& RedHat

Red Hat JBoss BPM Suite 6.4

Red Hat JBoss BPM Suite Intelligent Process
Server for OpenShift

Develop with Red Hat JBoss BPM Suite Intelligent Process Server for OpenShift

Last Updated: 2019-05-13

Red Hat JBoss BPM Suite 6.4 Red Hat JBoss BPM Suite Intelligent
Process Server for OpenShift

Develop with Red Hat JBoss BPM Suite Intelligent Process Server for OpenShift

Legal Notice

Copyright © 2019 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Guide to using Red Hat JBoss BPM Suite Intelligent Process Server for OpenShift

Table of Contents

Table of Contents

PART LLINTRODUGCTION o i i i e e et it i it a e, 4
CHAPTER 1. WHAT IS THE RED HAT JBOSS BPM SUITE INTELLIGENT PROCESS SERVER? 5
PART I. BEFORE YOU BEGIN .. i i i i e et it aee s 6

CHAPTER 2. COMPARISON: INTELLIGENT PROCESS SERVER FOR OPENSHIFT AND INTELLIGENT
PROCESS SERVER .o i i e i e et ettt aee s 7

2.1. FUNCTIONALITY DIFFERENCES FOR INTELLIGENT PROCESS SERVER FOR OPENSHIFT IMAGES 7
2.2.VERSION COMPATIBILITY AND SUPPORT

2.3. DEPRECATED IMAGE STREAMS AND APPLICATION TEMPLATES FOR INTELLIGENT PROCESS SERVER
FOR OPENSHIFT

2.4. MANAGING INTELLIGENT PROCESS SERVER FOR OPENSHIFT
2.5.SECURITY IN INTELLIGENT PROCESS SERVER FOR OPENSHIFT
2.6.INITIAL SETUP

~N

0 00 N N

PART . GET STARTED ..o i i i e i et e it it e 9

CHAPTER 3. USING INTELLIGENT PROCESS SERVER FOR OPENSHIFT IMAGE STREAMS AND
APPLICATION TEMP L ATES .o i i i et i i ittt ittt ai s 10

CHAPTER 4. DEPLOYMENT CONSIDERATIONS FOR INTELLIGENT PROCESS SERVER FOR OPENSHIFT 11
4. CREATING THE SERVICE ACCOUNT il
4.2. CONFIGURING KEYSTORES il
4.3. GENERATING THE SECRET il

4.4. CREATING THE SERVICE ACCOUNT 12
4.5. CONFIGURING THE PROJECT REMOTE REPOSITORY 12
CHAPTERS. UPDATING PROCESSES i e i i et 14
5.1. RECREATE UPDATE STRATEGY 14
CHAPTER 6. MULTIPLE CONCURRENT VERSIONS i 15
6.1. CONTAINER ID 16
6.2. ADDING, OVERRIDING, OR UPDATING MULTIPLE VERSIONS 16
6.3. REQUEST TARGETING FOR MULTIPLE VERSIONS 17
6.4. ALIAS REDIRECTION 17
CHAPTER 7. RUNNING AND CONFIGURING THE INTELLIGENT PROCESS SERVER XPAAS IMAGE 19
7.1.USING THE INTELLIGENT PROCESS SERVER XPAAS IMAGE SOURCE-TO-IMAGE (S2l) PROCESS 19
7.2. BINARY BUILDS 19
PART IV. TUTORIALS . i i i e et it et it 25

CHAPTER 8. EXAMPLE WORKFLOW: DEPLOYING A JBOSS BPMS PROJECT AS INTELLIGENT PROCESS

SERVERFOR OPENSHIFT IMAGE ... i i e e ittt 26
8.1. PREPARING THE JBOSS BPMS PROJECT 26
8.2. PREPARING INTELLIGENT PROCESS SERVER DEPLOYMENT 27
8.3. DEPLOYMENT 28

CHAPTER 9. EXAMPLE WORKFLOW: DEPLOYING AN UPDATED VERSION CONCURRENTLY WITH

ORIGINAL APPLIC ATION . i i i i et it i ettt aen, 29
PART V. REFERENCE ... i i it e it et ettt ai s 30
CHAPTER10. ARTIFACT REPOSITORY MIRRORS ... i i i 31

Red Hat JBoss BPM Suite 6.4 Red Hat JBoss BPM Suite Intelligent Process Server for OpenShift

CHAPTER 1. APPLICATION TEMPLATE PARAMETERS ... e
CHAPTER 12 LOGGING i i i e i e it i ettt aeen,

CHAPTER 13. END P OINT S ittt ittt ettt et e e e e e e eanneeeesaannneesesennnneesennn,
13.1. REST
13.1.1. Browser
13.1.2. Java
13.2. JMS
13.2.1. Java (HornetQ)
13.2.2. Java (ActiveMQ)

CHAPTER 14. TROUBLESHOOTING ... i i i e et en

APPENDIX A. VERSIONING INFORMATION ... i i e i

Table of Contents

Red Hat JBoss BPM Suite 6.4 Red Hat JBoss BPM Suite Intelligent Process Server for OpenShift

PART I. INTRODUCTION

CHAPTER 1. WHAT IS THE RED HAT JBOSS BPM SUITE INTELLIGENT PROCESS SERVER?

CHAPTER 1. WHAT IS THE RED HAT JBOSS BPM SUITE
INTELLIGENT PROCESS SERVER?

Red Hat JBoss BPM Suite intelligent process server (IPS) for OpenShift provides a platform for

executing business processes on JBoss BPMS Intelligent Process Server 6.3, which is a modular,
standalone server component that can be used to instantiate and execute rules and processes. It
exposes this functionality through REST, JMS and Java interfaces to client application.

Red Hat offers nine Intelligent Process Server application templates:

Template Description

processserver63-basic-s2i

processserver63-mysql-s2i

processserver63-mysql-persistent-s2i

processserver63-postgresql-s2i

processserver63-postgresql-persistent-s2i

processserver63-amq-mysql-s2i

processserver63-amq-mysql-persistent-s2i

processserver63-amq-postgresql-s2i

processserver63-amq-postgresql-persistent-s2i

template provides HTTP and JMS (via HornetQ)
interfaces with a simple H2 database.

template provides HTTP and JMS (via HornetQ)
interfaces with a simple MySQL database.

template provides HTTP and JMS (via HornetQ)
interfaces with a MySQL persistence volume.

template provides HTTP and JMS (via HornetQ)
interfaces with a simple PostgreSQL database.

template provides HTTP and JMS (via HornetQ)
interfaces with a PostgresQL persistence volume.

template provides HTTP, HTTPS, and JMS (via
ActiveMQ) interfaces with a simple MySQL
database.

template provides HTTP, HTTPS, and JMS (via
ActiveMQ) interfaces with a MySQL persistence
volume.

template provides HTTP, HTTPS, and JMS (via
ActiveMQ) interfaces with a simple PostgreSQL
database.

template provides HTTP, HTTPS, and JMS (via
ActiveMQ) interfaces with a PostgresQL persistence
volume.

Red Hat JBoss BPM Suite 6.4 Red Hat JBoss BPM Suite Intelligent Process Server for OpenShift

PART Il. BEFORE YOU BEGIN

TER 2. COMPARISON: INTELLIGENT PROCESS SERVER FOR OPENSHIFT AND INTELLIGENT PROCESS SERVER

CHAPTER 2. COMPARISON: INTELLIGENT PROCESS SERVER
FOR OPENSHIFT AND INTELLIGENT PROCESS SERVER

This topic details the differences between Intelligent Process Server for OpenShift and the full, non-
PaaS release of JBoss BPMS, and provides instructions specific to running and configuring Intelligent
Process Server for OpenShift.

Documentation for other Intelligent Process Server functionality not specific to Intelligent Process
Server for OpenShift can be found in the Red Hat JBoss BPM Suite documentation on the Red Hat
Customer Portal.

2.1. FUNCTIONALITY DIFFERENCES FOR INTELLIGENT PROCESS
SERVER FOR OPENSHIFT IMAGES

There are several major functionality differences between the regular release of Intelligent Process
Server and the Intelligent Process Server for OpenShift:

® |Intelligent Process Server for OpenShift extends the OpenShift EAP image, and any
capabilities or limitations it has are also found in the Intelligent Process Server for OpenShift.

e Business Central is not included in Intelligent Process Server for OpenShift. To connect to the
Intelligent Process Server web console, click the Open Java Console button in OpenShift 3.2.

® There is no support for authoring any content through the BPMS Console or API.

® There is no support for the Singleton strategy for maintaining a single instance of the
RuntimeEngine.

2.2. VERSION COMPATIBILITY AND SUPPORT

For more information on OpenShift image version compatibility, see the xPaa$S part of the OpenShift
and Atomic Platform Tested Integrations page.

2.3. DEPRECATED IMAGE STREAMS AND APPLICATION TEMPLATES
FORINTELLIGENT PROCESS SERVER FOR OPENSHIFT

IMPORTANT

The Intelligent Process Server for OpenShift image version number 6.2 is deprecated
and it will no longer receive updates of image and application templates.

The Intelligent Process Server for OpenShift image version number 6.3 is deprecated
and it will no longer receive updates of image and application templates.

It is recommended to use the version 6.4 of Intelligent Process Server for OpenShift
image and application templates to deploy new applications.

2.4. MANAGING INTELLIGENT PROCESS SERVER FOR OPENSHIFT

As Intelligent Process Server for OpenShift is built off EAP for OpenShift, the JBoss EAP Management
CLlis accessible from within the container for troubleshooting purposes.

1. First open a remote shell session to the running pod:

https://access.redhat.com/documentation/en/red-hat-jboss-bpm-suite/
https://access.redhat.com/articles/2176281

Red Hat JBoss BPM Suite 6.4 Red Hat JBoss BPM Suite Intelligent Process Server for OpenShift

I $ oc rsh <pod_name>

2. Then run the following from the remote shell session to launch the JBoss EAP Management
CLLI:

I $ /opt/eap/bin/jboss-cli.sh

' WARNING
A Any configuration changes made using the JBoss EAP Management CLI on a

running container will be lost when the container restarts.

2.5.SECURITY IN INTELLIGENT PROCESS SERVER FOR OPENSHIFT

Access is limited to users with the kie-server authorization role. A user with this role can be specified via
the KIE_SERVER_USER and KIE_SERVER_PASSWORD environment variables.

NOTE

The HTTP/REST endpoint is configured to only allow the execution of KIE containers and
querying of KIE Server resources. Administrative functions like creating or disposing
Containers, updating Releaselds or Scanners, etc. are restricted. The JMS endpoint
currently does not support these restrictions. In the future, more fine-grained security
configuration should be available for both endpoints.

2.6. INITIAL SETUP

The Tutorials in this guide follow on from and assume an OpenShift instance similar to that created in
the OpenShift Primer.

https://access.redhat.com/documentation/en/red-hat-xpaas/0/openshift-primer/openshift-primer

PART Ill. GET STARTED

PART Illl. GET STARTED

Red Hat JBoss BPM Suite 6.4 Red Hat JBoss BPM Suite Intelligent Process Server for OpenShift

CHAPTER 3. USING INTELLIGENT PROCESS SERVER FOR
OPENSHIFT IMAGE STREAMS AND APPLICATION
TEMPLATES

The Red Hat xPaaS middleware images were automatically created during the installation of OpenShift
along with the other default image streams and templates.

10

https://access.redhat.com/documentation/en/openshift-enterprise/version-3.2/installation-and-configuration/#loading-the-default-image-streams-and-templates

CHAPTER 4. DEPLOYMENT CONSIDERATIONS FOR INTELLIGENT PROCESS SERVER FOR OPENSHIFT

CHAPTER 4. DEPLOYMENT CONSIDERATIONS FOR
INTELLIGENT PROCESS SERVER FOR OPENSHIFT

4.1. CREATING THE SERVICE ACCOUNT

Intelligent Process Server for OpenShift requires a service account for deployments. For multiple node
deployments, the service account must have the view role enabled so that it can manage the various
pods in the cluster. In addition, you will need to configure SSL to enable connections to Intelligent

Process Server from outside of the OpenShift instance.

1. Create the service account:

$ echo '{"kind": "ServiceAccount", "apiVersion": "v1", "metadata": {"name": "<service-account-
name>"}}' | oc create -f -

OpenShift 3.2 users can use the following command to create the service account:
I $ oc create serviceaccount <service-account-name>
2. Add the view role to the service account:

I $ oc policy add-role-to-user view system:serviceaccount:<project-name>:<service-account-
name>

4.2. CONFIGURING KEYSTORES
Intelligent Process Server for OpenShift requires two keystores:
® An SSL keystore to provide private and public keys for https traffic encryption

® A JGroups keystore to provide private and public keys for network traffic encryption between
nodes in the cluster

These keystores are expected by Intelligent Process Server for OpenShift, even if the application uses
only http on a single-node OpenShift instance. Note that self-signed certificates do not provide secure
communication and are intended for internal testing purposes.

' WARNING
A For production environments Red Hat recommends that you use your own SSL

certificate purchased from a verified Certificate Authority (CA) for SSL-encrypted
connections (HTTPS).

See Generate a SSL Encryption Key and Certificate for more information on how to create a keystore
with self-signed or purchased SSL certificates.

4.3. GENERATING THE SECRET

1

https://access.redhat.com/documentation/en-US/JBoss_Enterprise_Application_Platform/6.1/html-single/Security_Guide/index.html#Generate_a_SSL_Encryption_Key_and_Certificate

Red Hat JBoss BPM Suite 6.4 Red Hat JBoss BPM Suite Intelligent Process Server for OpenShift

OpenShift uses objects called Secrets to hold sensitive information, such as passwords or keystores.
See the Secrets chapter in the OpenShift documentation for more information.

Intelligent Process Server for OpenShift requires a secret that holds the two keystores described earlier.
This provides the necessary authorization to applications in the project.

Use the Java and JGroups keystore files to create a secret for the project:
I $ oc create secret generic <ips-secret-name> --from-file=<jgroups.jceks> --from-file=<keystore.jks>

After the secret has been generated, it can be associated with a service account.

4.4. CREATING THE SERVICE ACCOUNT

The service account allows users to associate certain secrets and roles with applications in a project
namespace. This provides the application with the necessary authorization to run with all required
privileges.

1. Create a service account to be used for the Intelligent Process Server deployment:

I $ oc create serviceaccount <service-account-name>

2. Add the view role to the service account. This enables the service account to view all the
resources in the application namespace in OpenShift, which is necessary for managing the
cluster.

$ oc policy add-role-to-user view system:serviceaccount:<project-name>:<service-account-
name>

3. Add the secret created for the project to the service account:

I $ oc secret add sa/<service-account-name> secret/<ips-secret-name>

4.5. CONFIGURING THE PROJECT REMOTE REPOSITORY

The project must be configured to use a remote repository so that Business Central can push changes
and OpenShift can pull the repository to build the application. In the application repository files:

1. The pom.xml must be configured to use a remote repository so that OpenShift can access it.

<distributionManagement>
<repository>
<id>deployment</id>
<name>OpenShift Maven repo</name>
<url>http://maven.example/deployment/filepath/</url>
</repository>

<snapshotRepository>
<id>deployment</id>
<name>0OpenShift Maven repo</name>
<url>http://maven.example/snapshots/filepath/</url>

12

https://access.redhat.com/documentation/en/openshift-enterprise/version-3.2/developer-guide/#dev-guide-secrets

CHAPTER 4. DEPLOYMENT CONSIDERATIONS FOR INTELLIGENT PROCESS SERVER FOR OPENSHIFT

</snapshotRepository>
</distributionManagement>

For more information, see the Red Hat JBoss BPM Suite Administration and Configuration
Guide.

2. The configuration/settings.xml file must have the remote repository defined so that
OpenShift can download the application artifacts.

<profiles>
<profile>
<id>openshift-mirror-repositories</id>
<repositories>
<repository>
<id>openshift-mirror</id>
<url>http://maven.example/public/filepath/</url>
</repository>
</repositories>

<pluginRepositories>
<pluginRepository>
<id>openshift-mirror</id>
<url>http://maven.example/public/filepath/</url>
</pluginRepository>
</pluginRepositories>
</profile>
</profiles>

For more information, see the Red Hat JBoss BPM Suite Installation Guide .

3. The hidden .s2i/environment file defines the KIE container deployment, including which KIE jars
to use and the location from which to retrieve them. When OpenShift deploys the built image,
the pod name is derived from the deployment alias defined in this file:

I KIE_CONTAINER_DEPLOYMENT=<alias>=<group_id>:<artifact_id>:<version>

For example:

I KIE_CONTAINER_DEPLOYMENT=ApplicationTest=com.example.openshift:example_workflow
1.0

13

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_BPM_Suite/6.3/html/Administration_And_Configuration_Guide/Configuring_deployment_to_a_remote_Nexus_repository.html
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_BPM_Suite/6.3/html/Installation_Guide/Using_the_JBoss_Integration_Maven_Repository_Local_Access.html

Red Hat JBoss BPM Suite 6.4 Red Hat JBoss BPM Suite Intelligent Process Server for OpenShift

CHAPTER 5. UPDATING PROCESSES

Each image is built from a snapshot of a specific Maven repository. When a new process is added, or an
existing process modified, a new image must be created and deployed for the modifications to take
effect.

Updating the Application

The KIE_CONTAINER_DEVELOPMENT_OVERRIDE variable can be used to explicitly override the
KIE_CONTAINER_DEPLOYMENT variable set in the original deployment.

When an application has been modified and is ready to be deployed, include the updated version details
for the KIE_CONTAINER_DEPLOYMENT_OVERRIDE variable in the .s2i/environment file. This can
then be pushed to your repository to be built as an image.

Alternatively, start a binary build from the local repo:

I $ oc start-build <RulesTest> --from-repo=</repository/filepath>

This sends the contents of the Git repository directly to OpenShift. If Incremental Builds has been
configured, the new build pulls the image previously used, extracts the Maven repository for the new
pod, and downloads the missing content.

5.1. RECREATE UPDATE STRATEGY

Use the Recreate Update Strategy for the Intelligent Process Server deployment. This update strategy
automatically scales down the old deployment to O and deploys the new version. After the new version is
validated, the new deployment is automatically scaled up to the replica size of the old deployment.

The Recreate update strategy supports Lifecycle Hooks and is set as the default update strategy in the
Intelligent Process Server application templates.

NOTE

The Intelligent Process Server will be inactive during the Recreate update process, until
the new deployment has been validated and scaled. During this period, REST clients may
return 503 service unavailable errors and A-MQ clients may experience timeouts.

IMPORTANT

The Rolling Update Strategy is not supported for Intelligent Process Server for
OpenShift. Although multiple concurrent versions of an application are supported in a
deployment, a cluster can only support valid routing to pods of the same version.

14

https://docs.openshift.com/enterprise/3.2/dev_guide/builds.html#incremental-builds
https://docs.openshift.com/enterprise/3.2/dev_guide/deployments.html#recreate-strategy
https://docs.openshift.com/enterprise/3.2/dev_guide/deployments.html#lifecycle-hooks
https://docs.openshift.com/enterprise/3.2/dev_guide/deployments.html#rolling-strategy

CHAPTER 6. MULTIPLE CONCURRENT VERSIONS

CHAPTER 6. MULTIPLE CONCURRENT VERSIONS

An application may contain multiple concurrent KIE containers of different versions. Each container has a
classloader environment and a unique identifier. The unique identifier is one of either a container ID or a
deployment ID, which are synonymous.

Multiple versions are deployed using the KIE_CONTAINER_DEPLOYMENT variable, specifying the
<alias>=<group_id>x<artifact_id>:<version> for each version of the application, separated by a pipe (|)in
the .s2i/environment file.

For example:

KIE_CONTAINER_DEPLOYMENT=ApplicationTest=com.example.openshift:example_workflow:1.0|Apg
licationTest=com.example.openshift:example_workflow:1.1

would create the following:

KIE_CONTAINER_DEPLOYMENT=ApplicationTest=com.example.openshift:example_workflow:1.0]Apg
licationTest=com.example.openshift:example_workflow:1.1
KIE_CONTAINER_DEPLOYMENT_ORIGINAL:

KIE_CONTAINER_DEPLOYMENT_OVERRIDE:
ApplicationTest=com.example.openshift:example_workflow:1.0|ApplicationTest=com.example.openshift
example_workflow:1.1

KIE_CONTAINER_DEPLOYMENT_COUNT: 2

KIE_CONTAINER_ID_0: be690712c7a5808a0696926088ff18b2
KIE_CONTAINER_KJAR_GROUP_ID_0: com.example.openshift
KIE_CONTAINER_KJAR_ARTIFACT_ID_0: example_workflow
KIE_CONTAINER_KJAR_VERSION_0: 1.0

KIE_CONTAINER_ID_1: 72978ef7154f52df289ef01cbdb51c4d
KIE_CONTAINER_KJAR_GROUP_ID_1: com.example.openshift
KIE_CONTAINER_KJAR_ARTIFACT_ID_1: example_workflow
KIE_CONTAINER_KJAR_VERSION_1:1.0

KIE_CONTAINER_REDIRECT_ENABLED: true

or, as represented in XML format:

<kie-server-state>
<containers>
<container>
<containerld>be690712¢7a5808a0696926088ff18b2</containerld>
<releaseld>
<groupld>com.example.openshift</groupld>
<artifactld>example_workflow</artifactld>
<version>1.0</version>
</releaseld>
<status>STARTED</status>
<configltems/>
<messages/>
</container>
<container>
<containerld>72978ef7154f52df289ef01cbdb51c4d</containerld>
<releaseld>
<groupld>com.example.openshift</groupld>
<artifactld>example_workflow</artifactld>
<version>1.1</version>

15

Red Hat JBoss BPM Suite 6.4 Red Hat JBoss BPM Suite Intelligent Process Server for OpenShift

</releaseld>
<status>STARTED</status>
<configltems/>
<messages/>
</container>
</containers>
</kie-server-state>

IMPORTANT

To deploy multiple concurrent versions, the KIE_CONTAINER_REDIRECT_ENABLED
variable must be set to true. This variable defaults to true and only needs to be explicitly
included in the .s2i/environment file if setting to false.

The KIE_CONTAINER_REDIRECT_ENABLED variable enables override of the container
ID. When set to true, a unique md5 sum hash is generated from the <alias>=<group_id>:
<artifact_id>:<version>for each version of the application. It also enables alias redirection
so that client requests using the deployment alias are redirected to the container of the
correct version.

If set to false, the deployment alias is used as the container ID and multiple concurrent
versions are not possible. If multiple versions of an application are specified for
KIE_CONTAINER_DEPLOYMENT, and KIE_CONTAINER_REDIRECT_ENABLED is set
to false, only the latest version of the application will be deployed and alias redirection
will be disabled.

Changing the KIE_CONTAINER_REDIRECT_ENABLED variable in the .s2i/environment
file of a running application generates a new container ID for the running application,
which may make it incompatible with any clients using the old container ID.

6.1. CONTAINERID
The container ID is an md5 sum hash generated from the <alias>=<group_id>:<artifact_id>:<version> of

the application, and is used for client communication. In the case of multiple versions, each version of
the application will have a unique container ID, but share the deployment alias name.

6.2. ADDING, OVERRIDING, OR UPDATING MULTIPLE VERSIONS

If an application has already been deployed, use the KIE_CONTAINER_DEPLOYMENT_OVERRIDE
variable in the .s2i/environment file, and specify the <alias>=<group_id><artifact_id>:<version>for each
version of the application to override the KIE_CONTAINER_DEPLOYMENT variable in the json
application template. This is useful for preserving older versions of an application that are still in use.

For example, the ApplicationTest application example:

I KIE_CONTAINER_DEPLOYMENT=ApplicationTest=com.example.openshift:example_workflow:1.0

To maintain this version of the application, but to add an updated version, update the .s2i/environment
file:

KIE_CONTAINER_DEPLOYMENT_OVERRIDE=ApplicationTest=com.example.openshift:example_wor
kflow:1.0|ApplicationTest=com.example.openshift:example_workflow:1.1

16

CHAPTER 6. MULTIPLE CONCURRENT VERSIONS

See Example Workflow: Deploying an Updated Version Concurrently with Original Application for an
example on deploying an updated application alongside the older version.

6.3. REQUEST TARGETING FOR MULTIPLE VERSIONS

In most cases, clients must target a particular container by name to execute server-side functions. This
can be done by specifying the full deployment name, the container ID hash, or the deployment alias.

For example:
® Full Deployment Name: ApplicationTest=com.example.openshift.example_workflow:1.0
® Container ID Hash: be690712¢7a5808a0696926088ff18b2
® Deployment Alias: ApplicationTest
Specifying either the full deployment name or the container ID targets the appropriate container.

Specifying the deployment alias, which is used by all the containers in the KIE server, requires a multi-
stage resolution process to target the correct version container.

6.4. ALIAS REDIRECTION

In a multi-version deployment, all applications share the same deployment alias. Requests that use the
deployment alias of the application require a resolution process in order to redirect the request to the
container of the correct version.

Resolution Process Hierarchy

The multi-stage resolution process depends on the method invoked by the client, and the ID associated
with the request:

Process Hierarchy (in descending order):
1. Process Instance ID (specific to IPS/BPM)
2. Correlation Key (specific to IPS/BPM)
3. Task Instance ID (specific to IPS/BPM)
4. Work Item ID (specific to IPS/BPM)
5. Job Request ID (specific to IPS/BPM)
6. Conversation ID
7. Default Container ID
Clients

Multiple clients can be used to invoke the server, depending on the client interaction type:

Client Interaction

KIE interaction org.kie.server.client.KieServicesClient

17

Red Hat JBoss BPM Suite 6.4 Red Hat JBoss BPM Suite Intelligent Process Server for OpenShift

Client Interaction

Intelligent Process Server interaction org.kie.server.client.ProcessServicesClient
org.kie.server.client.JobServicesClient
org.kie.server.client.QueryServicesClient
org.kie.server.client.UserTaskServicesClient

Conversation ID

A conversation represents interactions between KIE Services Java clients and the server. When a client
initiates a conversation, the response from the server includes an encoded multi-part heading. The client
will then use this heading in subsequent requests to the server. This conversation header contains the
conversation ID, which is used by the Servlet Filter in the REST interface, or the EJB Interceptor in the
JMS interface, to determine the correct version of the application to invoke.

' WARNING
A Due to a bug in the KIE client, client classes do not share the conversation ID for all

services and therefore, users will be unable to complete the conversation. This issue
is fixed in BPM Suite 6.3.1 or higher. It is recommended that you use this version of
BPM Suite in your BOM file, as shown here:

<dependencyManagement>
<dependencies>
<dependency>
<groupld>org.jboss.bom.brms</groupld>
<artifactld>jboss-brms-bpmsuite-platform-bom</artifactld>
<version>6.3.1.GA-redhat-2</version>
<type>pom</type>
<scope>import</scope>
</dependency>
</dependencies>
</dependencyManagement>

Default Container ID
The final stage in the process hierarchy is the default container ID. If a specific container ID cannot be

resolved, the default container ID is determined as the application with the latest version (based on
<alias>=<group_id>x<artifact_id>:<version>).

18

CHAPTER 7. RUNNING AND CONFIGURING THE INTELLIGENT PROCESS SERVER XPAAS IMAGE

CHAPTER 7. RUNNING AND CONFIGURING THE INTELLIGENT
PROCESS SERVER XPAAS IMAGE

You can make changes to the Intelligent Process Server configuration in the xPaaS image using either
the S2I templates, or by using a modified Intelligent Process Server image.

7.1. USING THE INTELLIGENT PROCESS SERVER XPAAS IMAGE
SOURCE-TO-IMAGE (S21) PROCESS

The recommended method to run and configure the OpenShift Intelligent Process Server xPaaS image
is to use the OpenShift S2I process together with the application template parameters and environment
variables.

The S2I process for the Intelligent Process Server xPaaS image works as follows:

1. If there is a pom.xml file in the source repository, a Maven build is triggered with the contents of
$MAVEN_ARGS environment variable.

e By default, the package goal is used with the openshift profile, including the system
properties for skipping tests (-DskipTests) and enabling the Red Hat GA repository (-
Dcom.redhat.xpaas.repo.redhatga).

2. The results of a successful Maven build are installed into the local Maven repository,
/home/jboss/.m2/repository/, along with all dependencies for offline usage. The Intelligent
Process Server xPaaS Image will load the created kjars from this local repository.

® |n addition to kjars resulting from the Maven build, any kjars found in the deployments
source directory will also be installed into the local Maven repository. Kjars do not end up in
the EAP_HOME/standalone/deployments/ directory.

3. Any JAR (thatis not a kjar), WAR, and EAR in the deployments source repository directory will
be copied to the EAP_HOME/standalone/deployments directory and subsequently deployed
using the JBoss EAP deployment scanner.

4. Allfiles in the configuration source repository directory are copied to
EAP_HOME/standalone/configuration.

NOTE

If you want to use a custom JBoss EAP configuration file, it should be named standalone-
openshift.xml. . All files in the modules source repository directory are copied to
EAP_HOME/modules.

Refer to the Artifact Repository Mirrors section for additional guidance on how to instruct the S2I
process to utilize the custom Maven artifacts repository mirror.

7.2. BINARY BUILDS
To deploy existing applications on OpenShift, you can use the binary source capability.
Prerequisite:

A. Get the application archive or build the application locally.
The following example uses both the library and library-client quickstarts.

19

https://docs.openshift.com/container-platform/latest/dev_guide/builds/build_inputs.html#binary-source
https://github.com/jboss-openshift/openshift-quickstarts/tree/master/processserver/library
https://github.com/jboss-openshift/openshift-quickstarts/tree/master/processserver/library-client

Red Hat JBoss BPM Suite 6.4 Red Hat JBoss BPM Suite Intelligent Process Server for OpenShift

20

® Clone the source code.
I $ git clone https://github.com/jboss-openshift/openshift-quickstarts.git

® Configure the Red Hat JBoss Middleware Maven repository .

® Build the application — both the library and library-client quickstarts.

NOTE

The mvn clean package command output below has been shortened to
contain just selected information.

I $ cd openshift-quickstarts/processserver/

$ mvn clean package
[INFO] Scanning for projects...

[INFO]
[INFQO] --- maven-jar-plugin:2.4:jar (default-jar) @ processserver-timerprocess ---

[INFO] Building jar: /tmp/openshift-
quickstarts/processserver/timerprocess/target/processserver-timerprocess-1.4.0.Final.jar
[INFO]
[INFO]
[INFO] Building OpenShift Quickstarts: Intelligent Process Server: Parent 1.4.0.Final
[INFO]
[INFO]
[INFQO] --- maven-clean-plugin:2.5:clean (default-clean) @ processserver-parent ---
[INFO]
[INFO] Reactor Summary:

[INFO]

[INFO] OpenShift Quickstarts: Intelligent Process Server: Library SUCCESS [1.212 g]
[INFO] OpenShift Quickstarts: Intelligent Process Server: Library - Client SUCCESS |
7.827 8]

[INFO] OpenShift Quickstarts: Intelligent Process Server: Timer Process SUCCESS [
1.965 s]

[INFO] OpenShift Quickstarts: Intelligent Process Server: Parent SUCCESS [0.002 s]
[INFO]
[INFO] BUILD SUCCESS
[INFO]
[INFO] Total time: 11.759 s

[INFO] Finished at: 2017-06-05T10:26:06+02:00
[INFO] Final Memory: 57M/598M

[INFO]

B. Prepare the directory structure on the local file system.
Application archives in the deployments/ subdirectory of the main binary build directory are
copied directly to the standard deployments folder of the image being built on OpenShift. For
the application to deploy, the directory hierarchy containing the web application data must be
correctly structured.

Create main directory for the binary build on the local file system and deployments/
subdirectory within it. Copy both the previously built JAR archive for the library quickstart
(processserver-library-1.4.0.Final.jar), and WAR archive for the library-client quickstart

https://github.com/jboss-openshift/openshift-quickstarts.git
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.0/html-single/development_guide/#use_the_maven_repository
https://access.redhat.com/maven-repository

CHAPTER 7. RUNNING AND CONFIGURING THE INTELLIGENT PROCESS SERVER XPAAS IMAGE

(processserver-library-client-1.4.0.Final.war) to the deployments/ subdirectory:

$1s
I library library-client pom.xml timerprocess
I $ mkdir -p ps-bin-demo/deployments
I $ cp library/target/processserver-library-1.4.0.Final.jar ps-bin-demo/deployments/

$ cp library-client/target/processserver-library-client-1.4.0.Final.war ps-bin-
demo/deployments/

NOTE

Location of the standard deployments directory depends on the underlying base
image, that was used to deploy the application. See the following table:

Table 7.1. Standard Location of the Deployments Directory

Name of the Underlying Base Image(s) Standard Location of the Deployments

Directory

EAP for OpenShift 6.4 and 7.0 $JBOSS_HOME/standalone/deployme
nts

Java S2I for OpenShift /deployments

JWS for OpenShift $JWS_HOME/webapps

Perform the following steps to run application consisting of binary input on OpenShift:

1. Login into OpenShift instance.
I $ oc login
2. Create a new project.
I $ oc new-project ps-bin-demo

3. (Optional) Identify the image stream for the particular image.

$ oc get is -n openshift | grep *jboss-process | cut -f1 -d '’
jooss-processserver63-openshift

4. Create new binary build, specifying image stream and application name.

21

Red Hat JBoss BPM Suite 6.4 Red Hat JBoss BPM Suite Intelligent Process Server for OpenShift

NOTE

You can change the default user name and password to access the REST
interface of the KIE server by providing custom values for KIE_SERVER_USER
and KIE_SERVER_PASSWORD environment variables.

$ oc new-build --binary=true \

--name=ps-l-app \

--image-stream=jboss-processserver63-openshift \

-e KIE_SERVER _USER=kieserveruser \

-e KIE_SERVER_PASSWORD-=kieserverPwd1!

--> Found image 78c88f3 (2 months old) in image stream "openshift/jboss-processserver63-
openshift" under tag "latest" for "jboss-processserver63-openshift"

JBoss BPMS Intelligent Process Server 6.3

Platform for executing business rules on JBoss BPMS Intelligent Process Server 6.3.
Tags: builder, processserver, processserveré

* A source build using binary input will be created
* The resulting image will be pushed to image stream "ps-l-app:latest”
* A binary build was created, use 'start-build --from-dir' to trigger a new build

--> Creating resources with label build=ps-I-app ...
imagestream "ps-I-app" created
buildconfig "ps-l-app" created

--> Success

5. Start the binary build. Instruct oc executable to use main directory of the binary build we
created in previous step as the directory containing binary input for the OpenShift build.

NOTE

The output of the next command has been shortened for brevity.

$ oc start-build ps-l-app \

--from-dir=./ps-bin-demo/ \

--follow

Uploading directory "ps-bin-demo" as binary input for the build ...

build "ps-l-app-1" started

Receiving source from STDIN as archive ...

Copying all war artifacts from /home/jboss/source/. directory into
/opt/eap/standalone/deployments for later deployment...

Copying all ear artifacts from /home/jboss/source/. directory into
/opt/eap/standalone/deployments for later deployment...

Copying all rar artifacts from /home/jboss/source/. directory into
/opt/eap/standalone/deployments for later deployment...

Copying all jar artifacts from /home/jboss/source/. directory into
/opt/eap/standalone/deployments for later deployment...

Copying all war artifacts from /home/jboss/source/deployments directory into
/opt/eap/standalone/deployments for later deployment...
''nome/jboss/source/deployments/processserver-library-client-1.4.0.Final.war' ->
'Jopt/eap/standalone/deployments/processserver-library-client-1.4.0.Final.war'

22

CHAPTER 7. RUNNING AND CONFIGURING THE INTELLIGENT PROCESS SERVER XPAAS IMAGE

Copying all ear artifacts from /home/jboss/source/deployments directory into
/opt/eap/standalone/deployments for later deployment...

Copying all rar artifacts from /home/jboss/source/deployments directory into
/opt/eap/standalone/deployments for later deployment...

Copying all jar artifacts from /home/jboss/source/deployments directory into
/opt/eap/standalone/deployments for later deployment...
''nome/jboss/source/deployments/processserver-library-1.4.0.Final.jar' ->
'Jopt/eap/standalone/deployments/processserver-library-1.4.0.Final.jar'
/opt/eap/standalone/deployments/processserver-library-1.4.0.Final.jar is a kjar

INFO: org.openshift.quickstarts:processserver-library:1.4.0.Final verified.
Pushing image 172.30.82.129:5000/ps-bin-demo/ps-l-app:latest ...
Pushed 0/9 layers, 0% complete

Pushed 1/9 layers, 12% complete

Pushed 2/9 layers, 33% complete

Pushed 3/9 layers, 45% complete

Pushed 4/9 layers, 64% complete

Pushed 5/9 layers, 71% complete

Pushed 6/9 layers, 80% complete

Pushed 7/9 layers, 88% complete

Pushed 8/9 layers, 100% complete

Pushed 9/9 layers, 100% complete

Push successful

6. Create a new OpenShift application based on the build.

$ oc new-app ps-I-app
--> Found image 65a8367 (About a minute old) in image stream "ps-bin-demo/ps-I-app"
under tag "latest" for "ps-l-app"

ps-bin-demo/ps-Il-app-1:0af8685b

Platform for executing business rules on JBoss BPMS Intelligent Process Server 6.3.
Tags: builder, processserver, processserveré

* This image will be deployed in deployment config "ps-l-app"
* Ports 8080/tcp, 8443/tcp, 8778/tcp will be load balanced by service "ps-lI-app”
* Other containers can access this service through the hostname "ps-I-app”

--> Creating resources ...
deploymentconfig "ps-I-app" created
service "ps-l-app" created

--> Success
Run 'oc status' to view your app.

7. Expose the service as route.

$ oc get svc -0 name
service/ps-1-app

$ oc expose svc/ps-l-app
route "ps-l-app" exposed

23

Red Hat JBoss BPM Suite 6.4 Red Hat JBoss BPM Suite Intelligent Process Server for OpenShift

24

$ oc get route

NAME HOST/PORT PATH SERVICES PORT
TERMINATION WILDCARD

ps-l-app ps-l-app-ps-bin-demo.openshift.example.com ps-l-app 8080-tcp
None

8. Access the application.
You can get the list of available query string arguments of the library application by accessing
the URL http://ps-l-app-ps-bin-demo.openshift.example.com/library.

Run the library-client servlet using the URL http://ps-I-app-ps-bin-
demo.openshift.example.com/library?command=runLocal.

NOTE

You may verify the current KIE server state by accessing dedicated server/ page
of the REST API: http://ps-I-app-ps-bin-demo.openshift.example.com/kie-
server/services/rest/server. Use aforementioned user name and password to
access this page (or any REST APl method of the server in general).

PART IV. TUTORIALS

PART IV. TUTORIALS

25

Red Hat JBoss BPM Suite 6.4 Red Hat JBoss BPM Suite Intelligent Process Server for OpenShift

CHAPTER 8. EXAMPLE WORKFLOW: DEPLOYING A JBOSS
BPMS PROJECT AS INTELLIGENT PROCESS SERVER FOR
OPENSHIFT IMAGE

Business Central, the JBoss BPMS console that provides a unified web-based environment for
managing projects, is not part of Intelligent Process Server for OpenShift. An external repository is
required to integrate projects between Business Central and OpenShift. This tutorial presumes that a
project has already been set up in Business Central.

8.1. PREPARING THE JBOSS BPMS PROJECT

Prepare a Git repository for the project configuration files. The repository is used to store the Maven
repository and KIE container deployment files. The Git repository has the following file hierarchy:

e _/configuration/settings.xml for the Maven repository
e . /.s2i/environment for the KIE container deployment

Preparation of the BPMS project may require some prior knowledge with the Red Hat JBoss BPM Suite.
Refer to the Red Hat JBoss BPM Suite User Guide for more information on any of these tasks.

1. Login to Red Hat JBoss BPM Suite: Business Central web console.

2. Clone the existing repository to ensure it is up-to-date.

a. Authoring —» Administration
b. Repositories — Clone Repository

c. Provide the Repository Name, Organizational Unit, and the Git URL and click the Clone
button.

3. Using Repository View, ensure the pom.xml is configured to use a remote repository by
containing xml similar to the following:

<distributionManagement>
<repository>
<id>deployment</id>
<name>0OpenShift Maven repo</name>
<url>http://maven.example/content/repo/deployments/</url>
</repository>
<snapshotRepository>
<id>deployment</id>
<name>0OpenShift Maven repo</name>
<url>http://maven.example/content/repo/snapshots/</url>
</snapshotRepository>
</distributionManagement>

For more information, see the Red Hat JBoss BRMS Administration and Configuration Guide .

4. In the application repository, ensure the configuration/settings.xml and the .s2i/environment
files define the Maven repository and the KIE container deployment respectively:

26

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_BPM_Suite/6.3/html/User_Guide/
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_BRMS/6.3/html-single/Administration_And_Configuration_Guide/#Configuring_deployment_to_a_remote_Nexus_repository

JRKFLOW: DEPLOYING A JBOSS BPMS PROJECT AS INTELLIGENT PROCESS SERVER FOR OPENSHIFT IMAGE

a. The Maven repository should be defined in the configuration/settings.xml so that
OpenShift can download the application artifacts. It should contain xml similar to the
following:

<profiles>
<profile>
<id>openshift-mirror-repositories</id>
<repositories>
<repository>
<id>openshift-mirror</id>
<url>http://maven.example/content/group/public/</url>
</repository>
</repositories>

<pluginRepositories>
<pluginRepository>
<id>openshift-mirror</id>
<url>http://maven.example/content/group/public/</url>
</pluginRepository>
</pluginRepositories>
</profile>
</profiles>

For more information, see the Red Hat JBoss BRMS Installation Guide .

b. The .s2i/environment file must define the KIE container deployment, including which KIE
jars to use and the location from which to retrieve them. The pod name is derived from the
deployment alias, which is defined as jpsDemo in this example:

I KIE_CONTAINER_DEPLOYMENT=ipsDemo=com.example.openshift:example_workflow:1
.0

5. Click Save if any changes have been made to the project.

6. Click Open Project Editor = Build = Build and Deploy. This will push the project artifacts into
the Maven repository so that it is ready to be deployed on OpenShift.

8.2. PREPARING INTELLIGENT PROCESS SERVER DEPLOYMENT
1. Create a new project:
I $ oc new-project ips-app-demo
2. Create a service account to be used for the IPS deployment:
I $ oc create serviceaccount ips-service-account

3. Add the view role to the service account. This enables the service account to view all the
resources in the ips-app-demo namespace, which is necessary for managing the cluster.

I $ oc policy add-role-to-user view system:serviceaccount:ips-app-demo:ips-service-account

27

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_BRMS/6.3/html/Installation_Guide/Using_the_JBoss_Integration_Maven_Repository_Local_Access.html

Red Hat JBoss BPM Suite 6.4 Red Hat JBoss BPM Suite Intelligent Process Server for OpenShift

4. The Intelligent Process Server template requires an SSL keystore and a JGroups keystore.
These keystores are expected even if the application will not use https.
This example uses ‘keytool’, a package included with the Java Development Kit, to generate
self-signed certificates for these keystores. The following commands will prompt for passwords.

a. Generate a secure key for the SSL keystore:
I $ keytool -genkeypair -alias https -storetype JKS -keystore keystore.jks
b. Generate a secure key for the JGroups keystore:
I $ keytool -genseckey -alias jgroups -storetype JCEKS -keystore jgroups.jceks

5. Use the SSL and JGroup keystore files to create the secret for the project:

I $ oc create secret generic ips-app-secret --from-file=jgroups.jceks --from-file=keystore.jks

6. Add the secret to the service account created earlier:

I $ oc secret add sa/ips-service-account secret/ips-app-secret

8.3. DEPLOYMENT
1. Login to the OpenShift web console and select the ips-app-demo project space.
2. Click Add to Project to list all of the default image streams and templates.

3. Use the Filter by keyword search bar to limit the list to those that match processserver. You
may need to click See all to show the desired application template.

4. Select and configure the desired template.
The SOURCE_REPOSITORY_URL must be set to the Git repository for the deployment, so
that the application can pull the configuration/settings.xml and .s2i/environment files.

5. Click Deploy.

During the build, the Maven repository is downloaded and build into the container so that no additional
packages or dependencies are downloaded at runtime.

The application is available once the pod is running.

28

. EXAMPLE WORKFLOW: DEPLOYING AN UPDATED VERSION CONCURRENTLY WITH ORIGINAL APPLICATION

CHAPTER 9. EXAMPLE WORKFLOW: DEPLOYING AN
UPDATED VERSION CONCURRENTLY WITH ORIGINAL
APPLICATION

This example workflow follows on from Example Workflow: Deploying a JBoss BPMS Project as an xPaaS
Intelligent Process Server xPaaS Image, in which the 1.0 version of the example_workflow artifact was
deployed with a deployment alias of jpsDemo. This example deploys a 1.7 version of the of the
example_workflow artifact alongside the 1.0 version so that both versions of the example_workflow
artifact are running simultaneously, both with the ipsDemo deployment alias.

1. Update the repository with the new version of the server.

2. Edit the .s2i/environment file for the application:

a. Change the KIE_CONTAINER_DEPLOYMENT variable to
KIE_CONTAINER_DEPLOYMENT_OVERRIDE

b. Add the new version to the end of the value string, separated from the older version with a

pipe.

KIE_CONTAINER_DEPLOYMENT_OVERRIDE=ipsDemo=com.example.openshift:exampl
e_workflow:1.0]ipsDemo=com.example.openshift:example_workflow:1.1

3. Save the changes.

4. If the project has GitHub Webhooks configured, the new version will be deployed automatically
alongside the older running applicaiton. Otherwise it can be manually built:

I $ oc start-build ips-app-demo

Once the build has completed, the two different versions of the application will be running
simultaneously using the same deployment alias. See Request Targeting for Multiple Versions for more
information on how client requests are redirected to the correct version of the application.

29

https://docs.openshift.com/enterprise/3.1/dev_guide/builds.html#webhook-triggers

Red Hat JBoss BPM Suite 6.4 Red Hat JBoss BPM Suite Intelligent Process Server for OpenShift

PART V. REFERENCE

30

CHAPTER 10. ARTIFACT REPOSITORY MIRRORS

CHAPTER 10. ARTIFACT REPOSITORY MIRRORS

A repository in Maven holds build artifacts and dependencies of various types (all the project jars, library
jar, plugins or any other project specific artifacts). It also specifies locations from where to download
artifacts from, while performing the S2I build. Besides using central repositories, it is a common practice
for organizations to deploy a local custom repository (mirror).
Benefits of using a mirror are:

® Availability of a synchronized mirror, which is geographically closer and faster.

® Ability to have greater control over the repository content.

® Possibility to share artifacts across different teams (developers, Cl), without the need to rely on
public servers and repositories.

® |mproved build times.
Often, a repository manager can serve as local cache to a mirror. Assuming that the repository manager
is already deployed and reachable externally at http;//10.0.0.1:8080/repository/internal/, the S2I build
can then use this manager by supplying the MAVEN_MIRROR_URL environment variable to the build

configuration of the application as follows:

1. ldentify the name of the build configuration to apply MAVEN_MIRROR_URL variable against:

oc get bc -0 name
buildconfig/ips

2. Update build configuration of ips with a MAVEN_MIRROR_URL environment variable

oc env bc/ips MAVEN_MIRROR_URL="http://10.0.0.1:8080/repository/internal/"
buildconfig "ips" updated

3. Verify the setting

oc env bc/ips --list
buildconfigs ips
MAVEN_MIRROR_URL=http://10.0.0.1:8080/repository/internal/

4. Schedule new build of the application

NOTE

During application build, you will notice that Maven dependencies are pulled from the
repository manager, instead of the default public repositories. Also, after the build is
finished, you will see that the mirror is filled with all the dependencies that were retrieved
and used during the build.

31

Red Hat JBoss BPM Suite 6.4 Red Hat JBoss BPM Suite Intelligent Process Server for OpenShift

CHAPTER 11. APPLICATION TEMPLATE PARAMETERS

Variable Description

APPLICATION_NAME

KIE_SERVER_PROTOCOL

KIE_SERVER_PORT

KIE_SERVER_USER

KIE_SERVER_PASSWORD

KIE_SERVER_DOMAIN

KIE_SERVER_JMS_QUEUES_REQUEST

KIE_SERVER_JMS_QUEUES_RESPONSE

KIE_SERVER_EXECUTOR_JMS_QUEUE

KIE_SERVER_PERSISTENCE_DIALECT

HOSTNAME_HTTP

HOSTNAME_HTTPS

SOURCE_REPOSITORY_URL

SOURCE_REPOSITORY_REF

CONTEXT_DIR

DB_JNDI

32

The name for the application.

The protocol to access the KIE Server REST
interface.

The port to access the KIE Server REST interface.

The user name to access the KIE Server REST or JMS
interface.

The password to access the KIE Server REST or JMS
interface. Must be different than username; must not
be root, admin, or administrator; must contain at least
8 characters, 1alphabetic character(s), 1digit(s), and
1 non-alphanumeric symbol(s).

JAAS LoginContext domain that shall be used to
authenticate users when using JMS.

JNDI name of request queue for JMS.

JNDI name of response queue for JMS.

JNDI name of executor queue for JMS.

Hibernate persistence dialect.

Custom hostname for http service route. Leave blank
for default hostname, e.g., <application-
name>-<project>.<default-domain-suffix>

Custom hostname for https service route. Leave
blank for default hostname, e.g., secure-<application-
name>-<project>.<default-domain-suffix>

Git source URI for application.

Git branch/tag reference.

Path within Git project to build; empty for root
project directory.

Database JNDI name used by application to resolve
the datasource, e.g.
java;/jboss/datasources/ExampleDS

CHAPTER 11. APPLICATION TEMPLATE PARAMETERS

Variable Description

DB_DATABASE

VOLUME_CAPACITY

MQ_JNDI

MQ_PROTOCOL

MQ_QUEUES

MQ_TOPICS

HTTPS_SECRET

HTTPS_KEYSTORE

HTTPS_NAME

HTTPS_PASSWORD

DB_USERNAME

DB_PASSWORD

DB_MIN_POOL_SIZE

DB_MAX_POOL_SIZE

DB_TX_ISOLATION

POSTGRESQL_MAX_CONNECTIONS

Database name.

Size of persistent storage for database volume.

JNDI name for connection factory used by
applications to connect to the broker, e.g.
java:;/JmsXA

Broker protocols to configure, separated by commas.
Allowed values are: openwire, amgqp, stomp and
mqtt. Only openwire is supported by EAP.

Queue names, separated by commas. These queues
will be automatically created when the broker starts.
Also, they will be made accessible as JNDI resources
in EAP.

Topic names, separated by commas. These topics will
be automatically created when the broker starts.
Also, they will be made accessible as JNDI resources
in EAP.

The name of the secret containing the keystore file.

The name of the keystore file within the secret.

The name associated with the server certificate.

The password for the keystore and certificate.

Database user name.

Database user password

Sets xa-pool/min-pool-size for the configured
datasource.

Sets xa-pool/max-pool-size for the configured
datasource.

Sets transaction-isolation for the configured
datasource.

The maximum number of client connections allowed.
This also sets the maximum number of prepared
transactions.

33

Red Hat JBoss BPM Suite 6.4 Red Hat JBoss BPM Suite Intelligent Process Server for OpenShift

Variable Description

POSTGRESQL_SHARED_BUFFERS Configures how much memory is dedicated to
PostgreSQL for caching data.

MQ_USERNAME User name for standard broker user. It is required for
connecting to the broker. If left empty, it will be
generated.

MQ_PASSWORD Password for standard broker user. It is required for
connecting to the broker. If left empty, it will be
generated.

AMQ_ADMIN_USERNAME User name for broker admin. If left empty, it will be
generated.

AMQ_ADMIN_PASSWORD Password for broker admin. If left empty, it will be
generated.

GITHUB_WEBHOOK_SECRET GitHub trigger secret.

GENERIC_WEBHOOK_SECRET Generic build trigger secret.

IMAGE_STREAM_NAMESPACE Namespace in which the ImageStreams for Red Hat

Middleware images are installed. These
ImageStreams are normally installed in the openshift
namespace. You should only need to modify this if
you've installed the ImageStreams in a different
namespace/project.

34

CHAPTER12. LOGGING

CHAPTER12. LOGGING

In addition to viewing the OpenShift logs, you can troubleshoot a running Intelligent Process Server for
OpenShift by viewing the logs that are outputted to the container’s console:

I $ oc logs -f <pod-name>

35

Red Hat JBoss BPM Suite 6.4 Red Hat JBoss BPM Suite Intelligent Process Server for OpenShift

CHAPTER 13. ENDPOINTS

Clients can access Intelligent Process Server for OpenShift via multiple endpoints; by default the
provided templates include support for REST, HornetQ, and ActiveMQ.

13.1. REST

Clients can use the REST API in various ways:

13.1.1. Browser

1. Current server state: http://host/kie-server/services/rest/server
2. List of containers: http://host/kie-server/services/rest/server/containers

3. Specific container state: http://host/kie-
server/services/rest/server/containers/processserver-library

13.1.2. Java

// LibraryClient.java

KieServicesConfiguration config = KieServicesFactory.newRestConfiguration(
"http://host/kie-server/services/rest/server"”, "kieserverUser", "kieserverPassword");

config.setMarshallingFormat(MarshallingFormat. XSTREAM);

ProcessServicesClient client =
KieServicesFactory.newKieServicesClient(config).getServicesClient(ProcessServicesClient.class);

Map<String,Object> params = new HashMap<String,Object>();

LoanRequest loanRequest = new LoanRequest();

loanRequest.setlsbn("978-0-307-35193-7");

params.put("loanRequest”, loanRequest);

Long processlinstanceld = client.startProcess("processserver-library”, "LibraryProcess", params);

13.2. JMS

Client can also use the Java Messaging Service, as demonstrated below:

13.2.1. Java (HornetQ)

36

// LibraryClient.java
Properties props = new Properties();
props.setProperty(Context.INITIAL_CONTEXT_FACTORY,
"org.jboss.naming.remote.client.InitialContextFactory");
props.setProperty(Context. PROVIDER_URL, "remote://host:4447");
props.setProperty(Context. SECURITY_PRINCIPAL, "kieserverUser");
props.setProperty(Context. SECURITY_CREDENTIALS, "kieserverPassword");
InitialContext context = new InitialContext(props);
KieServicesConfiguration config =
KieServicesFactory.newJMSConfiguration(context, "hornetqUser", "hornetqPassword");
config.setMarshallingFormat(MarshallingFormat. XSTREAM);
ProcessServicesClient client =
KieServicesFactory.newKieServicesClient(config).getServicesClient(ProcessServicesClient.class);
Map<String,Object> params = new HashMap<String,Object>();
LoanRequest loanRequest = new LoanRequest();

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_BPM_Suite/6.3/html/Development_Guide/index.html#realtime_decision_server

CHAPTER 13. ENDPOINTS

loanRequest.setlsbn("978-0-307-35193-7");
params.put("loanRequest”, loanRequest);
Long processlinstanceld = client.startProcess("processserver-library”, "LibraryProcess", params);

13.2.2. Java (ActiveMQ)

// LibraryClient.java

props.setProperty(Context.INITIAL_CONTEXT_FACTORY,
"org.apache.activemq.jndi.ActiveMQlInitialContextFactory");

props.setProperty(Context. PROVIDER_URL, "tcp://host:61616");

props.setProperty(Context. SECURITY_PRINCIPAL, "kieserverUser");

props.setProperty(Context. SECURITY_CREDENTIALS, "kieserverPassword");

InitialContext context = new InitialContext(props);

ConnectionFactory connectionFactory = (ConnectionFactory)context.lookup("ConnectionFactory");

Queue requestQueue = (Queue)context.lookup("dynamicQueues/queue/KIE.SERVER.REQUEST");

Queue responseQueue =

(Queue)context.lookup("dynamicQueues/queue/KIE.SERVER.RESPONSE");

KieServicesConfiguration config = KieServicesFactory.newJMSConfiguration(
connectionFactory, requestQueue, responseQueue, "activemqgUser", "activemgPassword");

config.setMarshallingFormat(MarshallingFormat. XSTREAM);

ProcessServicesClient client =
KieServicesFactory.newKieServicesClient(config).getServicesClient(ProcessServicesClient.class);

Map<String,Object> params = new HashMap<String,Object>();

LoanRequest loanRequest = new LoanRequest();

loanRequest.setlsbn("978-0-307-35193-7");

params.put("loanRequest”, loanRequest);

Long processlinstanceld = client.startProcess("processserver-library”, "LibraryProcess", params);

37

Red Hat JBoss BPM Suite 6.4 Red Hat JBoss BPM Suite Intelligent Process Server for OpenShift

CHAPTER 14. TROUBLESHOOTING

In addition to viewing the OpenShift logs, you can troubleshoot a running Intelligent Process Server for
OpenShift container by viewing its logs. These are outputted to the container’s standard out, and are
accessible with the following command:

I $ oc logs -f <pod_name>
NOTE

By default, Intelligent Process Server for OpenShift does not have a file log handler
configured. Logs are only sent to the container’s standard out.

38

APPENDIX A. VERSIONING INFORMATION

APPENDIX A. VERSIONING INFORMATION

Documentation last updated on: Monday, May 13, 2019.

39

	Table of Contents
	PART I. INTRODUCTION
	CHAPTER 1. WHAT IS THE RED HAT JBOSS BPM SUITE INTELLIGENT PROCESS SERVER?
	PART II. BEFORE YOU BEGIN
	CHAPTER 2. COMPARISON: INTELLIGENT PROCESS SERVER FOR OPENSHIFT AND INTELLIGENT PROCESS SERVER
	2.1. FUNCTIONALITY DIFFERENCES FOR INTELLIGENT PROCESS SERVER FOR OPENSHIFT IMAGES
	2.2. VERSION COMPATIBILITY AND SUPPORT
	2.3. DEPRECATED IMAGE STREAMS AND APPLICATION TEMPLATES FOR INTELLIGENT PROCESS SERVER FOR OPENSHIFT
	2.4. MANAGING INTELLIGENT PROCESS SERVER FOR OPENSHIFT
	2.5. SECURITY IN INTELLIGENT PROCESS SERVER FOR OPENSHIFT
	2.6. INITIAL SETUP

	PART III. GET STARTED
	CHAPTER 3. USING INTELLIGENT PROCESS SERVER FOR OPENSHIFT IMAGE STREAMS AND APPLICATION TEMPLATES
	CHAPTER 4. DEPLOYMENT CONSIDERATIONS FOR INTELLIGENT PROCESS SERVER FOR OPENSHIFT
	4.1. CREATING THE SERVICE ACCOUNT
	4.2. CONFIGURING KEYSTORES
	4.3. GENERATING THE SECRET
	4.4. CREATING THE SERVICE ACCOUNT
	4.5. CONFIGURING THE PROJECT REMOTE REPOSITORY

	CHAPTER 5. UPDATING PROCESSES
	5.1. RECREATE UPDATE STRATEGY

	CHAPTER 6. MULTIPLE CONCURRENT VERSIONS
	6.1. CONTAINER ID
	6.2. ADDING, OVERRIDING, OR UPDATING MULTIPLE VERSIONS
	6.3. REQUEST TARGETING FOR MULTIPLE VERSIONS
	6.4. ALIAS REDIRECTION

	CHAPTER 7. RUNNING AND CONFIGURING THE INTELLIGENT PROCESS SERVER XPAAS IMAGE
	7.1. USING THE INTELLIGENT PROCESS SERVER XPAAS IMAGE SOURCE-TO-IMAGE (S2I) PROCESS
	7.2. BINARY BUILDS

	PART IV. TUTORIALS
	CHAPTER 8. EXAMPLE WORKFLOW: DEPLOYING A JBOSS BPMS PROJECT AS INTELLIGENT PROCESS SERVER FOR OPENSHIFT IMAGE
	8.1. PREPARING THE JBOSS BPMS PROJECT
	8.2. PREPARING INTELLIGENT PROCESS SERVER DEPLOYMENT
	8.3. DEPLOYMENT

	CHAPTER 9. EXAMPLE WORKFLOW: DEPLOYING AN UPDATED VERSION CONCURRENTLY WITH ORIGINAL APPLICATION
	PART V. REFERENCE
	CHAPTER 10. ARTIFACT REPOSITORY MIRRORS
	CHAPTER 11. APPLICATION TEMPLATE PARAMETERS
	CHAPTER 12. LOGGING
	CHAPTER 13. ENDPOINTS
	13.1. REST
	13.1.1. Browser
	13.1.2. Java

	13.2. JMS
	13.2.1. Java (HornetQ)
	13.2.2. Java (ActiveMQ)

	CHAPTER 14. TROUBLESHOOTING
	APPENDIX A. VERSIONING INFORMATION

