
Red Hat JBoss Enterprise Application
Platform 7.3

Managing Transactions on JBoss EAP

Instructions and information for administrators to troubleshoot Red Hat JBoss
Enterprise Application Platform transactions.

Last Updated: 2022-02-01

Red Hat JBoss Enterprise Application Platform 7.3 Managing Transactions
on JBoss EAP

Instructions and information for administrators to troubleshoot Red Hat JBoss Enterprise
Application Platform transactions.

Legal Notice

Copyright © 2022 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document provides information for administrators to troubleshoot transactions on JBoss EAP.

. .

. .

. .

. .

Table of Contents

CHAPTER 1. TRANSACTIONS IN JBOSS EAP
1.1. TRANSACTION SUBSYSTEM
1.2. PROPERTIES OF THE TRANSACTION
1.3. COMPONENTS OF A TRANSACTION
1.4. PRINCIPLES OF TRANSACTION MANAGEMENT

1.4.1. XA Versus Non-XA Transactions

CHAPTER 2. CONFIGURING TRANSACTIONS
2.1. UNIQUE NODE IDENTIFIER

2.1.1. Importance of the Unique Node Identifier
2.2. CONFIGURING THE TRANSACTION MANAGER

Configuring the Transaction Manager Using the Management Console
Configuring the Transaction Manager Using the Management CLI

2.3. CONFIGURING THE TRANSACTION MANAGER USING SYSTEM PROPERTIES
2.4. CONFIGURING YOUR DATASOURCE TO USE JAKARTA TRANSACTIONS

Prerequisites
Configuring the Datasource to use Jakarta Transactions

2.5. CONFIGURING THE ORB FOR JTS
Configure the ORB Using the Management CLI

Enable the Security Interceptors
Enable Transactions in the IIOP Subsystem
Enable JTS in the Transactions Subsystem

Configure the ORB Using the Management Console

CHAPTER 3. MANAGING TRANSACTIONS
3.1. BROWSING TRANSACTIONS

Refreshing the Log Store
Viewing All Prepared Transactions

3.2. ADMINISTERING A TRANSACTION
Viewing the Attributes of a Transaction
Viewing the Details of a Transaction Participant
Deleting a Transaction Participant
Recovering a Transaction Participant
Refreshing the Status of a Transaction Participant

3.3. VIEWING TRANSACTION STATISTICS
3.4. CONFIGURING THE TRANSACTIONS OBJECT STORE

Using a JDBC Datasource as a Transactions Object Store
Transactions JDBC Store Attributes
Using the ActiveMQ Journal Object Store

CHAPTER 4. MONITORING TRANSACTIONS
4.1. CONFIGURING LOGGING FOR THE TRANSACTIONS SUBSYSTEM

Configuring the Transaction Logger Using the Management Console
Configuring the Transaction Logger Using the Management CLI
4.1.1. Enabling the TRACE log level
4.1.2. Enabling the Transaction Bridge Logger
4.1.3. Transaction Log Messages
4.1.4. Decoding Transaction Log Files

4.1.4.1. Locating the XID/UID of a Transaction
4.1.4.2. Finding the Transaction Status and Resources

TransactionStatusConnectionManager
TransactionStatusManager

4
4
4
4
5
5

6
6
6
6
6
6
7
8
8
8
8
9
9
9
9
9

10
10
10
10
10
10
10
11
11

12
12
13
14
14
15

16
16
16
16
16
17
18
19
19
19
19

20

Table of Contents

1

. .

4.1.4.3. Viewing the Transaction History

CHAPTER 5. HANDLING TRANSACTION MANAGER EXCEPTIONS
5.1. DEBUGGING A TIMED-OUT TRANSACTION
5.2. MIGRATING LOGS TO A NEW JBOSS EAP SERVER

5.2.1. Migrating the File-based Log Storage
5.2.2. Migrating the JDBC Store-based Log Storage

5.3. ENABLING XTS ON JBOSS EAP
5.4. CLEARING UP EXPIRED TRANSACTIONS
5.5. RECOVERING HEURISTIC OUTCOMES

5.5.1. Guidelines on Making Decisions for Heuristic Outcomes
Problem Detection
Manually Committing or Rolling Back a Transaction

Recovering the HEURISTIC_HAZARD Exception
Recovering the HEURISTIC_ROLLBACK and HEURISTIC_COMMIT Exceptions

Further Actions When Manual Reconciliation Fails

20

23
23
24
24
24
24
25
26
27
27
28
28
29
29

Red Hat JBoss Enterprise Application Platform 7.3 Managing Transactions on JBoss EAP

2

Table of Contents

3

CHAPTER 1. TRANSACTIONS IN JBOSS EAP
A transaction consists of two or more operations that must either all succeed or all fail. A successful
outcome results in a commit, and a failed outcome results in a rollback. In a rollback, each member’s
state is reverted before the transaction attempts the commit.

1.1. TRANSACTION SUBSYSTEM

The transactions subsystem allows you to configure the Transaction Manager (TM) options, such as
timeout values, transaction logging, statistics collection, and whether to use Jakarta Transactions. The
transactions subsystem consists of four main elements:

Core environment

The core environment includes the TM interface that allows the JBoss EAP server to control
transaction boundaries on behalf of the resource being managed. A transaction coordinator
manages communication with the transactional objects and resources that participate in
transactions.

Recovery environment

The recovery environment of the JBoss EAP transaction service ensures that the system applies the
results of a transaction consistently to all the resources affected by the transaction. This operation
continues even if any application process or the machine hosting them crashes or loses network
connectivity.

Coordinator environment

The coordinator environment defines custom properties for the transaction, such as default timeout
and logging statistics.

Object store

JBoss EAP transaction service uses an object store to record the outcomes of transactions in a
persistent manner for failure recovery. The Recovery Manager scans the object store and other
locations of information, for transactions and resources that might need recovery.

1.2. PROPERTIES OF THE TRANSACTION

The typical standard for a well-designed transaction is that it is atomic, consistent, isolated, and durable
(ACID):

Atomic

All members of the transaction must make the same decision regarding committing or rolling back
the transaction.

Consistent

Transactions produce consistent results and preserve application specific invariants.

Isolation

The data being operated on must be locked before modification to prevent processes outside the
scope of the transaction from modifying the data.

Durable

The effects of a committed transaction are not lost, except in the event of a catastrophic failure.

1.3. COMPONENTS OF A TRANSACTION

Transaction Coordinator

Red Hat JBoss Enterprise Application Platform 7.3 Managing Transactions on JBoss EAP

4

The coordinator governs the outcome of a transaction. It is responsible for ensuring that the web
services invoked by the client arrive at a consistent outcome.

Transaction Context

Transaction context is the information about a transaction that is propagated, which allows the
transaction to span multiple services.

Transaction Participant

Participants are the services enrolled in a transaction using a participant model.

Transaction Service

Transaction service captures the model of the underlying transaction protocol and coordinates with
the participants affiliated with a transaction according to that model.

Transaction API

Transaction API provides an interface for transaction demarcation and the registration of
participants.

1.4. PRINCIPLES OF TRANSACTION MANAGEMENT

1.4.1. XA Versus Non-XA Transactions

Non-XA transactions involve only one resource. They do not have a transaction coordinator and a single
resource does all the transaction work. They are sometimes called local transactions.

XA transactions involve multiple resources. They also have a coordinating transaction manager with one
or more databases, or other resources like Jakarta Messaging, all participating in a single transaction.
They are referred to as global transactions.

CHAPTER 1. TRANSACTIONS IN JBOSS EAP

5

CHAPTER 2. CONFIGURING TRANSACTIONS

2.1. UNIQUE NODE IDENTIFIER

Unique node identifier allows JBoss EAP to recover transactions and transaction states that match only
the specified node identifier. You can set the node identifier using the
com.arjuna.ats.arjuna.nodeIdentifier property.

2.1.1. Importance of the Unique Node Identifier

When running XA recovery, you must configure the Xid types that JBoss EAP transactions can recover.
Each Xid has the unique node identifier encoded in it and JBoss EAP only recovers the transactions and
transaction states that match the specified node identifier.

You can configure the node identifier using the JTAEnvironmentBean.xaRecoveryNodes property,
which can include multiple values in a list.

WARNING

A value of asterisk "*" forces JBoss EAP to recover, and possibly rollback, all the
transactions irrespective of their node identifiers. It must be used with caution.

The value of com.arjuna.ats.jta.xaRecoveryNode property must be alphanumeric and must match the
value of the com.arjuna.ats.arjuna.nodeIdentifier property.

2.2. CONFIGURING THE TRANSACTION MANAGER

You can configure the transaction manager using the web-based management console or the
command line management CLI.

Configuring the Transaction Manager Using the Management Console
The following steps explain how to configure the transaction manager using the web-based
management console:

1. Select the Configuration tab from the top of the screen.

2. If you are running JBoss EAP as a managed domain, choose the desired profile to modify.

3. From the Subsystem list, select Transaction and click View.

4. Select the appropriate tab for the settings that you want to configure, such as Recovery for
recovery options.

5. Click Edit, make the necessary changes, and click Save to save the changes.

Configuring the Transaction Manager Using the Management CLI
Using the management CLI, you can configure the transaction manager using a series of commands.
The commands all begin with /subsystem=transactions for a standalone server or
/profile=default/subsystem=transactions/ for the default profile in a managed domain.



Red Hat JBoss Enterprise Application Platform 7.3 Managing Transactions on JBoss EAP

6

For a detailed listing of all the transaction manager configuration options, see the Transaction Manager
Configuration Options for JBoss EAP.

2.3. CONFIGURING THE TRANSACTION MANAGER USING SYSTEM
PROPERTIES

You can use either the management console, management CLI, or the system properties to configure
many of the Transaction Manager options. However, the following options are configurable only using
system properties. They are not configurable using the management CLI or management console.

Property Name Description

RecoveryEnvironmentBean.periodicRecoveryPeriod Interval between recovery attempts, in seconds.

Must be a positive Integer.

Default is 120 seconds (2 minutes).

RecoveryEnvironmentBean.recoveryBackoffPeriod Interval between the first and second recovery
passes, in seconds.

Must be a positive Integer.

Default is 10 seconds.

RecoveryEnvironmentBean.periodicRecoveryInitilizat
ionOffset

Interval before first recovery pass, in seconds.

Must be 0 or a positive Integer.

Default is 0 seconds.

RecoveryEnvironmentBean.expiryScanInterval Interval between expiry scans, in hours.

Can be any Integer.

0 disables scanning.

Negative values postpone the first run.

Default is 12 hours.

This example shows how to configure these system properties in the standalone.xml server
configuration file.

For more information on how to configure system properties, see System Properties in the

<system-properties>
 <property name="RecoveryEnvironmentBean.periodicRecoveryPeriod" value="180"/>
 <property name="RecoveryEnvironmentBean.recoveryBackoffPeriod" value="20"/>
 <property name="RecoveryEnvironmentBean.periodicRecoveryInitilizationOffset" value="5"/>
 <property name="RecoveryEnvironmentBean.expiryScanInterval" value="24"/>
</system-properties>

CHAPTER 2. CONFIGURING TRANSACTIONS

7

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.3/html-single/configuration_guide/#reference_of_transaction_manager_configuration_options

For more information on how to configure system properties, see System Properties in the
Configuration Guide.

2.4. CONFIGURING YOUR DATASOURCE TO USE JAKARTA
TRANSACTIONS

This task shows you how to enable Jakarta Transactions on your datasource.

Prerequisites

Your database must support Jakarta Transactions. For more information, see the
documentation from your database vendor.

Create a non-XA datasource. For instructions, see the Configuration Guide.

NOTE

XA datasources, as described in the Configuration Guide, are Jakarta Transactions
capable by default.

Configuring the Datasource to use Jakarta Transactions

1. Use the following management CLI command to set the jta attribute to true.

/subsystem=datasources/data-source=DATASOURCE_NAME:write-
attribute(name=jta,value=true)

NOTE

In a managed domain, precede this command with /profile=PROFILE_NAME.

2. Reload the server for the changes to take effect.

reload

Your datasource is now configured to use Jakarta Transactions.

2.5. CONFIGURING THE ORB FOR JTS

In a default installation of JBoss EAP, the Object Request Broker (ORB) support for transactions is
disabled. You can configure ORB settings in the iiop-openjdk subsystem using the management CLI or
the management console.

NOTE

The iiop-openjdk subsystem is available when using the full or full-ha profile in a
managed domain, or the standalone-full.xml or standalone-full-ha.xml configuration
file for a standalone server.

For a listing of the available configuration options for the iiop-openjdk subsystem, see IIOP Subsystem
Attributes in the Configuration Guide.

Red Hat JBoss Enterprise Application Platform 7.3 Managing Transactions on JBoss EAP

8

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.3/html-single/configuration_guide/#system_properties
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.3/html-single/configuration_guide/#create_a_non_xa_datasource
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.3/html-single/configuration_guide/#create_an_xa_datasource
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.3/html-single/configuration_guide/#iiop_subsystem_attributes

Configure the ORB Using the Management CLI
You can configure each aspect of the ORB using the management CLI. This is the minimum
configuration for the ORB to be used with JTS.

You can configure the following management CLI commands for a managed domain using the full
profile. If necessary, change the profile to suit the one you need to configure. If you are using a
standalone server, omit the /profile=full portion of the commands.

Enable the Security Interceptors
Enable the security attribute by setting the value to identity.

/profile=full/subsystem=iiop-openjdk:write-attribute(name=security,value=identity)

Enable Transactions in the IIOP Subsystem
To enable the ORB for JTS, set the value of transactions attribute to full, rather than the default spec.

/profile=full/subsystem=iiop-openjdk:write-attribute(name=transactions, value=full)

Enable JTS in the Transactions Subsystem

/profile=full/subsystem=transactions:write-attribute(name=jts,value=true)

NOTE

For JTS activation, the server must be restarted as reload is not enough.

Configure the ORB Using the Management Console

1. Select the Configuration tab from the top of the management console. In a managed domain,
you must select the appropriate profile to modify.

2. Select Subsystems → IIOP (OpenJDK) and click View.

3. Click Edit and modify the attributes as needed.

4. Click Save to save the changes.

CHAPTER 2. CONFIGURING TRANSACTIONS

9

CHAPTER 3. MANAGING TRANSACTIONS

3.1. BROWSING TRANSACTIONS

The management CLI supports the ability to browse and manipulate transaction records. This
functionality is provided by the interaction between the TM and the management API of JBoss EAP.

The Transaction Manager stores information about each pending transaction and the participants
involved the transaction, in a persistent storage called the object store. The management API exposes
the object store as a resource called the log-store. The probe operation reads the transaction logs and
creates a node path for each record. You can call the probe operation manually, whenever you need to
refresh the log-store. It is normal for transaction logs to appear and disappear quickly.

Refreshing the Log Store
The following command refreshes the log store for server groups which use the profile default in a
managed domain. For a standalone server, remove the profile=default from the command.

/profile=default/subsystem=transactions/log-store=log-store:probe

Viewing All Prepared Transactions
To view all prepared transactions, first refresh the log store , then run the following command, which
functions similarly to a file system ls command.

ls /profile=default/subsystem=transactions/log-store=log-store/transactions

Or

/host=master/server=server-one/subsystem=transactions/log-store=log-store:read-children-
names(child-type=transactions)

Each transaction is shown, along with its unique identifier. Individual operations can be run against an
individual transaction. For more information, see Administering a Transaction .

3.2. ADMINISTERING A TRANSACTION

Viewing the Attributes of a Transaction
To view information about a transaction, such as its Java Naming and Directory Interface name, EIS
product name and version, or its status, use the read-resource operation.

/profile=default/subsystem=transactions/log-store=log-store/transactions=0\:ffff7f000001\:-
b66efc2\:4f9e6f8f\:9:read-resource

Viewing the Details of a Transaction Participant
Each transaction log contains a child element called participants. Use the read-resource operation on
this element to see the details of a participant of the transaction. Participants are identified by their
Java Naming and Directory Interface names.

/profile=default/subsystem=transactions/log-store=log-store/transactions=0\:ffff7f000001\:-
b66efc2\:4f9e6f8f\:9/participants=java\:\/JmsXA:read-resource

The result may look similar to this:

Red Hat JBoss Enterprise Application Platform 7.3 Managing Transactions on JBoss EAP

10

{
 "outcome" => "success",
 "result" => {
 "eis-product-name" => "ActiveMQ",
 "eis-product-version" => "2.0",
 "jndi-name" => "java:/JmsXA",
 "status" => "HEURISTIC",
 "type" => "/StateManager/AbstractRecord/XAResourceRecord"
 }
}

The outcome status shown here is in a HEURISTIC state and is eligible for recovery. See Recover a
Transaction Participant for more details.

In special cases it is possible to create orphan records in the object store, that is XAResourceRecords,
which do not have any corresponding transaction record in the log. For example, XA resource prepared
but crashed before the TM recorded and is inaccessible for the domain management API. To access
such records you need to set management option expose-all-logs to true. This option is not saved in
management model and is restored to false when the server is restarted.

/profile=default/subsystem=transactions/log-store=log-store:write-attribute(name=expose-all-logs,
value=true)

You can use this alternate command, which shows participant IDs of transaction in an aggregated form.

/host=master/server=server-one/subsystem=transactions/log-store=log-
store/transactions=0\:ffff7f000001\:-b66efc2\:4f9e6f8f\:9:read-children-names(child-type=participants)

Deleting a Transaction Participant
Each transaction log supports a delete operation, to delete the transaction log representing the
transaction.

/profile=default/subsystem=transactions/log-store=log-store/transactions=0\:ffff7f000001\:-
b66efc2\:4f9e6f8f\:9:delete

This deletes all participants in the transaction as well.

WARNING

Typically, you would leave participant log management to the recovery system or to
the transaction log that owns it, but the delete operation is available for cases when
you know it is safe to do so. In the case of heuristically completed XA resources, a
forget call is triggered so that XA resource vendor logs are cleaned correctly. If this
forget call fails, by default the delete operation will still succeed. You can override
this behavior by setting the
ObjectStoreEnvironmentBean.ignoreMBeanHeuristics system property to false.

Recovering a Transaction Participant
Each transaction participant supports recovery by using the recover operation.



CHAPTER 3. MANAGING TRANSACTIONS

11

/profile=default/subsystem=transactions/log-store=log-store/transactions=0\:ffff7f000001\:-
b66efc2\:4f9e6f8f\:9/participants=2:recover

If the transaction participant’s status is HEURISTIC, the recover operation switches the status to
PREPARE and asks the periodic recovery process to replay the commit.

If the commit is successful, the participant is removed from the transaction log. You can verify this by
running the probe operation on the log-store and checking that the participant is no longer listed. If this
is the last participant, the transaction is also deleted.

Refreshing the Status of a Transaction Participant
If a transaction needs recovery, you can use the refresh operation to be sure it still requires recovery,
before attempting the recovery.

/profile=default/subsystem=transactions/log-store=log-store/transactions=0\:ffff7f000001\:-
b66efc2\:4f9e6f8f\:9/participants=2:refresh

NOTE

For JBoss EAP 7.3, transaction failure exceptions are simply serialized and passed over
the wire to the client. The client gets a ClassNotFoundException exception if they do
not have the exception class on their class path.

JBoss EAP 7.3 includes the org.wildfly.common.rpc.RemoteExceptionCause
exception, which is known to the client as it is from the wildfly library. The server clones
the original exception to this new one, puts all field of the original exception to a string
form and adds them to the exception’s message. The server then passes exceptions of
type RemoteExceptionCause to the client.

3.3. VIEWING TRANSACTION STATISTICS

If transaction manager statistics are enabled, you can view statistics on processed transactions by the
transaction manager. See the Configuring the Transaction Manager section of the JBoss EAP
Configuration Guide for information about how to enable transaction manager statistics.

You can view statistics using either the management console or the management CLI. In the
management console, transaction statistics are available by navigating to the Transaction subsystem
from the Runtime tab. From the management CLI, you can view statistics by using include-
runtime=true to the read-resource operation. For example:

/subsystem=transactions:read-resource(include-runtime=true)

The following table shows the management console display name, management CLI attribute, and
description for each transaction statistic.

Table 3.1. Transactions Subsystem Statistics

Display Name Attribute Description

Aborted number-of-aborted-
transactions

The number of aborted transactions.

Red Hat JBoss Enterprise Application Platform 7.3 Managing Transactions on JBoss EAP

12

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.3/html-single/configuration_guide/#configuring_the_transaction_manager

Application Failures number-of-application-
rollbacks

The number of failed transactions, including
timeouts, whose failure origin was an
application.

Average Commit Time average-commit-time The average time of transaction commit, in
nanoseconds, measured from when the client
calls commit until the transaction manager
determines that it was successful.

Committed number-of-committed-
transactions

The number of committed transactions.

Heuristics number-of-heuristics The number of transactions in a heuristic state.

Inflight Transactions number-of-inflight-
transactions

The number of transactions which have begun
but not yet terminated.

Nested Transactions number-of-nested-
transactions

The total number of nested transactions
created.

Number of Transactions number-of-transactions The total number of transactions created,
including nested.

Resource Failures number-of-resource-
rollbacks

The number of failed transactions whose failure
origin was a resource.

System Failures number-of-system-rollbacks The number of transactions that have been
rolled back due to internal system errors.

Timed Out number-of-timed-out-
transactions

The number of transactions that have rolled
back due to timeout.

Display Name Attribute Description

3.4. CONFIGURING THE TRANSACTIONS OBJECT STORE

Transactions need a place to store objects. One of the options for object storage is a JDBC datasource.
If performance is a particular concern, the JDBC object store can be slower than a file system or
ActiveMQ journal object store.

IMPORTANT

If the transactions subsystem is configured to use Apache ActiveMQ Artemis journal as
storage type for transaction logs, then two instances of JBoss EAP are not permitted to
use the same directory for storing the journal. Application server instances can not share
the same location and each has to configure a unique location for it.

NOTE

CHAPTER 3. MANAGING TRANSACTIONS

13

NOTE

Losing a transaction object store can lead to losing data consistency. Thus, the object
store needs to be placed on a safe drive.

Using a JDBC Datasource as a Transactions Object Store
Follow the below steps to use a JDBC datasource as a transactions object store.

1. Create a datasource, for example, TransDS. For instructions on a non-XA datasource, see the
Create a Non-XA datasource section of the JBoss EAP Configuration Guide. Note that the
datasource’s JDBC driver must be installed as a core module , as described in the JBoss EAP
Configuration Guide, not as a JAR deployment, for the object store to work properly.

2. Set the datasource’s jta attribute to false.

/subsystem=datasources/data-source=TransDS:write-attribute(name=jta, value=false)

3. Set the jdbc-store-datasource attribute to the Java Naming and Directory Interface name for
the datasource to use, for example, java:jboss/datasources/TransDS.

/subsystem=transactions:write-attribute(name=jdbc-store-datasource,
value=java:jboss/datasources/TransDS)

4. Set the use-jdbc-store attribute to true.

/subsystem=transactions:write-attribute(name=use-jdbc-store, value=true)

5. Restart the JBoss EAP server for the changes to take effect.

Transactions JDBC Store Attributes
The following table identifies all of the available attributes related to JDBC object storage.

NOTE

Attribute names in this table are listed as they appear in the management model, for
example, when using the management CLI. See the schema definition file located at
EAP_HOME/docs/schema/wildfly-txn_4_0.xsd to view the elements as they appear in
the XML, as there may be differences from the management model.

Table 3.2. JDBC Store Attributes for Transactions

Property Description

use-jdbc-store Set this to true to enable the JDBC store for transactions.

jdbc-store-datasource The Java Naming and Directory Interface name of the JDBC
datasource used for storage.

jdbc-action-store-drop-table Whether to drop and recreate the action store tables at launch.
The default is false.

jdbc-action-store-table-prefix The prefix for the action store table names.

Red Hat JBoss Enterprise Application Platform 7.3 Managing Transactions on JBoss EAP

14

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.3/html-single/configuration_guide/#create_a_non_xa_datasource
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.3/html-single/configuration_guide/#install_a_jdbc_driver_as_a_core_module

jdbc-communication-store-drop-table Whether to drop and recreate the communication store tables at
launch. The default is false.

jdbc-communication-store-table-prefix The prefix for the communication store table names.

jdbc-state-store-drop-table Whether to drop and recreate the state store tables at launch.
The default is false.

jdbc-state-store-table-prefix The prefix for the state store table names.

Property Description

Using the ActiveMQ Journal Object Store
Follow the below steps to use an ActiveMQ journal object store.

1. Set the use-journal-store attribute to true.

/subsystem=transactions:write-attribute(name=use-journal-store,value=true)

2. Restart the JBoss EAP server for the changes to take effect.

CHAPTER 3. MANAGING TRANSACTIONS

15

CHAPTER 4. MONITORING TRANSACTIONS

4.1. CONFIGURING LOGGING FOR THE TRANSACTIONS SUBSYSTEM

You can control the amount of information logged about transactions, independent of other logging
settings in JBoss EAP. You can configure the logging settings using the management console or the
management CLI.

Configuring the Transaction Logger Using the Management Console

1. Navigate to the Logging subsystem configuration.

a. In the management console, click the Configuration tab. If you use a managed domain, you
must choose the appropriate server profile.

b. Select Subsystems → Logging → Configuration and click View.

2. Edit the com.arjuna attributes.
Select the Categories tab. The com.arjuna entry is already present. Select com.arjuna and
click Edit. You can change the log level and choose whether to use parent handlers or not.

Log Level:
As transactions can produce a lot of logging output, the default logging level is set to
WARN so that the server log is not overwhelmed by transaction output. If you need to check
transaction processing details, use the TRACE log level so that transaction IDs are shown.

Use Parent Handlers:
Parent handler indicates whether the logger should send its output to its parent logger. The
default behavior is true.

3. Click Save to save the changes.

Configuring the Transaction Logger Using the Management CLI
Use the following command to set the logging level from the management CLI. For a standalone server,
remove the /profile=default from the command.

/profile=default/subsystem=logging/logger=com.arjuna:write-attribute(name=level,value=VALUE)

4.1.1. Enabling the TRACE log level

The TRACE logging level adds data to the log so that you can diagnose Jakarta Connectors issues in
JBoss EAP. The following procedure shows you how to enable TRACE level logging for the
org.jboss.jca, org.jboss.as.connector, and com.arjuna classes.

Prerequisites

You have installed JBoss EAP.

Procedure

1. Open a terminal.

2. Launch the management CLI.

Red Hat JBoss Enterprise Application Platform 7.3 Managing Transactions on JBoss EAP

16

3. Choose one of the following options:

In a managed domain, use the following commands to enable the TRACE logging level for
the org.jboss.jca, org.jboss.as.connector, and com.arjuna classes:

/profile=<PROFILE NAME>/subsystem=logging/logger=org.jboss.jca:add(level=TRACE)
/profile=<PROFILE
NAME>/subsystem=logging/logger=org.jboss.as.connector:add(level=TRACE)
/profile=<PROFILE NAME>/subsystem=logging/logger=com.arjuna:write-
attribute(name=level,value=TRACE)

Replace <PROFILE NAME> with your JBoss EAP profile: default, full or full-ha.

If you’re running JBoss EAP as a standalone server, use the following commands to enable
the TRACE logging level for the org.jboss.jca, org.jboss.as.connector, and com.arjuna
classes:

/subsystem=logging/logger=org.jboss.jca:add(level=TRACE)
/subsystem=logging/logger=org.jboss.as.connector:add(level=TRACE)
/subsystem=logging/logger=com.arjuna:write-attribute(name=level,value=TRACE)

Optionally, use the following command to enable the TRACE logging level in the console-
handler class:

/subsystem=logging/console-handler=CONSOLE:write-
attribute(name=level,value=TRACE)

The code snippets are added to the appropriate configuration file:

<logger category="com.arjuna">
 <level name="TRACE"/>
</logger>

<logger category="org.jboss.jca">
 <level name="TRACE"/>
</logger>
<logger category="org.jboss.as.connector">
 <level name="TRACE"/>
</logger>

4.1.2. Enabling the Transaction Bridge Logger

The transaction bridge is a layer on top of the XTS and is a layer on top of the Jakarta Transactions or
JTS components of the Transaction Manager. It interacts with other parts of the JBoss EAP server. You
can enable verbose logging of these components that interact with the Transaction Manager for a
detailed explanation of the system’s operations.

The transaction bridge uses the logging subsystem. When running the JBoss EAP server, logging is
configured from the logging subsystem configuration in the standalone-xts.xml file. Logging for the
transaction bridge is useful for debugging purposes.

You can use the following management CLI command to configure the org.jboss.jbossts.txbridge
logger to enable the transaction bridge logging:

CHAPTER 4. MONITORING TRANSACTIONS

17

/subsystem=logging/logger=org.jboss.jbossts.txbridge:add(level=ALL)

This generates the following XML in the server configuration file:

NOTE

Deployment ordering issues may result in the Transaction Manager components
becoming active before the logging subsystem is fully configured, including the
transaction bridge. In such cases a default logging level gets applied during startup,
thereby resulting in detailed debug messages being missed.

You can configure the com.arjuna logger to enable verbose logging using the following management
CLI command:

/subsystem=logging/logger=com.arjuna:write-attribute(name=level,value=ALL)

This generates the following XML in the server configuration file:

4.1.3. Transaction Log Messages

You can track the transaction status while keeping the log files readable by using the DEBUG log level
for the transaction logger. For detailed debugging, use the TRACE log level. Refer to Configuring
Logging for the Transactions Subsystem for information on configuring the transaction logger.

Transaction Manager (TM) can generate a lot of logging information when configured to log in the
TRACE log level. Following are some of the most commonly-seen messages. This list is not
comprehensive, so you may see messages other than these.

Table 4.1. Transaction State Change

Transaction Begin When a transaction begins, a method Begin of class
com.arjuna.ats.arjuna.coordinator.BasicAction is executed and
presented in the log with the message BasicAction::Begin() for action-
id <transaction uid>.

Transaction Commit When a transaction commits, a method Commit of class
com.arjuna.ats.arjuna.coordinator.BasicAction is executed and
presented in the log with the message BasicAction::Commit() for
action-id <transaction uid>.

<logger category="org.jboss.jbossts.txbridge">
 <level name="ALL" />
</logger>

<logger category="com.arjuna">
 <level name="ALL" />
</logger>

Red Hat JBoss Enterprise Application Platform 7.3 Managing Transactions on JBoss EAP

18

Transaction Rollback When a transaction rolls back, a method Rollback of class
com.arjuna.ats.arjuna.coordinator.BasicAction is executed and
presented in the log with the message BasicAction::Rollback() for
action-id <transaction uid>.

Transaction Timeout When a transaction times out, a method doCancellations of
com.arjuna.ats.arjuna.coordinator.TransactionReaper is executed
and presented in log as Reaper Worker <thread id> attempting to
cancel <transaction uid>. You will then see the same thread rolling back
the transaction as shown above.

4.1.4. Decoding Transaction Log Files

4.1.4.1. Locating the XID/UID of a Transaction

The javax.transaction.TransactionManager interface provides two ways to locate the transaction
identifier:

You can call the toString method to print complete information about the transaction, including
the identifier.

Alternatively, you can cast the javax.transaction.Transaction instance to a
com.arjuna.ats.jta.transaction.Transaction and then call either the get_uid method, which
returns the ArjunaCore Uid representation, or call the getTxId method, which returns the Xid for
the global identifier, that is not the branch qualifier.

4.1.4.2. Finding the Transaction Status and Resources

TransactionStatusConnectionManager
The TransactionStatusConnectionManager object is used by the recovery modules to retrieve the
status of the transaction. It acts like a proxy for TransactionStatusManager objects by maintaining a
table of TransactionStatusConnector objects, each of which connects to a
TransactionStatusManager object in the application process.

You can retrieve the transaction status using the getTransactionStatus method that takes a
transaction Uid and, if available, a transaction type as parameters.

1. The process Uid field in the transactions Uid parameter is used to lookup the target
TransactionStatusManagerItem host-port pair in the transaction object store.

2. The host-port pair is used to make a TCP connection to the target TransactionStatusManager
object by using a TransactionStatusConnector object.

3. The TransactionStatusConnector passes the transaction Uid and the transaction type to the
TransactionStatusManager in order to retrieve the status of the transactions.

The following code example shows how to retrieve the TransactionStatusConnectionManager and

com.arjuna.ats.jta.transaction.Transaction arjunaTM =
(com.arjuna.ats.jta.transaction.Transaction)tx.getTransaction();
System.out.println("Transaction UID" +arjunaTM.get_uid());

CHAPTER 4. MONITORING TRANSACTIONS

19

The following code example shows how to retrieve the TransactionStatusConnectionManager and
check the transaction status:

TransactionStatusManager
The TransactionStatusManager object acts as an interface for the Recovery Manager to obtain the
status of transactions from the running application processes. One TransactionStatusManager per
application process is created by the com.arjuna.ats.arjuna.coordinator.TxControl class. A TCP
connection is used for communication between the Recovery Manager and
TransactionStatusManager. Any free port is used by the TransactionStatusManager by default.
However, the port used can be fixed using the following the property:

$ EAP_HOME/bin/standalone.sh -
DRecoveryEnvironmentBean.transactionStatusManagerPort=NETWORK_PORT_NUMBER

1. On creation, the TransactionStatusManager obtains a port that is stored with the host in the
object store as a TransactionStatusManagerItem.

2. A Listener thread is started which waits for a connection request from the
TransactionStatusConnector.

3. When the connection is established, a Connection thread is created that runs the
AtomicActionStatusService service. This service accepts a transaction Uid and a transaction
type, if available, from the TransactionStatusConnector object.

4. The transaction status is obtained from the local transaction table and returned back to the
TransactionStatusConnector object.

4.1.4.3. Viewing the Transaction History

By default, the transaction service does not maintain any history about the transactions. However, you
can set the CoordinatorEnvironmentBean.enableStatistics property variable to true for the
transaction service to maintain information about the number of transactions created and their
respective outcomes.

You can use the following management CLI command to enable the statistics:

/subsystem=transactions:write-attribute(name=enable-statistics,value=true)

You can obtain more detailed transaction statistics programmatically by using the
com.arjuna.ats.arjuna.coordinator.TxStats class.

Example: TxStats Class

// Transaction id
Uid tx = new Uid();
. . . .
TransactionStatusConnectionManager tscm = new TransactionStatusConnectionManager();

// Check if the transaction aborted
assertEquals(tscm.getTransactionStatus(tx), ActionStatus.ABORTED);

public class TxStats
{
 /**
 * @return the number of transactions (top-level and nested) created so far.

Red Hat JBoss Enterprise Application Platform 7.3 Managing Transactions on JBoss EAP

20

 */

 public static int numberOfTransactions();

 /**
 * @return the number of nested (sub) transactions created so far.
 *

 public static int numberOfNestedTransactions();

 /**
 * @return the number of transactions which have terminated with heuristic
 * outcomes.
 */

 public static int numberOfHeuristics();
 /**
 * @return the number of committed transactions.
 */

 public static int numberOfCommittedTransactions();

 /**
 * @return the total number of transactions which have rolled back.
 */

 public static int numberOfAbortedTransactions();

 /**
 * @return total number of inflight (active) transactions.
 */

 public static int numberOfInflightTransactions ();

 /**
 * @return total number of transactions rolled back due to timeout.
 */

 public static int numberOfTimedOutTransactions ();
 /**
 * @return the number of transactions rolled back by the application.
 */

 public static int numberOfApplicationRollbacks ();

 /**
 * @return number of transactions rolled back by participants.
 */

 public static int numberOfResourceRollbacks ();

 /**
 * Print the current information.
 */

CHAPTER 4. MONITORING TRANSACTIONS

21

The com.arjuna.ats.arjuna.coordinator.ActionManager class provides further information about
specific active transactions using the getNumberOfInflightTransactions method that returns the list of
currently active transactions.

 public static void printStatus(java.io.PrintWriter pw);
}

Red Hat JBoss Enterprise Application Platform 7.3 Managing Transactions on JBoss EAP

22

CHAPTER 5. HANDLING TRANSACTION MANAGER
EXCEPTIONS

5.1. DEBUGGING A TIMED-OUT TRANSACTION

There can be many reasons for a transaction timeout, such as:

Slow server performance

Thread is stuck waiting for something or hangs up

Thread needs more than the configured transaction timeout time to complete the processing

You can look at the logs for following error message to identify a timed-out transaction:

WARN ARJUNA012117 "TransactionReaper::check timeout for TX {0} in state {1}"

where {0} is the Uid of the transaction and {1} is the transaction manager’s view of the state {1} of the
timed-out transaction.

Transaction Manager provides the following options to debug the transaction timeouts:

You can configure timeout values for transactions to control the transaction lifetimes. The
transactions subsystem rolls back the transaction if the timeout value elapses before a
transaction terminates because of committing or rolling back.

You can use the setTransactionTimeout method of the XAResource interface to propagate
the current transaction to the resource manager. If supported, this operation overrides any
default timeout associated with the resource manager. Overriding the timeout is useful in
situations like the following:

when long-running transactions have lifetimes that exceed the default

when using the default timeout might cause the resource manager to roll back before the
transaction terminates, causing the transaction to roll back as well.

If you do not specify a timeout value or use a value of 0, transaction manager uses an
implementation-specific default value. In JBoss EAP transaction manager, the
CoordinatorEnvironmentBean.defaultTimeout property represents this implementation-
specific default value. The default value is 300 seconds. A value of 0 disables the default
transaction timeouts.
You can modify the default transaction timeout using the following management CLI command:

/subsystem=transactions:write-attribute(name=default-timeout,value=VALUE)

When running in a managed domain, you must specify which profile to update by preceding the
command with /profile=PROFILE_NAME

JBoss EAP Transaction Manager supports an all-or-nothing approach to call the
setTransactionTimeout method on the XAResource instances. You can set the
JTAEnvironmentBean.xaTransactionTimeoutEnabled property to true, which is the default,
to call the method on all the instances. Otherwise, you can use the

CHAPTER 5. HANDLING TRANSACTION MANAGER EXCEPTIONS

23

setXATransactionTimeoutEnabled method of the
com.arjuna.ats.jta.common.JTAEnvironmentBean class to disable timeout and specify them
on a per-transaction basis.

5.2. MIGRATING LOGS TO A NEW JBOSS EAP SERVER

Prerequisites

Ensure that the transactions subsystem is configured identically between the old and the new JBoss
EAP. An identical configuration, which includes the list of Jakarta Transactions datasources, is required
because any logs that need to be recovered must contact the datasources.

5.2.1. Migrating the File-based Log Storage

To migrate the transaction manager logs to a new JBoss EAP server, you can copy the logs to the new
JBoss EAP server.

You can use the following commands to copy the file-based logs:

1. Browse to your EAP_HOME directory.

2. Create an archive of the logs using the following command:

$ tar -cf logs.tar ./standalone/data/tx-object-store

3. Extract the archived logs to the new EAP_HOME directory using the following command:

$ tar -xf logs.tar -C NEW_EAP_HOME

5.2.2. Migrating the JDBC Store-based Log Storage

You can configure the new JBoss EAP server to use the old database and tables as described in
Using a JDBC as a Transactions Object Store .

Alternatively, you can determine the database and the tables used for the transaction logs.
Then, you can use an SQL tool to back up the tables and restore them to the new database.

NOTE

You can find an SQL query tool in the h2 JAR file shipped with JBoss EAP.

5.3. ENABLING XTS ON JBOSS EAP

XML Transaction Service (XTS) component of the transaction manager supports the coordination of
private and public web services in a business transaction. XTS provides WS-AT and WS-BA support for
web services hosted on the JBoss EAP server. It is an optional subsystem, which can be enabled using
the standalone-xts.xml configuration.

Starting JBoss EAP Server with XTS Enabled

1. Change to the JBoss EAP server directory:

cd $EAP_HOME

Red Hat JBoss Enterprise Application Platform 7.3 Managing Transactions on JBoss EAP

24

2. Copy the example XTS configuration file into the /configuration directory:

cp docs/examples/configs/standalone-xts.xml standalone/configuration

3. Start the JBoss EAP server, specifying the xts configuration:
Linux:

bin/standalone.sh --server-config=standalone-xts.xml

Windows:

bin\standalone.bat --server-config=standalone-xts.xml

5.4. CLEARING UP EXPIRED TRANSACTIONS

The following properties allow you to clear up the expired transactions:

ExpiryEntryMonitor

When the Recovery Manager initializes an expiry scanner thread, the ExpiryEntryMonitor object is
created, which is used to remove dead items from the object store. A number of scanner modules are
loaded dynamically, which removes the dead items for a particular type.
You can configure the scanner modules in the properties file using the
RecoveryEnvironmentBean.expiryScanners system property. The scanner modules are loaded at
the time of initialization.

$ EAP_HOME/bin/standalone.sh -
DRecoveryEnvironmentBean.expiryScanners=CLASSNAME1,CLASSNAME2

expiryScanInterval

All the scanner modules are called periodically to scan for dead items by the ExpiryEntryMonitor
thread. You can configure this period, in hours, using the expiryScanInterval system property, as
shown in the example below:

$ EAP_HOME/bin/standalone.sh -
DRecoveryEnvironmentBean.expiryScanInterval=EXPIRY_SCAN_INTERVAL

All scanner modules inherit the same behavior from the ExpiryScanner interface. This interface
provides a scan method that is implemented by all the scanner modules, including the following. The
scanner thread calls this scan method.

ExpiredTransactionStatusManagerScanner

The ExpiredTransactionStatusManagerScanner removes the dead
TransactionStatusManagerItems from the object store. These items remain in the object store for
a certain period before they are deleted, which is 12 hours by default. You can configure this time
period, in hours, using the transactionStatusManagerExpiryTime system property as shown in the
example below:

$ EAP_HOME/bin/standalone.sh -
DRecoveryEnvironmentBean.transactionStatusManagerExpiryTime=TRANSACTION_STATUS_M
ANAGER_EXPIRY_TIME

CHAPTER 5. HANDLING TRANSACTION MANAGER EXCEPTIONS

25

AtomicActionExpiryScanner

The AtomicActionExpiryScanner moves transaction logs for AtomicActions that are assumed to
have completed. For example, if a failure occurs after a participant has been told to commit but
before the transactions subsystem can update the logs, then upon recovery the JBoss EAP
transaction manager attempts to replay the commit request. This replay will obviously fail, thus
preventing the log from being removed. The AtomicActionExpiryScanner is also used when logs
cannot be recovered automatically for reasons such as being corrupt or zero length. All logs are
moved to a specific location based on the old location appended with /Expired.

NOTE

AtomicActionExpiryScanner is disabled by default. You can enable it by adding it to
the transaction manager properties file. You need not enable it to cope with corrupt
logs.

5.5. RECOVERING HEURISTIC OUTCOMES

A heuristic completion occurs when a transaction resource makes a one-sided decision, during the
completion stage of a distributed transaction, to commit or rollback the transaction updates. This can
leave distributed data in an indeterminate state. Network failures or resource timeouts are possible
causes for heuristic completion. Heuristic completion throws one of the following heuristic outcome
exceptions:

HEURISTIC_COMMIT

This exception is thrown when the transaction manager decides to rollback, but somehow all the
resources had already committed on their own. In this case, you need not do anything because a
consistent termination was reached.

HEURISTIC_ROLLBACK

This exception implies that the resources have all done a rollback because the commit decision from
the transaction manager was delayed. Similar to HEURISTIC_COMMIT, in this case also you need not
do anything because a consistent termination was reached.

HEURISTIC_HAZARD

This exception occurs when the disposition of some of the updates is unknown. For those that are
known, they have either all been committed or all rolled back.

HEURISTIC_MIXED

This exception occurs when some parts of the transaction were rolled back while others were
committed.

This procedure shows how to handle a heuristic outcome of a transaction using the Jakarta
Transactions.

1. The cause of a heuristic outcome in a transaction is that a resource manager promised it could
commit or rollback, and then failed to fulfill the promise. This could be due to a problem with a
third-party component, the integration layer between the third-party component and JBoss
EAP, or JBoss EAP itself.
By far, the most common two causes of heuristic errors are transient failures in the environment
and coding errors dealing with resource managers.

2. Usually, if there is a transient failure in your environment, you will know about it before you find
out about the heuristic error. This could be due to a network outage, hardware failure, database
failure, power outage, or a host of other things.

If you come across a heuristic outcome in a test environment during stress testing, it implies

Red Hat JBoss Enterprise Application Platform 7.3 Managing Transactions on JBoss EAP

26

If you come across a heuristic outcome in a test environment during stress testing, it implies
weaknesses in your test environment.

WARNING

JBoss EAP automatically recovers transactions that were in a non-heuristic
state at the time of failure, but it does not attempt to recover the heuristic
transactions.

3. If you have no obvious failure in your environment, or if the heuristic outcome is easily
reproducible, it is probably due to a coding error. You must contact the third-party vendors to
find out if a solution is available.
If you suspect the problem is in the transaction manager of JBoss EAP itself, you must raise a
support ticket.

4. You can attempt to recover the transaction manually using the management CLI. For
instructions on manually recovering a transaction, see the Recovering a Transaction Participant
section.

5. The process of resolving the transaction outcome manually is dependent on the exact
circumstance of the failure. Perform the following steps, as applicable to your environment:

a. Identify which resource managers were involved.

b. Examine the state of the transaction manager and the resource managers.

c. Manually force log cleanup and data reconciliation in one or more of the involved
components.

6. In a test environment, or if you do not care about the integrity of the data, deleting the
transaction logs and restarting JBoss EAP gets rid of the heuristic outcome. By default, the
transaction logs are located in the EAP_HOME/standalone/data/tx-object-store/ directory for
a standalone server, or the EAP_HOME/domain/servers/SERVER_NAME/data/tx-object-
store/ directory in a managed domain. In the case of a managed domain, SERVER_NAME refers
to the name of the individual server participating in a server group.

NOTE

The location of the transaction log also depends on the object store in use and
the values set for the object-store-relative-to and object-store-path
parameters. For file system logs, such as a standard shadow and Apache
ActiveMQ Artemis logs, the default directory location is used, but when using a
JDBC object store, the transaction logs are stored in a database.

5.5.1. Guidelines on Making Decisions for Heuristic Outcomes

Problem Detection
A heuristic decision is one of the most critical errors that can happen in a transaction system. It can lead
to parts of the transaction being committed, while other parts are rolled back. Thus, it can violate the
atomicity property of the transaction and can possibly lead to corruption of the data integrity.



CHAPTER 5. HANDLING TRANSACTION MANAGER EXCEPTIONS

27

A recoverable resource maintains all the information about the heuristic decision in stable storage until it
is required by the transaction manager. The actual data saved in stable storage depends on the type of
recoverable resource and is not standardized. You can parse through the data and possibly edit the
resource to correct any data integrity problems.

Heuristic outcomes are stored in the server log and can be identified using the resource manager and
transaction manager.

Manually Committing or Rolling Back a Transaction
Generally, you cannot manually commit or rollback a transaction. From the JBoss EAP transaction
management perspective, you can move a transaction back to the pending list for automated recovery
to try again or delete the record. For example:

You can use the read-resource operation to check the status of the participants in the transaction:

/subsystem=transactions/log-store=log-store/transactions=0\:ffff7f000001\:-
b66efc2\:4f9e6f8f\:9/participants=2:read-resource

The result will look similar to this:

{
 "outcome" => "success",
 "result" => {
 "eis-product-name" => "ArtemisMQ",
 "eis-product-version" => "2.0",
 "jndi-name" => "java:/JmsXA",
 "status" => "HEURISTIC_HAZARD",
 "type" => "/StateManager/AbstractRecord/XAResourceRecord"
 }
}

The outcome status shown here is a HEURISTIC_HAZARD state and is eligible for recovery.

Recovering the HEURISTIC_HAZARD Exception
The following steps show an example of how to recover a hazard type heuristic outcome.

1. To begin the recovery, you must consult each resource manager and establish the outcomes of
the various branches that are identifiable from the transaction manager tooling. However, you
should not need to force a resource manager to commit or rollback. You must rather inspect the
resource manager to know the state of the heuristic exception.
The following are reference links for listing and resolving heuristic outcomes for various
resource managers:

NOTE

These links are for reference purpose only and are subject to change. Please
consult the vendor documentation for details.

Manual resolution of in-doubt transactions in Oracle

Manual resolution of in-doubt transactions in DB2

View prepared transactions for two-phase commit in PostGreSQL and commit or rollback

XA transaction syntax in MySQL

Red Hat JBoss Enterprise Application Platform 7.3 Managing Transactions on JBoss EAP

28

https://docs.oracle.com/cd/B28359_01/server.111/b28310/ds_txns004.htm#ADMIN12237java/util/logging/package-summary.html
https://www.ibm.com/support/knowledgecenter/en/SSEPGG_9.7.0/com.ibm.db2.luw.admin.2pc.doc/doc/t0004636.html
https://www.postgresql.org/docs/9.3/view-pg-prepared-xacts.html
https://www.postgresql.org/docs/9.3/sql-commit-prepared.html
https://www.postgresql.org/docs/9.3/sql-rollback-prepared.html
https://dev.mysql.com/doc/refman/8.0/en/xa-statements.html

XA transaction implementation in MariaDB

2. You must execute the recover operation, as shown in the following example:

/subsystem=transactions/log-store=log-store/transactions=0\:ffff7f000001\:-
b66efc2\:4f9e6f8f\:9/participants=2:recover

Running the recover operation changes the state of the transaction to PREPARE and triggers
a recovery attempt by replaying the commit operation. If the recovery attempt is successful,
the participant is removed from the transaction log.

You can verify this by running the probe operation on the log-store element again. The
participant should no longer be listed. If this is the last participant, the transaction is also
deleted.

Recovering the HEURISTIC_ROLLBACK and HEURISTIC_COMMIT Exceptions
If the heuristic outcome is a rollback type, then:

The resource should not be able to commit the transaction, provided the resource manager is
well implemented.

You must decide whether you should delete the branch from the resource manager, using a
forget call, so that the rest of the transaction can commit normally and be cleaned from the
transaction store.

If you do not delete the branch from the resource manager, then the transaction will remain in
the transaction store forever.

On the other hand, if the heuristic outcome was a commit type, then you must use the business
semantics to deal with the inconsistent outcome.

Further Actions When Manual Reconciliation Fails
You can check the database transaction table, which is the DBA_2PC_PENDING table for Oracle.
However, these will depend upon the specific resource managers. Transaction Manager can provide you
with the branches to inspect in each resource manager.

You should consult the vendor’s documentation on this resource manager for details. If you suspect that
the problem is caused by the third party resource manager, you must consider raising a support ticket
with your supplier.

Revised on 2022-02-01 13:05:01 UTC

CHAPTER 5. HANDLING TRANSACTION MANAGER EXCEPTIONS

29

https://mariadb.com/kb/en/library/xa-transactions/

	Table of Contents
	CHAPTER 1. TRANSACTIONS IN JBOSS EAP
	1.1. TRANSACTION SUBSYSTEM
	1.2. PROPERTIES OF THE TRANSACTION
	1.3. COMPONENTS OF A TRANSACTION
	1.4. PRINCIPLES OF TRANSACTION MANAGEMENT
	1.4.1. XA Versus Non-XA Transactions

	CHAPTER 2. CONFIGURING TRANSACTIONS
	2.1. UNIQUE NODE IDENTIFIER
	2.1.1. Importance of the Unique Node Identifier

	2.2. CONFIGURING THE TRANSACTION MANAGER
	Configuring the Transaction Manager Using the Management Console
	Configuring the Transaction Manager Using the Management CLI

	2.3. CONFIGURING THE TRANSACTION MANAGER USING SYSTEM PROPERTIES
	2.4. CONFIGURING YOUR DATASOURCE TO USE JAKARTA TRANSACTIONS
	Prerequisites
	Configuring the Datasource to use Jakarta Transactions

	2.5. CONFIGURING THE ORB FOR JTS
	Configure the ORB Using the Management CLI
	Enable the Security Interceptors
	Enable Transactions in the IIOP Subsystem
	Enable JTS in the Transactions Subsystem

	Configure the ORB Using the Management Console

	CHAPTER 3. MANAGING TRANSACTIONS
	3.1. BROWSING TRANSACTIONS
	Refreshing the Log Store
	Viewing All Prepared Transactions

	3.2. ADMINISTERING A TRANSACTION
	Viewing the Attributes of a Transaction
	Viewing the Details of a Transaction Participant
	Deleting a Transaction Participant
	Recovering a Transaction Participant
	Refreshing the Status of a Transaction Participant

	3.3. VIEWING TRANSACTION STATISTICS
	3.4. CONFIGURING THE TRANSACTIONS OBJECT STORE
	Using a JDBC Datasource as a Transactions Object Store
	Transactions JDBC Store Attributes
	Using the ActiveMQ Journal Object Store

	CHAPTER 4. MONITORING TRANSACTIONS
	4.1. CONFIGURING LOGGING FOR THE TRANSACTIONS SUBSYSTEM
	Configuring the Transaction Logger Using the Management Console
	Configuring the Transaction Logger Using the Management CLI
	4.1.1. Enabling the TRACE log level
	4.1.2. Enabling the Transaction Bridge Logger
	4.1.3. Transaction Log Messages
	4.1.4. Decoding Transaction Log Files
	4.1.4.1. Locating the XID/UID of a Transaction
	4.1.4.2. Finding the Transaction Status and Resources
	4.1.4.3. Viewing the Transaction History

	CHAPTER 5. HANDLING TRANSACTION MANAGER EXCEPTIONS
	5.1. DEBUGGING A TIMED-OUT TRANSACTION
	5.2. MIGRATING LOGS TO A NEW JBOSS EAP SERVER
	5.2.1. Migrating the File-based Log Storage
	5.2.2. Migrating the JDBC Store-based Log Storage

	5.3. ENABLING XTS ON JBOSS EAP
	5.4. CLEARING UP EXPIRED TRANSACTIONS
	5.5. RECOVERING HEURISTIC OUTCOMES
	5.5.1. Guidelines on Making Decisions for Heuristic Outcomes
	Problem Detection
	Manually Committing or Rolling Back a Transaction
	Further Actions When Manual Reconciliation Fails

