is stored in the
io/smallrye/reactive/messaging/kafka/api package, and it consists of the following classes:

¢ IncomingKafkaRecordMetadata. This metadata contains the following information:

o The Kafka record key, represented by a Message.
o The Kafka topic and partition used for the Message, and the offset within those.
o The Message timestamp and timestampType.

o The Message headers. These are pieces of information that the application can attach on
the producing side, and receive on the consuming side.

e OutgoingKafkaRecordMetadata. With this metadata, you can specify or override how Kafka
handles messages. It contains the following information:

o The key. which Kafka treats as the message key.
o The topic you want Kafka to use.
o The partition.

o The timestamp, if you don't want the one that Kafka generates.

177

https://github.com/smallrye/smallrye-reactive-messaging/tree/3.6.0/smallrye-reactive-messaging-kafka-api/src/main/java/io/smallrye/reactive/messaging/kafka/api
https://github.com/smallrye/smallrye-reactive-messaging/blob/3.6.0/smallrye-reactive-messaging-kafka-api/src/main/java/io/smallrye/reactive/messaging/kafka/api/IncomingKafkaRecordMetadata.java
https://github.com/smallrye/smallrye-reactive-messaging/blob/3.6.0/smallrye-reactive-messaging-kafka-api/src/main/java/io/smallrye/reactive/messaging/kafka/api/OutgoingKafkaRecordMetadata.java

Red Hat JBoss Enterprise Application Platform 7.4 Using JBoss EAP XP 4.0.0

o headers.

o KafkaMetadataUtil contains utility methods to write OutgoingKafkaRecordMetadata to a
Message, and to read IncomingKafkaRecordMetadata from a Message.

IMPORTANT

If you write OutgoingKafkaRecordMetadata to a Message sent to a channel that's not
mapped to Kafka, the reactive messaging framework ignores it. Conversely, if you read
IncomingKafkaRecordMetadata from a Message from a channel that's not mapped to
Kafka, that message returns as null.

Example of how to write and read a messagéey

@Inject
@Channel("from-user")
Emitter<Integer> emitter;

@Incoming("from-user")
@Outgoing("to-kafka")
public Message<Integer> send(Message<Integer> msg) {
/I Set the key in the metadata
OutgoingKafkaRecordMetadata<String> md =
OutgoingKafkaRecordMetadata.<String>builder()
WwithKey("KEY-" + i)
.build();
/I Note that Message is immutable so the copy returned by this method
// call is not the same as the parameter to the method
return KafkaMetadataUtil.writeOutgoingKafkaMetadata(msg, md);

}

@Incoming("from-kafka")
public CompletionStage<Void> receive(Message<Integer> msg) {
IncomingKafkaRecordMetadata<String, Integer> metadata =
KafkaMetadataUtil.readlncomingKafkaMetadata(msg).get();

// We can now read the Kafka record key
String key = metadata.getKey();

/' When using the Message wrapper around the payload we need to explicitly ack
// them
return msg.ack();

}

Example of Kafka mapping in amicroprofile-config.properties file
kafka.bootstrap.servers=kafka:9092

mp.messaging.outgoing.to-kafka.connector=smallrye-kafka
mp.messaging.outgoing.to-kafka.topic=some-topic

mp.messaging.outgoing.to-
kafka.value.serializer=org.apache.kafka.common.serialization.IntegerSerializer
mp.messaging.outgoing.to-
kafka.key.serializer=org.apache.kafka.common.serialization.StringSerializer

178

https://github.com/smallrye/smallrye-reactive-messaging/blob/3.6.0/smallrye-reactive-messaging-kafka-api/src/main/java/io/smallrye/reactive/messaging/kafka/api/KafkaMetadataUtil.java

CHAPTER 1. REFERENCE

mp.messaging.incoming.from-kafka.connector=smallrye-kafka
mp.messaging.incoming.from-kafka.topic=some-topic
mp.messaging.incoming.from-
kafka.value.deserializer=org.apache.kaftka.common.serialization.IntegerDeserializer
mp.messaging.incoming.from-
kafka.key.deserializer=org.apache.kafka.common.serialization.StringDeserializer

NOTE

You must specify the key.serializer for the outgoing channel and the key.deserializer
for the incoming channel.

11.5.4. Example MicroProfile Config properties file for the Kafka connector

This is an example of a simple microprofile-config.properties file for a Kafka connector. Its properties
correspond to the properties in the example in "MicroProfile reactive messaging connectors for
integrating with external messaging systems."

kafka.bootstrap.servers=kafka:9092

mp.messaging.outgoing.to.connector=smallrye-kafka
mp.messaging.outgoing.to.topic=my-topic
mp.messaging.outgoing.to.value.serializer=org.apache.kafka.common.serialization.IntegerSerializer

mp.messaging.incoming.from.connector=smallrye-kafka

mp.messaging.incoming.from.topic=my-topic
mp.messaging.incoming.from.value.deserializer=org.apache.kafka.common.serialization.IntegerDeseria
zer

Table 11.6. Discussion of entries

Entry Description

to, from These are "channels."

send, receive These are "methods."

Note that the to channel is on the send() method and the from
channel is on the receive() method.

kafka.bootstrap.servers=kafk This specifies the URL of the Kafka broker that the application must
a:9092 connect to. You can also specify a URL at the channel level, like this:
mp.messaging.outgoing.to.bootstrap.servers=kafka:9092

mp.messaging.outgoing.to.co This indicates that you want the to channel to receive messages from
nnector=smallrye-kafka Kafka.

SmallRye reactive messaging is a framework for building applications.
Note that the smallrye-kafka value is SmallRye reactive messaging-
specific. If you're provisioning your own server using Galleon, you can
enable the Kafka integration by including the microprofile-reactive-
messaging-kafka Galleon layer.

179

Red Hat JBoss Enterprise Application Platform 7.4 Using JBoss EAP XP 4.0.0

Entry Description

mp.messaging.outgoing.to.to This indicates that you want to send data to a Kafka topic called my-
pic=my-topic topic.

A Kafka "topic" is a category or feed name that messages are stored on
and published to. All Kafka messages are organized into topics.
Producer applications write data to topics and consumer applications
read data from topics.

mp.messaging.outgoing.to.va This tells the connector to use IntegerSerializer to serialize the values

lue.serializer=org.apache.kafk that the send() method outputs when it writes to a topic. Kafka

a.common.serialization.Integ provides serializers for standard Java types. You can implement your

erSerializer own serializer by writing a class that implements
org.apache.kafka.common.serialization.Serializer, and then
include that class in your deployment.

mp.messaging.incoming.from This indicates that you want to use the from channel to receive
.connector=smallirye-kafka messages from Kafka. Again, the smallrye-kafka value is SmallRye
reactive messaging-specific.

mp.messaging.incoming.from This indicates that your connector should read data from the Kafka
.topic=my-topic topic called my-topic.

mp.messaging.incoming.from This tells the connector to use IntegerDeserializer to deserialize the

.value.deserializer=org.apach values from the topic before calling the receive() method. You can

e.kafka.common.serialization. implement your own deserializer by writing a class that implements

IntegerDeserializer org.apache.kafka.common.serialization.Deserializer, and then
include that class in your deployment.

NOTE

This list of properties is not comprehensive. See the SmallRye Reactive Messaging
Apache Kafka documentation for more information.

Mandatory MicroProfile Reactive Messaging prefixes
The MicroProfile Reactive Messaging specification requires the following method property key prefixes
for Kafka:

e mp.messaging.incoming.[channel-name].[attribute]=[value]

¢ mp.messaging.outgoing.[channel-name].[attribute]=[value]

e mp.messaging.connector.[connector-name].[attribute]=[value]

Note that channel-name is either the @Incoming.value() or the @Outgoing.value().

Now consider the following method pair example:

@Outgoing("to")
public int send() {
int i = // Randomly generated...

180

https://smallrye.io/smallrye-reactive-messaging/smallrye-reactive-messaging/3.6/kafka/kafka.html

CHAPTER 1. REFERENCE

return i;

}

@Incoming("from")
public void receive(int i) {
/I Process payload

}

In this method pair example, note the following required property prefixes:

® mp.messaging.incoming.from. This prefix selects the property as your configuration of the
receive() method.

® mp.messaging.outgoing.to. This prefix selects the property as your configuration of the
send() method.

11.6. OPENID CONNECT REFERENCE

11.6.1. elytron-oidc-client subsystem attributes

The elytron-oidc-client subsystem provides attributes to configure its behavior.

Table 11.7. elytron-oidc-client subsystem attributes

Attribute Description

provider Configuration for an OpenlD Connect provider.

secure-deployment A deployment secured by an OpenID Connect
provider.

realm Configuration for a Red Hat Single Sign-On realm.

This is provided for convenience. You can copy the
configuration in the keycloak client adapter and use it
here. Using the provider is recommended instead.

IMPORTANT

Do not use the following provider, realm, and secure-deployment attributes in your
configuration as they are not supported at present:

e autodetect-bearer-only
® bearer-only

Do not use the following secure-deployment attributes in your configuration as it is not
supported at present

® enable-basic-auth

Use the three elytron-oidc-client attributes for the following purposes:

181

Red Hat JBoss Enterprise Application Platform 7.4 Using JBoss EAP XP 4.0.0

e provider: For configuring the OpenlD Connect provider. For more information, see provider

attributes.

e secure-deployment: For configuring the deployment secured by an OpenlD Connect. For more
information, see secure-deployment attributes

e realm: For configuring Red Hat Single Sign-On. For more information, see realm attributes. The
use of realm is not recommended. It is provided for convenience. You can copy the
configuration in the keycloak client adapter and use it here. Using the provider attribute is

recommended instead.

Table 11.8. provider attributes

Attribute Default
value

Description

allow-any-hostname false

always-refresh-token

auth-server-url

client-id

client-key-password

client-keystore

client-keystore-

password

confidential-port 8443

connection-pool-size

connection-timeout-
millis

182

If you set the value to true, hostname verification is skipped when
communicating with the OpenlD provider. This is useful when
testing. Do not set this to ture in a production environment.

If set to true, JBoss EAP refreshes tokens on every web request.

The base URL of the Red Hat Single Sign-On realm authorization
server. If you use this attribute, you must also define the realm
attribute.

You can alternatively use the provider-url attribute to provide
both base URL and the realm in a single attribute.

The client-id of JBoss EAP registered with the OpenlD provider.

If you specify client-keystore, specify it's password in this
attribute.

If your application communicates with the OpenlID provider over
HTTPS, set the path to the client keystore in this attribute.

If you specify the client keystore, provide the password for
accessing it in this attribute.

Specify the confidential port (SSL/TLS) used by the OpenID
provider.

Specify the connection pool size to be used when communicating
with the OpenlID provider.

Specify the timeout for establishing a connection with the remote
host in milliseconds. The minimum is =1L, and the maximum
2147483647L -1L indicates that the value is undefined, which is
the default.

CHAPTER 1. REFERENCE

Attribute Default Description

value

connection-ttl-millis Specify the amount of time in milliseconds for the connection to
be kept alive. The minimum is =1L, and the maximum
2147483647L.-1L indicates that the value is undefined, which is
the default.

cors-allowed-headers If Cross-Origin Resource Sharing (CORS) is enabled, this sets the
value of the Access-Control-Allow-Headers header. This
should be a comma-separated string. This is optional. If not set,
this header is not returned in CORS responses.

cors-allowed-methods If Cross-Origin Resource Sharing (CORS) is enabled, this sets the
value of the Access-Control-Allow-Methods header. This should
be a comma-separated string. This is optional. If not set, this
header is not returned in CORS responses.

cors-exposed-headers If CORS is enabled, this sets the value of the Access-Control-
Expose-Headers header. This should be a comma-separated
string. This is optinal. If not set, this header is not returned in CORS
responses.

cors-max-age Set the value for Cross-Origin Resource Sharing (CORS) Max-Age
header. The value can be between =1L and 2147483647L. This
attribute only takes effect if enable-cors is set to true.

disable-trust-manager Specify whether or not to make use of a trust manager when
communicating with the OpenlD provider over HTTPS.

enable-cors false Enable Red Hat Single Sign-On Cross-Origin Resource Sharing
(CORS) support.
expose-token false If set to true, an authenticated browser client can obtain the

signed access token, through a Javascript HTTP invocation, via the
URL root/k_query_bearer_token. This is optional. This is
specific to Red Hat Single Sign-On.

ignore-oauth-query- false Disable query parameter parsing for access_token.
parameter
principal-attribute Specify which claim value from the ID token to use as the principal

for the identity

provider-url Specify the OpenlD provider URL.
proxy-url Specify the URL for the HTTP proxy if you use one.
realm-public-key Specify the public key of the realm.

183

Red Hat JBoss Enterprise Application Platform 7.4 Using JBoss EAP XP 4.0.0

Attribute Default
value

Description

register-node-at- false
startup

register-node-period

socket-timeout-millis

ssl-required external
token-signature- RS256
algorithm

token-store

truststore

truststore-password

verify-token-audience false

If set to true, a registration request is sent to Red Hat Single Sign-
On. This attribute is useful only when your application is clustered.

Specify how often to re-register the node.

Specify the timeout for socket waiting for data in milliseconds.
Specify whether communication with the OpenlD provider should
be over HTTPS. The value can be one of the following:

e all - all communication happens over HTTPS.

e external - Only the communication with external clients
happens over HTTPs.

® none-HTTPsis not used.

Specify the token signature algorithm used by the OpenlD
provider. The supported algorithms are:

e RS256
e RS384
e RS512
o ES256
e ES384

e ES512

Specify cookie or session storage for auth-session data.

Specify the truststore used for client HTTPS requests.

Specify the truststore password.

If set to true, then during bearer-only authentication,verify if
token contains this client name (resource) as an audience.

Table 11.9. secure-deployment attributes

Attribute

184

Default value Description

Attribute

allow-any-hostname

always-refresh-token

auth-server-url

client-id

client-key-password

client-keystore

client-keystore-password

confidential-port

connection-pool-size

Default value

false

8443

CHAPTER 1. REFERENCE

Description

If you set the value to true,
hostname verification is skipped
when communicating with the
OpenlD provider. This is useful
when testing. Do not set this to
ture in a production environment.

If set to true, JBoss EAP
refreshes tokens on every web
request.

The base URL of the Red Hat
Single Sign-On realm
authorization server You can
alternatively use the provider-
url attribute.

The client-id of JBoss EAP
registered with the OpenlD
provider.

If you specify client-keystore,
specify it's password in this
attribute.

If your application communicates
with the OpenlID provider over
HTTPS, set the path to the client
keystore in this attribute.

If you specify the client
keystore, provide the password
for accessing it in this attribute.

Specify the confidential port
(SSL/TLS) used by OpenID
provider.

Specify the connection pool size
to be used when communicating
with the OpenlID provider.

185

Red Hat JBoss Enterprise Application Platform 7.4 Using JBoss EAP XP 4.0.0

Attribute Default value Description

connection-timeout-millis Specify the timeout for
establishing a connection with the
remote host in milliseconds. The
minimum is =1L, and the maximum
2147483647L.-1L indicates that
the value is undefined, which is
the default.

connection-ttl-millis Specify the amount of time in
milliseconds for the connection to
be kept alive. The minimum is =1L,
and the maximum 2147483647L.
-1L indicates that the value is
undefined, which is the default.

cors-allowed-headers If Cross-Origin Resource Sharing
(CORS) is enabled, this sets the
value of the Access-Control-
Allow-Headers header. This
should be a comma-separated
string. This is optional. If not set,
this header is not returned in
CORS responses.

cors-allowed-methods If Cross-Origin Resource Sharing
(CORS) is enabled, this sets the
value of the Access-Control-
Allow-Methods header. This
should be a comma-separated
string. This is optional. If not set,
this header is not returned in
CORS responses.

cors-exposed-headers If Cross-Origin Resource Sharing
(CORS) is enabled, this sets the
value of the Access-Control-
Expose-Headers header. This
should be a comma-separated
string. This is optional. If not set,
this header is not returned in
CORS responses.

cors-max-age Set the value for Cross-Origin
Resource Sharing (CORS) Max-
Age header. The value can be
between =1L and 2147483647L.
This attribute only takes effect if
“enable-

186

Attribute Default value

credential

disable-trust-manager

enable-cors false
expose-token false
ignore-oauth-query-parameter false

min-time-between-jwks-requests

principal-attribute

provider

provider-url

proxy-url

CHAPTER 1. REFERENCE

Description

Specify the credential to use to
communicate with the OpenID
provider.

Specify whether or not to make
use of a trust manager when
communicating with the OpenlID
provider over HTTPS.

Enable Red Hat Single Sign-On
Cross-Origin Resource Sharing
(CORS) support.

If set to true, an authenticated
browser client can obtain the
signed access token, through a
Javascript HTTP invocation, via
the URL
root/k_query_bearer_token.
This is optional.This is specific to
Red Hat Single Sign-On.

Disable query parameter parsing
for access_token.

If adapter recognizes a token
signed by an unknown public key,
JBoss EAP tries to download new
public key from the elytron-
oidc-client server. However,
JBoss EAP deosn't try to
download new public key if it has
already tried it in less than the
value, in seconds, that you set for
this attribute. The value can be
between-1L and 2147483647L.

Specify which claim value from
the ID token to use as the
principal for the identity

Specify the OpenlID provider.

Specify the OpenlD provider URL.

Specify the URL for the HTTP
proxy if you use one.

187

Red Hat JBoss Enterprise Application Platform 7.4 Using JBoss EAP XP 4.0.0

Attribute Default value Description

public-client false If set to true, no client credentials
are sent when communicating
with the OpenlID provider. This is
optional.

realm The realm with which to connect
in Red Hat Single Sign-On.

realm-public-key Specify the public key of the
realm.
redirect-rewrite-rule Specify the rewrite rule to apply

to the redirect URL.

register-node-at-startup false If set to true, a registration
request is sent to Red Hat Single
Sign-On. This attribute is useful
only when your application is

clustered.

register-node-period Specify how often to re-register
the node.

resource Specify the name of the

application you are securing with
OIDC. Alternatively, you can
specify the client-id.

socket-timeout-millis Specify the timeout for socket
waiting for data in milliseconds.

ssl-required external Specify whether communication
with the OpenlD provider should
be over HTTPS. The value can be
one of the following:

e all - all communication
happens over HTTPS.

e external - Only the
communication with
external clients happens
over HTTPs.

® nohe-HTTPsis not
used.

188

Attribute

token-minimum-time-to-live

token-signature-algorithm

token-store

truststore

truststore-password

turn-off-change-session-id-on-

login

use-resource-role-mappings

verify-token-audience

Table 11.10. realm attributes

Attribute

Default value

RS256

false

false

false

Default value

CHAPTER 1. REFERENCE

Description

The adapter refreshes the token if
the current token is expired or is
to expire within the amount of
time you set in seconds.

Specify the token signature
algorithm used by the OpenID
provider. The supported
algorithms are:

e RS256
e RS384
e RS512
e ES256
e ES384
e ES512

Specify cookie or session storage
for auth-session data.

Specify the truststore used for
adapter client HTTPS requests.

Specify the truststore password.

The session id is changed by
default on a successful login. Set
the value to true to turn this off.

Use resource-level permissions
obtained from token.

If set to true, then during bearer-
only authentication, the adapter
verifies if token contains this
client name (resource) as an
audience.

Description

189

Red Hat JBoss Enterprise Application Platform 7.4 Using JBoss EAP XP 4.0.0

Attribute

allow-any-hostname

always-refresh-token

auth-server-url

client-key-password

client-keystore

client-keystore-password

confidential-port

connection-pool-size

connection-timeout-millis

190

Default value

false

8443

Description

If you set the value to true,
hostname verification is skipped
when communicating with the
OpenlD provider. This is useful
when testing. Do not set this to
ture in a production environment.

If set to true, JBoss EAP
refreshes tokens on every web
request.

The base URL of the Red Hat
Single Sign-On realm
authorization server You can
alternatively use the provider-
url attribute.

If you specify client-keystore,
specify it's password in this
attribute.

If your application communicates
with the OpenlID provider over
HTTPS, set the path to the client
keystore in this attribute.

If you specify the client
keystore, provide the password
for accessing it in this attribute.

Specify the confidential port
(SSL/TLS) used by Red Hat
Single Sign-On.

Specify the connection pool size
to be used when communicating
with Red Hat Single Sign-On.

Specify the timeout for
establishing a connection with the
remote host in milliseconds. The
minimum is =1L, and the maximum
2147483647L.-1L indicates that
the value is undefined, which is
the default.

Attribute

connection-ttl-millis

cors-allowed-headers

cors-allowed-methods

cors-exposed-headers

cors-max-age

disable-trust-manager

enable-cors

Default value

false

CHAPTER 1. REFERENCE

Description

Specify the amount of time in
milliseconds for the connection to
be kept alive. The minimum is =1L,
and the maximum 2147483647L.
-1L indicates that the value is
undefined, which is the default.

If Cross-Origin Resource Sharing
(CORS) is enabled, this sets the
value of the Access-Control-
Allow-Headers header. This
should be a comma-separated
string. This is optional. If not set,
this header is not returned in
CORS responses.

If Cross-Origin Resource Sharing
(CORS) is enabled, this sets the
value of the Access-Control-
Allow-Methods header. This
should be a comma-separated
string. This is optional. If not set,
this header is not returned in
CORS responses.

If Cross-Origin Resource Sharing
(CORS) is enabled, this sets the
value of the Access-Control-
Expose-Headers header. This
should be a comma-separated
string. This is optional. If not set,
this header is not returned in
CORS responses.

Set the value for Cross-Origin
Resource Sharing (CORS) Max-
Age header. The value can be
between-1L and 2147483647L.
This attribute only takes effect if
enable-cors is set to true.

Specify whether or not to make
use of a trust manager when
communicating with the OpenlID
provider over HTTPS._

Enable {RHProductShortName?
Cross-Origin Resource Sharing
(CORS) support.

191

Red Hat JBoss Enterprise Application Platform 7.4 Using JBoss EAP XP 4.0.0

Attribute Default value Description

expose-token false If set to true, an authenticated
browser client can obtain the
signed access token, through a
Javascript HTTP invocation, via
the URL
root/k_query_bearer_token.
This is optional.

ignore-oauth-query-parameter false Disable query parameter parsing
for access_token.

principal-attribute Specify which claim value from
the ID token to use as the
principal for the identity

provider-url Specify the OpenlD provider URL.

proxy-url Specify the URL for the HTTP
proxy if you use one.

realm-public-key Specify the public key of the
realm.
register-node-at-startup false If set to true, a registration

request is sent to Red Hat Single
Sign-On. This attribute is useful
only when your application is

clustered.

register-node-period Specify how often to re-register
the node.

socket-timeout-millis Specify the timeout for socket

waiting for data in milliseconds.

ssl-required external Specify whether communication
with the OpenlID provider should
be over HTTPS. The value can be
one of the following:

e all - all communication
happens over HTTPS.

e external - Only the
communication with
external clients happens
over HTTPs.

® nohe-HTTPsis not
used.

192

CHAPTER 1. REFERENCE

Attribute Default value Description

token-signature-algorithm RS256 Specify the token signature
algorithm used by the OpenID
provider. The supported
algorithms are:

e RS256
e RS384
e RS512
o ES256
e ES384

e ES512

token-store Specify cookie or session storage
for auth-session data.

truststore Specify the truststore used for
client HTTPS requests.

truststore-password Specify the truststore password.

verify-token-audience false If set to true, then during bearer-
only authentication, the adapter
verifies if token contains this
client name (resource) as an
audience.

Additional resources

® OpenlD Connect configuration in JBoss EAP

® Securing applications using OpenlD Connect with Red Hat Single Sign-On

11.7. OPENTELEMETRY REFERENCE

11.7.1. OpenTelemetry subsystem attributes

You can modify opentelemetry subsystem attributes to configure its behavior. The attributes are
grouped by the aspect they configure: exporter, sampler, and span processor.

Table 11.11. Exporter attribute group

Attribute Description Default value

193

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/#con-openid-connect-configuration-in-jboss-eap_openid-connect-in-jboss-eap
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/#assembly-securing-applications-using-openid-connect-with-red-hat-single-sign-on_openid-connect-in-jboss-eap

Red Hat JBoss Enterprise Application Platform 7.4 Using JBoss EAP XP 4.0.0

Attribute Description Default value

endpoint The URL to which OpenTelemetry http://localhost:14250/
pushes traces. Set this to the URL
where your exporter listens.

exporter-type The exporter to which traces are jaeger
sent. It can be one of the
following:

e jaeger. The exporter
you use is Jaeger.

e otlp. The exporter you
use works with the

OpenTelemetry
protocol.
Table 11.12. Sampler attribute group
Attribute Description Default value
ratio The ratio of traces to export. The

value must be between 0.0 and
1.0. For example, to export one
trace in every 100 traces created
by an application, set the value to
0.01. This attribute takes effect
only if you set the attribute
sampler-type as ratio.

Table 11.13. Span processor attribute group

Attribute Description Default value

batch-delay The interval in milliseconds 5000
between two consecutive exports
by JBoss EAP. This attribute only
takes effect if you set the
attribute span-processor-type
as batch.

export-timeout The maximum amount of time in 30000
milliseconds to allow for an export
to complete before being
cancelled.

194

http://localhost:14250/

CHAPTER 1. REFERENCE

Attribute Description Default value

max-export-batch-size The maximum number of traces 512
that are published in each batch.
This number should be should be
lesser or equal to the value of
max-queue-size. You can set
this attribute only if you set the
attribute span-processor-type
as batch.

max-queue-size The maximum number of traces 2048
to queue before exporting. If an
application creates more traces,
they are not recorded. This
attribute only takes effect if you
set the attribute span-
processor-type as batch.

span-processor-type The type of span processor to use. batch
The value can be one of the
following:

e batch: JBoss EAP
exports traces in batches

that are defined using
the following attributes:

o batch-delay

o max-export-
batch-size

o max-queue-size
e simple: JBoss EAP

exports traces are as
soon as they finish.

Additional resources

® OpenTelemetry in JBoss EAP

195

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0#con-opentelemetry-tracing-in-jboss-eap_observability-in-jboss-eap

	Table of Contents
	MAKING OPEN SOURCE MORE INCLUSIVE
	PROVIDING FEEDBACK ON JBOSS EAP DOCUMENTATION
	CHAPTER 1. JBOSS EAP XP FOR THE LATEST MICROPROFILE CAPABILITIES
	1.1. ABOUT JBOSS EAP XP
	1.2. JBOSS EAP XP INSTALLATION
	1.3. JBOSS EAP XP MANAGER
	1.4. JBOSS EAP XP MANAGER 4.0 COMMANDS
	1.5. INSTALLING JBOSS EAP XP 4.0.0 ON JBOSS EAP 7.4.X
	1.6. UNINSTALLING JBOSS EAP XP
	1.7. VIEWING THE STATUS OF JBOSS EAP XP
	1.8. ROLLING BACK JBOSS EAP XP AND JBOSS EAP 7.4.X BASE PATCHES

	CHAPTER 2. UNDERSTAND MICROPROFILE
	2.1. MICROPROFILE CONFIG
	2.1.1. MicroProfile Config in JBoss EAP
	2.1.2. MicroProfile Config sources supported in MicroProfile Config

	2.2. MICROPROFILE FAULT TOLERANCE
	2.2.1. About MicroProfile Fault Tolerance specification
	2.2.2. MicroProfile Fault Tolerance in JBoss EAP

	2.3. MICROPROFILE HEALTH
	2.3.1. MicroProfile Health in JBoss EAP

	2.4. MICROPROFILE JWT
	2.4.1. MicroProfile JWT integration in JBoss EAP
	2.4.2. Differences between a traditional deployment and an MicroProfile JWT deployment
	2.4.3. MicroProfile JWT activation in JBoss EAP
	2.4.4. Limitations of MicroProfile JWT in JBoss EAP

	2.5. MICROPROFILE METRICS
	2.5.1. MicroProfile Metrics in JBoss EAP

	2.6. MICROPROFILE OPENAPI
	2.6.1. MicroProfile OpenAPI in JBoss EAP

	2.7. MICROPROFILE OPENTRACING
	2.7.1. MicroProfile OpenTracing
	2.7.2. MicroProfile OpenTracing in JBoss EAP

	2.8. MICROPROFILE REST CLIENT
	2.8.1. MicroProfile REST client
	2.8.2. The resteasy.original.webapplicationexception.behavior MicroProfile Config property
	Defining the resteasy.original.webapplicationexception.behavior MicroProfile Config property

	2.9. MICROPROFILE REACTIVE MESSAGING
	2.9.1. MicroProfile reactive messaging
	2.9.2. MicroProfile reactive messaging connectors
	The Apache Kafka connector and incorporated layers

	2.9.3. The Apache Kafka event streaming platform

	CHAPTER 3. ADMINISTER MICROPROFILE IN JBOSS EAP
	3.1. MICROPROFILE OPENTRACING ADMINISTRATION
	3.1.1. Enabling MicroProfile Open Tracing
	3.1.2. Removing the microprofile-opentracing-smallrye subsystem
	3.1.3. Installing Jaeger

	3.2. MICROPROFILE CONFIG CONFIGURATION
	3.2.1. Adding properties in a ConfigSource management resource
	3.2.2. Configuring directories as ConfigSources
	3.2.3. Obtaining ConfigSource from a ConfigSource class
	3.2.4. Obtaining ConfigSource configuration from a ConfigSourceProvider class

	3.3. MICROPROFILE FAULT TOLERANCE CONFIGURATION
	3.3.1. Adding the MicroProfile Fault Tolerance extension

	3.4. MICROPROFILE HEALTH CONFIGURATION
	3.4.1. Examining health using the management CLI
	3.4.2. Examining health using the management console
	3.4.3. Examining health using the HTTP endpoint
	3.4.4. Enabling authentication for MicroProfile Health
	3.4.5. Readiness probes that determine server health and readiness
	3.4.6. Global status when probes are not defined

	3.5. MICROPROFILE JWT CONFIGURATION
	3.5.1. Enabling microprofile-jwt-smallrye subsystem

	3.6. MICROPROFILE METRICS ADMINISTRATION
	3.6.1. Metrics available on the management interface
	3.6.2. Examining metrics using the HTTP endpoint
	3.6.3. Enabling Authentication for the MicroProfile Metrics HTTP Endpoint
	3.6.4. Obtaining the request count for a web service

	3.7. MICROPROFILE OPENAPI ADMINISTRATION
	3.7.1. Enabling MicroProfile OpenAPI
	3.7.2. Requesting an MicroProfile OpenAPI document using Accept HTTP header
	3.7.3. Requesting an MicroProfile OpenAPI document using an HTTP parameter
	3.7.4. Configuring JBoss EAP to serve a static OpenAPI document
	3.7.5. Disabling microprofile-openapi-smallrye

	3.8. MICROPROFILE REACTIVE MESSAGING ADMINISTRATION
	3.8.1. Configuring the required MicroProfile reactive messaging extension and subsystem for JBoss EAP

	3.9. STANDALONE SERVER CONFIGURATION
	3.9.1. Standalone server configuration files
	3.9.2. Updating standalone configurations with MicroProfile subsystems and extensions

	CHAPTER 4. DEVELOP MICROPROFILE APPLICATIONS FOR JBOSS EAP
	4.1. MAVEN AND THE JBOSS EAP MICROPROFILE MAVEN REPOSITORY
	4.1.1. Downloading the JBoss EAP MicroProfile Maven repository patch as an archive file
	4.1.2. Applying the JBoss EAP MicroProfile Maven repository patch on your local system
	4.1.3. Supported JBoss EAP MicroProfile BOM
	4.1.4. Using the JBoss EAP MicroProfile Maven repository

	4.2. MICROPROFILE CONFIG DEVELOPMENT
	4.2.1. Creating a Maven project for MicroProfile Config
	4.2.2. Using MicroProfile Config property in an application

	4.3. MICROPROFILE FAULT TOLERANCE APPLICATION DEVELOPMENT
	4.3.1. Adding the MicroProfile Fault Tolerance extension
	4.3.2. Configuring Maven project for MicroProfile Fault Tolerance
	4.3.3. Creating a fault tolerant application

	4.4. MICROPROFILE HEALTH DEVELOPMENT
	4.4.1. The custom health check example
	4.4.2. The @Liveness annotation example
	4.4.3. The @Readiness annotation example
	4.4.4. The @Startup annotation example

	4.5. MICROPROFILE JWT APPLICATION DEVELOPMENT
	4.5.1. Enabling microprofile-jwt-smallrye subsystem
	4.5.2. Configuring Maven project for developing JWT applications
	4.5.3. Creating an application with MicroProfile JWT

	4.6. MICROPROFILE METRICS DEVELOPMENT
	4.6.1. Creating an MicroProfile Metrics application

	4.7. DEVELOPING AN MICROPROFILE OPENAPI APPLICATION
	4.7.1. Enabling MicroProfile OpenAPI
	4.7.2. Configuring Maven project for MicroProfile OpenAPI
	4.7.3. Creating an MicroProfile OpenAPI application
	4.7.4. Configuring JBoss EAP to serve a static OpenAPI document

	4.8. MICROPROFILE REST CLIENT DEVELOPMENT
	4.8.1. A comparison of MicroProfile REST client and Jakarta RESTful Web Services syntaxes
	4.8.2. Programmatic registration of providers in MicroProfile REST client
	4.8.3. Declarative registration of providers in MicroProfile REST client
	4.8.4. Declarative specification of headers in MicroProfile REST client
	4.8.5. ResponseExceptionMapper in MicroProfile REST client
	4.8.6. Context dependency injection with MicroProfile REST client

	CHAPTER 5. BUILD AND RUN MICROSERVICES APPLICATIONS ON THE OPENSHIFT IMAGE FOR JBOSS EAP XP
	5.1. PREPARING OPENSHIFT FOR APPLICATION DEPLOYMENT
	5.2. CONFIGURING AUTHENTICATION TO THE RED HAT CONTAINER REGISTRY
	5.3. IMPORTING THE LATEST OPENSHIFT IMAGESTREAMS AND TEMPLATES FOR JBOSS EAP XP
	5.4. DEPLOYING A JBOSS EAP XP SOURCE-TO-IMAGE (S2I) APPLICATION ON OPENSHIFT
	5.5. COMPLETING POST-DEPLOYMENT TASKS FOR JBOSS EAP XP SOURCE-TO-IMAGE (S2I) APPLICATION

	CHAPTER 6. CAPABILITY TRIMMING
	6.1. AVAILABLE JBOSS EAP LAYERS
	6.1.1. Base layers
	datasources-web-server
	jaxrs-server
	cloud-server

	6.1.2. Decorator layers
	ejb-lite
	Jakarta Enterprise Beans
	ejb-local-cache
	ejb-dist-cache
	jdr
	Jakarta Persistence
	jpa-distributed
	Jakarta Server Faces
	microprofile-platform
	observability
	remote-activemq
	sso
	web-console
	web-clustering
	web-passivation
	webservices

	CHAPTER 7. ENABLE MICROPROFILE APPLICATION DEVELOPMENT FOR JBOSS EAP ON RED HAT CODEREADY STUDIO
	7.1. CONFIGURING CODEREADY STUDIO TO USE MICROPROFILE CAPABILITIES
	7.2. USING MICROPROFILE QUICKSTARTS FOR CODEREADY STUDIO

	CHAPTER 8. THE BOOTABLE JAR
	8.1. ABOUT THE BOOTABLE JAR
	8.2. JBOSS EAP MAVEN PLUG-IN
	8.3. BOOTABLE JAR ARGUMENTS
	8.4. SPECIFYING GALLEON LAYERS FOR YOUR BOOTABLE JAR SERVER
	8.5. USING A BOOTABLE JAR ON A JBOSS EAP BARE-METAL PLATFORM
	8.6. CREATING A HOLLOW BOOTABLE JAR ON A JBOSS EAP BARE-METAL PLATFORM
	8.7. CLI SCRIPTS EXECUTED AT BUILD TIME
	8.8. EXECUTING CLI SCRIPT AT RUNTIME
	8.9. USING A BOOTABLE JAR ON A JBOSS EAP OPENSHIFT PLATFORM
	8.10. CONFIGURE THE BOOTABLE JAR FOR OPENSHIFT
	8.11. USING A CONFIGMAP IN YOUR APPLICATION ON OPENSHIFT
	8.12. CREATING A BOOTABLE JAR MAVEN PROJECT
	8.13. ENABLING JSON LOGGING FOR YOUR BOOTABLE JAR
	8.14. ENABLING WEB SESSION DATA STORAGE FOR MULTIPLE BOOTABLE JAR INSTANCES
	8.15. ENABLING HTTP AUTHENTICATION FOR BOOTABLE JAR WITH A CLI SCRIPT
	8.16. SECURING YOUR JBOSS EAP BOOTABLE JAR APPLICATION WITH RED HAT SINGLE SIGN-ON
	8.17. PACKAGING A BOOTABLE JAR IN DEV MODE
	8.18. UPGRADING SERVER ARTIFACTS
	8.19. UPDATING EAP 7.4.GA DEPENDENCY
	8.20. APPLYING THE JBOSS EAP PATCH TO YOUR BOOTABLE JAR

	CHAPTER 9. OPENID CONNECT IN JBOSS EAP
	9.1. OPENID CONNECT CONFIGURATION IN JBOSS EAP
	Deployment configuration
	Subsystem configuration

	9.2. ENABLING THE ELYTRON-OIDC-CLIENT SUBSYSTEM
	9.3. SECURING APPLICATIONS USING OPENID CONNECT WITH RED HAT SINGLE SIGN-ON
	9.3.1. Configuring Red Hat Single Sign-On as an OpenID provider
	9.3.2. Configuring a Maven project for creating a secure application
	9.3.3. Creating a secure application that uses OpenID Connect
	9.3.4. Restricting access to applications based on user roles
	9.3.5. Creating and assigning user roles in Red Hat Single Sign-On

	9.4. DEVELOPING JBOSS EAP BOOTABLE JAR APPLICATION WITH OPENID CONNECT
	9.4.1. Configuring Red Hat Single Sign-On as an OpenID provider
	9.4.2. Configuring a Maven project for a bootable jar OIDC application
	9.4.3. Creating a bootable jar application that uses OpenID Connect
	9.4.4. Restricting access based on user roles in bootable jar OIDC applications
	9.4.5. Creating and assigning user roles in Red Hat Single Sign-On

	CHAPTER 10. OBSERVABILITY IN JBOSS EAP
	10.1. OPENTELEMETRY IN JBOSS EAP
	10.2. OPENTELEMETRY CONFIGURATION IN JBOSS EAP
	10.3. OPENTELEMETRY TRACING IN JBOSS EAP
	10.4. ENABLING OPENTELEMETRY TRACING IN JBOSS EAP
	10.5. CONFIGURING THE OPENTELEMETRY SUBSYSTEM
	10.6. USING JAEGER TO OBSERVE THE OPENTELEMETRY TRACES FOR AN APPLICATION
	10.7. OPENTELEMETRY TRACING APPLICATION DEVELOPMENT
	10.7.1. Configuring a Maven project for OpenTelemetry tracing
	10.7.2. Creating applications that create custom spans

	CHAPTER 11. REFERENCE
	11.1. MICROPROFILE CONFIG REFERENCE
	11.1.1. Default MicroProfile Config attributes
	11.1.2. MicroProfile Config SmallRye ConfigSources

	11.2. MICROPROFILE FAULT TOLERANCE REFERENCE
	11.2.1. MicroProfile Fault Tolerance configuration properties

	11.3. MICROPROFILE JWT REFERENCE
	11.3.1. MicroProfile Config JWT standard properties

	11.4. MICROPROFILE OPENAPI REFERENCE
	11.4.1. MicroProfile OpenAPI configuration properties

	11.5. MICROPROFILE REACTIVE MESSAGING REFERENCE
	11.5.1. MicroProfile reactive messaging connectors for integrating with external messaging systems
	11.5.2. Example of the data exchange between reactive messaging streams and user-initialized code
	11.5.3. The Apache Kafka user API
	Example of how to write and read a message key
	Example of Kafka mapping in a microprofile-config.properties file

	11.5.4. Example MicroProfile Config properties file for the Kafka connector
	Mandatory MicroProfile Reactive Messaging prefixes

	11.6. OPENID CONNECT REFERENCE
	11.6.1. elytron-oidc-client subsystem attributes

	11.7. OPENTELEMETRY REFERENCE
	11.7.1. OpenTelemetry subsystem attributes

