
Red Hat Integration 2021.Q2

Installing and deploying Service Registry on
OpenShift

Service Registry 2.0 - Technology Preview

Last Updated: 2021-06-03

Red Hat Integration 2021.Q2 Installing and deploying Service Registry on
OpenShift

Service Registry 2.0 - Technology Preview

Legal Notice

Copyright © 2021 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide explains how to install and deploy Service Registry on OpenShift with registry data
storage options in AMQ Streams or PostgreSQL database. This guide also shows how to configure
and manage Service Registry deployment and security, and provides reference information about
the Service Registry Operator.

. .

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

PREFACE
MAKING OPEN SOURCE MORE INCLUSIVE

CHAPTER 1. SERVICE REGISTRY OPERATOR QUICKSTART
1.1. QUICKSTART SERVICE REGISTRY OPERATOR INSTALLATION
1.2. QUICKSTART SERVICE REGISTRY DEPLOYMENT

CHAPTER 2. INSTALLING SERVICE REGISTRY ON OPENSHIFT
2.1. INSTALLING SERVICE REGISTRY FROM THE OPENSHIFT OPERATORHUB

CHAPTER 3. DEPLOYING SERVICE REGISTRY STORAGE IN AMQ STREAMS
3.1. INSTALLING AMQ STREAMS FROM THE OPENSHIFT OPERATORHUB
3.2. CONFIGURING SERVICE REGISTRY WITH KAFKA STORAGE ON OPENSHIFT
3.3. CONFIGURING KAFKA STORAGE WITH TLS SECURITY
3.4. CONFIGURING KAFKA STORAGE WITH SCRAM SECURITY

CHAPTER 4. DEPLOYING SERVICE REGISTRY STORAGE IN A POSTGRESQL DATABASE
4.1. INSTALLING A POSTGRESQL DATABASE FROM THE OPENSHIFT OPERATORHUB
4.2. CONFIGURING SERVICE REGISTRY WITH POSTGRESQL DATABASE STORAGE ON OPENSHIFT
4.3. BACKING UP SERVICE REGISTRY POSTGRESQL STORAGE
4.4. RESTORING SERVICE REGISTRY POSTGRESQL STORAGE

CHAPTER 5. SECURING A SERVICE REGISTRY DEPLOYMENT
5.1. SECURING THE SERVICE REGISTRY API AND WEB CONSOLE USING RED HAT SINGLE SIGN-ON
5.2. SERVICE REGISTRY AUTHENTICATION AND AUTHORIZATION CONFIGURATION OPTIONS

Service Registry authentication using Red Hat Single Sign-On
Service Registry user roles in Red Hat Single Sign-On
Service Registry artifact owner-only authorization option

5.3. CONFIGURING AN HTTPS CONNECTION TO SERVICE REGISTRY FROM INSIDE THE OPENSHIFT
CLUSTER
5.4. CONFIGURING AN HTTPS CONNECTION TO SERVICE REGISTRY FROM OUTSIDE THE OPENSHIFT
CLUSTER

CHAPTER 6. MANAGING A SERVICE REGISTRY DEPLOYMENT
6.1. CONFIGURING SERVICE REGISTRY HEALTH CHECKS ON OPENSHIFT
6.2. ENVIRONMENT VARIABLES FOR SERVICE REGISTRY HEALTH CHECKS

Liveness environment variables
Readiness environment variables

6.3. CONFIGURING THE SERVICE REGISTRY WEB CONSOLE
Configuring the web console deployment environment
Configuring the console in read-only mode

6.4. CONFIGURING SERVICE REGISTRY LOGGING
Checking the current log level for a specific logger
Changing the log level for a specific logger
Reverting to the default log level

CHAPTER 7. SERVICE REGISTRY OPERATOR CONFIGURATION REFERENCE
7.1. SERVICE REGISTRY CUSTOM RESOURCE
7.2. SERVICE REGISTRY CR SPEC
7.3. SERVICE REGISTRY CR STATUS
7.4. SERVICE REGISTRY MANAGED RESOURCES
7.5. SERVICE REGISTRY OPERATOR LABELS

APPENDIX A. USING YOUR SUBSCRIPTION

4
4

5
5
5

7
7

9
9

10
12
15

19
19

20
21
22

23
23
27
28
28
28

29

31

33
33
34
34
35
36
36
37
37
37
37
38

39
39
40
43
45
45

46

Table of Contents

1

Accessing your account
Activating a subscription
Downloading ZIP and TAR files
Registering your system for packages

46
46
46
46

Red Hat Integration 2021.Q2 Installing and deploying Service Registry on OpenShift

2

Table of Contents

3

PREFACE

MAKING OPEN SOURCE MORE INCLUSIVE
Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright’s message .

Red Hat Integration 2021.Q2 Installing and deploying Service Registry on OpenShift

4

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

CHAPTER 1. SERVICE REGISTRY OPERATOR QUICKSTART
This chapter explains how to quickly install Service Registry Operator on the command line.

This quickstart example deploys Service Registry using the SQL storage option:

Section 1.1, “Quickstart Service Registry Operator installation”

Section 1.2, “Quickstart Service Registry deployment”

NOTE

The recommended installation option for production environments is using the OpenShift
OperatorHub. The recommended storage option is SQL or Kafka.

1.1. QUICKSTART SERVICE REGISTRY OPERATOR INSTALLATION

You can quickly deploy the Service Registry Operator on the command line, without the Operator
Lifecycle Manager, by using a downloaded set of installation files and examples.

Prerequisites

You must go to Red Hat Integration Downloads , select the product version, and download the
examples in the Service Registry CRDs .zip file.

Procedure

1. Create a project for the installation, for example, service-registry:

2. Apply the file located in the install/ folder:

1.2. QUICKSTART SERVICE REGISTRY DEPLOYMENT

To create a new Service Registry deployment, use the SQL storage option. This requires an external
PostgreSQL storage to be configured as a prerequisite.

Prerequisites

Ensure that the Service Registry Operator is already installed.

You have a PostgreSQL database reachable from your OpenShift cluster.

Procedure

1. Create an ApicurioRegistry custom resource (CR), with your database connection configured,
for example:

NAMESPACE="service-registry"
oc new-project "$NAMESPACE"

cat install/install.yaml | sed "s/apicurio-registry-operator-namespace/$NAMESPACE/g" | oc
apply -f -

CHAPTER 1. SERVICE REGISTRY OPERATOR QUICKSTART

5

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?downloadType=distributions&product=red.hat.integration

Example CR for SQL storage

2. Create the ApicurioRegistry CR in the same namespace that the Operator is deployed

apiVersion: registry.apicur.io/v1
kind: ApicurioRegistry
metadata:
 name: example-apicurioregistry-sql
spec:
 configuration:
 persistence: "sql"
 sql:
 dataSource:
 url: "jdbc:postgresql://<service name>.<namespace>.svc:5432/<database name>"
 userName: "postgres"
 password: "<password>" # Optional

oc project "$NAMESPACE"
oc apply -f ./examples/apicurioregistry_sql_cr.yaml

Red Hat Integration 2021.Q2 Installing and deploying Service Registry on OpenShift

6

CHAPTER 2. INSTALLING SERVICE REGISTRY ON OPENSHIFT
This chapter explains how to install Service Registry on OpenShift Container Platform:

Section 2.1, “Installing Service Registry from the OpenShift OperatorHub”

Prerequisites

Read the introduction in the Service Registry User Guide

IMPORTANT

Service Registry is a Technology Preview feature only. Technology Preview features are
not supported with Red Hat production service level agreements (SLAs) and might not
be functionally complete. Red Hat does not recommend using them in production.

These features provide early access to upcoming product features, enabling customers
to test functionality and provide feedback during the development process. For more
information about the support scope of Red Hat Technology Preview features, see
https://access.redhat.com/support/offerings/techpreview.

2.1. INSTALLING SERVICE REGISTRY FROM THE OPENSHIFT
OPERATORHUB

You can install the Service Registry Operator on your OpenShift cluster from the OperatorHub. The
OperatorHub is available from the OpenShift Container Platform web console and provides an interface
for cluster administrators to discover and install Operators. For more details, see the OpenShift
documentation.

NOTE

You can install more than one instance of Service Registry depending on your
environment. The number of instances depends on the number and type of artifacts
stored in Service Registry and on your chosen storage option.

Prerequisites

You must have cluster administrator access to an OpenShift cluster.

Procedure

1. In the OpenShift Container Platform web console, log in using an account with cluster
administrator privileges.

2. Create a new OpenShift project:

a. In the left navigation menu, click Home, Project, and then Create Project.

b. Enter a project name, for example, my-project, and click Create.

3. In the left navigation menu, click Operators and then OperatorHub.

4. In the Filter by keyword text box, enter registry to find the Red Hat Integration - Service
Registry Operator.

CHAPTER 2. INSTALLING SERVICE REGISTRY ON OPENSHIFT

7

https://access.redhat.com/documentation/en-us/red_hat_integration/2021.Q2/html-single/service_registry_user_guide/index
https://access.redhat.com/support/offerings/techpreview
https://docs.openshift.com/container-platform/4.6/operators/understanding/olm-understanding-operatorhub.html

5. Read the information about the Operator, and click Install to display the Operator subscription
page.

6. Select your subscription settings, for example:

Update Channel: Select one of the following:

2.0.x: Includes patch updates only, such as 2.0.1 and 2.0.2. For example, an installation
on 2.0.x automatically ignores 2.1.x.

2.x: Includes all minor and patch updates, such as 2.1.0 and 2.0.1. For example, an
installation on 2.0.x automatically upgrades to 2.1.x.

Installation Mode: Select one of the following:

All namespaces on the cluster (default)

A specific namespace on the cluster and then my-project

Approval Strategy: Select Automatic or Manual

7. Click Install, and wait a few moments until the Operator is ready for use.

Additional resources

Adding Operators to an OpenShift cluster

Apicurio Registry Operator community in GitHub

Red Hat Integration 2021.Q2 Installing and deploying Service Registry on OpenShift

8

https://docs.openshift.com/container-platform/4.6/operators/olm-adding-operators-to-cluster.html
https://github.com/Apicurio/apicurio-registry-operator

CHAPTER 3. DEPLOYING SERVICE REGISTRY STORAGE IN
AMQ STREAMS

This chapter explains how to install and configure Service Registry data storage in AMQ Streams.

Section 3.1, “Installing AMQ Streams from the OpenShift OperatorHub”

Section 3.2, “Configuring Service Registry with Kafka storage on OpenShift”

Section 3.3, “Configuring Kafka storage with TLS security”

Section 3.4, “Configuring Kafka storage with SCRAM security”

Prerequisites

Chapter 2, Installing Service Registry on OpenShift

3.1. INSTALLING AMQ STREAMS FROM THE OPENSHIFT
OPERATORHUB

If you do not already have AMQ Streams installed, you can install the AMQ Streams Operator on your
OpenShift cluster from the OperatorHub. The OperatorHub is available from the OpenShift Container
Platform web console and provides an interface for cluster administrators to discover and install
Operators. For more details, see the OpenShift documentation.

Prerequisites

You must have cluster administrator access to an OpenShift cluster

See Using AMQ Streams on OpenShift for detailed information on installing AMQ Streams. This
section shows a simple example of installing using the OpenShift OperatorHub.

Procedure

1. In the OpenShift Container Platform web console, log in using an account with cluster
administrator privileges.

2. Change to the OpenShift project in which you want to install AMQ Streams. For example, from
the Project drop-down, select my-project.

3. In the left navigation menu, click Operators and then OperatorHub.

4. In the Filter by keyword text box, enter AMQ Streams to find the Red Hat Integration - AMQ
Streams Operator.

5. Read the information about the Operator, and click Install to display the Operator subscription
page.

6. Select your subscription settings, for example:

Update Channel and then amq-streams-1.7.x

Installation Mode: Select one of the following:

All namespaces on the cluster (default)

CHAPTER 3. DEPLOYING SERVICE REGISTRY STORAGE IN AMQ STREAMS

9

https://docs.openshift.com/container-platform/4.6/operators/olm-understanding-operatorhub.html
https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q2/html/using_amq_streams_on_openshift/getting-started-str

A specific namespace on the cluster > my-project

Approval Strategy: Select Automatic or Manual

7. Click Install, and wait a few moments until the Operator is ready for use.

Additional resources

Adding Operators to an OpenShift cluster

Using AMQ Streams on OpenShift

3.2. CONFIGURING SERVICE REGISTRY WITH KAFKA STORAGE ON
OPENSHIFT

This section explains how to configure Kafka-based storage for Service Registry using AMQ Streams on
OpenShift. The kafkasql storage option uses Kafka storage with in-memory H2 database. This storage
option is suitable for production environments when persistent storage is configured for the Kafka
cluster on OpenShift.

You can install Service Registry in an existing Kafka cluster or create a new Kafka cluster, depending on
your environment.

Prerequisites

You must have an OpenShift cluster with cluster administrator access.

You must have already installed Service Registry. See Chapter 2, Installing Service Registry on
OpenShift.

You must have already installed AMQ Streams. See Section 3.1, “Installing AMQ Streams from
the OpenShift OperatorHub”.

Procedure

1. In the OpenShift Container Platform web console, log in using an account with cluster
administrator privileges.

2. If you do not already have a Kafka cluster configured, create a new Kafka cluster using AMQ
Streams. For example, in the OpenShift OperatorHub:

a. Click Installed Operators and then Red Hat Integration - AMQ Streams.

b. Under Provided APIs and then Kafka, click Create Instance to create a new Kafka cluster.

c. Edit the custom resource definition as appropriate, and click Create.

Red Hat Integration 2021.Q2 Installing and deploying Service Registry on OpenShift

10

https://docs.openshift.com/container-platform/4.6/operators/olm-adding-operators-to-cluster.html
https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q2/html/using_amq_streams_on_openshift/index?

WARNING

The default example creates a cluster with 3 Zookeeper nodes and 3
Kafka nodes with ephemeral storage. This temporary storage is
suitable for development and testing only, and not for production. For
more details, see Using AMQ Streams on OpenShift .

3. After the cluster is ready, click Provided APIs > Kafka > my-cluster > YAML.

4. In the status block, make a copy of the bootstrapServers value, which you will use later to
deploy Service Registry. For example:

5. Click Installed Operators > Red Hat Integration - Service Registry > ApicurioRegistry >
Create ApicurioRegistry.

6. Paste in the following custom resource definition, but use your bootstrapServers value that
you copied earlier:

7. Click Create and wait for the Service Registry route to be created on OpenShift.

8. Click Networking > Route to access the new route for the Service Registry web console. For
example:

http://example-apicurioregistry-kafkasql.my-project.my-domain-name.com/

Additional resources

For more details on creating Kafka clusters and topics using AMQ Streams, see Using AMQ



status:
 ...
 conditions:
 ...
 listeners:
 - addresses:
 - host: my-cluster-kafka-bootstrap.my-project.svc
 port: 9092
 bootstrapServers: 'my-cluster-kafka-bootstrap.my-project.svc:9092'
 type: plain
 ...

apiVersion: registry.apicur.io/v1
kind: ApicurioRegistry
metadata:
 name: example-apicurioregistry-kafkasql
spec:
 configuration:
 persistence: 'kafkasql'
 kafkasql:
 bootstrapServers: 'my-cluster-kafka-bootstrap.my-project.svc:9092'

CHAPTER 3. DEPLOYING SERVICE REGISTRY STORAGE IN AMQ STREAMS

11

https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q2/html/using_amq_streams_on_openshift/index?

For more details on creating Kafka clusters and topics using AMQ Streams, see Using AMQ
Streams on OpenShift.

3.3. CONFIGURING KAFKA STORAGE WITH TLS SECURITY

You can configure the AMQ Streams Operator and Service Registry Operator to use an encrypted
Transport Layer Security (TLS) connection.

Prerequisites

You must install the Service Registry Operator using the OperatorHub or command line.

You must install the AMQ Streams Operator or have Kafka accessible from your OpenShift
cluster.

NOTE

This section assumes that the AMQ Streams Operator is available, however you can use
any Kafka deployment. In that case, you must manually create the Openshift secrets that
the Service Registry Operator expects.

Procedure

1. In the OpenShift web console, click Installed Operators, select the AMQ Streams Operator
details, and then the Kafka tab.

2. Click Create Kafka to provision a new Kafka cluster for Service Registry storage.

3. Configure the authorization and tls fields to use TLS authentication for the Kafka cluster, for
example:

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 name: my-cluster
 namespace: registry-example-kafkasql-tls
 # Change or remove the explicit namespace
spec:
 kafka:
 config:
 offsets.topic.replication.factor: 3
 transaction.state.log.replication.factor: 3
 transaction.state.log.min.isr: 2
 log.message.format.version: '2.7'
 inter.broker.protocol.version: '2.7'
 version: 2.7.0
 storage:
 type: ephemeral
 replicas: 3
 listeners:
 - name: tls
 port: 9093
 type: internal
 tls: true
 authentication:

Red Hat Integration 2021.Q2 Installing and deploying Service Registry on OpenShift

12

https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q2/html/using_amq_streams_on_openshift/index?

The default Kafka topic name that Service Registry uses to store data is kafkasql-journal. This
topic is created automatically by Service Registry. You can override this behavior or the default
topic name by setting the appropriate environment variables (default values):

REGISTRY_KAFKASQL_TOPIC_AUTO_CREATE=true

REGISTRY_KAFKASQL_TOPIC=kafkasql-journal

If you decide not to create the Kafka topic manually, skip the next step.

4. Click the Kafka Topic tab, and then Create Kafka Topic to create the kafkasql-journal topic:

5. Create a Kafka User resource to configure authentication and authorization for the Service
Registry user. You can specify a user name in the metadata section or use the default my-user.

 type: tls
 authorization:
 type: simple
 entityOperator:
 topicOperator: {}
 userOperator: {}
 zookeeper:
 storage:
 type: ephemeral
 replicas: 3

apiVersion: kafka.strimzi.io/v1beta1
kind: KafkaTopic
metadata:
 name: kafkasql-journal
 labels:
 strimzi.io/cluster: my-cluster
 namespace: registry-example-kafkasql-tls
spec:
 partitions: 2
 replicas: 1
 config:
 retention.ms: 604800000
 segment.bytes: 1073741824

apiVersion: kafka.strimzi.io/v1beta1
kind: KafkaUser
metadata:
 name: my-user
 labels:
 strimzi.io/cluster: my-cluster
 namespace: registry-example-kafkasql-tls
spec:
 authentication:
 type: tls
 authorization:
 acls:
 - operation: All
 resource:
 name: '*'
 patternType: literal

CHAPTER 3. DEPLOYING SERVICE REGISTRY STORAGE IN AMQ STREAMS

13

NOTE

You must configure the authorization specifically for the topics and resources
that the Service Registry requires. This is a simple permissive example.

6. Click Workloads and then Secrets to find two secrets that AMQ Streams creates for Service
Registry to connect to the Kafka cluster:

my-cluster-cluster-ca-cert - contains the PKCS12 truststore for the Kafka cluster

my-user - contains the user’s keystore

NOTE

The name of the secret can vary based on your cluster or user name.

7. If you create the secrets manually, they must contain the following key-value pairs:

my-cluster-ca-cert

ca.p12 - truststore in PKCS12 format

ca.password - truststore password

my-user

user.p12 - keystore in PKCS12 format

user.password - keystore password

8. Configure the following example configuration to deploy the Service Registry.

 type: topic
 - operation: All
 resource:
 name: '*'
 patternType: literal
 type: cluster
 - operation: All
 resource:
 name: '*'
 patternType: literal
 type: transactionalId
 - operation: All
 resource:
 name: '*'
 patternType: literal
 type: group
 type: simple

apiVersion: registry.apicur.io/v1
kind: ApicurioRegistry
metadata:
 name: example-apicurioregistry-kafkasql
spec:

Red Hat Integration 2021.Q2 Installing and deploying Service Registry on OpenShift

14

IMPORTANT

You must use a different bootstrapServers address than in the plain insecure use case.
The address must support TLS connections and is found in the specified Kafka resource
under the type: tls field.

3.4. CONFIGURING KAFKA STORAGE WITH SCRAM SECURITY

You can configure the AMQ Streams Operator and Service Registry Operator to use Salted Challenge
Response Authentication Mechanism (SCRAM-SHA-512) for the Kafka cluster.

Prerequisites

You must install the Service Registry Operator using the OperatorHub or command line.

You must install the AMQ Streams Operator or have Kafka accessible from your OpenShift
cluster.

NOTE

This section assumes that AMQ Streams Operator is available, however you can use any
Kafka deployment. In that case, you must manually create the Openshift secrets that the
Service Registry Operator expects.

Procedure

1. In the OpenShift web console, click Installed Operators, select the AMQ Streams Operator
details, and then the Kafka tab.

2. Click Create Kafka to provision a new Kafka cluster for Service Registry storage.

3. Configure the authorization and tls fields to use SCRAM-SHA-512 authentication for the Kafka
cluster, for example:

 configuration:
 persistence: "kafkasql"
 kafkasql:
 bootstrapServers: "my-cluster-kafka-bootstrap.registry-example-kafkasql-tls.svc:9093"
 security:
 tls:
 keystoreSecretName: my-user
 truststoreSecretName: my-cluster-cluster-ca-cert

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 name: my-cluster
 namespace: registry-example-kafkasql-scram
 # Change or remove the explicit namespace
spec:
 kafka:
 config:
 offsets.topic.replication.factor: 3
 transaction.state.log.replication.factor: 3

CHAPTER 3. DEPLOYING SERVICE REGISTRY STORAGE IN AMQ STREAMS

15

The default Kafka topic name that Service Registry uses to store data is kafkasql-journal. This
topic is created automatically by Service Registry. You can override this behavior or the default
topic name by setting the appropriate environment variables (default values):

REGISTRY_KAFKASQL_TOPIC_AUTO_CREATE=true

REGISTRY_KAFKASQL_TOPIC=kafkasql-journal

If you decide not to create the Kafka topic manually, skip the next step.

4. Click the Kafka Topic tab, and then Create Kafka Topic to create the kafkasql-journal topic:

5. Create a Kafka User resource to configure SCRAM authentication and authorization for the
Service Registry user. You can specify a user name in the metadata section or use the default
my-user.

 transaction.state.log.min.isr: 2
 log.message.format.version: '2.7'
 inter.broker.protocol.version: '2.7'
 version: 2.7.0
 storage:
 type: ephemeral
 replicas: 3
 listeners:
 - name: tls
 port: 9093
 type: internal
 tls: true
 authentication:
 type: scram-sha-512
 authorization:
 type: simple
 entityOperator:
 topicOperator: {}
 userOperator: {}
 zookeeper:
 storage:
 type: ephemeral
 replicas: 3

apiVersion: kafka.strimzi.io/v1beta1
kind: KafkaTopic
metadata:
 name: kafkasql-journal
 labels:
 strimzi.io/cluster: my-cluster
 namespace: registry-example-kafkasql-scram
spec:
 partitions: 2
 replicas: 1
 config:
 retention.ms: 604800000
 segment.bytes: 1073741824

apiVersion: kafka.strimzi.io/v1beta1
kind: KafkaUser

Red Hat Integration 2021.Q2 Installing and deploying Service Registry on OpenShift

16

NOTE

You must configure the authorization specifically for the topics and resources
that the Service Registry requires. This is a simple permissive example.

6. Click Workloads and then Secrets to find two secrets that AMQ Streams creates for Service
Registry to connect to the Kafka cluster:

my-cluster-cluster-ca-cert - contains the PKCS12 truststore for the Kafka cluster

my-user - contains the user’s keystore

NOTE

The name of the secret can vary based on your cluster or user name.

7. If you create the secrets manually, they must contain the following key-value pairs:

my-cluster-ca-cert

ca.p12 - the truststore in PKCS12 format

ca.password - truststore password

metadata:
 name: my-user
 labels:
 strimzi.io/cluster: my-cluster
 namespace: registry-example-kafkasql-scram
spec:
 authentication:
 type: scram-sha-512
 authorization:
 acls:
 - operation: All
 resource:
 name: '*'
 patternType: literal
 type: topic
 - operation: All
 resource:
 name: '*'
 patternType: literal
 type: cluster
 - operation: All
 resource:
 name: '*'
 patternType: literal
 type: transactionalId
 - operation: All
 resource:
 name: '*'
 patternType: literal
 type: group
 type: simple

CHAPTER 3. DEPLOYING SERVICE REGISTRY STORAGE IN AMQ STREAMS

17

my-user

password - user password

8. Configure the following example settings to deploy the Service Registry:

IMPORTANT

You must use a different bootstrapServers address than in the plain insecure use case.
The address must support TLS connections, and is found in the specified Kafka resource
under the type: tls field.

apiVersion: registry.apicur.io/v1
kind: ApicurioRegistry
metadata:
 name: example-apicurioregistry-kafkasql
spec:
 configuration:
 persistence: "kafkasql"
 kafkasql:
 bootstrapServers: "my-cluster-kafka-bootstrap.registry-example-kafkasql-
scram.svc:9093"
 security:
 scram:
 truststoreSecretName: my-cluster-cluster-ca-cert
 user: my-user
 passwordSecretName: my-user

Red Hat Integration 2021.Q2 Installing and deploying Service Registry on OpenShift

18

CHAPTER 4. DEPLOYING SERVICE REGISTRY STORAGE IN A
POSTGRESQL DATABASE

This chapter explains how to install, configure, and manage Service Registry data storage in a
PostgreSQL database.

Section 4.1, “Installing a PostgreSQL database from the OpenShift OperatorHub”

Section 4.2, “Configuring Service Registry with PostgreSQL database storage on OpenShift”

Section 4.3, “Backing up Service Registry PostgreSQL storage”

Section 4.4, “Restoring Service Registry PostgreSQL storage”

Prerequisites

Chapter 2, Installing Service Registry on OpenShift

4.1. INSTALLING A POSTGRESQL DATABASE FROM THE OPENSHIFT
OPERATORHUB

If you do not already have a PostgreSQL database Operator installed, you can install a PostgreSQL
Operator on your OpenShift cluster from the OperatorHub. The OperatorHub is available from the
OpenShift Container Platform web console and provides an interface for cluster administrators to
discover and install Operators. For more details, see the OpenShift documentation.

Prerequisites

You must have cluster administrator access to an OpenShift cluster.

Procedure

1. In the OpenShift Container Platform web console, log in using an account with cluster
administrator privileges.

2. Change to the OpenShift project in which you want to install the PostgreSQL Operator. For
example, from the Project drop-down, select my-project.

3. In the left navigation menu, click Operators and then OperatorHub.

4. In the Filter by keyword text box, enter PostgreSQL to find an Operator suitable for your
environment, for example, Crunchy PostgreSQL for OpenShift or PostgreSQL Operator by
Dev4Ddevs.com.

5. Read the information about the Operator, and click Install to display the Operator subscription
page.

6. Select your subscription settings, for example:

Update Channel: stable

Installation Mode: A specific namespace on the cluster and then my-project

Approval Strategy: Select Automatic or Manual

CHAPTER 4. DEPLOYING SERVICE REGISTRY STORAGE IN A POSTGRESQL DATABASE

19

https://docs.openshift.com/container-platform/4.6/operators/olm-understanding-operatorhub.html

7. Click Install, and wait a few moments until the Operator is ready for use.

IMPORTANT

You must read the documentation from your chosen PostgreSQL Operator for
details on how to create and manage your database.

Additional resources

Adding Operators to an OpenShift cluster

Crunchy PostgreSQL Operator QuickStart

4.2. CONFIGURING SERVICE REGISTRY WITH POSTGRESQL
DATABASE STORAGE ON OPENSHIFT

This section explains how to configure storage for Service Registry on OpenShift using a PostgreSQL
database Operator. You can install Service Registry in an existing database or create a new database,
depending on your environment. This section shows a simple example using the PostgreSQL Operator
by Dev4Ddevs.com.

Prerequisites

You must have an OpenShift cluster with cluster administrator access.

You must have already installed Service Registry. See Chapter 2, Installing Service Registry on
OpenShift.

You must have already installed a PostgreSQL Operator on OpenShift. For example, see
Section 4.1, “Installing a PostgreSQL database from the OpenShift OperatorHub” .

Procedure

1. In the OpenShift Container Platform web console, log in using an account with cluster
administrator privileges.

2. Change to the OpenShift project in which Service Registry and your PostgreSQL Operator are
installed. For example, from the Project drop-down, select my-project.

3. Create a PostgreSQL database for your Service Registry storage. For example, click Installed
Operators, PostgreSQL Operator by Dev4Ddevs.com, and then Create database.

4. Click YAML and edit the database settings as follows:

name: Change the value to registry

image: Change the value to centos/postgresql-12-centos7

5. Edit any other database settings as needed depending on your environment, for example:

apiVersion: postgresql.dev4devs.com/v1alpha1
kind: Database
metadata:
 name: registry
 namespace: my-project

Red Hat Integration 2021.Q2 Installing and deploying Service Registry on OpenShift

20

https://docs.openshift.com/container-platform/4.6/operators/olm-adding-operators-to-cluster.html
https://access.crunchydata.com/documentation/postgres-operator/4.3.2/quickstart/

6. Click Create, and wait until the database is created.

7. Click Installed Operators > Red Hat Integration - Service Registry > ApicurioRegistry >
Create ApicurioRegistry.

8. Paste in the following custom resource definition, and edit the values for the database url and
credentials to match your environment:

9. Click Create and wait for the Service Registry route to be created on OpenShift.

10. Click Networking > Route to access the new route for the Service Registry web console. For
example:

http://example-apicurioregistry-sql.my-project.my-domain-name.com/

Additional resources

Crunchy PostgreSQL Operator QuickStart

Apicurio Registry Operator QuickStart

4.3. BACKING UP SERVICE REGISTRY POSTGRESQL STORAGE

When using storage in a PostgreSQL database, you must ensure that the data stored by Service Registry
is backed up regularly.

spec:
 databaseCpu: 30m
 databaseCpuLimit: 60m
 databaseMemoryLimit: 512Mi
 databaseMemoryRequest: 128Mi
 databaseName: example
 databaseNameKeyEnvVar: POSTGRESQL_DATABASE
 databasePassword: postgres
 databasePasswordKeyEnvVar: POSTGRESQL_PASSWORD
 databaseStorageRequest: 1Gi
 databaseUser: postgres
 databaseUserKeyEnvVar: POSTGRESQL_USER
 image: centos/postgresql-12-centos7
 size: 1

apiVersion: registry.apicur.io/v1
kind: ApicurioRegistry
metadata:
 name: example-apicurioregistry-sql
spec:
 configuration:
 persistence: 'sql'
 sql:
 dataSource:
 url: 'jdbc:postgresql://<service name>.<namespace>.svc:5432/<database name>'
 # e.g. url: 'jdbc:postgresql://acid-minimal-cluster.my-project.svc:5432/registry'
 userName: 'postgres'
 password: '<password>' # Optional

CHAPTER 4. DEPLOYING SERVICE REGISTRY STORAGE IN A POSTGRESQL DATABASE

21

https://access.crunchydata.com/documentation/postgres-operator/4.3.2/quickstart/
https://github.com/Apicurio/apicurio-registry-operator/blob/master/docs/minikube-quickstart.md

SQL Dump is a simple procedure that works with any PostgreSQL installation. This uses the pg_dump
utility to generate a file with SQL commands that you can use to recreate the database in the same
state that it was in at the time of the dump.

pg_dump is a regular PostgreSQL client application, which you can execute from any remote host that
has access to the database. Like any other client, the operations that can perform are limited to the user
permissions.

Procedure

Use the pg_dump command to redirect the output to a file:

You can specify the database server that pg_dump connects to using the -h host and -p port
options.

You can reduce large dump files using a compression tool, such as gzip, for example:

Additional resources

For details on client authentication, see the PostgreSQL documentation.

For details on importing and exporting registry content, see Managing Apicurio Registry
content using the REST API.

4.4. RESTORING SERVICE REGISTRY POSTGRESQL STORAGE

You can restore SQL Dump files created by pg_dump using the psql utility.

Prerequisites

You must have already backed up your PostgreSQL datbase using pg_dump. See Section 4.3,
“Backing up Service Registry PostgreSQL storage”.

All users who own objects or have permissions on objects in the dumped database must already
exist.

Procedure

1. Enter the following command to create the database:

2. Enter the following command to restore the SQL dump

3. Run ANALYZE on each database so the query optimizer has useful statistics.

 $ pg_dump dbname > dumpfile

 $ pg_dump dbname | gzip > filename.gz

 $ createdb -T template0 dbname

 $ psql dbname < dumpfile

Red Hat Integration 2021.Q2 Installing and deploying Service Registry on OpenShift

22

https://www.postgresql.org/docs/12/backup-dump.html
https://www.postgresql.org/docs/12/app-pgdump.html
https://www.postgresql.org/docs/12/client-authentication.html
https://access.redhat.com/documentation/en-us/red_hat_integration/2021.q2/html/service_registry_user_guide/managing-registry-artifacts-api
https://www.postgresql.org/docs/12/sql-analyze.html

CHAPTER 5. SECURING A SERVICE REGISTRY DEPLOYMENT
This chapter explains how to configure security settings for your Service Registry deployment on
OpenShift:

Section 5.1, “Securing the Service Registry API and web console using Red Hat Single Sign-On”

Section 5.2, “Service Registry authentication and authorization configuration options”

Section 5.3, “Configuring an HTTPS connection to Service Registry from inside the OpenShift
cluster”

Section 5.4, “Configuring an HTTPS connection to Service Registry from outside the OpenShift
cluster”

Service Registry supports authentication for the Service Registry web console and core REST API using
Red Hat Single Sign-On, based on Open ID Connect (OIDC). You can enable this by installing the Red
Hat Single Sign-On Operator, or using Service Registry configuration options.

Service Registry provides role-based authentication and authorization in Red Hat Single Sign-On.
Service Registry also provides content-based authorization at the schema or API level, where only the
artifact creator has write access. You can also configure an HTTPS connection to Service Registry from
inside or outside an OpenShift cluster.

Additional resources

For details on security configuration for Java client applications, see the following:

Service Registry Java client configuration

Service Registry serializer/deserializer configuration

5.1. SECURING THE SERVICE REGISTRY API AND WEB CONSOLE
USING RED HAT SINGLE SIGN-ON

The following procedure shows how to configure a Service Registry deployment to be protected by Red
Hat Single Sign-On.

IMPORTANT

The example configuration in this procedure is intended for development and testing
only. To keep the procedure simple, it does not use HTTPS and other defenses
recommended for a production environment. For more details, see the Red Hat Single
Sign-On documentation.

Service Registry supports the following user roles:

Table 5.1. Service Registry user roles

Name Capabilities

sr-admin Full access, no restrictions.

CHAPTER 5. SECURING A SERVICE REGISTRY DEPLOYMENT

23

https://access.redhat.com/documentation/en-us/red_hat_integration/2021.Q2/html-single/service_registry_user_guide/index#registry-client-config
https://access.redhat.com/documentation/en-us/red_hat_integration/2021.Q2/html-single/service_registry_user_guide/index#registry-serdes-concepts-constants-registry

sr-developer Create artifacts and configure artifact rules. Cannot
modify global rules, perform import/export, or use
/admin REST API endpoint.

sr-readonly View and search only. Cannot modify artifacts or
rules, perform import/export, or use /admin REST
API endpoint.

Name Capabilities

NOTE

There is a related configuration option in the ApicurioRegistry CRD that you can use to
set the web console to read-only mode. However, this configuration does not affect the
REST API.

Prerequisites

You must have already installed the Service Registry Operator.

You must install the Red Hat Single Sign-On Operator or have Red Hat Single Sign-On
accessible from your OpenShift cluster.

Procedure

1. In the OpenShift web console, click Installed Operators and Red Hat Single Sign-On
Operator, and then the Keycloak tab.

2. Click Create Keycloak to provision a new Red Hat Single Sign-On instance for securing a
Service Registry deployment. You can use the default value, for example:

3. Wait until the instance has been created, and click Networking and then Routes to access the
new route for the keycloak instance.

4. Click the Location URL and copy the displayed ../auth URL value for later use when deploying
Service Registry.

5. Click Installed Operators and Red Hat Single Sign-On Operator, and click the Keycloak

apiVersion: keycloak.org/v1alpha1
kind: Keycloak
metadata:
 name: example-keycloak
 labels:
 app: sso
spec:
 instances: 1
 externalAccess:
 enabled: True
 podDisruptionBudget:
 enabled: True

Red Hat Integration 2021.Q2 Installing and deploying Service Registry on OpenShift

24

5. Click Installed Operators and Red Hat Single Sign-On Operator, and click the Keycloak
Realm tab, and then Create Keycloak Realm to create a registry example realm:

apiVersion: keycloak.org/v1alpha1
kind: KeycloakRealm
metadata:
 name: registry-keycloakrealm
spec:
 instanceSelector:
 matchLabels:
 app: sso
 realm:
 displayName: Registry
 enabled: true
 id: registry
 realm: registry
 sslRequired: none
 roles:
 realm:
 - name: sr-admin
 - name: sr-developer
 - name: sr-readonly
 clients:
 - clientId: registry-client-ui
 implicitFlowEnabled: true
 redirectUris:
 - '*'
 standardFlowEnabled: true
 webOrigins:
 - '*'
 publicClient: true
 - clientId: registry-client-api
 implicitFlowEnabled: true
 redirectUris:
 - '*'
 standardFlowEnabled: true
 webOrigins:
 - '*'
 publicClient: true
 users:
 - credentials:
 - temporary: false
 type: password
 value: changeme
 enabled: true
 realmRoles:
 - sr-admin
 username: registry-admin
 - credentials:
 - temporary: false
 type: password
 value: changeme
 enabled: true
 realmRoles:
 - sr-developer
 username: registry-developer

CHAPTER 5. SECURING A SERVICE REGISTRY DEPLOYMENT

25

IMPORTANT

You must customize this KeycloakRealm resource with values suitable for your
environment if you are deploying to production. You can also create and manage
realms using the Red Hat Single Sign-On web console.

6. If your cluster does not have a valid HTTPS certificate configured, you can create the following
HTTP Service and Ingress resources as a temporary workaround:

a. Click Networking and then Services, and click Create Service using the following example:

b. Click Networking and then Ingresses, and click Create Ingress using the following
example::

apiVersion: networking.k8s.io/v1beta1
kind: Ingress
metadata:
 name: keycloak-http
 labels:
 app: keycloak
spec:
 rules:
 - host: keycloak-http.local
 http:
 paths:
 - path: /

 - credentials:
 - temporary: false
 type: password
 value: changeme
 enabled: true
 realmRoles:
 - sr-readonly
 username: registry-user

apiVersion: v1
kind: Service
metadata:
 name: keycloak-http
 labels:
 app: keycloak
spec:
 ports:
 - name: keycloak-http
 protocol: TCP
 port: 8080
 targetPort: 8080
 selector:
 app: keycloak
 component: keycloak
 type: ClusterIP
 sessionAffinity: None
status:
 loadBalancer: {}

Red Hat Integration 2021.Q2 Installing and deploying Service Registry on OpenShift

26

 pathType: ImplementationSpecific
 backend:
 serviceName: keycloak-http
 servicePort: 8080

Modify the host value to create a route accessible for the Service Registry user, and use it
instead of the HTTPS route created by Red Hat Single Sign-On Operator.

7. Click the Service Registry Operator, and on the ApicurioRegistry tab, click Create
ApicurioRegistry, using the following example, but replace your values in the keycloak section.

5.2. SERVICE REGISTRY AUTHENTICATION AND AUTHORIZATION
CONFIGURATION OPTIONS

This section describes the authentication and authorization options for Service Registry using Red Hat
Single Sign-On.

You can enable authentication for the Service Registry web console and core REST API using Red Hat
Single Sign-On. The same Red Hat Single Sign-On realm and users are federated across the Service
Registry web console and core REST API using Open ID Connect (OIDC) so that you only require one
set of credentials.

Service Registry provides role-based authorization for default admin, write, and read-only user roles.
Service Registry also provides content-based authorization at the schema or API level, where only the
creator of the registry artifact can update or delete it. Service Registry authentication and authorization
options are disabled by default.

Prerequisites

Red Hat Single Sign-On is installed and running, and configured with a Red Hat Single Sign-On
realm and a user. For more details, see Getting Started with Red Hat Single Sign-On .

Service Registry is installed and running.

apiVersion: registry.apicur.io/v1
kind: ApicurioRegistry
metadata:
 name: example-apicurioregistry-kafkasql-keycloak
spec:
 configuration:
 security:
 keycloak:
 url: "http://keycloak-http-<namespace>.apps.<cluster host>/auth"
 # ^ Required
 # Keycloak server URL, must end with `/auth`.
 # Use an HTTP URL in development.
 realm: "registry"
 # apiClientId: "registry-client-api"
 # ^ Optional (default value)
 # uiClientId: "registry-client-ui"
 # ^ Optional (default value)
 persistence: 'kafkasql'
 kafkasql:
 bootstrapServers: '<my-cluster>-kafka-bootstrap.<namespace>.svc:9092'

CHAPTER 5. SECURING A SERVICE REGISTRY DEPLOYMENT

27

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.4/html-single/getting_started_guide/index

Service Registry authentication using Red Hat Single Sign-On
You can set the following environment variables to configure authentication for the Service Registry
web console and API using Red Hat Single Sign-On:

Table 5.2. Configuration for Service Registry authentication options

Environment variable Description Type Default

AUTH_ENABLED When set to true, the environment
variables that follow are required.

String false

KEYCLOAK_URL The URL of the Red Hat Single
Sign-On authentication server to
use. Must end with /auth.

String -

KEYCLOAK_REALM The Red Hat Single Sign-On realm
used for authentication.

String -

KEYCLOAK_API_CLIEN
T_ID

The client ID for the Service
Registry REST API.

String registry-api

KEYCLOAK_UI_CLIENT_
ID

The client ID for the Service
Registry web console.

String apicurio-registry

Service Registry user roles in Red Hat Single Sign-On
When Service Registry authentication is enabled, you must assign Service Registry users to at least one
of the following user roles in Red Hat Single Sign-On:

Table 5.3. Service Registry roles for authentication and authorization

Role Read artifacts Write artifacts Global rules Description

sr-admin Yes Yes Yes Full access to all create, read,
update, and delete operations.

sr-developer Yes Yes No Access to create, read, update,
and delete operations, except
configuring global rules and
import/export. This role can
configure artifact rules only.

sr-readonly Yes No No Access to read and search
operations only. This role cannot
configure any rules.

Service Registry artifact owner-only authorization option
Set the following option to true to enable owner-only authorization for updates to schema and API
artifacts in Service Registry:

Table 5.4. Configuration for owner-only authorization

Red Hat Integration 2021.Q2 Installing and deploying Service Registry on OpenShift

28

Environment variable Java system property Type Default value

REGISTRY_AUTH_OWNER_
ONLY_AUTHORIZATION

registry.auth.owner-only-
authorization

Boolean false

Additional resources

For an open source Docker-based example of authentication using Red Hat Single Sign-On, see
https://github.com/Apicurio/apicurio-registry/tree/master/distro/docker-compose

For details on how to use Red Hat Single Sign-On in a production environment, see see Red Hat
Single Sign-On documentation

For details on configuring custom authentication for Service Registry, the see Quarkus Open ID
Connect documentation

5.3. CONFIGURING AN HTTPS CONNECTION TO SERVICE REGISTRY
FROM INSIDE THE OPENSHIFT CLUSTER

The following procedure shows how to configure Service Registry deployment to expose a port for
HTTPS connections from inside the OpenShift cluster.

WARNING

This kind of connection is not directly available outside of the cluster. Routing is
based on hostname, which is encoded in the case of an HTTPS connection.
Therefore, edge termination or other configuration is still needed. See Section 5.4,
“Configuring an HTTPS connection to Service Registry from outside the OpenShift
cluster”.

Prerequisites

You must have already installed the Service Registry Operator.

Procedure

1. Generate a keystore with a self-signed certificate. You can skip this step if you are using your
own certificates.

2. Create a new secret to hold the keystore and keystore password.

a. In the left navigation menu of the OpenShift web console, click Workloads > Secrets >
Create Key/Value Secret.

b. Use the following values:



keytool -genkey -trustcacerts -keyalg RSA -keystore registry-keystore.jks -storepass
password

CHAPTER 5. SECURING A SERVICE REGISTRY DEPLOYMENT

29

https://github.com/Apicurio/apicurio-registry/tree/master/distro/docker-compose
https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.4/
https://quarkus.io/guides/security-openid-connect-web-authentication

Name: registry-keystore
Key 1: keystore.jks
Value 1: registry-keystore.jks (uploaded file)
Key 2: password
Value 2: password

NOTE

If you encounter a java.io.IOException: Invalid keystore format, the upload
of the binary file did not work properly. As an alternative, encode the file as a
base64 string using cat registry-keystore.jks | base64 -w0 > data.txt and
edit the Secret resource as yaml to manually add the encoded file.

3. Edit the Deployment resource of the Service Registry instance. You can find the correct name
in a status field of the Service Registry Operator.

a. Add the keystore secret as a volume:

b. Add a volume mount:

c. Add JAVA_OPTIONS and KEYSTORE_PASSWORD environment variables:

NOTE

Order is important when using string interpolation.

d. Enable the HTTPS port:

template:
 spec:
 volumes:
 - name: registry-keystore-secret-volume
 secret:
 secretName: registry-keystore

volumeMounts:
 - name: registry-keystore-secret-volume
 mountPath: /etc/registry-keystore
 readOnly: true

- name: KEYSTORE_PASSWORD
 valueFrom:
 secretKeyRef:
 name: registry-keystore
 key: password
- name: JAVA_OPTIONS
 value: >-
 -Dquarkus.http.ssl.certificate.key-store-file=/etc/registry-keystore/keystore.jks
 -Dquarkus.http.ssl.certificate.key-store-file-type=jks
 -Dquarkus.http.ssl.certificate.key-store-password=$(KEYSTORE_PASSWORD)

ports:
 - containerPort: 8080

Red Hat Integration 2021.Q2 Installing and deploying Service Registry on OpenShift

30

4. Edit the Service resource of the Service Registry instance. You can find the correct name in a
status field of the Service Registry Operator.

5. Verify that the connection is working:

a. Connect into a pod on the cluster using SSH (you can use the Service Registry pod):

b. Find the cluster IP of the Service Registry pod from the Service resource (see the Location
column in the web console). Afterwards, execute a test request (we are using self-signed
certificate, so an insecure flag is required):

5.4. CONFIGURING AN HTTPS CONNECTION TO SERVICE REGISTRY
FROM OUTSIDE THE OPENSHIFT CLUSTER

The following procedure shows how to configure Service Registry deployment to expose an HTTPS
edge-terminated route for connections from outside the OpenShift cluster.

Prerequisites

You must have already installed the Service Registry Operator.

Read the OpenShift documentation for creating secured routes .

Procedure

1. Add a second Route in addition to the HTTP route created by the Service Registry Operator.
See the following example:

 protocol: TCP
 - containerPort: 8443
 protocol: TCP

ports:
 - name: http
 protocol: TCP
 port: 8080
 targetPort: 8080
 - name: https
 protocol: TCP
 port: 8443
 targetPort: 8443

oc rsh -n default example-apicurioregistry-deployment-vx28s-4-lmtqb

curl -k https://172.30.209.198:8443/health
[...]

kind: Route
apiVersion: route.openshift.io/v1
metadata:
 [...]
 labels:
 app: example-apicurioregistry

CHAPTER 5. SECURING A SERVICE REGISTRY DEPLOYMENT

31

https://docs.openshift.com/container-platform/latest/networking/routes/secured-routes.html

NOTE

Make sure the insecureEdgeTerminationPolicy: Redirect configuration
property is set.

If you do not specify a certificate, OpenShift will use a default. You can alternatively generate a
custom self-signed certificate using the following commands:

and then create a route using the OpenShift CLI:

 [...]
spec:
 host: example-apicurioregistry-default.apps.example.com
 to:
 kind: Service
 name: example-apicurioregistry-service-9whd7
 weight: 100
 port:
 targetPort: 8080
 tls:
 termination: edge
 insecureEdgeTerminationPolicy: Redirect
 wildcardPolicy: None

openssl genrsa 2048 > host.key &&
openssl req -new -x509 -nodes -sha256 -days 365 -key host.key -out host.cert

oc create route edge \
 --service=example-apicurioregistry-service-9whd7 \
 --cert=host.cert --key=host.key \
 --hostname=example-apicurioregistry-default.apps.example.com \
 --insecure-policy=Redirect \
 -n default

Red Hat Integration 2021.Q2 Installing and deploying Service Registry on OpenShift

32

CHAPTER 6. MANAGING A SERVICE REGISTRY DEPLOYMENT
This chapter explains how to configure and manage optional settings for your Service Registry
deployment on OpenShift:

Section 6.1, “Configuring Service Registry health checks on OpenShift”

Section 6.2, “Environment variables for Service Registry health checks”

Section 6.3, “Configuring the Service Registry web console”

Section 6.4, “Configuring Service Registry logging”

6.1. CONFIGURING SERVICE REGISTRY HEALTH CHECKS ON
OPENSHIFT

You can configure optional environment variables for liveness and readiness probes to monitor the
health of the Service Registry server on OpenShift:

Liveness probes test if the application can make progress. If the application cannot make
progress, OpenShift automatically restarts the failing Pod.

Readiness probes test if the application is ready to process requests. If the application is not
ready, it can become overwhelmed by requests, and OpenShift stops sending requests for the
time that the probe fails. If other Pods are OK, they continue to receive requests.

IMPORTANT

The default values of the liveness and readiness environment variables are designed for
most cases and should only be changed if required by your environment. Any changes to
the defaults depend on your hardware, network, and amount of data stored. These values
should be kept as low as possible to avoid unnecessary overhead.

Prerequisites

You must have an OpenShift cluster with cluster administrator access.

You must have already installed Service Registry on OpenShift.

You must have already installed and configured your chosen Service Registry storage in AMQ
Streams or PostgreSQL.

Procedure

1. In the OpenShift Container Platform web console, log in using an account with cluster
administrator privileges.

2. Click Installed Operators > Red Hat Integration - Service Registry.

3. On the ApicurioRegistry tab, click the Operator custom resource for your deployment, for
example, example-apicurioregistry.

4. In the main overview page, find the Deployment Name section and the corresponding
DeploymentConfig name for your Service Registry deployment, for example, example-
apicurioregistry.

CHAPTER 6. MANAGING A SERVICE REGISTRY DEPLOYMENT

33

5. In the left navigation menu, click Workloads > Deployment Configs, and select your
DeploymentConfig name.

6. Click the Environment tab, and enter your environment variables in the Single values env
section, for example:

NAME: LIVENESS_STATUS_RESET

VALUE: 350

7. Click Save at the bottom.
Alternatively, you can perform these steps using the OpenShift oc command. For more details,
see the OpenShift CLI documentation.

Additional resources

Section 6.2, “Environment variables for Service Registry health checks”

OpenShift documentation on monitoring application health

6.2. ENVIRONMENT VARIABLES FOR SERVICE REGISTRY HEALTH
CHECKS

This section describes the available environment variables for Service Registry health checks on
OpenShift. These include liveness and readiness probes to monitor the health of the Service Registry
server on OpenShift. For an example procedure, see Section 6.1, “Configuring Service Registry health
checks on OpenShift”.

IMPORTANT

The following environment variables are provided for reference only. The default values
are designed for most cases and should only be changed if required by your environment.
Any changes to the defaults depend on your hardware, network, and amount of data
stored. These values should be kept as low as possible to avoid unnecessary overhead.

Liveness environment variables

Table 6.1. Environment variables for Service Registry liveness probes

Name Description Type Default

LIVENESS_ERROR_THR
ESHOLD

Number of liveness issues or
errors that can occur before
the liveness probe fails.

Integer 1

LIVENESS_COUNTER_R
ESET

Period in which the threshold
number of errors must occur.
For example, if this value is
60 and the threshold is 1, the
check fails after two errors
occur in 1 minute

Seconds 60

Red Hat Integration 2021.Q2 Installing and deploying Service Registry on OpenShift

34

https://docs.openshift.com/container-platform/4.6/cli_reference/openshift_cli/getting-started-cli.html
https://docs.openshift.com/container-platform/4.6/applications/application-health.html

LIVENESS_STATUS_RES
ET

Number of seconds that
must elapse without any
more errors for the liveness
probe to reset to OK status.

Seconds 300

LIVENESS_ERRORS_IGN
ORED

Comma-separated list of
ignored liveness exceptions.

String io.grpc.StatusRuntimeEx
ception,org.apache.kafk
a.streams.errors.InvalidS
tateStoreException

Name Description Type Default

NOTE

Because OpenShift automatically restarts a Pod that fails a liveness check, the liveness
settings, unlike readiness settings, do not directly affect behavior of Service Registry on
OpenShift.

Readiness environment variables

Table 6.2. Environment variables for Service Registry readiness probes

Name Description Type Default

READINESS_ERROR_THR
ESHOLD

Number of readiness issues or errors
that can occur before the readiness
probe fails.

Integer 1

READINESS_COUNTER_R
ESET

Period in which the threshold number of
errors must occur. For example, if this
value is 60 and the threshold is 1, the
check fails after two errors occur in 1
minute.

Seconds 60

READINESS_STATUS_RES
ET

Number of seconds that must elapse
without any more errors for the liveness
probe to reset to OK status. In this case,
this means how long the Pod stays not
ready, until it returns to normal
operation.

Seconds 300

CHAPTER 6. MANAGING A SERVICE REGISTRY DEPLOYMENT

35

READINESS_TIMEOUT Readiness tracks the timeout of two
operations:

How long it takes for storage
requests to complete

How long it takes for HTTP
REST API requests to return a
response

If these operations take more time than
the configured timeout, this is counted
as a readiness issue or error. This value
controls the timeouts for both
operations.

Seconds 5

Name Description Type Default

Additional resources

Section 6.1, “Configuring Service Registry health checks on OpenShift”

OpenShift documentation on monitoring application health

6.3. CONFIGURING THE SERVICE REGISTRY WEB CONSOLE

You can configure the Service Registry web console specifically for your deployment environment or to
customize its behavior. This section provides details on how to configure optional environment variables
for the Service Registry web console.

Prerequisites

You must have already installed Service Registry.

Configuring the web console deployment environment
When a user navigates their browser to the Service Registry web console, some initial configuration
settings are loaded. Two important configuration properties are:

URL for backend Service Registry REST API

URL for frontend Service Registry web console

Typically, Service Registry automatically detects and generates these settings, but there are some
deployment environments where this automatic detection can fail. If this happens, you can configure
environment variables to explicitly set these URLs for your environment.

Procedure

Configure the following environment variables to override the default URLs:

REGISTRY_UI_CONFIG_APIURL: Set the URL for the backend Service Registry REST API. For
example, https://registry.my-domain.com/apis/registry

Red Hat Integration 2021.Q2 Installing and deploying Service Registry on OpenShift

36

https://docs.openshift.com/container-platform/4.6/applications/application-health.html

REGISTRY_UI_CONFIG_UIURL: Set the URL for the frontend Service Registry web console.
For example, https://registry.my-domain.com/ui

Configuring the console in read-only mode
You can configure the Service Registry web console in read-only mode as an optional feature. This
mode disables all features in the Service Registry web console that allow users to make changes to
registered artifacts. For example, this includes the following:

Creating an artifact

Uploading a new version of an artifact

Updating an artifact’s metadata

Deleting an artifact

Procedure

Configure the following environment variable to set the Service Registry web console in read-only
mode:

REGISTRY_UI_FEATURES_READONLY: Set to true to enable read-only mode. Defaults to
false.

6.4. CONFIGURING SERVICE REGISTRY LOGGING

You can set Service Registry logging configuration at runtime. Service Registry provides a REST
endpoint to set the log level for specific loggers for finer grained logging. This section explains how to
view and set Service Registry log levels at runtime using the Service Registry /admin REST API.

Prerequisites

Get the URL to access your Service Registry instance, or get your Service Registry route if you
have Service Registry deployed on OpenShift. This simple example uses a URL of
localhost:8080.

Checking the current log level for a specific logger

Use this curl command to obtain the current log level for the logger
io.apicurio.registry.storage:

Changing the log level for a specific logger

Use this curl command to change the log level for the logger io.apicurio.registry.storage to
DEBUG:

$ curl -i localhost:8080/apis/registry/v2/admin/loggers/io.apicurio.registry.storage
HTTP/1.1 200 OK
[...]
Content-Type: application/json
{"name":"io.apicurio.registry.storage","level":"INFO"}

$ curl -X PUT -i -H "Content-Type: application/json" --data '{"level":"DEBUG"}'
localhost:8080/apis/registry/v2/admin/loggers/io.apicurio.registry.storage
HTTP/1.1 200 OK

CHAPTER 6. MANAGING A SERVICE REGISTRY DEPLOYMENT

37

Reverting to the default log level
You can revert to the default log level the configuration of a specific logger. Use this curl command to
change the log level for the logger io.apicurio.registry.storage to its default value:

[...]
Content-Type: application/json
{"name":"io.apicurio.registry.storage","level":"DEBUG"}

$ curl -X DELETE -i localhost:8080/apis/registry/v2/admin/loggers/io.apicurio.registry.storage
HTTP/1.1 200 OK
[...]
Content-Type: application/json
{"name":"io.apicurio.registry.storage","level":"INFO"}

Red Hat Integration 2021.Q2 Installing and deploying Service Registry on OpenShift

38

CHAPTER 7. SERVICE REGISTRY OPERATOR
CONFIGURATION REFERENCE

This chapter provides detailed information on the custom resource used to configure the Service
Registry Operator to deploy Service Registry:

Section 7.1, “Service Registry Custom Resource”

Section 7.2, “Service Registry CR spec”

Section 7.3, “Service Registry CR status”

Section 7.5, “Service Registry Operator labels”

Section 7.4, “Service Registry managed resources”

7.1. SERVICE REGISTRY CUSTOM RESOURCE

The Service Registry Operator defines an ApicurioRegistry custom resource (CR) that represents a
single deployment of Service Registry on OpenShift.

These resource objects are created and maintained by users to instruct the Service Registry Operator
how to deploy and configure Service Registry.

Example ApicurioRegistry CR

The following command displays the ApicurioRegistry resource:

oc get apicurioregistry
oc edit apicurioregistry example-apicurioregistry

apiVersion: registry.apicur.io/v1
kind: ApicurioRegistry
metadata:
 name: example-apicurioregistry
 namespace: demo-kafka
 # ...
spec:
 configuration:
 persistence: kafkasql
 kafkasql:
 bootstrapServers: 'my-cluster-kafka-bootstrap.demo-kafka.svc:9092'
 deployment:
 host: >-
 example-apicurioregistry.demo-kafka.example.com
status:
 conditions:
 - lastTransitionTime: "2021-05-03T10:47:11Z"
 message: ""
 reason: Reconciled
 status: "True"
 type: Ready
 info:
 host: example-apicurioregistry.demo-kafka.example.com
 managedResources:

CHAPTER 7. SERVICE REGISTRY OPERATOR CONFIGURATION REFERENCE

39

https://docs.openshift.com/container-platform/4.6/operators/understanding/crds/crd-extending-api-with-crds.html

IMPORTANT

By default, the Service Registry Operator only watches its own project namespace.
Therefore you must create the ApicurioRegistry CR in the same namespace, if you are
deploying the operator manually. You can modify this behavior by updating
WATCH_NAMESPACE environment variable in the Operator Deployment resource.

Additional resources

Extending the Kubernetes API with Custom Resource Definitions

7.2. SERVICE REGISTRY CR SPEC

The spec is the part of the ApicurioRegistry CR that is used to provide the desired state or
configuration for the Operator to achieve.

ApicurioRegistry CR spec contents

The following example block contains the full tree of possible spec configuration options. Some fields
may not be required or should not be defined at the same time.

 - kind: Deployment
 name: example-apicurioregistry-deployment
 namespace: demo-kafka
 - kind: Service
 name: example-apicurioregistry-service
 namespace: demo-kafka
 - kind: Ingress
 name: example-apicurioregistry-ingress
 namespace: demo-kafka

spec:
 configuration:
 persistence: <string>
 sql:
 dataSource:
 url: <string>
 userName: <string>
 password: <string>
 kafkasql:
 bootstrapServers: <string>
 security:
 tls:
 truststoreSecretName: <string>
 keystoreSecretName: <string>
 scram:
 mechanism: <string>
 truststoreSecretName: <string>
 user: <string>
 passwordSecretName: <string>
 ui:
 readOnly: <string>
 logLevel: <string>
 security:
 keycloak:

Red Hat Integration 2021.Q2 Installing and deploying Service Registry on OpenShift

40

https://docs.openshift.com/container-platform/4.6/operators/understanding/crds/crd-extending-api-with-crds.html

The following table describes each configuration option:

Table 7.1. ApicurioRegistry CR spec configuration options

Configuration option type Default value Description

configuration - - Section for configuration
of Service Registry
application

configuration/persistence string required Storage backend. One of
sql, kafkasql

configuration/sql - - SQL storage backend
configuration

configuration/sql/dataSource - - Database connection
configuration for SQL
storage backend

configuration/sql/dataSource/ur
l

string required Database connection URL
string

configuration/sql/dataSource/us
erName

string required Database connection user

configuration/sql/dataSource/pa
ssword

string empty Database connection
password

configuration/kafkasql - - Kafka storage backend
configuration

configuration/kafkasql/bootstra
pServers

string required Kafka bootstrap server
URL, for Streams storage
backend

configuration/kafkasql/security/
tls

- - Section to configure TLS
authentication for Kafka
storage backend

 url: <string>
 realm: <string>
 apiClientId: <string>
 uiClientId: <string>
 deployment:
 replicas: <int32>
 host: <string>
 affinity: <k8s.io/api/core/v1 Affinity struct>
 tolerations: <k8s.io/api/core/v1 []Toleration slice>

CHAPTER 7. SERVICE REGISTRY OPERATOR CONFIGURATION REFERENCE

41

configuration/kafkasql/security/
tls/truststoreSecretName

string required Name of a secret
containing TLS truststore
for Kafka

configuration/kafkasql/security/
tls/keystoreSecretName

string required Name of a secret
containing user TLS
keystore

configuration/kafkasql/security/
scram/truststoreSecretName

string required Name of a secret
containing TLS truststore
for Kafka

configuration/kafkasql/security/
scram/user

string required SCRAM user name

configuration/kafkasql/security/
scram/passwordSecretName

string required Name of a secret
containing SCRAM user
password

configuration/kafkasql/security/
scram/mechanism

string SCRAM-SHA-
512

SASL mechanism

configuration/ui - - Service Registry web
console settings

configuration/ui/readOnly string false Set Service Registry web
console to read-only mode

configuration/logLevel string INFO Service Registry log level.
One of INFO, DEBUG

configuration/security - - Service Registry web
console and REST API
security settings

configuration/security/keycloak - - Web console and REST API
security configuration
using Keycloak

configuration/security/keycloak/
url

string required Keycloak URL, must end
with /auth

configuration/security/keycloak/
realm

string required Keycloak realm

Configuration option type Default value Description

Red Hat Integration 2021.Q2 Installing and deploying Service Registry on OpenShift

42

configuration/security/keycloak/
apiClientId

string registry-
client-api

Keycloak client for REST
API

configuration/security/keycloak/
uiClientId

string registry-
client-ui

Keycloak client for web
console

deployment - - Section for Service
Registry deployment
settings

deployment/replicas positive integer 1 Number of Service
Registry pods to deploy

deployment/host string auto-generated Host/URL where the
Service Registry console
and API are available. If
possible, Service Registry
Operator attempts to
determine the correct
value based on the
settings of your cluster
router. The value is auto-
generated only once, so
user can override it
afterwards.

deployment/affinity k8s.io/api/core/
v1 Affinity struct

empty Service Registry
deployment affinity
configuration

deployment/tolerations k8s.io/api/core/
v1 []Toleration
slice

empty Service Registry
deployment tolerations
configuration

Configuration option type Default value Description

NOTE

If an option is marked as required, it might be conditional on other configuration options
being enabled. Empty values might be accepted, but the Operator does not perform the
specified action.

7.3. SERVICE REGISTRY CR STATUS

The status is the section of the CR managed by the Service Registry Operator that contains a
description of the current deployment and application state.

ApicurioRegistry CR status contents

CHAPTER 7. SERVICE REGISTRY OPERATOR CONFIGURATION REFERENCE

43

The status section contains the following fields:

Table 7.2. ApicurioRegistry CR status fields

Status field Type Description

info - Section with information about the deployed Service
Registry.

info/host string URL where the Service Registry UI and REST API are
accessible.

conditions - List of conditions that report the status of the
Service Registry, or the Operator with respect to that
deployment.

conditions/type string Type of the condition.

conditions/status string Status of the condition, one of True, False,
Unknown.

conditions/reason string A programmatic identifier indicating the reason for
the condition’s last transition.

conditions/message string A human readable message indicating details about
the transition.

conditions/lastTransitionTim
e

string The last time the condition transitioned from one
status to another.

managedResources - List of OpenShift resources managed by Service
Registry Operator

managedResources/kind string Resource kind.

managedResources/namesp
ace

string Resource namespace.

status:
 info:
 host: <string>
 conditions: <list of:>
 - type: <string>
 status: <string, one of: True, False, Unknown>
 reason: <string>
 message: <string>
 lastTransitionTime: <string, RFC-3339 timestamp>
 managedResources: <list of:>
 - kind: <string>
 namespace: <string>
 name: <string>

Red Hat Integration 2021.Q2 Installing and deploying Service Registry on OpenShift

44

managedResources/name string Resource name.

Status field Type Description

7.4. SERVICE REGISTRY MANAGED RESOURCES

The resources managed by the Service Registry Operator when deploying Service Registry are as
follows:

Deployment

Service

Ingress (and Route)

PodDisruptionBudget

7.5. SERVICE REGISTRY OPERATOR LABELS

Resources managed by the Service Registry Operator are usually labeled as follows:

Table 7.3. Service Registry Operator labels for managed resources

Label Description

app Name of the Service Registry deployment that the resource belongs to,
based on the name of the specified ApicurioRegistry CR.

apicur.io/type Type of the deployment: apicurio-registry or operator

apicur.io/name Name of the deployment: same value as app or apicurio-registry-
operator

apicur.io/version Version of the Service Registry or the Service Registry Operator

app.kubernetes.io/* A set of recommended Kubernetes labels for application deployments.

com.company and rht.*` Metering labels for Red Hat products.

Additional resources

Recommended Kubernetes labels for application deployments

CHAPTER 7. SERVICE REGISTRY OPERATOR CONFIGURATION REFERENCE

45

https://kubernetes.io/docs/concepts/overview/working-with-objects/common-labels/

APPENDIX A. USING YOUR SUBSCRIPTION
Service Registry is provided through a software subscription. To manage your subscriptions, access your
account at the Red Hat Customer Portal.

Accessing your account

1. Go to access.redhat.com.

2. If you do not already have an account, create one.

3. Log in to your account.

Activating a subscription

1. Go to access.redhat.com.

2. Navigate to My Subscriptions.

3. Navigate to Activate a subscription and enter your 16-digit activation number.

Downloading ZIP and TAR files
To access ZIP or TAR files, use the customer portal to find the relevant files for download. If you are
using RPM packages, this step is not required.

1. Open a browser and log in to the Red Hat Customer Portal Product Downloads page at
access.redhat.com/downloads.

2. Locate the Red Hat Integration entries in the Integration and Automation category.

3. Select the desired Service Registry product. The Software Downloads page opens.

4. Click the Download link for your component.

Registering your system for packages
To install RPM packages on Red Hat Enterprise Linux, your system must be registered. If you are using
ZIP or TAR files, this step is not required.

1. Go to access.redhat.com.

2. Navigate to Registration Assistant.

3. Select your OS version and continue to the next page.

4. Use the listed command in your system terminal to complete the registration.

To learn more see How to Register and Subscribe a System to the Red Hat Customer Portal .

Red Hat Integration 2021.Q2 Installing and deploying Service Registry on OpenShift

46

https://access.redhat.com
https://access.redhat.com
https://access.redhat.com/downloads
https://access.redhat.com
https://access.redhat.com/solutions/253273

	Table of Contents
	PREFACE
	MAKING OPEN SOURCE MORE INCLUSIVE

	CHAPTER 1. SERVICE REGISTRY OPERATOR QUICKSTART
	1.1. QUICKSTART SERVICE REGISTRY OPERATOR INSTALLATION
	1.2. QUICKSTART SERVICE REGISTRY DEPLOYMENT

	CHAPTER 2. INSTALLING SERVICE REGISTRY ON OPENSHIFT
	2.1. INSTALLING SERVICE REGISTRY FROM THE OPENSHIFT OPERATORHUB

	CHAPTER 3. DEPLOYING SERVICE REGISTRY STORAGE IN AMQ STREAMS
	3.1. INSTALLING AMQ STREAMS FROM THE OPENSHIFT OPERATORHUB
	3.2. CONFIGURING SERVICE REGISTRY WITH KAFKA STORAGE ON OPENSHIFT
	3.3. CONFIGURING KAFKA STORAGE WITH TLS SECURITY
	3.4. CONFIGURING KAFKA STORAGE WITH SCRAM SECURITY

	CHAPTER 4. DEPLOYING SERVICE REGISTRY STORAGE IN A POSTGRESQL DATABASE
	4.1. INSTALLING A POSTGRESQL DATABASE FROM THE OPENSHIFT OPERATORHUB
	4.2. CONFIGURING SERVICE REGISTRY WITH POSTGRESQL DATABASE STORAGE ON OPENSHIFT
	4.3. BACKING UP SERVICE REGISTRY POSTGRESQL STORAGE
	4.4. RESTORING SERVICE REGISTRY POSTGRESQL STORAGE

	CHAPTER 5. SECURING A SERVICE REGISTRY DEPLOYMENT
	5.1. SECURING THE SERVICE REGISTRY API AND WEB CONSOLE USING RED HAT SINGLE SIGN-ON
	5.2. SERVICE REGISTRY AUTHENTICATION AND AUTHORIZATION CONFIGURATION OPTIONS
	Service Registry authentication using Red Hat Single Sign-On
	Service Registry user roles in Red Hat Single Sign-On
	Service Registry artifact owner-only authorization option

	5.3. CONFIGURING AN HTTPS CONNECTION TO SERVICE REGISTRY FROM INSIDE THE OPENSHIFT CLUSTER
	5.4. CONFIGURING AN HTTPS CONNECTION TO SERVICE REGISTRY FROM OUTSIDE THE OPENSHIFT CLUSTER

	CHAPTER 6. MANAGING A SERVICE REGISTRY DEPLOYMENT
	6.1. CONFIGURING SERVICE REGISTRY HEALTH CHECKS ON OPENSHIFT
	6.2. ENVIRONMENT VARIABLES FOR SERVICE REGISTRY HEALTH CHECKS
	Liveness environment variables
	Readiness environment variables

	6.3. CONFIGURING THE SERVICE REGISTRY WEB CONSOLE
	Configuring the web console deployment environment
	Configuring the console in read-only mode

	6.4. CONFIGURING SERVICE REGISTRY LOGGING
	Checking the current log level for a specific logger
	Changing the log level for a specific logger
	Reverting to the default log level

	CHAPTER 7. SERVICE REGISTRY OPERATOR CONFIGURATION REFERENCE
	7.1. SERVICE REGISTRY CUSTOM RESOURCE
	7.2. SERVICE REGISTRY CR SPEC
	7.3. SERVICE REGISTRY CR STATUS
	7.4. SERVICE REGISTRY MANAGED RESOURCES
	7.5. SERVICE REGISTRY OPERATOR LABELS

	APPENDIX A. USING YOUR SUBSCRIPTION
	Accessing your account
	Activating a subscription
	Downloading ZIP and TAR files
	Registering your system for packages

