
Red Hat Customer Content
Services

Red Hat JBoss Data Virtualization
6.3
Development Guide Volume 3:
Reference Material

This guide is intended for developers

Red Hat JBoss Data Virtualization 6.3 Development Guide Volume 3:
Reference Material

This guide is intended for developers

Red Hat Customer Content Services

Legal Notice

Copyright © 2016 Red Hat, Inc.

This document is licensed by Red Hat under the Creative Commons Attribution-ShareAlike 3.0
Unported License. If you distribute this document, or a modified version of it, you must provide
attribution to Red Hat, Inc. and provide a link to the original. If the document is modified, all Red Hat
trademarks must be removed.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other countries
and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or
sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract
This document provides more information for developers creating custom solutions.

http://creativecommons.org/licenses/by-sa/3.0/

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

Chapter 1. Read Me
1.1. Back Up Your Data
1.2. Variable Name: EAP_HOME
1.3. Variable Name: MODE
1.4. Red Hat Documentation Site

Chapter 2. Architecture
2.1. Terminology
2.2. Data Management
2.3. Query Termination
2.4. Processing
2.5. Load Balancing

Chapter 3. SQL Support
3.1. SQL Support
3.2. Identifiers
3.3. Expressions
3.4. Scalar Functions
3.5. DML Commands
3.6. DML Clauses
3.7. DDL Commands
3.8. XML Document Generation
3.9. Procedural Language
3.10. Procedures

Chapter 4. Data Types
4.1. Supported Types
4.2. Type Conversions
4.3. Conversion of String Literals
4.4. Converting to Boolean
4.5. Date and Time Conversions
4.6. Escaped Literal Syntax

Chapter 5. Updatable Views
5.1. Updatable Views
5.2. Key-Preserved Table

Chapter 6. Transaction Support
6.1. Transaction Support
6.2. AutoCommitTxn Execution Property
6.3. Updating Model Count
6.4. JDBC API Functionality
6.5. J2EE Usage Models
6.6. Transactional Behavior with JBoss Data Source Types
6.7. Limitations

Chapter 7. Data Roles
7.1. Data Roles
7.2. Role Mapping
7.3. Permissions
7.4. Data Role Definition

Chapter 8. System Schemas and Procedures
8.1. System Schemas

5
5
5
5
5

6
6
6
7
7
8

9
9
9

10
17
46
51
64
68
72
82

87
87
88
90
90
90
90

92
92
92

93
93
93
93
94
94
95
96

97
97
97
97

101

106
106

Table of Contents

1

. .

. .

. .

. .

8.1. System Schemas
8.2. VDB Metadata
8.3. Table Metadata
8.4. Procedure Metadata
8.5. Data Type Metadata
8.6. System Procedures
8.7. Metadata Procedures

Chapter 9. Virtual Databases
9.1. VDB Definition
9.2. VDB Definition: The VDB Element
9.3. VDB Definition: The import-vdb Element
9.4. VDB Definition: The model Element
9.5. VDB Definition: The translator Element
9.6. Dynamic VDBs
9.7. Dynamic VDB XML Deployment
9.8. Dynamic VDB ZIP Deployment
9.9. VDB Reuse
9.10. Metadata Repositories

Chapter 10. Generated REST Services
10.1. Generated REST Services
10.2. REST Properties
10.3. Example VDB with REST Properties
10.4. Considerations for Generated REST Services
10.5. Security for Generated REST Services
10.6. Ad-Hoc REST Services

Chapter 11. Multi-Source Models
11.1. Multi-Source Models
11.2. Multi-Source Model Configuration
11.3. The Multi-Source Column
11.4. The Multi-Source Column in System Metadata
11.5. Multi-Source Models: Planning and Execution
11.6. Multi-Source Models: SELECT, UPDATE and DELETE
11.7. Multi-Source Models: INSERT
11.8. Multi-Source Models: Stored Procedures

Chapter 12. DDL Metadata
12.1. DDL Metadata
12.2. Foreign Table
12.3. View
12.4. Table Options
12.5. Column Options
12.6. Table Constraints
12.7. INSTEAD OF Triggers
12.8. Procedures and Functions
12.9. Variable Argument Support
12.10. Function Options
12.11. Aggregate Function Options
12.12. Procedure Options
12.13. Options
12.14. Alter Statement
12.15. Namespaces for Extension Metadata
12.16. Example DDL Metadata

106
106
107
109
110
111
112

113
113
114
117
118
119
119
119
119
120
121

123
123
123
123
124
125
126

127
127
127
127
128
128
128
129
129

130
130
130
131
131
132
133
133
133
134
134
135
135
136
136
137
138

Development Guide Volume 3: Reference Material

2

. .

. .

. .

. .

Chapter 13. Translators
13.1. JBoss Data Virtualization Connector Architecture
13.2. Translators
13.3. Translator Properties
13.4. Translators in JBoss Data Virtualization
13.5. Base Execution Properties
13.6. Override Execution Properties
13.7. Parameterizable Native Queries
13.8. Delegating Translators
13.9. Amazon SimpleDB Translator
13.10. Apache Accumulo Translator
13.11. Apache SOLR Translator
13.12. Cassandra Translator
13.13. File Translator
13.14. Google Spreadsheet Translator
13.15. Infinispan DSL Translator
13.16. JDBC Translator
13.17. JPA Translator
13.18. LDAP Translator
13.19. Loopback Translator
13.20. Microsoft Excel Translator
13.21. MongoDB Translator
13.22. Object Translator
13.23. OData Translator
13.24. Swagger Translator
13.25. OLAP Translator
13.26. Salesforce Translator
13.27. SAP Gateway Translator
13.28. Web Services Translator

Chapter 14. Federated Planning
14.1. Federated Planning
14.2. Planning Overview
14.3. Example Query
14.4. Subquery Optimization
14.5. XQuery Optimization
14.6. Partial Results
14.7. Federated Optimizations
14.8. Query Plans
14.9. Query Planner

Appendix A. BNF for SQL Grammar
A.1. Main Entry Points
A.2. Reserved Keywords
A.3. Non-Reserved Keywords
A.4. Reserved Keywords For Future Use
A.5. Tokens
A.6. Production Cross-Reference
A.7. Productions

Appendix B. Dashboard Builder
B.1. JBoss Dashboard Builder
B.2. Log in to JBoss Dashboard Builder

139
139
139
140
140
142
143
143
143
144
146
149
150
151
153
154
157
171
172
180
180
183
196
198
204
206
207
214
215

218
218
218
218
220
220
222
222
226
236

246
246
246
250
252
253
255
260

298
298
298

Table of Contents

3

. .

B.3. Adding a JBoss Dashboard Builder User

Appendix C. Revision History

298

300

Development Guide Volume 3: Reference Material

4

Chapter 1. Read Me

1.1. Back Up Your Data

Warning

Red Hat recommends that you back up your system settings and data before undertaking any of the
configuration tasks mentioned in this book.

1.2. Variable Name: EAP_HOME

EAP_HOME refers to the root directory of the Red Hat JBoss Enterprise Application Platform installation on
which JBoss Data Virtualization has been deployed.

1.3. Variable Name: MODE

MODE will either be standalone or domain depending on whether JBoss Data Virtualization is running in
standalone or domain mode. Substitute one of these whenever you see MODE in a file path in this
documentation. (You need to set this variable yourself, based on where the product has been installed in your
directory structure.)

1.4. Red Hat Documentation Site

Red Hat's official documentation site is available at https://access.redhat.com/site/documentation/. There you
will find the latest version of every book, including this one.

Chapter 1. Read Me

5

https://access.redhat.com/site/documentation/

Chapter 2. Architecture

2.1. Terminology

VM or Process - a JBoss EAP instance running JBoss Data Virtualization.

Host - a machine that is "hosting" one or more VMs.

Service - a subsystem running in a VM (often in many VMs) and providing a related set of functionality

In addition to these main components, the service platform provides a core set of services available to
applications built on top of the service platform. These services are:

Session - the Session service manages active session information.

Buffer Manager - the Buffer Manager service provides access to data management for intermediate
results. See Section 2.2.2, “Buffer Management”.

Transaction - the Transaction service manages global, local, and request scoped transactions. See
Section 6.1, “Transaction Support” for more information.

2.2. Data Management

2.2.1. Cursoring and Batching

JBoss Data Virtualization cursors all results, regardless of whether they are from one source or many
sources, and regardless of what type of processing (joins, unions, etc.) have been performed on the results.

JBoss Data Virtualization processes results in batches. A batch is a set of records. The number of rows in a
batch is determined by the buffer system property processor-batch-size and is scaled based on the estimated
memory footprint of the batch.

Client applications have no direct knowledge of batches or batch sizes, but rather specify fetch size. However
the first batch, regardless of fetch size is always proactively returned to synchronous clients. Subsequent
batches are returned based on client demand for the data. Pre-fetching is utilized at both the client and
connector levels.

2.2.2. Buffer Management

The buffer manager manages memory for all result sets used in the query engine. That includes result sets
read from a connection factory, result sets used temporarily during processing, and result sets prepared for a
user. Each result set is referred to in the buffer manager as a tuple source.

When retrieving batches from the buffer manager, the size of a batch in bytes is estimated and then allocated
against the maximum limit.

Memory Management

The buffer manager has two storage managers, these being a memory manager and a disk
manager. The buffer manager maintains the state of all the batches and determines when batches
must be moved from memory to disk.

Disk Management

Each tuple source has a dedicated file (named by the ID) on disk. This file will be created only if at
least one batch for the tuple source had to be swapped to disk. This is a random access file. The

Development Guide Volume 3: Reference Material

6

connector batch size and processor batch size properties define how many rows can exist in a
batch and thus define how granular the batches are when stored into the storage manager.
Batches are always read and written from the storage manager together at once.

The disk storage manager has a cap on the maximum number of open files to prevent running out
of file handles. In cases with heavy buffering, this can cause wait times while waiting for a file
handle to become available (the default max open files is 64).

2.2.3. Cleanup

When a tuple source is no longer needed, it is removed from the buffer manager. The buffer manager will
remove it from both the memory storage manager and the disk storage manager. The disk storage manager
will delete the file. In addition, every tuple source is tagged with a "group name" which is typically the session
ID of the client. When the client's session is terminated (by closing the connection, server detecting client
shutdown, or administrative termination), a call is sent to the buffer manager to remove all tuple sources for
the session.

In addition, when the query engine is shutdown, the buffer manager is shut down, which will remove all state
from the disk storage manager and cause all files to be closed. When the query engine is stopped, it is safe
to delete any files in the buffer directory as they are not used across query engine restarts and must be due
to a system crash where buffer files were not cleaned up.

2.3. Query Termination

2.3.1. Canceling Queries

When a query is canceled, processing will be stopped in the query engine and in all connectors involved in
the query. The semantics of what a connector does in response to a cancellation command is dependent on
the connector implementation. For example, JDBC connectors will asynchronously call cancel on the
underlying JDBC driver, which may or may not actually support this method.

2.3.2. User Query Timeouts

User query timeouts in Data Virtualization can be managed on the client-side or server-side. Timeouts are
only relevant for the first record returned. If the first record has not been received by the client within the
specified timeout period, a "cancel" command is issued to the server for the request and no results are
returned to the client. The cancel command is issued asynchronously by the JDBC API without the client's
intervention.

The JDBC API uses the query timeout set by the java.sql.Statement.setQueryTimeout method. You
can also set a default statement timeout via the connection property QUERYTIMEOUT. ODBC clients may
also use QUERYTIMEOUT as an execution property via a set statement to control the default timeout setting.
See Red Hat JBoss Development Guide: Client Development for more on connection/execution properties
and set statements.

Server-side timeouts start when the query is received by the engine. The timeout will be canceled if the first
result is sent back before the timeout has ended. See Section 9.2, “VDB Definition: The VDB Element” for
more on setting the query-timeout VDB property. See the Red Hat JBoss Administration Guide for more
information on setting the default query timeout for all queries.

2.4. Processing

2.4.1. Join Algorithms

Chapter 2. Architecture

7

Nested loop does the most obvious processing - for every row in the outer source, it compares with every
row in the inner source. Nested loop is only used when the join criteria has no equi-join predicates.

Merge join first sorts the input sources on the joined columns. You can then walk through each side in parallel
(effectively one pass through each sorted source) and when you have a match, emit a row. In general, merge
join is on the order of n+m rather than n*m in nested loop. Merge join is the default algorithm.

Using costing information the engine may also delay the decision to perform a full sort merge join. Based
upon the actual row counts involved, the engine can choose to build an index of the smaller side (which will
perform similarly to a hash join) or to only partially sort the larger side of the relation.

Joins involving equi-join predicates are also eligible to be made into dependent joins (see Section 14.7.3,
“Dependent Joins”).

2.4.2. Sort-Based Algorithms

Sorting is used as the basis of the Sort (ORDER BY), Grouping (GROUP BY), and DupRemoval (SELECT
DISTINCT) operations. The sort algorithm is a multi-pass merge-sort that does not ever require all of the
result set to be in memory, yet uses the maximal amount of memory allowed by the buffer manager.

It consists of two phases. The first phase ("sort") will take an unsorted input stream and produce one or more
sorted input streams. Each pass reads as much of the unsorted stream as possible, sorts it, and writes it
back out as a new stream. Since the stream size may be bigger than that of the memory, it may be written
out as many sorted streams.

The second phase ("merge") consists of a set of phases that grab the next batch from as many sorted input
streams as will fit in memory. It then repeatedly grabs the next tuple in sorted order from each stream and
outputs merged sorted batches to a new sorted stream. At completion of the pass, all input streams are
dropped. Hence, each pass reduces the number of sorted streams. The last stream remaining is the final
output.

2.5. Load Balancing

2.5.1. Configure Load Balancing

The Teiid JDBC driver does not perform true load-balancing. You can use it to route queries across the
host:port combinations defined in the URL but it will not do it based on the load. Instead, you need to use
HAProxy.

Development Guide Volume 3: Reference Material

8

Chapter 3. SQL Support

3.1. SQL Support

JBoss Data Virtualization supports SQL for issuing queries and for defining view transformations.

JBoss Data Virtualization provides nearly all of the functionality of SQL-92 DML. SQL-99 and later features
have been added as required. The following does not attempt to cover SQL exhaustively, but rather
highlights SQL's usage within JBoss Data Virtualization.

See the appendix for the SQL grammar accepted by JBoss Data Virtualization.

See Section 3.9.2, “Command Statement” for information on how SQL is used in virtual procedures and
update procedures.

3.2. Identifiers

3.2.1. Identifiers

SQL commands contain references to tables and columns. These references are in the form of identifiers,
which uniquely identify the tables and columns in the context of the command.

All queries are processed in the context of a virtual database (VDB). Because information can be federated
across multiple sources, tables and columns must be scoped in some manner to avoid conflicts. This scoping
is provided by schemas, which contain the information for each data source or set of views.

Fully qualified table and column names are of the following form, where the separate 'parts' of the identifier
are delimited by periods.

TABLE: <schema_name>.<table_spec>

COLUMN: <schema_name>.<table_spec>.<column_name>

Syntax Rules:

Identifiers can consist of alphanumeric characters, or the underscore (_) character, and must begin with
an alphabetic character. Any Unicode character may be used in an identifier.

Identifiers in double quotes can have any contents. The double quote character can be used if it is
escaped with an additional double quote; for example, "some "" id".

Because different data sources organize tables in different ways (some prepending catalog or schema or
user information) JBoss Data Virtualization allows table specification to be a dot delimited construct.

Note

When a table specification contains a dot, resolving will allow for the match of a partial name
against any number of the end segments in the name. For example, a table with the fully qualified
name vdbname."sourceschema.sourcetable" would match the partial name
sourcetable.

Columns, schemas, alias identifiers cannot contain a dot.

Identifiers, even when quoted, are not case sensitive in JBoss Data Virtualization.

Chapter 3. SQL Support

9

Some examples of valid fully qualified table identifiers are:

MySchema.Portfolios

"MySchema.Portfolios"

MySchema.MyCatalog.dbo.Authors

Some examples of valid fully qualified column identifiers are:

MySchema.Portfolios.portfolioID

"MySchema.Portfolios"."portfolioID"

MySchema.MyCatalog.dbo.Authors.lastName

Fully qualified identifiers can always be used in SQL commands. Partial or unqualified forms can also be
used, as long as the resulting names are unambiguous in the context of the command. Different forms of
qualification can be mixed in the same query.

3.2.2. Reserved Words

Reserved words in JBoss Data Virtualization include the standard SQL 2003 Foundation, SQL/MED, and
SQL/XML reserved words, as well as JBoss Data Virtualization specific words such as BIGINTEGER,
BIGDECIMAL, or MAKEDEP.

See Also:

Section A.2, “Reserved Keywords”

Section A.4, “Reserved Keywords For Future Use”

3.3. Expressions

3.3.1. Expressions

Identifiers, literals, and functions can be combined into expressions. Expressions can be used almost
anywhere in a query -- SELECT, FROM (if specifying join criteria), WHERE, GROUP BY, HAVING, or
ORDER BY.

JBoss Data Virtualization supports the following types of expressions:

Column identifiers

Refer to Section 3.3.2, “Column Identifiers”.

Literals

Refer to Section 3.3.3, “Literals”.

Aggregate functions

Refer to Section 3.3.4, “Aggregate Functions”.

Window functions

Refer to Section 3.3.5, “Window Functions”.

Case and searched case

Development Guide Volume 3: Reference Material

10

Refer to Section 3.3.8, “Case and Searched Case”.

Scalar subqueries

Refer to Section 3.3.9, “Scalar Subqueries”.

Parameter references

Refer to Section 3.3.10, “Parameter References”.

Criteria

Refer to Section 3.3.11, “Criteria”.

3.3.2. Column Identifiers

Column identifiers are used to specify the output columns in SELECT statements, the columns and their
values for INSERT and UPDATE statements, and criteria used in WHERE and FROM clauses. They are also
used in GROUP BY, HAVING, and ORDER BY clauses. The syntax for column identifiers is defined in
Section 3.2.1, “Identifiers”.

3.3.3. Literals

Literal values represent fixed values. These can be any of the standard data types. See Section 4.1,
“Supported Types”.

Syntax Rules:

Integer values will be assigned an integral data type big enough to hold the value (integer, long, or
biginteger).

Floating point values will always be parsed as a double.

The keyword 'null' is used to represent an absent or unknown value and is inherently untyped. In many
cases, a null literal value will be assigned an implied type based on context. For example, in the function
'5 + null', the null value will be assigned the type 'integer' to match the type of the value '5'. A null literal
used in the SELECT clause of a query with no implied context will be assigned to type 'string'.

Some examples of simple literal values are:

'abc'

'isn''t true' - use an extra single tick to escape a tick in a string with single ticks

5

-37.75e01 - scientific notation

100.0 - parsed as BigDecimal

true

false

'\u0027' - unicode character

3.3.4. Aggregate Functions

Aggregate functions take sets of values from a group produced by an explicit or implicit GROUP BY and

Chapter 3. SQL Support

11

return a single scalar value computed from the group.

JBoss Data Virtualization supports the following aggregate functions:

COUNT(*) - count the number of values (including nulls and duplicates) in a group

COUNT(x) - count the number of values (excluding nulls) in a group

SUM(x) - sum of the values (excluding nulls) in a group

AVG(x) - average of the values (excluding nulls) in a group

MIN(x) - minimum value in a group (excluding null)

MAX(x) - maximum value in a group (excluding null)

ANY(x)/SOME(x) - returns TRUE if any value in the group is TRUE (excluding null)

EVERY(x) - returns TRUE if every value in the group is TRUE (excluding null)

VAR_POP(x) - biased variance (excluding null) logically equals (sum(x^2) - sum(x)^2/count(x))/count(x);
returns a double; null if count = 0

VAR_SAMP(x) - sample variance (excluding null) logically equals (sum(x^2) -
sum(x)^2/count(x))/(count(x) - 1); returns a double; null if count < 2

STDDEV_POP(x) - standard deviation (excluding null) logically equals SQRT(VAR_POP(x))

STDDEV_SAMP(x) - sample standard deviation (excluding null) logically equals SQRT(VAR_SAMP(x))

TEXTAGG(FOR (expression [as name], ... [DELIMITER char] [QUOTE char] [HEADER]
[ENCODING id] [ORDER BY ...]) - CSV text aggregation of all expressions in each row of a group.
When DELIMITER is not specified, by default comma (,) is used as delimiter. Double quotes(") is the
default quote character. Use QUOTE to specify a different value. All non-null values will be quoted. If
HEADER is specified, the result contains the header row as the first line. The header line will be present
even if there are no rows in a group. This aggregation returns a BLOB. See Section 3.6.15, “ORDER BY
Clause”. Example:

TEXTAGG(col1, col2 as name DELIMITER '|' HEADER ORDER BY col1)

XMLAGG(xml_expr [ORDER BY ...]) - XML concatenation of all XML expressions in a group
(excluding null). The ORDER BY clause cannot reference alias names or use positional ordering. See
Section 3.6.15, “ORDER BY Clause”.

JSONARRAY_AGG(x [ORDER BY ...]) - creates a JSON array result as a CLOB including null value.
The ORDER BY clause cannot reference alias names or use positional ordering. Also see Section 3.4.15,
“JSON Functions”. Integer value example:

jsonArray_Agg(col1 order by col1 nulls first)

could return

[null,null,1,2,3]

Development Guide Volume 3: Reference Material

12

STRING_AGG(x, delim) - creates a lob results from the concatenation of x using the delimiter delim. If
either argument is null, no value is concatenated. Both arguments are expected to be character
(string/clob) or binary (varbinary, blob) and the result will be clob or blob respectively. DISTINCT and
ORDER BY are allowed in STRING_AGG. Example:

string_agg(col1, ',' ORDER BY col1 ASC)

could return

'a,b,c'

agg([DISTINCT|ALL] arg ... [ORDER BY ...]) - a user defined aggregate function

Syntax Rules:

Some aggregate functions may contain the keyword 'DISTINCT' before the expression, indicating that
duplicate expression values should be ignored. DISTINCT is not allowed in COUNT(*) and is not
meaningful in MIN or MAX (result would be unchanged), so it can be used in COUNT, SUM, and AVG.

Aggregate functions cannot be used in FROM, GROUP BY, or WHERE clauses without an intervening
query expression.

Aggregate functions cannot be nested within another aggregate function without an intervening query
expression.

Aggregate functions may be nested inside other functions.

Any aggregate function may take an optional FILTER clause of the following form:

FILTER (WHERE condition)

The condition may be any boolean value expression that does not contain a subquery or a correlated
variable. The filter will logically be evaluated for each row prior to the grouping operation. If false, the
aggregate function will not accumulate a value for the given row.

User defined aggregate functions need ALL specified if no other aggregate specific constructs are used to
distinguish the function as an aggregate rather than normal function.

For more information on aggregates, refer to Section 3.6.13, “GROUP BY Clause” and Section 3.6.14,
“HAVING Clause”.

3.3.5. Window Functions

JBoss Data Virtualization supports ANSI SQL 2003 window functions. A window function allows an
aggregate function to be applied to a subset of the result set, without the need for a GROUP BY clause. A
window function is similar to an aggregate function, but requires the use of an OVER clause or window
specification.

Usage:

aggregate|ranking OVER ([PARTITION BY expression [, expression]*] [ORDER BY
...])

In the above example, aggregate can be any of those in Section 3.3.4, “Aggregate Functions”. Ranking can
be one of ROW_NUMBER(), RANK(), DENSE_RANK().

Chapter 3. SQL Support

13

Syntax Rules:

Window functions can only appear in the SELECT and ORDER BY clauses of a query expression.

Window functions cannot be nested in one another.

Partitioning and ORDER BY expressions cannot contain subqueries or outer references.

The ranking (ROW_NUMBER, RANK, DENSE_RANK) functions require the use of the window
specification ORDER BY clause.

An XMLAGG ORDER BY clause cannot be used when windowed.

The window specification ORDER BY clause cannot reference alias names or use positional ordering.

Windowed aggregates may not use DISTINCT if the window specification is ordered.

3.3.6. Window Functions: Analytical Function Definitions

ROW_NUMBER() - functionally the same as COUNT(*) with the same window specification. Assigns a
number to each row in a partition starting at 1.

RANK() - Assigns a number to each unique ordering value within each partition starting at 1, such that the
next rank is equal to the count of prior rows.

DENSE_RANK() - Assigns a number to each unique ordering value within each partition starting at 1,
such that the next rank is sequential.

3.3.7. Window Functions: Processing

Window functions are logically processed just before creating the output from the SELECT clause. Window
functions can use nested aggregates if a GROUP BY clause is present. There is no guaranteed effect on the
output ordering from the presence of window functions. The SELECT statement must have an ORDER BY
clause to have a predictable ordering.

JBoss Data Virtualization will process all window functions with the same window specification together. In
general, a full pass over the row values coming into the SELECT clause will be required for each unique
window specification. For each window specification the values will be grouped according to the PARTITION
BY clause. If no PARTITION BY clause is specified, then the entire input is treated as a single partition. The
output value is determined based upon the current row value, its peers (that is rows that are the same with
respect to their ordering), and all prior row values based upon ordering in the partition. The ROW_NUMBER
function will assign a unique value to every row regardless of the number of peers.

Example windowed results:

SELECT name, salary, max(salary) over (partition by name) as max_sal,
 rank() over (order by salary) as rank, dense_rank() over (order by
salary) as dense_rank,
 row_number() over (order by salary) as row_num FROM employees

name salary max_sal rank dense_rank row_num
John 100000 100000 2 2 2
Henry 50000 100000 5 4 5
John 60000 60000 3 3 3
Suzie 60000 150000 3 3 4
Suzie 150000 150000 1 1 1

Development Guide Volume 3: Reference Material

14

3.3.8. Case and Searched Case

JBoss Data Virtualization supports two forms of the CASE expression which allows conditional logic in a
scalar expression.

Supported forms:

CASE <expr> (WHEN <expr> THEN <expr>)+ [ELSE expr] END

CASE (WHEN <criteria> THEN <expr>)+ [ELSE expr] END

Each form allows for an output based on conditional logic. The first form starts with an initial expression and
evaluates WHEN expressions until the values match, and outputs the THEN expression. If no WHEN is
matched, the ELSE expression is output. If no WHEN is matched and no ELSE is specified, a null literal value
is output. The second form (the searched case expression) searches the WHEN clauses, which specify an
arbitrary criteria to evaluate. If any criteria evaluates to true, the THEN expression is evaluated and output. If
no WHEN is true, the ELSE is evaluated or NULL is output if none exists.

3.3.9. Scalar Subqueries

Subqueries can be used to produce a single scalar value in the SELECT, WHERE, or HAVING clauses only.
A scalar subquery must have a single column in the SELECT clause and should return either 0 or 1 row. If no
rows are returned, null will be returned as the scalar subquery value. For other types of subqueries, refer to
Section 3.5.10, “Subqueries”.

3.3.10. Parameter References

Parameters are specified using a '?' symbol. Parameters may only be used with prepared statements or
callable statements in JDBC. Each parameter is linked to a value specified by a one-based index in the JDBC
API.

3.3.11. Criteria

Criteria may be:

Predicates that evaluate to true or false

Logical criteria that combines criteria (AND, OR, NOT)

A value expression with type boolean

Usage:

criteria AND|OR criteria

NOT criteria

(criteria)

expression (=|<>|!=|<|>|<=|>=) (expression|((ANY|ALL|SOME) subquery))

expression [NOT] IS NULL

Chapter 3. SQL Support

15

expression [NOT] IN (expression[,expression]*)|subquery

expression [NOT] LIKE pattern [ESCAPE char]

LIKE matches the string expression against the given string pattern. The pattern may contain % to match
any number of characters and _ to match any single character. The escape character can be used to
escape the match characters % and _.

expression [NOT] SIMILAR TO pattern [ESCAPE char]

SIMILAR TO is a cross between LIKE and standard regular expression syntax. % and _ are still used,
rather than .* and . respectively.

Note

JBoss Data Virtualization does not exhaustively validate SIMILAR TO pattern values. Rather, the
pattern is converted to an equivalent regular expression. Care should be taken not to rely on
general regular expression features when using SIMILAR TO. If additional features are needed,
then LIKE_REGEX should be used. Usage of a non-literal pattern is discouraged as pushdown
support is limited.

expression [NOT] LIKE_REGEX pattern

LIKE_REGEX allows for standard regular expression syntax to be used for matching. This differs from
SIMILAR TO and LIKE in that the escape character is no longer used (\ is already the standard escape
mechansim in regular expressions and % and _ have no special meaning. The runtime engine uses the
JRE implementation of regular expressions - see the java.util.regex.Pattern class for details.

Important

JBoss Data Virtualization does not exhaustively validate LIKE_REGEX pattern values. It is
possible to use JRE only regular expression features that are not specified by the SQL
specification. Additionally, not all sources support the same regular expression syntax or
extensions. Care should be taken in pushdown situations to ensure that the pattern used will have
the same meaning in JBoss Data Virtualization and across all applicable sources.

EXISTS(subquery)

expression [NOT] BETWEEN minExpression AND maxExpression

JBoss Data Virtualization converts BETWEEN into the equivalent form expression >= minExpression AND
expression <= maxExpression.

expression

Where expression has type boolean.

Syntax Rules:

Development Guide Volume 3: Reference Material

16

http://download.oracle.com/javase/6/docs/api/java/util/regex/Pattern.html

The precedence ordering from lowest to highest is: comparison, NOT, AND, OR.

Criteria nested by parenthesis will be logically evaluated prior to evaluating the parent criteria.

Some examples of valid criteria are:

(balance > 2500.0)

100*(50 - x)/(25 - y) > z

concat(areaCode,concat('-',phone)) LIKE '314%1'

Note

Null values represent an unknown value. Comparison with a null value will evaluate to 'unknown',
which can never be true even if 'not' is used.

3.3.12. Operator Precedence

JBoss Data Virtualization parses and evaluates operators with higher precedence before those with lower
precedence. Operators with equal precedence are left associative. The following operator precedence is
listed from highest to lowest:

Operator Description
+,- positive/negative value expression
*,/ multiplication/division
+,- addition/subtraction
|| concat
criteria see Section 3.3.11, “Criteria”

3.3.13. Criteria Precedence

JBoss Data Virtualization parses and evaluates conditions with higher precedence before those with lower
precedence. Conditions with equal precedence are left associative. The following condition precedence is
listed from highest to lowest:

Condition Description
SQL operators See Section 3.3.1, “Expressions”
EXISTS, LIKE, SIMILAR TO, LIKE_REGEX,
BETWEEN, IN, IS NULL, <, <=, >, >=, =, <>

comparison

NOT negation
AND conjunction
OR disjunction

Note however that to prevent lookaheads the parser does not accept all possible criteria sequences. For
example "a = b is null" is not accepted, since by the left associative parsing we first recognize "a =", then look
for a common value expression. "b is null" is not a valid common value expression. Thus nesting must be
used, for example "(a = b) is null". See BNF for SQL Grammar for all parsing rules.

3.4. Scalar Functions

Chapter 3. SQL Support

17

3.4.1. Scalar Functions

Important

This feature is a technical preview only.

JBoss Data Virtualization provides an extensive set of built-in scalar functions. See Section 3.1, “SQL
Support” and Section 4.1, “Supported Types”.

In addition, JBoss Data Virtualization provides the capability for user defined functions or UDFs. See Red Hat
JBoss Development Guide: Server Development for adding UDFs. Once added, UDFs may be called like any
other function.

3.4.2. Numeric Functions

Numeric functions return numeric values (integer, long, float, double, biginteger, bigdecimal). They generally
take numeric values as inputs, though some take strings.

Table 3.1. Numeric Functions

Function Definition Data Type Constraint
+ - * / Standard numeric operators x in {integer, long, float, double, biginteger,

bigdecimal}, return type is same as x

Note

The precision and scale of non-
bigdecimal arithmetic function
functions results matches that of Java.
The results of bigdecimal operations
match Java, except for division, which
uses a preferred scale of max(16,
dividend.scale + divisor.precision + 1),
which then has trailing zeros removed
by setting the scale to
max(dividend.scale, normalized
scale).

ABS(x) Absolute value of x See standard numeric operators above
ACOS(x) Arc cosine of x x in {double, bigdecimal}, return type is

double
ASIN(x) Arc sine of x x in {double, bigdecimal}, return type is

double
ATAN(x) Arc tangent of x x in {double, bigdecimal}, return type is

double
ATAN2(x,y) Arc tangent of x and y x, y in {double, bigdecimal}, return type is

double
CEILING(x) Ceiling of x x in {double, float}, return type is double
COS(x) Cosine of x x in {double, bigdecimal}, return type is

double

Development Guide Volume 3: Reference Material

18

COT(x) Cotangent of x x in {double, bigdecimal}, return type is
double

DEGREES(x) Convert x degrees to
radians

x in {double, bigdecimal}, return type is
double

EXP(x) e^x x in {double, float}, return type is double
FLOOR(x) Floor of x x in {double, float}, return type is double
FORMATBIGDECIMAL(x, y) Formats x using format y x is bigdecimal, y is string, returns string
FORMATBIGINTEGER(x, y) Formats x using format y x is biginteger, y is string, returns string
FORMATDOUBLE(x, y) Formats x using format y x is double, y is string, returns string
FORMATFLOAT(x, y) Formats x using format y x is float, y is string, returns string
FORMATINTEGER(x, y) Formats x using format y x is integer, y is string, returns string
FORMATLONG(x, y) Formats x using format y x is long, y is string, returns string
LOG(x) Natural log of x (base e) x in {double, float}, return type is double
LOG10(x) Log of x (base 10) x in {double, float}, return type is double
MOD(x, y) Modulus (remainder of x / y) x in {integer, long, float, double, biginteger,

bigdecimal}, return type is same as x
PARSEBIGDECIMAL(x, y) Parses x using format y x, y are strings, returns bigdecimal
PARSEBIGINTEGER(x, y) Parses x using format y x, y are strings, returns biginteger
PARSEDOUBLE(x, y) Parses x using format y x, y are strings, returns double
PARSEFLOAT(x, y) Parses x using format y x, y are strings, returns float
PARSEINTEGER(x, y) Parses x using format y x, y are strings, returns integer
PARSELONG(x, y) Parses x using format y x, y are strings, returns long
PI() Value of Pi return is double
POWER(x,y) x to the y power x in {double, bigdecimal, biginteger}, return is

the same type as x
RADIANS(x) Convert x radians to

degrees
x in {double, bigdecimal}, return type is
double

RAND() Returns a random number,
using generator established
so far in the query or
initializing with system clock
if necessary.

Returns double.

RAND(x) Returns a random number,
using new generator seeded
with x.

x is integer, returns double.

ROUND(x,y) Round x to y places;
negative values of y
indicate places to the left of
the decimal point

x in {integer, float, double, bigdecimal} y is
integer, return is same type as x

SIGN(x) 1 if x > 0, 0 if x = 0, -1 if x <
0

x in {integer, long, float, double, biginteger,
bigdecimal}, return type is integer

SIN(x) Sine value of x x in {double, bigdecimal}, return type is
double

SQRT(x) Square root of x x in {long, double, bigdecimal}, return type is
double

TAN(x) Tangent of x x in {double, bigdecimal}, return type is
double

BITAND(x, y) Bitwise AND of x and y x, y in {integer}, return type is integer
BITOR(x, y) Bitwise OR of x and y x, y in {integer}, return type is integer
BITXOR(x, y) Bitwise XOR of x and y x, y in {integer}, return type is integer

Function Definition Data Type Constraint

Chapter 3. SQL Support

19

BITNOT(x) Bitwise NOT of x x in {integer}, return type is integer

Function Definition Data Type Constraint

3.4.3. Parsing Numeric Data Types from Strings

JBoss Data Virtualization provides a set of functions to parse formatted strings as various numeric data types:

parseDouble - parses a string as a double

parseFloat - parses a string as a float

parseLong - parses a string as a long

parseInteger - parses a string as an integer

For each function, you have to provide the formatting of the string. The formatting follows the convention
established by the java.text.DecimalFormat class. See examples below.

Input String Function Call to Format String Output Value Output Data Type
'$25.30' parseDouble(cost, '$#,##0.00;

($#,##0.00)')
25.3 double

'25%' parseFloat(percent, '#,##0%') 25 float
'2,534.1' parseFloat(total, '#,##0.###;-#,##0.###') 2534.1 float
'1.234E3' parseLong(amt, '0.###E0') 1234 long
'1,234,567' parseInteger(total, '#,##0;-#,##0') 1234567 integer

Note

See http://download.oracle.com/javase/6/docs/api/java/text/DecimalFormat.html for more information.

3.4.4. Formatting Numeric Data Types as Strings

JBoss Data Virtualization provides a set of functions to convert numeric data types into formatted strings:

formatDouble - formats a double as a string

formatFloat - formats a float as a string

formatLong - formats a long as a string

formatInteger - formats an integer as a string

For each function, you have to provide the formatting of the string. The formatting follows the convention
established by the java.text.DecimalFormat class. See examples below.

Input Value Input Data Type Function Call to Format String Output String
25.3 double formatDouble(cost, '$#,##0.00;

($#,##0.00)')
'$25.30'

25 float formatFloat(percent, '#,##0%') '25%'
2534.1 float formatFloat(total, '#,##0.###;-#,##0.###') '2,534.1'
1234 long formatLong(amt, '0.###E0') '1.234E3'
1234567 integer formatInteger(total, '#,##0;-#,##0') '1,234,567'

Development Guide Volume 3: Reference Material

20

http://download.oracle.com/javase/6/docs/api/java/text/DecimalFormat.html

Note

See http://download.oracle.com/javase/6/docs/api/java/text/DecimalFormat.html for more information.

3.4.5. String Functions

String functions generally take strings as inputs and return strings as outputs.

Unless specified, all of the arguments and return types in the following table are strings and all indexes are
one-based. The zero index is considered to be before the start of the string.

Important

Non-ASCII range characters or integers used by ASCII(x), CHR(x), and CHAR(x) may produce
different results or exceptions depending on where the function is evaluated (JBoss Data
Virtualization vs. source). JBoss Data Virtualization uses Java default int to char and char to int
conversions, which operates over UTF16 values.

Table 3.2. String Functions

Function Definition DataType Constraint
x || y Concatenation operator x,y in {string}, return type is

string
ASCII(x) Provide ASCII value of the left most

character in x. The empty string will return
null.

return type is integer

CHR(x) CHAR(x) Provide the character for ASCII value x x in {integer}
CONCAT(x, y) Concatenates x and y with ANSI

semantics. If x and/or y is null, returns null.
x, y in {string}

CONCAT2(x, y) Concatenates x and y with non-ANSI null
semantics. If x and y is null, returns null. If
only x or y is null, returns the other value.

x, y in {string}

ENDSWITH(x, y) Checks if y ends with x. If only x or y is
null, returns null.

x, y in {string}, returns boolean

INITCAP(x) Make first letter of each word in string x
capital and all others lowercase

x in {string}

INSERT(str1, start, length,
str2)

Insert string2 into string1 str1 in {string}, start in {integer},
length in {integer}, str2 in
{string}

LCASE(x) Lowercase of x x in {string}
LEFT(x, y) Get left y characters of x x in {string}, y in {integer},

return string
LENGTH(x) Length of x return type is integer
LOCATE(x, y) Find position of x in y starting at beginning

of y
x in {string}, y in {string}, return
integer

LOCATE(x, y, z) Find position of x in y starting at z x in {string}, y in {string}, z in
{integer}, return integer

LPAD(x, y) Pad input string x with spaces on the left to
the length of y

x in {string}, y in {integer},
return string

Chapter 3. SQL Support

21

http://download.oracle.com/javase/6/docs/api/java/text/DecimalFormat.html

LPAD(x, y, z) Pad input string x on the left to the length of
y using character z

x in {string}, y in {string}, z in
{character}, return string

LTRIM(x) Left trim x of blank characters x in {string}, return string
QUERYSTRING(path [,
expr [AS name] ...])

Returns a properly encoded query string
appended to the given path. Null valued
expressions are omitted, and a null path is
treated as ''.

Names are optional for column reference
expressions.

e.g. QUERYSTRING('path', 'value' as "&x",
' & ' as y, null as z) returns 'path?
%26x=value&y=%20%26%20'

path, expr in {string}. name is
an identifier

REPEAT(str1,instances) Repeat string1 a specified number of times str1 in {string}, instances in
{integer} return string

REPLACE(x, y, z) Replace all y in x with z x,y,z in {string}, return string
RIGHT(x, y) Get right y characters of x x in {string}, y in {integer},

return string
RPAD(input string x, pad
length y)

Pad input string x with spaces on the right
to the length of y

x in {string}, y in {integer},
return string

RPAD(x, y, z) Pad input string x on the right to the length
of y using character z

x in {string}, y in {string}, z in
{character}, return string

RTRIM(x) Right trim x of blank characters x is string, return string
SPACE(x) Repeats space x times x in {integer}
SUBSTRING(x, y)

SUBSTRING(x FROM y)

Get substring from x, from position y to the
end of x

y in {integer}

SUBSTRING(x, y, z)

SUBSTRING(x FROM y
FOR z)

Get substring from x from position y with
length z

y, z in {integer}

TO_CHARS(x, encoding) Return a CLOB from the BLOB with the
given encoding. BASE64, HEX, and the
built-in Java Charset names are valid
values for the encoding.

Note

For charsets, unmappable chars will
be replaced with the charset default
character. Binary formats, such as
BASE64, will error in their
conversion to bytes if an
unrecognizable character is
encountered.

x is a BLOB, encoding is a
string, and returns a CLOB

Function Definition DataType Constraint

Development Guide Volume 3: Reference Material

22

TO_BYTES(x, encoding) Return a BLOB from the CLOB with the
given encoding. BASE64, HEX, and the
builtin Java Charset names are valid
values for the encoding.

x in a CLOB, encoding is a
string, and returns a BLOB

TRANSLATE(x, y, z) Translate string x by replacing each
character in y with the character in z at the
same position.

Note that the second arg (y) and the third
arg (z) must be the same length. If they are
not equal, Red Hat JBoss data
Virtualization throws this exception:
'TEIID30404 Source and destination
character lists must be the same length.'

x in {string}

TRIM([[LEADING|TRAILIN
G|BOTH] [x] FROM] y)

Trim character x from the leading, trailing,
or both ends of string y. If
LEADING/TRAILING/BOTH is not
specified, BOTH is used by default. If no
trim character x is specified, a blank space '
' is used for x by default.

x in {character}, y in {string}

UCASE(x) Uppercase of x x in {string}
UNESCAPE(x) Unescaped version of x. Possible escape

sequences are \b - backspace, \t - tab, \n -
line feed, \f - form feed, \r - carriage return.
\uXXXX, where X is a hex value, can be
used to specify any unicode character.
\XXX, where X is an octal digit, can be used
to specify an octal byte value. If any other
character appears after an escape
character, that character will appear in the
output and the escape character will be
ignored.

x in {string}

Function Definition DataType Constraint

3.4.6. Date/Time Functions

Date and time functions return or operate on dates, times, or timestamps.

Parse and format Date/Time functions use the convention established within the java.text.SimpleDateFormat
class to define the formats you can use with these functions.

Table 3.3. Date and Time Functions

Function Definition Datatype Constraint
CURDATE() Return current date returns date
CURTIME() Return current time returns time
NOW() Return current timestamp (date and time) returns timestamp
DAYNAME(x) Return name of day in the default locale x in {date, timestamp},

returns string
DAYOFMONTH(x) Return day of month x in {date, timestamp},

returns integer

Chapter 3. SQL Support

23

DAYOFWEEK(x) Return day of week (Sunday=1, Saturday=7) x in {date, timestamp},
returns integer

DAYOFYEAR(x) Return day number x in {date, timestamp},
returns integer

EXTRACT(YEAR|MONTH|DA
Y|HOUR|MINUTE|SECOND
FROM x)

Return the given field value from the date value
x. Produces the same result as the associated
YEAR, MONTH, DAYOFMONTH, HOUR,
MINUTE, SECOND functions.

The SQL specification also allows for
TIMEZONE_HOUR and TIMEZONE_MINUTE
as extraction targets. In JBoss Data
Virtualization, all date values are in the
timezone of the server.

x in {date, time,
timestamp}, returns
integer

FORMATDATE(x, y) Format date x using format y x is date, y is string,
returns string

FORMATTIME(x, y) Format time x using format y x is time, y is string,
returns string

FORMATTIMESTAMP(x, y) Format timestamp x using format y x is timestamp, y is
string, returns string

FROM_UNIXTIME
(unix_timestamp)

Return the Unix timestamp (in seconds) as a
Timestamp value

Unix timestamp (in
seconds)

HOUR(x) Return hour (in military 24-hour format) x in {time, timestamp},
returns integer

MINUTE(x) Return minute x in {time, timestamp},
returns integer

MODIFYTIMEZONE
(timestamp, startTimeZone,
endTimeZone)

Returns a timestamp based upon the incoming
timestamp adjusted for the differential between
the start and end time zones. i.e. if the server
is in GMT-6, then modifytimezone({ts '2006-01-
10 04:00:00.0'},'GMT-7', 'GMT-8') will return the
timestamp {ts '2006-01-10 05:00:00.0'} as read
in GMT-6. The value has been adjusted 1 hour
ahead to compensate for the difference
between GMT-7 and GMT-8.

startTimeZone and
endTimeZone are
strings, returns a
timestamp

MODIFYTIMEZONE
(timestamp, endTimeZone)

Return a timestamp in the same manner as
modifytimezone(timestamp, startTimeZone,
endTimeZone), but will assume that the
startTimeZone is the same as the server
process.

Timestamp is a
timestamp;
endTimeZone is a string,
returns a timestamp

MONTH(x) Return month x in {date, timestamp},
returns integer

MONTHNAME(x) Return name of month in the default locale x in {date, timestamp},
returns string

PARSEDATE(x, y) Parse date from x using format y x, y in {string}, returns
date

PARSETIME(x, y) Parse time from x using format y x, y in {string}, returns
time

PARSETIMESTAMP(x,y) Parse timestamp from x using format y x, y in {string}, returns
timestamp

QUARTER(x) Return quarter x in {date, timestamp},
returns integer

Function Definition Datatype Constraint

Development Guide Volume 3: Reference Material

24

SECOND(x) Return seconds x in {time, timestamp},
returns integer

TIMESTAMPCREATE(date,
time)

Create a timestamp from a date and time date in {date}, time in
{time}, returns
timestamp

TIMESTAMPADD(interval,
count, timestamp)

Add a specified interval (hour, day of week,
month) to the timestamp, where intervals can
be:

1. SQL_TSI_FRAC_SECOND - fractional
seconds (billionths of a second)

2. SQL_TSI_SECOND - seconds
3. SQL_TSI_MINUTE - minutes
4. SQL_TSI_HOUR - hours
5. SQL_TSI_DAY - days
6. SQL_TSI_WEEK - weeks where

Sunday is the first day
7. SQL_TSI_MONTH - months
8. SQL_TSI_QUARTER - quarters (3

months), where the first quarter is
months 1-3

9. SQL_TSI_YEAR - years

Note

The full interval amount based upon
calendar fields will be added. For
example adding 1 QUARTER will move
the timestamp up by three full months
and not just to the start of the next
calendar quarter.

The interval constant
may be specified either
as a string literal or a
constant value. Interval
in {string}, count in
{integer}, timestamp in
{date, time, timestamp}

Function Definition Datatype Constraint

Chapter 3. SQL Support

25

TIMESTAMPDIFF(interval,
startTime, endTime)

Calculates the date part intervals crossed
between the two timestamps. interval is one of
the same keywords as those used for
TIMESTAMPADD.

If (endTime > startTime), a positive number will
be returned. If (endTime < startTime), a
negative number will be returned. The date part
difference is counted regardless of how close
the timestamps are. For example, '2000-01-02
00:00:00.0' is still considered 1 hour ahead of
'2000-01-01 23:59:59.999999'.

Note

TIMESTAMPDIFF typically returns an
integer, however JBoss Data
Virtualization returns a long. You will
encounter an exception if you expect a
value out of the integer range from a
pushed down TIMESTAMPDIFF.

Note

The implementation of
TIMESTAMPDIFF in previous versions
returned values based upon the number
of whole canonical interval
approximations (365 days in a year, 91
days in a quarter, 30 days in a month,
etc.) crossed. For example the
difference in months between 2013-03-
24 and 2013-04-01 was 0, but based
upon the date parts crossed is 1. See
the System Properties section in Red
Hat JBoss Data Virtualization
Administration and Configuration Guide
for backwards compatibility.

Interval in {string};
startTime, endTime in
{timestamp}, returns a
long.

WEEK(x) Return week in year (1-53). see also System
Properties for customization.

x in {date, timestamp},
returns integer

YEAR(x) Return four-digit year x in {date, timestamp},
returns integer

Function Definition Datatype Constraint

3.4.7. Parsing Date Data Types from Strings

Development Guide Volume 3: Reference Material

26

JBoss Data Virtualization does not implicitly convert strings that contain dates presented in different formats,
such as '19970101' and '31/1/1996' to date-related data types. You can, however, use the following functions
to explicitly convert strings with a different format to the appropriate data type:

parseDate

parseTime

parseTimestamp

For each function, you have to provide the formatting of the string. The formatting follows the convention
established by the java.text.SimpleDateFormat class. See examples below.

Table 3.4. Functions to Parse Dates

String Function Call To Parse String
'19970101' parseDate(myDateString, 'yyyyMMdd')
'31/1/1996' parseDate(myDateString, 'dd''/''MM''/''yyyy')
'22:08:56 CST' parseTime (myTime, 'HH:mm:ss z')
'03.24.2003 at 06:14:32' parseTimestamp(myTimestamp, 'MM.dd.yyyy ''at'' hh:mm:ss')

Note

Formatted strings will be based on your default Java locale.

3.4.8. Specifying Time Zones

Time zones can be specified in several formats. Common abbreviations such as EST for "Eastern Standard
Time" are allowed but discouraged, as they can be ambiguous. Unambiguous time zones are defined in the
form continent or ocean/largest city. For example, America/New_York, America/Buenos_Aires, or
Europe/London. Additionally, you can specify a custom time zone by GMT offset: GMT[+/-]HH:MM.

For example: GMT-05:00

3.4.9. Type Conversion Functions

Within your queries, you can convert between data types using the CONVERT or CAST keyword. Also see
Section 4.2, “Type Conversions”.

Table 3.5. Type Conversion Functions

Function Definition
CONVERT(x, type) Convert x to type, where type is a JBoss Data Virtualization Base Type
CAST(x AS type) Convert x to type, where type is a JBoss Data Virtualization Base Type

These functions are identical other than syntax; CAST is the standard SQL syntax, CONVERT is the
standard JDBC/ODBC syntax.

3.4.10. Choice Functions

Choice functions provide a way to select from two values based on some characteristic of one of the values.

Table 3.6. Type Conversion Functions

Chapter 3. SQL Support

27

Table 3.6. Type Conversion Functions

Function Definition Data Type Constraint
COALESCE(x,y
+)

Returns the first non-null
parameter

x and all y's can be any compatible types

IFNULL(x,y) If x is null, return y; else return x x, y, and the return type must be the same type but
can be any type

NVL(x,y) If x is null, return y; else return x x, y, and the return type must be the same type but
can be any type

NULLIF(param1
, param2)

Equivalent to case when (param1
= param2) then null else param1

param1 and param2 must be compatible
comparable types

Note

IFNULL and NVL are aliases of each other. They are the same function.

3.4.11. Decode Functions

Decode functions allow you to have JBoss Data Virtualization examine the contents of a column in a result
set and alter, or decode, the value so that your application can better use the results.

Table 3.7. Decode Functions

Function Definition Data Type Constraint
DECODESTRING(x, y [,
z])

Decode column x using value pairs in y (with
optional delimiter, z) and return the decoded column
as a set of strings.

Warning

Deprecated. Use a CASE expression
instead.

All string

DECODEINTEGER(x, y
[, z])

Decode column x using value pairs in y (with
optional delimiter z) and return the decoded column
as a set of integers.

Warning

Deprecated. Use a CASE expression
instead.

All string parameters,
return integer

Within each function call, you include the following arguments:

1. x is the input value for the decode operation. This will generally be a column name.

2. y is the literal string that contains a delimited set of input values and output values.

Development Guide Volume 3: Reference Material

28

3. z is an optional parameter on these methods that allows you to specify what delimiter the string
specified in y uses.

For example, your application might query a table called PARTS that contains a column called IS_IN_STOCK
which contains a Boolean value that you need to change into an integer for your application to process. In this
case, you can use the DECODEINTEGER function to change the Boolean values to integers:

SELECT DECODEINTEGER(IS_IN_STOCK, 'false, 0, true, 1') FROM
PartsSupplier.PARTS;

When JBoss Data Virtualization encounters the value false in the result set, it replaces the value with 0.

If, instead of using integers, your application requires string values, you can use the DECODESTRING
function to return the string values you need:

SELECT DECODESTRING(IS_IN_STOCK, 'false, no, true, yes, null') FROM
PartsSupplier.PARTS;

In addition to two input/output value pairs, this sample query provides a value to use if the column does not
contain any of the preceding input values. If the row in the IS_IN_STOCK column does not contain true or
false, JBoss Data Virtualization inserts a null into the result set.

When you use these DECODE functions, you can provide as many input/output value pairs as you would like
within the string. By default, JBoss Data Virtualization expects a comma delimiter, but you can add a third
parameter to the function call to specify a different delimiter:

SELECT DECODESTRING(IS_IN_STOCK, 'false:no:true:yes:null',':') FROM
PartsSupplier.PARTS;

You can use keyword null in the DECODE string as either an input value or an output value to represent a
null value. However, if you need to use the literal string null as an input or output value (which means the
word null appears in the column and not a null value) you can put the word in quotes: "null".

SELECT DECODESTRING(IS_IN_STOCK,
'null,no,"null",no,nil,no,false,no,true,yes') FROM PartsSupplier.PARTS;

If the DECODE function does not find a matching output value in the column and you have not specified a
default value, the DECODE function will return the original value JBoss Data Virtualization found in that
column.

3.4.12. Lookup Function

The Lookup function provides a way to speed up access to values in a lookup table (also known as a code
table or reference table). The Lookup function caches all key and return column pairs specified in the function
for the given table. Subsequent lookups against the same table using the same key and return columns will
use the cached values. This caching accelerates response time to queries that use the lookup tables.

In the following example, based on the lookup table, codeTable, the following function will find the row
where keyColumn has the value, keyValue, and return the associated returnColumn value (or null if no
matching key is found).

LOOKUP(codeTable, returnColumn, keyColumn, keyValue)

Chapter 3. SQL Support

29

codeTable must be a string literal that is the fully qualified name of the target table. returnColumn and
keyColumn must also be string literals and match corresponding column names in codeTable. keyValue
can be any expression that must match the datatype of the keyColumn. The return data type matches that of
returnColumn.

Consider the following example in which the ISOCountryCodes table is used to translate country names to
ISO codes:

lookup('ISOCountryCodes', 'CountryCode', 'CountryName', 'UnitedStates')

CountryName represents a key column and CountryCode represents the ISO code of the country. A query
to this lookup table would provide a CountryName, in this case 'UnitedStates', and expect a CountryCode
in response.

Note

JBoss Data Virtualization unloads these cached lookup tables when you stop and restart JBoss Data
Virtualization. Thus, it is best not to use this function for data that is subject to updates or specific to a
session or user (including row based security and column masking effects). It is best used for data that
does not change over time. See the Red Hat JBoss Data Virtualization Administration and
Configuration Guide for more on the caching aspects of the lookup function.

Important

The key column must contain unique values. If the column contains duplicate values, an exception
will be thrown.

3.4.13. System Functions

System functions provide access to information in JBoss Data Virtualization from within a query.

Function Definition Data Type Constraint
COMMANDPAYLOAD([key]) If the key parameter is provided,

the command payload object is
cast to a java.util.Properties object
and the corresponding property
value for the key is returned. If the
key is not specified, the return
value is the command payload
toString value.

The command payload is set by
the
TeiidStatement.setPayload
method on the Data Virtualization
JDBC API extensions on a per-
query basis.

key in {string}, return value is
string

Development Guide Volume 3: Reference Material

30

ENV(key) Retrieve a system environment
property.

Note

The only key specific to the
current session is
'sessionid'. The preferred
mechanism for getting the
session id is with the
session_id() function.

Note

To prevent untrusted
access to system
properties, this function is
not enabled by default.
The ENV function may be
enabled via the
allowEnvFunction property.

key in {string}, return value is
string

SESSION_ID() Retrieve the string form of the
current session id.

return value is string

USER() Retrieve the name of the user
executing the query.

return value is string

CURRENT_DATABASE() Retrieve the catalog name of the
database which, for the VDB, is
the VDB name.

return value is string

TEIID_SESSION_GET(name) Retrieve the session variable.

A null name will return a null
value. Typically you will use the a
get wrapped in a CAST to convert
to the desired type.

name in {string}, return value is
object

TEIID_SESSION_SET(name,
value)

Set the session variable.

The previous value for the key or
null will be returned. A set has no
effect on the current transaction
and is not affected by
commit/rollback.

name in {string}, value in {object},
return value is object

Function Definition Data Type Constraint

3.4.14. XML Functions

XML functions provide functionality for working with XML data.

Chapter 3. SQL Support

31

 TABLE Customer (
 CustomerId integer PRIMARY KEY,
 CustomerName varchar(25),
 ContactName varchar(25)
 Address varchar(50),
 City varchar(25),
 PostalCode varchar(25),
 Country varchar(25),
);

use this data

CustomerID CustomerName ContactName Address City PostalCode Country
87 Wartian Herkku Pirkko Koskitalo Torikatu 38 Oulu 90110 Finland
88 Wellington Importadora Paula Parente Rua do Mercado, 12 Resende
08737-363 Brazil
89 White Clover Markets Karl Jablonski 305 - 14th Ave. S. Suite 3B
Seattle 98128 USA

XMLCAST

Cast to or from XML:

XMLCAST(expression AS type)

Expression or type must be XML. The return value will be typed as type. This is the same functionality as
XMLTABLE uses to convert values to the desired runtime type - with the exception that array type targets are
not supported with XMLCAST.

XMLCOMMENT

XMLCOMMENT(comment)

Returns an XML comment.

comment is a string. Return value is XML.

XMLCONCAT

XMLCONCAT(content [, content]*)

Returns XML with the concatenation of the given XML types. If a value is null, it will be ignored. If
all values are null, null is returned. This is how you concatenate two or more XML fragments:

 SELECT XMLCONCAT(XMLELEMENT("name", CustomerName),
XMLPARSE(CONTENT '
 <a>
 b
 ' WELLFORMED)) FROM Customer c WHERE c.CustomerID = 87;
==
 <name>
 Wartian Herkku
 </name>

Development Guide Volume 3: Reference Material

32

 <a>
 b

content is XML. Return value is XML.

XMLELEMENT

XMLELEMENT([NAME] name [, <NSP>] [, <ATTR>][, content]*)
ATTR:=XMLATTRIBUTES(exp [AS name] [, exp [AS name]]*)
NSP:=XMLNAMESPACES((uri AS prefix | DEFAULT uri | NO DEFAULT))+

Returns an XML element with the given name and content. If the content value is of a type other
than XML, it will be escaped when added to the parent element. Null content values are ignored.
Whitespace in XML or the string values of the content is preserved, but no whitespace is added
between content values.

XMLNAMESPACES is used to provide namespace information. NO DEFAULT is equivalent to
defining the default namespace to the null URI - xmlns="". Only one DEFAULT or NO DEFAULT
namespace item may be specified. The namespace prefixes xmlns and xml are reserved.

If an attribute name is not supplied, the expression must be a column reference, in which case the
attribute name will be the column name. Null attribute values are ignored.

For example, with an xml_value of <doc/>,

XMLELEMENT(NAME "elem", 1, '<2/>', xml_value)

returns

<elem>1<2/><doc/><elem/>

name and prefix are identifiers. uri is a string literal. content can be any type. Return value is
XML. The return value is valid for use in places where a document is expected.

 SELECT XMLELEMENT("name", CustomerName)
FROM Customer c
WHERE c.CustomerID = 87;

==
<name>Wartian Herkku</name>
"Multiple Columns"
SELECT XMLELEMENT("customer",
 XMLELEMENT("name", c.CustomerName),
 XMLELEMENT("contact", c.ContactName))
FROM Customer c
WHERE c.CustomerID = 87;

==
<customer><name>Wartian Herkku</name><contact>Pirkko
Koskitalo</contact></customer>
"Columns as Attributes"
SELECT XMLELEMENT("customer",
 XMLELEMENT("name", c.CustomerName,

Chapter 3. SQL Support

33

 XMLATTRIBUTES(
 "contact" as c.ContactName,
 "id" as c.CustomerID
)
)
)
FROM Customer c
WHERE c.CustomerID = 87;

==
<customer><name contact="Pirkko Koskitalo" id="87">Wartian
Herkku</name></customer>

XMLFOREST

XMLFOREST(content [AS name] [, <NSP>] [, content [AS name]]*)

Returns an concatenation of XML elements for each content item. See XMLELEMENT for the
definition of NSP. If a name is not supplied for a content item, the expression must be a column
reference, in which case the element name will be a partially escaped version of the column name.

name is an identifier. content can be any type. Return value is XML.

You can use XMLFORREST to simplify the declaration of multiple XMLELEMENTS, XMLFOREST
function allows you to process multiple columns at once:

SELECT XMLELEMENT("customer",
 XMLFOREST(
 c.CustomerName AS "name",
 c.ContactName AS "contact"
))
FROM Customer c
WHERE c.CustomerID = 87;

==
<customer><name>Wartian Herkku</name><contact>Pirkko
Koskitalo</contact></customer>
XMLAGG

XMLAGG is an aggregate function, that takes a collection of XML
elements and returns an aggregated XML document.
XMLAGG(xml)

From above example in XMLElement, each row in the Customer table
table will generate row of XML if there are multiple rows matching
the criteria. That will generate a valid XML, but it will not be well
formed, because it lacks the root element. XMLAGG can used to correct
that
"Example"
SELECT XMLELEMENT("customers",
 XMLAGG(
 XMLELEMENT("customer",
 XMLFOREST(
 c.CustomerName AS "name",
 c.ContactName AS "contact"
)))

Development Guide Volume 3: Reference Material

34

FROM Customer c

==
<customers>
<customer><name>Wartian Herkku</name><contact>Pirkko
Koskitalo</contact></customer>
<customer><name>Wellington Importadora</name><contact>Paula
Parente</contact></customer>
<customer><name>White Clover Markets</name><contact>Karl
Jablonski</contact></customer>
</customers>

XMLPARSE

XMLPARSE((DOCUMENT|CONTENT) expr [WELLFORMED])

Returns an XML type representation of the string value expression. If DOCUMENT is specified,
then the expression must have a single root element and may or may not contain an XML
declaration. If WELLFORMED is specified then validation is skipped; this is especially useful for
CLOB and BLOB known to already be valid.

expr in {string, clob, blob and varbinary}. Return value is XML.

If DOCUMENT is specified then the expression must have a single root element and may or may
not contain an XML declaration. If WELLFORMED is specified then validation is skipped; this is
especially useful for CLOB and BLOB known to already be valid.

SELECT XMLPARSE(CONTENT '<customer><name>Wartian Herkku</name>
<contact>Pirkko Koskitalo</contact></customer>' WELLFORMED);

Will return a SQLXML with contents:

<customer><name>Wartian Herkku</name><contact>Pirkko
Koskitalo</contact></customer>

XMLPI

XMLPI([NAME] name [, content])

Returns an XML processing instruction.

name is an identifier. content is a string. Return value is XML.

XMLQUERY

XMLQUERY([<NSP>] xquery [<PASSING>] [(NULL|EMPTY) ON EMPTY]]
PASSING:=PASSING exp [AS name] [, exp [AS name]]*

Returns the XML result from evaluating the given xquery. See XMLELEMENT for the definition of
NSP. Namespaces may also be directly declared in the XQuery prolog.

Chapter 3. SQL Support

35

The optional PASSING clause is used to provide the context item, which does not have a name,
and named global variable values. If the XQuery uses a context item and none is provided, then an
exception will be raised. Only one context item may be specified and should be an XML type. All
non-context non-XML passing values will be converted to an appropriate XML type.

The ON EMPTY clause is used to specify the result when the evaluated sequence is empty.
EMPTY ON EMPTY, the default, returns an empty XML result. NULL ON EMPTY returns a null
result.

xquery in string. Return value is XML.

Note

XMLQUERY is part of the SQL/XML 2006 specification.

See also XMLTABLE.

XMLEXISTS

Returns true if a non-empty sequence would be returned by evaluating the given xquery.

XMLEXISTS([<NSP>] xquery [<PASSING>]]

PASSING:=PASSING exp [AS name] [, exp [AS name]]*

Namespaces may also be directly declared in the xquery prolog.

The optional PASSING clause is used to provide the context item, which does not have a name,
and named global variable values. If the xquery uses a context item and none is provided, then an
exception will be raised. Only one context item may be specified and should be an XML type. All
non-context non-XML passing values will be converted to an appropriate XML type. Null/Unknown
will be returned if the context item evaluates to null.

xquery in string. Return value is boolean.

XMLEXISTS is part of the SQL/XML 2006 specification.

XMLSERIALIZE

XMLSERIALIZE([(DOCUMENT|CONTENT)] xml [AS datatype] [ENCODING enc]
[VERSION ver] [(INCLUDING|EXCLUDING) XMLDECLARATION])

Returns a character type representation of the XML expression.

datatype may be character (string, varchar, clob) or binary (blob, varbinary). CONTENT is the
default. If DOCUMENT is specified and the XML is not a valid document or fragment, then an
exception is raised.

Return value matches data type. If no data type is specified, then CLOB will be assumed.

The encoding enc is specified as an identifier. A character serialization may not specify an
encoding. The version ver is specified as a string literal. If a particular XMLDECLARATION is not
specified, then the result will have a declaration only if performing a non UTF-8/UTF-16 or non
version 1.0 document serialization or the underlying XML has an declaration. If CONTENT is being
serialized, then the declaration will be omitted if the value is not a document or element.

Development Guide Volume 3: Reference Material

36

The following example produces a BLOB of XML in UTF-16 including the appropriate byte order
mark of FE FF and XML declaration:

XMLSERIALIZE(DOCUMENT value AS BLOB ENCODING "UTF-16" INCLUDING
XMLDECLARATION)

XSLTRANSFORM

XSLTRANSFORM(doc, xsl)

Applies an XSL stylesheet to the given document.

doc and xsl in {string, clob, xml}. Return value is a CLOB. If either argument is null, the result is
null.

XPATHVALUE

XPATHVALUE(doc, xpath)

Applies the XPATH expression to the document and returns a string value for the first matching
result. For more control over the results and XQuery, use the XMLQUERY function.

Matching a non-text node will still produce a string result, which includes all descendant text nodes.

doc and xpath in {string, clob, xml}. Return value is a string.

When the input document utilizes namespaces, it is sometimes necessary to specify XPATH that
ignores namespaces. For example, given the following XML,

<?xml version="1.0" ?>
 <ns1:return
xmlns:ns1="http://com.test.ws/exampleWebService">Hello<x> World</x>
</return>

the following function results in 'Hello World'.

xpathValue(value, '/*[local-name()="return"])

3.4.15. JSON Functions

JSON functions provide functionality for working with JSON (JavaScript Object Notation) data.

JSONTOXML

JSONTOXML(rootElementName, json)

Returns an XML document from JSON. The appropriate UTF encoding (8, 16LE. 16BE, 32LE,
32BE) will be detected for JSON BLOBS. If another encoding is used, see the TO_CHARS
function (see Section 3.4.5, “String Functions”).

rootElementName is a string, json is in {clob, blob}. Return value is XML. The result is always a
well-formed XML document.

The mapping to XML uses the following rules:

Chapter 3. SQL Support

37

http://www.json.org/

The current element name is initially the rootElementName, and becomes the object value
name as the JSON structure is traversed.

All element names must be valid XML 1.1 names. Invalid names are fully escaped according to
the SQLXML specification.

Each object or primitive value will be enclosed in an element with the current name.

Unless an array value is the root, it will not be enclosed in an additional element.

Null values will be represented by an empty element with the attribute xsi:nil="true"

Boolean and numerical value elements will have the attribute xsi:type set to boolean and
decimal respectively.

Example 3.1. Sample JSON to XML for jsonToXml('person', x)

JSON:

{ "firstName" : "John" , "children" : ["Randy", "Judy"] }

XML:

<?xml version="1.0" ?
><person><firstName>John</firstName><children>Randy</children><chi
ldren>Judy</children></person>

Example 3.2. Sample JSON to XML for jsonToXml('person', x) with a root array.

JSON:

[{ "firstName" : "George" }, { "firstName" : "Jerry" }]

XML (Notice there is an extra "person" wrapping element to keep the XML well-formed):

<?xml version="1.0" ?
><person><person><firstName>George</firstName></person><person><fi
rstName>Jerry</firstName></person></person>

JSON:

Example 3.3. Sample JSON to XML for jsonToXml('root', x) with an invalid name.

{"/invalid" : "abc" }

XML:

Example 3.4. Sample JSON to XML for jsonToXml('root', x) with an invalid name.

Development Guide Volume 3: Reference Material

38

<?xml version="1.0" ?>
<root>
 <_u002F_invalid>abc</_u002F_invalid>
</root>

JSONARRAY

JSONARRAY(value...)

Returns a JSON array.

value is any object convertable to a JSON value (see Section 3.4.17, “Conversion to JSON”).
Return value is a CLOB marked as being valid JSON. Null values will be included in the result as
null literals.

For example:

jsonArray('a"b', 1, null, false, {d'2010-11-21'})

returns

["a\"b",1,null,false,"2010-11-21"]

JSONOBJECT

JSONARRAY(value [as name] ...)

Returns a JSON object.

value is any object convertable to a JSON value (see Section 3.4.17, “Conversion to JSON”).
Return value is a clob marked as being valid JSON.

Null values will be included in the result as null literals.

If a name is not supplied and the expression is a column reference, the column name will be used
otherwise exprN will be used where N is the 1-based index of the value in the JSONARRAY
expression.

For example:

jsonObject('a"b' as val, 1, null as "null")

returns

{"val":"a\"b","expr2":1,"null":null}

JSONPARSE

JSONPARSE(value, wellformed)

Validates and returns a JSON result.

Chapter 3. SQL Support

39

value is blob with an appropriate JSON binary encoding (UTF-8, UTF-16, or UTF-32) or clob.
wellformed is a boolean indicating that validation should be skipped. Return value is a CLOB
marked as being valid JSON.

A null for either input will return null.

jsonParse('"a"')

3.4.16. Spatial Functions

Spatial functions provide functionality for working with geospatial data. Red Hat JBoss Data Virtualization
relies on the JTS Topology Suite to provide partial support for the OpenGIS Simple Features Specification
For SQL Revision 1.1.

Most Geometry support is limited to two dimensions due to the WKB and WKT formats.

Important

Geometry support is still evolving. There may be minor differences between Data Virtualization and
pushdown results that will need to be further refined.

Conversion Functions

ST_GeomFromText

Returns a geometry from a Clob in WKT format.

 ST_GeomFromText(text [, srid])

text is a clob, srid is an optional integer. Return value is a geometry.

ST_GeomFromWKB/ST_GeomFromBinary

Returns a geometry from a blob in WKB format.

ST_GeomFromWKB(bin [, srid])

bin is a blob, srid is an optional integer. Return value is a geometry.

ST_GeomFromGeoJSON

Returns a geometry from a Clob in GeoJSON format.

ST_GeomFromGeoJson(text [, srid])

text is a clob, srid is an optional integer. Return value is a geometry.

ST_GeomFromGML

Returns a geometry from a Clob in GML2 format.

Development Guide Volume 3: Reference Material

40

ST_GeomFromGML(text [, srid])

text is a clob, srid is an optional integer. Return value is a geometry.

ST_AsText

ST_GeomAsText(geom)

geom is a geometry. Return value is clob in WKT format.

ST_AsBinary

ST_GeomAsBinary(geom)

geom is a geometry. Return value is a blob in WKB format.

ST_AsGeoJSON

ST_GeomAsGeoJSON(geom)

geom is a geometry. Return value is a clob with the GeoJSON value.

ST_AsGML

ST_GeomAsGML(geom)

geom is a geometry. Return value is a clob with the GML2 value.

ST_AsEWKT

ST_AsEWKT(geom)

geom is a geometry. Return value is a clob with the EWKT value. The EWKT value is the WKT
value with the SRID prefix.

ST_AsKML

ST_AsKML(geom)

geom is a geometry. Return value is a clob with the KML value. The KML value is effectively a
simplified GML value and projected into SRID 4326.

Relationship Functions

ST_CONTAINS

Returns true if geom1 contains geom2 contains another.

Chapter 3. SQL Support

41

ST_CONTAINS(geom1, geom2)

geom1, geom2 are geometries. Return value is a boolean.

ST_CROSSES

Returns true if the geometries cross.

ST_CROSSES(geom1, geom2)

geom1, geom2 are geometries. Return value is a boolean.

ST_DISJOINT

Returns true if the geometries are disjoint.

ST_DISJOINT(geom1, geom2)

geom1, geom2 are geometries. Return value is a boolean.

ST_DISTANCE

Returns the distance between two geometries.

ST_DISTANCE(geom1, geom2)

geom1, geom2 are geometries. Return value is a double.

ST_EQUALS

Returns true if the two geometries are spatially equal - the points and order may differ, but neither
geometry lies outside of the other.

ST_EQUALS(geom1, geom2)

geom1, geom2 are geometries. Return value is a boolean.

ST_INTERSECTS

Returns true if the geometries intersect.

ST_INTERSECT(geom1, geom2)

geom1, geom2 are geometries. Return value is a boolean.

ST_OVERLAPS

Returns true if the geometries overlap.

Development Guide Volume 3: Reference Material

42

ST_OVERLAPS(geom1, geom2)

geom1, geom2 are geometries. Return value is a boolean.

ST_TOUCHES

Returns true if the geometries touch.

ST_TOUCHES(geom1, geom2)

geom1, geom2 are geometries. Return value is a boolean.

Miscellaneous Functions

ST_SRID

Returns the SRID for the geometry.

ST_SRID(geom)

geom is a geometry. Return value is an integer. A 0 value rather than null will be returned for an
unknown SRID on a non-null geometry.

ST_SetSRID

Set the SRID for the given geometry.

ST_SetSRID(geom, srid)

geom is a geometry. srid is an integer. Return value is a geometry. Only the SRID metadata of the
geometry is modified.

ST_TRANSFORM

Transforms the geometry value from one coordinate system to another.

ST_TRANSFORM(geom, srid)

geom is a geometry. srid is an integer. Return value is a geometry. The srid value and the srid of
the geometry value must exist in the SPATIAL_REF_SYS view.

3.4.17. Conversion to JSON

A straightforward specification compliant conversion is used for converting values into their appropriate
JSON document form.

null values are included as the null literal.

values parsed as JSON or returned from a JSON construction function (JSONPARSE, JSONARRAY,
JSONARRAY_AGG) will be directly appended into a JSON result.

Chapter 3. SQL Support

43

boolean values are included as true/false literals

numeric values are included as their default string conversion - in some circumstances if not a number or
+-infinity results are allowed, invalid JSON may be obtained.

string values are included in their escaped/quoted form.

binary values are not implicitly convertible to JSON values and require a specific prior to inclusion in
JSON.

all other values will be included as their string conversion in the appropriate escaped/quoted form.

3.4.18. Security Functions

Security functions provide the ability to interact with the security system.

HASROLE

hasRole([roleType,] roleName)

Whether the current caller has the JBoss Data Virtualization data role roleName.

roleName must be a string, the return type is boolean.

The two argument form is provided for backwards compatibility. roleType is a string and must be
'data'.

Role names are case-sensitive and only match JBoss Data Virtualization data roles (see
Section 7.1, “Data Roles”). JAAS roles/groups names are not valid for this function, unless there is
corresponding data role with the same name.

3.4.19. Miscellaneous Functions

array_get

array_get(array, index)

Returns the object value at a given array index.

array is the object type, index must be an integer, and the return type is object.

One-based indexing is used. The actual array value must be a java.sql.Array or Java array
type. An exception will be thrown if the array value is the wrong type of the index is out of bounds.

array_length

array_length(array)

Returns the length for a given array.

array is the object type, and the return type is integer.

The actual array value must be a java.sql.Array or Java array type. An exception will be
thrown if the array value is the wrong type.

uuid

Development Guide Volume 3: Reference Material

44

uuid()

Returns a universally unique identifier.

The return type is string.

Generates a type 4 (pseudo randomly generated) UUID using a cryptographically strong random
number generator. The format is XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX where each X
is a hex digit.

3.4.20. Nondeterministic Function Handling

JBoss Data Virtualization categorizes functions by varying degrees of determinism. When a function is
evaluated and to what extent the result can be cached are based upon its determinism level.

1. Deterministic - the function will always return the same result for the given inputs. Deterministic
functions are evaluated by the engine as soon as all input values are known, which may occur as
soon as the rewrite phase. Some functions, such as the lookup function, are not truly deterministic,
but is treated as such for performance. All functions not categorized below are considered
deterministic.

2. User Deterministic - the function will return the same result for the given inputs for the same user.
This includes the hasRole and user functions. User deterministic functions are evaluated by the
engine as soon as all input values are known, which may occur as soon as the rewrite phase. If a
user deterministic function is evaluated during the creation of a prepared processing plan, then the
resulting plan will be cached only for the user.

3. Session Deterministic - the function will return the same result for the given inputs under the same
user session. This category includes the env function. Session deterministic functions are evaluated
by the engine as soon as all input values are known, which may occur as soon as the rewrite phase.
If a session deterministic function is evaluated during the creation of a prepared processing plan,
then the resulting plan will be cached only for the user's session.

4. Command Deterministic - the result of function evaluation is only deterministic within the scope of the
user command. This category include the curdate, curtime, now, and commandpayload
functions. Command deterministic functions are delayed in evaluation until processing to ensure that
even prepared plans utilizing these functions will be executed with relevant values. Command
deterministic function evaluation will occur prior to pushdown; however, multiple occurrences of the
same command deterministic time function are not guaranteed to evaluate to the same value.

5. Nondeterministic - the result of function evaluation is fully nondeterministic. This category includes
the rand function and UDFs marked as nondeterministic. Nondeterministic functions are delayed in
evaluation until processing with a preference for pushdown. If the function is not pushed down, then it
may be evaluated for every row in its execution context (for example, if the function is used in the
select clause).

3.5. DML Commands

3.5.1. DML Commands

JBoss Data Virtualization supports SQL for issuing queries and defining view transformations; see also
Section 3.9.1, “Procedural Language” and Section 3.10.1, “Virtual Procedures” for how SQL is used in virtual
procedures and update procedures. Nearly all these features follow standard SQL syntax and functionality,
so any SQL reference can be used for more information.

There are 4 basic commands for manipulating data in SQL, corresponding to the standard create, read,

Chapter 3. SQL Support

45

update and delete (CRUD) operations: INSERT, SELECT, UPDATE, and DELETE. A MERGE statement acts
as a combination of INSERT and UPDATE. In addition, procedures can be executed using the EXECUTE
command or through a procedural relational command. See Section 3.5.8, “Procedural Relational
Command”.

3.5.2. SELECT Command

The SELECT command is used to retrieve records for any number of relations.

A SELECT command consists of several clauses:

[WITH ...]

SELECT ...

[FROM ...]

[WHERE ...]

[GROUP BY ...]

[HAVING ...]

[ORDER BY ...]

[(LIMIT ...) | ([OFFSET ...] [FETCH ...])]

[OPTION ...]

See Section 3.6.1, “DML Clauses” for more information about all of these clauses.

All of these clauses other than OPTION are defined by the SQL specification. The specification also specifies
the order that these clauses will be logically processed. Below is the processing order where each stage
passes a set of rows to the following stage. Note that this processing model is logical and does not represent
the way any actual database engine performs the processing, although it is a useful model for understanding
questions about SQL.

WITH stage - gathers all rows from all WITH items in the order listed. Subsequent WITH items and the
main query can reference a WITH item as if it is a table.

FROM stage - gathers all rows from all tables involved in the query and logically joins them with a
Cartesian product, producing a single large table with all columns from all tables. Joins and join criteria
are then applied to filter rows that do not match the join structure.

WHERE stage - applies a criteria to every output row from the FROM stage, further reducing the number
of rows.

GROUP BY stage - groups sets of rows with matching values in the GROUP BY columns.

HAVING stage - applies criteria to each group of rows. Criteria can only be applied to columns that will
have constant values within a group (those in the grouping columns or aggregate functions applied
across the group).

SELECT stage - specifies the column expressions that should be returned from the query. Expressions
are evaluated, including aggregate functions based on the groups of rows, which will no longer exist after
this point. The output columns are named using either column aliases or an implicit name determined by
the engine. If SELECT DISTINCT is specified, duplicate removal will be performed on the rows being
returned from the SELECT stage.

Development Guide Volume 3: Reference Material

46

ORDER BY stage - sorts the rows returned from the SELECT stage as desired. Supports sorting on
multiple columns in specified order, ascending or descending. The output columns will be identical to
those columns returned from the SELECT stage and will have the same name.

LIMIT stage - returns only the specified rows (with skip and limit values).

This model helps to understand how SQL works. For example, columns aliased in the SELECT clause can
only be referenced by alias in the ORDER BY clause. Without knowledge of the processing model, this can
be somewhat confusing. Seen in light of the model, it is clear that the ORDER BY stage is the only stage
occurring after the SELECT stage, which is where the columns are named. Because the WHERE clause is
processed before the SELECT, the columns have not yet been named and the aliases are not yet known.

Note

The explicit table syntax TABLE x may be used as a shortcut for SELECT * FROM x.

3.5.3. INSERT Command

The INSERT command is used to add a record to a table.

Example Syntax

INSERT INTO table (column,...) VALUES (value,...)

INSERT INTO table (column,...) query

3.5.4. UPDATE Command

The UPDATE command is used to modify records in a table. The operation will result in 1 or more records
being updated, or in no records being updated if none match the criteria.

Example Syntax

UPDATE table SET (column=value,...) [WHERE criteria]

3.5.5. DELETE Command

The DELETE command is used to remove records from a table. The operation will result in 1 or more records
being deleted, or in no records being deleted if none match the criteria.

Example Syntax

DELETE FROM table [WHERE criteria]

3.5.6. MERGE Command

The MERGE command, also known as UPSERT, is used to add and/or update records. The JBoss Data
Virtualization (non-ANSI) MERGE is simply a modified INSERT statement that requires the target table to
have a primary key and for the target columns to cover the primary key. The MERGE operation will then
check the existence of each row prior to INSERT and instead perform an UPDATE if the row already exists.

Example Syntax

MERGE INTO table (column,...) VALUES (value,...)

Chapter 3. SQL Support

47

MERGE INTO table (column,...) query

Note

The MERGE statement is not currently pushed to sources, but rather will be broken down into the
respective insert/update operations.

3.5.7. EXECUTE Command

The EXECUTE command is used to execute a procedure, such as a virtual procedure or a stored procedure.
Procedures may have zero or more scalar input parameters. The return value from a procedure is a result set
or the set of inout/out/return scalars. Note that EXEC or CALL can be used as a short form of this command.

Example Syntax

EXECUTE proc()

CALL proc(value, ...)

EXECUTE proc(name1=>value1,name4=>param4, ...) - named parameter syntax

Syntax Rules:

The default order of parameter specification is the same as how they are defined in the procedure
definition.

You can specify the parameters in any order by name. Parameters that have default values and/or are
nullable in the metadata, can be omitted from the named parameter call and will have the appropriate
value passed at runtime.

Positional parameters that are have default values and/or are nullable in the metadata, can be omitted
from the end of the parameter list and will have the appropriate value passed at runtime.

If the procedure does not return a result set, the values from the RETURN, OUT, and IN_OUT parameters
will be returned as a single row when used as an inline view query.

A VARIADIC parameter may be repeated 0 or more times as the last positional argument.

3.5.8. Procedural Relational Command

Procedural relational commands use the syntax of a SELECT to emulate an EXEC. In a procedural relational
command a procedure group name is used in a FROM clause in place of a table. That procedure will be
executed in place of normal table access if all of the necessary input values can be found in criteria against
the procedure. Each combination of input values found in the criteria results in an execution of the procedure.

Example Syntax

SELECT * FROM proc

SELECT output_param1, output_param2 FROM proc WHERE input_param1 = 'x'

SELECT output_param1, output_param2 FROM proc, table WHERE input_param1 = table.col1 AND
input_param2 = table.col2

Syntax Rules:

Development Guide Volume 3: Reference Material

48

The procedure as a table projects the same columns as an exec with the addition of the input
parameters. For procedures that do not return a result set, IN_OUT columns will be projected as two
columns, one that represents the output value and one named {column name}_IN that represents the
input of the parameter.

Input values are passed via criteria. Values can be passed by '=','is null', or 'in' predicates. Disjuncts are
not allowed. It is also not possible to pass the value of a non-comparable column through an equality
predicate.

The procedure view automatically has an access pattern on its IN and IN_OUT parameters which allows it
to be planned correctly as a dependent join when necessary or fail when sufficient criteria cannot be
found.

Procedures containing duplicate names between the parameters (IN, IN_OUT, OUT, RETURN) and result
set columns cannot be used in a procedural relational command.

Default values for IN, IN_OUT parameters are not used if there is no criteria present for a given input.
Default values are only valid for named procedure syntax. See Section 3.5.7, “EXECUTE Command”.

Note

The usage of 'in' or join criteria can result in the procedure being executed multiple times.

Note

None of the issues listed in the syntax rules above exist if a nested table reference is used. See
Section 3.6.4, “FROM Clause”.

3.5.9. Set Operations

JBoss Data Virtualization supports the UNION, UNION ALL, INTERSECT, EXCEPT set operations as ways
of combining the results of query expressions.

Usage:

queryExpression (UNION|INTERSECT|EXCEPT) [ALL] queryExpression [ORDER BY...]

Syntax Rules:

The output columns will be named by the output columns of the first set operation branch.

Each SELECT must have the same number of output columns and compatible data types for each relative
column. Data type conversion will be performed if data types are inconsistent and implicit conversions
exist.

If UNION, INTERSECT, or EXCEPT is specified without all, then the output columns must be comparable
types.

INTERSECT ALL, and EXCEPT ALL are currently not supported.

3.5.10. Subqueries

Chapter 3. SQL Support

49

A subquery is an SQL query embedded within another SQL query. The query containing the subquery is the
outer query.

Supported subquery types:

Scalar subquery - a subquery that returns only a single column with a single value. Scalar subqueries are
a type of expression and can be used where single valued expressions are expected.

Correlated subquery - a subquery that contains a column reference to form the outer query.

Uncorrelated subquery - a subquery that contains no references to the outer subquery.

3.5.11. Inline Views

Subqueries in the FROM clause of the outer query (also known as "inline views") can return any number of
rows and columns. This type of subquery must always be given an alias. An inline view is nearly identical to a
traditional view.

SELECT a FROM (SELECT Y.b, Y.c FROM Y WHERE Y.d = 3) AS X WHERE a = X.c AND
b = X.b

See Also:

Section 3.6.2, “WITH Clause”

3.5.12. Alternative Subquery Usage

Subqueries are supported in quantified criteria, the EXISTS predicate, the IN predicate, and as Scalar
Subqueries (see Section 3.3.9, “Scalar Subqueries”).

Example 3.5. Example Subquery in WHERE Using EXISTS

SELECT a FROM X WHERE EXISTS (SELECT 1 FROM Y WHERE c=X.a)

Example 3.6. Example Quantified Comparison Subqueries

SELECT a FROM X WHERE a >= ANY (SELECT b FROM Y WHERE c=3)
SELECT a FROM X WHERE a < SOME (SELECT b FROM Y WHERE c=4)
SELECT a FROM X WHERE a = ALL (SELECT b FROM Y WHERE c=2)

Example 3.7. Example IN Subquery

SELECT a FROM X WHERE a IN (SELECT b FROM Y WHERE c=3)

See also Subquery Optimization .

3.6. DML Clauses

3.6.1. DML Clauses

Development Guide Volume 3: Reference Material

50

DML clauses are used in various SQL commands (see Section 3.5.1, “DML Commands”) to specify particular
relations and how to present them. Nearly all these features follow standard SQL syntax and functionality, so
any SQL reference can be used for more information.

3.6.2. WITH Clause

JBoss Data Virtualization supports non-recursive common table expressions via the WITH clause. WITH
clause items may be referenced as tables in subsequent WITH clause items and in the main query. The
WITH clause can be thought of as providing query-scoped temporary tables.

Usage:

WITH name [(column, ...)] AS (query expression) ...

Syntax Rules:

All of the projected column names must be unique. If they are not unique, then the column name list must
be provided.

If the columns of the WITH clause item are declared, then they must match the number of columns
projected by the query expression.

Each WITH clause item must have a unique name.

Note

The WITH clause is also subject to optimization and its entries may not be processed if they are not
needed in the subsequent query.

3.6.3. SELECT Clause

SQL queries start with the SELECT keyword and are often referred to as "SELECT statements". JBoss Data
Virtualization supports most of the standard SQL query constructs.

Usage:

SELECT [DISTINCT|ALL] ((expression [[AS] name])|(group
identifier.STAR))*|STAR ...

Syntax Rules:

Aliased expressions are only used as the output column names and in the ORDER BY clause. They
cannot be used in other clauses of the query.

DISTINCT may only be specified if the SELECT symbols are comparable.

3.6.4. FROM Clause

The FROM clause specifies the target table(s) for SELECT, UPDATE, and DELETE statements.

Example Syntax:

FROM table [[AS] alias]

Chapter 3. SQL Support

51

FROM table1 [INNER|LEFT OUTER|RIGHT OUTER|FULL OUTER] JOIN table2 ON join-criteria

FROM table1 CROSS JOIN table2

FROM (subquery) [AS] alias

FROM TABLE(subquery) [AS] alias

Note

See Section 3.6.7, “Nested Tables”.

FROM table1 JOIN /*+ MAKEDEP */ table2 ON join-criteria

FROM table1 JOIN /*+ MAKENOTDEP */ table2 ON join-criteria

FROM /*+ MAKEIND */ table1 JOIN table2 ON join-criteria

FROM /*+ NO_UNNEST */ vw1 JOIN table2 ON join-criteria

FROM table1 left outer join /*+ optional */ table2 ON join-criteria

Note

See Section 3.5.10, “Subqueries”.

FROM TEXTTABLE...

Note

See Section 3.6.8, “Nested Tables: TEXTTABLE”.

FROM XMLTABLE...

Note

See Section 3.6.9, “Nested Tables: XMLTABLE”.

FROM ARRAYTABLE...

Note

See Section 3.6.10, “Nested Tables: ARRAYTABLE”.

FROM OBJECTTABLE...

Development Guide Volume 3: Reference Material

52

Note

See Section 3.6.11, “Nested Tables: OBJECTTABLE”.

FROM (SELECT ...)

Note

See Section 3.5.10, “Subqueries”.

3.6.5. FROM Clause Hints

From clause hints are typically specified in a comment block. If multiple hints apply, they should be placed in
the same comment block. For example:

FROM /*+ MAKEDEP PRESERVE */ (tbl1 inner join tbl2 inner join tbl3 on
tbl2.col1 = tbl3.col1 on tbl1.col1 = tbl2.col1), tbl3 WHERE tbl1.col1 =
tbl2.col1

Dependent Joins Hints

MAKEIND, MAKEDEP, and MAKENOTDEP are hints used to control dependent join behavior (see
Section 14.7.3, “Dependent Joins”). They should only be used in situations where the optimizer
does not choose the most optimal plan based upon query structure, metadata, and costing
information. The hints may appear in a comment following the FROM keyword. The hints can be
specified against any FROM clause, not just a named table.

NO_UNNEST

NO_UNNEST can be specified against a FROM clause or view to instruct the planner not to merge
the nested SQL in the surrounding query - also known as view flattening. This hint only applies to
JBoss Data Virtualization planning and is not passed to source queries. NO_UNNEST may appear
in a comment following the FROM keyword.

PRESERVE

The PRESERVE hint can be used against an ANSI join tree to preserve the structure of the join
rather than allowing the JBoss Data Virtualization optimizer to reorder the join. This is similar in
function to the Oracle ORDERED or MySQL STRAIGHT_JOIN hints.

FROM /*+ PRESERVE */ (tbl1 inner join tbl2 inner join tbl3 on
tbl2.col1 = tbl3.col1 on tbl1.col1 = tbl2.col1)

3.6.6. XMLTable

The XMLTABLE function uses XQuery to produce tabular ouput. The XMLTABLE function is implicitly a
nested table and may be correlated to preceding FROM clause entries. XMLTABLE is part of the SQL/XML
2006 specification.

This is how you use it:

Chapter 3. SQL Support

53

XMLTABLE([<NSP>,] xquery-expression [<PASSING>] [COLUMNS <COLUMN>, ...)] AS
name

COLUMN := name (FOR ORDINALITY | (datatype [DEFAULT expression] [PATH
string]))

These are its parameters:

The optional XMLNAMESPACES clause specifies the namepaces for use in the XQuery and COLUMN
path expressions.

The xquery-expression should be a valid XQuery. Each sequence item returned by the xquery will be
used to create a row of values as defined by the COLUMNS clause.

If COLUMNS is not specified, then that is the same as having the COLUMNS clause. "COLUMNS
OBJECT_VALUE XML PATH '.'", which returns the entire item as an XML value.

A FOR ORDINALITY column is typed as integer and will return the 1-based item number as its value.

Each non-ordinality column specifies a type and optionally a PATH and a DEFAULT expression.

If PATH is not specified, then the path will be the same as the column name.

These are the syntax rules:

Only 1 FOR ORDINALITY column may be specified.

The columns names must not contain duplicates.

The blob datatype is supported, but there is only built-in support for xs:hexBinary values. For
xs:base64Binary, use a workaround of a PATH that uses the explicit value constructor
"xs:base64Binary(path)".

The column expression must evaluate to a single value if a non-array type is expected.

Use of passing, returns 1 row [1]:

 select * from xmltable('/a' PASSING xmlparse(document '')
COLUMNS id integer PATH '@id') x

As a nested table:

 select x.* from t, xmltable('/x/y' PASSING t.doc COLUMNS first string,
second FOR ORDINALITY) x

Invalid multi-value:

 select * from xmltable('/a' PASSING xmlparse(document '<a><b id="1"/><b
id="2"/>') COLUMNS id integer PATH 'b/@id') x

Array multi-value:

 select * from xmltable('/a' PASSING xmlparse(document '<a><b id="1"/><b
id="2"/>') COLUMNS id integer[] PATH 'b/@id') x

3.6.7. Nested Tables

Development Guide Volume 3: Reference Material

54

3.6.7. Nested Tables

Nested tables may appear in the FROM clause with the TABLE keyword. They are an alternative to using a
view with normal join semantics. The columns projected from the command contained in the nested table
may be used just as any of the other FROM clause projected columns in join criteria, the where clause, etc.

A nested table may have correlated references to preceding FROM clause column references as long as
INNER and LEFT OUTER joins are used. This is especially useful in cases where the nested expression is a
procedure or function call.

Valid example:

select * from t1, TABLE(call proc(t1.x)) t2

Invalid example, since t1 appears after the nested table in the FROM clause:

select * from TABLE(call proc(t1.x)) t2, t1

Note

The usage of a correlated nested table may result in multiple executions of the table expression -
once for each correlated row.

3.6.8. Nested Tables: TEXTTABLE

The TEXTTABLE function processes character input to produce tabular output. It supports both fixed and
delimited file format parsing. The function itself defines what columns it projects. The TEXTTABLE function is
implicitly a nested table and may be used within FROM clauses.

TEXTTABLE(expression [SELECTOR string] COLUMNS <COLUMN>, ... [NO ROW
DELIMITER] [DELIMITER char] [(QUOTE|ESCAPE) char] [HEADER [integer]] [SKIP
integer]) AS name

COLUMN := name (FOR ORDINALITY | ([HEADER string] datatype [WIDTH integer
[NO TRIM]] [SELECTOR string integer]))

Parameters

expression is the text content to process, which should be convertible to CLOB.

SELECTOR specifies that delimited lines should only match if the line begins with the selector string
followed by a delimiter. The selector value is a valid column value. If a TEXTTABLE SELECTOR is
specified, a SELECTOR may also be specified for column values. A column SELECTOR argument will
select the nearest preceding text line with the given SELECTOR prefix and select the value at the given 1-
based integer position (which includes the selector itself). If no such text line or position with a given line
exists, a null value will be produced.

NO ROW DELIMITER indicates that fixed parsing should not assume the presence of newline row
delimiters.

DELIMITER sets the field delimiter character to use. Defaults to ','.

QUOTE sets the quote, or qualifier, character used to wrap field values. Defaults to '"'.

Chapter 3. SQL Support

55

ESCAPE sets the escape character to use if no quoting character is in use. This is used in situations
where the delimiter or new line characters are escaped with a preceding character, e.g. \,

HEADER specifies the text line number (counting every new line) on which the column names occur. All
lines prior to the header will be skipped. If HEADER is specified, then the header line will be used to
determine the TEXTTABLE column position by case-insensitive name matching. This is especially useful
in situations where only a subset of the columns are needed. If the HEADER value is not specified, it
defaults to 1. If HEADER is not specified, then columns are expected to match positionally with the text
contents.

SKIP specifies the number of text lines (counting every new line) to skip before parsing the contents. You
can still specify a HEADER with SKIP.

A FOR ORDINALITY column is typed as integer and will return the 1-based item number as its value.

WIDTH indicates the fixed-width length of a column in characters - not bytes. The CR NL newline value
counts as a single character.

NO TRIM specifies that the text value should not be trimmed of all leading and trailing white space.

Syntax Rules:

If width is specified for one column it must be specified for all columns and be a non-negative integer.

If width is specified, then fixed width parsing is used and ESCAPE, QUOTE, and HEADER should not be
specified.

If width is not specified, then NO ROW DELIMITER cannot be used.

The column names must not contain duplicates.

Examples

Use of the HEADER parameter, returns 1 row ['b']:

SELECT * FROM TEXTTABLE(UNESCAPE('col1,col2,col3\na,b,c') COLUMNS col2
string HEADER) x

Use of fixed width, returns 2 rows ['a', 'b', 'c'], ['d', 'e', 'f']:

SELECT * FROM TEXTTABLE(UNESCAPE('abc\ndef') COLUMNS col1 string width 1,
col2 string width 1, col3 string width 1) x

Use of fixed width without a row delimiter, returns 3 rows ['a'], ['b'], ['c']:

SELECT * FROM TEXTTABLE('abc' COLUMNS col1 string width 1 NO ROW
DELIMITER) x

Use of ESCAPE parameter, returns 1 row ['a,', 'b']:

SELECT * FROM TEXTTABLE('a:,,b' COLUMNS col1 string, col2 string ESCAPE
':') x

As a nested table:

Development Guide Volume 3: Reference Material

56

SELECT x.* FROM t, TEXTTABLE(t.clobcolumn COLUMNS first string, second
date SKIP 1) x

Use of SELECTOR, returns 2 rows ['c', 'd', 'b'], ['c', 'f', 'b']:

SELECT * FROM TEXTTABLE('a,b\nc,d\nc,f' SELECTOR 'c' COLUMNS col1 string,
col2 string col3 string SELECTOR 'a' 2) x

3.6.9. Nested Tables: XMLTABLE

The XMLTABLE function uses XQuery to produce tabular output. The XMLTABLE function is implicitly a
nested table and may be used within FROM clauses. XMLTABLE is part of the SQL/XML 2006 specification.

Usage:

XMLTABLE([<NSP>,] xquery-expression [<PASSING>] [COLUMNS <COLUMN>, ...)] AS
name

COLUMN := name (FOR ORDINALITY | (datatype [DEFAULT expression] [PATH
string]))

See XMLELEMENT for the definition of NSP - XMLNAMESPACES.

See XMLQUERY for the definition of PASSING.

Note

See also XQuery Optimization.

Parameters

The optional XMLNAMESPACES clause specifies the namespaces for use in the XQuery and COLUMN
path expressions.

The xquery-expression must be a valid XQuery. Each sequence item returned by the xquery will be used
to create a row of values as defined by the COLUMNS clause.

If COLUMNS is not specified, then that is the same as having the COLUMNS clause: "COLUMNS
OBJECT_VALUE XML PATH '.'", which returns the entire item as an XML value.

A FOR ORDINALITY column is typed as integer and will return the one-based item number as its value.

Each non-ordinality column specifies a type and optionally a PATH and a DEFAULT expression.

If PATH is not specified, then the path will be the same as the column name.

Syntax Rules:

Only 1 FOR ORDINALITY column may be specified.

The columns names must not contain duplicates.

Chapter 3. SQL Support

57

The blob data type is supported, but there is only built-in support for xs:hexBinary values. For
xs:base64Binary, use a workaround of a PATH that uses the explicit value constructor
"xs:base64Binary(<path>)".

Examples

Use of passing, returns 1 row [1]:

select * from xmltable('/a' PASSING xmlparse(document '')
COLUMNS id integer PATH '@id') x

As a nested table:

select x.* from t, xmltable('/x/y' PASSING t.doc COLUMNS first string,
second FOR ORDINALITY) x

3.6.10. Nested Tables: ARRAYTABLE

The ARRAYTABLE function processes an array input to produce tabular output. The function itself defines
what columns it projects. The ARRAYTABLE function is implicitly a nested table and may be used within
FROM clauses.

Usage:

ARRAYTABLE(expression COLUMNS <COLUMN>, ...) AS name

COLUMN := name datatype

Parameters

expression - the array to process, which should be a java.sql.Array or java array value.

Syntax Rules:

The columns names must not contain duplicates.

Examples

As a nested table:

select x.* from (call source.invokeMDX('some query')) r,
arraytable(r.tuple COLUMNS first string, second bigdecimal) x

ARRAYTABLE is effectively a shortcut for using the array_get function (see Section 3.4.19, “Miscellaneous
Functions”) in a nested table. For example:

ARRAYTABLE(val COLUMNS col1 string, col2 integer) AS X

is the same as

TABLE(SELECT cast(array_get(val, 1) AS string) AS col1, cast(array_get(val,
2) AS integer) AS col2) AS X

Development Guide Volume 3: Reference Material

58

3.6.11. Nested Tables: OBJECTTABLE

The OBJECTTABLE function processes an object input to produce tabular output. The function itself defines
what columns it projects. The OBJECTTABLE function is implicitly a nested table and may be correlated to
preceding FROM clause entries.

Usage:

OBJECTTABLE([LANGUAGE lang] rowScript [PASSING val AS name ...] COLUMNS
colName colType colScript [DEFAULT defaultExpr] ...) AS id

Parameters

lang - an optional string literal that is the case sensitive language name of the scripts to be processed.
The script engine must be available via a JSR-223 ScriptEngineManager lookup. In some instances this
may mean making additional modules available to your VDB, which can be done via the same process as
adding modules/libraries for UDFs (see Non-Pushdown Support for User-Defined Functions in the
Development Guide: Server Development). If a LANGUAGE is not specified, the default of 'teiid_script'
(see below) will be used.

name - an identifier that will bind the val expression value into the script context.

rowScript is a string literal specifying the script to create the row values. For each non-null item the
Iterator produces the columns will be evaluated.

colName/colType are the id/data type of the column, which can optionally be defaulted with the DEFAULT
clause expression defaultExpr.

colScript is a string literal specifying the script that evaluates to the column value.

Syntax Rules:

The column names must be not contain duplicates.

JBoss Data Virtualization will place several special variables in the script execution context. The
CommandContext is available as teiid_context. Additionally the colScripts may access teiid_row and
teiid_row_number. teiid_row is the current row object produced by the row script. teiid_row_number is the
current 1-based row number.

rowScript is evaluated to an Iterator. If the results is already an Iterator, it is used directly. If the evaluation
result is an Iteratable, then an Iterator will be obtained. Any other Object will be treated as an Iterator of a
single item). In all cases null row values will be skipped.

Note

While there is no restriction what can be used as a PASSING variable names you should choose
names that can be referenced as identifiers in the target language.

Examples

Accessing special variables:

SELECT x.* FROM OBJECTTABLE('teiid_context' COLUMNS "user" string
'teiid_row.userName', row_number integer 'teiid_row_number') AS x

Chapter 3. SQL Support

59

The result would be a row with two columns containing the user name and 1 respectively.

Note

Due to their mostly unrestricted access to Java functionality, usage of languages other than
teiid_script is restricted by default. A VDB must declare all allowable languages by name in the
allowed-languages VDB property (see Section 9.1, “VDB Definition”) using a comma separated list.
The names are case sensitive names and should be separated without whitespace. Without this
property it is not possible to use OBJECTTABLE even from within view definitions that are not subject
to normal permission checks. Data Roles are also secured with User Query Permissions.

teiid_script

teiid_script is a simple scripting expression language that allows access to passing and special variables as
well as any non-void 0-argument methods on objects. A teiid_script expression begins by referencing the
passing or special variable. Then any number of .method accessors may be chained to evaluate the
expression to a different value. Methods may be accessed by their property names, for example foo rather
than getFoo. If the object both a getFoo() and foo() method, then the accessor foo references foo() and
getFoo should be used to call the getter.

teiid_script is effectively dynamically typed as typing is performed at runtime. If a accessor does not exist on
the object or if the method is not accessible, then an exception will be raised.

Examples

To get the VDB description string:

teiid_context.session.vdb.description

3.6.12. WHERE Clause

The WHERE clause defines the criteria to limit the records affected by SELECT, UPDATE, and DELETE
statements.

Usage:

WHERE criteria

See Also:

Section 3.3.11, “Criteria”

3.6.13. GROUP BY Clause

The GROUP BY clause denotes that rows should be grouped according to the specified expression values.
One row will be returned for each group, after optionally filtering those aggregate rows based on a HAVING
clause.

Usage:

GROUP BY expression (,expression)*

Development Guide Volume 3: Reference Material

60

Syntax Rules:

Column references in the GROUP BY clause must be unaliased output columns.

Expressions used in the GROUP BY clause must appear in the SELECT clause.

Column references and expressions in the SELECT clause that are not used in the GROUP BY clause
must appear in aggregate functions.

If an aggregate function is used in the SELECT clause and no GROUP BY is specified, an implicit
GROUP BY will be performed with the entire result set as a single group. In this case, every column in the
SELECT must be an aggregate function as no other column value will be fixed across the entire group.

The group by columns must be of a comparable type.

3.6.14. HAVING Clause

The HAVING clause operates exactly as a WHERE clause although it operates on the output of a GROUP
BY. It supports the same syntax as the WHERE clause.

Syntax Rules:

Expressions used in the GROUP BY clause must either contain an aggregate function: COUNT, AVG,
SUM, MIN, MAX. or be one of the grouping expressions.

3.6.15. ORDER BY Clause

The ORDER BY clause specifies how records should be sorted. The options are ASC (ascending) and DESC
(descending).

Usage:

ORDER BY expression [ASC|DESC] [NULLS (FIRST|LAST)], ...

Syntax Rules:

Sort columns may be specified positionally by a 1-based positional integer, by SELECT clause alias
name, by SELECT clause expression, or by an unrelated expression.

Column references may appear in the SELECT clause as the expression for an aliased column or may
reference columns from tables in the FROM clause. If the column reference is not in the SELECT clause
the query must not be a set operation, specify SELECT DISTINCT, or contain a GROUP BY clause.

Unrelated expressions, expressions not appearing as an aliased expression in the SELECT clause, are
allowed in the ORDER BY clause of a non-set QUERY. The columns referenced in the expression must
come from the FROM clause table references. The column references cannot be to alias names or
positional.

The ORDER BY columns must be of a comparable type.

If an ORDER BY is used in an inline view or view definition without a LIMIT clause, it will be removed by
the JBoss Data Virtualization optimizer.

If NULLS FIRST/LAST is specified, then nulls are guaranteed to be sorted either first or last. If the null
ordering is not specified, then results will typically be sorted with nulls as low values, which is the JBoss
Data Virtualization internal default sorting behavior. However not all sources return results with nulls
sorted as low values by default, and JBoss Data Virtualization may return results with different null

Chapter 3. SQL Support

61

orderings.

Warning

The use of positional ordering is no longer supported by the ANSI SQL standard and is a deprecated
feature in JBoss Data Virtualization. It is preferable to use alias names in the ORDER BY clause.

3.6.16. LIMIT Clause

The LIMIT clause specifies a limit on the number of records returned from the SELECT command. An
optional offset (the number of rows to skip) can be specified. The LIMIT clause can also be specified using the
SQL 2008 OFFSET/FETCH FIRST clauses. If an ORDER BY is also specified, it will be applied before the
OFFSET/LIMIT are applied. If an ORDER BY is not specified there is generally no guarantee what subset of
rows will be returned.

Usage:

LIMIT [offset,] limit

[OFFSET offset ROW|ROWS] [FETCH FIRST|NEXT [limit] ROW|ROWS ONLY

Syntax Rules:

The limit/offset expressions must be a non-negative integer or a parameter reference (?). An offset of 0 is
ignored. A limit of 0 will return no rows.

The terms FIRST/NEXT are interchangeable as well as ROW/ROWS.

The LIMIT clause may take an optional preceding NON_STRICT hint to indicate that push operations
should not be inhibited even if the results will not be consistent with the logical application of the limit. The
hint is only needed on unordered limits, e.g. "SELECT * FROM VW /*+ NON_STRICT */ LIMIT 2".

Examples:

LIMIT 100 - returns the first 100 records (rows 1-100)

LIMIT 500, 100 - skips 500 records and returns the next 100 records (rows 501-600)

OFFSET 500 ROWS - skips 500 records

OFFSET 500 ROWS FETCH NEXT 100 ROWS ONLY - skips 500 records and returns the next 100
records (rows 501-600)

FETCH FIRST ROW ONLY - returns only the first record

3.6.17. INTO Clause

Warning

Usage of the INTO Clause for inserting into a table has been been deprecated. An INSERT with a
query command should be used instead. Refer to Section 3.5.3, “INSERT Command”.

Development Guide Volume 3: Reference Material

62

3.6.18. OPTION Clause

The OPTION keyword denotes options the user can pass in with the command. These options are specific to
JBoss Data Virtualization and not covered by any SQL specification.

Usage:

OPTION option, (option)*

Supported options:

MAKEDEP table [(,table)*] - specifies source tables that will be made dependent in the join

MAKENOTDEP table [(,table)*] - prevents a dependent join from being used

NOCACHE [table (,table)*] - prevents cache from being used for all tables or for the given tables

Examples:

OPTION MAKEDEP table1

OPTION NOCACHE

All tables specified in the OPTION clause should be fully qualified, however the name may match either an
alias name or the fully qualified name.

Note

Previous versions of JBoss Data Virtualization accepted the PLANONLY, DEBUG, and SHOWPLAN
option arguments. These are no longer accepted in the OPTION clause. See Red Hat JBoss Data
Virtualization Development Guide: Client Development for replacements to those options.

3.7. DDL Commands

3.7.1. DDL Commands

JBoss Data Virtualization supports a subset of DDL to create/drop temporary tables and to manipulate
procedure and view definitions at runtime. It is not currently possible to arbitrarily drop/create non-temporary
metadata entries. See Section 12.1, “DDL Metadata” for DDL usage to define schemas within a VDB.

Note

A MetadataRepository must be configured to make a non-temporary metadata update persistent.
See Runtime Metadata Updates in Red Hat JBoss Data Virtualization Development Guide: Server
Development for more information.

3.7.2. Temporary Tables

JBoss Data Virtualization supports creating temporary tables. Temporary tables are dynamically created, but
are treated as any other physical table.

Chapter 3. SQL Support

63

Temporary tables can be defined implicitly by referencing them in a INSERT statement or explicitly with a
CREATE TABLE statement. Implicitly created temporary tables must have a name that starts with '#'.

Creation syntax:

Temporary tables can be defined explicitly with a CREATE TABLE statement:

CREATE LOCAL TEMPORARY TABLE name (column type [NOT NULL], ... [PRIMARY
KEY (column, ...)])

Alternatively, temporary tables can be defined implicitly by referencing them in a INSERT statement.
Implicitly created temporary tables must have a name that starts with '#':

INSERT INTO #name (column, ...) VALUES (value, ...)

Note

If #name does not exist, it will be defined using the given column names and types from the value
expressions.

INSERT INTO #name [(column, ...)] select c1, c2 from t

Note

If #name does not exist, it will be defined using the target column names and the types from the
query derived columns. If target columns are not supplied, the column names will match the
derived column names from the query.

Use the SERIAL data type to specify a NOT NULL and auto-incrementing INTEGER column. The starting
value of a SERIAL column is 1.

Drop syntax:

DROP TABLE name

Primary Key Support

All key columns must be comparable.

Use of a primary key creates a clustered index that supports search improvements for comparison, in,
like, and order by.

Null is an allowable primary key value, but there must be only 1 row that has an all null key.

Limitations:

With the CREATE TABLE syntax only basic table definition (column name and type information) and an
optional primary key are supported.

The "ON COMMIT" clause is not supported in the CREATE TABLE statement.

Development Guide Volume 3: Reference Material

64

"drop behavior" option is not supported in the drop statement.

Only local temporary tables are supported. This implies that the scope of temp table will be either to the
session or the block of a virtual procedure that creates it.

Session level temporary tables are not fail-over safe.

Temp tables support a READ_UNCOMMITED transaction isolation level. There are no locking
mechanisms available to support higher isolation levels and the result of a rollback may be inconsistent
across multiple transactions. If concurrent transactions are not associated with the same local temporary
table or session, then the transaction isolation level is effectively SERIALIZABLE. If you want full
consistency with local temporary tables, then only use a connection with 1 transaction at a time. This
mode of operation is ensured by connection pooling that tracks connections by transaction.

LOB values (XML, CLOB, BLOB) are tracked by reference rather than by value in a temporary table. LOB
values from external sources that are inserted in a temporary table may become unreadable when the
associated statement or connection is closed.

The following example is a series of statements that loads a temporary table with data from 2 sources, and
with a manually inserted record, and then uses that temp table in a subsequent query.

...
CREATE LOCAL TEMPORARY TABLE TEMP (a integer, b integer, c integer);
INSERT * INTO temp FROM Src1; INSERT * INTO temp FROM Src2;
INSERT INTO temp VALUES (1,2,3);
SELECT a,b,c FROM Src3, temp WHERE Src3.a = temp.b;
...

3.7.3. Foreign Temporary Tables

Unlike a local temporary table, a foreign temporary table is a reference to an actual source table that is
created at runtime rather than during the metadata load.

A foreign temporary table requires explicit creation syntax:

CREATE FOREIGN TEMPORARY TABLE name ... ON schema

Where the table creation body syntax is the same as a standard CREATE FOREIGN TABLE DDL statement
(see Section 12.1, “DDL Metadata”). In general usage of DDL OPTION, clauses may be required to properly
access the source table, including setting the name in source, updatability, native types, etc.

The schema name must specify an existing schema/model in the VDB. The table will be accessed as if it is
on that source, however within JBoss Data Virtualization the temporary table will still be scoped the same as
a non-foreign temporary table. This means that the foreign temporary table will not belong to a JBoss Data
Virtualization schema and will be scoped to the session or procedure block where created.

The DROP syntax for a foreign temporary table is the same as for a non-foreign temporary table.

Neither a CREATE nor a corresponding DROP of a foreign temporary table issue a pushdown command,
rather this mechanism simply exposes a source table for use within JBoss Data Virtualization on a temporary
basis.

There are two usage scenarios for a FOREIGN TEMPORARY TABLE. The first is to dynamically access
additional tables on the source. The other is to replace the usage of a JBoss Data Virtualization local
temporary table for performance reasons. The usage pattern for the latter case would look like:

//- create the source table

Chapter 3. SQL Support

65

call source.native("CREATE GLOBAL TEMPORARY TABLE name IF NOT EXISTS ON
COMMIT DELETE ROWS");
//- bring the table into JBoss Data Virtualization
CREATE FOREIGN TEMPORARY TABLE name ... OPTIONS (UPDATABLE true)
//- use the table
...
//- forget the table
DROP TABLE name

Note the usage of the native procedure to pass source specific CREATE ddl to the source. JBoss Data
Virtualization does not currently attempt to pushdown a source creation of a temporary table based upon the
CREATE statement. Some other mechanism, such as the native procedure shown above, must be used to
first create the table. Also note the table is explicitly marked as updatable, since DDL defined tables are not
updatable by default.

The source's handling of temporary tables must also be understood to make this work as intended. Sources
that use the same GLOBAL table definition for all sessions while scoping the data to be session specific
(such as Oracle) or sources that support session scoped temporary tables (such as PostgreSQL) will work if
accessed under a transaction. A transaction is necessary because:

the source on commit behavior (most likely DELETE ROWS or DROP) will ensure clean-up. Keep in mind
that a JBoss Data Virtualization DROP does not issue a source command and is not guaranteed to occur
(in some exception cases, loss of DB connectivity, hard shutdown, etc.).

the source pool when using track connections by transaction will ensure that multiple uses of that source
by JBoss Data Virtualization will use the same connection/session and thus the same temporary table
and data.

Note

Since the ON COMMIT clause is not yet supported by JBoss Data Virtualization, it is important to
consider that the source table ON COMMIT behavior will likely be different that the default,
PRESERVE ROWS, for JBoss Data Virtualization local temporary tables.

3.7.4. Alter View

Usage:

ALTER VIEW name AS queryExpression

Syntax Rules:

The alter query expression may be prefixed with a cache hint for materialized view definitions. The hint
will take effect the next time the materialized view table is loaded.

3.7.5. Alter Procedure

Usage:

ALTER PROCEDURE name AS block

Syntax Rules:

Development Guide Volume 3: Reference Material

66

The alter block should not include 'CREATE VIRTUAL PROCEDURE'

The alter block may be prefixed with a cache hint for cached procedures.

3.7.6. Create Trigger

Usage:

CREATE TRIGGER ON name INSTEAD OF INSERT|UPDATE|DELETE AS FOR EACH ROW block

Syntax Rules:

The target, name, must be an updatable view.

An INSTEAD OF TRIGGER must not yet exist for the given event.

Triggers are not yet true schema objects. They are scoped only to their view and have no name.

Limitations:

There is no corresponding DROP operation. See Section 3.7.7, “Alter Trigger” for enabling/disabling an
existing trigger.

3.7.7. Alter Trigger

Usage:

ALTER TRIGGER ON name INSTEAD OF INSERT|UPDATE|DELETE (AS FOR EACH ROW block)
| (ENABLED|DISABLED)

Syntax Rules:

The target, name, must be an updatable view.

Triggers are not yet true schema objects. They are scoped only to their view and have no name.

Update Procedures must already exist for the given trigger event. See Section 3.10.6, “Update
Procedures”.

Note

If the default inherent update is chosen in Teiid Designer, any SQL associated with update (shown in
a greyed out text box) is not part of the VDB and cannot be enabled with an alter trigger statement.

3.8. XML Document Generation

3.8.1. XML Document Generation

XML documents can be constructed dynamically using XML Document Models. A document model is
generally created from a schema. The document model is bound to relevant SQL statements through
mapping classes. See the Red Hat JBoss Data Virtualization User Guide for more information about creating
document models.

Chapter 3. SQL Support

67

Querying XML documents is similar to querying relational tables. An idiomatic SQL variant with special scalar
functions provides control over which parts of a given document to return.

Note

XML documents may also be created via XQuery with the XMLQuery function or with various other
SQL/XML functions. See Section 3.4.14, “XML Functions”.

3.8.2. XML SELECT Command

A valid XML SELECT Command against a document model is of the form:

SELECT ... FROM ... [WHERE ...] [ORDER BY ...]

The use of any other SELECT clause is not allowed.

The fully qualified name for an XML element is:

"model"."document name".[path to element]."element name"

The fully qualified name for an attribute is:

"model"."document name".[path to element]."element name".[@]"attribute name"

Partially qualified names for elements and attributes can be used as long as the partial name is unique.

3.8.3. XML SELECT: FROM Clause

This clause specifies the document to generate. Document names resemble other virtual groups -
"model"."document name".

Syntax Rules:

The FROM clause must contain only one unary clause specifying the desired document.

3.8.4. XML SELECT: SELECT Clause

The SELECT clause determines which parts of the XML document are generated for output.

Example Syntax:

select * from model.doc

select model.doc.root.parent.element.* from model.doc

select element, element1.@attribute from model.doc

Syntax Rules:

SELECT * and SELECT "xml" are equivalent and specify that every element and attribute of the document
should be output.

Development Guide Volume 3: Reference Material

68

The SELECT clause of an XML Query may only contain *, "xml", or element and attribute references from
the specified document. Any other expressions are not allowed.

If the SELECT clause contains an element or attribute reference (other than * or "xml") then only the
specified elements, attributes, and their ancestor elements will be in the generated document.

element.* specifies that the element, its attribute, and all child content should be output.

3.8.5. XML SELECT: WHERE Clause

The WHERE clause specifies how to filter content from the generated document based upon values
contained in the underlying mapping classes. Most predicates are valid in an XML SELECT Command,
however combining value references from different parts of the document may not always be allowed.

Criteria is logically applied to a context which is directly related to a mapping class. Starting with the root
mapping class, there is a root context that describes all of the top level repeated elements that will be in the
output document. Criteria applied to the root or any other context will change the related mapping class query
to apply the affects of the criteria, which can include checking values from any of the descendant mapping
classes.

Example Syntax:

select element, element1.@attribute from model.doc where element1.@attribute = 1

select element, element1.@attribute from model.doc where context(element1, element1.@attribute) = 1

Syntax Rules:

Each criteria conjunct must refer to a single context and can be criteria that applies to a mapping class,
contain a rowlimit function, or contain rowlimitexception function. Refer to Section 3.8.9,
“ROWLIMIT Function” and Section 3.8.10, “ROWLIMITEXCEPTION Function”.

Criteria that applies to a mapping class is associated to that mapping class using the context function.
The absence of a context function implies the criteria applies to the root context. Refer to Section 3.8.8,
“CONTEXT Function”.

At a given context the criteria can span multiple mapping classes provided that all mapping classes
involved are either parents of the context, the context itself, or a descendant of the context.

Note

Implied root context user criteria against a document model with sibling root mapping classes is not
generally semantically correct. It is applied as if each of the conjuncts is applied to only a single root
mapping class. This behavior is the same as prior releases but may be fixed in a future release.

3.8.6. XML SELECT: ORDER BY Clause

The XML SELECT Command ORDER BY clause specifies ordering for the referenced mapping class
queries.

Syntax Rules:

Each ORDER BY item must be an element or attribute reference tied a output value from a mapping
class.

Chapter 3. SQL Support

69

The order of the ORDER BY items is the relative order applied to their respective mapping classes.

3.8.7. XML SELECT Command Specific Functions

XML SELECT Command functions resemble scalar functions, but act as hints in the WHERE clause:

CONTEXT Function

ROWLIMIT Function

ROWLIMITEXCEPTION Function

These functions are only valid in an XML SELECT Command.

3.8.8. CONTEXT Function

This function selects the context for the containing conjunct.

CONTEXT(arg1, arg2)

Syntax Rules:

Context functions apply to the whole conjunct.

The first argument must be an element or attribute reference from the mapping class whose context the
criteria conjunct will apply to.

The second parameter is the return value for the function.

3.8.9. ROWLIMIT Function

This function limits the rows processed for the given context.

ROWLIMIT(arg)

Syntax Rules:

The first argument must be an element or attribute reference from the mapping class whose context the
row limit applies.

The ROWLIMIT function must be used in equality comparison criteria with the right hand expression
equal to an positive integer number or rows to limit.

Only one row limit or row limit exception may apply to a given context.

3.8.10. ROWLIMITEXCEPTION Function

This function limits the rows processed for the given context and throws an exception if the given number of
rows is exceeded.

ROWLIMITEXCEPTION(arg)

Syntax Rules:

The first argument must be an element or attribute reference from the mapping class whose context the
row limit exception applies.

Development Guide Volume 3: Reference Material

70

The ROWLIMITEXCEPTION function must be used in equality comparison criteria with the right hand
expression equal to an positive integer number or rows to limit.

Only one row limit or row limit exception may apply to a given context.

3.8.11. Document Generation

Document generation starts with the root mapping class and proceeds iteratively and hierarchically over all of
the child mapping classes. This can result in a large number of query executions. For example if a document
has a root mapping class with 3 child mapping classes. Then for each row selected by the root mapping
class after the application of the root context criteria, each of the child mapping classes queries will also be
executed.

Note

By default, XML generated by XML documents are not checked for correctness vs. the relevant
schema. It is possible that the mapping class queries, the usage of specific SELECT or WHERE
clause values will generate a document that is not valid with respect to the schema. Refer to
Section 3.8.12, “Document Validation” for information to ensure correctness.

Sibling or cousin elements defined by the same mapping class that do not have a common parent in that
mapping class will be treated as independent mapping classes during planning and execution. This allows for
a more document-centric approach when applying WHERE criteria and ORDER BY clauses to mapping
classes.

3.8.12. Document Validation

If the execution property XMLValidation is set to 'true' generated documents will be checked for
correctness. However, correctness checking will not prevent invalid documents from being generated, since
correctness is checked after generation.

3.9. Procedural Language

3.9.1. Procedural Language

JBoss Data Virtualization supports a procedural language for defining virtual procedures. These are similar to
stored procedures in relational database management systems. You can use this language to define the
transformation logic for decomposing INSERT, UPDATE, and DELETE commands against views; these are
known as update procedures. See Section 3.10.1, “Virtual Procedures” and Section 3.10.6, “Update
Procedures” for more information.

3.9.2. Command Statement

A command statement executes a DML command, DDL command or dynamic SQL against one or more data
sources. See Section 3.5.1, “DML Commands” and Section 3.7.1, “DDL Commands”.

Usage:

command [(WITH|WITHOUT) RETURN];

Chapter 3. SQL Support

71

Example 3.8. Example Command Statements

SELECT * FROM MySchema.MyTable WHERE ColA > 100 WITHOUT RETURN;
INSERT INTO MySchema.MyTable (ColA,ColB) VALUES (50, 'hi');

EXECUTE commands may access IN/OUT, OUT, and RETURN parameters. To access the return value the
statement will have the form var = EXEC proc.... To access OUT or IN/OUT values named parameter
syntax must be used. For example, EXEC proc(in_param=>'1', out_param=>var) will assign the
value of the out parameter to the variable var. It is expected that the data type of parameter will be implicitly
convertible to the data type of the variable.

The RETURN clause determines if the result of the command is returnable from the procedure. WITH
RETURN is the default. If the command does not return a result set or the procedure does not return a result
set, the RETURN clause is ignored. If WITH RETURN is specified, the result set of the command must match
the expected result set of the procedure. Only the last successfully executed statement executed WITH
RETURN will be returned as the procedure result set. If there are no returnable result sets and the procedure
declares that a result set will be returned, then an empty result set is returned.

3.9.3. Dynamic SQL

Dynamic SQL allows for the execution of an arbitrary SQL command in a virtual procedure. Dynamic SQL is
useful in situations where the exact command form is not known prior to execution.

Usage:

EXECUTE IMMEDIATE <expression> [AS <variable> <type> [, <variable> <type>]*
[INTO <variable>]] [USING <variable>=<expression> [,<variable>=
<expression>]*] [UPDATE <literal>]

Syntax Rules:

The "AS" clause is used to define the projected symbols names and types returned by the executed SQL
string. The "AS" clause symbols will be matched positionally with the symbols returned by the executed
SQL string. Non-convertible types or too few columns returned by the executed SQL string will result in an
error.

The "INTO" clause will project the dynamic SQL into the specified temp table. With the "INTO" clause
specified, the dynamic command will actually execute a statement that behaves like an INSERT with a
QUERY EXPRESSION. If the dynamic SQL command creates a temporary table with the "INTO" clause,
then the "AS" clause is required to define the table's metadata.

The "USING" clause allows the dynamic SQL string to contain variable references that are bound at
runtime to specified values. This allows for some independence of the SQL string from the surrounding
procedure variable names and input names. In the dynamic command "USING" clause, each variable is
specified by short name only. However in the dynamic SQL the "USING" variable must be fully qualified to
"DVAR.". The "USING" clause is only for values that will be used in the dynamic SQL as legal
expressions. It is not possible to use the "USING" clause to replace table names, keywords, etc. This
makes using symbols equivalent in power to normal bind (?) expressions in prepared statements. The
"USING" clause helps reduce the amount of string manipulation needed. If a reference is made to a
USING symbol in the SQL string that is not bound to a value in the "USING" clause, an exception will
occur.

The "UPDATE" clause is used to specify the updating model count. Accepted values are (0,1,*). 0 is the
default value if the clause is not specified. See Section 6.3, “Updating Model Count”.

Development Guide Volume 3: Reference Material

72

Example 3.9. Example Dynamic SQL

...
/* Typically complex criteria would be formed based upon inputs to the
procedure.
 In this simple example the criteria is references the using clause to
isolate
 the SQL string from referencing a value from the procedure directly */
DECLARE string criteria = 'Customer.Accounts.Last = DVARS.LastName';

/* Now we create the desired SQL string */
DECLARE string sql_string = 'SELECT ID, First || '' '' || Last AS Name,
Birthdate FROM Customer.Accounts WHERE ' || criteria;

/* The execution of the SQL string will create the #temp table with the
columns (ID, Name, Birthdate).
 Note that we also have the USING clause to bind a value to LastName,
which is referenced in the criteria. */
EXECUTE IMMEDIATE sql_string AS ID integer, Name string, Birthdate date
INTO #temp USING LastName='some name';
/* The temp table can now be used with the values from the Dynamic SQL */
loop on (SELCT ID from #temp) as myCursor
...

Here is an example showing a more complex approach to building criteria for the dynamic SQL string. In
short, the virtual procedure AccountAccess.GetAccounts has inputs ID, LastName, and bday. If a value is
specified for ID it will be the only value used in the dynamic SQL criteria. Otherwise if a value is specified for
LastName the procedure will detect if the value is a search string. If bday is specified in addition to
LastName, it will be used to form compound criteria with LastName.

Example 3.10. Example Dynamic SQL with USING clause and dynamically built criteria string

...
DECLARE string crit = null;
IF (AccountAccess.GetAccounts.ID IS NOT NULL)
 crit = '(Customer.Accounts.ID = DVARS.ID)';
ELSE IF (AccountAccess.GetAccounts.LastName IS NOT NULL)
BEGIN
 IF (AccountAccess.GetAccounts.LastName == '%')
 ERROR "Last name cannot be %";
 ELSE IF (LOCATE('%', AccountAccess.GetAccounts.LastName) < 0)
 crit = '(Customer.Accounts.Last = DVARS.LastName)';
 ELSE
 crit = '(Customer.Accounts.Last LIKE DVARS.LastName)';
 IF (AccountAccess.GetAccounts.bday IS NOT NULL)
 crit = '(' || crit || ' and (Customer.Accounts.Birthdate =
DVARS.BirthDay))';
END
ELSE
 ERROR "ID or LastName must be specified.";
EXECUTE IMMEDIATE 'SELECT ID, First || '' '' || Last AS Name, Birthdate
FROM Customer.Accounts WHERE ' || crit USING
ID=AccountAccess.GetAccounts.ID,

Chapter 3. SQL Support

73

LastName=AccountAccess.GetAccounts.LastName,
BirthDay=AccountAccess.GetAccounts.Bday;
...

3.9.4. Dynamic SQL Limitations

The use of dynamic SQL command results in an assignment statement requires the use of a temp table.

Example 3.11. Example Assignment

EXECUTE IMMEDIATE <expression> AS x string INTO #temp;
DECLARE string VARIABLES.RESULT = (SELECT x FROM #temp);

The construction of appropriate criteria will be cumbersome if parts of the criteria are not present. For
example if "criteria" were already NULL, then the following example results in "criteria" remaining NULL.

Example 3.12. Example Dangerous NULL handling

...
criteria = '(' || criteria || ' and (Customer.Accounts.Birthdate =
DVARS.BirthDay))';

The preferred approach is for the user to ensure the criteria is not NULL prior its usage. If this is not
possible, a good approach is to specify a default as shown in the following example.

Example 3.13. Example NULL handling

...
criteria = '(' || nvl(criteria, '(1 = 1)') || ' and
(Customer.Accounts.Birthdate = DVARS.BirthDay))';

If the dynamic SQL is an UPDATE, DELETE, or INSERT command, and the user needs to specify the
"AS" clause (which would be the case if the number of rows effected needs to be retrieved). The user will
still need to provide a name and type for the return column if the into clause is specified.

Example 3.14. Example with AS and INTO clauses

/* This name does not need to match the expected update command symbol
"count". */
EXECUTE IMMEDIATE <expression> AS x integer INTO #temp;

Unless used in other parts of the procedure, tables in the dynamic command will not be seen as sources
in Teiid Designer.

When using the "AS" clause only the type information will be available to Teiid Designer. Result set
columns generated from the "AS" clause then will have a default set of properties for length, precision,

Development Guide Volume 3: Reference Material

74

etc.

3.9.5. Declaration Statement

A declaration statement declares a variable and its type. After you declare a variable, you can use it in that
block within the procedure and any sub-blocks. A variable is initialized to null by default, but can also be
assigned the value of an expression as part of the declaration statement.

Usage:

DECLARE <type> [VARIABLES.]<name> [= <expression>];

Example Syntax

declare integer x;
declare string VARIABLES.myvar = 'value';

Syntax Rules:

You cannot redeclare a variable with a duplicate name in a sub-block

The VARIABLES group is always implied even if it is not specified.

The assignment value follows the same rules as for an Assignment Statement.

In addition to the standard types, you may specify EXCEPTION if declaring an exception variable.

3.9.6. Assignment Statement

An assignment statement assigns a value to a variable by evaluating an expression.

Usage:

<variable reference> = <expression>;

Example Syntax

myString = 'Thank you';
VARIABLES.x = (SELECT Column1 FROM MySchema.MyTable);

Special Variables

The VARIABLES.ROWCOUNT integer variable will contain the numbers of rows affected by the last
INSERT/UPDATE/DELETE command statement executed. Inserts that are processed by dynamic SQL
with an INTO clause will also update the ROWCOUNT.

Example 3.15. Sample Usage

...
UPDATE FOO SET X = 1 WHERE Y = 2;
DECLARE INTEGER UPDATED = VARIABLES.ROWCOUNT;
...

Chapter 3. SQL Support

75

3.9.7. Compound Statement

A compound statement (or block) logically groups a series of statements. Temporary tables and variables
created in a compound statement are local only to that block and are destroyed when exiting the block.

Usage:

[label :] BEGIN [[NOT] ATOMIC]
 statement*
[EXCEPTION ex
 statement*
]
END

Note

Where a block is expected by an IF, LOOP, WHILE, etc., a single statement is also accepted by the
parser. Even though the block BEGIN/END are not expected, the statement will execute as if wrapped
in a BEGIN/END pair.

Syntax Rules

If NOT ATOMIC or no ATOMIC clause is specified, the block will be executed non-atomically.

If the ATOMIC clause is specified, the block must execute atomically. If a transaction is already
associated with the thread, no additional action will be taken - savepoints and/or sub-transactions are not
currently used. Otherwise a transaction will be associated with the execution of the block.

The label must not be the same as any other label used in statements containing this one.

3.9.8. Exception Handling

If the EXCEPTION clause is used within a compound statement, any processing exception emitted from
statements will be caught with the flow of execution transferring to EXCEPTION statements. Any block level
transaction started by this block will commit if the exception handler successfully completes. If another
exception or the original exception is emitted from the exception handler the transaction will rollback. Any
temporary tables or variables specific to the BLOCK will not be available to the exception handler statements.

Note

Only processing exceptions, which are typically caused by errors originating at the sources or with
function execution, are caught. A low-level internal error or Java RuntimeException will not be
caught.

To aid in the processing of a caught exception the EXCEPTION clause specifies a group name that exposes
the significant fields of the exception. The exception group will contain:

Variable Type Description
STATE string The SQL State

Development Guide Volume 3: Reference Material

76

ERRORCODE integer The error or vendor code. In the
case of an internal exception, this
will be the integer suffix of the
TEIIDxxxx code

TEIIDCODE string The full event code. Typically
TEIIDxxxx.

EXCEPTION object The exception being caught, will
be an instance of
TeiidSQLException

CHAIN object The chained exception or cause
of the current exception

Variable Type Description

Note

JBoss Data Virtualization does not yet fully comply with the ANSI SQL specification on SQL State
usage. For errors without an underlying SQLException cause, it is best to use the event code.

The exception group name may not be the same as any higher level exception group or loop cursor name.

Example 3.16. Example Exception Group Handling

BEGIN
 DECLARE EXCEPTION e = SQLEXCEPTION 'this is bad' SQLSTATE 'xxxxx';
 RAISE variables.e;
EXCEPTION e
 IF (e.state = 'xxxxx')
 //in this trivial example, we'll always hit this branch and log
the exception
 RAISE SQLWARNING e.exception;
 ELSE
 RAISE e.exception;
END

3.9.9. If Statement

An IF statement evaluates a condition and executes one of two statements depending on the result. You can
nest IF statements to create complex branching logic. A dependent ELSE statement will execute its
statement only if the IF statement evaluates to false.

Usage:

IF (criteria)
 block
[ELSE
 block]
END

Example 3.17. Example If Statement

Chapter 3. SQL Support

77

IF (var1 = 'North America')
BEGIN
 ...statement...
END ELSE
BEGIN
 ...statement...
END

Note

NULL values should be considered in the criteria of an IF statement. IS NULL criteria can be used to
detect the presence of a NULL value.

3.9.10. Loop Statement

A LOOP statement is an iterative control construct that is used to cursor through a result set.

Usage:

[label :] LOOP ON <select statement> AS <cursorname>
 block

Syntax Rules

The label must not be the same as any other label used in statements containing this one.

3.9.11. While Statement

A WHILE statement is an iterative control construct that is used to execute a block repeatedly whenever a
specified condition is met.

Usage:

[label :] WHILE <criteria>
 block

Syntax Rules

The label must not be the same as any other label used in statements containing this one.

3.9.12. Continue Statement

A CONTINUE statement is used inside a LOOP or WHILE construct to continue with the next loop by
skipping over the rest of the statements in the loop. It must be used inside a LOOP or WHILE statement.

Usage:

CONTINUE [label];

Syntax Rules

Development Guide Volume 3: Reference Material

78

If the label is specified, it must exist on a containing LOOP or WHILE statement.

If no label is specified, the statement will affect the closest containing LOOP or WHILE statement.

3.9.13. Break Statement

A BREAK statement is used inside a LOOP or WHILE construct to break from the loop. It must be used
inside a LOOP or WHILE statement.

Usage:

BREAK [label];

Syntax Rules

If the label is specified, it must exist on a containing LOOP or WHILE statement.

If no label is specified, the statement will affect the closest containing LOOP or WHILE statement.

3.9.14. Leave Statement

A LEAVE statement is used inside a compound, LOOP, or WHILE construct to leave to the specified label.

Usage:

LEAVE label;

Syntax Rules

The label must exist on a containing compound statement, LOOP, or WHILE statement.

3.9.15. Return Statement

A Return statement gracefully exits the procedure and optionally returns a value.

Usage:

RETURN [expression];

Syntax Rules

If an expression is specified, the procedure must have a return parameter and the value must be implicitly
convertible to the expected type.

Even if the procedure has a return value, it is not required to specify a return value in a RETURN
statement.

3.9.16. Error Statement

An ERROR statement declares that the procedure has entered an error state and should abort. This
statement will also roll back the current transaction, if one exists. Any valid expression can be specified after
the ERROR keyword.

Usage:

Chapter 3. SQL Support

79

ERROR message;

Example 3.18. Example Error Statement

ERROR 'Invalid input value: ' || nvl(Acct.GetBalance.AcctID, 'null');

An ERROR statement is equivalent to:

RAISE SQLEXCEPTION message;

3.9.17. Raise Statement

A RAISE statement is used to raise an exception or warning. When raising an exception, this statement will
also roll back the current transaction, if one exists.

Usage:

RAISE [SQLWARNING] exception;

Where exception may be a variable reference to an exception or an exception expression.

Syntax Rules

If SQLWARNING is specified, the exception will be sent to the client as a warning and the procedure will
continue to execute.

A null warning will be ignored. A null non-warning exception will still cause an exception to be raised.

Example 3.19. Example Raise Statement

RAISE SQLWARNING SQLEXCEPTION 'invalid' SQLSTATE '05000';

3.9.18. Exception Expression

An exception expression creates an exception that can be raised or used as a warning.

Usage:

SQLEXCEPTION message [SQLSTATE state [, code]] CHAIN exception

Syntax Rules

Any of the values may be null;

message and state are string expressions specifying the exception message and SQL state respectively.
JBoss Data Virtualization does not yet fully comply with the ANSI SQL specification on SQL state usage,
but you are allowed to set any SQL state you choose.

code is an integer expression specifying the vendor code

Development Guide Volume 3: Reference Material

80

exception must be a variable reference to an exception or an exception expression and will be chained to
the resulting exception as its parent.

3.10. Procedures

3.10.1. Virtual Procedures

Virtual procedures are defined using the JBoss Data Virtualization procedural language (see Section 3.9.1,
“Procedural Language”). A virtual procedure has zero or more input parameters, and a result set return type.
Virtual procedures support the ability to execute queries and other SQL commands, define temporary tables,
add data to temporary tables, walk through result sets, use loops, and use conditional logic.

Usage:

CREATE VIRTUAL PROCEDURE
block

The CREATE VIRTUAL PROCEDURE line indicates the beginning of the procedure. Within the body of the
procedure, any valid statement may be used. See Section 3.9.1, “Procedural Language”.

There is no explicit cursoring or return statement, rather the last command statement executed in the
procedure that returns a result set will be returned as the result. The output of that statement must match the
expected result set and parameters of the procedure.

3.10.2. Virtual Procedure Parameters

Virtual procedures can take zero or more IN/INOUT parameters and may also have any number of OUT
parameters and an optional RETURN parameter. Each input has the following information that is used during
runtime processing:

Name - The name of the input parameter.

Datatype - The design-time type of the input parameter.

Default value - The default value if the input parameter is not specified.

Nullable - NO_NULLS, NULLABLE, NULLABLE_UNKNOWN; parameter is optional if nullable, and is not
required to be listed when using named parameter syntax

You reference a parameter in a virtual procedure by using the fully-qualified name of the param (or less if
unambiguous). For example, MySchema.MyProc.Param1.

Example 3.20. Example of Referencing an Input Parameter and Assigning an Out Parameter for
'GetBalance' Procedure

CREATE VIRTUAL PROCEDURE
BEGIN
 MySchema.GetBalance.RetVal = UPPER(MySchema.GetBalance.AcctID);
 SELECT Balance FROM MySchema.Accts WHERE MySchema.Accts.AccountID =
MySchema.GetBalance.AcctID;
END

Chapter 3. SQL Support

81

If an INOUT parameter is not assigned any value in a procedure it will remain the value it was assigned for
input. Any OUT/RETURN parameter not assigned a value will remain the as the default NULL value. The
INOUT/OUT/RETURN output values are validated against the NOT NULL metadata of the parameter.

3.10.3. Example Virtual Procedures

This example is a LOOP that walks through a cursored table and uses CONTINUE and BREAK.

Example 3.21. Virtual Procedure Using LOOP, CONTINUE, BREAK

CREATE VIRTUAL PROCEDURE
BEGIN
 DECLARE double total;
 DECLARE integer transactions;
 LOOP ON (SELECT amt, type FROM CashTxnTable) AS txncursor
 BEGIN
 IF(txncursor.type <> 'Sale')
 BEGIN
 CONTINUE;
 END ELSE
 BEGIN
 total = (total + txncursor.amt);
 transactions = (transactions + 1);
 IF(transactions = 100)
 BEGIN
 BREAK;
 END
 END
 END
 SELECT total, (total / transactions) AS avg_transaction;
END

This example is uses conditional logic to determine which of two SELECT statements to execute.

Example 3.22. Virtual Procedure with Conditional SELECT

CREATE VIRTUAL PROCEDURE
BEGIN
 DECLARE string VARIABLES.SORTDIRECTION;
 VARIABLES.SORTDIRECTION = PartsVirtual.OrderedQtyProc.SORTMODE;
 IF (ucase(VARIABLES.SORTDIRECTION) = 'ASC')
 BEGIN
 SELECT * FROM PartsVirtual.SupplierInfo WHERE QUANTITY >
PartsVirtual.OrderedQtyProc.QTYIN ORDER BY
PartsVirtual.SupplierInfo.PART_ID;
 END ELSE
 BEGIN
 SELECT * FROM PartsVirtual.SupplierInfo WHERE QUANTITY >
PartsVirtual.OrderedQtyProc.QTYIN ORDER BY
PartsVirtual.SupplierInfo.PART_ID DESC;
 END
END

Development Guide Volume 3: Reference Material

82

3.10.4. Executing Virtual Procedures

You execute procedures using the SQL EXECUTE command. See Section 3.5.7, “EXECUTE Command”.

If the procedure has defined inputs, you specify those in a sequential list, or using "name=value" syntax. You
must use the name of the input parameter, scoped by the full procedure name if the parameter name is
ambiguous in the context of other columns or variables in the procedure.

A virtual procedure call will return a result set like any SELECT, so you can use this in many places you can
use a SELECT. Typically you'll use the following syntax:

SELECT * FROM (EXEC ...) AS x

3.10.5. Virtual Procedure Limitations

JBoss Data Virtualization virtual procedures can only be defined in Teiid Designer. They also cannot use
IN/OUT, OUT, or RETURN parameters and may only return 1 result set.

3.10.6. Update Procedures

Views are abstractions above physical sources. They typically union or join information from multiple tables,
often from multiple data sources or other views. JBoss Data Virtualization can perform update operations
against views. Update commands - INSERT, UPDATE, or DELETE - against a view require logic to define
how the tables and views integrated by the view are affected by each type of command. This transformation
logic is invoked when an update command is issued against a view. Update procedures define the logic for
how a user's update command against a view should be decomposed into the individual commands to be
executed against the underlying physical sources. Similar to virtual procedures , update procedures have the
ability to execute queries or other commands, define temporary tables, add data to temporary tables, walk
through result sets, use loops, and use conditional logic. See Section 3.10.1, “Virtual Procedures” for more
information about virtual procedures.

3.10.7. Update Procedure Processing

1. The user application submits the SQL command through one of SOAP, JDBC, or ODBC.

2. The view this SQL command is executed against is detected.

3. The correct procedure is chosen depending upon whether the command is an INSERT, UPDATE, or
DELETE.

4. The procedure is executed. The procedure itself can contain SQL commands of its own which can
be of different types than the command submitted by the user application that invoked the procedure.

5. Commands, as described in the procedure, are issued to the individual physical data sources or
other views.

6. A value representing the number of rows changed is returned to the calling application.

3.10.8. The FOR EACH ROW Procedure

A FOR EACH ROW procedure will evaluate its block for each row of the view affected by the update
statement. For UPDATE and DELETE statements this will be every row that passes the WHERE condition.
For INSERT statements there will be 1 new row for each set of values from the VALUES or query expression.
The rows updated is reported as this number regardless of the affect of the underlying procedure logic.

Chapter 3. SQL Support

83

JBoss Data Virtualization FOR EACH ROW update procedures function like INSTEAD OF triggers in
traditional databases. There may only be 1 FOR EACH ROW procedure for each INSERT, UPDATE, or
DELETE operation against a view. FOR EACH ROW update procedures can also be used to emulate
BEFORE/AFTER each row triggers while still retaining the ability to perform an inherent update. This
BEFORE/AFTER trigger behavior with an inherent update can be achieved by creating an additional
updatable view over the target view with update procedures of the form:

Usage:

FOR EACH ROW
 BEGIN ATOMIC
 ...
 END

The BEGIN and END keywords are used to denote block boundaries. Within the body of the procedure, any
valid statement may be used. See Section 3.9.1, “Procedural Language”.

Note

Use of the ATOMIC keyword is currently optional for backward compatibility, but unlike a normal
block, the default for INSTEAD OF is atomic.

3.10.9. Special Variables for Update Procedures

You can use a number of special variables when defining your update procedure.

NEW

Every attribute in the view whose UPDATE and INSERT transformations you are defining has an
equivalent variable named NEW.<column_name>

When an INSERT or an UPDATE command is executed against the view, these variables are
initialized to the values in the INSERT VALUES clause or the UPDATE SET clause respectively.

In an UPDATE procedure, the default value of these variables, if they are not set by the command,
is the old value. In an INSERT procedure, the default value of these variables is the default value of
the virtual table attributes. See CHANGING variables for distinguishing defaults from passed
values.

OLD

Every attribute in the view whose UPDATE and DELETE transformations you are defining has an
equivalent variable named OLD.<column_name>

When a DELETE or UPDATE command is executed against the view, these variables are
initialized to the current values of the row being deleted or updated respectively.

CHANGING

Every attribute in the view whose UPDATE and INSERT transformations you are defining has an
equivalent variable named CHANGING.<column_name>

When an INSERT or an UPDATE command is executed against the view, these variables are
initialized to true or false depending on whether the INPUT variable was set by the command. A
CHANGING variable is commonly used to differentiate between a default insert value and one

Development Guide Volume 3: Reference Material

84

specified in the user query.

For example, for a view with columns A, B, C:

If User Executes... Then...
INSERT INTO VT (A, B) VALUES (0,
1)

CHANGING.A = true, CHANGING.B = true,
CHANGING.C = false

UPDATE VT SET C = 2 CHANGING.A = false, CHANGING.B = false,
CHANGING.C = true

3.10.10. Example Update Procedures

For example, for a view with columns A, B, C:

Example 3.23. Sample DELETE Procedure

FOR EACH ROW
BEGIN
 DELETE FROM X WHERE Y = OLD.A;
 DELETE FROM Z WHERE Y = OLD.A; // cascade the delete
END

Example 3.24. Sample UPDATE Procedure

FOR EACH ROW
BEGIN
 IF (CHANGING.B)
 BEGIN
 UPDATE Z SET Y = NEW.B WHERE Y = OLD.B;
 END
END

Chapter 3. SQL Support

85

Chapter 4. Data Types

4.1. Supported Types

JBoss Data Virtualization supports a core set of runtime types. Runtime types can be different from semantic
types defined in type fields at design time. The runtime type can also be specified at design time or it will be
automatically chosen as the closest base type to the semantic type.

Table 4.1. JBoss Data Virtualization Runtime Types

Type Description Java Runtime Class JDBC Type ODBC Type
string or
varchar

variable length character
string with a maximum
length of 4000. Note that
the length cannot be
explicitly set with the type
declaration, e.g.
varchar(100) is invalid.

java.lang.String VARCHAR VARCHAR

varbinary variable length binary string
with a maximum length of
8192. Note that the length
cannot be explicitly set with
the type declaration, e.g.
varbinary(100) is invalid.

byte[] VARBINARY VARBINARY

char a single Unicode character java.lang.Character CHAR CHAR
boolean a single bit, or Boolean,

that can be true, false, or
null (unknown)

java.lang.Boolean BIT SMALLINT

byte or
tinyint

numeric, integral type,
signed 8-bit

java.lang.Byte TINYINT SMALLINT

short or
smallint

numeric, integral type,
signed 16-bit

java.lang.Short SMALLINT SMALLINT

integer or
serial

numeric, integral type,
signed 32-bit. The serial
type also implies not null
and has an auto-
incrementing value that
starts at 1. Serial types are
not automatically UNIQUE.

java.lang.Integer INTEGER INTEGER

long or bigint numeric, integral type,
signed 64-bit

java.lang.Long BIGINT NUMERIC

biginteger numeric, integral type,
arbitrary precision of up to
1000 digits

java.math.BigInteger NUMERIC NUMERIC

float or real numeric, floating point type,
32-bit IEEE 754 floating-
point numbers

java.lang.Float REAL FLOAT

double numeric, floating point type,
64-bit IEEE 754 floating-
point numbers

java.lang.Double DOUBLE DOUBLE

[a]

Development Guide Volume 3: Reference Material

86

bigdecimal
or decimal

numeric, floating point type,
arbitrary precision of up to
1000 digits. Note that the
precision and scale cannot
be explicitly set with the
type literal, e.g. decimal(38,
2).

java.math.BigDecimal NUMERIC NUMERIC

date datetime, representing a
single day (year, month,
day)

java.sql.Date DATE DATE

time datetime, representing a
single time (hours,
minutes, seconds,
milliseconds)

java.sql.Time TIME TIME

timestamp datetime, representing a
single date and time (year,
month, day, hours,
minutes, seconds,
milliseconds,
nanoseconds)

java.sql.Timestamp TIMESTAMP TIMESTAMP

object any arbitrary Java object,
must implement
java.lang.Serializable

Any JAVA_OBJECT VARCHAR

blob binary large object,
representing a stream of
bytes

java.sql.Blob BLOB VARCHAR

clob character large object,
representing a stream of
characters

java.sql.Clob CLOB VARCHAR

xml XML document java.sql.SQLXML JAVA_OBJECT VARCHAR

geometry Geospatial Object java.sql.Blob BLOB BLOB

Type Description Java Runtime Class JDBC Type ODBC Type

4.2. Type Conversions

Data types may be converted from one form to another either explicitly or implicitly. Implicit conversions
automatically occur in criteria and expressions to ease development. Explicit data type conversions require
the use of the CONVERT function or CAST keyword.

Type Conversion Considerations

Any type may be implicitly converted to the OBJECT type.

The OBJECT type may be explicitly converted to any other type.

The NULL value may be converted to any type.

Any valid implicit conversion is also a valid explicit conversion.

[b]

[c]

[d]

[e]

[a] The runtime type is org.teiid.core.types.BinaryType. Translators will need to explicitly handle BinaryType values.
UDFs will instead have a byte[] value passed.

[b] The concrete type is expected to be org.teiid.core.types.BlobType
[c] The concrete type is expected to be org.teiid.core.types.ClobType
[d] The concrete type is expected to be org.teiid.core.types.XMLType
[e] The concrete type is expected to be org.teiid.core.types.GeometryType

Chapter 4. Data Types

87

Situations involving literal values that would normally require explicit conversions may have the explicit
conversion applied implicitly if no loss of information occurs.

When JBoss Data Virtualization detects that an explicit conversion can not be applied implicitly in criteria,
the criteria will be treated as false. For example:

SELECT * FROM my.table WHERE created_by = 'not a date'

Given that created_by is typed as date, rather than converting 'not a date' to a date value, the criteria
will remain as a string comparison and therefore be false.

Explicit conversions that are not allowed between two types will result in an exception before execution.
Allowed explicit conversions may still fail during processing if the runtime values are not actually
convertible.

Warning

The JBoss Data Virtualization conversions of float/double/bigdecimal/timestamp to string rely on
the JDBC/Java defined output formats. Pushdown behavior attempts to mimic these results, but
may vary depending upon the actual source type and conversion logic. Care must be taken to not
assume the string form in criteria or other places where a variation may cause different results.

Table 4.2. Type Conversions

Source
Type

Valid Implicit Target Types Valid Explicit Target Types

string clob char, boolean, byte, short, integer, long,
biginteger, float, double, bigdecimal, xml

char string
boolean string, byte, short, integer, long, biginteger,

float, double, bigdecimal

byte string, short, integer, long, biginteger, float,
double, bigdecimal

boolean

short string, integer, long, biginteger, float, double,
bigdecimal

boolean, byte

integer string, long, biginteger, double, bigdecimal boolean, byte, short, float
long string, biginteger, bigdecimal boolean, byte, short, integer, float, double
biginteger string, bigdecimal boolean, byte, short, integer, long, float,

double
bigdecimal string boolean, byte, short, integer, long,

biginteger, float, double
date string, timestamp
time string, timestamp
timestamp string date, time
clob string
xml string

[a]

[b]

Development Guide Volume 3: Reference Material

88

Source
Type

Valid Implicit Target Types Valid Explicit Target Types

4.3. Conversion of String Literals

JBoss Data Virtualization automatically converts string literals within an SQL statement to their implied types.
This typically occurs in a criteria comparison where an expression with a different data type is compared to a
literal string:

SELECT * FROM my.table WHERE created_by = '2003-01-02'

Here if the created_by column has the data type of date, JBoss Data Virtualization automatically converts the
string literal to a date data type as well.

4.4. Converting to Boolean

JBoss Data Virtualization can automatically convert literal strings and numeric type values to Boolean values
as follows:

Table 4.3. Boolean Conversions

Type Literal Value Boolean Value
String 'false' false
'unknown' null
other true
Numeric 0 false
other true

4.5. Date and Time Conversions

JBoss Data Virtualization can implicitly convert properly formatted literal strings to their associated date-
related data types as follows:

Table 4.4. Date and Time Conversions

String Literal Format Possible Implicit Conversion Type
yyyy-mm-dd DATE
hh:mm:ss TIME
yyyy-mm-dd hh:mm:ss.[fff...] TIMESTAMP

The formats above are those expected by the JDBC date types. To use other formats see the functions
PARSEDATE , PARSETIME , PARSETIMESTAMP .

4.6. Escaped Literal Syntax

[a] string to xml is equivlant to XMLPARSE(DOCUMENT exp) - see Section 3.4.14, “XML Functions” .
[b] xml to string is equivalent to XMLSERIALIZE(exp AS STRING) - see Section 3.4.14, “XML Functions” .

Chapter 4. Data Types

89

Rather than relying on implicit conversion, data type values may be expressed directly in SQL using escape
syntax to define the type. Note that the supplied string value must match the expected format exactly or an
exception will occur.

Table 4.5. Escaped Literal Syntax

Data type Escaped Syntax
DATE {d 'yyyy-mm-dd'}
TIME {t 'hh-mm-ss'}
TIMESTAMP {ts 'yyyy-mm-dd hh:mm:ss.[fff...]'}

Development Guide Volume 3: Reference Material

90

Chapter 5. Updatable Views

5.1. Updatable Views

Any view may be marked as updatable. In many circumstances the view definition may allow the view to be
inherently updatable without the need to manually define handling of INSERT/UPDATE/DELETE operations.

An inherently updatable view cannot be defined with a query that has:

A set operation (INTERSECT, EXCEPT, UNION).

SELECT DISTINCT

Aggregation (aggregate functions, GROUP BY, HAVING)

A LIMIT clause

A UNION ALL can define an inherently updatable view only if each of the UNION branches is itself inherently
updatable. A view defined by a UNION ALL can support inherent INSERTs if it is a partitioned union and the
INSERT specifies values that belong to a single partition. Refer to Partitioned Union.

Any view column that is not mapped directly to a column is not updatable and cannot be targeted by an
UPDATE set clause or be an INSERT column.

If a view is defined by a join query or has a WITH clause it may still be inherently updatable. However in
these situations there are further restrictions and the resulting query plan may execute multiple statements.
For a non-simple query to be updatable, it is required:

An INSERT/UPDATE can only modify a single key-preserved table.

To allow DELETE operations there must be only a single key-preserved table.

If the default handling is not available or you wish to have an alternative implementation of an
INSERT/UPDATE/DELETE, then you may use update procedures (see Section 3.10.6, “Update Procedures”)
to define procedures to handle the respective operations.

5.2. Key-Preserved Table

A key-preserved table has a primary or unique key that would remain unique if it were projected into the
result of the query. Note that it is not actually required for a view to reference the key columns in the SELECT
clause. The query engine can detect a key preserved table by analyzing the join structure. The engine will
ensure that a join of a key-preserved table must be against one of its foreign keys.

Chapter 4. Data Types

91

Chapter 6. Transaction Support

6.1. Transaction Support

JBoss Data Virtualization uses XA transactions for participating in global transactions and for demarcating its
local and command scoped transactions. Refer to the Red Hat JBoss Data Virtualization Development Guide
Volume 1: Client Development for more information about the transaction subsystem.

Table 6.1. JBoss Data Virtualization Transaction Scopes

Scope Description
Command Treats the user command as if all source commands are executed within the scope

of the same transaction. The AutoCommitTxn execution property controls the
behavior of command level transactions.

Local The transaction boundary is local defined by a single client session.
Global JBoss Data Virtualization participates in a global transaction as an XA Resource.

The default transaction isolation level for JBoss Data Virtualization is READ_COMMITTED.

6.2. AutoCommitTxn Execution Property

Since user level commands may execute multiple source commands, users can specify the AutoCommitTxn
execution property to control the transactional behavior of a user command when not in a local or global
transaction.

Table 6.2. AutoCommitTxn Settings

Setting Description
OFF Do not wrap each command in a transaction. Individual source commands may

commit or rollback regardless of the success or failure of the overall command.
ON Wrap each command in a transaction. This mode is the safest, but may

introduce performance overhead.
DETECT This is the default setting. Will automatically wrap commands in a transaction,

but only if the command seems to be transactionally unsafe.

The concept of command safety with respect to a transaction is determined by Red Hat JBoss Data
Virtualization based upon command type, the transaction isolation level, and available metadata. A wrapping
transaction is not needed if any of the following is true:

A user command is fully pushed to the source.

The user command is a SELECT (including XML) and the transaction isolation is not
REPEATABLE_READ nor SERIALIZABLE.

The user command is a stored procedure and the transaction isolation is not REPEATABLE_READ nor
SERIALIZABLE and the updating model count is zero.

The update count may be set on all procedures as part of the procedure metadata in the model.

6.3. Updating Model Count

Development Guide Volume 3: Reference Material

92

The term "updating model count" refers to the number of times any model is updated during the execution of
a command. It is used to determine whether a transaction, of any scope, is required to safely execute the
command.

Table 6.3. Updating Model Count Settings

Count Description
0 No updates are performed by this command.
1 Indicates that only one model is updated by this command (and its subcommands).

Also the success or failure of that update corresponds to the success or failure of the
command. It should not be possible for the update to succeed while the command
fails. Execution is not considered transactionally unsafe.

* Any number greater than 1 indicates that execution is transactionally unsafe and an
XA transaction will be required.

6.4. JDBC API Functionality

The transaction scopes in Section 6.1, “Transaction Support” map to the following JDBC modes:

Command

Connection autoCommit property set to true.

Local

Connection autoCommit property set to false. The transaction is committed by setting autoCommit
to true or calling java.sql.Connection.commit . The transaction can be rolled back by a call
to java.sql.Connection.rollback.

Global

The XAResource interface provided by an XAConnection is used to control the transaction. Note
that XAConnections are available only if JBoss Data Virtualization is consumed through its
XADataSource, org.teiid.jdbc.TeiidDataSource. JEE containers or data access APIs
typically control XA transactions on behalf of application code.

6.5. J2EE Usage Models

J2EE provides three ways to manage transactions for beans:

Client-Controlled

The client of a bean begins and ends a transaction explicitly.

Bean-Managed

The bean itself begins and ends a transaction explicitly.

Container-Managed

The application server container begins and ends a transaction automatically.

In any of these cases, transactions may be either local or XA transactions, depending on how the code and
descriptors are written. Some kinds of beans (stateful session beans and entity beans) are not required by
the spec to support non-transactional sources, although the spec does allow an application server to
optionally support this with the caution that this is not portable or predictable. Generally speaking, to support

Chapter 6. Transaction Support

93

most typical EJB activities in a portable fashion requires some kind of transaction support.

6.6. Transactional Behavior with JBoss Data Source Types

JBoss Enterprise Application Platform allows creation of different types of data sources, based on their
transactional capabilities. The type of data source you create for your VDB's sources also dictates if that data
source will be participating the distributed transaction or not, irrespective of the transaction scope you
selected from above. Here are different types of data sources:

xa-datasource: Capable of participating in the distributed transaction using XA. This is the recommended
type be used with any JBoss Data Virtualization sources.

local-datasource: Does not participate in XA, unless this is the only local-datasource participating among
other xa-datasources in the current distributed transaction. This technique is called last commit
optimization. However, if you have more than one local datasource participating in a transaction, the
transaction manager will throw an exception: "Could not enlist in transaction on entering meta-aware
object!".

no-tx-datasource: Does not participate in distributed transaction at all. In the scope of a JBoss Data
Virtualization command over multiple sources, you can include this type of datasource in the same
distributed transaction context, however this source will not be subject to any transactional participation.
Any changes done on this source as part of the transaction scope, cannot be rolled back.

For example, if you have three different sources A, B, C being used in JBoss Data Virtualization, here are
some variations on how they behave with different types of data sources. The suffixes "xa", "local", "no-tx"
define different type of sources used.

A-xa B-xa, C-xa : Can participate in all transactional scopes. No restrictions.

A-xa, B-xa, c-local: Can participate in all transactional scopes. Note that there is only one single source,
"local". It is assumed that, in the Global scope, any third party datasource other than JBoss Data
Virtualization datasource is also XA.

A-xa, B-xa, C-no-tx : Can participate in all transactional scopes. Note "C" is not bound by any
transactional contract. A and B are the only participants in the XA transaction.

A-xa, B-local, C-no-tx : Can participate in all transactional scopes. Note "C" is not bound by any
transactional contract, and there is only a single "local" source.

If any two or more sources are "local" : They can only participate in Command mode with
"autoCommitTxn=OFF". Otherwise they will end with an exception and the message "Could not enlist in
transaction on entering meta-aware object!;" because it is not possible to do a XA transaction with "local"
datasources.

A-no-tx, B-no-tx, C-no-tx : Can participate in all transaction scopes, but none of the sources will be bound
by transactional terms. This is equivalent to not using transactions or setting Command mode with
"autoCommitTxn=OFF".

Important

Teiid Designer creates a "local" data source by default. This is not optimal for XA transactions. To
create XA datasources, use the Management Console. You can find examples in the
EAP_HOME/docs/teiid/datasources directory.

Development Guide Volume 3: Reference Material

94

If your datasource is not XA, and not the only local source and cannot use "no-tx", then you can look into
extending the source to implement the compensating XA implementation. Define your own resource manager
for your source and manage the transaction the way you want it to behave. Note that this could be
complicated if your source natively does not support the distributed XA protocol.

In summary:

Use XA datasource if possible

Use no-tx datasource if applicable

Use autoCommitTxn = OFF, and let go distributed transactions, though not recommended

Write a compensating XA based implementation.

Table 6.4. Data Virtualization Transaction Participation

Teiid-Tx-Scope XA source Local Source No-Tx Source
Local always Only If Single Source never
Global always Only If Single Source never
Auto-commit=true, AutoCommitTxn=ON always Only If Single Source never
Auto-commit=true, AutoCommitTxn=OFF never never never
Auto-commit=true,
AutoCommitTxn=DETECT

always Only If Single Source never

6.7. Limitations

The client setting of transaction isolation level is not propagated to the connectors. The transaction
isolation level can be set on each XA connector, however this isolation level is fixed and cannot be
changed at runtime for specific connections/commands.

Chapter 6. Transaction Support

95

Chapter 7. Data Roles

7.1. Data Roles

Data roles, also called entitlements, are sets of permissions defined per VDB that dictate data access (create,
read, update, delete). Data roles use a fine-grained permission system that JBoss Data Virtualization will
enforce at runtime and provide audit log entries for access violations. Refer to the Administration and
Configuration Guide and Development Guide: Server Development for more information about Logging and
Custom Logging.

Prior to applying data roles, you should consider restricting source system access through the fundamental
design of your VDB. Foremost, JBoss Data Virtualization can only access source entries that are represented
in imported metadata. You should narrow imported metadata to only what is necessary for use by your VDB.
When using Teiid Designer, you may then go further and modify the imported metadata at a granular level to
remove specific columns or indicate tables that are not to be updated, etc.

If data role validation is enabled and data roles are defined in a VDB, then access permissions will be
enforced by the JBoss Data Virtualization Server. The use of data roles may be disabled system wide using
the setting for the teiid subsystem policy-decider-module. Data roles also have built-in system functions
(see Section 3.4.18, “Security Functions”) that can be used for row-based and other authorization checks.

The hasRole system function will return true if the current user has the given data role. The hasRole
function can be used in procedure or view definitions to allow for a more dynamic application of security -
which allows for things such as value masking or row level security.

Note

See the Security Guide for details on using an alternative authorization scheme.

Warning

Data roles are only checked if present in a VDB. A VDB deployed without data roles can be used by
any authenticated user.

7.2. Role Mapping

Each JBoss Data Virtualization data role can be mapped to any number of container roles or any
authenticated user. Control role membership through whatever system the JBoss Data Virtualization security
domain login modules are associated with.

It is possible for a user to have any number of container roles, which in turn imply a subset of JBoss Data
Virtualization data roles. Each applicable JBoss Data Virtualization data role contributes cumulatively to the
permissions of the user. No one role supersedes or negates the permissions of the other data roles.

7.3. Permissions

7.3.1. User Query Permissions

CREATE, READ, UPDATE, DELETE (CRUD) permissions can be set for any resource path in a VDB. A

Development Guide Volume 3: Reference Material

96

resource path can be as specific as the fully qualified name of a column or as general a top level model
(schema) name. Permissions granted to a particular path apply to it and any resource paths that share the
same partial name. For example, granting read to "model" will also grant read to "model.table",
"model.table.column", etc. Allowing or denying a particular action is determined by searching for permissions
from the most to least specific resource paths. The first permission found with a specific allow or deny will be
used. Thus it is possible to set very general permissions at high-level resource path names and to override
only as necessary at more specific resource paths.

Permission grants are only needed for resources that a role needs access to. Permissions are also only
applied to the columns/tables/procedures in the user query - not to every resource accessed transitively
through view and procedure definitions. It is important therefore to ensure that permission grants are applied
consistently across models that access the same resources.

Warning

Non-visible models are accessible by user queries. To restrict user access at a model level, at least
one data role should be created to enable data role checking. In turn that role can be mapped to any
authenticated user and should not grant permissions to models that should be inaccessible.

Permissions are not applicable to the SYS and pg_catalog schemas. These metadata reporting schemas are
always accessible regardless of the user. The SYSADMIN schema however may need permissions as
applicable.

7.3.2. Assigning Permissions

To process a SELECT statement or a stored procedure execution, the user account requires the following
access rights:

1. READ - on the Table(s) being accessed or the procedure being called.

2. READ - on every column referenced.

To process an INSERT statement, the user account requires the following access rights:

1. CREATE - on the Table being inserted into.

2. CREATE - on every column being inserted on that Table.

To process an UPDATE statement, the user account requires the following access rights:

1. UPDATE - on the Table being updated.

2. UPDATE - on every column being updated on that Table.

3. READ - on every column referenced in the criteria.

To process a DELETE statement, the user account requires the following access rights:

1. DELETE - on the Table being deleted.

2. READ - on every column referenced in the criteria.

To process a EXEC/CALL statement, the user account requires the following access rights:

1. EXECUTE (or READ) - on the Procedure being executed.

To process any function, the user account requires the following access rights:

Chapter 7. Data Roles

97

1. EXECUTE (or READ) - on the Function being called.

To process any ALTER or CREATE TRIGGER statement, the user account requires the following access
rights:

1. ALTER - on the view or procedure that is effected. INSTEAD OF Triggers (update procedures) are
not yet treated as full schema objects and are instead treated as attributes of the view.

To process any OBJECTTABLE function, the user account requires the following access rights:

1. LANGUAGE - specifying the language name that is allowed.

To process any statement against a JBoss Data Virtualization temporary table requires the following access
rights:

1. allow-create-temporary-tables attribute on any applicable role

2. CREATE - against the target source/schema if defining a FOREIGN temporary table.

7.3.3. Row and Column-Based Security Conditions

Although specified in a similar way to user query CRUD permissions, row-based and column-based
permissions may be used together or separately to control at a more granular and consistent level the data
returned to users.

7.3.4. Row-Based Security Conditions

A permission against a fully qualified table/view/procedure may also specify a condition. Unlike the allow
actions defined above, a condition is always applied - not only at the user query level. The condition can be
any valid SQL referencing the columns of the table/view/procedure. The condition will act as a row-based
filter and as a checked constraint for insert/update operations.

7.3.5. Applying Row-Based Security Conditions

A condition is applied conjunctively to UPDATE/DELETE/SELECT WHERE clauses against the affected
resource. Those queries will therefore only ever be effective against the subset of rows that pass the
condition, i.e. "SELECT * FROM TBL WHERE something AND condition ". The condition will be present
regardless of how the table/view is used in the query, whether via a union, join, etc.

Inserts and updates against physical tables affected by a condition are further validated so that the
insert/change values must pass the condition (evaluate to true) for the insert/update to succeed - this is
effectively the same as an SQL constraint. This will happen for all styles of insert/update - insert with query
expression, bulk insert/update, etc. Inserts/updates against views are not checked with regards to the
constraint. You can disable the insert/update constraint check by setting the condition constraint flag to false.
This is typically only needed in circumstances when the condition cannot always be evaluated. However
disabling the condition as a constraint drops the condition from consideration when logically evaluating the
constraint. Any other condition constraints will still be evaluated.

Across multiple applicable roles, if more than one condition applies to the same resource, the conditions will
be accumulated disjunctively via OR, i.e. "(condition1) OR (condition2) ...". Therefore granting a permission
with the condition "true" will allow users in that role to see all rows of the given resource.

7.3.6. Considerations When Using Conditions

Non-pushdown conditions may adversely impact performance, since their evaluation may inhibit pushdown of
query constructs on top of the affected resource. Multiple conditions against the same resource should
generally be avoided as any non-pushdown condition will cause the entire OR of conditions to not be pushed

Development Guide Volume 3: Reference Material

98

down. In some circumstances the insertion of permission conditions may require that the plan be altered with
the addition of an inline view, which can result in adverse performance against sources that do not support
inline views.

Pushdown of multi-row insert/update operations will be inhibited since the condition must be checked for
each row.

In addition to managing permission conditions on a per-role basis, another approach is to add condition
permissions would in an any authenticated role such that the conditions are generalized for all users/roles
using the hasRole , user , and other such security functions. The advantage of the latter approach is that
there is effectively a static row-based policy in effect such that all query plans can still be shared between
users.

Handling of null values is up to the implementer of the data role and may require ISNULL checks to ensure
that null values are allowed when a column is nullable.

7.3.7. Limitations to Using Conditions

Conditions on source tables that act as check constraints must currently not contain correlated
subqueries.

Conditions may not contain aggregate or windowed functions.

Tables and procedures referenced via subqueries will still have row-based filters and column masking
applied to them.

Note

Row-based filter conditions are enforced even for materialized view loads.

You should ensure that tables consumed to produce materialized views do not have row-based filter
conditions on them that could affect the materialized view results.

7.3.8. Column Masking

A permission against a fully qualified table/view/procedure column may also specify a mask and optionally a
condition. When the query is submitted the roles are consulted and the relevant mask/condition information
are combined to form a searched case expression to mask the values that would have been returned by the
access. Unlike the CRUD allow actions defined above, the resulting masking effect is always applied - not
only at the user query level. The condition and expression can be any valid SQL referencing the columns of
the table/view/procedure. Procedure result set columns may be referenced as proc.col.

7.3.9. Applying Column Masking

Column masking is applied only against SELECTs. Column masking is applied logically after the affect of row
based security. However since both views and source tables may have row and column based security, the
actual view level masking may take place on top of source level masking. If the condition is specified along
with the mask, then the effective mask expression effects only a subset of the rows: "CASE WHEN condition
THEN mask ELSE column". Otherwise the condition is assumed to be TRUE, meaning that the mask applies
to all rows.

Chapter 7. Data Roles

99

If multiple roles specify a mask against a column, the mask order argument will determine their precedence
from highest to lowest as part of a larger searched case expression. For example a mask with the default
order of 0 and a mask with an order of 1 would be combined as "CASE WHEN condition1 THEN mask1
WHEN condition0 THEN mask0 ELSE column".

7.3.10. Column Masking Considerations

Non-pushdown masking conditions/expressions may adversely impact performance, since their evaluation
may inhibit pushdown of query constructs on top of the affected resource. In some circumstances the
insertion of masking may require that the plan be altered with the addition of an inline view, which can result
in adverse performance against sources that do not support inline views.

In addition to managing masking on a per-role basis with the use of the order value, another approach is to
specify masking in a single any authenticated role such that the conditions/expressions are generalized for all
users/roles using the hasRole , user , and other such security functions. The advantage of the latter
approach is that there is effectively a static masking policy in effect such that all query plans can still be
shared between users.

7.3.11. Column Masking Limitations

In the event that two masks have the same order value, it is not well defined what order they are applied
in.

Masks or their conditions may not contain aggregate or windowed functions.

Tables and procedures referenced via subqueries will still have row-based filters and column masking
applied to them.

Note

Masking is enforced even for materialized view loads.

You should ensure that tables consumed to produce materialized views do not have masking on them that
could affect the materialized view results.

7.4. Data Role Definition

7.4.1. Data Role Definition

Data roles are defined inside the META-INF/vdb.xml file of the VDB archive if you used the Teiid Designer.
The vdb.xml file is checked against the vdb-deployer.xsd schema file found in the
EAP_HOME/docs/teiid/schema directory.

7.4.2. Data Role Definition Example

Consider the scenario in which a VDB defines a table "TableA" in schema "modelName" with columns
(column1, column2) - note that the column types do not matter.

We wish to define three roles "RoleA", "RoleB", "RoleC" with the following permissions:

Development Guide Volume 3: Reference Material

100

1. RoleA has permissions to read, write access to TableA, but can not delete.

2. RoleB has no permissions that allow access to TableA

3. RoleC has permissions that only allow read access to TableA.column1

Example 7.1. vdb.xml defining RoleA, RoleB, and RoleC

<?xml version="1.0" encoding="UTF-8"?>
<vdb name="sample" version="1">

 <model name="modelName">
 <source name="source-name" translator-name="oracle" connection-
jndi-name="java:myDS" />
 </model>

 <data-role name="RoleA">
 <description>Allow all, except Delete</description>

 <permission>
 <resource-name>modelName.TableA</resource-name>
 <allow-create>true</allow-create>
 <allow-read>true</allow-read>
 <allow-update>true</allow-update>
 </permission>

 <mapped-role-name>role1</mapped-role-name>

 </data-role>

 <data-role name="RoleC">
 <description>Allow read only</description>

 <permission>
 <resource-name>modelName.TableA</resource-name>
 <allow-read>true</allow-read>
 </permission>

 <permission>
 <resource-name>modelName.TableA.colum2</resource-name>
 <allow-read>false</allow-read>
 </permission>

 <mapped-role-name>role2</mapped-role-name>
 </data-role>
</vdb>

The above XML defined two data roles, "RoleA" which allows everything except delete on the table, "RoleC"
that allows only read operation on the table. Since JBoss Data Virtualization uses deny by default, there is no
explicit data-role entry needed for "RoleB". Note that explicit column permissions are not needed for RoleA,
since the parent resource path, modelName.TableA, permissions still apply. RoleC however must explicitly
disallow read to column2.

Chapter 7. Data Roles

101

The "mapped-role-name" defines the container JAAS roles that are assigned the data role. For assigning
roles to your users in the JBoss EAP, see the instructions for the selected Login Module. See the
Administrator Guide for configuring Login Modules.

7.4.3. Data Role Definition Example: Additional Attributes

You may also choose to allow any authenticated user to have a data role by setting the any-authenticated
attribute value to true on data-role element.

The "allow-create-temporary-tables" data-role boolean attribute is used to explicitly enable or disable
temporary table usage for the role. If it is left unspecified, then the value will be defaulted to false.

Example 7.2. Temp Table Role for Any Authenticated

<data-role name="role" any-authenticated="true" allow-create-temporary-
tables="true">
 <description>Temp Table Role for Any Authenticated</description>

 <permission>
 ...
 </permission>

</data-role>

7.4.4. Data Role Definition Example: Language Access

The following shows a vdb xml that allows the use of the javascript language. The allowed-languages
property enables the languages use for any purpose in the vdb, while the allow-language permission allows
the language to be used by users with RoleA.

Example 7.3. vdb.xml allowing JavaScript access

<?xml version="1.0" encoding="UTF-8"?>
<vdb name="sample" version="1">

 <property name="allowed-languages" value="javascript"/>

 <model name="modelName">
 <source name="source-name" translator-name="oracle" connection-
jndi-name="java:myDS" />
 </model>

 <data-role name="RoleA">
 <description>Read and javascript access.</description>

 <permission>
 <resource-name>modelName</resource-name>
 <allow-read>true</allow-read>
 </permission>

 <permission>
 <resource-name>javascript</resource-name>

Development Guide Volume 3: Reference Material

102

 <allow-language>true</allow-language>
 </permission>

 <mapped-role-name>role1</mapped-role-name>

 </data-role>

</vdb>

7.4.5. Data Role Definition Example: Row-Based Security

The following shows a VDB XML definition utilizing a condition to restrict access. The condition acts as both a
filter and constraint. Even though RoleA opens up read/insert access to modelName.tblName, the base-role
condition will ensure that only values of column1 matching the current user can be read or inserted. Note that
here the constraint enforcement has been disabled.

Example 7.4. vdb.xml allowing conditional access

<?xml version="1.0" encoding="UTF-8"?>
<vdb name="sample" version="1">

 <model name="modelName">
 <source name="source-name" translator-name="oracle" connection-
jndi-name="java:myDS" />
 </model>

 <data-role name="base-role" any-authenticated="true">
 <description>Conditional access</description>

 <permission>
 <resource-name>modelName.tblName</resource-name>
 <condition constraint="false">column1=user()</condition>
 </permission>

 </data-role>

 <data-role name="RoleA">
 <description>Read/Insert access.</description>

 <permission>
 <resource-name>modelName.tblName</resource-name>
 <allow-read>true</allow-read>
 <allow-create>true</allow-create>
 </permission>

 <mapped-role-name>role1</mapped-role-name>

 </data-role>

</vdb>

7.4.6. Data Role Definition Example: Column Masking

Chapter 7. Data Roles

103

The following shows VDB XML utilizing column masking. Here the RoleA column1 mask takes precedence
over the base-role mask, but only for a subset of the rows as specified by the condition. For users without
RoleA, access to column1 will effectively be replaced with "CASE WHEN column1=user() THEN column1
END", while for users with RoleA, access to column1 will effectively be replaced with "CASE WHEN
column2='x' THEN column1 WHEN TRUE THEN CASE WHEN column1=user() THEN column1 END END".

Example 7.5. vdb.xml with column masking

<?xml version="1.0" encoding="UTF-8"?>
<vdb name="sample" version="1">

 <model name="modelName">
 <source name="source-name" translator-name="oracle" connection-
jndi-name="java:myDS" />
 </model>

 <data-role name="base-role" any-authenticated="true">
 <description>Masking</description>

 <permission>
 <resource-name>modelName.tblName.column1</resource-name>
 <mask>CASE WHEN column1=user() THEN column1 END</mask>
 </permission>

 </data-role>

 <data-role name="RoleA">
 <description>Read/Insert access.</description>

 <permission>
 <resource-name>modelName.tblName</resource-name>
 <allow-read>true</allow-read>
 <allow-create>true</allow-create>
 </permission>

 <permission>
 <resource-name>modelName.tblName.column1</resource-name>
 <condition>column2='x'</condition>
 <mask order="1">column1</mask>
 </permission>

 <mapped-role-name>role1</mapped-role-name>

 </data-role>

</vdb>

Development Guide Volume 3: Reference Material

104

Chapter 8. System Schemas and Procedures

8.1. System Schemas

The built-in SYS and SYSADMIN schemas provide metadata tables and procedures against the current
virtual database.

8.2. VDB Metadata

SYSADMIN.VDBResources

This table provides the current VDB contents.

Column Name Type Description
resourcePath string The path to the contents.
contents blob The contents as a blob.

SYS.VirtualDatabases

This table supplies information about the currently connected virtual database, of which there is
always exactly one (in the context of a connection).

Column Name Type Description
Name string The name of the VDB
Version string The version of the VDB

SYS.Schemas

This table supplies information about all the schemas in the virtual database, including the system
schema itself (System).

Column Name Type Description
VDBName string VDB name
Name string Schema name
IsPhysical boolean True if this represents a

source
UID string Unique ID
OID integer Unique ID
Description string Description
PrimaryMetamodelURI string URI for the primary metamodel

describing the model used for
this schema

SYS.Properties

This table supplies user-defined properties on all objects based on metamodel extensions.
Normally, this table is empty if no metamodel extensions are being used.

Column Name Type Description
Name string Extension property name
Value string Extension property value
UID string Key unique ID
OID integer Unique ID

Chapter 7. Data Roles

105

Warning

The OID column is no longer used on system tables. Use UID instead.

8.3. Table Metadata

SYS.Tables

This table supplies information about all the groups (tables, views, documents, etc) in the virtual
database.

Column Name Type Description
VDBName string VDB name
SchemaName string Schema Name
Name string Short group name
Type string Table type (Table, View,

Document, ...)
NameInSource string Name of this group in the

source
IsPhysical boolean True if this is a source table
SupportsUpdates boolean True if group can be updated
UID string Group unique ID
OID integer Unique ID
Cardinality integer Approximate number of rows

in the group
Description string Description
IsSystem boolean True if in system table

SYS.Columns

This table supplies information about all the elements (columns, tags, attributes, etc) in the virtual
database.

Column Name Type Description
VDBName string VDB name
SchemaName string Schema Name
TableName string Table name
Name string Element name (not qualified)
Position integer Position in group (1-based)
NameInSource string Name of element in source
DataType string Data Virtualization runtime

data type name
Scale integer Number of digits after the

decimal point
ElementLength integer Element length (mostly used

for strings)
sLengthFixed boolean Whether the length is fixed or

variable
SupportsSelect boolean Element can be used in

SELECT

Development Guide Volume 3: Reference Material

106

SupportsUpdates boolean Values can be inserted or
updated in the element

IsCaseSensitive boolean Element is case-sensitive
IsSigned boolean Element is signed numeric

value
IsCurrency boolean Element represents monetary

value
IsAutoIncremented boolean Element is auto-incremented

in the source
NullType string Nullability: "Nullable", "No

Nulls", "Unknown"
MinRange string Minimum value
MaxRange string Maximum value
DistinctCount integer Distinct value count, -1 can

indicate unknown
NullCount integer Null value count, -1 can

indicate unknown
SearchType string Searchability: "Searchable",

"All Except Like", "Like Only",
"Unsearchable"

Format string Format of string value
DefaultValue string Default value
JavaClass string Java class that will be returned
Precision integer Number of digits in numeric

value
CharOctetLength integer Measure of return value size
Radix integer Radix for numeric values
GroupUpperName string Upper-case full group name
UpperName string Upper-case element name
UID string Element unique ID
OID integer Unique ID
Description string Description

Column Name Type Description

SYS.Keys

This table supplies information about primary, foreign, and unique keys.

Column Name Type Description
VDBName string VDB name
SchemaName string Schema Name
Table Name string Table name
Name string Key name
Description string Description
NameInSource string Name of key in source system
Type string Type of key: "Primary",

"Foreign", "Unique", etc
IsIndexed boolean True if key is indexed
RefKeyUID string Referenced key UID (if foreign

key)
UID string Key unique ID
OID integer Unique ID

Chapter 8. System Schemas and Procedures

107

SYS.KeyColumns

This table supplies information about the columns referenced by a key.

Column Name Type Description
VDBName string VDB name
SchemaName string Schema Name
TableName string Table name
Name string Element name
KeyName string Key name
KeyType string Key type: "Primary", "Foreign",

"Unique", etc
RefKeyUID string Referenced key UID
UID string Key UID
OID integer Unique ID
Position integer Position in key

Warning

The OID column is no longer used on system tables. Use UID instead.

8.4. Procedure Metadata

SYS.Procedures

This table supplies information about the procedures in the virtual database.

Column Name Type Description
VDBName string VDB name
SchemaName string Schema Name
Name string Procedure name
NameInSource string Procedure name in source

system
ReturnsResults boolean Returns a result set
UID string Procedure UID
OID integer Unique ID
Description string Description

SYS.ProcedureParams

This supplies information on procedure parameters.

Column Name Type Description
VDBName string VDB name
SchemaName string Schema Name
ProcedureName string Procedure name
Name string Parameter name
DataType string Data Virtualization runtime

data type name
Position integer Position in procedure args

Development Guide Volume 3: Reference Material

108

Type string Parameter direction: "In",
"Out", "InOut", "ResultSet",
"ReturnValue"

Optional boolean Parameter is optional
Precision integer Precision of parameter
TypeLength integer Length of parameter value
Scale integer Scale of parameter
Radix integer Radix of parameter
NullType string Nullability: "Nullable", "No

Nulls", "Unknown"

Column Name Type Description

Warning

The OID column is no longer used on system tables. Use UID instead.

8.5. Data Type Metadata

SYS.DataTypes

This table supplies information on data types. See Section 4.1, “Supported Types”.

Column Name Type Description
Name string JBoss Data Virtualization

design-time type name
IsStandard boolean Always false
IsPhysical boolean Always false
TypeName string Design-time type name (same

as Name)
JavaClass string Java class returned for this

type
Scale integer Max scale of this type
TypeLength integer Max length of this type
NullType string Nullability: "Nullable", "No

Nulls", "Unknown"
IsSigned boolean Is signed numeric?
IsAutoIncremented boolean Is auto-incremented?
IsCaseSensitive boolean Is case-sensitive?
Precision integer Max precision of this type
Radix integer Radix of this type
SearchType string Searchability: "Searchable",

"All Except Like", "Like Only",
"Unsearchable"

UID string Data type unique ID
OID integer Unique ID
RuntimeType string JBoss Data Virtualization

runtime data type name
BaseType string Base type
Description string Description of type

Chapter 8. System Schemas and Procedures

109

Warning

The OID column is no longer used on system tables. Use UID instead.

8.6. System Procedures

SYS.getXMLSchemas

Returns a result set with a single column, schema, containing the schemas as clobs.

SYS.getXMLSchemas(document in string) returns schema string

SYSADMIN.logMsg

Log a message to the underlying logging system.

SYSADMIN.logMsg(logged RETURN boolean, level IN string, context IN
string, msg IN object)

Returns true if the message was logged. level can be one of the log4j levels: OFF, FATAL,
ERROR, WARN, INFO, DEBUG, TRACE. level defaults to 'DEBUG' and context defaults to
'org.teiid.PROCESSOR'

SYSADMIN.isLoggable

Tests if logging is enabled at the given level and context.

SYSADMIN.isLoggable(loggable RETURN boolean, level IN string, context
IN string)

Returns true if logging is enabled. level can be one of the log4j levels: OFF, FATAL, ERROR,
WARN, INFO, DEBUG, TRACE. level defaults to 'DEBUG' and context defaults to
'org.teiid.PROCESSOR'

SYSADMIN.refreshMatView

Returns integer RowsUpdated. -1 indicates a load is in progress, otherwise the cardinality of the
table is returned. See the Red Hat JBoss Data Virtualization Administration and Configuration
Guide for more information.

SYSADMIN.refreshMatView(RowsUpdated return integer, ViewName in
string, Invalidate in boolean)

SYSADMIN.refreshMatViewRow

Returns integer RowsUpdated. -1 indicates the materialized table is currently invalid. 0 indicates
that the specified row did not exist in the live data query or in the materialized table. See the Red
Hat JBoss Data Virtualization Administration and Configuration Guide for more information.

SYSADMIN.refreshMatViewRow(RowsUpdated return integer, ViewName in
string, Key in object)

Development Guide Volume 3: Reference Material

110

8.7. Metadata Procedures

SYSADMIN.setTableStats

Set statistics for the given table.

SYSADMIN.setTableStats(TableName in string, Cardinality in integer)

SYSADMIN.setColumnStats

Set statistics for the given column.

SYSADMIN.setColumnStats(TableName in string, ColumnName in string,
DistinctCount in integer, NullCount in integer, Max in string, Min in
string)

All stat values are nullable. Passing a null stat value will leave corresponding metadata value
unchanged.

SYSADMIN.setProperty

Set an extension metadata property for the given record. Extension metadata is typically used by
translators.

SYSADMIN.setProperty(OldValue return clob, Uid in string, Name in
string, Value in clob)

Setting a value to null will remove the property.

The use of this procedure will not trigger replanning of associated prepared plans.

Chapter 8. System Schemas and Procedures

111

Chapter 9. Virtual Databases

9.1. VDB Definition

A VDB or virtual database definition is contained in an XML file. For .vdb archive files created in the design
tool, this file is embedded in the archive and most fields can be updated through tooling. The XML schema
for this file can be found in the EAP_HOME/docs/teiid/schema directory.

Example 9.1. Example VDB XML

<vdb name="${vdb-name}" version="${vdb-version}">

 <!-- VDB properties -->
 <property name="${property-name}" value="${property-value}" />

 <!-- UDF defined in an AS module, see Developers Guide -->
 <property name ="lib" value ="{module-name}"></property>

 <import-vdb name="..." version="..." import-data-
policies="true|false"/>

 <!-- define a model fragment for each data source -->
 <model visible="true" name="${model-name}" type="${model-type}" >

 <property name="..." value="..." />

 <source name="${source-name}" translator-name="${translator-name}"
connection-jndi-name="${deployed-jndi-name}">

 <metadata type="${repository-type}">raw text</metadata>

 </model>

 <!-- define a model with multiple sources - see Multi-Source Models -->
 <model name="${model-name}" path="/Test/Customers.xmi">
 <property name="multisource" value="true"/>
 . . .
 <source name="${source-name}"
 translator-name="${translator-name}" connection-jndi-
name="${deployed-jndi-name}"/>
 <source . . . />
 <source . . . />
 </model>

 <!-- see Reference Guide - Data Roles -->
 <data-role name="${role-name}">
 <description>${role-description}</description>
 . . .
 </data-role>

 <!-- create translator instances that override default properties -->
 <translator name="${translator-name}" type="${translator-type}" />

Development Guide Volume 3: Reference Material

112

 <property name="..." value="..." />

 </translator>
</vdb>

9.2. VDB Definition: The VDB Element

Attributes

name

The name of the VDB. The VDB name referenced through the driver or datasource during the connection
time.

version

The version of the VDB (should be an positive integer). This determines the deployed directory location
(see Name), and provides an explicit versioning mechanism to the VDB name.

Property Elements

cache-metadata

Can be "true" or "false". If "false", JBoss Data Virtualization will obtain metadata once for every launch of
the VDB. "true" will save a file containing the metadata into the EAP_HOME/MODE/data directory.
Defaults to "false" for -vdb.xml deployments otherwise "true".

query-timeout

Sets the default query timeout in milliseconds for queries executed against this VDB. 0 indicates that the
server default query timeout should be used. Defaults to 0. Will have no effect if the server default query
timeout is set to a lesser value. Note that clients can still set their own timeouts that will be managed on
the client side.

lib

Set to a list of modules for the VDB classpath for user defined function loading. See also Support for Non-
Pushdown User Defined Functions in Red Hat JBoss Data Virtualization Development Guide: Server
Development.

security-domain

Set to the security domain to use if a specific security domain is applicable to the VDB. Otherwise the
security domain list from the transport will be used.

<property name="security-domain" value="custom-security" />

Important

An administrator needs to configure a matching "custom-security" login module in the
standalone.xml configuration file before the VDB is deployed.

connection.XXX

Chapter 9. Virtual Databases

113

This is for use by the ODBC transport and OData. They use it to set the default connection/execution
properties. Note that the properties are set on the connection after it has been established.

<property name="connection.partialResultsMode" value="true" />

authentication-type

Authentication type of configured security domain. Allowed values currently are (GSS,
USERPASSWORD). The default is set on the transport (typically USERPASSWORD).

password-pattern

Regular expression matched against the connecting user's name that determines if USERPASSWORD
authentication is used. password-pattern Takes precedence of over authentication-type. The default is
authentication-type.

gss-pattern

Regular expression matched against the connecting user's name that determines if GSS authentication is
used. gss-pattern Takes precedence of over password-pattern. The default is password-pattern.

model.visible

Used to override the visibility of imported vdb models, where model is the name of the imported model..

include-pg-metadata

By default, PG metadata is always added to VDB unless System Properties set property
org.teiid.addPGMetadata to false. This property enables adding PG metadata per VDB. Please note that
if you are using ODBC to access your VDB, the VDB must include PG metadata..

lazy-invalidate

By default TTL expiration will be invalidating - see Internal Materialization. Setting lazy-invalidate to true
will make ttl refreshes non-invalidating.

import-vdb Element

name

The name of the VDB to be imported.

version

The version of the VDB to be imported (should be an positive integer).

import-data-policies

Optional attribute to indicate whether the data policies should be imported as well. Defaults to "true".

Model Element

name

The name of the model is used as a top level schema name for all of the metadata imported from the
connector. The name should be unique among all Models in the VDB and should not contain the '.'
character.

visible

Development Guide Volume 3: Reference Material

114

By default this value is set to "true", when the value is set to "false", this model will not be visible to when
JDBC metadata queries. Usually it is used to hide a model from client applications that should not directly
issue queries against it. However, this does not prohibit either client application or other view models
using this model, if they knew the schema for this model.

Property Elements

Important

All properties are available as extension metadata on the corresponding Schema object that is
accessible via the metadata API.

cache-metadata

Can be "true" or "false". defaults to "false" for -vdb.xml deployments otherwise "true". If "false", Teiid will
obtain metadata once for every launch of the vdb. "true" will save a file containing the metadata into the
PROFILE/data/teiid directory Can be used to override the vdb level cache-metadata property.

Source Element

Note

A source is a named binding of a translator and connection source to a model.

name

The name of the source to use for this model. This can be any name you like, but will typically be the
same as the model name. Having a name different than the model name is only useful in multi-source
scenarios. In multi-source, the source names under a given model must be unique. If you have the same
source bound to multiple models it may have the same name for each. An exception will be raised if the
same source name is used for different sources.

translator-name

The name or type of the Red Hat JBoss Data Virtualization Translator to use. Possible values include the
built-in types (ws, file, ldap, oracle, sqlserver, db2, derby, etc.) and translators defined in the translators
section.

connection-jndi-name

The JNDI name of this source's connection factory. There should be a corresponding "-ds.xml" file that
defines the connection factory in the JBoss AS. Check out the deploying VDB dependencies section for
info. You also need to deploy these connection factories before you can deploy the VDB.

Property Elements

Chapter 9. Virtual Databases

115

importer.[propertyname]

Property to be used by the connector importer for the model for purposes importing metadata. See
possible property name/values in the Translator specific section. Note that using these properties you can
narrow or widen the data elements available for integration.

Metadata Element

Note

The optional metadata element defines the metadata repository type and optional raw metadata to
be consumed by the metadata repository.

type

The metadata repository type. Defaults to INDEX for Designer VDBs and NATIVE for non-Designer VDB
source models. For all other deployments/models a value must be specified. Built-in types include DDL,
NATIVE, INDEX, and DDL-FILE. The usage of the raw text varies with the by type. NATIVE and INDEX
(only for Designer VDBs) metadata repositories do not use the raw text. The raw text for DDL is expected
to be be a series of DDL statements that define the schema - see also DDL Metadata. DDL-FILE (used
only with zip deployments) is similar to DDL, except that the raw text specifies an absolute path relative to
the vdb root of the location of a file containing the DDL. See also Custom Metadata Repository. Use more
than 1 metadata element to define multiple sources of metadata.

Translator Element

name

Note

The name of the translator. This is referenced by the source element.

type

The base type of the translator. Can be one of the built-in types (ws, file, ldap, oracle, sqlserver, db2,
derby, and so forth).

Property Elements

Set a value that overrides a translator default property. See possible property name/values in the
Translator-specific section.

9.3. VDB Definition: The import-vdb Element

Attributes

name The name of the VDB to be imported.

version The version of the VDB to be imported (should be an positive integer).

Development Guide Volume 3: Reference Material

116

import-data-policies Optional attribute to indicate whether the data policies should be imported as well.
Defaults to TRUE.

9.4. VDB Definition: The model Element

Attributes

name

This is the name of the model is used as a top level schema name for all of the metadata imported from
the connector. The name must be unique among all Models in the VDB and must not contain the '.'
character.

version

This is the version of the VDB (it should be an positive integer). This determines the deployed directory
location (see Name), and provides an explicit versioning mechanism for the VDB name.

visibility

By default this value is set to "true". When the value is set to "false", this model will not be visible to JDBC
metadata queries. Usually it is used to hide a model from client applications that must not directly issue
queries against it. However, this does not prohibit either client applications or other view models from
using it, if they know its schema.

Source Element

A source is a named binding of a translator and connection source to a model.

name

The name of the source to use for this model. This can be any name you like, but will typically be the
same as the model name. Having a name different from the model name is only useful in multi-source
scenarios. In multi-source, the source names under a given model must be unique. If you have the same
source bound to multiple models it may have the same name for each. An exception will be raised if the
same source name is used for different sources.

translator-name

The name or type of the JBoss Data Virtualization Translator to use. Possible values include the built-in
types (ws, file, ldap, oracle, sqlserver, db2, derby, etc.) and translators defined in the translators section.

connection-jndi-name

The JNDI name of this source's connection factory. There should be a corresponding "-ds.xml" file that
defines the connection factory in the JBoss EAP. Check out the deploying VDB dependencies section for
info. You also need to deploy these connection factories before you can deploy the VDB.

Property Elements

importer.<propertyname>

Property to be used by the connector importer for the model for purposes importing metadata. See
possible property name/values in the Translator specific section. Note that using these properties you can
narrow or widen the data elements available for integration.

Metadata Element

Chapter 9. Virtual Databases

117

The optional metadata element defines the metadata repository type and optional raw metadata to be
consumed by the metadata repository.

type

The metadata repository type. Defaults to INDEX for Designer VDBs and NATIVE for non-Designer
VDB source models. For all other deployments/models a value must be specified. Built-in types
include DDL, NATIVE, INDEX, and DDL-FILE. The usage of the raw text varies with the by type. The
raw text is not used with NATIVE and INDEX (only for Designer VDBs) metadata repositories. The
raw text for DDL is expected to be a series of DDL statements that define the schema. DDL-FILE
(used only with zip deployments) is similar to DDL, except that the raw text specifies an absolute path
relative to the vdb root of the location of a file containing the DDL. See also about a Custom Metadata
Repository in Red Hat JBoss Development Guide: Server Development.

9.5. VDB Definition: The translator Element

Attributes

name

The name of the Translator. Referenced by the source element.

type

The base type of the Translator. Can be one of the built-in types (ws, file, ldap, oracle, sqlserver, db2,
derby, etc.).

Property Elements

Set a value that overrides a translator default property. See possible property name/values in the
Translator specific section.

9.6. Dynamic VDBs

Data integration is also available via a "Dynamic VDB" without the need for Teiid Designer tooling. Dynamic
VDBs can be deployed either by XML or ZIP. Example files are provided with the installation of JBoss Data
Virtualization.

9.7. Dynamic VDB XML Deployment

You can create a NAME-vdb.xml file. The XML file captures information about the VDB, the sources it
integrates, and preferences for importing metadata.

Note

The VDB name pattern must adhere to "-vdb.xml" for the VDB deployer to recognize this file.

The XML schema for these files is found in EAP_HOME/docs/teiid/schema/vdb-deployer.xsd.

9.8. Dynamic VDB ZIP Deployment

Development Guide Volume 3: Reference Material

118

For more complicated scenarios you can deploy a VDB via a ZIP file similar. In a VDB ZIP deployment:

The deployment must end with the extension .vdb.

The VDB XML file must be named vdb.xml and placed in the ZIP under the META-INF directory.

If a lib folder exists, any JARs found underneath will automatically be added to the VDB classpath.

For backwards compatibility with Teiid Designer VDBs, if any .INDEX file exists, the default metadata
repository will be assumed to be INDEX.

Files within the VDB ZIP are accessible by a Custom Metadata Repository using the
MetadataFactory.getVDBResources() method, which returns a map of all VDBResources in the
VDB keyed by absolute path relative to the VDB root. See Red Hat JBoss Data Virtualization
Development Guide: Server Development for more information about custom metadata repositories.

The built-in DDL-FILE metadata repository type may be used to define DDL-based metadata in files
outside of the vdb.xml. This improves the memory footprint of the VDB metadata and the maintainability
of vdb.xml.

Example 9.2. Example VDB Zip Structure

/META-INF
 vdb.xml
/ddl
 schema1.ddl
/lib
 some-udf.jar

In the above example the vdb.xml could use a DDL-FILE metadata type for schema1:

<model name="schema1" ...
 <metadata type="DDL-FILE">/ddl/schema1.ddl<metadata>
</model>

9.9. VDB Reuse

VDBs may reuse other VDBs deployed in the same server instance by using an "import-vdb" declaration in
the vdb.xml file (see Section 9.1, “VDB Definition”). An imported VDB can have its tables and procedures
referenced by views and procedures in the importing VDB as if they are part of the VDB. Imported VDBs are
required to exist before an importing VDB may start. If an imported VDB is undeployed, then any importing
VDB will be stopped.

An imported VDB includes all of its models and may not conflict with any model, data policy, or source
already defined in the importing VDB. Once a VDB is imported it is mostly operationally independent from the
base VDB. Only cost related metadata may be updated for an object from an imported VDB in the scope of
the importing VDB. All other updates must be made through the original VDB, but they will be visible in all
imported VDBs. Even materialized views are separately maintained for an imported VDB in the scope of
each importing VDB.

Example 9.3. Example reuse VDB XML

Chapter 9. Virtual Databases

119

<vdb name="reuse" version="1">

 <import-vdb name="common" version="1" import-data-policies="false"/>

 <model visible="true" type="VIRTUAL" name="new-model">
 <metadata type = "DDL"><![CDATA[
 CREATE VIEW x (
 y varchar
) AS
 select * from old-model.tbl;
]]>
 </metadata>
 </model>
</vdb>

In the above example the reuse VDB will have access to all of the models defined in the common VDB and
adds in the "new-model".

9.10. Metadata Repositories

Traditionally the metadata for a Virtual Database is built by Teiid Designer and supplied to Teiid engine
through a VDB archive file. This VDB file contains .INDEX metadata files. By default they are loaded by a
MetadataRepository with the name INDEX. Other built-in metadata repositories include the following:

NATIVE

This is only applicable on source models (and is also the default), when used the metadata for the model is
retrieved from the source database itself.

<vdb name="{vdb-name}" version="1">
 <model name="{model-name}" type="PHYSICAL">
 <source name="AccountsDB" translator-name="oracle" connection-jndi-
name="java:/oracleDS"/>
 <metadata type="NATIVE"></metadata>
 </model>
</vdb>

DDL

<vdb name="{vdb-name}" version="1">
 <model name="{model-name}" type="PHYSICAL">
 <source name="AccountsDB" translator-name="oracle" connection-jndi-
name="java:/oracleDS"/>
 <metadata type="DDL">
 DDL Here
 </metadata>
 </model>
</vdb>

This is applicable to both source and view models. See DDL Metadata for more information on how to use
this feature.

DDL-FILE

Development Guide Volume 3: Reference Material

120

<vdb name="{vdb-name}" version="1">
 <model name="{model-name}" type="PHYSICAL">
 <source name="AccountsDB" translator-name="oracle" connection-jndi-
name="java:/oracleDS"/>
 <metadata type="DDL-FILE">/accounts.ddl</metadata>
 </model>
</vdb>

DDL is applicable to both source and view models in zip VDB deployments. See DDL Metadata for more
information on how to use this feature.

Chaining Repositories

When defining the metadata type for a model, multiple metadata elements can be used. All the repository
instances defined are consulted in the order configured to gather the metadata for the given model.

<vdb name="{vdb-name}" version="1">
 <model name="{model-name}" type="PHYSICAL">
 <source name="AccountsDB" translator-name="oracle" connection-jndi-
name="java:/oracleDS"/>
 <metadata type="NATIVE"/>
 <metadata type="DDL">
 DDL Here
 </metadata>
 </model>
</vdb>

For the above model, NATIVE importer is first used, then DDL importer used to add additional metadata to
NATIVE imported metadata.

Chapter 9. Virtual Databases

121

Chapter 10. Generated REST Services

10.1. Generated REST Services

Using DDL metadata, properties can be specified that enable JBoss Data Virtualization procedures to be
exposed as a REST based services.

When a VDB includes this metadata and is deployed in JBoss EAP, and if the VDB is valid and after the
metadata is loaded, then a REST war is generated automatically and deployed into the local JBoss EAP
server.

10.2. REST Properties

The following properties can be specified on a JBoss Data Virtualization virtual procedure.

Property Name Description Is Required Allowed Values
METHOD HTTP Method to use Yes GET | POST| PUT |

DELETE
URI URI of procedure Yes ex:/procedure
PRODUCES Type of content

produced by the service
no xml | json | plain | any

text
CHARSET When procedure returns

Blob, and content type
text based, this
character set to used to
convert the data

no US-ASCII | UTF-8

The above properties must be defined with NAMESPACE 'http://teiid.org/rest' on the metadata. Here is an
example VDB that defines the REST based service.

10.3. Example VDB with REST Properties

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<vdb name="sample" version="1">
 <property name="UseConnectorMetadata" value="true" />
 <property name="{http://teiid.org/rest}auto-generate" value="true"/>

 <model name="PM1">
 <source name="text-connector" translator-name="loopback" />
 <metadata type="DDL"><![CDATA[
 CREATE FOREIGN TABLE G1 (e1 string, e2 integer);
 CREATE FOREIGN TABLE G2 (e1 string, e2 integer);
]]> </metadata>
 </model>
 <model name="View" type ="VIRTUAL">
 <metadata type="DDL"><![CDATA[
 SET NAMESPACE 'http://teiid.org/rest' AS REST;
 CREATE VIRTUAL PROCEDURE g1Table(IN p1 integer) RETURNS TABLE
(xml_out xml) OPTIONS (UPDATECOUNT 0, "REST:METHOD" 'GET', "REST:URI"
'g1/{p1}')
 AS
 BEGIN

Development Guide Volume 3: Reference Material

122

 SELECT XMLELEMENT(NAME "rows", XMLATTRIBUTES (g1Table.p1 as
p1), XMLAGG(XMLELEMENT(NAME "row", XMLFOREST(e1, e2)))) AS xml_out FROM
PM1.G1;
 END
]]> </metadata>
 </model>

</vdb>

The REST VDB is deployed with "{vdb-name}_{vdb-version}" context. The model name is prepended to uri of
the service call. For example the procedure in above example can be accessed as

http://{host}:8080/sample_1/view/g1/123

where "sample_1" is context, "view" is model name, "g1" is URI, and 123 is parameter {p1} from URI.

Note

<property name="{ http://teiid.org/rest }auto-generate" value="true"/>, can be used to control the
generation of the REST based WAR based on the VDB. This property along with at least one
procedure with REST based extension metadata is required to generate a REST WAR file. Also, the
procedure will return the result set with single column of either XML, CLOB, BLOB or String. When
PRODUCES property is not defined, this property is derived from the result column that is projected
out.

When designing the procedures that will be invoked through GET based call, the input parameters for
procedures can be defined in the PATH of the URI, as the {p1} example above, or they can also be defined
as query parameter, or combination of both. Here is an example:

http://{host}:8080/sample_1/view/g1?p1=123
http://{host}:8080/sample_1/view/g1/123?p2=foo

Make sure that the number of parameters defined on the URI and query match to the parameters defined on
procedure definition. If you defined a default value for a parameter on the procedure, and that parameter
going to be passed in query parameter on URL then you have choice to omit that query parameter, if you
defined as PATH you must supply a value for it.

'POST' methods MUST not be defined with URI with PATHS for parameters as in GET operations, the
procedure parameters are automatically added as @FormParam annotations on the generated procedure. A
client invoking this service must use FORM to post the values for the parameters. The FORM field names
MUST match the names of the procedure parameters names.

If any one of the procedure parameters are BLOB, CLOB or XML type, then POST operation can be only
invoked using "multipart/form-data" RFC-2388 protocol. This allows user to upload large binary or XML files
efficiently to Teiid using streaming".

If a parameter to the procedure is VARBINARY type then the value of the parameter must be properly
BASE64 encoded, irrespective of the HTTP method used to execute the procedure. If this VARBINARY has
large content, then consider using BLOB.

10.4. Considerations for Generated REST Services

If you defined a procedure that returns a XML content, then REST service call must be called with "accepts"

Chapter 10. Generated REST Services

123

http://teiid.org/rest

HTTP header of "application/xml". Also, if you defined a procedure that returns a JSON content and
PRODUCES property is defined "json" then HTTP client call must include the "accepts" header of
"application/json". In the situations where "accepts" header is missing, and only one procedure is defined with
unique path, that procedure will be invoked. If there are multiple procedures with same URI path, for example
one generating XML and another generating JSON content, then "accepts" header directs the REST engine
as to which procedure will be invoked to get the results. A wrong "accepts" header will result in error.

Warning

Ensure the number of parameters defined on the URI must match to the parameters defined on
procedure definition. An error with parameter definition will result in procedure being skipped from
generation of REST based service or error with 'GET' based methods. 'POST' methods do not need to
be defined with URI paths, the procedure parameters are automatically added as @FormParam
annotations on the generated procedure.

10.5. Security for Generated REST Services

By default all the generated Rest based services are secured using "HTTPBasic" with security domain "teiid-
security" and with security role "rest". However, these properties can be customized by defining the then in
vdb.xml file.

Example 10.1. Example vdb.xml file security specification

<vdb name="sample" version="1">
 <property name="UseConnectorMetadata" value="true" />
 <property name="{http://teiid.org/rest}auto-generate" value="true"/>
 <property name="{http://teiid.org/rest}security-type"
value="HttpBasic"/>
 <property name="{http://teiid.org/rest}security-domain" value="teiid-
security"/>
 <property name="{http://teiid.org/rest}security-role" value="example-
role"/>
 <property name="{http://teiid.org/rest}passthrough-auth"
value="true"/>

 ...
</vdb>

security-type - defines the security type. allowed values are "HttpBasic" or "none". If omitted will default to
"HttpBasic"

security-domain - defines JAAS security domain to be used with HttpBasic. If omitted will default to "teiid-
security"

security-role - security role that HttpBasic will use to authorize the users. If omitted the value will default to
"rest"

passthough-auth - when defined the pass-through-authentication is used to login in to JBoss Data
Virtualization. When this is set to "true", make sure that the "embedded" transport configuration in
standalone.xml has defined a security-domain that can be authenticated against. Failure to add the
configuration change will result in authentication error. Defaults to false.

Development Guide Volume 3: Reference Material

124

Important

it is our intention to provide other types of security based on ws-security in future releases.

10.6. Ad-Hoc REST Services

Apart from the explicitly defined procedure based rest services, the generated jax-rs war file will also implicitly
include a special rest based service under URI "/query" that can take any XML or JSON producing SQL as
parameter and expose the results of that query as result of the service. This service is defined with "POST",
accepting a Form Parameter named "sql". For example, after you deploy the VDB defined in above example,
you can issue a HTTP POST call as

 http://localhost:8080/sample_1/view/query
 sql=SELECT XMLELEMENT(NAME "rows",XMLAGG(XMLELEMENT(NAME "row",
XMLFOREST(e1, e2)))) AS xml_out FROM PM1.G1

A sample HTTP Request from Java can be made like below:

 public static String httpCall(String url, String method, String
params) throws Exception {
 StringBuffer buff = new StringBuffer();
 HttpURLConnection connection = (HttpURLConnection) new
URL(url).openConnection();
 connection.setRequestMethod(method);
 connection.setDoOutput(true);

 if (method.equalsIgnoreCase("post")) {
 OutputStreamWriter wr = new
OutputStreamWriter(connection.getOutputStream());
 wr.write(params);
 wr.flush();
 }

 BufferedReader serverResponse = new BufferedReader(new
InputStreamReader(connection.getInputStream()));
 String line;
 while ((line = serverResponse.readLine()) != null) {
 buff.append(line);
 }
 return buff.toString();
 }

 public static void main(String[] args) throws Exception {
 String params = URLEncoder.encode("sql", "UTF-8") + "=" +
URLEncoder.encode("SELECT XMLELEMENT(NAME "rows",XMLAGG(XMLELEMENT(NAME
"row", XMLFOREST(e1, e2)))) AS xml_out FROM PM1.G1", "UTF-8");
 httpCall("http://localhost:8080/sample_1/view/query", "POST",
params);
 }

Chapter 10. Generated REST Services

125

Chapter 11. Multi-Source Models

11.1. Multi-Source Models

Multi-source models can be used to quickly access data in multiple sources with homogeneous metadata.
When you have multiple instances of data that are using identical schema (horizontal sharding), JBoss Data
Virtualization can help you aggregate data across all the instances, using "multi-source" models. In this
scenario, instead of creating/importing a model for every data source, user must define one source model that
represents the schema and configure multiple data "sources" underneath it. During runtime, when a query
issued against this model, the query engine analyzes the information and gathers the required data from all
the sources configured and aggregates the results and provides in a single result set. Since all sources use
the same physical metadata, this feature is most appropriate for accessing the same source type with
multiple instances.

11.2. Multi-Source Model Configuration

To mark a model as multi-source, multisource can be set to true and then more than one source can be
listed for the model in the vdb.xml file. The following example shows a single model dynamic VDB with
multiple sources defined.

<vdb name="vdbname" version="1">
 <model visible="true" type="PHYSICAL" name="Customers"
path="/Test/Customers.xmi">
 <property name="multisource" value="true"/>
 <!-- optional properties
 <property name="multisource.columnName" value="somename"/>
 <property name="multisource.addColumn" value="true"/>
 -->
 <source name="chicago"
 translator-name="oracle" connection-jndi-name="chicago-
customers"/>
 <source name="newyork"
 translator-name="oracle" connection-jndi-name="newyork-
customers"/>
 <source name="la"
 translator-name="oracle" connection-jndi-name="la-customers"/>
 </model>
</vdb>

Note

Currently the tooling support for managing the multi-source feature is limited, so if you need to use
this feature build the VDB as usual in the Teiid Designer and then edit the vdb.xml file in the VDB
archive using a Text editor to add the additional sources as defined above. You must deploy a
separate data source for each source defined in the XML file.

In the above example, the VDB defined has single model called Customers, that has multiple sources
(chicago, newyork, and la) that define different instances of data.

11.3. The Multi-Source Column

Development Guide Volume 3: Reference Material

126

When a model is marked as multi-source, the engine will add or use an existing column on each table to
represent the source name values. In the above vdb.xml the column would return chicago , la , newyork
for each of the respective sources. The name of the column defaults to SOURCE_NAME, but is configurable
by setting the model property multisource.columnName . If a column already exists on the table (or an IN
procedure parameter) with the same name, the engine will assume that it should represent the multi-source
column and it will not be used to retrieve physical data. If the multi-source column is not present, the
generated column will be treated as a pseudo column which is not selectable via wildcards (* nor tbl.*).

This allows queries like the following:

select * from table where SOURCE_NAME = 'newyork'
update table column=value where SOURCE_NAME='chicago'
delete from table where column = x and SOURCE_NAME='la'
insert into table (column, SOURCE_NAME) VALUES ('value', 'newyork')

11.4. The Multi-Source Column in System Metadata

The pseudo column is by default not present in your actual metadata; it is not added on source
tables/procedures when you import the metadata. If you would like to use the multi-source column in your
transformations to control which sources are accessed or updated or you would like the column reported via
metadata facilities, there are several options:

With either VDB type to make the multi-source column present in the system metadata, you can set the
model property multisource.addColumn to true on a multi-source model. Care must be taken though when
using this property in Teiid Designer as any transformation logic (views/procedures) that you have defined
will not have been aware of the multi-source column and may fail validation upon server deployment.

If using Teiid Designer, you can manually add the multi-source column.

If using Dynamic VDBs, the pseudo-column will already be available to transformations, but will not be
present in your System metadata by default. If you are using DDL and you would like to be selective
(rather than using the multisource.addColumn property), you can manually add the column via DDL.

11.5. Multi-Source Models: Planning and Execution

The planner logically treats a multi-source table as if it were a view containing the union all of the respective
source tables. More complex partitioning scenarios, such as heterogeneous sources or list partitioning will
require the use of a Partitioned Union.

Most of the federated optimizations available over unions are still applicable in multi-source mode. This
includes aggregation pushdown/decomposition, limit pushdown, join partitioning, etc.

11.6. Multi-Source Models: SELECT, UPDATE and DELETE

A multi-source query against a SELECT/UPDATE/DELETE may affect any subset of the sources based
upon the evaluation of the WHERE clause.

The multi-source column may not be targeted in an update change set.

The sum of the update counts for UPDATEs/DELETEs will be returned as the resultant update count.

When running under a transaction in a mode that detects the need for a transaction and multiple updates
may performed or a transactional read is required and multiple sources may be read from, a transaction
will be started to enlist each source.

Chapter 11. Multi-Source Models

127

11.7. Multi-Source Models: INSERT

A multi-source INSERT must use the source_name column as an insert column to specify which source
will be targeted by the INSERT. Only an INSERT using the VALUES clause is supported.

11.8. Multi-Source Models: Stored Procedures

A physical stored procedure requires the addition of a string in parameter matching the multi-source column
name to specify which source the procedure is executed on. If the parameter is not present and defaults to a
null value, then the procedure will be executed on each source. It is not possible to execute procedures that
are required to return IN/OUT, OUT, or RETURN parameters values on more than 1 source.

Example 11.1. Example DDL

CREATE FOREIGN PROCEDURE PROC (arg1 IN STRING NOT NULL, arg2 IN STRING,
SOURCE_NAME IN STRING)

Example 11.2. Example Calls Against A Single Source

CALL PROC(arg1=>'x', SOURCE_NAME=>'sourceA')
EXEC PROC('x', 'y', 'sourceB')

Example 11.3. Example Calls Against All Sources

CALL PROC(arg1=>'x')
EXEC PROC('x', 'y')

Development Guide Volume 3: Reference Material

128

Chapter 12. DDL Metadata

12.1. DDL Metadata

A VDB can define models/schemas using DDL. Here is a small example of how one can define a view inside
the -vdb.xml file. See the <metadata> element under <model>.

Example 12.1. Example to show view definition

<model visible = "true" type = "VIRTUAL" name = "customers">
 <metadata type = "DDL"><![CDATA[
 CREATE VIEW PARTS (
 PART_ID integer PRIMARY KEY,
 PART_NAME varchar(255),
 PART_COLOR varchar(30),
 PART_WEIGHT varchar(255)
) AS
 select a.id as PART_ID, a.name as PART_NAME, b.color as
PART_COLOR, b.weight as PART_WEIGHT from modelA.part a, modelB.part b
where a.id = b.id
]]>
 </metadata>
</model>

Another complete DDL based example is at the end of this section.

Note

The declaration of metadata using DDL, NATIVE or DDL-FILE is supported out of the box, however
the MetadataRepository interface allows users to plug-in their own metadata facilities. For example,
you can write a Hibernate based store that can feed the necessary metadata. You can find out more
about custom metadata repositories in Red Hat JBoss Data Virtualization Development Guide: Server
Development.

Note

The DDL based schema is not constrained to be defined only for the view models.

Note

The full grammar for DDL is in the appendix.

12.2. Foreign Table

Chapter 11. Multi-Source Models

129

A FOREIGN table is a table that is defined on a physical model that represents a real relational table in
source databases like Oracle, SQLServer etc. For relational databases, JBoss Data Virtualization has the
capability to automatically retrieve the database schema information upon the deployment of the VDB, if one
like to auto import the existing schema. However, the user can use below FOREIGN table semantics, when
they would like to explicitly define tables on PHYSICAL models or represent non-relational data as relational
data in custom translators.

Example 12.2. Example:Create Foreign Table(Created on PHYSICAL model)

CREATE FOREIGN TABLE Customer (id integer PRIMARY KEY, firstname
varchar(25), lastname varchar(25), dob timestamp);

CREATE FOREIGN TABLE Order (id integer PRIMARY KEY, customerid integer,
saledate date, amount decimal(25,4), CONSTRAINT fk FOREGIN KEY(customerid)
REFERENCES Customer(id));

Note

See "create table" in Section A.7, “Productions”.

12.3. View

A view is a virtual table. A view contains rows and columns,like a real table. The fields in a view are fields
from one or more real tables from the source or other view models. They can also be expressions made up
multiple columns, or aggregated columns. When column definitions are not defined on the view table, they
will be derived from the projected columns of the view's select transformation that is defined after the AS
keyword.

You can add functions, JOIN statements and WHERE clauses to a view data as if the data were coming from
one single table.

Note

See "create table" in Section A.7, “Productions”.

12.4. Table Options

You can use the following options when creating a table or view. See "create table body" in Section A.7,
“Productions”. Any others properties defined will be considered as extension metadata.

Property Data Type or Allowed Values Description
UUID string Unique identifier for View
MATERIALIZED 'TRUE'|'FALSE' Defines if a table is materialized
MATERIALIZED_TABLE 'table.name' If this view is being materialized to

a external database, this defines
the name of the table that is being
materialized to

Development Guide Volume 3: Reference Material

130

CARDINALITY int Costing information. Number of
rows in the table. Used for
planning purposes

UPDATABLE 'TRUE'|'FALSE' Defines if the view is allowed to
update or not

ANNOTATION string Description of the view

Property Data Type or Allowed Values Description

Example 12.3. Example:Create View Table(Created on VIRTUAL model)

CREATE VIEW CustomerOrders (name varchar(50), saledate date, amount
decimal) OPTIONS (CARDINALITY 100, ANNOTATION 'Example')
 AS
 SELECT concat(c.firstname, c.lastname) as name, o.saledate as saledate,
o.amount as amount FROM Customer C JOIN Order o ON c.id = o.customerid;

12.5. Column Options

You can use the following options when specifying columns in the creation of a table or view. Any others
properties defined will be considered as extension metadata.

Property Data Type or Allowed Values Description
UUID string A unique identifier for the column
NAMEINSOURCE string If this is a column name on the

FOREIGN table, this value
represents name of the column in
source database, if omitted the
column name is used when
querying for data against the
source

CASE_SENSITIVE 'TRUE'|'FALSE'
SELECTABLE 'TRUE'|'FALSE' TRUE when this column is

available for selection from the
user query

UPDATABLE 'TRUE'|'FALSE' Defines if the column is updatable.
Defaults to true if the view/table is
updatable.

SIGNED 'TRUE'|'FALSE'
CURRENCY 'TRUE'|'FALSE'
FIXED_LENGTH 'TRUE'|'FALSE'
SEARCHABLE 'SEARCHABLE'|'UNSEARCHABL

E'|'LIKE_ONLY'|'ALL_EXCEPT_LI
KE'

column searchability, usually
dictated by the data type

MIN_VALUE
MAX_VALUE
CHAR_OCTET_LENGTH integer
ANNOTATION string
NATIVE_TYPE string
RADIX integer

Chapter 12. DDL Metadata

131

NULL_VALUE_COUNT long costing information. Number of
NULLS in this column

DISTINCT_VALUES long costing information. Number of
distinct values in this column

Property Data Type or Allowed Values Description

12.6. Table Constraints

Constraints can be defined on table/view to define indexes and relationships to other tables/views. See
"create table body" in Section A.7, “Productions”.

This information is used by the JBoss Data Virtualization optimizer to plan queries or use the indexes in
materialization tables to optimize the access to the data.

CONSTRAINTS are same as one can define on RDBMS.

Example 12.4. Example of CONSTRAINTs

CREATE VIEW CustomerOrders (name varchar(50), saledate date, amount
decimal,
 CONSTRAINT EXAMPLE_INDEX INDEX (name, amount)
 ACCESSPATTERN (name)
 PRIMARY KEY ...

12.7. INSTEAD OF Triggers

A view comprising multiple base tables must use an INSTEAD OF trigger to support inserts, updates and
deletes that reference data in the tables. See "create trigger" in Section A.7, “Productions”.

Based on the select transformation's complexity some times INSTEAD OF Triggers are automatically
provided for the user when "UPDATABLE" OPTION on the view is set to "TRUE". However, using the
CREATE TRIGGER mechanism user can provide/override the default behaviour.

Example 12.5. Example:Define instead of trigger on View

CREATE TRIGGER ON CustomerOrders INSTEAD OF INSERT AS
 FOR EACH ROW
 BEGIN ATOMIC
 INSERT INTO Customer (...) VALUES (NEW.value ...);
 END

12.8. Procedures and Functions

A user can define one of the following functions:

Source Procedure ("CREATE FOREIGN PROCEDURE") - a stored procedure in source

Source Function ("CREATE FOREIGN FUNCTION") - A function that is supported by the source, where
JBoss Data Virtualization will pushdown to source instead of evaluating in the JBoss Data Virtualization

Development Guide Volume 3: Reference Material

132

engine.

Virtual Procedure ("CREATE VIRTUAL PROCEDURE") - Similar to stored procedure, however this is
defined using the JBoss Data Virtualization Procedure language and evaluated in the JBoss Data
Virtualization engine.

Function/UDF ("CREATE VIRTUAL FUNCTION") - A user defined function, that can be defined using the
Teiid procedure language or can have the implementation defined using a JAVA Class.

See "create procedure" in Section A.7, “Productions”.

12.9. Variable Argument Support

Instead of using just an IN parameter, the last non optional parameter can be declared VARIADIC to indicate
that it can be repeated 0 or more times when the procedure is called positionally. Section A.7, “Productions”.

Example 12.6. Example:Vararg procedure

CREATE FOREIGN PROCEDURE proc (x integer, VARIADIC z integer) returns (x
string);

12.10. Function Options

You can use the following options when creating functions. See "create procedure" in Section A.7,
“Productions”. Any others properties defined will be considered as extension metadata.

Property Data Type or Allowed Values Description
UUID string unique Identifier
NAMEINSOURCE If this is source function/procedure

the name in the physical source, if
different from the logical name
given above

ANNOTATION string Description of the
function/procedure

CATEGORY string Function Category
DETERMINISM

NONDETERMINISTIC
COMMAND_DETERMINISTIC
SESSION_DETERMINISTIC
USER_DETERMINISTIC
VDB_DETERMINISTIC
DETERMINISTIC

NULL-ON-NULL 'TRUE'|'FALSE'
JAVA_CLASS string Java Class that defines the

method in case of UDF
JAVA_METHOD string The Java method name on the

above defined java class for the
UDF implementation

Chapter 12. DDL Metadata

133

VARARGS 'TRUE'|'FALSE' Indicates that the last argument of
the function can be repeated 0 to
any number of times. default false.
It is more proper to use a
VARIADIC parameter.

AGGREGATE 'TRUE'|'FALSE' Indicates the function is a user
defined aggregate function.
Properties specific to aggregates
are listed below:

Property Data Type or Allowed Values Description

Note that NULL-ON-NULL, VARARGS, and all of the AGGREGATE properties are also valid relational
extension metadata properties that can be used on source procedures marked as functions.

You can also create FOREIGN functions that are supported by a source. See the section on user defined
functions in Red Hat JBoss Data Virtualization Development Guide: Server Development for more information
about source supported functions.

12.11. Aggregate Function Options

Property Data Type or Allowed Values Description
ANALYTIC 'TRUE'|'FALSE' indicates the aggregate function

must be windowed. default false.
ALLOWS-ORDERBY 'TRUE'|'FALSE' indicates the aggregate function

supports an ORDER BY clause.
default false

ALLOWS-DISTINCT 'TRUE'|'FALSE' indicates the aggregate function
supports the DISTINCT keyword.
default false

DECOMPOSABLE 'TRUE'|'FALSE' indicates the single argument
aggregate function can be
decomposed as agg(agg(x)) over
subsets of data. default false

USES-DISTINCT-ROWS 'TRUE'|'FALSE' indicates the aggregate function
effectively uses distinct rows
rather than all rows. default false

Note that virtual functions defined using the Teiid procedure language cannot be aggregate functions.

Note

If you have defined a UDF (virtual) function without a Teiid procedure definition, then it must be
accompanied by its implementation in Java. To configure the Java library as dependency to the VDB,
see Support for User-Defined Functions in Red Hat JBoss Data Virtualization Development Guide:
Server Development.

12.12. Procedure Options

You can use the following options when creating procedures. See "create procedure" in Section A.7,
“Productions”. Any others properties defined will be considered as extension metadata.

Development Guide Volume 3: Reference Material

134

Property Data Type or Allowed Values Description
UUID string Unique Identifier
NAMEINSOURCE string In the case of source
ANNOTATION string Description of the procedure
UPDATECOUNT int if this procedure updates the

underlying sources, what is the
update count, when update count
is >1 the XA protocol for
execution is enforced

Example 12.7. Example:Define Procedure

CREATE VIRTUAL PROCEDURE CustomerActivity(customerid integer) RETURNS
(name varchar(25), activitydate date, amount decimal) AS
 BEGIN
 ...
 END

Example:Define Virtual Function

CREATE VIRTUAL FUNCTION CustomerRank(customerid integer) RETURNS integer
AS
 BEGIN
 ...
 END

12.13. Options

Options can be provided for several commands. See "options clause" in Section A.7, “Productions”.

Note

Any option name of the form prefix:key will attempt to be resolved against the current set of
namespaces. Failure to resolve will result in the option name being left as is. A resolved name will be
replaced with {uri}key. See also Namespaces for Extension Metadata.

Options can also be added using the ALTER statement.

12.14. Alter Statement

ALTER statements currently primarily support adding OPTIONS properties to Tables, Views and Procedures.
Using a ALTER statement, you can either add, modify or remove a property.

See "alter column options", "alter options", and "alter options list" in Section A.7, “Productions”.

Example 12.8. Example ALTER

Chapter 12. DDL Metadata

135

ALTER FOREIGN TABLE "customer" OPTIONS (ADD CARDINALITY 10000);
ALTER FOREIGN TABLE "customer" ALTER COLUMN "name" OPTIONS(SET UPDATABLE
FALSE)

ALTER statements are especially useful, when user would like to modify/enhance the metadata that has been
imported from a NATIVE datasource. For example, if you have a database called "northwind", and you
imported that metadata and would like to add CARDINALITY to its "customer" table, you can use ALTER
statement, along with "chainable" metadata repositories feature to add this property to the desired table. The
below shows an example -vdb.xml file, that illustrates the usage.

Example 12.9. Example VDB

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<vdb name="northwind" version="1">
 <model name="nw">
 <property name="importer.importKeys" value="true"/>
 <property name="importer.importProcedures" value="true"/>
 <source name="northwind-connector" translator-name="mysql"
connection-jndi-name="java:/nw-ds"/>
 <metadata type = "NATIVE,DDL"><![CDATA[
 ALTER FOREIGN TABLE "customer" OPTIONS (ADD CARDINALITY
10000);
 ALTER FOREIGN TABLE "customer" ALTER COLUMN "name"
OPTIONS(SET UPDATABLE FALSE);
]]>
 </metadata>
 </model>
</vdb>

12.15. Namespaces for Extension Metadata

When defining the extension metadata in the case of Custom Translators, the properties on
tables/views/procedures/columns can define namespace for the properties such that they will not collide with
properties specific to JBoss Data Virtualization. The property should be prefixed with alias of the Namespace.
Prefixes starting with teiid_ are reserved for use by JBoss Data Virtualization.

See "option namespace" in Section A.7, “Productions”.

Example 12.10. Example of Namespace

SET NAMESPACE 'http://custom.uri' AS foo

CREATE VIEW MyView (...) OPTIONS ("foo:mycustom-prop" 'anyvalue')

Table 12.1. Built-in Namespace Prefixes

Prefix URI Description

Development Guide Volume 3: Reference Material

136

teiid_rel http://www.teiid.org/ext/relational/2
012

Relational extensions. Uses
include function and native query
metadata

teiid_sf http://www.teiid.org/translator/sale
sforce/2012

Salesforce extensions.

Prefix URI Description

12.16. Example DDL Metadata

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<vdb name="twitter" version="1">

 <description>Shows how to call Web Services</description>

 <property name="UseConnectorMetadata" value="cached" />

 <model name="twitter">
 <source name="twitter" translator-name="rest" connection-jndi-
name="java:/twitterDS"/>
 </model>
 <model name="twitterview" type="VIRTUAL">
 <metadata type="DDL"><![CDATA[
 CREATE VIRTUAL PROCEDURE getTweets(query varchar) RETURNS
(created_on varchar(25), from_user varchar(25), to_user varchar(25),
 profile_image_url varchar(25), source varchar(25), text
varchar(140)) AS
 select tweet.* from
 (call twitter.invokeHTTP(action => 'GET', endpoint
=>querystring('',query as "q"))) w,
 XMLTABLE('results' passing JSONTOXML('myxml',
w.result) columns
 created_on string PATH 'created_at',
 from_user string PATH 'from_user',
 to_user string PATH 'to_user',
 profile_image_url string PATH 'profile_image_url',
 source string PATH 'source',
 text string PATH 'text') tweet;
 CREATE VIEW Tweet AS select * FROM twitterview.getTweets;
]]> </metadata>
 </model>

 <translator name="rest" type="ws">
 <property name="DefaultBinding" value="HTTP"/>
 <property name="DefaultServiceMode" value="MESSAGE"/>
 </translator>
</vdb>

Chapter 12. DDL Metadata

137

http://www.teiid.org/ext/relational/2012
http://www.teiid.org/translator/salesforce/2012

Chapter 13. Translators

13.1. JBoss Data Virtualization Connector Architecture

The process of integrating data from an enterprise information system into JBoss Data Virtualization requires
one to two components:

1. a translator (mandatory) and

2. a resource adapter (optional), also known as a connector. Most of the time, this will be a Java EE
Connector Architecture (JCA) Adapter.

A translator is used to:

translate JBoss Data Virtualization commands into commands understood by the datasource for which
the translator is being used,

execute those commands,

return batches of results from the datasource, translated into the formats that JBoss Data Virtualization is
expecting.

A resource adapter (or connector):

handles all communications with individual enterprise information systems, (which can include databases,
data feeds, flat files and so forth),

can be a JCA Adapter or any other custom connection provider (the JCA specification ensures the
writing, packaging and configuration are undertaken in a consistent manner),

Note

Many software vendors provide JCA Adapters to access different systems. Red Hat recommends
using vendor-supplied JCA Adapters when using JMS with JCA. See
http://docs.oracle.com/cd/E21764_01/integration.1111/e10231/adptr_jms.htm

removes concerns such as connection information, resource pooling, and authentication for translators.

With a suitable translator (and optional resource adapter), any datasource or Enterprise Information System
can be integrated with JBoss Data Virtualization.

13.2. Translators

A translator acts as the bridge between JBoss Data Virtualization and an external system, which is most
commonly accessed through a JCA resource adapter. Translators indicate what SQL constructs are
supported and what import metadata can be read from particular datasources.

A translator is typically paired with a particular JCA resource adapter. A JCA resource adapter is not needed
in instances where features such as pooling, environment dependent configuration management, or
advanced security handling are not needed.

Development Guide Volume 3: Reference Material

138

http://docs.oracle.com/cd/E21764_01/integration.1111/e10231/adptr_jms.htm

Note

See Red Hat JBoss Data Virtualization Development Guide: Server Development for more information
on developing custom translators and JCA resource adapters.

See the Red Hat JBoss Data Virtualization Administration and Configuration Guide and the examples
in EAP_HOME/docs/teiid/datasources for more information about configuring resource
adapters.

13.3. Translator Properties

Translators can have a number of configurable properties. These are divided among the following categories:

Execution Properties - these properties determine aspects of how data is retrieved. A list of properties
common to all translators are provided in Section 13.5, “Base Execution Properties”.

Note

The execution properties for a translator typically have reasonable defaults. For specific translator
types, base execution properties are already tuned to match the source. In most cases the user
will not need to adjust their values.

Importer Properties - these properties determine what metadata is read for import. There are no common
importer properties.

Note

The import capabilities of translators is currently only used by dynamic VDBs and not by Teiid
Designer. See Section 9.6, “Dynamic VDBs”.

13.4. Translators in JBoss Data Virtualization

JBoss Data Virtualization provides the following translators:

Apache Cassandra (Technical Preview Only)

Warning

Technology Preview features are not supported, may not be functionally complete, and are
not intended for production use. These features are included to provide customers with
early access to upcoming product innovations, enabling them to test functionality and
provide feedback during the development process.

Support of Apache Cassandra brings support for the popular columnar NoSQL database to JDV
customers.

Chapter 13. Translators

139

Apache Solr

With Apache Solr, JDV customers will be able to take advantage of enterprise search capabilities
for organized retrieval of structured and unstructured data.

Cloudera Impala

Cloudera Impala support provides for fast SQL query access to data stored in Hadoop.

JDBC Translator

The JDBC Translator works with many relational databases.

Red Hat JBoss Data Virtualization Supported Configurations

File Translator

The File Translator provides a procedural way to access the file system in order to handle text
files.

Google Spreadsheet Translator

The Google Spreadsheet Translator is used to connect to a Google Spreadsheet.

JBoss Data Grid 6.3

You can perform reads and writes to JDG. You can use it as an embedded cache or a remote
cache.

LDAP Translator

The LDAP Translator provides access to LDAP directory services.

MongoDB Translator

The MongoDB translator, known by the type name mongodb, provides a relational view of data
that resides in a MongoDB database. This translator is capable of converting JBoss Data
Virtualization SQL queries into MongoDB based queries. It supports a full range of SELECT,
INSERT, UPDATE and DELETE calls.

Object Translator

The Object translator is a bridge for reading Java objects from external sources such as JBoss
Data Grid (infinispan-cache) or Map Cache and delivering them to the engine for processing.

OData Translator

The OData translator exposes the OData V2 and V3 data sources and uses the JBoss Data
Virtualization WS resource adapter for making web service calls. This translator is an extension of
the WS Translator.

OLAP Translator

The OLAP Services translator exposes stored procedures for calling analysis services backed by
an OLAP server using MDX query language.

Salesforce Translator

The Salesforce Translator works with Salesforce interfaces.

Web Services Translator

Development Guide Volume 3: Reference Material

140

https://access.redhat.com/articles/703663

The Web Services Translator provides procedural access to XML content by using web services.

If these translators are not suitable for your system then you can develop a custom one.

13.5. Base Execution Properties

The following execution properties are shared by all translators.

Table 13.1. Base Execution Properties

Name Description Default
Immutable Set to true to indicate that the source never

changes.
false

RequiresCriteria Set to true to indicate that source
SELECT/UPDATE/DELETE queries require a
WHERE clause.

false

SupportsOrderBy Set to true to indicate that the ORDER BY clause is
supported.

false

SupportsOuterJoins Set to true to indicate that OUTER JOINs are
supported.

false

SupportsFullOuterJoins If outer joins are supported, true indicates that FULL
OUTER JOINs are supported.

false

SupportsInnerJoins Set to true to indicate that INNER JOINs are
supported.

false

SupportedJoinCriteria If joins are supported, defines what criteria may be
used as the join criteria. May be one of (ANY,
THETA, EQUI, or KEY).

ANY

MaxInCriteriaSize If in criteria are supported, defines what the
maximum number of in entries are per predicate. -1
indicates no limit.

-1

MaxDependentInPredicates If IN criteria are supported, defines what the
maximum number of predicates that can be used for
a dependent join. Values less than 1 indicate to use
only one IN predicate per dependent value pushed.

-1

DirectQueryProcedureName f the direct query procedure is supported on the
translator, this property indicates the name of the
procedure.

native

SupportsDirectQueryProcedure Set to true to indicate the translator supports the
direct execution of commands

false

ThreadBound Set to true to indicate the translator's Executions
should be processed by only a single thread

false

CopyLobs If true, then returned LOBs (clob, blob, sql/xml) will
be copied by the engine in a memory-safe manner.
Use this option if the source does not support
memory-safe LOBs or you want to disconnect LOBs
from the source connection.

false

Note

Only a subset of the supports metadata can be set through execution properties. If more control is
needed, see Red Hat JBoss Data Virtualization Development Guide: Server Development.

Chapter 13. Translators

141

There are no base importer settings.

13.6. Override Execution Properties

You can override execution properties for any translator in the vdb.xml file:

<translator type="oracle-override" name="oracle">
 <property name="RequiresCriteria" value="true"/>
</translator>

The above XML fragment is overriding the oracle translator and altering the behavior of RequiresCriteria
property setting it to true. Note that the modified translator is only available in the scope of this VDB.

13.7. Parameterizable Native Queries

In some situations the teiid_rel:native-query property and native procedures accept parameterizable strings
that can positionally reference IN parameters. A parameter reference has the form $integer, for example, $1.
Note that one-based indexing is used and that only IN parameters may be referenced. $integer is reserved,
but may be escaped with another $, for example, $$1. The value will be bound as a prepared value or a literal
in a source specific manner. The native query must return a result set that matches the expectation of the
calling procedure.

For example, the native query "select c from g where c1 = $1 and c2 = '$$1'" results in a JDBC source query
of "select c from g where c1 = ? and c2 = '$1'", where ? will be replaced with the actual value bound to
parameter 1.

13.8. Delegating Translators

You can create a delegating translator by extending the
org.teiid.translator.BaseDelegatingExecutionFactory class.

Once your classes are packaged as a custom translator, you will be able to wire another translator instance
into your delegating translator at runtime in order to intercept all of the calls to the delegate. This base class
does not provide any functionality on its own, other than delegation.

Table 13.2. Execution Properties

Name Description Default
delegateName Translator instance name to

delegate to.

As an example, consider if you are currently using "oracle" translator in your VDB and you need to intercept
the calls going through this translator.

You first write a custom delegating translator:

@Translator(name="interceptor", description="interceptor")
public class InterceptorExecutionFactory extends
org.teiid.translator.BaseDelegatingExecutionFactory{
 @Override
 public void getMetadata(MetadataFactory metadataFactory, C conn)
throws TranslatorException {
 // do intercepting code here..

Development Guide Volume 3: Reference Material

142

 // If you need to call the original delegate, do not call if do
not need to.
 // but if you did not call the delegate fulfill the method
contract
 super.getMetadata(metadataFactory, conn);

 // do more intercepting code here..
 }
}

Then you deploy this translator.

Then modify your -vdb.xml or .vdb file:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<vdb name="myvdb" version="1">

 <model name="mymodel">
 <source name="source" translator-name="oracle-interceptor"
connection-jndi-name="java:oracle-ds"/>
 </model>

 <!-- the below it is called translator overriding, where you can set
different properties -->
 <translator name="oracle-interceptor" type="interceptor" />
 <property name="delegateName" value="oracle" />
 </translator>
</vdb>

We have defined a "translator" called "oracle-interceptor", which is based on the custom translator
"interceptor" from above, and supplied the translator it required to delegate to "oracle" as its delegateName.
Then, we used this override translator "oracle-interceptor" in the VDB. Now any calls going into this VDB
model's translator will be intercepted by your code to do whatever you need to do.

13.9. Amazon SimpleDB Translator

Amazon SimpleDB is a web service for running queries on structured data in real time. This service works in
close conjunction with Amazon Simple Storage Service (Amazon S3) and Amazon Elastic Compute Cloud
(Amazon EC2), collectively providing the ability to store, process and query data sets in the cloud. These
services are designed to make web-scale computing easier and more cost-effective for developers.

This translator provides you with a way to connect to Amazon SimpleDB and it also provides relational
functionality to add records directly from a user or from other sources that are integrated with Teiid. It does so
via SQL. It also gives you the ability to read, update and delete existing records from the SimpleDB store.

Amazon SimpleDB is a hosted key/value store where a single key can contain multiple attribute name/value
pairs where "value" can also be a multi-value.

When you import the metadata from SimpleDB into Teiid, the constructs are aligned like this:

Table 13.3. Registry Properties

Simple DB Name SQL (Teiid)
Domain Table

Chapter 13. Translators

143

Item Name Column (ItemName) Primary Key
attribute - single value Column - String Datatype
attribute - multi value Column - String Array Datatype

Simple DB Name SQL (Teiid)

Since all attributes are considered, by default, to be string data types, columns are defined with string data
type. However, during modeling of the schema in Designer, you can use various other data types supported
through Teiid to define a data type of column, if you wish to expose one.

Important

If you did modify the data type be something other than a string, do not use these changed columns in
comparison queries, as SimpleDB does only lexicographical matching. To avoid using them, set the
"SearchType" on the changed column to "UnSearchable"

This is an example Dynamic VDB that shows how you define the SimpleDB translator:

<vdb name="myvdb" version="1">
 <model name="simpledb">
 <source name="node" translator-name="simpledb" connection-jndi-
name="java:/simpledbDS"/>
 </model>
<vdb>

Note

The translator does not provide a connection to the SimpleDB. For that purpose, Teiid has a JCA
adapter that provides a connection to SimpleDB using Amazon SDK Java libraries. To define such
connector, see Amazon SimpleDB Data Sources or see an example in the jboss-
as/docs/teiid/datasources/simpledb file.

If you are using Designer Tooling, to create a VDB, you can create or use a Teiid Designer Model project.
Use the "Teiid Connection - Source Model" importer, create a SimpleDB Data Source using the Data Source
Creation wizard and use simpledb as the translator in the importer. The table is created in a source model by
this importer, providing that the data is already defined on Amazon SimpleDB. Create a VDB and deploy into
Teiid Server and use either jdbc, odbc or odata to query it.

The Amazon SimpleDB Translator currently has no import or execution properties.

The Amazon SimpleDB Translator supports SELECT statements with a restrictive set of capabilities
including: comparison predicates, IN predicates, LIMIT and ORDER BY. Insert, update, delete are also
supported.

Attributes with multiple values will defined as string array type. So this column is treated SQL Array type. This
table shows the SimpleDB way of querying compared with the Teiid way of querying:

Table 13.4. Registry Properties

SimpleDB Query Teiid Query
select * from mydomain where Rating = '4 stars' or Rating = '****' select * from mydomain where

Rating = ('4 stars','****')

Development Guide Volume 3: Reference Material

144

select * from mydomain where Keyword = 'Book' and Keyword =
'Hardcover'

select * from mydomain where
intersection(Keyword,'Book','Hardco
ver')

select * from mydomain where every(Rating) = '****' select * from mydomain where
every(Rating) = '****'

SimpleDB Query Teiid Query

If you want to Insert/Update/Delete you can write prepare statements or you can compose SQL statements
like this:

INSERT INTO mydomain (ItemName, title, author, year, pages, keyword, rating)
values ('0385333498', 'The Sirens of Titan', 'Kurt Vonnegut', ('1959'),
('Book', Paperback'), ('*****','5 stars','Excellent'))

Warning

The Direct Query Support feature is turned off by default because of the security risk this exposes to
execute any command against the source. To enable this feature, override the execution property
called SupportsDirectQueryProcedure to true.

Note

By default the name of the procedure that executes the queries directly is called native. Override the
execution property DirectQueryProcedureName to change it to another name.

The SimpleDB translator provides a procedure to execute any ad-hoc simpledb query directly against the
source without Teiid parsing or resolving. Since the metadata of this procedure's results are not known to
Teiid, they are returned as an object array. ARRAYTABLE can be used construct tabular output for
consumption by client applications. Direct query supported for "select" based calls.

SELECT X.*
 FROM simpledb_source.native('SELECT firstname, lastname FROM users') n,
ARRAYTABLE(n.tuple COLUMNS firstname string, lastname string) AS X

The Teiid-specific Amazon SimpleDB Resource Adapter should be used with this translator

13.10. Apache Accumulo Translator

The Apache Accumulo Translator, known by the type name accumulo, exposes querying functionality to
Accumulo Data Sources. Apache Accumulo is a sorted, distributed key value store with robust, scalable, high
performance data storage and retrieval system. This translator provides an easy way connect to Accumulo
system and provides relational way using SQL to add records from directly from user or from other sources
that are integrated with Teiid. It also gives ability to read/update/delete existing records from Accumulo store.
Teiid has capability to pass-in logged in user's roles as visibility properties to restrict the data access.

Here are some use cases for this translator:

Accumulo source can be used in Teiid, to continually add/update the documents in the Accumulo system
from other sources automatically.

Chapter 13. Translators

145

Access Accumulo through SQL interface.

Make use of cell level security through enterprise roles.

Accumulo translator can be used as an indexing system to gather data from other enterprise sources
such as RDBMS, Web Service, SalesForce etc, all in single client call transparently with out any coding.

Apache Accumulo is distributed key value store with unique data model. It allows to group its key-value pairs
in a collection called "table". You can define a schema representing Accumulo table structures in Teiid using
DDL or using Teiid Designer with help of metadata extension properties defined below. Since no data type
information is defined on the columns, by default all columns are considered as string data types. However,
during modeling of the schema, one can use various other data types supported through Teiid to define a
data type of column, that user wishes to expose.Once this schema is defined and exposed through VDB in a
Teiid database, and Accumulo Data Sources is created, the user can issue "INSERT/UPDATE/DELETE"
based SQL calls to insert/update/delete records into the Accumulo, and issue "SELECT" based calls to
retrieve records from Accumulo. You can use full range of SQL with Teiid system integrating other sources
along with Accumulo source.

Important

By default, Accumulo table structure is flat and thus can not define relationships among tables. So, a
SQL JOIN is performed in Teiid layer rather than pushed to source even if both tables on either side of
the JOIN reside in the Accumulo. Currently any criteria based on EQUALITY and/or COMPARISON
using complex AND/OR clauses are handled by Accumulo translator and will be properly executed at
source.

Here is an example Dynamic VDB that shows the Accumulo translator:

<vdb name="myvdb" version="1">
 <model name="accumulo">
 <source name="node-one" translator-name="accumulo" connection-jndi-
name="java:/accumuloDS"/>
 </model>
<vdb>

The translator does NOT provide a connection to the Accumulo. For that purpose, Teiid has a JCA adapter
that provides a connection to Accumulo using Accumulo Java libraries.

If you are using the Designer Tooling, to create a VDB create/use a Teiid Designer Model project, use the
"Teiid Connection- Source Model" importer, create Accumulo Data Source using data source creation wizard
and use accumulo as translator in the importer. The table is created in a source model by the time you finish
with this importer. Create a VDB and deploy into Teiid Server and use either jdbc, odbc or odata to query.

The Accumulo translator is capable of traversing through Accumulo table structures and build a metadata
structure for Teiid translator. The schema importer can understand simple tables by traversing a single
ROWID of data, then looks for all the unique keys, based on it and comes up with a tabular structure for
Accumulo based table. Using the following import properties, you can further refine the import behavior.

Table 13.5. Registry Properties

Property Name Description Required? Default
ColumnNamePattern How the

column name
is to be formed

false {CF}_{CQ}

Development Guide Volume 3: Reference Material

146

ValueIn Where the
value for
column is
defined CQ or
VALUE

false {VALUE}

Property Name Description Required? Default

Note

{CQ}, {CF}, {ROWID} are expressions that you can use to define above properties in any pattern, and
respective values of Column Qualifer, Column Familiy or ROWID will be replaced at import time.
ROW ID of the Accumulo table, is automatically created as ROWID column, and will be defined as
Primary Key on the table.

You can also define the metadata for the Accumulo based model, using DDL or using the Teiid Designer.
When doing such exercise, the Accumulo Translator currently defines following extended metadata
properties to be defined on its Teiid schema model to guide the translator to make proper decisions. The
following properties are described under NAMESPACE "http://www.teiid.org/translator/accumulo/2013", for
user convenience this namespace has alias name teiid_accumulo defind in Teiid. To define a extension
property use expression like "teiid_accumulo:{property-name} value". All the properties below are intended to
be used as OPTION properties on COLUMNS. See DDL Metadata for more information on defining DDL
based metadata.

Table 13.6. Registry Properties

Property Name Description Required? Default
CF Column Family true none
CQ Column

Qualifier
false empty

VALUE-IN Value of
column defined
in. Possible
values
(VALUE, CQ)

false VALUE

Here is an example for a table called "User". A scan returns the following data:

root@teiid> table User
root@teiid User> scan
 1 name:age [] 43
 1 name:firstname [] John
 1 name:lastname [] Does
 2 name:age [] 10
 2 name:firstname [] Jane
 2 name:lastname [] Smith
 3 name:age [] 13
 3 name:firstname [] Mike
 3 name:lastname [] Davis

If you used the default importer from the Accumulo translator(like Dynamic VDB defined above), the table
generated will look like this:

Chapter 13. Translators

147

CREATE FOREIGN TABLE "User" (
 rowid string OPTIONS (UPDATABLE FALSE, SEARCHABLE 'All_Except_Like'),
 name_age string OPTIONS (SEARCHABLE 'All_Except_Like',
"teiid_accumulo:CF" 'name', "teiid_accumulo:CQ" 'age',
"teiid_accumulo:VALUE-IN" '{VALUE}'),
 name_firstname string OPTIONS (SEARCHABLE 'All_Except_Like',
"teiid_accumulo:CF" 'name', "teiid_accumulo:CQ" 'firstname',
"teiid_accumulo:VALUE-IN" '{VALUE}'),
 name_lastname string OPTIONS (SEARCHABLE 'All_Except_Like',
"teiid_accumulo:CF" 'name', "teiid_accumulo:CQ" 'lastname',
"teiid_accumulo:VALUE-IN" '{VALUE}'),
 CONSTRAINT PK0 PRIMARY KEY(rowid)
) OPTIONS (UPDATABLE TRUE);

You can use "Import Property" as "ColumnNamePattern" as "{CQ}" will generate the following (note the
names of the column):

CREATE FOREIGN TABLE "User" (
 rowid string OPTIONS (UPDATABLE FALSE, SEARCHABLE 'All_Except_Like'),
 age string OPTIONS (SEARCHABLE 'All_Except_Like', "teiid_accumulo:CF"
'name', "teiid_accumulo:CQ" 'age', "teiid_accumulo:VALUE-IN" '{VALUE}'),
 firstname string OPTIONS (SEARCHABLE 'All_Except_Like',
"teiid_accumulo:CF" 'name', "teiid_accumulo:CQ" 'firstname',
"teiid_accumulo:VALUE-IN" '{VALUE}'),
 lastname string OPTIONS (SEARCHABLE 'All_Except_Like',
"teiid_accumulo:CF" 'name', "teiid_accumulo:CQ" 'lastname',
"teiid_accumulo:VALUE-IN" '{VALUE}'),
 CONSTRAINT PK0 PRIMARY KEY(rowid)
) OPTIONS (UPDATABLE TRUE);

If the column name is defined by Column Family, you can use "ColumnNamePattern" as "{CF}", and if the
value for that column exists in the Column Qualifier then you can use "ValueIn" as "{CQ}". Using import
properties you can dictate how the table is to b= be modeled. If you did not use built in import (not using Teiid
Designer's Teiid Connection >> Source Model or Dynamic VDB), and would like to manually design the table
in Designer then you must make sure you supply the Extension Metadata Properties defined above on the
User table's columns from Accumulo extended metadata(In Designer, right-click on Model, and select "Model
Extension Definitions" and select Accumulo. For example on FirstName column, you would supply

The Red Hat JBoss Data Virtualization-specific Accumulo Resource Adapter must be used with this
translator.

You cannot perform native queries or use direct query procedures with this translator.

13.11. Apache SOLR Translator

The Apache SOLR Translator, known by the type name solr, exposes querying functionality to Solr Data
Sources. Apache Solr is a search engine built on top of Apache Lucene for indexing and searching. This
translator provides an easy way connect to existing or a new Solr search system, and provides way to add
documents/records from directly from user or from other sources that are integrated with Teiid. It also gives
ability to read/update/delete existing documents from Solr Search system.

The Solr Translator currently has no import or execution properties. It does not define any extension
metadata.

Here are some usecases for this translator:

Development Guide Volume 3: Reference Material

148

Solr source can be used in Teiid, to continually add/update the documents in the search system from
other sources automatically.

If the search fields are stored in Solr system, this can be used as very low latency data retrieval for
serving high traffic applications.

Solr translator can be used as a fast full text search. The Solr document can contain only the index
information, then the results as an inverted index to gather target full documents from the other enterprise
sources such as RDBMS, Web Service, SalesForce etc, all in single client call transparently with out any
coding.

Solr search system provides searches based on indexed search fields. Each Solr instance is typically
configured with a single core that defines multiple fields with different type information. Teiid metadata
querying mechanism is equipped with "Luke" based queries, that at deploy time of the VDB use this
mechanism to retrieve all the stored/indexed fields. Currently Teiid does NOT support dynamic fields and
non-stored fields. Based on retrieved fields, Solr translator exposes a single table that contains all the fields.
If a field is multi-value based, it's type is represented as Array type.

Once this table is exposed through VDB in a Teiid database, and Solr Data Sources is created, the user can
issue "INSERT/UPDATE/DELETE" based SQL calls to insert/update/delete documents into the Solr, and
issue "SELECT" based calls to retrieve documents from Solr. You can use full range of SQL with Teiid
system integrating other sources along with Solr source.

The Solr Translator supports SELECT statements with a restrictive set of capabilities including: comparison
predicates, IN predicates, LIMIT and Order By.

Here is an example dynamic VDB that shows the Solr translator:

<vdb name="search" version="1">
 <model name="solr">
 <source name="node-one" translator-name="solr" connection-jndi-
name="java:/solrDS"/>
 </model>
<vdb>

The translator does NOT provide a connection to the Solr. For that purpose, Teiid has a JCA adapter that
provides a connection to Solr using the SolrJ Java library. See an example in see an example in jboss-
as/docs/teiid/datasources/solr

If you are using Designer Tooling, to create VDB then create/use a Teiid Designer Model project, u Use
"Teiid Connection - Source Model" importer, create Solr Data Source using data source creation wizard and
use solr as translator in the importer. The search table is created in a source model by the time you finish
with this importer. Create a VDB and deploy into Teiid Server and use either jdbc, odbc or odata to query.

The Teiid specific Solr Resource Adapter should be used with this translator.

13.12. Cassandra Translator

Chapter 13. Translators

149

Warning

The Cassandra Translator is a technology preview only. Technology Preview features are not
supported with Red Hat production service level agreements (SLAs), may not be functionally
complete, and are not recommended to be used for production. These features provide early access
to upcoming product features, enabling customers to test functionality and provide feedback during
the development process.

The Cassandra Translator, known by the type name cassandra, exposes querying functionality to Cassandra
Data Sources. The translator translates Teiid push down commands into Cassandra CQL.

The Cassandra Translator currently has no import or execution properties.

The Cassandra Translator supports only SELECT statements with a restrictive set of capabilities including:
count(*), comparison predicates, IN predicates, and LIMIT. Consider a custom extension or create an
enhancement request should your usage require additional capabilities.

The Teiid-specific Cassandra Resource Adapter should be used with this translator.

Cassandra source procedures may be created using the teiid_rel:native-query extension. The procedure will
invoke the native-query similar to a direct procedure call with the benefits that the query is predetermined and
that result column types are known, rather than requiring the use of ARRAYTABLE or similar functionality.

Warning

The direct query procedure feature is turned off by default because of the security risk this exposes to
execute any command against the source. To enable this feature, override the execution property
called SupportsDirectQueryProcedure to true.

By default the name of the procedure that executes the queries directly is called native. Override the
execution property DirectQueryProcedureName to change it to another name.

The Cassandra translator provides a procedure to execute any ad-hoc CQL query directly against the source
without Teiid parsing or resolving. Since the metadata of this procedure's results are not known to Teiid, they
are returned as an object array. ARRAYTABLE can be used construct tabular output for consumption by
client applications.

SELECT X.*
 FROM cassandra_source.native('SELECT firstname, lastname FROM users WHERE
birth_year = $1 AND country = $2 ALLOW FILTERING', 1981, 'US') n,
 ARRAYTABLE(n.tuple COLUMNS firstname string, lastname string) AS X

13.13. File Translator

13.13.1. File Translator

The file translator exposes stored procedures to leverage file system resources exposed by the file resource
adapter. It will commonly be used with the TEXTTABLE or XMLTABLE table functions to use CSV or XML
formatted data. See Section 3.6.8, “Nested Tables: TEXTTABLE” and Section 3.6.9, “Nested Tables:
XMLTABLE”.

Development Guide Volume 3: Reference Material

150

The file translator is implemented by the org.teiid.translator.file.FileExecutionFactory class
and known by the translator type name file.

Note

The resource adapter for this translator is provided by configuring the file data source in the JBoss
EAP instance. See the Red Hat JBoss Data Virtualization Administration and Configuration Guide for
more configuration information.

13.13.2. File Translator: Execution Properties

Table 13.7. Execution Properties

Name Description Default
Encoding The encoding that must be used for CLOBs returned by the

getTextFiles procedure.
The system
default
encoding

ExceptionIfFileNotFound Throw an exception in getFiles or getTextFiles if the
specified file/directory does not exist.

true (false in
previous
releases)

13.13.3. File Translator: Usage

Retrieve all files as BLOBs with an optional extension at the given path.

call getFiles('path/*.ext')

If the extension path is specified, then it will filter all of the files in the directory referenced by the base path. If
the extension pattern is not specified and the path is a directory, then all files in the directory will be returned.
Otherwise the single file referenced will be returned. If the path does not exist, then no results will be returned
if ExceptionIfFileNotFound is false, otherwise an exception will be raised.

Retrieve all files as CLOB(s) with the an optional extension at the given path.

call getTextFiles('path/*.ext')

getTextFiles will retrieve the same files as getFiles, only the results will be CLOB values using the
encoding execution property as the character set.

Save the CLOB, BLOB, or XML value to the given path.

call saveFile('path', value)

The path is a reference to either a new file location or an existing file to overwrite completely.

Note

Native or direct query execution is not supported on the File Translator.

Chapter 13. Translators

151

13.14. Google Spreadsheet Translator

13.14.1. Google Spreadsheet Translator

The Google spreadsheet translator is used to connect to a Google spreadsheet.

The Google spreadsheet translator is implemented by the
org.teiid.translator.google.SpreadsheetExecutionFactory class and known by the translator
type name google-spreadsheet.

The query approach expects the data in the worksheet to be in a specific format. Namely:

Any column that has data can be queried.

All datatypes (including strings) featuring empty cells are returned as NULL.

If the first row is present and contains string values, then it will be assumed to represent the column
labels.

If you are using a dynamic VDB, the metadata for your Google account (worksheets and information about
columns in worksheets) are loaded upon translator start up. If you make any changes in data types, it is
advisable to restart your VDB.

The translator supports queries against a single sheet. It supports ordering, aggregation, basic predicates,
and most of the functions supported by the spreadsheet query language.

There are no Google spreadsheet importer settings, but it does provide metadata for dynamic VDBs.

Note

The resource adapter for this translator is provided by configuring the google data source in the
JBoss EAP instance. See the Red Hat JBoss Data Virtualization Administration and Configuration
Guide for more configuration information.

13.14.2. Google Spreadsheet Translator: Native Queries

Google spreadsheet source procedures may be created using the teiid_rel:native-query extension (see
Section 13.7, “Parameterizable Native Queries”) The procedure will invoke the native query similar to an
native procedure call with the benefits that the query is predetermined and that result column types are
known, rather than requiring the use of ARRAYTABLE (Section 3.6.10, “Nested Tables: ARRAYTABLE”) or
similar functionality.

13.14.3. Google Spreadsheet Translator: Native Procedure

Warning

This feature is turned off by default because of the security risk this exposes to execute any command
against the source. To enable this feature, override the translator property called
"SupportsNativeQueries" to true. See Section 13.6, “Override Execution Properties”.

Google spreadsheet translator provides a procedure with name native that gives ability to execute any ad

Development Guide Volume 3: Reference Material

152

hoc native Google spreadsheet queries directly against the source without any JBoss Data Virtualization
parsing or resolving. Since the metadata of this procedure's execution results are not known to the JBoss
Data Virtualization and they are returned as object array. Users can use ARRAYTABLE (Section 3.6.10,
“Nested Tables: ARRAYTABLE”) to construct a build a tabular output for consumption by client applications.

JBoss Data Virtualization exposes this procedure with a simple query structure:

Example 13.1. Select Example

SELECT x.* FROM (call pm1.native('worksheet=People;query=SELECT A, B, C'))
w,
 ARRAYTABLE(w.tuple COLUMNS "id" string , "type" string, "name" String) AS
x

The first argument takes semi-colon(;) separated name value pairs of following properties to execute the
procedure:

Property Description Required
worksheet Google spreadsheet name yes
query spreadsheet query yes
limit number rows to fetch no
offset offset of rows to fetch from limit or

beginning
no

Note

By default the name of the procedure that executes the queries directly is called native , however the
user can set the Override Execution Properties property (see Section 13.6, “Override Execution
Properties”) on NativeQueryProcedureName in the vdb.xml file to change it to any other procedure
name.

13.15. Infinispan DSL Translator

The Infinispan DSL Translator, known by the type infinispan-cache-dsl, can read the Java objects from a
remote Infinispan Cache via the Hot Rod client using the Google Protobuf for serialization. The benefit of this
JBoss Data Grid design is that it will enable Teiid to query the cache using DSL, which is similar to doing
Lucene searching on a local cache. If you are using Infinispan in Library mode, see the Object Translator for
this type of configuration.

The Infinispan DSL Translator currently has no import or execution properties. See the JCA resource adapter
section below for information on how to configure the cache to be queried.

Here are the connector's capabilities:

Compare Criteria - EQ, NE, LT, GT, LE, GE.

And/Or Criteria

(Not) In Criteria

(Not) Like Criteria

Chapter 13. Translators

153

(Not) IsNull

INSERT, UPDATE, DELETE (non-transactional)

Here are its limitations:

One-to-Many, currently only supports Collection or Array, not Maps

Write transactions not supported by JDG when using Hot Rod client

Use it to retrieve objects from a cache and transform into rows and columns and to perform writes to the
cache.

Here are the definition requirements:

Each Google registered class in the cache will have a corresponding table created.

The table for the root class, must have a primary key defined, which must map to an attribute in the class.

The table "name in source" (NIS) will be the name of the JDG cache this table/class is stored

The table columns will be created from the Google protobuf definition, that corresponds to a registered
class.

Attributes defined as repeatable (i.e., collections, arrays, etc.) or a container class, will be supported as 1-
to-* relationships, and will have corresponding registered class (if they are to be searched).

A one-to-many relationship class must have a foreign key to map to the root class/table, where the name
in source for the foreign key is the name of the root class method to access those child objects. Note, this
is the class method, not a reference in the Google protobuf definition.

A container/child class will have attributes where the NIS contain a period. Example: phone.number. This
is because this maps to the Google protobuf definition and what is expected to be used in the DSL query.

There are several options to defining the metadata representing your object in the cache:

The recommended approach is to use the Teiid Connection Importer in Teiid Designer to create the
physical source model based on your object cache.

Another option is to use dynamic VDB that only defines the data source to use. The metadata will be
resolved by reverse engineering the defined object in the cache. This can be useful when using the Teiid
Designer Teiid Connection Importer for building the physical source model(s).

<model name="People" type="Physical">
 <property name="importer.useFullSchemaName" value="false"/>

 <source name="infinispan-cache-dsl-connector" translator-
name="infinispan-cache-dsl" connection-jndi-
name="java:/infinispanRemoteDSL" />
</model>

The metadata will be resolved by reverse engineering the defined object in the cache. This can be useful
when using the Teiid Designer Teiid Connection Importer for building the physical source model(s).

Use dynamic VDB without defining the metadata using DDL.

Development Guide Volume 3: Reference Material

154

Note

This code also shows a container class, PhoneNumber, as an example of the foreign key that
defines the relationship.

<vdb name="PeopleVDB" version="1">
 <model name="People" visible="true">
 <property name="importer.useFullSchemaName" value="false"/>

 <source name="infinispan-cache-dsl-connector" translator-
name="infinispan-cache-dsl" connection-jndi-name="java:/infinispanRemote"
/>

 <metadata type="DDL"><![CDATA[

 CREATE FOREIGN TABLE Person (
 PersonObject object OPTIONS (NAMEINSOURCE 'this', UPDATABLE FALSE,
SEARCHABLE 'Unsearchable', NATIVE_TYPE 'java.lang.Object'),
 id integer NOT NULL OPTIONS (SEARCHABLE 'Searchable', NATIVE_TYPE
'int'),
 name string OPTIONS (SEARCHABLE 'Searchable', NATIVE_TYPE
'java.lang.String'),
 email string OPTIONS (SEARCHABLE 'Searchable', NATIVE_TYPE
'java.lang.String'),
 CONSTRAINT PK_ID PRIMARY KEY(id)
) OPTIONS (NAMEINSOURCE 'PersonsCache', UPDATABLE TRUE);

CREATE FOREIGN TABLE PhoneNumber (
 number string OPTIONS (NAMEINSOURCE 'phone.number', SEARCHABLE
'Searchable', NATIVE_TYPE 'java.lang.String'),
 type string OPTIONS (NAMEINSOURCE 'phone.type', SEARCHABLE
'Searchable', NATIVE_TYPE 'java.lang.String'),
 id integer NOT NULL OPTIONS (SELECTABLE FALSE, UPDATABLE FALSE,
SEARCHABLE 'Searchable', NATIVE_TYPE 'int'),
 CONSTRAINT FK_PERSON FOREIGN KEY(id) REFERENCES Person (id) OPTIONS
(NAMEINSOURCE 'phones')
) OPTIONS (NAMEINSOURCE 'PersonsCache', UPDATABLE TRUE);
 </metadata>
 </model>

</vdb>

Use Teiid Designer to manually create the physical source model based on your object cache using the
above usage patterns.

See the Infinispan-DSL resource adapter for this translator. It can be configured to lookup the cache container
via JNDI, server list, or hot rod properties.

Chapter 13. Translators

155

Important

CompareCriteriaOrdered has been disabled due to a Red Hat JBoss Data Grid issue with filtering
when GTE/LTE criteria is specified on String type attributes. This criteria is not sent to JBoss Data
Grid for processing, but is processed in Teiid. As a result, a performance issue can arise with these
types of queries, depending on what other criteria has also been specified.

If you wish to enable this capability so that GTE/LTE can be used on other data types, then specify a
translator override for CompareCriteriaOrdered. Here is how you define an override in a dynamic
VDB:

<translator name="infinispan-cache-dsl1" type="infinispan-cache-dsl">
 <property name="supportsCompareCriteriaOrdered" value="true"/>
</translator>

Important

Note that char types are not supported when accessing a JBoss Data Grid Remote Cache and using
Google Protobufs for serialization. To see which data types are supported, see this table:
https://developers.google.com/protocol-buffers/docs/proto#scalar

To work around the current limitation on the Char type, use the String data type or use the marshaller
to handle the conversion.

13.16. JDBC Translator

13.16.1. JDBC Translator

The JDBC translator bridges between SQL semantic and data type difference between JBoss Data
Virtualization and a target RDBMS.

The base JDBC translator is implemented by the
org.teiid.translator.jdbc.JDBCExecutionFactory class.

Note

The resource adapter for a particular JDBC translator is provided by configuring the corresponding
data source in teh JBoss EAP instance. See the Red Hat JBoss Data Virtualization Administration and
Configuration Guide for more configuration information.

13.16.2. JDBC Translator: Execution Properties

The following execution properties are shared by all JDBC translators.

Development Guide Volume 3: Reference Material

156

https://developers.google.com/protocol-buffers/docs/proto#scalar

Table 13.8. Execution Properties

Name Description Default
DatabaseTimeZone The time zone of the database.

Used when fetching date, time, or
timestamp values.

The system default time zone

DatabaseVersion The specific database version.
Used to further tune pushdown
support.

The base supported version or
derived from the
DatabaseMetadata.getProdu
ceVersion string. Automatic
detection requires a Connection.
If there are circumstances where
you are getting an exception from
capabilities being unavailable
(most likely due to an issue
obtaining a Connection), then set
the DatabaseVersion property.
Use the
JDBCExecutionFactory.uses
DatabaseVersion() method to
control whether your translator
requires a connection to
determine capabilities.

TrimStrings Set to true to trim trailing
whitespace from fixed length
character strings. Note that JBoss
Data Virtualization only has a
string, or varchar, type that treats
trailing whitespace as meaningful.

false

UseBindVariables Set to true to indicate that
PreparedStatements will be used
and that literal values in the
source query will be replaced with
bind variables. If false, only LOB
values will trigger the use of
PreparedStatements.

true

UseCommentsInSourceQuery This will embed a leading
comment with session/request id
in source SQL query for
informational purposes

false

CommentFormat MessageFormat string to be used
if UseCommentsInSourceQuery is
enabled. Available properties:

0 - session id string
1 - parent request id string
2 - request part id string
3 - execution count id string
4 - user name string
5 - vdb name string
6 - vdb version integer
7 - is transactional boolean

/*teiid sessionid:{0},
requestid:{1}.{2}*/

MaxPreparedInsertBatchSize The max size of a prepared insert
batch.

2048

Chapter 13. Translators

157

StructRetrieval Struct retrieval mode can be one
of OBJECT - getObject value
returned, COPY - returned as a
SerialStruct, ARRAY - returned as
an Array)

OBJECT

EnableDependentJoins For sources that support
temporary tables (DB2, Derby, H2,
HSQL 2.0+, MySQL 5.0+, Oracle,
PostgreSQL, SQLServer, Sybase)
allow dependent join pushdown

false

Name Description Default

13.16.3. JDBC Translator: Importer Properties

The following properties are shared by all JDBC translators.

Table 13.9. Importer Properties

Name Description Default
catalog See DatabaseMetaData.getTables at

http://download.oracle.com/javase/6/docs/api/java/s
ql/DatabaseMetaData.html for more information.

null

importRowIdAsBinary 'true' will import RowId columns as varbinary values. false
schemaPattern See DatabaseMetaData.getTables at

http://download.oracle.com/javase/6/docs/api/java/s
ql/DatabaseMetaData.html for more information.

null

tableNamePattern See DatabaseMetaData.getTables at
http://download.oracle.com/javase/6/docs/api/java/s
ql/DatabaseMetaData.html for more information.

null

procedureNamePattern See DatabaseMetaData.getProcedures at
http://download.oracle.com/javase/6/docs/api/java/s
ql/DatabaseMetaData.html for more information.

null

tableTypes Comma separated list - without spaces - of imported
table types. See DatabaseMetaData.getTables at
http://download.oracle.com/javase/6/docs/api/java/s
ql/DatabaseMetaData.html for more information.

null

excludeTables A case-insensitive regular expression that when
matched against a fully qualified JBoss Data
Virtualization table name will exclude it from import.
Applied after table names are retrieved. Use a
negative look-ahead (?!<inclusion pattern>).* to act
as an inclusion filter.

null

excludeProcedures A case-insensitive regular expression that when
matched against a fully qualified JBoss Data
Virtualization procedure name will exclude it from
import. Applied after procedure names are
retrieved. Use a negative look-ahead (?!<inclusion
pattern>).* to act as an inclusion filter.

null

autoCreateUniqueConstraints True to create a unique constraint if one is not found
for a foreign keys

true

Development Guide Volume 3: Reference Material

158

http://download.oracle.com/javase/6/docs/api/java/sql/DatabaseMetaData.html
http://download.oracle.com/javase/6/docs/api/java/sql/DatabaseMetaData.html
http://download.oracle.com/javase/6/docs/api/java/sql/DatabaseMetaData.html
http://download.oracle.com/javase/6/docs/api/java/sql/DatabaseMetaData.html
http://download.oracle.com/javase/6/docs/api/java/sql/DatabaseMetaData.html

useFullSchemaName When false, directs the importer to drop the source
catalog/schema from the JBoss Data Virtualization
object name, so that the JBoss Data Virtualization
fully qualified name will be in the form of <model
name>.<table name>. Note that when this is false, it
may lead to objects with duplicate names when
importing from multiple schemas, which results in an
exception. This option does not affect the name in
source property.

true

importKeys Set to true to import primary and foreign keys. true
importIndexes Set to true to import index/unique key/cardinality

information.
false

importApproximateIndexes Set to true to import approximate index information.
See DatabaseMetaData.getIndexInfo at
http://download.oracle.com/javase/6/docs/api/java/s
ql/DatabaseMetaData.html for more information.

true

importProcedures Set to true to import procedures and procedure
columns. Note that it is not always possible to import
procedure result set columns due to database
limitations. It is also not currently possible to import
overloaded procedures.

true

widenUnsignedTypes Set to true to convert unsigned types to the next
widest type. For example SQL Server reports tinyint
as an unsigned type. With this option enabled,
tinyint would be imported as a short instead of a
byte.

true

quoteNameInSource Set to false to override the default and direct JBoss
Data Virtualization to create source queries using
unquoted identifiers.

true

useProcedureSpecificName Set to true to allow the import of overloaded
procedures (which will normally result in a duplicate
procedure error) by using the unique procedure-
specific name as the JBoss Data Virtualization
name. This option will only work with JDBC 4.0
compatible drivers that report specific names.

false

useCatalogName Set to true to use any non-null/non-empty catalog
name as part of the name in source, e.g.
"catalog"."table"."column", and in the JBoss Data
Virtualization runtime name if useFullSchemaName
is true. Set to false to not use the catalog name in
either the name in source or the JBoss Data
Virtualization runtime name. Must be set to false for
sources that do not fully support a catalog concept,
but return a non-null catalog name in their metadata,
such as HSQL.

true

Name Description Default

Chapter 13. Translators

159

http://download.oracle.com/javase/6/docs/api/java/sql/DatabaseMetaData.html

useQualifiedName True will use name qualification for both the Teiid
name and name in source as dictated by the
useCatalogName and useFullSchemaName
properties. Set to false to disable all qualification for
both the Teiid name and the name in source, which
effectively ignores the useCatalogName and
useFullSchemaName properties. Note: when false
this may lead to objects with duplicate names when
importing from multiple schemas, which results in an
exception.

true

useAnyIndexCardinality True will use the maximum cardinality returned from
DatabaseMetaData.getIndexInfo. importKeys or
importIndexes needs to be enabled for this setting to
have an effect. This allows for better stats gathering
from sources that do not support returning a
statistical index.

false

importStatistics This uses database-dependent logic to determine
the cardinality if none is determined. (This is
currently only supported on Oracle and MySQL.)

false

Name Description Default

Warning

The default import settings will traverse all available metadata. This import process is time consuming
and full metadata import is not needed in most situations. In most situations you will limit import by at
least schemaPattern and tableTypes.

Example importer settings to only import tables and views from my-schema.

 <model ...

 <property name="importer.tableTypes" value="TABLE,VIEW"/>
 <property name="importer.schemaPattern" value="my-schema"/>
 ...
</model>

13.16.4. JDBC Translator: Translator Types

JBoss Data Virtualization has a range of specific translators that target the most popular open source and
proprietary databases.

Note

To decrease the amount of time it takes to import data from a source, you can set these parameter
values:

schemaPattern = {targetSchema}
tableTypes = TABLE

Development Guide Volume 3: Reference Material

160

jdbc-ansi

This translator provides support for most SQL constructs supported by JBoss Data Virtualization,
except for row limit/offset and EXCEPT/INTERSECT. It translates source SQL into ANSI compliant
syntax.

This translator can be used when another more specific type is not available.

jdbc-simple

This translator is the same as jdbc-ansi, except that it disables support for function, UNION and
aggregate pushdown.

access

This translator is for use with Microsoft Access 2003 or later.

actian-vector

This translator is for use Actian Vector in Hadoop.

Note

Download the JDBC driver from http://esd.actian.com/platform. Note that the port number in
the connection URL is "AH7" which maps to 16967.

db2

This translator is for use with DB2 8 or later (and DB2 for i 5.4 or later).

Execution properties specific to DB2:

DB2ForI indicates that the DB2 instance is DB2 for i. The default is "false".

hbase

The Apache HBase Translator exposes querying functionality to HBase Tables. Apache Phoenix is
an SQL interface for HBase. With the Phoenix Data Sources, the translator translates Teiid push-
down commands into Phoenix SQL.

The HBase Translator does not support Join commands, because Phoenix has more simple
constraints. The only supported is that for the Primary Key, which maps to the HBase Table Row
ID. This translator is developed with Phoenix 4.x for HBase 0.98.1+.

Warning

The translator implements INSERT/UPDATE through the Phoenix UPSERT operation. This
means you can see different behavior than with standard INSERT/UPDATE, such as
repeated inserts will not throw a duplicate key exception, but will instead update the row in
question.

Chapter 13. Translators

161

Warning

Due to Phoenix driver limitations, the importer will not look for unique constraints and does
not import foreign keys by default.

Warning

The Phoenix driver does not have robust handling of time values. If your time values are
normalized to use a date component of 1970-01-01, then the default handling will work
correctly. If not, then the time column should be modeled as timestamp instead.

If you use the translator for Apache HBase, be aware that insert statements can rewrite data. To
illustrate, here is a standard set of SQL queries:

CREATE TABLE TableA (id integer PRIMARY KEY, name varchar(10));
INSERT INTO TableA (id, name) VALUES (1, 'name1');
INSERT INTO TableA (id, name) VALUES (1, 'name2');

Normally, the second INSERT command would fail as the uniqueness of the primary key would be
corrupted. However, with the HBase translator, the command will not fail. Rather, it will rewrite the
data in the table, (so "name1" would become "name2"). This is because the translator converts the
INSERT command into an UPSERT command.

Derby

derby - for use with Derby 10.1 or later.

excel-odbc

Important

This translator is now deprecated as the JDBC-ODBC bridge has been removed from Java
1.8.

This translator is for use with Excel 2003 or later via a JDBC-ODBC bridge.

greenplum

This translator is for use with the Greenplum database.

h2

This translator is for use with h2 version 1.1 or later.

hana

This translator is for use with SAP Hana.

hive

This translator is for use with Hive v.10 and Apache SparkSQL v1.0 and later.

Development Guide Volume 3: Reference Material

162

Spark is configured to use the Hive Metastore and its configured target to store data. Apache Spark
introduces a new computational model alternative to MapReduce. To access data stored in Apache
Spark, use the hive jdbc driver while connecting to a hive-specific JDBC URL.

Hive has limited support for data types as it does support for time-based types, XML or LOBs and
these limitations are reflected in the translator's capabilities. A view table can use these types but
you would need to configure the translator to specify the necessary transformations. In these
situations, the evaluations will be done in the JBoss Data Virtualization engine.

Important

The Hive translator does not use the DatabaseTimeZone property.

Important

The Hive importer does not have concept of catalog or source schema, nor does it import
keys, procedures and indexes.

Another limitation of Hive is that it only supports EQUI joins. If you try to use any other kind of join
on the source tables, you will have inefficient queries. To write criteria based on partitioned
columns, model them on source tables, but do not include them in selection columns.

These importer qualities are specific to the Hive translator:

trimColumnNames: For Hive 0.11.0 and later the DESCRIBE command metadata is returned
with padding. Set to true to strip white space from column names. By default it is set to false.

useDatabaseMetaData: For Hive 0.13.0 and later the normal JDBC DatabaseMetaData
facilities are sufficient to perform an import. Set to true to use the normal import logic with the
option to import index information disabled. Defaults to false. When true, trimColumnNames
has no effect. If it is set to false, the typical JDBC DatabaseMetaData calls are not used so not
all of the common JDBC importer properties are applicable to Hive. You can still use
excludeTables anyway.

Important

When the database name used in the Hive is differs from "default", the metadata
retrieval and execution of queries does not work as expected in Teiid, as Hive JDBC
driver seems to be implicitly connecting (tested with versions lower than 0.12) to
"default" database, thus ignoring the database name mentioned on connection URL.
You can work around this in Red Hat JBoss Data Virtualization in the JBoss EAP
environment by setting the following in data source configuration:

<new-connection-sql>use {database-name}</new-connection-sql>

This is fixed in version 0.13 and later of the Hive Driver.

hsql

This translator is for use with HSQLDB 1.7 or later.

Chapter 13. Translators

163

impala

This translator is for use with Cloudera Impala 1.2.1 or later.

Impala has limited support for data types. It is does not have native support for time/date/xml or
LOBs. These limitations are reflected in the translator capabilities. A Teiid view can use these
types, however the transformation would need to specify the necessary conversions. Note that in
those situations, the evaluations will be done in Teiid engine.

Impala only supports EQUI join, so using any other joins types on its source tables will result in
inefficient queries.

To write criteria based on partitioned columns, model them on the source table, but do not include
them in selection columns.

Important

The Impala importer does not currently use typical JDBC DatabaseMetaData calls, nor
does it have the concept of catalog or source schema, nor does it import keys, procedures,
indexes, etc. Thus not all of the common JDBC importer properties are applicable to Impala.
You may still use excludeTables.

Impala specific importer properties:

useDatabaseMetaData - Set to true to use the normal import logic with the option to import index
information disabled. Defaults to false.

If false the typical JDBC DatabaseMetaData calls are not used so not all of the common JDBC
importer properties are applicable to Impala. (You can still use excludeTables regardless.)

Important

Some versions of Impala require the use of a LIMIT when performing an ORDER BY. If no
default is configured in Impala, an exception can occur when a Teiid query with an ORDER
BY but no LIMIT is issued. You must set an Impala wide default, or configure the
connection pool to use a new connection SQL string to issue a SET
DEFAULT_ORDER_BY_LIMIT statement. See the Cloudera documentationfor more on
limit options, such as controlling what happens when the limit is exceeded.

ingres

This translator is for use with Ingres 2006 or later.

ingres93

This translator is for use with Ingres 9.3 or later.

intersystems-cache

For use with Intersystems Cache Object database (only relational aspect of it)

informix

For use with any Informix version.

Development Guide Volume 3: Reference Material

164

metamatrix

This translator is for use with MetaMatrix 5.5.0 or later.

modeshape

This translator is for use with Modeshape 2.2.1 or later.

The PATH, NAME, LOCALNODENAME, DEPTH, and SCORE functions are accessed as pseudo-
columns, e.g. "nt:base"."jcr:path".

JBoss Data Virtualization user defined functions (prefixed by JCR_) are available for CONTAINS,
ISCHILDNODE, ISDESCENDENT, ISSAMENODE, REFERENCE. See the JCRFunctions.xmi
file.

If a selector name is needed in a JCR function, you can use the pseudo-column "jcr:path". For
example, JCR_ISCHILDNODE(foo.jcr_path, 'x/y') would become ISCHILDNODE(foo, 'x/y') in the
ModeShape query.

An additional pseudo-column "mode:properties" can be imported by setting the ModeShape JDBC
connection property teiidsupport=true. The "mode:properties" column should be used by the
JCR_REFERENCE and other functions that expect a .* selector name. For example,
JCR_REFERENCE(nt_base.jcr_properties) would become REFERENCE("nt:base".*) in the
ModeShape query.

mysql5

This translator is for use with MySQL version 5 or later. It also works with backwards-compatible
MySQL derivatives, including MariaDB.

The MySQL Translator expects the database or session to be using ANSI mode. If the database is
not using ANSI mode, an initialization query must be used on the pool to set ANSI mode:

set SESSION sql_mode = 'ANSI'

If you deal with null timestamp values, then set the connection property
zeroDateTimeBehavior=convertToNull. Otherwise you'll get conversion errors in Teiid that '0000-
00-00 00:00:00' cannot be converted to a timestamp.

netezza

This translator is for use with any Netezza version.

Important

The current Netezza vendor supplied JDBC driver performs poorly with single transactional
updates. As is generally the case, use batched updates when possible.

Netezza-specific execution properties:

SqlExtensionsInstalled- indicates that SQL Extensions including support fo REGEXP_LIKE are
installed. Defaults to false.

oracle

This translator is for use with Oracle 9i or later.

Chapter 13. Translators

165

Sequences may be used with the Oracle translator. A sequence may be modeled as a table with a
name in source of DUAL and columns with the name in source set to this:

 {{<sequence name>.[nextval|currval].}}</code>

Teiid 8.4 and Prior Oracle Sequence DDL

CREATE FOREIGN TABLE seq (nextval integer OPTIONS (NAMEINSOURCE
'seq.nextval'), currval integer options (NAMEINSOURCE 'seq.currval')
) OPTIONS (NAMEINSOURCE 'DUAL')

With Teiid 8.5 it is no longer necessary to rely on a table representation and Oracle specific
handling for sequences. See DDL Metadata for representing currval and nextval as source
functions.

You can also use a sequence as the default value for insert columns by setting the column to
autoincrement and the name in source to this:

<element name>:SEQUENCE=<sequence name>.<sequence value>.

A rownum column can be added to any Oracle physical table to support the rownum pseudo-
column. A rownum column must have a name in source of this:

 <code>rownum</code>.

These rownum columns do not have the same semantics as the Oracle rownum construct so care
must be taken in their usage.

Oracle specific importer properties:

useGeometryType- Use the Teiid Geomety type when importing columns with a source type of
SDO_GEOMETRY. Defaults to false.

useIntegralTypes- Use integral types rather than decimal when the scale is 0. Defaults to false.

Execution properties specific to Oracle:

OracleSuppliedDriver - indicates that the Oracle supplied driver (typically prefixed by ojdbc) is
being used. Defaults to true. Set to false when using DataDirect or other Oracle JDBC drivers.

Oracle translator supports geo spatial functions. The supported functions are:

Relate = sdo_relate

CREATE FOREIGN FUNCTION sdo_relate (arg1 string, arg2 string,
arg3 string) RETURNS string;
CREATE FOREIGN FUNCTION sdo_relate (arg1 Object, arg2 Object,
arg3 string) RETURNS string;
CREATE FOREIGN FUNCTION sdo_relate (arg1 string, arg2 Object,
arg3 string) RETURNS string;
CREATE FOREIGN FUNCTION sdo_relate (arg1 Object, arg2 string,
arg3 string) RETURNS string;

Nearest_Neighbor = dso_nn

Development Guide Volume 3: Reference Material

166

CREATE FOREIGN FUNCTION sdo_nn (arg1 string, arg2 Object,
arg3 string, arg4 integer) RETURNS string;
CREATE FOREIGN FUNCTION sdo_nn (arg1 Object, arg2 Object,
arg3 string, arg4 integer) RETURNS string;
CREATE FOREIGN FUNCTION sdo_nn (arg1 Object, arg2 string,
arg3 string, arg4 integer) RETURNS string;

Within_Distance = sdo_within_distance

CREATE FOREIGN FUNCTION sdo_within_distance (arg1 Object, arg2
Object, arg3 string) RETURNS string;
CREATE FOREIGN FUNCTION sdo_within_distance (arg1 string, arg2
Object, arg3 string) RETURNS string;
CREATE FOREIGN FUNCTION sdo_within_distance (arg1 Object, arg2
string, arg3 string) RETURNS string;

Nearest_Neighbour_Distance = sdo_nn_distance

CREATE FOREIGN FUNCTION sdo_nn_distance (arg integer) RETURNS
integer;

Filter = sdo_filter

CREATE FOREIGN FUNCTION sdo_filter (arg1 Object, arg2 string,
arg3 string) RETURNS string;
CREATE FOREIGN FUNCTION sdo_filter (arg1 Object, arg2 Object,
arg3 string) RETURNS string;
CREATE FOREIGN FUNCTION sdo_filter (arg1 string, arg2 object,
arg3 string) RETURNS string;

osisoft-pi

This translator is for use with OSIsoft PI.

postgresql

This translator is for use with 8.0 or later clients and 7.1 or later server.

PostgreSQL specific execution properties:

PostGisVersion- indicate the PostGIS version in use. Defaults to 0 meaning PostGIS is not
installed. Will be set automatically if the database version is not set. _ProjSupported- boolean
indicating if Proj is support for PostGis. Will be set automatically if the database version is not set.

prestodb

The PrestoDB translator, known by the type name prestodb, exposes querying functionality to
PrestoDB Data Sources. In data integration respect, PrestoDB has very similar capabilities of Teiid,
however it goes beyond in terms of distributed query execution with multiple worker nodes. Teiid's
execution model is limited to single execution node and focuses more on pushing the query down
to sources. Currently Teiid has much more complete query support and many enterprise features.

The PrestoDB translator supports only SELECT statements with a restrictive set of capabilities.
This translator is developed with 0.85 version of PrestoDB and capabilities are designed for this
version. With new versions of PrestoDB Teiid will adjust the capabilities of this translator. Since
PrestoDB exposes a relational model, the usage of this is no different than any RDBMS source like

Chapter 13. Translators

167

Oracle, DB2 etc. For configuring the PrestoDB consult the PrestoDB documentation.

redshift

The Redshift Translator, known by the type name redshift, is for use with the Redshift database.
This translator is an extension of the PostgreSQL Translator and inherits its options.

sqlserver

This translator is for use with SQL Server 2000 or later. A SQL Server JDBC driver version 2.0 or
later (or compatible e.g. JTDS 1.2 or later) must be used. The SQL Server DatabaseVersion
property may be set to 2000, 2005, 2008, or 2012, but otherwise expects a standard version
number, for example, 10.0.

Execution properties specific to SQL Server:

JtdsDriver - indicates that the open source JTDS driver is being used. Defaults to false.

sybase

This translator is for use with Sybase version 12.5 or later. If used in a dynamic vdb and no import
properties are specified (not recommended, see import properties below), then exceptions can be
thrown retrieving system table information. Specify a schemaPattern or use excludeTables to
exclude system tables if this occurs.

If the name in source metadata contains quoted identifiers (such as reserved words or words
containing characters that would not otherwise be allowed) and you are using a jconnect Sybase
driver, you must first configure the connection pool to enable quoted_identifier.

Example 13.2. Driver URL with SQLINITSTRING

jdbc:sybase:Tds:host.at.some.domain:5000/db_name?SQLINITSTRING=set
quoted_identifier on

Execution properties specific to Sybase:

JtdsDriver - indicates that the open source JTDS driver is being used. Defaults to false.

Important

You must set the connection parameter JCONNECT_VERSION to 6 or later when using
the Sybase data source. If you do not do so, you will encounter an exception.

sybaseiq

This translator is for use with Sybase IQ version 15.1 or later.

teiid

This translator is for use with Teiid 6.0 or later.

teradata

This translator is for use with Teradata V2R5.1 or later.

Development Guide Volume 3: Reference Material

168

vertica

This translator is for use with Vertica 6 or later.

13.16.5. JDBC Translator: Usage

Using JBoss Data Virtualization SQL, the source may be queried as if the tables and procedures were local
to the JBoss Data Virtualization system.

13.16.6. JDBC Translator: Native Queries

Both physical tables and procedures may optionally have native queries associated with them. No validation
of the native query is performed; it is used to generate the source SQL.

For a physical table, setting the teiid_rel:native-query extension metadata to the desired query string will
execute the native query as an inline view in the source query. This feature can only be used against sources
that support inline views. The native query is used as is and is not treated as a parameterized string. For
example, on a physical table y with nameInSource="x" and teiid_rel:native-query="select c from g", the
JBoss Data Virtualization source query "SELECT c FROM y" would generate the SQL query "SELECT c
FROM (select c from g) as x". Note that the column names in the native query must match the nameInSource
of the physical table columns for the resulting SQL to be valid.

For physical procedures, you may also set the teiid_rel:native-query extension metadata to a desired query
string with the added ability to positionally reference IN parameters (see Section 13.7, “Parameterizable
Native Queries”).

A parameter reference has the form $integer, for example, $1. Note that one-based indexing is used and that
only IN parameters may be referenced. $integer is reserved, but may be escaped with another $, for
example, $$1.

By default, bind values will be used for parameter values. In some situations you might need to bind values
directly into the resulting SQL.

The teiid_rel:non-prepared extension metadata property may be set to false to turn off parameter binding.
Note that this option must be used with caution as inbound may allow for SQL injection attacks if not properly
validated. The native query does not need to call a stored procedure. Any SQL that returns a result set
positionally matching the result set expected by the physical stored procedure metadata will work. For
example, on a stored procedure x with teiid_rel:native-query="select c from g where c1 = $1 and c2 = '$$1'",
the JBoss Data Virtualization source query "CALL x(?)" would generate the SQL query "select c from g where
c1 = ? and c2 = '$1'". Note that ? in this example will be replaced with the actual value bound to parameter 1.

13.16.7. JDBC Translator: Native Procedure

Warning

This feature is turned off by default because of the security risk this exposes to execute any command
against the source. To enable this feature, override the translator property called
"SupportsNativeQueries" to true. See Section 13.6, “Override Execution Properties”.

JDBC translator also provides a procedure with name native that gives ability to execute any ad hoc native
SQL command that is specific to an underlying source directly against the source without any JBoss Data
Virtualization parsing or resolving. The metadata of this procedure's execution results are not known to JBoss
Data Virtualization, and they are returned as object array. Users can use the ARRAYTABLE construct (
Section 3.6.10, “Nested Tables: ARRAYTABLE”) to produce tabular output for client applications.

Chapter 13. Translators

169

Example 13.3. Select Example

SELECT x.* FROM (call pm1.native('select * from g1')) w,
 ARRAYTABLE(w.tuple COLUMNS "e1" integer , "e2" string) AS x

Example 13.4. Insert Example

SELECT x.* FROM (call pm1.native('insert into g1 (e1,e2) values (?, ?)',
112, 'foo')) w,
 ARRAYTABLE(w.tuple COLUMNS "update_count" integer) AS x

Example 13.5. Update Example

SELECT x.* FROM (call pm1.native('update g1 set e2=? where e1 = ?','blah',
112)) w,
 ARRAYTABLE(w.tuple COLUMNS "update_count" integer) AS x

Example 13.6. Delete Example

SELECT x.* FROM (call pm1.native('delete from g1 where e1 = ?', 112)) w,
 ARRAYTABLE(w.tuple COLUMNS "update_count" integer) AS x

Important

By default, the name of the procedure that executes the queries directly is called native , however
users can override the NativeQueryProcedureName execution property in the vdb.xml file to change
it to any other procedure name. See Section 13.6, “Override Execution Properties”.

13.17. JPA Translator

The JPA translator, known by the type name jpa2, can reverse a JPA object model into a relational model,
which can then be integrated with other relational or non-relational sources.

The JPA Translator currently has no import or execution properties.

JPA source procedures may be created using the teiid_rel:native-query extension. The procedure invokes the
native-query similar to an native procedure call with the benefits that the query is predetermined and that
result column types are known, rather than requiring the use of ARRAYTABLE or similar functionality.

Development Guide Volume 3: Reference Material

170

Warning

This feature is turned off by default because of the security risk this exposes to execute any command
against the source. To enable this feature, set the execution property called
SupportsDirectQueryProcedure to true.

Note

By default the name of the procedure that executes the queries directly is native. Override the
execution property DirectQueryProcedureName to change it to another name.

The JPA translator provides a procedure to execute any ad-hoc JPA-QL query directly against the source
without Teiid parsing or resolving. Since the metadata of this procedure's results are not known to Teiid, they
are returned as object array. User can use ARRAYTABLE can be used construct tabular output for
consumption by client applications. Teiid exposes this procedure with a query structure.

In this select query, the "search" keyword is followed by a query statement:

SELECT x.* FROM (call jpa_source.native('search;FROM Account')) w,
 ARRAYTABLE(w.tuple COLUMNS "id" string , "type" string, "name" String) AS x

In this delete query, the the "delete" keyword is followed by JPA-QL for a delete operation.

SELECT x.* FROM (call jpa_source.native('delete;<jpa-ql>')) w,
 ARRAYTABLE(w.tuple COLUMNS "updatecount" integer) AS x

In this sample, the "update" keyword must be followed by JPA-QL for the update statement.

SELECT x.* FROM
 (call jpa_source.native('update;<jpa-ql>')) w,
 ARRAYTABLE(w.tuple COLUMNS "update_count" integer) AS x

In this create query, the create operation sends "create" word as a marker and send the entity as the first
parameter:

SELECT x.* FROM
 (call jpa_source.native('create;', <entity>)) w,
 ARRAYTABLE(w.tuple COLUMNS "update_count" integer) AS x

13.18. LDAP Translator

13.18.1. LDAP Translator

The LDAP translator exposes an LDAP directory tree relationally with pushdown support for filtering via
criteria. This is typically coupled with the LDAP resource adapter.

The LDAP translator is implemented by the org.teiid.translator.ldap.LDAPExecutionFactory
class and known by the translator type name ldap.

Chapter 13. Translators

171

Note

The resource adapter for this translator is provided by configuring the ldap data source in the JBoss
EAP instance. See the Red Hat JBoss Data Virtualization Administration and Configuration Guide for
more configuration information.

13.18.2. LDAP Translator: Execution Properties

Table 13.10. Execution Properties

Name Description Default
SearchDefaultBaseDN Default Base DN for LDAP

Searches
null

SearchDefaultScope Default Scope for LDAP
Searches. Can be one of
SUBTREE_SCOPE,
OBJECT_SCOPE,
ONELEVEL_SCOPE.

ONELEVEL_SCOPE

RestrictToObjectClass Restrict Searches to objectClass
named in the Name field for a
table

false

UsePagination Use a PagedResultsControl to
page through large results. This is
not supported by all directory
servers.

false

ExceptionOnSizeLimitExceeded Set to true to throw an exception
when a
SizeLimitExceededException is
received and a LIMIT is not
properly enforced.

false

Note

There are no import settings for the LDAP translator; it also does not provide metadata.

If one of the methods below is not used and the attribute is mapped to a non-array type, then any value may
be returned on a read operation. Also insert/update/delete support will not be multi-value aware.

String columns with a default value of "multivalued-concat" will concatenate all attribute values together in
alphabetical order using a ? delimiter. If a multivalued attribute does not have a default value of "multivalued-
concat", then any value may be returned.

Multiple attribute values may also be supported as an array type. The array type mapping also allows for
insert/update operations.

This example shows a DDL with objectClass and uniqueMember as arrays:

create foreign table ldap_groups (objectClass string[], DN string, name
string options (nameinsource 'cn'), uniqueMember string[]) options
(nameinsource 'ou=groups,dc=teiid,dc=org', updatable true)

Development Guide Volume 3: Reference Material

172

The array values can be retrieved with a SELECT. Here is an example insert with array values:

insert into ldap_groups (objectClass, DN, name, uniqueMember) values (('top',
'groupOfUniqueNames'), 'cn=a,ou=groups,dc=teiid,dc=org', 'a', ('cn=Sam
Smith,ou=people,dc=teiid,dc=org',))

13.18.3. LDAP Translator: Metadata Directives

String columns with a default value of "multivalued-concat" will concatenate all attribute values together in
alphabetical order using a ? delimiter. If a multivalued attribute does not have a default value of "multivalued-
concat", then any value may be returned.

13.18.4. LDAP Translator: Native Queries

LDAP procedures may optionally have native queries associated with them (see Section 13.7,
“Parameterizable Native Queries”). The operation prefix (for example, select;, insert;, update;, delete; - see
the native procedure logic below) must be present in the native query, but it will not be issued as part of the
query to the source.

The following is an example DDL for an LDAP native procedure:

CREATE FOREIGN PROCEDURE proc (arg1 integer, arg2 string) OPTIONS
("teiid_rel:native-query" 'search;context-name=corporate;filter=(&
(objectCategory=person)(objectClass=user)(!cn=$2));count-
limit=5;timeout=$1;search-scope=ONELEVEL_SCOPE;attributes=uid,cn') returns
(col1 string, col2 string);

Note

Parameter values have reserved characters escaped, but are otherwise directly substituted into the
query.

13.18.5. LDAP Translator: Native Procedure

Warning

This feature is turned off by default because of the security risk this exposes to execute any command
against the source. To enable this feature, override the translator property called
"SupportsNativeQueries" to true. See Section 13.6, “Override Execution Properties”. above.

LDAP translator provides a procedure with name native that gives ability to execute any ad hoc native LDAP
queries directly against the source without any JBoss Data Virtualization parsing or resolving. The metadata
of this procedure's execution results are not known to JBoss Data Virtualization, and they are returned as
object array. Users can use the ARRAYTABLE construct (Section 3.6.10, “Nested Tables: ARRAYTABLE”)
to build tabular output for consumption by client applications. Since there is no known direct query language
for LDAP, JBoss Data Virtualization exposes this procedure with a simple query structure as below.

13.18.6. LDAP Translator Example: Search

Chapter 13. Translators

173

Example 13.7. Search Example

SELECT x.* FROM (call pm1.native('search;context-name=corporate;filter=
(objectClass=*);count-limit=5;timeout=6;search-
scope=ONELEVEL_SCOPE;attributes=uid,cn')) w,
 ARRAYTABLE(w.tuple COLUMNS "uid" string , "cn" string) AS x

The "search" keyword is followed by the below properties. Each property must be delimited by semicolon (;)
If a property contains a semicolon (;), it must be escaped by another semicolon. See also Section 13.7,
“Parameterizable Native Queries” and the example in Section 13.18.4, “LDAP Translator: Native Queries”.

Name Description Required
context-name LDAP Context name Yes
filter query to filter the records in the

context
No

count-limit limit the number of results. same
as using LIMIT

No

timeout Time out the query if not finished
in given milliseconds

No

search-scope LDAP search scope, one of
SUBTREE_SCOPE,
OBJECT_SCOPE,
ONELEVEL_SCOPE

No

attributes attributes to retrieve Yes

13.18.7. LDAP Translator Example: Delete

Example 13.8. Delete Example

SELECT x.* FROM (call pm1.native('delete;uid=doe,ou=people,o=teiid.org'))
w,
 ARRAYTABLE(w.tuple COLUMNS "updatecount" integer) AS x

In the above code, the "delete" keyword is followed by the "DN" string. All the string contents after the
"delete;" are used as the DN.

13.18.8. LDAP Translator Example: Create and Update

Example 13.9. Create Example

SELECT x.* FROM
 (call
pm1.native('create;uid=doe,ou=people,o=teiid.org;attributes=one,two,three'
, 'one', 2, 3.0)) w,
 ARRAYTABLE(w.tuple COLUMNS "update_count" integer) AS x

Development Guide Volume 3: Reference Material

174

In the above code, the "create" keyword is followed by the "DN" string. All the string contents after the
"create;" is used as the DN. It also takes one property called "attributes" which is comma separated list of
attributes. The values for each attribute is specified as separate argument to the "native" procedure.

Update is similar to create:

Example 13.10. Update Example

SELECT x.* FROM
 (call
pm1.native('update;uid=doe,ou=people,o=teiid.org;attributes=one,two,three'
, 'one', 2, 3.0)) w,
 ARRAYTABLE(w.tuple COLUMNS "update_count" integer) AS x

Important

By default, the name of the procedure that executes the queries directly is called native, however this
can be changed by overriding an execution property in the vdb.xml file. See Section 13.6, “Override
Execution Properties”.

13.18.9. LDAP Connector Capabilities Support

LDAP does not provide the same set of functionality as a relational database. The LDAP Connector supports
many standard SQL constructs, and performs the job of translating those constructs into an equivalent LDAP
search statement. For example, the SQL statement:

SELECT firstname, lastname, guid
FROM public_views.people
WHERE
(lastname='Jones' and firstname IN ('Michael', 'John'))
OR
guid > 600000

Uses a number of SQL constructs, including:

SELECT clause support

select individual element support (firstname, lastname, guid)

FROM support

WHERE clause criteria support

nested criteria support

AND, OR support

Compare criteria (Greater-than) support

IN support

The LDAP Connector executes LDAP searches by pushing down the equivalent LDAP search filter

Chapter 13. Translators

175

whenever possible, based on the supported capabilities. JBoss Data Virtualization automatically provides
additional database functionality when the LDAP Connector does not explicitly provide support for a given
SQL construct. In these cases, the SQL construct cannot be pushed down to the data source, so it will be
evaluated in JBoss Data Virtualization, in order to ensure that the operation is performed.

In cases where certain SQL capabilities cannot be pushed down to LDAP, JBoss Data Virtualization pushes
down the capabilities that are supported, and fetches a set of data from LDAP. JBoss Data Virtualization then
evaluates the additional capabilities, creating a subset of the original data set. Finally, JBoss Data
Virtualization will pass the result to the client. It is useful to be aware of unsupported capabilities, in order to
avoid fetching large data sets from LDAP when possible.

13.18.10. LDAP Connector Capabilities Support List

The following capabilities are supported in the LDAP Connector, and will be evaluated by LDAP:

SELECT queries

SELECT element pushdown (for example, individual attribute selection)

AND criteria

Compare criteria (e.g. <, <=, >, >=, =, !=)

IN criteria

LIKE criteria.

OR criteria

INSERT, UPDATE, DELETE statements (must meet Modeling requirements)

Due to the nature of the LDAP source, the following capability is not supported:

SELECT queries

The following capabilities are not supported in the LDAP Connector, and will be evaluated by the JBoss Data
Virtualization after data is fetched by the connector:

Functions

Aggregates

BETWEEN Criteria

Case Expressions

Aliased Groups

Correlated Subqueries

EXISTS Criteria

Joins

Inline views

IS NULL criteria

NOT criteria

Development Guide Volume 3: Reference Material

176

ORDER BY

Quantified compare criteria

Row Offset

Searched Case Expressions

Select Distinct

Select Literals

UNION

XA Transactions

The ldap-as-a-datasource quickstart demonstrates use of the ldap Translator to access data in the
OpenLDAP Server. The name of the translator to use in vdb.xml is "translator-ldap"

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<vdb name="ldapVDB" version="1">
<model name="HRModel">
<source name="local" translator-name="translator-ldap" connection-jndi-
name="java:/ldapDS"/>
</model>
</vdb>

The translator does not provide a connection to the OpenLDAP. For that purpose, Teiid has a JCA adapter
that provides a connection to OpenLDAP using the Java Naming API. To define such connector, use the
following XML fragment in standalone-teiid.xml. See a example in "JBOSS-
HOME/docs/teiid/datasources/ldap"

<resource-adapter id="ldapQS">
<module slot="main" id="org.jboss.teiid.resource-adapter.ldap"/>
<connection-definitions>
<connection-definition class-
name="org.teiid.resource.adapter.ldap.LDAPManagedConnectionFactory" jndi-
name="java:/ldapDS" enabled="true" use-java-context="true" pool-
name="ldapDS">
<config-property name="LdapAdminUserPassword">
redhat
</config-property>
<config-property name="LdapAdminUserDN">
cn=Manager,dc=example,dc=com
</config-property>
<config-property name="LdapUrl">
ldap://localhost:389
</config-property>
</connection-definition>
</connection-definitions>
</resource-adapter>

The code above defines the translator and connector. For more ways to create the connector see LDAP Data
Sources, LDAP translator can derive the metadata based on existing Users/Groups in LDAP Server, user
need to define the metadata. For example, you can define a schema using DDL:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

Chapter 13. Translators

177

<vdb name="ldapVDB" version="1">
<model name="HRModel">
<metadata type="DDL"><![CDATA[
CREATE FOREIGN TABLE HR_Group (
DN string options (nameinsource 'dn'),
SN string options (nameinsource 'sn'),
UID string options (nameinsource 'uid'),
MAIL string options (nameinsource 'mail'),
NAME string options (nameinsource 'cn')
) OPTIONS(nameinsource 'ou=HR,dc=example,dc=com', updatable true);
</metadata>
</model>
</vdb>

When the SELECT operation below eis xecuted against a table using Teiid, it will retrieve the Users/Groups
from the LDAP Server:

SELECT * FROM HR_Group

13.18.11. LDAP Attribute Datatype Support

LDAP providers currently return attribute value types of java.lang.String and byte[], and do not
support the ability to return any other attribute value type. The LDAP Connector currently supports attribute
value types of java.lang.String only. Therefore, all attributes are modeled using the String datatype in
Teiid Designer.

Conversion functions that are available in JBoss Data Virtualization allow you to use models that convert a
String value from LDAP into a different data type. Some conversions may be applied implicitly, and do not
require the use of any conversion functions. Other conversions must be applied explicitly, via the use of
CONVERT functions.

Since the CONVERT functions are not supported by the underlying LDAP system, they will be evaluated in
JBoss Data Virtualization. Therefore, if any criteria is evaluated against a converted datatype, that evaluation
cannot be pushed to the data source, since the native type is String.

Note

When converting from String to other types, be aware that criteria against that new data type will not
be pushed down to the LDAP data source. This may decrease performance for certain queries.

As an alternative, the data type can remain a string and the client application can make the conversion, or the
client application can circumvent any LDAP supports <= and >=, but has no equivalent for < or >. In order to
support < or > pushdown to the source, the LDAP Connector will translate < to <=, and it will translate > to >=.

When using the LDAP Connector, be aware that strictly-less-than and strictly-greater-than comparisons will
behave differently than expected. It is advisable to use <= and >= for queries against an LDAP based data
source, since this has a direct mapping to comparison operators in LDAP.

13.18.12. LDAP: Testing Your Connector

Development Guide Volume 3: Reference Material

178

You must define LDAP Connector properties accurately or the JBoss Data Virtualization server will return
unexpected results, or none at all. As you deploy the connector in Console, improper configuration can lead
to problems when you attempt to start your connector. You can test your LDAP Connector in Teiid Designer
prior to Console deployment by submitting queries at modeling time for verification.

13.18.13. LDAP: Console Deployment Issues

The Console shows an Exception That Says Error Synchronizing the Server

If you receive an exception when you synchronize the server and your LDAP Connector is the only service
that does not start, it means that there was a problem starting the connector. Verify whether you have
correctly typed in your connector properties to resolve this issue.

13.19. Loopback Translator

The Loopback translator, known by the type name loopback, provides a quick testing solution. It supports all
SQL constructs and returns default results, with some configurable behaviour.

Table 13.11. Registry Properties

Name Description Defa
ult

ThrowError True to always throw an error false

RowCount Rows returned for non-update
queries.

1

WaitTime True to always throw an error false

PollIntervalInMilli if positive results will be
"asynchronously" returned - that
is a DataNotAvailableException
will be thrown initially and the
engine will wait the poll interval
before polling for the results.

-1

DelegateName Set to the name of the translator
which is to be mimicked.

-

You can also use the Loopback translator to mimic how a real source query would be formed for a given
translator (although loopback will still return dummy data that may not be useful for your situation). To enable
this behavior, set the DelegateName property to the name of the translator you wish to mimic. For example to
disable all capabilities, set the DelegateName property to "jdbc-simple".

A source connection is not required for this translator.

13.20. Microsoft Excel Translator

The Microsoft Excel Translator, known by the type name excel, exposes querying functionality to Excel
documents using File Data Sources. Microsoft Excel is a popular spreadsheet software that is used by all the
organizations across the globe for simple reporting purposes. This translator provides an easy way read a
Excel spreadsheet and provide contents of the spreadsheet in the tabular form that can be integrated with
other sources in Teiid.

Chapter 13. Translators

179

Note

Note that this translator works on all platforms, including Windows and Linux. This translator uses
Apache POI libraries to access the Excel documents which are platform independent.

This table describes how Excel translator interprets the data in Excel document into relational terms:

Table 13.12. Translation

Excel Term Relational Term
Workbook schema
Sheet Table
Row Row of data
Cell Column Definition or Data of a column

Excel translator supports "source metadata" feature, where given Excel workbook, it can introspect and build
the schema based on the Sheets defined inside it. There are options available to detect header columns and
data columns in a work sheet to define the correct metadata of a table.

Here is an example of Dynamic VDB, that shows you how to expose an Excel spreadsheet:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<vdb name="excelvdb" version="1">
 <model name="excel">
 <property name="importer.headerRowNumber" value="1"/>
 <property name="importer.ExcelFileName" value="names.xls"/>
 <source name="connector" translator-name="excel" connection-jndi-
name="java:/fileDS"/>
 </model>
</vdb>

"connection-jndi-name" in the code sample above represents the connection to the Excel document. The
Excel translator does NOT provide a connection to the Excel Document. For that purpose, Teiid uses File
JCA adapter that provides a connection to Excel. To define such connector, see File Data Sources or see an
example in jboss-as/docs/teiid/datasources/file. Once you configure both of the above, you can
deploy them to Teiid Server and access the Excel Document using either the JDB, ODBC or OData protocol.

If you are using Designer Tooling, to create Excel based VDB, use a Teiid Designer Model project. Use
"Teiid Connection - Source Model" importer, create File Data Source using data source creation wizard and
use excel as translator in the importer. Based on the Excel document relevant relational tables will be
created. Create a VDB and deploy into Teiid Server and and access the Excel Document using
JDBC/ODBC/OData protocol.

Note

If you have headers in the Excel document, you can guide the import process to select the cell
headers as the column names in the table creation process. See "Import Properties" section below on
defining the "import" properties.

Import properties guide the schema generation part during the deployment of the VDB. This can be used in
Dynamic VDBs or while using "Teiid Connection >> Source Model" in Teiid Designer.

Development Guide Volume 3: Reference Material

180

Table 13.13. Import Properties

Property Description Default
importer.excelFileName Defines the name of

the Excel Document
required

importer.headerRowNumber optional, default is
first data row of sheet

required

importer.dataRowNumber optional, default is
first data row of sheet

required

Note

Red Hat recommend that you define all the above importer properties, so that information inside the
Excel document is correctly interpreted.

Currently there are no Translator Extension properties defined for this translator.

Metadata Extension Properties are the properties that are defined on the schema artifacts like Table,
Column, Procedure to describe how the translator interacts with source systems. All the properties are
defined with namespace "{http://www.teiid.org/translator/excel/2014\}", which also has a recognized alias
"teiid_excel".

Table 13.14. Metadata Extension Properties

Property Schema Item Description Mandatory?
FILE Table Defines Excel Document

name or name pattern
yes

FIRST_DATA_ROW_NUMB
ER

Table Defines the row number
where records start

Optional

CELL_NUMBER Column of
Table

Defines cell number to use
for reading data of particular
column

Yes

Here is an example table that is defined using the Extension Metadata Properties:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<vdb name="excelvdb" version="1">
 <model name="excel">
 <source name="connector" translator-name="excel" connection-jndi-
name="java:/fileDS"/>
 <metadata type="DDL"><![CDATA[
 CREATE FOREIGN TABLE Person (
 ROW_ID integer OPTIONS (SEARCHABLE 'All_Except_Like',
"teiid_excel:CELL_NUMBER" 'ROW_ID'),
 FirstName string OPTIONS (SEARCHABLE 'Unsearchable',
"teiid_excel:CELL_NUMBER" '1'),
 LastName string OPTIONS (SEARCHABLE 'Unsearchable',
"teiid_excel:CELL_NUMBER" '2'),
 Age integer OPTIONS (SEARCHABLE 'Unsearchable',
"teiid_excel:CELL_NUMBER" '3'),
 CONSTRAINT PK0 PRIMARY KEY(ROW_ID)
) OPTIONS ("NAMEINSOURCE" 'Sheet1',"teiid_excel:FILE"

Chapter 13. Translators

181

'names.xlsx', "teiid_excel:FIRST_DATA_ROW_NUMBER" '2')
]> </metadata>
 </model>
</vdb>

Note

"Extended capabilities using ROW_ID column" If you define column, that has extension metadata
property "CELL_NUMBER" with value "ROW_ID", then that column value contains the row information
from Excel document. You can mark this column as Primary Key. You can use this column in
SELECT statements with a restrictive set of capabilities including: comparison predicates, IN
predicates and LIMIT. All other columns can not be used as predicates in a query.

Note

The user does not have to depend upon "source metadata" import, or Designer tool import to create
the schema represented by Excel document, they can manually create a source table and add the
appropriate extension properties to make a fully functional model. If you introspect the schema model
created by the import, it would look like the code above.

There is no Teiid-specific Excel Resource Adapter. Use the File JCA adapter with this translator.

The Excel translator does not yet support updates.

13.21. MongoDB Translator

13.21.1. MongoDB

MongoDB is a document based "schema-less" database with it own query language. It does not map
perfectly with relational concepts or the SQL query language. More and more systems are using this type of
NoSQL store for scalability and performance. For example, applications like storing audit logs or managing
web site data fits well with MongoDB, and does not require using a structural database like Oracle, Postgres
ect. MongoDB uses JSON documents as its primary storage unit, and it can have additional embedded
documents inside the parent document. By using embedded documents it co-locates the related information
to achieve de-normalization that typically requires either duplicate data or joins to achieve in a relational
database.

For MongoDB to work with JBoss Data Virtualization, the challenge for the MongoDB translator is to design a
MongoDB store that can achieve the balance between relational and document based storage. In our opinion
the advantages of "schema-less" design are great at development time. "Schema-less" can also be a problem
with migration of application versions and the ability to query and make use of returned information
effectively.

Since it is hard and may be impossible in certain situations to derive a schema based on existing the
MongoDB collection(s), JBoss Data Virtualization approaches the problem in reverse compared to other
translators. When working with MongoDB, JBoss Data Virtualization requires the user to define the MongoDB
schema upfront using JBoss Data Virtualization metadata. Since JBoss Data Virtualization only allows
relational schema as its metadata, the user needs to define their MongoDB schema in relational terms using
tables, procedures, and functions. For the purposes of MongoDB, the JBoss Data Virtualization metadata has
been extended to support extension properties that can be defined on the table to convert it into a MongoDB
based document. These extension properties let users define how a MongoDB document is structured and

Development Guide Volume 3: Reference Material

182

stored. Based on the relationships (primary-key, foreign-key) defined on a table and the cardinality (ONE-to-
ONE, ONE-to-MANY, MANY-to-ONE), relations between tables are mapped such that related information
can be embedded along with the parent document for co-location (see the de-normalization comment above).
Thus a relational schema based design, but document based storage in MongoDB.

13.21.2. MongoDB Translator

The MongoDB translator, known by the type name mongodb, provides a relational view of data that resides
in a MongoDB database. This translator is capable of converting JBoss Data Virtualization SQL queries into
MongoDB based queries. It supports a full range of SELECT, INSERT, UPDATE and DELETE calls.

The document structure in MongoDB can be more complex than what JBoss Data Virtualization can currently
define. This translator is currently designed for:

Users that are using relational databases and would like to move/migrate their data to MongoDB to take
advantage of scaling and performance, without modifying end user applications that are currently running.

Users that are starting out with MongoDB and do not have experience with MongoDB, but are seasoned
SQL developers. This provides a low barrier of entry compared to using MongoDB directly as an
application developer.

Integrating other enterprise data sources with MongoDB based data.

Note

The MongoDB translator does not currently support native queries.

Note

The resource adapter for this translator is provided by configuring the "mongodb" data source in the
JBoss EAP instance. See the Red Hat JBoss Data Virtualization Administration Guide for more
configuration information. An example configuration file is found at
EAP_HOME/docs/teiid/datasources/mongodb.

13.21.3. MongoDB Translator: Example DDL

The name of the translator to use in vdb.xml is "mongodb":

<vdb name="nothwind" version="1">
 <model name="northwind">
 <source name="local" translator-name="mongodb" connection-jndi-
name="java:/mongoDS"/>
 </model>
<vdb>

The translator does not provide a connection to the MongoDB. For that purpose, Teiid has a JCA adapter that
provides a connection to MongoDB using the MongoDB Java Driver. To define such connector, use the
following XML fragment in standalone-teiid.xml.

<resource-adapters>
 <resource-adapter id="mongodb">

Chapter 13. Translators

183

 <module slot="main" id="org.jboss.teiid.resource-adapter.mongodb"/>
 <transaction-support>NoTransaction</transaction-support>
 <connection-definitions>
 <connection-definition class-
name="org.teiid.resource.adapter.mongodb.MongoDBManagedConnectionFactory"
 jndi-name="java:/mongoDS"
 enabled="true"
 use-java-context="true"
 pool-name="teiid-mongodb-ds">

 <!-- MongoDB server list (host:port[;host:port...]) -->
 <config-property
name="RemoteServerList">localhost:27017</config-property>
 <!-- Database Name in the MongoDB -->
 <config-property name="Database">test</config-property>
 <!--
 Uncomment these properties to supply user name and
password
 <config-property name="Username">user</config-property>
 <config-property name="Password">user</config-property>
 -->
 </connection-definition>
 </connection-definitions>
 </resource-adapter>
</resource-adapters>

MongoDB translator can derive the metadata based on existing document collections in some scenarios,
however when working with complex documents the interpretation of metadata may be accurate, in those
situations the user MUST define the metadata. For example, you can define a schema using DDL:

<vdb name="nothwind" version="1">
 <model name="northwind">
 <source name="local" translator-name="mongodb" connection-jndi-
name="java:/mongoDS"/>
 <metadata type="DDL"><![CDATA[
 CREATE FOREIGN TABLE Customer (
 customer_id integer,
 FirstName varchar(25),
 LastName varchar(25)
) OPTIONS(UPDATABLE 'TRUE');
]> </metadata>
 </model>
<vdb>

When this INSERT operation is executed against table using Teiid, MongoDB translator will create a
document in the MongoDB.

INSERT INTO Customer(customer_id, FirstName, LastName) VALUES (1, 'John',
'Doe');

{
 _id: ObjectID("509a8fb2f3f4948bd2f983a0"),
 customer_id: 1,
 FirstName: "John",

Development Guide Volume 3: Reference Material

184

 LastName: "Doe"
}

If a PRIMARY KEY is defined on the table, then that column name is automatically used as "_id" field in the
MongoDB collection, then document structure is stored in the MongoDB.

CREATE FOREIGN TABLE Customer (
 customer_id integer PRIMARY KEY,
 FirstName varchar(25),
 LastName varchar(25)
) OPTIONS(UPDATABLE 'TRUE');

{
 _id: 1,
 FirstName: "John",
 LastName: "Doe"
}

If you defined the composite PRIMARY KEY on Customer table, the document structure will look like this:

CREATE FOREIGN TABLE Customer (
 customer_id integer,
 FirstName varchar(25),
 LastName varchar(25),
 PRIMARY KEY (FirstName, LastName)
) OPTIONS(UPDATABLE 'TRUE');

{
 _id: {
 FirstName: "John",
 LastName: "Doe"
 },
 customer_id: 1,
}

MongoDB translator supports automatic mapping of Teiid data types into MongoDB data types, including the
support for Blobs, Clobs and XML. The LOB support is based on GridFS in MongoDB. Arrays are in this
form:

{
 _id: 1,
 FirstName: "John",
 LastName: "Doe"
 Score: [89, "ninety", 91.0]
}

User can get individual items in the array using function array_get, or can transform the array into tabular
structure using ARRATTABLE.

Chapter 13. Translators

185

Note

Note that even though embedded documents can also be in arrays, the handling of embedded
documents is different from array with scalar values.

Note

Regular Expressions, MongoDB::Code, MongoDB::MinKey, MongoDB::MaxKey and MongoDB::OID
are not supported.

13.21.4. MongoDB Translator: Metadata Extensions

Using the above DDL or any other metadata facility, a user can map a table in a relational store into a
document in MongoDB, however to make effective use of MongoDB, you need to be able to build complex
documents, that can co-locate related information, so that data can queried in a single MongoDB query.
Otherwise, since MongoDB does not support join relationships like relational database, you need to issue
multiple queries to retrieve and join data manually. The power of MongoDB comes from its "embedded"
documents and its support of complex data types like arrays and use of the aggregation framework to be able
to query them. This translator provides way to achieve that goals.

When you do not define the complex embedded documents in MongoDB, Teiid can step in for join
processing and provide that functionality, however if you want to make use of the power of MongoDB itself in
querying the data and avoid bringing the unnecessary data and improve performance, you need to look into
building these complex documents.

MongoDB translator defines two additional metadata properties along with other Teiid metadata properties to
aid in building the complex "embedded" documents. You can use the following metadata properties in your
DDL.

teiid_mongo:EMBEDDABLE - Means that data defined in this table is allowed to be included as an
"embeddable" document in any parent document. The parent document is referenced by the foreign key
relationships. In this scenario, Teiid maintains more than one copy of the data in MongoDB store, one in
its own collection and also a copy in each of the parent tables that have relationship to this table. You can
even nest embeddable table inside another embeddable table with some limitations. Use this property on
table, where table can exist, encompass all its relations on its own. For example, a "Category" table that
defines a "Product"'s category is independent of Product, which can be embeddable in "Products" table.

teiid_mongo:MERGE - Means that data of this table is merged with the defined parent table. There is only
a single copy of the data that is embedded in the parent document. Parent document is defined using the
foreign key relationships.

Important

A given table can contain either the "teiid_mongo:EMBEDDABLE" property or the
"teiid_mongo:MERGE" property defining the type of nesting in MongoDB. A table is not allowed to
have both properties.

Development Guide Volume 3: Reference Material

186

EMBEDDABLE - Means that data defined in this table is allowed to be included as an "embeddable"
document in a parent document. The parent document is defined by the foreign key relationships. In this
situation, JBoss Data Services maintains more than one copy of the data in a MongoDB store: one in its
own collection and also a copy in each of the parent tables that have relationship to this table.

EMBEDIN - Means that data of this table is embedded in the defined parent table. There is only a single
copy of the data that is embedded in the parent document.

These properties behave differently for particular relationship types on the schema:

ONE-2-ONE: Here is the DDL structure representing the ONE-2-ONE relationship:

CREATE FOREIGN TABLE Customer (
 CustomerId integer PRIMARY KEY,
 FirstName varchar(25),
 LastName varchar(25)
) OPTIONS(UPDATABLE 'TRUE');

CREATE FOREIGN TABLE Address (
 CustomerId integer,
 Street varchar(50),
 City varchar(25),
 State varchar(25),
 Zipcode varchar(6),
 FOREIGN KEY (CustomerId) REFERENCES Customer (CustomerId)
) OPTIONS(UPDATABLE 'TRUE');

By default, this will produce two different collections in MongoDB, like with sample data it will look like
this:

Customer
{
 _id: 1,
 FirstName: "John",
 LastName: "Doe"
}

Address
{
 _id: ObjectID("..."),
 CustomerId: 1,
 Street: "123 Lane"
 City: "New York",
 State: "NY"
 Zipcode: "12345"
}

You can enhance the storage in MongoDB to a single collection by using "teiid_mongo:MERGE'
extension property on the table's OPTIONS clause:

CREATE FOREIGN TABLE Customer (
 CustomerId integer PRIMARY KEY,
 FirstName varchar(25),
 LastName varchar(25)
) OPTIONS(UPDATABLE 'TRUE');

Chapter 13. Translators

187

CREATE FOREIGN TABLE Address (
 CustomerId integer PRIMARY KEY,
 Street varchar(50),
 City varchar(25),
 State varchar(25),
 Zipcode varchar(6),
 FOREIGN KEY (CustomerId) REFERENCES Customer (CustomerId)
) OPTIONS(UPDATABLE 'TRUE', "teiid_mongo:MERGE" 'Customer');

This will produce a single collection in the MongoDB:

Customer
{
 _id: 1,
 FirstName: "John",
 LastName: "Doe",
 Address:
 {
 Street: "123 Lane",
 City: "New York",
 State: "NY",
 Zipcode: "12345"
 }
}

Both tables are merged into a single collection that can be queried together using the JOIN clause in the
SQL command. Since the existence of child/additional record has no meaning with out parent table using
the "teiid_mongo:MERGE" extension property is right choice in this situation.

Note

Note that the Foreign Key defined on child table, must refer to Primary Keys on both parent and
child tables to form a One-2-One relationship.

ONE-2-MANY: Typically there are only two tables involved in this relationship. If MANY side is only
associated one table, then use "EMBEDIN" property on MANY side of table and define the parent. If
associated with more than single table, then use "EMBEDDABLE". When MANY side is stored in ONE
side, they are stored as array of embedded document. If associated with more than single table then use
"teiid_mongo:EMBEDDABLE".

Here is a sample DDL:

CREATE FOREIGN TABLE Customer (
 CustomerId integer PRIMARY KEY,
 FirstName varchar(25),
 LastName varchar(25)
) OPTIONS(UPDATABLE 'TRUE');

CREATE FOREIGN TABLE Order (
 OrderID integer PRIMARY KEY,
 CustomerId integer,

Development Guide Volume 3: Reference Material

188

 OrderDate date,
 Status integer,
 FOREIGN KEY (CustomerId) REFERENCES Customer (CustomerId)
) OPTIONS(UPDATABLE 'TRUE');

In this sample, a single Customer can have many orders. There are two options to define the how we
store the MongoDB document. If in your schema, the Customer table's CustomerId is only referenced in
Order table (i.e. Customer information used for only Order purposes), you can use

CREATE FOREIGN TABLE Customer (
 CustomerId integer PRIMARY KEY,
 FirstName varchar(25),
 LastName varchar(25)
) OPTIONS(UPDATABLE 'TRUE');

CREATE FOREIGN TABLE Order (
 OrderID integer PRIMARY KEY,
 CustomerId integer,
 OrderDate date,
 Status integer,
 FOREIGN KEY (CustomerId) REFERENCES Customer (CustomerId)
) OPTIONS(UPDATABLE 'TRUE', "teiid_mongo:MERGE" 'Customer');

This will produce a single document for the customer table:

{
 _id: 1,
 FirstName: "John",
 LastName: "Doe",
 Order:
 [
 {
 _id: 100,
 OrderDate: ISODate("2000-01-01T06:00:00Z")
 Status: 2
 },
 {
 _id: 101,
 OrderDate: ISODate("2001-03-06T06:00:00Z")
 Status: 5
 }
 ...
]
}

If the customer table is referenced in more tables other than Order table, then use the
"teiid_mongo:EMBEDDABLE" property:

CREATE FOREIGN TABLE Customer (
 CustomerId integer PRIMARY KEY,
 FirstName varchar(25),
 LastName varchar(25)
) OPTIONS(UPDATABLE 'TRUE', "teiid_mongo:EMBEDDABLE" 'TRUE');

CREATE FOREIGN TABLE Order (

Chapter 13. Translators

189

 OrderID integer PRIMARY KEY,
 CustomerId integer,
 OrderDate date,
 Status integer,
 FOREIGN KEY (CustomerId) REFERENCES Customer (CustomerId)
) OPTIONS(UPDATABLE 'TRUE');

CREATE FOREIGN TABLE Comments (
 CommentID integer PRIMARY KEY,
 CustomerId integer,
 Comment varchar(140),
 FOREIGN KEY (CustomerId) REFERENCES Customer (CustomerId)
) OPTIONS(UPDATABLE 'TRUE');

This creates three different collections in MongoDB:

Customer
{
 _id: 1,
 FirstName: "John",
 LastName: "Doe"
}

Order
{
 _id: 100,
 CustomerId: 1,
 OrderDate: ISODate("2000-01-01T06:00:00Z")
 Status: 2
 Customer:
 {
 FirstName: "John",
 LastName: "Doe"
 }
}

Comment
{
 _id: 12,
 CustomerId: 1,
 Comment: "This works!!!"
 Customer:
 {
 FirstName: "John",
 LastName: "Doe"
 }
}

Here the Customer table contents are embedded along with other table's data where they were
referenced. This creates duplicated data where multiple of these embedded documents are managed
automatically in the MongoDB translator.

Development Guide Volume 3: Reference Material

190

Warning

All the SELECT, INSERT, DELETE operations that are generated against the tables with
"teiid_mongo:EMBEDDABLE" property are atomic, except for UPDATES, as there can be multiple
operations involved to update all the copies.

MANY-2-ONE: This is the same as ONE-2-MANY. Apply them in reverse.

Note

A parent table can have multiple "embedded" and as well as "merge" documents inside it, it not
limited so either one or other. However, please note that MongoDB imposes document size is
limited can not exceed 16MB.

Many-to-Many: This can also mapped with combination of "teiid_mongo:MERGE" and
"teiid_mongo:EMBEDDABLE" properties (partially). Here is a sample DDL:

CREATE FOREIGN TABLE Order (
 OrderID integer PRIMARY KEY,
 OrderDate date,
 Status integer
) OPTIONS(UPDATABLE 'TRUE');

CREATE FOREIGN TABLE OrderDetail (
 OrderID integer,
 ProductID integer,
 PRIMARY KEY (OrderID,ProductID),
 FOREIGN KEY (OrderID) REFERENCES Order (OrderID),
 FOREIGN KEY (ProductID) REFERENCES Product (ProductID)
) OPTIONS(UPDATABLE 'TRUE');

CREATE FOREIGN TABLE Products (
 ProductID integer PRIMARY KEY,
 ProductName varchar(40)
) OPTIONS(UPDATABLE 'TRUE');

Modify the DDL so that it looks like this:

CREATE FOREIGN TABLE Order (
 OrderID integer PRIMARY KEY,
 OrderDate date,
 Status integer
) OPTIONS(UPDATABLE 'TRUE');

CREATE FOREIGN TABLE OrderDetail (
 OrderID integer,
 ProductID integer,
 PRIMARY KEY (OrderID,ProductID),
 FOREIGN KEY (OrderID) REFERENCES Order (OrderID),
 FOREIGN KEY (ProductID) REFERENCES Product (ProductID)
) OPTIONS(UPDATABLE 'TRUE', "teiid_mongo:MERGE" 'Order');

Chapter 13. Translators

191

CREATE FOREIGN TABLE Products (
 ProductID integer PRIMARY KEY,
 ProductName varchar(40)
) OPTIONS(UPDATABLE 'TRUE', "teiid_mongo:EMBEDDABLE" 'TRUE');

A document that looks like this is produced:

{
 _id : 10248,
 OrderDate : ISODate("1996-07-04T05:00:00Z"),
 Status : 5
 OrderDetails : [
 {
 _id : {
 OrderID : 10248,
 ProductID : 11
 Products : {
 ProductID: 11
 ProductName: "Hammer"
 }
 }
 },
 {
 _id : {
 OrderID : 10248,
 ProductID : 14
 Products : {
 ProductID: 14
 ProductName: "Screw Driver"
 }
 }
 }
]
}

Products
{
 {
 ProductID: 11
 ProductName: "Hammer"
 }
 {
 ProductID: 14
 ProductName: "Screw Driver"
 }
}

Development Guide Volume 3: Reference Material

192

Warning

Currently nested embedding of documents has limited support due to capabilities of handling
nested arrays is limited in the MongoDB. Nesting of "EMBEDDABLE" property with multiple
levels is allowed but more than one level with MERGE is not. Also, be careful not to exceed the
document size of 16 MB for a single row, (hence deep nesting is not recommended).
JOINS between related tables, must use either the "EMBEDDABLE" or "MERGE" property,
otherwise the query will result in error. In order for Teiid to correctly plan and support the
JOINS, in the case that any two tables are NOT embedded in each other, use allow-joins=false
property on the Foreign Key that represents the relation. Here is an example:

REATE FOREIGN TABLE Customer (
 CustomerId integer PRIMARY KEY,
 FirstName varchar(25),
 LastName varchar(25)
) OPTIONS(UPDATABLE 'TRUE');

CREATE FOREIGN TABLE Order (
 OrderID integer PRIMARY KEY,
 CustomerId integer,
 OrderDate date,
 Status integer,
 FOREIGN KEY (CustomerId) REFERENCES Customer (CustomerId)
OPTIONS (allow-join 'FALSE')
) OPTIONS(UPDATABLE 'TRUE');

In this case, Teiid will create two collections. However when a user issues query such as this,
instead of resulting in error, the JOIN processing will happen in the Teiid engine, without the
above property it will result in an error:

SELECT OrderID, LastName FROM Order JOIN Customer ON
Order.CustomerId = Customer.CustomerId;

MongoDB translator supports geo-spatial query operators in the "WHERE" clause, when the data is stored in
the GeoJSon format in the MongoDB Document. These functions are supported:

CREATE FOREIGN FUNCTION geoIntersects (columnRef string, type string,
coordinates double[][]) RETURNS boolean;
CREATE FOREIGN FUNCTION geoWithin (ccolumnRef string, type string,
coordinates double[][]) RETURNS boolean;
CREATE FOREIGN FUNCTION near (ccolumnRef string, coordinates double[],
maxdistance integer) RETURNS boolean;
CREATE FOREIGN FUNCTION nearSphere (ccolumnRef string, coordinates double[],
maxdistance integer) RETURNS boolean;
CREATE FOREIGN FUNCTION geoPolygonIntersects (ref string, north double, east
double, west double, south double) RETURNS boolean;
CREATE FOREIGN FUNCTION geoPolygonWithin (ref string, north double, east
double, west double, south double) RETURNS boolean;

Here is a sample query:

Chapter 13. Translators

193

SELECT loc FROM maps where mongo.geoWithin(loc, 'LineString', ((cast(1.0 as
double), cast(2.0 as double)), (cast(1.0 as double), cast(2.0 as double))))

MongoDB translator designed on top of the MongoDB aggregation framework, use of MongoDB version that
supports this framework is mandatory. Apart from SELECT queries, this translator also supports INSERT,
UPDATE and DELETE queries. It also supports grouping, matching, sorting, filtering, limit, support for LOBs
using GridFS and composite primary and foreign keys.

MongoDB source procedures may be created using the teiid_rel:native-query extension. The procedure will
invoke the native-query similar to a direct procedure call with the benefits that the query is predetermined and
that result column types are known, rather than requiring the use of ARRAYTABLE or similar functionality.

Warning

This feature is turned off by default because of the security risk this exposes to execute any command
against the source. To enable this feature, override the execution property called
SupportsDirectQueryProcedure to true.

Note

By default the name of the procedure that executes the queries directly is called native. Override the
execution property DirectQueryProcedureName to change it to another name.

The MongoDB translator provides a procedure to execute any ad-hoc aggregate query directly against the
source without Teiid parsing or resolving. Since the metadata of this procedure's results are not known to
Teiid, they are returned as an object array containing single blob at array location one(1). This blob contains
the JSON document. XMLTABLE can be used construct tabular output for consumption by client
applications.

select x.* from TABLE(call native('city;{$match:{"city":"FREEDOM"}}')) t,
 xmltable('/city' PASSING JSONTOXML('city', cast(array_get(t.tuple, 1)
as BLOB)) COLUMNS city string, state string) x

In this example, a collection called "city" is looked up with filter that matches the "city" name with
"FREEDOM", using "native" procedure and then using the nested tables feature the output is passed to a
XMLTABLE construct, where the output from the procedure is sent to a JSONTOXML function to construct a
XML then the results of that are exposed in tabular form.

Important

The direct query must be in this format:

"collectionName;{$pipeline instr}+"

MongoDB translator also allows to execute Shell type java script commands like remove, drop, createIndex.

The commands need to be in this format:

Development Guide Volume 3: Reference Material

194

"$ShellCmd;collectionName;operationName;{$instr}+"

Here is an example:

"$ShellCmd;MyTable;remove;{ qty: { $gt: 20 }}"

13.22. Object Translator

13.22.1. Object Translator

The Object translator is a bridge for reading Java objects from external sources, such as JBoss Data Grid
(infinispan-cache) or Map Cache, and delivering them to the engine for processing. To assist in
providing that bridge, the OBJECTTABLE function (Section 3.6.11, “Nested Tables: OBJECTTABLE”) must
be used to transform the Java object into rows and columns.

These are the types of object translators:

map-cache - supports a local cache that is of type Map and using Key searching. This translator is
implemented by the org.teiid.translator.object.ObjectExecutionFactory class.

Important

The ability to use Lucene to search a JDG cache from within the infinispan-cache translator has
been deprecated. This is because the JDG DSL query language provides most of the features that
match SQL querying. Therefore, there is no need to support two underlying querying options.

infinispan-cache - supports JBoss Data Grid using either Key searching (for objects that are not
annotated) or Hibernate/Lucene searching. This translator is implemented by the
org.teiid.translator.object.infinispan.InfinispanExecutionFactory class which
extends the org.teiid.translator.object.ObjectExecutionFactory class.

Note

See the JBoss Data Grid resource adapter for this translator. It can be configured to lookup the cache
container via JNDI or created (i.e., ConfigurationFileName or RemoteServerList). Also see the Red
Hat JBoss Data Virtualization Administration and Configuration Guide for more configuration
information.

13.22.2. Object Translator: Execution Properties

The following execution properties are relevant to translating from JBoss Data Grid.

Table 13.15. Execution Properties

Chapter 13. Translators

195

Name Description Required Default
SupportsLuceneSearchi
ng

Setting to true assumes
your objects are
annotated and
Hibernate/Lucene will be
used to search the cache

N false

13.22.3. Object Translator: Supported Capabilities

The following are the connector capabilities when Key Searching is used:

SELECT command

CompareCriteria - only EQ

InCriteria

The following are the connector capabilities when Hibernate/Lucene Searching is enabled:

SELECT command

CompareCriteria - EQ, NE, LT, GT, etc.

InCriteria

OrCriteria

And/Or Criteria

Like Criteria

INSERT, UPDATE, DELETE

13.22.4. Object Translator: Usage

Retrieve objects from a cache and transform into rows and columns.

The primary object returned by the cache should have a name in source of 'this'. All other columns will
have their name in source (which defaults to the column name) interpreted as the path to the column
value from the primary object.

All columns that are not the primary key nor covered by a lucene index should be marked as
SEARCHABLE 'Unsearchable'.

13.22.5. Object Translator Example

The following is an example of a key search. It uses a dynamic vdb to define the physical source and views
using DDL. It uses a TeamObject class, shown below, with a teamName field that is used as its cache key
and a String list of players.

public class TeamObject {

 private String teamName;
 private List<String> players = new ArrayList<String>();

 public String getTeamName() {
 return teamName;

Development Guide Volume 3: Reference Material

196

 }

 public void setTeamName(String teamName) {
 this.teamName = teamName;
 }

 public List<String> getPlayers() {
 return players;
 }

}

Notice the use of the [OBJECTABLE|TEIID:OBJECTABLE] function to parse the object from Team and
transform into rows and column. This metadata could also be defined by using Teiid Designer.

<vdb name="team" version="1">
 <property name="UseConnectorMetadata" value="cached" />
 <model name="Team" visible="false">
 <source name="objsource" translator-name="infinispan1" connection-
jndi-name="java:infinispan-jndi"/>
 <metadata type="DDL"><![CDATA[

 CREATE FOREIGN TABLE Team (
 TeamObject Object OPTIONS (NAMEINSOURCE 'this', SEARCHABLE
'Unsearchable'),
 teamName varchar(255) PRIMARY KEY)
 OPTIONS (NAMEINSOURCE 'teams');

]]> </metadata>
 </model>
 <model name="TeamView" type="VIRTUAL">
 <metadata type="DDL"><![CDATA[
 CREATE VIEW Players (
 TeamName varchar(255) PRIMARY KEY,
 PlayerName varchar(255)
)
 AS
 SELECT t.TeamName, y.Name FROM Team as T,
 OBJECTTABLE('m.players' PASSING T.TeamObject as m
COLUMNS Name string 'teiid_row') as y;

]]> </metadata>
 </model>

 <translator name="infinispan1" type="infinispan-cache">
 <property name="SupportsLuceneSearching" value="true"/>
 </translator>
</vdb>

13.23. OData Translator

13.23.1. OData Translator

Chapter 13. Translators

197

The OData translator exposes the OData V2 and V3 data sources. This translator implements a simple
connection for web services in the same way as the Web Services translator.

The OData translator is implemented by the
org.teiid.translator.odata.ODataExecutionFactory class and known by the translator type
name odata.

Note

Open Data Protocol (OData) is a Web protocol for querying and updating data that provides a way to
unlock your data and free it from silos that exist in applications today. OData does this by applying
and building upon Web technologies such as HTTP, Atom Publishing Protocol (AtomPub) and JSON
to provide access to information from a variety of applications, services, and stores. OData is being
used to expose and access information from a variety of sources including, but not limited to, relational
databases, file systems, content management systems and traditional Web sites.

Using this specification from OASIS group, and with the help from framework OData4J, JBoss Data
Virtualization maps OData entities into relational schema. JBoss Data Virtualization supports reading of
CSDL (Conceptual Schema Definition Language) from the OData endpoint provided and converts the OData
schema into relational schema. The below table shows the mapping selections in OData Translator from
CSDL document.

OData Mapped to Relational Entity
EntitySet Table
FunctionImport Procedure
AssociationSet Foreign Keys on the Table*
ComplexType ignored**

* A Many to Many association will result in a link table that can not be selected from, but can be used for join
purposes.

** When used in Functions, an implicit table is exposed. When used to define a embedded table, all the
columns will be in-lined.

All CRUD operations will be appropriately mapped to the resulting entity based on the SQL submitted to the
OData translator.

Note

The resource adapter for this translator is provided by configuring the webservice data source in the
JBoss EAP instance. See the Red Hat JBoss Data Virtualization Administration and Configuration
Guide for more configuration information.

The OData V4 translator, known by the type name "odata4" exposes the OData Version 4 data sources and
uses the Teiid WS resource adapter for making web service calls. This translator is an extension of the Web
Services Translator.

Using this specification from OASIS group, with the help from the Olingo framework, Teiid maps OData V4
CSDL (Conceptual Schema Definition Language) document from the OData endpoint provided and converts
the OData metadata into Teiid's relational schema. The below table shows the mapping selections in OData
V4 Translator from CSDL document

Development Guide Volume 3: Reference Material

198

http://www.odata.org
http://code.google.com/p/odata4j/

13.23.2. OData Translator: Execution Properties

Table 13.16. Execution Properties

Name Description Default
DatabaseTimeZone The time zone of the database.

Used when fetching date, time, or
timestamp values

The system default time zone

13.23.3. OData Translator: Importer Properties

Table 13.17. Importer Properties

Name Description Default
schemaNamespace Namespace of the schema to

import
null

entityContainer Entity Container Name to import default container

Example importer settings to only import tables and views from NetflixCatalog:

<property name="importer.schemaNamespace" value="System.Data.Objects"/>
<property name="importer.schemaPattern" value="NetflixCatalog"/>

13.23.4. OData Translator: Usage

Usage of an OData source is similar to a JDBC translator. The metadata import is supported through the
translator, once the metadata is imported from source system and exposed in relational terms, then this
source can be queried as if the EntitySets and Function Imports were local to the JBoss Data Virtualization
system.

Table 13.18. Execution Properties

Property Description Default
DatabaseTimeZone The time zone of the database.

Used when fetchings date, time,
or timestamp values

The system default time zone

SupportsOdataCount Supports $count True
SupportsOdataFilter Supports $filter True
SupportsOdataOrderBy Supports $orderby true
SupportsOdataSkip Supports $skip True
SupportsOdataTop Supports $top True

Table 13.19. Importer Properties

Property Description Default
schemaNamespace Namespace of the schema to

import
Null

entityContainer Entity Container Name to import Default container

Here are some importer settings to import tables and views only from NetflixCatalog:

Chapter 13. Translators

199

<property name="importer.schemaNamespace" value="System.Data.Objects"/>
<property name="importer.schemaPattern" value="NetflixCatalog"/>

Note

Sometimes it's possible that the odata server you are querying does not fully implement all OData
specification features. If your OData implementation does not support a certain feature, then turn off
the corresponding capability using "execution Properties", so that Teiid will not pushdown invalid
queries to the translator. For example, to turn off $filter you add following to your vdb.xml then use
"odata-override" as the translator name on your source model:

<translator name="odata-override" type="odata">
<property name="SupportsOdataFilter" value="false"/>
</translator>

Note

Native or direct query execution is not supported through OData translator. However, user can use
Web Services Translator's invokehttp method directly to issue a Rest based call and parse results
using SQLXML.

Note

Teiid can not only consume OData based data sources, but it can expose any data source as an
Odata based webservice. For more information see OData Support.

13.23.5. OData Version 4 Translator

The odata4 translator exposes OData 4 data sources and uses the Red Hat JBoss Data Virtualization Web
Service resource adapter to make calls. (This resource adapter is an extension of the Web Services
Translator.)

Use the Open Data (OData) 4 Web Protocol to standardize APIs for accessing data from a variety of sources.
OData is an abstraction layer that allows you to access data from such places as databases, file systems and
content management systems. OData provides a REST-based protocol for various database operations.

OData is useful if you intend to build RESTful APIs as it standardizes the ways in which you build and
consume such things as request and response headers, payload formats, status codes, query options and so
forth. By standardizing these, it frees you to focus on developing your business logic.

Red Hat JBoss Data Virtualization can expose any data source as an OData-based web service.

Red Hat JBoss Data Virtualization maps OData 4 Conceptual Schema Documentation Language (CSDL)
documents to relational entities. It does this in order to convert OData information into a relational schema
understood by Data Virtualization. Here are the mappings to show how the OData elements are converted:

Table 13.20. Mappings

Development Guide Volume 3: Reference Material

200

OData Relational Entity
EntitySet Table
EntityType Table. (This is only mapped if the EntityType is

exposed as the EntitySet in the Entity Container.)
ComplexType Table. (This is mapped only if the complex type is

used as a property in the exposed EntitySet. This
table will be either a child table with a foreign key
[one to one] or [one to many] relationship with its
parent.)

FunctionImport Procedure. (If the return type is EntityType or
ComplexType, the procedure will return a table.)

ActionImport Procedure. (If the return type is EntityType or
ComplexType, the procedure will return a table.)

NavigationProperties Table. (Navigation properties are exposed as
tables. These tables are created with foreign key
relationships to the parent.)

After the entities are generated by these mappings, the translator maps CRUD operations to them based on
them that are derived from the submitted SQL.

The OData translator works in a similar way to the JDBC translator in that, once the metadata is imported
from the source system and exposed in relational terms, then that source can be queried as if the EntitySets,
Function Imports and Action Imports were based locally on the Red Hat JBoss Data Virtualization system.

Here is a sample virtual database that can read the metadata service from the TripPin example (which you
can find on http://odata.org):

<vdb name="trippin" version="1">
 <model name="trippin">
 <source name="odata4" translator-name="odata4" connection-jndi-
name="java:/tripDS"/>
 </model>
</vdb>

1. Configure your resource adapter to look like this:

<resource-adapter id="trippin">
 <module slot="main" id="org.jboss.teiid.resource-
adapter.webservice"/>
 <transaction-support>NoTransaction</transaction-support>
 <connection-definitions>
 <connection-definition class-
name="org.teiid.resource.adapter.ws.WSManagedConnectionFactory" jndi-
name="java:/tripDS" enabled="true" use-java-context="true" pool-
name="teiid-trip-ds">
 <config-property name="EndPoint">

http://services.odata.org/V4/(S(va3tkzikqbtgu1ist44bbft5))/TripPinServ
iceRW
 </config-property>
 </connection-definition>
 </connection-definitions>
</resource-adapter>

2. Deployed the virtual database.

Chapter 13. Translators

201

http://odata.org

3. Connect to it using the JDBC driver.

4. You can then issue SQL queries like these:

SELECT * FROM trippin.People;
SELECT * FROM trippin.People WHERE UserName = 'russelwhyte';
SELECT * FROM trippin.People p INNER JOIN trippin.People_Friends pf ON
p.UserName = pf.People_UserName;
EXEC GetNearestAirport(lat, lon) ;

Note

People_UserName is implicitly added by the metadata.

13.23.5.1. Translator Configuration Options

13.23.5.1.1. Execution Options

Use execution properties to extend or limit the functionality of the translator to match the capabilities of the
physical data source. You will sometimes need to adjust the defaults so that the translator works in the
manner you expect.

Table 13.21. Execution Properties

Name Description Default
SupportsOdataCount Supports $count true
SupportsOdataFilter Supports $filter true
SupportsOdataOrderBy Supports $orderby true
SupportsOdataSkip Supports $skip true
SupportsOdataTop Supports $top true
SupportsUpdates Supports

INSERT/UPDATE/DELETE
true

Sometimes the OData server might not have implemented the entire OData specification. If your OData
implementation does not support a certain feature, then turn off the corresponding capability via the
"execution Properties" so that you do not encounter any unexpected behaviour. Here is how you do so:

1. To turn off $filter, add the following configuration to your vdb.xml file:

<translator name="odata-override" type="odata">
 <property name="SupportsOdataFilter" value="false"/>
</translator>

2. Use "odata-override" as the source model's translator name.

13.23.5.1.2. Importer Properties

If you wish, you can set the importer's properties. This allows you to define the behavior of the translator
when it is importing the metadata from the physical source giving you more flexibility:

Table 13.22. Importer Properties

Development Guide Volume 3: Reference Material

202

Name Description Default
schemaNamespace This is the namespace of the

schema to import.
null

In this example, the importer is told to import only those tables and views from the TripPin service that have
been exposed on odata.org:

<property name="importer.schemaNamespace"
value="Microsoft.OData.SampleService.Models.TripPin"/>

Note

You can leave this property undefined. If you do so, the EntityContainer's default name is used
instead.

13.23.5.1.3. JCA Resource Adapter

The resource adapter for this translator is a web service data source.

Important

You cannot perform native or direct query execution through the OData translator. However, to work
around this you can use the Web Services Translator's invokehttp method directly to issue a REST-
based call. You can then parse the results with SQLXML.

13.24. Swagger Translator

13.24.1. Swagger Translator

The Swagger translator, known by the type name "swagger" relationally exposes the Swagger data sources
and uses the Teiid WS resource adapter for making web service calls.

You can use Swagger similarly to any other source in Red Hat JBoss Data Virtualization. The metadata
import is supported through the translator, the metadata is imported from the source system’s swagger.json
file and then the API from this file is exposed as stored procedures in Red Hat JBoss Data Virtualization. The
source system can then be queried by executing these stored procedures in the system.

Here is a sample VDB that can read metadata from the Petstore reference service found at
http://petstore.swagger.io/:

<vdb name="petstore" version="1">
 <model visible="true" name="m">
 <source name="s" translator-name="swagger" connection-jndi-
name="java:/swagger"/>
 </model>
</vdb>

This is what the resource-adapter configuration file will look like:

Chapter 13. Translators

203

<resource-adapter id="swagger">
 <module slot="main" id="org.jboss.teiid.resource-adapter.webservice"/>
 <transaction-support>NoTransaction</transaction-support>
 <connection-definitions>
 <connection-definition class-
name="org.teiid.resource.adapter.ws.WSManagedConnectionFactory" jndi-
name="java:/swagger" enabled="true" use-java-context="true" pool-
name="teiid-swagger-ds">
 <config-property name="EndPoint">
 http://petstore.swagger.io/v2
 </config-property>
 </connection-definition>
 </connection-definitions>
</resource-adapter>

Once you configure the resource-adapter and deploy the VDB successfully, you can connect to the deployed
VDB using the JDBC driver and issue SQL statements like this:

EXEC findPetsByStatus(('sold',))
EXEC getPetById(1461159803)
EXEC deletePet('', 1461159803)

Note

This translator has no execution properties.

Table 13.23. Importer Properties

Name Description Default Value
useDefaultHost Use the default host specified in

the Swagger file; when false uses
the endpoint in the resource-
adapter.

True

preferredScheme Preferred Scheme to use when
Swagger file supports multiple
invocation schemes like http and
https.

null

preferredProduces Preferred Accept MIME type
header. This should be one of the
Swagger 'produces' types;

application/json

preferredConsumes Preferred Content-Type MIME
type header. Tthis should be one
of the Swagger 'consumer' types.

application/json

Here are example importer settings that allow you to avoid calling the host defined in the swagger.json file

<property name="importer.useDefaultHost" value="false"/>

This adapter uses a Web Service Data Source.

Development Guide Volume 3: Reference Material

204

Note

Native or direct query execution is not supported through the Swagger translator. However, you can
use the Web Services Translator’s invokehttp method to issue a REST-based call and parse the
results using SQLXML.

The translator has these limitations:

The "application/xml" mime type is not supported in either "Accept" and "Content-Type".

File and Map properties are currently not supported, and therefore multi-part payloads are also not
supported

Security metadata is not currently supported.

Custom properties that start with "x-" are not supported.

Schema with "allof", "multipleof", and "items" from JSON schema are not supported.

13.25. OLAP Translator

13.25.1. OLAP Translator

The OLAP translator exposes stored procedures for calling analysis services backed by an OLAP server
using MDX query language.

The OLAP translator is implemented by the org.teiid.translator.olap.OlapExecutionFactory
class and known by the translator type name olap.

This translator exposes a stored procedure, invokeMDX, that returns a result set containing tuple array
values for a given MDX query. invokeMDX will commonly be used with the ARRAYTABLE table function (
Section 3.6.10, “Nested Tables: ARRAYTABLE”) to extract the results.

Since the Cube metadata exposed by the OLAP servers and relational database metadata are so different,
there is no single way to map the metadata from one to other. It is best to query OLAP system using its own
native MDX language through. MDX queries my be defined statically or built dynamically in the JBoss Data
Virtualization abstraction layers.

Note

The resource adapter for this translator is provided by configuring the data source in the JBoss EAP
instance. Two sample datasource files are provided for accessing OLAP servers. One is Mondrian
specific when the Mondrian server is deployed in the same JBoss EAP instance as JBoss Data
Virtualization (mondrian.xml). To access any other OLAP servers using XMLA interface, the data
source for them can be created using the example template in olap-xmla.xml. These example files
can be found in the EAP_HOME/docs/teiid/datasources/ directory. See the Red Hat JBoss
Data Virtualization Administration and Configuration Guide for more configuration information.

13.25.2. OLAP Translator: Usage

The OLAP translator exposes one low level procedure for accessing OLAP services: invokeMDX.

Chapter 13. Translators

205

invokeMdx returns a result set of the tuples as array values.

Procedure invokeMdx(mdx in STRING, params VARIADIC OBJECT) returns table
(tuple object)

The mdx parameter is a MDX query to be executed on the OLAP server.

The results of the query will be returned such that each row on the row axis will be packed into an array value
that will first contain each hierarchy member name on the row axis then each measure value from the column
axis.

Note

Consider using data roles to prevent arbitrary MDX from being submitted to the invokeMDX
procedure. See Section 7.1, “Data Roles”.

13.25.3. OLAP Translator: Native Queries

OLAP source procedures may be created using the teiid_rel:native-query extension. See Section 13.7,
“Parameterizable Native Queries”.

Note

The parameter value substitution directly inserts boolean, and number values, and treats all other
values as string literals.

The procedure will invoke the native query similar to an invokeMdx call with the benefits that the query is
predetermined and that result column types are known, rather than requiring the use of ARRAYTABLE (
Section 3.6.10, “Nested Tables: ARRAYTABLE”) or similar functionality.

13.25.4. OLAP Translator: Native Procedure

The invokeMdx procedure is the native procedure for the OLAP translator. It may be disabled or have its
name changed via the common native translator properties like any other source. A call to a native procedure
without any parameters will not attempt to parse the MDX query for parameterization. If parameters are used,
the value substitution directly inserts boolean, and number values, and treats all other values as string
literals.

13.26. Salesforce Translator

13.26.1. Salesforce Translator

The Salesforce translator supports the SELECT, DELETE, INSERT and UPDATE operations against a
Salesforce.com account.

The Salesforce translator is implemented by the
org.teiid.translator.salesforce.SalesForceExecutionFactory class and known by the
translator type name salesforce.

Development Guide Volume 3: Reference Material

206

Note

The resource adapter for this translator is provided by configuring the salesforce data source in the
JBoss EAP instance. See the Red Hat JBoss Data Virtualization Administration and Configuration
Guide for more configuration information.

13.26.2. Salesforce Translator: Execution Properties

Table 13.24. Execution Properties

Name Description Default
ModelAuditFields Audit Model Fields false
MaxBulkInsertBatchSize Batch size to use when inserting in bulk 2048

The Salesforce translator can import metadata.

Table 13.25. Import Properties

Name Description Required Default
NormalizeNames If the importer should attempt to

modify the object/field names so
that they can be used unquoted.

false true

excludeTables A case-insensitive regular
expression that when matched
against a table name will exclude it
from import. Applied after table
names are retrieved. Use a
negative look-ahead inclusion
pattern to act as an inclusion filter.

false n/a

includeTables A case-insensitive regular
expression that when matched
against a table name will be
included during import. Applied
after table names are retrieved from
source.

false n/a

importStatstics Retrieves cardinalities during import
using the REST API explain plan
feature.

false false

When both includeTables and excludeTables patterns are present during the import, the includeTables
pattern matched first, then the excludePatterns will be applied.

13.26.3. Salesforce Translator: SQL Processing

Salesforce does not provide the same set of functionality as a relational database. For example, Salesforce
does not support arbitrary joins between tables. However, working in combination with the JBoss Data
Virtualization Query Planner, the Salesforce connector supports nearly all of the SQL syntax supported by
JBoss Data Virtualization.

The Salesforce Connector executes SQL commands by pushing down the command to Salesforce whenever
possible, based on the supported capabilities. JBoss Data Virtualization will automatically provide additional
database functionality when the Salesforce Connector does not explicitly provide support for a given SQL

Chapter 13. Translators

207

construct. In these cases, the SQL construct cannot be pushed down to the data source, so it will be
evaluated in JBoss Data Virtualization, in order to ensure that the operation is performed.

In cases where certain SQL capabilities cannot be pushed down to Salesforce, JBoss Data Virtualization will
push down the capabilities that are supported, and fetch a set of data from Salesforce. Then, JBoss Data
Virtualization will evaluate the additional capabilities, creating a subset of the original data set. Finally, JBoss
Data Virtualization will pass the result to the client.

SELECT sum(Reports) FROM Supervisor where Division = 'customer support';

Neither Salesforce nor the Salesforce Connector support the sum() scalar function, but they do support
CompareCriteriaEquals, so the query that is passed to Salesforce by the connector will be transformed to this
query.

SELECT Reports FROM Supervisor where Division = 'customer support';

The sum() scalar function will be applied by the JBoss Data Virtualization Query Engine to the result set
returned by the connector.

In some cases multiple calls to the Salesforce application will be made to support the SQL passed to the
connector.

DELETE From Case WHERE Status = 'Closed';

The API in Salesforce to delete objects only supports deleting by ID. In order to accomplish this, the
Salesforce connector will first execute a query to get the IDs of the correct objects, and then delete those
objects. So the above DELETE command will result in the following two commands.

SELECT ID From Case WHERE Status = 'Closed';
DELETE From Case where ID IN (<result of query>);

The Salesforce API DELETE call is not expressed in SQL, but the above is an SQL equivalent expression.

It is useful to be aware of unsupported capabilities, in order to avoid fetching large data sets from Salesforce
and making your queries perform as well as possible.

13.26.4. Salesforce Translator: Multi-Select Picklists

A multi-select pick list is a field type in Salesforce that can contain multiple values in a single field. Query
criteria operators for fields of this type in Salesforce Object Query Language (SOQL) are limited to EQ, NE,
includes and excludes. The full Salesforce documentation for selecting from mullti-select pick lists can be
found at Querying Mulit-select Picklists.

JBoss Data Virtualization SQL does not support the includes or excludes operators, but the Salesforce
connector provides user defined function definitions for these operators that provide equivalent functionality
for fields of type multi-select. The definition for the functions are:

boolean includes(Column column, String param)
boolean excludes(Column column, String param)

For example, take a single multi-select picklist column called Status that contains all of these values.

current

working

Development Guide Volume 3: Reference Material

208

http://www.salesforce.com/us/developer/docs/api/index_Left.htm#StartTopic=Content%2Fsforce_api_calls_soql_querying_multiselect_picklists.htm|SkinName=webhelp

critical

For that column, all of the below are valid queries:

SELECT * FROM Issue WHERE true = includes (Status, 'current, working');
SELECT * FROM Issue WHERE true = excludes (Status, 'current, working');
SELECT * FROM Issue WHERE true = includes (Status, 'current;working,
critical');

EQ and NE criteria will pass to Salesforce as supplied. For example, these queries will not be modified by the
connector.

SELECT * FROM Issue WHERE Status = 'current';
SELECT * FROM Issue WHERE Status = 'current;critical';
SELECT * FROM Issue WHERE Status != 'current;working';

13.26.5. Salesforce Translator: Selecting All Objects

The Salesforce connector supports calling the queryAll operation from the Salesforce API. The queryAll
operation is equivalent to the query operation with the exception that it returns data about all current and
deleted objects in the system.

The connector determines if it will call the query or queryAll operation via reference to the isDeleted property
present on each Salesforce object, and modeled as a column on each table generated by the importer. By
default this value is set to False when the model is generated and thus the connector calls query. Users are
free to change the value in the model to True, changing the default behavior of the connector to be queryAll.

The behavior is different if isDeleted is used as a parameter in the query. If the isDeleted column is used as a
parameter in the query, and the value is 'true' the connector will call queryAll.

select * from Contact where isDeleted = true;

If the isDeleted column is used as a parameter in the query, and the value is 'false' the connector performing
the default behavior will call the query.

select * from Contact where isDeleted = false;

13.26.6. Salesforce Translator: Selecting Updated Objects

If the option is selected when importing metadata from Salesforce, a GetUpdated procedure is generated in
the model with the following structure:

GetUpdated (ObjectName IN string,
 StartDate IN datetime,
 EndDate IN datetime,
 LatestDateCovered OUT datetime)
returns
 ID string

See the description of the GetUpdated operation in the Salesforce documentation for usage details.

13.26.7. Salesforce Translator: Selecting Deleted Objects

Chapter 13. Translators

209

http://www.salesforce.com/us/developer/docs/api/Content/sforce_api_calls_getupdated.htm

If the option is selected when importing metadata from Salesforce, a GetDeleted procedure is generated in
the model with the following structure:

GetDeleted (ObjectName IN string,
 StartDate IN datetime,
 EndDate IN datetime,
 EarliestDateAvailable OUT datetime,
 LatestDateCovered OUT datetime)
returns
 ID string,
 DeletedDate datetime

See the description of the GetDeleted operation in the Salesforce documentation for usage details.

13.26.8. Salesforce Translator: Relationship Queries

Salesforce does not support joins like a relational database, but it does have support for queries that include
parent-to-child or child-to-parent relationships between objects. These are termed Relationship Queries. The
SalesForce connector supports Relationship Queries through Outer Join syntax.

SELECT Account.name, Contact.Name from Contact LEFT OUTER JOIN Account
on Contact.Accountid = Account.id

This query shows the correct syntax to query a SalesForce model with to produce a relationship query from
child to parent. It resolves to the following query to SalesForce.

SELECT Contact.Account.Name, Contact.Name FROM Contact

select Contact.Name, Account.Name from Account Left outer Join Contact
on Contact.Accountid = Account.id

This query shows the correct syntax to query a SalesForce model with to produce a relationship query from
parent to child. It resolves to the following query to SalesForce.

SELECT Account.Name, (SELECT Contact.Name FROM
Account.Contacts) FROM Account

See the description of the Relationship Queries operation in the SalesForce documentation for limitations.

13.26.9. Salesforce Translator: Bulk Insert Queries

SalesForce translator also supports bulk insert statements using JDBC batch semantics or SELECT INTO
semantics. The batch size is determined by the execution property MaxBulkInsertBatchSize , which can be
overridden in the vdb.xml file. The default value of the batch is 2048. The bulk insert feature uses the async
REST based API exposed by Salesforce for execution for better performance.

13.26.10. Salesforce Translator: Supported Capabilities

The following are the connector capabilities supported by the Salesforce Connector. These SQL constructs
will be pushed down to Salesforce.

SELECT command

Development Guide Volume 3: Reference Material

210

http://www.salesforce.com/us/developer/docs/api/Content/sforce_api_calls_getdeleted.htm
http://www.salesforce.com/us/developer/docs/api/index_Left.htm#StartTopic=Content/sforce_api_calls_soql_relationships.htm

INSERT Command

UPDATE Command

DELETE Command

CompareCriteriaEquals

InCriteria

LikeCriteria - Supported for String fields only.

RowLimit

AggregatesCountStar

NotCriteria

OrCriteria

CompareCriteriaOrdered

OuterJoins with join criteria KEY

13.26.11. Salesforce Translator: Native Queries

Salesforce procedures may optionally have native queries associated with them. See Section 13.7,
“Parameterizable Native Queries”. The operation prefix (for example, select;, insert;, update;, delete; - see
the native procedure logic below) must be present in the native query, but it will not be issued as part of the
query to the source.

Example 13.11. Example DDL for a SF native procedure

CREATE FOREIGN PROCEDURE proc (arg1 integer, arg2 string) OPTIONS
("teiid_rel:native-query" 'search;SELECT ... complex SOQL ... WHERE col1 =
$1 and col2 = $2') returns (col1 string, col2 string, col3 timestamp);

13.26.12. Salesforce Translator: Native Procedure

Warning

This feature is turned off by default because of the security risk this exposes to execute any command
against the source. To enable this feature, override the translator property called
"SupportsNativeQueries" to true. See Section 13.6, “Override Execution Properties”.

SalesForce translator provides a procedure with name native that gives ability to execute any ad hoc native
Salesforce queries directly against the source without any JBoss Data Virtualization parsing or resolving. The
metadata of this procedure's execution results are not known to JBoss Data Virtualization, and they are
returned as object array. User can use an ARRAYTABLE construct (Section 3.6.10, “Nested Tables:
ARRAYTABLE”) to build a tabular output for consumption by client applications. JBoss Data Virtualization
exposes this procedure with a simple query structure as below.

13.26.13. Salesforce Translator Example: Select

Chapter 13. Translators

211

Example 13.12. Select Example

SELECT x.* FROM (call pm1.native('search;SELECT Account.Id, Account.Type,
Account.Name FROM Account')) w,
 ARRAYTABLE(w.tuple COLUMNS "id" string , "type" string, "name" String) AS
x

In the above code, the "search" keyword is followed by a query statement.

Note

The Salesforce Object Query Language (SOQL) is treated as a parameterized native query so that
parameter values may be inserted in the query string properly. See Section 13.7, “Parameterizable
Native Queries”.

The results returned by search may contain the object Id as the first column value regardless of
whether it was selected. Also queries that select columns from multiple object types will not be correct.

13.26.14. Salesforce Translator Example: Delete

Example 13.13. Delete Example

SELECT x.* FROM (call pm1.native('delete;', 'id1', 'id2')) w,
 ARRAYTABLE(w.tuple COLUMNS "updatecount" integer) AS x

In the above code, the "delete;" keyword is followed by the ids to delete as varargs.

13.26.15. Salesforce Translator Example: Create and Update

Example 13.14. Create Example

SELECT x.* FROM
 (call pm1.native('create;type=table;attributes=one,two,three', 'one', 2,
3.0)) w,
 ARRAYTABLE(w.tuple COLUMNS "update_count" integer) AS x

In the above code, the "create" or "update" keyword must be followed by the following properties. Attributes
must be matched positionally by the procedure variables - thus in the example attribute two will be set to 2.

Property Name Description Required
type Table Name Yes
attributes comma separated list of names of

the columns

The values for each attribute is specified as separate argument to the "native" procedure.

Development Guide Volume 3: Reference Material

212

Update is similar to create, with one more extra property called "id", which defines identifier for the record.

Example 13.15. Update Example

SELECT x.* FROM
 (call pm1.native('update;id=pk;type=table;attributes=one,two,three',
'one', 2, 3.0)) w,
 ARRAYTABLE(w.tuple COLUMNS "update_count" integer) AS x

Important

By default the name of the procedure that executes the queries directly is called native, however user
can set override execution property vdb.xml file to change it.

13.27. SAP Gateway Translator

Teiid provides a translator for SAP Gateway using the OData protocol. This translator is extension of OData
Translator and uses Teiid WS resource adapter for making web service calls. This translator understands the
most of the SAP specific OData extensions to the metadata.

When the metadata is imported from SAP Gateway, the Teiid models are created to accordingly for SAP
specific EntitySet and Property annotations.

These "execution properties" are supported in this translator:

Table 13.26. Execution Properties

Property Description Default
DatabaseTimeZone The time zone of the database.

Used when fetchings date, time,
or timestamp values

The system default time zone

SupportsOdataCount Supports $count True
SupportsOdataFilter Supports $filter True
SupportsOdataOrderBy Supports $orderby True
SupportsOdataSkip Supports $skip True
SupportsOdataTop Supports $top True

Warning

If metadata on your service defined "pagable" and/or "topable" as "false' on any table, you must turn
off "SupportsOdataTop" and "SupportsOdataSkip" execution-properties in your translator, so that you
will not end up with wrong results. SAP metadata has capability to control these in a fine grained
fashion any on EnitySet, however Teiid can only control these at translator level.

Chapter 13. Translators

213

Warning

Sample examples defined at http://scn.sap.com/docs/DOC-31221, we found to be lacking in full
metadata in certain examples. For example, "filterable" clause never defined on some properties, but
if you send a request $filter it will silently ignore it. You can verify this behavior by directly executing
the REST service using a web browser with respective query. So, Make sure you have implemented
your service correctly, or you can turn off certain features in this translator by using "execution
properties" override.

13.28. Web Services Translator

13.28.1. Web Services Translator

The Web Services translator exposes stored procedures for calling web services.

The Web Services translator is implemented by the org.teiid.translator.ws.WSExecutionFactory
class and known by the translator type name ws.

The corresponding resource adapter may optionally be configured to point at a specific WSDL. Results from
this translator will commonly be used with the TEXTTABLE or XMLTABLE table functions to use CSV or XML
formatted data. See Section 3.6.8, “Nested Tables: TEXTTABLE” and Section 3.6.9, “Nested Tables:
XMLTABLE” for more details.

There are no importer settings for this translator, but it does provide metadata for dynamic VDBs. If the
connection is configured to point at a specific WSDL, the translator will import all SOAP operations under the
specified service and port as procedures.

Note

The resource adapter for this translator is provided by configuring the webservices data source in
the JBoss EAP instance. See the Red Hat JBoss Data Virtualization Administration and Configuration
Guide for more configuration information.

Important

Setting the proper binding value on the translator is recommended as it removes the need for callers
to pass an explicit value. If your service actually uses SOAP11, but the binding used SOAP12 you will
receive execution failures.

13.28.2. Web Services Translator: Execution Properties

Table 13.27. Execution Properties

Name Description When Used Default
DefaultBinding The binding that should be used if one is

not specified. Can be one of HTTP,
SOAP11, or SOAP12

invoke* SOAP12

Development Guide Volume 3: Reference Material

214

DefaultServiceMod
e

The default service mode. For SOAP,
MESSAGE mode indicates that the
request will contain the entire SOAP
envelope and not just the contents of the
SOAP body. Can be one of MESSAGE or
PAYLOAD.

invoke* or WSDL
call

PAYLOAD

XMLParamName Used with the HTTP binding (typically
with the GET method) to indicate that the
request document should be part of the
query string.

invoke* null - unused

Name Description When Used Default

Important

If you want to expose a virtual stored procedure as a SOAP web service which must implement Basic
Auth, you will encounter an exception unless you set this property:

 <validate-on-match>true</validate-on-match>

13.28.3. Web Services Translator: Usage

The WS translator exposes two low level procedures for accessing web services: invoke and invokeHttp.

13.28.4. Web Services Translator: Invoke Procedure

Invoke allows for multiple binding, or protocol modes, including HTTP, SOAP11, and SOAP12.

Procedure invoke(binding in STRING, action in STRING, request in XML,
endpoint in STRING) returns XML

The binding may be one of null (to use the default) HTTP, SOAP11, or SOAP12. Action with a SOAP binding
indicates the SOAPAction value. Action with a HTTP binding indicates the HTTP method (GET, POST, etc.),
which defaults to POST.

A null value for the binding or endpoint will use the default value. The default endpoint is specified in the WS
resource adapter configuration. The endpoint URL may be absolute or relative. If it is relative then it will be
combined with the default endpoint.

Since multiple parameters are not required to have values, it is often more clear to call the invoke procedure
with named parameter syntax.

call invoke(binding=>'HTTP', action=>'GET')

The request XML should be a valid XML document or root element.

If the stream parameter is set to true, the resulting value document can only be read once. This is appropriate
when directly passing the XML into XMLQUERY or XMLTABLE and only a single pass against the document
is needed. If stream is null or false, then the engine may need to save a copy of the document for repeated
use.

13.28.5. Web Services Translator: InvokeHTTP Procedure

Chapter 13. Translators

215

13.28.5. Web Services Translator: InvokeHTTP Procedure

invokeHttp can return the byte contents of an HTTP or HTTPS call.

Procedure invokeHttp(action in STRING, request in OBJECT, endpoint in
STRING, contentType out STRING) returns BLOB

Action indicates the HTTP method (GET, POST, etc.), which defaults to POST.

A null value for endpoint will use the default value. The default endpoint is specified in the WS resource
adapter configuration. The endpoint URL may be absolute or relative. If it is relative then it will be combined
with the default endpoint.

Since multiple parameters are not required to have values, it is often more clear to call the invoke procedure
with named parameter syntax.

call invokeHttp(action=>'GET')

The request can be one of SQLXML, STRING, BLOB, or CLOB. The request will be sent as the POST
payload in byte form. For STRING/CLOB values this will default to the UTF-8 encoding. Use the TO_BYTES
function to control the byte encoding.

The optional headers parameter can be used to specify the request header values as a JSON value. The
JSON value should be a JSON object with primitive or list of primitive values.

call invokeHttp(... headers=>jsonObject('application/json' as ContentType,
jsonArray('gzip', 'deflate') as "Accept-Encoding"))

The procedures above give you anonymous way to execute any web service methods by supplying an
endpoint, with this mechanism you can alter the endpoint defined in WSDL with a different endpoint.
However, if you have access to the WSDL, then you can configure the WSDL URL in the web-service
resource-adapter's connection configuration, Web Service translator can parse the WSDL and provide the
methods under configured port as pre-built procedures as its metadata. If you are using Dynamic VDB's you
will see the procedures in your web service's source model.

Note

Native queries and the direct query execution procedure are not supported on the Web Services
Translator.

If the stream parameter is set to true, then the resulting lob value may only be used a single time. If stream is
null or false, then the engine may need to save a copy of the result for repeated use. Care must be used as
some operations, such as casting or XMLPARSE may perform validation which results in the stream being
consumed.

The resource adapter for this translator is a Web Service Data Source.

Important

Currently you can only use WSDL based Procedures if they participate in WS-Security, when
resource-adapter is configured with correct CXF configuration.

Development Guide Volume 3: Reference Material

216

Chapter 14. Federated Planning

14.1. Federated Planning

At the core of JBoss Data Virtualization is a federated relational query engine. This query engine allows you
to treat all of your data sources as one virtual database and access them in a single SQL query. This allows
you to focus on building your application, rather than on manually coding joins, and other relational
operations, between data sources.

14.2. Planning Overview

When the query engine receives an incoming SQL query it performs the following operations.

1. Parsing - syntax is validated and converted to internal form.

2. Resolving - all identifiers are linked to metadata, and functions are linked to the function library.

3. Validating - SQL semantics are validated based on metadata references and type signatures.

4. Rewriting - SQL is rewritten to simplify expressions and criteria.

5. Logical plan optimization - the rewritten canonical SQL is converted into a logical plan for in-depth
optimization. The JBoss Data Virtualization optimizer is predominantly rule-based. Based upon the
query structure and hints, a certain rule set will be applied. These rules may in turn trigger the
execution of more rules. Within several rules, JBoss Data Virtualization also takes advantage of
costing information. The logical plan optimization steps can be seen by using the SHOWPLAN
DEBUG clause and are described in Section 14.9.1, “Query Planner”.

6. Processing plan conversion - the logic plan is converted into an executable form where the nodes are
representative of basic processing operations. The final processing plan is displayed as the query
plan. See Section 14.8.1, “Query Plans”.

The logical query plan is a tree of operations used to transform data in source tables to the expected result
set. In the tree, data flows from the bottom (tables) to the top (output).

The primary logical operations and their SQL equivalents are:

select - select or filter rows based on a criteria,

project - project or compute column values,

join,

source - retrieve data from a table,

sort - ORDER BY,

duplicate removal - SELECT DISTINCT,

group - GROUP BY, and

union - UNION.

14.3. Example Query

The following example has a query that retrieves all engineering employees born since 1970.

Chapter 13. Translators

217

Example 14.1. Example query

SELECT e.title, e.lastname FROM Employees AS e JOIN
Departments AS d ON e.dept_id = d.dept_id WHERE year(e.birthday) >= 1970
AND d.dept_name = 'Engineering'

Logically, the data from the Employees and Departments tables are retrieved, then joined, then filtered as
specified, and finally the output columns are projected. The canonical query plan thus looks like this:

Figure 14.1. Canonical Query Plan

Data flows from the tables at the bottom upwards through the join, through the select, and finally through the
project to produce the final results. The data passed between each node is logically a result set with columns
and rows.

This is what happens logically , not how the plan is actually executed. Starting from this initial plan, the query
planner performs transformations on the query plan tree to produce an equivalent plan that retrieves the
same results faster. Both a federated query planner and a relational database planner deal with the same
concepts and many of the same plan transformations. In this example, the criteria on the Departments and
Employees tables will be pushed down the tree to filter the results as early as possible.

In both cases, the goal is to retrieve the query results in the fastest possible time. However, the relational
database planner does this primarily by optimizing the access paths in pulling data from storage.

In contrast, a federated query planner is less concerned about storage access because it is typically pushing
that burden to the data source. The most important consideration for a federated query planner is minimizing
data transfer.

Development Guide Volume 3: Reference Material

218

14.4. Subquery Optimization

EXISTS subqueries are typically rewrite to "SELECT 1 FROM ..." to prevent unnecessary evaluation of
SELECT expressions.

Quantified compare SOME subqueries are always turned into an equivalent IN predicate or comparison
against an aggregate value. e.g. col > SOME (select col1 from table) would become col > (select min(col1)
from table)

Uncorrelated EXISTs and scalar subquery that are not pushed to the source can be evaluated prior to
source command formation.

Correlated subqueries used in DELETEs or UPDATEs that are not pushed as part of the corresponding
DELETE/UPDATE will cause JBoss Data Virtualization to perform row-by-row compensating processing.
This will only happen if the affected table has a primary key. If it does not, then an exception will be
thrown.

WHERE or HAVING clause IN, Quantified Comparison, Scalar Subquery Compare, and EXISTs
predicates can take the MJ (merge join), DJ (dependent join), or NO_UNNEST (no unnest) hints
appearing just before the subquery. The MJ hint directs the optimizer to use a traditional, semijoin, or
antisemijoin merge join if possible. The DJ is the same as the MJ hint, but additionally directs the
optimizer to use the subquery as the independent side of a dependent join if possible. The NO_UNNEST
hint, which supercedes the other hints, will direct the optimizer to leave the subquery in place.

Example 14.2. Merge Join Hint Usage

SELECT col1 from tbl where col2 IN /*+ MJ */ (SELECT col1 FROM tbl2)

Example 14.3. Dependent Join Hint Usage

SELECT col1 from tbl where col2 IN /*+ DJ */ (SELECT col1 FROM tbl2)

Example 14.4. No Unnest Hint Usage

SELECT col1 from tbl where col2 IN /*+ NO_UNNEST */ (SELECT col1 FROM
tbl2)

The system property org.teiid.subqueryUnnestDefault controls whether the optimizer will by default
unnest subqueries. If true, then most non-negated WHERE or HAVING clause non-negated EXISTS or IN
subquery predicates can be converted to a traditional join.

The planner will always convert to anitjoin or semijoin vartiants is costing is favorable. Use a hint to
override this behavior if needed.

EXISTs and scalar subqueries that are not pushed down, and not converted to merge joins, are implicitly
limited to 1 and 2 result rows respectively.

Conversion of subquery predicates to nested loop joins is not yet available.

14.5. XQuery Optimization

Chapter 14. Federated Planning

219

A technique known as document projection is used to reduce the memory footprint of the context item
document. Document projection loads only the parts of the document needed by the relevant XQuery and
path expressions. Since document projection analysis uses all relevant path expressions, even 1 expression
that could potentially use many nodes, e.g. //x rather than /a/b/x will cause a larger memory footprint. With the
relevant content removed the entire document will still be loaded into memory for processing. Document
projection will only be used when there is a context item (unnamed PASSING clause item) passed to
XMLTABLE/XMLQUERY. A named variable will not have document projection performed. In some cases the
expressions used may be too complex for the optimizer to use document projection. You should check the
SHOWPLAN DEBUG full plan output to see if the appropriate optimization has been performed.

With additional restrictions, simple context path expressions allow the processor to evaluate document
subtrees independently - without loading the full document in memory. A simple context path expression can
be of the form "[/][ns:]root/[ns1:]elem/...", where a namespace prefix or element name can also be the * wild
card. As with normal XQuery processing, if namespace prefixes are used in the XQuery expression, they
should be declared using the XMLNAMESPACES clause.

Example 14.5. Streaming Eligible XMLQUERY

XMLQUERY('/*:root/*:child' PASSING doc)

Rather than loading the entire doc in-memory as a DOM tree, each child element will be independently
added to the result.

Example 14.6. Streaming Ineligible XMLQUERY

XMLQUERY('//child' PASSING doc)

The use of the descendant axis prevents the streaming optimization, but document projection can still be
performed.

When using XMLTABLE, the COLUMN PATH expressions have additional restrictions. They are allowed to
reference any part of the element subtree formed by the context expression and they may use any attribute
value from their direct parentage. Any path expression where it is possible to reference a non-direct ancestor
or sibling of the current context item prevent streaming from being used.

Example 14.7. Streaming Eligible XMLTABLE

XMLTABLE('/*:root/*:child' PASSING doc COLUMNS fullchild XML PATH '.',
parent_attr string PATH '../@attr', child_val integer)

The context XQuery and the column path expression allow the streaming optimization, rather than loading
the entire doc in-memory as a DOM tree, each child element will be independently added to the result.

Example 14.8. Streaming Ineligible XMLTABLE

XMLTABLE('/*:root/*:child' PASSING doc COLUMNS sibling_attr string PATH
'../other_child/@attr')

The reference of an element outside of the child subtree in the sibling_attr path prevents the streaming
optimization from being used, but document projection can still be performed.

Development Guide Volume 3: Reference Material

220

Column paths should be as targeted as possible to avoid performance issues. A general path such as
'..//child' will cause the entire subtree of the context item to be searched on each output row.

14.6. Partial Results

JBoss Data Virtualization provides the capability to obtain "partial results" in the event of data source
unavailability or failure. This is especially useful when unioning information from multiple sources, or when
doing a left outer join, where you are 'appending' columns to a master record but still want the record if the
extra information is not available.

A source is considered to be 'unavailable' if the connection factory associated with the source issues an
exception in response to a query. The exception will be propagated to the query processor, where it will
become a warning on the statement. See Red Hat JBoss Data Virtualization Development Guide: Client
Development for more on Partial Results Mode and SQLWarnings.

14.7. Federated Optimizations

14.7.1. Access Patterns

Access patterns are used on both physical tables and views to specify the need for criteria against a set of
columns. Failure to supply the criteria will result in a planning error, rather than a runaway source query.
Access patterns can be applied in a set such that only one of the access patterns is required to be satisfied.

Currently any form of criteria referencing an affected column may satisfy an access pattern.

14.7.2. Pushdown

In federated database systems, pushdown refers to decomposing the user query into source queries that
perform as much work as possible on their respective source system. Pushdown analysis requires
knowledge of source system capabilities, which is provided to JBoss Data Virtualization though the
Connector API. Any work not performed at the source is then processed in the federating system's relational
engine (in JBoss Data Virtualization).

Based upon capabilities, JBoss Data Virtualization will manipulate the query plan to ensure that each source
performs as much joining, filtering, grouping, etc. as possible. In many cases, such as with join ordering,
planning combines standard relational techniques (see Section 14.7.9, “Standard Relational Techniques”)
and heuristics based on cost effectiveness to optimize pushdowns.

Criteria and join push down are typically the most important aspects of the query to push down when
performance is a concern. See Section 14.8.1, “Query Plans” for information about how to read a plan to
ensure that source queries are as efficient as possible.

14.7.3. Dependent Joins

A special optimization called a dependent join is used to reduce the rows returned from one of the two
relations involved in a multi-source join. In a dependent join, queries are issued to each source sequentially
rather than in parallel, with the results obtained from the first source used to restrict the records returned from
the second. Dependent joins can perform some joins much faster by reducing the amount of data retrieved
from the second source and the number of join comparisons that must be performed.

The conditions when a dependent join is used are determined by the query planner based on access
patterns, hints, and costing information. There are three different kinds of dependent joins that Teiid supports:

Chapter 14. Federated Planning

221

Join based on in/equality support: where the engine will determine how to break of the queries

Key Pushdown: where the translator has access to the full set of key values and determines what queries
to send

Full Pushdown - where translator ships the all data from the independent side to the translator. Can be
used automatically by costing or can be specified as an option in the hint.

JBoss Data Virtualization supports hints to control dependent join behavior:

MAKEIND - indicates that the clause should be the independent side of a dependent join.

MAKEDEP - indicates that the clause should be the dependent side of a join. MAKEDEP as a non-
comment hint supports optional max and join arguments - MAKEDEP(JOIN) meaning that the entire join
should be pushed, and MAKEDEP(MAX:5000) meaning that the dependent join should only be performed
if there are less than the max number of values from the independent side.

MAKENOTDEP - prevents the clause from being the dependent side of a join.

These can be placed in either the OPTION clause or directly in the FROM clause. As long as all access
patterns can be met, the MAKEIND, MAKEDEP, and MAKENOTDEP hints override any use of costing
information. MAKENOTDEP supersedes the other hints.

Note

The MAKEDEP/MAKEIND hint must only be used if the proper query plan is not chosen by default.
Ensure that your costing information is representative of the actual source cardinality. An inappropriate
MAKEDEP/MAKEIND hint can force an inefficient join structure and may result in many source
queries.

For IN clauses, the engine will filter the values coming from the dependent side. If the number of values from
the independent side exceeds the translators MaxInCriteriaSize, the values will be split into multiple IN
predicates up to MaxDependentPredicates. When the number of independent values exceeds
MaxInCriteriaSize*MaxDependentPredicates, then multiple dependent queries will be issued in parallel.

Note

While these hints can be applied to views, the optimizer will by default remove views when possible.
This can result in the hint placement being significantly different than that which was originally
intended. Consider using the NO_UNNEST hint to prevent the optimizer from removing the view in
these cases.

A "full pushdown", sometimes also called a "data-ship pushdown", is where all the data from independent
side of the join is sent to dependent side. Currently this is only supported in the JDBC translators. To enable
it, provide translator override property "enableDependentJoins" to "true". The JDBC source must support
creation temp tables (this is determined by using Hibernate dialect capabilities for the source). Once these
properties are enabled and MAKEDEP hint is used, the translator will ship the data as temp table contents
and push the dependent join to the source for full processing.

14.7.4. Copy Criteria

Copy criteria is an optimization that creates additional predicates based upon combining join and where
clause criteria. For example, equi-join predicates (source1.table.column = source2.table.column) are used to

Development Guide Volume 3: Reference Material

222

create new predicates by substituting source1.table.column for source2.table.column and vice versa. In a
cross source scenario, this allows for WHERE criteria applied to a single side of the join to be applied to both
source queries.

14.7.5. Projection Minimization

JBoss Data Virtualization ensures that each pushdown query only projects the symbols required for
processing the user query. This is especially helpful when querying through large intermediate view layers.

14.7.6. Partial Aggregate Pushdown

Partial aggregate pushdown allows for grouping operations above multi-source joins and unions to be
decomposed so that some of the grouping and aggregate functions may be pushed down to the sources.

14.7.7. Optional Join

The optional join hint indicates to omit a joined table if none of its columns are used by the output of the user
query or in a meaningful way to construct the results of the user query. This hint is typically only used in view
layers containing multi-source joins.

The optional join hint is applied as a comment on a join clause. It can be applied in both ANSI and non-ANSI
joins. With non-ANSI joins an entire joined table may be marked as optional.

Example 14.9. Example Optional Join Hint

select a.column1, b.column2 from a, /*+ optional */ b WHERE a.key = b.key

Suppose this example defines a view layer X. If X is queried in such a way as to not need b.column2, then
the optional join hint will cause b to be omitted from the query plan. The result would be the same as if X
were defined as:

select a.column1 from a

Example 14.10. Example ANSI Optional Join Hint

select a.column1, b.column2, c.column3 from /*+ optional */ (a inner join
b ON a.key = b.key) INNER JOIN c ON a.key = c.key

In this example the ANSI join syntax allows for the join of a and b to be marked as optional. Suppose this
example defines a view layer X. Only if both column a.column1 and b.column2 are not needed, e.g.
"SELECT column3 FROM X" will the join be removed.

The optional join hint will not remove a bridging table that is still required.

Example 14.11. Example Bridging Table

select a.column1, b.column2, c.column3 from /*+ optional */ a, b, c WHERE
ON a.key = b.key AND a.key = c.key

Chapter 14. Federated Planning

223

Suppose this example defines a view layer X. If b.column2 or c.column3 are solely required by a query to
X, then the join on a can be removed. However if a.column1 or both b.column2 and c.column3 are needed,
then the optional join hint will not take effect.

Note

When a join clause is omitted via the optional join hint, the relevant criteria is not applied. Thus it is
possible that the query results may not have the same cardinality or even the same row values as
when the join is fully applied.

Left/right outer joins where the inner side values are not used and whose rows under go a distinct
operation will automatically be treated as an optional join and do not require a hint.

Example 14.12. Example Unnecessary Optional Join Hint

select a.column1, b.column2 from a LEFT OUTER JOIN /*+optional*/ b ON
a.key = b.key

Warning

A simple "SELECT COUNT(*) FROM VIEW" against a view where all join tables are marked as
optional will not return a meaningful result.

Source Hints

Teiid user and transformation queries can contain a meta source hint that can provide additional information
to source queries. The source hint has the form:

/*+ sh[[KEEP ALIASES]:'arg'] source-name[KEEP ALIASES]:'arg1' ... */

The source hint is expected to appear after the query (SELECT, INSERT, UPDATE, DELETE) keyword.

Source hints may appear in any subquery or in views. All hints applicable to a given source query will be
collected and pushed down together as a list. The order of the hints is not guaranteed.

The sh arg is optional and is passed to all source queries via the ExecutionContext.getGeneralHints method.
The additional args should have a source-name that matches the source name assigned to the translator in
the VDB.

If the source-name matches, the hint values will be supplied via the ExecutionContext.getSourceHints
method.

Each of the arg values has the form of a string literal - it must be surrounded in single quotes and a single
quote can be escaped with another single quote. Only the Oracle translator does anything with source hints
by default. The Oracle translator will use both the source hint and the general hint (in that order) if available to
form an Oracle hint enclosed in /*+ ... */.

If the KEEP ALIASES option is used either for the general hint or on the applicable source specific hint, then
the table/view aliases from the user query and any nested views will be preserved in the push-down query.
This is useful in situations where the source hint may need to reference aliases and the user does not wish to
rely on the generated aliases (which can be seen in the query plan in the relevant source queries - see

Development Guide Volume 3: Reference Material

224

above). However in some situations this may result in an invalid source query if the preserved alias names
are not valid for the source or result in a name collision. If the usage of KEEP ALIASES results in an error,
the query could be modified by preventing view removal with the NO_UNNEST hint, the aliases modified, or
the KEEP ALIASES option could be removed and the query plan used to determine the generated alias
names.

Here are some sample source hints:

SELECT /*+ sh:'general hint' */ ...

SELECT /*+ sh KEEP ALIASES:'general hint' my-oracle:'oracle hint' */ ...

14.7.8. Partitioned Union

Union partitioning is inferred from the transformation/inline view. If one (or more) of the UNION columns is
defined by constants and/or has WHERE clause IN predicates containing only constants that make each
branch mutually exclusive, then the UNION is considered partitioned. UNION ALL must be used and the
UNION cannot have a LIMIT, WITH, or ORDER BY clause (although individual branches may use LIMIT,
WITH, or ORDER BY). Partitioning values should not be null.

For example the view definition "select 1 as x, y from foo union all select z, a from foo1 where z in (2, 3)"
would be considered partitioned on column x, since the first branch can only be the value 1 and the second
branch can only be the values 2 or 3.

Note

More advanced or explicit partitioning could be considered in the future. The concept of a partitioned
union is used for performing partition-wise joins (see Section 5.1, “Updatable Views” and
Section 14.7.6, “Partial Aggregate Pushdown”).

14.7.9. Standard Relational Techniques

JBoss Data Virtualization also incorporates many standard relational techniques to ensure efficient query
plans.

Rewrite analysis for function simplification and evaluation.

Boolean optimizations for basic criteria simplification.

Removal of unnecessary view layers.

Removal of unnecessary sort operations.

Advanced search techniques through the left-linear space of join trees.

Parallelizing of source access during execution.

Subquery optimization (Section 14.4, “Subquery Optimization”)

14.8. Query Plans

14.8.1. Query Plans

Chapter 14. Federated Planning

225

When integrating information using a federated query planner, it is useful to be able to view the query plans
that are created, to better understand how information is being accessed and processed, and to troubleshoot
problems.

A query plan is a set of instructions created by a query engine for executing a command submitted by a user
or application. The purpose of the query plan is to execute the user's query in as efficient a way as possible.

14.8.2. Getting a Query Plan

You can get a query plan any time you execute a command. The SQL options available are as follows:

SET SHOWPLAN [ON|DEBUG]- Returns the processing plan or the plan and the full planner debug log.

With the above options, the query plan is available from the Statement object by casting to the
org.teiid.jdbc.TeiidStatement interface or by using the "SHOW PLAN" statement.

Example 14.13. Retrieving a Query Plan

statement.execute("set showplan on");
ResultSet rs = statement.executeQuery("select ...");
TeiidStatement tstatement = statement.unwrap(TeiidStatement.class);
PlanNode queryPlan = tstatement.getPlanDescription();
System.out.println(queryPlan);

The query plan is made available automatically in several JBoss Data Virtualization tools.

14.8.3. Analyzing a Query Plan

Once a query plan has been obtained you will most commonly be looking for:

Source pushdown - what parts of the query were pushed to each source? Ensure that any predicates,
especially against, indexes are pushed.

Join ordering - as federated joins can be quite expensive. They are typically influenced by costing.

Join criteria type mismatches.

Join algorithm used - merge, enhanced merge, nested loop and so forth.

Presence of federated optimizations, such as dependent joins.

Join criteria type mismatches.

All of these issues presented above will be present subsections of the plan that are specific to relational
queries. If you are executing a procedure or generating an XML document, the overall query plan will contain
additional information related the surrounding procedural execution.

A query plan consists of a set of nodes organized in a tree structure. As with the above example, you will
typically be interested in analyzing the textual form of the plan.

In a procedural context the ordering of child nodes implies the order of execution. In most other situation,
child nodes may be executed in any order even in parallel. Only in specific optimizations, such as dependent
join, will the children of a join execute serially.

14.8.4. Relational Plans

Development Guide Volume 3: Reference Material

226

Relational plans represent the actually processing plan that is composed of nodes that are the basic building
blocks of logical relational operations. Physical relational plans differ from logical relational plans in that they
will contain additional operations and execution specifics that were chosen by the optimizer.

The nodes for a relational query plan are:

Access

Access a source. A source query is sent to the connection factory associated with the source. [For
a dependent join, this node is called Dependent Access.]

Dependent Procedure Access

Access a stored procedure on a source using multiple sets of input values.

Batched Update

Processes a set of updates as a batch.

Project

Defines the columns returned from the node. This does not alter the number of records returned.

Project Into

Like a normal project, but outputs rows into a target table.

Select

Select is a criteria evaluation filter node (WHERE / HAVING). When there is a subquery in the
criteria, this node is called Dependent Select.

Insert Plan Execution

Similar to a project into, but executes a plan rather than a source query. Typically created when
executing an insert into view with a query expression.

Window Function Project

Like a normal project, but includes window functions.

Join

Defines the join type, join criteria, and join strategy (merge or nested loop).

Union All

There are no properties for this node; it just passes rows through from its children. Depending
upon other factors, such as if there is a transaction or the source query concurrency allowed, not
all of the union children will execute in parallel.

Sort

Defines the columns to sort on, the sort direction for each column, and whether to remove
duplicates or not.

Dup Remove

Removes duplicate rows. The processing uses a tree structure to detect duplicates so that results
will effectively stream at the cost of IO operations.

Grouping

Chapter 14. Federated Planning

227

Groups sets of rows into groups and evaluates aggregate functions.

Null

A node that produces no rows. Usually replaces a Select node where the criteria is always false
(and whatever tree is underneath). There are no properties for this node.

Plan Execution

Executes another sub plan. Typically the sub plan will be a non-relational plan.

Dependent Procedure Execution

Executes a sub plan using multiple sets of input values.

Limit

Returns a specified number of rows, then stops processing. Also processes an offset if present.

XML Table

Evaluates XMLTABLE. The debug plan will contain more information about the XQuery/XPath with
regards to their optimization - see the XQuery section below or XQuery Optimization.

Text Table

Evaluates TEXTTABLE

Array Table

Evaluates ARRAYTABLE

Object Table

Evaluates OBJECTTABLE

14.8.5. Relational Plans: Node Statistics

Every node has a set of statistics that are output. These can be used to determine the amount of data flowing
through the node. Before execution a processor plan will not contain node statistics. Also the statistics are
updated as the plan is processed, so typically you will want the final statistics after all rows have been
processed by the client.

Table 14.1. Node Statistics

Statistic Description Units
Node Output Rows Number of records output from the node count
Node Next Batch
Process Time

Time processing in this node only millisec

Node Cumulative
Process Time

Elapsed time from beginning of processing to end millisec

Node Cumulative Next
Batch Process Time

Time processing in this node + child nodes millisec

Node Next Batch Calls Number of times a node was called for processing count
Node Blocks Number of times a blocked exception was thrown by this node or

a child
count

In addition to node statistics, some nodes display cost estimates computed at the node.

Development Guide Volume 3: Reference Material

228

Table 14.2. Node Cost Estimates

Cost Estimates Description Units
Estimated Node
Cardinality

Estimated number of records that will be output from the node; -1
if unknown

count

The root node will display additional information.

14.8.6. Source Hints

Table 14.3. Registry Properties

Top level Statistics Description Units
Data Bytes Sent The size of the serialized data result (row and lob

values) sent to the client
bytes

The query processor plan can be obtained in a plain text or xml format. The plan text format is typically easier
to read, while the xml format is easier to process by tooling. When possible tooling should be used to
examine the plans as the tree structures can be deeply nested.

Data flows from the leafs of the tree to the root. Sub plans for procedure execution can be shown inline, and
are differentiated by different indentation. Given a user query of "SELECT pm1.g1.e1, pm1.g2.e2, pm1.g3.e3
from pm1.g1 inner join (pm1.g2 left outer join pm1.g3 on pm1.g2.e1=pm1.g3.e1) on pm1.g1.e1=pm1.g3.e1"
the text for a processor plan that does not push down the joins would look like:

ProjectNode
 + Output Columns:
 0: e1 (string)
 1: e2 (integer)
 2: e3 (boolean)
 + Cost Estimates:Estimated Node Cardinality: -1.0
 + Child 0:
 JoinNode
 + Output Columns:
 0: e1 (string)
 1: e2 (integer)
 2: e3 (boolean)
 + Cost Estimates:Estimated Node Cardinality: -1.0
 + Child 0:
 JoinNode
 + Output Columns:
 0: e1 (string)
 1: e1 (string)
 2: e3 (boolean)
 + Cost Estimates:Estimated Node Cardinality: -1.0
 + Child 0:
 AccessNode
 + Output Columns:e1 (string)
 + Cost Estimates:Estimated Node Cardinality: -1.0
 + Query:SELECT g_0.e1 AS c_0 FROM pm1.g1 AS g_0 ORDER BY c_0
 + Model Name:pm1
 + Child 1:
 AccessNode
 + Output Columns:
 0: e1 (string)

Chapter 14. Federated Planning

229

 1: e3 (boolean)
 + Cost Estimates:Estimated Node Cardinality: -1.0
 + Query:SELECT g_0.e1 AS c_0, g_0.e3 AS c_1 FROM pm1.g3 AS g_0
ORDER BY c_0
 + Model Name:pm1
 + Join Strategy:MERGE JOIN (ALREADY_SORTED/ALREADY_SORTED)
 + Join Type:INNER JOIN
 + Join Criteria:pm1.g1.e1=pm1.g3.e1
 + Child 1:
 AccessNode
 + Output Columns:
 0: e1 (string)
 1: e2 (integer)
 + Cost Estimates:Estimated Node Cardinality: -1.0
 + Query:SELECT g_0.e1 AS c_0, g_0.e2 AS c_1 FROM pm1.g2 AS g_0
ORDER BY c_0
 + Model Name:pm1
 + Join Strategy:ENHANCED SORT JOIN (SORT/ALREADY_SORTED)
 + Join Type:INNER JOIN
 + Join Criteria:pm1.g3.e1=pm1.g2.e1
 + Select Columns:
 0: pm1.g1.e1
 1: pm1.g2.e2
 2: pm1.g3.e3

Note that the nested join node is using a merge join and expects the source queries from each side to
produce the expected ordering for the join. The parent join is an enhanced sort join which can delay the
decision to perform sorting based upon the incoming rows. Note that the outer join from the user query has
been modified to an inner join since none of the null inner values can be present in the query result.

The same plan in xml form looks like this:

<?xml version="1.0" encoding="UTF-8"?>
<node name="ProjectNode">
 <property name="Output Columns">
 <value>e1 (string)</value>
 <value>e2 (integer)</value>
 <value>e3 (boolean)</value>
 </property>
 <property name="Cost Estimates">
 <value>Estimated Node Cardinality: -1.0</value>
 </property>
 <property name="Child 0">
 <node name="JoinNode">
 <property name="Output Columns">
 <value>e1 (string)</value>
 <value>e2 (integer)</value>
 <value>e3 (boolean)</value>
 </property>
 <property name="Cost Estimates">
 <value>Estimated Node Cardinality: -1.0</value>
 </property>
 <property name="Child 0">
 <node name="JoinNode">
 <property name="Output Columns">
 <value>e1 (string)</value>

Development Guide Volume 3: Reference Material

230

 <value>e1 (string)</value>
 <value>e3 (boolean)</value>
 </property>
 <property name="Cost Estimates">
 <value>Estimated Node Cardinality: -1.0</value>
 </property>
 <property name="Child 0">
 <node name="AccessNode">
 <property name="Output Columns">
 <value>e1 (string)</value>
 </property>
 <property name="Cost Estimates">
 <value>Estimated Node Cardinality: -
1.0</value>
 </property>
 <property name="Query">
 <value>SELECT g_0.e1 AS c_0 FROM pm1.g1 AS
g_0 ORDER BY c_0</value>
 </property>
 <property name="Model Name">
 <value>pm1</value>
 </property>
 </node>
 </property>
 <property name="Child 1">
 <node name="AccessNode">
 <property name="Output Columns">
 <value>e1 (string)</value>
 <value>e3 (boolean)</value>
 </property>
 <property name="Cost Estimates">
 <value>Estimated Node Cardinality: -
1.0</value>
 </property>
 <property name="Query">
 <value>SELECT g_0.e1 AS c_0, g_0.e3 AS c_1
FROM pm1.g3 AS g_0
 ORDER BY c_0</value>
 </property>
 <property name="Model Name">
 <value>pm1</value>
 </property>
 </node>
 </property>
 <property name="Join Strategy">
 <value>MERGE JOIN (ALREADY_SORTED/ALREADY_SORTED)
</value>
 </property>
 <property name="Join Type">
 <value>INNER JOIN</value>
 </property>
 <property name="Join Criteria">
 <value>pm1.g1.e1=pm1.g3.e1</value>
 </property>
 </node>
 </property>

Chapter 14. Federated Planning

231

 <property name="Child 1">
 <node name="AccessNode">
 <property name="Output Columns">
 <value>e1 (string)</value>
 <value>e2 (integer)</value>
 </property>
 <property name="Cost Estimates">
 <value>Estimated Node Cardinality: -1.0</value>
 </property>
 <property name="Query">
 <value>SELECT g_0.e1 AS c_0, g_0.e2 AS c_1 FROM
pm1.g2 AS g_0
 ORDER BY c_0</value>
 </property>
 <property name="Model Name">
 <value>pm1</value>
 </property>
 </node>
 </property>
 <property name="Join Strategy">
 <value>ENHANCED SORT JOIN (SORT/ALREADY_SORTED)</value>
 </property>
 <property name="Join Type">
 <value>INNER JOIN</value>
 </property>
 <property name="Join Criteria">
 <value>pm1.g3.e1=pm1.g2.e1</value>
 </property>
 </node>
 </property>
 <property name="Select Columns">
 <value>pm1.g1.e1</value>
 <value>pm1.g2.e2</value>
 <value>pm1.g3.e3</value>
 </property>
</node>

Note that the same information appears in each of the plan forms. In some cases it can actually be easier to
follow the simplified format of the debug plan final processor plan. From the Debug Log the same plan as
above would appear as:

OPTIMIZATION COMPLETE:
PROCESSOR PLAN:
ProjectNode(0) output=[pm1.g1.e1, pm1.g2.e2, pm1.g3.e3] [pm1.g1.e1,
pm1.g2.e2, pm1.g3.e3]
 JoinNode(1) [ENHANCED SORT JOIN (SORT/ALREADY_SORTED)] [INNER JOIN]
criteria=[pm1.g3.e1=pm1.g2.e1] output=[pm1.g1.e1, pm1.g2.e2, pm1.g3.e3]
 JoinNode(2) [MERGE JOIN (ALREADY_SORTED/ALREADY_SORTED)] [INNER JOIN]
criteria=[pm1.g1.e1=pm1.g3.e1] output=[pm1.g3.e1, pm1.g1.e1, pm1.g3.e3]
 AccessNode(3) output=[pm1.g1.e1] SELECT g_0.e1 AS c_0 FROM pm1.g1 AS
g_0 ORDER BY c_0
 AccessNode(4) output=[pm1.g3.e1, pm1.g3.e3] SELECT g_0.e1 AS c_0,
g_0.e3 AS c_1 FROM pm1.g3 AS g_0 ORDER BY c_0
 AccessNode(5) output=[pm1.g2.e1, pm1.g2.e2] SELECT g_0.e1 AS c_0, g_0.e2
AS c_1 FROM pm1.g2 AS g_0 ORDER BY c_0

Development Guide Volume 3: Reference Material

232

These are the node properties:

Common

Output Columns - what columns make up the tuples returned by this node

Data Bytes Sent - how many data byte, not including messaging overhead, were sent by this query

Planning Time - the amount of time in milliseconds spent planning the query

Relational

Relational Node ID - matches the node ids seen in the debug log Node(id)

Criteria - the boolean expression used for filtering

Select Columns - the columns that define the projection

Grouping Columns - the columns used for grouping

Query - the source query

Model Name - the model name

Sharing ID - nodes sharing the same source results will have the same sharing id

Dependent Join - if a dependent join is being used

Join Strategy - the join strategy (Nested Loop, Sort Merge, Enhanced Sort, etc.)

Join Type - the join type (Left Outer Join, Inner Join, Cross Join)

Join Criteria - the join predicates

Execution Plan - the nested execution plan

Into Target - the insertion target

Sort Columns - the columns for sorting

Sort Mode - if the sort performs another function as well, such as distinct removal

Rollup - if the group by has the rollup option

Statistics - the processing statistics

Cost Estimates - the cost/cardinality estimates including dependent join cost estimates

Row Offset - the row offset expression

Row Limit - the row limit expression

With - the with clause

Window Functions - the window functions being computed

Table Function - the table function (XMLTABLE, OBJECTTABLE, TEXTTABLE, etc.)

XML

Message

Chapter 14. Federated Planning

233

Tag

Namespace

Data Column

Namespace Declarations

Optional Flag

Default Value

Recursion Direction

Bindings

Is Staging Flag

Source In Memory Flag

Condition

Default Program

Encoding

Formatted Flag

Procedure

Expression

Result Set

Program

Variable

Then

Else

XML document model queries and procedure execution (including instead of triggers) use intermediate and
final plan forms that include relational plans. Generally the structure of the xml/procedure plans will closely
match their logical forms. It is the nested relational plans that will be of interest when analyzing performance
issues.

14.8.7. Statistics Gathering and Single Partitions

The statistics-gathering feature in the Red Hat JBoss Data Virtualization engine does not take partition
statistics into account. For most queries, using the global statistics will not provide accurate results for a
single partition.

Currently, there is a manual approach that will require modeling each partition as a table. Here is an
example:

CREATE FOREIGN TABLE q1 (id integer primary key, company varchar(10),
order_date timestamp) OPTIONS (NAMEINSOURCE 'dvqe_order_partitioned
partition(dvqe_order_partitioned_q1, CARDINALITY '20000')');

Development Guide Volume 3: Reference Material

234

CREATE FOREIGN TABLE q2 (id integer primary key, company varchar(10),
order_date timestamp) OPTIONS (NAMEINSOURCE 'dvqe_order_partitioned
partition(dvqe_order_partitioned_q2, CARDINALITY '10000')');

CREATE FOREIGN TABLE q3 (id integer primary key, company varchar(10),
order_date timestamp) OPTIONS (NAMEINSOURCE 'dvqe_order_partitioned
partition(dvqe_order_partitioned_q3, CARDINALITY '1000')');

CREATE FOREIGN TABLE q4 (id integer primary key, company varchar(10),
order_date timestamp) OPTIONS (NAMEINSOURCE 'dvqe_order_partitioned
partition(dvqe_order_partitioned_q4, CARDINALITY '3000000')');

CREATE VIEW orders (id integer primary key, company varchar(10), order_date
timestamp) AS SELECT * FROM q1 UNION SELECT * FROM q2 UNION SELECT * FROM q3
UNION SELECT * FROM q4;

The statistics can be updated using Teiid Designer, by setting the cardinality on the table or, alternatively you
can use the System procedure:

SYSADMIN.setTableStats(IN tableName string NOT NULL, IN cardinality long NOT
NULL)

14.9. Query Planner

14.9.1. Query Planner

For each sub-command in the user command one of the following sub-planners is used:

Relational Planner

Procedure Planner

XML Planner

Each planner has three primary phases:

1. Generate canonical plan

2. Optimization

3. Plan to process converter - converts plan data structure into a processing form

14.9.2. Relational Planner

A relational processing plan is created by the optimizer after the logical plan is manipulated by a series of
rules. The application of rules is determined both by the query structure and by the rules themselves. The
node structure of the debug plan resembles that of the processing plan, but the node types more logically
represent SQL operations.

User SQL statements after rewrite are converted into a canonical plan form. The canonical plan form most
closely resembles the initial SQL structure. A SQL select query has the following possible clauses (all but
SELECT are optional): WITH, SELECT, FROM, WHERE, GROUP BY, HAVING, ORDER BY, LIMIT. These
clauses are logically executed in the following order:

WITH (create common table expressions) - handled by a specialized PROJECT NODE

Chapter 14. Federated Planning

235

FROM (read and join all data from tables) - SOURCE node for each from clause item, Join node (if >1
table)

WHERE (filter rows) - SELECT node

GROUP BY (group rows into collapsed rows) - GROUP node

HAVING (filter grouped rows) - SELECT node

SELECT (evaluate expressions and return only requested rows) - PROJECT node and DUP_REMOVE
node (for SELECT DISTINCT)

INTO - specialized PROJECT with a SOURCE child

ORDER BY (sort rows) - SORT node

LIMIT (limit result set to a certain range of results) - LIMIT node

For example, a SQL statement such as SELECT max(pm1.g1.e1) FROM pm1.g1 WHERE e2 = 1 creates a
logical plan:

Project(groups=[anon_grp0], props={PROJECT_COLS=[anon_grp0.agg0 AS expr1]})
 Group(groups=[anon_grp0], props={SYMBOL_MAP=
{anon_grp0.agg0=MAX(pm1.g1.e1)}})
 Select(groups=[pm1.g1], props={SELECT_CRITERIA=e2 = 1})
 Source(groups=[pm1.g1])

Here the Source corresponds to the FROM clause, the Select corresponds to the WHERE clause, the Group
corresponds to the implied grouping to create the max aggregate, and the Project corresponds to the
SELECT clause.

Note that the effect of grouping generates what is effectively an inline view, anon_grp0, to handle the
projection of values created by the grouping.

ACCESS - a source access or plan execution.

DUP_REMOVE - removes duplicate rows

JOIN - a join (LEFT OUTER, FULL OUTER, INNER, CROSS, SEMI, etc.)

PROJECT - a projection of tuple values

SELECT - a filtering of tuples

SORT - an ordering operation, which may be inserted to process other operations such as joins

SOURCE - any logical source of tuples including an inline view, a source access, XMLTABLE, etc.

GROUP - a grouping operation

SET_OP - a set operation (UNION/INTERSECT/EXCEPT)

NULL - a source of no tuples

TUPLE_LIMIT - row offset / limit

Each node has a set of applicable properties that are typically shown on the node.

ATOMIC_REQUEST - The final form of a source request

MODEL_ID - The metadata object for the target model/schema

Development Guide Volume 3: Reference Material

236

PROCEDURE_CRITERIA/PROCEDURE_INPUTS/PROCEDURE_DEFAULTS - Used in planning
procedureal relational queries

IS_MULTI_SOURCE - set to true when the node represents a multi-source access

SOURCE_NAME - used to track the multi-source source name

CONFORMED_SOURCES - tracks the set of conformed sources when the conformed extension
metadata is used

SUB_PLAN/SUB_PLANS - used in multi-source planning

SET_OPERATION/USE_ALL - defines the set operation (UNION/INTERSECT/EXCEPT) and if all rows
or distinct rows are used.

Join Properties

JOIN_CRITERIA - all join predicates

JOIN_TYPE - type of join (INNER, LEFT OUTER, etc.)

JOIN_STRATEGY - the algorithm to use (nested loop, merge, etc.)

LEFT_EXPRESSIONS - the expressions in equi-join predicates that originate from the left side of the join

RIGHT_EXPRESSIONS - the expressions in equi-join predicates that originate from the right side of the
join

DEPENDENT_VALUE_SOURCE - set if a dependent join is used

NON_EQUI_JOIN_CRITERIA - non-equi join predicates

SORT_LEFT - if the left side needs sorted for join processing

SORT_RIGHT - if the right side needs sorted for join processing

IS_OPTIONAL - if the join is optional

IS_LEFT_DISTINCT - if the left side is distinct with respect to the equi join predicates

IS_RIGHT_DISTINCT - if the right side is distinct with respect to the equi join predicates

IS_SEMI_DEP - if the dependent join represents a semi-join

PRESERVE - if the preserve hint is preserving the join order

Project Properties

PROJECT_COLS - the expressions projected

INTO_GROUP - the group targeted if this is a select into or insert with a query expression

HAS_WINDOW_FUNCTIONS - true if window functions are used

CONSTRAINT - the constraint that must be met if the values are being projected into a group

Select Properties

SELECT_CRITERIA - the filter

IS_HAVING - if the filter is applied after grouping

IS_PHANTOM - true if the node is marked for removal, but temporarily left in the plan.

Chapter 14. Federated Planning

237

IS_TEMPORARY - inferred criteria that may not be used in the final plan

IS_COPIED - if the criteria has already been processed by rule copy criteria

IS_PUSHED - if the criteria is pushed as far as possible

IS_DEPENDENT_SET - if the criteria is the filter of a dependent join

Sort Properties

SORT_ORDER - the order by that defines the sort

UNRELATED_SORT - if the ordering includes a value that is not being projected

IS_DUP_REMOVAL - if the sort should also perform duplicate removal over the entire projection

Source Properties - many source properties also become present on associated access nodes

SYMBOL_MAP - the mapping from the columns above the source to the projected expressions. Also
present on Group nodes

PARTITION_INFO - the partitioning of the union branches

VIRTUAL_COMMAND - if the source represents an view or inline view, the query that defined the view

MAKE_DEP - hint information

PROCESSOR_PLAN - the processor plan of a non-relational source (typically from the
NESTED_COMMAND)

NESTED_COMMAND - the non-relational command

TABLE_FUNCTION - the table function (XMLTABLE, OBJECTTABLE, etc.) defining the source

CORRELATED_REFERENCES - the correlated references for the nodes below the source

MAKE_NOT_DEP - if make not dep is set

INLINE_VIEW - If the source node represents an inline view

NO_UNNEST - if the no_unnest hint is set

MAKE_IND - if the make ind hint is set

SOURCE_HINT - the source hint. See Federated Optimizations.

ACCESS_PATTERNS - access patterns yet to be satisfied

ACCESS_PATTERN_USED - satisfied access patterns

REQUIRED_ACCESS_PATTERN_GROUPS - groups needed to satisfy the access patterns. Used in join
planning.

Group Properties

GROUP_COLS - the grouping columns

ROLLUP - if the grouping includes a rollup

Tuple Limit Properties

MAX_TUPLE_LIMIT - expression that evaluates to the max number of tuples generated

Development Guide Volume 3: Reference Material

238

OFFSET_TUPLE_COUNT - Expression that evaluates to the tuple offset of the starting tuple

IS_IMPLICIT_LIMIT - if the limit is created by the rewriter as part of a subquery

IS_NON_STRICT - if the unordered limit should not be enforced strictly optimization

General and Costing Properties

OUTPUT_COLS - the output columns for the node. Is typically set after rule assign output elements.

EST_SET_SIZE - represents the estimated set size this node would produce for a sibling node as the
independent node in a dependent join scenario

EST_DEP_CARDINALITY - value that represents the estimated cardinality (amount of rows) produced by
this node as the dependent node in a dependent join scenario

EST_DEP_JOIN_COST - value that represents the estimated cost of a dependent join (the join strategy
for this could be Nested Loop or Merge)

EST_JOIN_COST - value that represents the estimated cost of a merge join (the join strategy for this
could be Nested Loop or Merge)

EST_CARDINALITY - represents the estimated cardinality (amount of rows) produced by this node

EST_COL_STATS - column statistics including number of null values, distinct value count,

EST_SELECTIVITY - represents the selectivity of a criteria node

Relational optimization is based upon rule execution that evolves the initial plan into the execution plan.
There are a set of pre-defined rules that are dynamically assembled into a rule stack for every query. The
rule stack is assembled based on the contents of the user’s query and the views/procedures accessed. For
example, if there are no view layers, then rule Merge Virtual, which merges view layers together, is not
needed and will not be added to the stack. This allows the rule stack to reflect the complexity of the query.

Logically the plan node data structure represents a tree of nodes where the source data comes up from the
leaf nodes (typically Access nodes in the final plan), flows up through the tree and produces the user’s results
out the top. The nodes in the plan structure can have bidirectional links, dynamic properties, and allow any
number of child nodes. Processing plans in contrast typically have fixed properties.

Plan rule manipulate the plan tree, fire other rules, and drive the optimization process. Each rule is designed
to perform a narrow set of tasks. Some rules can be run multiple times. Some rules require a specific set of
precursors to run properly.

Access Pattern Validation - ensures that all access patterns have been satisfied

Apply Security - applies row and column level security

Assign Output Symbol - this rule walks top down through every node and calculates the output columns
for each node. Columns that are not needed are dropped at every node, which is known as projection
minimization. This is done by keeping track of both the columns needed to feed the parent node and also
keeping track of columns that are “created” at a certain node.

Calculate Cost - adds costing information to the plan

Choose Dependent - this rule looks at each join node and determines whether the join should be made
dependent and in which direction. Cardinality, the number of distinct values, and primary key information
are used in several formulas to determine whether a dependent join is likely to be worthwhile. The
dependent join differs in performance ideally because a fewer number of values will be returned from the
dependent side. Also, we must consider the number of values passed from independent to dependent
side. If that set is larger than the max number of values in an IN criteria on the dependent side, then we

Chapter 14. Federated Planning

239

must break the query into a set of queries and combine their results. Executing each query in the
connector has some overhead and that is taken into account. Without costing information a lot of common
cases where the only criteria specified is on a non-unique (but strongly limiting) field are missed. A join is
eligible to be dependent if:

there is at least one equi-join criterion, i.e. tablea.col = tableb.col

the join is not a full outer join and the dependent side of the join is on the inner side of the join

The join will be made dependent if one of the following conditions, listed in precedence order, holds:

There is an unsatisfied access pattern that can be satisfied with the dependent join criteria

The potential dependent side of the join is marked with an option makedep if costing was enabled, the
estimated cost for the dependent join (possibly in each direction in the case of inner joins) is computed
and compared to not performing the dependent join. If the costs were all determined (which requires all
relevant table cardinality, column ndv, and possibly nnv values to be populated) the lowest is chosen.

If key metadata information indicates that the potential dependent side is not “small” and the other side is
“not small” or the potential dependent side is the inner side of a left outer join.

Dependent join is the key optimization we use to efficiently process multi-source joins.

Instead of reading all of source A and all of source B and joining them on A.x = B.x, we read all of A then
build a set of A.x that are passed as a criteria when querying B. In cases where A is small and B is large,
this can drastically reduce the data retrieved from B, thus greatly speeding the overall query.

Choose Join Strategy - choose the join strategy based upon the cost and attributes of the join.

Clean Criteria - removes phantom criteria

Collapse Source - takes all of the nodes below an access node and creates a SQL query representation

Copy Criteria - this rule copies criteria over an equality criteria that is present in the criteria of a join. Since
the equality defines an equivalence, this is a valid way to create a new criteria that may limit results on the
other side of the join (especially in the case of a multi-source join).

Decompose Join - this rule performs a partition-wise join optimization on joins of Federated Optimizations
Partitioned Union. The decision to decompose is based upon detecting that each side of the join is a
partitioned union (note that non-ansi joins of more than 2 tables may cause the optimization to not detect
the appropriate join). The rule currently only looks for situations where at most 1 partition matches from
each side.

Implement Join Strategy - adds necessary sort and other nodes to process the chosen join strategy

Merge Criteria - combines select nodes and can convert subqueries to semi-joins

Merge Virtual - removes view and inline view layers

Place Access - places access nodes under source nodes. An access node represents the point at which
everything below the access node gets pushed to the source or is a plan invocation. Later rules focus on
either pushing under the access or pulling the access node up the tree to move more work down to the
sources. This rule is also responsible for placing Federated Optimizations Access Patterns.

Plan Joins - this rule attempts to find an optimal ordering of the joins performed in the plan, while ensuring
that Federated Optimizations Access Patterns dependencies are met. This rule has three main steps. First
it must determine an ordering of joins that satisfy the access patterns present. Second it will heuristically
create joins that can be pushed to the source (if a set of joins are pushed to the source, we will not
attempt to create an optimal ordering within that set. More than likely it will be sent to the source in the

Development Guide Volume 3: Reference Material

240

non-ANSI multi-join syntax and will be optimized by the database). Third it will use costing information to
determine the best left-linear ordering of joins performed in the processing engine. This third step will do
an exhaustive search for 6 or less join sources and is heuristically driven by join selectivity for 7 or more
sources.

Plan Procedures - plans procedures that appear in procedural relational queries

Plan Sorts - optimizations around sorting, such as combining sort operations or moving projection

Plan Unions - reorders union children for more pushdown

Plan Aggregates - performs aggregate decomposition over a join or union

Push Limit - pushes the effect of a limit node further into the plan

Push Non-Join Criteria - this rule will push predicates from the On Clause if it is not necessary for the
correctness of the join.

Push Select Criteria - pushed select nodes as far as possible through unions, joins, and views layers
toward the access nodes. In most cases movement down the tree is good as this will filter rows earlier in
the plan. We currently do not undo the decisions made by Push Select Criteria. However in situations
where criteria cannot be evaluated by the source, this can lead to sub optimal plans.

One of the most important optimization related to pushing criteria is how the criteria will be pushed trough
join. Consider the following plan tree that represents a subtree of the plan for the query "select ... from A inner
join b on (A.x = B.x) where A.y = 3":

SELECT (B.y = 3)
 |
 JOIN - Inner Join on (A.x = B.x)
 / \
 SRC (A) SRC (B)

SELECT nodes represent criteria, and SRC stands for SOURCE.

It is always valid for inner join and cross joins to push (single source) criteria that are above the join, below
the join. This allows for criteria originating in the user query to eventually be present in source queries below
the joins. This result can be represented visually as:

JOIN - Inner Join on (A.x = B.x)
 / \
 / SELECT (B.y = 3)
 | |
 SRC (A) SRC (B)

The same optimization is valid for criteria specified against the outer side of an outer join.

SELECT (B.y = 3)
 |
 JOIN - Right Outer Join on (A.x = B.x)
 / \
 SRC (A) SRC (B)

This becomes:

 JOIN - Right Outer Join on (A.x = B.x)

Chapter 14. Federated Planning

241

 / \
 / SELECT (B.y = 3)
 | |
SRC (A) SRC (B)

However criteria specified against the inner side of an outer join needs special consideration. The above
scenario with a left or full outer join is not the same.

SELECT (B.y = 3)
 |
 JOIN - Left Outer Join on (A.x = B.x)
 / \
SRC (A) SRC (B)

It becomes this

JOIN - Inner Join on (A.x = B.x)
 / \
 / SELECT (B.y = 3)
 | |
 SRC (A) SRC (B)

Since the criterion is not dependent upon the null values that may be populated from the inner side of the join,
the criterion is eligible to be pushed below the join – but only if the join type is also changed to an inner join.

SELECT (B.y is null)
 |
 JOIN - Left Outer Join on (A.x = B.x)
 / \
 SRC (A) SRC (B)

This plan tree must have the criteria remain above the join, since the outer join may be introducing null
values itself.

Raise Access - this rule attempts to raise the Access nodes as far up the plan as possible. This is mostly
done by looking at the source’s capabilities and determining whether the operations can be achieved in
the source or not.

Raise Null - raises null nodes. Raising a null node removes the need to consider any part of the old plan
that was below the null node.

Remove Optional Joins - removes joins that are marked as or determined to be optional

Substitute Expressions - used only when a function based index is present

Validate Where All - ensures criteria is used when required by the source

As each relational sub plan is optimized, the plan will show what is being optimized and its canonical form:

OPTIMIZE:
SELECT e1 FROM (SELECT e1 FROM pm1.g1) AS x

--

GENERATE CANONICAL:
SELECT e1 FROM (SELECT e1 FROM pm1.g1) AS x

Development Guide Volume 3: Reference Material

242

CANONICAL PLAN:
Project(groups=[x], props={PROJECT_COLS=[e1]})
 Source(groups=[x], props={NESTED_COMMAND=SELECT e1 FROM pm1.g1,
SYMBOL_MAP={x.e1=e1}})
 Project(groups=[pm1.g1], props={PROJECT_COLS=[e1]})
 Source(groups=[pm1.g1])
--

With more complicated user queries, such as a procedure invocation or one containing subqueries, the sub
plans may be nested within the overall plan. Each plan ends by showing the final processing plan:

OPTIMIZATION COMPLETE:
PROCESSOR PLAN:
AccessNode(0) output=[e1] SELECT g_0.e1 FROM pm1.g1 AS g_0

The effect of rules can be seen by the state of the plan tree before and after the rule fires. For example, the
debug log below shows the application of rule merge virtual, which will remove the "x" inline view layer:

EXECUTING AssignOutputElements

AFTER:
Project(groups=[x], props={PROJECT_COLS=[e1], OUTPUT_COLS=[e1]})
 Source(groups=[x], props={NESTED_COMMAND=SELECT e1 FROM pm1.g1,
SYMBOL_MAP={x.e1=e1}, OUTPUT_COLS=[e1]})
 Project(groups=[pm1.g1], props={PROJECT_COLS=[e1], OUTPUT_COLS=[e1]})
 Access(groups=[pm1.g1], props={SOURCE_HINT=null, MODEL_ID=Schema
name=pm1, nameInSource=null, uuid=3335, OUTPUT_COLS=[e1]})
 Source(groups=[pm1.g1], props={OUTPUT_COLS=[e1]})

==
EXECUTING MergeVirtual

AFTER:
Project(groups=[pm1.g1], props={PROJECT_COLS=[e1], OUTPUT_COLS=[e1]})
 Access(groups=[pm1.g1], props={SOURCE_HINT=null, MODEL_ID=Schema name=pm1,
nameInSource=null, uuid=3335, OUTPUT_COLS=[e1]})
 Source(groups=[pm1.g1])

Some important planning decisions are shown in the plan as they occur as an annotation. For example the
snippet below shows that the access node could not be raised as the parent select node contained an
unsupported subquery.

Project(groups=[pm1.g1], props={PROJECT_COLS=[e1], OUTPUT_COLS=null})
 Select(groups=[pm1.g1], props={SELECT_CRITERIA=e1 IN /*+ NO_UNNEST */
(SELECT e1 FROM pm2.g1), OUTPUT_COLS=null})
 Access(groups=[pm1.g1], props={SOURCE_HINT=null, MODEL_ID=Schema
name=pm1, nameInSource=null, uuid=3341, OUTPUT_COLS=null})
 Source(groups=[pm1.g1], props={OUTPUT_COLS=null})

==
EXECUTING RaiseAccess

Chapter 14. Federated Planning

243

LOW Relational Planner SubqueryIn is not supported by source pm1 - e1 IN /*+
NO_UNNEST */ (SELECT e1 FROM pm2.g1) was not pushed

AFTER:
Project(groups=[pm1.g1])
 Select(groups=[pm1.g1], props={SELECT_CRITERIA=e1 IN /*+ NO_UNNEST */
(SELECT e1 FROM pm2.g1), OUTPUT_COLS=null})
 Access(groups=[pm1.g1], props={SOURCE_HINT=null, MODEL_ID=Schema
name=pm1, nameInSource=null, uuid=3341, OUTPUT_COLS=null})
 Source(groups=[pm1.g1])

Procedure Planner

The procedure planner is fairly simple. It converts the statements in the procedure into instructions in a
program that will be run during processing. This is mostly a 1-to-1 mapping and very little optimization is
performed.

The XML Planner creates an XML plan that is relatively close to the end result of the Procedure Planner – a
program with instructions. Many of the instructions are even similar (while loop, execute SQL, etc). Additional
instructions deal with producing the output result document (adding elements and attributes).

The XML planner does several types of planning (not necessarily in this order):

Document selection - determine which tags of the virtual document should be excluded from the output
document. This is done based on a combination of the model (which marks parts of the document
excluded) and the query (which may specify a subset of columns to include in the SELECT clause).

Criteria evaluation - breaks apart the user’s criteria, determine which result set the criteria should be
applied to, and add that criteria to that result set query.

Result set ordering - the query’s ORDER BY clause is broken up and the ORDER BY is applied to each
result set as necessary

Result set planning - ultimately, each result set is planned using the relational planner and taking into
account all the impacts from the user's query. The planner will also look to automatically create staging
tables and dependent joins based upon the mapping class hierarchy.

Program generation - a set of instructions to produce the desired output document is produced, taking
into account the final result set queries and the excluded parts of the document. Generally, this involves
walking through the virtual document in document order, executing queries as necessary and emitting
elements and attributes.

XML programs can also be recursive, which involves using the same document fragment for both the initial
fragment and a set of repeated fragments (each a new query) until some termination criteria or limit is met.

XQuery is eligible for specific optimizations. Document projection is the most common optimization. It will be
shown in the debug plan as an annotation. For example with the user query containing "xmltable('/a/b'
passing doc columns x string path '@x', val string path '/.')", the debug plan would show a tree of the
document that will effectively be used by the context and path XQuerys:

MEDIUM XQuery Planning Projection conditions met for /a/b - Document
projection will be used
childelement(Q{}a)
 childelement(Q{}b)
 attributeattribute(Q{}x)
 childtext()
 childtext()

Development Guide Volume 3: Reference Material

244

Appendix A. BNF for SQL Grammar

A.1. Main Entry Points

callable statement

ddl statement

procedure body definition

directly executable statement

A.2. Reserved Keywords

Keyword Usage
ADD add set option
ALL standard aggregate function , function , query

expression body , query term select clause ,
quantified comparison predicate

ALTER alter , alter column options , alter options
AND between predicate , boolean term
ANY standard aggregate function , quantified comparison

predicate
ARRAY_AGG ordered aggregate function
AS alter , array table , create procedure , option

namespace , create table , create trigger , derived
column , dynamic data statement , function , loop
statement , xml namespace element , object table ,
select derived column , table subquery , text table ,
table name , with list element , xml serialize , xml
table

ASC sort specification
ATOMIC compound statement , for each row trigger action
BEGIN compound statement , for each row trigger action
BETWEEN between predicate
BIGDECIMAL data type
BIGINT data type
BIGINTEGER data type
BLOB data type , xml serialize
BOOLEAN data type
BOTH function
BREAK branching statement
BY group by clause , order by clause , window

specification
BYTE data type
CALL callable statement , call statement
CASE case expression , searched case expression
CAST function
CHAR function , data type
CLOB data type , xml serialize

Chapter 14. Federated Planning

245

COLUMN alter column options
CONSTRAINT create table body
CONTINUE branching statement
CONVERT function
CREATE create procedure , create foreign temp table , create

table , create temporary table , create trigger ,
procedure body definition

CROSS cross join
DATE data type
DAY function
DECIMAL data type
DECLARE declare statement
DEFAULT table element , xml namespace element , object

table column , procedure parameter , xml table
column

DELETE alter , create trigger , delete statement
DESC sort specification
DISTINCT standard aggregate function , function , query

expression body , query term , select clause
DOUBLE data type
DROP drop option , drop table
EACH for each row trigger action
ELSE case expression , if statement , searched case

expression
END case expression , compound statement , for each

row trigger action , searched case expression
ERROR raise error statement
ESCAPE match predicate , text table
EXCEPT query expression body
EXEC dynamic data statement , call statement
EXECUTE dynamic data statement , call statement
EXISTS exists predicate
FALSE non numeric literal
FETCH fetch clause
FILTER filter clause
FLOAT data type
FOR for each row trigger action , function , text aggregate

function , xml table column
FOREIGN alter options , create procedure , create foreign

temp table , create table , foreign key
FROM delete statement , from clause , function
FULL qualified table
FUNCTION create procedure
GROUP group by clause
HAVING having clause
HOUR function
IF if statement
IMMEDIATE dynamic data statement
IN procedure parameter , in predicate

Keyword Usage

Development Guide Volume 3: Reference Material

246

INNER qualified table
INOUT procedure parameter
INSERT alter , create trigger , function , insert statement
INTEGER data type
INTERSECT query term
INTO dynamic data statement , insert statement , into

clause
IS is null predicate
JOIN cross join , qualified table
LANGUAGE object table
LATERAL table subquery
LEADING function
LEAVE branching statement
LEFT function , qualified table
LIKE match predicate
LIKE_REGEX like regex predicate
LIMIT limit clause
LOCAL create temporary table
LONG data type
LOOP loop statement
MAKEDEP option clause , table primary
MAKENOTDEP option clause , table primary
MERGE insert statement
MINUTE function
MONTH function
NO xml namespace element , text table column , text

table
NOCACHE option clause
NOT between predicate , compound statement , table

element , is null predicate , match predicate ,
boolean factor , procedure parameter , procedure
result column , like regex predicate , in predicate ,
temporary table element

NULL table element , is null predicate , non numeric literal ,
procedure parameter , procedure result column ,
temporary table element , xml query

OBJECT data type
OF alter , create trigger
OFFSET limit clause
ON alter , create foreign temp table , create trigger ,

loop statement , qualified table , xml query
ONLY fetch clause
OPTION option clause
OPTIONS alter options list , options clause
OR boolean value expression
ORDER order by clause
OUT procedure parameter
OUTER qualified table
OVER window specification

Keyword Usage

Appendix A. BNF for SQL Grammar

247

PARAMETER alter column options
PARTITION window specification
PRIMARY table element , create temporary table , primary key
PROCEDURE alter , alter options , create procedure , procedure

body definition
REAL data type
REFERENCES foreign key
RETURN assignment statement , return statement , data

statement
RETURNS create procedure
RIGHT function , qualified table
ROW fetch clause , for each row trigger action , limit

clause , text table
ROWS fetch clause , limit clause
SECOND function
SELECT select clause
SET add set option , option namespace , update

statement
SHORT data type
SIMILAR match predicate
SMALLINT data type
SOME standard aggregate function , quantified comparison

predicate
SQLEXCEPTION sql exception
SQLSTATE sql exception
SQLWARNING raise statement
STRING dynamic data statement , data type , xml serialize
TABLE alter options , create procedure , create foreign

temp table , create table , create temporary table ,
drop table , query primary , table subquery

TEMPORARY create foreign temp table , create temporary table
THEN case expression , searched case expression
TIME data type
TIMESTAMP data type
TINYINT data type
TO match predicate
TRAILING function
TRANSLATE function
TRIGGER alter , create trigger
TRUE non numeric literal
UNION cross join , query expression body
UNIQUE other constraints , table element
UNKNOWN non numeric literal
UPDATE alter , create trigger , dynamic data statement ,

update statement
USER function
USING dynamic data statement
VALUES insert statement
VARBINARY data type , xml serialize

Keyword Usage

Development Guide Volume 3: Reference Material

248

VARCHAR data type , xml serialize
VIRTUAL alter options , create procedure , create table ,

procedure body definition
WHEN case expression , searched case expression
WHERE filter clause , where clause
WHILE while statement
WITH assignment statement , query expression , data

statement
WITHOUT assignment statement , data statement
XML data type
XMLAGG ordered aggregate function
XMLATTRIBUTES xml attributes
XMLCOMMENT function
XMLCONCAT function
XMLELEMENT xml element
XMLFOREST xml forest
XMLNAMESPACES xml namespaces
XMLPARSE xml parse
XMLPI function
XMLQUERY xml query
XMLSERIALIZE xml serialize
XMLTABLE xml table
YEAR function

Keyword Usage

A.3. Non-Reserved Keywords

Keyword Usage
ACCESSPATTERN other constraints , non-reserved identifier
ARRAYTABLE array table , non-reserved identifier
AUTO_INCREMENT table element , non-reserved identifier
AVG standard aggregate function , non-reserved

identifier
CHAIN sql exception , non-reserved identifier
COLUMNS array table , non-reserved identifier , object table ,

text table , xml table
CONTENT non-reserved identifier , xml parse , xml serialize
COUNT standard aggregate function , non-reserved

identifier
DELIMITER non-reserved identifier , text aggregate function ,

text table
DENSE_RANK analytic aggregate function , non-reserved identifier
DISABLED alter , non-reserved identifier
DOCUMENT non-reserved identifier , xml parse , xml serialize
EMPTY non-reserved identifier , xml query
ENABLED alter , non-reserved identifier
ENCODING non-reserved identifier , text aggregate function ,

xml serialize

Appendix A. BNF for SQL Grammar

249

EVERY standard aggregate function , non-reserved
identifier

EXCEPTION compound statement , declare statement , non-
reserved identifier

EXCLUDING non-reserved identifier , xml serialize
EXTRACT function , non-reserved identifier
FIRST fetch clause , non-reserved identifier , sort

specification
HEADER non-reserved identifier , text aggregate function ,

text table
INCLUDING non-reserved identifier , xml serialize
INDEX other constraints , table element , non-reserved

identifier
INSTEAD alter , create trigger , non-reserved identifier
JSONARRAY_AGG non-reserved identifier , ordered aggregate function
JSONOBJECT json object , non-reserved identifier
KEY table element , create temporary table , foreign key ,

non-reserved identifier , primary key
LAST non-reserved identifier , sort specification
MAX standard aggregate function , non-reserved

identifier
MIN standard aggregate function , non-reserved

identifier
NAME function , non-reserved identifier , xml element
NAMESPACE option namespace , non-reserved identifier
NEXT fetch clause , non-reserved identifier
NULLS non-reserved identifier , sort specification
OBJECTTABLE non-reserved identifier , object table
ORDINALITY non-reserved identifier , xml table column
PASSING non-reserved identifier , object table , xml query ,

xml table
PATH non-reserved identifier , xml table column
QUERYSTRING non-reserved identifier , querystring function
QUOTE non-reserved identifier , text aggregate function ,

text table
RAISE non-reserved identifier , raise statement
RANK analytic aggregate function , non-reserved identifier
RESULT non-reserved identifier , procedure parameter
ROW_NUMBER analytic aggregate function , non-reserved identifier
SELECTOR non-reserved identifier , text table column , text

table
SERIAL non-reserved identifier , temporary table element
SKIP non-reserved identifier , text table
SQL_TSI_DAY time interval , non-reserved identifier
SQL_TSI_FRAC_SECOND time interval , non-reserved identifier
SQL_TSI_HOUR time interval , non-reserved identifier
SQL_TSI_MINUTE time interval , non-reserved identifier
SQL_TSI_MONTH time interval , non-reserved identifier
SQL_TSI_QUARTER time interval , non-reserved identifier

Keyword Usage

Development Guide Volume 3: Reference Material

250

SQL_TSI_SECOND time interval , non-reserved identifier
SQL_TSI_WEEK time interval , non-reserved identifier
SQL_TSI_YEAR time interval , non-reserved identifier
STDDEV_POP standard aggregate function , non-reserved

identifier
STDDEV_SAMP standard aggregate function , non-reserved

identifier
SUBSTRING function , non-reserved identifier
SUM standard aggregate function , non-reserved

identifier
TEXTAGG non-reserved identifier , text aggregate function
TEXTTABLE non-reserved identifier , text table
TIMESTAMPADD function , non-reserved identifier
TIMESTAMPDIFF function , non-reserved identifier
TO_BYTES function , non-reserved identifier
TO_CHARS function , non-reserved identifier
TRIM function , non-reserved identifier , text table column
VARIADIC non-reserved identifier , procedure parameter
VAR_POP standard aggregate function , non-reserved

identifier
VAR_SAMP standard aggregate function , non-reserved

identifier
VERSION non-reserved identifier , xml serialize
VIEW alter , alter options , create table , non-reserved

identifier
WELLFORMED non-reserved identifier , xml parse
WIDTH non-reserved identifier , text table column
XMLDECLARATION non-reserved identifier , xml serialize

Keyword Usage

A.4. Reserved Keywords For Future Use

ALLOCAT
E

ARE ARRAY ASENSITIV
E

ASYMETRI
C

AUTHORIZ
ATION

BINARY CALLED

CASCADE
D

CHARACT
ER

CHECK CLOSE COLLATE COMMIT CONNECT CORRESP
ONDING

CRITERIA CURRENT
_DATE

CURRENT
_TIME

CURRENT
_TIMESTA
MP

CURRENT
_USER

CURSOR CYCLE DATALINK

DEALLOC
ATE

DEC DEREF DESCRIBE DETERMI
NISTIC

DISCONN
ECT

DLNEWCO
PY

DLPREVIO
USCOPY

DLURLCO
MPLETE

DLURLCO
MPLETEO
NLY

DLURLCO
MPLETEW
RITE

DLURLPA
TH

DLURLPA
THONLY

DLURLPA
THWRITE

DLURLSC
HEME

DLURLSE
RVER

DLVALUE DYNAMIC ELEMENT EXTERNA
L

FREE GET GLOBAL GRANT

HAS HOLD IDENTITY IMPORT INDICATO
R

INPUT INSENSITI
VE

INT

INTERVAL ISOLATIO
N

LARGE LOCALTIM
E

LOCALTIM
ESTAMP

MATCH MEMBER METHOD

Appendix A. BNF for SQL Grammar

251

MODIFIES MODULE MULTISET NATIONAL NATURAL NCHAR NCLOB NEW
NONE NUMERIC OLD OPEN OUTPUT OVERLAP

S
PRECISIO
N

PREPARE

RANGE READS RECURSIV
E

REFEREN
CING

RELEASE REVOKE ROLLBAC
K

ROLLUP

SAVEPOIN
T

SCROLL SEARCH SENSITIVE SESSION_
USER

SPECIFIC SPECIFICT
YPE

SQL

START STATIC SUBMULTI
LIST

SYMETRIC SYSTEM SYSTEM_
USER

TIMEZONE
_HOUR

TIMEZONE
_MINUTE

TRANSLA
TION

TREAT VALUE VARYING WHENEVE
R

WINDOW WITHIN XMLBINAR
Y

XMLCAST XMLDOCU
MENT

XMLEXIST
S

XMLITERA
TE

XMLTEXT XMLVALID
ATE

A.5. Tokens

Name Definition Usage
all in group identifier < identifier > < period > < star > all in group
binary string literal "X" | "x" "\'" (< hexit > < hexit >)+

"\'"
non numeric literal

colon ":" statement
comma "," alter options list , column list ,

create procedure , typed element
list , create table body , create
temporary table , derived column
list , sql exception named
parameter list , expression list ,
from clause , function limit clause
, object table , option clause ,
options clause , order by clause ,
data type , query expression ,
querystring function select clause
, set clause list , in predicate , text
aggreate function , text table , xml
attributes , xml element , xml
forest , xml namespaces , xml
query , xml table

concat_op "||" common value expression
decimal numeric literal (< digit >)* < period > < unsigned

integer literal >
unsigned numeric literal

digit ["0"-"9"]
dollar "$" unsigned value expression

primary
eq "=" assignment statement , callable

statement , declare statement ,
named parameter list ,
comparison operator , set clause
list

escaped function "{" "fn" unsigned value expression
primary

escaped join "{" "oj" table reference
escaped type "{" ("d" | "t" | "ts" | "b") non numeric literal

Development Guide Volume 3: Reference Material

252

approximate numeric literal < digit > < period > < unsigned
integer literal > ["e","E"] (< plus > |
< minus >)? < unsigned integer
literal >

unsigned numeric literal

ge ">=" comparison operator
gt ">" named parameter list ,

comparison operator
hexit ["a"-"f","A"-"F"] | < digit >
identifier < quoted_id > (< period > <

quoted_id >)*
identifier , unsigned value
expression primary

id_part ("@" | "#" | < letter >) (< letter > |
"_" | < digit >)*

lbrace "{" callable statement , match
predicate

le "<=" comparison operator
letter ["a"-"z","A"-"Z"] | ["\u0153"-"\ufffd"]
lparen "(" standard aggregate function ,

alter options list , analytic
aggregate function , array table ,
callable statement , column list ,
other constraints , create
procedure , create table body ,
create temporary table , filter
clause , function , if statement ,
insert statement , json object ,
loop statement , object table ,
options clause , ordered aggreate
function , data type , query
primary , querystring function , in
predicate , call statement ,
subquery , table subquery , table
primary , text aggregate function ,
text table , unsigned value
expression primary , while
statement , window specification ,
with list element , xml attributes ,
xml element , xml forest , xml
namespaces , xml parse , xml
query , xml serialize , xml table

lsbrace "[" unsigned value expression
primary

lt "<" comparison operator
minus "-" plus or minus
ne "<>" comparison operator
ne2 "!=" comparison operator
period "."
plus "+" plus or minus
qmark "?" callable statement , integer

parameter , unsigned value
expression primary

quoted_id < id_part > | "\"" ("\"\"" | ~["\""])+
"\""

Name Definition Usage

Appendix A. BNF for SQL Grammar

253

rbrace "}" callable statement , match
predicate , non numeric literal ,
table reference , unsigned value
expression primary

rparen ")" standard aggregate function ,
alter options list , analytic
aggregate function , array table ,
callable statement , column list ,
other constraints , create
procedure , create table body ,
create temporary table , filter
clause , function , if statement ,
insert statement , json object ,
loop statement , object table ,
options clause , ordered
aggregate function , data type ,
query primary , querystring
function , in predicate , call
statement , subquery , table
subquery , table primary , text
aggregate function , text table ,
unsigned value expression
primary , while statement ,
window specification , with list
element , xml attributes , xml
element , xml forest , xml
namespaces , xml parse , xml
query , xml serialize , xml table

rsbrace "]" unsigned value expression
primary

semicolon ";" ddl statement , delimited
statement

slash "/" star or slash
star "*" standard aggregate function ,

dynamic data statement , select
clause , star or slash

string literal ("N" | "E")? "\'" ("\'\'" | ~["\'"])* "\'" string
unsigned integer literal (< digit >)+ unsigned integer , unsigned

numeric literal

Name Definition Usage

A.6. Production Cross-Reference

Name Usage
add set option alter options list
standard aggregate function unsigned value expression primary
all in group select sublist
alter directly executable statement
alter column options alter options
alter options list alter column options , alter options
alter options ddl statement
analytic aggregate function unsigned value expression primary

Development Guide Volume 3: Reference Material

254

array table table primary
assignment statement delimited statement
assignment statement operand assignment statement , declare statement
between predicate boolean primary
boolean primary filter clause , boolean factor
branching statement delimited statement
case expression unsigned value expression primary
character match predicate , text aggregate function , text table
column list other constraints , create temporary table , foreign

key , insert statement primary key , with list element
common value expression between predicate , boolean primary , comparison

predicate , sql exception , match predicate , like
regex predicate , in predicate , text table , unsigned
value expression primary

comparison predicate boolean primary
boolean term boolean value expression
boolean value expression condition
compound statement statement
other constraints create table body
table element create table body
create procedure ddl statement
typed element list array table , dynamic data statement
create foreign temp table directly executable statement
option namespace ddl statement
create table ddl statement
create table body create foreign temp table , create table
create temporary table directly executable statement
create trigger ddl statement , directly executable statement
condition expression , having clause , if statement , qualified

table , searched case expression , where clause ,
while statement

cross join joined table
declare statement delimited statement
delete statement assignment statement operand , directly executable

statement
delimited statement statement
derived column derived column list , object table , querystring

function , text aggregate function , xml attributes ,
xml query , xml table

derived column list json object , xml forest
drop option alter options list
drop table directly executable statement
dynamic data statement data statement
raise error statement delimited statement
sql exception assignment statement operand , exception reference
exception reference sql exception , raise statement
named parameter list call statement
exists predicate boolean primary

Name Usage

Appendix A. BNF for SQL Grammar

255

expression standard aggregate function , assignment statement
operand , case expression , derived column ,
dynamic data statement , raise error statement ,
named parameter list , expression list , function ,
object table column , ordered aggregate function ,
querystring function , return statement , searched
case expression , select derived column , set clause
list , sort key , unsigned value expression primary ,
xml table column , xml element , xml parse , xml
serialize

expression list callable statement , other constraints , function ,
group by clause , insert statement , call statement ,
window specification

fetch clause limit clause
filter clause function , unsigned value expression primary
for each row trigger action alter , create trigger
foreign key create table body
from clause query
function unsigned value expression primary
group by clause query
having clause query
identifier alter , alter column options , alter options , array

table , assignment statement , branching statement ,
callable statement , column list , compound
statement , table element , create procedure , typed
element list , create foreign temp table , option
namespace , create table , create table body ,
create temporary table , create trigger , declare
statement , delete statement , derived column , drop
option , drop table , dynamic data statement ,
exception reference , named parameter list , foreign
key , function , insert statement , into clause , loop
statement , xml namespace element , object table
column , object table , option clause , option pair ,
procedure parameter , procedure result column ,
query primary , select derived column , set clause
list , statement , call statement , table subquery ,
temporary table element , text aggregate function ,
text table column , text table , table name , update
statement , with list element , xml table column , xml
element , xml serialize , xml table

if statement statement
insert statement assignment statement operand , directly executable

statement
integer parameter fetch clause , limit clause
unsigned integer dynamic data statement , integer parameter , data

type , text table column , text table , unsigned value
expression primary

time interval function
into clause query
is null predicate boolean primary
joined table table primary , table reference

Name Usage

Development Guide Volume 3: Reference Material

256

json object function
limit clause query expression body
loop statement statement
match predicate boolean primary
xml namespace element xml namespaces
non numeric literal option pair , value expression primary
non-reserved identifier identifier , unsigned value expression primary
boolean factor boolean term
object table column object table
object table table primary
comparison operator comparison predicate , quantified comparison

predicate
option clause callable statement , delete statement , insert

statement , query expression body , call statement ,
update statement

option pair add set option , options clause
options clause table element , create procedure , create table ,

create table body , procedure parameter ,
procedure result column

order by clause function , ordered aggregate function , query
expression body , text aggregate function , window
specification

ordered aggregate function unsigned value expression primary
data type table element , create procedure , typed element list

, declare statement , function , object table column ,
procedure parameter , procedure result column ,
temporary table element , text table column , xml
table column

numeric value expression common value expression
plus or minus option pair , numeric value expression , value

expression primary
primary key create table body
procedure parameter create procedure
procedure result column create procedure
qualified table joined table
query query primary
query expression alter , assignment statement operand , create table ,

insert statement , loop statement , subquery , table
subquery , directly executable statement , with list
element

query expression body query expression , query primary
query primary query term
querystring function function
query term query expression body
raise statement delimited statement
like regex predicate boolean primary
return statement delimited statement
searched case expression unsigned value expression primary
select clause query
select derived column select sublist

Name Usage

Appendix A. BNF for SQL Grammar

257

select sublist select clause
set clause list dynamic data statement , update statement
in predicate boolean primary
sort key sort specification
sort specification order by clause
data statement delimited statement
statement alter , compound statement , create procedure , for

each row trigger action , if statement , loop
statement , procedure body definition , while
statement

call statement assignment statement , subquery , table subquery ,
directly executable statement

string character , table element , option namespace ,
function , xml namespace element , non numeric
literal , object table column , object table , procedure
parameter , text table column , text table , xml table
column , xml query , xml serialize , xml table

subquery exists predicate , in predicate , quantified
comparison predicate , unsigned value expression
primary

quantified comparison predicate boolean primary
table subquery table primary
temporary table element create temporary table
table primary cross join , joined table
table reference from clause , qualified table
text aggregate function unsigned value expression primary
text table column text table
text table table primary
term numeric value expression
star or slash term
table name table primary
unsigned numeric literal option pair , value expression primary
unsigned value expression primary value expression primary
update statement assignment statement operand , directly executable

statement
directly executable statement data statement
value expression primary array table , term
where clause delete statement , query , update statement
while statement statement
window specification unsigned value expression primary
with list element query expression
xml attributes xml element
xml table column xml table
xml element function
xml forest function
xml namespaces xml element , xml forest , xml query , xml table
xml parse function
xml query function
xml serialize function

Name Usage

Development Guide Volume 3: Reference Material

258

xml table table primary

Name Usage

A.7. Productions

string ::=

< string literal >

A string literal value. Use '' to escape ' in the string.

Example:

'a string'

'it''s a string'

reserved identifier ::=

INSTEAD

VIEW

ENABLED

DISABLED

KEY

SERIAL

TEXTAGG

COUNT

ROW_NUMBER

RANK

DENSE_RANK

SUM

AVG

MIN

Appendix A. BNF for SQL Grammar

259

MAX

EVERY

STDDEV_POP

STDDEV_SAMP

VAR_SAMP

VAR_POP

DOCUMENT

CONTENT

TRIM

EMPTY

ORDINALITY

PATH

FIRST

LAST

NEXT

SUBSTRING

EXTRACT

TO_CHARS

TO_BYTES

TIMESTAMPADD

TIMESTAMPDIFF

QUERYSTRING

NAMESPACE

RESULT

INDEX

Development Guide Volume 3: Reference Material

260

ACCESSPATTERN

AUTO_INCREMENT

WELLFORMED

SQL_TSI_FRAC_SECOND

SQL_TSI_SECOND

SQL_TSI_MINUTE

SQL_TSI_HOUR

SQL_TSI_DAY

SQL_TSI_WEEK

SQL_TSI_MONTH

SQL_TSI_QUARTER

SQL_TSI_YEAR

TEXTTABLE

ARRAYTABLE

SELECTOR

SKIP

WIDTH

PASSING

NAME

ENCODING

COLUMNS

DELIMITER

QUOTE

HEADER

Appendix A. BNF for SQL Grammar

261

NULLS

OBJECTTABLE

VERSION

INCLUDING

EXCLUDING

XMLDECLARATION

VARIADIC

RAISE

EXCEPTION

CHAIN

JSONARRAY_AGG

JSONOBJECT

Allows non-reserved keywords to be parsed as identifiers

Example: SELECT COUNT FROM ...

identifier ::=

< identifier >

< non-reserved identifier >

Partial or full name of a single entity.

Example:

tbl.col

"tbl"."col"

create trigger ::=

CREATE TRIGGER ON < identifier > INSTEAD OF (INSERT | UPDATE | DELETE) AS < for each
row trigger action >

Creates a trigger action on the given target.

Example:

Development Guide Volume 3: Reference Material

262

CREATE TRIGGER ON vw INSTEAD OF INSERT AS FOR EACH ROW BEGIN ATOMIC ... END

alter ::=

ALTER ((VIEW < identifier > AS < query expression >) | (PROCEDURE < identifier > AS < statement
>) | (TRIGGER ON < identifier > INSTEAD OF (INSERT | UPDATE | DELETE) ((AS < for each row
trigger action >) | ENABLED | DISABLED)))

Alter the given target.

Example:

ALTER VIEW vw AS SELECT col FROM tbl

for each row trigger action ::=

FOR EACH ROW ((BEGIN (ATOMIC)? (< statement >)* END) | < statement >)

Defines an action to perform on each row.

Example:

FOR EACH ROW BEGIN ATOMIC ... END

directly executable statement ::=

< query expression >

< call statement >

< insert statement >

< update statement >

< delete statement >

< drop table >

< create temporary table >

< create foreign temp table >

< alter >

< create trigger >

A statement that can be executed at runtime.

Example:

Appendix A. BNF for SQL Grammar

263

SELECT * FROM tbl

drop table ::=

DROP TABLE < identifier >

Creates a trigger action on the given target.

Example:

CREATE TRIGGER ON vw INSTEAD OF INSERT AS FOR EACH ROW BEGIN ATOMIC ... END

create temporary table ::=

CREATE LOCAL TEMPORARY TABLE < identifier > < lparen > < temporary table element > (<
comma > < temporary table element >)* (< comma > PRIMARY KEY < column list >)? < rparen >

Creates a temporary table.

Example:

CREATE LOCAL TEMPORARY TABLE tmp (col integer)

temporary table element ::=

< identifier > (< data type > | SERIAL) (NOT NULL)?

Defines a temporary table column.

Example:

col string NOT NULL

raise error statement ::=

ERROR < expression >

Raises an error with the given message.

Example:

ERROR 'something went wrong'

raise statement ::=

RAISE (SQLWARNING)? < exception reference >

Raises an error or warning with the given message.

Development Guide Volume 3: Reference Material

264

Example:

RAISE SQLEXCEPTION 'something went wrong'

exception reference ::=

< identifier >

< sql exception >

a reference to an exception

Example:

SQLEXCEPTION 'something went wrong' SQLSTATE '00X', 2

sql exception ::=

SQLEXCEPTION < common value expression > (SQLSTATE < common value expression > (<
comma > < common value expression >)?)? (CHAIN < exception reference >)?

creates a sql exception or warning with the specified message, state, and code

Example:

SQLEXCEPTION 'something went wrong' SQLSTATE '00X', 2

statement ::=

((< identifier > < colon >)? (< loop statement > | < while statement > | < compound statement >))

< if statement > | < delimited statement >

A procedure statement.

Example:

IF (x = 5) BEGIN ... END

delimited statement ::=

(< assignment statement > | < data statement > | < raise error statement > | < raise statement > | <
declare statement > | < branching statement > | < return statement >) < semicolon >

A procedure statement terminated by ;.

Example:

SELECT * FROM tbl;

Appendix A. BNF for SQL Grammar

265

compound statement ::=

BEGIN ((NOT)? ATOMIC)? (< statement >)* (EXCEPTION < identifier > (< statement >)*)? END

A procedure statement block contained in BEGIN END.

Example:

BEGIN NOT ATOMIC ... END

branching statement ::=

((BREAK | CONTINUE) (< identifier >)?)

(LEAVE < identifier >)

A procedure branching control statement, which typically specifies a label to return control to.

Example:

BREAK x

return statement ::=

RETURN (< expression >)?

A return statement.

Example:

RETURN 1

while statement ::=

WHILE < lparen > < condition > < rparen > < statement >

A procedure while statement that executes until its condition is false.

Example:

WHILE (var) BEGIN ... END

loop statement ::=

LOOP ON < lparen > < query expression > < rparen > AS < identifier > < statement >

A procedure loop statement that executes over the given cursor.

Example:

Development Guide Volume 3: Reference Material

266

IF (boolVal) BEGIN variables.x = 1 END ELSE BEGIN variables.x = 2 END

if statement ::=

IF < lparen > < condition > < rparen > < statement > (ELSE < statement >)?

A procedure loop statement that executes over the given cursor.

Example:

LOOP ON (SELECT * FROM tbl) AS x BEGIN ... END

declare statement ::=

DECLARE (< data type > | EXCEPTION) < identifier > (< eq > < assignment statement operand >)?

A procedure declaration statement that creates a variable and optionally assigns a value.

Example:

DECLARE STRING x = 'a'

assignment statement ::=

< identifier > < eq > (< assignment statement operand > | (< call statement > ((WITH | WITHOUT)
RETURN)?))

Assigns a variable a value in a procedure.

Example:

x = 'b'

assignment statement operand ::=

< insert statement >

< update statement >

< delete statement >

< expression >

< query expression >

< sql exception >

A value or command that can be used in an assignment.

Appendix A. BNF for SQL Grammar

267

Note

All assignments except for expression are deprecated.

data statement ::=

(< directly executable statement > | < dynamic data statement >) ((WITH | WITHOUT) RETURN)?

A procedure statement that executes a SQL statement. An update statement can have its update count
accessed via the ROWCOUNT variable.

procedure body definition ::=

(CREATE (VIRTUAL)? PROCEDURE)? < statement >

Defines a procedure body on a Procedure metadata object.

Example:

CREATE VIRTUAL PROCEDURE BEGIN ... END

dynamic data statement ::=

(EXECUTE | EXEC) (STRING | IMMEDIATE)? < expression > (AS < typed element list > (INTO <
identifier >)?)? (USING < set clause list >)? (UPDATE (< unsigned integer > | < star >))?

A procedure statement that can execute arbitrary sql.

Example:

EXECUTE IMMEDIATE 'SELECT * FROM tbl' AS x STRING INTO #temp

set clause list ::=

< identifier > < eq > < expression > (< comma > < identifier > < eq > < expression >)*

A list of value assignments.

Example:

col1 = 'x', col2 = 'y' ...

typed element list ::=

< identifier > < data type > (< comma > < identifier > < data type >)*

A list of typed elements.

Development Guide Volume 3: Reference Material

268

Example:

col1 string, col2 integer ...

callable statement ::=

< lbrace > (< qmark > < eq >)? CALL < identifier > (< lparen > (< expression list >)? < rparen >)? <
rbrace > (< option clause >)?

A callable statement defined using JDBC escape syntax.

Example:

{? = CALL proc}

call statement ::=

((EXEC | EXECUTE | CALL) < identifier > < lparen > (< named parameter list > | (< expression list >
)?) < rparen >) (< option clause >)?

Executes the procedure with the given parameters.

Example:

CALL proc('a', 1)

named parameter list ::=

(< identifier > < eq > (< gt >)? < expression > (< comma > < identifier > < eq > (< gt >)? < expression
>)*)

A list of named parameters.

Example:

param1 => 'x', param2 => 1

insert statement ::=

(INSERT | MERGE) INTO < identifier > (< column list >)? ((VALUES < lparen > < expression list > <
rparen >) | < query expression >) (< option clause >)?

Inserts values into the given target.

Example:

INSERT INTO tbl (col1, col2) VALUES ('a', 1)

expression list ::=

Appendix A. BNF for SQL Grammar

269

< expression > (< comma > < expression >)*

A list of expressions.

Example:

col1, 'a', ...

update statement ::=

UPDATE < identifier > SET < set clause list > (< where clause >)? (< option clause >)?

Update values in the given target.

Example:

UPDATE tbl SET (col1 = 'a') WHERE col2 = 1

delete statement ::=

DELETE FROM < identifier > (< where clause >)? (< option clause >)?

Delete rows from the given target.

Example:

DELETE FROM tbl WHERE col2 = 1

query expression ::=

(WITH < with list element > (< comma > < with list element >)*)? < query expression body >

A declarative query for data.

Example:

SELECT * FROM tbl WHERE col2 = 1

with list element ::=

< identifier > (< column list >)? AS < lparen > < query expression > < rparen >

A query expression for use in the enclosing query.

Example:

X (Y, Z) AS (SELECT 1, 2)

query expression body ::=

Development Guide Volume 3: Reference Material

270

< query term > ((UNION | EXCEPT) (ALL | DISTINCT)? < query term >)* (< order by clause >)? (
< limit clause >)? (< option clause >)?

The body of a query expression, which can optionally be ordered and limited.

Example:

SELECT * FROM tbl ORDER BY col1 LIMIT 1

query term ::=

< query primary > (INTERSECT (ALL | DISTINCT)? < query primary >)*

Used to establish INTERSECT precedence.

Example:

SELECT * FROM tbl

SELECT * FROM tbl1 INTERSECT SELECT * FROM tbl2

query primary ::=

< query >

(TABLE < identifier >)

(< lparen > < query expression body > < rparen >)

A declarative source of rows.

Example:

TABLE tbl

SELECT * FROM tbl1

query ::=

< select clause > (< into clause >)? (< from clause > (< where clause >)? (< group by clause >)? (<
having clause >)?)?

A SELECT query.

Example:

SELECT col1, max(col2) FROM tbl GROUP BY col1

into clause ::=

Appendix A. BNF for SQL Grammar

271

INTO < identifier >

Used to direct the query into a table.

Note

This is deprecated. Use INSERT INTO with a query expression instead.

Example:

INTO tbl

select clause ::=

SELECT (ALL | DISTINCT)? (< star > | (< select sublist > (< comma > < select sublist >)*))

The columns returned by a query. Can optionally be distinct.

Example:

SELECT *

SELECT DISTINCT a, b, c

select sublist ::=

< select derived column >

< all in group >

An element in the select clause

Example:

tbl.*

tbl.col AS x

select derived column ::=

(< expression > ((AS)? < identifier >)?)

A select clause item that selects a single column.

Development Guide Volume 3: Reference Material

272

Note

This is slightly different than a derived column in that the AS keyword is optional.

Example:

tbl.col AS x

derived column ::=

(< expression > (AS < identifier >)?)

An optionally named expression.

Example:

tbl.col AS x

all in group ::=

< all in group identifier >

A select sublist that can select all columns from the given group.

Example:

tbl.*

ordered aggreate function ::=

(XMLAGG | ARRAY_AGG | JSONARRAY_AGG) < lparen > < expression > (< order by clause >)? <
rparen >

An aggregate function that can optionally be ordered.

Example:

XMLAGG(col1) ORDER BY col2

ARRAY_AGG(col1)

text aggreate function ::=

TEXTAGG < lparen > (FOR)? < derived column > (< comma > < derived column >)* (DELIMITER <
character >)? (QUOTE < character >)? (HEADER)? (ENCODING < identifier >)? (< order by
clause >)? < rparen >

An aggregate function for creating separated value clobs.

Appendix A. BNF for SQL Grammar

273

Example:

TEXTAGG (col1 as t1, col2 as t2 DELIMITER ',' HEADER)

standard aggregate function ::=

(COUNT < lparen > < star > < rparen >)

((COUNT | SUM | AVG | MIN | MAX | EVERY | STDDEV_POP | STDDEV_SAMP | VAR_SAMP |
VAR_POP | SOME | ANY) < lparen > (DISTINCT | ALL)? < expression > < rparen >)

A standard aggregate function.

Example:

COUNT(*)

analytic aggregate function ::=

(ROW_NUMBER | RANK | DENSE_RANK) < lparen > < rparen >

An analytic aggregate function.

Example:

ROW_NUMBER()

filter clause ::=

FILTER < lparen > WHERE < boolean primary > < rparen >

An aggregate filter clause applied prior to accumulating the value.

Example:

FILTER (WHERE col1='a')

from clause ::=

FROM (< table reference > (< comma > < table reference >)*)

A query from clause containing a list of table references.

Example:

FROM a, b

FROM a right outer join b, c, d join e".</p>

Development Guide Volume 3: Reference Material

274

table reference ::=

(< escaped join > < joined table > < rbrace >)

< joined table >

An optionally escaped joined table.

Example:

a

a inner join b

joined table ::=

< table primary > (< cross join > | < qualified table >)*

A table or join.

Example:

a

a inner join b

cross join ::=

((CROSS | UNION) JOIN < table primary >)

A cross join.

Example:

a CROSS JOIN b

qualified table ::=

(((RIGHT (OUTER)?) | (LEFT (OUTER)?) | (FULL (OUTER)?) | INNER)? JOIN < table
reference > ON < condition >)

An INNER or OUTER join.

Example:

a inner join b

table primary ::=

Appendix A. BNF for SQL Grammar

275

(< text table > | < array table > | < xml table > | < object table > | < table name > | < table subquery > | (
< lparen > < joined table > < rparen >)) (MAKEDEP | MAKENOTDEP)?

A single source of rows.

Example:

a

xml serialize ::=

XMLSERIALIZE < lparen > (DOCUMENT | CONTENT)? < expression > (AS (STRING | VARCHAR |
CLOB | VARBINARY | BLOB))? (ENCODING < identifier >)? (VERSION < string >)? ((
INCLUDING | EXCLUDING) XMLDECLARATION)? < rparen >

Serializes an XML value.

Example:

XMLSERIALIZE(col1 AS CLOB)

array table ::=

ARRAYTABLE < lparen > < value expression primary > COLUMNS < typed element list > < rparen > (
AS)? < identifier >

The ARRAYTABLE table function creates tabular results from arrays. It can be used as a nested table
reference.

Example:

ARRAYTABLE (col1 COLUMNS x STRING) AS y

text table ::=

TEXTTABLE < lparen > < common value expression > (SELECTOR < string >)? COLUMNS < text
table column > (< comma > < text table column >)* (NO ROW DELIMITER)? (DELIMITER <
character >)? ((ESCAPE < character >) | (QUOTE < character >))? (HEADER (< unsigned
integer >)?)? (SKIP < unsigned integer >)? < rparen > (AS)? < identifier >

The TEXTTABLE table function creates tabular results from text. It can be used as a nested table reference.

Example:

TEXTTABLE (file COLUMNS x STRING) AS y

text table column ::=

Development Guide Volume 3: Reference Material

276

< identifier > < data type > (WIDTH < unsigned integer > (NO TRIM)?)? (SELECTOR < string > <
unsigned integer >)?

A text table column.

Example:

x INTEGER WIDTH 6

xml query ::=

XMLQUERY < lparen > (< xml namespaces > < comma >)? < string > (PASSING < derived column >
(< comma > < derived column >)*)? ((NULL | EMPTY) ON EMPTY)? < rparen >

Executes an XQuery to return an XML result.

Example:

XMLQUERY('<a>...' PASSING doc)

object table ::=

OBJECTTABLE < lparen > (LANGUAGE < string >)? < string > (PASSING < derived column > (<
comma > < derived column >)*)? COLUMNS < object table column > (< comma > < object table
column >)* < rparen > (AS)? < identifier >

Returns table results by processing a script.

Example:

OBJECTTABLE('z' PASSING val AS z COLUMNS col OBJECT 'teiid_row') AS X

object table column ::=

< identifier > < data type > < string > (DEFAULT < expression >)?

object table column.

Example:

y integer 'teiid_row_number'

xml table ::=

XMLTABLE < lparen > (< xml namespaces > < comma >)? < string > (PASSING < derived column > (
< comma > < derived column >)*)? (COLUMNS < xml table column > (< comma > < xml table column
>)*)? < rparen > (AS)? < identifier >

Returns table results by processing an XQuery.

Example:

Appendix A. BNF for SQL Grammar

277

XMLTABLE('/a/b' PASSING doc COLUMNS col XML PATH '.') AS X

xml table column ::=

< identifier > ((FOR ORDINALITY) | (< data type > (DEFAULT < expression >)? (PATH < string >)?
))

XML table column.

Example:

y FOR ORDINALITY

unsigned integer ::=

< unsigned integer literal >

An unsigned interger value.

Example:

12345

table subquery ::=

(TABLE | LATERAL)? < lparen > (< query expression > | < call statement >) < rparen > (AS)? <
identifier >

A table defined by a subquery.

Example:

(SELECT * FROM tbl) AS x

table name ::=

(< identifier > ((AS)? < identifier >)?)

A table named in the FROM clause.

Example:

tbl AS x

where clause ::=

WHERE < condition >

Specifies a search condition

Development Guide Volume 3: Reference Material

278

Example:

WHERE x = 'a'

condition ::=

< boolean value expression >

A boolean expression.

boolean value expression ::=

< boolean term > (OR < boolean term >)*

An optionally ORed boolean expression.

boolean term ::=

< boolean factor > (AND < boolean factor >)*

An optional ANDed boolean factor.

boolean factor ::=

(NOT)? < boolean primary >

A boolean factor.

Example:

NOT x = 'a'

boolean primary ::=

(< common value expression > (< between predicate > | < match predicate > | < like regex predicate >
| < in predicate > | < is null predicate > | < quantified comparison predicate > | < comparison predicate >
)?)

< exists predicate >

A boolean predicate or simple expression.

Example:

col LIKE 'a%'

comparison operator ::=

Appendix A. BNF for SQL Grammar

279

< eq >

< ne >

< ne2 >

< lt >

< le >

< gt >

< ge >

A comparison operator.

Example:

=

comparison predicate ::=

< comparison operator > < common value expression >

A value comparison.

Example:

= 'a'

subquery ::=

< lparen > (< query expression > | < call statement >) < rparen >

A subquery.

Example:

(SELECT * FROM tbl)

quantified comparison predicate ::=

< comparison operator > (ANY | SOME | ALL) < subquery >

A subquery comparison.

Example:

= ANY (SELECT col FROM tbl)

Development Guide Volume 3: Reference Material

280

match predicate ::=

(NOT)? (LIKE | (SIMILAR TO)) < common value expression > (ESCAPE < character > | (< lbrace
> ESCAPE < character > < rbrace >))?

Matches based upon a pattern.

Example:

LIKE 'a_'

like regex predicate ::=

(NOT)? LIKE_REGEX < common value expression >

A regular expression match.

Example:

LIKE_REGEX 'a.*b'

character ::=

< string >

A single character.

Example:

'a'

between predicate ::=

(NOT)? BETWEEN < common value expression > AND < common value expression >

A comparison between two values.

Example:

BETWEEN 1 AND 5

is null predicate ::=

IS (NOT)? NULL

A null test.

Example:

IS NOT NULL

Appendix A. BNF for SQL Grammar

281

in predicate ::=

(NOT)? IN (< subquery > | (< lparen > < common value expression > (< comma > < common value
expression >)* < rparen >))

A comparison with multiple values.

Example:

IN (1, 5)

exists predicate ::=

EXISTS < subquery >

A test if rows exist.

Example:

EXISTS (SELECT col FROM tbl)

group by clause ::=

GROUP BY < expression list >

Defines the grouping columns

Example:

GROUP BY col1, col2

having clause ::=

HAVING < condition >

Search condition applied after grouping.

Example:

HAVING max(col1) = 5

order by clause ::=

ORDER BY < sort specification > (< comma > < sort specification >)*

Specifies row ordering.

Example:

Development Guide Volume 3: Reference Material

282

ORDER BY x, y DESC

sort specification ::=

< sort key > (ASC | DESC)? (NULLS (FIRST | LAST))?

Defines how to sort on a particular expression

Example:

col1 NULLS FIRST

sort key ::=

< expression >

A sort expression.

Example:

col1

integer parameter ::=

< unsigned integer >

< qmark >

A literal integer or parameter reference to an integer.

Example:

?

limit clause ::=

(LIMIT < integer parameter > (< comma > < integer parameter >)?)

(OFFSET < integer parameter > (ROW | ROWS) (< fetch clause >)?)

< fetch clause >

Limits and/or offsets the resultant rows.

Example:

LIMIT 2

fetch clause ::=

Appendix A. BNF for SQL Grammar

283

FETCH (FIRST | NEXT) (< integer parameter >)? (ROW | ROWS) ONLY

ANSI limit.

Example:

FETCH FIRST 1 ROWS ONLY

option clause ::=

OPTION (MAKEDEP < identifier > (< comma > < identifier >)* | MAKENOTDEP < identifier > (<
comma > < identifier >)* | NOCACHE (< identifier > (< comma > < identifier >)*)?)*

Specifies query options.

Example:

OPTION MAKEDEP tbl

expression ::=

< condition >

A value.

Example:

col1

common value expression ::=

(< numeric value expression > (< concat_op > < numeric value expression >)*)

Establishes the precedence of concat.

Example:

'a' || 'b'

numeric value expression ::=

(< term > (< plus or minus > < term >)*)

Example:

1 + 2

plus or minus ::=

Development Guide Volume 3: Reference Material

284

< plus >

< minus >

The + or - operator.

Example:

+

term ::=

(< value expression primary > (< star or slash > < value expression primary >)*)

A numeric term

Example:

1 * 2

star or slash ::=

< star >

< slash >

The * or / operator.

Example:

/

value expression primary ::=

< non numeric literal >

(< plus or minus >)? (< unsigned numeric literal > | < unsigned value expression primary >)

A simple value expression.

Example:

+col1

unsigned value expression primary ::=

< qmark >

Appendix A. BNF for SQL Grammar

285

(< dollar > < unsigned integer >)

(< escaped function > < function > < rbrace >)

((< text aggreate function > | < standard aggregate function > | < ordered aggreate function >) (<
filter clause >)? (< window specification >)?)

(< analytic aggregate function > (< filter clause >)? < window specification >)

(< function > (< window specification >)?)

((< identifier > | < non-reserved identifier >) (< lsbrace > < common value expression > < rsbrace >)?
)

< subquery >

(< lparen > < expression > < rparen > (< lsbrace > < common value expression > < rsbrace >)?)

< searched case expression >

< case expression >

An unsigned simple value expression.

Example:

col1

window specification ::=

OVER < lparen > (PARTITION BY < expression list >)? (< order by clause >)? < rparen >

The window specification for an analytical or windowed aggregate function.

Example:

OVER (PARTION BY col1)

case expression ::=

CASE < expression > (WHEN < expression > THEN < expression >)+ (ELSE < expression >)? END

If/then/else chain using a common search predicand.

Example:

CASE col1 WHEN 'a' THEN 1 ELSE 2

searched case expression ::=

Development Guide Volume 3: Reference Material

286

CASE (WHEN < condition > THEN < expression >)+ (ELSE < expression >)? END

If/then/else chain using multiple search conditions.

Example:

CASE WHEN x = 'a' THEN 1 WHEN y = 'b' THEN 2

function ::=

(CONVERT < lparen > < expression > < comma > < data type > < rparen >)

(CAST < lparen > < expression > AS < data type > < rparen >)

(SUBSTRING < lparen > < expression > ((FROM < expression > (FOR < expression >)?) | (<
comma > < expression list >)) < rparen >)

(EXTRACT < lparen > (YEAR | MONTH | DAY | HOUR | MINUTE | SECOND) FROM < expression >
< rparen >)

(TRIM < lparen > ((((LEADING | TRAILING | BOTH) (< expression >)?) | < expression >) FROM
)? < expression > < rparen >)

((TO_CHARS | TO_BYTES) < lparen > < expression > < comma > < string > < rparen >)

((TIMESTAMPADD | TIMESTAMPDIFF) < lparen > < time interval > < comma > < expression > <
comma > < expression > < rparen >)

< querystring function >

((LEFT | RIGHT | CHAR | USER | YEAR | MONTH | HOUR | MINUTE | SECOND | XMLCONCAT |
XMLCOMMENT) < lparen > (< expression list >)? < rparen >)

((TRANSLATE | INSERT) < lparen > (< expression list >)? < rparen >)

< xml parse >

< xml element >

(XMLPI < lparen > ((NAME)? < identifier >) (< comma > < expression >)? < rparen >)

< xml forest >

< json object >

< xml serialize >

< xml query >

Appendix A. BNF for SQL Grammar

287

(< identifier > < lparen > (ALL | DISTINCT)? (< expression list >)? (< order by clause >)? < rparen >
(< filter clause >)?)

Calls a scalar function.

Example:

func('1', col1)

xml parse ::=

XMLPARSE < lparen > (DOCUMENT | CONTENT) < expression > (WELLFORMED)? < rparen >

Parses the given value as XML.

Example:

XMLPARSE(DOCUMENT doc WELLFORMED)

querystring function ::=

QUERYSTRING < lparen > < expression > (< comma > < derived column >)* < rparen >

Produces a URL query string from the given arguments.

Example:

QUERYSTRING(col1 AS opt, col2 AS val)

xml element ::=

XMLELEMENT < lparen > ((NAME)? < identifier >) (< comma > < xml namespaces >)? (< comma
> < xml attributes >)? (< comma > < expression >)* < rparen >

Creates an XML element.

Example:

XMLELEMENT(NAME "root", child)

xml attributes ::=

XMLATTRIBUTES < lparen > < derived column > (< comma > < derived column >)* < rparen >

Creates attributes for the containing element.

Example:

XMLATTRIBUTES(col1 AS attr1, col2 AS attr2)

Development Guide Volume 3: Reference Material

288

json object ::=

JSONOBJECT < lparen > < derived column list > < rparen >

Produces a JSON object containing name value pairs.

Example:

JSONOBJECT(col1 AS val1, col2 AS val2)

derived column list ::=

< derived column > (< comma > < derived column >)*

a list of name value pairs

Example:

col1 AS val1, col2 AS val2

xml forest ::=

XMLFOREST < lparen > (< xml namespaces > < comma >)? < derived column list > < rparen >

Produces an element for each derived column.

Example:

XMLFOREST(col1 AS ELEM1, col2 AS ELEM2)

xml namespaces ::=

XMLNAMESPACES < lparen > < xml namespace element > (< comma > < xml namespace element >
)* < rparen >

Defines XML namespace URI/prefix combinations

Example:

XMLNAMESPACES('http://foo' AS foo)

xml namespace element ::=

(< string > AS < identifier >)

(NO DEFAULT)

(DEFAULT < string >)

Appendix A. BNF for SQL Grammar

289

An xml namespace

Example:

NO DEFAULT

data type ::=

(STRING (< lparen > < unsigned integer > < rparen >)?)

(VARCHAR (< lparen > < unsigned integer > < rparen >)?)

BOOLEAN

BYTE

TINYINT

SHORT

SMALLINT

(CHAR (< lparen > < unsigned integer > < rparen >)?)

INTEGER

LONG

BIGINT

(BIGINTEGER (< lparen > < unsigned integer > < rparen >)?)

FLOAT

REAL

DOUBLE

(BIGDECIMAL (< lparen > < unsigned integer > (< comma > < unsigned integer >)? < rparen >)?)

(DECIMAL (< lparen > < unsigned integer > (< comma > < unsigned integer >)? < rparen >)?)

DATE

TIME

TIMESTAMP

OBJECT

Development Guide Volume 3: Reference Material

290

(BLOB (< lparen > < unsigned integer > < rparen >)?)

(CLOB (< lparen > < unsigned integer > < rparen >)?)

(VARBINARY (< lparen > < unsigned integer > < rparen >)?)

XML

A data type.

Example:

STRING

time interval ::=

SQL_TSI_FRAC_SECOND

SQL_TSI_SECOND

SQL_TSI_MINUTE

SQL_TSI_HOUR

SQL_TSI_DAY

SQL_TSI_WEEK

SQL_TSI_MONTH

SQL_TSI_QUARTER

SQL_TSI_YEAR

A time interval keyword.

Example:

SQL_TSI_HOUR

non numeric literal ::=

< string >

< binary string literal >

FALSE

Appendix A. BNF for SQL Grammar

291

TRUE

UNKNOWN

NULL

(< escaped type > < string > < rbrace >)

An escaped or simple non numeric literal.

Example:

'a'

unsigned numeric literal ::=

< unsigned integer literal >

< approximate numeric literal >

< decimal numeric literal >

An unsigned numeric literal value.

Example:

1.234

ddl statement ::=

(< create table > | < create procedure > | < option namespace > | < alter options > | < create trigger >)
(< semicolon >)?

A data definition statement.

Example:

CREATE FOREIGN TABLE X (Y STRING)

option namespace ::=

SET NAMESPACE < string > AS < identifier >

A namespace used to shorten the full name of an option key.

Example:

SET NAMESPACE 'http://foo' AS foo

create procedure ::=

Development Guide Volume 3: Reference Material

292

CREATE (VIRTUAL | FOREIGN)? (PROCEDURE | FUNCTION) (< identifier > < lparen > (<
procedure parameter > (< comma > < procedure parameter >)*)? < rparen > (RETURNS (((TABLE
)? < lparen > < procedure result column > (< comma > < procedure result column >)* < rparen >) | <
data type >))? (< options clause >)? (AS < statement >)?)

Defines a procedure or function invocation.

Example:

CREATE FOREIGN PROCEDURE proc (param STRING) RETURNS STRING

procedure parameter ::=

(IN | OUT | INOUT | VARIADIC)? < identifier > < data type > (NOT NULL)? (RESULT)? (DEFAULT
< string >)? (< options clause >)?

A procedure or function parameter

Example:

OUT x INTEGER

procedure result column ::=

< identifier > < data type > (NOT NULL)? (< options clause >)?

A procedure result column.

Example:

x INTEGER

create table ::=

CREATE (FOREIGN TABLE | (VIRTUAL)? VIEW) < identifier > (< create table body > | (< options
clause >)?) (AS < query expression >)?

Defines a table or view.

Example:

CREATE VIEW vw AS SELECT 1

create foreign temp table ::=

CREATE FOREIGN TEMPORARY TABLE < identifier > < create table body > ON < identifier >

Defines a foreign temp table

Example:

Appendix A. BNF for SQL Grammar

293

CREATE FOREIGN TEMPORARY TABLE t (x string) ON z

create table body ::=

(< lparen > < table element > (< comma > < table element >)* (< comma > (CONSTRAINT <
identifier >)? (< primary key > | < other constraints > | < foreign key >) (< options clause >)?)* <
rparen >)? (< options clause >)?

Defines a table.

Example:

(x string) OPTIONS (CARDINALITY 100)

foreign key ::=

FOREIGN KEY < column list > REFERENCES < identifier > (< column list >)?

Defines the foreign key referential constraint.

Example:

FOREIGN KEY (a, b) REFERENCES tbl (x, y)

primary key ::=

PRIMARY KEY < column list >

Defines the primary key.

Example:

PRIMARY KEY (a, b)

other constraints ::=

((UNIQUE | ACCESSPATTERN) < column list >)

(INDEX < lparen > < expression list > < rparen >)

Defines ACCESSPATTERN and UNIQUE constraints and INDEXes.

Example:

UNIQUE (a)

column list ::=

Development Guide Volume 3: Reference Material

294

< lparen > < identifier > (< comma > < identifier >)* < rparen >

A list of column names.

Example:

(a, b)

table element ::=

< identifier > < data type > (NOT NULL)? (AUTO_INCREMENT)? ((PRIMARY KEY) | ((UNIQUE
)? (INDEX)?)) (DEFAULT < string >)? (< options clause >)?

Defines a table column.

Example:

x INTEGER NOT NULL

options clause ::=

OPTIONS < lparen > < option pair > (< comma > < option pair >)* < rparen >

A list of statement options.

Example:

OPTIONS ('x' 'y', 'a' 'b')

option pair ::=

< identifier > (< non numeric literal > | (< plus or minus >)? < unsigned numeric literal >)

An option key/value pair.

Example:

'key' 'value'

alter options ::=

ALTER (VIRTUAL | FOREIGN)? (TABLE | VIEW | PROCEDURE) < identifier > (< alter options list >
| < alter column options >)

alters options of tables/procedure

Example:

ALTER FOREIGN TABLE foo OPTIONS (ADD cardinality 100)

Appendix A. BNF for SQL Grammar

295

alter options list ::=

OPTIONS < lparen > (< add set option > | < drop option >) (< comma > (< add set option > | < drop
option >))* < rparen >

a list of alterations to options

Example:

OPTIONS (ADD updatable true)

drop option ::=

DROP < identifier >

drop option

Example:

DROP updatable

add set option ::=

(ADD | SET) < option pair >

add or set an option pair

Example:

ADD updatable true

alter column options ::=

ALTER (COLUMN | PARAMETER)? < identifier > < alter options list >

alters a set of column options

Example:

ALTER COLUMN bar OPTIONS (ADD updatable true)

Development Guide Volume 3: Reference Material

296

Appendix B. Dashboard Builder

B.1. JBoss Dashboard Builder

JBoss Dashboard Builder is an open source dashboard and reporting tool that allows:

Visual configuration and personalization of dashboards.

Graphical representation of KPIs (Key Performance Indicators).

Definition of interactive report tables.

Filtering and search, both in-memory or database based.

Process execution metrics dashboards.

Data extraction from external systems, through different protocols.

Access control for different user profiles to different levels of information.

B.2. Log in to JBoss Dashboard Builder

Prerequisites

Red Hat JBoss Data Virtualization must be installed and running.

You must have a JBoss Dashboard Builder user account.

Procedure B.1. Log in to the JBoss Dashboard Builder

1. Navigate to JBoss Dashboard Builder

Navigate to JBoss Dashboard Builder in your web browser. The default location is
http://localhost:8080/dashboard.

2. Log in to JBoss Dashboard Builder

Enter the Username and Password of a valid JBoss Dashboard Builder user.

B.3. Adding a JBoss Dashboard Builder User

A JBoss Dashboard Builder user is added in the same way as a JBoss Data Virtualization user.

Two roles are provided for setting JBoss Dashboard Builder permissions:

user - a user has permission to view the dashboard

admin - a user has permission to modify the dashboard

Appendix A. BNF for SQL Grammar

297

http://localhost:8080/dashboard

Important

If a JBoss Dashboard Builder user wants their JBoss Data Virtualization permissions applied to the
data they are accessing, then the external datasource defined in JBoss Dashboard Builder must use
local connection and set PassthroughAuthentication to true on the URL; otherwise, the default
username and password defined for the datasource are used.

Example B.1. The PassthroughAuthentication property set on the connection URL

jdbc:teiid:VDBName;PassthroughAuthentication="true"

Development Guide Volume 3: Reference Material

298

Appendix C. Revision History

Revision 6.3.0-27 Thu Oct 7 2016 David Le Sage
Updates for 6.3

Revision 6.2.0-19 Mon Feb 8 2016 David Le Sage
Updates for 6.2

Appendix B. Dashboard Builder

299

	Table of Contents
	Chapter 1. Read Me
	1.1. Back Up Your Data
	1.2. Variable Name: EAP_HOME
	1.3. Variable Name: MODE
	1.4. Red Hat Documentation Site

	Chapter 2. Architecture
	2.1. Terminology
	2.2. Data Management
	2.2.1. Cursoring and Batching
	2.2.2. Buffer Management
	2.2.3. Cleanup

	2.3. Query Termination
	2.3.1. Canceling Queries
	2.3.2. User Query Timeouts

	2.4. Processing
	2.4.1. Join Algorithms
	2.4.2. Sort-Based Algorithms

	2.5. Load Balancing
	2.5.1. Configure Load Balancing

	Chapter 3. SQL Support
	3.1. SQL Support
	3.2. Identifiers
	3.2.1. Identifiers
	3.2.2. Reserved Words

	3.3. Expressions
	3.3.1. Expressions
	3.3.2. Column Identifiers
	3.3.3. Literals
	3.3.4. Aggregate Functions
	3.3.5. Window Functions
	3.3.6. Window Functions: Analytical Function Definitions
	3.3.7. Window Functions: Processing
	3.3.8. Case and Searched Case
	3.3.9. Scalar Subqueries
	3.3.10. Parameter References
	3.3.11. Criteria
	3.3.12. Operator Precedence
	3.3.13. Criteria Precedence

	3.4. Scalar Functions
	3.4.1. Scalar Functions
	3.4.2. Numeric Functions
	3.4.3. Parsing Numeric Data Types from Strings
	3.4.4. Formatting Numeric Data Types as Strings
	3.4.5. String Functions
	3.4.6. Date/Time Functions
	3.4.7. Parsing Date Data Types from Strings
	3.4.8. Specifying Time Zones
	3.4.9. Type Conversion Functions
	3.4.10. Choice Functions
	3.4.11. Decode Functions
	3.4.12. Lookup Function
	3.4.13. System Functions
	3.4.14. XML Functions
	3.4.15. JSON Functions
	3.4.16. Spatial Functions
	3.4.17. Conversion to JSON
	3.4.18. Security Functions
	3.4.19. Miscellaneous Functions
	3.4.20. Nondeterministic Function Handling

	3.5. DML Commands
	3.5.1. DML Commands
	3.5.2. SELECT Command
	3.5.3. INSERT Command
	3.5.4. UPDATE Command
	3.5.5. DELETE Command
	3.5.6. MERGE Command
	3.5.7. EXECUTE Command
	3.5.8. Procedural Relational Command
	3.5.9. Set Operations
	3.5.10. Subqueries
	3.5.11. Inline Views
	3.5.12. Alternative Subquery Usage

	3.6. DML Clauses
	3.6.1. DML Clauses
	3.6.2. WITH Clause
	3.6.3. SELECT Clause
	3.6.4. FROM Clause
	3.6.5. FROM Clause Hints
	3.6.6. XMLTable
	3.6.7. Nested Tables
	3.6.8. Nested Tables: TEXTTABLE
	3.6.9. Nested Tables: XMLTABLE
	3.6.10. Nested Tables: ARRAYTABLE
	3.6.11. Nested Tables: OBJECTTABLE
	3.6.12. WHERE Clause
	3.6.13. GROUP BY Clause
	3.6.14. HAVING Clause
	3.6.15. ORDER BY Clause
	3.6.16. LIMIT Clause
	3.6.17. INTO Clause
	3.6.18. OPTION Clause

	3.7. DDL Commands
	3.7.1. DDL Commands
	3.7.2. Temporary Tables
	3.7.3. Foreign Temporary Tables
	3.7.4. Alter View
	3.7.5. Alter Procedure
	3.7.6. Create Trigger
	3.7.7. Alter Trigger

	3.8. XML Document Generation
	3.8.1. XML Document Generation
	3.8.2. XML SELECT Command
	3.8.3. XML SELECT: FROM Clause
	3.8.4. XML SELECT: SELECT Clause
	3.8.5. XML SELECT: WHERE Clause
	3.8.6. XML SELECT: ORDER BY Clause
	3.8.7. XML SELECT Command Specific Functions
	3.8.8. CONTEXT Function
	3.8.9. ROWLIMIT Function
	3.8.10. ROWLIMITEXCEPTION Function
	3.8.11. Document Generation
	3.8.12. Document Validation

	3.9. Procedural Language
	3.9.1. Procedural Language
	3.9.2. Command Statement
	3.9.3. Dynamic SQL
	3.9.4. Dynamic SQL Limitations
	3.9.5. Declaration Statement
	3.9.6. Assignment Statement
	3.9.7. Compound Statement
	3.9.8. Exception Handling
	3.9.9. If Statement
	3.9.10. Loop Statement
	3.9.11. While Statement
	3.9.12. Continue Statement
	3.9.13. Break Statement
	3.9.14. Leave Statement
	3.9.15. Return Statement
	3.9.16. Error Statement
	3.9.17. Raise Statement
	3.9.18. Exception Expression

	3.10. Procedures
	3.10.1. Virtual Procedures
	3.10.2. Virtual Procedure Parameters
	3.10.3. Example Virtual Procedures
	3.10.4. Executing Virtual Procedures
	3.10.5. Virtual Procedure Limitations
	3.10.6. Update Procedures
	3.10.7. Update Procedure Processing
	3.10.8. The FOR EACH ROW Procedure
	3.10.9. Special Variables for Update Procedures
	3.10.10. Example Update Procedures

	Chapter 4. Data Types
	4.1. Supported Types
	4.2. Type Conversions
	4.3. Conversion of String Literals
	4.4. Converting to Boolean
	4.5. Date and Time Conversions
	4.6. Escaped Literal Syntax

	Chapter 5. Updatable Views
	5.1. Updatable Views
	5.2. Key-Preserved Table

	Chapter 6. Transaction Support
	6.1. Transaction Support
	6.2. AutoCommitTxn Execution Property
	6.3. Updating Model Count
	6.4. JDBC API Functionality
	6.5. J2EE Usage Models
	6.6. Transactional Behavior with JBoss Data Source Types
	6.7. Limitations

	Chapter 7. Data Roles
	7.1. Data Roles
	7.2. Role Mapping
	7.3. Permissions
	7.3.1. User Query Permissions
	7.3.2. Assigning Permissions
	7.3.3. Row and Column-Based Security Conditions
	7.3.4. Row-Based Security Conditions
	7.3.5. Applying Row-Based Security Conditions
	7.3.6. Considerations When Using Conditions
	7.3.7. Limitations to Using Conditions
	7.3.8. Column Masking
	7.3.9. Applying Column Masking
	7.3.10. Column Masking Considerations
	7.3.11. Column Masking Limitations

	7.4. Data Role Definition
	7.4.1. Data Role Definition
	7.4.2. Data Role Definition Example
	7.4.3. Data Role Definition Example: Additional Attributes
	7.4.4. Data Role Definition Example: Language Access
	7.4.5. Data Role Definition Example: Row-Based Security
	7.4.6. Data Role Definition Example: Column Masking

	Chapter 8. System Schemas and Procedures
	8.1. System Schemas
	8.2. VDB Metadata
	8.3. Table Metadata
	8.4. Procedure Metadata
	8.5. Data Type Metadata
	8.6. System Procedures
	8.7. Metadata Procedures

	Chapter 9. Virtual Databases
	9.1. VDB Definition
	9.2. VDB Definition: The VDB Element
	9.3. VDB Definition: The import-vdb Element
	9.4. VDB Definition: The model Element
	9.5. VDB Definition: The translator Element
	9.6. Dynamic VDBs
	9.7. Dynamic VDB XML Deployment
	9.8. Dynamic VDB ZIP Deployment
	9.9. VDB Reuse
	9.10. Metadata Repositories

	Chapter 10. Generated REST Services
	10.1. Generated REST Services
	10.2. REST Properties
	10.3. Example VDB with REST Properties
	10.4. Considerations for Generated REST Services
	10.5. Security for Generated REST Services
	10.6. Ad-Hoc REST Services

	Chapter 11. Multi-Source Models
	11.1. Multi-Source Models
	11.2. Multi-Source Model Configuration
	11.3. The Multi-Source Column
	11.4. The Multi-Source Column in System Metadata
	11.5. Multi-Source Models: Planning and Execution
	11.6. Multi-Source Models: SELECT, UPDATE and DELETE
	11.7. Multi-Source Models: INSERT
	11.8. Multi-Source Models: Stored Procedures

	Chapter 12. DDL Metadata
	12.1. DDL Metadata
	12.2. Foreign Table
	12.3. View
	12.4. Table Options
	12.5. Column Options
	12.6. Table Constraints
	12.7. INSTEAD OF Triggers
	12.8. Procedures and Functions
	12.9. Variable Argument Support
	12.10. Function Options
	12.11. Aggregate Function Options
	12.12. Procedure Options
	12.13. Options
	12.14. Alter Statement
	12.15. Namespaces for Extension Metadata
	12.16. Example DDL Metadata

	Chapter 13. Translators
	13.1. JBoss Data Virtualization Connector Architecture
	13.2. Translators
	13.3. Translator Properties
	13.4. Translators in JBoss Data Virtualization
	13.5. Base Execution Properties
	13.6. Override Execution Properties
	13.7. Parameterizable Native Queries
	13.8. Delegating Translators
	13.9. Amazon SimpleDB Translator
	13.10. Apache Accumulo Translator
	13.11. Apache SOLR Translator
	13.12. Cassandra Translator
	13.13. File Translator
	13.13.1. File Translator
	13.13.2. File Translator: Execution Properties
	13.13.3. File Translator: Usage

	13.14. Google Spreadsheet Translator
	13.14.1. Google Spreadsheet Translator
	13.14.2. Google Spreadsheet Translator: Native Queries
	13.14.3. Google Spreadsheet Translator: Native Procedure

	13.15. Infinispan DSL Translator
	13.16. JDBC Translator
	13.16.1. JDBC Translator
	13.16.2. JDBC Translator: Execution Properties
	13.16.3. JDBC Translator: Importer Properties
	13.16.4. JDBC Translator: Translator Types
	13.16.5. JDBC Translator: Usage
	13.16.6. JDBC Translator: Native Queries
	13.16.7. JDBC Translator: Native Procedure

	13.17. JPA Translator
	13.18. LDAP Translator
	13.18.1. LDAP Translator
	13.18.2. LDAP Translator: Execution Properties
	13.18.3. LDAP Translator: Metadata Directives
	13.18.4. LDAP Translator: Native Queries
	13.18.5. LDAP Translator: Native Procedure
	13.18.6. LDAP Translator Example: Search
	13.18.7. LDAP Translator Example: Delete
	13.18.8. LDAP Translator Example: Create and Update
	13.18.9. LDAP Connector Capabilities Support
	13.18.10. LDAP Connector Capabilities Support List
	13.18.11. LDAP Attribute Datatype Support
	13.18.12. LDAP: Testing Your Connector
	13.18.13. LDAP: Console Deployment Issues

	13.19. Loopback Translator
	13.20. Microsoft Excel Translator
	13.21. MongoDB Translator
	13.21.1. MongoDB
	13.21.2. MongoDB Translator
	13.21.3. MongoDB Translator: Example DDL
	13.21.4. MongoDB Translator: Metadata Extensions

	13.22. Object Translator
	13.22.1. Object Translator
	13.22.2. Object Translator: Execution Properties
	13.22.3. Object Translator: Supported Capabilities
	13.22.4. Object Translator: Usage
	13.22.5. Object Translator Example

	13.23. OData Translator
	13.23.1. OData Translator
	13.23.2. OData Translator: Execution Properties
	13.23.3. OData Translator: Importer Properties
	13.23.4. OData Translator: Usage
	13.23.5. OData Version 4 Translator
	13.23.5.1. Translator Configuration Options

	13.24. Swagger Translator
	13.24.1. Swagger Translator

	13.25. OLAP Translator
	13.25.1. OLAP Translator
	13.25.2. OLAP Translator: Usage
	13.25.3. OLAP Translator: Native Queries
	13.25.4. OLAP Translator: Native Procedure

	13.26. Salesforce Translator
	13.26.1. Salesforce Translator
	13.26.2. Salesforce Translator: Execution Properties
	13.26.3. Salesforce Translator: SQL Processing
	13.26.4. Salesforce Translator: Multi-Select Picklists
	13.26.5. Salesforce Translator: Selecting All Objects
	13.26.6. Salesforce Translator: Selecting Updated Objects
	13.26.7. Salesforce Translator: Selecting Deleted Objects
	13.26.8. Salesforce Translator: Relationship Queries
	13.26.9. Salesforce Translator: Bulk Insert Queries
	13.26.10. Salesforce Translator: Supported Capabilities
	13.26.11. Salesforce Translator: Native Queries
	13.26.12. Salesforce Translator: Native Procedure
	13.26.13. Salesforce Translator Example: Select
	13.26.14. Salesforce Translator Example: Delete
	13.26.15. Salesforce Translator Example: Create and Update

	13.27. SAP Gateway Translator
	13.28. Web Services Translator
	13.28.1. Web Services Translator
	13.28.2. Web Services Translator: Execution Properties
	13.28.3. Web Services Translator: Usage
	13.28.4. Web Services Translator: Invoke Procedure
	13.28.5. Web Services Translator: InvokeHTTP Procedure

	Chapter 14. Federated Planning
	14.1. Federated Planning
	14.2. Planning Overview
	14.3. Example Query
	14.4. Subquery Optimization
	14.5. XQuery Optimization
	14.6. Partial Results
	14.7. Federated Optimizations
	14.7.1. Access Patterns
	14.7.2. Pushdown
	14.7.3. Dependent Joins
	14.7.4. Copy Criteria
	14.7.5. Projection Minimization
	14.7.6. Partial Aggregate Pushdown
	14.7.7. Optional Join
	14.7.8. Partitioned Union
	14.7.9. Standard Relational Techniques

	14.8. Query Plans
	14.8.1. Query Plans
	14.8.2. Getting a Query Plan
	14.8.3. Analyzing a Query Plan
	14.8.4. Relational Plans
	14.8.5. Relational Plans: Node Statistics
	14.8.6. Source Hints
	14.8.7. Statistics Gathering and Single Partitions

	14.9. Query Planner
	14.9.1. Query Planner
	14.9.2. Relational Planner

	Appendix A. BNF for SQL Grammar
	A.1. Main Entry Points
	A.2. Reserved Keywords
	A.3. Non-Reserved Keywords
	A.4. Reserved Keywords For Future Use
	A.5. Tokens
	A.6. Production Cross-Reference
	A.7. Productions

	Appendix B. Dashboard Builder
	B.1. JBoss Dashboard Builder
	B.2. Log in to JBoss Dashboard Builder
	B.3. Adding a JBoss Dashboard Builder User

	Appendix C. Revision History

