‘® redhat.

Red Hat JBoss A-MQ 6.0

Connection Reference

A reference for all of the options for creating connections to a broker

Last Updated: 2017-10-13

Red Hat JBoss A-MQ 6.0 Connection Reference

A reference for all of the options for creating connections to a broker

JBoss A-MQ Docs Team
Content Services
fuse-docs-support@redhat.com

Legal Notice
Copyright © 2014 Red Hat.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution—Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.
Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other countries
and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or
sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Red Hat JBoss A-MQ supports a number of different wire protocols and message formats. In
addition, it overlays reconnection logic and discovery logic over these options. This guide provides a
quick reference for understanding how to configure connections between brokers, clients, and other
brokers.

Table of Contents

Table of Contents

CHAPTER 1. OPENWIRE OVER TCP ...ttt ittt ettt e e et e ata e e na s aa s a i nnnnns 4
URI SYNTAX 4
SETTING TRANSPORT OPTIONS 4
TRANSPORT OPTIONS 5

CHAPTER 2. OPENWIRE OVER SSLottt it et e s et et et e na s aa s a s an e annnns 8
URI SYNTAX 8
SETTING TRANSPORT OPTIONS 8
SSL TRANSPORT OPTIONS 9
CONFIGURING BROKER SSL OPTIONS 10
CONFIGURING CLIENT SSL OPTIONS 10

CHAPTER 3. OPENWIRE OVER HTTP(S) . ..ottt ittt i e s e i e e e a e asna s naannanns 11
URI SYNTAX 11
DEPENDENCIES 11

CHAPTER 4. OPENWIRE OVER UDP/IPttt it ittt et et a et e e a e ananananeanns 12
URI SYNTAX 12
SETTING TRANSPORT OPTIONS 12
TRANSPORT OPTIONS 13

CHAPTER 5. STOMP PROTOCOL ...ttt ittt ettt ti e et a s aa s a e a e n s a e sannnsannanrnnns 14
OVERVIEW 14
URI SYNTAX 14
TRANSPORT OPTIONS 14
SSL TRANSPORT OPTIONS 15
CONFIGURING BROKER SSL OPTIONS 15
CONFIGURING CLIENT SSL OPTIONS 16

CHAPTER 6. MULTICAST PROTOCOL ...ttt it e it ia e e saa s naa e nsa e sannnsannnnrnnns 17
URI SYNTAX 17
TRANSPORT OPTIONS 17

CHAPTER 7. MQ TELEMETRY TRANSPORT(MQTT) PROTOCOLciiiiiiiiii i iiaens 19
URI SYNTAX 19
TRANSPORT OPTIONS 19
SSL TRANSPORT OPTIONS 20
CONFIGURING BROKER SSL OPTIONS 20
CONFIGURING CLIENT SSL OPTIONS 21

CHAPTER 8. VM TRANSPORT ... ittt ittt et st a et a e an e e a e annaeannanrnnns 22
8.1. SIMPLE VM URI SYNTAX 22
8.2. ADVANCED VM URI SYNTAX 24

CHAPTER 9. DYNAMIC DISCOVERY PROTOCOL ...ttt iie e tie s e e n e anaannanennns 26
URI SYNTAX 26
TRANSPORT OPTIONS 26

CHAPTER 10. FANOUT PROTOCOLttt ettt ettt ia e et aa s naa e e a e sannnsannanrnnns 28
URI SYNTAX 28
TRANSPORT OPTIONS 28

CHAPTER 11. DISCOVERY AGENTS ittt ittt et a e a et a s atanasn s anennns 30
FABRIC AGENT 30

Red Hat JBoss A-MQ 6.0 Connection Reference

STATIC AGENT
MULTICAST AGENT
ZEROCONF AGENT

CHAPTER 12. PEER PROTOCOLttt ittt ettt ta e et aa s aaa e n s a e sannnsannanennns
URI SYNTAX
BROKER OPTIONS
DEPENDENCIES

APPENDIX A. OPENWIRE FORMAT OPTIONSttt et et e s e e a e a s na s aananns

APPENDIX B. CLIENT CONNECTION OPTIONS ittt et et i et e e a e ananananennns
OVERVIEW
OPTIONS
BLOB HANDLING
PREFETCH LIMITS
REDELIVERY POLICY

30
30
30

32
32
32

Table of Contents

Red Hat JBoss A-MQ 6.0 Connection Reference

CHAPTER 1. OPENWIRE OVER TCP

URI SYNTAX

A vanilla TCP URI has the syntax shown in Example 1.1, “Syntax for a vanilla TCP Connection”.

Example 1.1. Syntax for a vanilla TCP Connection

I tcp://Host[:Port]?transportOptions

An NIO URI has the syntax shown in Example 1.2, “Syntax for NIO Connection”.

Example 1.2. Syntax for NIO Connection

I nio://Host[:Port]?transportOptions

SETTING TRANSPORT OPTIONS

OpenWire transport options, transportOptions, are specified as a list of matrix parameters. How you
specify the options to use differs between a client-side URI and a broker-side URI:

e When using a URI to open a connection between a client and a broker, you just specify the
name of the option as shown.

Example 1.3. Setting an Option on a Client-Side TCP URI

I tcp://fusesource.com:61616?trace=true
e When using a URI to open a broker listener socket, you prefix the option name with
transport. as shown.

Example 1.4. Specifying Transport Options for a Listener Socket

I tcp://fusesource.com:61616?transport.trace=true
e When using a URI to open a broker connection socket, you just specify the name of the option
as shown.

Example 1.5. Setting an Option on a Client-Side TCP URI

I tcp://fusesource.com:61616?trace=true

IMPORTANT

TRANSPORT OPTIONS

Example 1.6. Transport Options in XML

CHAPTER 1. OPENWIRE OVER TCP

In XML configuration, you must escape the & symbol, replacing it with & as shown.

I ?option=value&option=value& . ..

Table 1.1, “TCP and NIO Transport Options” shows the options supported by the TCP and the NIO

URIs

Table 1.1. TCP and NIO Transport Options

Option

minmumWireFormatVersion

trace

daemon

useLocalHost

socketBufferSize

keepAlive

soTimeout

soWriteTimeout

Default

0

false

false

true

64*1024

false

Description

Specifies the minimum wire format
version that is allowed.

Causes all commands sent over
the transport to be logged.

Specifies whether the transport
thread runs as a daemon or not.
Useful to enable when embedding
in a Spring container or in a web
container, to allow the container to
shut down properly.

When true, causes the local
machine's name to resolve to
localhost.

Sets the socket buffer size in
bytes.

When true, enables TCP
KeepAlive on the broker
connection. Useful to ensure that
inactive consumers do not time
out.

Specifies, in milliseconds, the
socket timeout.

Specifies, in milliseconds, the
timeout for socket write
operations.

http://tldp.org/HOWTO/TCP-Keepalive-HOWTO/overview.html

Red Hat JBoss A-MQ 6.0 Connection Reference

Option

connectionTimeout

closeAsync

soLinger

maximumConnections

diffServ

typeOfService

wireFormat

Default

30000

true

MIN_INTEGER

MAX_VALUE

Description

Specifies, in milliseconds, the
connection timeout. Zero means
wait forever for the connection to
be established.

The false value causes all
sockets to be closed
synchronously.

When > -1, enables the
SoLinger socket option with
this value. When equal to -1,
disables SoLinger.

The maximum number of sockets
the broker is allowed to create.

(Client only) The preferred
Differentiated Services traffic class
to be set on outgoing packets, as
described in RFC 2475. Valid
integer values are [0, 64). Valid
string values are EF, AF[1-3]
[1-4] or CS[0-7]. With JDK 6,
only works when the Java
Runtime uses the IPv4 stack,
which can be done by setting the
java.net.preferIPv4Stac
k system property to true.
Cannot be used at the same time
as the typeOfService option.

(Client only) The preferred type of
service value to be set on
outgoing packets. Valid integer
values are [0, 256). With JDK
6, only works when the Java
Runtime uses the IPv4 stack,
which can be done by setting the
java.net.preferIPv4Stac
k system property to true.
Cannot be used at the same time
as the diffServ option.

The name of the wire format to
use.

Option

wireFormat.*

jms.*

CHAPTER 1. OPENWIRE OVER TCP

Description

All the properties with this prefix
are used to configure the
wireFormat. See Table A.1, “Wire
Format Options Supported by
OpenWire Protocol” for more
information.

All the properties with this prefix
are used to configure client
connections to a broker. See
Appendix B, Client Connection
Options for more information.

Red Hat JBoss A-MQ 6.0 Connection Reference

CHAPTER 2. OPENWIRE OVER SSL

URI SYNTAX

A vanilla SSL URI has the syntax shown in Example 2.1, “Syntax for a vanilla SSL Connection”.

Example 2.1. Syntax for a vanilla SSL Connection

I ssl://Host[:Port]?transportOptions

An SSL URI for using NIO has the syntax shown in Example 2.2, “Syntax for NIO Connection”.

Example 2.2. Syntax for NIO Connection

I nio+ssl://Host[:Port]?transportOptions

SETTING TRANSPORT OPTIONS

OpenWire transport options, transportOptions, are specified as a list of matrix parameters. How you
specify the options to use differs between a client-side URI and a broker-side URI:

e When using a URI to open a connection between a client and a broker, you just specify the
name of the option as shown.

Example 2.3. Setting an Option on a Client-Side TCP URI

I tcp://fusesource.com:61616?trace=true
e When using a URI to open a broker listener socket, you prefix the option name with
transport. as shown.

Example 2.4. Specifying Transport Options for a Listener Socket

I tcp://fusesource.com:61616?transport.trace=true
e When using a URI to open a broker connection socket, you just specify the name of the option
as shown.

Example 2.5. Setting an Option on a Client-Side TCP URI

I tcp://fusesource.com:61616?trace=true

CHAPTER 2. OPENWIRE OVER SSL

IMPORTANT

In XML configuration, you must escape the & symbol, replacing it with & as shown.

Example 2.6. Transport Options in XML

I ?option=value&option=value& . ..

SSL TRANSPORT OPTIONS

In addition to the options supported by the non-secure TCP/NIO transport listed in Table 1.1, “TCP and
NIO Transport Options”, the SSL transport also supports the options for configuring the
SSLServerSocket created for the connection. These options are listed in Table 2.1, “SSL Transport
Options”.

Table 2.1. SSL Transport Options

Option Default Description

enabledCipherSuites Specifies the cipher suites
accepted by this endpoint, in the
form of a comma-separated list.

enabledProtocols Specifies the secure socket
protocols accepted by this
endpoint, in the form of a comma-
separated list. If using Oracle's
JSSE provider, possible values
are: TLSv1, TLSv1.1, or
TLSv1.2 (do notuse
SSLv2Hello or SSLv3,
because of the POODLE security
vulnerability, which affects SSLv3).

wantClientAuth (broker only) If true, the server
requests (but does not require) the
client to send a certificate.

needClientAuth false (broker only) If true, the server
requires the client to send its
certificate. If the client fails to send
a certificate, the server will throw
an error and close the session.

enableSessionCreation true (broker only) If true, the server
socket creates a new SSL session
every time it accepts a connection
and spawns a new socket. If
false, an existing SSL session
must be resumed when the server
socket accepts a connection.

Red Hat JBoss A-MQ 6.0 Connection Reference

' WARNING
A If you are planning to enable SSL/TLS security, you must ensure that you explicitly

disable the SSLv3 protocol, in order to safeguard against the Poodle vulnerability
(CVE-2014-3566). For more details, see Disabling SSLv3 in JBoss Fuse 6.x and
JBoss A-MQ 6.x.

CONFIGURING BROKER SSL OPTIONS

On the broker side, you must specify an SSL transport option using the syntax
transport.OptionName. For example, to enable an OpenWire SSL port on a broker, you would add
the following transport element:

<transportConnector name="ssl" uri="ssl:localhost:61617?
transport.enabledProtocols=TLSv1,TLSv1.1,TLSv1.2" />

TIP

Remember, if you are specifying more than one option in the context of XML, you need to escape the
ampersand, &, between options as & .

CONFIGURING CLIENT SSL OPTIONS

On the client side, you must specify an SSL transport option using the syntax socket .0OptionName.
For example, to connect to an OpenWire SSL port, you would use a URL like the following:

I ssl:localhost:61617?socket.enabledProtocols=TLSv1,TLSv1l.1,TLSv1.2

10

https://access.redhat.com/articles/1232123
https://access.redhat.com/solutions/1237613

CHAPTER 3. OPENWIRE OVER HTTP(S)

CHAPTER 3. OPENWIRE OVER HTTP(S)

URI SYNTAX

An HTTP URI has the syntax shown in Example 3.1, “Syntax for an HTTP Connection”.

Example 3.1. Syntax for an HTTP Connection

I tcp://Host[:Port]

An HTTPS URI has the syntax shown in Example 3.2, “Syntax for an HTTPS Connection”.

Example 3.2. Syntax for an HTTPS Connection

I https://Host[:Port]

DEPENDENCIES

To use the HTTP(S) transport requires that the following JARs from the 1ib/optional folder are
included on the classpath:

e activemq-http-x.x.x.jar
e Xxstream-x.x.x.jar

e commons-logging-x.x.x.jar
e commons-codec-x.X.X.jar
e httpcore-x.x.x.jar

e httpclient-x.x.x.jar

11

Red Hat JBoss A-MQ 6.0 Connection Reference

CHAPTER 4. OPENWIRE OVER UDP/IP

URI SYNTAX

A UDP URI has the syntax shown in Example 4.1, “Syntax for a UDP Connection”.

Example 4.1. Syntax for a UDP Connection

I udp://Host[:Port]?transportOptions

SETTING TRANSPORT OPTIONS

OpenWire transport options, transportOptions, are specified as a list of matrix parameters. How you
specify the options to use differs between a client-side URI and a broker-side URI:

e When using a URI to open a connection between a client and a broker, you just specify the
name of the option as shown.

Example 4.2. Setting an Option on a Client-Side TCP URI

I tcp://fusesource.com:61616?trace=true

e When using a URI to open a broker listener socket, you prefix the option name with
transport. as shown.

Example 4.3. Specifying Transport Options for a Listener Socket

I tcp://fusesource.com:61616?transport.trace=true

e When using a URI to open a broker connection socket, you just specify the name of the option
as shown.

Example 4.4. Setting an Option on a Client-Side TCP URI

I tcp://fusesource.com:61616?trace=true

IMPORTANT

In XML configuration, you must escape the & symbol, replacing it with & as shown.

Example 4.5. Transport Options in XML

I ?option=value&option=value& . ..

12

CHAPTER 4. OPENWIRE OVER UDP/IP

TRANSPORT OPTIONS

The UDP transport supports the options listed in Table 4.1, “UDP Transport Options”.

Table 4.1. UDP Transport Options

Option Default Description

minmumWireFormatVersion 0 The minimum version wire format
that is allowed.

trace false Causes all commands sent over
the transport to be logged.

useLocalHost true When true, causes the local
machine's name to resolve to
localhost.

datagramSize 4*1024 Specifies the size of a datagram.

wireFormat The name of the wire format to
use.

wireFormat. * All options with this prefix are used

to configure the wire format. See
Table A.1, “Wire Format Options
Supported by OpenWire Protocol”
for more information.

jms.* All the properties with this prefix
are used to configure client
connections to a broker. See
Appendix B, Client Connection
Options for more information.

13

Red Hat JBoss A-MQ 6.0 Connection Reference

CHAPTER 5. STOMP PROTOCOL

Abstract

The Stomp protocol is a simplified messaging protocol that is specially designed for implementing clients
using scripting languages. This chapter provides a brief introduction to the protocol.

OVERVIEW

The Stomp protocol is a simplified messaging protocol that is being developed as an open source project
(http://stomp.codehaus.org/). The advantage of the stomp protocol is that you can easily improvise a
messaging client—even when a specific client APl is not available—because the protocol is so simple.

URI SYNTAX
Example 5.1, “Vanilla Stop URI” shows the syntax for a vanilla Stomp connection.

Example 5.1. Vanilla Stop URI

I stomp://Host:[Port]?transportOptions

An NIO URI has the syntax shown in Example 5.2, “Syntax for Stomp+NIO Connection”.

Example 5.2. Syntax for Stomp+NIO Connection

I stomp+nio://Host[:Port]?transportOptions

A secure Stomp URI has the syntax shown in Example 5.3, “Syntax for a Stomp SSL Connection”.

Example 5.3. Syntax for a Stomp SSL Connection

I stomp+ssl://Host[:Port]?transportOptions
A secure Stomp+NIO URI has the syntax shown in Example 5.4, “Syntax for a Stomp+NIO SSL
Connection”.

Example 5.4. Syntax for a Stomp+NIO SSL Connection

I stomp+nio+ssl://Host[:Port]?transportOptions

TRANSPORT OPTIONS
The Stomp protocol supports the following transport options:

Table 5.1. Transport Options Supported by Stomp Protocol

14

http://stomp.codehaus.org/

Property Default

transport.defaultHeartB 0,0
eat

jms.*

SSL TRANSPORT OPTIONS

CHAPTER 5. STOMP PROTOCOL

Description

Specifies how the broker
simulates the heartbeat policy
when working with legacy Stomp
1.0 clients. The first value in the
pair specifies, in milliseconds, the
server will wait between
messages before timing out the
connection. The second value
specifies, in milliseconds, the the
client will wait between messages
received from the server. Because
Stomp 1.0 clients do not
understand heartbeat messages,
the second value should always
be 0. This option is set in the uri
attribute of a broker's
transportConnector
element to enable backward
compatibility with Stomp 1.0
clients.

All the properties with this prefix
are used to configure client
connections to a broker. See
Appendix B, Client Connection
Options for more information.

In addition to the options supported by the non-secure Stomp transports, the SSL transport also supports
the options for configuring the SSLServerSocket created for the connection. These options are listed

in Table 2.1, “SSL Transport Options”.

WARNING
A If you are planning to enable SSL/TLS security, you must ensure that you explicitly

disable the SSLv3 protocol, in order to safeguard against the Poodle vulnerability
(CVE-2014-3566). For more details, see Disabling SSLv3 in JBoss Fuse 6.x and

JBoss A-MQ 6.x.

CONFIGURING BROKER SSL OPTIONS

On the broker side, you must specify an SSL transport option using the syntax
transport.OptionName. For example, to enable a Stomp SSL port on a broker, you would add the

following transport element:

transport.enabledProtocols=TLSv1,TLSv1.1,TLSv1.2" />

I <transportConnector name="stompssl" uri="stomp+ssl://localhost:61617?

15

https://access.redhat.com/articles/1232123
https://access.redhat.com/solutions/1237613

Red Hat JBoss A-MQ 6.0 Connection Reference

TIP

Remember, if you are specifying more than one option in the context of XML, you need to escape the
ampersand, &, between options as & .

CONFIGURING CLIENT SSL OPTIONS

On the client side, you must specify an SSL transport option using the syntax socket .0OptionName.
For example, to connect to a Stomp SSL port, you would use a URL like the following:

I stomp+ssl://localhost:61617?socket.enabledProtocols=TLSv1l, TLSv1l.1,TLSv1l.2

16

CHAPTER 6. MULTICAST PROTOCOL

CHAPTER 6. MULTICAST PROTOCOL

Abstract

Multicast is an unreliable protocol that allows clients to connect to brokers using IP multicast.

URI SYNTAX

Example 6.1, “Multicast URI” shows the syntax for a Multicast connection.

Example 6.1. Multicast URI

I multicast://Host:[Port]?transportOptions

TRANSPORT OPTIONS
The Multicast protocol supports the following transport options:

Table 6.1. Transport Options Supported by Multicast Protocol

Property Default Description

group default Specifies a unique group name
that can segregate multicast
traffic.

minmumWireFormatVersion 0 Specifies the minimum wire format
version that is allowed.

trace false Causes all commands sent over
the transport to be logged.

useLocalHost true When true, causes the local
machine's name to resolve to
localhost.

datagramSize 4 * 1024 Specifies the size of a datagram.

timeTolLive -1 Specifies the time to live of

datagrams. Set greater than 1 to
send packets beyond the local
network. [a]

loopBackMode false Specifies whether loopback mode
is used.

17

Red Hat JBoss A-MQ 6.0 Connection Reference

Property Default Description

wireFormat The name of the wire format to
use.

wireFormat. * All the properties with this prefix

are used to configure the
wireFormat. See Table A.1, “Wire
Format Options Supported by
OpenWire Protocol” for more
information.

jms.* All the properties with this prefix
are used to configure client
connections to a broker. See
Appendix B, Client Connection
Options for more information.

[a] This won't work for IPv4 addresses without setting the property java.net .preferIPv4Stack=true.

18

CHAPTER 7. MQ TELEMETRY TRANSPORT(MQTT) PROTOCOL

CHAPTER 7. MQ TELEMETRY TRANSPORT(MQTT)
PROTOCOL

Abstract

MQTT is a machine-to-machine (M2M)/"Internet of Things" connectivity protocol. It was designed as a

lightweight publish/subscribe messaging transport.

URI SYNTAX

Example 7.1, “MQTT URI” shows the syntax for an MQTT connection.

Example 7.1. MQTT URI

I mgtt://Host:[Port]?transportOptions

An NIO URI has the syntax shown in Example 7.2, “Syntax for MQTT+NIO Connection”.

Example 7.2. Syntax for MQTT+NIO Connection

I mgtt+nio://Host[:Port]?transportOptions

A secure MQTT URI has the syntax shown in Example 7.3, “Syntax for an MQTT SSL Connection”.

Example 7.3. Syntax for an MQTT SSL Connection

I mgtt+ssl://Host[:Port]?transportOptions

A secure MQTT+NIO URI has the syntax shown in Example 7.4, “Syntax for a MQTT+NIO SSL
Connection”.

Example 7.4. Syntax for a MQTT+NIO SSL Connection

I mgtt+nio+ssl://Host[:Port]?transportOptions

TRANSPORT OPTIONS

The MQTT protocol supports the following transport options:

Table 7.1. MQTT Transport Options

19

Red Hat JBoss A-MQ 6.0 Connection Reference

Property Default Description
transport.defaultKeepAl 0 Specifies, in milliseconds, the
ive broker will allow a connection to

be silent before it is closed. If a
client specifies a keep-alive
duration, this setting is ignored.
This option is set in the uri
attribute of a broker's
transportConnector
element.

jms.* All the properties with this prefix
are used to configure client
connections to a broker. See
Appendix B, Client Connection
Options for more information.

SSL TRANSPORT OPTIONS

In addition to the options supported by the non-secure MQTT transports, the SSL transport also supports
the options for configuring the SSLServerSocket created for the connection. These options are listed
in Table 2.1, “SSL Transport Options”.

WARNING
A If you are planning to enable SSL/TLS security, you must ensure that you explicitly

disable the SSLv3 protocol, in order to safeguard against the Poodle vulnerability
(CVE-2014-3566). For more details, see Disabling SSLv3 in JBoss Fuse 6.x and
JBoss A-MQ 6.x.

CONFIGURING BROKER SSL OPTIONS
On the broker side, you must specify an SSL transport option using the syntax

transport.OptionName. For example, to enable an MQTT SSL port on a broker, you would add the
following transport element:

<transportConnector name="mqttssl" uri="mqgtt+ssl://localhost:61617?
transport.enabledProtocols=TLSv1,TLSv1.1,TLSv1.2" />

TIP

Remember, if you are specifying more than one option in the context of XML, you need to escape the
ampersand, &, between options as & .

20

https://access.redhat.com/articles/1232123
https://access.redhat.com/solutions/1237613

CHAPTER 7. MQ TELEMETRY TRANSPORT(MQTT) PROTOCOL

CONFIGURING CLIENT SSL OPTIONS

On the client side, you must specify an SSL transport option using the syntax socket .0OptionName.
For example, to connect to a MQTT SSL port, you would use a URL like the following:

I mgtt+ssl://localhost:61617?socket.enabledProtocols=TLSv1, TLSv1l.1,TLSv1.2

21

Red Hat JBoss A-MQ 6.0 Connection Reference

CHAPTER 8. VM TRANSPORT

Abstract

The VM transport allows clients to connect to each other inside the Java Virtual Machine (JVM) without
the overhead of network communication.

The URI used to specify the VM transport comes in two flavors to provide maximum control over how the
embedded broker is configured:

e simple—specifies the name of the embedded broker to which the client connects and allows for
some basic broker configuration

e advanced—uses a broker URI to configure the embedded broker

8.1. SIMPLE VM URI SYNTAX

URI syntax

The simple VM URI is used in most situations. It allows you to specify the name of the embedded broker
to which the client will connect. It also allows for some basic broker configuration.

Example 8.1, “Simple VM URI Syntax” shows the syntax for a simple VM URI.

Example 8.1. Simple VM URI Syntax

I vm://BrokerName?TransportOptions

e BrokerName specifies the name of the embedded broker to which the client connects.

e TransportOptions specifies the configuration for the transport. They are specified in the form of a
query list. Table 8.2, “VM Transport Options” lists the available options.

Broker options

In addition to the transport options listed in Table 8.2, “VM Transport Options”, the simple VM URI can
use the options described in Table 8.1, “VM Transport Broker Configuration Options” to configure the
embedded broker.

Table 8.1. VM Transport Broker Configuration Options

Option Description

broker.useJdmx Specifies if JMX is enabled. Default is true.

broker.persistent Specifies if the broker uses persistent storage.
Default is true.

22

CHAPTER 8. VM TRANSPORT

Option Description

broker.populateJMSXUserID Specifies if the broker populates the JIMSXUserID
message property with the sender’s authenticated
username. Default is false.

broker.useShutdownHook Specifies if the broker installs a shutdown hook, so
that it can shut down properly when it receives a
JVM kill. Default is true.

broker.brokerName Specifies the broker name. Defaultis 1localhost.

broker.deleteAllMessagesOnStartup Specifies if all the messages in the persistent store
are deleted when the broker starts up. Default is
false.

broker.enableStatistics Specifies if statistics gathering is enabled in the

broker. Default is true.

brokerConfig Specifies an external broker configuration file. For
example, to pick up the broker configuration file,
activemq.xml, you would set brokerConfig
as follows:
brokerConfig=xbean:activemq.xml.

IMPORTANT

The broker configuration options specified on the VM URI are only meaningful if the client
is responsible for instantiating the embedded broker. If the embedded broker is already
started, the transport will ignore the broker configuration properties.

Example

Example 8.2, “Basic VM URI” shows a basic VM URI that connects to an embedded broker named
broker1.

Example 8.2. Basic VM URI

I vm://brokeri

Example 8.3, “Simple URI with broker options” creates and connects to an embedded broker that uses a
non-persistent message store.

Example 8.3. Simple URI with broker options

I vm://brokerl1?broker.persistent=false

23

Red Hat JBoss A-MQ 6.0 Connection Reference

8.2. ADVANCED VM URI SYNTAX

URI syntax

The advanced VM URI provides you full control over how the embedded broker is configured. It uses a
broker configuration URI similar to the one used by the administration tool to configure the embedded
broker.

Example 8.4, “Advanced VM URI Syntax” shows the syntax for an advanced VM URI.

Example 8.4. Advanced VM URI Syntax

I vm://(BrokerConfigURI)?TransportOptions

e BrokerConfigURI is a broker configuration URI.

e TransportOptions specifies the configuration for the transport. They are specified in the form of a
query list. Table 8.2, “VM Transport Options” lists the available options.

Transport options

Table 8.2, “VM Transport Options” shows options for configuring the VM transport.

Table 8.2. VM Transport Options

Option Description

marshal If true, forces each command sent over the
transport to be marshalled and unmarshalled using
the specified wire format. Default is false.

wireFormat The name of the wire format to use.

wireFormat.* All options with this prefix are used to configure the
wire format. See Table A.1, “Wire Format Options
Supported by OpenWire Protocol” for more
information.

jms.* All the properties with this prefix are used to configure
client connections to a broker. See Appendix B,
Client Connection Options for more information.

create Specifies if the VM transport will create an
embedded broker if one does not exist. The default is
true.

waitForStart Specifies the time, in milliseconds, the VM transport

will wait for an embedded broker to start before
creating one. The default is -1 which specifies that
the transport will not wait.

24

CHAPTER 8. VM TRANSPORT

Example

Example 8.5, “Advanced VM URI” creates and connects to an embedded broker configured using a
broker configuration URI.

Example 8.5. Advanced VM URI

I vm: (broker: (tcp://localhost:6000)?persistent=false)?marshal=false

25

Red Hat JBoss A-MQ 6.0 Connection Reference

CHAPTER 9. DYNAMIC DISCOVERY PROTOCOL

Abstract

The dynamic discovery protocol combines reconnect logic with a discovery agent to dynamically create a
list of brokers to which the client can connect.

URI SYNTAX

Example 9.1, “Dynamic Discovery URI” shows the syntax for a discovery URI.

Example 9.1. Dynamic Discovery URI

I discovery://(DiscoveryAgentUri)?0ptions

DiscoveryAgentUriis URI for the discovery agent used to build up the list of available brokers. Discovery
agents are described in Chapter 11, Discovery Agents.

The options, ?0ptions, are specified in the form of a query list. The discovery options are described in
Table 9.1, “Dynamic Discovery Protocol Options”. You can also inject transport options into the
discovered transports by adding their properties to the list.

NOTE

If no options are required, you can drop the parentheses from the URI. The resulting URI
would take the form discovery://DiscoveryAgentUri

TRANSPORT OPTIONS

The discovery protocol supports the options described in Table 9.1, “Dynamic Discovery Protocol
Options”.

Table 9.1. Dynamic Discovery Protocol Options

Option Default Description

initialReconnectDelay 10 Specifies, in milliseconds, how
long to wait before the first
reconnect attempt.

maxReconnectDelay 30000 Specifies, in milliseconds, the
maximum amount of time to wait
between reconnect attempts.

useExponentialBackOff true Specifies if an exponential back-
off is used between reconnect
attempts.

26

CHAPTER 9. DYNAMIC DISCOVERY PROTOCOL

Option Default Description

backOoffMultiplier 2 Specifies the exponent used in
the exponential back-off algorithm.

maxReconnectAttempts 0] Specifies the maximum number of
reconnect attempts before an
error is sent back to the client. ©
specifies unlimited attempts.

27

Red Hat JBoss A-MQ 6.0 Connection Reference

CHAPTER 10. FANOUT PROTOCOL

Abstract

The fanout protocol allows clients to connect to multiple brokers at once and broadcast messages to
consumers connected to all of the brokers at once.

URI SYNTAX

Example 10.1, “Fanout URI Syntax” shows the syntax for a fanout URI.

Example 10.1. Fanout URI Syntax

I fanout://(DiscoveryAgentUri)?0ptions

DiscoveryAgentUriis URI for the discovery agent used to build up the list of available brokers. The
available discovery agents are listed in Chapter 11, Discovery Agents.

The options, ?0ptions, are specified in the form of a query list. The discovery options are described in
Table 10.1, “Fanout Protocol Options”. You can also inject transport options into the discovered
transports by adding their properties to the list.

NOTE

If no options are required, you can drop the parentheses from the URI. The resulting URI
would take the form fanout:// DiscoveryAgentUri

TRANSPORT OPTIONS
The fanout protocol supports the transport options described in Table 10.1, “Fanout Protocol Options”.

Table 10.1. Fanout Protocol Options

Option Name Default Description

initialReconnectDelay 10 Specifies, in milliseconds, how
long the transport will wait before
the first reconnect attempt.

maxReconnectDelay 30000 Specifies, in milliseconds, the
maximum amount of time to wait
between reconnect attempts.

useExponentialBackOff true Specifies if an exponential back-
off is used between reconnect
attempts.

backOffMultiplier 2 Specifies the exponent used in

the exponential back-off algorithm.

28

Option Name Default
maxReconnectAttempts 0]
fanOutQueues false
minAckCount 2

CHAPTER 10. FANOUT PROTOCOL

Description

Specifies the maximum number of
reconnect attempts before an
error is sent back to the client. 0
specifies unlimited attempts.

Specifies whether queue
messages are replicated to every
connected broker.

Specifies the minimum number of
brokers to which the client must
connect before it sends out
messages.

29

Red Hat JBoss A-MQ 6.0 Connection Reference

CHAPTER 11. DISCOVERY AGENTS

Abstract

A discovery agent is a mechanism that advertises available brokers to clients and other brokers.

FABRIC AGENT

The Fuse Fabric discovery agent URI conforms to the syntax in Example 11.1, “Fuse Fabric Discovery
Agent URI Format”.

Example 11.1. Fuse Fabric Discovery Agent URI Format

I fabric://GID

Where GID is the ID of the broker group from which the client discovers the available brokers.

STATIC AGENT

The static discovery agent URI conforms to the syntax in Example 11.2, “Static Discovery Agent URI
Format”.

Example 11.2. Static Discovery Agent URI Format

I static://(URI1,URI2,URI3, ...)

MULTICAST AGENT

The multicast discovery agent URI conforms to the syntax in Example 11.3, “Multicast Discovery Agent
URI Format”.

Example 11.3. Multicast Discovery Agent URI Format

I multicast://GroupID

Where GrouplID is an alphanumeric identifier. All participants in the same discovery group must use the
same GroupID.

ZEROCONF AGENT

The zeroconf discovery agent URI conforms to the syntax in Example 11.4, “Zeroconf Discovery Agent
URI Format”.

Example 11.4. Zeroconf Discovery Agent URI Format

I zeroconf://GroupID

30

CHAPTER 11. DISCOVERY AGENTS

Where the GrouplD is an alphanumeric identifier. All participants in the same discovery group must use
the same GroupID.

31

Red Hat JBoss A-MQ 6.0 Connection Reference

CHAPTER 12. PEER PROTOCOL

Abstract

The peer protocol uses embedded brokers to enable messaging clients to communicate with each other
directly.

URI SYNTAX

A peer URI must conform to the following syntax:
I peer://PeerGroup/BrokerName?BrokerOptions

Where the group name, PeerGroup, identifies the set of peers that can communicate with each other.
That is, a given peer can connect only to the set of peers that specify the same PeerGroup name in their
URLs. The BrokerName specifies the broker name for the embedded broker. The broker options,
BrokerQOptions, are specified in the form of a query list (for example, ?persistent=true).

BROKER OPTIONS

The peer URL supports the broker options described in Table 12.1, “Broker Options”.

Table 12.1. Broker Options

Option Description

useJmx If true, enables JMX. Defaultis true.

persistent If true, the broker uses persistent storage. Default
is true.

populateJMSXUserID If true, the broker populates the JMSXUserID

message property with the sender’s authenticated
username. Default is false.

useShutdownHook If true, the broker installs a shutdown hook, so that
it can shut down properly when it receives a JVM Kill.
Default is true.

brokerName Specifies the broker name. Defaultis 1ocalhost.

deleteAllMessagesOnStartup If true, deletes all the messages in the persistent
store as the broker starts up. Default is false.

enableStatistics If true, enables statistics gathering in the broker.
Default is true.

DEPENDENCIES

32

CHAPTER 12. PEER PROTOCOL

The peer protocol uses multicast discovery to locate active peers on the network. In order for this to
work, you must ensure that the IP multicast protocol is enabled on your operating system.

33

Red Hat JBoss A-MQ 6.0 Connection Reference

supported by the OpenWire protocol.

APPENDIX A. OPENWIRE FORMAT OPTIONS

Table A.1, “Wire Format Options Supported by OpenWire Protocol” shows the wire format options

Table A.1. Wire Format Options Supported by OpenWire Protocol

34

Option

wireformat.stack
TraceEnabled

wireformat. tcpNo
DelayEnabled

wireformat.cache
Enabled

wireformat.cache
Size

wireformat. tight
EncodingEnabled

wireformat.prefi
xPacketSize

wireformat.maxIn
activityDuration

wireformat.maxIn
activityDuration
InitalDelay

Default

true

false

true

1024

true

true

30000

10000

Description

Specifies if the stack
trace of an exception
occurring on the broker
is sent to the client.

Specifies if a hint is
provided to the peer that
TCP nodelay should
be enabled on the
communications socket.

Specifies that commonly
repeated values are
cached so that less
marshalling occurs.

Specifies the maximum
number of values to
cache.

Specifies if wire size be
optimized over CPU
usage.

Specifies if the size of
the packet be prefixed
before each packet is
marshalled.

Specifies the maximum
inactivity duration, in
milliseconds, before the
broker considers the
connection dead and
kills it. <= 0 disables
inactivity monitoring.

Specifies the initial
delay in starting
inactivity checks.

Negotiation Policy

false if either side is
false.

false if either side is
false.

false if either side is
false.

Use the smaller of the
two values.

false if either side is
false.

true if both sides are
true.

Use the smaller of the
two values.

APPENDIX B. CLIENT CONNECTION OPTIONS

APPENDIX B. CLIENT CONNECTION OPTIONS

OVERVIEW

When creating a connection to a broker, a client can use the connection URI to configure a number of the
connection properties. The properties are added to the connection URI as matrix parameters on the URI
as shown in Example B.1, “Client Connection Options Syntax”.

Example B.1. Client Connection Options Syntax

I URI?jms.option?jms.option...

IMPORTANT

All of the client connection options are prefixed with jms.

OPTIONS

Table B.1, “Client Connection Options” shows the client connection options.

Table B.1. Client Connection Options

Option Default Description

alwaysSessionAsync true Specifies if a separate thread is
used for dispatching messages for
each Sessionin the
Connection. However, a
separate thread is always used if
there is more than one session, or
the session isn't in auto
acknowledge or dups ok mode.

clientID Specifies the JMS clientID to
use for the connection.

closeTimeout 15000 Specifies the timeout, in
milliseconds, before a connection
close is considered complete.
Normally aclose() ona
connection waits for confirmation
from the broker; this allows that
operation to timeout and save the
client from hanging if there is no
broker.

35

Option

copyMessageOnSend

disableTimeStampsByDefa
ult

dispatchAsync

nestedMapAndListEnabled

objectMessageSerializat
ionDefered

optimizeAcknowledge

optimizeAcknowledgeTime
out

Red Hat JBoss A-MQ 6.0 Connection Reference

Default

true

false

false

true

false

false

300

Description

Specifies if a JMS message
should be copied to a new JMS
Message object as part of the
send () method in JMS. This is
enabled by default to be compliant
with the JMS specification.
Disabling this can give you a
performance, however you must
not mutate JMS messages after
they are sent.

Specifies whether or not
timestamps on messages should
be disabled or not. Disabling them
it adds a small performance boost.

Specifies if the broker dispatches
messages to the consumer
asynchronously.

Enables/disables whether or not
structured message properties and
MapMessages are supported so
that Message properties and
MapMessage entries can contain
nested Map and List objects.

Specifies that the serialization of
objects when they are set on an
ObjectMessage is deferred.
The object may subsequently get
serialized if the message needs to
be sent over a socket or stored to
disk.

Specifies if messages are
acknowledged in batches rather
than individually. Enabling this
could cause some issues with
auto-acknowledgement on
reconnection.

Specifies the maximum time, in
milliseconds, between batch
acknowledgements when
optimizeAcknowledge is
enabled.

Option
optimizedMessageDispatc

h

useAsyncSend

useCompression

useRetroactiveConsumer

warnAboutUnstartedConne
ctionTimeout

auditDepth

auditMaximumProducerNum
ber

alwaysSyncSend

blobTransferPolicy.*

Default

true

false

false

false

500

2048

64

false

APPENDIX B. CLIENT CONNECTION OPTIONS

Description

Specifies if a larger prefetch limit
is used for durable topic
subscribers.

Specifies in sends are performed
asynchronously. Asynchronous
sends provide a significant
performance boost. The tradeoff is
that the send () method will
return immediately whether the
message has been sent or not
which could lead to message loss.

Specifies if message bodies are
compressed.

Specifies whether or not
retroactive consumers are
enabled. Retroactive consumers
allow non-durable topic
subscribers to receive messages
that were published before the
non-durable subscriber started.

Specifies the timeout, in
milliseconds, from connection
creation to when a warning is
generated if the connection is not
properly started and a message is
received by a consumer. -1
disables the warnings.

Specifies the size of the message
window that will be audited for
duplicates and out of order
messages.

Specifies the maximum number of
producers that will be audited.

Specifies if a message producer
will always use synchronous
sends when sending a message.

Used to configure how the client
handles blob messages. See the
section called “Blob handling”.

37

Red Hat JBoss A-MQ 6.0 Connection Reference

Option Default Description

prefetchPolicy.* Used to configure the prefect
limits. See the section called
“Prefetch limits”.

redeliveryPolicy.* Used to configure the redelivery
policy. See the section called
“Redelivery policy”.

BLOB HANDLING

Blob messages allow the broker to use an out of band transport to pass large files between clients.
Table B.2, “Blob Message Properties” describes the connection URI options used to configure how a
client handles blob messages.

IMPORTANT

All of the prefetch options are prefixed with jms.blobTransferPolicy.

Table B.2. Blob Message Properties

Option Description

bufferSize Specifies the size of the buffer used when uploading
or downloading blobs.

uploadurl Specifies the URL to which blob messages are
stored for transfer. This value overrides the upload
URI configured by the broker.

PREFETCH LIMITS

The prefetch limits control how many messages can be dispatched to a consumer and waiting to be
acknowledged. Table B.3, “Connection URI Prefect Limit Options” describes the options used to
configure the prefetch limits of consumers using a connection.

IMPORTANT

All of the prefetch options are prefixed with jms. prefetchPolicy.

Table B.3. Connection URI Prefect Limit Options

Option Description
queuePrefetch Specifies the prefect limit for all consumers using
queues.

38

APPENDIX B. CLIENT CONNECTION OPTIONS

Option Description

queueBrowserPrefetch Specifies the prefect limit for all queue browsers.

topicPrefetch Specifies the prefect limit for non-durable topic
consumers.

durableTopicPrefetch Specifies the prefect limit for durable topic
consumers.

all Specifies the prefect limit for all types of message
consumers.

REDELIVERY POLICY

The redelivery policy controls the redelivery of messages in the event of connectivity issues. Table B.4,
“Redelivery Policy Options” describes the options used to configure the redelivery policy of consumers
using a connection.

IMPORTANT

All of the prefetch options are prefixed with jms.redeliveryPolicy.

Table B.4. Redelivery Policy Options

Option Default Description
collisionAvoidanceFacto 0.15 Specifies the percentage of range
r of collision avoidance.
maximumRedeliveries 6 Specifies the maximum number of

times a message will be
redelivered before it is considered
a poisoned pill and returned to the
broker so it can go to a dead letter
queue. -1 specifies an infinite
number of redeliveries.

maximumRedeliveryDelay -1 Specifies the maximum delivery
delay that will be applied if the
useExponentialBackOff
option is set. -1 specifies that no
maximum be applied.

initialRedeliveryDelay 1000 Specifies the initial redelivery
delay in milliseconds.

39

Red Hat JBoss A-MQ 6.0 Connection Reference

INDEX

Option Default
redeliveryDelay 1000
useCollisionAvoidance false
useExponentialBackOff false
backOffMultiplier 5

C

Description

Specifies the delivery delay, in
milliseconds, if
initialRedeliveryDelay
is 0.

Specifies if the redelivery policy
uses collision avoidance.

Specifies if the redelivery time out
should be increased exponentially.

Specifies the back-off multiplier.

connection socket, Setting transport options, Setting transport options, Setting transport options

D

discovery agent
Fuse Fabric, Fabric agent

multicast, Multicast agent
static, Static agent

zeroconf, Zeroconf agent

discovery protocol
backOffMultiplier, Transport options

initialReconnectDelay, Transport options
maxReconnectAttempts, Transport options
maxReconnectDelay, Transport options
URI, URI syntax

useExponentialBackOff, Transport options

discovery URI, URI syntax

discovery://, URI syntax

E

embedded broker
brokerName, Broker options

40

F

deleteAllIMessagesOnStartup, Broker options
enableStatistics, Broker options

persistent, Broker options
populateJMSXUserlD, Broker options
usedmx, Broker options

useShutdownHook, Broker options

fabric://, Fabric agent

fanout protocol

backOffMultiplier, Transport options
fanOutQueues, Transport options
initialReconnectDelay, Transport options
maxReconnectAttempts, Transport options
maxReconnectDelay, Transport options
minAckCount, Transport options

URI, URI syntax

useExponentialBackOff, Transport options

fanout URI, URI syntax

fanout://, URI syntax

Fuse Fabric discovery agent

H

URI, Fabric agent

HTTP

URI, URI syntax

HTTPS

L

listener socket, Setting transport options, Setting transport options, Setting transport options

URI, URI syntax

MQTT, URI syntax

INDEX

41

Red Hat JBoss A-MQ 6.0 Connection Reference

MQTT+NIO, URI syntax
MQTT+SSL, URI syntax
Multicast, URI syntax

multicast discovery agent
URI, Multicast agent

multicast://, Multicast agent

N

NIO
URI, URI syntax

NIO+SSL
URI, URI syntax

0

OpenWire
HTTP, URI syntax

HTTPS, URI syntax
NIO, URI syntax
NIO+SSL, URI syntax
SSL, URI syntax
TCP, URI syntax

transport options, Setting transport options, Setting transport options, Setting transport
options

UDP, URI syntax

S

SSL
URI, URI syntax

static discovery agent
URI, Static agent

static://, Static agent
STOMP, URI syntax
STOMP+NIO, URI syntax
STOMP+SSL, URI syntax

42

INDEX

%

TCP
URI, URI syntax

transport connector, Setting transport options, Setting transport options, Setting transport
options
U

UDP
URI, URI syntax

URI
HTTP, URI syntax

HTTPS, URI syntax
MQTT, URI syntax
MQTT+NIO, URI syntax
MQTT+SSL, URI syntax
Multicast, URI syntax
NIO, URI syntax
NIO+SSL, URI syntax
SSL, URI syntax
STOMP, URI syntax
STOMP+NIO, URI syntax
STOMP+SSL, URI syntax
TCP, URI syntax

UDP, URI syntax

\'

VM
advanced URI, URI syntax

broker configuration, Broker options
broker name, URI syntax
brokerConfig, Broker options
create, Transport options

marshal, Transport options

simple URI, Simple VM URI Syntax

43

Red Hat JBoss A-MQ 6.0 Connection Reference

waitForStart, Transport options

wireFormat, Transport options

VM URI
advanced, URI syntax

simple, Simple VM URI Syntax

y4

zeroconf discovery agent
URI, Zeroconf agent

zeroconf://, Zeroconf agent

44

	Table of Contents
	CHAPTER 1. OPENWIRE OVER TCP
	URI SYNTAX
	SETTING TRANSPORT OPTIONS
	TRANSPORT OPTIONS

	CHAPTER 2. OPENWIRE OVER SSL
	URI SYNTAX
	SETTING TRANSPORT OPTIONS
	SSL TRANSPORT OPTIONS
	CONFIGURING BROKER SSL OPTIONS
	CONFIGURING CLIENT SSL OPTIONS

	CHAPTER 3. OPENWIRE OVER HTTP(S)
	URI SYNTAX
	DEPENDENCIES

	CHAPTER 4. OPENWIRE OVER UDP/IP
	URI SYNTAX
	SETTING TRANSPORT OPTIONS
	TRANSPORT OPTIONS

	CHAPTER 5. STOMP PROTOCOL
	OVERVIEW
	URI SYNTAX
	TRANSPORT OPTIONS
	SSL TRANSPORT OPTIONS
	CONFIGURING BROKER SSL OPTIONS
	CONFIGURING CLIENT SSL OPTIONS

	CHAPTER 6. MULTICAST PROTOCOL
	URI SYNTAX
	TRANSPORT OPTIONS

	CHAPTER 7. MQ TELEMETRY TRANSPORT(MQTT) PROTOCOL
	URI SYNTAX
	TRANSPORT OPTIONS
	SSL TRANSPORT OPTIONS
	CONFIGURING BROKER SSL OPTIONS
	CONFIGURING CLIENT SSL OPTIONS

	CHAPTER 8. VM TRANSPORT
	8.1. SIMPLE VM URI SYNTAX
	URI syntax
	Broker options
	Example

	8.2. ADVANCED VM URI SYNTAX
	URI syntax
	Transport options
	Example

	CHAPTER 9. DYNAMIC DISCOVERY PROTOCOL
	URI SYNTAX
	TRANSPORT OPTIONS

	CHAPTER 10. FANOUT PROTOCOL
	URI SYNTAX
	TRANSPORT OPTIONS

	CHAPTER 11. DISCOVERY AGENTS
	FABRIC AGENT
	STATIC AGENT
	MULTICAST AGENT
	ZEROCONF AGENT

	CHAPTER 12. PEER PROTOCOL
	URI SYNTAX
	BROKER OPTIONS
	DEPENDENCIES

	APPENDIX A. OPENWIRE FORMAT OPTIONS
	APPENDIX B. CLIENT CONNECTION OPTIONS
	OVERVIEW
	OPTIONS
	BLOB HANDLING
	PREFETCH LIMITS
	REDELIVERY POLICY

	INDEX

